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Editorial on the Research Topic

Advances in statistical methods for the genetic dissection of complex
traits in plants
1 Multi-locus genome-wide association
study methods

In real data analysis, most commonly used genome-wide association study (GWAS)

methods often miss some important loci and trait heritability. To address these challenges,

Li et al. (2022a) established an innovative method named 3VmrMLM based on a

compressed variance component mixed model. In 3VmrMLM, all the effects in

quantitative trait nucleotide (QTN), QTN-by-environment interaction (QEI), and QTN-

by-QTN interaction (QQI) detection are compressed into an effect-related vector, while all

polygenic backgrounds are compressed into a vector-related polygenic background. This

method is especially well suited for species with a high proportion of heterozygous

genotypes, such as human, forests, chrysanthemums, and grasslands.

Can 3VmrMLM replace existing methods? The answer is no, despite 3VmrMLM

demonstrating superiority over existing methods. For the detection of loci dominated by

additive effects, existing methods remain appropriate, as observed in rice, wheat, and

soybean. Since GWAS is based on linkage disequilibrium from historical recombination,

there is complementarity between methods (Zhang et al., 2019). However, existing methods

face challenges in detecting dominant effects and small allele substitution effects (Zhang

et al., 2023).

When analyzing real data, the inflation factor or quantile–quantile plot serves as a

common metric to assess method performance. However, this is not crucial for our

mrMLM and 3VmrMLM methods (Zhang et al., 2020; Li et al., 2022a), because their

genome-wide scanning aims to select potentially associated markers rather than identify
frontiersin.org015
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significant loci. A method is considered effective when it mines

some importantly known and candidate genes around these loci,

supported by strong evidence, as seen in 3VmrMLM. These

identified loci may be used for genomic selection (Su et al., 2024),

while more associated known and candidate genes can be mined

and highlighted in the Manhattan plot.

This Research Topic contains three articles focusing on

methodological studies and comparisons. Yang et al. proposed the

MTOTC method to transform hierarchical data of ordinal traits

into continuous phenotypes, which were then analyzed by multi-

locus methods. This showed that the combination of MTOTC with

any multi-locus method detects more QTNs. To identify QQI via

the IIIVmrMLM software (Li et al., 2022b), Han et al. performed

Levene’s test to obtain the top 5,000 loci for each trait, and these loci

were used to detect QTNs and QQIs associated with 11 flowering

time-related traits in 199 Arabidopsis accessions with 216,130

markers. Around 89 QTNs and 130 QQIs, 34 identified genes

were reported in previous studies, while 20 candidate genes were

predicted; in particular, AT1G12990 and AT1G09950 around QQIs

may have an interaction effect on flowering time. In addition, He

et al. measured five free amino acid levels in 448 rice accessions

across two environments, used nine GWAS methods to perform

association analysis between phenotypes and 4,325,832 SNPs, and

identified 88 stable QTLs, demonstrating the advantages of

3VmrMLM, including the most common QTNs, the highest LOD

score, and the highest proportion of all stable QTLs.
2 The applications of new multi-locus
GWAS methodologies in the genetic
dissection of complex traits

Yield is one of the paramount breeding objectives, with nine

articles in the Research Topic focusing on identifying QTNs and/or

QEIs for yield-related traits. Zhang et al. used 3VmrMLM to re-

associate 44,000 SNPs with eight yield-related traits from 413 rice

accessions across three environments. They identified 87 known

genes around QTNs and QEIs, including OsMADS5 and FZP.

Differential expression, functional enrichment, and haplotype

analysis revealed the association of LOC_Os04g53210 and

LOC_Os07g42440 with yield, while LOC_Os04g53210 around a QEI

potentially influenced flowering time. Zhao et al. employed

3VmrMLM to perform association analysis between three

measured grain size traits of 159 rice accessions in two

environments and 2,017,495 SNPs, identifying 393 QTNs and 8

QEIs. They found 22 genes around QTNs and 2 genes around QEIs

to be genuinely associated with these traits. Additionally, 14

candidate genes were significant in differential expression, GO

annotation, and haplotype analysis. Moreover, in a joint analysis of

main crop and ratoon rice, 4 known genes, 8 additional candidate

genes, and 2 candidate gene-by-environment interactions (GEIs)

were identified as responsible for grain size-related traits.

Shu et al. evaluated plant height (PH) and ear height (EH) in

203 maize inbred lines at five locations and used 3VmrMLM to
Frontiers in Plant Science 026
perform association analysis between phenotypes and 73,174

SNPs. They detected 23 significant QEIs and 53 corn belt-specific

QTNs for the two traits. Transcriptomic and haplotype analysis

highlighted the EH-related QEI S10_135 and the PH-related QEI

S4_4, as well as corn belt-specific QTNs (S10_4 and S7_1),

showcasing the power of 3VmrMLM in QEI discovery. Sun et

al. measured the tassel branch number (TBN) of 190 F2
individuals and F2:3 families, using four methods to associate

the phenotypes with 4,136 SNPs. They identified 13 QTLs and 22

QTNs, including large-effect QTLs qTBN6.06-1 and qTBN6.06-2

on chromosome 6. RNA-seq analysis revealed 5 candidate genes

associated with TBN. Wen et al. identified 76 QTNs and 73 QEIs

for three yield-related traits in 300 tropical and subtropical

maize lines with 332,641 SNPs under well-watered, drought,

and heat-stress conditions. They reported 34 genes from

previous studies, confirming genes associated with drought

tolerance (ereb53 and thx12) and heat stress (hsftf27 and

myb60). Differential expression, tissue-specific expression, and

haplotype analysis confirmed 24 candidate genes, while three

yield GEIs (GRMZM2G064159 , GRMZM2G146192 , and

GRMZM2G114789) were predicted.

Feng et al. measured the boll weight (BW) of 290 cotton

accessions in nine environments and used GEMMA to perform

association analysis between the phenotypes and 25,169 SNPs and

2,315 InDels, identifying two major QTLs on chromosomes A08

and D13. Ghir_A08G009110 and Ghir_D13G023010 were

confirmed by both transcript-level and differential expression

analysis between high- and low-BW accessions during the ovule

development stage. Liu et al. measured three seed size-related traits

in 196 mung bean accessions across two environments and used

four methods to perform association analysis between the

phenotypes and 3,607,508 SNPs. VrKIX8, VrPAT14, VrEmp24/25,

VrIAR1, VrBEE3, VrSUC4, and Vrflo2 around QTNs were

homologous to known seed development genes in rice and

Arabidopsis thaliana and further verified by differential

expression and RT-qPCR analysis. VrFATB, VrGSO1, VrLACS2,

and VrPAT14 around QEIs were homologous to known seed

development genes in A. thaliana. Hong et al. measured two

epicotyl length traits in 951 soybean accessions over two years

and used 3VmrMLM to perform association analysis between

phenotypes and 1,639,846 SNPs, identifying 180 QTNs and QEIs.

Based on transcript abundance, GO enrichment, and haplotype

analysis, 10 candidate genes were predicted to be involved in the

process of seed germination and seedling development, and it was

found that Glyma.04G122400 and Glyma.18G183600 may affect

epicotyl length elongation. Han et al. measured the flowering time

(FT) of 490 Brassica napus accessions in eight environments and

used 3VmrMLM to perform association analysis between the

phenotypes and 11,700,689 SNPs, identifying 19 stable QTNs and

32 QEIs for FT and 10 QTNs for FT-related climatic indices. A total

of 12 and 14 differentially expressed genes were found to be

candidate genes for stable QTNs and QEIs, respectively, while five

DEGs were found to be candidate genes for the indices. BnaFLCs,

BnaFTs, BnaA02.VIN3, and BnaC09.PRR7 were further validated.
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With the improvement in people’s living standards, crop quality

traits are becoming increasingly important. Yu et al. measured four

seed tocopherol content traits of 175 soybean accessions in three

environments, used six methods to perform association analysis

between the phenotypes and 23,149 SNPs, identifying 101 QTNs in

single-environment analysis and 57 QTNs and 13 QEIs in multi-

environment analysis. A total of 11 candidate genes residing in eight

novel QTLs were confirmed using haplotype, RNA-Seq, and RT-

qPCR analysis. Zheng et al. evaluated three cooking quality traits in

345 rice accessions over two years and used seven multi-locus

methods to perform association analysis between phenotypes and

193,582 SNPs, identifying 144 QTNs and 21 QEIs. Based on

analyses of mutation type, gene ontology classification, haplotype,

and expression pattern, OsSSIIIb, OsMT2b, wx, OsSSIIa, and

OsSSIIIa, which are related to starch synthesis and endosperm

development, were found to influence grain expansion after

cooking. Azam et al. measured the seed isoflavone accumulation

of 1551 soybean accessions in five environments, used cMLM to

perform association analysis between the phenotypes and 6,149,599

SNPs, and revealed that the allelic variation of Glyma.11G108100

significantly influenced isoflavone accumulation.

Resistance, a key trait affecting crop yield, is the focus of two

articles in this Research Topic. Kou et al. measured the pre-harvest

sprouting of 629 Chinese wheat varieties in two environments, and

they used the mrMLM and IIIVmrMLM software to perform

association analysis between the phenotypes and 314,548 SNPs,

identifying 22 stable QTNs for PHS resistance, such as AX-

95124645 (r2 ≥ 36%). Importantly, all white-grained varieties with

the QSS.TAF9-3DTT haplotype showed resistance to spike

sprouting. Around this locus, TraesCS3D01G466100 and

TraesCS3D01G468500 were differentially expressed and found by

GO annotation to be related to pre-harvest sprouting resistance. He

et al. evaluated Pasmo resistance in 445 flax accessions over 5 years

and used four methods to perform association analysis between

phenotypes and 246,035 SNPs, identifying 132 tag QTNs and 50

QEIs. A total of 37 and 9 resistance gene analogs were considered

potential candidates for QTNs and QEIs, respectively.

In addition, Wu et al. evaluated eight traits of 226 sunflower

inbred lines under control and drought stress conditions and used

three methods to perform association analysis between these

phenotypes and 94,162 SNPs. Among the 118 genes around 80

QTNs, 14 candidate genes were validated by RNA-seq and RT-

qPCR analysis, and LOC110885273, LOC110872899, LOC110891369,

and LOC110920644 were found to be abscisic acid-related protein

kinases and transcription factors.
Frontiers in Plant Science 037
3 Future perspectives

To effectively identify QEIs across diverse environments and

QQIs across numerous markers, it is imperative to devise new

algorithms tailored to sample size, computational speed, and

minimal memory requirements to meet the needs of human large

data analysis. As the field advances, the genetic model for

quantitative traits may transition from the classic Fisher genetic

model to a more comprehensive framework through the integration

of artificial intelligence. We anticipate that our compressed variance

component mixed model will emerge as a pivotal tool in the genetic

analysis of complex traits and multi-omics data in the future.
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Sunflower is one of the most important oil crops in the world, and drought stress

can severely limit its production and quality. To understand the underlying mechanism

of drought tolerance, and identify candidate genes for drought tolerance breeding,

we conducted a combined genome-wide association studies (GWAS) and RNA-seq

analysis. A total of 226 sunflower inbred lines were collected from different regions of

China and other countries. Eight phenotypic traits were evaluated under control and

drought stress conditions. Genotyping was performed using a Specific-Locus Amplified

Fragment Sequencing (SLAF-seq) approach. A total of 934.08M paired-end reads were

generated, with an average Q30 of 91.97%. Based on the 243,291 polymorphic SLAF

tags, a total of 94,162 high-quality SNPs were identified. Subsequent analysis of linkage

disequilibrium (LD) and population structure in the 226 accessions was carried out based

on the 94,162 high-quality SNPs. The average LD decay across the genome was 20 kb.

Admixture analysis indicated that the entire population most likely originated from 11

ancestors. GWAS was performed using three methods (MLM, FarmCPU, and BLINK)

simultaneously. A total of 80 SNPs showed significant associations with the 8 traits (p

< 1.062 × 10−6). Next, a total of 118 candidate genes were found. To obtain more

reliable candidate genes, RNA-seq analysis was subsequently performed. An inbred line

with the highest drought tolerance was selected according to phenotypic traits. RNA

was extracted from leaves at 0, 7, and 14 days of drought treatment. A total of 18,922

differentially expressed genes were obtained. Gene ontology and Kyoto Encyclopedia

of Genes and Genomes analysis showed up-regulated genes were mainly enriched

in the branched-chain amino acid catabolic process, while the down-regulated genes

were mainly enriched in the photosynthesis-related process. Six DEGs were randomly

selected from all DEGs for validation; these genes showed similar patterns in RNA-seq

and RT-qPCR analysis, with a correlation coefficient of 0.8167. Through the integration

of the genome-wide association study and the RNA-sequencing, 14 candidate genes

were identified. Four of them (LOC110885273, LOC110872899, LOC110891369,

LOC110920644) were abscisic acid related protein kinases and transcription factors.

9

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.847435
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.847435&domain=pdf&date_stamp=2022-05-03
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:houjh@imau.edu.cn
mailto:yiliuxivip@163.com
https://doi.org/10.3389/fpls.2022.847435
https://www.frontiersin.org/articles/10.3389/fpls.2022.847435/full


Wu et al. Combined Analyses of Sunflowers

These genes may play an important role in sunflower drought response and will be used

for further study. Our findings provide new insights into the response mechanisms of

sunflowers against drought stress and contribute to further genetic breeding.

Keywords: sunflower, drought stress, genome-wide association studies (GWAS), RNA-seq, single-nucleotide

polymorphisms (SNPs), specific-locus amplified fragment sequencing (SLAF-seq)

INTRODUCTION

Sunflower (Helianthus annuus. L) belongs to the Compositae
family (Schilling and Heiser, 1981), and is native to North
America (Schilling and Heiser, 1981). As one of the major oilseed
crops in the world, sunflower is considered an important source
of high-quality oil and dietary fiber for human health (Khan et al.,
2015). The world harvested area of sunflower seed has increased
by 20% (from 23.07 million hectares to 27.87 million hectares),
and the production has increased by more than 50% (from 31.45
million tons to 50.23 million tons) from 2010 to 2020 (FAO,
2021). China is the sixth-largest sunflower-producing country in
the world. The main production areas of sunflowers in China are
in the northwest region, such as Inner Mongolia Autonomous
Region and Xinjiang Uygur autonomous region. The sunflower
is an important economic source for local farmers, and the status
of sunflower production directly affects farmers’ living standards.

The global average temperature has risen by about 0.85◦C
from the year 1880 to 2012 (Adopted, 2014), resulting in a series
of extreme weather events, such as heavy rains, flooding, drought,
and desertification. Among them, drought is the most serious
abiotic stress limiting global agricultural production (Wilhite
and Buchanan-Smith, 2005). A persistent drought can cause a
large number of deaths and force large-scale migration, while
severe droughts can even impact human civilization (Ault, 2020).
With the continued climate change and population growth,
drought may pose a serious threat to global and regional food
security in the coming decades (Riddell et al., 2018). Due to the
strong root system, the sunflower was considered to be relatively
tolerant to water stress. They are often seeded on beds and
ridges with poor moisture conditions where many other crops
are unable to survive (Hussain et al., 2018). As a result, it is more
susceptible to drought stress leading to yield reduction (Pasda
and Diepenbrock, 1990; Adeleke and Babalola, 2020; Grasso
et al., 2020). Studies have shown that drought stress in sunflower
seedlings can lead to severe yield loss (Mwale et al., 2003; Rauf
and Ahmad Sadaqat, 2008).

The sunflower drought stress response behavior involves a
series of changes in morphological, physiological, and molecular
levels. The drought stress negatively influenced seed germination
and seedling emergence at the germination stage (Kaya et al.,
2006). Drought stress at the vegetative stage reduces plant
height (PH), leaf surface area (LSA), and biomass production
while causing pollen sterility at the reproductive stage (Turhan
and Baser, 2004; Hussain et al., 2008). From a physiological
perspective, drought affects the uptake of water and nutrition,
leads to a reduction of relative water content (RWC), and
the turgor of cells (Hussain et al., 2008, 2016; Ibrahim et al.,

2016). Plants respond to drought stress by reducing water
evaporation through stomatal closure. As a result, it also reduces
the photosynthetic rate (Flexas et al., 2004). The decreased
photosynthesis rate leads to a decrease in CO2 fixation, which
affects the regeneration of the final acceptor of the electron
transport chain (NADP+). The leaked electrons flow to O2 to
produce reactive oxygen species (ROS) (Flexas et al., 2004). ROS
cause oxidation of membrane lipids, resulting in decreased cell
membrane stability. The decrease in cell membrane permeability
results in the accumulation of the relative electrical conductivity
(REC) and malondialdehyde (MDA) (Gunes et al., 2008). From
the molecular level, plants involve a series of pathways for
signal perception, transduction, gene expression, and other
stress metabolites to accommodate drought. Drought-induced
genes can mainly be classified into two groups. The first
group constitutes genes whose products directly function in
tolerance to stress, such as LEA proteins, osmolytes, proline
(Pro), CAT, POD. Another group includes genes playing a role in
signal transduction as well as the regulation of gene expression
including various transcription factors (TF), protein kinases
(PK), and transcriptional regulators (TR) (Lata et al., 2015).

Some agronomic measures can mitigate the damage of
drought impact on plants, such as exogenous applications
of plant hormones, osmotic regulators, and mineral nutrients
(Salami and Saadat, 2013; Rabert et al., 2014). However, these
changes are not heritable, and need additional labor, capital,
and technology investment. Coping with drought through the
breeding approach is usually the most effective and economical
strategy. The genetic modification within the plant is heritable.
Once a gene is introduced into a breeding material, it will be a
permanent source of drought tolerance (Rauf, 2008). Drought
tolerance in plants is a complex quantitative trait involving
many micro-effective genes (Blum, 2011). Molecular-based plant
drought resistance breeding is a hot spot in recent years (Wang
and Qin, 2017). Previous studies on the molecular mechanism
of sunflower drought resistance were mostly based on linkage
analysis (Kiani et al., 2007; Poormohammad Kiani et al., 2009;
Haddadi et al., 2011). However, the linkage analysis population
was on two parents with significantly different phenotypes
and the recombinant inbred lines (RILs). Only genes in RILs
that show a significant difference between parental lines could
be detected.

Genome wide association study (GWAS) is an observational
study to detect associations between genetic variants and traits
in individuals (Togninalli et al., 2018). Compared to linkage
analysis, GWAS uses a natural population, which eliminates
the need to construct a population. Therefore, the time
consumption is greatly reduced. The use of natural populations
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allows GWAS to simultaneously detect many natural allelic
variations (Ma et al., 2018). In addition, the natural population
contains all the historical recombination information and thus
provide relatively higher detection accuracy than bi-parental
populations (Kofsky et al., 2020). GWAS has been widely used
in plant drought research, such as wheat (Triticum aestivum L.),
cotton (Gossypium herbaceum L.), rice (Oryza sativa L.), and
potato (Solanum tuberosum L.) (Ma et al., 2016; Mwadzingeni
et al., 2017; Hou et al., 2018; Tagliotti et al., 2021). RNA-
sequencing (RNA-Seq) is another attractive omics tool to identify
differentially expressed genes (DEGs) under different conditions.
Further analysis can provide insight into the changes in the DEGs
expression level, important biological processes, and pathways
(Zhang et al., 2017). Combining GWAS with RNA-seq can
decrease the higher false-positive rate (FDR) inherent in GWAS
analysis, and improve the accuracy of gene selection (Xie et al.,
2019; Wang et al., 2022). However, to our knowledge, there are
no relevant studies on sunflowers.

Molecular marker-based genotyping is an important step in
GWAS analysis. Most traditional molecular markers were based
on sequence length polymorphism. However, it could not be
used for large-scale genotyping due to low throughput (Sun
et al., 2013b). Whole gene sequencing technology is restricted
in its use for non-model organisms due to population size and
price (Muir et al., 2016). One strategy to reduce the sequencing
cost was to reduce representation libraries (RRL). Specific
length amplified fragment sequencing (SLAF) is one of the
representative techniques, which uses specific enzymes to digest
the genomes, and select a given size range of restriction fragments
based on personalized research purposes (Sun et al., 2013b).
This approach maintains the marker density while reducing the
volume of sequencing, lowering the cost.

In this study, we performed a GWAS analysis of 226 sunflower
varieties based on SLAF-seq. Then, a drought-tolerant accession
was selected for RNA-seq analysis. Several important candidate
genes were obtained using a combined analysis. Our research
objectives were to (1) investigate the phenotypic variations
among accessions under different water conditions; (2) develop
new drought-related SNPs and identify genetic variants; (3)
understand gene expression patterns under different drought
stress time points, and reveal important biological processes
and pathways; (4) obtain important genes associated with
drought tolerance.

MATERIALS AND METHODS

Plant Materials and Growth Condition
A total of 226 sunflower inbred lines were collected from different
countries (Australia, U.S.A., and France) and different provinces
in China (Inner Mongolia, Ningxia, Xinjiang, Liaoning, Jilin).
Seventy-three of them were provided by the Inner Mongolia
Academy of Agriculture and Animal Husbandry, and 153 were
kept in our laboratory. The experiment was conducted in the
summer of 2019 at the Inner Mongolia Agricultural University,
China (111.71, 40.82, 1,000m above sea level). Seeds with fully
mature, healthy, and uniform sizes were sorted for drought-
stress experiments. After sterilization with 0.2% (w/v) mercuric

chloride (HgCl2), all seeds were rinsed several times with distilled
water and soaked in deionized water for 24 h. Then the seeds were
sown in plastic flowerpots (25 × 19 × 16 cm) filled with 3 kg soil
(sandy soil and organic humus in a ratio of 2:1). Each pot was
planted with 10 seeds and each accession had 6 pots. To avoid
interference from natural rainfall and other factors, all pots were
placed in a greenhouse (light/dark cycles: 14 h/10 h; 28/22◦C; 45
± 5% relative humidity) without water and nutritional limitation.

Experimental Design and Drought
Treatments
When seedlings grew to the stage of three leaves, six pots of
each accession were randomly and equally divided into two
groups. Each group contained three pots as three biological
replicates. The different watering regime was imposed on these
two groups. One group continued to irrigate with sufficient water,
and maintain the soil moisture content of 30 ± 2% as a control
group (WW). Another group kept the soil moisture content to
10 ± 2% as a treatment group (DS). The soil moisture content
of each pot was determined at 9 a.m. every day using the weight
method described by Soni and Abdin (2017) and supplemented
with water according to the target soil moisture content.

Phenotypic Evaluation and Statistical
Analysis
The experiment lasted for 15 days, then 5 plants were randomly
selected from each pot for phenotypic evaluation. Plant height
(PH) was measured directly with a ruler. Leaf surface area
(LSA) was calculated by the leaf area co-efficient method (Alza
and Fernandez-Martinez, 1997). Root shoot ratio (RSR) was
measured by the gravimetric method. Total root length (RL),
root volume (RV), and root surface area (RSA) were measured
with an LA-S root scanner (Wanshen Testing Technology Co.,
Ltd., Hangzhou, China). The relative water content (RWC) was
detected using the saturate water method by Galmes et al.
(2011). The chlorophyll concentration was assessed using a
SPAD chlorophyll meter (TYS-A, TOP Instrument Co., Ltd.,
Hangzhou, China).

Data were analyzed using SPSS software (SPSS for Windows,
V20.0.0, SPSS, Chicago, Illinois). Normality distribution was
preliminarily assessed by a one-sample Kolmogorov-Smirnov’s
goodness-to-fit test (K-S test). For statistical differences between
WW and DS growth condition, the Student t-test (normal
distribution) and Wilcoxon signed-rank test (non-normal
distribution) was used. Spearman non-parametric correlations
were used to determine the correlation coefficient and statistical
significance. Corrplot and Pheatmap R package were used to
visualize the correlation.

Genomic DNA Extraction and Restriction
Enzyme Selection
Total genomic DNA was extracted from 100mg of fresh
leaves by the CTAB method with a plant genomic DNA
kit DP305 (Tiangen Biotech, China). To ensure it met the
requirements for SLAF-seq (concentration≥ 20 ng/µl; volume≥
30/µl), the concentration and quality of DNA were determined
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using a Nanodrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA).

The SLAF-seq technique requires breaking the genome
into small fragments using restriction enzymes. Then selecting
restriction fragments of a specific length range (defined as SLAF-
seq) for sequencing. To evaluate the number of target fragments
produced via different combinations of restriction enzymes, a in
silicon pre-experiment for enzyme selection was conducted. The
criteria for enzyme selection were as follows: (1) the proportion
of restriction fragments located in repetitive sequences is as low
as possible; (2) The restriction fragments are distributed evenly
on the genome as far as possible; (3) Consistency between the
length of restriction fragments and the specific experimental
system (Davey et al., 2013); (4) The number of restriction
fragments with lengths 364–464 pb (SLAF tags in sunflower)
should exceed 300,000.

SLAF Library Construction and High
Throughput Sequencing
The SLAF library construction and high-throughput sequencing
were performed as described by Sun et al. (2013b). After a
series of polymerase chain reactions (PCR), adapter ligation
reactions, and agarose gel purification, the SLAF-tags were
isolated and subjected to PCR amplification following the guide
of Illumine sample preparation. The paired-end sequencing
was performed on an Illumina HiSeq 2500 platform (Illumina
Inc., San Diego, CA, USA) at Beijing Biomarker Technologies
Corporation (Beijing, China). Sequencing quality was estimated
by measuring the guanine-cytosine (GC) content and Q30 ratio.
A Q value of 30 represents a 0.1% error probability and 99.9%
confidence level. Reads with >90% identity were clustered into
a single SLAF-tag using BLAT software, and SLAF-tags with a
sequence that varied across samples were defined as polymorphic
SLAF tags (Zhang et al., 2018). To test the accuracy of the
restriction enzyme digestion protocol, we used the genome of
Oryza sativa ssp. japonica as a control (374.30Mb, http://rapdb.
dna.affrc.go.jp/).

SNP Genotyping and Linkage
Disequilibrium Analysis
All reads were processed for quality control and filtered using
Seqtk (https://github.com/lh3/seqtk) software. High-quality
paired-end reads were aligned to the reference genome (https:
//ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/4232/1
00/GCF_002127325.1_HanXRQr1.0/) using Burrows-Wheeler
Aligner (BWA) software (Li and Durbin, 2009). SNP calling
was conducted using the HaplotypeCaller function of Genome
Analysis Toolkit (GATK) (McKenna et al., 2010). The VCF files
obtained by GATKwere converted to PLINK files using VCFtools
(v0.1.16) (Danecek et al., 2011). SNPs with an integrity ratio
of <0.8 and MAF <0.05 were filtered out via PLINK software
(v1.90b6.21) (Purcell et al., 2007). Linkage disequilibrium
(LD) was estimated by measuring the squared allele frequency
correlations (r2) (VanLiere and Rosenberg, 2008) between pairs
of SNPs via PLINK software, with r2 = 1 indicating complete LD,
and r2 = 0 indicating absent LD. LD decay extent was defined as

the physical genomic distance at which the r2 decreased to half
of its maximum value. PopLDdecay software (Zhang et al., 2019)
was used to visualize the mean r2 of all chromosomes within the
100 kb region.

Population Structure Analysis
Based on the filtered SNPs, population analysis, phylogeny
analysis, and principal component analysis (PCA) were
performed in turns. Admixture software v1.3.0 (Alexander
et al., 2009) was used to analyze the population structure. The
number of underlying population groups K was predefined as
1–13 using the maximum likelihood estimation approach. The
cross-validation errors (CV) for each K value were calculated.
The K value with the lowest CV error was selected as the optimal
number of populations. The Pophelper R package was used
to make multiline plots (Francis, 2017). The genetic distances
were calculated using VCF2Dis-1.45 (https://github.com/BGI-
shenzhen/VCF2Dis). The FastME (v 2.0) software (Lefort et al.,
2015) was used to convert the mat file obtained in the previous
step into a distance matrix file (∗nwk). The phylogenetic trees
were constructed using the neighbor-joining method in the iTOL
server (https://itol.embl.de/) (Letunic and Bork, 2021). PCA was
performed using PLINK software by the –pca function. The
first three components were used to plot the PCA via the rgl (v.
0.107.14) R package (Adler et al., 2003).

Genomic-Wide Association Study
The GWAS analysis was conducted using three methods: mixed
linear model (MLM), Fixed and random model Circulating
Probability Unificatin (FarmCPU), and Bayesian-information
and Linkage-disequilibrium Iteratively Nested Keyway (BLINK)
in GAPIT R package (Lipka et al., 2012). The phenotypic data
of each accession was represented using two indices: stress
tolerance index (STI) (Fernandez, 1992), and stress susceptibility
index (SSI) (Fischer and Maurer, 1978). These were calculated
as follows:

STI =
Ysi × Ypi

Ypi
2

SSI =
1− Ysi

Ypi

1− Ysi

Ypi

where Ysi = performance of a genotype under stress; Ypi =

performance of the same genotype under control conditions;
Ysi =mean Ysi of all genotypes, Ypi =mean Ypi of all genotypes.

The first three principal components were used as covariates.
The GAPIT uses genotype data to automatically generate kinship
matrix and calculate population structure according to the needs
of different methods. For the identification of true marker-trait
association, the significant p-value was set as p< 1.062× 10−6 (p
= 0.1/n; n = total markers used, which is roughly a Bonferroni
correction, corresponding to −log10(p) = 5.97, blue line in the
Manhattan plots) (Zhou et al., 2017). The Manhattan plot was
used to show the correlation between SNP and phenotypic traits.
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The Quantile-quantile (Q-Q) plot was used to display the level
of difference between observed and predicted values. Both the
Manhattan plots and Q-Q plots were constructed using CMplot
R package (Yin, 2018).

GWAS Candidate Gene Search and
Combined Analysis
The region of GWAS candidate genes was defined by
the average LD decay distance. Genes located within
20 kb flanking regions on either side of the significantly
associated SNPs were considered as candidate genes.
Function annotations were conducted using the Eggnog
(Huerta-Cepas et al., 2019) and Pfam (Bateman et al.,
2004) software. The blast software was used to search for
Arabidopsis thaliana genes homologous to candidate genes in
the TAIR database (https://www.arabidopsis.org). Transcription
factors (TF), protein kinase (PK), and transcriptional
regulators (TR) were identified using iTAK software
(Zheng et al., 2016).

Material Screening and RNA-Sequencing
To reveal important biological processes and significant
pathways involved in sunflower drought-response, and narrow
down the candidate genes, RNA-seq was conducted. We
screened the 226 GWAS accessions based on phenotypic
evaluation results. A comprehensive drought tolerance
coefficient value (D-value) was used to evaluate the drought
tolerance of all accessions (Li et al., 2015). The D-value
integrated the results of multi-traits measured under two
watering regimes and can represent the comprehensive
drought tolerance of an accession. Finally, an inbred line
with the highest D-value was selected and named “K58”
(Zilong et al., 2021).

The drought stress experiment was the same as GWAS.
Young leaves were sampled at 0, 7, and 14 days after drought
treatment. Total mRNA was isolated using the RNA prep
pure plant kit DP411 (Tiangen Biotech, China) according to
the instruction manual. A total of 1 µg RNA per sample
was used for cDNA library construction. Sequencing libraries
were generated using NEBNext UltraTM RNA Library Prep
Kit for Illumina (NEB, USA) following the manufacturer’s
recommendations. The quality of libraries was assessed through
the Agilent Bioanalyzer 2100 system. After the quality test,
all samples were sequenced in the Illumina Novaseq 6000
system, and 150-bp paired-end sequences were obtained
(raw reads). Clean reads were obtained by eliminating reads
containing ploy-N, reads containing adapter and low-quality
reads from raw reads. The Q30, GC content of clean reads were
calculated simultaneously.

Analysis of Differentially Expressed Genes
Differentially expressed genes analysis was conducted using
the HISAT2-Stringtie(merge)-DESeq2 pipeline. High-quality
clean reads were aligned to the reference genome using the
Hisat2 software (version 2.2.1) (Kim et al., 2015) with default
parameters. In the gene count step, we used a “Transcript
merge mode” via StringTie software (Pertea et al., 2015). Briefly,

the alignment files (∗.BAM) of each sample was converted
to GTF file using StringTie software. Then all the GTF files
were merged into one single file containing a non-redundant
set of transcripts. This file was then used as a reference
to recalculate the count for each gene. With this model,
novel genes/transcripts can be identified that differ from the
reference genome.

A python script [prepDE.py (https://ccb.jhu.edu/software/
stringtie/dl/prepDE.py)] was used to generate a gene count
matrix from the GTF file of each sample. Normalization and
differential expression analysis were performed using DESeq2
R packages (Love et al., 2014). By default, DESeq2 computes
a Benjamini-Hochberg adjusted p-value (Padj) to control the
false discovery rate (FDR) (Anders and Huber, 2012). The “Fold
Changes” of a gene is the FPKM ratio at day 7 (or 14) to that at
day 0. For comparison purposes, we take the logarithm of the fold
change and calculate the absolute value (|log2(Fold Changes)|).
The |log2(Fold Changes) | of a gene equal to 1 means that the
expression level of this gene has doubled or halved. Genes with
Padj ≤ 0. 01 and |log2(Fold Changes) | ≥ 1 was considered
as DEG.

Enrichment Analyses of Gene Ontology
and KEGG Pathways
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to reveal the
biological functions and pathways of DEGs. The sequence file
of each gene was input into Eggnog software (version 2.0.1)
to obtain gene annotation (Huerta-Cepas et al., 2019). GO
and KEGG analysis was conducted using the ClusterProfiler
(version 4.0.0) R package (Yu et al., 2012). Only GO-terms
or KEGG pathways with p-value < 0.05 were screened
for subsequent analysis. The REVIGO program (http://
revigo.irb.hr/) was used to remove redundant GO-terms
(Supek et al., 2011).

RT-qPCR Validation
To validate RNA-seq results, reverse transcription quantitative
PCR (RT-qPCR) was conducted on 6 randomly selected DEGs
with three technical replicates. Experimental samples are the
same as for RNA-seq. Reverse transcription was conducted using
Biomarker Script II 1st Strand cDNA Synthesis Kit (Biomarker
Technologies, Beijing, China) with Oligo d(T)23 VN as a
primer, and qPCR reactions were performed with Biomarker
2X SYBR Green Fast qPCR Mix (Biomarker Technologies,
Beijing, China) on the FTC-3000 qPCR system (Funglyn Biotech
Inc., Toronto, ON, Canada). Gene expression levels were
calculated using the method of 2−11Ct according to Livak
and Schmittgen (Livak and Schmittgen, 2001), and standard
deviation was calculated among three biological replicates.
The 18S rRNA gene was used as the endogenous control
(Ebrahimi Khaksefidi et al., 2015).

Combined Analysis of GWAS and RNA-Seq
To reduce the number of candidate genes, we
conducted a combined analysis. The two gene sets
obtained by GWAS and RNA-seq were subjected to the
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intersection operation. Genes within the intersection were
considered to be important genes and were investigated
in depth.

RESULTS

Phenotypic Variation Among Accessions
Drought stress led to different degrees of changes in all
phenotypic traits (Figure 1; Table 1). Drought stress inhibited
plant height (PH). Mean PH was 31.37 cm (ranged from 15.07
to 56.10 cm) at WW condition, whereas it was 22.23 cm (ranged
from 6.4 to 38.55 cm) under DS conditions. Over 90% of the
accessions (208/226) had a decrease in PH under drought stress.

Mean leaf surface area (LSA) was 46.34 cm3 (ranged from
4.62 to 143.62 cm3) for the WW condition compared with 24.21
cm3 (ranged from 3.73 to 65.36 cm3) for the DS condition. Over
88% (200/226) of the accessions had a decrease in LSA under
drought stress.

The root-shoot ratio (RSR) increased slightly under the DS
condition compared with in WW condition. Mean RSR was 0.16
(ranged from 0.05 to 0.79) under DS condition, whereas it was
0.12 (ranged from 0.02 to 0.62) underWW condition, with 71.7%
(162/226) of the accessions showing an increased RSR under DS
conditions. Notably, drought stress significantly increased three
root-related traits, the average root length (RL), root volume
(RV), and root surface area (RSA) increased by 44.1, 131, and
76.4% under DS condition compared with plants under WW
condition. Among the 226 accessions, 77.4% (175/226), 83.2%
(188/226), 83.2% (188/226) of them showed an increased RL, RV,
and RSA under drought conditions, respectively. Drought stress
has relatively little effect on the relative water content (RWC) of
sunflower leaves, and the mean value was reduced from 0.74%
under WW condition to 0.69% under the DS condition, with
a reduction rate of 7.3%. Among 226 sunflower plants, 83.6%
(189/226) had lower RWC under the DS condition. Similarly,
the SPAD value was also decreased slightly in DS compared to
WW, with a reduction rate of 5.7%. Mean values were 31.08
(ranged from 22.1 to 39.77) and 29.31 (ranged from 18.6 to 38.67)
under WW and DS, respectively, and 72.6% (164/226) accessions
showed a decreased SPAD value under DS condition.

The coefficient of variation (CV) was used to describe the
variance within accessions. In this study, the CV of some traits
was very high, the average CV among all traits were 40.36%,
varying from 11.94 to 71.86%. It shows that our experiment
materials have strong heterogeneity. RSR had the highest CV
values (61.42–65.49%) while the SPAD value showed the lowest
CV values (11.94–14.09%) (Supplementary Table 1).

The correlation between the same indicator under different
conditions is shown in Supplementary Figure 1. The correlation
coefficients of LSA and SPAD were higher than 0.6 in the
WW vs. DS, while the correlation coefficients of RSA, RL, and
RSR were all lower than 0.1. The correlation between different
indicators under the same condition is shown in Figure 2.
The three root-related indexes (RL, RV, and RSA) showed
positive correlation under both WW and DS growth conditions.
Under DS conditions, RV was positively correlated with RSA
(spearman Cor. = 0.776). whereas negatively correlated with

PH (spearman Cor. = −0.59). Under WW conditions, LSA is
positively correlated with SPAD with a spearman correlation
coefficient of 0.61.

SLAF-Sequencing, Genotyping, and
Linkage Disequilibrium
Enzyme digestion efficiency is an important indicator of SLAF-
seq quality. According to the results of the pre-experiment,
Hae III was selected to digest the genomic DNA. The enzyme
digestion efficiency of control genome Oryza sativa ssp. japonica
was 94.12%, indicating the enzyme digestion reaction was
normal. A total of 934.08MB paired-end reads were obtained,
with an average Q30 of 91.97% (89.04–93.44%) and a GC
content of 43.67% (42.13–45.56%) (Supplementary Table 2).
The mapping rate and the proper mapped rate were 98.20 and
90.96%, respectively (Supplementary Table 3).

A total of 565,668 SLAF tags were obtained, 243,291
of them were polymorphic SLAF tags. These SLAF-tags
were evenly distributed on 17 chromosomes (Figure 3;
Supplementary Table 4). SLAF tags on chromosome 13
had the highest polymorphic rate (48.25%), while chromosome
12 had the lowest polymorphic rate (38.85%). A total of 2,124,143
population SNP markers were developed via GATK software
(Supplementary Table 5; Figure 4). After quality control,
94,162 high-quality SNPs were obtained for subsequent analysis
(Supplementary Table 6; Figure 5). Chromosome 10 harbored
the highest proportion of SNPs (8.68%, 8,173 of 94,162), while
the shortest chromosome 6 contained the lowest proportion
of SNPs (3.08%, 2,898 of 94,162). There were 31.37 SNP per
1MB on average across 17 chromosomes. Chromosome 10
had the highest SNPs/Mb ratio (47.68 SNPs per Mb), while
chromosome 6 had the lowest SNPs/Mb ratio (19.56 SNPs per
Mb) (Supplementary Table 6). LD was estimated as the r2 value,
r2 ranged from 0.135 on chromosome 6 to 0.218 on chromosome
10, with an average of 0.174, revealing differences in the level of
LD among chromosomes (Supplementary Table 7). The average
distance of LD decay was about 20 kb (Figure 6).

Genetic Diversity and Population Structure
Divergence of the 226 accessions during evolution was the major
factor leading to high rates of false positive errors in GWAS
analysis (Yu and Buckler, 2006). The admixture software was
used to analyze the population structure, and the CV for K
= 1–13 was examined. The results showed that when K =

11, the CV dropped to the lowest value (0.659), suggesting
the entire population most likely originated from 11 ancestors
(Figures 7, 8A). The phylogenetic tree has divided the accessions
into 7 main clusters with identical tree topologies (Figure 8B).
PCA analysis revealed that all the 11 principal components had
eigenvalues of over 1, and the first 8 principal components can
explain 85.73% of the total variance. The first three principal
components PC1 (with variance explain 15.71%), PC2 (with
variance explain 13.55%), and PC3 (with variance explain
11.77%) were displayed in Figure 8C. All these results showed
that our experimental materials are highly heterogeneous and is
ideal for GWAS analysis.
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FIGURE 1 | Vioplot visualizing the 8 physiological traits of sunflower in response to different water treatments. Y-axis represent the density distribution of all 226

samples. WW, well-water growth condition; DS, drought-stress growth condition.

Genome-Wide Association Analysis
The GWAS was performed on 8 traits using 3 methods (MLM,
FarmCPU, BLINK). A total of 80 SNPs were detected under

the significance threshold of p < 1.062 × 10−6. Among them,
59 were obtained by STI, and 22 were obtained by SSI, and
there was only one common SNP between the two indicators
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TABLE 1 | Descriptive statistics values for traits of 226 sunflowers under drought stress.

Traits Trt. Min. Max. Mean SD. CV. (%) Skewness Kurtosis

Plant height WW 15.07 56.10 31.37 5.80 18.48 0.50 1.56

DS 6.40 38.55 22.23 6.16 27.72 0.25 −0.65

Leaf surface area WW 4.62 143.62 46.34 33.30 71.85 0.91 0.30

DS 3.73 65.36 24.21 14.03 57.93 0.71 −0.31

Root shoot ratio WW 0.02 0.62 0.12 0.08 61.42 3.24 14.85

DS 0.05 0.79 0.16 0.11 65.49 3.21 13.05

Root length WW 32.56 314.68 89.47 40.83 45.63 1.63 5.11

DS 49.66 279.06 128.90 46.76 36.28 0.96 0.86

Root volume WW 0.04 0.56 0.22 0.11 46.99 1.21 1.53

DS 0.05 1.69 0.52 0.35 67.17 1.01 0.88

Root surface area WW 3.33 41.79 15.50 7.04 45.43 1.00 1.03

DS 4.22 73.59 27.34 13.19 48.23 0.74 0.88

Relative water content WW 0.23 1.43 0.74 0.11 14.59 0.84 11.26

DS 0.49 0.96 0.69 0.09 12.54 0.10 0.19

SPAD WW 22.10 39.77 31.08 4.38 14.09 0.19 −0.97

DS 18.60 38.67 29.31 3.50 11.93 0.18 0.42

Trt., Treatment; Min., Minimum; Max., Maximum; SD, Standard deviation; CV, Coefficient of variance; CK, Well water condition; DS, Drought stress condition.

FIGURE 2 | Spearman’s correlation analysis between the 8 drought-related traits under two water condition. Left: Under WW growth condition. Right: Under DS

growth condition. WW, well-water growth condition; DS, drought-stress growth condition; PH, plant height; LSA, leaf surface area; RSR, Root shoot ratio; RL, Root

length; RV, Root volume; RSA, Root surface area; RWC, Relative water content; SPAD, SPAD value. * and **Significant at the 0.05 and 0.01 probability levels between

genotypes, respectively.

(Supplementary Figures 2, 3; Supplementary Table 8). A total
of 19, 44, and 33 SNPs were discovered by MLM, FarmCPU,
and BLINK methods, respectively. For 8 phenotypic traits, LSA
detected the most associated SNPs (27), followed by RWC
detected 13, SPAD, RSR, and PH detected 12, 11, and 11,
respectively. RL, RV, and RSA were detected 2, 4, and 3 SNPs,
respectively. A total of 118 genes were found within the 20 kb
of 80 significant SNPs, 85 of them were protein-coding genes
(Supplementary Table 9).

RNA-Sequencing and Expression Analysis
A total of 70 Gb clean data were obtained after filtering
and quality control. The Q30 of each library ranged from
93.57 to 94.97%, and the GC content ranged from 44.86
to 45.68% (Supplementary Table 10). A total of 18,922
DEGs were obtained (Supplementary Table 11), 6,698 of
them were newly discovered. In general, there were more
DEGs under 14 days of drought stress compared with
the 7 days, and down-regulated DEGs were more than
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FIGURE 3 | Specific length amplified fragments (SLAF) tags distribution. (A) Distribution of all 565,668 SLAF tags on sunflower genome based on 226 accessions.

The colors indicate the number of SLAF tags within a 1Mb window. (B) The number of SLAF tags and polymorphic SLAF tags on each chromosome.

FIGURE 4 | Distribution of all 2,124,143 single nucleotide polymorphisms (SNPs) on sunflower genome. The colors indicate the number of SNPs within a 1Mb

window.

up-regulated DEGs (Figure 9). From day-7 to day-14, the
up-regulated DEGs were increasing from 3,848 to 7,174, whereas
the down-regulated DEGs were increasing from 5,201 to
8,521, respectively.

Enrichment Analysis
GO Analysis
The up-regulated genes were enriched in 46, 90 GO-terms at
7, 14 days. On day-7, the most significant GO-terms were
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FIGURE 5 | Distribution of filtered SNPs among the 17 chromosomes. The colors indicate the number of SNPs within a 1Mb window.

cellular amino acid catabolic process (GO:0009063), branched-
chain amino acid catabolic process (GO:0009083), and seed
maturation (GO:0010431). On day-14, the most significant GO-
terms were leaf senescence (GO:0010150), aging (GO:0007568),
and carboxylic acid catabolic process (GO:0046395). For down-
regulated genes, there were 127, and 199 GO-terms enriched
at 7, 14 days. On day-7, the most significant GO-terms
were cellular polysaccharide metabolic process (GO:0044264),
cell wall biogenesis (GO:0042546), and photosynthesis, light
reaction (GO:0019684); At day-14, the most significant GO-
terms were photosynthesis (GO:0015979), photosynthesis, light
reaction (GO:0019684), and plastid organization (GO:0009657)
(Supplementary Figure 4).

KEGG Analysis
Up-regulated genes were enriched in 13 and 48 significant KEGG
pathways at 7 and 14 days. On day-7, the most significant
pathways were Valine, leucine and isoleucine degradation,MAPK
signaling pathway—plant, and FoxO signaling pathway; On day-
14, the most significant pathways were valine, leucine, and
isoleucine degradation, MAPK signaling pathway—plant, and
longevity regulating pathway. For down-regulated genes, there
were 36, 48 significant KEGG pathways enriched at 7, 14 days.
On day-7 and day-14, the most significant KEGG pathways
were both related to photosynthesis, such as photosynthesis
proteins (BR:ko00194), photosynthesis-antenna proteins, and
photosynthesis (Supplementary Figure 5).

RT-qPCR Validation
To validate the accuracy of RNA-seq, RT-qPCR was performed.
Six genes were randomly selected from all DEGs. The
primer sequence was shown in Supplementary Table 12.
Correlation analysis showed that RNA-seq was closely related
to RT-qPCR results. The correlation coefficient (R2) was
0.8167, endorsing our RNA-seq data were reliable (Figure 10;
Supplementary Figure 6).

Candidate Genes Identification
By integrating the results of GWAS and RNA-seq analysis, a total
of 18 common genes were obtained, 14 of them were protein-
coding genes (Table 2; Figure 11). These genes are distributed on
chromosomes 4, 5, 8, 9, 10, 11, 12, 13, 16, and 17. Two genes are
associated with both LSA and PH. One gene is associated with
both LSA and SPAD. Their details are as follows.

Candidate Genes Associated With Plant Height
There were 2 candidate genes that were screened using combined
analysis. Both of them were located on chromosome 13.
The LOC110899235 gene encoding “inosine-uridine preferred
nuclear hydrate” is homologous to the AT5G18860.2 gene in
Arabidopsis thaliana. Another LOC110899238 gene encoding
“ABC transporter c family member 3-like” is homologous to the
AT3G13080.1 gene in Arabidopsis thaliana. Both two genes were
down-regulated with the extension of drought stress time in K58.
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FIGURE 6 | The mean LD decay rate was estimated by the squared allele

frequency correlations (r2) using all pairs of SNPs located within 100 kb of

physical distance in genomic regions in a population of 226 sunflower

accessions.

FIGURE 7 | Estimation of cross-validation (CV) errors for K values ranging

from 2 to 13. The CV errors declined rapidly from K = 2 ∼ 11 and reached the

lowest value at K = 11.

Candidate Genes Associated With Leaf Surface Area
There were 8 common candidate genes associated with LSA,
2 of which were also associated with PH. The function of the
gene LOC10936334 located on chromosome 4 was annotated
as “Jacalin-like lectin domain”, which is homologous to the
AT1G73040.1 gene in Arabidopsis thaliana, and its expression
level continues to decrease under drought stress in K58. Gene
LOC110941963 located on chromosome 5 was annotated as
“microtubule-associated protein RP EB family member”, which

was homologous to the AT3G47690.1 gene in Arabidopsis
thaliana. This gene was down-regulated after 14 days of drought
stress in K58. At 19.52 kb upstream of an SNP (S10_123892851)
on chromosome 10, a gene (LOC110885273) encoding “Serine
threonine-protein kinase” was identified. It is worth noting that
the gene was also associated with SPAD. This gene belongs to the
protein kinase family of RLK-Pelle_SD-2b, and is homologous
to the Arabidopsis AT4G32300.1 gene. RNA-seq showed it was
down-regulated with the extension of drought stress in K58. Gene
LOC110894816 encoding “Equilibrative nucleotide transporter”
were down-regulated at 7, 14 days in K58, which is homologous
to AT1G70330.1 in Arabidopsis thaliana. Gene LOC110920644
belongs to the PLATZ transcription factor family. It was up-
regulated at 7 days and down-regulated at 14 days of drought
stress in K58. Gene LOC110891369 encoding “receptor-like
protein kinase” was sharply up-regulated at 14 days. This protein
kinase belongs to the RLK-Pelle_SD-2b RLK-Pelle_CrRLK1L-1
protein kinase family.

Candidate Genes Associated With Root-Shoot Ratio
There were 2 candidate genes obtained by combined analysis.
One gene LOC110937937 encoding “Component of the
peroxisomal and mitochondrial division machineries” was
up-regulated at 14 days post drought stress, another gene
LOC110915715 encoding “Protein of unknown function
(DUF1666)” were continuously down-regulated with the
drought stress.

Candidate Genes Associated With Three Root

Related Traits
Notably, there are relatively fewer SNPs related to three root
traits (RL, RV, and RSA). No genes were found within the 20 kb
region of RL associated SNPs. The combined analysis identified
2 genes associated with RV and 1 gene associated with RSA.
For RV, gene LOC110877324 on chromosome 9 was annotated
as “Belongs to the UDP-glycosyl transferase family”, which was
down-regulated in K58 after 14 days of drought stress. Another
gene (LOC110917707) located on chromosome 16 was annotated
as “domain presence in VPS-27, Hrs and Stam”, which was up-
regulated in K58 after 14 days of drought stress. These two genes
are homologous to the AT2G18570.1 gene and AT2G38410.1
gene in Arabidopsis thaliana, respectively.

For RSA, gene LOC110872899 was located on chromosome
8, and annotated as “Inactive leucine-rich repeat receptor-like
serine threonine-protein kinase”. This gene is homologous to the
Arabidopsis AT1G10850.1 gene. It was slightly up-regulated in
K58 at 7 days and then sharply down-regulated at 14 days of
drought stress.

Candidate Genes Associated With Relative Water

Content
LOC110941862 is the unique gene screened by the combined
analysis. This gene encodes the “Topless-related protein”, which
is homologous to the AT1G15750.3 gene in Arabidopsis thaliana.
RNA-seq results showed that this gene was continuously down-
regulated in K58 under drought stress.
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FIGURE 8 | Population structure analysis phylogenetic tree construction, and principal component analysis (PCA) of the 226 sunflower accessions. (A) Population

structure of sunflower accessions estimated by ADMIXTURE, each row represents a given number of clusters (K, K = 2–13), each vertical column represents one

individual and each colored segment in each column represents the percentage of the individual in the population. (B) The unrooted neighbor-joining three a of 226

sunflower accessions. Each branch indicates a sample, and the length of the branches represents the genetic distance, (C) PCA scatter plots shows the distribution

of 226 sunflower accessions defined by the eigenvectors of the first three principal components (PC). The three axes represent PC1, PC2, and PC3 respectively. Each

dot represents a sample.

DISCUSSION

Global climate change threatens crop production worldwide.
Plants adopt diverse strategies to combat drought stress such
as reducing the stomatal conductance, decreased photosynthetic
rate, accumulation of different osmoprotectants, activation of
stress-responsive genes and transcription factors, etc. (Farooq
et al., 2009; Kaur and Asthir, 2017). Drought resistance is a
complex quantitative trait. One difficulty in drought-tolerant
genetic breeding is the unequivocal evaluation of plant response
to soil-water deficits (Pereyra-Irujo et al., 2007). Based on the
previous research, we evaluated 8 phenotypic traits among 226
accessions under WW and DS conditions. Compared to the WW
condition, the average PH, LSA, RWC, and SPAD value were
decreased, while RSR and three root related traits (RL, RV, RSA)
were increased under the DS condition.

It has long been known that drought stress at the vegetative
stage impedes phenotypic traits like PH, LSA, whereas an
increase in RL at the expense of above-ground dry matter occurs
resulting in higher RSR (Petcu et al., 2001; Hussain et al.,
2010; Javaid et al., 2015). In our results, the change trends of
mean PH, RL, RSR, and LSA were consistent with previous

FIGURE 9 | Number of differentially expressed genes (DEGs) in different

drought stress time.

studies. However, the mean RV increased under drought, which
was not consistent with a previous study. Geetha et al. (2012)
found that the RV decreased by 40.2% under drought stress
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FIGURE 10 | Correlation between results of RT-qPCR and RNA-seq for select

DEGs.

among 29 sunflower varieties, while we found 83% of accessions
have an increase in RV. This may be due to differences in the
genotypes of the study materials. Different genotypes of plants
have different adaptability to drought stress (Petcu et al., 2001).
Even in the most consistent trend of variation in PH (92%
decreased under drought stress), there were still 16 accessions
increased under drought stress. These specific materials may
include important drought-tolerance genes and will be good
sources for our drought tolerance molecular breeding. In some
previous studies, the relationship between SPAD and chlorophyll
content per unit leaf area is fitted as linear regression. SPAD
value is often used to represent chlorophyll content (Costa et al.,
2001; Martínez and Guiamet, 2004). Our results show that under
WW growth conditions, SPAD value is positively correlated with
LSA. It demonstrates that a larger LSA has more chlorophyll,
which increases the photosynthetic rate (Espina et al., 2018).
The correlation coefficients of LSA and SPAD in WW vs. DS
conditions were higher than 0.6, indicating that drought affects
these two traits more by environment than by genotype. The
correlation coefficients of RSA, RL and RL were very low,
indicating that they were more influenced by genotype.

Studies have shown that the genetic relatedness of the
mapping population can increase the false positive risk of
GWAS results (Ali et al., 2020). A population with enough
genotype and trait diversity is considered to be the expected
GWAS population (Flint-Garcia et al., 2005). In this study, the
population panel consisting of 226 accessions were collected
from different ecological regions. Three population structure
analysis methods (admixture, phylogenetic, and PCA) were
conducted. Results showed that 226 sunflowermaterials had large
genetic differences and were an ideal GWAS population. Linkage
disequilibrium (LD) is the basis of GWAS (Ali et al., 2020).When
LD declines rapidly with distance, LD mapping is potentially
very precise (Gaut and Long, 2003). Since our materials have
high genetic variability, the LD-decay distance is about 20 kb.
Overall patterns of LD decay show chromosome specificity.
Chr10 showed the highest LD value, followed by Chr7, Chr5,

Chr13, and Chr17. This result is consistent with a previous study
conducted by Filippi et al. (2020). They have reported different
patterns of LD across chromosomes, with Chr10, Chr17, Chr5,
and Chr2 showing the highest LD. The extended LD in Chr10
and Chr5 were also reported by other researchers (Cadic et al.,
2013; Mandel et al., 2013). Owens et al. showed that the extended
LD on Chr10 could be the result of the wild introgression in the
fertility restoring male lines (Owens et al., 2019).

GWASmethods have evolved over years. Several newmethods
are being developed to improve the statistical power and
reduce the computational time. FarmCPU uses a set of markers
associated with a casual gene as a co-factor instead of kinship
to avoid overfitting and eliminate confounding between kinship
and testing markers iteratively (Liu et al., 2016). More recently,
along with improvements in statistical power and reduction
in computing time compared to FarmCPU, the new method
called BLINK is set to eliminate FarmCPU requirement that
quantitative trait nucleotides (QTNs) are evenly distributed in
the genome (Huang et al., 2019). In the present study, we used
3 methods simultaneously to conduct GWAS. The FarmCPU
method detected 44 SNPs, the BLINK method detected 33
SNPs, and the MLM method detected the lowest of 19 SNPs,
respectively. There were 12 SNPs found simultaneously by
FarmCPU and BLINK method, and only 3 common SNPs were
found by 3 methods. Most SNPs were only found in one method.
Therefore, it may be prudent to use multiple methods to conduct
a GWAS survey (Nida et al., 2021).

STI and SSI are two commonly used evaluation indexes in
the study of plant abiotic stress. According to the research
of Mehdi GHAFFARI, STI is more efficient for identifying
drought-resistant lines, and SSI is more efficient for identifying
drought-sensitive lines (Ghaffari et al., 2012). Applying both
indicators simultaneously could provide a complete and accurate
assessment of drought tolerance. Strangely, the calculation
methods of STI in different articles are inconsistent (Sukumaran
et al., 2018; Khanzada et al., 2020; Chaurasia et al., 2021). In
the present study, we carefully chose a scientific STI calculation
method for GWAS analysis. A total of 80 significant SNPmarkers
associated with 8 phenotypic traits were detected, 22 of themwere
detected using SSI, and 59 of them were detected using STI, only
one common SNP was detected by both of the two indexes.

To further understand the biological processes, pathways, and
gene expression patterns in sunflowers under drought stress, we
conducted an RNA-seq analysis. Based on the phenotypic traits, a
drought-tolerant plant was selected from the GWAS population.
We sampled the leaves at 0, 7, and 14 days after drought stress. A
total of 18,922 differentially expressed genes were obtained.

There was a noticeable consistency between the results
of GO and KEGG analysis. For example, up-regulated genes
were enriched in GO-terms such as cellular amino acid
catabolic process (GO:0009063), branched-chain amino acid
catabolic process (GO:0009083), while KEGG analysis showed
“Valine, leucine and isoleucine degradation” was the most
significant pathway. Down-regulated genes were enriched in
photosynthesis (GO:0015979), photosynthesis, light reaction
(GO:0019684) according to GO analysis, while KEGG analysis
showed down-regulated genes enriched in pathways such as
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TABLE 2 | Detail information of 14 genes obtained by combine-analysis of GWAS and RNA-seq.

Traits Gene name Chromosome Gene_start Gene_end Description iTak Families

(PH/LSA)-STI LOC110899235 13 138759411 138769673 Inosine-uridine preferring

nucleoside hydrolase

LOC110899238 13 138795923 138801286 ABC transporter C family

member 3-like

(LSA/SPAD)-

(SSI/STI)

LOC110885273 10 123870286 123873341 Serine threonine-protein kinase PK RLK-Pelle_SD-2b

LSA-SSI LOC110894816 12 55570908 55573165 Equilibrative nucleotide

transporter

LOC110936334 4 60470023 60472767 Jacalin-like lectin domain

LOC110941963 5 200316650 200319863 Microtubule-associated protein

RP EB family member

LOC110891369 11 160106964 160111888 Receptor-like protein kinase PK RLK-

Pelle_CrRLK1L-1

LOC110920644 17 8881157 8883452 PLATZ transcription factor TF PLATZ

RSR-SSI LOC110937937 4 169924932 169927583 Component of the peroxisomal

and mitochondrial division

machineries. Plays a role in

promoting the fission of

mitochondria and peroxisomes

LOC110915715 16 39633096 39638580 Protein of unknown function

(DUF1666)

RV-STI LOC110877324 9 29925998 29927713 Belongs to the

UDP-glycosyltransferase family

LOC110917707 16 74795170 74799439 Domain present in VPS-27, Hrs

and STAM

RSA-STI LOC110872899 8 68366663 68376805 Inactive leucine-rich repeat

receptor-like serine

threonine-protein kinase

PK RLK-Pelle_LRR-III

RWC-SSI LOC110941862 5 195719872 195730082 Topless-related protein

The content in brackets indicates simultaneous, for example, (PH/LSA)-STI, indicating that this gene is recognized by both PH-STI and LSA-STI.

Photosynthesis proteins (BR:ko00194), Photosynthesis—antenna
proteins, Photosynthesis. The branched-chain amino acids
(BCAAs), including isoleucine, leucine, and valine, are essential
for plants (Binder et al., 2007). Pires et al. (2016) results
highlight that catabolism of BCAA appears to play an important
role in the mechanism of tolerance to short-term drought,
most likely by delaying the onset of stress. Our results also
proved that the degradation of BCAA may be an important
mechanism of sunflower drought resistance. Abiotic stress
damage the thylakoid membrane, disturb its functions, and
ultimately decrease photosynthesis. Down-regulated expression
of photosynthesis-related genes under drought stress has been
reported in several plants, such as Arabidopsis (Bechtold et al.,
2016; Bouzid et al., 2019), wheat (Derakhshani et al., 2020),
and grapevines (Franck et al., 2020). In a previous study,
Escalante et al. found a down-regulation of photosynthesis-
related genes in the aerial part of sunflowers (Moschen
et al., 2017). However, another study revealed that the
expression levels of photosynthesis-related genes were increased
under drought stress in sunflowers (Escalante et al., 2020).
This difference may be caused by differences in drought
intensity and genotype, and our results were identical with
the former.

With the development of high-throughput technologies,
omics research is also undergoing a shift from a single-omics to
a large-scale multi-omics approach (Liu et al., 2020). Through
the multi-omics approach, researchers can obtain a deeper
understanding of the fundamental biological processes, a more
accurate prediction of the response variable, and gain further
insight into mechanistic aspects of the system (Cavill et al., 2015).
By integrating the transcriptome and metabolome, Sebastián
Moschen et al. (2017) gained a deeper insight into the sunflower
drought-response mechanism. The integration of genomic and
transcriptomic analysis has also been reported in many recent
studies. This approach can be used as an effective way to
identify candidate genes. For example, eight salt stress-related
candidate genes were identified by a combination of GWAS
analysis and transcriptome analysis in Alfalfa (Medicago sativa
L.) (He et al., 2021). Seven candidate genes for seminal root
length in maize (Zea mays L.) were identified by integrating the
results of the GWAS, the common DEGs, and the co-expression
network analysis (Guo et al., 2020). Using a combined analysis,
we identified 18 common genes.

The total genes in the sunflower reference genome were
81,496, and we found 18,922 DEGs via RNA-seq. According to
this proportion, we should find at least 29 DEGs among the 118
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FIGURE 11 | Expression profiles of 14 drought response candidate genes.

genes of GWAS. However, the number of common genes that
we have found was relatively small (18). This is because among
the 18,922 DEGs, only 12,124 of them exist in the reference
genome and the rest are novel genes. A subsequent chi-square
test using this number found no significant difference between
the two proportions (P = 0.908). Nonetheless, the proportion
of overlapped genes was still lower than we expected. The
reason we speculate is that GWAS candidate genes are mainly
regulatory genes that act in all accessions. A slight regulation of
expression level under drought stress, which did not reach the
threshold of significant difference, can affect the physiological
processes in plants, whereas the DEGs of RNA-seq are mainly a
series of drought-responsive functional genes that are regulated
in K58 under drought stress. The difference in the class and
function of the genes from these two gene sets results in a
low percentage of overlapping genes. Of course, this needs
further confirmation.

Among these 18 genes, 14 are protein-coding genes, of
which 3 are encoding PK and 1 encodes TF. These genes
may play an important role in drought response in sunflowers.

The LOC110885273 gene encodes G-type lectin S-receptor-
like serine/threonine-protein kinase (LecRLKs). The protein
kinase is involved in plant responses to biotic and abiotic
stresses (Bonaventure, 2011; Singh et al., 2012; Zhao et al.,
2016). Overexpression of G-type LecRLKs enhances the drought
tolerance of Arabidopsis thaliana (Sun et al., 2013a), which may
be achieved by controlling stomata size through interaction with
abscisic acid (ABA) (Arnaud et al., 2012). Pan et al. (2020)
identified a LecRLKs gene OsESG1 in rice and found it could
be induced by treating with PEG, NaCl, and ABA. However,
we found the LOC110885273 gene was down-regulated under
drought stress, which may lead to the decrease of SPAD value
under drought stress.

The receptor like kinase (RLKs) family has been defined as
the most abundant gene family in Arabidopsis. Leucine rich
repeat-RLKs (LRRRLKs) are the largest group of receptor-
kinases in Arabidopsis, which is widely involved in responses
to various biotic and abiotic stresses (Diévart and Clark, 2003;
Lehti-Shiu et al., 2009). Osakabe et al. (2005) found that an
LRRRLKs gene (RPK1) is involved in the early steps in the
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ABA signaling pathway through a gene knock-out experiment.
The overexpression of receptor-like kinase rich in the Leucine
Repetition gene improves the Arabidopsis thaliana drought
resistance (Xing et al., 2011). Receptor-like cytoplasmic kinase
GUDK and OsSIK1 were shown to enhance drought tolerance
in rice (Ouyang et al., 2010; Harb et al., 2020). In the present
study, a down-regulated LRRRLKs gene LOC110872899 was
identified, which is located at chromosome 8, and associated
with RSA, maybe the mechanism of this gene in sunflower
drought tolerance response is different. Another receptor-like
protein kinase gene LOC110891369 was up-regulated at 14-
days of drought stress in K58, which belongs to the family of
RLK-Pelle_CrRLK1L-1, and is associated with LSA.

PLATZ transcription factors play important roles in plant
growth, development, and biotic and abiotic stress responses.
Liu et al. (2021) reveal that PLATZ4 interacts with AITR6 to
increase ABA sensitivity and drought tolerance in Arabidopsis by
regulating the expression of different genes. Zenda et al. (2019)
identified a PLATZ gene (Zm00001d051511) in maize. It was
up-regulated in tolerant line YE8112, whilst down-regulated in
drought-sensitive line after drought stress. This result indicated
the TF genes could be the key contributors to drought stress
tolerance in the drought-tolerantmaize inbred line. This different
expression pattern was also proved in Ray’s research on rice
(Ray et al., 2011), PLATZ (LOC_Os10g42410) gene was down-
regulated in panicle, while up-regulated in vegetative tissues
under drought stress. Even in the same tissue at the same time,
it was found that the expression levels of two PLAZT genes were
up-regulated and down-regulated, respectively, which indicated
the complexity of drought stress regulation. In this study, a
PLAZT gene LOC110920644, which is related with LSA, was
up-regulated at the early stage in K58 under drought stress.

ABA is an important hormone for plant drought response
(Zotova et al., 2018). The cell ABA level increases under drought
stress, leading to stomatal closure and active several stress-
responsive genes (Cutler et al., 2010). Drought stress increased
ABA levels in sunflowers have been reported (Robertson et al.,
1985). In this study, the functions of the four TF/PK genes are
all related to ABA, indicating the important role of the ABA-
dependent process in the drought response of sunflowers.

CONCLUSION

Sunflower is one of the most important oil crops in the world,
which is often grown as a rainfed crop. Water limitation at
the seedling stage can severely reduce stand establishment and
negatively impact yields. However, the molecular mechanism
underlying drought resistance is still not fully understood. In
this study, we used SLAF-seq to perform GWAS for 8 important
phenotypic traits in 226 sunflower inbred lines. Using three
methods (i.e., MLM, FarmCPU, and BLINK) for sunflower
grown in two conditions (i.e., well-water and drought stress), we
identified a total of 80 SNP displaying a significant association
(p < 1.062 × 10−6). Candidate genes were searched in the
20 kb up/down-stream of each SNP. There were 85 protein-
coding candidate genes possibly related to the 8 important

phenotypic traits. Next, we conducted an RNA-seq based on a
drought-tolerance inbred line (K58). A total of 18,922 DEGs
were identified on 7 and 14 days after drought treatment.
Up-regulated genes were mainly enriched in BCAA catabolic
process, while down-regulated genes were mainly enriched in the
photosynthesis process. Using a combined analysis, we found 14
common genes between GWAS and RNA-seq, three of themwere
PK genes, and one of them was TF gene. LOC110885273 was
associated with LSA and SPAD, belongs to the RLK-Pelle_SD-
2b protein kinase family. LOC110872899 belongs to the RLK-
Pelle_LRR-III protein kinase family and is associated with RSA.
LOC110891369 belongs to the RLK-Pelle_CrRLK1L-1 protein
kinase family and is associated with LSA. The PLAZT gene
LOC110920644 is related to LSA, and belongs to PLAZT TF
family. Through functional analysis, there are 4 genes involving
the ABA-dependent drought response pathway of plants.

The integrative analysis of omics data is a promising
approach to identify candidate genes for complex traits. This
study is the first attempt to combine GWAS and RNA-seq to
explore the genetic mechanism of sunflower drought tolerance
to our knowledge. We will further validate the functions of
these genes, possibly by overexpression or by CRISPER/Cas
genome editing. Our research reveals the phenotypic and
molecular mechanisms of drought response in sunflowers.
The results will be useful for the genetic enhancement of
drought-resistant sunflowers.
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Boll weight (BW) is a key determinant of yield component traits in cotton, and

understanding the genetic mechanism of BW could contribute to the progress of cotton

fiber yield. Although many yield-related quantitative trait loci (QTLs) responsible for BW

have been determined, knowledge of the genes controlling cotton yield remains limited.

Here, association mapping based on 25,169 single-nucleotide polymorphisms (SNPs)

and 2,315 insertions/deletions (InDels) was conducted to identify high-quality QTLs

responsible for BW in a global collection of 290 diverse accessions, and BW was

measured in nine different environments. A total of 19 significant markers were detected,

and 225 candidate genes within a 400 kb region (± 200 kb surrounding each locus)

were predicted. Of them, two major QTLs with highly phenotypic variation explanation on

chromosomes A08 and D13 were identified among multiple environments. Furthermore,

we found that two novel candidate genes (Ghir_A08G009110 and Ghir_D13G023010)

were associated with BW and that Ghir_D13G023010 was involved in artificial selection

during cotton breeding by population genetic analysis. The transcription level analyses

showed that these two genes were significantly differentially expressed between high-

BW accession and low-BW accession during the ovule development stage. Thus, these

results reveal valuable information for clarifying the genetic basics of the control of

BW, which are useful for increasing yield by molecular marker-assisted selection (MAS)

breeding in cotton.
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INTRODUCTION

Cotton has an ancient history of cultivation dating back seven
thousand years or more according to the oldest archeological
evidence, which was found in Pakistan (Rajpal et al., 2016).
Subsequently, the invention of the cotton gin in the late 18th

century caused massive growth in cotton production, and
cotton gradually became an important cash crop (Sunilkumar
et al., 2006). Previous studies have suggested that allotetraploids
emerged approximately 1.5 million years ago (MYA) through
a single allopolyploidization event in a propagule resembling
diploid cotton (Gossypium herbaceum L.) that dispersed across
the Atlantic Ocean from Africa to the New World and
subsequently hybridized with a resembling diploid cotton
(Gossypium raimondii) and produced upland cotton after long-
term evolution (Wendel, 1989; Sunilkumar et al., 2006; Liu et al.,
2015). Currently, upland cotton has become a predominant
cotton species in global cotton commerce, with ∼ 27 million
metric tons produced per year. In addition, it also provides
natural fiber for the textile industry, which has high yield and
wider adaptation (Chen et al., 2007). In recent years, due to
population growth, climate change, and the challenges associated
with maintaining the grain-cotton balance in farmlands, the
cotton planting area has decreased. Therefore, the urgent need
to increase cotton production is particularly important.

The application of quantitative trait locus linkages or QTL-
related molecular markers of target traits by MAS can prevent
environmental interference and improve breeding efficiency (Yin
et al., 2003). The study of QTLs in cotton has focused mainly
on yield and fiber quality component traits (Said et al., 2015).
Cotton yield component traits include fruit branch number
(FBN), lint percentage (LP), boll number per plant (BN), boll
weight (BW), and seed index (SI), which were controlled by
QTLs and environmental factors. Among these traits, BW is
more stably inherited and has relatively high heritability (Fan
et al., 2018; Liu et al., 2018; Zhang et al., 2019b; Gu et al.,
2020; Zhu et al., 2021). In the past three decades, BW has been
widely used for quantitative genetics studies, and a great number
of studies have been conducted to identify genetic locus for
BW distributed on almost all chromosomes via classic linkage
maps and genome-wide association studies (GWAS) using cotton
panels; over 170 QTLs for BW have been discovered (Said et al.,
2015; Liu et al., 2018; Wang et al., 2019b; Zhu et al., 2021). By
using F2 and F2 : 3 populations derived from an upland cotton
intraspecific cross (Simian3 x TM-1), several yield-related QTLs
were identified by simple sequence repeat (SSR) and random
amplified polymorphic DNA (RAPD) markers, and common
QTLs explaining 15.6% of the phenotypic variation (PV) were
identified for BW and 100-seed weight on chromosome A09
(Yin et al., 2002). Wang et al. (2015) constructed a linkage map,
which included 178 loci spanning 2016.44 cM, and a total of 19
QTLs for BW were detected on seven chromosomes; two QTLs
were identified in more than two environments. In addition, a
previous study involving 356 cotton accessions identified four
favorable alleles for BW by a GWAS panel (Mei et al., 2013). The
elucidation of the genetic architecture of BW can provide strong
theoretical support for breeders to increase cotton production.

However, there still exists inadequacy in previous research, such
as the use of low-density linkage maps constructed based on
traditional molecular markers, incomplete genetic information
of the reference genome, and rough resolution of the mapping
interval, resulting in candidate genes that could not be directly
identified. SNP markers could be more effectively to explore the
genetic structure in important agronomic traits in biparental
map-based cloning and association analysis based on their highly
polymorphism, wide distribution, and low research costs (Van
Tassell et al., 2008; Ganal et al., 2009). Along with the reduction
in high-throughput sequencing costs, a great quantity of SNP
markers has been extensive development (Michael et al., 2018;
Sun et al., 2020), leading to more candidate genes can be
identified by QTL mapping and GWAS through SNP markers
(Zhou et al., 2020; Li et al., 2021). In recent years, candidate
genes for yield component traits in cotton have been wide-
ranging explored in genetic studies with SNP markers rather
than traditional molecular markers. For example, Zhang et al.
(2016) constructed a high-density genetic map containing 5,521
SNP markers developed with a recombinant inbred line (RIL)
population in 11 environments, and 344 candidate genes for
BW were annotated. In addition, Fang et al. (2017) employed
whole-genome resequencing using 1,871,401 high-quality SNP
markers in 258 diverse accessions and discovered that the
candidate gene Gh_D08G0312 may be a key gene determining
cotton yield. Moreover, two candidate genes associated with lint
percentage were uncovered using 276 upland cotton accessions
with 10,660 SNPs in multiple environments; these genes were
highly expressed during ovule and fiber development, indicating
that they may play important roles in influencing LP (Song
et al., 2019). Although QTLs for yield component traits have
been extensively explored in upland cotton, compared to those
in important crops such as rice and maize, few candidate genes
have been identified.

For this study, to gain better insight into the genetic basics
of BW, specific locus amplified fragment sequencing (SLAF-
seq) was taken as for whole-genome identification of SNPs and
InDels in a natural population. PV for BW in nine environments
was evaluated across four representative agroecological regions.
In addition, several QTLs and candidate genes were further
identified by a GWAS. This study provides information regarding
a valuable cotton germplasm potentially useful for MAS in cotton
breeding practice for raising yield in upland cotton.

MATERIALS AND METHODS

GWAS Population and Field Experiments
A total of 290 elite upland cotton accessions were obtained
from CRICAAS (http://www.cricaas.com.cn/). Among these
accessions, 263 (90.7%) representative cultivars were collected
from four major cotton production regions of China: Northern-
Specific Early-Maturity region (NSER), Yellow River region
(YRR), Yangtze River region (YZRR), and Northwest Inland
region (NIR). The remaining 27 (9.3%) cultivars were introduced
from six different countries (USA, Azerbaijan, Israel, Kyrgyzstan,
Tajikistan, and Uzbekistan). Complete GWAS population
material of each accession is shown in Supplementary Table S1.
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Anatural population of 290 upland cotton accessions was planted
at Anyang (36 08’N, 114 48’E) in three consecutive years (2014,
2015, and 2016) (E1: Anyang-2014, E2: Anyang-2015, and E3:
Anyang-2016); Shihezi (44 31’N, 86 01’E) in three consecutive
years (2014, 2015, and 2016) (E4: Shihezi-2014, E5: Shihezi-
2015, and E6: Shihezi-2016); Huanggang (30 57’N, 114 92’E) in 2
years (2016 and 2021) (E7: Huanggang-2016 and E8: Huanggang-
2021); and Sanya (18 36’N, 109 17’E) from 2020 to 2021 (E9:
Sanya-2020-2021). Each environment was conducted with a
randomized complete block for three replications.

Phenotyping and Statistical Analysis of BW
In total, 20 mature cotton bolls were randomly harvested from
the middle branches and dried under sunlight for 2 days in
each line. The phenotypic data from all the environments were
analyzed with the base packages of R software (version: 3.5.0),
and the correlation analysis results were exhibited with the
“corrplot” (Wei et al., 2017). The broad-sense heritability (H2)
of BW progressed with the “sommer” (Covarrubias-Pazaran,
2016). In addition, the BLUP value of boll weight in the nine
environments for the GWAS analyses was conducted by the
“lme4” (Bates et al., 2014).

Genome Sequencing and Variation
Detection
We collected young leaves at seedling stage of each line for
genotyping. The SLAF-seq libraries were constructed for each
accession based on the restriction enzymes Rsa I and Hae III
(New England Biolabs, NEB). All accessions were genotyped with
the Illumina HiSeq2500 platform. The detailed protocols used for
library preparation and sequencing using the SLAF strategy have
been described previously (Li et al., 2017). The quality control
process was employed by Trimmomatic (version: 0.32) (Bolger
et al., 2014), and then, the filter reads were aligned to reference
genomes of the three upland cotton accessions (“TM-1,” “CRI24,”
and “NDM8”) by using BWA (version: 0.7.17) (Li and Durbin,
2009; Yu et al., 2021). The high-quality SNPs and InDels were
detected using Genome Analysis Toolkit software (version: 3.8)
(McKenna et al., 2010).

GWAS and Genetic Diversity Analysis
For GWAS analysis, we first filtered the SNPs and InDels
with a minor allele frequency (MAF) less than 0.05 and a
missing rate greater than 80%. Second, population structure
was calculated as the covariate to reduce false positives
(Supplementary Figure S1). Finally, the linear mixed mode in
GEMMA (version: 0.98.3) (Zhou and Stephens, 2012) was used
for discovering the significant locus by high-quality markers and
BW values from each individual environment. The -log10(P)
value was 4.43, which was used as 1/n (n= total number of SNPs
and InDels in the GWAS panel) according to the Bonferroni-
corrected method. The phenotypic variation explained (PVE) of
each marker was calculated by the formula as follows: PVE =

[2β2 × MAF × (1 – MAF)] / [2β2 × MAF × (1 – MAF) +
((se(β))2 × 2×N×MAF× (1–MAF))], where β andMAF were
obtained by the GEMMA software, and N represented the sample
size according to previous reports (Shim et al., 2015). The R

package “qqman” was used to generate Manhattan plots (Turner,
2014). The 290 accessions were split into three populations
based on the release years, including cultivars released before
the 1980s, cultivars bred within the 1980s−2000s, and cultivars
bred after the 2000s; VCFtools (version: 0.1.16) was used to
estimate nucleotide diversity (π) (Danecek et al., 2011) in the
three populations. LD block analysis was conducted with the
“LDheatmap” (Shin et al., 2006) to find existing LD blocks.

Haplotype Analysis and Candidate Gene
Identification
Haplotype analysis of associated markers on chromosomes A08
and D13 was conducted based on the phenotypic values and
genotype data, and box plots were created using the R package
“ggplot2” (Wickham, 2011). Candidate BW-related genes were
identified and annotated on the basis of the “TM-1” genome
released from COTTONGENE (https://www.cottongen.org/),
which was in the upstream and downstream of 200 kb regions
by significant markers according to previous reports (Su et al.,
2018; Wang et al., 2019a). GO enrichment was performed on
the agriGO to identify the enriched pathways by using default
parameters (Tian et al., 2017).

Gene Expression Level Analysis
The expression patterns in G. hirsutum L. “TM-1” and “CRI12”
at the ovule development stage (10 days post-anthesis (DPA),
20 DPA, 30 DPA, and 40 DPA) were analyzed using the
published RNA-seq dataset PRJNA248163 (Fang et al., 2017).
The TPM values were determined using GFOLD software
(version: 1.1.4) (Feng et al., 2012). We further performed qRT-
PCR analysis. All gene-specific primers used in this study
were designed using Primer3 (version: 0.4.0); they are listed in
Supplementary Table S2. Seeds of upland cotton (G. hirsutum
cv. “TM-1” and “CRI16”) were planted at Zhejiang A&F
University in Hangzhou. Flowers were tagged on the day of
anthesis. We collected bolls at 0, 5, 15, 20, and 25 DPA, and then,
the young seeds with fibers were stripped of hulls, frozen in liquid
nitrogen, and stored at −80circC. Total RNA was extracted from
the frozen 0, 5, 15, 20, and 25 DPA fibers and ovule using the
MolPure R© Plant Plus RNA Kit (Yeasen, Shanghai, China), and
cDNA was synthesized using the MonScriptTM RTIII Super Mix
with dsDNase (Monad, Shanghai, China). Then, real-time PCR
was performed to identify transcript levels using LightCycler
480 II PCR System (Mannheim, Germany) and MonAmpTM

ChemoHS qPCR Mix (Monad, Shanghai, China). The 2−11CT

method was applied to analyze the gene transcript abundance
with three biological replicates (Livak and Schmittgen, 2001).
Data visualization for qRT-PCR and RNA-seq was performed
using custom R scripts.

RESULTS

Detection of SNPs and InDels in Cotton
Genome
A total of 290 cotton accessions (Supplementary Table S1)
were selected from a wide global distribution, spanning over
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100 years of cotton breeding, and genotyped using the SLAF-
seq approach (Figure 1). To identify high-quality SNPs and
InDels, we compared the mapping rates across seven high-
quality published reference genomes from multiple research
communities (Yu et al., 2014; Hu et al., 2019; Wang et al., 2019a;
Yang et al., 2019; Chen et al., 2020; Huang et al., 2020; Ma et al.,
2021). The number of SLAF reads with mapping rates ranging
from 98.62 to 98.93% revealed no evidence of a significant
difference, while HAU_v1 showed the largest number of high-
quality SNPs and InDels (Supplementary Table S3). Thus, we
selected HAU_v1 as a reference for further GWAS. A final set
of 25,169 SNPs and 2,315 InDels were obtained with a MAF
greater than 0.05 and missing data less than 20% in GWAS
population. The mean marker density was one per 80.3 kb in
the At subgenomes and one per 81.8 kb in the Dt subgenomes.
Moreover, chromosome A06 possesses the highest number of
markers (3,003 SNPs and 178 InDels), followed by chromosome
A08 (2,827 SNPs and 189 InDels), and the smallest number of
markers was observed on chromosome D03 (403 SNPs and 58
InDels) (Supplementary Figure S2).

PV of BW
The BW of 290 upland cotton accessions in nine environments
followed an approximately normal distribution according to
Shapiro–Wilk tests (Table 1). The frequency distributions of BW
in the natural population are summarized in Figure 2A. The
lowest average BW was 3.08 g in E7, and the highest average BW
was 8.21 g in E6, with an average variation from 4.16 ± 0.44 to
6.48 ± 0.57 across the nine environments, suggesting extensive
PV in the association panel (Table 1). The correlation analysis
for BW exhibited relatively high positive correlations between
environments (P < 0.001), with Pearson’s correlation coefficients
ranging from 0.26 to 0.75 (Figure 2B). On the contrary, a
two-way ANOVA showed that genotypic variance (G) and the
genotype-by-environment variance (G × E) had significant
effects on BW (P < 0.001). This finding confirmed that a large
number of genetic variations existed in the natural population.
TheH2 for BWwas calculated as 69.65%, indicating that BWwas
mainly affected by the genotype, which was suitable for making
further efforts association analysis (Supplementary Table S4).

GWAS of BW in Upland Cotton
AGWAS of boll weight was performed with a linearmixedmodel
(LMM) (Figures 3A,B and Supplementary Figures S3, S4). In
total, 19 significant elite alleles with 16 SNPs and three InDels
were identified on six chromosomes (A06, A07, A08, D01,
D07, and D13) across nine individual environments and BW-
BLUP values. Each allele explained 5.58 to 10.95% of the PV,
and the -log10(P) values ranged from 4.53 to 6.13 (Table 2). A
total of six loci were identified in at least two environments,
and two major QTLs flanked by four alleles (rsA08_30171616,
rsD13_60955253, rsD13_60955261, and rsD13_60955462) were
further associated with BW-BLUP values (Table 2). Among
them, one QTL significantly associated with a SNP (-log10(P) =
5.04) on chromosome A08 explained 9.38% of the PV. Notably,

another major QTL region on chromosome D13 (60,820,223–
60,955,462) was stably detected in six environments, and the BW-
BLUP values were based on two SNPs and an InDel. The PV
explained and -log10(P) values ranged from 10.32 to 10.95% and
6.06 to 6.13, respectively.

Analysis of Candidate Genes Associated
With BW
Potential candidate genes linked to 19 significant BW-associated
markers were extracted based on the “TM-1” reference genome
(Wang et al., 2019a). A total of 225 candidate genes were
identified for BW, with most genes distributed on chromosome
D13 and only one candidate gene located on chromosome A08
within the 400 kb genome region (Supplementary Table S5).
Then, we identified orthologs for 225 candidate genes based on
sequence similarity analysis by comparing the candidate genes to
the Arabidopsis thaliana reference genome, which included 215
annotated genes and 10 novel genes (Supplementary Table S5).
Furthermore, the expression levels of the 225 genes exhibited
extensive variation among different cotton tissues representing
vegetative growth processes, ovule developmental stages, and the
primary fiber developmental stages of initiation, elongation, and
secondary wall biosynthesis. The expression patterns of candidate
genes were categorized into three groups, referred to here as
lineages I, II, and III, based on similarities among the expression
profiles (Figure 3C). Gene Ontology (GO) analysis found that
a large proportion of genes (33.22%) had unknown functions,
but most of the candidate genes were involved in metabolic
processes (42.68%), catalytic activity (38.85%), cellular processes
(38.22%), or single-organism processes (24.20%) (Figure 3D).
For example,Ghir_D13G021550 (PLA2-BETA) has been reported
to be involved in pollen development, germination, and stomatal
opening in response to light (Kim et al., 2011). Orthologs
of Ghir_A07G004250 (AT4G32280.1) have been reported to be
involved in the regulation of indoleacetic acid (IAA) signaling
(Shimizu et al., 2016) and have ovule-specific expression at 0 DPA
and 1 DPA (Supplementary Figure S5). In addition, six genes
in the Dt subgenome (Ghir_D01G001790, Ghir_D13G021810,
Ghir_D13G022780, Ghir_D13G023170, Ghir_D13G023060, and
Ghir_D13G023090) were shown to be involved in response to
stimulus, which is consistent with previous reports (Liu et al.,
2012; Su et al., 2020). In addition, some genes were involved
in cellular component organization, organelle part, biological
regulation, and cell part, with proportions ranging from 3.18
to 13.38% (Figure 3C). Specifically, Ghir_D13G023010 (RHIP1)
encodes a protein predicted to have a three-stranded helical
structure, which has been previously shown to modulate early
seedling development in Arabidopsis (Huang et al., 2015).

Two Candidate Genes Pleiotropically
Increase BW in Cotton Accessions
Previous studies have indicated that QTLs for BW were widely
distributed on all the chromosomes of cotton, but few QTLs
mapped to chromosome A08 (Said et al., 2015; Li et al., 2016;
Zhang et al., 2016). In this study, a novel QTL with a significant
SNP (rsA08_30171616) on chromosome A08 exhibited the
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FIGURE 1 | Map of the 290 cotton accessions. (A) Geographic distribution of the natural population; each accession is represented by a dot. (B) Pie chart of the

proportions of diverse cotton-growing areas in 290 accessions. NIR: Northwest Inland region in China; NSER: Northern-Specific Early-Maturity region; YRR: Yellow

River region; YZRR: Yangtze River region; and Amerasian: 27 accessions primarily introduced from six different countries (USA, Azerbaijan, Israel, Kyrgyzstan,

Tajikistan, and Uzbekistan). (C) Breeding stage distribution of the GWAS panel; Unknown: accessions that were not found among the pedigrees.

TABLE 1 | Phenotypic variation of BW in the natural populations.

Environment Minimum Maximum Mean SD Shapiro–Wilk P value

E1 (Anyang-2014) 3.43 7.61 5.44 0.73 0.86

E2 (Anyang-2015) 3.30 6.93 5.35 0.60 0.65

E3 (Anyang-2016) 3.42 7.81 5.72 0.63 0.05

E4 (Shihezi-2014) 3.87 6.94 5.55 0.45 0.00

E5 (Shihezi-2015) 4.03 7.15 5.57 0.47 0.09

E6 (Shihezi-2016) 3.97 8.21 6.48 0.57 0.01

E7 (Huanggang-2016) 3.08 5.38 4.16 0.44 0.40

E8 (Huanggang-2021) 3.22 6.48 4.76 0.57 0.63

E8 (Sanya-2020-2021) 3.24 7.07 5.11 0.58 0.13

strongest association with BW, explaining 9.38% of the PV in
two environments and the BW-BLUP (Figure 4A). This SNP
has two haplotypes AA and GG, which led to the accessions
carrying the GG haplotype having a significantly lower BW
than those carrying the AA haplotype in nine environments
(P < 0.05) (Figure 4B). In addition, to gain insight into the
geographic distribution of the favorable haplotype (AA) for
rsA08_30171616, the 290 cotton accessions were divided into
five groups: NIR, NSER, YRR, YZRR, and Amerasian. NIR
and YRR had a high proportion of the lines (Figure 1B)
and showed an extraordinarily low AA frequency (Figure 4C),

while the lines obtained from YZRR and Amerasian had a
relatively high frequency of the favorable haplotype (>20%).
We further performed an LD analysis of the significant SNP
rsA08_30171616, and only one gene, Ghir_A08G009110, in the
LD block was found in this region (Figure 4A). The quantitative
reverse-transcription PCR (qRT-PCR) analysis and RNA-seq
data showed that Ghir_A08G009110 had higher expression
levels in “TM-1” (BW = 6.18 ±0.83 g) carrying the AA allele
than in “CRI12” (BW = 5.28 ±0.59 g) and “CRI16” (BW =

5.08 ±0.97 g) with GG allele during ovule development stage
(Figures 4D,E). Through the above empirical results, we inferred
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FIGURE 2 | Phenotypic variation analysis of boll weight. (A) Distributions of the mean values for boll weight in nine environments (E1: Anyang-2014, E2:

Anyang-2015, E3: Anyang-2016, E4: Shihezi-2014, E5: Shihezi-2015, E6: Shihezi-2016, E7: Huanggang-2016, E8: Huanggang-2021, and E9: Sanya-2020-2021).

(B) Correlation analysis of boll weight in nine environments (***P < 0.001, **P < 0.01, and *P < 0.05).

that Ghir_A08G009110 on chromosome A08 has potential
role responsible for improving BW and may be beneficial to
cotton breeding.

We then focused on a stable QTL on chromosome D13
(Figure 5A). Two SNPs and one InDel in this interval were
stably associated with BW in six environments and with BW-
BLUP, which could explain the relatively high PV from 10.32
to 10.95% (Table 2). Notably, three genes (Ghir_D13G023000,
Ghir_D13G023010, and Ghir_D13G023020) were observed
and tightly linked within the candidate region (Figure 5B).
Furthermore, we found that the genetic diversity of this
interval decreased with the breeding period; cotton cultivars
released before the 1980s were dramatically more diverse
than the cultivars bred in the 1980–2000s, and the cultivars
bred after the 2000s showed the lowest diversity. These three
elite alleles generated two haplotypes (HapA and HapB) in
this LD block. Among them, rsD13_60955462 was located
in the 3’ UTR of Ghir_D13G023010. Varieties carrying HapB
exhibited a higher average BW than those carrying HapA
(Figure 5C). The RNA-seq data showed that Ghir_D13G023010
had higher expression abundance level in the low-BW variety
“CRI12” than in the high-BW variety “TM-1” compared
with the other two genes during ovule development from
10 to 40 DPA (Figure 5D). The qRT-PCR analysis also
showed that Ghir_D13G023010 had higher expression levels in
low-BW variety “CRI16” than in the high-BW variety “TM-
1” during ovule development (Supplementary Figure S6).
Thus, we inferred that Ghir_D13G023010 is a
novel gene that influences BW in cotton by
negative regulation.

DISCUSSION

Accurate Identification of SNPs and InDels
GWAS has become a commonly used method to identify elite
allelic variation and candidate genes for important agronomic
traits in cotton breeding and improvement (Fang et al., 2017;
Wang et al., 2017; Ma et al., 2018). However, accurate genome
sequence information enables the exploration and utilization
of key genes that control important agronomic traits. It has
been over 10 years since the first cotton genome sequence
was published (Paterson et al., 2012; Wang et al., 2012). Since
then, the number of cotton genomes sequenced has increased
continually via multiple research studies due to the improvement
in sequencing technologies in terms of cost, accuracy, and speed.
The high rate at which genome sequences are becoming available
is due to the development of next-generation sequencing (NGS),
third-generation sequencing (TGS), and chromosome-scale
scaffolding tools (Bio-Nano and Hi-C), with contig N50 values
ranging from 0.11Mb to 13.15Mb in multiple upland cotton
accessions (“TM-1,” “NDM8,” and “CRI24”) (Yu et al., 2014). A
previous study demonstrated that the development of different
reference-quality genomes could facilitate the investigation of
novel variation and found new genes that were not discovered
in previous SNP/InDel-based association analyses for important
agronomic traits. For example, in maize, Tao et al. (2019)
uncovered a novel causal mutation with an 8.9-kb insertion
of a grain-size QTL (qHKW1) in an RIL population with the
assistance of the newly assembled “SK” genome (Tao et al., 2019).
In this study, to obtain accurate genetic markers, we employed
a reference genome with a contig N50 greater than 100 kb
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FIGURE 3 | GWAS results of SNP and InDel markers and candidate gene analysis. (A,B) Manhattan plots of BW-BLUP for SNPs and InDels, respectively; significant

BW-associated markers are distinguished by purple lines. (C) Heatmap of candidate gene expression patterns in 18 cotton tissues. (D) GO analysis of candidate

genes associated with boll weight. The chart of purple, pink, and blue represented biological process, molecular function, and cellular component, respectively.
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TABLE 2 | List of significant markers (SNPs and InDels) associated with boll weight.

Marker Marker type Chromosome Position Major allele Minor allele P value R2 Environment

rsGhir_A06_26390257 SNP A06 26,390,257 T G 6.84E-06 6.67 E2

rsGhir_A06_26390265 SNP A06 26,390,265 G A 2.07E-05 5.92 E2

rsGhir_A06_26390284 SNP A06 26,390,284 G A 2.43E-05 6.04 E2

rsGhir_A06_26390468 SNP A06 26,390,468 A C 2.97E-05 5.58 E2

rsGhir_A06_26390491 SNP A06 26,390,491 A G 2.23E-05 6.09 E2

rsGhir_A06_32168831 Indel A06 32,168,831 G GT 2.14E-05 6.81 E8

rsGhir_A07_4798628 SNP A07 4,798,628 G A 4.91E-06 8.36 E7, BLUP

rsGhir_A07_6937342 SNP A07 6,937,342 C T 3.66E-06 8.57 BLUP

rsGhir_A07_6937395 SNP A07 6,937,395 C T 3.66E-06 8.38 BLUP

rsGhir_A07_9574709 SNP A07 9,574,709 C G 2.94E-05 7.69 E4, E5

rsGhir_A08_30171616 SNP A08 30,171,616 A G 9.20E-06 9.38 E6, E9, BLUP

rsGhir_D01_1229290 SNP D01 1,229,290 A G 8.35E-07 9.25 E8

rsGhir_D01_1229442 SNP D01 1,229,442 T C 1.94E-06 9.01 E8

rsGhir_D07_19492198 SNP D07 19,492,198 G A 2.95E-05 6.71 E1

rsGhir_D13_59526001 SNP D13 59,526,001 G C 2.41E-05 6.19 E4, E5

rsGhir_D13_60955253 Indel D13 60,955,253 A AT 7.40E-07 10.95 E1, E2, E3, E4, E5, E6, BLUP

rsGhir_D13_60955261 SNP D13 60,955,261 G T 7.51E-07 10.88 E1, E2, E3, E4, E5, E6, BLUP

rsGhir_D13_60955462 SNP D13 60,955,462 A G 8.73E-07 10.32 E1, E2, E3, E4, E5, E6, BLUP

rsGhir_D13_62059670 Indel D13 62,059,670 GC G 4.99E-06 6.06 E3

for SNP and InDel calling. Although there was no significant
difference in mapping rate, the genome version of HAU_v1
had more high-quality SNP and InDel markers. This genome
provided a genetic basis for us to find a novel BW-associated
locus. It is worth noting that 73.68% of associated BW loci
could be detected via the comparison of multiple genomes.
Five loci (rsGhir_A06_26390257, rsGhir_A06_26390265,
rsGhir_A06_26390284, rsGhir_A06_26390468, and
rsGhir_A06_26390491) on chromosome A06 are unique to
HUA and are likely due to the diversity within the species and
the quality of the reference genome. Therefore, the development
of multiple reference genomes would enable the integration of
these resources into high-quality pangenomes and will provide a
better understanding of genetic diversity and a comprehensive
guiding principle for the further exploration and utilization of
this diversity for cotton improvement.

Comparison of GWAS Results With
Previously Reported Results
BW is an important determinant of yield and profitability in
cotton and is controlled by multiple genes. Indeed, cotton
breeding has constantly focused on the improvement of BW.
Thus far, most QTLs for BW have been identified based on
linkage analysis in the CottonQTLdb by using traditional
molecular markers (Said et al., 2015). In addition, due to
the limitation of traditional markers with lower levels of
polymorphism and distribution density, it is difficult to attain
sufficient resolution for fine map-based cloning and direct
identification of candidate genes. GWAS has become a popular
and powerful method to detect variants associated with major
agricultural traits (Su et al., 2016, 2018; Fang et al., 2017; Wan
et al., 2017; Ma et al., 2018; Zhang et al., 2019a). However,

few studies have dissected the genetic basis of BW in cotton
via GWAS in combination with high-throughput SNPs and
diverse accessions across multiple environments in recent
years, and even fewer candidate genes have been reported.
In this study, 290 upland cotton accessions that were widely
collected worldwide were used to conduct GWASs using
high-throughput SNPs and diverse environments over multiple
years. In total, 19 significant loci were identified among six
different cotton chromosomes (Table 2), including 16 SNPs and
three InDels. The identification of cotton varieties with stable
yield and wide adaptation across a range of environments is
one of the important objectives of modern cotton breeding
programs in China. Although BW has relatively high heritability
(69.65%), still lower than other agronomic traits in cotton,
including oil content (96.6%) (Zhao et al., 2019), fiber length
(81%) (Zhang et al., 2019a), flowering time (79%) (Li et al.,
2021), and resulting, only a few stable QTLs were identified
in 19 significant loci. This indicates that the remaining QTLs
are affected by environment or genotype-by-environment.
Meanwhile, phenotypic variation analysis found the BW of
cotton grown in Huanggang is lower than that in Shihezi and
Anyang. It is mainly caused by the high temperature in summer
and the excessive rainfall in the later stage of cotton growth at
the Yangtze River basin, leading to the correlation coefficient
of E7 and E8 with other environments (E1–E6, E9) being
low. Furthermore, although the SNPs obtained by SLAF-seq
technology can well cover the whole genome of cotton, it must
be admitted that there are indeed fewer stable QTLs than those
obtained based on resequencing of GWAS. Therefore, we could
employ resequencing for GWAS analysis in further to obtain
more reliable QTLs for BW. To screen QTLs with high precision,
high stability, and small confidence intervals for MAS and
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FIGURE 4 | Variation analysis of the boll weight-related gene Ghir_A08G009110 on candidate region. (A) Local Manhattan plots for BW-related genes on

chromosome A08 and LD heatmap for the candidate region within the peak region of rsA08_30171616, including the exon–intron structure of Ghir_A08G009110.

(B) Box plots for BW between the two haplotypes mentioned above (** P < 0.01, * P < 0.05). (C) Differentiation of the genetic diversity distribution of the favorable

haplotype for rsA08_30171616 in five geographic areas. (D) Expression level analysis of Ghir_A08G009110 between “TM-1” (red) and “CRI16” (green) during ovule

developmental stages (15, 20, and 25 DPA) by qRT-PCR (** P < 0.01, * P < 0.05). (E) Expression abundance analysis of Ghir_A08G009110 between “TM-1” (red)

and “CRI12” (green) during ovule developmental stages (10, 20, 30, and 40 DPA) by RNA-seq (** P < 0.01, * P < 0.05).

gene cloning, we further compared our results with published
studies based on SNP and SSR markers (Said et al., 2015).
Eleven reliable and significant markers located on chromosomes
A07, D01, D07, and D13 were reported in previous studies.
Three SNPs (rsGhir_A07_6937342, rsGhir_A07_6937395, and
rsGhir_A07_9574709) on chromosome A07 overlapped with
the region i49554Gh, which was named qGhLP-c7 by Huang
et al. (2017). rsGhir_D01_1229290, rsGhir_D01_1229442,
rsGhir_D07_19492198, and rsGhir_D13_59526001 on
chromosomes D01, D07, and D13 were mapped to regions
adjacent to TM47842_TM47844, TM64105, and TM82005,
respectively, as reported by Zhu et al. (2021). Most importantly,
we also discovered a major QTL that was detected in multiple
environments and with multiple BW-BLUP values and that could
explain more than 10% of the observed PV. Furthermore, this
region also overlapped with TM82122, as described by Liu et al.
(2018), and narrowed the candidate region to 60.82–60.95Mb
on chromosome D13 containing three candidate genes. To date,
few QTLs for BW on chromosome A08 have been identified in
previous studies. Interestingly, a tightly linked region flanked
by rsGhir_A08_30171616 on chromosome A08 was detected
in two environments and with BW-BLUP values. This region

contained only one gene (Ghir_A08G009110), which was not
reported to control the boll weight of cotton in previous studies.
Thus, these stable QTLs that are responsible for BW may have
a significant effect on further yield improvement in cotton with
appropriate BW.

Candidate Genes Related to BW
It is known that BW is a complex quantitative trait controlled
by many genes. Here, based on the association analysis,
candidate gene expression analysis, and genetic diversity analysis
of BW in 290 diverse cultivated upland cotton accessions,
Ghir_A08G009110 and Ghir_D13G023010 on chromosomes A08
and D13, respectively, were identified as candidate genes for
QTLs controlling BW in a natural population. Interestingly,
Ghir_A08G009110, a unique candidate gene within the strong
LD region 200 kb upstream and downstream of rsA08_30171616,
encodes a protein containing ankyrin and DHHC-CRD domains
in A. thaliana and is involved in root hair cell growth (Wan
et al., 2017). We also discovered that the candidate gene
Ghir_A08G009110 in this region was highly expressed during
the early stage of ovule development in the high-BW variety
(Figures 4D,E). In addition, Ghir_A08G009110 showed excellent
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FIGURE 5 | Variation analysis of the boll weight-related gene Ghir_D13G023010 on candidate region. (A) Local Manhattan plots for BW-related genes on

chromosome D13 and LD heatmap for the candidate region within the peak region of rsD13_60955253, rsD13_60955261, and rsD13_60955462. (B) Genetic

diversity across the three populations and exon–intron structure of Ghir_D13G023010. (C) Box plots for BW of the two haplotypes mentioned above (** P < 0.01, * P

< 0.05). (D) Expression abundance analysis of Ghir_D13G023010 between “TM-1” (green) and “CRI12” (red) during ovule developmental stages (0, 10, 20, 30, and

40 DPA) by RNA-seq.

potential for improving cotton yield and was not associated with
other important agronomic traits in a previous QTL analysis
(Said et al., 2015). Therefore, it is reasonable to postulate that
Ghir_A08G009110 is a new candidate gene for influencing BW
in cotton. However, cotton accessions with rsA08_30171616-A
had a much higher allele frequency than those with the potential
superior alleles for Ghir_A08G009110 in NESR and Amerasian,
including accessions with a higher genomic proportion of some
early core accessions. YRR and NIR, which contained mostly
modern accessions, had a lower proportion of superior alleles for
Ghir_A08G009110 (rsA08_30171616-G). Thus, it is possible that
the locus rsA08_30171616-A associated with excellent BW was
screened out during the breeding process, so it is necessary to use
rsA08_30171616-A as a tagging SNP in MAS of cotton lines to
further improve yield.

Seed weight is also selected for during crop domestication,
and understanding the genetic and molecular mechanisms
controlling seed size has become an important research topic in
plant science (Lin et al., 2014). Cotton is the largest economically
important crop in the world, and breeders have expended a
great deal of effort in improving the yield of cotton during
long-term selection. Recently,Ghir_D03G011310 was considered
a candidate gene underlying the natural variation in cotton
that controls early maturity in a natural population during

long-term artificial selection, as stated in our previous report
(Li et al., 2021). Furthermore, Wang et al. (2017) found many
genes involved in the domestication of white fiber. However,
the genes underlying the natural variation in cotton BW are
still largely unknown. Here, we compared the genetic diversity
of the region from 60.91 to 60.97Mb on chromosome D13
containing Ghir_D13G023010 in different breeding periods, and
it was found that cultivars bred after the 2000s had lower genetic
diversity than cultivars released before the 1980s and cultivars
released in the 1980s−2000s. This result implied that with the
continuous increase in cotton yield during the breeding process,
this region is associated with artificial selection and with the
increase in the BW of cotton. In addition, Ghir_D13G023010
was the only RHIP1 homolog in the cotton genome and was the
best match with Ghir_D13G023010 in the Arabidopsis genome.
RHIP1 is an uncharacterized conserved protein that participates
in sugar signaling and plays significant role in negatively
regulating seeding development (Huang et al., 2015). In
particular, Ghir_D13G023010 has highly expression abundance
in the low-BW variety than in the high-BW variety (Figure 5D
and Supplementary Figure S6). From the above results, we
inferred that Ghir_A08G009110 and Ghir_D13G023010 were
major candidate genes that may play an important role in
influencing cotton boll weight.
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Genome-wide association
studies provide genetic insights
into natural variation of
seed-size-related traits in
mungbean
Jinyang Liu, Yun Lin, Jingbin Chen, Qiang Yan,
Chenchen Xue, Ranran Wu, Xin Chen* and Xingxing Yuan*

Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory
for Horticultural Crop Genetic Improvement, Nanjing, China

Although mungbean (Vigna radiata (L.) R. Wilczek) is an important legume

crop, its seed yield is relatively low. To address this issue, here 196

accessions with 3,607,508 SNP markers were used to identify quantitative

trait nucleotides (QTNs), QTN-by-environment interactions (QEIs), and their

candidate genes for seed length (SL), seed width, and 100-seed weight (HSW)

in two environments. As a result, 98 QTNs and 20 QEIs were identified

using 3VmrMLM, while 95, >10,000, and 15 QTNs were identified using

EMMAX, GEMMA, and CMLM, respectively. Among 809 genes around these

QTNs, 12 were homologous to known seed-development genes in rice and

Arabidopsis thaliana, in which 10, 2, 1, and 0 genes were found, respectively,

by the above four methods to be associated with the three traits, such

as VrEmp24/25 for SL and VrKIX8 for HSW. Eight of the 12 genes were

significantly differentially expressed between two large-seed and two small-

seed accessions, and VrKIX8, VrPAT14, VrEmp24/25, VrIAR1, VrBEE3, VrSUC4,

and Vrflo2 were further verified by RT-qPCR. Among 65 genes around

these QEIs, VrFATB, VrGSO1, VrLACS2, and VrPAT14 were homologous to

known seed-development genes in A. thaliana, although new experiments

are necessary to explore these novel GEI-trait associations. In addition, 54

genes were identified in comparative genomics analysis to be associated

with seed development pathway, in which VrKIX8, VrABA2, VrABI5, VrSHB1,

and VrIKU2 were also identified in genome-wide association studies. This

result provided a reliable approach for identifying seed-size-related genes in

mungbean and a solid foundation for further molecular biology research on

seed-size-related genes.

KEYWORDS

multiple genome-wide association studies, QTN-by-environment interactions,
VrEmp24/25, multi-omics analysis, RT-qPCR
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Background

Mungbean (Vigna radiata (L.) R. Wilczek) is a basic source
of protein and carbohydrate, as it contains approximately
20% protein and 75% carbohydrate, and is a traditional and
important legume in Asia (Somta et al., 2007). Due to its
short life cycle (60–75 days), relative drought tolerance, and
the ability to restore atmospheric nitrogen in association with
Rhizobium/Bradyrhizobium bacteria, mungbean plays a crucial
role in cropping systems and soil improvement (Somta et al.,
2007; Alam et al., 2014).

The crop is generally grown as a cash crop in cereal-
based farming systems. However, the major constraint in
mungbean production is low seed yield. The average seed
yield of mungbean is only approximately 700 kg per ha (Islam
et al., 2015). Therefore, improving seed yield is the main
goal in mungbean breeding. Understanding the genetic basis
underlying seed-size-related traits is critical for the genetic
improvement of mungbeans. In mungbeans, the ideotype of
high-yielding cultivars are generally characterized by a large
seed size, a short and synchronous maturity, a low sensitivity
or insensitivity to day length, and the resistances to insects and
disease (Fernandez et al., 1988). However, the knowledge on
genes related to seed size has been limited. Moreover, the genes
involved in the pathway of seed developments are not yet fully
known.

Seed weight is the most important yield component and
directly proportional to seed yield per plant in mungbean.
To date, there have been seven studies of QTLs for seed
weight in mungbean. Most of these studies are based on
bi-parental segregation populations derived from interspecific
crosses between cultivated and wild (V. radiata var. sublobata)
mungbeans, and only two studies have evaluated seed size in
more than one environments. The number of QTLs identified
in those studies ranged from 3 to 11. Humphry et al. (2010)
reported 11 loci for seed weight using SSR-marks, and Mei et al.
(2009) identified a major QTL associated with both bruchid
resistance and seed mass. Nonetheless, no candidate gene was
identified for this trait.

Although many genes for seed weight have been reported in
Arabidopsis (Plackett et al., 2012; Ge et al., 2016; Lu et al., 2016;
Cheng et al., 2018; Zhang et al., 2020), soybeans, and rice (Luo
et al., 2013; Ge et al., 2016; Liu et al., 2020a; Hao et al., 2021;
Nguyen et al., 2021), few genes were reported in mungbean.

Abbreviations: GWAS, genome-wide association study; HSW, 100-seed
weight; FPKM, Fragments Reads Per Kilobases per Million reads; PPI,
protein–protein interaction; RNA-seq, RNA sequencing; QEIs, QTN-
by-environment interactions; GEMMA, genome-wide efficient mixed-
model association; CMLMs, compressed mixed linear models; EMMAX,
efficient mixed-model association expedited; KIX8, KINASE-INDUCIBLE
DOMAIN INTERACTING8; Emp24/25, emp24/gp25L/p24 family; QTNs,
quantitative trait nucleotides; SNP, single nucleotide polymorphism; SW,
seed width; SL, seed length.

In Arabidopsis, FATB (Bonaventure et al., 2003) was involved
in the synthesis of short-chain fatty acids and influenced seed
development. Although GA20OX regulated Arabidopsis in late
floral development (Plackett et al., 2012), the overexpression
of GmGA20OX in Arabidopsis enhanced seed size and weight.
KIX8 controlled seed size in Arabidopsis and soybeans (Liu et al.,
2020a; Nguyen et al., 2021). BES1 suppressed the cell elongation
and increased seed size in legume species (Ge et al., 2016). ERG2
promoted early seed development and influenced the length of
mature siliques (Cheng et al., 2018). In soybeans, GA20OX (Lu
et al., 2016), GmFAD3 (Singh et al., 2011), GmLEC2 (Manan
et al., 2017), GmPDAT (Liu et al., 2020c), GmKIX8-1 (Nguyen
et al., 2021), and GmGA3ox1 (Hu et al., 2022) were found
to influence seed size by regulating lipid accumulation or
increasing cell proliferation. In rice, D1 (Sun et al., 2018), D2
(Fang et al., 2016), flo2 (She et al., 2010), GS3 (Sun et al., 2018),
OsBZR1 (Liu et al., 2021), GW2 (Hao et al., 2021), D11 (Wu et al.,
2016), and OsHT (Guo et al., 2020) were found to control seed
weight by regulating rice grain size or starch quality.

Knowledge regarding seed development pathway is
also a valuable source for transgenic strategies to improve
crop production. As reported, there are several signaling
pathways that control seed size, including the G-protein
signaling, ubiquitin proteasome pathways, mitogen-activated
protein kinase (MAPK) signaling, auxin pathways, and some
transcriptional regulators (Li et al., 2019). In Arabidopsis,
GPA1, AGB, and AGG3 were involved in G-protein-signaling
pathways. DA1, DA2, SOD2, UBP15, EOD1, and SAMBA
were involved in ubiquitin proteasome pathways. In addition,
ABA2, ABI5, SHB1, MINI3, IKU2, and CKX were involved in
the HAIKU (IKU) pathway. Additional genes were found to
be related to seed size developments, but their pathways are
uncertain, such as KIX8, BES1, MES1, and KLU (Orozco-Arroyo
et al., 2015; Li et al., 2019). However, some reports have been
focused on genetic foundation and molecular mechanism of
seed developments in mungbean.

Genome-wide association studies (GWASs), along with
multi-omics analysis, have been frequently used to mine
candidate genes for most important agronomic traits in crops.
Integrating GWAS with comparative genomics, transcriptome
analysis, and molecular experiments, genes have been identified
to be associated with complex traits (Liu et al., 2020c).
For example, Gong et al. (2022) conducted a GWAS
with high-quality single nucleotide polymorphism (SNP)
data and seed-size traits, and found that Cla97C05G104360
and Cla97C05G104380, which are involved in abscisic acid
metabolism, played important role in regulating the seed
size in watermelon. Duan et al. (2022) identified GmST05
to be associated with soybean seed size through the GWAS
of 1800 soybean germplasm resources, and GmST05 differed
significantly at the transcriptional level. Liu et al., 2022a,c used
GWASs and biological experiments to identify a pleiotropic
gene GmPDAT for seed size- and oil-related traits in
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soybean, and a salt-stress-tolerance gene VrFRO8 in mungbean.
Nonetheless, the related genes responsible for seed-size-related
traits remained unknown in mungbean.

To address the above issues, 196 mungbean accessions with
3,607,508 SNP markers were used to conduct GWAS for seed
length (SL), seed width (SW), 100-seed weight (HSW) using
3VmrMLM (Li et al., 2022b), efficient mixed-model association
expedited (EMMAX) (Kang et al., 2010), genome-wide efficient
mixed-model association (GEMMA) (Zhou and Stephens,
2012), and compressed mixed linear model (CMLM) (Zhang
et al., 2010) methods. Candidate genes around quantitative trait
nucleotides (QTNs) and QTN-by-environment interactions
(QEIs) for the three traits were predicted by transcriptomics and
comparative genomics. Key candidate genes were verified by RT-
PCR analysis. Moreover, genes in seed-development-regulation
pathway were also mined by comparative genomics. It should be
noted that VrEmp24/25 and VrKIX8 were found to be associated
with SL and HSW, and a major gene VrPAT14 (LOD = 61.95,
r2 = 5.80%) was identified in QEI detection via 3VmrMLM.

Materials and methods

Plant materials and treatments

A diverse set of 196 mungbean accessions including 20 wild
and 176 cultivated accessions from 23 countries, were used
in this study (Supplementary Data Set 1). All the accessions
were planted in a randomized complete block design with
two replicates in an experimental field of Kasetsart University,
Kamphaeng Saen Campus, Nakhon Pathom, Thailand in 2018
and 2020. In each replicate, each accession was planted in a
single row 2.5 m long with 12.5 cm intra-row spacing (ca. 20
plants/row) and 50 cm inter-row spacing. Cultural practices
were performed according to Park (1978). SW (mm), SL (mm),
and HSW (g) were measured. At maturity. The SL and SW traits
for each accession were averaged based on 20 seeds and 100SW
for each accession was averaged based on three replicates.

Whole-genome resequencing

The young leaves of the above 196 mungbean accessions
were collected 1 week after planting. The DNA was extracted
in 2018, using the CTAB method (Smith et al., 2005). Short
reads sequenced by an Illumina HiSeq 4000 platform (Illumina,
San Diego, CA, United States), and mapped to scaffolds using
Burrows-Wheeler-Alignment Tool (BWA) (Version 0.7.15)1 (Li
and Durbin, 2009). Genome Analysis Toolkit (GATK) was used
to select SNP and indel2 (McKenna et al., 2010). Sulv 1 genome

1 http://bio-bwa.sourceforge.net/bwa.shtml

2 https://gitee.com/mirrors/GATK

was selected as the reference genome in the GATK analysis
(Yan et al., 2020). High-quality SNPs and Indel variations were
obtained as the following steps. (a) Retaining concordant sites
both identified by GATK and VCFtools were retained (Danecek
et al., 2011). (b) Filtering out SNP with quality value below
30, removing SNPs with an average coverage depth < 8× and
with minor allele frequency (MAF) less than 5%. (c) Deleting
insertions and deletions (InDels) with length less than10 bp were
deleted. A total of 3,607,508 SNPs were identified.

As described in Liu et al. (2022a), the number of
subpopulations was five (K = 5), and the population structure (Q
matrix) was calculated using ADMIXTURE software (version
is 1.3.0).3 The K matrix was calculated using the above
CMLM (GAPIT version 3),4 EMMAX (GAPIT),5 GEMMA
(Version 0.94.1)6, and 3VmrMLM programs (IIIVmrMLM)7

(Supplementary Data Set 2; Li et al., 2022a).

Genome-wide association study for
seed width, seed length, and 100-seed
weight

Only the SNPs with MAF ≥ 0.05 and missing rate < 10%
were used in GWAS (Pongpanich et al., 2010). The lines with
more than 95% missing for trait were filtered out (Liaw and
Wiener, 2002). SW, SL, and HSW, and the above SNP markers
in 196 mungbean accessions were used to conduct GWAS using
four different methods, including 3VmrMLM (Li et al., 2022b)
via software IIIVmrMLM (Li et al., 2022a), EMMAX (Kang
et al., 2010), GEMMA (Zhou and Stephens, 2012), and CMLM
(Zhang et al., 2010). The probability threshold for significant
QTNs was set at 1/m = 2.77e-07 (m = 3,607,508) for all the four
methods (Xu et al., 2018; Zhang Y. M. et al., 2019; Zhang Y. M.
et al., 2019), and the LOD score threshold for suggested QTNs
was set at LOD≥ 3.0 for 3VmrMLM (Li et al., 2022b). Heatmaps
of the linkage disequilibrium was generated by LDheatmap
package (Shin et al., 2006), haplotype analysis was conducted by
LDheatmap package (Barrett et al., 2005). The averages for those
traits measured in 2018 and 2020 were used in GWAS.

Candidate gene identification

Candidate genes for salt tolerance were mined in the
follow steps. (a) All the genes between the 30 Kb around
regions for each of the significantly QTN were mined,
where the LD-value was about 20 Kb in mungbean, (b)

3 http://dalexander.github.io/admixture/download.html

4 http://zzlab.net/GAPIT

5 http://csg.sph.umich.edu//kang/emmax/download/index.html

6 https://github.com/genetics-statistics/GEMMA

7 https://github.com/YuanmingZhang65/IIIVmrMLM
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mined the Arabidopsis, rice and soybean homologous genes
of those candidate genes, which were reported related to
seed developments, seed production, phytohormone signaling
pathways and carbohydrate metabolism pathways, etc. (Li
et al., 2019), as the candidate genes. (c) The selected genes
showing different expression between two groups of mungbean
accessions contrasting in seed size (large seed vs. small seed) (see
below) were considered as candidate genes.

Differentially expressed gene based on
RNA-sequenced data

Two large-seeded accessions [G141 and G143; 19.32 ± 7.09
(g)] and two small-seeded accessions [G169 and G171;
11.58 ± 5.93 (g)] were selected for RNA sequencing (RNA-
seq) analysis. Data in seed set were collected at three seed
development stages (10, 15, and 25 DAF) for RNA extraction
in 2021. Total RNA was extracted using RNAprep Pure Plant
Kit (DP441) according to the manufacturer’s instructions.
1 µg high-quality RNA samples (OD260/280 = 1.8∼2.2;
OD260/230 ≥ 2.0; RIN ≥ 6.5; 28S:18S ≥ 1.0 and >10 µg) were
used to construct the sequencing library (G9691B, Agilent). The
RNA were analyzed in an Illumina Novaseq Sequencer. Raw
reads were cleaned by trimmomatic8 (Bolger et al., 2014), and
clean reads were mapped to reference sequences using Hisat2
(Pertea et al., 2016). The gene expression level was calculated
by using RPKM method by Subread package (Mortazavi et al.,
2008).

In the key candidate gene identification, the extracted
RNA in two large-seeded accessions at 10 and 25 DAF were
treated with RNase-free DNase I (Promega, Madison, WI,
United States). After reverse transcription, the cDNA was used
as a template for RT-qPCR using the Takara Bio TB Green
Premix Ex Taq (Tli RNase H Plus). The detail progress was
described by Liu et al. (2022b). Reactions were run on a Bio-
Rad CFX96 system. EVM0007380 (homologous of At3g18780)
was used as the CK in this experiment. Primers were designed
by NCBI and tested by RCR of tubulin. The t-test was adopted
in the hypothesis testing, P < 0.05, P < 0.01, and P < 0.001
indicated significant probability levels at 0.05, 0.01, and 0.001,
respectively. Information of the primers used is presented in
Supplementary Table 1.

Protein–protein interaction

The protein–protein interactions (PPIs) were detected used
the online tools STRING9 (Jensen et al., 2009). The mungbean

8 http://www.usadellab.org/cms/index.php?page=trimmomatic

9 https://string-db.org//

(V. radiata (L.) R. Wilczek) protein database was used as the
protein library.

Results

Phenotypic variation for mungbean
seed-size-related traits

100-seed weight, SW, and SL in 196 mungbean accessions
were measured in 2018 and 2020. The average-plus-standard
deviations for the three traits across the 2 years were
5.05 ± 1.91 (g), 3.48 ± 0.51 (mm), and 4.64 ± 0.99 (mm),
respectively, and their average coefficients of variation (CV)
across the 2 years were 38.5, 14.5, and 16.5 (%), respectively
(Supplementary Table 2). Although the trends for those traits
in the 2 years were similar (Figures 1A–C), HSW (38.5%) had
much larger phenotypic variation than SW (14.5%) and SL
(16.5%), indicating their large phenotypic variation and typical
quantitative traits. In general, the wild mungbeans showed low
seed weight (1.68± 0.61) as well as short SW (2.45± 0.401) and
SL (3.12 ± 0.43), while the cultivated mungbeans had high seed
weights (5.29 ± 1.68) as well as long SW (3.56 ± 0.41) and SL
(4.76 ± 0.92) (Supplementary Table 2). Moreover, significant
difference for each trait between the 2 years was observed
(P < 0.001), and these traits had significant correlations with
each other (r > 0.87, P < 0.001) (Figure 1D), indicating the
existence of common QTNs among these traits (Liu et al.,
2020b).

Genome-wide association studies for
seed-size-related traits in mungbean

Detection of main-effect quantitative trait
nucleotides for seed-size-related traits in each
environment

After removing the SNPs with an average coverage
depth < 8× and with a MAF less than 5%, we identified more
than 3.6 million SNP markers. In the single-environment
analysis, the phenotypic observations for each trait in 196
accessions measured in 2018 and 2020 were used to associate
with 3,607,508 SNPs using 3VmrMLM, EMMAX, GEMMA,
and CMLM under the situations of five subpopulations
and polygenic background control (kinship matrix)
(Supplementary Data Set 3). As more than 10,000 QTNs
were identified by GEMMA for HSW in 2018, the relevant
results were not used in the subsequent analysis. As a result,
208 significant QTNs were identified for the above traits.
Thirteen significant QTNs were simultaneously identified in
two environments by two GWAS methods (Supplementary
Table 3; Supplementary Data Set 4), some significant QTNs are
presented in Figure 2. For example, Chr10-25206533-25223155
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FIGURE 1

The frequency distributions of seed-size-related traits. Frequency distributions of HSW (A) (g), SL (B) (mm), and SW (C) (mm) in 196 mungbean
accessions, which were measured in 2018 (brown bar) and 2020 (black bar). SD, standard deviation. The associations of HSW with SW and SL,
the average dates of those traits measured in 2018 and 2020 were used in the partial correlation analysis (D).

(LOD = 15.40∼37.89, P = 3.16E-08∼5.15E-09) was detected
in 2018 and 2020 by MLM, EMMAX, and 3VmrMLM to be
associated with HSW, SW, and SL (Table 1; Figures 2A–F),
and the Q-Q plot in the Supplementary Figures 1A–D, which
was corresponding to the GWAS results in Figure 2, except
3VmrMLM. And Chr1-71543546 (LOD = 7.70∼12.44) was
detected in 2018 and 2020 by 3VmrMLM to be associated with
SW (Supplementary Table 3). These QTNs were distributed on
chromosomes 1–4, and 10 (≥20 QTNs for each chromosome)
and had a 1.15% average proportion of their total phenotypic
variation explained by each QTN, and there were 47, 115, and
46 QTNs, respectively, for HSW, SL, and SW (Supplementary
Data Set 4).

Detection of quantitative trait nucleotides for
seed-size-related traits in multiple
environments

To detect more stable QTNs, three seed-size-related traits
of 196 mungbean accessions measured in 2018 and 2020
were used to associate with 3607508 SNP markers using two-
environment 3VmrMLM joint analysis. As a result, 32, 33,
and 18 significant QTNs were identified for HSW, SL, and
SW, respectively (Supplementary Table 3), and had a 1.08%

average proportion of total phenotypic variation explained by
each QTN. Moreover, eight significant QTNs were identified
(Supplementary Table 4). For example, Chr1-8161305-8347626
(LOD = 24.09∼36.33) and Chr10-25222572-25223133 loci
(LOD = 29.75∼37.89) were detected to be associated with HSW
and SL, respectively (Supplementary Tables 3, 4).

Based on all the above main-effect QTNs in single-
and multiple-environment analysis, five stable QTNs across
various methods and/or two environments were found
(Supplementary Table 5), including Chr1-8161305-8347626
(LOD = 24.09∼36.33), Chr2-12602704 (LOD = 17.71∼38.08),
Chr4-10069367 (LOD = 17.72∼34.19), Chr5-10834954
(LOD = 9.53∼30.03), and Chr10-Chr10-25222572-25223133
(LOD = 29.75∼37.89), especially, Chr1-8161305-8347626 and
Chr10-25222572-25223133 were simultaneously identified
across methods and two environments.

Detection of quantitative trait
nucleotide-by-environment interactions for
seed-size-related traits in multiple
environments

All the above datasets in GWAS were used to detect QEIs
using 3VmrMLM. As a result, 5, 10, and 5 significant QEIs were
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TABLE 1 Eight key candidate genes derived from genome-wide association studies for seed-related traits.

Trait Genome-wide association studies Comparative genomics Function Reference

Chromosome Position
(bp)

LOD score
or P1-value

r2 (%) Method Candidate genes P2-value log2FC Arabidopsis
homologs

Single_env: Detection of main-effect QTNs for seed size-related traits

2018-HSW 1 52015258 21.84 0.81 3VmrMLM EVM0016442/IAR1 0.05* 0.39 AT1G68100 IAA-alanine resistance protein 1 Rampey et al., 2013

4 36876485 35.25 1.3 3VmrMLM EVM0019602/flo2 0.02* 1.09 AT4G36920 Seed development She et al., 2010

11 3018112 25.95 2.62 3VmrMLM EVM0010067/ABA2 0.18 0.21 AT1G52340 Seed maturation Chauffour et al., 2019

2020-HSW 1 8177726 28.09 1.31 3VmrMLM EVM0032114/KIX8 0.03* 0.49 AT3G24150 Seed development Li et al., 2019

4 7755858 19.6 1.03 3VmrMLM EVM0015332/SUC4 0.02* 0.29 AT1G09960 Sucrose transport protein SUC4 Xu and Liesche, 2021

10 25206533 15.41 0.59 3VmrMLM EVM0015812/Emp24 0.02* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

2018-SW 1 71543546 12.44 1.65 3VmrMLM EVM0002784/BEE3 0.01* 1.24 AT1G73830 Seed development Moreno et al., 2018

2020-SW 1 30724948 29.81 1.74 3VmrMLM EVM0033315/SHB1 0.15 0.04 AT4G25350 Seed development Zhang H. et al., 2017

1 71543546 7.70 0.57 3VmrMLM EVM0002784/BEE3 0.01* 1.24 AT1G73830 Seed development Moreno et al., 2018

6 13463604 12.93 0.55 3VmrMLM EVM0028931/ZIP6 0.02* −0.85 AT2G30080 Seed development Lee et al., 2021

9 24007163 61.96 5.8 3VmrMLM EVM0027211/PAT14 0.03* 1.19 AT3G60800 Leaf senescence Zhao et al., 2016

2018-SL 3 34837582 3.24E-08 NA EMMAX EVM0028440/ABI5 0.19 0.25 AT2G36270 ABSCISIC ACID-INSENSITIVE 5
isoform X4

Lynch et al., 2022

6 1650897 1.92E-08 NA EMMAX EVM0030447/IKU2 0.43 0.78 AT3G19700 Embryo development Xiao et al., 2016

10 25223155 5.15E-09 0.992 CMLM EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

10 25222572 1.91E-06 0.515 CMLM EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

10 25223133 9.34E-09 2.264 CMLM EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

10 25223155 3.16E-08 3.411 CMLM EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

10 25223133 9.34E-09 NA EMMAX EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

Multi_env: Detection of main-effect QTNs for seed size-related traits

HSW 1 8161305 36.33 0.8 3VmrMLM EVM0032114/KIX8 0.03* 0.50 AT3G24150 Seed development Li et al., 2019

1 52015258 13.52 0.12 3VmrMLM EVM0016442/IAR1 0.06 0.39 AT1G68100 IAA-alanine resistance protein 1 Rampey et al., 2013

4 7755858 28.43 0.66 3VmrMLM EVM0015332/SUC4 0.02* 0.30 AT1G09960 Sucrose transport protein SUC4 Xu and Liesche, 2021

4 36876485 71.71 0.95 3VmrMLM EVM0019602/flo2 0.02* 1.09 AT4G36920 Seed development She et al., 2010

10 25222572 37.89 0.67 3VmrMLM EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

SL 1 8347626 24.09 0.35 3VmrMLM EVM0032114/KIX8 0.03* 0.50 AT3G24150 Seed development Li et al., 2019

4 19559337 16.8 0.32 3VmrMLM EVM0022984/flo2 NA NA Os04g0645100 Seed development She et al., 2010

10 25223133 29.75 0.64 3VmrMLM EVM0015812/Emp24 0.01* 0.67 AT1G26690 Emp24 family protein Ren et al., 2019

SW 6 13463604 27.54 1.62 3VmrMLM EVM0028931/ZIP6 0.02* −0.85 AT2G30080 Seed development Lee et al., 2021

The P1-values were calculated by CMLM, EMMA, and 3VmrMLM, The P2-values were calculated using paired t-test from the average FPKM values at three stages between two high seed weight (n1 = 2) and tow seed weight (n2 = 2) mungbeans, and their
significances were marked by * (0.05 level); FC and NA represent fold change and no expression, respectively.
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FIGURE 2

Manhattan plots for the GWAS for seed-yield-related traits. GWAS for HSW (A–C), SW (D) and SL (E,F). Significant QTN in phenotypic GWAS was
set at P-value ≤ 0.05/m = 1.39e-08 (m = 3607508), ≤2.77e-09 for CMLM and EMMAX (A,B,D,E); and LOD ≥ 3.0 for the 3VmrMLM as the
significant QTN, and all the critical values were marked by horizontal lines, Y-axis on the left side reports –log10 P-values of SNP, while Y-axis
on the right side reports LOD scores, and LOD scores are shown in points with straight lines.

found to be associated with HSW, SL, and SW, respectively
(Supplementary Figure 2; Table 2). Among these QEIs, 5 had
zero dominant-by-environment interaction effects, and 7 had
zero additive-by-environment interaction effects. For example,
the two loci Chr4-26262890 and Chr4-31677341 for HSW
had only additive-by-environment interaction effects of 0.12
(Supplementary Figures 2A–C, LOD = 12.70; r2 = 0.26) and
0.08 (Supplementary Figures 2A–C, LOD = 12.65; r2 = 0.27),
respectively.

The two loci Chr1-155976 and Chr1-3598291 for HSW
had only dominant-by-environment interaction effects of−0.61
(LOD = 12.73; r2 = 0.25) and 0.44 (LOD = 13.25; r2 = 0.27),
respectively. Among the 20 QEIs, the loci Chr4-5255551 and
Chr7-16074671 had inconsistent directions between additive-
and dominant-by-environment interaction effects.

In addition, among these QEIs, the QEI locus Chr9-
24007163 for SW had large effect, and r2 was 5.8%
(Supplementary Figure 2B, LOD = 61.95). The additive
and dominant effects in environment 1 were −0.14 and
−0.098, respectively.

Candidate genes for seed-size-related traits
A total of 6912 DEGs were identified between two high-

seed-weight and low-seed-weight mungbeans (FDR ≤ 0.05)
(Supplementary Figures 3A,B; Supplementary Data Set
6). These DEGs were intersected with 809 genes around
significant QTNs for HSW, SL, and SW (Supplementary
Tables 3, 4; Supplementary Data Sets 4, 5). As a result, 53
out of 809 genes were differentially expressed (P ≤ 0.05,
Log2FC ≥ 0.5). Using comparative genomics analysis, 12

out of 53 DEGs were homologous to previously reported
seed development related genes in rice and Arabidopsis
thaliana, in which KIX8, PAT14, Emp24/25, IAR1, BEE3,
SUC4, flo2, and Zip6 had been confirmed via functional
analysis in rice and A. thaliana (Table 1), such as VrKIX8
(LOD = 24.09∼36.33), VrEmp24/25 (LOD = 15.40∼37.89,
P = 3.16E-08∼5.15E-09), VrPAT14 (LOD = 61.96), and
VrZIP6 (LOD = 27.54). Among the eight genes, VrKIX8,
VrEmp24/25, VrIAR1, VrBEE3, VrSUC4, and Vrflo2 were
significantly upregulated in high-HSW accessions, VrPAT14 was
significantly downregulated, and VrZIP6 had no significant
difference (Figure 3A), as compared to those in low-HSW
accessions using the transcriptome data at 10, 15, and 25 DAF
(Supplementary Data Set 4). We conducted RT-qPCR analysis
to further confirm the eight key candidate genes. The results
showed that seven genes were confirmed, except VrZIP6, a
transcription factor related to seed development. All the seven
genes had higher expression levels in the early stage of seed
development (10 DAF) than in the late maturation stage of
seed development (25 DAF) (Figure 3B; Supplementary Data
Set 7), indicating their essential roles at early stage of seed
development.

Using the same approach described above, among 65
genes around 20 QEIs, four were homologous to previously
reported seed development related genes in rice and A. thaliana
(Table 2), although new experiments are necessary to explore
these novel GEI-trait associations. The four genes were
described as below. VrFATB was linked to the locus Chr4-
30176682 (Supplementary Figure 2A). As described in
Bonaventure et al. (2003) and Sun et al. (2014), FATB is
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TABLE 2 Twenty significant QTN-by-environment interactions for seed-size-related traits under multi-environments.

Trait 3VmrMLM Candidate genes P-value log2FC Arabidopsis
homologs

Function References

Chr Position (bp) LOD
(QE)

Add
×

Env1

Dom
×

Env1

r2 (%)

HSW 1 25048694 7.99 0.08 0.18 EVM0010707; EVM0020394 EVM0010707 0.11 0.05 NA NA

3 5498494 14.34 0.11 0.33 EVM0013436; EVM0027482;
EVM002290

EVM0013436 0.21 1.53 AT3G61060 F-box protein PP2-A13

4 30176682 15.23 0.12 0.38 EVM0013210 EVM0013210/
FATB

0.09 0.50 AT1G08510 FATB Bonaventure et al.,
2003; Sun et al., 2014

4 42563100 6.50 0.08 0.15 EVM0019039; EVM0011516 EVM0019039/
GSO1

0.09 0.91 AT4G20140 Seed development Creff et al., 2019

5 8962133 10.49 0.09 0.23 EVM0027740; EVM0007126 EVM0007126 0.05 −4.53 AT1G21450 Seed development

SL 1 155976 12.73 0.00 −0.61 0.25 EVM0006618; EVM0002787;
EVM0025368; EVM0002245;
EVM0007007

EVM0006618 0.00 0.43 AT3G59910 Ankyrin repeat protein
SKIP35 isoform X1

1 35982911 13.25 0.00 0.44 0.27 EVM0014255 EVM0014255 NA NA AT3G26570 Inorganic phosphate
transporter 2-1, chloroplastic

4 22723706 12.93 −0.01 −0.61 0.26 EVM0015688 EVM0015688 0.03 0.07 AT5G50920 Chaperone protein ClpC,
chloroplastic

4 26262890 12.70 0.00 −0.43 0.26 EVM0003123; EVM0001918 EVM0003123 NA NA NA Citrate-binding protein-like

4 31677341 12.65 0.00 −0.61 0.27 EVM0009176; EVM0033509;
EVM0023714; EVM0033630;
EVM0032994

EVM0033630 0.03 NA AT3G57520 Probable galactinol–sucrose
galactosyltransferase 2
isoform X2

4 40101763 13.31 −0.01 −0.61 0.29 EVM0000524; EVM0025504 EVM0000524 0.21 NA AT4G33140 Uncharacterized protein

7 16074671 12.90 0.01 −0.61 0.25 EVM0007632; EVM0003451;
EVM0005587; EVM0017922;
EVM0009325

EVM0007632 0.14 0.66 AT5G10330 Histidinol-phosphate
aminotransferase,
chloroplastic

7 28608053 12.99 −0.01 −0.61 0.27 EVM0025691; EVM0014665 EVM0025691 NA NA AT2G34930 Hypothetical protein

(Continued)
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TABLE 2 (Continued)

Trait 3VmrMLM Candidate genes P-value log2FC Arabidopsis
homologs

Function References

Chr Position (bp) LOD
(QE)

Add
×

Env1

Dom
×

Env1

r2 (%)

8 32848165 12.70 0.00 −0.61 0.26 EVM0033747; EVM0012210;
EVM0020228; EVM0006042;
EVM0026839; EVM0012261;
EVM0001209; EVM0016212;
EVM0027531; EVM0030105;
EVM0021224; EVM0011572

EVM0012210/
LACS2

0.03 −2.53 AT1G49430 Long chain acyl-CoA
synthetase 2 isoform X1

Schnurr et al., 2004;
Bai et al., 2022

11 24829262 12.65 0.00 −0.61 0.25 EVM0006035; EVM0003000;
EVM0020076; EVM0004982

EVM0020076 0.03 0.22 AT1G59870 ABC transporter G family
member 36

SW 2 29996834 9.66 0.02 0.26 0.62 EVM0004520; EVM0005114 EVM0004520 0.09 1.02 AT3G09300 Oxysterol-binding
Protein-related protein 3B

4 5255551 7.38 0.02 −0.12 0.48 EVM0010724; EVM0028229 EVM0010724 0.11 NA AT1G80550 Pentatricopeptide
repeat-containing protein

4 19640302 16.41 0.00 −0.39 1.17 NA NA NA NA NA

7 18410421 9.28 −0.03 −0.20 0.61 EVM0022194; EVM0018119;
EVM0020361; EVM0025547

EVM0022194 0.08 0.47 AT1G68690 Proline-rich receptor-like
protein kinase PERK9

9 24007163 61.96 −0.14 −0.10 5.80 EVM0027211; EVM0026090;
EVM0028888; EVM0024624;
EVM0026781; EVM0029904;
EVM0012085; EVM0004220

EVM0027211/
PAT14

0.03 1.19 AT3G60800 Leaf senescence Zhao et al., 2016

The P-values were calculated using paired t-test from the average RPKM values at three stages between two high seed weight (n1 = 2) and tow seed weight (n2 = 2) mungbeans, and their significances were marked by * (0.05 level); FC and NA represent
fold change and no expression, respectively.
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FIGURE 3

The expression of eight key candidate genes. The expression profiling of eight key candidate genes significantly associated with
seed-size-related traits. The expression profiling of eight key candidate genes between two high-seed-weight and two low-seed-weight
mungbeans (A). Real-time PCR analysis of the eight key candidate genes; the t-test was used to test the significant differences of genes
expression between two high-seed-weight mungbeans at 10 DAF and 25 DAF (B). DAF, days after flowering.

a major determinant of saturated fatty-acid synthesis, and
increases FATB activity at low temperature during seedling
establishment caused high saturated fatty-acid content in
plant. VrGSO1 was linked to the locus Chr4-42563100
(Supplementary Figure 2A). As observed in Creff et al.
(2019), GSO1 was a stress signal-pathway-related gene, and
stress-associated MPK6 protein acted downstream of GSO1
in developing embryo. VrPAT14 was linked to the locus
Chr9-24007163 (Supplementary Figure 2B). In Zhao et al.
(2016), PAT14 was involved with NPR1-dependent salicylic-
acid signaling. VrLACS2 was linked to the locus Chr8-32848165
(Supplementary Figure 2C), in which VrLACS2 was essential
for normal cuticle development in Arabidopsis (Schnurr et al.,
2004) and CrLACS2 suppression resulted in 50% less oil, yet with
a higher amount of chloroplast lipids under N-deprivation (Bai
et al., 2022).

Haplotype analysis of the main candidate genes
Two DEGs, VrEmp24/25 and VrKIX8, were detected in

the single- and multi-environment analyses (Figures 4A,B),
and verified by RT-qPCR. Their haplotypic analyses were
described as below.

In the haplotype analysis of VrEmp24/25, five SNP markers
were found to be within VrEmp24/25 and the promoter
region (Supplementary Data Set 8), and the two SNP markers
in VrEmp24/25 were used to consist of three haplotypes
(Figure 4D). Among the three haplotypes, hap 1 (5.17 g) had
significantly higher HSW than hap 2 (1.58 g) and hap 3 (4.50 g;

P = 2.11E-29) (Supplementary Table 7). Thus, hap 1 is elite
haplotype. And the elite haplotypes TT made up more than
90.9% (160/176) in the cultivated mungbeans. VrEmp24/25 with
elite haplotype frequencies less than 45% in wild mungbeans
(Supplementary Table 7; Figure 4) can be exploited for the
improvement of mungbean cultivars.

Around the significant QTN Chr1-8161305-8347626
(Figure 5A; Supplementary Data Set 8), eight genes were found
distributed in the region (Figure 5B). And six polymorphic
loci, i.e., Chr1_8243935, Chr1_8243938, Chr1_8243939,
Chr1_8243940, Chr1_8243945, and Chr1_8244001 were
found in VrKIX8 and the promoter region. All the six SNP
were used to conduct the haplotype analysis (Figure 5C).
Among the three haplotypes, hap 1 (5.09 g) had significantly
higher HSW than hap 2 (4.56 g), hap 3 (3.47 g), and
hap 4 (3.86 g) (Supplementary Table 7). Thus, hap 1 is
elite haplotype. The elite haplotypes ATCGAA made up
more than 73.2% (129/176) in the cultivated mungbeans,
while the haplotype frequencies of CGAGT and CTAGGA
were more than 25% (5/20) in wild mungbeans. Though
Chr1_8243945 and Chr1_8244001 were located within
the 5′ UTR of VrKIX8, and the amino acid sequence
had not changed between cultivated mungbeans and
wild mungbeans (Figure 5D). The SNP in 5′ UTRs
could influence the translation efficiency of VrKIX8
(Evfratov et al., 2017). The HSW in hap 1 (5.16 g) was
significantly higher than that in hap 2 to hap 4 (3.50–4.66 g;
P = 1.19E-21).
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FIGURE 4

Genetic analysis of VrEmp24/25. Local Manhattan plots for HSW under multi-environments. LOD ≥ 3.0 for the 3VmrMLM as the significant QTN
(A,B). The expression profiling of 10 candidate genes for HSW identified at 30 Kb around Chr10-25222572-25223133 loci in the seed between
two high-seed-weight and two low-seed-weight mungbeans (C). LD heatmaps surrounding Chr10-25222572-25223133 loci (D). Haplotype
analysis of VrEmp24/25 (E), the thirtieth amino acid of VrEmp24/25 changed from ATT (Ile, I) to TTT (Phe, F). DAF, days after flowering. Wil, the
wild accessions. Cul, the cultivated accessions.

Based on these results, we deduced that these two SNP and
six SNP cause the difference expression of the VrEmp24/25 and
VrKIX8 gene, respectively. The discovery of VrEmp24/25 and
VrKIX8 two domestication/improvement genes can accelerate
breeding selections and facilitate ideal crop designs.

Expression patterns of seed development
pathway genes in mungbean

As seed development pathway genes were largely unknown
in mungbean, we mined seed development pathway genes
by comparative genomics and transcriptomics analysis. As a
result, 54 genes in seed-development pathway were identified
in this study (Figure 6; Supplementary Data Set 9), such
as two GPA1, one AGB, and one AGG3. In the ubiquitin
proteasome pathways, two DA1, one DA2, one SOD2, one
EOD1, and one UBP15 rather than SAMBA were identified.
In the auxin pathways, two ABA2, one ABI5, three SHB1,
five IKU2, and three CKX2 rather than IKU1 and MINI3
were identified (Figure 6A). Five transcription factors including
three BES1, and two SOD7 were identified. Moreover, 16
genes for seed size developments were found to be with

uncertain pathways, including three KIX8, five MES1, and one
KLU (Figure 6A; Supplementary Data Set 9). Among the
54 genes, 13 genes were significantly differentially expressed
(P-value < 0.05, t-test) between two low-seed-weight (nos.
G169 and G171) and two high-seed-weight (no. G141 and
G143) accessions in the 196 mungbean accessions using
the transcriptome data at 10, 15, and 25 DAF (Figure 6B;
Supplementary Data Set 8). Moreover, almost 90% of the 54
genes (48/54) had higher expressions in the early stage of seed
development (10 and 15 DAF) than in the late maturation
stage (25 DAF), including VrKIX8 (EVM0032114), which was
commonly identified in the GWAS by 3VmrMLM for HSW
and SL. And EVM0010067/VrABA2, EVM0033315/VrSHB1,
EVM0028440/VrABI5, and EVM0030447/VrIKU2 were also
identified in the GWAS by 3VmrMLM, within 100 Kb region
of significant QTNs (Table 1).

We also did the PPI analysis among the seed development
pathway genes, and found five pairs of PPIs were larger
than the medium confidence value of 0.40 (Supplementary
Table 7), indicating the existence of significant PPIs, i.e.,
EVM0013794.1 (VrAGG3) and EVM0006667.1 (VrDA2)
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FIGURE 5

Genetic analysis of VrKIX8. Local Manhattan plots for HSW in multi-environments. LOD ≥ 3.0 for the 3VmrMLM as the significant QTN (A). LD
heatmaps surrounding Chr1-8161305-8347626 loci (B). Genes around the significant QTN region, shown at the bottom (C). Haplotype analysis
of VrKIX8 (D). Wil, the wild accessions. Cul, the cultivated accessions. symbol “**” means omit the same sequence part.

(0.478), EVM0033720.1 (VrAGB) and EV944.1 (VrGPA1-1)
(0.995), as well as EVM0033720.1 (VrAGB) and EVM0015092.1
(VrGPA1-2) (0.995).

Discussion

The high-yield and efficiency breeding progress of
mungbeans have been limited by the lack of ideal yield-
related genes. At present, few QTNs or QTLs of yield-related
traits in mungbeans have been reported (Kang et al., 2014).
This study provided a genetic analysis of seed-size-related traits
in mungbeans, to improve the accuracy of significant QTNs,
we used multiple genome-wide M0017 association studies
combined with multi-omics analysis to mine candidate genes
associated with yield-related traits. Firstly, a total of 98 QTNs
and 20 QEIs were identified using 3VmrMLM, while 95 and 15
QTNs were identified using EMMAX, and CMLM, respectively.
Then, in the identification of candidate genes, 12 key candidate
genes were mined, and seven of them including VrKIX8,
VrEmp24/25, and VrPAT14 were evidenced by transcriptome
analysis and RT-qPCR analysis. Lastly, through haplotype
analysis, the thirtieth amino acid of VrEmp24/25 in the elite
haplotype was changed from Ile to Phe. And there were six
SNP in the promoter and 5′ UTRs of VrKIX8, however, the

amino acid sequence of VrKIX8 in the elite haplotype was not
changed. The results provided the theoretical basis for both
the functional identification of seed-size-related genes and for
quality improvements in mungbean breeding.

Multiple genome-wide association
studies methods combined with
multi-omics analysis in mining
candidate genes

In the GWAS, how to identify candidate genes around
significant QTNs has been a challenge. Liu et al. (2020c),
Zhang et al. (2021), and Gong et al. (2022) selected the 100-
kb interval upstream and downstream of the significant QTN
as the candidate interval in watermelon and soybeans. Usually,
the interval has been chosen according to the LD decay values.

In order to determine stable QTNs and key candidate genes
for seed-size-related traits, we adopted the following analyses.
Firstly, we used CMLM, EMMAX, GEMMA, and 3VmrMLM
to identify stable QTNs, as a result, five stable QTNs for
seed-size-related traits were detected in single- and multiple-
environments (Supplementary Table 5), i.e., Chr1-8161305-
8347626 (LOD = 24.09∼36.33), and Chr10-25222572-25223133
loci (LOD = 29.75∼37.89).
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FIGURE 6

The seed development pathway in mungbean (A) and the expression profiling of 54 candidate genes predicted by comparative genomics,
identified in this study (B). GPA1, G PROTEIN ALPHA SUBUNIT 1; AGB, heterotrimeric G-protein beta subunit; AGG3, heterotrimeric G-protein
gamma-subunit; DA1/DA2, a ubiquitin-activated peptides; SOD2, chloroplastic copper/zinc superoxide dismutase CSD2; EOD1, E3 ubiquitin
ligase; UBP15, ubiquitin-specific protease; SAMBA, plant-specific negative regulator of the APC/C complex; MKK4, mitogen-activated map
kinase; ABA2, ABA DEFICIENT 2; ABI5, ABA INSENSITIVE 5; SHB1, a nuclear and cytosolic protein; IKU1/IKU2, leucine rich repeat (LRR) kinase;
CKX2, CYTOKININ OXIDASE 2; MINI3, MINISEED 3; ARF2, auxin response factor; AP2, AP2/EREBP (ethylene-responsive element-binding
protein) class of transcription factors (Figure 5A). We also identified five transcription factors, three BES1 and two SOD7, transcription repressor
involved in regulation of inflorescence architecture; KIX8, KINASE-INDUCIBLE DOMAIN INTERACTING8; MES1, METHYL ESTERASE 1; KLU,
cytochrome P450 CYP78A5 monooxygenase. DAF, days after flowering; ABA, abscisic acid; DAF, days after flowering.

Second, in the identification of candidate genes, we
conducted issue expression analysis, and comparative genomics
analysis. 53 out of the 809 candidate genes were significantly
differentially expressed between high and low HSW accessions
(P ≤ 0.05, Log2FC ≥ 0.5). Among the 53 DEGs, Arabidopsis
homologous genes of the 12 key candidate genes had certain
molecular functions. Notably, 10 of those genes were identified
by 3VmrMLM (Table 1). Seven key candidate genes (VrKIX8,
VrEmp24/25, VrIAR1, VrBEE3, VrSUC4, VrPAT14, and Vrflo2)
were significantly differentially expressed between the low-
seed-weight and high-seed-weight accessions, and further
verified by RT-qPCR analysis (Table 1; Figure 4). VrKIX8
(Chr1-8161305-8347626) and VrEmp24/25 (Chr10-25222572-
25223133) may be main genes in controlling seed-size-related
traits.

Notably, 3VmrMLM showed more powerful ability in the
detection of significant QTN than GEMMA, EMMAX, and
CMLM, as it found more differentially expressed key candidate

genes than other methods. The combination of 3VmrMLM
and multi-omics analysis in the genetic analysis of complex
traits was helpful.

Genome-wide association study
provided potential genes VrEmp24/25
and VrKIX8 for mungbean
seed-size-related traits

VrEmp24/25 was an important seed-size traits related gene,
the evidence was as below: Firstly, Chr10-25206533-25223155
locus for seed size traits was detected in 2018 and 2020
by CMLM, EMMAX, and 3VmrMLM (Figure 2), and there
were 10 genes in its interval (Figure 4C). Secondly, among
the 10 genes, only VrEmp24/25 (EVM0015812) (P = 0.014,
Log2FC = 0.67) had deferentially expressed across different
phenotype accessions (Figure 4C; Supplementary Data Set 4).
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Besides, in maize, the loss function of EMP24 and Emp25
would impair embryo and endosperm development (Xiu
et al., 2020). EMP24 was required for the splicing of nad4
(Ren et al., 2019), and the lack of either Nad4 or Nad5
blocked the assembly of complex I holoenzyme in Arabidopsis
(Ligas et al., 2019). The loss of the steady-state level of
mitochondrial nad5 mature mRNA blocked the assembly of
complex I and caused an arrest in endosperm development
(Zhang Y. F. et al., 2017). Lastly, the elite haplotypes of
VrEmp24/25 (TT) made up the main proportion of more
than 90.9% in cultivated mungbeans, 45% in wild mungbeans
(Figure 4E). The HSW in hap 1 haplotypes accessions was
significantly higher than that in hap 2 and hap 3 (P = 2.11E-
29). It was reported that a single amino acid completely
prevented the appearance of the enzyme in the medium,
and we inferred that the related variation could lead to the
change in enzyme activity (East et al., 1990; Alfson et al.,
2018).

There have four evidences to take VrKIX8 as another
important seed-size trait gene. Firstly, VrKIX8 associated
with Chr1-8161305-8347626 (LOD = 24.09∼36.33) for HSW
and SL were detected in multi-environment by 3VmrMLM
(Figure 5A; Supplementary Table 5). Secondly, VrKIX8
(LOD = 24.09∼36.33) had significantly differentially expressed
between high- and low-HSW accessions (Figure 3A). Then,
in Arabidopsis, the disruption of KIX8/9 and PPD1/2 could
cause large seeds due to increased cell proliferation and cell
elongation in the integuments (Liu et al., 2020a). In soybeans,
the loss of the function GmKIX8-1 showed a significant increase
in the size of seeds and leaves. In addition, the increase in
organ size was due to the increased cell proliferation, rather
than cell expansion. GmKIX8-1 showed negatively regulated
cell proliferation in plants (Nguyen et al., 2021). Lastly, the
elite haplotypes of VrKIX8 (ATCGAA) made up the main
proportion of more than 73% in cultivated mungbeans, 40%
in wild mungbeans. Moreover, there are four SNPs in the
promoter and of VrKIX8, and two SNPs in the CDS region,
however the amino acid sequence did not change between
the elite haplotypes and the other haplotypes (Figure 5C).
The HSW in hap 1 haplotypes accessions was higher than
that in hap 2 to hap 4 (P = 1.19E-21). We supposed that
the mutations may have influenced the translation efficiency
of VrKIX8 and caused low expression in cultivated accessions
during mungbean domestication.

Genes participate in seed development
progress

The genes controlling seed development progress in
mungbean are largely unknown (Ha et al., 2021). In this
study, we identified fifty-four candidate genes in the seed-
development pathways, i.e., aba2 (Cheng et al., 2014; Chauffour

et al., 2019), ABI5 (Lynch et al., 2022), SHB1, MINI3,
and IKU2 (Garcia et al., 2003; Xiao et al., 2016; Zhang
H. et al., 2017), mutants of those genes induced abnormal
seed development in Arabidopsis. And, five genes were also
commonly identified via GWAS (Table 1). Those five genes
(VrKIX8, VrABA2, VrSHB1, VrABI5, and VrIKU2) are more
likely to be reliable, especially for VrKIX8, as described
above.

We also analyze the possible correlation between the
main seed development pathways. Among the 54 genes, five
genes (VrAGG, VrDA2, VrAGB, VrGPA1-1, and VrGPA1-
2) consisted of five pairs of significant PPIs. Interestingly,
four pairs PPIs were found to be in the G-protein-signaling
pathway, and one pair of PPIs was found to be in the
G-protein-signaling and the ubiquitin proteasome pathways
(Figure 6; Supplementary Table 6). Ubiquitin proteasome
pathway is an important pathway for the selective degradation
of proteins and seed development (Smalle and Vierstra, 2004),
and the G-protein-signaling pathway is a ubiquitous cell
transmembrane signal transduction pathway in eukaryotes
(Huang et al., 2006). Moreover, mutations in GPA1 or AGB1
could cause short flowers (Lease et al., 2001; Ullah et al.,
2001). The overexpression of AGG3 promoted seed and
organ growth by increasing cell proliferation, and loss-of-
function mutations in AGG3 caused small seeds and organs
(Chakravorty et al., 2011; Li et al., 2012). The ubiquitin
receptor DA1 could control seed size by restricting cell
proliferation in maternal integuments (Li et al., 2008). DA1
functioned synergistically with DA2 to restrict seed growth,
and DA2 physically interacted with DA1 in vitro and in vivo
(Song et al., 2007; Xia et al., 2013). This interaction could
mediate the interactions between the G-protein-signaling
pathway and the ubiquitin proteasome pathway, which might
offer an important clue in the mechanism analysis of seed
development.

In addition, 48 genes had higher expressions in the early
stage of seed development than in the late maturation stage
of seed development, indicating that seed-development-related
genes function primarily in the early stages of seed development,
which was consistent with the findings of Zuo et al. (2022) in
soybean.

Conclusion

This study conducted GWAS for seed-size-related traits
in mungbeans. 98 QTNs and 20 QEIs were identified using
3VmrMLM, while 95, >10,000, and 15 QTNs were identified
using EMMAX, GEMMA, and CMLM, respectively. A total of
12 key candidate genes were mined, which were homologous
to known seed-development genes in rice and A. thaliana.
VrEmp24/25 and VrKIX8 were identified as main candidate
genes around two stable QTNs, the two candidate genes were
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further confirmed by RT-qPCR and haplotype analysis, and
prevalent haplotypes of VrEmp24/25 and VrKIX8 may be useful
in mungbean breeding.
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Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
Rice, which supports more than half the population worldwide, is one of the

most important food crops. Thus, potential yield-related quantitative trait

nucleotides (QTNs) and QTN-by-environment interactions (QEIs) have been

used to develop efficient rice breeding strategies. In this study, a compressed

variance component mixed model, 3VmrMLM, in genome-wide association

studies was used to detect QTNs for eight yield-related traits of 413 rice

accessions with 44,000 single nucleotide polymorphisms. These traits

include florets per panicle, panicle fertility, panicle length, panicle number

per plant, plant height, primary panicle branch number, seed number per

panicle, and flowering time. Meanwhile, QTNs and QEIs were identified for

flowering times in three different environments and five subpopulations. In the

detections, a total of 7~23 QTNs were detected for each trait, including the

three single-environment flowering time traits. In the detection of QEIs for

flowering time in the three environments, 21 QTNs and 13 QEIs were identified.

In the five subpopulation analyses, 3~9 QTNs and 2~4 QEIs were detected for

each subpopulation. Based on previous studies, we identified 87 known genes

around the significant/suggested QTNs and QEIs, such as LOC_Os06g06750

(OsMADS5) and LOC_Os07g47330 (FZP). Further differential expression

analysis and functional enrichment analysis identified 30 candidate genes. Of

these candidate genes, 27 genes had high expression in specific tissues, and 19

of these 27 genes were homologous to known genes in Arabidopsis. Haplotype

difference analysis revealed that LOC_Os04g53210 and LOC_Os07g42440 are

possibly associated with yield, and LOC_Os04g53210 may be useful around a

QEI for flowering time. These results provide insights for future breeding for

high quality and yield in rice.
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Introduction

Rice (Oryza sativa L.), one of the most important food crops,

supports more than half the population in the world. Therefore,

rice is crucial to improving the safety, quality, stability, and

sustainability of the global food supply (Muthayya et al., 2014).

In China, rice production is second only to maize, accounting for

31.64% of the total grain produced in 2020 (http://www.stats.

gov.cn/tjsj/ndsj/, accessed on June 2022). Moreover, from 1994

to 2020, rice accounted for 27.17% of the total grain produced in

the world, which is 657.85 million tons per year (http://www.fao.

org/faostat/en/#data/QC/visualize, accessed on June 2022).

There is an urgent, ongoing global demand for highly

productive rice varieties due to growth in the human

population in particular in developing nations, in which rice is

the primary source of calories (Toriyama, 2005); climate change;

and the labor-, land-, and water-intensive nature of rice

cultivation (Greenland, 1997). Furthermore, climate has an

impact on the most crucial traits of rice, such as production

and quality. Weather catastrophes are becoming increasingly

severe across the world because of accelerating global climate

change, which poses a significant challenge to the production of

sustainable food. Developing resilient crops is an efficient

strategy for coping with climate change. A wealth of plant

breeding and genomic resources have been developed by the

scientific community to assist in this endeavor, including high-

quality genome sequences (Goff et al., 2002; Yu et al., 2002),

dense SNP maps (McNally et al., 2009; Ebana et al., 2010; Huang

et al., 2010), extensive germplasm collections (Ebana et al., 2008;

McNally et al., 2009; Agrama et al., 2010), and public databases

of genomic information (Tanaka et al., 2008; McNally et al.,

2009; Huang et al., 2010; Youens-Clark et al., 2011). Yet despite

the emergence of these scientific resources, traditional

quantitative trait locus linkage mapping is most often used to

understand the genetic structures of complex traits in rice.

Genome-wide association study (GWAS) mapping enables

the simultaneous screening of huge numbers of accessions for

genetic variation in a variety of complex traits. Humongous

genetic variants for agronomic and economic traits have been

extensively studied using single-locus GWAS methods, such as

MLM (Zhang et al., 2005; Yu et al., 2006), EMMA (Kang et al.,

2008), and GEMMA (Zhou and Stephens, 2012). Such single-

locus GWAS methods have a limited ability in detecting

quantitative trait nucleotides (QTNs) with marginal effects that

are affected by the polygenic background and stringent

Bonferroni correction (Wang et al., 2016). Even if adjusting

for polygenic background enhances the statistical power of QTN

detection, it is still difficult to identify the majority of small-effect

QTNs related to complex traits using single-locus

GWAS methods.

To address the issue in single-locus GWAS methods, multi-

locus GWAS methods were developed as a multidimensional
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method of genome analysis, which simultaneously estimate the

effects of all markers (Cui et al., 2018). In particular, to address

the selection of cofactors in multi-locus GWAS models with

millions of markers, researchers have proposed MLMM (Segura

et al., 2012), FarmCPU (Liu et al., 2016), mrMLM (Wang et al.,

2016), pLARmEB (Zhang et al., 2017), and FASTmrEMMA

(Wen et al., 2018). However, the dominance (d) or QTN-by-

environment interaction (QEI) were not fully considered in the

above models. Moreover, when additive (a) and dominance (d)

effects, additive-by-environment (a×e) interaction, dominance-

by-environment (d×e) interaction, and their polygenic

backgrounds are simultaneously included as random effects in

a mixed model of genome-wide analysis, there are 10 variance

components, which creates a huge computational burden.

To improve calculation efficiency, a mixed model with three

variance components was combined with mrMLM to establish a

new methodological framework, namely, 3VmrMLM, that

identifies all types of loci and estimates their effects while

controlling all possible polygenic backgrounds (Li et al.,

2022a). In GWAS, QEI can be used extensively to explore the

genetic structures of complex traits to meet the needs of

phenotypic plasticity research and global climate change.

3VmrMLM was expanded to cover QEI using the same

thinking as in QTN detection models.

The data set of 413 rice accessions with 44,000 SNPs from

the Rice Diversity database (www.ricediversity.org, accessed on

April 2022) is suitable for GWAS, which has been performed by

many researchers. Although this data set contains a wealth of

information, including data on yield-related traits closely related

to human life, phenotypic data on a given trait in different

locations, and data on different subpopulations with the same

trait, it has been seldom studied for further both QTN and QEI

detection simultaneously. Therefore, in this study, we reanalyzed

eight yield-related traits in this natural population of 413 rice

accessions using the proposed multi-locus method, 3VmrMLM.

Our goals were to detect the significant QTNs and QEIs related

to rice yield, mine candidate genes, speed up molecular marker-

assisted breeding, and increase rice production.
Material and methods

Phenotypic data and statistical analysis

We used 3VmrMLM (Li et al., 2022a, 2022b) to reanalyze

413 accessions with 36,901 SNPs in rice (Oryza sativa L.) in

Zhao et al. (2011) to detect significant QTNs and QEIs for eight

yield-related traits. Phenotypic data were downloaded from the

Rice Diversity database (www.ricediversity.org, accessed on

April 2022). The yield-related agronomic traits were florets per

panicle (FPP), panicle fertility (PF), panicle length (PL), panicle

number per plant (PNPP), plant height (PH), primary panicle
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branch number (PPBN), seed number per panicle (SNPP), and

flowering time in three environments, Aberdeen (FTAB),

Arkansas (FTAR), and Faridpur (FTF). In Zhao et al. (2011),

detailed information on the experimental designs is described.

Flowering time at the three locations (FTAB, FTAR, and FTF)

was used to detect QEIs for multi-environment analysis and also

to detect QTNs for single-environment analysis. The other seven

traits were phenotyped at the same locations for single-

environment analysis to detect QTNs in this study.

To illustrate the variability of gene-environment interactions

in subpopulations in rice, we also analyzed rice flowering time in

FTAB, FTAR, and FTF for five subpopulations derived from

Zhao et al. (2011), including Admixed (ADMIX), Australia

(AUS), Indica (IND), Temperate japonica (TEJ), and Tropical

japonica (TRJ), with sample sizes of 43, 50, 52, 69, and

78, respectively.

To visualize all eight traits, descriptive statistical analysis for

each phenotypic data was performed, including the mean,

minimum, maximum, range, standard deviation, and

coefficient of variation (CV) for each trait (Table 1). Pearson

correlation analysis (Figure 1) for all phenotypic data was

performed in R version 4.1.2 (https://www.r-project.org/).
Genotypic data

Genotypic data for the 413 rice accessions were obtained

from the Rice Diversity database (www.ricediversity.org,

accessed on April 2022). The data set consisted of a well-

distributed 36,901 SNP array across the 12 chromosomes of

rice with call rate > 70% and minor allele frequency > 0.01 (Zhao

et al., 2011). To visualize the genotype in this study, Figures 2A,

B illustrate the distribution of the minor allele frequency and the

density distribution of loci on each chromosome. These were

relatively uniform, which indicates that this data set is suitable

for genetics dissection in rice.
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The IIIVmrMLM software (Li et al., 2022b) of 3VmrMLM

method (Li et al., 2022a) was downloaded from github (https://

github.com/YuanmingZhang65/IIIVmrMLM). We performed

QTN and QEI detection using the IIIVmrMLM function,

specifying the parameters of “=Single_env” for the QTN

detection model and “=Multi_env” for the QEI detection

model. The thresholds of significant and suggested QTN or

QEI were set at P-value = 0.05/m and LOD = 3.00, respectively,

where m is the number of markers (Li et al., 2022a).
SNP annotation and the identification of
known genes

The China Rice Data Center database (https://ricedata.cn/,

accessed on June 2022) was used to annotate the genes around

significant/suggested QTNs and QEIs identified by 3VmrMLM.

For all identified loci, regions within 200 kb were used to search

for known genes (which were reported in previous studies and

identified by 3VmrMLM simultaneously) according to linkage

disequilibrium decay.
Functional enrichment analysis and the
identification of candidate genes

We performed differential expression analysis using the

online tool GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/,

accessed on September 2022) on four data sets (GSE19024,

GSE21396, GSE136746, and GSE166053) from the Gene

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/

geo/, accessed on September 2022). The datasets contain

transcriptomic data related to rice development. Differentially

expressed genes (DEGs) were screened by adjusted P-values less
TABLE 1 Statistical analysis of eight rice yield-related traits.

Trait Mean Max Min SD CV

FPP 5.056 5.836 3.909 0.323 0.064

PF 0.824 0.980 0.372 0.105 0.127

PL 24.375 35.683 15.633 3.537 0.145

PNPP 3.247 4.172 2.234 0.413 0.127

PH 116.583 194.333 67.750 21.092 0.181

PPBN 9.943 17.000 5.556 1.781 0.179

SNPP 4.854 5.635 3.445 0.330 0.068

FTABa 107.050 306.000 45.000 38.957 0.364

FTARa 87.944 150.500 54.500 12.627 0.144

FTFa 71.770 110.000 39.000 8.510 0.119
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than 0.05, and then intersected with genes around

significant/suggested QTNs or QEIs to obtain DEGs

significantly associated with the target traits. For the functional

annotation analysis, information of the above DEGs related to
Frontiers in Plant Science 04
62
the target traits was submitted to the web-based tool DAVID

(https://david.ncifcrf.gov/home.jsp, accessed on September

2022) to perform Kyoto Encyclopedia of Genes and Genomes

functional enrichment analysis. Fisher’s exact test (P < 0.05) was
BA

FIGURE 2

The distribution of SNPs in rice. (A) The distribution of minor allele frequency. (B) The density distribution of SNPs.
FIGURE 1

Distribution of eight yield-related traits in rice and Pearson coefficients. FTAB, FTAR, and FTF are the flowering time in three different
environments in the single-environment analysis. Linear regression statistics between the two traits are below the diagonal, the diagonal
histogram represents the distribution of each trait, and correlation coefficients are above the diagonal (positive numbers represent positive
correlations, negative numbers represent negative correlations).
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used to select enrichment KEGG pathways. Genes that were

enriched in these significant pathways were considered as

candidate genes.
Tissue specific expression and blast of
homologous genes in Arabidopsis

The database Rice Genome Annotation Project (http://rice.

uga.edu/, accessed on September 2022) was used to investigate

the expression of all candidate genes in various tissues to further

illustrate the association between genes and phenotypic

variations. The R package pheatmap was used to create a

heatmap of the FPKM expression of the candidate genes.

Protein sequence information of the candidate genes was

submitted to the Rice Genome Annotation Project (http://rice.

uga.edu/analyses_search_blast.shtml, accessed on September

2022) to mine homologous Arabidopsis genes.
Analysis of haplotype and
phenotypic difference

To validate the associated loci between candidate genes and

traits, the HaploView software package (http://www.broad.mit.

edu/mpg/haploview/; Barrett et al., 2005) was used to perform

linkage disequilibrium and haplotype block analyses and to

estimate the frequency of haplotype populations in candidate

genes. For each gene, significant variations were used for

haplotype division, and the phenotypic differences between

haplotypes was analyzed via t test using the t.test function in R.
Results

Phenotypic variation

Eight yield-related traits (including FPP, PF, PL, PNPP, PH,

PPBN, SNPP, and flowering time in FTAB, FTAR, and FTF)

were reanalyzed to determine whether there exists any

significant genetic variation in these traits across 413 rice

accessions. Descriptive statistics for all traits are listed in

Table 1. Let us consider CV as an example, for flowering time

in each single-environment, FTAB had the highest CV at 36.4%,

which indicates that flowering time at Aberdeen had the largest

variation. Furthermore, the CVs for FTAR and FTF were 14.4%

and 11.9%, both relatively large, which indicates large variation

and environmentally sensitive for flowering time. In addition,

the CVs for the other six traits (PF, PL, PNPP, PH, PPBN, and

SNPP) were 12.7%, 14.5%, 12.7%, 18.1%, 17.9%, and 6.8%, and

FPP had the lowest CV at 6.4%.

Pearson correlation coefficients (PCCs) were calculated

among the eight traits (Figure 1). FPP and PNPP were
Frontiers in Plant Science 05
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negatively correlated (PCC = –0.33), and a negative correlation

was also observed between FPP and PF (PCC = –0.11). FPP was

positively correlated with PPBN (PCC = 0.7) and SNPP (PCC =

0.83). In addition, PL was positively correlated with PH (PCC =

0.64), SNPP (PCC = 0.34), and FPP (PCC = 0.39), which

indicates the close genetic relationship between panicle length

and panicle number. With regard to flowering time across

environments, FTAB was positively correlated with FTAR

(PCC = 0.74) and FTF (PCC = 0.50), and FTAR and FTF

were positively correlated (PCC = 0.54). These results

demonstrate that the eight rice traits play a crucial role in

controlling the rice yield and significantly correlate to

one another.
Identification of QTNs for yield-related
traits using 3VmrMLM

We reanalyzed all eight yield-related traits using the single-

environment QTN detection model in 3VmrMLM to identify

QTNs, where flowering time was measured in three different

environments. A total of 165 significant/suggested QTNs

(Supplementary Table S1; Supplementary Figure S1) were

detected as associated with at least one of the eight yield-

related traits. Of these QTNs, 17, 16, 16, 21, 23, 17, 15, 15, 18,

and 7 QTNs (Supplementary Table S1; Supplementary Figure

S1) were associated with FPP, PF, PL, PNPP, PH, PPBN, SNPP,

FTAB, FTAR, and FTF, respectively. The proportion of total

phenotypic variance explained by QTNs for each single trait

were 72.61%, 73.29%, 75.48%, 51.99%, 64.17%, 71.64%, 58.55%,

58.04%, 77.07%, and 44.60% calculated by the R package

IIIVmrMLM. It shows that most QTNs had only additive

effects. Note that some QTNs, such as id3005865 for FPP,

id5014747 for PF, and id4007762 for PH, had both additive

and dominance effects.

A total of 17 QTN hotspots (Supplementary Table S1;

Supplementary Figure S1A) were detected as significantly

associated with FPP, with P-values of 2.19E-32~7.60E-07 and

LOD scores of 5.31~31.66, respectively. A total of 16 QTNs

(Supplementary Table S1; Supplementary Figure S1B) associated

with PF were detected with P-values of 1.08E-44~1.07E-06 and

LOD scores of 4.97~32.90. A total of 16 QTNs (Supplementary

Table S1; Supplementary Figure S1C) were associated with PL,

with P-values of 2.33E-56~1.02E-05 and LOD scores of

4.23~54.34, and id7004886 located on chromosome 7 had the

maximum phenotypic variance explained at 22.04%

(Supplementary Table S1). Moreover, 21 QTNs (Supplementary

Table S1; Supplementary Figure S1D) associated with PNPP were

detected with P-values of 1.78E-37~9.71E-06. For PH, 23 QTNs

(Supplementary Table S1; Supplementary Figure S1E) were

detected with P-values of 1.15E-38~7.60E-05 and LOD scores of

3.40~37.94. A total of 18 QTNs (Supplementary Table S1;

Supplementary Figure S1F) were detected as associated with
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PPBN; they were widely located on chromosomes 1, 2, 4, and 9,

with P-values of 2.05E-39~1.31E-05 and LOD scores of

4.13~37.47. Among these QTNs, id1009181 located on

chromosome 1 explained 16.03% of the phenotypic variance.

For SNPP, 15 QTNs (Supplementary Table S1; Supplementary

Figure S1G) were detected with P-values of 3.95E-41~2.11E-05

and LOD scores of 3.93~39.18. For the three flowering time

environments , 30 QTNs (Supplementary Table S1;

Supplementary Figure S1H–J) were detected on all chromosomes

except chromosome 12 were detected, with P-values of 1.15E-

32~2.17E-05 and LOD scores of 1.40~11.30. id4000121,

ud7002024, and id4004217 explained the maximum phenotypic

variance, which were 14.47%, 11.30%, and 7.75%, respectively.
Known genes around significant/
suggested QTNs

We compared genomic regions of 165 significant/suggested

QTNs (200 kb up- and down-stream of each significant/suggested

QTN) to the genomic positions of reported genes related to rice

yield. A total of 73 known genes were around the significant/

suggested QTNs, including 9, 7, 3, 14, 17, 6, 6, 2, 7, and 2 known

genes for FPP, PF, PL, PNPP, PH, PPBN, SNPP, FTAB, FTAR, and

FTF, respectively (Table 2; Supplementary Figure S1). Marker
Frontiers in Plant Science 06
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id1019150 located on chromosome 1 around LOC_Os01g54810

was simultaneously associated with PL and PH (Table 2;

Supplementary Figure S1). Moreover, id1002863 and id7004587

around LOC_Os01g07480 and LOC_Os07g41250, respectively, on

chromosomes 1 and7were associatedwithFPPandSNPP(Table 2;

Supplementary Figure S1). It is interesting that a QTN can overlap

with multiple known genes (e.g., three genes, LOC_Os02g45054,

LOC_Os02g45070, and LOC_Os02g45110 were simultaneously

around id2012042 on chromosome 2, Table 2; Supplementary

Figure S1). sd1 is associated with PH (Zhao et al., 2011).

Moreover, OsRA2, located on chromosome 1 and simultaneously

associated with FPP and SNPP, modifies panicle architecture by

regulatingpedicel length (Leranet al., 2014; Luet al., 2017).OsPTR4

controls FPP and SNPP (Leran et al., 2014).
Detection of QEIs for rice flowering time
using 3VmrMLM

In the multi-environment analysis, flowering time at three

locations (Aberdeen, Arkansas, and Faridpur) was reanalyzed

using the QEI detection model in 3VmrMLM to identify QEIs. A

total of 21 significant/suggested QTNs (Table 3; Supplementary

Figure S2A) and 13 significant/suggested QEIs (Table 4;

Supplementary Figure S2B) were simultaneously detected.
TABLE 2 Known genes identified for rice yield-related traits using the QTN detection model in 3VmrMLM.

Trait Marker Chr Position add dom Variance r2(%) Gene Symbol ID

FPP id1002863 1 3481990 -0.049 – 0.002 1.700 OsRA2 LOC_Os01g07480

id1002863 1 3481990 -0.049 – 0.002 1.700 FIB LOC_Os01g07500

id1003144 1 3801746 -0.057 – 0.003 2.030 OsRE1 LOC_Os01g07880

id3000495 3 871080 0.117 – 0.007 5.714 Ehd4b LOC_Os03g02160

id7004587 7 24790535 0.056 – 0.002 1.338 OsPTR4 LOC_Os07g41250

id7004587 7 24790535 0.056 – 0.002 1.338 OsMADS18 LOC_Os07g41370

id7005660 7 28221129 -0.124 – 0.010 7.409 OsCOL13 LOC_Os07g47140

id7005660 7 28221129 -0.124 – 0.010 7.409 FZP LOC_Os07g47330

id12009959 12 27218159 0.083 – 0.007 5.143 OsPAP10c LOC_Os12g44020

PF id1023500 1 37274860 -0.024 – 0.000 2.519 OsABI5 LOC_Os01g64000

id1023500 1 37274860 -0.024 – 0.000 2.519 REL1 LOC_Os01g64380

id3000828 3 1499569 -0.036 – 0.001 7.357 OsmiR528 LOC_Os03g03724

id8007916 8 28208958 0.035 – 0.000 1.994 OsNTL5 LOC_Os08g44820

id9002415 9 7894310 0.027 – 0.001 3.126 OsEMF2b LOC_Os09g13630

id9002415 9 7894310 0.027 – 0.001 3.126 SDG724 LOC_Os09g13740

id12006848 12 21130413 0.046 – 0.000 2.8543 OsVIL2 LOC_Os12g34850

PL id1017530 1 29565162 0.788 – 0.574 3.375 OsLFL1 LOC_Os01g51610

id1019150 1 31662509 -1.275 – 1.134 6.672 THIS1b LOC_Os01g54810

id10003476 10 13216045 -1.350 – 1.544 9.088 Brd2 LOC_Os10g25780

PNPP id1001128 1 1401052 -0.047 – 0.002 1.257 MHZ4 LOC_Os01g03750

id2000516 2 647801 -0.086 – 0.003 1.662 DHD4 LOC_Os02g01990

(Continued)
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TABLE 2 Continued

Trait Marker Chr Position add dom Variance r2(%) Gene Symbol ID

id2012042 2 27371812 -0.131 – 0.004 2.237 SID1 LOC_Os02g45054

id2012042 2 27371812 -0.131 – 0.004 2.237 OsAGO1a LOC_Os02g45070

id2012042 2 27371812 -0.131 – 0.004 2.237 OsMTA2 LOC_Os02g45110

id3003977 3 7327105 -0.088 – 0.008 4.398 OsAPC6 LOC_Os03g13370

id3003977 3 7327105 -0.088 – 0.008 4.398 LPA1 LOC_Os03g13400

id3006138 3 12008635 0.046 – 0.002 1.185 OsPHR1 LOC_Os03g21240

id4010447 4 30843940 -0.062 – 0.004 2.125 OsAP2-39 LOC_Os04g52090

id5011783 5 25197731 0.109 – 0.012 6.746 OsmtSSB1 LOC_Os05g43440

id7000258 7 1588172 -0.079 – 0.005 2.844 OSH15 LOC_Os07g03770

id8001120 8 3438707 0.050 – 0.002 1.427 OsCOMT LOC_Os08g06100

id8001120 8 3438707 0.050 – 0.002 1.427 OsCCA1 LOC_Os08g06110

ud8000279 8 4363409 -0.071 – 0.005 2.710 DTH8 LOC_Os08g07740

PH id1018978 1 31452220 -4.470 – 13.040 2.931 OsCesA4 LOC_Os01g54620

id1024441 1 38537795 7.133 – 17.140 3.853 sd1b LOC_Os01g66100

id1018978 1 31452220 -4.470 – 13.040 2.931 THIS1 LOC_Os01g54810

id1018978 1 31452220 -4.470 – 13.040 2.931 OsVOZ1 LOC_Os01g54930

id1024441 1 38537795 7.133 – 17.140 3.853 OsCrll3 LOC_Os01g66590

id4007762 4 23286717 -7.695 3.480 15.326 3.445 TDD1 LOC_Os04g38950

id4007762 4 23286717 -7.695 3.480 15.326 3.445 OsALDH10A5 LOC_Os04g39020

id4007762 4 23286717 -7.695 3.480 15.326 3.445 d11 LOC_Os04g39430

id4010574 4 31138553 3.210 – 9.981 2.243 OsAP2-39 LOC_Os04g52090

id4010574 4 31138553 3.210 – 9.981 2.243 OsKS1 LOC_Os04g52230

id4010574 4 31138553 3.210 – 9.981 2.243 FC1 LOC_Os04g52280

id6004564 6 7097190 -3.206 – 8.230 1.850 YPD1 LOC_Os06g13050

wd6000736 6 10282460 -3.939 – 10.962 2.464 OsNF-YB9 LOC_Os06g17480

id7005417 7 27547556 -2.096 – 4.341 0.976 Fd-GOGAT1 LOC_Os07g46460

id8006905 8 24940725 5.109 – 17.476 3.928 RCN11 LOC_Os08g39380

id8006905 8 24940725 5.109 – 17.476 3.928 OsDOG LOC_Os08g39450

id9007929 9 22920706 2.891 – 7.000 1.574 OsDRP1E LOC_Os09g39960

PPBN id1009181 1 13926463 -0.807 – 0.640 16.026 IPI1 LOC_Os01g24880

id1014302 1 24275703 -0.447 – 0.174 4.361 OsATG7 LOC_Os01g42850

id1022478 1 35621886 0.593 – 0.335 8.400 LAX1 LOC_Os01g61480

id1022478 1 35621886 0.593 – 0.335 8.400 OsBAG4 LOC_Os01g61500

id1024948 1 39308177 -0.460 – 0.122 3.050 EG1 LOC_Os01g67430

id3005659 3 10842947 0.479 – 0.091 2.291 SSD1 LOC_Os03g19080

SNPP id1002863 1 3481990 -0.049 – 0.002 1.894 OsRA2 LOC_Os01g07480

id1013159 1 22950277 0.171 – 0.004 3.481 LOG LOC_Os01g40630

id3005721 3 10922512 0.087 – 0.003 2.449 SDG718 LOC_Os03g19480

id3005721 3 10922512 0.087 – 0.003 2.449 SRL2 LOC_Os03g19520

id6015132 6 26966327 0.061 – 0.004 3.275 OsSPL10 LOC_Os06g44860

id7004587 7 24790535 0.074 – 0.003 2.665 OsPTR4 LOC_Os07g41250

FTABa id1027324 1 42152363 -10.893 – 27.056 1.783 OsMLH1 LOC_Os01g72880

id6002745 6 3330294 9.162 – 80.673 5.316 OsMADS5 LOC_Os06g06750

FTARa id1021120 1 34082456 -3.468 – 11.006 5.050 OsGCD1 LOC_Os01g58750

id3002064 3 3766414 -4.491 – 19.461 8.930 DPWb LOC_Os03g07140

id3002064 3 3766414 -4.491 – 19.461 8.930 CYP704B2b LOC_Os03g07250

id3002064 3 3766414 -4.491 – 19.461 8.930 OsSUT1b LOC_Os03g07480

ud7001067 7 15702110 4.474 – 17.692 8.119 ORMDL LOC_Os07g26940

(Continued)
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Among them, id6006118 located on chromosome 6 had

additive-by-environment interaction and dominance-by-

environment interaction in all three environments.

We compared genomic regions of the significant/suggested

QTNs or QEIs (200 kb up- and down-stream around the

significant/suggested QTNs or QEIs) to the positions of

previously reported genes related to rice flowering time. 4 QTNs

(Table 3; Supplementary Figure S2A) and 1 QEI (Table 4;

Supplementary Figure S2B) overlapped with the known genes.

Notably, id6002690, which was adjacent to LOC_Os06g06750

(OsMADS5), was demonstrated to have both QTN and QEI

effects. Microarray-based expression profiling and genome-wide

molecular characterization of the genes that encode the MADS-

box transcription factor family was presented by Arora et al.

(2007). OsMADS5 in this gene family is associated with the
Frontiers in Plant Science 08
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development of inflorescence. Recently, Zhu et al. (2022) also

revealed the function of OsMADS5 in the development of

inflorescence and showed that OsMADS5 is involved in limiting

branching and promoting the transition to spikelet meristem

identity, partly by repressing RCN4 expression.

For five different subpopulations (ADMIX, AUS, IND, TEJ, and

TRJ), flowering time in FTAB, FTAR, and FTF was also analyzed to

illustrate the variability in gene-environment interactions. A total of

25 QTNs and 15 QEIs (Supplementary Table S2; Supplementary

Figures S2C–L) were simultaneously detected with the multi-

environment detection model in 3VmrMLM, including 3, 3, 6, 9,

and 4 QTNs and 4, 2, 4, 3, and 2 QEIs for ADMIX, AUS, IND, TEJ,

andTRJ, respectively.Note that therewas nooverlap inQEI between

different subpopulations, which may indicate that these QEIs come

from different ecological adaptations.
TABLE 2 Continued

Trait Marker Chr Position add dom Variance r2(%) Gene Symbol ID

id9006822 9 19210667 -2.851 -8.826 3.567 1.637 OsDFR2A LOC_Os09g32025

id11011548 11 28322308 3.318 – 2.462 1.130 EDT1 LOC_Os11g47330

FTFa id4004217 4 14176927 2.677 – 5.804 7.747 OsACOS12 LOC_Os04g24530

id6006288 6 10090472 1.900 – 3.609 4.329 OsNF-YB9 LOC_Os06g17480
“-” indicates no dominance effect for this QTN. aindicates flowering time in three different environments in the single-environment analysis. bindicates known gene which was detected by
3VmrMLM and EMMA simultaneously.
TABLE 3 Significant/suggested QTNs for rice flowering time in three environments detected using the QTN-by-environment detectionmodel in 3VmrMLM.

Marker CHR Positions LOD add dom Variance r2(%) P-value Reported Gene Reference

id1001009 1 1095730 9.492 2.180 – 4.486 1.147 3.810E-11 – –

id1007272 1 9815262 19.756 -3.224 – 3.810 0.974 1.456E-21 – –

id1008137 1 11376832 16.619 -2.991 – 8.260 2.112 2.169E-18 - –

id1012744 1 22493100 11.948 2.765 – 7.583 1.939 1.192E-13 SaF Xie et al., 2017

id1014639 1 24595570 9.958 -2.241 – 2.662 0.681 1.272E-11 - –

ud3000099 3 1400496 24.223 -3.680 – 12.997 3.323 4.490E-26 - –

id3004539 3 8656816 34.038 -4.261 – 14.612 3.736 5.814E-36 OsSTRL2 Zou et al., 2017

id3008283 3 16551139 4.319 1.506 – 2.092 0.535 8.203E-06 - –

dd3001061 3 27836287 17.230 3.294 – 8.646 2.211 5.220E-19 - –

id4001482 4 3628149 8.959 2.138 – 4.134 1.057 1.335E-10 - –

id4005251 4 17893016 9.178 -2.435 – 5.598 1.431 7.982E-11 - –

id5000013 5 44370 11.405 2.395 – 4.778 1.222 4.259E-13 - –

id5008977 5 21268048 21.538 3.386 – 6.812 1.742 2.302E-23 - –

id5012857 5 26783289 13.681 2.640 – 2.135 0.546 2.068E-15 - –

id6002690 6 3289852 27.063 3.816 – 13.218 3.380 6.148E-29 OsMADS5 Arora et al., 2007; Zhu et al., 2022

id6005322 6 8185001 49.742 -5.502 – 8.540 2.184 9.554E-52 - –

ud7000660 7 8553942 15.086 -2.944 – 6.661 1.703 7.754E-17 - –

id7004583 7 24784697 24.039 3.582 – 7.380 1.887 6.889E-26 OsUAM3 Konishi et al., 2007

id8000022 8 51045 23.711 -3.509 – 7.457 1.907 1.475E-25 – –

id10000202 10 1012769 32.396 -4.148 – 12.160 3.109 2.618E-34 – –

id110107061 11 26711260 13.869 -2.654 – 2.831 0.724 1.332E-15 – –
“-” indicates no dominance effect or reported gene for this QTN.
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Functional enrichment analysis of
candidate genes

In addition to the aforementioned significant/suggested

QTNs and QEIs with known genes, we also detected several

new QTNs and QEIs that have not been reported in previous

studies, such as id2005901, id6007721, id12008098, and

id9001769 (Supplementary Table S1; Supplementary Figure

S1). To identify the candidate genes, we considered genes in

regions 200 kb up- and down-stream around each significant/

suggested QTN and QEI, including all studies of population and

each subpopulation. There are about 8000 genes within these

200kb regions, of which 755 are DEGs that show different

expression between test and control groups of rice accessions.

In the Kyoto Encyclopedia of Genes and Genomes analysis, 30

genes significantly involved in 4 biological processes (terpenoid

backbone biosynthesis, butanoate metabolism, carbon metabolism,

and alanine, aspartate and glutamate metabolism) were defined as

candidate genes. Figure 3A shows results for the candidate genes in the

rectangular boxes, the most significant pathways are marked in red.

The results of the functional enrichment analysis (Figure 3A)

showed that some candidate genes around the new QTNs and
Frontiers in Plant Science 09
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QEIs were involved in many biological and metabolic processes

during rice growth, which have not been reported in previous

studies, such as flower development, which indicates that these

candidate genes have a non-negligible influence on the target

traits. For example, LOC_Os01g02020 (Figure 3A), a candidate

gene detected in PH and SNPP, was involved in terpenoid

backbone biosynthesis, butanoate metabolism, and carbon

metabolism. In addition, the candidate gene LOC_Os04g52450

(Figure 3A) was directly involved in butanoate metabolism and

in alanine, aspartate, and glutamate metabolism. Moreover,

some candidate genes detected in the multi-environment

analysis for each subpopulation, including LOC_Os03g16050

for IND, LOC_Os04g53210 for AUS, and LOC_Os07g09060

and LOC_Os07g09190 for TRJ (Figure 3A), were involved in a

series of biological and metabolic processes.
Expression profile of candidate genes

The Rice Genome Annotation Project database (http://rice.

uga.edu) demonstrates the expression of the candidate genes in

various tissues or organs, including shoots, roots, seeds, leaves,
TABLE 4 Significant/suggested QEIs for rice flowering time in three environments detected using the QTN-by-environment detection
model in 3VmrMLM.

Marker CHR Positions LOD add1 dom1 add2 dom2 add3 dom3 Variance r2

(%)
P-

value
Reported
Gene

Reference

id1000015 1 149005 21.318 4.569 – -1.336 – -3.233 – 11.037 2.822 4.819E-
22

– –

id1000947 1 1042817 10.498 -3.007 – 0.422 – 2.586 – 5.303 1.356 3.180E-
11

– –

id1008137 1 11376832 14.763 -3.871 – 1.145 – 2.726 – 7.910 2.023 1.729E-
15

– –

ud2000978 2 17730153 9.539 -3.236 – 1.034 – 2.202 – 5.465 1.397 2.893E-
10

– –

id4002940 4 8211710 16.440 -4.001 – 1.251 – 2.749 – 8.377 2.142 3.637E-
17

– –

id5000766 5 1128994 10.402 -2.418 – -0.647 – 3.064 – 5.218 1.334 3.971E-
11

– –

id6002690 6 3289852 6.107 1.782 – 0.622 – -2.404 – 3.113 0.796 7.813E-
07

OsMADS5 Arora et al., 2007; Zhu
et al., 2022

id6005330 6 8234981 8.562 -2.930 – 1.146 – 1.785 – 4.362 1.115 2.747E-
09

– –

id6006118 6 9651785 33.572 -5.915 -0.010 2.086 1.406 3.829 -1.396 17.945 4.588 2.106E-
32

– –

id6007539 6 12322330 20.565 4.618 – -1.690 – -2.928 – 10.917 2.791 2.730E-
21

– –

id7004142 7 23351238 8.336 2.802 – -0.792 – -2.010 – 4.174 1.067 4.615E-
09

– –

id10006353 10 20022516 13.901 4.031 – -1.259 – -2.772 – 8.506 2.175 1.259E-
14

– –

id11006398 11 17823963 15.862 -3.984 – 1.500 – 2.484 – 8.097 2.070 1.377E-
16

– –
“-” indicates no dominance effect or reported gene for this QEI.
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panicles, anthers, pistils, post-emergence, pre-emergence, and

embryos. The heatmap of the candidate genes presented in

Figure 3B shows the FPKM expression of the candidate genes

in tissues and organs.

For QTN, LOC_Os04g52450 and LOC_Os08g36320 had

high expression in leaves, panicles, shoots, and seedlings in

rice (Figure 3B). Furthermore, LOC_Os03g16050 had the

highest expression in pre-emergence inflorescence, leaves,

shoots, and seedlings. Some earlier studies (Zhao et al., 2011;

Weng et al., 2014) suggested that inflorescence, anthers, pistils,

and panicles play important roles in regulating yield.

For QEIs of flowering t ime, LOC_Os03g16050,

LOC_Os04g53210, LOC_Os07g09060 had high expression in

post-emergence inflorescence and pre-emergence inflorescence,

which might indicate a potential association between these

candidate genes and flowering time (Figure 3B).

Among the 30 candidate genes, LOC_Os03g19275,

LOC_Os06g36880, and LOC_Os07g34520 were not expressed

in panicles or inflorescence; thus, these genes were not
Frontiers in Plant Science 10
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considered in further analyses. Among the 27 candidate genes

identified here after tissue-specific expression analysis, 19

candidate genes are listed in Table 5 for their homologous

Arabidopsis genes.
Haplotype and phenotypic difference
analysis of candidate genes

To further verify the association between the candidate genes

and target traits, we performed haplotype analysis of the

candidate genes using SNPs within the candidate genes and 2

kb upstream of the candidate genes. LOC_Os04g53210 (CDS

coordinates [5′-3′]: 31688717 ~ 31692592) was analyzed to

reveal the intragenic variation affecting the rice yield and to

identify favorable haplotypes. Figure 4A shows the linkage

disequilibrium and haplotype block with two SNPs (id4010894

at 31688182 bp and id4010904 at 31691252 bp). The 413

accessions were classified into 4 haplotypes based on these two
BA

FIGURE 3

Heatmap of the functional enrichment analysis and tissue-specific expression analysis. (A) Heatmap of the functional enrichment analysis for the
candidate genes. (B) Heatmap of FPKM expression for the part of candidate genes. The y-axis is log2(FPKM+1). Candidate genes in the red box
correspond to QTNs. Blue box: QEIs for flowering time, remaining: candidate genes not expressed in specific tissue.
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SNPs (id4010894 and id4010904). Among these haplotypes,

haplotypes TT and CT had the highest mean phenotypic

values of FTAB (109.54) and FTF (78.25), respectively,

whereas haplotype TC presented the lowest FTAB (87.33) and

FTF (60.00; Figures 4B, C). A t test showed that significant

differences in FTAB and FTF existed between haplotypes CT and

TT (P-values = 4.93E-02 and 3.84E-04, respectively). There was

also a significant difference in FTF between haplotypes CT and

CC (P-values = 1.23E-04). Therefore, we infer the candidate

gene LOC_Os04g53210 to be associated with flowering in rice.

LOC_Os04g53210 was also detected in the multi-

environment analys is for the AUS subpopulat ion.

Supplementary Figure S3A shows the differences in phenotype
Frontiers in Plant Science 11
69
among the 4 haplotypes. Supplementary Figure S3B shows the

results of the haplotype block and phenotype difference in

LOC_Os07g42440, which was detected in PH. We infer that

the candidate gene LOC_Os04g53210 might be a gene-

environment interaction for flowering time and that

LOC_Os07g42440 might be associated with yield in rice.
Discussion

Classic single-locus methods, such as MLM and general

linear model (GLM), have been used extensively to detect

genetic variants in many cereals (Price et al., 2006; Sant’Ana
TABLE 5 Orthologous information of candidate genes with higher tissue expression.

Trait gene Marker Arabidopsis
Orthologous

gene

Putative function

FT_Q/
TRJ_Q

LOC_Os01g02880 id1001009/
id1001003

AT2G01140 Aldolase superfamily protein

TEJ_Q LOC_Os01g45460 id1015276 AT1G26120/
AT3G02410/
AT5G15860

alpha/beta-Hydrolases superfamily protein/prenylcysteine methylesterase

PPBN LOC_Os02g38840 id2009400 AT3G27300/
AT5G40760

glucose-6-phosphate dehydrogenase 6

PPBN LOC_Os02g39160 id2009400 AT5G60600 4-hydroxy-3-methylbut-2-enyl diphosphate synthase

PNPP LOC_Os03g13300 id3003977 AT5G17330 glutamate decarboxylase

IND_QE/
FT_Q

LOC_Os03g16050 id3004734/
id3004539

AT3G54050 high cyclic electron flow 1

PF LOC_Os04g33190 id4006172 AT5G36880 acetyl-CoA synthetase

AUS_QE/
FTAB/FTF

LOC_Os04g53210 id4010914/
id4010930/
id4010984

AT4G18360 Aldolase-type TIM barrel family protein

FT_Q LOC_Os05g35580 id5008977 AT2G16570/
AT4G34740

GLN phosphoribosyl pyrophosphate amidotransferase 1/GLN phosphoribosyl
pyrophosphate amidotransferase 2

PL/PH LOC_Os06g01630 id6000302 AT1G54220/
AT3G13930

Dihydrolipoamide acetyltransferase, long form protein

FTAB/
FT_Q

LOC_Os06g07120 id6002745/
id6002690

AT2G17570 Undecaprenyl pyrophosphate synthetase family protein

TRJ_QE LOC_Os07g09060 id7000656 AT2G14170 aldehyde dehydrogenase 6B2

FT_QE LOC_Os07g38970 id7004142 AT5G08300/
AT5G23250

Succinyl-CoA ligase, alpha subunit

FT_QE LOC_Os07g39270 id7004142 AT2G18620/
AT4G36810

Terpenoid synthases superfamily protein/
geranylgeranyl pyrophosphate synthase 1

FT_Q/FPP/
SNPP

LOC_Os07g41680 id7004583/
id7004587

AT2G17570 Undecaprenyl pyrophosphate synthetase family protein

PH LOC_Os07g42440 id7004779 AT3G14130/
AT3G14150

Aldolase-type TIM barrel family protein

PL/FPP LOC_Os07g42924 id7004886/
id7004865

AT1G22430/
AT1G22440/
AT4G22110

GroES-like zinc-binding dehydrogenase family protein/Zinc-binding alcohol
dehydrogenase family protein/GroES-like zinc-binding dehydrogenase family protein

PH LOC_Os08g39300 id8006905 AT2G13360 alanine: glyoxylate aminotransferase

FT_QE LOC_Os10g37180 id10006353 AT1G32470/
AT2G35370

Single hybrid motif superfamily protein/
glycine decarboxylase complex H
Q and QE indicate significant/suggested QTNs and QEIs in the multi-environment analysis, respectively. AUS, IND, TEJ, and TRJ indicate subpopulations of the 413 rice accessions. Other
abbreviations indicate results of the single-environment analysis.
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et al., 2018; He et al., 2019). However, these models suffer from

multiple test corrections (e.g., Bonferroni correction) for critical

values and neglect the overall effects of multiple loci (Zhong

et al., 2021). For example, many robust quantitative trait loci, in

particular small-effect quantitative trait loci, are missing because

of the stringent threshold (Zhang et al., 2005). Therefore, multi-

locus GWAS models, which are relatively closer to the real

genetic architecture of animals and plants, have been developed.

Geneticists developed these models to reduce the bias associated

with estimating effects by controlling the population structure

and polygenic background (Zhang et al., 2005; Yu et al., 2006;

Zhang et al., 2010). In this study, a multi-locus GWAS method

3VmrMLMwas used to detect QTNs for eight yield-related traits

in 413 rice varieties with 36,901 SNPs. We detected 17, 16, 16,

21, 23, 17, 15, 15, 18, and 7 significant/suggested SNPs and 9, 7,

3, 14, 17, 6, 6, 2, 7, and 2 known genes for FPP, PF, PL, PNPP,

PH, PPBN, SNPP, FTAB, FTAR, and FTF, respectively, using the

QTN detection model in 3VmrMLM (Supplementary Table S1).

Furthermore, we compared 3VmrMLM to a single-locus

method, EMMA (Kang et al., 2008) by Zhao et al. (2011). We

detected 4, 3, 3, 6, 5, 2, 1, 14, 6, and 2 QTNs by EMMA; thus,

3VmrMLM detected more significant QTNs than EMMA.

Among these significant QTNs, 1, 1, 1, 1, 1, 0, 0, 1, 1, and 0

were detected by the two methods simultaneously, including

id3000495, id2004552, id1019150, id12008894, id1101154,

id8006573, and id3002064. 1, 0, 2, 1, 1, 0, 0, 1, 3, and 1 known

gene were detected by EMMA, which were less than 3VmrMLM.

Among these known genes, 6 were detected by EMMA and

3VmrMLM simultaneously, including End4, TH1S1, sd1, DPW,

CYP704B2, and OsSUT1 (Table 2). In addition to these 6 known

genes, we identified 3 candidate genes for EMMA by performing
Frontiers in Plant Science 12
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differential expression analysis and functional enrichment

analysis, and there was no overlap in candidate genes between

the two methods. Moreover, the QTNs detected by 3VmrMLM

explained a higher proportion of total phenotypic variance

(72.61%, 73.29%, 75.48%, 51.99%, 64.17%, 71.64%, 58.55%,

77.07%, and 44.60%) than those detected by EMMA (17.1%,

8.1%, 10.9%, 7%, 38.6%, 6%, 0.1%, 31.3%, and 8.1%), except for

FTAB. Overall, the multi-locus GWAS method are flexible to

detect more QTNs and validate more known genes and

candidate genes than the single-locus GWAS method.

The contribution of QEI to the genetic analysis of complex

traits in plant, animal, and human genetics is growing. As a

result of accelerating global climate change, weather disasters

in a variety of regions are becoming increasingly severe, posing

a substantial obstacle to sustainable food production. An

efficient way of adapting to climate change is to develop

climate-resilient crops. However, it is first necessary to detect

QEIs and mine their genes. In addition, the environment has

an impact on important traits, such as quality, yield,

adaptability, and resistance, but studies on physiological

effects, molecular mechanisms, and functional analyses of

QEI genes under a variety of environments are not insightful

enough because of the algorithms used. Moreover, joint

analysis of multiple environments can enhance statistical

power and experimental accuracy in the detection of QTN

and QEI. In this study, three flowering time environments were

used to identify QEIs for rice using a multi-environment

detection model in 3VmrMLM, and 21, 3, 3, 6, 9, and 4

QTNs and 13, 4, 2, 4, 3, and 2 QEIs were detected for all

populat ions and each subpopulat ion (Tables 3, 4 ;

Supplementary Table S2).
B CA

FIGURE 4

Results of haplotype and phenotypic difference analysis for the candidate gene LOC_Os04g53210. (A) Linkage disequilibrium and haplotype
block with two SNPs inside for LOC_Os04g53210. (B) Comparison of FTAB among haplotypes CT, CC, TC, and TT. (C) Comparison of FTF
among haplotypes CT, CC, TC, and TT.
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Pleiotropy was verified in this study. Among all the 165

significant/suggested QTNs for the eight traits detected using the

QTN detection model in 3VmrMLM, some QTNs were

significantly associated with more than one trait. 5 QTNs

simultaneously related to FPP and SNPP were detected

because of the strong correlation (PCC = 0.83) between these

two traits, including id1002863, id3000495, id6009226,

id7004587, and id11010822. Around these 5 QTNs, genes the

OsRA2, Ehd4, and OsPTR4 genes were identified (Gao et al.,

2013; Lu et al., 2017; Huang et al., 2019). Id2005901 located on

chromosome 2 was associated with both FPP and PPBN (PCC =

0.70). For PH and PL with a positive correlation (PCC = 0.64),

id6000302 located on chromosome 6 was simultaneously

detected. Moreover, id11011548 located on chromosome 11

was found to affect both PH and FTAR (PCC = 0.47), where

the EDT1 gene was identified (Bai et al., 2019).

Among the total of 117 genes around the significant/

suggested QTNs and QEIs in this study, 87 were known genes

that have been reported in previous studies. For these known

genes with QTN effects (Table 2), sd1is associated with PH

(Zhao et al., 2011). OsMADS18 from the MADS-box

transcription factor family affects panicle development

(Kobayashi et al., 2012). Moreover, OsRA2, located on

chromosome 1, which simultaneously affects FPP and SNPP,

modifies panicle architecture by regulating pedicel length (Lu

et al., 2017). Notably, OsMADS5 was demonstrated to have both

QTN effect and QEI effect, which was associated with

inflorescence development in several previous studies (Arora

et al., 2007; Zhu et al., 2022).

In addition to the above-mentioned 87 known genes, 30

candidate genes around the significant/suggested QTNs and

QEIs that have not previously been reported were also

detected in this study. These candidate genes were shown to

be involved in many biological processes of rice growth, which

indicates underlying associations between the identified

candidate genes and the target traits (Figure 3A). Among these

30 candidate genes, 27 candidate genes had high expression in

specific tissues, such as panicles and inflorescence (Figure 3B). In

addition, 19 candidate genes associated with different traits had

homologous genes in Arabidopsis (Table 5). LOC_Os04g53210

and LOC_Os07g42440 were demonstrated to be potentially

associated with flowering and yield, respectively, by haplotype

and phenotypic difference analysis (Figure 4; Supplementary

Figure S3B). LOC_Os04g53210 especially might be a key gene in

gene-env i ronment in te rac t ion for flower ing t ime

(Supplementary Figure S3A).

3VmrMLM represents a significant advancement in GWAS

methodologies and practical applications. First, 3VmrMLM

correctly detects both QTNs and QEIs and produces unbiased

estimations of their effects, unlike current GWAS methods that
Frontiers in Plant Science 13
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only detect QTNs and estimate genetic effects (Li et al., 2022a).

Second, despite the fact that Feldmann et al. (2021) discovered

that the phenotypic variance explained and the percentage of

marker-associated genetic variance of large-effect loci were

overestimated in analyses of complex traits, maximum

likelihood estimation using ANOVA with the linear invariance

property theoretically guarantees accurate loci detection and

unbiased estimation of effects. Moreover, 3VmrMLM uses a

compressed mixed model with three variance components to

overcome the huge computational burden in traditional GWAS

models. Therefore, 3VmrMLM is a good choice for detecting

QTNs and QEIs associated with rice yield-related traits.
Conclusion

In this study, a compressed mixed model with three variance

components in GWAS, 3VmrMLM, was used to detect QTNs and

QEIs related to rice yield traits. A total of 165 QTNs were

identified. Moreover, 75 known genes were identified adjacent

to the QTNs based on genome annotation and previous studies. In

terms of QTN-by-environment detection, 21, 3, 3, 6, 9, and 4

QTNs and 13, 4, 2, 4, 3, and 2 QEIs were detected for all

populations and each subpopulation. Moreover, 12 known

genes were identified adjacent to the QTNs and QEIs. As a

result of further differential expression and functional

enrichment analysis, 30 candidate genes were detected.

LOC_Os04g53210 and LOC_Os07g42440 were confirmed as

main candidate genes by tissue-specific expression analysis,

comparison of homologous Arabidopsis genes, and haplotype

and phenotypic difference analysis. LOC_Os04g53210 might be

useful in gene-environment interaction for a flowering time trait.

These results could be helpful for detecting genes related to

rice yield.
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SUPPLEMENTARY FIGURE 1

Manhattan plots of the single-environment analysis for eight yield-related

traits of rice. FTAB, FTAR, and FTF are the flowering time in three different
environments. Pink text: known genes for the corresponding significant/

suggested SNPs.
SUPPLEMENTARY FIGURE 2

Manhattan plots of the mult i-environment analysis for the

flowering time of rice. (A, B) Manhattan plots of QTNs and QTN-
by-environment interactions for all populations. (C–L) Manhattan

plots of QTNs and QTN-by-environment interactions for each
subpopulation. Pink text: known genes for the corresponding

significant/suggested SNPs.
SUPPLEMENTARY FIGURE 3

Results of haplotype and phenotypic difference analysis for the candidate

genes. (A) LOC_Os04g53210. (B) LOC_Os07g42440.
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Genome-wide association
studies reveal novel QTLs, QTL-
by-environment interactions
and their candidate genes for
tocopherol content in
soybean seed

Kuanwei Yu, Huanran Miao, Hongliang Liu, Jinghang Zhou,
Meinan Sui, Yuhang Zhan, Ning Xia, Xue Zhao*

and Yingpeng Han*

Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean
Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University,
Harbin, China
Genome-wide association studies (GWAS) is an efficient method to detect

quantitative trait locus (QTL), and has dissected many complex traits in soybean

[Glycine max (L.) Merr.]. Although these results have undoubtedly played a far-

reaching role in the study of soybean biology, environmental interactions for

complex traits in traditional GWAS models are frequently overlooked. Recently, a

new GWAS model, 3VmrMLM, was established to identify QTLs and QTL-by-

environment interactions (QEIs) for complex traits. In this study, the GLM, MLM,

CMLM, FarmCPU, BLINK, and 3VmrMLM models were used to identify QTLs and

QEIs for tocopherol (Toc) content in soybean seed, including d‐Tocotrienol (d‐
Toc) content, g‐Tocotrienol (g‐Toc) content, a‐Tocopherol (a‐Toc) content, and
total Tocopherol (T-Toc) content. As a result, 101 QTLs were detected by the

above methods in single-environment analysis, and 57 QTLs and 13 QEIs were

detected by 3VmrMLM in multi-environment analysis. Among these QTLs, some

QTLs (Group I) were repeatedly detected three times or by at least two models,

and someQTLs (Group II) were repeatedly detected only by 3VmrMLM. In the two

Groups, 3VmrMLM was able to correctly detect all known QTLs in group I, while

good results were achieved in Group II, for example, 8 novel QTLs were detected

in Group II. In addition, comparative genomic analysis revealed that the proportion

of Glyma_max specific genes near QEIs was higher, in other words, these QEIs

nearby genes are more susceptible to environmental influences. Finally, around

the 8 novel QTLs, 11 important candidate genes were identified using haplotype,
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and validated by RNA-Seq data and qRT-PCR analysis. In summary, we used

phenotypic data of Toc content in soybean, and tested the accuracy and reliability

of 3VmrMLM, and then revealed novel QTLs, QEIs and candidate genes for these

traits. Hence, the 3VmrMLMmodel has broad prospects and potential for analyzing

the genetic structure of complex quantitative traits in soybean.
KEYWORDS

GWAS, 3VmrMLM, soybean, tocopherol content, QTL, candidate genes
Introduction

Soybean [Glycine max (L.) Merr.] is an important crop, and

provided a great source of protein, oil, vitamin, and other

nutrients for humans around the world. As one of the

functional nutrients of soybean, tocopherol (Toc) has strong

antioxidative capabilities and benefits to human health. It can

scavenge free radicals in the body and increase immune function

(Meagher et al., 2001; Kumar et al., 2009). According to the

chemical structure, Tocs are composed of four members: a-
tocopherol (a-Toc), b-tocopherol (b-Toc), g-tocopherol (g-Toc),
and d-tocopherol (d-Toc) (Wan et al., 2008; Rozanowska et al.,

2019; Barouh et al., 2022). Among them, a-Toc has the highest
activity (Shaw et al., 2016). Edible oil is one of the main sources

of Toc (Packer and Fuchs, 1993). As the most widely produced

vegetable oil in the world, soybean oil has the highest total-Toc

content, however, g-Toc in soybean oil accounts for more than

70%. Although g-Toc has antioxidant and other physiological

activities, a-Toc is more excellent (Bramley et al., 2000). Hence,

elevating the a-Toc content and total-Toc content in soybean

genetics is important for quality improvement.

The Toc content of soybean seed is a typical quantitative

trait, and it is difficult to breed this target trait of soybean variety

using traditional breeding. This requires a lengthy selection

process (Britz et al., 2008; Seguin et al., 2010). As an ancient

tetraploid plant (Blanc and Wolfe, 2004), the soybean owing to

its large and complex genome background brings great

challenges and difficulties in genetic improvement (Young and

Bharti, 2012; Tian et al., 2020; Lemay et al., 2022).

Genome-wide association studies (GWAS) is a powerful

genomics tool, and it can base on natural populations to detect

quantitative trait locus (QTL) underlying complex quantitative

traits (Burton et al., 2007; Hamblin et al., 2011). GWAS has the

advantage of high-resolution and high-throughput, thus, this

method for analysis provides great convenience for the study of

genetic variation in soybean (Anderson et al., 2020). Since the

first GWAS conducted in soybean until now, almost all the

important agronomic traits have been covered and dissected

(Zhou et al., 2015; Fang et al., 2017). And yet, different GWAS
02
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models yield different GWAS results when we owe high-quality

genotype and phenotype data (Chatterjee et al., 2013). Therefore,

selecting the most suitable model for GWAS analysis can

increase the accuracy to identify QTLs.

The general linear model (GLM) (Price et al., 2006), the

mixed linear model (MLM) (Yu et al., 2006), and the compressed

mixed linear model (CMLM) (Zhang et al., 2010) are single-

marker genome-wide scan models, and these models can

comprise a one-dimensional genome scan by testing one

marker at a time. Among them, CMLM is frequently used in

the genomic dissection of soybean quantitative traits (Jing et al.,

2018; Zhao et al., 2019; Sui et al., 2020). However, single-marker

genome-wide scan models require Bonferroni correction and

multiple tests (Wang et al., 2016). Bonferroni correction is a

stringent criterion, although greatly reduced false positive rates,

many important loci associated with the target traits were missed

(Zhang et al., 2019). With the rapid development of statistical

methods, several multi-locus GWAS approaches have been

developed to improve the power of QTL detection (Segura

et al., 2012; Wen et al., 2018). Such as the Bayesian-

information and linkage disequilibrium iteratively nested

keyway (BLINK) (Huang et al., 2018), and the fixed and

random model circulating probability unification (FarmCPU)

(Liu et al., 2016). The obvious advantage of these methods is not

a Bonferroni correction, they can reduce the amount of

calculation and improve the accuracy.

Recently, a novel model was presented, named 3V multi-

locus random-SNP-effect mixed linear model (3VmrMLM) (Li

et al., 2022a). It is a multi-marker genome-wide scan model, this

model not only provides high QTL detection power and

sensitivity, at the same time, but it can also detect the QTL-

by-environment interaction (QEI) and the QTL-by-QTL

interaction (QQI). In this study, based on 23,149 SNPs and

175 soybean germplasms, we used six models (including

3VmrMLM, BLINK, FarmCPU, GLM, MLM, and CMLM) and

conducted GWAS of individual and total-Toc content across

three environments. The aim of this study is to reveal novel

QTLs and QEIs of soybean Toc content and screen

candidate genes.
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Materials and methods

Plant materials, field trials, and
phenotypic evaluation

The material used in this study included 175 diverse soybean

accessions (Table S1), which encompassed most of the northeast

regions of China and other countries. These materials were

collected from the Chinese National Soybean GeneBank

(CNSGB) and can represent the genetic diversity inside and

outside of China. In this study, all experimental materials were

planted at Harbin (117°17′E, 33°18′N), Liaoning (41°48′N, 123°
25′E), and, Jilin (124°82′E, 43°50′N) in 2021. The field trials used
a single-row plot (3 m-long rows and spaced 0.65 m) and were

arranged in a randomized complete block design with three

replicates per test environment. After full maturity, mature

kernels of 10 randomly selected plants in each line were

collected and used for evaluation of individual and total Toc

content. The soybean seed Toc extraction and measurement

were performed according to previous reports (Ujiie et al., 2005).
DNA isolation and sequencing

The genomic DNA of each sample from 175 tested accessions

was isolated from young leaf was isolated by the method of CTAB

(Han et al., 2015), and simplified-sequenced via specific locus

amplified fragment sequencing (SLAF-seq) (Sun et al., 2013). The

digest enzyme group of MseI (EC: 3.1.21.4) and HaeIII (EC:

3.1.21.4) (Thermo Fisher Scientific Inc, Waltham, MA, USA.)

were used to obtain more than 50,000 sequencing tags, each 300-

500 bp in length. The obtained markers were evenly distributed in

unique genomic regions of the 20 soybean chromosomes. The

short oligonucleotide alignment program 2 software (SOAP2) was

used to align the raw paired-end reads to the soybean reference

genome. Based on over 58,000 high-quality SLAF labels from each

test sample, raw reads from the same genomic location were used

to define SLAF groups. Genotypes were considered heterozygous

if the minor allele depth or total allele depth of the sample was

greater than 1/3 (Han et al., 2016).
Population structure evaluation and
linkage disequilibrium analysis

The principle component analysis (PCA) was performed

using the genome association and prediction integrated tool

(GAPIT) R package to analyze the population structure of the

natural panel (Lipka et al., 2012). The linkage disequilibrium

(LD) parameter (r2) for estimating the degree of LD between

pair-wise SNPs (MAF ≥ 0.05 and missing data ≤ 10%) was

calculated by TASSEL 5.0 (Bradbury et al., 2007). Unlike GWAS,

missing SNP genotypes were not classified as major alleles prior
Frontiers in Plant Science 03
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to LD analysis. Parameters in the program included MAF (≥

0.05) and completeness (> 80%) for each SNP.
Genome-wide association studies

In total, 23,149 polymorphic SNP markers and 175 tested

accessions were used to perform GWAS, it was performed using

six models, including three single-locus model: MLM, GLM,

CMLM, and three multi-locus models: FarmCPU, BLINK,

3VmrMLM. Among these, the GLM, MLM, CMLM,

FarmCPU, and BLINK models were implemented with the R

package “GAPIT” and visualization used scripts from the R

package “qqman” (https://cran.r-project.org/package=qqman)

and “CMplot “ (https://github.com/YinLiLin/R-CMplot).

The significant threshold value for the association between SNP

and traits were determined by -log10 (P) ≥ 4, which is equivalent to

P ≤ 0.0001, forMLM, GLM, CMLM, FarmCPU, and BLINK. The R

software IIIVmrMLM (Li et al., 2022b) of the 3VmrMLM method

(Li et al., 2022a) was downloaded from GitHub website (https://

github.com/YuanmingZhang65/IIIVmrMLM). In this study, we

used the single environment and multiple-environment methods

to identify QTLs and QEIs. The significant threshold value was

determined by LOD score ≥ 4.
Prediction of candidate genes

Candidate genes located in the 200-kb genomic region

(100 kb upstream and 100 kb downstream) of each significant

or suggested QTL then identified and annotated the candidate

genes with the soybean reference genome (Wm82.a2.v1, http://

www.soybase.org) (Cheng et al., 2017). The gene ontology (GO)

enrichment analysis of candidate genes using the online tool

(https://www.soybase.org/goslimgraphic_v2/dashboard.php). In

addition, the whole genome and QEIs candidate genes among

soybean relatives were compared using OrthoVenn2 (https://

orthovenn2.bioinfotoolkits.net/task/create) (Xu et al., 2019).
Association analysis of candidate genes

Genome resequencing data were used to select the SNP

variations within candidate genes. These SNP were located in

exonic, intronic regions, upstream and downstream regions.

Then, we combined the phenotype values of 56 soybean

germplasms in three environments, these soybean germplasms

were selected from the 175 diverse soybean accessions (Table S1)

(including 9 high and low individual and total Toc germplasms),

using the general linear model (GLM) in TASSEL 5.0 to identify

SNPs of candidate genes that related to individual or total Toc

content (Bradbury et al., 2007). Significant SNPs associated with

the target trait were claimed when the test statistic was P < 0.01.
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Haplotype analysis

The haplotypes were classified based on all of the SNPs with

an MAF >0.05 in each candidate gene. Best linear unbiased

predictors (BLUP) value were calculated using the “Phenotype”

(https://cran.r-project.org/package=Phenotype) in R package.

For each Toc component, haplotypes containing 18 soybean

germplasms accessions were used for comparative analysis. One-

way ANOVA and Two-tailed unpaired t -test were used to

compare the differences in TC-BLUP value among the

haplotypes. Finally, we compared the individual or total Toc

content among these different haplotypes.
RNA-Seq data analysis of candidate
genes

For candidate genes expression pattern analysis, first, we

performed a differential expression pattern analysis at different

tissues by downloading the RNA expression data from the plant

public RNA seq database (PPRD) (http://ipf.sustech.edu.cn/pub/

soybean/), which integrated all publicly available RNA-Seq

soybean libraries (4,085) (Yu et al., 2022). Then, we also

analyzed the expression of candidate genes in the development

stage (R6) at different germplasms using the transcriptome data

(unpublished data) from our laboratory. Additionally, we

constructed a heat-map plot, and it was performed using the R

package pheatmap (Kolde, 2012).
Quantitative real−time PCR (qRT−PCR)

Total RNA was isolated using the RNAprep pure Plant Kit

(DP432, Tiangen). First-strand cDNA was synthesized from
Frontiers in Plant Science 04
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total RNA using TIANScript RT kits (KR104, Tiangen). And

qRT-PCRs were performed using SYBR Green (FP205, Tiangen)

reagents on an ABI 7500 fast real-time PCR platform. All qRT-

PCRs were performed in three independent repeats, and the

relative levels of transcript abundance were calculated using the

2−DDCT method (Livak and Schmittgen 2001). The GmActin4

(Glyma.12G063400) was used as an internal control for data

normalization. Primer sequences for candidate genes were

obtained from the qPrimerDB database (Table S2) (Lu

et al., 2018).
Statistical analysis

Descriptive statistical analysis of phenotypic data including

mean, minimum, maximum, coefficient of variation (CV),

heritability, skewness, and kurtosis was performed using IBM

SPSS statistics 25.0 (SPSS, Chicago, USA). One-way ANOVA

with Dunnett’s multiple comparisons test and unpaired two-

tailed t-test were performed using GraphPad Prism 9.4.1.
Results

Statistical and variation analysis of Toc
content

Statistical analysis showed a wide range of phenotypic

variations in the levels of the individual and total Toc content

of the 175 soybean accessions fromHarbin, Liaoning, and Jilin in

2021 (Table 1). The coefficient of variation (CV%), skewness,

and kurtosis of Toc content of the association panel are also

presented in Table 1. The CV varied a lot among different Toc

content, especially the a-Toc content under three locations were
TABLE 1 Statistical and variation analysis of tocopherol content in the tested soybean population (n = 175).

Traits Location Min(mg/g) Max(mg/g) Mean(mg/g) CV Skewness Kurtosis Heritability

a-Toc content Harbin 6.59 52.43 22.69 35.21% 0.74 0.80 0.51

Liaoning 5.17 51.12 23.42 44.90% 0.42 -0.64

Jilin 5.65 49.62 21.48 41.68% 0.41 -0.33

g-Toc content Harbin 86.97 244.7 164.97 15.65% 0.35 0.17 0.59

Liaoning 99.01 234.15 161.01 14.63% 0.38 0.55

Jilin 88.78 235.8 167.24 15.22% 0.29 0.26

d-Toc content Harbin 53.1 195.1 107.17 27.71% 0.63 -0.12 0.72

Liaoning 55.6 162.29 93.23 21.04% 0.54 0.21

Jilin 43.64 159.24 91.73 25.92% 0.70 0.12

Total- content Harbin 179.49 407.31 294.83 13.09% 0.03 0.24 0.64

Liaoning 190.37 358.14 277.66 12.45% 0.01 -0.21

Jilin 188.34 371.91 280.44 11.41% -0.04 -0.33
Min, minimum; Max, maximum; CV, coefficient of variation.
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observed from 35.21% to 44.9%, but all Toc content was no

significant skewness or kurtosis (Figure 1). These results showed

that Toc content was mainly influenced by genetic factors with

less effect by environmental factors. Therefore, the tocopherol

content of soybean in this study was appropriate for GWAS.
SNP genotyping, linkage disequilibrium
estimating, and population structure for
the GWAS panel

The genotyped samples included 175 soybean germplasms

(including landraces and elite cultivars). The genomic DNA of

these 175 accessions was sequenced using SLAF-seq. A total of

23,149 high-quality markers (MAF ≥ 0.05, missing data ≤ 10%)

were identified from 153 million paired-end reads with 45 bp-

read lengths and the sequencing depth was about 6.5 fold. The

number of SNPs varied across the 20 soybean chromosomes.

The highest number of SNPs was observed in Chr.18 (1732) and

the lowest was detected in Chr.11 (685) (Figure 2A).

We assessed the mapping power of GWAS by the average

distance of LD decay. The mean LD decay of the population was

estimated at 97466 bp, when r2 dropped to 0.2 (Figure 2B). Then,

all 23,149 SNPs were used for scanning the population stratification

of association panels through the principal component (PC), and

evaluation of the variation of the first 10 PCs analysis revealed an

inflection point at PC3, which demonstrated that the first 3 PCs

dominated the population structure on the association mapping
Frontiers in Plant Science 05
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(Figures 2C, D). Additionally, a lower level of genetic relatedness

among the 175 tested accessions based on pairwise relative kinship

coefficients was observed (Figure 2E).
Quantitative trait locuss associated with
Toc content by GWAS

GWAS was conducted using GLM, MLM, CMLM, FarmCPU,

BLINK, and 3VmrMLM models. All of which accounted for

kinship and population structure. First of all, we used different

thresholds of significance (by -log10 (P) or LOD score= 3, 4, 5, 6, 7,

8, and 9) for testing six GWAS models and counted the number of

QTLs detected (Figure 3A).Then, when -log10(P) ≥ 4 as significant

thresholds, a total of 86 QTLs significantly associated with

individual and total Toc concent in soybean seeds were detected

viaGLM, 18 QTLs were detected by MLM, 41 QTLs by CMLM, 41

QTLs by BLINK, and 34 QTLs by FarmCPU (Figure 4A, Figures

S1–S5 and Tables S3–S7). Among them, only 4 QTLs were co-

detected by all six models (Figure 3B). Furthermore, the largest

number of QTLs were detected with the 3VmrMLMmodel. Among

them, the single-environment method detected 101 QTLs (Figure

S6, Table S8), the multiple-environments method detected 57 QTLs

(Figure S7, Table S9), and 13 QEIs (Figure S8, Table S10). Among

them, 11 QTLs were co-detected by single-environment and

multiple-environment method (Figure 3C). The results showed

that the number of QTLs detected by 3VmrMLM are more

abundant and stable under different significance thresholds.
FIGURE 1

Phenotypic variation of Toc content in soybean seeds of the tested accessions at three environments. (‘Harbin’, ‘Liaoning’, and ‘Jilin’). Variation
of Toc content of soybean in the association panel. The black horizontal line represents the median, the black box represents the range from
the lower quartile to the upper quartile, and the black vertical line represents the dispersion of phenotypic data.
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Finally, the QTLs, which were repeatedly detected in multiple

GWAS models, were selected as reliable QTLs—group I. As

shown in Figure 3B, Table 2, 19 QTLs were co-detected by at

least three times or at least two models, which were distributed

among 24 genomic regions in 14 chromosomes. Among these, 9

QTLs (rs9337368, rs1834346, rs17125409, rs330000, rs9782629,

rs19530677, rs5680781, rs17266245, and rs53062844) were

located in genomic regions or QTLs reported by previous

studies, confirming the accuracy of QTL detection. We regard

the remaining 15 QTLs as the novel QTLs (rs39895210,

rs2960931, rs19310064, rs31044180, rs7543892, rs4992837,

rs14593163, rs24979561, rs588498, rs19962490, rs6204830,

rs8720462, rs37558520, rs34774232, and rs35815938). Moreover,

a total of 161 QTLs were identified by 3VmrMLM (Figure 3A), in

order to test the reliability of the 3VmrMLM model, we selected

the QTLs only detected in 3VmrMLM. 9 QTLs (detected by at

least two times) were repeatedly detected as specific QTLs—group

II (Table 3), which were distributed among 9 genomic regions in 8

chromosomes. rs41784197 was located in genomic regions or

QTLs reported by previous studies. Again, we regard the

remaining 8 QTLs as the novel QTLs (rs7167202, rs9140707,

rs18105573, rs2669053, rs40595691, rs43000771, rs5779917,

and rs46814888).
Frontiers in Plant Science 06
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Prediction of candidate genes for Toc
content in soybean seeds

Based on annotations for the soybean reference genome in

SoyBase, we further predicted candidate genes within the 200-kb

flanking regions of the novel QTLs. In two group novel QTLs, a

total of 248 genes were obtained (Table S11). And a total of 134

genes were obtained in QEIs (Table S12). Then, we used GO

annotation to perform enrichment analysis for group I and

group II genes. The results categorized as molecular function,

cellular component, and biological process, were shown in

Figure 4. Both group I and group II candidate genes are

involved in a variety of functions, such as carbohydrate

metabolic process, translation, protein binding, cytoplasm

component, DNA binding, and so on.
Comparative genome analysis

In order to predict the authenticity of the QEIs, firstly,

we selected four closely related species, Glyma_max,

Vigna_radiate, Vigna_augularis, and Phaseolus_vulgaris,

for comparative genomic analysis. A total of 12847 core gene
A B

D

E

C

FIGURE 2

SNP density, distribution and mapping genetic data of populations. (A). SNP density and distribution across 20 soybean chromosomes. (B). LD
decay of the genome-wide association study (GWAS) population. (C). Population structure of soybean germplasm collection reflected by
principal components. (D). The first 3 principal components of the 23,149 SNPs used in GWAS. (E). A heatmap of the kinship matrix of the 175
soybean accessions.
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clusters were found in the four species, and 1197 gene clusters

were unique to Glyma_max (Figure 5A), specific genes clusters

account for 5.4% (1197/22159). Then, we used candidate gene of

QEIs for comparative genomic analysis, 12 gene clusters were

unique to candidate gene of QEIs (Figure 5B), specific genes

clusters account 9.23% (12/130), this result shown that these

QEIs have more abundant specific genes. As shown in Figure 5C,

these specific genes are involved in various biological processes,

metabolic processes, response to stimulus, etc. More detailed

statistics on the number of shared gene clusters are shown in

Figure 5D. Figure 6E is count of proteins by type of cluster.
Gene-based association analysis of
candidate genes

Two groups of candidate gene association analysis were

performed using the GLM model with the TASSEL, using the

genome resequencing of 56 germplasms (including 9 high and low

individual and total Toc germplasms). A total of 4537 SNPs with

MAF ≥ 0.05 were identified among 248 candidate genes. Among

them, a total of 50 SNPs from 11 candidate genes were found to

reach the threshold with -log10(P) ≥ 2.0 (Table S13), of these, 4

SNPs are located in upstream regions, 10 SNPs are located in

intronic regions, 26 SNPs are located in exonic ;regions, and 10
Frontiers in Plant Science 07
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SNPs are located ;in downstream regions. Those SNPs are

considered to be significantly associated with individual and total

Toc concentrations in soybean seeds. Among these genes, 4

candidate genes from group I and 7 candidate genes from group

II. These genes can be considered potential candidate genes for

individual and total Toc-related. For example, as shown in

Figure 6A, the significant SNPs correlated to a‐Toc and d‐Toc on
basis of association analysis for two candidate genes were

respectively identified (Glyma.17G188700 and Glyma.20G235100

were shown in Figure 6A, others were shown in Figure S9).
Haplotype analysis of candidate genes

For the haplotype analysis, first, all the SNP markers within

each gene are used to construct haplotypes. Then, we performed

one-way ANOVA with TC-BLUP values of each soybean

accession. The results are shown in Table 4, each gene contains

haplotypes that are significant differences from TC-BLUP values.

In addition, 14 haplotypes of 11 candidate genes respectively

conferred an increased individual and total Toc content in

soybean seeds (Glyma.17G188700 and Glyma.20G235100 were

shown in Figure 6B, others were shown in Figure S10). Therefore,

these haplotypes are beneficial and can be adjusted for individual

and total Toc content in soybean seeds.
A B

C

FIGURE 3

Statistics of QTLs in GWAS results under three models. (A) Statistics on the number of QTLs detected at different significance thresholds by
different models or methods. (B)Venn diagram representing the number of unique and shared QTLs with six models. (C) Venn diagram
representing the number of unique and shared QTLs with 3VmrMLM single-environment method and 3VmrMLM multiple-environment method.
Finally determine the red line (A) represents the GWAS significance threshold of this study, both (B, C) are counted at this significance threshold.
3VmrMLM-S represents 3VmrMLM single-environment method, 3VmrMLM-M represents QTL detection of 3VmrMLM multiple-environment
method, 3VmrMLM-QEI represents QEI detection of 3VmrMLM multiple-environment method.
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TABLE 2 SNPs associated with Toc content of soybean seeds and known QTLs overlapped with peak SNPs of group Ⅰ.

SNP Chr. Position Allele Traits Model/
Method

Significance Environment -log10
(P)

Known QTL References

rs9337368 2 9337368 A/T d-Toc
content

BLINK Harbin 6.48 SSR02_0458-
SSR02_0520

Sui et al., 2020

d-Toc
content

FarmCPU Harbin 6.15

d-Toc
content

MLM Harbin 4.03

d-Toc
content

GLM Harbin 4.49

d-Toc
content

3V-M SIG – 6.33

rs39895210 3 39895210 G/A Total-Toc
content

BLINK Liaoning 4.15

Total-Toc
content

FarmCPU Liaoning 4.52

Total-Toc
content

GLM Liaoning 4.53

Total-Toc
content

3V-S SIG Liaoning 19.38

rs2960931 6 2960931 G/A d-Toc
content

FarmCPU Liaoning 4.45

d-Toc
content

GLM Liaoning 4.47

d-Toc
content

3V-S SIG Liaoning 10.47

d-Toc
content

3V-M SIG – 10.45

rs1834346 8 1834346 A/T a-Toc
content

MLM Harbin 4.16 Sat_383-BARC-
037229-06749

Li et al., 2016

a-Toc
content

GLM Harbin 4.06

Total-Toc
content

3V-M SIG – 11.02

rs19310064 8 19310064 A/C a-Toc
content

CMLM Harbin 9.02

a-Toc
content

BLINK Harbin 11.84

a-Toc
content

MLM Harbin 9.02

a-Toc
content

GLM Harbin 9.43

rs31044180 9 31044180 G/T a-Toc
content

FarmCPU Jilin 4.43

g-Toc
content

FarmCPU Jilin 5.15

Total-Toc
content

FarmCPU Jilin 4.22

g-Toc
content

MLM Jilin 4.30

a-Toc
content

GLM Jilin 4.43

g-Toc
content

GLM Jilin 5.15

Total-Toc
content

GLM Jilin 4.22

(Continued)
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TABLE 2 Continued

SNP Chr. Position Allele Traits Model/
Method

Significance Environment -log10
(P)

Known QTL References

d-Toc
content

3V-S SIG Jilin 18.07

rs7543892 10 7543892 T/G d-Toc
content

BLINK Jilin 7.07

d-Toc
content

FarmCPU Jilin 4.55

d-Toc
content

GLM Jilin 4.25

d-Toc
content

3V-M SIG – 11.13

rs49928375 10 49928375 G/T a-Toc
content

CMLM Harbin 5.04

a-Toc
content

FarmCPU Harbin 4.67

a-Toc
content

MLM Harbin 4.91

a-Toc
content

GLM Harbin 5.74

a-Toc
content

3V-S SIG Harbin 17.93

rs17125409 12 17125409 C/A a-Toc
content

CMLM Jilin 5.21 – Zhan et al., 2020

a-Toc
content

BLINK Harbin 6.09

a-Toc
content

BLINK Jilin 10.27

a-Toc
content

FarmCPU Harbin 7.63

a-Toc
content

GLM Harbin 4.56

a-Toc
content

3V-M SIG – 46.05

rs330000 13 330000 G/A d-Toc
content

FarmCPU Liaoning 4.76 – Zhan et al., 2020

d-Toc
content

GLM Harbin 4.76

d-Toc
content

GLM Liaoning 4.96

d-Toc
content

3V-S SIG Liaoning 9.65

d-Toc
content

3V-M SUG – 4.35

rs9782629 14 9782629 G/T g-Toc
content

CMLM Harbin 5.63 BARC-059251-
15691-Sct_034

Shaw et al., 2017

g-Toc
content

BLINK Harbin 7.27

g-Toc
content

FarmCPU Harbin 4.59

g-Toc
content

MLM Harbin 4.71

g-Toc
content

GLM Harbin 4.89

g-Toc
content

3V-QEI SIG – 15.98
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Frontiers in
 Plant S
cience
 09
82
frontiersin.org

https://doi.org/10.3389/fpls.2022.1026581
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2022.1026581
TABLE 2 Continued

SNP Chr. Position Allele Traits Model/
Method

Significance Environment -log10
(P)

Known QTL References

Total-Toc
content

3V-QEI SIG – 18.12

rs19530677 16 19530677 T/A g-Toc
content

CMLM Harbin 7.33 Sat_259-Sat_370 Li et al.,2010/Li
et al.,2016

Total-Toc
content

CMLM Harbin 6.67

g-Toc
content

BLINK Harbin 9.16

Total-Toc
content

BLINK Harbin 4.23

g-Toc
content

FarmCPU Harbin 6.10

g-Toc
content

MLM Harbin 5.28

g-Toc
content

GLM Harbin 6.20

g-Toc
content

3V-QEI SIG – 32.05

rs14593163 17 14593163 T/G d-Toc
content

BLINK Harbin 6.42

Total-Toc
content

BLINK Harbin 4.56

Total-Toc
content

FarmCPU Harbin 7.49

Total-Toc
content

MLM Harbin 5.35

d-Toc
content

GLM Harbin 4.73

Total-Toc
content

GLM Harbin 6.12

rs24979561 17 24979561 G/A a-Toc
content

CMLM Harbin 5.87

a-Toc
content

BLINK Harbin 7.86

a-Toc
content

FarmCPU Harbin 7.56

a-Toc
content

MLM Harbin 5.87

a-Toc
content

GLM Harbin 6.53

a-Toc
content

3V-S SIG Harbin 18.72

rs588498 18 588498 G/A a-Toc
content

FarmCPU Liaoning 4.26

a-Toc
content

GLM Liaoning 4.26

a-Toc
content

3V-S SUG Liaoning 4.53

rs5680781 18 5680781 G/T Total-Toc
content

CMLM Jilin 5.04 – Zhan et al., 2020

g-Toc
content

BLINK Jilin 4.62

Total-Toc
content

BLINK Jilin 5.61
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TABLE 2 Continued

SNP Chr. Position Allele Traits Model/
Method

Significance Environment -log10
(P)

Known QTL References

g-Toc
content

3V-S SIG Jilin 9.07

rs17266245 18 17266245 T/G g-Toc
content

BLINK Jilin 4.31 Satt038–Sat_164 Sui et al., 2020/ Zhan
et al., 2020

g-Toc
content

3V-S SIG Jilin 16.18

g-Toc
content

3V-M SIG – 11.10

rs19962490 18 19962490 T/C d-Toc
content

MLM Harbin 5.42

Total-Toc
content

MLM Harbin 4.39

d-Toc
content

GLM Harbin 4.84

Total-Toc
content

GLM Harbin 4.37

rs53062844 18 53062844 G/T a-Toc
content

CMLM Liaoning 4.91 Satt472–Satt038 Sui et al., 2020

a-Toc
content

BLINK Liaoning 12.82

a-Toc
content

FarmCPU Liaoning 5.73

a-Toc
content

MLM Liaoning 4.87

a-Toc
content

GLM Liaoning 5.73

a-Toc
content

3V-M SIG – 23.60

rs6204830 19 6204830 T/G a-Toc
content

MLM Liaoning 4.10

a-Toc
content

3V-S SIG Liaoning 15.42

a-Toc
content

3V-S SIG Jilin 7.40

rs8720462 19 8720462 G/A d-Toc
content

BLINK Harbin 7.38

d-Toc
content

FarmCPU Harbin 4.37

d-Toc
content

FarmCPU Liaoning 4.48

d-Toc
content

GLM Harbin 6.82

d-Toc
content

GLM Liaoning 4.48

d-Toc
content

3V-S SUG Harbin 5.61

d-Toc
content

3V-M SUG – 4.01

rs37558520 19 37558520 T/C Total-Toc
content

FarmCPU Liaoning 4.06

Total-Toc
content

GLM Liaoning 4.09

a-Toc
content

3V-S SIG Liaoning 9.34
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RNA-Seq data analysis of candidate
genes for Toc content in soybean

In order to confirm the possible effect of candidate genes in

the regulation of Toc content, we firstly used PPRD to analyze the

expression patterns of 11 candidate genes in different tissues. The

result showed that all candidate genes were expressed in soybean

seed (Figure S11), and Glyma.10G171600 is most abundantly
Frontiers in Plant Science 12
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expressed in seed compared with other tissues. Then, for the 11

candidate genes of 56 soybean germplasms at the development

stage (R6), RNA-Seq data analysis was done. The result showed

that the expression levels of the 11 candidate genes in low and high

Toc content germplasms were different. Among them,

Glyma.17G188700 can regulate a-Toc content in soybean seeds.

The range of the expression levels of Glyma.17G188700 in higher

a-Toc germplasms was much higher than those of lower. Other
TABLE 2 Continued

SNP Chr. Position Allele Traits Model/
Method

Significance Environment -log10
(P)

Known QTL References

rs34774232 20 34774232 A/G d-Toc
content

FarmCPU Harbin 4.72

d-Toc
content

GLM Harbin 4.82

d-Toc
content

3V-M SIG – 13.07

rs35815938 20 35815938 T/C d-Toc
content

FarmCPU Liaoning 4.14

d-Toc
content

GLM Liaoning 4.12

d-Toc
content

3V-M SIG – 10.32
3V-S represents 3VmrMLM single-environment method, 3V-M represents QTL detection of 3VmrMLM multiple-environment method, 3V-QEI represents QEI detection of 3VmrMLM
multiple-environment method, SIG represents significant QTLs, and SUG represents suggested QTLs.
TABLE 3 SNPs associated with Toc content of soybean seeds and known QTLs overlapped with peak SNPs of group Ⅱ.

SNP Chr. Position Allele Traits Model/Method Environment − log(P)10
Known QTL References Significance

rs7167202 1 7167202 G/T g-Toc content 3VmrMLM-S Jilin 5.13 SUG

Total-Toc content 3VmrMLM-S Jilin 6.43 SIG

Total-Toc content 3VmrMLM-M – 16.28 SIG

rs41784197 1 41784197 T/C g-Toc content 3VmrMLM-S Jilin 11.64 Satt179-Sat_201 Li et al., 2016 SIG

g-Toc content 3VmrMLM-M – 12.32 SIG

rs9140707 7 9140707 G/T a-Toc content 3VmrMLM-S Liaoning 17.35 SIG

a-Toc content 3VmrMLM-M – 33.30 SIG

rs18105573 8 18105573 A/G d-Toc content 3VmrMLM-S Jilin 6.44 SIG

d-Toc content 3VmrMLM-M – 5.58 SUG

rs2669053 9 2669053 T/C g-Toc content 3VmrMLM-S Harbin 16.30 SIG

g-Toc content 3VmrMLM-QEI – 11.49 SIG

Total-Toc content 3VmrMLM-S Harbin 12.13 SIG

Total-Toc content 3VmrMLM-QEI – 5.23 SUG

rs40595691 10 40595691 C/T g-Toc content 3VmrMLM-M – 4.35 SUG

Total-Toc content 3VmrMLM-M – 7.34 SIG

rs43000771 15 43000771 C/T g-Toc content 3VmrMLM-S Liaoning 4.07 SUG

Total-Toc content 3VmrMLM-M – 4.57 SUG

rs5779917 19 5779917 G/T a-Toc content 3VmrMLM-QEI – 8.90 SIG

g-Toc content 3VmrMLM-S Harbin 7.76 SIG

rs46814888 20 46814888 T/G d-Toc content 3VmrMLM-S Harbin 8.64 SIG

d-Toc content 3VmrMLM-M – 8.70 SIG
3V-S represents 3VmrMLM single-environment method, 3V-M represents QTL detection of 3VmrMLM multiple-environment method, 3V-QEI represents QEI detection of 3VmrMLM
multiple-environment method, SIG represents significant QTLs, and SUG represents suggested QTLs.
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genes regulate Toc content as shown in Figure 7. Interestingly,

Glyma.01G054800, Glyma.09G032100, and Glyma.10G171600 can

regulate both the g-Toc and Total-Toc content. Glyma.09G032100

in higher g-Toc and total-Toc germplasms were much higher than

those expression levels of lower. However, Glyma.01G054800, and

Glyma.10G171600 in higher g-Toc germplasms have higher

expression levels, but in higher total-Toc germplasms have

lower expression levels. Moreover, these candidate genes results

of qRT-PCR are consistent with the RNA-seq data (Figure S12).
Frontiers in Plant Science 13
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Discussion

As one of the vitamin E family members, Toc plays a crucial

role for humans, plants, and animals (Bramley et al., 2000). For

humans, daily Toc supplementation can decrease the risk for

cancer and cardiovascular disease (Shaw et al., 2016). For plants,

Toc can protection of chloroplasts from photooxidative damage

(Munne-Bosch and Alegre, 2002). For animals, Toc must be

added to animal feed to improve and maintain growth and
A

B

FIGURE 4

Gene ontology term enrichment analysis of candidate genes. Note: The categorized percentage and the quantity statistics of gene ontology
term enrichment analysis of candidate genes, (A) represents group I candidate genes and (B) represents group II candidate genes.
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health (Pinelli-Saavedra et al., 2008). Soybean is a major crop

used worldwide as a source of food, oil, and animal feed. Soybean

oil compared to other oil crops contains a higher total Toc

content, but g-Toc comprises 70% (Park et al., 2019). The

physiological activity of g-Toc was lower than that of a-Toc
(Wan et al., 2008). Therefore, increasing the a-Toc and total Toc
content in soybean seeds is important to improve the nutritional

variety and feed quality of soybean. However, the genetic

background of Toc content is complex quantitative

inheritance. The reason why quantitative traits are complex is

that they are controlled by unequal polygenes and are susceptible

to environmental influences. In this study, individual and total

Toc content of 175 soybean accessions were evaluated. The

results showed that the Toc content of tested germplasms was

relatively stable to the environment, and Toc content had a wide

range of variation among the different germplasms.

GWAS has been widely used in the mining of QTLs in most

crops including soybean. It is a method to identify the genetic

variation among the natural populations to establish genetic

markers based on linkage disequilibrium (LD) (Yano et al., 2019;

Xiao et al., 2022). How improve the power of GWAS has been a

major challenge for the last decade. In recent years, a variety of new

methods have been proposed, with the rapid development of
Frontiers in Plant Science 14
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computing technology and sequencing technology (Wang et al.,

2016; Huang et al., 2018; Xiao et al., 2021; Li et al., 2022a). Although

this propelled much of the practicability of GWAS, it is particularly

important to select the appropriate sequencingmethod and suitable

model for improving the positioning efficiency according to the

research needs (Liu et al., 2017; Kim et al., 2021). For this study, we

adopted six models (GLM, MLM, CMLM, BLINK, FarmCPU, and

3VmrMLM), to conduct GWAS of Toc content in soybean seeds.

And the results were divided into two groups, revealed a total of 23

novel QTLs, other QTLs were located in the regions of QTLs in

previous studies or overlapped our previous GWAS studies, and

these known QTLs are all covered by 3VmrMLM.

3VmrMLM is a new algorithm, different from other

algorithm, the 3VmrMLM use single-marker genome-wide

scanning to select potentially associated markers and uses

empirical Bayes and the likelihood ratio test in a multi-locus

model to identify significant QTLs, this undoubtedly improves

its detection capability (Li et al., 2022a). Additionally, it can be

simultaneously estimated in a vector manner that QEI and QQI

effects. Although the QQI detection in this study did not achieve

good results, the 3VmrMLM still showed better detection ability

than the GLM, MLM, CMLM, BLINK, and FarmCPU,

indicating a more reliable tool for complex trait dissection.
A B

D E

C

FIGURE 5

Comparative genome analysis candidate genes of QEIs. (A). Venn diagram representing the core orthologs and specific genes cluster for
Glyma_max, Vigna_radiate, Vigna_augularis, and Phaseolus_vulgaris. (B). Venn diagram representing the core orthologs and specific genes
cluster for candidate genes of QEIs, Vigna_radiate, Vigna_augularis, and Phaseolus_vulgaris. (C). Gene ontology term enrichment analysis of
unique candidate genes of QEIs. (D). Shared gene clusters of orthologous groups categories. (E). Protein families count shared between
Glyma_max, Vigna_radiate, Vigna_augularis, Phaseolus_vulgaris, and candidate genes of QEIs.
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In soybean and other plants, only a few definite genes have

been characterized, associated with an individual or total Toc.

Among them also includes most of the key enzyme genes

(Dwiyanti et al., 2011; Zhang et al., 2013). To accurately screen

candidate genes, we selected a total of 248 genes within the 200-kb
Frontiers in Plant Science 15
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flanking regions of the 23 novel QTLs and using a gene-based

association by the GLM method, a total of 11 genes were finally

determined to be significantly related to individual or total Toc in

soybean seeds. Moreover, almost all these genes have beneficial

haplotypes. Glyma.06G038000 encoded alpha/beta-Hydrolases
A

B

FIGURE 6

Gene-based association analysis and haplotypes analysis. (A). Gene-based association analysis of candidate genes that related to Toc content.
(B). Haplotypes analysis of candidate genes that related to Toc content. Horizontal line indicates that the threshold is set to 2.0, the * and **
was significance at P < 0.05 and P < 0.01, respectively, Glyma.17G188700 from group I, and Glyma.20G235100 from group II.
FIGURE 7

Heatmap of candidate gene expression analysis by RNA-Seq data. Candidate gene analysis was performed using different high and low
germplasms for each Toc content, the red boxes indicate high transcript levels, and the blue boxes indicate low transcript levels. The letter in
the upper right corner a indicates the gene from group I, and the letter in the upper right corner b indicates the gene from group II.
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TABLE 4 Haplotype analysis of candidate genes.

Gene ID Traits Hap Total
number

Mean TC-
BLUP value

P
value

Significance Functional annotation References

Glyma.03G186200 Total-Toc
content

Hap1 9 241.55 – – RAB GTPase homolog C2A

Hap2 3 307.98 0.0007 ***

Hap3 6 310.88 <0.0001 ****

Glyma.03G186500 Total-Toc
content

Hap1 9 241.55 – – Transducin family protein/WD-40 repeat family
proteinHap2 7 305.21 <0.0001 ****

Hap3 2 326.38 0.0002 ***

Glyma.06G038000 d-Toc
content

Hap1 9 79.08 – – Alpha/beta-Hydrolases superfamily protein Albert et al.,
2022Hap2 9 129.63 <0.0001 ****

Glyma.17G188700 a-Toc
content

Hap1 7 12.19 – – hAT dimerisation domain-containing protein/
transposase-relatedHap2 6 28.82 0.0053 **

Hap3 5 33.21 0.0013 **

Glyma.01G054800 g-Toc
content

Hap1 4 107.76 – – Plant protein of unknown function (DUF863)

Hap2 5 107.66 >0.9999 ns

Hap3 3 206.32 0.0002 ***

Hap4 6 201.99 <0.0001 ****

Total-Toc
content

Hap1 4 271.77 – –

Hap2 5 298.58 0.6572 ns

Hap3 3 262.08 0.9795 ns

Hap4 6 266.15 0.9932 ns

Glyma.08G222300 d-Toc
content

Hap1 4 93.7 – – O-fucosyltransferase family protein

Hap2 3 120.1 0.5826 ns

Hap3 3 156.71 0.0548 ns

Hap4 8 199.39 0.0003 ***

Glyma.09G032100 Total-Toc
content

Hap1 5 247.64 – – MYB domain protein 78

Hap2 4 233.93 0.5327 ns

Hap3 9 300.91 0.0002 ***

g-Toc
content

Hap1 5 102.56 – –

Hap2 4 114.14 0.6506 ns

Hap3 9 203.43 <0.0001 ****

Glyma.10G171600 Total-Toc
content

Hap1 5 306.77 – – RAB GTPase homolog A5A

Hap2 4 313.84 0.9366 ns

Hap3 4 238.98 0.0013 **

Hap4 5 243.6 0.0014 **

g-Toc
content

Hap1 5 105.48 – –

Hap2 4 110.49 0.9775 ns

Hap3 4 200.26 <0.0001 ****

Hap4 5 205.98 <0.0001 ****

Glyma.20G235100 d-Toc
content

Hap1 8 86.25 – – Indeterminate(ID)-
domain 2Hap2 10 118.84 0.0089 **

Glyma.20G235400 d-Toc
content

Hap1 6 84 – – P-loop containing nucleoside triphosphate
hydrolases superfamily proteinHap2 4 91.82 0.7330 ns

Hap3 8 131.88 0.0004 ***

Glyma.20G235800 d-Toc
content

Hap1 6 91.24 – – Transducin/WD40 repeat-like superfamily
proteinHap2 5 78.23 0.2695 ns

Hap3 7 134.25 0.0002 ***
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fr
Hap represents Haplotype, TC represents individual and total Toc content. P < 0.05 was considered significant, * Significance was P < 0.05, ** Significance was P <0.01, *** Significance was P
< 0.001, **** Significance was P < 0.0001 and ns stands for no significance.
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superfamily protein. Glyma.01G054800 encoded plant proteins of

unknown function, Glyma.03G186500 encoded a WD-40 repeat

family protein, Glyma.20G235800 encoded a WD40 repeat-like

superfamily protein, Glyma.03G186200 is a RAB GTPase homolog

C2A, Glyma.10G171600 encoded a RAB GTPase homolog A5A,

Glyma.17G188700 encoded transposas, Glyma.09G032100

encoded a myb domain protein, Glyma.20G235100 encoded an

indeterminate domain protein, Glyma.20G235400 encoded a P-

loop containing nucleoside triphosphate hydrolases superfamily

protein. Of these genes, Glyma.01G054800 and Glyma.10G171600

are the most special, and these two genes are higher expressed in

higher g-Toc content germplasms, but lower expressed in higher

total-Toc content germplasms. The soybean oil contains a higher

proportion of g-Toc, this is very different from the other oil crops

(Cahoon et al., 2003). Therefore, we conclude that the

Glyma.01G054800 and Glyma.10G171600 inhibited the

transformation of a-Toc and d-Toc, resulting in the excessive

accumulation of g-Toc, while the total-Toc content decreased. This
requires further experiments to prove. The precise functions and

mechanisms of 11 candidate genes will be planned in

future studies.

In general, the 3VmrMLM algorithm achieved good results in

the GWAS. In this study, Toc content in soybean seed in group I

QTLs, 10 known QTLs are all covered by 3VmrMLM. The results

of GO enrichment analysis showed that group I; and group II

candidate genes had similar GO biological process terms. for the

11 candidate genes finally identified in this study, 7 genes were

alone identified by the 3VmrMLM. All candidate genes were able

to detected by the 3VmrMLM. In addition, a higher percentage of

the Glyma_max specific genes have also been found in candidate

genes near QEIs by comparative genomic analysis. These results

have preliminarily determined the detection efficiency of the

3VmrMLM algorithm. Thus, we hope that using 3VmrMLM

could be used to dissect more important complex quantitative

traits in the future, and this algorithm is advantageous to

promoting the development of soybean breeding.
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Genome-wide association
studies of five free amino
acid levels in rice

Liqiang He1*†, Huixian Wang1†, Yao Sui1†, Yuanyuan Miao1,2,
Cheng Jin1,2 and Jie Luo1,2*

1College of Tropical Crops, Hainan University, Haikou, China, 2Sanya Nanfan Research Institute of
Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
Rice (Oryza sativa L.) is one of the important staple foods for human consumption

and livestock use. As a complex quality trait, free amino acid (FAA) content in rice is of

nutritional importance. To dissect the genetic mechanism of FAA level, five amino

acids’ (Val, Leu, Ile, Arg, and Trp) content and 4,325,832 high-quality SNPs of 448 rice

accessions were used to conduct genome-wide association studies (GWAS) with

nine different methods. Of these methods, one single-locus method (GEMMA),

seven multi-locus methods (mrMLM, pLARmEB, FASTmrEMMA, pKWmEB,

FASTmrMLM, ISIS EM-BLASSO, and FarmCPU), and the recent released 3VmrMLM

were adopted for methodological comparison of quantitative trait nucleotide (QTN)

detection and identification of stable quantitative trait nucleotide loci (QTLs). As a

result, 987 QTNs were identified by eight multi-locus GWAS methods;

FASTmrEMMA detected the most QTNs (245), followed by 3VmrMLM (160), and

GEMMA detected the least QTNs (0). Among 88 stable QTLs identified by the above

methods, 3VmrMLM has some advantages, such as the most common QTNs, the

highest LOD score, and the highest proportion of all detected stable QTLs. Around

these stable QTLs, candidate genes were found in the GO classification to be

involved in the primary metabolic process, biosynthetic process, and catalytic

activity, and shown in KEGG analysis to have participated in metabolic pathways,

biosynthesis of amino acids, and tryptophan metabolism. Natural variations of

candidate genes resulting in the content alteration of five FAAs were identified in

this association panel. In addition, 95 QTN-by-environment interactions (QEIs) of

five FAA levels were detected by 3VmrMLM only. GO classification showed that the

candidate genes got involved in the primary metabolic process, transport, and

catalytic activity. Candidate genes of QEIs played important roles in valine, leucine,

and isoleucine degradation (QEI_09_03978551 and candidate gene

LOC_Os09g07830 in the Leu dataset), tryptophan metabolism (QEI_01_00617184

and candidate gene LOC_Os01g02020 in the Trp dataset), and glutathione

metabolism (QEI_12_09153839 and candidate gene LOC_Os12g16200 in the Arg
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dataset) pathways through KEGG analysis. As an alternative of themulti-locus GWAS

method, these findings suggested that the application of 3VmrMLM may provide

new insights into better understanding FAA accumulation and facilitate the

molecular breeding of rice with high FAA level.
KEYWORDS

rice, free amino acid level, genome-wide association study, quantitative trait locus,
quantitative trait nucleotide-by-environment interactions
Introduction

Rice (Oryza sativa L.) is one of the most important crops

worldwide and provides energy, amino acid, and dietary fiber for

human consumption. In addition to the basic unit in protein

biosynthesis, amino acids are involved in several cellular

responses to affect physiological processes in plants, such as plant

growth and development, intracellular pH control, production of

metabolic energy or redox capacity, signal transduction, and

response to abiotic and biotic stresses (Moe, 2013; Watanabe

et al., 2013; Zeier, 2013; Fagard et al., 2014; Galili et al., 2014;

Pratelli and Pilot, 2014: Hausler et al., 2014; Hildebrandt et al.,

2015). Free amino acids (FAAs) not only play essential roles in plant

growth, development, and responses to stress, but also serve as

important nutrients for human health (Pathria and Ronai, 2021;

Yang et al., 2022). Of all the amino acids, tryptophan (Trp),

isoleucine (Ile), leucine (Leu), and valine (Val) are essential amino

acids that are based on plants and cannot synthesize from external

sources (Galili et al., 2016). In plants, branched-chain amino acids

are important compounds in several aspects. Besides their function

as building blocks of proteins, they get involved in the synthesis of a

number of secondary products in plants and regulate plant growth

by affecting the homeostasis of mineral elements in rice (Diebold

et al., 2002; Jin et al., 2019). Arginine (Arg) is a semi-essential amino

acid and involved in the regulation of various molecular pathways,

which regulates key metabolic, immune, and neural signaling

pathways in human cells (Patil et al., 2016). Branched-chain

amino acids mainly including leucine, valine, and isoleucine

generally participate in regulating protein synthesis, metabolism,

food intake, and aging (Le Couteur et al., 2020). Arginine is a

precursor of amino acids, polyamines, and nitric oxide (NO) for

protein synthesis and is an important metabolite for many cells at

the developmental stage (VanEtten et al., 1963; King and Gifford,

1997). Arginine is generally a major nitrogen storage form also in

underground storage organs, roots of trees, and other plants

(Bausenwein et al., 2001; Rennenberg et al., 2010). Tryptophan

(Trp) is an aromatic amino acid that is synthesized through the

shikimate/chorismate pathway. Notably, Trp is decarboxylated to

tryptamine in vivo; subsequently, hydroxylase catalyzes the

conversion of tryptamine to 5-hydroxytryptamine (5-HT). 5-HT
02
94
is an important neurotransmitter associated with a range of human

behavior problems such as personality and emotional disorders

(Muller et al., 2016). Tryptophan provides the structural backbone

for numerous plant secondary metabolites including the

indoleamines, auxin [indole-3-acetic acid (IAA)], alkaloids, and

benzoxazinoids (Erland and Saxena, 2019). Numerous loci with

small effect underlying the natural variation of primary metabolites

were found in previous studies (Rowe et al., 2008; Chan et al., 2010;

Joseph et al., 2013; Fernie and Tohge, 2017). However, as one of

primary metabolites, the genetic mechanism underlying these five

FAA levels in rice is largely unknown, which is a limitation to the

molecular breeding of rice with high-level FAAs.

Genome-wide association studies (GWAS) provide an

insight into unraveling the genetic basis of complex traits in

plants, especially for the trait controlled by small-effect genes

(Zhu et al., 2008). Since the landmark GWAS of 107 Arabidopsis

accessions (Atwell et al., 2010), GWAS of several agronomical

traits in plants have been reported, which included starch

content in wheat (Hao et al., 2020), flowering time and grain

yield in rice (Yang et al., 2014; Liu et al., 2021), and seed protein

and oil in soybean (Kim et al., 2021). With the technical progress

and cost reduction of metabolomics, metabolite-based genome-

wide association study (mGWAS) has been successfully applied

in several functional genomics and metabolomics studies in

plants (Luo, 2015; Fang et al., 2016; Fang and Luo, 2019).

Previous studies have proven the effectively controlled

spurious association of widely adopted single-locus GWAS

methods (Yu et al., 2006; Zhou and Stephens, 2012). However,

the stringent Bonferroni correction is commonly used as the

significant threshold of marker–trait associations (MTAs),

which may result in the low power of polygenic loci detection

in these methods (Zhang Y.M. et al., 2019). Thus, multi-locus

GWAS methods have been proposed and identified quantitative

trait nucleotide/locus (QTN/QTL) with small effect in a powerful

manner (Segura et al., 2012). For instance, the improved

statistical power and short computing time have been shown

in the implementation of the FarmCPU method (Liu et al.,

2016). The improvement of power and accuracy of the multi-

locus GWAS method mrMLM have been reported (Wang et al.,

2016). Additionally, a series of multi-locus models were
frontiersin.org
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proposed and released in R package mrMLM, which contained

mrMLM (Wang et al., 2016), pLARmEB (Zhang et al., 2017),

FASTmrEMMA (Wen et al., 2017), pKWmEB (Ren et al., 2017),

FASTmrMLM (https://cran.r-project.org/web/packages/

mrMLM/index.html), and ISIS EM-BLASSO (Tamba et al.,

2017). However, the additive and dominance effects of trait-

associated loci remain unclear. To address this issue, a new

multi-locus GWAS method, 3VmrMLM, was proposed to

estimate the genetic effects of three marker genotypes (AA, Aa,

and aa) by controlling all the possibly polygenic backgrounds.

Subsequently, these effects were further divided into additive and

dominance effects for QTNs. Moreover, QTN-by-environment

interactions (QEIs) were also able to be detected by 3VmrMLM

for dissecting the genetic architecture of complex and multi-

omics traits in GWAS (Li et al., 2022a).

To identify the QTLs associated with five FAAs levels,

GWAS was performed on a genetic panel including 448

accessions with 4,325,832 SNPs from the rice core collection

using nine statistical methods. Of these methods, one single-

locus method, seven previous released multi-locus methods, and

the recent proposed 3VmrMLM method were employed to

determine the reliable approaches for main-effect QTLs and

QEI detection of five FAA contents.
Materials and methods

Genetic panel for GWAS

A genetic panel of 448 rice accessions from our lab—a

previously released core collection by Chen et al. (2014)—was

used in Huazhong Agricultural University. It included 293 indica

and 155 japonica accessions, of which 362 varieties are from Asia,

22 varieties are from America, 8 rice accessions are fromAfrica, 13

accessions are from Europe, 3 varieties are from Oceania and, 40

varieties have unknown geographical information.
Metabolite profiling and sequencing

Two biological replicates of the 448 rice accessions grew in

the normal rice growing season at two different blocks of

Huazhong Agricultural University, Wuhan, China. For each

replicate, randomly designed planting materials were used to

harvest leaves at the five-leaf stage in liquid nitrogen of three

different plants in each row of the field for metabolite extraction.

Then, mix the material for biological replicate of each accession.

The broad-sense heritability H2 was calculated by using the data

collected from different biological replicates at two different

experimental bases of Huazhong Agricultural University. A

scheduled multiple reaction monitoring (MRM) method with

an MRM detection window of 80 s and a target scan time of 1.5 s

were used to quantify the FAAs (Chen et al., 2013). Log2-
Frontiers in Plant Science 03
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transformed metabolite data were used for further analysis to

improve normality.

To identify the genetic variation of 448 rice accessions,

approximately 448 Gb high-quality genome sequences of these

accessions were obtained from the Illumina HiSeq 2000 platform

(Chen et al., 2014). Rice reference genome sequence MSU 6.1

(Nipponbare, version 6.1) and corresponding annotation were

downloaded from Rice Genome Annotation Project (http://rice.

uga.edu/index.shtml). Clean reads were mapped to the rice

reference genome using BWA software (https://sourceforge.

net/projects/bio-bwa/) with default settings. The mapping files

were processed with SAMtools software (Li et al., 2009).

HaplotypeCaller, CombineGVCFs and GenotypeGVCFs

functions with default settings in GATK software (https://gatk.

broadinstitute.org/hc/en-us) were used for SNP joint-calling and

filter of the 448 accessions. Filtered high-quality SNPs (–maf

0.05 and –geno 0.1 in PLINK software, https://zzz.bwh.harvard.

edu/plink/) were used for subsequent analysis.
PCA and phylogenetic analysis

To summarize the genetic structure and variation of 448 rice

accessions, principal component analysis (PCA) was conducted

by PLINK software using the obtained high-quality SNPs.

Furthermore, SNP-based phylogenetic analysis of all accessions

was performed by MEGA-CC with a pairwise gap deletion

method for 1,000 bootstrap replicates (Kumar et al., 2012).
Population structure and
linkage disequilibrium

ADMIXTURE software was employed to estimate the

population stratification of all accessions (Alexander et al.,

2009). To evaluate LD decay across the whole genome, the

squared correlation coefficient (r2) between SNPs was computed

and plotted using PopLDdecay software (Zhang C. et al., 2019).
Genome-wide association study

GWASwere performed on the association panel containing 448

rice accessions with 4,325,832 high-quality SNPs. In total, nine

models were implemented for GWAS, which included a single-

locus model GEMMA (Zhou and Stephens, 2012) and eight multi-

locus models, namely, FarmCPU (Liu et al., 2016), mrMLM (Wang

et al., 2016), pLARmEB (Zhang et al., 2017), FASTmrEMMA (Wen

et al., 2017), pKWmEB (Ren et al., 2017), FASTmrMLM (https://

cran.r-project.org/web/packages/mrMLM/index.html), ISIS EM-

BLASSO (Tamba et al., 2017), and 3VmrMLM (Li et al., 2022a).

The R package mrMLM composed of six multi-locus methods

mrMLM, pLARmEB, FASTmrEMMA, pKWmEB, FASTmrMLM,
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and ISIS EM-BLASSO was applied to test the marker and trait

as soc ia t ion . mrMLM parameter for s ix methods :

Likel ihood=“REML” , SearchRadius=20, CriLOD=3,

SelectVariable=50, and Bootstrap=FALSE. These six methods in

the mrMLM package were developed and released from the same

research group that were referred to as “mrMLM series methods”.

The LOD score ≥ 3 was used to detect the association signals of

mrMLM series methods by default. The new released 3VmrMLM

method, implemented by the IIIVmrMLM software (Li et al.,

2022b), was used to detect main-effect quantitative trait

nucleotide (QTN) and QTN by environment interaction (QEI).

3VmrMLM parameter for main-effect QTL: method=“Single_env”,

SearchRadius=20, and svpal=0.01. 3VmrMLM parameter for QEI:

method=“Multi_env”, SearchRadius=20, and svpal=0.01. The

threshold of significant association of other methods was

determined by a critical p-value at the 0.05 significant level

subjected to Bonferroni correction (p-value = 1.16 × 10−8). All

methods used in this study were implemented with default

parameters. Manhattan and QQ plots were drawn using R

CMplot, mrMLM, and 3VmrMLM packages with default settings.
Analysis of candidate genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway annotation of candidate genes was

analyzed by the Plant GeneSet Enrichment Analysis Toolkit

(PlantGSEA) (Yi et al., 2013). The annotation of SNP effects on

gene body was obtained from the RiceVarMap database (http://

ricevarmap.ncpgr.cn/) and further used for haplotype and
Frontiers in Plant Science 04
96
content analysis of potential candidate genes. Haplotype

network was generated according to all information of a

candidate gene from RiceVarMap database (http://ricevarmap.

ncpgr.cn/). Temporal and spatial expression of potential

candidate genes were assayed based on the expression data

from electronic fluorescent pictograph Browser (ePlant)

(http://bar.utoronto.ca/).
Results

FAA levels of rice genetic panel

The five FAA levels (Val, Leu, Ile, Arg, and Trp) were

quantified by LC-MS/MS to evaluate the phenotypic variation

in 448 rice accessions. The CV of them were 45.03%, 58.83%,

71.25%, 92.30%, and 58.21%, respectively (Table 1).

Furthermore, significant differences on five FAA levels were

observed between indica and japonica accessions in this rice

genetic panel (Figure 1). High correlation of five FAA contents

was observed among them. For instance, the Val dataset was

highly correlated with the Leu (r = 0.83) and Ile (r = 0.90)

datasets, and the Leu dataset was highly correlated with the Ile

(r = 0.93) dataset (Supplementary Figure 1). The skewness and

kurtosis of five FAA levels were less than 1, which showed the

nature of quantitative traits (Supplementary Figure 1;

Table 1). The broad-sense heritability (H2) for Val, Leu, Ile,

Arg, and Trp ranged from 0.32 to 0.51 (Table 1). These

indicated the natural variation of five amino acids present in

this genetic panel.
TABLE 1 Descriptive statistics of five FAA content datasets.

Trait Val Leu Ile Arg Trp

Number 448 448 448 448 448

Mean 23.68 23.41 21.80 17.91 22.20

Standard deviation 0.65 0.83 0.92 0.97 0.78

Variance 0.42 0.69 0.84 0.95 0.61

Mean squared error 0.03 0.04 0.04 0.05 0.04

Median 23.72 23.40 21.81 17.93 22.20

Trimmed 23.70 23.42 21.80 17.91 22.20

Median absolute deviation 0.61 0.87 0.98 1.02 0.82

Minimum 21.69 20.96 19.42 15.01 20.36

Maximum 25.83 25.51 24.94 21.87 24.47

Range 4.14 4.55 5.52 6.86 4.11

Skewness −0.26 −0.07 0.05 0.10 0.04

Kurtosis 0.06 −0.31 −0.17 0.49 −0.27
a Coefficient of variation (%) 45.03 58.83 71.25 92.30 58.21

Confidence interval of 0.95 0.06 0.08 0.09 0.09 0.07

H2 0.32 0.51 0.46 0.38 0.43
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Population structure and phylogenetic
relationship of rice genetic panel

To dissect the genetic basis underlying the natural variation of

FAAs, the relationship assessment of rice genetic panel was based

on 4,325,832 SNPs. According to the Neighbor-joining (NJ)

phylogenetic tree, 448 rice accessions were mainly divided into

two clades which contained 293 indica accessions and 155 japonica

accessions, respectively (Figure 2A). Likewise, the classification of
Frontiers in Plant Science 05
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these accessions into two groups were observed in principal

component analysis (PCA) (Figure 2B). Moreover, the population

structure of rice genetic panel was identical with those obtained in

NJ tree and PCA (Figure 2C). Linkage disequilibrium (LD) analysis

showed that LD decayed fastest before 122 kb, and subsequently

tended to be flat for the rice genetic panel (Figure 2D). Therefore,

the 122- kb flanking region of each QTN was used for putative

candidate gene prediction hereafter. Additionally, indica accessions

showed the highest decay rate in Figure 2D.
A B

D

E F

C

FIGURE 1

Geographic distribution and five FAA levels of genetic panel. (A) Geographic distribution of indica and japonica accessions in the genetic panel;
indica accessions are indicated in red, and blue represents japionica accessions. (B–F) Violin plots of Val, Leu, Ile, Arg, and Trp contents for all,
indica, and japonica accessions; *** indicate statistical significance at the 0.1% probability level
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Identification of five FAA-associated QTLs

In this study, a total of 987 QTNs are identified using nine

GWAS methods (a single-locus method, seven multi-locus

methods, and the recently released 3VmrMLM method) for five

FAA content datasets. Detected QTNs varied resulting from

statistical methods (Supplementary Table 1). 3VmrMLM detected

160 QTNs and the largest number of common QTNs, while no

QTN was detected by GEMMA. In addition, the largest number of

QTNs were identified in the Trp dataset (214) by eight multi-locus

GWAS methods (3VmrMLM, mrMLM, FASTmrEMMA,

pLARmEB, FASTmrMLM, pKWmEB, ISIS EM-BLASSO, and

FarmCPU), followed by the Val dataset (207), the Ile dataset

(203), the Arg dataset (195), and the smallest number of detected

QTNs in the Leu dataset (168) (Figures 3A–E and Supplementary

Figures 2A–E; Supplementary Table 1). Six mrMLM series methods

were compared together; FASTmrEMMA detected the most QTNs

(245), followed by pLARmEB (160), mrMLM (151), FASTmrMLM

(145), pKWmEB (77), and ISIS EM-BLASSO, which detected the

least QTNs (25) (Supplementary Figures 2A–E; Supplementary

Table 1). Different R2 values of common QTNs across methods
Frontiers in Plant Science 06
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were observed, such as the R2 value (%) of 3VmrMLM-detected

QTNs that ranged from 0.78 to 6.95, while the R2 value (%) of the

mrMLM-detected QTN dataset was from 0.43 to 17.61. The average

R2 value (%) of ISIS EM-BLASSO-detected QTNs was the highest

(2.93) among nine GWAS methods, whereas the average R2 value

(%) of the QTNs detected by FarmCPU was the lowest (0.24)

(Table 2). Tag QTNs were selected and referred to as

QTLs hereafter.

In addition, some common QTLs were detected in different

FAA datasets. Intriguingly, QTL_01_10944343 (this QTL ID

refers to QTL_Chromosome_Position) and QTL_05_19754561

were associated with Val and Ile datasets, respectively;

QTL_01_23419417 was co-detected in the Leu and Ile

datasets; QTL_02_24189963 was co-localized in the Leu and

Trp datasets; QTL_09_16065720 was detected in the Arg and

Trp datasets simultaneously; and QTL_10_17905052 was

identified in the Ile and Arg datasets (Supplementary

Figure 3). Among nine GWAS methods, most p-values of the

3VmrMLM-detected common QTLs were the lowest and most

of their LOD scores were the highest correspondingly (Table 2;

Supplementary Table 1; Supplementary Figure 3). These results
A B

DC

FIGURE 2

Population analyses of the genetic panel. (A) Phylogenetic tree of 448 rice accessions. (B) Principal component analysis of 448 rice accessions.
(C) Population structure estimated by ADMIXTURE. (D) LD decay analysis of the genetic panel; LD decay of all 448 rice accessions, indica
accessions, and japonica accessions is indicated in black, red, and blue, respectively.
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indicated that the common QTLs detected by 3VmrMLM across

traits were more significant than those detected by other eight

GWAS methods.
Stable FAA-associated QTLs and
candidate genes

A QTL detected by no less than two methods of 3VmrMLM,

mrMLM series methods (mrMLM, pLARmEB, FASTmrEMMA,

pKWmEB, FASTmrMLM, and ISIS EM-BLASSO), FarmCPU,

and GEMMA was defined as a stable QTL. A total of 88 stable

QTLs were identified in five FAA datasets (Supplementary

Table 2). Fifteen stable QTLs were detected in the Val dataset

(Figures 3A, 4A). In particular, QTL_01_10944343 was

identified by seven GWAS methods (3VmrMLM, mrMLM,

FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and

FarmCPU), and the QTL was also detected in Ile

(Supplementary Figure 3A; Supplementary Table 2). For the

Trp dataset, 23 stable QTLs were identified (Figures 3E, 4E). Of

these QTLs, QTL_09_16065720 was identified by six GWAS

methods (3VmrMLM, FASTmrMLM, FASTmrEMMA,

pLARmEB, pKWmEB, and ISIS EM-BLASSO), and it was
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detected in the Arg dataset simultaneously (Supplementary

Figure 3E; Supplementary Table 2). Additionally, 16, 20, and

14 stable QTLs were detected in Leu, Ile, and Arg datasets

(Figures 3B–D, 4B–D). Significant correlations between NPQTL

(the number of QTL with positive-effect or favorite alleles) and

five FAA contents were observed in Figures 5A–E (r = 0.53–

0.69). The highest correlation was shown in the Trp dataset

(r = 0.69) (Figure 5E).

To understand the molecular basis controlling the five FAA

levels, the biological function of candidate genes was

investigated. According to functional annotations, these

candidate genes were primarily categorized as protein, protein

kinase, glycosyltransferase, and transcription factor

(Supplementary Table 3). Furthermore, GO analysis showed

that these genes were classified into 51 GO terms, such as the

primary metabolic process, biosynthetic process, and catalytic

activity (Supplementary Figure 4). Meanwhile, KEGG analysis of

candidate genes showed that most of them were involved in

metabolic pathways; biosynthesis of amino acids; glycine, serine,

and threonine metabolism; and tryptophan metabolism

(Supplementary Figure 5), for instance, biosynthesis of amino

acids in five FAA datasets (Supplementary Figures 5A–E);

glycine, serine, and threonine metabolism in the Leu dataset
A B

D E

C

FIGURE 3

Circos map of QTLs and QEIs in rice genome identified from Val (A), Leu (B), Ile (C), Arg (D), and Trp (E) datasets. Track A: 12 rice
chromosomes; Track B: heatmap of SNP density with bin sizes of 0.1 Mb; Track C: total unique QTNs detcted by all used methods; Track D:
stable QTLs co-detected by no more than two methods; Track E: all detected QEIs by the 3VmrMLM method.
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TABLE 2 Comparison of QTN/QTL identification for different GWAS methods.

Statistical method No. of detected QTNs No. of stable QTLs Average R2 (%) R2 range (%) LOD range

3VmrMLM 160 83 1.99 0.78–6.95 3.04–46.29

FASTmrEMMA 245 29 1.01 0.01–8.93 3.01–24.01

FASTmrMLM 145 48 1.14 0.03–5.22 3.03–9.95

ISIS EM-BLASSO 25 9 2.93 0.98–6.89 3.01–10.65

mrMLM 151 19 2.54 0.43–17.61 3.06–21.49

pKWmEB 77 22 2.82 0.79–10.46 3.01–9.20

pLARmEB 160 34 1.46 0.01–14.39 3.02–14.80

FarmCPU 24 9 0.24 0.09–0.50 NA

GMMEA 0 0 NA NA NA
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FIGURE 4

Venn diagrams of unique QTNs detected by different GWAS methods from Val (A), Leu (B), Ile (C), Arg (D), and Trp (E) datasets. mrMLM
represents mrMLM series methods including mrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO, and FASTmrMLM.
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(Supplementary Figure 5B); and tryptophan metabolism in the

Trp dataset (Supplementary Figure 5E).

The candidate gene LOC_Os01g19220 encoding beta-D-

xylosidase was identified in the Val and Ile datasets, which

presented three types of alleles: Hap1 (AAGG) was concentrated

in japonica accessions, while Hap2 (GGAA) and Hap3 (GGGG)

were mainly concentrated in indica accessions, and the Val and Ile

content of Hap1 was significantly different with the contents of

Hap2 and Hap3. A lower Val and Ile content in Hap2 and Hap3

was observed than that in Hap1, which directly indicated the

relatively high Val and Ile content present in japonica accessions

compared with indica accessions (Figures 6A–C; Supplementary

Table 4). Based on previous transcriptome and haplotype network

analysis, LOC_Os01g19220 was mainly expressed in seed (S1),

inflorescence (P5), and seedling root. In the haplotype network,

haplotype II of LOC_Os01g19220 was mainly presented in

japonica accessions; however, haplotypes I and III gathered in

indica accessions (Figures 6D, E). Moreover, the gene

LOC_Os01g12940 encoding the phosphorylase domain

containing protein detected in the Leu dataset had three types

of allelic variation. Hap2 (TTGG) was concentrated in indica

accessions, whereas Hap3 (TTTT) was concentrated in japonica

accessions. A vast majority of japonica accessions with Hap3

showed significantly higher Leu level than indica accessions with

Hap2 (Figures 6F, G; Supplementary Table 4). LOC_Os01g12940
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was highly expressed in seedling root. In the haplotype network,

haplotype I of LOC_Os01g12940 was concentrated in japonica

accessions, while haplotypes III and V were concentrated in indica

accessions (Figures 6H,I). In addition, the gene LOC_Os05g49760

encoding the dehydrogenase is identified in the Arg dataset, which

was involved in glutathione metabolism and had three types of

allelic variation. Hap1 (AAGG) and Hap3 (GGGG) were enriched

in indica accessions, and Hap2 (GGAA) was enriched in japonica

accessions. Significant differences of Arg content were observed

among accessions with Hap2, Hap1, and Hap3. Correspondingly,

the Arg level of japonica accessions carrying Hap2 was higher

than the indica accessions with Hap1 and Hap3 (Figures 7A, B;

Supplementary Table 4). Relatively high abundance of

LOC_Os05g49760 was found in SAM (shoot apical meristem),

young leaf, and inflorescence (P5). In the haplotype network,

haplotype II was concentrated in japonica accessions, while

haplotypes I and III gathered in indica accessions (Figures 7C,

D). Moreover, the gene LOC_Os11g06900 encoding amidase

family protein detected in the Trp dataset had two alleles. Hap1

(CC) gathered in indica accessions, and Hap2 (TT) was mostly

present in japonica accessions. Significant differences of Trp

content were observed among accessions with Hap2 and Hap1.

Subsequently, the Trp level of japonica accessions carrying Hap2

was higher than the indica accessions with Hap1 (Figures 7E, F;

Supplementary Table 4). High expression of LOC_Os11g06900
A B

D E

C

FIGURE 5

Box plots of the number of stable QTL with positive-effect alleles (NPQTL) in relation to Val, Leu, Ile, Arg, and Trp contents (A–E). ** indicates
statistical significance at the 1% probability level.
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FIGURE 6

Analyses of Val and Ile level associated gene LOC_Os01g19220 and Leu level associated gene LOC_Os01g12940. (A) Significant tests between
three haplotypes of LOC_Os01g19220 and Val contents. (B) Significant tests between three haplotypes of LOC_Os01g19220 and Ile contents.
(C) Three haplotypes of LOC_Os01g19220 and their distribution in indica and japonica accessions. (D) Haplotype network of LOC_Os01g19220.
(E) Expression profile of LOC_Os01g19220 based on ePlant transcriptome analysis in rice; expression strength coded by color from yellow (low)
to red (high). (F) Significant tests between three haplotypes of LOC_Os01g12940 and Leu contents. (G) Three haplotypes of LOC_Os01g12940
and their distribution in indica and japonica accessions. (H) Haplotype network of LOC_Os01g12940. (I) Expression profile of LOC_Os01g12940
based on ePlant transcriptome analysis in rice, expression strength coded by color from yellow (low) to red (high). *** and NS indicate statistical
significance at the 0.1% probability level and no significant difference, respectively.
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FIGURE 7

Analyses of Arg level associated gene LOC_Os05g49760 and Trp level associated gene LOC_Os11g06900. (A) Significant tests between three
haplotypes of LOC_Os05g49760 and Arg contents. (B) Three haplotypes of LOC_Os05g49760 and their distribution in indica and japonica
accessions. (C) Haplotype network of LOC_Os05g49760. (D) Expression profile of LOC_Os05g49760 based on ePlant transcriptome analysis in
rice, expression strength coded by color from yellow (low) to red (high). (E) Significant tests between two haplotypes of LOC_Os11g06900 and
Trp contents. (F) Three haplotypes of LOC_Os11g06900 and their distribution in indica and japonica accessions. (G) Haplotype network of
LOC_Os11g06900. (H) Expression profile of LOC_Os11g06900 based on ePlant transcriptome analysis in rice, expression strength coded by
color from yellow (low) to red (high). *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% probability level, respectively.
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was observed in inflorescence (P5). In the haplotype network,

haplotypes I, III, IV, and V of it gathered in indica accessions,

whereas haplotype II was concentrated in japonica accessions

(Figures 7G, H).
QEI detection of five FAAs

In total, 95 QEIs of five FAAs were detected by 3VmrMLM

(Supplementary Table 5). Of them, 23, 16, 16, 18, and 22 QEIs

were identified in the Val, Leu, Ile, Arg, and Trp datasets

(Table 3). However, no QEI was detected on some

chromosomes in five FAA datasets (Figure 3; Supplementary

Figure 6). For instance, no QEI on chromosomes 8 and 3 was

found in the Val and Trp datasets, respectively (Figures 3A, E);

none of the QEIs on chromosomes 3, 10, and 11 were detected in

the Leu dataset (Figure 3B); no QEI located on chromosomes 6,

8, and 9 was identified in the Ile dataset (Figure 3C); and no QEI

located on chromosomes 4 and 9 was identified in the Arg

dataset (Figure 3D). Based on biological process, molecular

function, and cellular component in GO analysis, candidate

genes of these detected QEIs were classified into 47 GO terms,

such as metabolic process, transferase activity, and transport

(Supplementary Figure 7). Furthermore, KEGG pathway

analysis showed that candidate genes were mainly involved in

glutathione metabolism (QEI_12_09153839 and its candidate

gene LOC_Os12g16200 in the Arg dataset), valine leucine and

isoleucine degradation (QEI_09_03978551 and its candidate

gene LOC_Os09g07830 in the Leu dataset), and tryptophan

metabolism (QEI_01_00617184 and its candidate gene

LOC_Os01g02020 in the Trp dataset) (Supplementary Figure 8

and Supplementary Table 6). In addition, cysteine and

methionine metabolism in the Val dataset (Supplementary

Figure 8A); tryptophan metabolism in the Trp dataset

(Supplementary Figure 8E); and valine, leucine, and isoleucine

degradation in the Leu dataset (Supplementary Figure 8B) are

also shown in Supplementary Figure 8. According to ePlant

analysis, high expression of LOC_Os12g16200 encoding

glutathione synthetase was observed in seedling root and

mature leaf. LOC_Os09g07830 encoding acetyl-CoA

acetyltransferase was highly expressed in seedling root and

SAM. Relatively high abundance of LOC_Os01g02020
Frontiers in Plant Science 12
104
encoding acetyl-CoA acetyltransferase was found in young leaf

and mature leaf.
Discussion

Methods comparison

Due to the difference of algorithm in different GWAS

methods, the varied number of detected QTNs was observed

accordingly. The FASTmrEMMA method detected the most

QTNs (245), followed by 3VmrMLM (160), pLARmEB (160),

mrMLM (151), FASTmrMLM (145), pKWmEB (77), ISIS EM-

BLASSO (25), FarmCPU (24), and GEMMA, which detected the

least QTNs (0) (Supplementary Table 1). Meanwhile, 3VmrMLM

detected the largest number of common QTNs (Figure 4). Similar

to the result obtained in this study, no QTN was identified in Xu

et al. (2017) and Li et al. (2018) by GEMMA (Xu et al., 2017; Li

et al., 2018). These were consistent with previous studies

suggesting that multi-locus methods outperform single-locus

methods on the statistical power of QTL detection, especially on

the accuracy of QTN effect estimation and reduction of false-

positive rate (Misra et al., 2017; Chang et al., 2018; Cui et al., 2018;

Hou et al., 2018; Ma et al., 2018). The results of 3VmrMLM and

mrMLM were compared as 3VmrMLM was a new three-variance

component integrated with the mrMLM methodological

framework. Most p-values of 3VmrMLM-detected QTNs were

lower than those in mrMLM, and the LOD value of QTNs

measured by 3VmrMLM was larger than the other eight

methods (Supplementary Figure 3). These results indicated that

the QTNs identified by 3VmrMLM were more significant than

those identified by mrMLM. Additionally, the average R2 value

(%) of 3VmrMLM-detected QTNs was lower than that of

mrMLM. The average R2 value of ISIS EM-BLASSO (2.93) was

the highest, followed by pKWmEB (2.82), mrMLM (2.54),

3VmrMLM (1.99), pLARmEB (1.46), FASTmrMLM (1.14),

FASTmrEMMA (1.01), and FarmCPU (0.24) (Table 2).

Notably, in this study, stable QTL_05_19754561 detected by

3VmrMLM/pLARmEB in the Val dataset, QTL_01_07646091

and QTL_07_08680072 detected by 3VmrMLM/mrMLM/

pLARmEB/FarmCPU in the Ile dataset, QTL_11_22412156

detected by 3VmrMLM/pLARmEB in the Arg dataset, and
TABLE 3 QTN-by-environment interactions (QEIs) detected from five FAA content datasets.

Trait No. of detected QEIs R2 range (%) LOD range add*env1 range add*env2 range

Val 23 0.33–2.42 5.09–35.28 −0.13–0.15 −0.15–0.13

Leu 16 0.57–2.41 5.07–21.31 −0.15–0.12 −0.12–0.15

Ile 16 0.46–2.94 4.83–29.92 −0.19–0.12 −0.12–0.19

Arg 18 0.34–1.22 6.16–21.15 −0.14–0.14 −0.14–0.14

Trp 22 0.36–2.60 4.63–34.53 −0.16–0.11 −0.11–0.16
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QTL_01_23592545 detected by 3VmrMLM/FASTmrEMMA in

the Trp dataset were reported in a previous study (Chen et al.,

2014). Furthermore, QTN-0315484798 detected by 3VmrMLM

only and QTN-0134428638 (~5.55 kb downstream of QTN-

vg0134424130 detected by mrMLM in Ile dataset; QTN-

0107646091 detected by FarmCPU/mrMLM in the Val/Trp

dataset; QTN-0100694213, QTN-0727264573, and QTN-

1203473916 detected by mrMLM/ISIS EM-BLASSO/pLARmEB

in the Arg dataset; and QTN-0619805830 detected by ISIS EM-

BLASSO and QTN-0805618520 detected by mrMLM in the Trp

dataset were consistent with previous studies (Chen et al., 2014;

Sun et a l . , 2020) . S ix QTLs (QTL_01_10944343 ,

QTL_01_23419417, QTL_02_24189963, QTL_05_19754561,

QTL_09_16065720, and QTL_10_17905052) were identified in

more than one FAA dataset by no less than three methods

(Supplementary Figure 3). Thus, the present complementarity of

different methods suggested that the combined utilization of

various single-locus and multi-locus GWAS methods may

facilitate the identification of all potential QTLs with large and

small effects in a powerful and robust manner, and the

3VmrMLM method may be used as an alternative for other

multi-locus methods.
Candidate genes for five FAA levels

A total of 88 stable QTLs were identified by no less than two

methods. Genes co-localized in the 122-kb flanking region of

stable QTL were identified for further analysis. Based on GO

classification and KEGG pathway analysis, four potential

candidate genes were found related to five FAA levels in rice,

and the Beta-glucosidase gene (LOC_Os01g19220) involved in

cyano amino acid metabolism (map00460) was a candidate gene

of QTL_01_0944343 on chromosome 1, which was identified in

both the Val and Ile datasets. According to KEGG pathway

information, beta-glucosidase plays an important role in cyano

amino acid metabolism, in which L-isoleucine and L-valine are

required. The Adenosylhomocysteine nucleosidase gene

(LOC_Os01g12940) associated with Leu content was identified

in QTL_01_07089989 on chromosome 1 and involved in

biosynthesis of amino acids (map01230) according to KEGG

anno t a t i on . Th e I s o c i t r a t e d e h yd r o g ena s e g en e

(LOC_Os05g49760, IDH) involved in glutathione metabolism

(map00480) was detected in QTL_05_28394307 from the Arg

dataset according to KEGG annotation. The IDH gene has been

reported as a key enzyme in glutathione metabolism (Koh et al.,

2004; Reitman et al., 2011; Tang et al., 2020). Glutathione is

formed by the binding of g-glutamate and cysteine via peptide

bonds via the g-glutamylcysteine synthetase (GSH1) and the

binding of glycine catalyzed by glutathione synthetase (GSH2)

(Noctor et al., 2012). As the essential precursor of glutathione,
Frontiers in Plant Science 13
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glutamate plays an important role in the biosynthetic and

catabolism pathway of arginine. For instance, ornithine is

synthesized from glutamate either in a cyclic or in a linear

pathway and subsequently further converts to arginine; arginine

catabolism begins with the degradation of arginine to ornithine,

followed by the generation of glutamate through ornithine

degradation (Winter et al., 2015; Majumdar et al., 2016).

Genetic variation of LOC_Os05g49760 resulted in the content

alteration of Arg in this study (Figure 7A). The Amidase gene

(LOC_Os11g06900) that participated in tryptophan metabolism

(map00380) was a candidate gene of QTL_11_03441584 on

chromosome 11, which was associated with Trp level in rice. In

Arabidopsis, amidase catalyzes the conversion of indole-3-

acetamide (IAM) to indole-3-acetic acid (IAA), which is an

alternative terminal reaction step of IAA synthesis (Pollmann

et al., 2009). IAA is the predominant auxin in plants, which can be

synthesized from the Trp-dependent pathway. It has been

confirmed that amidase promotes the synthesis of IAA, which is

formed from tryptophan (Dharmasiri et al., 2005; Mockaitis and

Estelle, 2008; Erland and Saxena, 2019). The natural variation of

LOC_Os11g06900 caused the content alteration of Trp in this

study (Figure 7E). Moreover, bZIP18, BCAT2, and BCAT4 genes

have been validated to control the FAA levels in rice and other

plant studies (Schuster et al., 2006; Angelovici et al., 2013; Sun

et al., 2020). However, they were not found to be candidate genes

offive FAA datasets in this study. Some transcript factors were co-

localized with stable QTLs, which may contribute to the natural

variation of FAA level in rice. Hence, the molecular mechanism of

these candidate genes underlying the variation of FAA levels is

warranted for further validation in the laboratory.
Candidate gene prediction based on
detected QEI

Compared with the other eight methods, 3VmrMLM is able to

detect the QEI of five FAA levels. Based on the 95 detected QEIs,

their predicted candidate genes were subjected to further functional

analysis (Supplementary Table 6). According to KEGG annotation,

the candidate gene LOC_Os12g16200 of QEI_12_09153839 (this

QEI ID refers to QEI_Chromosome_Position) encoding

glutathione synthetase was identified in glutathione metabolism

(map00480) in the Arg dataset. Glutathione synthetase (GSH) is an

important enzyme to catalyze the formation of glutathione via the

binding of g-glutamate and cysteine (Noctor et al., 2012). Glutamate

not only is an essential precursor for glutathione synthesis, but also

participates in the biosynthetic and catabolism pathway of arginine

(Noctor et al., 2012; Winter et al., 2015). LOC_Os09g07830 of

QEI_09_03978551 encoding acetyl-CoA acetyltransferase was

identified in the Leu dataset, which was involved in valine leucine

and isoleucine degradation (map00280) according to KEGG
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annotation. In the Trp dataset, LOC_Os01g02020 gene harbored in

QEI_01_00617184 encoding acetyl-CoA acetyltransferase was

involved in tryptophan metabolism (map00380). These results

suggested that a few QEIs may contribute to a small proportion

of total variation on five FAA levels in rice.
Breeding applications of FAA-
associated QTLs

Significant correlations between NPQTL and five FAA

contents were observed (r = 0.53–0.69), which indicated the

additive effect of these QTLs, especially for the Trp dataset (r =

0.69) (Figure 5). It was observed that the highest levels of Arg

were present in some rice accessions carrying nine QTLs with

positive-effect or favorite alleles (PQTLs), such as C063 and

W088. In addition, the Trp levels in accessions with 18 PQTLs

(C119, etc.) were higher than those with 19 PQTLs (C197)

(Supplementary Table 7). These suggested that the accessions

carrying these PQTLs hold the potential in FAA biofortified rice

breeding through the pyramiding of loci. This strategy has been

successful in the improvement of FHB resistance in wheat

(Buerstmayr et al., 2008). In five FAA datasets, FAA content

in japonica accessions was generally higher than that in indica

accessions (Figures 1B–F; Supplementary Table 4). This

suggested that japonica accessions have more breeding

potential than indica accessions in terms of these five FAA

levels. These japonica accessions are good parents for genetic

improvement of high FAA level by directly hybridizing with elite

varieties. The average R2 value of QTL detected in all five FAA

datasets by 3VmrMLM was lower than that by mrMLM

(Table 2). QTLs with a small effect have been successfully

applied in genomic selection (GS) breeding for the

improvement of disease resistance and yield in crops (Crossa

et al., 2017; Wang et al., 2018; Xu et al., 2021). Hence, these

relatively small-effect QTLs detected by 3VmrMLM might be

applicable for genomic selection breeding in rice with high FAA

levels; in particular, the 3VmrMLM method is beneficial for the

QTL detection of an association mapping population consisting

of heterozygous individuals (Li et al., 2022a).
Conclusion

In this study, a total of 987 QTNs were detected in five FAA

datasets by nine GWAS methods. The large number of detected

QTNs demonstrated five FAA levels in rice were controlled by

polygenes. 3VmrMLM has advantages in several aspects

compared to other GWAS methods; 3VmrMLM detected the

largest number of common QTNs, more significant on QTN

detection, and relatively moderate R2 values of QTLs were
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detected in multi-locus methods. The combined use of GWAS

methods may facilitate the identification of all potential QTLs

with large and small effects in a powerful and robust manner.

Additionally, 15, 16, 20, 14, and 23 stable QTLs were detected in

Val, Leu, Ile, Arg, and Trp datasets. Natural variations of the

LOC_Os01g19220 gene resulting in the content alteration of Val

and Ile demonstrated that some potential candidate genes may

play an important role in the crosslinking of different pathways.

Of these QTLs, KEGG analysis of the candidate genes of five

FAA-associated stable QTLs showed that they participated in

biosynthesis of amino acids in five FAA datasets; glycine, serine,

and threonine metabolism in the Leu dataset; and tryptophan

metabolism in the Trp dataset. Moreover, 23, 16, 16, 18, and 22

QEIs were identified in the Val, Leu, Ile, Arg, and Trp datasets.

KEGG pathway analysis showed that candidate genes were

mainly involved in valine, leucine, and isoleucine degradation

(QEI_09_03978551 and its candidate gene LOC_Os09g07830 in

the Leu dataset), tryptophan metabolism (QEI_01_00617184

and its candidate gene LOC_Os01g02020 in the Trp dataset),

and glutathione metabolism (QEI_12_09153839 and its

candidate gene LOC_Os12g16200 in the Arg dataset). To sum

up, the combined utilization of 3VmrMLM with other GWAS

methods will facilitate the mining of genes controlling complex

traits and genomic selection breeding in rice.
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SUPPLEMENTARY FIGURE 1

Dot plots (lower triangle), histograms (diagonal) and Pearson correlations
(upper triangle) between five FAAs datasets. Best curves are fitted in dot

plots and histograms. *** indicates statistical significance at the 0.1%
probability level probability level, and the size of the coefficient value is

proportional to the strength of the correlation.

SUPPLEMENTARY FIGURE 2

Venn diagrams of unique QTNs detected by mrMLM series methods from

Val (A), Leu (B), Ile (C), Arg (D) and Trp (E).

SUPPLEMENTARY FIGURE 3

Common QTNs detected in different FAA datasets by different methods.
(A): QTN-0110944343; (B): QTN-0123419417; (C): QTN-0224189963;

(D): QTN-0224189963; (E): QTN-0519754561; (F): QTN-0916065720;
(G): QTN-1017905052. The size of the circle is proportional to the

significance level.

SUPPLEMENTARY FIGURE 4

GO classification of candidate genes harbored in stable QTLs in Val (A),
Leu (B), Ile (C), Arg (D), Trp (E) datasets.

SUPPLEMENTARY FIGURE 5

KEGG pathway analysis of candidate genes harbored in stable QTLs in Val

(A), Leu (B), Ile (C), Arg (D) and Trp (E) datasets.

SUPPLEMENTARY FIGURE 6

Manhattan plots for five FAA levels detected QEIs by 3VmrMLM. QEIs in

Val (A), QEIs in Leu (B), QEIs in Ile (C), QEIs in Arg (D), QEIs in Trp (E). Black
horizontal lines in the Manhattan plots represent the genome-wide

significant threshold.

SUPPLEMENTARY FIGURE 7

GO classification of candidate genes harbored in QEIs in Val (A), Leu (B),
Ile (C), Arg (D) and Trp (E) datasets.

SUPPLEMENTARY FIGURE 8

KEGG pathway analysis of candidate genes harbored in QEIs in Val (A), Leu
(B), Ile (C), Arg (D) and Trp (E) datasets.
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Genome-wide association
studies for soybean epicotyl
length in two environments
using 3VmrMLM
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Jun Wang4, Bingfu Guo6, Huawei Gao2, Honglei Ren7,
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Wuhan, China, 4College of Agriculture, Yangtze University, Jingzhou, China, 5Jiangsu Xuhuai
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Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China, 7Soybean Research
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Germination of soybean seed is the imminent vital process after sowing. The status

of plumular axis and radicle determine whether soybean seed can emerge

normally. Epicotyl, an organ between cotyledons and first functional leaves, is

essential for soybean seed germination, seedling growth and earlymorphogenesis.

Epicotyl length (EL) is a quantitative trait controlled by multiple genes/QTLs. Here,

the present study analyzes the phenotypic diversity and genetic basis of EL using

951 soybean improved cultivars and landraces from Asia, America, Europe and

Africa. 3VmrMLM was used to analyze the associations between EL in 2016 and

2020 and 1,639,846 SNPs for the identification of QTNs and QTN-by-

environment interactions (QEIs)”.A total of 180 QTNs and QEIs associated with

EL were detected. Among them, 74 QTNs (ELS_Q) and 16 QEIs (ELS_QE) were

identified to be associated with ELS (epicotyl length of single plant emergence),

and 60QTNs (ELT_Q) and 30 QEIs (ELT_QE) were identified to be associated with

ELT (epicotyl length of three seedlings). Based on transcript abundance analysis,

GO (Gene Ontology) enrichment and haplotype analysis, ten candidate genes

were predicted within nine genic SNPs located in introns, upstream or

downstream, which were supposed to be directly or indirectly involved in the

process of seed germination and seedling development., Of 10 candidate genes,

two of them (Glyma.04G122400 and Glyma.18G183600) could possibly affect

epicotyl length elongation. These results indicate the genetic basis of EL and

provides a valuable basis for specific functional studies of epicotyl traits.

KEYWORDS

genome-wide association analysis, single nucleotide polymorphism, candidate genes,
3VmrMLM, epicotyl length
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Introduction

Epicotyl length (EL), an important complicated and

agronomically trait, was significantly related to plant density

and sowing depth of soybean (Camargos et al., 2019). EL

exhibited the higher genetic variability at the early

developmental stages of soybean, especially at V2 and V3

development stages (Matsuo et al., 2012). EL also affected

plant height and yield of soybean (Hanyu et al., 2020). As a

typical quantitative trait, EL, with relatively high heritability

(more than 95%), was controlled by a few large-effect genes and

a series of polygenes (Chaves et al., 2017). EL was significantly

affected by environment, genotype their interactions (Chaves

et al., 2017; Hanyu et al., 2020). Several studies showed that

genetic and environmental variation approximately accounted

for half of experimental observation. Although EL has been

considered as the important feature of variety during the long-

term soybean breeding, development of soybean cultivar with

reasonable and stable EL through traditional selection method

was still difficult (Chaves et al., 2017). It required evaluation in

multiple environments over several years, and traditional

selection method was expensive, time-consuming and labor-

intensive (Chaves et al., 2017).

Molecular marker could effectively improve traditional

selection efficiency by increasing the allele’s frequency of

desirable quantitative trait loci (QTLs). Presently, linkage

analysis and association analysis, were two major strategies

utilized to identify QTLs of important traits in crops (Li et al.,

2020; Liu et al., 2020; Wang et al., 2021). Segregating population

based linkage analysis strategy is a well-known approach to obtain

QTLs, followed by fine mapping using larger secondary

population or other types of population with sufficient map

resolution, then candidate genes could be cloned for functional

characterization. (Dinka et al., 2007) mapped four additive QTLs

for the length of hypocotyl in soybean. However, none of EL QTLs

of soybean has been reported to date . Based on

diversegermplasms, Genome-Wide Association Study (GWAS)

take advantages of historical recombination events offered another

strategy to effectively fine map QTL with rapid decay of linkage

disequilibrium (LD) (Flint-Garcia et al., 2003). Due to the

advances in next-generation sequencing (NGS) technologies or

Chip with high-density SNPs, GWAS has been widely extensively

utilized to dissect genetic architecture of important traits in crops

including soybean, e.g. biotic stress (Zhao et al., 2015; Zhao et al.,

2017), abiotic stress (Zhang et al., 2015; Jia et al., 2017), yield-

related trait including seed weight (Yan et al., 2017), maturity time

(Contreras-Soto et al., 2017), and seed composition including seed

oil content (Cao et al., 2017; Li et al., 2018), seed protein content

(Zhang et al., 2019), tocopherol (Sui et al., 2020) and isoflavone

concentration (Wu et al., 2020). Liang et al. (2014) identified four

additive QTLs for the length of hypocotyl in soybean using linkage

analysis. However, no EL QTLs in soybean has been reported

to date.
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Since the establishment of mixed linear model (MLM)

method in genome-wide association studies (GWAS) (Zhang

et al., 2005; Yu et al., 2006; Kang et al., 2008), these methods

have proven to be useful in controlling for population structure

and relatedness of individuals. However, these methods are

computationally challenging for large datasets. Thus, a series

of fast MLM-based algorithms have been developed and widely-

used, such as CMLM (Zhang et al., 2010), EMMAX (Kang et al.,

2010), FaST-LMM (Lippert et al., 2011), and GEMMA (Zhou and

Stephens, 2012). In these methods, single marker genome

scanning was used to identify significant QTNs. This is involved

in multiple tests. To control false positive rate, Bonferroni

correction is frequently adopted. The stringent significant

criterion frequently results in the missing of some important

loci, especially in crop GWAS. To overcome this issue, several

multi-locus mixedmodel methods have been proposed and widely

used (Segura et al., 2012; Wang et al., 2016; Wen et al., 2017). As

we know, there are frequently three genotypes for each marker in

GWAS. Two effects should be estimated, while their polygene

backgrounds should be controlled. In most GWAS methods,

however, only one confound effect is estimated, while

its polygene background is controlled. To solve this issue,

recently, Li et al. (2022b) established a three-variance-

component mixed linear model framework, 3VmrMLM, to

identify QTNs, QTN-by-environment interactions (QEIs), and

QTN-by-QTN interactions under controlling all the possibly

polygene backgrounds.

Cytokinins and light can sometimes elicit similar

morphological and biochemical responses. In the absence of

light plant seedlings have long epi- or hypocotyls and appressed

leaves with the plastid development blocked at the stage of

etioplasts or amyloplasts. The l6 ight-i6 ndependent p6

hotomorphogenesis (lip1) mutant of pea shows many of the

characteristics normally associated with light-grown seedlings

when grown in complete darkness, such as expanded leaves, a

short epicotyl and partially developed chloroplast (Frances et al.,

1992). Chory et al. the effects of cytokinin treatment on epicotyl

growth inhibition of lip1 i n darkness are comparable to a

hypocotyl growth inhibition observed in Arabidopsis(Chory

et al., 1994), It appears that the effect of cytokinin on the

growth of the axis of young hypogeal (e.g., Arabidopsis) and

epigeal (e.g., pea) seedlings is similar. The phenotype of wild-

type Arabidopsis plants following cytokinin treatment is similar

to that of the amp1 mutant of Arabidopsis, suggesting that light

and cytokinin act through a common signaling pathway (Chory

et al., 1994; Seyedi et al., 2001). genetic analysis of Arabidopsis

has provided unequivocal evidence that the brassinosteroids

(BRs) are essential phytohormones (He et al., 2003).

Brassinolide (BL), an end product of campesterol oxidationis

is required for the regulation of cell elongation, stress response,

male fertility, pigment biosynthesis, and numerous other

developmental and physiological responses in higher plant

(Grove et al., 1979), The Arabidopsis CYP90A1 (constitutive
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https://doi.org/10.3389/fpls.2022.1033120
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hong et al. 10.3389/fpls.2022.1033120
photomorphogenesis and dwarfism, CPD) has been identified to

functions as the C-23 hydroxylase in the biosynthetic pathway of

brassinosteroids, and cpd mutant exhibited the most

pronounced effect in dwarf phenotype than another five

cytochrome P450 mutants. The biosynthetic model of BRs has

been clearly identified in Arabidopsis, we supposed a similar

model, It has been proved in 1998 that the transcription of

Arabidopsis CYP90A1 was negatively controlled by exogenous

brassinolide (Mathur et al., 1998).

To address above mentioned issues, 951 landraces and

cultivarsselected from Chinese primary core collection in the

Chinese National Soybean GeneBank (CNSGB), were

phenotyped for EL in 2016 and 2020, and genotyped by

1,639,846 SNPs in order to identify QTNs, QEIs, and their

candidate genes for EL in soybean.
Materials and method

Plant materials, filed trials and epicotyl
length evaluations

To construct a diversity panel of EL, a total of 951 landraces

was selected from more than 20,000 samples, which delegated

much of the representatives of diversity of the collection at the

Chinese National Soybean GeneBank (CNSGB). These tested

materials were planted with the single row plots (3-m long and

0.35-m between rows), which was performed with the

completely randomized design and three replications in Sanya,

Hainan China in 2016 and 2020.

A total of 3 randomly selected plants from each plot were

phenotyped for EL by measuring the distance between the

cotilenodary knot and the unifoliate leaves pair knot using

vernier caliper.
DNA isolation and genome sequencing

The genomic DNA of each tested samples were isolated from

fresh leaves of a single plant, and then resequenced. Sequencing

libraries were constructed based on TruseqNano® DNA HT

sample preparation Kit (Illumina USA), and index codes were

added to attribute sequences to each accession according to the

method described by (Li et al., 2020a). The Illumina Hiseq X

platform was used to analyze the libraries of these samples. A

total of 10.58 Tb raw sequences with 150-bp read length, were

obtained. After sequence quality filtering, the clean read of all

tested samples, were aligned to soybean reference genome via

Short Oligonucleotide Alignment Program 2 (SOAP2) software.

The SNPs were calling based on MAF ≥ 0.05. The genotype was

regarded as heterozygous if the depth of minor allele/the total

depth of the sample was more than 1/3.
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Population structure evaluation and
linkage disequilibrium (LD) analysis

The population structure of GWAS panel were evaluated

based on principle component analysis (PCA) programs of

Software package GAPIT (Lipka et al., 2012). LD was called

with SNP (MAF ≥ 0.04 and missing data ≦ 10%) based on

TASSEL version 3.0 (Bradbury et al., 2007).
Association analysis of epicotyl
length of soybean

A total of 1,639,846 SNPs from 951 landraces samples were

utilized to detect association signals of EL in soybean. Imputed

genotype of total sample panel was first transformed in to *.fam,

*.bed, and *.bim format, ELS and ELT in two different

environments were adopted as phenotype, evolutionary

population structure encoded as B (Landrace) and C (Improved

cultivar), and kinship were employed as covariates for multi-

environment joint analysis with significant level of 0.01 using

IIIVmrMLM software of Li et al. (2022b); Li et al. (2022c).

Linkage disequilibrium (LD) of 250kb up- and down-stream of

significantly associated SNP were calculated by PLINK1.9, and

threshold of regional average LD > 0.9 was used to define

credible associated region. Functional annotation of candidate

genes was performed based on annotation by phytozome (https://

phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1).
Definition and verification of
candidate genes

Then SNP variations in the coding region of candidate genes

were analyzed to screen candidate genes with mutation type of

nonsynonymous, stoploss, stopgain, or alternative splicing. To

further screen candidate genes, fixation index (FST) was

calculated by published genome sequences data of 2214

soybeans (Li et al., 2022d) using vcftools (0.1.13) with window

size of 100bp, and coding regions with FST ≥ 0.6 were regarded as

potential domestication gene (Song et al., 2013). Subsequently,

spatial and temporal expression of candidates were analyzed

using publicly available soybean transcriptome integration

dataset (Yu et al., 2022). Functional annotations of all

candidate genes were performed based on the SoyBase

database (http://www.soybase.org) and the Kyoto Encyclopedia

of gene and genomes (KEGG).
Haplotype analysis

Gene region were defined using *.gff, regional genotype of

hapmap diploid were extracted from imputed genotype,
frontiersin.org
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then haplotypes were inferred based on regional genotype

classified according to its location relative to the gene

structure. Significance of traits between different haplotypes

were performed by Kruskal-Wallis (P<0.01) (Theodorsson,

1986). Haplotype TCS network was inferred using PopART

(Bandelt et al., 1999; Clement et al., 2002; French et al., 2014).

Geographic mapping of different haplotypes was performed

using R scripts.
Results

Distribution of the landraces used
in the experiment

Globally, the improved cultivars selected for the experiment

mainly comes from America and Asia, with few from Europe

and Africa. Landraces were all obtained from Asia (Figure 1). To

better understand the genetic architecture of these germplasms,

geographical distribution and ecological types were taken into

account for classification. Both domestic and foreign varieties

can be divided into southern (SR), northern (NR) and central

(HR) varieties, namely domestic varieties (SR, HR, NR) and

foreign varieties (WDD_SR, WDD_HR, WDD_NR). Domestic

NR sources are the maximum, and foreign WDD_HR varieties

account for more than half of the total foreign varieties

(Figure 2A and Table S1). According to ecological types,

domestic cultivars can be divided into northeast spring type

(NESp), northern spring type (NSp), Huang-huai spring type

(HSp), Huang-huai summer type (HSu), Southern spring

type (SSp), Southern summer type (SSu) and Southern

autumn type (SAu), with NESp ranking the first place. The

selected foreign varieties were mainly divided into spring type

(WDD_Sp) and summer type (WDD_Su), and the quantity of

WDD_Sp was twice as much as WDD_Su (Figure 2B and Table

S2). These results demonstrated that nearly 80% of the varieties
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used in the experiment came from China, and 60% of the

varieties obtained abroad were spring varieties in the

central region.
Statistical analysis for inflorescence
length of the association panel

The EL of 951 landraces in Sanya, Hainan China in 2016 and

2020, were evaluated, respectively. The skewness and kurtosis of

EL the three environments were less than ±1, which exhibited a

continuous variation and the near normal distribution (Table

S3). Therefore, EL of the association panel in this study,

were appropriate.
Distribution of SNPs and analysis of
mapping population

Based with the frequency > 0.05 as the minor allele and the

missing data less than 0.03, a total of 1,639,846 single nucleotide

polymorphisms (SNPs) were unevenly distributedon 20

chromosomes of soybean genome. with a density of578.8 bp

per SNP on average, and varied from 337.3bp~1334.4bp per

SNP. In detail, there were 168,498 SNPs on Chr1 with the

highest density (337.3bp/SNP), 31,650 SNPs on Chr5 with

lowest density (1334.4bp/SNP). (Figure 3). Based on these

SNPs, principal component analysis and phylogenetic analysis

were performed on the association panel. The results showed

that the first PCs explained 24.52% of the genetic variation, the

951 varieties were divided into two categories with apparent

discrepancy of genetic relatedness (Figure 4). For a preferably

clearer study of epicotyl traits, they were also divided into two

categories, ELS and ELT. Statistical methods were used to test

that ELS and ELT showed normal distribution in different

environments among varieties (Figure 5).
FIGURE 1

The geographical distribution of the tested accessions.
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Quantitative trait nucleotide associated
with epicotyl length-related traits
by GWAS

QTN (Q) and QTN-by-environment interaction (QEI)

detection method in the 3VmrMLM was used to analyze SNP-

trait associations in two EL two-environment datasets, ELS

(2016 and 2020) and ELT (2016 and 2020). A total of 180

QTNs and QEIs associated with epicotyl length were detected.

Among them, 74 QTNs (ELS_Q) and 16 QEIs (ELS_QE) were

identified to be associated with ELS, and 60 QTNs (ELT_Q) and

30 QEIs (ELT_QE) were identified to be associated with ELT.
Frontiers in Plant Science 05
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Figure 6 Of these , three s i tes (Gm_09_28400545,

Gm_11_31100989, Gm_19_557643) could be found in all

these four result datasets (Table S4).
Prediction of candidate genes for
epicotyl length traits

We performed candidate gene prediction analyses with peak

SNP of ±100 kb based on the physical locations of 180 SNPs

associated with epicotyl length. A total of 1945 genes were

included in these regions (Table S4). Functional annotation of
FIGURE 3

Distribution of SNP markers among 20 chromosomes.
BA

FIGURE 2

951 species construct phylogenetic tree according to geographical distribution and ecological type. (A) Variety Geographical Distribution
Evolutionary Tree. WDD_: Oversea_; NR: Northern Region; HR: Central Region; SR: Southern Region (B) Variety Ecotype Evolutionary Tree. SAu,
Southern autumn soybean; SSp, Southern spring soybean; HSp, Huanghuai summer soybean; SSu, Southern summer soybean; HSu, Huanghuai
summer soybean; NSp, Northern spring soybean; NESp, Northeast Spring Soybeans; WDD_Su, Oversea summer soybean; WDD_Sp, Oversea
spring soybean.
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1945 genes were completed by using Arabidopsis annotation

information. site contribution rate, Transcription abundance of

candidate genes in epicotyl of two representative soybean

germplasms including cultivar Williams 82 with a long

epicotyl of 3.93 cm and cultivar Jack with a short epicotyl of

2.13 cm were analyzed using publicly available soybean

transcriptome integration dataset (Yu et al., 2022). By

comparing the epicotyl lengths of Williams 82 and Jack, a very

significant difference was found (Figures 7A, B). Based on the

transcriptome data of epicotyls from Williams 82 and Jack, 585

out of 1945 genes were not expressed in both epicotyls of

Williams 82 and Jack, 94 genes were expressed only in the

epicotyl of Jack and 60 genes were expressed only in the epicotyl

of Williams 82. A total of 1206 genes were expressed in both

epicotyls of Williams 82 and Jack, of them, 157 genes were

significantly differentially expressed in Williams 82 and Jack.

Combined with Arabidopsis annotation information, 103 genes

were identified as potentially candidate genes for epicotyl length
Frontiers in Plant Science 06
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(Table S5, Figure 7C). These differentially expressed genes in

long and short epicotyl cultivars might be related to the length of

epicotyl of soybean.

To further elucidate whether the differentially expressed genes

were related to the length of the epicotyl, GO enrichment analysis

was performed (http://amigo.geneontology.org/). GO enrichment

analysis showed all genes were assigned to one of three GO

categories: biological process (BP), molecular function (MF),

and Cellular component (CC) (Figure 8).

Further, haplotype analysis was performed for 103 potentially

candidate genes screened by the above analysis. epicotyl

In order to determine the role of the selected potential genes

in soybean epicotyl growth, 22 potential candidates were screened

by combining gene GO annotation and transcriptome differential

expression analysis, and referring to Arabidopsis annotation

information. Haplotype analysis identified 10 significantly

different genesepicotyl. The Hap1 and Hap2 of Glyma.01G005900

in different years of ELS(P=0.0039) and ELT (P=0.039)showed
BA

FIGURE 5

ELS and ELT phenotype distriution. (A) ELS phenotypes at different ages (B) ELT phenotypes at different ages.
BA

FIGURE 4

(A) Population structure of soybean germplasm. (B) Heatmap of the kinship matrix of the 951 soybean accessions.
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extremely significant differences (P<0.01). The Hap1 and

Hap3 of Glyma.18G183600(2016_ELS P=1.1e-09; 2020_ELS

P=0.00013; 2016_ELT P=3.4e-06; 2020_ELT P=0.69),

Glyma.18G185300(2016_ELS P=0.0083; 2020_ELS P=1.2e-08;

2016_ELT P=0.02; 2020_ELT P=0.0031), exhibited extremely

significant differences (P<0.01), while the Hap1 and Hap3

of Glyma.01G050100(2016_ELS P=4.4e-05; 2020_ELS P=0.0021),

Glyma.04G122400(2016_ELS P=1.6e-08; 2020_ELS P=0.0006),

Glyma.18G183600(2016_ELS P=1.1e-09; 2020_ELS P=0.00013) in

different years of ELS had a very significant difference in 2016

(P<0.01), but there was no significant difference in 2020. The

candidate gene Glyma.18G185300 showed a very significant

difference in the two years of EL (P<0.01), and the ELT revealed

a significant difference in 2016(2016_ELT P=0.02) and showed a

very significant difference in 2020(2020_ELT P=0.0031) (Figure 9).

Meanwhile, we counted the variation sites of 10 gene

haplotypes (Table S7). The results demonstrated that

Glyma.04G122400, Glyma.10G031900 and Glyma.18G183600 exist

in exon variation sites, of which Glyma.04G122400 and

Glyma.18G183600 exist non-synonymous mutations, hence, we

speculate that Glyma.04G122400 and Glyma.18G183600 are

candidate genes for epicotyl differences. At the same time, we

combed the geographical origin of the two gene haplotypes

and the distribution of variety characteristics. From the

geographical distribution, we could see that Hap1, Hap2, Hap3

and Hap4 haplotypes of the two candidate genes were absolutely

dominant in the selected varieties. In terms of ecological

characteristics of cultivars, Hap1 and Hap2 haplotypes of the two

genes accounted for more than Landrace haplotypes in improved

cultivars (Figure 10).

We predicted ten plant growth-related genes, namely

Glyma.03G142200 (Ribosomal protein S10p/S20e family
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protein), Glyma.04G122400 (DCD domain protein),

Glyma.04G145000 (nuclear factor Y, subunit B13),

Glyma.10G0319000 (indole-3-acetic acid 7), Glyma.10G056000

(SAUR-like auxin-responsive protein family), Glyma.13G270800

(ubiquitin-conjugating enzyme 35), Glyma.17G005900

(Pollen Ole e 1 allergen and extensin family protein),

Glyma.17G18500 (NAC domain containing protein

83), Glyma.18G183600 (far-red elongated hypocotyl 1),

and Glyma.18G255300 (thioredoxin H-type 5). These

results suggest that soybean epicotyl length may be regulated

by multiple signaling pathways (Table 1).Additionally,

none of these 10 cadidates were identified to be differentiated

among wild soybean, landrace and improved cultivar

(Figure S1).
Discussion

As an important feature of soybean variety, many studies

indicated that EL affected 43.12% of seeds germination

and 57.12% of seedlings emergence for soybean (Hanyu et al.,

2020) estimated the genotypic determination coefficient

of EL was more than 80% regardless of the evaluation

period. (Matsuo et al., 2012) also obtained similar results.

The genotypic determination coefficient was significantly

related to inheritability, thus, it made the inference

about genotypes possible (Vasconcelos et al., 2012; Hanyu

et al., 2020). Through screening a large enough and

reasonable gene database from more than 20,000 varieties,

the SNPs and potential genes related to epicotyl traits

were analyzed by GWAS technology. By elucidating

the epicotyl related loci, it has a potential role in the study of
BA

FIGURE 6

Results of association mapping of soybean epicotyl length traits. (A) Manhattan plot of locus distribution; (B) phenotype fitting results.
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FIGURE 8

Functional categories of the genes in 100kb flanking regions around peak SNPs.
B

C

A

FIGURE 7

Epicotyl length of Williams82 and Jack and expression analysis of 103 candidate genes. (A) Epicotyl phenotype of W82 and Jack (B) Epicotyl
Length Analysis of W82 and Jack (C) Transcriptome alignment of 103 candidate genes.
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early seed germination, seedling germination and stem strength

of soybean.

To date, many seedling crop traits have been studied and

elucidated, but epicotyl traits have been largely ignored and

poorly studied. Four of Chr.2, Chr.4, Chr.7 and Chr.10 were

identified in the F2 population of adzuki bean “Tokei1121”

(T1121, long epimorph) and cultivar “Erimo167” (ordinary

ectomorph) with EL associated SNP) (Mori et al., 2021). There

are no reports on EL-related SNP sites in other plants. The

genetic mechanism of the hypocotyl length trait (HL) has been
Frontiers in Plant Science 09
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extensively studied. SNP mapping of soybean root-related traits

at seedling stage revealed that HL is regulated by multiple

additive genes. Seven QTLs in HL associated with seedling

photomorphology were identified by using recombinant inbred

(RIL) populations obtained from biparental crosses between

Patagonia (Pat) and Colombia (COL0) (Matsusaka et al.,

2021). Compound spacer and epitaxial array localization

methods were also used to identify HL loci associated with

light-responsive quantitative traits (Wolyn et al., 2004). To

pinpoint trait-associated loci, the combination of GWAS and
FIGURE 9

Genotyping of potential gene.
BA

FIGURE 10

Haplotype analysis of candidate genes (A) distribution of geographical origin (B) distribution of cultivar characteristics.
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transcriptome can be used to identify major genes affecting HL

(Luo et al., 2017). These studies suggest that hypocotyl play a

role in root growth and photomorphological responses. (Huang

et al., 2006) studied the regulatory effect of brassinolide on

epicotyl under low temperature conditions by proteomics. How

xylan content in the gravitational bending direction of the

epicotyl of adzuki bean affects its internal xylan content

(Ikushima et al., 2008). Inhibitory effect of red light of the

active form of phytochrome (Pfr) on epicotyl elongation in

pea seedlings (Okoloko et al., 1970). These indicate that

epicotyl play a non-negligible role in a variety of crops,

especially dicotyledonous crops. Faced with this situation, this

study used the soybean EL association panel to analyze the

natural variation of epicotyl length and the related genetic

structure, and analyzed the Hypothetically revealing a set of

candidate genes controlling epicotyl development by GWAS

analysis is undoubtedly a key step in filling in the relevant loci

for epicotyl trait mapping.
Putative genes involved in
epicotyl length

Through the Arabidopsis annotation information, candidate

gene phenotype contribution rate, and combining with Yu et al.

(2022) Williams 82 and Jack transcriptome results of extremely

different genes, we screened 22 potential genes from 103

hypothetical genes. These genes are located in SNP peak

within 100Kb.10 significantly different candidate genes were

identified by haplotype analysis, these genes were genotyped

significantly and distinctly of ELS and ELT. Glyma.03G142200 is

a Ribosomal protein S10p/S20e family protein, proteins involved

in photosynthesis (Bah et al., 2010). Wycoff found that a lectin

protein, analogous to ribosomal proteins, is detected in roots,

hypocotyls and leaves and involved in soybean nodule formation

(Wycoff et al., 1997).

Glyma.04G122400 DCD (Development and Cell Death)

domain protein, thought to be involved in the hypersensitive
Frontiers in Plant Science 10
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response and programmed (Ludwig and Tenhaken, 2001,

Enhaken et al., 2005), In previous studies, DCD domain

proteins was believed to be involved in extracellular matrix or

cytoskeleton proteins involved in growth and differentiation

processes (Ichinose et al., 1990, Massimiliano et al., 2007).

Glyma.04G145000 nuclear factor Y, subunit B13, Nuclear

factor Y is one of the largest transcription factor gene families in

plants, The NUCLEAR FACTOR Y (NF-Y) transcription factors

are heterotrimeric complexes composed of NF-YA and histone-

fold domain (HFD) containing NF-YB/NF-YC (Siriwardana

et al., 2016), NF-Y subunits are emerging as transcriptional

regulators with essential roles in diverse plant processes (Zanetti

et al., 2010). playing key roles in development and in response to

adverse environmental conditions (Nelson et al., 2007; Li et al.,

2008)AtNF-YB6 (L1L) and AtNF-YB9 (LEC1) are involved in

embryo development in seeds (Yamamoto et al., 2009).

Overexpression of PdNF-YB7 in Arabidopsis exhibited earlier

seedling establishment, longer primary roots, larger leaf areas,

and increased photosynthetic rate that conferred drought

tolerance and improved WUE in transgenic plants. In

Arabidopsis, AtNF-YB3 plays an important role in the pro-

motion of flowering specifically under inductive long-day

photoperiodic conditions. Consistent with this, the

overexpression of PdNF-YB7 in Arabidopsis caused earlier

seedling germination time and enhanced the development of

both vegetative and reproductive organs (Xiao et al., 2013), also

found that overexpression of AtNF-YB2 enhanced primary root

elongation due to a faster cell division and/or elongation(Ballif

et al., 2011)

The soybean epicotyl is the basis for the formation of true

leaves after seed germination, which ensures the normal

development of seedlings, and the synthesis of related

hormones is also important. The Glyma.10G056000 and

Glyma.17G005900 encoding SAUR-like auxin-responsive

protein and allergen and elongation protein, respectively, are

annotated through multiple omics networks in the Arabidopsis

genome (Depuydt and Vandepoele, 2021). Glyma.10G031900

encodes an indole-3-ACID 7 protein that functions as the
TABLE 1 Gene based association of candidate genes.

Chr. Physical position (bp) Gene model Trait R2 (contribution rate) Pvalue Functional annotation

3 35863419 Glyma.03G142200 ELT_Q 0.5768 6.09167E-21 Ribosomal protein S10p/S20e family protein

4 15439303 Glyma.04G122400 ELT_Q 0.4336 8.01377E-07 DCD (Development and Cell Death) domain protein

4 26351924 Glyma.04G145000 ELS_Q 0.2279 4.20387E-22 nuclear factor Y, subunit B13

10 2738580 Glyma.10G031900 ELS_Q 0.5234 1.14306E-11 indole-3-acetic acid 7

10 5143580 Glyma.10G056000 ELT_Q 0.5294 5.84009E-32 SAUR-like auxin-responsive protein family

13 37284883 Glyma.13G270800 ELT_Q 1.5012 7.02497E-35 ubiquitin-conjugating enzyme 35

17 637613 Glyma.17G005900 ELT_Q 0.5942 5.10164E-10 Pollen Ole e 1 allergen and extensin family protein

17 23689587 Glyma.17G185000 ELS_Q 0.7863 4.96905E-13 NAC domain containing protein 83

18 44381201 Glyma.18G183600 ELS_QEI 2.1064 1.12718E-32 far-red elongated hypocotyl 1

18 44381201 Glyma.18G185300 ELS_QEI 2.1064 1.12718E-32 one helix protein
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principal component of the ABA-and auxin dependent reactions

during post-germination seed growth (Belin et al., 2009).

Glyma.13G270800 ubiquitin-conjugating enzyme 35, Previous

studies have shown that ubiquitination plays important roles in

plant abiotic stress responses, Protein ubiquitinations play

crucial roles for numerous cellular processes such as cell

growth, development, and response to diverse biotic and

abiotic stresses. (Takahashi et al., 2009; Zhou et al., 2010), The

ubiquitin-depen-dent protein degradation pathway is involved

in photo-morphogenesis, hormone regulation, floral homeosis,

senescence, and pathogen defense (Suzuki et al., 2002; Devoto

et al., 2003).

Glyma.17G185000 NAC domain containing protein 83, The

NAC (for NAM-ATAF1/2-CUC2) transcription factors constitute

one of the largest transcription factor families in plant genomes

(Ooka et al., 2004; Olsen et al., 2005b). Roles of many NAC

transcription factors have been demonstrated in diverse develop-

mental processes and plant responses to biotic and abiotic stresses,

such apical meristem formation (Hibara et al., 2003), cell cycle

control (Kim et al., 2006), AtNAC2 functioning in root

development (He et al., 2005). cell divi-sion (Riechmann et al.,

2000; Kim et al., 2006), NTM2 inte- grates auxin and salt signals in

regulating Arabidopsis seed germination (Park et al., 2011), In

Arabidopsis thaliana, 105 genes are predicted to encode NAC

proteins (Ooka et al., 2004). Song et al. study found The highly

homologous NAC transcription factors ANAC060, ANAC040 and

ANAC089 regulate important transitions in the early phases of plant

development. All three genes play a role in the interplay between the

environment and the developmental switch that results in

germination and/or seedling development (Song et al., 2022). For

germinationandseedlingdevelopment tooccur, theproteinhas tobe

released from the membrane, which for ANAC089 was shown to be

directly affected by changes in the cellular redox status (Albertos

et al., 2021).

Glyma.18g183600 far-red elongated hypocotyl 1,

Phytochrome A (phyA) is the primary photoreceptor for

mediating the far-red high irradiance response in Arabidopsis

thaliana.FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and

its homolog FHY1-LIKE (FHL) define two positive regulators in

the phyA signaling pathway (Shen et al., 2009). Most abundant in

young seedlings in the dark.encodes FHY1 protein that mediates

the transfer of phytochrome A (phyA) to the nucleus.

Phytochrome A (phyA) acts as red and far red (FR) sensing

photoreceptors to regulate plant growth and development

(Helizon et al., 2018). Multiple metabolic pathways are required

to regulate the length of soybean epicotyl (Clouse et al., 1992; Hao

et al., 2014).

Glyma.18G185300 one helix protein, The cellular functions of

two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1

and OHP2 (also named LIGHTHARVESTING-LIKE2 [LIL2] and

LIL6, respectively, because they have sequence similarity to light-

harvesting chlorophyll a/b-binding proteins), OHP1 and OHP2

play an essential role in chloroplast development as well as in
Frontiers in Plant Science 11
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vegetative growth, The photosynthetic capacity of ohp1-1 and

ohp1-2 mutants also was decreased significantly (Myouga et al.,

2018).The protein is localized to the thylakoid membrane and its

transcript is transiently induced by exposure to high light

conditions. increased expression of OHP1 is observed under

light stress (Jansson et al., 2000). may constitute a novel

mechanism of photoprotection in the plant photosynthetic

apparatus (Psencik et al., 2020).

We speculate that traits during soybean domestication are

gradually selected, and the priority traits are yield-related traits,

such as seed size, oil content, and protein content (Wang et al.,

2020). The epicotyl length involved in this study is not a major

direct yield trait and therefore demonstrated weak signal of

domestication selection.

In general, It is certain thatmost of the above candidate genes are

related to the regulation of light and temperature, For example, the

candidate gene Glyma.18G183600 is a phytochromeA (phyA) gene,

which is the main photoreceptor mediating the far-red high-

irradiation response in Arabidopsis. Cellular function of

Glyma.18G185300 with sequence similarity to light-harvesting

chlorophyll a/b binding protein, Glyma.03G142200 is a protein

involved in photosynthesis, and the analysis results show that they

are all involved in the growth and development of soybean epicotyl.

This is consistent with the results that soybean epicotyl length is

greatly affected by different environments. These results can be

reflected from the haplotype analysis of ten candidate genes, which

can be reflected in the significant differences in different

environments (Figure 9).epicotyl However, further functional

verification is needed to clarify the whole mechanism of action.

More importantly, since the epicotyl is located in the country of

cotyledons and true leaves, it is not only involved in seed germination

and seedling growth, but also affects early morphogenesis of

seedlings. Understanding and regulating the molecular regulatory

network of epicotyl length has important guiding significance for

crop breeding.
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Genome-wide detection
of genotype environment
interactions for flowering
time in Brassica napus

Xu Han1,2, Qingqing Tang1,2, Liping Xu1,2, Zhilin Guan1,
Jinxing Tu1,2, Bin Yi1,2, Kede Liu1, Xuan Yao1,2, Shaoping Lu1,2

and Liang Guo1,2*

1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University,
Wuhan, China, 2Hubei Hongshan Laboratory, Wuhan, China
Flowering time is strongly related to the environment, while the genotype-by-

environment interaction study for flowering time is lacking in Brassica napus.

Here, a total of 11,700,689 single nucleotide polymorphisms in 490 B. napus

accessions were used to associate with the flowering time and related climatic

index in eight environments using a compressed variance-component mixed

model, 3VmrMLM. As a result, 19 stable main-effect quantitative trait

nucleotides (QTNs) and 32 QTN-by-environment interactions (QEIs) for

flowering time were detected. Four windows of daily average temperature

and precipitation were found to be climatic factors highly correlated with

flowering time. Ten main-effect QTNs were found to be associated with these

flowering-time-related climatic indexes. Using differentially expressed gene

(DEG) analysis in semi-winter and spring oilseed rapes, 5,850 and 5,511 DEGs

were found to be significantly expressed before and after vernalization. Twelve

and 14 DEGs, including 7 and 9 known homologs in Arabidopsis, were found to

be candidate genes for stable QTNs and QEIs for flowering time, respectively.

Five DEGs were found to be candidate genes for main-effect QTNs for

flowering-time-related climatic index. These candidate genes, such as

BnaFLCs, BnaFTs, BnaA02.VIN3, and BnaC09.PRR7, were further validated by

the haplotype, selective sweep, and co-expression networks analysis. The

candidate genes identified in this study will be helpful to breed B. napus

varieties adapted to particular environments with optimized flowering time.

KEYWORDS

Brassica napus, flowering time, QTN-by-environment interactions, multiple genome-
wide association studies, differentially expressed gene, climatic index
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Introduction

As the world’s most important oilseed crop, planting of

Brassica napus spans a wide range of growth periods and climate

zones (Yang et al., 2014). To meet the needs of adaptation, B.

napus adjusts the correct time to flower. Flowering time

determines the transition from the vegetative to the

reproductive phase, and therefore, the nutrients are available

for remobilization at seed filling (Han et al., 2021). Early

flowering facilitates mechanical harvesting and rotation with

other crops, whereas late flowering enhances stem development,

thus improving lodging resistance (Cui et al., 2021). Although

previous studies have revealed the genetic basis of flowering time

in B. napus, no studies have been reported on the genetic

dissection of flowering time plasticity, namely, genotype-by-

environment interaction (G by E).

The genetic basis of flowering time has been well-studied in

the model plant Arabidopsis thaliana (Mouradov et al., 2002;

Putterill et al., 2004; Bouché et al., 2016). The genetic networks

underlying flowering consist of six major pathways

interconnected, namely, photoperiod, vernalization, gibberellin,

autonomous, thermal clock, and aging pathways (Putterill et al.,

2004). Epigenetic regulation, miRNAs, phytohormones, sugar

status, and signaling also play important roles in flowering time

control (Bouché et al., 2016). In B. napus, the polyploid nature of

B. napus has resulted in flowering-time-related genes

undergoing extensive subfunctionalization (Schiessl, 2020). It

has been demonstrated that there is a sophisticated network of

interactions among FLOWERING LOCUS C homologs with

different expression patterns in organs and development stages

(Zou et al., 2012). LOWERING LOCUS T and TERMINAL

FLOWER 1 were found to have pleiotropic effects on flowering

time, despite their redundancy in B. napus genome (Guo et al.,

2014). Therefore, it demands more genetic basis research on

flowering time in B. napus.

Flowering time is strongly influenced by the environment. A

decrease in day length delays flowering in B. napus. A period of

cooler temperature will determine vernalization and ensure

reproductive development (Matar et al., 2021). Precipitation

has been reported to have different effects on flowering

phenology in different species (Zhang et al., 2018). Many

genes have been reported to influence flowering time in

response to the environment. FLOWERING LOCUS T (FT)

was found to induce flowering through long-distance signaling

by activating seasonal changes in day length (Corbesier et al.,

2007). The epigenetic silencing of FLC accelerates flowering by

prolonged cold vernalization (Bastow et al., 2004). H2A.Z

incorporates BraA.FT.a chromatin at high ambient

temperature and delays flowering time in B. rapa (Del Olmo

et al., 2019). In B. napus, Cycling Dof Factor1 delays the

flowering time and was induced in response to low

temperature (Xu and Dai, 2016). BnNAC485 altered flowering
Frontiers in Plant Science 02
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time in response to abiotic stress (Ying et al., 2014). However, B.

napus has developed two eco-types in China, namely, semi-

winter oilseed rapes (SWORs) and spring oilseed rapes (SORs),

to adapt different geographical environments and climates,

leading to more complex molecular mechanisms of flowering

time (Song et al., 2020).

In response to climate change, G by E is of fundamental

importance in plant breeding and adaptation (Arnold et al.,

2019; Zhao et al., 2022). In B. napus, the G by E of seed yield and

oil content were found to exert specific adaptation to climates

(Zhang et al., 2013a). Genotype and temperature interactions of

seed oil content were found to be differential at the level of gene

expression profiles (Zhu et al., 2012). Moreover, quantitative and

population genetics have shown great power to bridge the gap

between genomic diversity and phenotypic plasticity (Wu, 1998;

Kusmec et al., 2017; Liu et al., 2021). For G by E studies on

flowering time, four environmentally sensitive quantitative trait

loci for flowering time identified in 473 Arabidopsis accessions

were found to be related to adaptation (Li et al., 2010). It has

been found that interacting flowering-time-related genes

differentially respond to the temperature at the early growth

stage in rice (Guo et al., 2020). Quantitative trait nucleotide

(QTN)-by-environment interaction (QEI) mapping for

flowering time has been performed in a doubled haploid B.

napus population (Shen et al., 2018). Although many genome-

wide association studies (GWAS) for flowering time have been

reported in B. napus (Xu et al., 2016; Song et al., 2020; Helal

et al., 2021; Hu et al., 2022), knowledge about QEI for flowering

time detected by GWAS is scarce.

Recently, the newly published method 3VmrMLM provides

a solution for QEI detection in GWAS (Li et al., 2022a). Here, we

investigated the landscape of flowering time plasticity of 490 B.

napus accessions in eight environments. A total of 11,700,689

single nucleotide polymorphisms (SNPs) were used to detect

main-effect QTNs for flowering time and related climatic index

and QEIs for flowering time. The transcriptome of SWORs and

SORs before and after vernalization was used to identify the

candidate genes around QTNs and QEIs. Co-expression,

haplotype, and selection sweep analysis were used to further

validate the candidate flowering time genes in specific eco-

oilseed rapes. Our finding will facilitate the breeding for

adaptation to particular environments with optimized

flowering time in B. napus.
Materials and methods

Germplasm, phenotypic, and
genomic data

A diversity panel of 490 B. napus accessions collected from

Xu et al. (2016) was used in this study. This panel was cultivated
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in eight natural environments, i.e., Wuhan 2013 and 2014

(WH2013 and WH2014), Changsha 2013 and 2014 (CS2013

and CS2014), Nanjing 2013 and 2014 (NJ2013 and NJ2014),

Ezhou 2013 (EZ2013), and Chongqing 2013 (CQ2013).

Additionally, the Gangan and ZS11 cultivars for RNA-seq

were planted in Wuhan 2018 at the experimental stations of

Huazhong Agricultural University. The design of field trial of the

above materials and the acquisition of phenotypic data were the

same as those used in the previous study (Xu et al., 2016). The

re-sequencing genome data were obtained from Tang et al.

(2021). The B. napus genome (B. napus ZS11 v0) from BnPIR

(Song et al., 2020; Song et al., 2021) (http://cbi.hzau.edu.cn/

bnapus/index.php) was used as the reference genome.
Statistical analysis for phenotypic data

By using the “lme4” R package (Bates et al., 2015), the best

linear unbiased prediction (BLUP) model was fitted to each B.

napus accession:

Phenotype e ð1jAccessionÞ + ð1jEnvironmentÞ
Taking into account the variations between eight

environments as phenotypic variance derived from

environmental factors, broad-sense heritability (h2B) was

estimated using the following equation by treating populations

as a random effect and the environments as an environment

effect, where s 2
g and s 2

e is the variance derived from genetic and

environmental effects, respectively (Knapp et al., 1985).

h2B =
s2
g

s 2
g + s 2

e

Identification of flowering-time-related
climatic index

Climatic data for daily average temperature (TAVG, °F) and

precipitation (PRCP, in) were retrieved from the National

Oceanic and Atmospheric Administration (https://www.noaa.

gov/weather). Due to the lack of climatic data for Ezhou, there

were climatic datasets of seven environments in total, i.e.,

WH2013 and WH2014 (114.05°E, 30.60°N; Station ID:

GHCND: CHM00057494), CS2013 and CS2014 (112.87°E,

28.23°N; GHCND: CHM00057687), NJ2013 and NJ2014

(118.90°E, 31.93°N; GHCND: CHM00058238), and CQ2013

(106.48°E, 29.58°N; GHCND: CHM00057516). Climatic data

were obtained from the day after being planted to the 200 days

after planting (DAP). For each window from a starting day (3

DAP) to an end day (41 DAP) during B. napus growth, the

average value of the climatic index and their correlation with the

environmental mean vector for flowering time was calculated by
Frontiers in Plant Science 03
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CERIS analytical package (Li et al., 2021; https://github.com/

jmyu/CERIS_JGRA). The most relevant climatic index for

flowering time was chosen according to the highest correlation

between environmental means and climatic index with

corresponding window. Reaction norms were calculated as

described in Guo et al. (2020) and Liu et al. (2020), using

environmental mean and environmental climatic index as x-

axis and phenotype as y-axis. Each line represented an individual

and was shown by fitted linear regression. The intercept and

slope were used to perform GWAS further.
Detecting QTNs and QEIs by GWAS

The intersection of the accessions in phenotypic and

genotypic datasets, i.e., 490 accessions with 11,700,689 SNPs,

were used for GWAS using 3VmrMLM (Li et al., 2022a) via

software IIIVmrMLM (Li et al., 2022b). Flowering time QTNs

were obtained from separate analyses of phenotypic data from

eight environments and joint environmental analyses of these

datasets. The reaction norms between flowering time and climatic

index were also used to conduct GWAS by 3VmrMLM. QEIs for

flowering time were obtained by joint environment analyses of the

above phenotypic datasets in eight environments. Population

structure and kinship matrix were considered in 3VmrMLM

analysis, and the “svpal” parameter was set as 0.01. According

to Tang et al. (2021), the population structure calculated as K=3

was used in the analysis. The threshold was set at 0.05/m for

significant QTNs and QEIs and LOD score ≥ 3.0 for suggested

QTNs and QEIs, where m is the number of markers (Li et al.,

2022a; Li et al., 2022b). According to the LD interval estimated by

Tang et al. (2021), stable QTNs were defined as QTNs identified in

at least three environments within the 100-kb upstream and

downstream regions.
Identification of candidate genes

To identify candidate genes for flowering-time-related

QTNs and QEIs, genes within the 100 kb upstream and

downstream regions of each QTN or QEI were extracted

according to the LD interval estimated by Tang et al. (2021).

Then, two strategies were employed. First, the B. napus

homologs of Arabidopsis flowering time genes downloaded

from FLOR-ID (http://www.flor-id.org) were selected and

considered as known genes. Second, new candidate genes were

identified using differentially expressed genes (DEGs) in two

SWORs (Gangan and ZS11) before and after vernalization and

in two SORs (Westar and No. 2127). The t-test was adopted in

the hypothesis testing for haplotype analysis; p< 0.05, p< 0.01,

and p< 0.001 indicated the significances at 0.05, 0.01, and 0.001

probability levels, respectively.
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Differential expression analysis
based on RNA-seq

The leaves of Westar, No. 2127, Gangan, ZS11 at 24 and 147

DAP were collected for RNA-seq with two biological replicates.

Total RNA was extracted using the TIANGEN RNAprep Pure

Plant Kit. Sequencing libraries were generated using the

NEBNext® UltraTM RNA Library Prep Kit for Illumina®

(NEB, USA) and were sequenced on an Illumina Hiseq 4000

platform. The detailed processes were described in Tan et al.

(2022). We used MultiQC (Ewels et al., 2016) to perform quality

control and Salmon (Patro et al., 2017) to quantify the RNA-seq

reads of annotated genes in the reference ZS11. DESeq2 was used

for differential expression analysis (Love et al., 2014). The

threshold for DEG is set as the absolute value of

log2FoldChange >1 and adjusted p< 0.05 (two-tailed Student’s

t-test; Tan et al., 2022).
Identification of selective sweep signals

To detect the regions under selective sweeps between SWOR

and SOR, XP-CLR (v1.1.1), a genome scan using the composite

likelihood approach was performed in sub-populations (Chen

et al., 2010). Each chromosome was analyzed using the XP-CLR

command with the parameters “–ld 0.99 –phased –maxsnps 200

–size 100000 –step 10000.” Non-overlapping 20-kp windows

within the top 20% XP-CLR scores were merged into one single

region, and then, these regions in the top 1% of XP-CLR scores

were considered as candidate selective regions (An et al., 2019).
Construction of co-expression network

According to the above RNA-seq datasets, Pearson

correlation analysis was calculated between candidate genes

and DEGs in SWORs and SORs, respectively. Significant genes

were considered to be co-expressed when Pearson correlation

coefficient was >0.80 and p-value was<0.05. Network

visualization was implemented with the Cytoscape package

(Shannon et al., 2003).
Results

Flowering time plasticity and related
climatic index for B. napus

Complex flowering time variation was observed in diversity

group of 490 B. napus oilseed rapes, including 49 SORs, 20

winter oilseed rapes, 326 SWORs, and 95 mixed type oilseed

rapes, grown in eight natural environments (Figure 1A;
Frontiers in Plant Science 04
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Supplementary Table S1). The means plus standard deviations

of the eight environments WH2013, WH2014, CS2013, CS2014,

NJ2013, NJ2014, CQ2013, EZ2013, and BLUP values were

155.49 ± 3.80, 153.56 ± 9.61, 160.27 ± 4.29, 166.55 ± 5.44,

160.50 ± 5.49, 167.55 ± 6.38, 151.31 ± 7.82, 162.57 ± 5.30, and

159.68 ± 4.83 (DAP), respectively (Figure 1B). The correlation of

each pair of environments ranged from 0.37 to 0.72 (0.50 ± 0.09).

The coefficients of variation, skewness, and kurtosis of the trait

in eight environments illustrated that flowering time is a typical

quantitative trait (Supplementary Table S2). The broad-sense

heritability for flowering time is 0.86. More importantly, joint

regression analysis modeled with environmental mean showed

the presence of a significant phenotypic plasticity (Figure 1C).

Climate change is altering the environment in which all

plants grow. To understand the effect of climatic index on

flowering t ime plast ic i ty , the corre lat ion between

environmental means and climatic index (TAVG and PRCP)

for different growth windows was predicted by CERIS

(Supplementary Table S3). The results of the correlation

pattern between TAVG and flowering time showed a positive

correlation at early seedling stage and a negative trend after

bolting stage, while the pattern of PRCP was exactly opposite

(Figure 1D; Supplementary Figure S1A; Supplementary Table

S4). The windows with the highest negative (TAVG135–144 and

PRCP3–41) and positive correlations (TAVG10–19 and PRCP133–

169) were chosen as the most related climatic index for further

analysis (Figures 1E, F; Supplementary Figures S2A–F;

Supplementary Table S4). TAVG135–144 (r = −0.986) showed

higher correlation with flowering time than PRCP3–41 (r =

−0.809). TAVG10–19 (r = 0.922) showed higher correlation

with flowering time than PRCP133–169 (r = 0.901). It is noted

that these windows are surrounded by other windows with

s l ight ly decreas ing corre lat ion values (Figure 1D;

Supplementary Figure S1).
Detection of QTNs for flowering time

To detect QTNs for flowering time, the phenotypes in each

of the eight environments were used to associate with 11,700,689

SNPs using 3VmrMLM under population structure and

polygenic background control. As a result, 55, 57, 42, 49, 54,

50, 44, and 43 significant QTNs at the critical p-value of 4.27e

−09 (=0.05/m, where m is the number of markers) and 10, 5, 14,

10, 8, 13, 13, and 13 suggested QTNs (with the LOD score ≥ 3.0

but the p > 0.05/m) were identified for WH2013, WH2014,

CS2013, CS2014, NJ2013, NJ2014, CQ2013, and EZ2013,

respectively (Supplementary Table S5; Supplementary Figure

S3). In addit ion, flowering phenotypes from eight

environments were used to perform joint analysis by

3VmrMLM. Sixty-eight significant and 11 suggested QTNs

were identified. Based on the above QTNs in single and
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multiple environments analyses, 19 stable QTNs were identified

in at least three environments (Figure 2A; Table 1).
Detection of QTN-by-environment
interactions for flowering time in
multiple environments

All the datasets in eight environments were used to

conduct joint analysis for identifying QEIs using 3VmrMLM.

As a result, 32 significant QEIs and 4 suggested QEIs were

identified, including 10 significant QEIs overlapped with the

above stable QTNs (Supplementary Table S6). Among these

significant QEIs, 20 were found to have the highest absolute

value of additive-by-environment interaction effects in WH2014

than those in other environments (Figures 2B, D),
Frontiers in Plant Science 05
128
e.g., BnvaC0967693730 has an additive-by-environment

interaction effect of −1.85 in WH2014 than those in other

environments (Supplementary Table S6; LOD = 67.17; R2 =

1.07%). The two loci BnvaC0967693730 and BnvaA0406097547

have the highest R2 (LOD = 67.17; R2 = 1.07% and LOD = 66.42;

R2 = 1.06%, respectively).
Detection of QTNs for flowering-time-
related climatic index

To obtain reaction norms of flowering-time-related climatic

index, joint regression analyses were performed on phenotypes

and the above flowering-time-related climatic indexes

(TAVG135–144, PRCP3–41, TAVG10–19, and PRCP133–169;

Supplementary Table S4). The intercept and slope of reaction-
B

C

D

E

A

F

FIGURE 1

Plasticity of flowering and reaction norm of its associated window to daily average temperature (TAVG). (A, B) Characteristics and pairwise
correlations of flowering time of 490 B napus in eight environments. WH2013, Wuhan in 2013; WH2014, Wuhan in 2014; CS2013, Changsha in
2013; CS2014, Changsha in 2014; NJ2013, Nanjing in 2013; NJ2014, Nanjing in 2014; CQ2013, Chongqing in 2013; EZ2013, Ezhou in 2013;
BLUP, the best linear unbiased prediction value. (C) Reaction norm for flowering time based on a numerical order of environmental mean. Dots
are the observed flowering time phenotypic values. The line with black color represents the ZS11 cultivar. The color of the line represents the
value of the slope. (D) Search for the window to TAVG, which is highly correlated with environmental mean of flowering time (from planting to
200 days after planting, DAP). TAVG within the window of 10–19 and 135–144 DAP was chosen and denoted as TAVG10–19 and TAVG135–144.
(E, F) Significant correlation and reaction norm between TAVG135–144 and environmental mean of flowering time.
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norm parameters were used to detect QTNs for flowering-time-

related climatic indexes using 3VmrMLM. As a result, 10 QTNs

for reaction norm parameters of B. napus flowering time were

commonly identified with the above stable QTNs or QEIs,

including 5, 2, 1, and 2 for TAVG135–144, PRCP3–41, TAVG10–

19, and PRCP133–169, respectively (Figure 2C; Supplementary

Table S7).
Prediction of candidate genes for
flowering time

To mine candidate genes among the above QTNs and QEIs,

DEGs analysis was conducted before and after vernalization. A

total of 5,511 DEGs were identified in two SORs before and after

vernalization (Figure 3A; Supplementary Table S8), and 5,850

DEGs were identified in two SWORs before and after

vernalization (Figure 3A; Supplementary Table S9). Then,

according to Arabidopsis gene annotation, 12 candidate genes

were found to be associated with flowering time in

approximately above 19 stable QTNs, including 7 known
Frontiers in Plant Science 06
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flowering-time-related homologs in Arabidopsis and 5 newly

discovered genes (Table 1). Using the same methods, 14

candidate genes were identified to be located in the above 32

QEIs, including 9 homologs of known genes, in which their

homologs are related to flowering time and environments in

Arabidopsis and 5 newly identified genes (Table 2). In addition,

five candidate genes were found to be associated with flowering-

time-related climatic index, including two genes (BnaC02.DDB2

and BnaA05.COL9) commonly identified in QEIs and three

genes (BnaA02.VIN3, BnaC02.RUG1, and BnaA06.UBC2)

commonly found to be associated with the flowering time

QTNs (Supplementary Table S7).

Among these candidate genes, BnaFTs, BnaA05.COL9,

BnaA08.SRC2, and BnaA03.DREB1B were significantly

upregulated before vernalization in both SWORs and spring

SORs, while BnaFLCs , BnaA01.FSD1 , BnaC02.RUG1 ,

BnaC05.PLGG , and BnaC03.PSAK were significantly

upregulated after vernalization (Figures 3A, B). Interestingly,

BnaA02.VIN3 and BnaC02.FPGS were only significantly

upregulated before vernalization in SOR, which may indicate

different functions between eco-types.
B

C

D

A

FIGURE 2

Manhattan plots for flowering time of 490 B napus accessions. (A) Nineteen stable main-effect QTNs and their candidate genes for flowering
time in eight single environment analyses and multiple environments joint analysis. (B) QTN-by-environment interactions (QEIs) and their
candidate genes for flowering time in multiple environments joint analysis. (C) Ten main-effect QTNs for slope and intercept of reaction norm
for flowering-time-related climatic indexes. (D) Additive-by-environment interaction effects of 32 QEIs in eight environments. The size of dot:
absolute value of additive-by-environment interaction effect. Red/blue dot: positive/blue value. WH2013, Wuhan in 2013; WH2014, Wuhan in
2014; CS2013, Changsha in 2013; CS2014, Changsha in 2014; NJ2013, Nanjing in 2013; NJ2014, Nanjing in 2014; CQ2013, Chongqing in 2013;
EZ2013, Ezhou in 2013.
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Validation of candidate genes

To validate the above flowering time candidate genes, we

conducted selective sweep, haplotype, and co-expression analysis.

First, by performing XP-CLR between SWORs and SORs, 954

selective sweeps were detected (Supplementary Table S10). Eleven

candidate genes for flowering time were found in the selective

sweep, e.g., BnaFLCs, BnaFTs, BnaC02.FPGS1, BnaA08.SRC2,
Frontiers in Plant Science 07
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BnaA01.FSD1, BnaA02.VIN3, and BnaC09.PRR7. Second,

haplotype analyses were further conducted in these genes. For

BnaA02.FT, BnaA10.FLC, BnaA02.VIN3, and BnaC09.PRR7,

significant difference exists between each haplotype in different

environments (Figures 4A–D; Supplementary Figures S4A–D).

Interestingly, the haplotype for early flowering tends to exist in

SORs, while the haplotype for late flowering prefers to exist in

SWORs. Moreover, the co-expression networks of BnaA02.VIN3
TABLE 1 Nineteen stable QTNs for B. napus flowering time and their candidate genes.

Genome-wide association studies Comparative genomics analysis

Chr Pos
(bp)

Marker LOD R2 Environmentsa Gene ID Abbr. Function Reference

A10 24056113–
24056153

BnvaA1024056153, BnvaA1024056113,
BnvaA1024056139

39.96–
117.88

0.49–
2.10

E1, E3, E4, E5, E6,
E7, E9

C08 912878 BnvaC0800912878 7.94–
82.49

0.53–
2.42

E1, E3, E4, E5, E6,
E7, E8

BnaC08G0010300ZS CRY2 Cryptochrome-2 Sharma
et al., 2022

C05 1376324 BnvaC0501376324 13.31–
36.7

0.12–
0.81

E1, E2, E6, E7, E9 BnaC05G0024000ZS GBF4 G-BOX BINDING
FACTOR 4

A09 56413085–
56417605

BnvaA0956413085, BnvaA0956414961,
BnvaA0956417605

22.79–
39.42

0.14–
1.43

E1, E2, E9, E7

A10 23668965–
23770033

BnvaA1023770033, BnvaA1023668965 23.22–
84.79

0.11–
2.11

E1, E2, E4, E8 BnaA10G0244800ZS FLC MADS-box protein
FLOWERING
LOCUS C

Tadege
et al., 2001

A02 9020851–
9105883

BnvaA0209020851, BnvaA0209054089,
BnvaA0209105883

9.42–
24.67

0.08–
1.45

E1, E2, E3, E9 BnaA02G0156900ZS FT Protein FLOWERING
LOCUS T

Wang et al.,
2009

C02 2400090–
2502621

BnvaC0202402020, BnvaC0202400090,
BnvaC0202502621, BnvaC0202402023

8.82–
29.63

0.30–
1.47

E3, E5, E6, E7 BnaC02G0039100ZS FLC MADS-box protein
FLOWERING
LOCUS C

Tadege
et al., 2001

C07 55454986–
55455005

BnvaC0755455005, BnvaC0755454986 30.53–
43.11

0.14–
0.67

E1, E4, E5 BnaC07G0458500ZS AGL24 MADS-box protein
AGL24

Yu et al.,
2002

C02 1592445 BnvaC0201592445 47.10–
59.13

0.19–
1.06

E1, E9 BnaC02G0022200ZS FPGS1 Folylpolyglutamate
synthase

A01 8566494–
8643230

BnvaA0108643230, BnvaA0108602009,
BnvaA0108566494

13.70–
37.97

0.55–
1.29

E5, E6, E8 BnaA01G0146300ZS FSD1 Fe superoxide
dismutase. Superoxide
dismutase

A05 19689622 BnvaA0519689622 14.27–
35.31

0.13–
0.48

E1, E4, E7

A08 27196633–
27207043

BnvaA0827196633, BnvaA0827207043,
BnvaA0827196973

12.21–
30.51

0.13–
1.71

E1, E7 BnaA08G0296600ZS SRC2 soybean gene regulated
by cold-2

A02 8776765–
8833814

BnvaA0208833814, BnvaA0208776765 16.66–
36.12

0.24–
0.76

E1, E2, E4

A03 25426194–
25520626

BnvaA0325426194, BnvaA0325520626 13.14–
19.74

0.37–
0.63

E2, E4, E9

C06 17894906 BnvaC0617894906 20.65–
33.50

0.15–
0.41

E1, E2, E6

C06 39070745–
39079766

BnvaC0639079766, BnvaC0639070745 7.60–
12.55

0.08–
0.55

E1, E2, E4 BnaC06G0286700ZS HTH Omega-Hydroxy Fatty
Acyl Dehydrogenase

C06 42697888 BnvaC0642697888 16.35–
63.64

0.31–
0.74

E1, E2, E6 BnaC06G0323800ZS FT Protein FLOWERING
LOCUS T

Wang et al.,
2009

A02 1946991–
2001373

BnvaA0201946991, BnvaA0202001373,
BnvaA0202001103

4.53–
41.57

0.07–
1.03

E1, E3, E8 BnaA02G0035100ZS FLC MADS-box protein
FLOWERING
LOCUS C

Tadege
et al., 2001

A09 24518838–
24519761

BnvaA0924518838, BnvaA0924519761 9.29–
27.99

0.24–
0.65

E4, E3, E6
fro
aE1: multi-environments joint GWAS; E2: WH2013; E3: WH2014; E4: CS2013; E5: CS2014; E6: NJ2013; E7: NJ2014; E8: CQ2013; E9: EZ2013.
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and BnaC09.PRR7 have been constructed using DEGs in SWORs

and SORs, respectively (Figures 5A, B). The co-expressed genes of

BnaA02.VIN3 mainly participated in the circadian clock,

photoperiodism, light perception, and signaling. Eight genes are

specific co-expressed in SORs, including BnaA07.ZEP and

BnaC09.ABCG22 in response to water deprivation. Five genes

are specific co-expressed in SWORs. On the other hand, the co-

expressed genes of BnaC09.PRR7 mainly participated in the

circadian clock and autonomous pathway. Five and one genes

are specific co-expressed in SORs and SWORs, respectively.

BnaCKA2s and BnaPKDM7s participated in epigenetic regulation.
Discussion

Although flowering time is strongly related to the

environment, G by E studies for flowering time are lacking in B.

napus. The current study analyzed the G by E for flowering time in

the following three aspects. First, four windows of flowering-time-

related climatic index were identified (TAVG135–144, PRCP3–41,

TAVG10–19, and PRCP133–169) by CERIS. Second, 19 stable QTNs
Frontiers in Plant Science 08
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and 32 QEIs were found to be significantly associated with

flowering time of 490 B. napus accessions in eight

environments, and 10 QTNs were found to be associated with

flowering-time-related climatic index. Finally, based on DEGs and

homology with Arabidopsis, 12, 14, and 5 candidate genes were

found to be associated with stable QTNs, QEIs, and QTNs for

flowering-time-related climatic index, respectively. These

candidate genes were further validated by the haplotype,

selective sweep, and co-expression network analysis.
Flowering-time-related climatic index in
B. napus whole growth stages

It is well-known that the flowering time regulation of B.

napus is in response to day length or vernalization (Reeves and

Coupland, 2000). This study calculated the correlations between

two climatic factors, TAVG and PRCP, and flowering time in

seven environments. TAVG correlated positively with flowering

time in vernalization and negatively with flowering time after the

seedling stage (Figure 1D). In a previous study, a reduction in
B

C

D

A

FIGURE 3

Differentially expressed gene (DEG) analysis before and after vernalization and selection sweeps between semi-winter and spring oilseed rapes
(SWORs and SORs). Volcano plots of DEGs in SORs (A) and SWORs (B). The y-axis is the adjusted p-value and the x-axis is log2 fold-change (FC)
before and after vernalization. Gray lines are at the absolute value of log2FC = 1 or adjusted p-value = 0.05. (C) The expression profiling of 27
candidate genes around main-effect QTNs and QEIs for flowering time in two SWORs and two SORs in the 2018–2019 growing season in
Wuhan. DAP, days after planting. (D) Selective sweeps between SWORs and SORs by XP-CLR. The horizontal dashed lines indicate the cutoff in
the top 1% of XP-CLR scores. Candidate genes for flowering time are marked above the selective sweep peaks.
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autumn or winter chilling delays floral transition in B. napus

(O’Neill et al., 2019). An elevated growth temperature is equally

efficient in inducing the flowering of Arabidopsis

(Balasubramanian et al., 2006). However, the transition or

critical point of these two stages is unclear. For PRCP, this

study reported the relationships between PRCP and flowering

time in B. napus for the first time. Although the correlation
Frontiers in Plant Science 09
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coefficients are lower than TAVG, PRCP was found to be

correlated negatively with flowering time in early development

and positively later (Supplementary Figure S1). This result

is consistent with a previous study in Arabidopsis

that flowering time correlated negatively with fall and winter

precipitations and positively with summer precipitation (Vidigal

et al., 2016).
TABLE 2 Fourteen candidate genes for B. napus flowering time around significant QTN-by-environment interactions.

Genome-wide association studies Comparative genomics analysis Evidences for environmental
interaction

Chr Pos
(bp)

Marker LOD R2

(%)
Gene ID Abbr. Function Reference Environment Differences of

flowering time
under various
environments

C09 67693730 BnvaC0967693730 67.17 1.07 BnaC09G0614800ZS PRR7 Two-component
response regulator-
like APRR7

Nakamichi
et al., 2007

Circadian clock prr7 single mutant is late
flowering under LD
conditions

C05 38307735 BnvaC0538307735 62.47 1.01 BnaC05G0345200ZS PLGG1 Plastidal glycolate/
glycerate
translocator

C03 64354328 BnvaC0364354328 60.84 0.97 BnaC03G0665500ZS PSAK Photosystem I
reaction center
subunit K

C02 1592445 BnvaC0201592445 58.92 0.94 BnaC02G0022200ZS FPGS1 Folylpolyglutamate
synthase

A05 42071520 BnvaA0542071520 50.18 0.79 BnaA05G0456200ZS COL9 Zinc finger protein
CONSTANS-LIKE
9

Cheng and
Wang, 2005

Circadian clock col9 single mutant is
early flowering under LD
conditions

A03 16879521 BnvaA0316879521 42.43 0.70 BnaA03G0318500ZS FLD FOLOWERING
LOCUS D

Zhang et al.,
2013b

Circadian clock fld single mutant is late
flowering under both SD
and LD conditions

C02 9413473 BnvaC0209413473 34.92 0.55 BnaC02G0132800ZS DDB2 Damaged DNA-
binding proteins 2
required for UV-B
tolerance

Al Khateeb
and
Schroeder,
2007

Light signaling ddb2 suppressed the
early flowering time of
det1 under long-day
conditions

C03 27148748 BnvaC0327148748 30.92 0.48 BnaC03G0400500ZS CPNB2 Chaperonin 60
subunit beta

C02 30403413 BnvaC0230403413 28.66 0.45 BnaC02G0311500ZS GRF2 G-box binding
factor GF14 omega
encoding a 14-3-3
protein

Liu et al.,
2012

Unclear BnGRF2a transgenic
lines delays flowering

A08 27196633 BnvaA0827196633 24.73 0.38 BnaA08G0296600ZS SRC2 Involved in Protein
Storage Vacuole
targeting.

A01 7152286 BnvaA0107152286 17.37 0.27 BnaA01G0121900ZS EBS PHD finger family
protein

López-
González
et al., 2014

Epigenetic
regulation

ebs mutants repressed
flowering

C01 50758439 BnvaC0150758439 16.63 0.27 BnaC01G0442400ZS NF-YA6 Nuclear factor Y,
subunit A6

Siriwardana
et al., 2016

Photoperiod NF-YA can be positive
regulators of photoperiod
dependent flowering

C02 1725158 BnvaC0201725158 12.62 0.19 BnaC02G0024600ZS UBP12 Ubiquitin carboxyl-
terminal hydrolase
12

Cui et al.,
2013

Circadian clock ubp12 single mutant is
slightly early flowering
under both SD and LD
conditions

A03 26932605 BnvaA0326932605 11.96 0.18 BnaA03G0486700ZS DREB1B Dehydration-
responsive element-
binding protein 1B

Seo et al.,
2009

Cold Response to ABA
treatment
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Genetic basis for flowering time
in B. napus

In this study, multi-environment joint GWAS improved the

power on identifying more QTNs than single environment

GWAS. We dissected the genetic basis for flowering time in

the following three aspects. First, 12 flowering time candidate
Frontiers in Plant Science 10
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genes were mined in approximately 19 stable QTNs for

flowering time. Seven genes are previously reported, e.g.,

BnaFLCs (Tadege et al., 2001), BnaFTs (Wang et al., 2009),

BnaAGL24 (Yu et al., 2002), and BnaCRY2 (Sharma et al., 2022),

whereas five genes are newly identified, which are differentially

expressed before and after the vernalization of different ecotypes

(Figure 3; Supplementary Tables S8, S9). Second, it is worth
B

C

D

A

FIGURE 4

Haplotype analysis of BnaC02.FT, BnaA10.FLC, BnaC09.PRR7, and BnaA02.VIN3 (A–D). In the boxplot, significant differences for flowering time
between each haplotype are calculated in eight environments with t-test. In pie plots, the haplotype frequencies of each gene in semi-winter
and spring oilseed rapes are marked. WH2013, Wuhan in 2013; WH2014, Wuhan in 2014; CS2013, Changsha in 2013; CS2014, Changsha in
2014; NJ2013, Nanjing in 2013; NJ2014, Nanjing in 2014; CQ2013, Chongqing in 2013; EZ2013, Ezhou in 2013. *p = 0.05, **p = 0.01, and
***p = 0.001.
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noting that this study focused on the mining of flowering time

genes related to the environments. Fourteen candidate genes

were identified around 32 QEIs, including 9 known flowering

time genes related to environments. For example, BnaCOL9 and

BnaUBP12 are regulated by the circadian clock in the

photoperiod pathway (Cheng and Wang, 2005; Cui et al.,

2013). BnaFLD is subjected to the direct regulation by

brassinosteroids (Zhang et al., 2013b). It has been reported

that the overexpression of BnaDREB1B not only delayed

flowering but also responded to cold (Seo et al., 2009). BnaEBS

functions in the chromatin-mediated repression of floral

initiation by H3K4me3 (López-González et al., 2014). Finally,

five genes were found to be associated with flowering-time-

related climatic index. BnaC02.DDB2 and BnaA05.COL9 were

commonly ident ified in QEIs , and BnaA02.VIN3 ,

BnaC02.RUG1, and BnaA06.UBC2 were commonly found to

be associated with the main effect flowering time QTNs.

In this study, the missing heritability exists, in which the

total phenotypic variance explained of QEIs and QTNs is much

less than the estimated broad-sense heritability. This can be

explained in several ways. First, the population is not enough to

detect rare variants. Second, allelic heterogeneity may be the

reason for this phenomenon. Lastly, epigenetic variation is likely

to be a source of missing heritability (Brachi et al., 2011).

Moreover, some candidate genes for stable QTNs, e.g.,

BnaA02.FT and BnaA10.FLC, were found to be related to

environments but were not identified in QEIs (Figure 4). This

result is explained by multiple facets, e.g., the difference in

phenotypic data among environments, the diversity of

population accessions, and the power of QEI detection. In the

previous study, COL9 and FLD have been reported to regulate

FT and FLC, respectively (Cheng and Wang, 2005; Jiang et al.,

2009). BnA05.COL9 and BnaA03.FLD were found to be
Frontiers in Plant Science 11
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candidate genes for QEIs in this study. We hypothesized that

QEI may be associated with direct environmental response

upstream regulators due to the complexity of transcription and

epigenetic regulations of flowering (Bouché et al., 2016).
BnaA02.VIN3 and BnaC09.PRR7 are
potential G by E genes for flowering time

In Arabidopsis, VIN3 acts together with PRC2 to repress

histone marks at FLC in response to vernalization (Kim and

Sung, 2013). PRR7 was reported to coordinate with PRR9 and

PRR5 and regulate flowering time through the canonical CO-

dependent photoperiodic pathway (Nakamichi et al., 2007). In

this study, BnaA02.VIN3 and BnaC09.PRR7 have been shown to

be crucial G by E genes for flowering time. There are three pieces

of evidence. First, BnaA02.VIN3 is significantly associated with

ChrA02-6152101 (LOD = 13.14) for flowering-time-related

climatic factors and with ChrA02-6374324 (LOD = 12.17) for

flowering time in WH2013. BnaC09.PRR7 is significantly

associated with the QEI, ChrC09-67693730 (LOD = 67.17), by

multi-environment GWAS. Second, BnaA02.VIN3 and

BnaC09.PRR7 are DEGs before and after vernalization and in

the selective sweep between SORs and SWORs (Figure 2). Then,

in these genes with significant haplotype differences, their

haplotypes for early flowering tend to exist more in SORs

(Figures 4C, D). Lastly, co-expression networks were

constructed for BnaA02.VIN3 and BnaC09.PRR7. Some

relationships have been proven, e.g., PRR7 with LHY (Liu

et al., 2013), PRR7 with PRR5 (Nakamichi et al., 2007), and

VIN3 with CCA1 and LHY (Kyung et al., 2022).

In summary, we dissected the G by E for flowering time for

B. napus from different eco-types in eight environments. Four
BA

FIGURE 5

Co-expression network of BnaVIN3 and BnaPRR7 with co-expressed genes related to flowering time (A, B). Light blue, dark blue, and yellow
node indicate co-expressed genes that were detected in semi-winter, spring, and both types of oilseed rapes, respectively. The size of each
node represents the number of genes in each gene family.
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windows of flowering-time-related climatic index were

identified. Stable QTNs and QEIs for flowering time and their

candidate genes were identified. These findings provide valuable

information that can be used to breed B. napus varieties with

optimized flowering time by pyramiding favorable alleles. The

candidate genes will also greatly promote the dissection of

flowering time mechanisms in different eco-types.
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Identification of QTNs, QTN-by-
environment interactions, and
their candidate genes for grain
size traits in main crop and
ratoon rice

Qiong Zhao1†, Xiao-Shi Shi1†, Tian Wang1,2, Ying Chen1,
Rui Yang1,2, Jiaming Mi1,2*, Ya-Wen Zhang1*

and Yuan-Ming Zhang1

1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China, 2National
Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan),
Huazhong Agricultural University, Wuhan, China
Although grain size is an important quantitative trait affecting rice yield and quality,

there are few studies on gene-by-environment interactions (GEIs) in genome-

wide association studies, especially, in main crop (MC) and ratoon rice (RR). To

address these issues, the phenotypes for grain width (GW), grain length (GL), and

thousand grain weight (TGW) of 159 accessions of MC and RR in two environments

were used to associate with 2,017,495 SNPs for detecting quantitative trait

nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using

3VmrMLM. As a result, 64, 71, 67, 72, 63, and 56 QTNs, and 0, 1, 2, 2, 2, and 1

QEIs were found to be significantly associated with GW in MC (GW-MC), GL-MC,

TGW-MC, GW-RR, GL-RR, and TGW-RR, respectively. 3, 4, 7, 2, 2, and 4 genes

were found to be truly associated with the above traits, respectively, while 2 genes

around the above QEIs were found to be truly associated with GL-RR, and one of

the two known genes was differentially expressed under two soil moisture

conditions. 10, 7, 1, 8, 4, and 3 candidate genes were found by differential

expression and GO annotation analysis to be around the QTNs for the above

traits, respectively, in which 6, 3, 1, 2, 0, and 2 candidate genes were found to be

significant in haplotype analysis. The geneOs03g0737000 around one QEI for GL-

MC was annotated as salt stress related gene and found to be differentially

expressed in two cultivars with different grain sizes. Among all the candidate

genes around the QTNs in this study, four were key, in which two were reported to

be truly associated with seed development, and two (Os02g0626100 for GL-MC

and Os02g0538000 for GW-MC) were new. Moreover, 1, 2, and 1 known genes,

along with 8 additional candidate genes and 2 candidate GEIs, were found to be

around QTNs and QEIs for GW, GL, and TGW, respectively in MC and RR joint

analysis, in which 3 additional candidate genes were key and new. Our results

provided a solid foundation for genetic improvement and molecular breeding in

MC and RR.
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rice, grain size, QTN, QTN-by-environment interaction, ratoon rice, 3VmrMLM
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Introduction

Rice (Oryza sativa L.) is the principal food for more than half of

the population in the world (Rosegrant and Cline, 2003). Effective

panicle number per plant, grain number per panicle, and thousand-

grain weight (TGW) are three main yield component factors (Xing

and Zhang, 2010). Thus, increasing grain weight is an effective way to

increase rice yield. TGW is mainly determined by grain size and

grouting degree, in which the grain size is determined by grain length

(GL), width (GW), and grain thickness (GT). These grain size-related

traits are quantitative traits. In addition, grain size not only affects the

rice yield but also affects its taste and appearance (Lou et al., 2009;

Zhao et al., 2018). Therefore, it is necessary to investigate genetic

mechanisms of GL, GW, and TGW.

With the completion of rice genome sequencing, more than 400

quantitative trait nucleotides (QTNs) for rice grain size in different

genetic populations have been identified in previous studies (Huang

et al., 2013). Among these loci, some of them have been fine-mapped,

such as gw9.1 (Xie et al., 2008), qGL7 (Bai et al., 2010), qGL3-2 (Liang

et al., 2021), and qGSN5 (Yuan et al., 2022a). At present, at least 22

QTLs/genes for grain size traits in rice have been cloned and

functionally identified (Jiang et al., 2022), for example, GW2 (Song

et al., 2007), GS2 (Duan et al., 2015), GS5 (Li et al., 2011), GS9 (Zhao

et al., 2018), GS3 (Fan et al., 2006), GL3.1 (Qi et al., 2012), GL3.3 (Xia

et al., 2018), qGL3 (Zhang et al., 2012), qTGW2 (Ruan et al., 2020) and

qTGW3 (Hu et al., 2018) were mined by map-based cloning, while

GSE5 (Duan et al., 2017) and OsSPL13 (Si et al., 2016) were detected

by GWAS. Clearly, most were identified by map-based cloning, being

a time-consuming work in developing near-isogenic lines. Moreover,

it has been shown that the grain size is affected by environmental

factors in many previous studies (Arshad et al., 2017; Bahuguna et al.,

2017; Wu et al., 2022). However, few QTL-by-environment

interactions (QEIs) have been identified in rice grain size. Although

many QEIs have been detected in other rice traits in recent years, such

as qGT9 (Rahimsoroush et al., 2021), qPC6, qPC7, and qGLU6 (Fiaz

et al., 2021), they were identified by linkage analysis rather than

genome-wide association studies (GWAS).

Ratoon rice has been considered as an efficient, green, and cost-

saving rice cultivation mode, which has been popularized in many

countries (Firouzi et al., 2018; Ziska et al., 2018; Wang et al., 2020).

Compared with main crop, lower temperature after heading stage

affects grain filling to reduce yield and improve quality of ratoon rice

(Huang et al., 2020). However, QEIs for grain size between main crop

and ratoon rice were rarely reported in previous studies, although

main crop is used to identify QTNs and their candidate genes for

grain size traits. More importantly, at present, most GWAS report

only stable QTNs rather than QEIs, owing to the lack of feasible

methodology of QEI detection in multiple environments (Kang et al.,

2010; Zhang et al., 2010; Zhou and Stephens, 2012; Jiang et al., 2019b).

To address this issue, Li et al. (2022a) and Li et al. (2022b) established

a new compressed variance component mixed model method, namely

3VmrMLM, to identify QTNs, QEIs, and QTN-by-QTN interactions

under controlling all the possible polygenic backgrounds.

To address the above issues, single environment analysis and two-

environment joint analysis via 3VmrMLM (Li et al., 2022b) were used to

identify QTNs and QEIs for GW, GL, and TGW inmain crop (MC) and

ratoon rice (RR) of 159 rice accessions with 2,017,495 SNPs. Previously
Frontiers in Plant Science 02139
reported genes around QTNs and QEIs for the three traits were mined

and their candidate genes were predicted by comparative genomics and

confirmed by gene haplotype analysis. In this study, we identified 202

QTNs and 3 QEIs in MC and 191 QTNs and 5 QEIs in RR, 18

previously reported genes around QTNs and two previously reported

genes around QEIs were found to be truly associated with grain size in

previous studies, and one of two genes around QEIs had the evidence of

environmental interaction. Among 25 candidate genes identified by GO

annotation and differential expression analysis, 12 were further

confirmed by gene haplotype analysis, especially, four candidate genes

and one candidate GEI for grain size are more important. In addition,

the MC and RR datasets were jointly analyzed as well using 3VmrMLM,

as a result, one, two, and one known genes were found to be around

QTNs for GW, GL and TGW, respectively, 8 additional candidate genes

and 2 candidate GEIs were also mined, in which 3 additional candidate

genes are new and key in rice grain size related traits.
Material and methods

Plant materials and phenotyping of grain
size related traits

All the 159 indica rice accessions were planted, with a randomized

complete block design, in Wuhan in 2021. This experiment was

replicated two times in different fields, namely environments 1 and 2.

Each material was planted in one plot with 10 seedlings, row spacing

was 16.7 cm × 20 cm, and one line empty between cells. At yellow

ripening stage, GW (mm), GL (mm), and TGW (g) for each accession

in MC and RR were measured for three times, and their averages were

regarded as their trait phenotypes. GL in MC is abbreviated as GL-

MC, and it is true for other traits.
Statistical analysis for the phenotypic data

The minimum, maximum, mean, standard deviation (SD),

kurtosis, skewness (Sk), and coefficient of variation (CV), along

with broad-sense heritability (H2
B) , for all the above traits were

calculated by R software lme4 v1.1.28. The H2
B for each trait was

calculated by H2
B =

s2
g

s 2
g +s 2

ge=l+s2
e =rl

� 100% , where s 2
g is genetic

variance, s 2
e is residual variance, s 2

ge is the variance of genotype-by-

environment interaction, l is the number of environments, and r is the

number of replicates. The analysis of variance (ANOVA) for

phenotypic data was conducted using the R function aov. Normal

distribution test for phenotypic data was conducted using the R

function shapiro.test.
Genotyping data

The genotypic data of the 159 rice accessions used in this study

consisted of two parts. The genotypic datasets of 134 accessions were

derived from RiceVarMap database (http://ricevarmap.ncpgr.cn/),

and the DNAs of leaves were extracted to conduct 1K Genobaits to

verify their authenticity. The genotypic datasets of twenty-five

modern breeding cultivars were obtained by double-terminal
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sequencing with coverage of approximate 10× based on illumina’s

Hiseq 4000 technology sequencing platform at Novogene Technology

Company. Then, extract the common SNPs from the genotype

dataset of 134 public database accessions and 25 modern breeding

cultivars to obtain new genotypic datasets with 2,019,008 SNPs. The

software plink v1.90 was used to filter all the 2,019,008 SNPs based on

minimum allele frequencies (MAFs) < 0.05 and all variants with

missing call rates > 10%, where sliding window distance, step length,

and R2 were set as 1000 kb, 1, and 0.3, respectively. As a result, a total

of 2,017,495 SNPs were used in subsequent GWAS.
Linkage disequilibrium decay and
population structure

All the 2,017,495 SNPs were used to conduct linkage disequilibrium

(LD) analysis using popLDdecay (https://github.com/BGIShenzhen/

PopLDdecay). The LD decay was determined by plotting the r2 values

against the genetic distance of a pair of loci (kb) for each chromosome. G-

matrix and cluster analysis for all the 159 accessions were performed

using the 2,017,495 SNPs by R package sommer v4.2.0 and amap v0.8.19,

respectively. Principal component analysis (PCA) was analyzed using R

function prcomp, and the first two principal components were plotted

using the R package ggplot2 v3.3.6. ADMIXTURE v1.3.0 (http://

dalexander.github.io/admixture) was used to determine population

structure (Alexander et al., 2009), where the number of subgroups (K)

was set from 1 to 10, and the K value corresponding to the minimum CV

error is the most likely subgroup number.
Multi-locus genome-wide association
studies for grain size related traits

A total of 2,017,495 SNPs of 159 rice accessions were used to

associate with GW, GL, and TGW in two environments in MC and RR

using the 3VmrMLM method and its IIIVmrMLM software (https://

github.com/YuanmingZhang65/IIIVmrMLM; Li et al., 2022a; Li et al.,

2022b). All parameters were set as default values. Population structure

adopts the first three principal components. The K matrix was

calculated using the IIIVmrMLM software. The probability threshold

was set at 0.05/m = 2.48e-08 for significant QTNs and QEIs, where m

was the number of markers. To reduce the loss of important candidate

genes, some insignificant QTNs and QEIs with LOD score ≥ 3.0 were

regarded as suggested QTNs and QEIs (Li et al., 2022a; Li et al., 2022b).
Identification of candidate genes for grain
size related traits in rice

Candidate genes for grain size traits were mined based on the

below steps. First, all the genes were found in the 200 kb regions of

upstream and downstream around each significant QTN without

previously reported gene, because the LD decay distance was 150 kb

using popLDdecay. Then, RNA-seq datasets of Zhenshan 97 and

Minghui 63 at endosperm 7, 14, and 21 days after pollination (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19024) were used

to conduct differential expression analysis using NCBI (https://www.
Frontiers in Plant Science 03140
ncbi.nlm.nih.gov) GEO2R online tool, and the thresholds of

significant difference were set as p-value < 0.05 and | Log2FC | > 1.

Finally, all the differentially expressed genes (DEGs) were further

analyzed by GO annotation using AgBase (https://agbase.arizona.

edu), and the significant E-value was set as 10e-50. If biological

process is related to the reported molecular mechanisms of grain size,

the DEGs in the biological process were regarded as candidate genes.
Haplotype analysis of candidate genes

The software plink v1.90 was used to extract all the significant

SNP information (P < 0.05) after single marker genome scanning

within one candidate gene and its upstream 2 kb, R v4.1.3 was used to

calculate its haplotypes of the candidate gene, and the 159 rice

accessions were grouped based on these haplotypes. Thus, ANOVA

was performed using R function aov to test the significance of the

QTN-associated trait across these haplotypes at a 5% probability level.
Result

Phenotypic variation

The averages plus standard deviations of GW-MC, GL-MC, TGW-

MC, GW-RR, GL-RR, and TGW-RR in 159 rice accessions in two

environments were 2.44 ± 0.33 ~ 2.47 ± 0.34 (mm), 8.41 ± 0.85 ~ 8.42 ±

0.84 (mm), 23.92 ± 3.01 ~ 24.03 ± 2.98 (g), 2.38 ± 0.29 ~ 2.43 ± 0.28

(mm), 8.00 ± 0.79 ~ 8.05 ± 0.81 (mm), 21.74 ± 2.84 ~ 22.32 ± 3.09 (g),

and their coefficients of variation (CV) were 13.57 ~ 13.70, 9.91 ~ 10.12,

12.40 ~ 12.58, 11.50 ~ 12.17, 9.91 ~ 10.08, and 13.04 ~ 13.83 (%),

respectively, having large phenotypic variations (Supplementary Table

S1). The analysis of variance was conducted and the results were listed in

Supplementary Table S2. As a result, genotypes, environments, and their

interactions for all the three traits in MC and RR were significant at the

0.05 probability level (Supplementary Table S2), and the H2
B of GW, GL,

and TGW ranged from 96.39% to 99.07% in MC and from 90.21% to

98.37% in RR, indicating large genetic variations (Supplementary Table

S1). In addition, main crop had higher trait averages than ratoon rice,

especially for GL and TGW (Figure 1). The phenotypes of TGW-MC and

GW-RR in two environments, GL-RR in environment 2, and TGW-RR

in environment 1 were found to obey normal distribution, while GW-

MC and GL-MC in two environments, and GL-RR and TGW-RR in

environment 1 were found to approximately obey normal distribution

(Figure 1; Supplementary Table S1).
Population structure and linkage
disequilibrium analysis

To determine the LD decay distance, LD decay analysis was

performed using all the 2,017,495 SNP markers. The r2 gradually

decreases with the increase of distance. When it drops to half of the

maximum value, the corresponding distance is regarded as the

average distance of LD decay. In this study the LD decay distance

was 150 kb, when r2 dropped to half of its maximum value (r2 =

0.3) (Figure 2C).
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The number of sub-populations was determined by principal

component analysis (PCA), population structure analysis, and cluster

analysis. The results were showed in Figure 2. In PCA, the first two

principal components separated all the 159 accessions into three

subgroups: indica I, indica II, and indicia Intermediate (Figure 2A). In

population structure analysis via the ADMIXTURE software, cross-

validation (CV) error is the lowest when the number of subgroups is

three (Figures 2D, E), which is consistent with that in cluster analysis

(Figure 2B). Thus, the first three principal components were used in

genome-wide association studies.
Identification of QTNs and QEIs in main
crop and ratoon rice

Identification of QTNs and QEIs when two
environments in MC or RR were separately and
jointly analyzed via 3VmrMLM

The 3VmrMLM method, implemented by its IIIVmrMLM

software, was used to identify QTNs and QEIs for the three traits in

this study. As a result, we identified 64, 71, and 67 QTNs for GW, GL

and TGW in main crop, respectively, and 72, 63, and 56 QTNs for

GW, GL, and TGW in ratoon rice, respectively (Supplementary

Tables S3–S20). Among these QTNs for the above three traits in
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MC, there were 18, 17, and 13 significant QTNs and 2, 1, and 3

suggested QTNs in environment 1, there were 10, 18, and 17

significant QTNs and 2, 2, and 1 suggested QTNs in environment 2

(Supplementary Tables S3–S5, S9–S11), and there were 27, 32, and 27

significant QTNs and 5, 1, and 3 suggested QTNs detected in multi-

environment joint analysis (Supplementary Tables S15–S17). In

ratoon rice, there were 16, 13, and 16 significant QTNs and 4, 3,

and 2 suggested QTNs in environment 1, there were 20, 13, and 12

significant QTNs and 0, 3, and 4 suggested QTNs in environment 2

(Supplementary Tables S6–S8, S12–S14), and there were 29, 29, and

20 significant QTNs and 3, 2, and 2 suggested QTNs in multi-

environment joint analysis (Supplementary Tables S18–S20). More

importantly, one GL and two TGWQEIs were detected in main crop,

and two GW, two GL, and one TGW QEIs were detected in ratoon

rice (Supplementary Tables S15–S20).

Identification of QTNs and QEIs when the MC and
RR datasets were jointly analyzed in each
environment via 3VmrMLM

The MC and RR datasets in each environment were jointly

analyzed using the IIIVmrMLM software. As a result, 34, 35, and

42 QTNs and 7, 1, and 14 QEIs were identified for GW, GL, and

TGW, respectively (Supplementary Tables S29–S34). Among these

QTNs and QEIs, there were 32, 30, and 37 significant QTNs, 2, 5, and
FIGURE 1

Phenotypic distributions for grain length (GL), grain width (GW), and thousand grain weight (TGW) of 159 accessions of main crop and ratoon rice in two environments.
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5 suggested QTNs, 4, 0, and 10 significant QEIs, and 3, 1, and 4

suggested QEIs for GW, GL, and TGW, respectively.
Known genes around QTNs and QEIs

Known genes were searched within 200 kb upstream and

downstream regions of QTNs and QEIs. Among the QTNs and

QEIs, 3, 4, and 7 known genes were found in main crop to be truly

associated with the above three traits, respectively, and 2, 4, and 4

known genes were found in ratoon rice to be truly associated with the

above three traits, respectively. Among these known genes, 4 were

simultaneously found in main crop and ratoon rice, and 3 were found

across multiple traits. 3, 5, and 9 known genes were found to be

around significant QTNs and QEIs for the above three traits,

respectively, and 0, 1, and 2 known genes were found to be around

suggested QTNs for the above three traits, respectively (Tables 1, 2).

Around the above QTNs, some known genes were simultaneously

mined in single-environment analysis and two-environment joint

analysis. GW5 was identified to be associated with GW-MC and GW-

RR in two single-environment analyses and two-environment joint

analysis, VLN2 was identified to be associated with GW-MC in two-

environment joint analysis and GW-RR in the first environment

analysis (Figures 3A–C; Supplementary Figure 1), GS3 was found to

be associated with GL-MC and GL-RR in two single-environment

analysis and two-environment joint analysis, and GW5 was found to

be associated with GL-MC in the second environment analysis and

two-environment joint analysis (Supplementary Figures 2A–C, 3).

For TGW, all known genes were separately detected in a single-

environment analysis or two-environment joint analysis

(Supplementary Figures 4A–C, 5).

Around the above QEIs, two known genes, OsACOT and GW6a,

for GL-RR were mined (Table 2). Among the two known genes,

OsACOT was found to be interacted with environments. In detail, its
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expression level under moderate soil drying treatment was higher

than that under well-watered control (Teng et al., 2022) (Table 2).

In the joint analysis of the MC and RR datasets, 1, 2, and 1 known

genes were found to be around significant QTNs and to be truly

associated with GW, GL, and TGW, respectively (Supplementary

Tables S35; Figures 3D, E; Supplementary Figures 2, 4D, E). Among

these known genes, most of them were consistent with the above

known genes, such as GW5, GS3, and qTGW3, but PGL2 was found

only in the MC and RR joint analysis.
Prediction of candidate genes

Around other QTNs without known genes, all the genes within

200 kb upstream and downstream regions were used to conduct

differential expression analysis. All the differential expression genes

(DEGs) were used to conduct gene annotation analysis. In gene

annotation analysis, the significant biological processes were mainly

included the below categories: cytokinin, abscisic acid and other plant

hormone metabolism (e.g., Os02g0197600 , Os02g0621300 ,

Os02g0626100 , and Os02g0178800), protein ubiquitination

(Os07g0166800), sucrose starch metabolism (Os04g0169100,

Os12g0112500, and Os08g0205900), protein phosphorylation

(Os02g0126400, and Os03g0717700), and endosperm development

(Os02g0538000, Os12g0277500, and Os01g0280500) (Supplementary

Tables S21, S22), which are highly consistent with the previously

reported regulatory pathways in Zuo and Li (2014); Cai et al. (2018),

and Li et al. (2019). These genes were regarded as candidate genes. As

a result, there were 10, 7 and 1 candidate genes for GW, GL and TGW

inmain crop, respectively, and 8, 4, and 3 candidate genes for GW, GL

and TGW in ratoon rice, respectively (Supplementary Tables

S21, S22).

For candidate genes for GW, Os02g0126400 and Os03g0717700

were predicted to be related to protein phosphorylation,
A B

D E

C

FIGURE 2

Population structure and LD decay of 159 rice accessions. (A) Principal component analysis (PCA) of the association panel. (B) Cluster analysis results of
159 rice accessions with 2,017,495 SNPs. (C) The entire genome LD decay of the population. (D) Population structure estimates (K = 3), the areas of the
three colors illustrate the proportion of each subgroup. (E) cross-validation (CV) error line graph of subgroups (K = 3).
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TABLE 1 Known genes around QTNs for grain length (GL), grain width (GW), and thousand grain weight (TGW) in main crop (MC) and ratoon rice (RR).

r2 (%) Significance
Comparative genomics analysis

Reference

Known genes Distance (kb)

0.92~1.57 Significant VLN2 8.379~75.176 Wu et al., 2015

69 3.75~17.29 Significant GW5 3.846~7.684 Liu et al., 2017

1.96 Significant GW7 102.037 Wang et al., 2015a

7 2.02~13.09 Significant GS3 11.033~110.693 Mao et al., 2010

0.68 Suggested qTGW3 112.509 Ying et al., 2018

0.73~1.41 Significant GW5 7.446~89.384 Liu et al., 2017

0.15~0.88 Significant GW7 131.277~136.719 Wang et al., 2015a

0.88 Significant SPL33 129.340 Wang et al., 2017

2.24 Significant GW2 74.369 Song et al., 2007

2.10 Significant OsVPE3 148.959 Lu et al., 2016

1.74 Significant GS2 113.557 Hu et al., 2015

0.43 Significant qTGW3 45.815 Ying et al., 2018

4.63 Significant ETR2 167.769 Wuriyanghan et al., 2009

3.19 Significant GW5 8.287 Liu et al., 2017

1.91 Suggested SSG6 89.442 Matsushima et al., 2016

2.47 Significant SSH1 90.919 Jiang et al., 2019a

2.25 Suggested UAP1 126.728 Wang et al., 2015b

3.19 Significant OsSPL14 120.258 Jiao et al., 2010

true for Table 3.
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Trait MC/RR No. Chr Posi (bp)

LOD scores of QTN detection
in two environments

I II I + II

GW Both 1 3 13768754~13863861 14.58 34.25

Both 2 5 5357438~5361276 28.87~32.99 21.43~44.21 55.83~93.

MC 3 7 24771358 18.09

GL Both 1 3 16708508~16845802 32.72~40.25 47.94 22.1~36.5

MC 2 3 35504491 5.28

MC 3 5 5357676~5456085 10.46 33.37

Both 4 7 24533051~24800887 10.73 12.68

TGW MC 1 1 800544 5.97

MC 2 2 8196020 13.19

RR 3 2 26049877 17.19

RR 4 2 28749717 15.39

MC 5 3 35437797 11.11

RR 6 4 4570606 24.24

MC 7 5 5356835 31.77

MC 8 6 1540336 4.83

MC 9 7 7640833 16.51

RR 10 8 6110721 6.11

MC 11 8 25154283 13.02

I and II: QTN detection in environments I and II, respectively; I + II: joint analysis of datasets in environments I and II. The same is
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Os02g0178800 and Os03g0592500 were predicted to respond to

abscisic acid, Os02g0197600 was found to be related to cytokinin,

Os07g0166800 was found to be related to the process of protein

ubiquitination, Os02g0538000 and Os12g0277500 were found to be

associated with embryonic development at the end of seed

dormancy, and Os08g0205900 and Os04g0169100 were predicted

to be related to sucrose metabolism and starch synthesis

metabolism, respectively.

For candidate genes for GL, Os02g0197600, Os02g0621300,

Os02g0626100, Os04g0514800, and Os03g0108600 were predicted to

respond to cytokinin, abscisic acid, gibberellin, auxin, and ethylene,

respectively, Os01g0280500 and Os02g0538000 were found to affect

embryonic development, and Os04g0169100 and Os12g0112500 were
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predicted to be related to starch synthesis. In Wuriyanghan et al.

(2009), Os04g0169100 was reported to affect the ethylene sensitivity of

seeds to substantially enhance TGW of mutant. Here there is one

issue pending, that is, whether the TGW increase is caused by the

GL increase.

For candidate genes for TGW, Os02g0621300 was predicted to be

related to response to abscisic acid, Os03g0411500 was predicted to be

related to photosynthesis, Os03g0607400 was predicted to be related to

positive regulation of unidimensional cell growth, and Os05g0445900

was predicted to participate in DNA demethylation, which is consistent

with that in Zhou et al. (2021), in detail, Os05g0445900 encodes rice

DNA glycosylase, and the mutation of DNG701 can lead to embryo

retardation or abortion of part seeds (Zhou et al., 2021).
TABLE 2 Two known genes around QEIs for rice grain size traits in ratoon rice (RR) and the evidence of gene-by-environment interactions.

No. Trait

QEI

Known
gene

Evidence for environmental interaction genes

Reference
Chr Posi

(bp) LOD r2

(%) Significance Environment Indicator

Difference of
indicator under

various
environments

1 GL-RR 4 20228091 15.7721 0.7362 Significant OsACOT
Moderate soil
drying

Expression
level

The expression of
OsACOT increased after
MD treatment

Zhao et al.,
2019; Teng
et al., 2022

2 GL-RR 6 26752211 21.2258 1.0259 Significant GW6a
Song et al.,
2015
GW, grain width; GL, grain length; TGW, thousand grain weight.
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FIGURE 3

Manhattan plots for grain width in ratoon rice (A–C) and grain width in the joint analysis of main crop and ratoon rice (D, E). Known genes around QTNs
were marked with magenta color, and candidate genes around QTNs were marked with dark green color.
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For the DEG Os03g0737000 (P=7.77E-03, log2FC=-1.29) around

the QEI of chr3-30340995 for GL-MC, Os03g0737000 was predicted

to be related to “response to salt stress” (Table 3). In the future, new

experiments are necessary to explore these novel gene-trait and GEI-

trait associations.

In the joint analysis of the MC and RR datasets, there were 22

candidate genes around QTNs to be responsible for the above three

traits, but only two were consistent with the above 25 candidate genes

(Supplementary Table S36). The significant biological processes of

these candidate genes were mainly included the below categories:

plant hormone metabolic pathway (e.g. , Os02g0126400 ,

Os05g0563400, and Os12g0288000), protein phosphorylation

(Os03g0838100, Os08g0200500, and Os05g0514200), embryo

development (Os02g0538000 and Os08g0428100), and protein

ubiquitination (Os09g0294300 and Os12g0111500). In addition, we

also mined two additional DEGs for TGW around QEIs, among

which Os06g0154200 was predicted to be related to “positive

regulation of response to water deprivation” and Os11g0600900 was

predicted to be related to “response to light intensity” (Table 3).
Haplotype analysis

To further verify the reliability of candidate genes, we conducted

haplotype analysis. As a result, 12 of the above 25 candidate genes had

significant differences among the phenotypes of the traits

corresponding to the haplotypes of each gene (Figure 4). Among

the 12 significant candidate genes, 7, 3, and 3 were found to be

associated with GW, GL, and TGW, respectively, of which there are 6,

3, and 1 significant candidate genes in main crop and 2, 0, and 2

significant candidate genes in ratoon rice (Figure 4). Os08g0205900

for GWwas mined in both MC and RR, and Os02g0621300 was found

in both GL and TGW (Figure 4). It should be noted that 8 of 22

candidate genes, which were mined in the MC and RR joint analysis,

were significant in haplotype analysis, and the eight genes were

different from the 12 significant candidate genes in the above

haplotype analysis (Figure 4).
Discussion

To address the studies on gene-by-environmental interactions,

especially, across main crop and ratoon rice, in this study we

conducted genome-wide association studies for GW, GL, and TGW

using 3VmrMLM. As a result, a total of 202 QTNs and 3 QEIs in main

crop, and 191 QTNs and 5 QEIs in ratoon rice were identified.

Around these QTNs and QEIs, 18 and 2 known genes were found to

be truly associated with the grain size related traits, in which 4 were

common across main crop and ratoon rice, and 12 candidate genes

were mined through differential expression analysis, GO annotation,

and haplotype analysis, in which one was common across main crop

and ratoon rice. More importantly, four key candidate genes around

QTNs were predicted, in which two were new and all identified in

main crop. In addition, we identified a new candidate GEI

Os03g0737000, which was predicted to be related “response to salt

stress”. In the joint analysis of the MC and RR datasets, furthermore, 8

additional candidate genes and two additional GEIs were minded, and
Frontiers in Plant Science 08145
3 of 8 additional candidate genes were new and key for grain size

related traits in this study.
Comparison of QTNs, QEIs, known genes,
and candidate genes across main crop and
ratoon rice

Ratoon rice is a new mode of rice planting, which can effectively

save costs and increase benefits (Shen et al., 2021). Although it is

generally accepted that RR has higher quality than MC, there are still

many controversies in the studies on grain size related traits (Alizadeh

and Habibi, 2016; Huang et al., 2020; Yuan et al., 2022b).

In this study, 64, 71, and 64 QTNs and 0, 1 and, 2 QEIs in MC,

and 72, 63 and 56 QTNs and 2, 2, and 1 QEIs in RR were identified to

be associated with GW, GL and TGW, respectively. Among these

QTNs, 4 known genes were commonly detected in main crop and

ratoon rice to be truly associated with grain size related traits,

including GW5 and VLN2 for GW, and GS3 and GW7 for GL

(Table 1). Some known genes were found only in main crop or

ratoon rice, such as qTGW3, SPL33, and OsSPL14 were detected only

in main crop, and OsVPE3, GS2, ETR2, and UPA1 were found only in

the ratoon rice (Table 1). Among all the candidate genes, one was

commonly found in main crop and ratoon rice, and 12 were detected

only in main crop or ratoon rice (Figure 4). No common QEIs were

detected between main crop and ratoon rice.

Based on the above results, main crop can detect more known

genes (14), candidate genes (10) and candidate GEIs (1) than ratoon

rice (8, 4, and 0). Although some known and candidate genes can be

commonly found in main crop and ratoon rice, there are still some

specific candidate genes in main crop or ratoon rice. In the

independent and joint analyses of the MC and RR datasets, most

candidate genes and candidate GEIs were different across the two

analyses. This indicated that more known and candidate genes and

GEIs can be identified while the datasets in main crop and ratoon rice

are simultaneously or jointly analyzed.
Key candidate genes for GW, GL, and TGW
in rice

The candidate genes were mined by expression and GO

annotation analysis, and further validated through haplotype

analysis. In this study we identified five new and key candidate

genes that were predicted to be closely related to the three traits,

among which 3 were mined to be around QTNs in the MC and RR

joint analysis (Table 3), the evidence was as below.

Os02g0626100 for GL-MC, and Os02g0538000 for GW-MC were

differentially expressed. In GO annotation analysis, the two genes

were annotated as “response to gibberellin”, and “embryo

development ending in seed dormancy”, respectively, in which

these biological processes are highly consistent with metabolic

pathways of important grain size traits in rice (Li et al., 2018; Li

et al., 2020; Jiang et al., 2022). In haplotype analysis, significant GL/

GW differences were observed across 2 and 5 haplotypes from 1 and

11 significant SNPs within the two genes and their 2 kb upstream.

Thus, the two genes may be important candidate genes for GL/GW.
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TABLE 3 Key candidate genes and gene-by-environment interactions for grain size related traits in rice.

ression analysis
P-value in
haplotype
analysis

GO annotation analysis

P-value GO_ID GO_name E-value Reference

6.47E-03 1.50E-06 GO:0009793

embryo
development
ending in seed
dormancy

0

9.33E-03 7.30E-03 GO:0009739
response to
gibberellin

0

2.76E-03 4.06E-15 GO:2000904
regulation of
starch metabolic
process

0
Wuriyanghan
et al., 2009

1.48E-02 1.32E-03 GO:0080111
DNA
demethylation

0
Zhou et al.,
2021

2.72E-02 7.20E-03 GO:0005983
starch catabolic
process

0

3.46E-03 1.70E-05 GO:0016567
protein
ubiquitination

2.71E-288

4.95E-03 1.30E-06 GO:0009737
response to
abscisic acid

5.65E-216

7.77E-03 GO:0009651
response to salt
stress

0

1.11E-02 GO:1902584
positive regulation
of response to
water deprivation

0

2.01E-02 GO:0009642
response to light
intensity

0

Z
h
ao

e
t
al.

10
.3
3
8
9
/fp

ls.2
0
2
3
.1119

2
18

Fro
n
tie

rs
in

P
lan

t
Scie

n
ce

fro
n
tie

rsin
.o
rg
QTN/
GEI No. Trait

Locus LOD scores

r2

(%)

Gene differential exp

Chr Posi
(bp) II I + II MC+RR Gene_ID

log2
(Fold

Change)

QTN 1 GW-MC 2 20073320 11.87 0.47 Os02g0538000 1.23

QTN 2 GL-MC 2 24992114 13.56 0.75 Os02g0626100 -1.27

QTN 3 GW-RR 4 4591488 49.91 0.97 Os04g0169100 -1.20

QTN 4 TGW-MC 5 22017452 10.27 1.82 Os05g0445900 1.19

QTN 5 TGW 8 17687290 11.62 1.71 Os08g0379300 -1.18

QTN 6 GW 9 6986114 14.17 0.79 Os09g0294300 -1.6

QTN 7 GL 12 22906272 12.45 1.52 Os12g0557800 1.79

GEI 1 GL-MC 3 30340995 6.39 0.20 Os03g0737000 -1.29

GEI 2 TGW 6 2928548 13.19 2.91 Os06g0154200 -1.22

GEI 3 TGW 11 22930659 5.21 1.08 Os11g0600900 -1.14

GW, grain width; GL, grain length; TGW, thousand grain weight; MC, main crop; RR, ratoon rice.
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In the same way, Os08g0379300 for TGW, Os09g0294300 for GW,

and Os12g0557800 for GL were found to be DEGs around the QTNs

in the MC and RR joint analysis. In GO annotation analysis, the three

gene were predicted to be related to “starch catabolic process”,

“protein ubiquitination” , and “response to abscisic acid”,

respectively, which have been confirmed to be important regulatory

pathways of rice grain size (Li et al., 2008; Choi et al., 2018; Gao et al.,

2021). In haplotype analysis, significant TGW/GW/GL difference was

observed across 7, 6, and 16 haplotypes from 6, 6, and 16 significant

SNPs within the genes and their 2 kb upstream. Thus, the three genes

may be important candidate genes for TGW/GW/GL.

In addition, two candidate genes have been reported to be related to

rice seed development. In Wuriyanghan et al. (2009), Os04g0169100,
Frontiers in Plant Science 10147
identified for GW-RR in this study, significantly increased TGW of

mutants by increasing the sensitivity of seeds to ethylene. In Zhou et al.

(2021), the mutant of Os05g0445900, identified for TGW-MC in this

study, participated in DNAmethylation process causing the endosperm

of some seeds to be stunted or aborted.
Identification of known and candidate GEIs
for grain size traits in rice

Around the QEIs, OsACOT for GL-RR has been confirmed to be

differentially expressed under two soil moisture treatments (Teng

et al., 2022; Table 2).
FIGURE 4

Haplotype analysis for candidate genes for grain width (GW), grain length (GL) and thousand grain weight (TGW) in main crop (MC), ratoon rice (RR), and the
joint analyses of MC and RR. The P-values indicate the significance of trait averages across gene haplotypes for GW, GL, and TGW in one-way ANOVA.
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Around QEIs in the independent analysis of MC or RR,

Os03g0737000 for GL-MC was found to be differentially expressed, and

its biological process in GO annotation was predicted to be related to salt

stress. We speculate that Os03g0737000 may be affected by

environmental factors, such as different salt treatments. Around QEIs

detected in the MC and RR joint analysis, Os06g0154200 and

Os11g0600900 for TGW were found to be differentially expressed, and

the biological processes in their GO annotations were predicted to be

related to water deprivation and light intensity, respectively. Thus, we

speculate that Os06g0154200 may be affected by the moisture content of

the environment and Os11g0600900 may be affected by the intensity of

external light. The molecular functions of above three candidate GEIs

need to be verified by subsequent molecular biology experiments.
Comparison of known genes across two
types of interval lengths

To investigate the effect of interval length on mining known genes,

two types of interval lengths were compared. One was 200 kb upstream

and downstream regions of QTNs and QEIs, which was determined

based on LD decay distance, while another was 1000 kb for QTNs and

1500 kb for QEIs. The results are listed in Table 1 and Supplementary

Table S37. As a result, 3, 4, 7, 2, 2, and 4 known genes around QTNs

and 0, 0, 0, 0, 2, and 0 known genes around QEIs were found to be

located on their corresponding 200 kb upstream and downstream

regions and to be truly associated with GW-MC, GL-MC, TGW-MC,

GW-RR, GL-RR, and TGW-RR, respectively, while 6, 7, 21, 7, 6, and 16

known genes for the above six traits were found to be located on 1000

kb upstream and downstream regions of QTNs, and 0, 0, 1, 2, 2, and 0

known genes for the above six traits were found to be located on 1500

kb upstream and downstream regions of QEIs. This indicates that large

intervals can find more known genes. Thus, it is very important to

determine a suitable interval length in mining known genes.
Comparison of QTNs, QEIs, and known
genes across various population structures

To investigate the effect of population structure on genome-wide

association studies, we compared the results from evolutionary

population structure (Liu et al., 2020), Q matrix, and PCA in this

study. As a result, 323, 283, and 393 QTNs, 9, 6, 8 QEIs, and 11, 12,

and 20 known genes were identified from evolutionary population, Q

matrix and PCA, respectively (Supplementary Tables S23–S28). Clearly,

the PCA result is the best, followed by evolutionary population, and the

worst is the Qmatrix result in this study. Thus, population structure is an

important parameter in genome-wide association study.
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Mapping quantitative trait loci
and developing their KASP
markers for pre-harvest sprouting
resistance of Henan wheat
varieties in China

Cheng Kou1,2, ChaoJun Peng2,3,4, HaiBin Dong2,3,4,
Lin Hu2,3,4 and WeiGang Xu1,2,3,4*

1College of Agronomy, Northwest A&F University, Xianyang, China, 2Institute of Crop Molecular
Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China, 3Henan Key Laboratory
of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China,
4The Shennong laboratory, Zhengzhou, Henan, China
Introduction: Pre-harvest Sprouting (PHS) seriously affects wheat quality and yield.

However, to date there have been limited reports. It is of great urgency to breed

resistance varieties via quantitative trait nucleotides (QTNs) or genes for PHS

resistance in white-grained wheat.

Methods: 629 Chinese wheat varieties, including 373 local wheat varieties from 70

years ago and 256 improved wheat varieties were phenotyped for spike sprouting

(SS) in two environments and genotyped by wheat 660K microarray. These

phenotypes were used to associate with 314,548 SNP markers for identifying

QTNs for PHS resistance using several multi-locus genome-wide association study

(GWAS) methods. Their candidate genes were verified by RNA-seq, and the

validated candidate genes were further exploited in wheat breeding.

Results: As a result, variation coefficients of 50% and 47% for PHS in 629 wheat

varieties, respectively, in 2020-2021 and 2021-2022 indicated large phenotypic

variation, in particular, 38 white grain varieties appeared at least medium resistance,

such as Baipimai, Fengchan 3, and Jimai 20. In GWAS, 22 significant QTNs, with the

sizes of 0.06% ~ 38.11%, for PHS resistance were stably identified by multiple multi-

locus methods in two environments, e.g., AX-95124645 (chr3D:571.35Mb), with the

sizes of 36.390% and 45.850% in 2020-2021 and 2021-2022, respectively, was

detected by several multi-locus methods in two environments. As compared with

previous studies, the AX-95124645 was used to develop Kompetitive Allele-Specific

PCR marker QSS.TAF9-3D (chr3D:569.17Mb~573.55Mb) for the first time, especially,

it is available in white-grain wheat varieties. Around this locus, nine genes were

significantly differentially expressed, and two of them (TraesCS3D01G466100 and

TraesCS3D01G468500) were found by GO annotation to be related to PHS

resistance and determined as candidate genes.

Discussion: TheQTN and two new candidate genes related to PHS resistance were

identified in this study. The QTN can be used to effectively identify the PHS
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resistance materials, especially, all the white-grained varieties with QSS.TAF9-3D-

TT haplotype are resistant to spike sprouting. Thus, this study provides candidate

genes, materials, and methodological basis for breeding wheat PHS resistance in

the future.
KEYWORDS

wheat, pre-harvest sprouting, genome-wide association study, RNA-seq, KASP, mrMLM
1 Introduction

Wheat is a major worldwide food crop, and China is the largest

wheat producer and consumer in the world. In 2022, Chinese wheat

harvest area was 22,911.2 thousand hectares, and the total yield

reached 135.76 million tons. In Henan, wheat harvest area and

yield accounts for 24.8% and 28.1% in China, respectively, being

the largest main wheat producing area in China. Its genetic

improvement of wheat varieties has played an important role in its

continuous improvement of wheat production capacity.

Pre-harvest Sprouting (PHS) refers to the phenomenon of seeds

germinating and sprouting on the spike under rainy or humid conditions

before wheat harvest. It is a worldwide natural disaster, and has been

reported in China (Zhou et al., 2017), Japan (Kashiwakura et al., 2016),

the United States (Nonogaki et al., 2014), Canada (Cabral et al., 2014),

Europe (Rakoczy-Trojanowska et al., 2017), South Africa (Sydenham and

Barnard, 2018), and Australia (Barrero et al., 2010). In China, the

frequent and severe PHS spike hazards happened in the middle and

lower reaches of Changjiang River winter wheat zone, southwest winter

wheat zone, and northeast spring wheat zone (Jin, 1996; Zhang et al.,

2010). In these zones, PHS resistance depends on dormant genes linked

to red seed coat. In northern China, such as Henan, however, white-

grained wheat varieties are used in production, and with the overall

popularization of wheat mechanization harvest, that wheat should be

harvested after being fully mature and dehydrated in the field. The

varieties with PHS susceptibility have an increased probability of spike

sprouting due to rainfall during themature harvest period. Therefore, it is

of great urgency to breed resistance varieties via PHS resistance

quantitative trait nucleotides (QTNs) or genes of white-grained wheat.

Wheat PHS resistance is a complex quantitative trait controlled

by multiple genes (Imtiaz et al., 2008). Thus, it is very important and

necessary to identify these resistance loci and develop their molecular

markers in crop breeding. In previous linkage analysis, a series of

QTLs for PHS resistance has been located on all the 21 wheat

chromosomes (Mohan et al., 2009; Cabral et al., 2014; Cao et al.,

2016; Fakthongphan et al., 2016), in which repeatedly and stably

QTLs were found on chromosome 3 (Kato et al., 2001; Osa et al.,

2003; Kulwal et al., 2004; Mori et al., 2005; Liu and Bai, 2010).

Currently, red-grained wheat varieties generally exhibit higher PHS

resistance, because the PHS resistance genes on chromosomes 3A, 3B

and 3D are thought to be closely linked to red seed coat, which is

controlled by R dominant allele (Himi et al., 2011). Recently, genome-

wide association studies (GWAS) have been used to identify QTLs

and their candidate genes for wheat grain weight and plant height

(Zanke et al., 2014; Chen et al., 2016; Wang et al., 2017), especially,
02152
Zhu et al. (2019) identified some QTLs and developed their molecular

markers on wheat chromosomes 1AL, 3BS, and 6BL for PHS

resistance, and Lin et al. (2017) identified two candidate genes for

PHS resistance in 80 wheat varieties. However, the studies on wheat

PHS resistance are relatively limited.

Chinese wheat local varieties showed higher PHS resistance than

improved varieties (Wang et al., 2011; Liu et al., 2014), which

provided valuable genetic resources for mining the loci of PHS

resistance. In this study, 629 wheat varieties were measured for

PHS resistance in 2020-2021 and 2021-2022, including 373 wheat

local varieties over 70 years ago and 256 wheat improved varieties

over the last 70 years in Henan Province, China. To mine some

valuable QTNs for PHS resistance, these phenotypes were used to

associate with SNP markers in the above 629 wheat varieties using

several multi-locus GWAS methods. The results were validated by

RNA-seq datasets between PHS resistance and susceptibility varieties,

one confirmed QTN was used to develop Kompetitive Allele-Specific

PCR (KASP) marker, and the KASP marker was further confirmed to

be associated with PHS resistance. Thus, this study provides a

valuable locus and white-grained wheat PHS resistance materials,

which is available in main producing zones.
2 Materials and methods

2.1 Materials

In association mapping population, there were 629 Chinese wheat

varieties, including 373 local wheat varieties from 70 years ago and

256 improved wheat varieties (lines). In autumns of 2020 and 2021,

these varieties were planted in the experimental field of Henan

Modern Agricultural Research and Development Base (East

longitude: 113.707°, North latitude: 35.011°). The winter wheat

varieties were provided by Institute of Crops Molecular Breeding,

Henan Academy of Agricultural Sciences.
2.2 Measurement of PHS resistance in 629
wheat varieties

Based on the agricultural industry standards of the People’s

Republic of China, NY/T 1939-2009, namely “standard” hereinafter,

we harvested the varieties in the dough stage in turn, and 20 main

stem spikes of each variety were stored in the refrigerator at -20°C.

After all the varieties were harvested, we measured the PHS
frontiersin.org
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phenotypes of all the varieties on phytotron with temperature of 22°C

± 1°C and relative humidity of 95% ± 5%. Samples were removed

from phytotron after 96 hours, and dried at 60°C for counting, spike

sprouting (SS) was calculated from the formula x=(n/N)*100%,

where n is the number of sprouted grains per spike, and N is the

total number of grains per spike. The relative SS index “I” of each

variety to be tested was calculated from I=x1/x2.

where x1 is the SS of each variety to be tested, and x2 is the SS of

the control variety, being Zhoumai 18 or a local variety with similar

PHS phenotype with Zhoumai 18. Based on the criteria of PHS

resistance in Supplementary Table S1, pre-harvest sprouting grade of

each variety was determined.
2.3 Multi-locus GWAS for wheat PHS
resistance in 629 varieties

As described in the reference (Du et al., 2021), all the 629 varieties

were genotyped by wheat 660Kmicroarray, and high quality genotypes of

314,548 SNP markers were obtained based on four screening criteria:

alleles = 2, minor allele frequency (MAF) ≥ 0.01, missing ≤ 10%, and

heterozygosity ≤ 10%. The best linear unbiased prediction (BLUP) values

in 2020-2021 and 2021-2022 years was calculated by R language package

(R 4.2.1). Thesemarker genotypes were used to associate trait phenotypes

or BLUP values in the 629 wheat varieties using the IIIVmrMLM (Li

et al., 2022a; Li et al., 2022b) and mrMLM (Zhang et al., 2020) software

packages, in which the latter included mrMLM (Wang et al., 2016),

FASTmrMLM (Tamba and Zhang, 2018), FASTmrEMMA (Wen et al.,

2017), pLARmEB (Zhang et al., 2017), ISIS EM-BLASSO (Tamba et al.,

2017), and pKWmEB (Ren et al., 2018) methods. The population

structure was determined using admixture_linux-1.3.0 software. The

number of subgroups (K) was scanned from 2 to 5 using the

admixture software and determined as two. The kinship matrix was

calculated using the mrMLM software. The critical LOD score for

significant QTLs was set as LOD = 3.0, which is equivalent to P-value

= 2e-4. The Manhattan plots were drawn using the mrMLM software.

The LD decay distance was calculated using vcftools v0.1.13, plink-v1.07,

and PopLDdecay 3.41 softwares. The 2.192 Mb region was regarded as

the upstream and downstream of a significant QTL.
2.4 Design and analysis of molecular
markers for PHS resistance loci

0.2-0.3g fresh leaves were taken from each of 629 wheat varieties,

pre-cooled with liquid nitrogen, crushed, and placed into 1.5mL

centrifuge tube, and wheat genomic DNA was extracted based on

Gawel and Jarret (1991).

2.4.1 Design of KASP molecular marker for PHS
resistance locus

The forward and reverse primers (FT: 5’-ATCAATTATCAG

CTCTGGAT-3’; FC: 5’-ATCAATTATCAGCTCTGGAC-3’; R: 5’-

AATCTTGACCTGTGTCCCGA - 3’) of KASP molecular markers

were designed in the upstream 20 bp and downstream 155 bp

according to the physical location information of significantly

associated locus in reference to the Chinese spring sequence
Frontiers in Plant Science 03153
information of wheat Whole Genomics website (http://202.194.139.

32/jbrowse-1.12.3-release/?data=Chinese_Spring1.0 ). HEX (red, 5’-

GAAGGTCGGAGTCAACGGATT-3’) was added to the 5’ end of FT

primer sequence and FAM (blue, 5 ’-GAAGGTGACCAAG

TTCATGCT-3’) was added to the 5’ end of FC primer sequence,

respectively. These primers were synthesized by Sangon Biotech

(Shanghai) Co., Ltd. PCR reactions were performed in an

Hydrocycler-thermal cycler in a total volume of 3mL, including
1.5mL KASP 2× Master Mix (LGC Technology (Shanghai) Co.,

Ltd.), 80 ng of template DNA, 0.06mL KASP Assay mix(100uM of

Forward primer-FT, Forward primer-FC, Reverse primer-R and

ddH2O mixed in a 12:12:30:46 volume ratio). PCR amplification

were 94°C for 15min, 10 cycles of 94°C for 20s, 61°C-55°C for 60s by

0.6°C decrease per cycle, and with a final extension is 29 cycles of 94°C

20s, 55°C 60s.

2.4.2 Sequence analysis of the KASP marker
amplified product

The KASP molecular marker reaction products of Zhoumai 18

and Shengsimai were separated by 1% agarose gel electrophoresis, the

target fragments were recovered and purified, which was cloned with

pMDTM19-T vector (Takara Biomedical Technology (Beijing) Co.,

Ltd.), and sequenced by Sangon Biotech (Shanghai) Co., Ltd. At least

10 clones were sequenced for each variety. DNAMAN software was

used to analyze the allelic variation of the amplified product

sequences of KASP marker primers, and then BLAST (basic local

alignment search tool) at EnsemblPlants database (http://plants.

ensembl.org/index.html).
2.5 RNA-seq sample selection preparation
and differential gene expression analysis

2.5.1 RNA-seq sample selection preparation
According to the identification results of spike sprouting in

association population, the highly resistant red-grained variety

Shengsimai, the white-grained variety Baipimai, and the highly

susceptible white-grained variety Zhoumai 18 were selected as

RNA-seq samples. The sample processing method was carried out

according to the standard. At the wax-ripening stage, all the three

samples were cut from 15 cm below the spike, 9 spikes were taken

from each material, which were divided into 3 portions, each spike

was a biological replicate. And then, after soaking for 4 hours, one of 3

portions was taken out of liquid

Nitrogen and frozen for the 0-point control of RNA-seq (0h). The

remaining two portions were further tested for PHS identification. A

total of 96 hours were required for PHS identification. Samples were

taken out and frozen in liquid nitrogen at 48 hours (48h) and 96 hours

(96h). The subsequent RNA extraction library preparation,

sequencing, and analysis results of RNA-seq were provided by

Beijing Biomarker Technologies Co., Ltd.

2.5.2 RNA-seq differential expression
analysis of genes

Differential gene expression analysis of RNA-seq samples was

performed on the website of Beijing Biomarker Technologies Co., Ltd.

(http://www.biomarker.com.cn/). FDR < 0.05 was used as the
frontiersin.org
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standard for screening differentially expressed genes, and the

difference groups were set according to the PHS resistance and

susceptibility, and the PHS resistance of different seed coat colors,

as shown in Supplementary Table S2. Using the differential gene

expression datasets, the P-values were calculated by GO annotation

enrichment tool of the Beijing Biomarker Technologies (https://

international.biocloud.net/).
3 Results

3.1 Phenotypic analysis for PHS resistance in
629 wheat varieties

The spike sprouting method was used to identify the phenotypes

of 629 wheat varieties (Supplementary Table S3), including 333 red-

grained and 296 white-grained varieties. Among them, the numbers

of red-grained varieties and white-grained varieties resistant to spike

germination in the two years were 293 and 38, respectively. Red-

grained varieties were generally more resistance than white-grained

varieties. Among the 373 local varieties, 305 were red-grained

varieties, 68 were white-grained varieties, and 298 were resistant

to spike sprouting in both the two years. Among the 256 improved

varieties, 28 were red-grained varieties, 228 were white-grained

varieties, and 33 were resistant to spike sprouting in both the two

years (Figure 1). This indicates that the grain color of wheat varieties

in Henan Province has changed greatly from the local varieties

before 1950 to the later improved varieties, and red-grained varieties

were gradually changed to white -grained varieties. In the past two

decades , a l l the var iet ies developed have been white-

grained varieties.

In the identification of PHS resistance, the ranges of spike

sprouting rates in 2020-2021 and 2021-2022 were 0.51%~99.22%

(Mean ± SD: 35.38% ± 0.29%) and 0.00%~97.47% (Mean ± SD:

33.63% ± 0.25%), respectively, indicating abundant phenotypic

variation in both environments. Analysis of variance showed that

the spike sprouting rates were significant across genotypes,

environments, and their interactions, and the heritability was 0.88

(P-value ≤ 0.001; Supplementary Table S4), indicating that wheat PHS

resistance was mainly determined by genotypes and modified

by environments.
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3.2 GWAS for PHS resistance index in 629
wheat varieties

The phenotypes for PHS resistance index in 629 wheat varieties in the

two years were used to associate with all the SNPmarkers using six multi-

locus GWAS approaches. As a result, a total of 22 QTNs were stably

detected by multiple methods or environments, and their proportions of

total phenotypic variation explained by each QTN (R2) was from

0.00001% to 38.1121% (Table 1). Among these loci, two loci, AX-

95124645 on chromosome 3D and AX-109028892 on chromosome 5D,

had been identified by Zhou et al. (2017), while other loci were identified

for the first time, especially, AX-111020384 on chromosome 3A and AX-

95124645 on chromosome 3D were identified by all the seven methods in

the two software packages in all the two environments, and their R2 values

were 12.8% and 38.1%, respectively (Figure 2), indicating the major QTN

around AX-95124645 for wheat PHS resistance. As compared with the

GWAS results for PHS resistance in 272 local varieties genotyped by

Wheat660 SNP markers (Zhou et al., 2017), the resistance allele of AX-

95124645 was found to be associated with only red-grained varieties in

Zhou et al. (2017) and with both red-grained and white-grained varieties

in this study. In linkage disequilibrium analysis, the LD decay distance in

association mapping population was found to be 2.192Mb. This means

that 2.192 Mb upstream and downstream regions of the significant QTL,

that is QSS.TAF9-3D (chr3D:569.167Mb ~ 573.551Mb), may be used to

mine candidate genes.
3.3 KASP marker of QSS.TAF9-3D

Using the KASP marker around a major QTN AX-95124645, two

haplotypes were found in the 629 wheat varieties(Figure 3), namely

QSS.TAF9-3D-TT and QSS.TAF9-3D-CC, which is completely

consistent with the results of marker AX-95124645 obtained from

629 wheat varieties scanned by 660K chip. We also used T-A cloning

and sequencing of the amplified products of Zhoumai18 (QSS.TAF9-

3D-CC) and Shengsimai (QSS.TAF9-3D-TT), which there was only a

T/C allele mutation at 26 bp in the amplified products of Zhoumai 18

and Shengmai. Using EnsemblPlants database (http://plants.ensembl.

org/index.html), it was found that the above T/C alleles in the

amplified products are exactly consistent with those at the physical

location of marker AX-95124645 (Figure 3). QSS.TAF9-3D-TT and
B CA

FIGURE 1

Frequency for PHS resistance. (A–C): frequencies of PHS resistance for 629 varieties at 2020-2021, 2021-2022, and their BLUP values, respectively; 1 to
5: highly resistance, resistance, middle resistance, susceptibility, and highly susceptibility, respectively.
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B

C

A

FIGURE 2

(A–C) Manhattan plot for PHS resistance index in 629 wheat varieties. If LOD score ≥ 10, the LOD scores obtained are transformed as LOD’ = 10 + (LOD – 10)/5.
TABLE 1 Significant QTNs for PHS resistance index detected by multiple multi-locus GWAS methods in two environments.

QTN Chr Marker Position (Mb) Env Methods −log10(P-value) R2 (%) Reference

QTN1 1A AX-110511933 12.859 3 2, 4 5.355~5.3664 0.5869~0.6868

QTN2 1A AX-109827872 545.852 3 3, 5 4.0032~6.3289 0.4481~1.0833

QTN3 2A AX-94559008 21.208 1, 3 1, 4 4.2459~6.2418 1.1445~2.3547

QTN4 2A AX-109841146 716.163 1 1, 2, 4 4.3164~6.8085 0.0652~1.6299

QTN5 3A AX-111020384 10.159 1, 2, 3 1~7 4.3263~36.0266 3.1246~12.8725

QTN6 5A AX-111670342 569.991 1, 3 3 4.4955~5.8588 0.00001~0.7568

QTN7 6A AX-110436229 590.075 2 1, 2 4.4267~4.7556 0.7937~1.1922

QTN8 6A AX-94617998 608.969 3 1, 2, 5 3.8013~5.7994 0.4255~0.7798

QTN9 7A AX-110492207 20.188 1, 3 1~5, 7 3.8284~24.2651 0.6686~3.1246

QTN10 1B AX-94741303 3.181 2, 3 1, 2, 4, 6 4.5796~8.3543 0.5791~1.886

QTN11 2B AX-111503288 765.578 1, 3 1, 4, 6 5.5209~12.389 1.4445~3.8593

QTN12 3B AX-111703196 16.805 2, 3 3, 4, 7 3.9937~9.9601 0.8401~1.7144

QTN13 5B AX-94487480 469.826 1, 3 2, 5 3.7531~4.4669 0.49~1.1933

QTN14 5B AX-108862465 511.697 1 1, 2, 4 5.009~8.1404 0.0551~1.318

QTN15 5B AX-108932221 536.054 3 2, 4 4.4563~5.4732 0.2389~0.3166

QTN16 1D AX-94392070 58.087 1, 3 4, 5, 6 4.0595~7.3964 0.915~1.557

QTN17 1D AX-110332164 458.942 2, 3 1, 4 4.1832~5.235 0.6609~0.905

QTN18 3D AX-95124645 571.359 1, 2, 3 1~7 5.0794~48.9107 4.9300~38.1121a Zhou et al., 2017

QTN19 4D AX-108916749 19.09 1, 3 2, 3 4.2911~6.551 0.00001~3.6386

QTN20 5D AX-109028892 45.711 1 1, 5, 6 10.6444~27.0823 7.2283~11.2516 Zhou et al., 2017

QTN21 6D AX-109716798 143.583 3 3, 5 3.9008~5.7168 0.4118~0.5253

QTN22 6D AX-109293498 472.945 1, 3 1, 2, 3, 4, 6 4.2369~7.5779 0.5624~1.7955
F
rontiers in Pl
ant Science
 01
 555
Env 1, 2, and 3: the PHS resistance indices in 2020-2021, 2021-2022, and their BLUP values, respectively. Methods 1 to 7: mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, ISIS EM-BLASSO,
pKWmEB, and IIIVmrMLM, respectively. “a”: the R2 value is greater than 30%.
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QSS.TAF9-3D-CC haplotypes could be distinguished by KASP

molecular marker, having 261 QSS.TAF9-3D-TT haplotypes and

368 QSS.TAF9-3D-CC haplotypes in 629 wheat varieties.

The KASP marker was used to conduct haplotype analysis in 629

wheat varieties. The results were listed in Supplementary Table S5. The

results showed that QSS.TAF9-3D-TT haplotype had significantly higher

PHS resistance than QSS.TAF9-3D-CC haplotype. TAF9-3D-TT/CC

markers accounted for 36.390% and 45.850% of phenotypic variation in

SS_2021 and SS_2022, respectively. The QSS.TAF9-3D-TT haplotype was

negatively correlated with the PHS resistance index, indicating that the

QSS.TAF9-3D-TT haplotype was mainly distributed in varieties with high

PHS resistance. Among 261 varieties with QSS.TAF9-3D-TT haplotype,

253 and 252 were resistant to spike sprouting in 2020-2021 and 2021-2022,

respectively. Among the 38 white-grained resistant PHS varieties, 11 white

grained varieties with QSS.TAF9-3D-TT showed PHS resistance

(Supplementary Table S6). We considered that PHS resistance in the

remaining 27 varieties was dependent on other related genes or QTLs.
3.4 RNA-seq analysis

3.4.1 Validation of GWAS results by RNA-seq
Differentially expressed genes (DEGs) in QSS.TAF9-3D region

were listed in Table 2. The results showed the existence of differential

expressions between the PHS resistance varieties (Baipimai and

Shengsimai) and the PHS susceptibility variety (Zhoumai18),

indicating the association of QSS.TAF9-3D with PHS resistance.

With the increase of treatment time, the number of DEGs between

the two resistant varieties and one susceptible variety significantly

increased. The number of DEGs in the two resistance varieties of

Baipimai and Shengsimai with different seed coat colors increased

first and then decreased with the increase of treatment time,

indicating the association of seed coat color with PHS resistance.
4.1 Candidate genes around QSS.TAF9-3D

In the region of QTL QSS.TAF9-3D, there were 56 genes. Using the

RNA-seq datasets, 9 genes were found to be differentially expressed, as
Frontiers in Plant Science 06156
shown in Figure 4. Among them, TraesCS3D01G466100 GO

annotation showed that it encodes ubiquitin protein transferase, and

the NCBI conserved domain analysis showed that it encodes RING-

type E3 ubiquitin ligase. In recent years, a large number of studies have

shown that RING E3 is widely involved in abiotic stress processes (Cho

et al., 2017). TraesCS3D01G468500 gene encodes initiation

transcription factor TAF9. At present, the function of TAF9 has been

reported in both human and yeast (Frontini et al, 2005; Knoll et al,

2020). However, TAF9 has limited studied in plants. Thus, the two

genes were regarded as new candidate genes in this study.
4 Discussion

Genome-wide association studies for wheat PHS resistance in 629

local and improved varieties (lines) in Henan Province, China provide

new insights into the genetic foundation of the important trait and

variety breeding. In previous studies, most of them focused on the

PHS resistance in southwest and southern wheat zones in China, for

example, Zhou et al. (2017) found that the landraces in Chinese wheat

zones with high precipitation showed strong PHS resistance in 717

Chinese wheat landraces, but there were few studies on PHS

resistance in northern wheat zones with less rain. In this study, 373

local varieties before 1950 and 256 improved varieties after 1950 in

Henan Province were included. It was found that genes for wheat PHS

resistance were gradually lost in the process of selection and breeding

for yield, quality, and other important breeding traits. The main

reason is that most of the loci or genes for wheat PHS resistance are

found to be linked with red seed coat, while most improved varieties

are white grained, resulting in the generally reduced PHS resistance of

modern improved varieties. In this study, 38 white grain resistant

varieties were observed, and this study provides a material basis for

breeders to select white-grained resistant varieties for PHS.

Zhou et al. (2017) found three major PHS resistant QTLs on

chromosomes 3A, 3D, and 5D, in which the marker AX-95124645

was located on Chr 3D. In this study, AX-95124645 locus was

identified by several multi-locus methods in two environments to

be associated with PHS resistance, especially, its R2 value was 38%.

However, this study provides three new results compared with
B

C

DA

FIGURE 3

Sequence alignment of KASP marker amplification products at significant locus of QSS.TAF9-3D. (A) sequence alignment of the amplified products of
Shengsimai and Zhoumai18; (B) Sequence alignment of Shengsimai amplification products from EnsemblPlants database; (C) Sequence alignment of
Zhoumai18 amplification products from EnsemblPlants database; (D) Red and blue: varieties with QSS.TAF9-3D-TT and QSS.TAF9-3D-CC haplotypes,
respectively. Horizontal and vertical coordinates represent the fluorescence signal values of FAM and HEX, respectively.
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previous studies. First, resistant and susceptible PHS varieties were

used to conduct RNA-seq analysis, and 9 DEGs were found in the

2.192 Mb upstream and downstream intervals of AX-95124645, and

two candidate genes were predicted. Then, the KASP marker

QSS.TAF9-3D-TT/CC was developed based on the AX-95124645

locus. The results showed that QSS.TAF9-3D-TT/CC haplotypes

with only one T/C base allele variation could completely distinguish

all the PHS resistant and susceptible varieties. Finally, all the

QSS.TAF9-3D-TT haplotypes were found in 11 white-grained

varieties to be resistant for PHS.

It should be point out that the KASP marker QSS.TAF9-3D

developed in this study is valuable. First, the KASP marker was used

to select 11 white-grained resistant varieties with excellent haplotype

QSS.TAF9-3D-TT, indicating its possibility of marker-assisted

selection in white-grained varieties for PHS resistance. But among

629 varieties, the numbers of white-grained varieties resistant to spike
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germination in the two years was 38. Because Wheat PHS resistance

controlled by multiple genes (Imtiaz et al., 2008), so we consider the

spike sprouting resistance of the remaining 27 white grain varieties

was caused by other genes or QTLs. Second, this marker uses high-

throughput KASP genotyping technology. In particular, KASP is

based on conventional PCR and fluorescence detection, which can

meet the requirements of low, medium, and high throughput

genotyping on the basis of ordinary laboratory operation (Semagn

et al., 2014), indicating that it is flexible, cheap, high-throughput,

automated, and accurate. As we known, KASP, as an alternative to

TaqMan, is similar in principle to TaqMan (also based on terminal

fluorescence reading), but it differs from TaqMan technology in the

following ways. It uses a universal probe, which can be used with a

variety of different gene-specific primers, without the need for probe

synthesis for each specific site, which greatly reduces the reagent cost

of the experiment (Majeed et al., 2018). In conclusion, QSS.TAF9-3D-
BA

FIGURE 4

Differentially expressed genes in the QSS.TAF9-3D transcriptome. (A) heat map of differentially expressed genes (DEGs) between PHS resistant and
susceptible. (B) GO Molecular Functions and Biological Process of DEGs.
TABLE 2 No. of differentially expressed genes in QSS.TAF9-3D region.

Time DEG Comparison

point Baipimai vs Zhoumai18 Shengsimai vs Zhoumai18 Baipimai vs Shengsimai

0h Up 1 0 1

Down 0 2 0

Total 1 2 1

48h Up 6 7 5

Down 1 5 2

Total 7 12 7

96h Up 3 3 4

Down 8 9 0

Total 11 12 4
Time point indicates sample treatment time; DEG indicates differentially expressed genes, Up indicates that "vs" is less expressed in the former than in the latter, and Down indicates that "vs" is more
expressed in the former.
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TT/CC markers can be used for higher throughput and more accurate

screening of PHS resistance varieties, especially in white-grained

varieties, which provides a strong theoretical basis for molecular

mark-assisted breeding.

Myb10 is an important regulatory gene in the pathway of pigment

synthesis. The earliest MYB-type transcription factor identified was

maize Colorless 1 (Paz-Ares et al., 1987). In wheat, Tamyb10 gene is

believed to be related to seed dormancy, because it may affect the

sensitivity of wheat embryo to ABA. Lang et al. (2021) found that

myb10-D gene, as a candidate gene for PHS-3D, not only regulates the

synthesis of flavonoid compounds, but also increases the ABA

concentration in developing seeds, thus inhibiting the wheat PHS. In

this study, the candidate gene TraesCS3D01G468400 was found to be

consistent with Tamyb10-D in the annotation information of 61 genes

in the QSS.TAF9-3D region. Although Himi et al. (2011) designed the

Tamyb10-D marker to screen PHS resistance materials, Tamyb10-D is

an important regulatory gene involved in the pigment synthesis of

wheat seed coat so that its corresponding molecular marker is mainly

used to screen the PHS resistance of red-grained wheat varieties,

indicating its difficulty in the application of white-grained varieties.

We identified two differentially expressed genes TraesCS3D01G466100

and TraesCS3D01G468500 in the QSS.TAF9-3D region using RNA-

seq. TraesCS3D01G466100 GO annotation shows that it encodes

C3HC4-RING fifinger E3 ubiquitin ligase. Yang et al. (2016)

identified AtAIRP4 in Arabidopsis, which is induced by ABA and

other stress treatments. AtAIRP4 encodes a cellular protein with a

C3HC4-RING finger domain in its C-terminal side, which has in vitro

E3 ligase activity. A large number of studies have shown that the

dormancy period of wheat seeds is negatively correlated with the degree

of PHS (Flintham et al., 2000; Biddulph et al., 2008; Shu et al., 2016),

and ABA plays a crucial role in promoting seed dormancy and

inhibiting seed germination (Martıńez-Andújar et al., 2011). Thus, it

is possible for TraesCS3D01G466100 to affect PHS resistance by

regulating seed ABA levels. TraesCS3D01G468500 gene encodes the

initiation transcription factor TAF9. Yang (2015) cloned a gene

CpTAF9 in the woody ornamental plant Chimonanthus melanoides.

Salt stress, high temperature or ABA application promoted the

expression of CpTAF9 gene in leaves. ABA is an important hormone

regulating seed dormanness. TraesCS3D01G468500 gene may affect

wheat spike germination by indirectly regulating seed ABA content. We

selected these two genes as new PHS resistance candidate genes.
5 Conclusion

We firstly identified 38 white-grained varieties with PHS resistance

in 629 wheat varieties (lines) from Henan Province, China, stably

identified a major QTN AX-95124645 on chromosome 3D, and

developed its KASP marker QSS.TAF9-3D-TT/CC. This marker

haplotype can effectively detect the PHS resistance materials,

especially, all the white-grained varieties with QSS.TAF9-3D-TT

haplotype are resistant to spike sprouting, which can be used for

molecular mark-assisted breeding of spike sprouting resistance in

white-grained varieties. This study provides material and

methodological basis for breeding wheat PHS resistance in the future.
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Identification of hub genes
regulating isoflavone accumulation
in soybean seeds via GWAS and
WGCNA approaches
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Muhammad Ahsan1, Kwadwo Gyapong Agyenim-Boateng1,
Jie Qi1, Yue Feng1, Yitian Liu1, Bin Li2*, Lijuan Qiu3*

and Junming Sun1*

1The National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences,
Chinese Academy of Agricultural Sciences, Beijing, China, 2Ministry of Agriculture and Rural Affairs
(MARA) Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of
Agricultural Sciences, Beijing, China, 3The National Key Facility for Crop Gene Resources and Genetic
Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology Ministry of Agriculture and
Rural Affairs (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences,
Beijing, China
Introduction: Isoflavones are the secondary metabolites synthesized by the

phenylpropanoid biosynthesis pathway in soybean that benefits human and plant health.

Methods: In this study, we have profiled seed isoflavone content by HPLC in 1551

soybean accessions grown in Beijing and Hainan for two consecutive years (2017

and 2018) and in Anhui for one year (2017).

Results: A broad range of phenotypic variations was observed for individual and total

isoflavone (TIF) content. The TIF content ranged from 677.25 to 5823.29 µg g-1 in the

soybean natural population. Using a genome-wide association study (GWAS) based on

6,149,599 single nucleotide polymorphisms (SNPs), we identified 11,704 SNPs

significantly associated with isoflavone contents; 75% of them were located within

previously reported QTL regions for isoflavone. Two significant regions on

chromosomes 5 and 11 were associated with TIF andmalonylglycitin across more than

3 environments. Furthermore, the WGCNA identified eight key modules: black, blue,

brown,green,magenta, pink, purple, and turquoise.Of theeight co-expressedmodules,

brown (r = 0.68***), magenta (r = 0.64***), and green (r = 0.51**) showed a significant

positive associationwithTIF, aswell aswith individual isoflavonecontents. Bycombining

the gene significance, functional annotation, and enrichment analysis information, four

hub genes Glyma.11G108100, Glyma.11G107100, Glyma.11G106900, and

Glyma.11G109100 encoding, basic-leucine zipper (bZIP) transcription factor, MYB4

transcription factor, early responsive to dehydration, and PLATZ transcription factor

respectively were identified in brown and green modules. The allelic variation in

Glyma.11G108100 significantly influenced individual and TIF accumulation.

Discussion: The present study demonstrated that the GWAS approach, combined

with WGCNA, could efficiently identify isoflavone candidate genes in the natural

soybean population.

KEYWORDS

soybean, isoflavone, genome-wide association study (GWAS), WGCNA, RNA-Seq
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1 Introduction

Soybean isoflavones are of great importance because of their

positive impact on human health, including the treatment and

prevention of various types of cancers (prostate cancer, breast

cancer etc.) (Nielsen and Williamson, 2007; Phetnoo et al., 2013),

cardiovascular disease, osteoporosis, and metabolic syndrome (Cai

et al., 2004; Mozaffarian et al., 2011; Bradbury et al., 2014). In plants,

isoflavones can resist adverse stress and promote the growth and

reproduction of rhizobia, root nodule development, and nitrogen

fixation (Sugiyama et al., 2017; Darwish et al., 2022; Wang et al.,

2022). Soybean seed isoflavones contain 12 components which are

divided into four groups, daidzein, genistein, glycitein (aglycones),

daidzin, glycitin, genistin (glycosides), acetyldaidzin, acetylglycitin,

and acetylgenistin (acetylglycosides), and malonyldaidzin,

malonylglycitin, malonylgenistin (malonylglycosides) (Kim et al.,

2014; Azam et al., 2021). The malonyldaidzin, malonylglycitin, and

malonylgenistin are the most abundant form of the isoflavones, while

aglycones are present in very small amounts but have higher

phytoestrogenic activity and more bioavailability in humans

(Nielsen and Williamson, 2007; Park et al., 2016; Azam et al.,

2020). Improving soybean isoflavone content through conventional

breeding and metabolic engineering is a complementary way for the

biofortification of food crops to combat isoflavone deficiency (De

Steur et al., 2014).

Isoflavone content is controlled by multiple genes, and there are

often complex interaction mechanisms among various enzyme genes

in its synthesis path, which jointly determine isoflavone biosynthesis.

The metabolic pathway controlling the synthesis of soybean

isoflavones in plants is very complex (Wang and Murphy, 1994;

Bennett et al., 2004). The synthesis of soybean isoflavones starts from

the synthesis of phenylpropionic acid. The original substrate of

isoflavones is phenylalanine, which is catalyzed by phenylalanine

lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarin

coenzyme A ligase (4CL), respectively to produce p-coumaroyl

COA, Isoliquiritigenin chalcone and chalcone were formed with

malonyl COA of 3 molecules under the co catalysis of chalcone

synthase (CHS) and chalcone reductase (CHR). Isoliquiritigenin

chalcone is catalyzed by chalcone isomerase (CHI) to produce

liquiritigenins (Ralston et al., 2005), which are then catalyzed by

isoflavone synthase genes (IFS1 and IFS2) to their corresponding

isoflavones (Akashi et al., 1999; Jung et al., 2000; Dhaubhadel et al.,

2003). Among isoflavone synthase genes, IFS2 has a higher expression

level in the embryo and seed pods, while IFS1 has higher expression in

roots and seed coats. In addition, various kind of MYB transcription

factors (CCA1, R2R3, and R1) helps in isoflavone accumulation by

regulating the isoflavone synthesis genes related to phenylpropanoid

biosynthesis pathways (Bian et al., 2018; Sarkar et al., 2019). The

R2R3-MYB transcription factor GmMYB29 , GmMYB102 ,

GmMYB280 , MYB502 , GmMYB100 regulate i soflavone

accumulation by activating the IFS1, IFS2 and CHS8 enzymes (Yan

et al., 2015; Sarkar et al., 2019). The CCA1-like R1 MYB transcription

factor GmMYB133 regulates isoflavone biosynthesis by activating the

promoters of CHS8 and IFS2 (Bian et al., 2018). A dual-function

C2H2 zinc-finger transcription factor GmZFP7 has recently been

shown to divert metabolic flow to isoflavone by increasing the
Frontiers in Plant Science 02162
expression of GmC4H, Gm4CL, GmCHS, GmCHR, and GmIFS2

while decreasing the expression of GmF3H1 in soybean seeds. (Feng

et al., 2023).

Soybean isoflavones are quantitative traits regulated by multiple

genes. The genotyping by sequencing (GBS) approach and SNP

genotyping have substantially expanded the application of GWAS

to soybeans (Lee et al., 2015; Sonah et al., 2015; Torkamaneh and

Belzile, 2015). Natural population based GWAS have more

recombination events than biparental populations, resulting in less

short LD regions and higher precision and accuracy of marker

phenotype association (Duan et al., 2022; Liang et al., 2022). These

approaches have been utilized in GWAS to identify genomic regions

associated with resistance to biotic and abiotic stress, including

soybean cyst nematode, abiotic stress, seed quality traits such as oil

and protein content, and yield related traits (Hwang et al., 2014; Cao

et al., 2017; Zeng et al., 2017; Zhao et al., 2017). Furthermore,

weighted gene co-expression network (WGCNA) analysis is a

powerful tool for describing gene expression correlations using

microarray or RNA-seq data. The WGCNA is an effective method

to narrow down the range of candidate genes (Schaefer et al., 2018).

Recently, GWAS combined with WGCNA has been applied to

identify the genes responsible for salt tolerance in maize, silique

length in Brassica napus, and root growth dynamics in rapeseed (Li

et al., 2021; Ma et al., 2021; Wang et al., 2021). However, no study has

used the GWAS and the WGCNA to explain the gene networks and

molecular regulatory mechanisms that govern isoflavone regulation

in soybean. Therefore, the present study aimed to identify the

genomic regions and candidate genes involved in the isoflavone

biosynthesis pathway using GWAS coupled with WGCNA in 1551

soybean accessions.
2 Research materials and methods

2.1 Planting materials

A total of 1551 natural population panel of diverse soybean

accessions was used in this study. The accessions were selected

from a mini core collection developed by Qiu et al. (2009) based on

their availability at the soybean genetic resource research group of the

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences

(CAAS). The origin and number of soybean accessions from each

country are Brazil (8), Canada (6), China (1283), Colombia (1), East

Europe (3), Germany (4), Italy (2), Japan (21), Nigeria (1), North

Korea (1), Russia (22), South Korea (4), Thailand (1), USA (194).

Information on each accession is also presented in Supplementary

Table 1. Field trials were conducted at three locations (Changping,

Beijing (40° 13′ N and 116° 12′ E), Sanya, Hainan (18° 24′ N and 109°

5′ E) in 2017 and 2018, while, for only 2017, planted in Hefei, Anhui

(33°61′ N and 117 °E). A randomized incomplete block design was

employed to sow the cultivars, with the various planting sites serving

as replications. The cultivars were replicated across different sites due

to a large number of cultivars and the scarcity of available land

resources. Each cultivar’s seeds were sown in 3 m long rows with

0.5 m inter-row and 0.1 m intra-row spacing. Fertilizer containing

30 kg/ha, 40 kg/ha, and 60 kg/ha of nitrogen, phosphorous, and
frontiersin.org
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potassium was applied to the field, respectively. From planting until

harvest, the advised agronomic procedures were used. The seeds from

each accession were pooled and used for soybean seed isoflavone

determination (Azam et al., 2020; Azam et al., 2021).
2.2 Extraction and quantification
of isoflavones

The isoflavone contents were determined using a previously

reported method (Sun et al., 2011) and as follows. Around 20 g

seeds of each accession were grounded by a cyclone mill (IKA, A10

basic, Rheinische, Germany). Approximately 0.1 g of the finely

ground powder was placed in a 10 mL tube pre-filled with 5 mL of

a solution containing 0.1% (v/v) acetic acid and 70% (v/v) ethanol and

shaken for 12 hours on a twist mixer (TM – 300, AS ONE, Osaka,

Japan). The mixture was centrifuged for 10 min at 6000 rpm, and the

supernatant was filtered using a 0.2 mm YMC Duo filter (YMC Co.,

Kyoto, Japan). Samples were stored at 4°C prior to use and measured

for isoflavones using an Agilent HPLC system (Agilent 1260, Santa

Clara, CA, USA) having YMC ODS AM-303 column (250 mm ×

4.6 mm I.D., S-5 mm, 120 Å, YMC Co., Kyoto, Japan). The

identification and quantification of the isoflavone contents were

carried out using the following isoflavone standards: daidzein (DE),

glycitein (GLE), genistein (GE), daidzin (D), glycitin (GL), genistin

(G), malonyldaidzin (MD), malonylglycitin (MGL), malonylgenistin

(MG), acetyldaidzin (AD), acetylglycitin (AGL), and acetylgenistin

(AG). The detected isoflavone component concentrations were

determined using the formula provided by (Sun et al., 2011).
2.3 Association analysis and candidate gene
prediction and annotation

A total number of 6,149,599 SNPs with MAF 0.01 from previously

sequenced 2,241 soybean accessions were used for GWAS analysis (Li

et al., 2022). GWAS was performed using the compressed mixed linear

model (cMLM) in the GAPIT program (Lipka et al., 2012), where the

first three principal component analysis (PCA) values were included as

fixed effects in the mixed model to correct for stratification. The

threshold for significance was estimated to be approximately P = 1 ×

10-6 (that is, 1/6,149,599) by the Bonferroni correction method. These

6,149,599 SNPs were distributed equally across the 20 soybean

chromosomes (one SNP per 154.3 bp). The extent of model fitting was

confirmed using a quantile-quantile (Q-Q) plot for the expected and

obtained p-values of each SNP to evaluate how much a significant result

was produced by the analysis than expected by chance. The Manhattan

plots for the isoflavone contents for each of the five environments were

generated from GAPIT (Lipka et al., 2012). The Phytozome database

(http://www.phytozome.org/) and the SoyBase database (http://www.

soybase.org/) were used to predict and annotate the candidate genes.
2.4 RNA seq-analysis

The four soybean varieties Luheidou (LHD), Zhonghuang 13

(ZH13), Zhonghuang 35 (ZH35), and Nanhuizao (NHZ), varying in
Frontiers in Plant Science 03163
their isoflavone contents, were used as materials for RNA seq-analysis.

About 20 seeds were harvested at different developmental stages (R5 to

R8) after 7 days intervals. Each sample was set with three replications

for isoflavone contents, and RNA extraction. The total RNAs were

extracted using the TRIzol method. The high-quality RNA samples

were sent for RNA-seq analysis to BLgene co. LTD (Beijing, China).

HISAT2 was used to map the clean RNA-seq data onto the reference

genome (Kim et al., 2015). FeatureCounts calculated the

transcriptional abundance and gene expression count matrix (Liao

et al., 2014). TPM (transcripts per million) was used as the expression

level, and log10 (TPM+ 1)was used to standardize it (Feng et al., 2023).
2.5 Weighted gene co-expression
network analysis

The transcriptome data of (LHD,NHZ, ZH13, andZH35) at different

seed developmental stages was used for the WGCNA. The R WGCNA

(v1.47) package was used to create the weighted gene co-expression

network (Langfelder and Horvath, 2008). The gene expression values

were imported into WGCNA to construct co-expression modules using

the automatic network construction with default settings. The phenotype

data was imported into the WGCNA package, and correlation-based

connections between phenotypes and gene modules were computed

using the default settings. Pearson’s correlation between all gene pairs

was first determined to create a matrix of adjacencies. Using the TOM

similarity function, this matrix was transformed into a Topological

Overlap Matrix (TOM) (Zhang and Horvath, 2005). Finally, modules

on the dendrogram were discovered using the R package

dynamicTreeCut method (Langfelder et al., 2008). The hub genes are

usually characterized by high gene significance (GS, association between

gene expression and traits) and module membership (MM, correlation

between gene expression and module eigengene) values.
2.6 Gene ontology analysis

The GO enrichment analysis was performed to identify GO

categories based on the SoyBase database (http://soybase.org/) and

detect those over/under-represented. The significant enriched GO

terms (P < 0.05) for biological processes, the cellular process, and

molecular processes were further identified using PlantRegMap

online tool (http://plantregmap.cbi.pku.edu.cn/go_result.php) and

were visualized REVIGO (http://revigo.irb.hr/) (Supek et al., 2011).
3 Results

3.1 Variations among seed isoflavone
contents in soybean natural population

The individual and TIF content was profiled in soybean

accessions collected from distinct regions of China and other

countries that have grown across three locations over two years.

The mean TIF content of the 1551 soybean natural population grown

across five environments is presented in Supplementary Table 1. The

mean TIF content of the soybean accessions ranged from 677.25 to
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5823.29 µg g-1 (Azam et al., 2020; Azam et al., 2021). The individual

and TIF content of the soybean accessions in five environments are

presented in Figure 1. The correlations among the five environments

for individual and TIF content are presented in Supplementary

Figure 1. The higher levels of daidzin (172.7 µg g-1), genistin (290 µg

g-1) were observed in Hainan 2018, followed by Hainan 2017 (daidzin

(152.4 µg g-1, genistin (218.8 µg g-1). The higher levels of

malonyldaidzin (888.3 µg g-1), malonylgenistin (1574.1µg g-1), and

TIF (3012.3 µg g-1) were observed in Beijing 2017, followed by Hainan

2017 (malonyldaidzin (789.9 µg g-1), malonylgenistin (1183.1 µg g-1)

and TIF (2685.5 µg g-1), while Anhui 2017 showed lower levels of these

components (malonyldaidzin (589.2 µg g-1), malonylgenistin (984.1 µg

g-1) and TIF (2153.1 µg g-1). While higher levels of malonylglycitin

(208.2 µg g-1) were observed in Hainan 2017, followed by Anhui 2017

(168.2 µg g-1) and lowest in Hainan 2018 (100.1 µg g-1) (Figure 1).

Furthermore, Pearson’s correlation was performed to reveal the

association between individual and TIF content. TIF content was

positively associated with individual isoflavone contents (Figure 2).

Malonylgenistin, Malonyldaidzin, genistin, and daidzin showed the

highest correlation with TIF content (r = 0.93***, r = 0.91***, r =

0.89***, r = 0.82***, respectively), followed by malonylglycitin and
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glycitin (r = 0.48***, r = 0.47***, respectively). Furthermore,

glycosides showed highly significant positive correlations with their

respective malonylglycosides, genistin and malonylgenistin (r =

0.90***), daidzin and malonyldaidzin (r = 0.89***), and glycitin and

malonylglycitin (r = 0.87***) (Figure 2).
3.2 GWAS reveals candidate loci underlying
seed isoflavone contents

The phenotypic and genotypic data for 1551 diverse soybean

accessions were used for GWAS analysis to identify putative loci

associated with isoflavone contents in the individual environment

(Hainan 2017, Hainan 2018, Beijing 2017, Beijing 2018, and Anhui

2017). The principal component analysis (PCA) was used for

scanning the population stratification. The landrace group

overlapped partially with the improved cultivar group, indicating a

broad genetic variation within this set of 1551 soybean accessions.

Meanwhile, clear clustering based on planting region was observed;

the first two PCs accounted for 40.47% of the genetic variation,

demonstrating that the first two PCs uncommonly affect the mapping
FIGURE 1

Individual and TIF content in five environments (Hainan 2017 Hainan 2018, Beijing 2017, Beijing 2018, and Anhui 2017).
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population. The average distance over which LD decays to half of its

maximum value in soybean was 97kb (Supplementary Figures 2A, B)

GWAS identified 11704 genome-wide distributed SNPs that were

significantly (-log10P>6) associated with isoflavone levels with P-

values ranging from 9.99e-07 to 7.30e-30, the detailed information is

listed in Supplementary Table 2. Of the 11704 significant SNPs, 53.8%

were annotated in intergenic regions, 19.9% in the upstream and

downstream regions, 14% in the intron regions. Herein, 8786 SNPs

(75%) identified from the GWAS were located within the regions of

previously reported QTLs for isoflavone in soybean. In total, 2,018

known genes were mapped by the significant SNPs, which include 29

isoflavone biosynthesis enzymes and 18 MYB transcription factors; of

these, 417, 261, 316, 428, 307, 847, and 230 genes were significantly

associated with daidzin, glycitin, genistin, malonyldaidzin,

malonylgenistin, malonylglycitin, and TIF content, respectively

(Supplementary Tables 2, 3). Interestingly, a significant region

(8147595 to 8315102bp) has been identified on chromosome 11

across four environments associated with malonylglycitin and

contains 18 genes (Figures 3A, B), including eight enzymes and

three transcription factors MYB (1), bZIP (1) and zinc finger (1).

Furthermore, a significant region on Chromosome 5 related to TIF

content across three environments spanning from 41760764 to

42234431 bp encoded 63 candidate genes (Figures 3C, D),

including seven key enzymes, and four transcription factors WD40

(1), bZIP (1) and zinc finger (2) (Supplementary Tables 4, 5).
3.3 Identification of key modules possessing
candidate genes via WGCNA

The transcriptome data of different seed developmental stages

were used for WGCNA, which provided new genomic insights to

better understand the molecular mechanisms underlying isoflavone
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accumulation in soybean seed. The candidate genes identified in the

linkage disequilibrium regions obtained through GWAS analysis were

blast searched against the transcriptome data of soybean cultivars

collected at different seed developmental stages (R5-R8) to identify

common genes for WGCNA analysis. The WGCNA identified eight

key modules, namely, black, blue, brown, green, magenta, pink,

purple, and turquoise, possessing 253, 1251, 316, 426, 82, 113, 83,

and 1275 genes, respectively (Figures 4A, B).

To further investigate the modules containing genes involved in

isoflavone synthesis, Pearson’s correlation analysis was performed. Of

the eight co-expressed modules, brown (r = 0.68***), magenta (r =

0.64***), and green (r = 0.51**) showed significant positive

correlations with TIF, as well as with individual isoflavone contents.

The sample dendrogram and trait heat map also revealed that the

isoflavone accumulation is higher at late seed developmental stages

(Figures 4C, D). Furthermore, genes in brown, magenta, and green

modules showed higher expression patterns at late seed

developmental stages. It is already established that higher isoflavone

accumulations were observed in the soybean seeds at later

developmental stages (Figure 5). To further investigate the

relationship of genes in each of the positive modules with

isoflavone synthesis, the correlation between gene significance (GS)

and module membership (MM) was carried out. Out of 8 modules,

the brown module showed a highly positive correlation with TIF (r =

0.71***), followed by magenta (r = 0.7***), while the lowest was

observed in the green module (r = 0.44***) (Supplementary Figure 3).

Furthermore, the GO enrichment analysis revealed that the brown

module possesses genes linked to defense response to bacterium

(GO:0042742), defense response to other organism (GO:0098542),

defense response, incompatible interaction (GO:0009814), response

to reactive oxygen species (GO:0000302). Similarly, genes present in

the magenta module are response to stress (GO:0006950), response to

water deprivation (GO:0009414), cellular response to red or far-red
FIGURE 2

Correlation analysis among the individual and TIF content in soybean seeds. *, **, and *** represent significance at p < 0.05, 0.01, and 0.001,
respectively. D, Daidzin; GL, Glycitin; G, Genistin; MD, Malonyldaidzin; MGL, Malonylglycitin; MG, Malonylgenistin; TIF, Total isoflavone.
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light (GO:0071489) enzyme regulator activity (GO:0030234), and

genes in the green module are involved in the regulation of

circadian rhythm (GO:0042752), response to UV (GO:0009411),

response to salt stress (GO:0009651) are engaged in biotic and

abiotic stresses (Figures 6A-D). Current results suggest that genes

present in the above-mentioned modules, i.e., brown, magenta, and

green, might be involved in isoflavone accumulation in soybean seeds;

they can play important roles in the isoflavone synthesis pathway.

Further, gene annotation and gene significance information were

used to identify hub genes in brown, magenta, and green modules.

Based on the gene significance and annotation information, 27 key

candidate genes were identified and are presented in Table 1. These

candidate genes include 9 transcription factors (4 MYB, 3 WD40, 1

WRKY, and 1 Zinc finger) and 12 key enzymes, including glucosyl

transferases, isoflavone 2’-hydroxylase, etc. Two MYB transcription

factors in the brown module, MYB133 (Glyma.07G066100) and

MYB121 (Glyma.15G176000) were identified as positive regulators

of isoflavone biosynthesis from previous studies. While in the

magenta module, we identified a cytochrome P450 enzyme,

isoflavone 2’-hydroxylase (Glyma.16G149300), a positive regulator

of isoflavones. Interestingly, four hub genes Glyma.11G108100,

Glyma.11G107100, Glyma.11G106900, and Glyma.11G109100

encoding, basic-leucine zipper (bZIP) transcription factor, MYB4
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transcription factor, early responsive to dehydration, and PLATZ

transcription factor, respectively were identified in brown and green

modules. These four hub (Glyma.11G108100, Glyma.11G107100,

Glyma.11G106900, and Glyma.11G109100) genes were also present

in the candidate region located on Chromosome 11 identified by

GWAS and matched with previously identified QTLs. Isoflavones

play an important role in biotic and abiotic stress in plants, and MYB

transcription factors help in isoflavone accumulation by regulating

key isoflavone synthase genes (IFS1 and IFS2). Therefore, the

identified transcription factors (bZIP, MYB, PLATZ) might be

involved in the isoflavone accumulation as they are also helping

plants to adapt to various kinds of biotic and abiotic stresses.
3.4 Natural variation in Glyma.11G108100
contributes to isoflavone accumulation

Natural variation of Glyma.11G108100 was identified by using the

soybean functional genomics & breeding (SoyFGB v 2.0) database

(https://sfgb.rmbreeding.cn/) (Zheng et al., 2022). Based on the

phytozome database (https://phytozome-next.jgi.doe.gov), the coding

region of Glyma.11G108100 contains 813 nucleotides, which encodes

270 amino acids with two exons and one intron. The causal SNP was in
B

C

D

A

FIGURE 3

(A) Manhattan plots of malonylglycitin for five environments, (B) Venn plot for malonylglycitin genes in five environments, (C) Manhattan plots of TIF
content for five environments, (D) Venn plot for TIF content genes in five environments.
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the exonic region (Figure 7A). Williams82 provided the reference allele

(C), while the polymorphism that occurred resulted in the alternate

allele (G). The geographical distribution of C and G alleles is presented

in Figure 7B. The overall variation revealed significant differences in

malonylglycitin content for C and G alleles which have 58% and 42%

distribution in the soybean germplasm. The C allele had higher

malonylglycitin content (183.3 µg g-1) than the G allele (126.8 µg g-1).
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The regional distribution of these alleles showed significant differences

in malonylglycitin content in NR, HR, and SR regions. The distribution

of the C allele in NR, HR, and SR regions is 37%, 63%, and 72%,

respectively, while the G allele is 63%, 37%, and 28%, respectively. The C

allele had higher malonylglycitin content in NR (150.4µg g-1), HR

(222.1µg g-1), and SR (159.7µg g-1) compared with the G allele

(Figure 7C). Furthermore, the natural variation of Glyma.11G108100
B

C D

A

FIGURE 4

(A) Module clustering, different colors represent different modules. (B) Number of genes in each module. (C) Sample dendrogram and trait heatmap,
each row corresponds to the isoflavone content, while each column corresponds to seed samples of four soybean cultivars (LHD, NHZ, ZH13, and ZH35)
collected at different seed developmental stages (R5-R8). The right panel represents the minimum (blue color) and maximum (red color) isoflavones
accumulation at different seed developmental stages. (D) Module trait relationship, each row corresponds to a module, while each column corresponds
to the isoflavone content. The left panel shows the modules, while the right panel shows positive (red, 1) and negative (blue, − 1) correlations.
FIGURE 5

Expression profiles of the modules at different seed developmental stages in four soybean cultivars.
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also influenced the TIF content accumulation in soybean seed. The

overall variation revealed significant differences in TIF content for C and

G alleles, with 58% and 42% distribution in the soybean germplasm. The

C allele had higher TIF content (2568.8 µg g-1) compared with the G

allele (2387.7 µg g-1). The regional distribution of these alleles showed

significant differences for TIF content in the HR region, while non-

significant differences for NR and SR regions. The distribution of the C

allele in the HR region is 63%, and the G allele is 37%. The TIF content

of the C allele (2793.9 µg g-1) was significantly higher than the G allele

(2509.5 µg g-1) in the HR region (Figure 7D). The polymorphism in

Glyma.11G108100 showed significant variations for individual and TIF

content across soybean germplasm and regions, suggesting that it might

be associated with isoflavone accumulation in soybean.
4 Discussion

Soybean isoflavones are of great interest owing to their beneficial

impact on plant and human health. Increasing isoflavone concentration

in soybean is one of the major goals of soybean breeders; however, the

narrow genetic diversity of the soybean germplasm constrains the

improvement of the isoflavones (Qiu et al., 2009). In this study, we

determined the isoflavone composition from the core germplasm of

soybean accessions grown at three locations for two years. Significant

differences were observed for individual and TIF content across different

environments. The TIF concentration ranged from 677.25 to 5823.29 µg

g-1 across all the examined environments. Malonylglycosides were
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identified as major isoflavone contents (Zhang et al., 2014; Azam et al.,

2020). Furthermore, glycosides and malonylglycosides showed positive

associations as they are synthesized by the action of key isoflavone

biosynthesis enzymes (glucosyltransferase and malonyltransferase) via

common branches in the phenylpropanoid pathway (Yu andMcgonigle,

2005; Barnes, 2010). The phenotypic variation of individual and TIF

content demonstrated significant differences among the soybean

accessions, growing environments, and growing years which suggests

that genetic as well as environmental factors affect isoflavone

accumulation in soybean seeds (Tsai et al., 2007; Rasolohery et al.,

2008; Zhang et al., 2014; Pei et al., 2018; Azam et al., 2023).

Isoflavones are typical quantitative traits; many QTLs for

individual and TIF content distributed on most soybean

chromosomes have been detected in several studies (Akond et al.,

2013; Pei et al., 2018; Wu et al., 2020). Alternatively, genome-wide

association studies (GWAS) based on the use of natural population, in

contrast to linkage analysis using bi-parental populations, have more

extensive recombination events and, thus, result in less short LD

segments leading to increased resolution and accuracy of marker-

phenotype associations (Duan et al., 2022; Liang et al., 2022). In this

study, hundreds of SNPs loci were found to be significantly associated

with the individual and TIF content, and they were distributed across

all 20 chromosomes of soybean. Furthermore, many of these SNPs

were simultaneously identified in five environments, as observed in

malonylglycitin, malonylgenistin, and four environments like total

isoflavones, malonyldaidzin, malonylgenistin, malonylglycitin, etc.

Most of the significantly associated SNPs were observed for
B
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FIGURE 6

(A) GO categories for biological process, brown module. (B) GO categories for molecular function, brown module. (C) Categories for biological process,
green module. (D) Categories for biological process, magenta module.
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individual and total isoflavones, underlying that a high portion of the

G. max genome has genomic regions harboring many candidate SNPs

based on the wide diverse panel of soybean accessions utilized in the

current study. These findings are consistent with a previous study

(Wu et al., 2020) that found significant loci for both individual and

TIF content across several sites in a natural soybean population.

WGCNA analysis is an effective technique for categorizing the

transcriptome data into co-expression modules to reduce the number

of potential candidate genes (Hollender et al., 2014; Greenham et al.,

2017; Schaefer et al., 2018; Azam et al., 2023). In this study, out of eight

modules, three modules were positively associated with individual and

TIF content. The expression patterns of genes present in these modules

revealed a higher expression at the late seed development stage.

Previous studies also reported that the accumulation of isoflavones

mainly occurs at the late stage of seed development (Jung et al., 2000;

Dhaubhadel et al., 2003; Cheng et al., 2008; Azam et al., 2023). In
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addition, GO analysis of these modules revealed some significant GO

terms related to biotic and abiotic stresses. Devi et al. (2020) reported

that biotic and abiotic stresses lead to an increase isoflavone

accumulation by the upregulation of IFS1 and IFS2 genes at the late

seed development stage. While Uchida et al. (2020) also found that

isoflavone O-methyltransferase (GmIOMT1) produced higher levels of

glycitein in response to biotic stress. Therefore, identifying genes

involved in these modules would provide new genetic resources to

better understand the isoflavone biosynthesis pathway.

We have identified 27 key candidate genes from brown, magenta,

and green modules. Brown module, which showed the highest

correlation and gene significance with TIF, contained a cytochrome

P450 (Glyma.08G125100). A branch of the phenylpropanoid pathway

synthesizes isoflavones. Cytochrome P450 play a crucial role in the

biosynthesis of a wide variety of plant metabolites (Chapple, 1998).

Isoflavone synthases (IFS1 and IFS2) are the members of cytochrome
TABLE 1 List of candidate genes for individual and TIF content in brown, magenta, and green modules.

Gene ID Module GS.TIF p.GS.TIF Annotation

Glyma.11G108100 Brown 0.77 1.73E-08 Basic-leucine zipper (bZIP) transcription factor

Glyma.17G085800 Brown 0.76 2.02E-06 S-adenosyl-L-methionine methyltransferase

Glyma.07G100700 Brown 0.76 2.20E-06 MYB transcription factor

Glyma.08G125100 Brown 0.75 3.10E-06 Cytochrome P450

Glyma.06G094900 Brown 0.74 5.79E-06 WD40 repeat family protein

Glyma.11G109100 Brown 0.74 1.73E-08 PLATZ transcription factor

Glyma.11G106900 Brown 0.72 1.26E-05 Early responsive to dehydration

Glyma.13G069200 Brown 0.67 0.000121 Zinc finger family protein

Glyma.14G054400 Brown 0.66 0.000115 UDP-glucosyl transferase

Glyma.07G066100 Brown 0.62 0.000402 MYB transcription factor MYB133

Glyma.18G114800 Brown 0.61 0.000646 WD40 repeat family protein

Glyma.15G053400 Brown 0.61 0.000851 Potassium transporter

Glyma.08G240800 Brown 0.59 0.000852 WRKY transcription factor

Glyma.15G176000 Brown 0.56 0.001773 MYB transcription factor MYB121

Glyma.03G187700 Green 0.79 3.37E-07 UDP-glucosyl transferase

Glyma.15G048600 Green 0.69 4.01E-05 Mitogen-activated protein kinase

Glyma.01G092100 Green 0.64 0.000216 Zinc finger family protein

Glyma.10G216200 Green 0.55 0.002163 Heat shock protein

Glyma.06G171900 Green 0.53 0.003656 4-coumarate-coa ligase

Glyma.02G267800 Green 0.46 0.013048 WD40 repeat protein

Glyma.05G242800 Green 0.41 0.034201 ATP-dependent RNA helicase A-like protein

Glyma.11G107100 Green 0.44 0.018738 Transcription factor MYB4

Glyma.04G243600 Green 0.36 0.041367 MYB transcription factor

Glyma.17G112400 Magenta 0.66 0.000119 N-acetylglucosaminyltransferase

Glyma.14G198600 Magenta 0.65 0.000161 UDP-Glycosyltransferase

Glyma.02G263500 Magenta 0.61 0.000663 S-adenosyl-L-methionine methyltransferases

Glyma.16G149300 Magenta 0.42 0.023798 Isoflavone 2’-hydroxylase
GS.TIF, gene significance total isoflavone; p.GS.TIF, significant level.
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P450 super gene family and play a vital role in isoflavone accumulation

by producing the 2-hydroxyisoflavone by catalyzing the flavone

intermediates (naringenin and liquiritigenin) (Liu et al., 2002). The

MYB transcription factors play crucial roles in the regulation of

isoflavone biosynthesis by triggering the gene expression of key

isoflavonoid biosynthesis enzymes, namely, chalcone isomerases

(CHI), chalcone synthases (CHS), isoflavone synthases (IFS1 and

IFS2) (Yi et al., 2010; Chu et al., 2017). We identified MYB133 as a

key candidate gene which was previously identified by (Bian et al.,

2018) as a positive regulator of isoflavones through genome-wide

analysis, which directly activates IFS2 and CHS8 and promotes

isoflavone accumulation. We identified the natural variation of

MYB133 in the natural population of soybean, which showed a

higher TIF level across different regions, landraces, and cultivars

(Supplementary Figure 4). Furthermore, the natural variation in the

bZIP transcription factor caused synonymous mutation which

revealed significant variations for individual and total isoflavones.

Previous studies also reported that the synonymous mutations are not

just silent but also cause a significant change in the phenotypes (Chu

and Wei, 2020; Shen et al., 2022). The bZIP transcription factors are

previously reported to control isoflavone accumulation by interacting

with MYB transcription factors and play an important role against

biotic and abiotic stresses in soybean (He et al., 2020; Yang et al., 2020;

Anguraj Vadivel et al., 2021). In addition to MYB and bZIP

transcription factors, different zinc-finger transcription factors, such

as GmZFP7, GmVOZs, and GsVOZs, regulate isoflavone and stress

responses in soybean. (Rehman et al., 2021; Feng et al., 2023)

These findings suggest that most identified key candidate genes

include enzymes and transcription factors from important gene families

involved in isoflavone biosynthesis. So, the functional validation of these

key candidate genes will provide new insights to better understand the

molecular mechanism underlying isoflavone biosynthesis.
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5 Conclusion

The current study demonstrated that GWAS analysis using

natural populations is an effective strategy for identifying candidate

genes in soybean. Based on the GWAS and WGCNA, 3 modules were

identified that were highly correlated with individual and TIF content.

Within these modules, we have identified four key candidate genes

and the natural variation present in Glyma.11G108100 revealed that it

influences the isoflavone accumulation in soybean seed. The

functional analysis of Glyma.11G108100 will provide new insight to

better understand the isoflavone synthesis pathway.
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FIGURE 7

(A) Polymorphism that occurred in Glyma.11G108100. (B) Geographical distribution of Glyma.11G108100 (NR, Northern region; HR, Huang Huai Hai valley
region; SR, Southern region). (C) Natural variation of Glyma.11G108100 for malonylglycitin content. (D) Natural variation of Glyma.11G108100 for TIF content.
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Identification of QTN-by-
environment interactions for
yield related traits in maize
under multiple abiotic stresses
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Bolin Shen1, Yuan Wang1 and Jin Zhang1,2*

1College of Science, Nanjing Agricultural University, Nanjing, China, 2Key Laboratory of Crop Genetics
and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
Introduction: Quantitative trait nucleotide (QTN)-by-environment interactions

(QEIs) play an increasingly essential role in the genetic dissection of complex

traits in crops as global climate change accelerates. The abiotic stresses, such as

drought and heat, are the major constraints on maize yields. Multi-environment

joint analysis can improve statistical power in QTN and QEI detection, and further

help us to understand the genetic basis and provide implications for

maize improvement.

Methods: In this study, 3VmrMLM was applied to identify QTNs and QEIs for three

yield-related traits (grain yield, anthesis date, and anthesis-silking interval) of 300

tropical and subtropical maize inbred lines with 332,641 SNPs under well-watered

and drought and heat stresses.

Results: Among the total 321 genes around 76 QTNs and 73 QEIs identified in this

study, 34 known genes were reported in previous maize studies to be truly

associated with these traits, such as ereb53 (GRMZM2G141638) and thx12

(GRMZM2G016649) associated with drought stress tolerance, and hsftf27

(GRMZM2G025685) and myb60 (GRMZM2G312419) associated with heat stress.

In addition, among 127 homologs in Arabidopsis out of 287 unreported genes, 46

and 47 were found to be significantly and differentially expressed under drought vs

well-watered treatments, and high vs. normal temperature treatments,

respectively. Using functional enrichment analysis, 37 of these differentially

expressed genes were involved in various biological processes. Tissue-specific

expression and haplotype difference analysis further revealed 24 candidate genes

with significantly phenotypic differences across gene haplotypes under different

env i ronments , of which the candidate genes GRMZM2G064159,

GRMZM2G146192, and GRMZM2G114789 around QEIs may have gene-by-

environment interactions for maize yield.

Discussion: All these findings may provide new insights for breeding in maize for

yield-related traits adapted to abiotic stresses.

KEYWORDS

multiple abiotic stresses, QTN-by-environment interaction, GWAS, 3VmrMLM, yield-
related traits, maize
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Introduction

Maize (Zea mays) is a vital and strategic cereal crop cultivated in a

variety of agroecological zones across the world. Growing on non-

irrigated fields exposes them to various environmental stresses, such

as drought stress, heat stress, and their combination. Heat waves

mixed with acute and persistent drought stress can have disastrous

consequences for agriculture, as well as economic and social stability,

especially affecting drylands utilized for grain production across the

world (Ciais et al., 2005; Mittler, 2006; Zandalinas et al., 2020). The

vulnerability of maize to drought and heat stresses can lead to yield

losses of 15-20% every year (Khan et al., 2016). Such losses are likely

to rise as a result of climate change, especially in emerging nations

with rising maize consumption (Campos et al., 2006). To fulfill the

future demands of the world’s rising population, high yielding and

drought tolerant maize cultivars are seen as the most economically

feasible answer (Monneveux et al., 2006).

Due to the poor heritability of grain production (Edmeades et al.,

1999) and the likelihood of drought occurring at several growth

periods, direct selection for grain yield under drought circumstances

is frequently challenging (Chen et al., 2012). The use of secondary

traits in breeding programs has become one of the finest methods for

choosing the genotypes that perform the best under stress situations

(Parajuli et al., 2018). Due to the separation of male and female

flowers, maize is more vulnerable to drought than any other crop,

especially when temperatures are rising above 35°C (Huang et al.,

2006). Consequently, the rise in anthesis-silking interval is one of the

primary effects of drought stress in maize (Bänziger et al., 2000). The

anthesis date keeps a strong genetic correlation with grain yield and

remains highly heritable and cost-effective to measure (Cerrudo et al.,

2018). These studies demonstrated that the secondary traits

comprising anthesis-silking interval and anthesis date have been

included in breeding programs to promote indirect selection for

grain yield.

As global climate change accelerates, quantitative trait nucleotide

(QTN)-by-environment interactions (QEIs) play an increasingly

essential role in the genetic dissection of complex traits in plants

(Lukens and Doebley, 1999). There are currently accessible

methodologies and software tools for identifying QEIs. Crossa et al.

(1999) developed a factorial regression model for QEI in tropical

maize. In its basic form, an additional covariate needs to be

introduced for each putative QTL, thus least squares estimate

approaches fail when there are a large number of genotypic or

environmental covariables. To detect QEIs, Zhu and Weir (1998)

and Wang et al. (1999) developed the mixed-model based composite

interval mapping (MCIM) approach, but the results may be

susceptible to the specified model of multiple QTL (Piepho, 2000).

Li et al. (2015) expanded the inclusive composite interval mapping

(ICIM) main-effect genetic model into a QEI model. In real data

analysis, it is challenging to uncover small QEIs. However, these

approaches are suitable in bi-parental segregation populations.

Although Moore et al. (2019) proposed the structured linear mixed

model (StructLMM) to detect QEIs, only allelic substitution was

detected, and its polygenic background was controlled. To over

these issues, recently, Li et al. (2022a, 2022b) proposed a
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compressed variance component mixed model (3VmrMLM) to

detect and estimate all the effects in QTN and QEI detection under

controlling all the possibly polygenic backgrounds in genome-wide

association studies (GWAS). Based on a full mixed-model framework,

the numbers of variance components in QTN and QEI detection were

compressed from 5 and 10 to 3, respectively, showing very good

performances in computational efficiency. Furthermore, 3VmrMLM

can identify QTNs and QEIs accurately and estimate their genetic

effects unbiasedly (Zuo et al., 2022; Zhao et al., 2023).

From now, lots of genes response to abiotic stresses were

identified in Arabidopsis, rice and maize. For example, in

Arabidopsis, DREB2A is one of the transcription factors that

activates the expression of heat-stress-responsive genes (Sakuma

et al., 2006a). DREB2A has a conserved ERF/AP2 DNA-binding

domain and recognizes a dehydration-responsive element (DRE).

This DRE was reported to function as a heat-stress-responsive

element (Sakuma et al., 2006b). Liu et al. (2013a) reported that di19

functions as a transcriptional regulator and is involved in Arabidopsis

responses to drought stress through up-regulation of pathogenesis-

related PR1, PR2, and PR5 gene expressions. In rice, OsGRAS23 can

bind to the promoters of several target genes and modulate the

expressions of a series of stress-related genes. Overexpression of

OsGRAS23 conferred transgenic rice plants with improved drought

resistance (Xu et al., 2015). The RING finger ubiquitin E3 ligase

OsHTAS functions in leaf blade to enhance heat tolerance through

modulation of hydrogen peroxide-induced stomatal closure. In maize,

ZmHsf11 decreases plant tolerance to heat stress by negatively

regulating the expression of oxidative stress-related genes, thus

increasing reactive oxygen species levels and decreasing proline

content. It is a negative regulator involved in high temperature

stress response (Qin et al., 2022). In addition, the overexpression of

ZmPIS in maize plants under drought stress might lead to the

increased synthesis of unsaturated phospholipid and galactolipid

species, which are involved in the maintenance of membrane

permeability and fluidity that might contribute to plant adaptation

to drought stress (Liu et al., 2013b). However, seldom maize gene-by-

environment interactions (GEIs) were identified, most of the maize

genes were identified by transcriptome analysis and comparative

genome analysis (Shi et al., 2017; Zhao et al., 2019). Mining QEIs

and related GEIs would provide excellent genes for the genetic

improvement of high tolerance to biological stress breeding in maize.

In this study, 3VmrMLM was used to detect QTNs and QEIs for

three yield-related traits in an association-mapping panel of 300

tropical and subtropical inbred maize lines each with 955,690 single

nucleotide polymorphisms (SNPs) from the DTMA (Drought

Tolerant Maize for Africa, https://www.cimmyt.org/projects/

drought-tolerant-maize-for-africa-dtma/) in four environments. The

transcriptomic data of drought treatment vs. well-watered and high

vs. normal temperature, respectively, were used to identify

differentially expressed genes. Functional enrichment, tissue-specific

expression, and haplotype and phenotypic difference analysis were

used to further validate the candidate maize genes in drought and heat

stresses. Multi-environment joint analysis will be helpful for

identifying candidate genes related to yield under multiple abiotic

stresses in maize.
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Materials and methods

Phenotypic data and statistical analysis

The DTMA panel datasets were achieved from International

Maize and Wheat Improvement Center (CIMMYT, http://hdl.

handle.net/11529/10548156), including 300 inbred lines of tropical

and subtropical maize gathered and tested against CML-539 (Wen

et al., 2011). Three yield-related traits, grain yield (GY, ton/hectare),

anthesis date (AD, day), and anthesis-silking interval (ASI, day), were

investigated to detect QTNs and QEIs. The yield trial data were

collected from Mexico, Kenya, Thailand, Zimbabwe, and India

between 2008 and 2011 under environments of well-watered

(WW), drought stress (DS), heat stress (HS), and combined

drought and heat stress (DHS). The detailed description and

calculated best linear unbiased prediction values for each yield-

related trait under the various scenarios were provided by Cairns

et al. (2013).

To better understand the patterns of variation of three yield-

related traits under various environments, we calculated Pearson

correlation coefficients and carried out significance tests for 12

trait-environment combinations using cor.test function based on R

(Version 4.2.1). The violin plots were adopted to illustrate the

variation of three traits under four environments by using the

ggbetweenstats function in ggstatsplot package of R (Patil, 2021),

and the Kruskal-Wallis one-way analysis of variance by ranks was

conducted with the parameter "type" set to "nonparametric" to test

whether the phenotypic mean of each trait differed significantly across

four environments.
Genotypic data

We obtained the original genotypic data from http://hdl.handle.

net/11529/10548156, with a total of 955,690 SNPs. Then we

performed quality control on the SNP dataset by filtering markers

with minor allele frequency (MAF) < 0.01 and missing genotype rate

> 25% by PLINK (Version 1.9). The imputation of the absent markers

was carried out by Beagle (Version 5.4) with the default settings

(Browning et al., 2018). Ultimately, we obtained 332,641 SNPs with

known physical positions and high quality for further research. To

visualize the genotype in this study, PopLDdecay (Version 3.31,

https://github.com/BGI-shenzhen/PopLDdecay) was used to

calculate linkage disequilibrium (LD) on SNP pairs within a 10-kb

window. In addition, the distribution of 332,641 SNPs across 10

chromosomes was plotted by CMplot package in R.
GWAS method

We performed GWAS for the detection of QEIs and QTNs using

the IIIVmrMLM package (https://github.com/YuanmingZhang65/

IIIVmrMLM; Li et al., 2022b) in R, with high computational

efficiency. It mainly used the IIIVmrMLM function, where the

parameter "method" was set to "Multi_env". The kinship matrix was

also calculated via the package. In the 3VmrMLM method, the P-

value thresholds for significant and suggested QTNs or QEIs were
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based on Bonferroni correction (P-value < 0.05/m, where m is the

number of markers) and logarithm of odds (LOD) score ≥ 3.0,

respectively. In the following analysis, as long as one of them was

satisfied, we considered it as QTNs or QEIs significantly associated

with the target traits. In addition, the package can automatically

generate the attractive Manhattan diagrams.
Differential expression and functional
enrichment analyses

Genes situated within or contiguous 5 kb (5 kb upstream and

downstream, total 10 kb, according to LD decay shown in Figure 1A)

of the QTNs and QEIs significantly associated with the target traits

were extracted following the B73 AGPV2 (MaizeGDB, https://www.

maizegdb.org/) reference genome assembly (Woodhouse et al., 2021).

The DNA sequence of all detected genes was used for similarity search

on BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to

determine the Arabidopsis ortholog.

For the above Arabidopsis homologous genes, excluding the known

genes reported in the literatures, we performed differential expression

analysis of the series GSE124340 and GSE154373 from the Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database for the unreported genes to identify differentially expressed

genes (DEGs) responding to drought stress and heat stress, respectively.

The series GSE124340 contains transcript per million (TPM) value of

maize under well-watered condition (WW) and drought treatments

(DT) at various levels (DT2, DT3, and DT4 represent soil moistures for

maize plants were 30-35%, 20-25%, and 10-15% respectively). Each

treatment has 2 biological replicates. Meanwhile, the series GSE154373

contains fragments per kilobase of feature per million (FPKM) values

for maize plants (inbred line W22) at different temperature treatments

(31°C, 33°C, 35°C, and 37°C), with three replicates for each treatment.

DEGs between two pairwise samples (DT2 vs. WW, DT3 vs. WW, DT4

vs. WW, 33°C vs. 31°C, 35°C vs. 31°C, and 37°C vs. 31°C) were

discovered by limma package in R, with a cutoff of the absolute value

of log2FoldChange greater than 1 and P-value less than 0.05.

Simultaneously, these DEGs responding to drought stress and heat

stress were intersected with the detected genes, respectively, and thus

we obtained the DEGs responding to multiple abiotic stresses for yield-

related traits.

For gene ontology-based functional enrichment analysis,

information of the above DEGs related to traits were

simultaneously submitted to the web-based program AgriGO (Tian

et al., 2017). We performed singular enrichment analysis and Fisher's

exact test with P-value less than 0.05 to select enrichment gene

ontology (GO) terms (Xu et al., 2014).
Tissue-specific expression, analysis of
haplotype and phenotypic difference, and
identification of candidate genes

The database MaizeGDB (https://www.maizegdb.org/) was used

to investigate the expression of genes in various tissues to illustrate the

association between genes enriched in significant pathways and

phenotypic variations. The HaploView software (Version 4.1) was
frontiersin.org
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used to perform linkage disequilibrium and haplotype block studies,

as well as estimate the frequency of haplotype populations in genes

widely expressed in various tissues of maize (Barrett et al., 2005), for

validating the associated loci between genes and traits. Significant

variants were utilized for haplotype division for each gene, and

phenotypic differences across haplotypes were examined using the

t.test function in R. Genes with significant differences in phenotypes

across haplotypes under different environments were considered as

the candidate genes.
Results

Phenotypic variation and correlation

The phenotypic performance of each trait varied under each

environment, suggesting that the DTMA panel seemed to have

large variation (Figure 2). All three traits examined under WW

condition performed much better than those under stress situations

including DS, HS, and DHS. The average performance for trait GY

was much higher under WW than under all other situations

(Figure 2A). On the other hand, the phenotypic variations for traits

AD and ASI measured under WW were smaller than those under

stress situations (Figures 2B, C). Except for DHS condition, the

average value of AD was larger under WW than that under stress

conditions (Figure 2B). The mean ASI value under WW was,
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however, smaller than that under stress conditions (Figure 2C). The

P-values in the Kruskal-Wallis test for all three traits under four

different environments were 6.98E-209, 1.76E-172, and 1.54E-143,

respectively, and the P-values in any pairwise comparison test were

less than 1.29E-03 (Figure 2), indicating that mean phenotypic values

significantly differ across environments.

The phenotypic correlations among all yield-related traits under

the same environment varied (Supplementary Figure 1). The

correlations for GY under diverse situations were slight, favorable,

and significant especially under WW. The correlations were favorable

and extremely significant for AD between all situations. Only WW,

DS, and HS had significant phenotypic correlations with ASI, while

ASI under DHS was strongly linked with DS. On the whole, GY was

negatively and strongly correlated with ASI under each condition,

with a range of -0.67 to 0.08, confirming the previous findings (Ribaut

et al., 2009). Nevertheless, none significant associations were found

between GY and AD, or between AD and ASI under the

same condition.

The phenotypic correlations between the same traits under

various environments also varied (Supplementary Figure 1). For

AD, the correlations between any two situations fluctuated from

0.55 to 0.95. The majority of correlations for GY and ASI under

diverse situations varied from 0.09 to 0.60. The trait GY under DHS

was not strongly correlated with DS or HS circumstance; furthermore,

indirect correlations were observed between GY under DHS and that

under DS or HS. The trait ASI under WW was positively correlated
A B

C

FIGURE 1

(A) LD decay plot for high-quality SNPs. (B) Distribution of high-quality SNPs on chromosomes. (C) Distribution of QEIs and QTNs across all chromosomes.
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with DS or HS situation, but ASI under HS was uncorrelated with

DHS situation.

Combined with the above analysis shown in Figure 2 and

Supplementary Figure 1, it can be justified that the DTMA panel is

suitable for application in multi-environment joint analysis.
Multi-environment joint analysis
using 3VmrMLM

In total, 300 inbred lines with 332,641 SNPs were applied to carry

out GWAS for each of three traits jointly analyzed in the four

environments. LD decay measured the physical distance at which

the Pearson’s correlation efficient dropped to half of the maximum

(Figure 1A). These SNPs were evenly distributed across the 10

chromosomes (Figure 1B). The 3VmrMLM method used in this

study identified 73 QEIs (57 significant and 16 suggested QEIs,

Supplementary Table 1) and 76 QTNs (64 significant and 12

suggested QTNs, Supplementary Table 2) that were strongly

associated with the yield-related traits.

In general, these QEIs and QTNs were distributed on all

chromosomes (Figure 1C). For QEIs, the loci were spread out

relatively evenly on the chromosomes, it was most distributed on

chromosome 4 with 13 and least distributed on chromosome 3 with

only 5 (Figure 1C). The highest number of QTNs was found on

chromosomes 1 and 8, and the least on chromosome 9 (Figure 1C).

On chromosomes 4 and 8, there were relatively more QTNs as well as

QEIs, suggesting that these two chromosomes have a greater effect on

the genetic variation of yield-related traits; while on chromosome 6,
Frontiers in Plant Science 05177
there were twice as many QEIs as QTNs, which may implicate that

chromosome 6 may be more susceptible to environmental

influences (Figure 1C).

A total of 29 QEIs were detected significantly related to GY, with

P-values of 7.176E-129~8.065E-08 and LOD scores of 5.069~132.822,

respectively (Figure 3A; Supplementary Table 1). Only 7 QEIs were

distinguished for AD, with P-values of 6.123E-62~5.420E-10 and

LOD scores of 7.130~65.274 (Figure 3B; Supplementary Table 1). The

most QEIs were identified to be significantly associated with ASI in

the multi-environment analysis, 37 QEIs were detected with P-values

of 5.496E-121~1.978E-08 and LOD scores of 3.063~124.884

(Figure 3C, Table 1, and Supplementary Table 1).

On the other hand, numbers of the significantly associated QTNs

of each trait under four environments varied from 20 for ASI to 34 for

AD (Supplementary Figure 2, Supplementary Table 2). 22 QTNs

related to GY were detected with P-values of 6.021E-30~9.862E-08

and LOD scores of 5.886~29.221(Supplementary Figure 2A,

Supplementary Table 2). 34 QTNs were associated with AD, with

P-values of 1.414E-41~8.291E-08 and LOD scores of 3.387~40.851

(Supplementary Figure 2B, Supplementary Table 2), and moreover,

20 QTNs associated with ASI were detected with P-values of 3.386E-

32~2.295E-08 (Supplementary Figure 2C, Supplementary Table 2).

The loci S1_18891169 and S5_205942859 were also identified for AD

in the previous study (Yuan et al., 2019).

Meanwhile, the total phenotypic variance explained (PVE) of

QEIs for ASI was 71.214% (Table 1 and Supplementary Table 1),

higher than the PVE of QTNs 8.966% (Supplementary Table 2).

Among these 37 QEIs, S1_29787938 located on chromosome 1 had

the maximum PVE of 9.549% (Table 1 and Supplementary Table 1).
A B C

FIGURE 2

Violin plots of phenotypic distribution of three yield-related traits (A) grain yield (GY, ton/hectare), (B) anthesis date (AD, day), and (C) anthesis-silking
interval (ASI, day) under the four evaluation conditions, i.e., drought stress (DS), combined drought and heat stress (DHS), heat stress (HS), and well-
watered (WW).
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Although the PVE of QTNs for GY was relatively low at 0.515%, the

PVE of QEIs was nearly four times higher at 1.974% (Supplementary

Tables 1, 2). For AD, the PVE of QTNs was 2.659%, which was higher

than the PVE of QEIs (Supplementary Tables 1, 2).

The dominance and additive effects for ASI were relatively

significant in all four environments, as listed in Table 1 and

Supplementary Table 1. The interaction effect of dominance with

the third environment HS for ASI was generally large, with an effect of

8.005 for S1_29787938 located on chromosome 1 and an effect of

4.907 for S6_141276881 located on chromosome 6 (Table 1 and

Supplementary Table 1). The interaction effect of additive effect with

the first environment DS for AD was positive and moderate,

S9_567464 located on chromosome 9, where its effect was 0.488

(Supplementary Table 1). For ASI, the interaction effect of additive

with environment DS was also relatively high, the effect of

S2_23529006 was 0.647, simultaneously, the effect of S5_160123104

was 0.524 (Table 1 and Supplementary Table 1). In summary, the

higher effect of interaction with the environment indicated that the

effect of heat and drought stresses on crop yield is not negligible.
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Known genes around QEIs and QTNs
for yield-related traits under multiple
abiotic stresses

In multi-environment joint analysis, a total of 321 genes (5 kb

upstream and downstream) were found to be around their significant

loci based on MazieGDB against the B73 AGPV2 genome. 161 out of

321 genes were homologous to Arabidopsis and their functional

annotations were listed in Supplementary Table 3. Number of genes

varied among the three traits. In total, 117, 78, and 126 genes were

found to be around the significant loci for GY, AD, and ASI,

respectively (Supplementary Table 3). For ASI, 74 and 52 genes

were found to be around QEIs and QTNs, respectively. At the same

time, 63 and 54 genes were found to be around QEIs and QTNs for

GY, respectively. However, for AD, 58 genes were found to be around

QTNs, but only 20 were found to be around QEIs (Supplementary

Table 3). Highlighting in Figure 3 and Supplementary Figure 2, 34

known genes were annotated according to the previous literatures

(Augustine et al., 2016; Qi et al., 2017; Li et al., 2019).
A

B

C

FIGURE 3

Manhattan plots using 3VmrMLM for QEIs on three yield-related traits (A) GY, (B) AD, and (C) ASI under four environments. Y-axis on the left side
represents -log10 (P-values) of QEIs, which are obtained from single-marker genome-wide scanning for all markers, while y-axis on the right-side
represents LOD scores, which are obtained from likelihood ratio test for QEIs, with the threshold of LOD = 3.0 (dashed line). These LOD scores are
shown in points with straight lines. Highlighted text is the corresponding known gene of the loci.
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TABLE 1 Results of 37 QEIs for trait ASI using multi-environment joint analysis of 3VmrMLM.

d4 dom4 r2(%) P-value SIG/SUG

.172 -2.618 9.549 5.496E-121 SIG

.171 -0.034 0.412 1.544E-05 SUG

.498 -2.531 2.999 1.143E-43 SIG

.004 0.313 0.776 4.369E-11 SIG

.175 -0.816 1.029 1.172E-14 SIG

.402 -1.006 3.317 5.696E-48 SIG

.185 0.439 0.599 1.978E-08 SIG

.417 -2.055 7.393 6.103E-98 SIG

.076 0.392 0.698 5.856E-10 SIG

.180 -0.943 0.468 2.126E-06 SUG

.047 -0.181 0.502 6.430E-07 SUG

.067 -2.877 1.055 2.269E-15 SIG

.115 -0.923 0.385 3.405E-05 SUG

.360 0.690 1.566 3.958E-23 SIG

.125 0.500 1.069 1.355E-15 SIG

.095 0.605 0.652 3.426E-09 SIG

.169 -0.408 0.912 3.224E-13 SIG

.068 -1.263 1.213 4.279E-17 SIG

.131 0.667 1.078 9.482E-16 SIG

.503 1.439 3.378 1.561E-49 SIG

.070 -0.188 0.700 5.511E-10 SIG

.070 0.531 0.178 2.850E-02 SUG

.114 -2.612 1.776 2.257E-26 SIG

.155 -1.056 0.576 3.975E-09 SIG

.056 -1.785 0.671 1.611E-09 SIG

.067 -0.045 0.914 3.280E-13 SIG

.629 0.326 2.579 7.667E-38 SIG

.033 0.594 0.461 2.672E-06 SUG
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Marker Chr Pos (bp) LOD (QEI) add1 dom1 add2 dom2 add3 dom3 a

S1_29787938 1 29787938 124.884 0.001 -1.342 -1.345 -4.045 1.172 8.005 0

S1_47457445 1 47457445 6.976 -0.145 0.062 -0.038 -0.140 0.355 0.112 -

S1_62226889 1 62226889 46.714 -0.349 -2.227 0.110 -0.494 0.737 5.252 -

S1_229206706 1 229206706 13.043 0.020 0.358 0.379 -0.340 -0.403 -0.332 0

S1_297750016 1 297750016 16.830 -0.149 -0.672 -0.040 -0.636 0.363 2.123 -

S1_298273269 1 298273269 51.094 0.297 -0.731 0.220 2.949 -0.919 -1.212 0

S2_2682470 2 2682470 10.180 0.109 -0.002 -0.396 -0.809 0.102 0.371 0

S2_23529006 2 23529006 101.660 0.647 -1.729 0.382 -0.275 -1.446 4.059 0

S3_147588583 3 147588583 11.834 -0.151 0.284 0.344 0.666 -0.116 -1.342 -

S3_218123483 3 218123483 7.944 0.010 -0.290 -0.085 -1.586 0.255 2.819 -

S3_226979707 3 226979707 8.521 0.067 -0.221 0.301 0.417 -0.321 -0.015 -

S4_35625212 4 35625212 17.580 0.197 -1.786 0.083 -0.119 -0.347 4.782 0

S4_73208150 4 73208150 6.586 -0.056 -0.171 0.301 0.701 -0.131 0.392 -

S4_167022069 4 167022069 25.660 -0.044 -0.660 -0.630 -0.003 0.314 -0.027 0

S4_186691903 4 186691903 17.815 -0.031 -0.259 -0.070 -2.715 0.226 2.474 -

S4_202589250 4 202589250 11.007 -0.211 0.188 -0.047 0.257 0.353 -1.050 -

S4_223836871 4 223836871 15.310 -0.083 0.063 0.513 0.471 -0.260 -0.125 -

S5_2353940 5 2353940 19.387 -0.006 -0.800 0.094 0.025 -0.020 2.037 -

S5_14841812 5 14841812 17.978 -0.062 1.120 0.415 0.264 -0.222 -2.051 -

S5_160123104 5 160123104 52.683 0.524 1.284 -0.732 -2.472 -0.296 -0.251 0

S6_656139 6 656139 11.863 0.154 -0.321 -0.450 0.359 0.226 0.150 0

S6_137397546 6 137397546 3.063 -0.108 -0.657 0.071 0.423 0.107 -0.297 -

S6_141276881 6 141276881 29.009 -0.336 -2.635 0.409 0.341 0.041 4.907 -

S6_152209037 6 152209037 10.937 0.174 -1.475 -0.212 4.005 -0.117 -1.473 0

S6_163662312 6 163662312 11.361 0.156 -1.277 -0.004 3.920 -0.096 -0.857 -

S6_167325529 6 167325529 15.302 0.010 0.262 -0.459 -0.552 0.383 0.335 0

S7_126213664 7 126213664 40.770 0.345 -0.367 -0.475 -1.435 -0.499 1.477 0

S7_130495196 7 130495196 7.833 0.015 0.372 -0.281 -0.274 0.232 -0.692 0
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For QEIs, 11 known genes related to GY, 3 known genes related to

AD, and 2 known genes related to ASI were identified (Figure 3;

Supplementary Table 3). The known genes thx12 (GRMZM2G016649,

around the locus S2_21790763) and thx16 (GRMZM2G063203,

around the locus S4_149899538) related to GY (Figure 3A;

Supplementary Table 3) are Trihelix transcription factors (also

known as GT transcription factors) that are unique to plants and

play important roles in abiotic drought stress (Du et al., 2016). The

known gene hsftf27 (GRMZM2G025685) around the locus

S7_169176208 (Figure 3A; Supplementary Table 3), which acts as a

heat shock transcription factor, helps to resist many environmental

stresses and is involved in the regulation of primary metabolism, was

also related to GY (Haider et al., 2021). Moreover, the expression of

known gene myb60 (GRMZM2G312419) around the locus

S8_2763002 (Figure 3A; Supplementary Table 3) in response to

jasmonic acid was up-regulated in heat-tolerant maize variety,

which is considered to be important signaling substances with

respect to plant stress responses (Wang et al., 2020). The known

gene ead1 (GRMZM2G329229) around the locus S5_194560419

(Figure 3A; Supplementary Table 3) plays a critical role in malate-

mediated female inflorescence development and provides a promising

genetic resource for enhancing maize grain yield (Pei et al., 2022).

Moreover, emp25 (GRMZM2G312954 , around the locus

S7_166553957) (Figure 3A; Supplementary Table 3) functions in

the splicing of nad4 introns, and is essential to maize kernel

development (Xiu et al., 2020). The known gene ereb100

(AC209257.4_FG006) around the locus S6_153235783 related to AD

(Figure 3B; Supplementary Table 3) belongs to the APETALA2/

Ethylene-responsive factor (AP2/ERF), which plays an active role in

growth, development, and adaptation to abiotic stresses in maize

(Zhang et al., 2022). Drg5 (GRMZM2G135877, around the locus

S1_29787938) related to ASI (Figure 3C; Supplementary Table 3) is

shown to be rhythmically expressed under dark and light-dark cycles

(Dong et al., 2020).

For QTNs, 3 known genes were related to GY (Supplementary

Figure 2A and Supplementary Table 3), of which dek2

(GRMZM2G110851, around the locus S1_299093763) is a

pentatricopeptide repeat protein that affects the splicing of

mitochondrial nad1 intron 1 and is required for mitochondrial

function and kernel development (Qi et al., 2017). Meanwhile, 9

known genes were detected for AD (Supplementary Figure 2B and

Supplementary Table 3), among which ereb53 (GRMZM2G141638,

around the locus S3_166796324) and ereb60 (GRMZM2G131266,

around the locus S1_211326173), among the largest transcription

factors in plants, were shown to exhibit differential expression

patterns at different developmental stages in maize confirmed by

the previous study (Zhang et al., 2022), especially in response to three

different abiotic stresses, suggesting their important roles in abiotic

stress tolerance (Zhang et al., 2022). A total of 7 known genes were

found to be related to ASI (Supplementary Figure 2C and

Supplementary Table 3), of which bzip22 (GRMZM2G043600,

around the locus S7_140710756) is a transcription factor from the

basic leucine zipper family, and they are involved in stress responses

and hormone signaling (Cao et al., 2019).

There were few overlapped genes detected for the different traits,

indicating the genetic divergence between the traits. One common

gene homologous to Arabidopsis observed for GRMZM2G064159
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between a QTN of GY and a QEI of AD (Supplementary Table 3).

Only one known gene naat2 (GRMZM2G006480) around the locus

S4_3890824, which was confirmed to be related to GY, was

overlapped between QTN and QEI (Figure 3; Supplementary

Figure 2, and Supplementary Table 3). This finding showed the

challenge of enhancing maize GY response to numerous abiotic

stress tolerances at the same time. The more detailed information

about the genes around QTNs and QEIs identified by the 3VmrMLM

method can be referred to Supplementary Table 3.
Response to multiple abiotic stresses and
GO enrichment pathway

The differential expression analysis was used to determine the

response of genes to DS and HS stresses. Among 127 homologs in

Arabidopsis out of 287 unreported genes, 46 were identified as

DEGs under DT vs. WW treatments and 47 were identified as

DEGs under high temperature vs. normal temperature treatments.

Among them, 29 DEGs were identified in both DS and HS tolerance

(Supplementary Table 4). GRMZM2G152549 was simultaneously

found in six comparison groups (Supplementary Table 4), but it

was lowly expressed under different levels of drought treatment

relative to WW condition. The absolute value of log2FoldChange

for GRMZM2G016084 was as high as 205.14, followed by

GRMZM5G896082 and GRMZM2G048836, which had absolute

values of log2FoldChange of 200.905 and 198.9, respectively

(Supplementary Table 4). The two genes GRMZM5G896082 and

GRMZM2G048836 were highly expressed after severe drought

treatment and heat treatment (Supplementary Table 4).

According to outcomes of the GO functional enrichment analysis,

a total of 37 genes among the above 46 and 47 DEGs significantly

enriched to 13 GO terms associated with various biological processes

(Figure 4A; Supplementary Figure 3, 4). Such as, 17 genes around

QEIs and QTNs were enriched to organic substance metabolic

process (GO: 0071704), among which 2 genes GRMZM2G109651

and GRMZM2G048836 were also participated in the cellular

component and molecular function (Supplementary Figures 3 and

4). Pleiotropic gene GRMZM2G064159 which simultaneously

identified around the locus S10_123819112, a QTN for GY and a

QEI for AD was also involved in organic substance metabolic process

(GO: 0071704, Supplementary Figures 3 and 4). Under adverse

environment, plant metabolism is profoundly involved in signaling,

physiological regulation, and defense responses (Fraire-Velázquez

and Balderas-Hernández, 2013). Cellular components are the

complex biomolecules and structures of which cells, and thus living

organisms, are composed. In the last layer in Supplementary Figure 3,

6 genes were enriched to intracellular organelle part (GO: 0044446).

Moreover, the expression levels of some genes were significantly

different under different treatment conditions. Under drought

treatments (Figure 4B), most of the 33 genes were responded to

drought stress. GRMZM2G004377 around the locus S9_149252534, a

QEI associated with GY, combined with candidate genes around the

QEIs significantly associated with ASI such as GRMZM2G140609,

GRMZM2G084767, and GRMZM2G070797 had high expression

under DT4 treatment and low expression under WW conditions

(Figure 4B). In contrast, the gene GRMZM2G431039 around the locus
Frontiers in Plant Science 09181
S7_155070876 associated with ASI had lower expression values under

severe drought treatment and higher expression values under

sufficient water conditions (Figure 4B). The expression levels of the

25 genes varied under different temperature treatments (Figure 4C).

The gene GRMZM2G146192 around the locus S4_2488289, a QEI

associated with GY had a high expression value at 37°C, while

GRMZM2G178829 and GRMZM2G139600 around QTNs

significantly associated with AD had low expression values at high

temperature (35°C and 37°C) (Figure 4C). A total of 21 genes

responded to drought stress and heat stress, simultaneously

(Figures 4B, C). Genes around QEIs significantly associated with

ASI, such as GRMZM2G016084 and GRMZM2G084806, were highly

expressed under 37°C and DT3 treatment (Figures 4B, C). Gene

GRMZM2G02170 had low expression values under both high

temperature at 37°C and extreme drought DT4 treatment

(Figure 4B, C). In addition, some genes were expressed at different

levels under drought stress and heat stress treatments. For example,

the gene GRMZM2G455476 had high expression value under DT4

treatment but low expression value under high temperature treatment

at 37°C (Figures 4B, C). The gene GRMZM2G070709 had high

expression under DT3 treatment, but low expression value under

high temperature treatment at 35°C (Figures 4B, C). This information

may be useful in providing some biological basis for newly discovered

heat and drought tolerant genes in maize.
Haplotype and phenotypic difference
analysis of candidate genes and tissue-
specific expression profiles

Based on the results of tissue-specific expression, almost all the 37

genes significantly enriched to the pathways, except for

AC202120.3_FG003, were expressed in various maize tissues. To

further confirm the association between the genes and yield-related

traits, we performed haplotype analysis of the remaining genes using

SNPs within these genes and 2 kb upstream of them. A total of 24

genes differed significantly in phenotypes across haplotypes under

different environments, and were considered as the candidate genes

(Table 2). Among 24 candidate genes, there were 13 genes around

QEIs and 13 genes around QTNs, with two candidate genes,

GRMZM2G006480 and GRMZM2G064159, being detected around

both QEIs and QTNs. The more detailed results were listed in Table 2

and Supplementary Table 5.

Pleiotropic candidate gene GRMZM2G064159 (CDS coordinates

[5′-3′]: 123811073 ~ 123815007) around the locus S10_123819112, a

QEI for AD and a QTN for GY (Table 2; Supplementary Tables 3 and

5), was analyzed to reveal the intragenic variation affecting the yield and

to identify favorable haplotypes. Figure 5A exhibited the tissue-specific

expression profile of the candidate gene GRMZM2G064159, which has

a much higher expression value of 747.60 in Anther-2.0mm-W23 and

is also commonly expressed in spike, embryo, and root-associated

tissues. Figure 5B showed the linkage disequilibrium and haplotype

block with 15 SNPs. The 300 inbred lines were classified into 7

haplotypes based on 14 SNPs (S10_123811034, S10_123811055,

S10_123811069, S10_123811287, S10_123811289, S10_123814031,

S10_123814100, S10_123814124, S10_123814202, S10_123814715,

S10_123814731, S10_123814738, S10_123814750, S10_123814751).
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For AD, haplotype VI (GCGGCAACAGGACA) had the highest mean

phenotypic values in DS (72.63) and DHS (76.17) conditions, whereas

haplotype IV (AAGGCAGCGCCGCT) presented the lowest mean

phenotypic values in DS (70.45) and DHS (74.48) conditions

(Figure 5C). A t test showed that significant differences in DS

condition existed between haplotypes II and IV (P-value = 4.62E-04,

Supplementary Table 5). There was also a significant difference

in DHS condition between haplotypes II and IV (P-value =

4.13E-03, Supplementary Table 5). For GY, haplotype VII

(GCGGCAGCGCCGCT) had the highest mean phenotypic values in

DS (2.63) and DHS (1.21) conditions, while haplotype IV had the

lowest mean phenotypic values under DS (2.35) and HS (1.14)

conditions (Figure 5D). A t test showed that significant differences in

HS condition between haplotypes IV and VI (P-value = 1.21E-02,

Supplementary Table 5). Therefore, we hypothesized that the candidate

gene GRMZM2G064159 may interact with environments for yield-

related traits in maize.

The candidate gene GRMZM2G146192 (CDS coordinates [5′-3′]:
2481257 ~ 2484641) was detected around the locus S4_2488289, a

QEI for GY (Table 2; Supplementary Tables 3 and 5). Supplementary

Figure 5A showed the tissue-specific expression profile of

GRMZM2G146192, with higher expression values in root and leaf-

associated tissues. Supplementary Figure 5B, C revealed the results of

the haplotype block and phenotype difference. We inferred that the

candidate gene GRMZM2G146192 might also respond to various

environment conditions for maize yield.

GRMZM2G114789 (CDS coordinates [5′-3′]: 10541987 ~

10545884) was also detected around the locus S5_10542293, a QEI

for AD (Table 2; Supplementary Tables 3 and 5). Supplementary

Figure 6A showed the tissue-specific expression profile of the

candidate gene GRMZM2G114789, with higher expression values in

root and embryo-associated tissues. Supplementary Figures 6B, C

revealed the results of the haplotype block and phenotype difference.

Haplotype II (CCGGCCCAAGGCT) had the highest mean

phenotypic values in DS (75.27), DHS (77.12), HS (60.29), and

WW ( 7 5 . 2 7 ) c o n d i t i o n s , w h e r e a s h a p l o t y p e V
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(TCGGCCCAAGGCT) presented the lowest mean phenotypic

values in DS (69.56), DHS (74.88), HS (56.4), and WW (71.42)

conditions. Supplementary Figure 6C showed significant

differences in all conditions between haplotypes II and V,

haplotypes II and VI (TCGGCCCAAGGTT), and haplotypes II and

VII (TCGGCTTCAGGTT). Therefore, we inferred that the candidate

gene GRMZM2G114789 might be also a gene that interacted with

environments related to yield in maize.

In summary, we supposed that the three candidate genes around

QEIs mentioned above might have potential gene-by-environment

interactions, including GRMZM2G064159, GRMZM2G146192, and

GRMZM2G114789. In addition, some candidate genes around QTNs

differed significantly in phenotypes across haplotypes under different

environments (Supplementary Table 5). For example, the candidate

gene GRMZM2G166987 (CDS coordinates [5′-3′]: 213939500 ~

213945050) identified around the QTN S3_213937689, which was

significantly associated with ASI (Table 2; Supplementary Table 3),

showed that its haplotype I (GAGGCAG) and haplotype III

(GCTACAG) were significantly different to the phenotype under

DS, HS, and DHS conditions by t test (Supplementary Table 5).

However, whether these candidate genes around QTNs have gene-by-

environment interactions for yield-related traits in maize needs to be

further verified by new experiments.
Discussion

Tolerance to drought and heat stresses

Drought stress and heat stress are the most significant abiotic

restrictions in the present and future climate change scenarios. Any

additional rise in the frequency and severity of these stressors, either

separately or in combination, would have a devastating impact on

world agricultural yield and food security. Although they impede

agricultural output at all phases of development, the level of

damage during the blooming stage, particularly during the seed
A B C

FIGURE 4

(A) Results of gene ontology-based functional enrichment analysis. (B) Clustered heatmap of expression values for 33 genes under different drought level
treatments. WW stands for well-watered condition, DT2, DT3, and DT4 represent soil moistures for maize plants were 30-35%, 20-25%, and 10-15%,
respectively. (C) Clustered heatmap of expression values for 25 genes under different temperature treatments (31°C, 33°C, 35°C, and 37°C). The
numerical data represent the Z-score of mean TPM of two or three replicates.
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filling phase, is essential and causes significant yield losses. Cultivating

climate-resilient crops is thus an efficient means of adapting to

climate change.

We only obtained the transcriptomic data for drought stress and

heat stress, and couldn’t obtain ones for combined drought and heat

stress. Then, 46 and 47 DEGs were found to be significantly expressed

under drought vs. well-watered treatments, and high vs. normal

temperature treatments, respectively. Among them, 29 genes were

identified in both DS and HS tolerance (Supplementary Table 4).

However, most of the candidate genes did not show significant

differences in combined drought and heat stress across haplotypes

(Supplementary Table 5). This finding indicated that tolerance to

individual stresses in maize is genetically distinct from tolerance to

combined drought and heat stress, and tolerance to either stress alone

does not confer tolerance to combined drought and heat stress, which

was confirmed in the previous study (Cairns et al., 2013).

Identification of genes tolerance to combined drought and heat

stress will be the further work.
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3VmrMLM identified 73 QEIs and 76 QTNs significantly

associated with three yield-related traits under four environments in

this study. The total PVE of all significant QEIs was 73.191%, which is

six times that of QTNs (Supplementary Tables 1 and 2). Moreover, this

study found a higher contribution by QEIs to total variation (PVE =

71.214%) than QTNs (PVE = 8.967%) for ASI (Table 1; Supplementary

Tables 1 and 2). For ASI, 4 out of QEIs had a PVE value greater than 5%

(Table 1 and Supplementary Table 1). Among these four QEIs, drg5

(GRMZM2G135877) around the locus S1_29787938 (r2 = 9.549%,

Table 1; Supplementary Tables 1 and 3) is a known gene that has

been verified by transcriptome analysis in the previous study (Dong

et al., 2020).

The two known genes thx12 (GRMZM2G016649) around the QEI

S2_21790763 (P-value = 2.299E-11, LOD = 13.341, Figure 3A;

Supplementary Tables 1 and 3) and thx16 (GRMZM2G063203)

around the QEI S4_149899538 (P-value = 8.289E-22, LOD =24.292,
TABLE 2 Results of 24 candidate genes and functional annotation of Arabidopsis homologous genes.

Trait QTN/QEI Marker Candidate Gene Phytozome Annotations

GY QEI S4_2488289 GRMZM2G146192 beta-xylosidase 2

QTN&QEI S4_3890825 GRMZM2G006480 Tyrosine transaminase family protein

QEI S4_238951599 GRMZM2G019597 tRNA (guanine-N-7) methyltransferase

QTN S6_113109041 GRMZM2G048836 FTSH protease 6

QEI S7_160600156 GRMZM2G058197 C2H2-like zinc finger protein

QEI S9_47606538 GRMZM2G131482 surp domain-containing protein

QEI S9_149252534 GRMZM2G004466 seed storage 2S albumin superfamily protein

QTN S10_123819112 GRMZM2G064159 porphyromonas-type peptidyl-arginine deiminase family protein

AD QTN S1_279123888 GRMZM2G351582 ZPR1 zinc-finger domain protein

QTN S4_6553499 GRMZM2G054651 HVA22 homologue A

QEI S5_10542294 GRMZM2G114789 RNA-binding (RRM/RBD/RNP motifs) family protein

QTN S7_161438376 GRMZM2G178829 ARM repeat superfamily protein

QTN S7_174741307 GRMZM2G134480 ubiquitin activating enzyme 2

QTN S8_14796428 GRMZM2G139600 gamma-glutamyl transpeptidase 4

QTN S8_62998618 GRMZM2G109651 Cyclin/Brf1-like TBP-binding protein

QEI S10_123819112 GRMZM2G064159 porphyromonas-type peptidyl-arginine deiminase family protein

ASI QEI S1_47457445 GRMZM2G300692 galacturonosyltransferase-like 7

QEI S1_297750017 GRMZM2G016084 Nucleic acid-binding proteins superfamily

QTN S3_213937689 GRMZM2G166987 GDSL-like Lipase/Acylhydrolase superfamily protein

QTN S4_2764858 GRMZM2G126453 AAA-type ATPase family protein

QEI S6_141276882 GRMZM2G084806 Leucine-rich repeat protein kinase family protein

QEI S6_152209037 GRMZM2G140587 GDA1/CD39 nucleoside phosphatase family protein

QEI S6_167325529 GRMZM2G051055 casein kinase 1

QTN S10_96835918 GRMZM2G021170 Nucleic acid-binding OB-fold-like protein

QTN S10_127370470 GRMZM2G005939 basic helix-loop-helix DNA-binding superfamily protein
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Figure 3A, Supplementary Tables 1 and 43), related to GY and

homologous to the Arabidopsis gene AT1G76890, are the GT

factors and play important roles in drought stress (Du et al., 2016).

The mRNA expression levels of GT factors were determined

for maize under drought stress. Moreover, the known gene hsftf27

(GRMZM2G025685) around the QEI S7_169176208 (P-value =

1.996E-08, LOD = 13.335, Figure 3A; Supplementary Tables 1 and

Supplementary Table 1 and 3), which acts as a heat shock

transcription factor, helps to resist many environmental stresses

and is involved in the regulation of primary metabolism (Haider

et al., 2021), was also related to GY. The expression of known gene

myb60 (GRMZM2G312419) around the QEI S8_2763002 (P-value =

2.331E-11, LOD = 10.176, Figure 3A; Supplementary Tables 1 and 3)

in response to jasmonic acid is up-regulated in heat-tolerant maize

variety, which is considered to be important signaling substances with

respect to plant stress responses (Wang et al., 2020). Thx12 and thx16

exhibited high expression levels in immature leaves and at the base of

two leaves stage. Hsftf27 and myb60 had higher expression values in

root tissue at all stages. Roots and leaves are major tissues in coping

with drought and heat stresses (Du et al., 2016).

In addition, the known gene ereb60 (GRMZM2G131266) around

the QTN S1_211326173 (P-value = 1.181E-08, LOD = 7.928,

Supplementary Figure 2B, Supplementary Tables 2 and 3)

significantly associated with AD exhibited obvious spatial and

temporal expression profiles, specifically expressed in embryos

(Zhang et al., 2022), implying that it was involved in maize growth

and deve lopment regulat ion . The known gene ereb53

(GRMZM2G141638) around the QTN S3_166796324 (P-value =

4 .437E-11 , LOD = 10.353 , Supplementary Figure 2B,

Supplementary Tables 2 and 3) significantly associated with AD

was highly up-regulated after drought stress by transcriptome

analysis (Zhang et al . , 2022). The known gene bzip22

(GRMZM2G043600) around the QTN S7_140710756 (P-value =
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7 .000E-13, LOD = 12.155 , Supplementary Figure 2C,

Supplementary Tables 2 and 3) significantly associated with ASI

has been demonstrated to play essential roles in drought stress

primarily through the ABA signal transduction pathway in the

reported literature (Cao et al., 2019). This finding implied that

the main effect of QTNs may also reflect an influence of

environmental interactions.

Except for the above known genes, we also detected 24

new candidate genes in this study (Table 2). Among them,

GRMZM2G064159, GRMZM2G146192, and GRMZM2G114789

around QEIs have been shown the potential gene-by-environment

interactions for yield-related traits in maize. First, GRMZM2G064159

was a pleiotropic candidate gene which was simultaneously identified

around the locus S10_123819112, a QEI for AD (P-value = 1.128E-05,

LOD = 7.130, Supplementary Table 1) and a QTN for GY (P-value =

3 .032E-18 , LOD = 17 .519 , Supp l ementa ry Tab l e 2 ) .

GRMZM2G146192 was found to be around the locus S4_2488289, a

QEI for GY (P-value = 2.058E-05, LOD = 6.835, Supplementary

Table 1). GRMZM2G114789 was found to be around the locus

S5_10542293, a QEI for AD (P-value = 4.598E-07, LOD = 8.6818,

Supplementary Table 1). Second, they are homologous to Arabidopsis

(Table 2; Supplementary Table 3). GRMZM2G146192 is homologous

to AT1G02640 (BXL2, Table 2; Supplementary Table 3), which

increased enzymatic saccharification efficiency in Arabidopsis

(Ohtani et al., 2018). GRMZM2G064159 is homologous to

AT5G08170 (EMB1873, Table 2; Supplementary Table 3), which

acted upstream of or within embryo development ending in seed

dormancy. EMB genes encoded proteins with an essential function

required throughout the life cycle (Muralla et al., 2011).

GRMZM2G114789 is homologous to the RNA-binding family

protein AT4G17720 (BPL1, Table 2; Supplementary Table 3) which

contains classical RNA recognition motif domains and is implicated

in the response to cytokinin (Marondedze et al., 2016). Third, they
A

B

D

C

FIGURE 5

(A) Tissue-specific expression profile, (B) Linkage disequilibrium, and haplotype block with 14 SNPs inside for the candidate gene GRMZM2G064159.
(C) Comparison of trait AD among haplotypes I (AACGCAACAGGACA), II (AACGCAGCGCCGCT), III (AACGCAGCGGCATA), IV (AAGGCAGCGCCGCT), V
(AAGGCAGCGGCATA), VI (GCGGCAACAGGACA) and VII (GCGGCAGCGCCGCT). (D) Comparison of trait GY among haplotypes I, II, III, IV, V, VI, and VII.
The number of stars represents the result of t test at different significance levels (*:0.05; **:0.01; ***:0.001).
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were DEGs under DT vs. WW treatments or under high vs. normal

temperature treatments (Figures 4B, C; Supplementary Table 4), and

GRMZM2G064159 and GRMZM2G146192 both involved in organic

substance metabolic process (GO: 0071704, Supplementary Figure 3),

GRMZM2G114789 involved in binding (GO:0005438, Supplementary

Figure 3). Moreover, their phenotypic differences across

haplotypes were significant under four environments (Figure 5C;

Supplementary Figures 5C, 6C, and Supplementary Table 5). Lastly,

GRMZM2G064159 was commonly expressed in spike, embryo, and

root-associated tissues (Figure 5A). High expression in embryo

implies that it may be involved in maize growth and development

regulation (Zhang et al., 2022). The root system is the primary site

that perceives drought stress signals (Seo et al., 2009). Besides,

GRMZM2G146192 was highly expressed in root and leaf-associated

tissues (Supplementary Figure 5A). GRMZM2G114789 was expressed

at various stages in root, leaf, internode, seed, and embryo-associated

tissues, with higher expression values in root and embryo-related

tissues (Supplementary Figure 6A). Therefore, we supposed that the

candidate genes GRMZM2G064159, GRMZM2G146192, and

GRMZM2G114789 around QEIs may have gene-by-environment

interactions for yield-related traits in maize, although new

experiments such as functional validation are necessary to explore

these novel GEI-trait associations. Although the results for known

genes suggested that genes around QTNs may reflect an influence of

environmental interactions (such as ereb60, ereb53, and bzip22,

Supplementary Figure 2B, C and Supplementary Table 3), whether

the candidate genes identified around QTNs in this study (Table 2)

have gene-by-environment interactions needs to be further explored.

In addition, for ASI, the dominance effect in HS situation was

positive and significant, ranging from -2.051% to 8.005%. In contrast,

the dominance effect in DS situation was relatively negative and

moderate, with a range mostly concentrated from -2.635% to 0.284%

(Table 1 and Supplementary Table 1). While on the other hand, the

overall PVE of QTNs and QEIs significantly associated with GY were

relatively low, largely clustered at 0.01% to 0.56% (Supplementary

Tables 1 and 2). These findings suggested that trait GY and secondary

trait ASI under abiotic stress would be regulated by small effect QTNs

or QEIs that are dispersed across the genome in maize. This also

suggested that it is relatively difficult to use marker-assisted selection

to improve maize yield due to the complexity of traits under multiple

environments. And in real data application, introducing secondary

yield-related traits to assist maize breeding might be a good choice,

which is also consistent with the findings in Bolaños and

Edmeades (1996).
Methods comparison

We also performed a single-environment analysis in the DTMA

panel using the IIIVmrMLM package. The PVE of QTNs for ASI

under each environment ranged from 50.25% to 58.04%

(Supplementary Table 6), while the total PVE of QEIs for ASI in

the multi-environment joint analysis was as high as 71.214% (Table 1

and Supplementary Table 1). Moreover, 102 QTNs and 221 genes for

ASI were detected in the single-environment approach, of which 5

QTNs overlapped with QEIs in the multi-environment joint analysis,

and 11 genes overlapped (Supplementary Tables 3 and 6), of which
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one known gene drg5 (GRMZM2G135877) was confirmed to be

dark response gene in the previous literature (Dong et al., 2020).

There were few overlapped loci detected in single- and multi-

environment analyses, further illustrating that the yield-related traits

in maize are complex and relatively susceptible to environmental

influences. The more detailed results were listed in Supplementary

Table 6. To address this issue, it is necessary to optimize the

“SearchRadius” parameter.

Under the framework multiple-locus association studies, a few

multi-year and multi-location GWAS methods are applicable for

high-dimensional data analysis, and the DTMA panel with 332,641

SNPs has been seldom applied to reveal QEIs. Compared to the

above single-environment analysis in 3VmrMLM, the significant loci

overlapped fewer. We also compared 3VmrMLM with ICIM method

(Li et al., 2015). Firstly, to reduce the computational burden, we used

Levene's test (Brown and Forsythe, 1974) in R and set the threshold to

0.05 to downscale the DTMA dataset. That is because the ICIM

method is very slow in handling high-dimensional dataset and

Levene's test can be used to detect potential loci for heterogeneity of

variances due to potentially interacting SNPs such as QTN-by-

environment interactions. 58,000~71,000 significant markers for

each trait were identified by Levene's test. Then, the linkage map

was converted according to the ratio of genetic distance to physical

distance of 1.296 cM/Mb (Guo et al., 2015). Finally, we performed a

multi-environment joint analysis for the above data using the QTL

IciMapping 4.2 software (Meng et al., 2015). A comparison was listed

in Supplementary Table 7. The threshold was set to LOD (A) > 3 for

additive QTLs and LOD (A by E) > 3 for additive QTLs by

environment interactions in ICIM approach. 3vmrMLM detected

more QTNs or QEIs than additive QTLs or additive QTLs by

environment interactions. In particular, for ASI, 3VmrMLM

detected 37 QEIs (PVE = 71.214%), but ICIM detected only 6

additive QTLs by environment interactions (PVE = 9.34%).

3VmrMLM added the polygenic effect and population structure to

control the genetic background, thus it might be relatively close to the

true genetic models of plants and animals. In addition, the computing

time for GY, AD, and ASI ranged from 1~2 days, while 3VmrMLM

consumed less than 7 hours for each trait, which took about one

fourth of ICIM’s. 3VmrMLM reduces the dimensionality of SNPs by

single-locus method, and constructs the multi-locus model based on

the remaining markers, which decreases computational volume and

computational complexity. In summary, 3VmrMLM presents well-

performance results with higher statistical power, lower false positive

rate and high computational efficiency, and it is a recommended

method in multi-environment joint analysis.
Conclusion

In this study, we identified QTN-by-environment interactions for

three yield-related traits in maize under four abiotic stresses using the

newly proposed 3VmrMLMmethod. A total of 73 QEIs and 76 QTNs

were identified. Moreover, 34 known genes and 24 candidate genes

were identified in the vicinity of QEIs and QTNs. Among 34 known

genes, ereb53 (GRMZM2G141638) & thx12 (GRMZM2G016649), and

hsftf27 (GRMZM2G025685) & myb60 (GRMZM2G312419) were

confirmed to play important roles in drought and heat stresses,
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respectively, by transcriptome and bioinformatics analysis in previous

maize studies. Among 24 candidate genes, 13 genes around QEIs and

13 genes around QTNs were validated functioning in drought and

heat stresses by homologous genes miming, differential expression,

functional enrichment, tissue-specific expression, and haplotype and

phenotypic difference analysis in this study. Importantly,

GRMZM2G064159, GRMZM2G146192, and GRMZM2G114789

around QEIs may have gene-by-environment interactions for yield.

These findings will facilitate the mining of genes involved in maize

breeding under the abiotic stresses.
Data availability statement

The original contributions presented in the study are included in

the article/Supplementary Material. Further inquiries can be directed

to the corresponding author.
Author contributions

JZ conceived the study. JZ, Y-JW, and XW designed the

experiment. XW, SW, and LH performed data analyses under the

assistance or guidance from JZ and Y-JW. BS and YW contributed

resources. Y-JW and XW wrote the manuscript with the participation

of all authors. All authors contributed to the article and approved the

submitted version.
Funding

The work was supported by the National Natural Science Foundation

of China (32270694, 32070688, and 31701071), the Postdoctoral Science

Foundation of Jiangsu (2020Z330), and the Fundamental Research

Funds for the Central Universities (JCQY202108).
Acknowledgments

We would like to thank the editor and reviewers for their

suggestions for improving the framework and language within

this manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 14186
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1050313/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Pearson correlation coefficients and test for three yield-related traits under four
environments in the DTMA panel. (Upper right) Pearson correlation coefficients,

when the color is darker, the association is stronger; (Lower left) Pearson
correlation test, the number of stars represents the different significance level

(*: 0.05; **: 0.01; ***: 0.001). NS indicates non-significant.

SUPPLEMENTARY FIGURE 2

Manhattan plots using 3VmrMLM for QTNs on three yield-related traits (A) GY,
(B) AD and (C) ASI under four environments. Y-axis on the left side represents

-log10 (P-values) of QTNs, which are obtained from single-marker genome-
wide scanning for all markers, while y-axis on the right-side represents LOD

scores, which are obtained from likelihood ratio test for QTNs, with the
threshold of LOD = 3.0 (dashed line). These LOD scores are shown in points

with straight lines. Highlighted text is the corresponding known gene of the loci.

SUPPLEMENTARY FIGURE 3

Hierarchical tree graph of overrepresented GO terms in biological process
category generated by singular enrichment analysis. Boxes in the graph

represent GO terms labeled by their GO ID, term definition and statistical
information. The significant (P-value < 0.05) and non-significant terms are

marked with color and white boxes, respectively. The diagram, the degree of

color saturation of a box is positively correlated to the enrichment level of the
term. Solid, dashed, and dotted lines represent two, one, and zero enriched

terms at both ends connected by the line, respectively.

SUPPLEMENTARY FIGURE 4

Expression map of GO for the 37 genes.

SUPPLEMENTARY FIGURE 5

(A) Tissue-specific expression profile, (C) Linkage disequilibrium, and haplotype

block with 6 SNPs inside for the candidate gene GRMZM2G146192. (C)
Comparison of trait GY among haplotypes I (GTCTCC), II (CTTGGC), III

(CTCTCC), and IV (CACTCT). The number of stars represents the result of t
test at different significance levels (*: 0.05; **: 0.01; ***: 0.001).

SUPPLEMENTARY FIGURE 6

(A) Tissue-specific expression profile, (B) Linkage disequilibrium, and haplotype
block with 13 SNPs inside for the candidate gene GRMZM2G114789.. (C)
Comparison of trait AD among haplotypes I (CCGGCCCAACACT), II

(CCGGCCCAAGGCT), III (CCGGCCCAAGGTT), IV (TCGGCCCAACACT), V
(TCGGCCCAAGGCT), VI (TCGGCCCAAGGTT), and VII (TCGGCTTCAGGTT).

The number of stars represents the result of t test at different significance
levels (*: 0.05; **: 0.01; ***: 0.001).
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Identification of QTLs and their
candidate genes for the number
of maize tassel branches in F2
from two higher generation
sister lines using QTL mapping
and RNA-seq analysis

Sun Ruidong, He Shijin, Qi Yuwei, Li Yimeng, Zhou Xiaohang,
Liu Ying, Liu Xihang, Ding Mingyang, Lv Xiangling*

and Li Fenghai*

Special Corn Institute, Shenyang Agricultural University, Shenyang, China
Tassel branch number is an important agronomic trait that is closely associated

with maize kernels and yield. The regulation of genes associated with tassel

branch development can provide a theoretical basis for analyzing tassel branch

growth and improving maize yield. In this study. we used two high-generation

sister maize lines, PCU (unbranched) and PCM (multiple-branched), to construct

an F2 population comprising 190 individuals, which were genotyped andmapped

using the Maize6H-60K single-nucleotide polymorphism array. Candidate genes

associated with tassel development were subsequently identified by analyzing

samples collected at three stages of tassel growth via RNA-seq. A total of 13

quantitative trait loci (QTLs) and 22 quantitative trait nucleotides (QTNs)

associated with tassel branch number (TBN) were identified, among which,

two major QTLs, qTBN6.06-1 and qTBN6.06-2, on chromosome 6 were

identified in two progeny populations, accounting for 15.07% to 37.64% of the

phenotypic variation. Moreover, we identified 613 genes that were differentially

expressed between PCU and PCM, which, according to Kyoto Encyclopedia of

Genes and Genomes enrichment analysis, were enriched in amino acid

metabolism and plant signal transduction pathways. Additionally, we

established that the phytohormone content of Stage I tassels and the levels of

indole-3-acetic acid (IAA) and IAA-glucose were higher in PCU than in PCM

plants, whereas contrastingly, the levels of 5-deoxymonopolyl alcohol in PCM

were higher than those in PCU. On the basis of these findings, we speculate that

differences in TBN may be related to hormone content. Collectively, by

combining QTL mapping and RNA-seq analysis, we identified five candidate

genes associated with TBN. This study provides theoretical insights into the

mechanism of tassel branch development in maize.
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frontiersin.org01189

https://www.frontiersin.org/articles/10.3389/fpls.2023.1202755/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1202755/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1202755/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1202755/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1202755/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1202755/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1202755&domain=pdf&date_stamp=2023-08-13
mailto:524376731@qq.com
mailto:lvxiangling521@syau.edu.cn
https://doi.org/10.3389/fpls.2023.1202755
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1202755
https://www.frontiersin.org/journals/plant-science


Ruidong et al. 10.3389/fpls.2023.1202755
1 Introduction

As one of the most important food crops worldwide, maize is

widely used in industry, agriculture, and animal husbandry (Huang

et al., 2022). Indeed, in recent decades, the demand for maize has

steadily increased to meet the needs of a rapidly expanding global

population and economy. As such, breeding maize varieties with

optimal agronomic traits is a key objective to achieve the desired

increases in yield (Wang et al., 2018). In this regard, the tassel of

maize, which was domesticated from the wild ancestor teosinte, is

considered an important agronomic trait (Doebley et al., 1990;

Matsuoka et al., 2002; Wei et al., 2018). During growth, the ear and

tassel develop simultaneously and compete for nutrients when the

overall nutrient uptake of maize remains unchanged (Lambert and

Johnson, 1978; Brown et al., 2011). However, appropriately

reducing the tassel volume and branch number can contribute to

yield increases (Brewbaker, 2015). Compared with wild-type maize,

yield increases of between 5% and 19% can be obtained by using

artificially emasculated strains (Hunter et al., 1969; Lambert and

Johnson, 1978). Given that reducing the TBN can increase the light

transmittance and photosynthetic efficiency of the upper leaves

(Duncan et al., 1967; Xu et al., 2017), breeders are more inclined to

select for smaller tassels, with the aim of promoting increases in

yield (Gao et al., 2007). However, a larger number of tassel branches

can ensure sufficient pollen production, which in turn contributes

to adequate seed quantity.

TBN is a complex quantitative trait controlled by multiple

genes. Previous studies have analyzed the genetics of maize tassels

by constructing numerous genetic populations with germplasm

materials from different backgrounds. For example, an F2
population comprising 6,872 individuals was constructed using

the LX1 and LX2 lines for QTL mapping, resulting in the

identification of Ub4, a potential candidate gene located on

chromosome 6 (Li et al., 2019). Moreover, SICAU1212 and the

maize-inbred lines 3237 and B73 were used to construct BC1S1, the

subsequent analysis of which revealed 21 QTLs associated with

TBN on chromosomes 2, 3, 5, and 7 (Chen et al., 2017). However,

the establishment of high-density genetic maps of single-nucleotide

polymorphism (SNP) markers and genome-wide association study

(GWAS) analysis of natural populations provide powerful tools for

the fine mapping and analysis of quantitative traits. For instance,

Qin employed Mo17 as a test inbred line to conduct whole-genome

association analysis and identified the tassel branch-related gene

QDtbn1 (Qin et al., 2021). Using a similar strategy, Wu identified 63

QTLs distributed on 10 chromosomes, primarily concentrated on

chromosomes 1, 2, and 7, that are associated with tassel branches

(Wu et al., 2016). Moreover, several SNPs associated with tassel

branching have been obtained based on the GWAS analysis of 513

inbred lines using a nonparametric model (Yang et al., 2014).

However, most of the QTLs identified to date have been found to

have small effect values or are readily affected by environmental

factors , and consequent ly have not been appl ied in

breeding practices.

With the rapid development of molecular biotechnology and

bioinformatics, various key genes associated with tassel branch

development have been identified, and their functions have been
Frontiers in Plant Science 02190
characterized. For example, ramosal1 (Ra1) and Ra2 are

transcription factors, whereas Ra3 encodes a trehalose 6-

phosphate phosphatase (TPP), and it has been established that

Ra2 and Ra3 promote the expression of Ra1. Moreover, it has been

observed that ra1, ra2, and ra3 are associated with an increased

TBN phenotype (Vollbrecht et al., 2005; Bortiri et al., 2006; Satoh-

Nagasawa et al., 2006; Claeys et al., 2019). Genes from different

transcription factor families are also involved in the regulation of

TBN, notable among which is barren stalk 1 (Ba1), which encodes a

basic helix-loop-helix (bHLH) transcription factor that influences

TBN by regulating meristem transformation processes (Gallavotti

et al., 2004). The ethylene response factor (ERF) family encoding

the APETALA2 (AP2) transcription factor indeterminate spikelet 1

(Ids1) and sister of indeterminate spikelet 1 (Sid1) has also been

demonstrated to regulate tassel development (Chuck et al., 1998;

Chuck et al., 2008). Furthermore, three genes, namely, tassel sheath

4 (Tsh4), unbranched 2 (Ub2), and Ub3, belonging to the squamosa

promoter binding-box transcription factor family, have been found

to contribute to TBN regulation. Notably, these three genes are

characterized by functional redundance, with single, double, and

triple mutant plants showing marked reductions in TBN and an

increase in the number of rows of spikes (Chuck et al., 2014). In

addition, mutants of the gene liguleless 2 (Lg2), which regulates leaf

angle, can also be characterized by lower TBNs (Walsh et al., 1998;

Walsh and Freeling, 1999).

TBN development is also regulated by different plant hormones,

including auxins, cytokinins (CKs), and strigolactones (SLs) (Isbell

and Morgan, 1982; Ongaro and Leyser, 2008; Umehara et al., 2008;

McSteen, 2009). Among these, auxins are synthesized in the shoot

apical meristem (SAM) and transported downward by polar auxin

transport, thereby inhibiting branch formation and inducing apical

dominance. Contrastingly, CKs are synthesized in roots and stems

and promote the synthesis of auxins and, thus, the development of

collateral branches (Mueller and Leyser, 2011). CKs also regulate

apical meristem size, whereas a loss of function of the lonely guy

(Log) and wuschel (Wus) genes influences CK synthesis and

transport, leading to early SAM termination, and modification of

TBN development (Ongaro and Leyser, 2008; Umehara et al., 2008).

As carotenoid-derived plant hormones, SLs are also involved in the

regulation of branching. For instance, transgenic corn plants

overexpressing maize Dwarf 53 (ZmD53) are characterized by

excessive tillering and reduced TBN, whereas ZmD53 interacts

with the SL receptor ZmD14A/B in a rac-Gr24-dependent manner

(Liu et al., 2021). In this way, SLs influence auxin transport by

regulating auxin export carrier proteins, thereby leading to altered

TBN (Ongaro and Leyser, 2008; Durbak et al., 2012).

To gain further insights into the genetic regulation of maize

TBN, in this study, we employed the Maize6H-60K gene array to

produce a high-density genetic linkage map of the F2 population

generated using two sister lines, namely the unbranched inbred line,

PCU, and multi-branched inbred line, PCM. Subsequently, the

genetic linkage map and two-year phenotypic data were used to

map QTLs associated with TBN. By analyzing the RNA-seq data, we

compared the changes in gene expression between the two parents

at different stages of tassel development. Furthermore, the results of

QTL mapping and RNA-seq analysis were combined to screen for
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candidate genes regulating TBN. Our findings in this study can be

used as a reference for verifying the function of genes associated

with TBN and provide a theoretical basis for genetic improvement

of the maize tassel branch trait and associated molecular breeding.
2 Materials and methods

2.1 Plant materials and construction of
mapping populations

The sister lines PCU and PCM were bred using the parents

Xianyu 335 and Zheng 58, in which PCU was the non-branching

material (TBN, 0) and PCMwas the multi-branched material (TBN,

5–8), both of which were provided by the Special Maize Research

Institute of Shenyang Agricultural University (Liaoning, China). A

total of 994 pairs of simple sequence repeat (SSR) markers and SNP

markers were used to assess PCU and PCM, which were established

to have a genetic similarity of 93.17%. Subsequently, a single F2
population comprising 190 plants was developed by crossing PCU

and PCM within the experimental field of Shenyang Agricultural

University (Shenyang, Liaoning, 41.48°N, 123.25°E). The F2:3
population was planted at the Southern Breeding Base of

Shenyang Agricultural University (Sanya, Hainan, 18.15°N,

109.30°E). The width and length of the single-row plot were 65

cm and 4 m, respectively, and the spacing between the plants was 20

cm, according to standard field management methods.
2.2 Determination and analysis of
phenotype data

After the maize tassels had matured, we investigated the TBN

phenotypes, with branches bearing more than one pair of small

flowers being considered effective branches. The average branching

number was used as the phenotype data for the F2:3 population. The

statistical parameters of TBN in the F2 and F2:3 populations were

calculated using SPSS software version 24.0. Pearson correlation

coefficients and phenotype frequency distribution maps were

visualized using the R package ggpubr performance analytics.
2.3 Genetic mapping and QTL and
QTN detection

The parent plants and 190 F2 individuals were genotyped using a

Maize6H-60K SNP array (Tian et al., 2021). Linkage analysis was

performed using QTL ICIMAPPING 4.2 software (Meng et al., 2015),

in which markers with no polymorphism between parents and a

deletion rate > 10% were removed. The TBN was assessed using the

inclusive composite interval mapping method (ICIM) in the software

QTL ICIMAPPING 4.2 (Meng et al., 2015), composite interval

mapping method (CIM) in the Windows QTL Cartographer 2.5

(Wang et al., 2012), and genome-wide composite interval mapping

(GCIM) (https://cran.r-project.org/web/packages/QTL.gCIMapping/

index.html) (Wen et al., 2019) and dQTG-seq2 (https://cran.r-
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project.org/web/packages/dQTG.seq/index.html) (Li et al., 2022).

QTLs were evaluated based on 1,000 permutation tests with a

significance level of 0.05 to determine the logarithm of the odds

(LOD) threshold and thereby identify QTLs. A slightly more

stringent criterion (P-value = 0.00316) was applied to denote

significant QTLs, which was converted from an LOD score of 2.50.

When adopting the dQTG-seq2method, we used the 20% plants with

the highest TBN as the high pool and the 20% of plants with the

lowest TBN as the low pool.
2.4 RNA isolation and RNA-seq

The tissues of PCU and PCM tassels collected at three different

stages of development, namely, the growth cone elongation stage

(Stage I), the early stage of tassel differentiation (Stage II), and the

later stage of tassel differentiation stage (Stage III), were immersed

in an RNA storage solution (Li et al., 2019). PCU and PCM had

similar tassel-branching stem tips during Stage I. However, it is

uncertain as to whether the lateral meristems differentiated into

tassel branches during Stage II. During Stage III, tassel branches at

the base of PCU and PCM could be clearly distinguished. RNA

extraction was performed using the TRIzol method (Rio

et al., 2010).

For each line at each stage, we obtained three duplicate biological

samples, and used the total 18 samples to construct a cDNA library.

Construction and sequencing of the library were performed by Beijing

Nohezhiyuan Bioinformation Technology Co., Ltd (Tianjin). Using an

Illumina Hiseq™4000 high-throughput sequencing platform to obtain

100-bp double-terminal sequence reads, and FastQC tools (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to

control the read quality. Low-quality reads were removed using

Trimmomotic 0.36 (Bolger et al., 2014). The reference genome

(AGPv4) was obtained from the maize database MaizeGDB (https://

maizegdb.org). To calibrate the FastQC output, gene expression levels

were normalized based on gene length and the number of reads, and

the number of transcription fragments per kilobyte/million mapping

reads (FPKM)was calculated. The DESeq software package was used to

identify those genes that were differentially expressed (DEGs) between

PCU and PCM (Anders and Huber, 2010).

Functional annotation and Gene Ontology (GO) analysis of

genes were performed using Blast2go 4.1 (Conesa et al., 2005).

whereas Kyoto Encyclopedia of Genes and Genomes (KEGG)

Orthology-based Annotation System KOBAS 2.0 software (http://

kobas.cbi.pku.edu.cn) was used to perform pathway enrichment

analysis. The P-value of each gene was adjusted using the Benjamini

and Hochberg method to control the false discovery rate. P-values <

0.05 and | log2FC | ≥ 1 were applied as thresholds to identify DEGs.

Venn diagrams are drawn by online sites. (https://

bioinfogp.cnb.csic.es/tools/venny/index.html)
2.5 qRT-PCR

RNA derived from tassels collected at the three stages (Stage I,

II, and III) was assessed via qRT-PCR, for which primers were
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designed using Primer BLAST (https://www.ncbi.nlm.nih.gov/

tools/primer-blast) (Table S8). All primers were synthesized and

supplied by Shenggong Biotech Co., Ltd. The housekeeping gene

Gapdh was used as the internal reference gene, the relative

expression levels of which were calculated using the 2-DDct method.
2.6 Determination of hormone content

Tassels collected at Stage I were exfoliated, flash frozen in liquid

nitrogen, and stored at -80°C. A standard plant hormone solution

was prepared using a 50% formaldehyde solution, and 10 mL of an

internal standard plant hormone solution was added to 50 mL of a

concentration gradient of standard plant hormone solutions.

Thereafter, 1 mL of methanol/water/formic acid mixture (15:4:1,

v/v/v) was added, followed by vortexing for 10 min (until

thoroughly mixed), and the resultant mixture was allowed to

stand for 12 h. The auxin, CK, ethylene (ETH), abscisic acid

(ABA), gibberellin (GA), and SL contents of the tassels were

determined by analyzing the resultant supernatant via liquid

chromatography in conjunction with tandem mass spectrometry

(LC-MS/MS).
2.7 Identification of candidate genes

Genes located in the vicinity of large loci with an R2 value >

10%, and which were stable across 2 years, were used for gene

annotation. Gene annotation information was obtained using

MaizeGDB (https://maizegdb.org) and Phytozome (http://

phytozome.jgi.doe.gov). Gene expression in PCU and PCM was

analyzed using RNA-seq data and applied to predict gene function

that might be associated with tassel branching in maize.
2.8 Cloning and sequence alignment
of Zm00001d038537

The candidate gene Zm00001d038537 was extracted from the

genomic DNA and cDNA of PCU and PCM. The primers used for

amplification are listed in Supplementary Table S8. DNA sequence

alignment was performed using SnapGene software (https://

www.snapgene.com/).
3 Results

3.1 Statistical differences in plant
architectural traits and phenotypic analysis
in sister lines

Architectural traits of plants of the sister lines PCU and PCM

were compared and analyzed. Apart from leaf length, leaf width, leaf

angle, and TBN, we detected no significant differences between the

two lines with respect to plant architecture (Table 1). Notably, over

the 2 years of the study, we detected a significant difference between
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the parent lines with respect to TBN, with PCM being characterized

by a larger number of tassel branches, whereas under certain

environmental conditions, PCU had no branches, thereby

indicating that these phenotypic traits of the parents are probably

stable (Table 2).

The TBN of the F2 population ranged from 0 to 11, with a

coefficient of variation of 99.65%, whereas in the F2:3 population, the

TBN ranged from 0 to 5.43, with a coefficient of variation of 76.92%.

In both offspring populations, the number of tassel branches was

maintained at an average of that of the two parents (Table 2).

Moreover, we detected a highly significant correlation between F2
and F2:3. The TBN of the two offspring groups was biased toward

PCU and exhibited a continuous distribution trend (Figure 1). In

addition, the skewness and kurtosis results revealed that both

populations conformed to the quantitative trait characteristics of

skewed normal distribution and polygene control (Table 2).

Accordingly, the two progeny populations were assumed to meet

the requirements for QTL mapping.
3.2 QTL and QTN identification and
effect calculations

The F2 population was genotyped using the Maize6H-60K SNP

array, which contains 61,214 SNP markers covering the entire

maize genome. A genetic linkage map was constructed by

screening high-quality genotype-independent SNP markers with

deletion rates < 10% between the two parents, from which we

obtained 4,136 SNP markers (Table S1). The linkage map covered a

distance of 2,095.02 cM, with an average distance of 0.51 cM

between markers. The number of SNP markers on each

chromosome ranged from 46 to 710, with a linkage distance

ranging from 37.22 to 410.78 cM (Table 3). As the two parents

are higher generation sister lines with high background similarity,

the SNP differences detected on chromosomes 4 and 9 were

small (Figure 2).

Combined with phenotype data of the two populations and the

F2 genetic linkage map, QTLs for the TBN of F2 and F2:3 were

identified using ICIM, CIM, and GCIM methods. Within the two

populations, we detected 13 QTLs associated with TBN on

chromosomes 3, 6, and 7, with LOD values ranging from 5.10 to

40.78 and accounting for 6.86% to 37.64% of the phenotypic

variation (Table 4; Figure S4). Excluding qTBN-3-4 and qTBN-3-

5, which exhibited a positive additive effect attributable to the PCM

allele, the other QTL sites showed negative additive effects

associated with the PCU allele. In addition, we identified 22 SNPs

significantly associated with TBN based on dQTG-seq2 mapping.

Compared with other methods, we identified new SNPs on

chromosomes 1, 2, 4, and 5 when using dQTG-seq2. The

upstream and downstream 50 kb of the significantly associated

SNPs were used as the intervals for predicting candidate genes

(Table 5; Figure S5) (Li et al., 2013).

On the basis of statistical analysis of QTLs and QTNs, we

identified two QTLs on chromosome 6 with R2 > 10%, namely,

qTBN6.06-1 (157846342–159598073 bp) and qTBN6.06-2

(159648428–159792909 bp) (Table 4). Moreover, we identified
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candidate genes in the two QTLs based on the physical location of

the SNP markers. qTBN6.06-1 and qTBN6.06-2 contained 73 and 14

genes, respectively (Table S2). In contrast to the findings of previous

studies, we failed to identify any TBN-related genes in qTBN6.06-1

and qTBN6.06-2. Hence, we used the online tool Web Gene

Ontology Annotation Plot (WEGO) 2.0 (Ye et al., 2018) to

annotate the candidate genes within the two QTL intervals. The

results revealed that binding (GO:0005488), metabolic process

(GO:0008152), and cellular process (GO:0009987) were the three

main GO entries for the 84 genes in the two QTLs (Figures S1; S2),

and consequently, we speculate that tassel development is

associated with these processes.
3.3 RNA-seq analysis

Despite our GO enrichment analysis of genes within the

localized intervals, differences in gene expression during tassel

development remained undetermined. Consequently, to identify

the genes responsible for tassel branch development, we compared

the DEGs (|Log2-fold change| ≥ 1 and P-value < 0.05) between PCU

and PCM at the three assessed developmental stages. We analyzed

DEGs common to Stages I, II, and III, among which, 317 and 292

genes were up- and downregulated, respectively (Figures 3A–D;

Table S3). GO enrichment analysis revealed a significant

enrichment of 118 biological processes (Table S4), which are
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primarily associated with the growth and development of tissues

or cells, including pollen tube growth, cell tip growth, amino acid

kinase activity, developmental cell growth, and the endoplasmic

reticulum lumen (Figure 4A). In addition, we identified enrichment

of several pathways associated with enzyme activity, including those

of endonuclease, endoribonuclease, mitogen-activated protein

(MAP) kinase, inositol-3-phosphate synthase, and glyceraldehyde-

3-phosphate dehydrogenase (NADP+) (phosphorylating).

Therefore, we speculate that the activities of different enzymes

also influence TBN.

KEGG enrichment analysis further revealed that DEGs were

enriched in glycine, serine, and threonine metabolism; taurine and

taurine metabolism; plant hormone signal transduction; ATP-

binding cassette (ABC) transporter superfamily (Figure 4B; Table

S6). In maize, BARREN INFLORESCENCE2 (Bif2) encodes a

serine/threonine protein kinase Bif2 phosphorylates ZmPIN1a,

Bif2 regulates auxin transport through direct regulation of

ZmPIN1a during maize inflorescence development (Skirpan et al.,

2009; Forestan et al., 2012). The main functions of ABCB protein in

ABC transporter family are auxin transport. In Arabidopsis thaliana

studies, it was found that ATABCB1, ATABCB6, ATABCB14,

ATABCB15 and ATABCB20 all participated in auxin transport in

inflorescence axis, which further affected the growth and

development of inflorescence axis (Okamoto et al., 2016). Thus,

the above pathways may be involved in TBN development. Among

these, 12 genes were enriched in plant hormone signaling pathways,
TABLE 1 Statistical difference of agronomic traits in sister lines.

Traits
PCU PCM

Mean SD a Mean SD a

Plant height(cm) 223.4 4.4 220.1 3.7

Ear height(cm) 88.4 2.1 85.7 2.4

Leaf angle(°) 31.2 3.0 67.7** 4.0

Leaf length(cm) 76.3 3.0 66.1** 3.0

Leaf width(cm) 10.9 0.4 8.6** 0.5

TBN 0.0 0.0 5.1** 1.2

Stem diameter(mm) 26.5 2.0 25.6 1.9

Ear length(cm) 15.7 1.1 15.4 0.9

Ear diameter(mm) 36.9 0.9 36.4 0.7

Ear rows 14.0 0.0 14.0 0.0

Hundred grain weight(g) 26.7 1.1 25.3 0.9
frontier
a SD, Standard Deviation. The asterisks (*or **) represent the significant differences at P < 0.05 or P< 0.01, respectively.
TABLE 2 Mean, extreme, Standard Deviation (SD), Coefficient of Variation (CV), Skewness and Kurtosis of the TBN in parents and F2, F2:3 populations.

Parents offspring of PCU×PCM

PCU a PCM a Min Max Mean SD b CV (%) c Skewness Kurtosis

F2 0 5.1 0 11 2.55 2.54 99.65 0.97 0.36

F2:3 0 4.9 0 5.43 1.71 1.32 76.92 0.52 -0.57
a Mean TBN of PCU and PCM calculated from 10 plants per parent in two rows. b SD, Standard Deviation; c Coefficient of Variation.
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FIGURE 1

Frequency distribution and correlation of TBN of F2 and F2:3, ***P<0.001. (A) The horizontal coordinate is TBN and the vertical coordinate is the
frequency. (B) The TBN distribution of the F2 population in the horizontal coordinate and the F2:3 population in the vertical coordinate. (C): The
horizontal coordinate is TBN and the vertical coordinate is the frequency.
TABLE 3 Total SNP numbers and linkage distances of chromosomes in F2 population.

Chromosome Number of SNPs Linkage Distance(cM) Average Distance between Markers(cM)

1 726 348.72 0.48

2 235 171.88 0.73

3 759 374.11 0.49

4 46 37.22 0.81

5 678 410.78 0.61

6 809 340.48 0.42

7 341 182.79 0.54

8 249 103.97 0.42

9 103 46.73 0.45

10 190 78.34 0.41

Total 4136 2095.02 0.51
F
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seven of which were associated with indole-3-acetic acid (IAA)

signaling. Other pathways were primarily associated with amino

acid anabolism. Accordingly, KEGG pathway analysis provided

evidence to indicate that tassel branch development might be

associated with hormone and energy metabolism (Figure 4C).

Simultaneously, we annotated the DEGs, on the basis of which

we retrieved 64 transcription factors, among which myeloblastosis

(MYB)-related genes (seven) were the most common, followed by

ERF (six), bHLH (five), and C2H2 (Cys2/His2-type; four) genes. In

addition, we also identified three auxin response factors (ARFs).

Interestingly, the expression of most MYB-related genes in PCU

was higher than that in PCM, whereas ERF transcription factor

expression was downregulated in PCM (Figure 4D; Table S7).

We also performed GO enrichment analysis for genes

differentially expressed in only one of the three assessed stages.

Those exclusively identified in Stage I were primarily enriched in

the regulation of nitrogen compound metabolic processes,

regulation of primary metabolic processes, and regulation of

nucleic acid-templated transcription, which are closely associated

with plant growth and development (Table S5). Moreover, certain

genes known to regulate tassel development in maize were analyzed

(Figure 4E), most of which were differentially expressed in Stage I,

with the variance fold change being greater than that in the other

two stages. On the basis of these findings, we assume that Stage I is

critical to the regulation of tassel development.
3.4 Determination of hormone content

Our KEGG results provided evidence to indicate that DEGs

were enriched in plant hormone signal transduction, and we

speculated that Stage I was the key stage responsible for the

observed differences between PCU and PCM with respect to

TBN. We thus used samples of Stage I PCU and PCM tassels to

quantify hormone content, which revealed that the content of IAA

in PCU was slightly higher than that in PCM, whereas the respective

contents of tryptamine (TRA) and tryptophan (TRY), two

important precursors in the auxin synthesis pathway, were

significantly higher in PCU. In addition, the content of IAA-glc,

an important form of stored IAA. was found to be 7.9-fold higher in
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PCU than in PCM, whereas in contrast, the content of 5-

deoxymonopolyl alcohol (5DS), the first active product of the SL

biosynthetic pathway, was found to be significantly higher in PCM

than in PCU. However, we detected no significant differences

between the lines with respect to the levels of ABA, trans-zeatin

(tZ), or 1-aminocyclopropanecarboxylic acid (ACC). On the basis

of these observations, we can speculate that differences in the tassel

branching phenotypes of the two parent lines are attributable, at

least in part, to differences in the contents of IAA and

5DS (Figure 5).
3.5 Predicting candidate genes

To screen for candidate genes, we selected 614 common DEGs

to cross-analyze the mapping interval. The interval qTBN6.06-1

comprised 73 protein-coding genes, 27 of which were negligibly

expressed during the three stages of tassel development, and 38

showed no s ign ificant d i ff e rences . Only two genes ,

Zm00001d038519 and Zm00001d038523, were differentially

expressed at all three stages. Of the 14 protein-encoding genes

present within qTBN6.06-2 , only Zm00001d038546 and

Zm00001d038552 were identified as being differentially expressed

during the three stages.

These four candidate genes were annotated using Phytozome

(h t tps : / /phy tozome-nex t . j g i . doe . gov / ) , u s ing which ,

Zm00001d038519 was predicted to contain a putative S-adenosyl-

L-methionine-dependent methyltransferase domain, which

regulates plant growth and development via methylation. We

thus inferred that Zm00001d038519 might have a similar

function. Zm00001d038546 was found to contain a Myb-like

DNA-binding domain and thus could be a member of the MYB

family of transcription factors that are primarily involved in

inflorescence development and the segregation of lateral organs.

However, using this approach, we were unable to predict structures

for Zm00001d038523 or Zm00001d038552. The four candidate

genes were verified via qRT-PCR analysis, and the results were

consistent with those obtained based on RNA-seq (Figure 6).

In addition, our annotation of genes in the qTBN6.06-1 interval

revealed a gene encoding the F-box structural domain
FIGURE 2

Genetic map of F2 population. The upper ruler shows the distance between SNP markers in centimorgans (cM), the color shades of the left ruler
represent the density of SNP markers on each linkage group.
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Zm00001d038537. Members of the F-box family of proteins can

play roles in forming Skp1-Cullin-F-Box (SCF) structural

complexes that ubiquitinate specific proteins and thereby promote

their degradation, which is similar to processes that can also occur

in the IAA metabolic pathway. The KEGG enrichment results
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provided evidence to indicate that phytohormone signaling,

particularly IAA signaling, might contribute to the observed

differences in TBN, as well as differences in the IAA content of

parent tassels. Although Zm00001d038537 was not differentially

expressed in the parents, we inferred that Zm00001d038537 might
TABLE 4 Analysis of TBN-related QTLs in offspring population from PCU×PCM.

QTL a Chromosome Mapping interval/
bp b Position LOD

c
Additive
effect

Dominant
effect

R2(%)
d Generation Method

qTBN-
3-1

3 179394655-179625328 96 6.59 -0.96 0.05 9.25 F2 ICIM

3 179392238-179900293 96 6.40 -0.95 0.09 6.98 F2 GCIM

qTBN-
3-2

3 134150716-178936874 98 6.37 -1.24 0.10 7.84 F2 CIM

qTBN-
3-3

3 182413848-182508246 48 6.80 -0.40 0.15 6.80 F2:3 ICIM

qTBN-
3-4

3 2019660-2050620 333 8.35 0.03 0.62 8.34 F2:3 ICIM

qTBN-
3-5

3 1473821-1548536 353 5.39 0.09 -0.49 5.39 F2:3 ICIM

qTBN-
6-1

6 157846342-159598073 235.9 38.89 -1.47 -0.23 37.64 F2:3 CIM

6 157846342-159598073 237 40.78 -1.27 -0.08 40.77 F2:3 ICIM

6 159231856-159316218 240 20.83 -1.91 -0.30 34.63 F2 ICIM

6 159231856-159316218 240 15.46 -1.88 -0.27 27.63 F2 GCIM

6 159116395-159231856 242.5 33.35 -1.27 -0.05 34.81 F2:3 CIM

6 159141240-159355691 243.8 15.62 -1.87 -0.27 15.07 F2 CIM

6 159355691-159538438 244.8 4.62 -0.64 -0.68 18.40 F2:3 GCIM

qTBN-
6-2

6 159648428-159792909 246.5 33.84 -1.36 0.00 37.02 F2:3 CIM

qTBN-
6-3

6 160665895-160691260 253 5.04 -0.93 -0.82 34.54 F2:3 GCIM

qTBN-
6-4

6 160691260-160895678 254.7 11.03 -1.80 -0.38 9.39 F2 CIM

6 160691260-160895678 254.7 28.63 -1.38 -0.13 28.94 F2:3 CIM

qTBN-
6-5

6 168094283-168363228 307 4.77 -0.80 -0.43 4.61 F2 GCIM

6 168200733-168363228 318 5.10 -0.77 -0.35 6.86 F2 ICIM

6 169161160-169372663 319 6.52 -0.37 0.00 6.52 F2:3 ICIM

qTBN-
7-1

7 127691371-128260837 149 5.39 -0.77 -0.37 7.34 F2 ICIM

7 127691371-128260837 149 4.77 -0.72 -0.40 4.61 F2 GCIM

qTBN-
7-2

7 123889115-125102662 145 5.42 -0.32 0.02 5.42 F2:3 ICIM

qTBN-
7-3

7 128260837-172487130 111.8 5.50 -0.47 -0.15 4.63 F2:3 CIM

7 125921578-127728775 128.6 5.38 -0.37 0.03 4.36 F2:3 CIM
fro
aQTL detected in different methods and generations at the same, adjacent, or overlapping marker intervals was considered as the same QTL. bPhysical position of the 95% confidence interval for
the detected QTL. cLOD (Logarithm of odds) value at the peak likelihood of the QTL. dPhenotypic variance (R2) explained by the detected QTL.
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be a candidate gene responsible for TBN differences. Cloning and

sequencing of this gene in both parents revealed three SNPs, the

first and third of which encoded different amino acids (Figure 7),

resulting in different encoded proteins. These differences were

found to influence IAA signaling and led to differences in the

number of male spike branches. Consequently, Zm00001d038537

was included as a candidate gene.
4 Discussion

In this study, in which we sought to gain insights into the

genetic regulation of tassel development in maize, we used the

unbranched parent PCU and multi-branched parent PCM, two

high-generation sister lines with high background similarity, to

construct a genetic linkage map with a small distribution of markers

on a single chromosome. PCU was characterized by an absence of

tassel branching under different environmental conditions, thereby

indicating that the branching trait in this line is not subjected to
Frontiers in Plant Science 09197
environmental control. However, on the basis of our field

observations and analysis of natural seed setting rates, we

identified no significant differences between the PCU and

PCM lines.

Thirteen QTLs were identified on chromosomes 3, 6, and 7.

Maize chromosomes 3 and 7 are known hotspots for QTL

localization, containing genes associated with tassel development,

including Lg2, nana plant 1 (Na1), Ba1, Sid1, Tsh4, and Ra3 (Walsh

and Freeling, 1999; Satoh-Nagasawa et al., 2006; Chuck et al., 2007;

Chuck et al., 2008; Gallavotti et al., 2008; Hartwig et al., 2011;

Phillips et al., 2011). Previously, Chen et al. (2014) constructed an

F2 population comprising 708 individual strains and detected seven

TBN-related QTLs, among which the location results obtained for

chromosome 3 coincided with qTBN-3-3. Moreover, Wang

performed similar analyses on the progeny of natural and

doubled-haploid populations, and accordingly identified 12 loci

(distributed on chromosomes 1, 2, 3, 4, 6, and 7) consistent with

multiple environments. Among these, the QTLs located on

chromosome 3 overlap with the those observed in the current
TABLE 5 Significant QTNs for TBN in F2 and F2:3 using dQTG-seq2 method.

Generation Maker Chromosome Position Mapping interval/bp Gw a Smooth_Gw b

F2 AX-108052314 1 227992408 227942408-228042408 6.91 7.78

AX-108019986 3 178936874 178886874-178986874 7.52 8.43

AX-107939474 3 180214656 180164656-180264656 10.77 10.31

AX-86317565 6 159792909 159742909-159752909 102.67 102.02

AX-91021926 6 172603449 172553449-172653449 17.68 18.41

F2:3 AX-247233306 2 223266472 223176472-223276472 9.03 9.81

AX-107941057 3 110309750 110259750-110359750 8.41 8.85

AX-108009558 3 117879603 117829603-117929603 8.84 8.68

AX-108061753 3 130582492 130532492-130632492 10.67 9.7

AX-90827906 3 132093889 132043889-132143889 9.84 9.73

AX-108019986 3 178936874 178886874-178986874 11.11 17.48

AX-247236770 4 824775 774775-874775 10.9 10.65

AX-107945551 4 3672068 3622068-3722068 8.29 9.15

AX-178079230 5 7392849 7342849-7352849 10.66 9.24

AX-107981631 5 212584879 212534879-212634879 9.47 12.15

AX-107989634 5 222130069 222080069-222180069 10.13 10.07

AX-108011870 6 150255513 150205513-150305513 27.67 26.13

AX-91016539 6 153616434 153566434-153666434 16.88 14.1

AX-86317565 6 159792909 159742909-159752909 62.31 64.83

AX-86294633 6 163542081 163492089-163592089 59.83 58.99

AX-86301494 6 166848539 166798539-166898539 24.81 24.47

AX-91021926 6 172603449 172553449-172653449 17.57 18.92
a Gw: The value of statistic Gw calculated by the dQTGseq2 method. b Smooth_Gw: smooth Gw value of one marker via the window size method.
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study. Moreover, our transcription data also revealed notable

differences in the predicted candidate gene Zm00001d042794

(Wang et al., 2019). Therefore, we identified a new QTL (qTBN-

3-1) on chromosome 6, which coincides with Lg2, a gene that has

been established to control leaf angle and TBN in maize. In

addition, qTBN-7-3 was found to harbor Tsh4 (which is

associated with tassel development) and Ra3 (which is known to

regulate the number of tassel branches), which coincide respectively

with the qBTBN7-1 and qXTBN7-1 loci mapped by Wang

et al., 2018.

In this study, the QTL identified on chromosome 6 accounted

for 9.39% to 40.77% of the phenotypic variation and was detected in

different environments. Similarly, previous studies have identified

14 TBN-related loci on chromosome 6, classified into seven groups

on the basis of their physical locations (Li et al., 2019). However,

these loci contributed to less than 10% of the observed phenotypic

differences and did not coincide with the results of the present

study. Furthermore, although the QTLs localized in the present

study overlap with those reported by Yi et al. (2018), the

distribution range detected by Yi et al. was relatively large,

making it difficult to directly compare the respective QTLs.

Auxin is an important hormone involved in plant growth and

development and is one of several hormones known to influence

tassel branching in plants. Vt2 (vanishing tassel 2) (Phillips et al.,

2011) and Spi1 (sparse inflorescence 1) (Gallavotti et al., 2008) have
Frontiers in Plant Science 10198
been identified as genes involved in auxin synthesis, the mutation of

which has been found to coincide with a reduction in maize TBN,

thereby providing evidence to indicate that these genes are involved

in the initiation and growth of the axillary meristem during maize

tassel development. In the present study, we combined our

hormone determination results with the findings of KEGG

pathway enrichment analysis to elucidate the regulatory pathways

from hormones to response genes (Figure 5; Table S3). Auxin

synthesis pathways can be divided into two main categories,

namely, tryptophan (TRP)-dependent and TRP-independent

(Mano and Nemoto, 2012), and the pathways involved in IAA

metabolism primarily include IAA oxidation and methylation,

resulting in the formation of conjugates with polysaccharides and

amino acids (Zhao, 2012). In this study, we assessed the auxin

synthesis pathway by synthesizing IAA via TAM, which entailed

analyses of the contents of TRP, TAM, IAA, IAA-Glu, IAA-glc,

IAA-ASP, MeIAA, and oxIAA. By mapping the auxin anabolic and

gene response pathways based on KEGG results, we found that the

contents of TRP and TAM in the PCU line were significantly higher

than those in the PCM line, whereas IAA contents in the two lines

was relatively similar, with only slightly higher levels being detected

in PCU. Among the assessed IAA metabolites, only the content of

IAA-glc was markedly higher in PCU than in PCM. On the basis of

these observations, we thus infer that whereas larger amounts of

IAA are synthesized in PCU, a large proportion is stored in the form
B

C D

A

FIGURE 3

Numbers of PCU and PCM differentially expressed genes in Stage I, II and III. (A) Comparison of the number of differentially expressed genes in
different stages and between different parents. (B) Number of co-differentially expressed genes in Stage I, Stage II, and Stage III. (C) The number of
genes is co-upregulated in three stages. (D) The number of genes is co-downregulated in three stages.
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of IAA-glc, and thus the levels of IAA detected in the two the

parental lines tend to be similar (Figure 8).

Auxin signal transduction is regulated by multiple genes, and

IAA enters the cell nucleus through the amino acid permease input

carrier protein (auxin resistant-like aux1, AUX/LAX) (Swarup and

Péret, 2012). In response to low IAA concentrations, auxin/indole-

acetic acid genes (AUX/IAA) form a heterodimer with ARFs

(Enders and Strader, 2015), thereby inhibiting the expression of

downstream genes. Conversely, when present at high

concentrations, IAA combines with transport inhibitor resistant

1/auxin signaling F-box (TIR1/AFB) and AUX/IAA. TIR1/AFB

participates in the formation of SCF E3 ubiquitin ligase

(Fendrych et al., 2018), resulting in the polyubiquitination of

AUX/IAA, subsequent degradation via 26S proteasome, and the

release of ARF inhibition. This also promotes or inhibits the

expression of downstream IAA response genes [AUX/IAA, Gh3,

and SAUR (small auxin upregulated RNA)]. We speculate that the

slightly higher levels of IAA detected in PCU may have resulted in
Frontiers in Plant Science 11199
the degradation of AUX/IAA, and a correspondingly enhanced

expression of ARFs, AUX/IAA, and SAUR, thus regulating tassel

development and branching. Furthermore, given that we detect no

significant difference in the expression of the IAA polar transport

gene peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1)

between the two parental lines, it is reasonable to assume that the

regulation of tassel branching is unrelated to the polar transport of

auxin (Figure 8).

Tassel development and branching are assumed to be regulated

by multiple hormones. In this regard, CK can alleviate apical

dominance and promote lateral branch growth (Bangerth, 1994;

Turnbull et al., 1997; Tanaka et al., 2006; Hoyerova and Hosek,

2020). However, CK activity is often regulated by auxin, which in

turn promotes the growth of lateral buds by promoting the polar

transport of IAA in stems and upregulating IAA synthesis in buds.

Furthermore. it has been demonstrated that ARF19 can inhibit the

expression of isopentenyl transferases (IPTs) and control the

synthesis of CTK (Li et al., 2006). Although in the present study,
B

C D

A

E

FIGURE 4

GO and KEGG analysis and changes in the expression levels of differentially expressed genes (DEGs). (A) GO enrichment analysis was executed with
DEGs identified between PCU and PCM. The ordinate and abscissa represent the main biological process GO terms and -Log10(P-value),
respectively. (B) KEGG enrichment analysis was executed with DEGs identified between PCU and PCM. The ordinate and abscissa represent the
major KEGG biological pathways and rich factor, the size of the dots represents the number of genes enriched, respectively. (C) Expression levels of
plant hormone signal transduction pathway-related genes. (D) Gene expression levels of different transcription factor families. (E) The expression
levels of genes related to tassel development are known. The value is the log2 fold-change (log2(FC)) of each gene. The colors of the boxes
represent upregulated (red) and downregulated (blue) genes.
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we detected the upregulated expression of certain ARFs, we

observed no significant differences in IPT gene expression or tZ

content in the sister lines studied. Moreover, whereas we recorded

high levels of N6-isopentenyl-adenine-9-glucoside (iP9G) content

in PCM, this compound was not detected in PCU, and we

accordingly speculate that iP9G could be involved in the

regulation of TBN (Figure S3).
5 Conclusion

In this study, we used the sister maize lines PCU and PCM,

characterized by significant differences in tassel branch number, as

parents to produce an F2 population, and applied a genetic
Frontiers in Plant Science 12200
microarray to genotype the parents and F2 population, and to

construct an associated genetic linkage map. On the basis of

phenotypic and genotypic data, we identified two major QTLs,

qTBN6.06-1 and qTBN6.06-2, on chromosome 6. RNA-seq analysis

of material collected at three stages of tassel development revealed

that DEGs were enriched in amino acid metabolism and

phytohormone signaling. Additionally, we established that levels

of IAA, IAA-glc, TRP, and TAM were higher in PCU than in PCM,

whereas in contrast, PCM was characterized by higher levels of 5DS.

By combining our localization results and transcriptome data, we

able to identify five candidate genes that putatively contribute to the

regulation of tassel branching. Our findings in this study provide a

theoretical basis that will potentially contribute to improving tassel

traits in maize breeding.
FIGURE 5

Different phytohormone contents of PCU and PCM in Stage I. The asterisks (*or **) represent the significant differences at P < 0.05 or P < 0.01,
respectively.
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FIGURE 6

Relative expression levels of four candidate genes at three stages analyzed via qRT-PCR. The asterisks (*or **) represent the significant differences at
P < 0.05 or P < 0.01, respectively.
FIGURE 7

The structure of the Zm00001d038537 between PCU and PCM. Red letters indicate SNP. The direction of the arrow represents the direction of transcription.
FIGURE 8

Auxin anabolism and signal regulation pathway. The red box indicates that the gene expression level of PCU is higher than that of PCM, and the red
oval indicates that the hormone content of PCU is higher than that of PCM. Purple stands for key enzymes in anabolism.
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Swarup, R., and Péret, B. (2012). AUX/LAX family of auxin influx carriers-an
overview. Front. Plant Sci. 3. doi: 10.3389/fpls.2012.00225

Tanaka, M., Takei, K., Kojima, M., Sakakibara, H., and Mori, H. (2006). Auxin
controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45
(6), 1028–1036. doi: 10.1111/j.1365-313X.2006.02656.x

Tian, H., Yang, Y., Yi, H., Xu, L., He, H., Fan, Y., et al. (2021). New resources for
genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide
polymorphism array and its application. Plant J. 105 (4), 1113–1122. doi: 10.1111/
tpj.15089

Turnbull, C. G. N., Raymond, M. A. A., Dodd, I. C., and Morris, S. E. (1997). Rapid
increases in cytokinin concentration in lateral buds of chickpea (Cicer arietinum L.)
during release of apical dominance. Planta 202 (3), 271–276. doi: 10.1007/
s004250050128

Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N.,
et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature
455 (7270), 195–U129. doi: 10.1038/nature07272

Vollbrecht, E., Springer, P. S., Goh, L., Buckler, E. S. T., and Martienssen, R. (2005).
Architecture of floral branch systems in maize and related grasses. Nature 436 (7054),
1119–1126. doi: 10.1038/nature03892

Walsh, J., and Freeling, M. (1999). The liguleless2 gene of maize functions during the
transition from the vegetative to the reproductive shoot apex. Plant J. Cell Mol. Biol. 19
(4), 489–495. doi: 10.1046/j.1365-313X.1999.00541.x

Walsh, J., Waters, C. A., and Freeling, M. (1998). The maize gene liguleless2 encodes
a basic leucine zipper protein involved in the establishment of the leaf blade-sheath
boundary. Genes Dev. 12 (2), 208–218. doi: 10.1101/gad.12.2.208

Wang, S., Basten, C., and Zeng, Z. (2012). Windows QTL Cartographer 2.5 (Raleigh,
NC: Department of Statistics, North Carolina State University). Available at: http://
statgen.ncsu.edu/qtlcart/WQTLCart.htm.

Wang, Y., Chen, J., Guan, Z., Zhang, X., Zhang, Y., Ma, L., et al. (2019). Combination
of multi-locus genome-wide association study and QTL mapping reveals genetic basis
of tassel architecture in maize. Mol. Genet. And Genomics 294 (6), 1421–1440.
doi: 10.1007/s00438-019-01586-4

Wang, B., Liu, H., Liu, Z., Dong, X., Guo, J., Li, W., et al. (2018). Identification of
minor effect QTLs for plant architecture related traits using super high density
genotyping and large recombinant inbred population in maize (Zea mays). BMC
Plant Biol. 18 (1), 17. doi: 10.1186/s12870-018-1233-5

Wei, H., Zhao, Y., Xie, Y., and Wang, H. (2018). Exploiting SPL genes to improve
maize plant architecture tailored for high-density planting. J. Exp. Bot. 69 (20), 4675–
4688. doi: 10.1093/jxb/ery258

Wen, Y. J., Zhang, Y. W., Zhang, J., Feng, J. Y., Dunwell, J. M., and Zhang, Y. M.
(2019). An efficient multi-locus mixed model framework for the detection of small and
linked QTLs in F2. Brief Bioinform. 20 (5), 1913–1924. doi: 10.1093/bib/bby058

Wu, X., Li, Y., Shi, Y., Song, Y., Zhang, D., Li., C., et al. (2016). Joint-linkage mapping
and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize.
Plant Biotechnol. J. 14 (7), 1551–1562. doi: 10.1111/pbi.12519

Xu, G., Wang, X., Huang, C., Xu, D., Li, D., Tian, J., et al. (2017). Complex genetic
architecture underlies maize tassel domestication. New Phytol. 214 (2), 852–864.
doi: 10.1111/nph.14400

Yang, N., Lu, Y., Yang, X., Huang, J., Zhou, Y., Ali, F., et al. (2014). Genome wide
association studies using a new nonparametric model reveal the genetic architecture of
17 agronomic traits in an enlarged maize association panel. PloS Genet. 10.
doi: 10.1371/journal.pgen.1004573

Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., et al. (2018). WEGO 2.0: a web
tool for analyzing and plotting GO annotations 2018 update. Nucleic Acids Res. 46,
W71–W75. doi: 10.1093/nar/gky400

Yi, Q., Liu, Y., Zhang, X., Hou, X., Zhang, J., Liu, H., et al. (2018). Comparative
mapping of quantitative trait loci for tassel-related traits of maize in F2:3 and RIL
populations. J. Genet. 97 (1), 253–266. doi: 10.1007/s12041-018-0908-x

Zhao, Y. (2012). Auxin biosynthesis: A simple two-step pathway converts
tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2), 334–338. doi: 10.1093/
mp/ssr104
frontiersin.org

https://doi.org/10.1038/s41586-022-05441-2
https://doi.org/10.2135/cropsci1969.0011183X000900040003x
https://doi.org/10.2135/cropsci1982.0011183X002200010007x
https://doi.org/10.2135/cropsci1982.0011183X002200010007x
https://doi.org/10.2135/cropsci1978.0011183X001800030037x
https://doi.org/10.2135/cropsci1978.0011183X001800030037x
https://doi.org/10.1104/pp.105.070987
https://doi.org/10.1104/pp.105.070987
https://doi.org/10.1016/j.xplc.2022.100319
https://doi.org/10.1007/s10722-019-00805-6
https://doi.org/10.1007/s10722-019-00805-6
https://doi.org/10.1038/ng.2484
https://doi.org/10.1093/plphys/kiab259
https://doi.org/10.1093/jxb/ers091
https://doi.org/10.1073/pnas.052125199
https://doi.org/10.1104/pp.108.129056
https://doi.org/10.1016/j.cj.2015.01.001
https://doi.org/10.1093/aob/mcr069
https://doi.org/10.1080/15592324.2015.1010947
https://doi.org/10.1093/jxb/erm134
https://doi.org/10.1105/tpc.110.075267
https://doi.org/10.1111/pbi.13540
https://doi.org/10.1101/pdb.prot5439
https://doi.org/10.1038/nature04725
https://doi.org/10.1093/pcp/pcp006
https://doi.org/10.3389/fpls.2012.00225
https://doi.org/10.1111/j.1365-313X.2006.02656.x
https://doi.org/10.1111/tpj.15089
https://doi.org/10.1111/tpj.15089
https://doi.org/10.1007/s004250050128
https://doi.org/10.1007/s004250050128
https://doi.org/10.1038/nature07272
https://doi.org/10.1038/nature03892
https://doi.org/10.1046/j.1365-313X.1999.00541.x
https://doi.org/10.1101/gad.12.2.208
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
https://doi.org/10.1007/s00438-019-01586-4
https://doi.org/10.1186/s12870-018-1233-5
https://doi.org/10.1093/jxb/ery258
https://doi.org/10.1093/bib/bby058
https://doi.org/10.1111/pbi.12519
https://doi.org/10.1111/nph.14400
https://doi.org/10.1371/journal.pgen.1004573
https://doi.org/10.1093/nar/gky400
https://doi.org/10.1007/s12041-018-0908-x
https://doi.org/10.1093/mp/ssr104
https://doi.org/10.1093/mp/ssr104
https://doi.org/10.3389/fpls.2023.1202755
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Yuan-Ming Zhang,
Huazhong Agricultural University, China

REVIEWED BY

Xiangqian Zhao,
Zhejiang Agriculture and Forestry
University, China
Yang-Jun Wen,
Nanjing Agricultural University, China
Li Mei,
Huazhong Agricultural University, China

*CORRESPONDENCE

Weiren Wu

wuwr@fafu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 30 June 2023

ACCEPTED 14 August 2023

PUBLISHED 30 August 2023

CITATION

Zheng Y, Thi KM, Lin L, Xie X, Khine EE,
Nyein EE, Lin MHW, New WW, Aye SS and
Wu W (2023) Genome-wide association
study of cooking-caused grain expansion
in rice (Oryza sativa L.).
Front. Plant Sci. 14:1250854.
doi: 10.3389/fpls.2023.1250854

COPYRIGHT

© 2023 Zheng, Thi, Lin, Xie, Khine, Nyein,
Lin, New, Aye and Wu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 30 August 2023

DOI 10.3389/fpls.2023.1250854
Genome-wide association study
of cooking-caused grain
expansion in rice (Oryza sativa L.)

Yan Zheng1,2,3†, Khin Mar Thi2,3†, Lihui Lin2,3, Xiaofang Xie1,2,3,
Ei Ei Khine2,3, Ei Ei Nyein2,3, Min Htay Wai Lin4, Win Win New4,
San San Aye4 and Weiren Wu2,3*

1College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2Fujian
Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University,
Fuzhou, Fujian, China, 3Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops,
Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 4Department
of Botany, Mawlamyine University, Mawlamyine, Myanmar
Cooking-caused rice grain expansion (CCRGE) is a critical trait for evaluating the

cooking quality of rice. Previous quantitative trait locus (QTL) mapping studies on

CCRGE have been limited to bi-parental populations, which restrict the

exploration of natural variation and mapping resolution. To comprehensively

and precisely dissect the genetic basis of CCRGE, we performed a genome-wide

association study (GWAS) on three related indices: grain breadth expansion index

(GBEI), grain length expansion index (GLEI), and grain length-breadth ratio

expansion index (GREI), using 345 rice accessions grown in two years

(environments) and 193,582 SNP markers. By analyzing each environment

separately using seven different methods (3VmrMLM, mrMLM, FASTmrMLM,

FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO), we identified a total of

32, 19 and 27 reliable quantitative trait nucleotides (QTNs) associated with GBEI,

GLEI and GREI, respectively. Furthermore, by jointly analyzing the two

environments using 3VmrMLM, we discovered 19, 22 and 25 QTNs, as well as

9, 5 and 7 QTN-by-environment interaction (QEIs) associated with GBEI, GLEI

and GREI, respectively. Notably, 12, 9 and 15 QTNs for GBEI, GLEI and GREI were

found within the intervals of previously reported QTLs. In the vicinity of these

QTNs or QEIs, based on analyses of mutation type, gene ontology classification,

haplotype, and expression pattern, we identified five candidate genes that are

related to starch synthesis and endosperm development. The five candidate

genes, namely, LOC_Os04g53310 (OsSSIIIb, near QTN qGREI-4.5s),

LOC_Os05g02070 (OsMT2b, near QTN qGLEI-5.1s), LOC_Os06g04200 (wx,

near QEI qGBEI-6.1i and QTNs qGREI-6.1s and qGLEI-6.1t), LOC_Os06g12450

(OsSSIIa, near QTN qGLEI-6.2t), and LOC_Os08g09230 (OsSSIIIa, near QTN

qGBEI-8.1t), are predicted to be involved in the process of rice grain starch

synthesis and to influence grain expansion after cooking. Our findings provide

valuable insights and will facilitate genetic research and improvement of CCRGE.

KEYWORDS

rice, grain breadth expansion index (GBEI), grain length expansion index (GLEI), grain
length-breadth relative expansion index (GREI), Genome-wide association
study (GWAS)
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1 Introduction

Rice (Oryza sativa L.) is a crucial cereal crop that serves as a staple

food for over half of the global population. It is the only cereal crop

that is primarily consumed as whole grains, which underscores its

significance in the field of rice breeding (Hossain et al., 2009). The

quality of rice is assessed based on several factors, including

appearance, milling, cooking, sensory properties, and nutrition

(Cheng et al., 2005; Feng et al., 2017). Among these factors,

cooking quality is a critical determinant for the economic value of

rice. The cooking quality of rice refers to the characteristics of cooked

rice, including its texture, tenderness, stickiness, and overall

palatability. As starch accounts for up to 95% of the dry weight of

a polished rice grain (Fitzgerald et al., 2009), the cooking quality of

rice is mainly determined by starch. During the cooking process, rice

grains absorb water and undergo gelatinization, leading to a

noticeable expansion in volume (Golam and Prodhan, 2013). The

extent of this cooking-caused rice grain expansion (CCRGE) can

affect the texture, tenderness and overall quality of cooked rice, and is

significantly influenced by the properties of starch (Pang et al., 2016).

In general, rice varieties with a higher amylose content (AC) tend to

absorb more water and exhibit greater increase in volume after

cooking (Frei et al., 2003). Hence, CCRGE is a complex trait

closely related to the cooking quality of rice. As the desired cooking

quality can vary depending on the type of rice and the culinary

preferences of individuals or cultural cuisines (Suwannaporn and

Linnemann, 2008), the corresponding suitable degree of CCRGE is

also diverse. To meet the varying demands for the cooking quality of

rice, different goals should be established in rice breeding. Dissecting

the genetic basis of CCRGE will facilitate the efforts toward the goals.

For this purpose, a number of studies have been conducted to

map quantitative trait loci (QTLs) underlying CCRGE. To date, 47

QTLs for grain length expansion (Ahn et al., 1993; Li et al., 2004;

Zhang et al., 2004; Ge et al., 2005; Shen et al., 2005; Tian et al., 2005;

Wang et al., 2007; Amarawathi et al., 2008; Liu et al., 2008;

Govindaraj et al., 2009; Shen et al., 2011; Swamy et al., 2012; Li

et al., 2015; Arikit et al., 2019), 10 QTLs for grain breadth expansion

(Ge et al., 2005; Govindaraj et al., 2009), and 15 QTLs for grain

length-breadth relative expansion (He et al., 2003; Jiang et al., 2008;

Liu et al., 2008; Thi et al., 2020; Malik et al., 2022) have been

reported, demonstrating that CCRGE is a very complex trait.

However, none of these QTLs have been cloned.

All the QTLs reported for CCRGE were identified through

conventional linkage analysis methods utilizing various populations

derived from bi-parental crosses, including F2 (Arikit et al., 2019),

F3 (Ahn et al., 1993), F2:3 (Jiang et al., 2008; Thi et al., 2020), BC2F2
(Swamy et al., 2012), BC3F1 (Li et al., 2004), doubled haploid (DH)

(Zhang et al., 2004; Tian et al., 2005; Govindaraj et al., 2009), and

recombinant inbred lines (RILs) (He et al., 2003; Malik et al., 2022).

The linkage-based QTL mapping methods are limited by two main

factors. First, it can only investigate the variation between two

parents. Second, it has a low mapping resolution due to strong

linkage disequilibrium in the mapping population used.

Consequently, the mapped QTLs can only account for a small

portion of the related genetic variations in the rice germplasm.

Therefore, further studies are necessary.
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During the domestication process, rice germplasm resources

have accumulated a rich array of natural variations in the genome.

The advent of high-throughput DNA sequencing technologies has

facilitated the use of genome-wide association study (GWAS) as an

effective method for identifying natural genomic variations

associated with quantitative traits (Huang et al., 2010; Zhao et al.,

2011). Unlike the linkage-based QTL mapping method, GWAS

utilizes high-density single nucleotide polymorphisms (SNPs) as

genetic markers and is performed on diverse natural populations.

As linkage disequilibrium is much weaker in natural populations,

GWAS achieves higher resolution in QTL mapping (Huang and

Han, 2014; Burghardt et al., 2017). GWAS has been successfully

employed to map genes or QTLs for numerous important traits in

rice, such as flowering time (Huang et al., 2012), grain yield

components (Eizenga et al., 2019), grain qualities (Misra et al.,

2017; Wang et al., 2020), and so on. However, to date, no GWAS

has been conducted to identify QTLs underlying CCRGE.

In this study, we performed GWAS on three traits of CCRGE

based on two replicated experiments conducted in two different years

(environments) and using seven different methods to analyze the

data. We detected 165 related quantitative trait nucleotides (QTNs),

including some exhibiting only the effect of QTN-by-environment

interaction (QEI). Based on the detected QTNs, we identified five

candidate genes through gene ontology (GO), haplotype, and

expression pattern analyses. Our findings will facilitate further

genetic research and the genetic improvement of CCRGE.
2 Materials and methods

2.1 Plant materials and field experiments

A set of 345 rice accessions among the list of the 3K Rice

Genomes Project (2014) were utilized for this research (Table S1).

These accessions included 108 japonica, 177 indica, 48 circum-Aus

group (cA), 2 circum-Basmati group (cB), and 10 admixed (between

major groups) according to Wang et al. (2018). All accessions were

grown at the Experimental Farm of Fujian Agriculture and Forestry

University in Yangzhong (E118.485841, N26.287161) during the

normal growing season (April to October) in 2017 (E1) and 2018

(E2). In both years, 20 seeds of each accession were sown on a

seedbed after pregermination, and 14 seedlings were transplanted

onto the paddy field 25 days later with a 20-cm spacing between

plants and between rows. Field management followed standard

agronomic procedures. Mature seeds were harvested from each

accession, and subjected to sun, then stored at the room

temperature. The newly harvested seeds were utilized for the

measurement of CCRGE traits in each year.
2.2 Measure of cooking-caused
grain expansion

The procedure for quantifying the characteristics of cooking-

caused rice grain expansion was performed according to Thi et al.

(2020). The experiment was conducted in three replicates for each
frontiersin.org
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accession. In each replicate, 30 intact white rice grains were soaked

(for 30 min) and boiled (for 45 min), and the average length and

average breadth of 30 uncooked grains (L0 and B0) and 15 unbroken

and straight cooked grains (L1 and B1) were measured.

Subsequently, the grain breadth expansion index (GBEI), grain

length expansion index (GLEI) and grain length-breadth relative

expansion index (GREI) of each accession were calculated

according to the formulae described by Thi et al. (2020), where

GLEI = L1/L0, GBEI = B1/B0, and GREI = (L1/B1)/(L0/B0) = (L1/L0)/

(B1/B0) = GLEI/GBEI.
2.3 Collection of SNP data

The SNP data of the 345 rice accessions were obtained from the

3K Rice Genomes Project (http://iric.irri.org/resources/3000-

genomes-project). The core genome set of 404K SNPs (https://

snp-seek.irri.org/download.zul, accessed on 1 September 2021) was

employed for the analysis. A stringent quality control process was

performed, which involved removal of the SNPs that had more than

20% missing calls and a minor allele frequency (MAF) smaller than

5%. As a result, a total of 193,582 SNPs were retained for

subsequent analysis.
2.4 Clustering, population structure and
linkage disequilibrium analyses

The genetic distances between 345 accessions were calculated

based on SNP data, and a phylogenetic tree was constructed using

the MEGA 11 software. Population structure was analyzed using

principal component analysis (PCA) plots and the Admixture

program as described by Alexander and Lange (2011). The

linkage disequilibrium (LD) between pairwise SNPs located

within 1 megabase (Mb) on each chromosome or across the

entire genome was estimated by computing the determination

coefficient (R2) using the plink software (Purcell et al., 2007).
2.5 Genome-wide association studies

GWAS was performed on GLEI, GBEI and GREI with two

strategies: (1) single-environment analysis, namely, analyzing each

environment separately; and (2) two-environment analysis, namely,

analyzing the two environments jointly. For single-environment

analysis, we employed two R packages: 3VmrMLM (Li et al., 2022;

https://github.com/YuanmingZhang65/IIIVmrMLM) and mrMLM

v4.0.2 (Zhang et al., 2020). The former includes the method

3VmrMLM, while the latter contains six methods, namely,

mrMLM (Wang et al., 2016), FASTmrMLM (Tamba and Zhang,

2018), FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang et al.,

2017), pKWmEB (Ren et al., 2018), and ISIS EM-BLASSO (Tamba

et al., 2017). The option “method=Single_env” was chosen in

3VmrMLM, while default parameters were used for the other

methods. Two-environment analysis was conducted using

3VmrMLM only, with the option set to “method=Multi_env”.
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This method allowed for the estimation of the main effect of a

QTN and the effect of QTN-by-environment interaction. For

distinction, a QTN showing only the effect of QTN-by-

environment interaction was denoted as QEI. Each QTN or QEI

was named following the nomenclature “q + trait + chromosome +

number + s/t/i”, where “s” and “t” indicate that the QTN was

detected based on single- or two-environment analysis, respectively,

and “i” indicates a QEI. According to Zhang et al. (2019), the QTNs

identified by multiple methods were deemed as reliable QTNs, with

particular emphasis on those identified in multiple environments,

which were considered stable QTNs.
2.6 Prediction of candidate genes

Based on the distinct LD decay in each rice chromosome, the left

and right R2 half-decay regions flanking each QTN or QEI were

determined to identify potential candidate genes. The following

sequential steps were executed: (1) the SNP effect prediction software

snpEff.v1.9 (Cingolani et al., 2012) was employed to evaluate the effects

of SNPs on the regional genes, and annotated genes with effective

mutation types, such as non-synonymous substitution, splice site, and

UTR-5’mutation, were selected; (2) GO classifications related to starch

synthesis or endosperm development were searched in the rice

database (https://www.ricedata.cn/ontology/), and all genes with these

GO classifications were retrieved; and (3) genes that meet both steps 1

and 2 were screened out and then subjected to haplotype analysis,

where different haplotypes exhibiting t-test significance were

considered as candidate genes.
2.7 Tissue specific expression of
candidate genes

The expression profiles of the candidate genes in various tissues

were obtained from the Rice Genome Annotation Project database

(http://rice.uga.edu), including shoots (library name in NCBI:

SRR042529), leaves-20 days (OSN_AA and OSN_CA), pre-

emergence inflorescence (OSN_AC), post-emergence

inflorescence (OSN_AB), anther (OSN_AD), pistil (OSN_AE),

seed-5 DAP (days after pollination; OSN_AF), seed-10 DAP

(OSN_AK), embryo-25 DAP (OSN_AG) and endosperm-25 DAP

(OSN_AH and OSN_BH). A heatmap was generated to visualize

the gene expression patterns across the different tissues.
3 Results

3.1 Trait performance

The traits GBEI, GLEI, and GREI exhibited a continuous

unimodal distribution in both environments, suggesting that these

traits are quantitative and controlled by multiple genes (Figure 1).

After performing the Brown-Forsythe Test for assessing homogeneity

of variances, the analysis revealed that the error variances of each

accession in both environment for the three traits were
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homogeneous, indicating that the collected data is suitable for

subsequent analysis of variance (ANOVA). Although the

population means of these traits were similar in both environments

(GBEI: 1.822 and 1.765; GLEI: 1.752 and 1.740; GREI: 0.990 and

1.016), ANOVA revealed statistically significant variation between

the two environments and genotype-by-environment interaction

(Table 1). These results indicated that all the three traits exhibited

significant variation across macro-environments. However, there

were still significant correlations between the two environments in

these traits, particularly in GLEI and GREI (Table 2).

GREI exhibited significant positive and negative correlations

with GLEI and GBEI, respectively (Table 2). This is understandable,

as GREI is a composite trait that is influenced by both GLEI and

GBEI. However, the correlation between GLEI and GBEI was found

to be low (-0.155 in E1 and -0.101 in E2) (Table 2), implying that

grain length expansion and breadth expansion during cooking are

two relatively independent processes with potentially distinct

genetic bases.
3.2 Population structures and
linkage disequilibrium

A set of 193,582 SNPs meeting the requirements of MAF > 5% and

missing data < 20% were obtained. The SNPs were not evenly
Frontiers in Plant Science 04207
distributed in the genome (Figure 2). SNPs were the densest on

chromosome 11 but the sparsest on chromosome 3, respectively

(Table 3). On average, there was one SNP every 1928 bp in the genome.

The results of phylogenetic analysis (Figure 3A), PCA

(Figure 3B), and admixture analysis (Figures 3C, D) all indicated

that the population of the 345 rice accessions could be basically

divided into three distinct groups (subpopulations), namely, indica

group, japonica group, and aus group (Figures 3C, D).

The average LD (mean R2) decreased with the increase of

physical distance on every chromosome as well as in the whole

genome (Figure 4). The average LD half-decay distance (HDD) and

the average distance of LD decay to 0.1 (DD0.1) in the whole

genome were about 378 kb and 196 kb, respectively (Table 3).

However, the HDD and DD0.1 on different chromosomes varied

greatly, ranging from 158.4 kb and 62.1 kb on chromosome 2 to

715.7 kb and 712.1 kb on chromosome 7, respectively (Table 3).

Therefore, chromosome 2 had the highest LD decay rate, while

chromosome 7 had the lowest.
3.3 QTNs detected by single-
environment analysis

In total, 386 QTNs were detected by single-environment

analysis using seven different methods, with 145, 127 and 128
FIGURE 1

Frequency distribution of GBEI, GLEI and GREI in two environments. Values on the top right corner of each diagram are mean ± standard
deviation (cm).
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QTNs found to be associated with GBEI, GLEI and GREI,

respectively (Table 4; Figures S1, S2). However, only 78 (19.5%)

QTNs were identified as reliable (Tables 4, S2). The total number of

QTNs detected by each method varied greatly, ranging from 32

(FASTmrEMMA) to 131 (3VmrMLM; Table 4). The number and

the percentage of reliable QTNs detected by each method also

differed significantly (Table 4). Interestingly, there was a positive

correlation between the number of reliable QTNs and the total

number of QTNs detected by each method (correlation coefficient

80.5%), but a negative correlation between the percentage of reliable

QTNs and the total number of QTNs detected by each method

(correlation coefficient -88.2%). This indicates that the increase in

the number of total QTNs and reliable QTNs detected by a method

comes at the cost of a decrease in the percentage of reliable QTNs.

Among the three traits, GBEI had the most reliable QTNs,

followed by GREI, and GLEI had the fewest (Table 5). Consistently,

GBEI had highest proportion of phenotypic variance explained

(PVE) by the reliable QTNs, followed by GREI, and GLEI had the

lowest (Table 5). More reliable QTNs were detected and therefore

there were higher PVEs in E1 than in E2 for GLEI and GREI, but the

results in the two environments were similar for GBEI (Table 5).

Most QTNs identified in this study were found to be reliable

because they were detected by multiple methods, while only four

QTNs (qGBEI-5.4s, qGLEI-3.3s, qGREI-5.2s and qGREI-5.6s) were

found to be stable because they were detected in the two

environments simultaneously (Table S2). In addition, there were a

few SNPs exhibiting pleiotropic effects in one environment,

including 3:16774870 (detected as QTNs qGLEI-3.5s and qGREI-

3.6s) and 6:25062099 (qGLEI-6.4s and qGREI-6.4s), both of which

were associated with GLEI and GREI; and 5:5369111 (qGBEI-5.3s

and qGREI-5.2s), which was associated with GBEI and GREI

(Table S2).
Frontiers in Plant Science 05208
3.4 QTNs detected by two-
environment analysis

The two-environment analysis detected 11, 14 and 19 significant

QTNs (P-value ≤ 0.05/m = 2.58E-07, wherem = 193,582, the number

of markers) and 8, 8 and 6 suggested QTNs (P > 2.58E-07 but LOD ≥

3.0) associated with GBEI, GLEI and GREI, respectively (Figures 5A-

C; Table S3). These QTNs explained 35.41%, 46.37% and 41.49% of

the total phenotypic variation in GBEI, GLEI and GREI, respectively.

The SNP marker chr5:5369111 was found to be associated with both

GBEI and GREI, and was named qGBEI-5.2t and qGREI-5.3t,

respectively. This marker was also detected as QTNs qGBEI-5.3s

and qGREI-5.2s in the single-environment analysis, indicating its

reliability. Marker chr6:25000609 was associated with both GLEI and

GREI, while chr11:23854971 was associated with both GBEI and

GREI. Additionally, SNPs chr2:24264276, chr3:2521638,

chr3:35669404 and chr5:14585838 were all detected in both single-

and two-environment analyses.

The two-environment analysis also detected 6, 4 and 5 significant

QEIs and 3, 1 and 2 suggested QEIs associated with GBEI, GLEI and

GREI, respectively. These QEIs accounted for 24.83%, 14.79% and

21.22% of the total phenotypic variation in GBEI, GLEI and GREI,

respectively (Figures 5D-F; Table S4). Notably, there was no common

site between the QTNs and QEIs detected, indicating that all the

SNPs exhibiting significant main (additive and/or dominance) effects

in the two-environment analysis did not show significant effects of

interaction with the environment, and vice versa (namely, all the

SNPs exhibiting significant effects of interaction with the

environment did not show significant main effects). Nonetheless,

the SNP markers of two QEIs, qGREI-2.3i (SNP 2:19642336) and

qGLEI-5.6i (SNP 5:25726382) were also detected as QTN qGREI-2.2s

and qGREI-5.8s in the single-environment analysis, respectively
frontiersin.o
TABLE 2 Coefficients of correlation between different traits in each environment and between different environments in each trait.

GBEI GLEI GREI

GBEI 0.317** -0.101 -0.677**

GLEI −0.155** 0.487** 0.750**

GREI −0.767** 0.736** 0.542**
The data in the diagonal are correlations between the two years. The data in the lower triangle and the upper triangle are correlations between the three traits in E1 (2017) and in E2 (2018),
respectively. ** indicates p-value < 0.01.
TABLE 1 ANOVA of GBEI, GLEI and GREI on genotypes and environments, and their interactions.

GBEI GLEI GREI

F value P value F value P value F value P value

Genotype (G) 11.279 2.5E-239 15.489 1.01E-306 48.364 0

Environment (E) 74.890 1.36E-17 1.843 0.1748481 130.473 6.15E-29

G×E 6.437 1.4E-138 7.070 1.35E-153 14.398 1.3E-290

Test of HOV 0.780 1.000 0.811 0.999 0.674 1.000
Test of HOV (homogeneity of variance) was performed using the method of Brown-Forsythe Test, in which F0.05 = 1.1134 (df1 = 689, df2 = 1380).
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(Tables S2, S4). Interestingly, the targeted traits of qGLEI-5.6i and

qGREI-5.8s were not the same. In addition, the interaction between

SNPmarker 8:22185608 and environment was found to be associated

with both GLEI (as qGLEI-8.3i) and GREI (as qGREI-8.5i)

simultaneously (Table S4).
3.5 Prediction of candidate genes for GBEI,
GLEI and GREI

In total, the two-environment analysis detected 66 QTNs and 21

QEIs for the three traits. Plus the 78 reliable QTNs detected in the
Frontiers in Plant Science 06209
single-environment analysis, this study detected a total of 165

QTNs/QEIs. These QTNs/QEIs were mainly located on

chromosomes 5, 11, 12, 3 and 2, and very rare on chromosomes

1 and 10 (Figure 6).

Considering that CCRGE may be largely determined by the

starch in endosperm, we tried to predict the candidate genes

involved in starch metabolism and endosperm development. By

searching 20 related Gene Ontology/Term Ontology (GO/TO)

classifications on the China Rice Data Center’s website (https://

www.ricedata.cn/ontology/), 119 genes were found, of which 26

were located within the R2 half-decay distance around the detected

QTNs/QEIs (Table S5). By analyzing the SNP variations in the

genes with the software snpEff v1.9, five genes were found to carry

effective mutations, including non-synonymous, splice site and

UTR-5’ mutations (Table 6; Figure S3). So, these genes were

considered to be candidate genes.

We then performed haplotype analysis to assess the reliability of

the cand ida t e g ene s . LOC_Os04g53310 (OsSS I I I b ) ,

LOC_Os06g04200 (wx) and LOC_Os08g09230 (OsSSIIIa)

exhibited significant haplotype differences for GBEI;

LOC_Os04g53310 , LOC_Os05g02070 (OsMT2b ) and

LOC_Os06g12450 (OsSSIIa) displayed significant haplotype

differences for GLEI; and all of the genes except for

LOC_Os06g12450 showed significant haplotype differences for

GREI (Figure 7). These findings strongly suggested a close

association of these five genes with the CCRGE.

To further verify the potential impact of these candidate genes

on the regulation of starch synthesis and endosperm development,

we analyzed the expression patterns of the five candidate genes in

various tissues based on data from the Rice Genome Annotation

Project database (Figure 8). The results showed that

LOC_Os04g53310 (OsSSIIIb) was expressed mainly in leaf and

pre-emergence inflorescence but not in seed or endosperm;

LOC_Os05g02070 (OsMT2b) was expressed mainly in post- and

pre-emergence inflorescence and in embryo of 25 DAP (days after

pollination), but not in endosperm. This suggests that these two

genes maybe not closely or indirectly associated with endosperm
TABLE 3 Number and density of SNPs and LD decay distances in the
rice genome.

Chromosome
Number
of SNPs

Average
spacing
(bp)

HDD
(kb)

DD0.1
(kb)

1 20,083 2154.6 651.1 603.9

2 18,756 1916.0 158.4 62.1

3 13,674 2663.0 534.7 507.3

4 19,298 1839.7 223.1 94.6

5 12,058 2484.5 333.3 374.5

6 13,883 2250.9 419.5 420.3

7 13,389 2218.1 715.7 712.1

8 18,850 1508.9 513.7 295.8

9 10,978 2096.3 330.5 249.7

10 11,946 1942.7 688.1 388.2

11 24,068 1205.8 178.9 78.5

12 16,599 1658.6 485.2 83.9

Whole genome 193,582 1928.1 377.9 196.1
HDD, LD half-decay distance; DD0.1, distance of LD decay to 0.1.
FIGURE 2

Distribution of 193,582 SNPs in the rice genome.
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dev e l opmen t . I n con t r a s t , LOC_Os06g04200 (wx ) ,

LOC_Os06g12450 (OsSSIIa) and LOC_Os08g09230 (OsSSIIIa)

exhibited high expression in 10 DAP seed, and the highest

expression in 25 DAP endosperm, but no expression in embryo,

indicating their potential involvement in starch synthesis or

endosperm development.
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4 Discussion

When analyzing single environmental data, only QTNs, qGREI-

5.2s and qGREI-5.6s , were commonly detected in two

environments. This may be due to changes in the relative effects

of different genes for these traits in different environments,
A B

DC

FIGURE 3

Genetic structure analysis of the population of 345 rice accessions. (A) Phylogenetic tree. (B) Population structure estimated by the software
Admixture. (C, D) PCA plots of the first three principal components.
TABLE 4 Numbers of QTNs for GBEI, GLEI and GREI detected by seven methods in two different environments.

Method
GBEI GLEI GREI

Total1 Reliable QTNs
E1 E2 Total1 E1 E2 Total1 E1 E2 Total1

3VmrMLM 21 19 40 20 24 44 27 21 47 131 31 (23.5%)

mrMLM 10 9 19 7 6 13 16 7 23 55 25 (45.5%)

FASTmrMLM 13 49 62 11 19 29 12 10 22 114 40 (35.1%)

FASTmrEMMA 4 7 11 6 5 11 3 7 10 32 21 (65.6%)

pLARmEB 11 9 20 16 18 34 19 22 41 95 40 (42.1%)

pKWmEB 11 7 18 9 10 19 12 8 20 57 23 (40.4%)

ISIS EM-BLASSO 13 14 27 4 2 6 5 4 9 42 21 (50.0%)

Total1 56 90 145 55 73 127 70 60 128 400 78 (19.5%)
1. Redundancy was removed in the totals. 2. The number and proportion of reliable QTNs among the total detected by each method or in the whole experiment.
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TABLE 5 Statistics of reliable QTNs for GBEI, GLEI and GREI detected in each environment.

Trait
No. of reliable QTNs LOD range PVE range (%) Total PVE (%)

E1 E2 Total E1 E2 E1 E2 E1 E2 Average

GBEI 16 17 32 3.9-13.7 3.5-12.2 2.5-7.4 1.7-5.3 63.8 61.9 62.85

GLEI 13 6 19 3.2-14.3 3.9-8.5 0.2-7.2 0.1-4.0 41.5 12.8 27.15

GREI 16 12 27 3.6-14.9 3.9-12.9 1.3-7.7 0.0-9.0 47.8 36.8 42.30

Total 45 35 78
F
rontiers in Pla
nt Science
 08211
 fr
PVE, proportion of phenotypic variance explained.
FIGURE 4

Genome-wide LD decay across 12 chromosomes. The x-axis represents the physical distance and the y-axis represents the average pairwise R2. The
color of each chromosome was showed on the top right corner.
A

B

D

E

FC

FIGURE 5

Manhattan plots of two-environment analyses on GBEI (A, D), GLEI (B, E) and GREI (C, F). The horizontal dashed lines indicate the LOD = 3.0
threshold. The left vertical axis is the -log10 (P-value), while the right vertical axis is the LOD score for each SNP marker. Pink dots indicate significant
(-log10(P-value) ≥ 6.588) or suggested (-log10(P-value) < 6.588 but LOD ≥ 3) QTNs (A–C) or QEIs (D–F).
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indicating that the genes controlling these traits interacted with the

environments. Joint analysis of the two environmental datasets

using the 3VmrMLM method revealed 21 QEIs for three traits, also

indicating the interaction between QTN and environment. Actually,

ANOVA results showed significant genotype-by-environment

interaction in the three traits (Table 1). However, there were no

overlapping sites between QEI and QTNs detected based on two

environmental data, indicating that all QEIs had no significant

additive or dominant effect, but only the interaction effect between

additive or dominant and environment, while all the QTNs in two-

environment jointly analyze were opposite. Using the same

3VmrMLM method in previous studies, the overlapping sites

between QEI and QTNs were also few, ranging from 1-3 sites

(Han et al., 2022; He et al., 2022; Yu et al., 2022; Zhang et al., 2022;
Frontiers in Plant Science 09212
Jiang et al., 2023; Zhao et al., 2023), except for the study of Zou et al.

(2022), which found 13 overlapping sites. From the perspective of

the effect of QEI, since most QEIs do not have a significant additive

or dominant effect, their reliability needs to be further confirmed.

In this study, among the 78 QTNs detected by single-

environment analysis, only four QTNs were detected in both

environments simultaneously (Table 4; Supplemental Table 2),

indicating that only a small proportion (~5%) of QTNs exhibited

stable significant effects across the environments. Interestingly, these

four stable QTNs appear to represent four different types in terms of

the way of being detected (Supplemental Table 2). The first type is

qGREI-5.6s, which was detected by the same method in both

environments, and no other methods detected it in either

environment. The second type is qGBEI-5.4s, which was detected
FIGURE 6

Locations of QTNs/QEIs for GBEI, GLEI and GREI in the rice genome. The QTNs detected by single-environment analysis are indicated by solid
circles. The QTNs and QEIs detected by two-environment analysis are indicated by filled triangles and solid diamonds, respectively.
TABLE 6 Candidate genes for GBEI, GLEI and GREI .

Gene
ID1

Gene name Nearby QTN/QEI Chr. No. of
Haplotypes

Mutation type Annotation

Os04g53310 OsSSIIIb qGREI-4.5s 4 5 non-synonymous, UTR-5’
mutation

soluble starch synthase 3, chloroplast
precursor

Os05g02070 OsMT2b qGLEI-5.1s 5 2 UTR-5’ mutation metallothionein

Os06g04200 wx; qGC-6; Wx-mq;
Wx-op

qGBEI-6.1i, qGREI-6.1s,
qGLEI-6.1t

6 4 non-synonymous, UTR-5’
mutation

granule-bound starch synthase

Os06g12450 ALK; OsSSIIa qGLEI-6.2t 6 3 non-synonymous, splice site
mutation

soluble starch synthase 2-3,
chloroplast precursor

Os08g09230 OsSSIIIa; Flo5 qGBEI-8.1t 8 2 non-synonymous mutation starch synthase III
1. The full gene ID includes a prefix LOC_Os.
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by one method in one environment, but by another method in the

other environment. The third type is qGREI-5.2s, which was detected

by one method in one environment, but bymultiple other methods in

the other environment. The fourth type is qGLEI-3.3s, which was also

detected by one method in one environment and by multiple

methods in the other environment, but with one method being the

same in the two environments. It is noticeable that three of the four

stable QTNs were detected in two different environments due to the

use of multiple methods. These findings highlight the advantages of

employing multiple GWAS methods to analyze the data collected

from diverse environmental conditions.

According to the definitions, GREI is a composite trait that

comprises various levels of component traits, which exhibit
Frontiers in Plant Science 10213
correlation with grain length and grain breadth before cooking

(L0 and B0) or after cooking (L1 and B1), and is directly proportional

to GLEI while inversely proportional to GBEI. Evidently, genes

governing GBEI and GLEI may also impact GREI in principle. In

other words, the QTLs for GREI may exhibit pleiotropic effects on

its component traits or correlated traits. In this study, we did

identify 4 QTNs that simultaneously influence GREI and GLEI,

and 2 QTNs that simultaneously affect GREI and GBEI (Table 7).

This was consistent with the high correlation between GREI and

GLEI and GBEI (Table 2). As expected, there were no QTNs

pleiotropic on GLEI and GBEI, which is in line with the

conclusion that GLEI and GBEI are independent traits and have

different genetic bases. Moreover, 3 QTNs controlling GLEI and
FIGURE 7

Haplotype analysis of candidate genes for GBEI, GLEI and GREI. *, ** and *** indicate significance at P<0.05, P<0.01 and P<0.001, respectively.
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GREI respectively were detected simultaneously in single and two

environments, demonstrating the stability of these QTNs.

As mentioned above in the introduction, there were 10, 47 and 15

reported QTLs controlling length, width and length-width expansion

caused by cooking in rice grain. Upon comparing these QTLs with

the QTNs mapped in this study, we observed that 12, 9, and 15 QTNs

for GBEI, GLEI, and GREI detected in this study were located within

the intervals of one or more previously reported QTLs (Table S6).

These comparisons provide evidence for the reliability of the QTLs

detected in this study. Notably, the four putative genes

(LOC_Os05g02070, LOC_Os06g04200, LOC_Os06g12450, and

LOC_Os08g09230) identified in this study were found to be in close

proximity to four of the aforementioned QTLs).

Due to the swelling of starch granules during cooking, rice grain

cooking-caused expansion traits, such as GBEI, GLEI and GREI, is
Frontiers in Plant Science 11214
expected to be influenced by starch-related traits which include two

typical traits: chalkiness rate and amylose content. Chalkiness rate is

a crucial parameter for assessing the visual quality of rice, as high

chalkiness rate can lead to easy breakage of grains during

processing, low amylose content, and poor eating quality. Thi

et al. (2020) utilized a genetic population to map GREI and

discovered a positive correlation between amylose content and

GREI, with high AC content leading to increased GREI. OsMT2b

encodes a metallothionein that binds to metal ions and scavenges

reactive oxygen species (ROS). Wu et al. (2022) reported that

WCR1, a negative regulator of rice chalkiness rate, functions to

regulate OsMT2b (LOC_Os05g02070) transcription level and inhibit

26S proteasome-mediated OsMT2b protein degradation, thereby

facilitating ROS clearance, delaying programmed cell death (PCD)

of endosperm cells, and ultimately increasing the accumulation of
FIGURE 8

Heatmap of candidate gene expression analysis by RNA-seq data from RGAP database. Red boxes indicate high transcript levels and blue boxes
indicate low transcript levels. DAP, days after pollination.
TABLE 7 Common QTLs between GREI, GBEI and GREI, or between different analysis aspects.

Chr. QTN name Trait QTN pos. (bp)

2 qGREI-2.2s, qGREI-2.3i GREI 19,642,336

2 qGLEI-2.2s, qGLEI-2.2t GLEI 24,264,276

3 qGLEI-3.3s, qGLEI-3.2t GLEI 2,521,638

3 qGLEI-3.5s, qGREI-3.5s GLEI 16,774,870

3 qGREI-3.9s, qGREI-3.8t GREI 35,669,404

5 qGBEI-5.3s, qGREI-5.2s, qGBEI-5.2t, qGREI-5.3t GBEI, GREI 5,369,111

5 qGREI-5.6s, qGREI-5.5t GREI 14,585,838

5 qGLEI-5.6i, qGREI-5.8s GLEI, GREI 25,726,382

6 qGLEI-6.3t, qGREI-6.3t GLEI, GREI 25,000,609

6 qGLEI-6.4s, qGREI-6.4s GLEI, GREI 25,062,099

8 qGLEI-8.3i, qGREI-8.5i GLEI, GREI 22,185,608

11 qGBEI-11.8t, qGREI-11.3t GBEI, GREI 23,854,971
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storage substances, and reducing chalkiness rate. In this study, a

SNP site is present in the 5’-UTR region of OsMT2b near qGLEI-

5.1s (Figure S3), which may disrupt the expression of OsMT2b,

thereby affecting the change in rice cooking caused expansion in the

analyzed population. Furthermore, considering the expression

pattern of OsMT2b, it is noteworthy that its expression level

exhibits a significant reduction in the endosperm. This

observation implies its potential indirect influence on starch

synthesis or endosperm development.

wx (LOC_Os06g04200), OsSSIIa (LOC_Os06g12450), and

OsSSIIIa (LOC_Os08g09230) are crucial genes involved in the

biosynthesis of starch in rice grains. wx gene encodes granule-

bound starch synthase (GBSS), a major enzyme responsible for

amylose synthesis (Kharshiing and Chrungoo, 2021). It exerts a

direct influence on the amylose content in the endosperm and

pollen of rice, as well as the gel consistency of grains (Su et al., 2011).

OsSSIIa encodes a soluble starch synthase II, and mutations in this

gene may affect the activity of starch synthase, which in turn affects

the synthesis of medium-length branched chains of amylopectin,

changes the crystal layer structure, and ultimately alters the

gelatinization temperature (Gao et al., 2003). OsSSIIIa encodes

soluble starch synthase III, the second key enzyme involved in

rice starch synthesis (Zhou et al., 2016). Mutations in OsSSIIIa can

affect the structure of amylopectin, amylose content, and

physicochemical properties of starch in rice grains. Double

mutants of OsSSIIa and OsSSIIIa exhibited increased chalkiness

and amylose content, increased gelatinization temperature, and

decreased viscosity (Zhang et al., 2011). In this study, these three

genes exhibited the SNP loci with genetic effects. In haplotype

analysis, significant differences in GBEI, GLEI, or GREI were

observed across different haplotypes caused by SNPs within these

genes. In expression pattern analysis, these three genes were highly

expressed in the endosperm and seeds 10 days after pollination. All

the evidence supported the hypothesis that these three genes were

candidate genes controlling CCRGE.

In addition, OsSSIIIb (LOC_Os04g53310) is a gene that encodes

soluble starch synthase in rice. Its expression level and activity

directly impact the synthesis and quality of starch in rice

endosperm. OsSSIIIb can interact coordinately with OsSSIIIa, and

loss of function of both genes leads to an increase in resistant starch

content in cooked rice (Wang et al., 2023). Although its protein

function is redundant with OsSSIIIa, its expression pattern differs

significantly from OsSSIIIa which is expressed in the endosperm.

OsSSIIIb is mainly expressed in leaves but not endosperm

(Figure 8). In this study, the five haplotypes generated by the four

SNP loci contained in the OsSSIIIb gene exhibit significant

differences in three traits. The evidence proves that OsSSIIIb may

indirectly participate in starch sythesis and subsequently

affect CCRGE.
5 Conclusion

In this study, data of GBEI, GLEI and GREI, three traits related

to rice grain cooked expansion, were collected from 345 rice
Frontiers in Plant Science 12215
accessions in two distinct environments. Utilizing 193,582 SNP

markers, seven methods were employed to identify QTNs based on

single-environment data, while the 3VmrMLMmethod was utilized

to identify QTNs and QEIs based on two-environment data. A total

of 165 reliable QTNs/QEIs were detected, with 60, 46 and 59 of

them being associated with GLEI, GBEI and GREI, respectively.

Additionally, 26 genes related to starch synthesis or endosperm

development were found to be located around these QTNs/QEIs.

Further haplotype and expression pattern analyses led to the

identification of five candidate genes, namely LOC_Os04g53310

(OsSSIIIb), LOC_Os05g02070 (OsMT2b), LOC_Os06g04200 (wx),

LOC_Os06g12450 (OsSSIIa), and LOC_Os08g09230 (OsSSIIIa).

These findings can be instrumental in identifying genes and

conducting in-depth genetic research on CCRGE.
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SUPPLEMENTARY FIGURE 1

SNP site and its resulting mutation type in five candidate genes. The blue
boxes represent exons; the horizontal purple lines represent introns; the

white boxes represent 5’ or 3’-UTR. The direction of a white box indicates the

direction of the gene in the genome.

SUPPLEMENTARY FIGURE 2

Manhattan plots of single environment anlalyses by six methods in mrMLM R

package on GBEI (A, D), GLEI (B, E) and GREI (C, F). The horizontal dashed
lines indicate the LOD = 3.0 threshold. The left vertical axis is the -log10 (P-

value), while the right vertical axis is the LOD score for each SNP marker. Pink

dots indicate QTNs detected by more than one method. Blue dots indicate
QTNs detected by only one method.

SUPPLEMENTARY FIGURE 3

Manhattan plots of two-environment analyses by 3VmrMLM on GBEI (A, D),
GLEI (B, E) and GREI (C, F). The horizontal dashed lines indicate the LOD = 3.0

threshold. The left vertical axis is the -log10 (P-value), while the right vertical

axis is the LOD score for each SNP marker. Pink dots indicate significant
(-log10(P-value) ≥ 6.588) or suggested (-log10(P-value) < 6.588 but LOD ≥ 3).
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Genome-wide association
studies using multi-models and
multi-SNP datasets provide
new insights into pasmo
resistance in flax

Liqiang He1,2*†, Yao Sui2†, Yanru Che2†, Huixian Wang2,
Khalid Y. Rashid1, Sylvie Cloutier1* and Frank M. You1*

1Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada,
2School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University,
Haikou, China
Introduction: Flax (Linum usitatissimum L.) is an economically important crop

due to its oil and fiber. However, it is prone to various diseases, including pasmo

caused by the fungus Septoria linicola.

Methods: In this study, we conducted field evaluations of 445 flax accessions

over a five-year period (2012–2016) to assess their resistance to pasmo A total of

246,035 single nucleotide polymorphisms (SNPs) were used for genetic analysis.

Four statistical models, including the single-locus model GEMMA and the multi-

locus models FarmCPU, mrMLM, and 3VmrMLM, were assessed to identify

quantitative trait nucleotides (QTNs) associated with pasmo resistance.

Results: We identified 372 significant QTNs or 132 tag QTNs associated with

pasmo resistance from five pasmo resistance datasets (PAS2012–PAS2016 and

the 5-year average, namely PASmean) and three genotypic datasets (the all SNPs/

ALL, the gene-based SNPs/GB and the RGA-based SNPs/RGAB). The tag QTNs

had R2 values of 0.66–16.98% from the ALL SNP dataset, 0.68–20.54%from the

GB SNP dataset, and 0.52–22.42% from the RGAB SNP dataset. Of these tag

QTNs, 93 were novel. Additionally, 37 resistance gene analogs (RGAs)co-

localizing with 39 tag QTNs were considered as potential candidates for

controlling pasmo resistance in flax and 50 QTN-by-environment interactions

(QEIs) were identified to account for genes by environmental interactions. Nine

RGAs were predicted as candidate genes for ten QEIs.

Discussion: Our results suggest that pasmo resistance in flax is polygenic and

potentially influenced by environmental factors. The identified QTNs provide

potential targets for improving pasmo resistance in flax breeding programs. This

study sheds light on the genetic basis of pasmo resistance and highlights the

importance of considering both genetic and environmental factors in breeding

programs for flax.
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Introduction

Flax (Linum usitatissimum L.) is a valuable economic crop that

provides linseed and stem fiber to humans (Singh et al., 2011; You

et al., 2017). However, flax production is often constrained by

pasmo, a disease caused by the fungus Septoria linicola, which

reduces seed yield and fiber quality (Halley et al., 2004; He et al.,

2018; Islam et al., 2021). The fungus infects flax from the seedling to

the ripening stages. At the flowering stage, despite the application of

fungicide, susceptible varieties have been reported to experience up

to a 75% seed yield loss (Hall et al., 2016; Islam et al., 2021).

Therefore, developing resistant varieties is a cost-effective and

environmentally-friendly approach to protect flax from pasmo

and its effects on yield.

Disease resistance in plants is typically quantitatively inherited

and influenced by the environment. It is primarily governed by

major resistant genes called R genes, which have been the topic of

many studies (Marone et al., 2013; Yang et al., 2017). Most cloned R

genes in plants belong to the nucleotide-binding site-leucine-rich

repeat domain (NBS-LRR) class, also known as NLRs. For example,

a cluster of NLR receptor-encoding genes confers durable resistance

to Magnaporthe oryzae in rice (Deng et al., 2017), and the rp1 gene

in maize and its homolog in barley confer race-specific resistance to

rust fungal diseases (Collins et al., 1999; Ayliffe et al., 2000).

Receptor like kinase (RLK) genes also account for a significant

proportion of R genes. For instance, the RLK-encoding barley Rpg1

gene confers resistance to stem rust (Brueggeman et al., 2002), and

rice Pi-d2 gene confers resistance against rice blast (Chen et al.,

2006). Transmembrane coiled-coil proteins (TM-CC) are another

essential type of R gene-encoded proteins. The Rph3 gene,

originating from wild barley, is a TM-type R gene that encodes a

protein that differs from all known plant disease resistance proteins

and can significantly enhance barley leaf rust resistance (Dinh et al.,

2022). The mutation-induced recessive mlo allele of the barley Mlo

gene also encodes a TM domain protein, and confers broad-

spectrum resistance to the fungal pathogen Erysiphe graminis

(Buschges et al., 1997). Resistance gene analogs (RGAs) are key

resistance gene candidates and have been well-characterized in flax

(Sekhwal et al., 2015; You et al., 2018b). A total of 1327 RGAs have

been categorized into 11 types: RLK (receptor-like protein kinase),

TM-CC (transmembrane coiled-coil protein), RLP (receptor-like

protein), TNL (TIR-NBS-LRRs), TX (TIR-unknown), NL (NBS-

LRR), CNL (CC-NBS-LRR), TN (TIR-NBS), NBS (NBS domain

only), CN (CC-NBS), and OTHERS.

Genome-wide association studies (GWAS) have emerged as a

powerful and efficient approach for unraveling the genetic basis of

complex traits in flax. Compared to traditional linkage mapping,

GWAS can achieve higher resolution and more accurate mapping of

quantitative trait nucleotides (QTNs) (He et al., 2018; You et al., 2018a;

Soto-Cerda et al., 2021; You et al., 2022). However, GWAS has some
Frontiers in Plant Science 02219
limitations, including a higher risk of false-positive associations and a

lower effectiveness in detecting quantitative trait loci (QTL) associated

with rare alleles than biparental populations. Single-locus GWAS

models, such as GEMMA and MLM, have proven to be effective in

controlling spurious associations using the stringent Bonferroni

correction but they are not suited to detecting minor QTL (Yu et al.,

2006; Zhou and Stephens, 2012). To enhance the power of polygenic

loci detection, multi-locus GWASmodels have been developed (Segura

et al., 2012; Zhang et al., 2019b). For instance, FarmCPU improves

statistical power and reduces confounding associations (Liu et al.,

2016), and mrMLM increases power, reduces the false positive rate,

and has a shorter running time (Wang et al., 2016). However, these

models do not fully assess the effects of QTN-by-environment

interactions (QEIs) and QTN-by-QTN interactions (QQIs). To

address these, a new multi-locus GWAS model called 3VmrMLM

was proposed (Li et al., 2022b). This model estimates the genetic effects

of three marker genotypes (AA, Aa and aa) while controlling all

possible polygenic backgrounds. It is designed to detect QEIs and

QQIs. Our previous study has shown that pasmo resistance in flax is

controlled by polygenes (He et al., 2018). However, the small

proportion of resistant accessions in the original core collection was

limiting and additional research is warranted to detect main-effect

QTNs and their corresponding causal genes. Furthermore, the QEIs

associated with flax pasmo resistance are still largely unknown.

Therefore, the newly released 3VmrMLM model to identify main-

effect QTNs and QEIs is expected to improve our understanding of

pasmo resistance in flax towards the better design of breeding solutions.

Our previous study has identified a total of 500 QTL associated

with pasmo resistance in flax, including 67 stable and large-effect

QTL and many additional small effect and environment-specific

QTL (He et al., 2018). Here only 8.3% of the flax core collection was

found to be resistant or moderately resistant to pasmo, based on the

average pasmo severity over five consecutive years (2012–2016). To

increase the proportion of resistant lines in the collection while

simultaneously improving genetic diversity, 75 sequenced breeding

lines were added to the core collection. Pasmo resistance data for

these new lines, were collected between 2012 and 2016, alongside

data from the existing 370 original accessions of the flax core

collection (You et al., 2022; Zheng et al., 2023).

To gain a deeper understanding of pasmo resistance in flax at

the genetic level, we conducted a GWAS on a diverse panel of 445

flax accessions, which included 370 accessions of the core collection

and 75 selected breeding lines (SBLs). Compared to GWAS that use

all SNPs (ALL) as genotypic data, gene-based SNPs (GB) and RGA-

based SNPs (RGAB) GWAS have demonstrated higher power and

resolution in QTL detection and candidate gene identification

(Zhang et al., 2021; You et al., 2022). Thus, three genotypic

datasets consisting of 246,035 SNPs (ALL), 65,147 SNPs within

genes (GB), and 3,510 SNPs within RGAs (RGAB) were used in the

analysis, along with four different GWAS models. These models
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included one single-locus model (GEMMA) and three multi-locus

models (FarmCPU, mrMLM, and 3VmrMLM), employed to detect

quantitative trait nucleotides (QTNs) and QTN-by-environment

interactions (QEIs) associated with pasmo resistance across five

individual years (2012–2016). Our goal was to identify potential

candidate genes conferring pasmo resistance in flax.
Materials and methods

Genetic panel for GWAS

A genetic panel of 445 flax accessions was used for GWAS. The

panel included 370 accessions from the flax core collection, which

was previously assembled from a worldwide collection of 3,378 flax

accessions (Diederichsen et al., 2012; Soto-Cerda et al., 2013; He

et al., 2018), and 75 breeding lines that were selected based on their

resistance to pasmo, Fusarium wilt and powdery mildew diseases

(You et al., 2022). The flax core collection included accessions from

11 geographical origins, and were classified based on their

morphotype into 80 fibre and 290 linseed accessions. This panel

included 17 landraces, 85 breeding lines, 232 cultivars, and 36

accessions of unknown improvement status (Figure 1A) (You et al.,

2017). By adding the 75 SBLs to the core collection, the statistical

power of the GWAS was increased. This diverse genetic panel

allows for a more comprehensive analysis of the genetic variation
Frontiers in Plant Science 03220
within flax, and can provide insights into the genetic basis of

resistance to pasmo disease and other traits of interest.
Phenotyping of pasmo resistance and
statistical analysis

The 445 accessions of the diversity panel were evaluated for field

resistance to pasmo over a period of five years (2012–2016) at

Agriculture and Agri-Food Canada, Morden Research and

Development Center’s farm in Morden, Manitoba, Canada. A

Type-2 modified augmented design (MAD2) was employed for

the field experiments as described by You et al. (2017). The seeds

were sown in mid-May each year, and 30-centimeter tall flax plants

were inoculated with approximately 200 grams of pasmo-infected

chopped straw from the previous growing season. To ensure disease

infection and development, a spray system was operated for 5

minutes every half hour for 4 weeks.

Pasmo resistance was evaluated at the early brown boll stage

(21–30 days after the flowering) by assessing the leaves and stems

of all plants (~300) in a single row plot using a pasmo severity

scale of 0–9. Ratings of 0–2 were classified as resistant (R), 3–4 as

moderately resistant (MR), 5–6 as moderately susceptible (MS),

and 7–9 as susceptible (S). Pasmo severity data were recorded for

five individual years (PAS2012, PAS2013, PAS2014, PAS2015, and

PAS2016). These five datasets and the five-year average
A

B C

FIGURE 1

Geographic distribution and phenotyping for pasmo resistance in flax accessions. (A) Geographic distribution of 445 flax accessions. (B) Distribution
and correlation matrix of pasmo severity in five consecutive years (2012–2016), mean, BLUP and BLUE pasmo severity over years. *** indicates
significant correlation at the 0.1% probability level. (C) Violin plot of pasmo severity for the 80 fibre and 290 linseed accessions of the core collection
and the 75 selected breeding lines. PAS2012, PAS2013, PAS2014, PAS2015, PAS2016, PASmean, PASBLUP and PASBLUE represent pasmo severity
datasets for 2012, 2013, 2014, 2015, 2016, the 5-year average, the best linear unbiased prediction values and the best linear unbiased estimation
values of pasmo severity over five years. *** and **** indicate statistical significance at the 0.1% and 0.01% probability level, respectively.
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(PASmean) were used as the phenotypic data for all analyses in

this study.

To account for environmental variation, the R package lme4

was used to generate the best linear unbiased prediction (BLUP)

and best linear unbiased estimate (BLUE) datasets for the pasmo

severity of the five years (Bates et al., 2015). A mixed linear model

that treated accessions and years as random effects was used to

calculate the BLUP values, while another mixed linear model that

treated accessions as fixed effects and years as random effects was

employed to obtain the BLUE values. The R package

PerformanceAnalytics was used to analyze the correlations

between the pasmo severity datasets, and to generate histograms

and scatter plots (https://cran.r-project.org/web/packages/

PerformanceAnalytics/index.html).
Re-sequencing for SNP discovery of the
diversity panel

Genome re-sequencing was performed to obtain the genetic

variation of 445 flax accessions. As previously described in He et al.

(2018), the Illumina HiSeq 2000 platform (Illumina Inc., San Diego,

USA) was used to generate 100-bp paired-end reads with an average

coverage of ~15.5X of the reference genome. All raw reads were

mapped to the flax reference genome using the BWA v0.6.1

mapping tool with a base-quality Q score in Phred scale > 20 and

other default parameters (Jo and Koh, 2015). The mapped files were

processed using SAMtools and an improved AGSNP pipeline for

SNP calling (Li et al., 2009; You et al., 2011; You et al., 2012). The

detected SNPs were further filtered with a minor allele frequency

(MAF) > 0.05 and a SNP genotyping call rate ≥ 60% using PLINK

(https://zzz.bwh.harvard.edu/plink/). After linkage disequilibrium

(LD) filtering with pairwise correlation coefficients (r2) among

neighboring SNPs within 200kb > 0.8 and Beagle imputation with

default parameters (Browning and Browning, 2007), a total of

246,035 high-quality SNPs were retained for further analysis. The

genetic variant annotation and functional effect prediction of each

SNP were characterized by snpEff software (Cingolani et al., 2012)

based on the reference genome and corresponding annotation (You

et al., 2018b).
Population structure analysis

To dissect the genetic structure and variation of the 445 flax

accessions, principal component analysis (PCA) was performed

using the obtained high-quality SNPs. The analysis was carried out

with the PLINK software (Elhaik, 2022). For the SNP-based

phylogenetic analysis, MEGA-CC was employed, using a pairwise

gap deletion method for 1,000 bootstrap replicates (Kumar et al.,

2012). The resulting phylogenetic tree was visualized using the

Interactive Tree of Life (iTOL) tool (Letunic and Bork, 2021). The

population stratification was estimated using ADMIXTURE

(Alexander et al., 2009). The genome-wide LD decay was assessed

using PopLDdecay v3.42 software to the squared correlation

coefficient (r2) between SNPs (Zhang et al., 2019a).
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Genome-wide association study

The GWAS analysis for pasmo resistance was conducted using

the five individual year (PAS2012, PAS2013, PAS2014, PAS2015,

and PAS2016) and the five-year average (PASmean) datasets with

four GWAS models. The models used included the single-locus

model GEMMA and the multi-locus models FarmCPU (Liu et al.,

2016), mrMLM (Wang et al., 2016) and 3VmrMLM (Li et al.,

2022b). The kinship matrices were estimated using the protocol

suggested by each GWAS software package. The genotypic data for

the association panel comprised 246,035 high-quality SNPs (ALL)

obtained from 445 flax accessions. Of these, the 65,147 SNPs that

mapped to the genic regions constituted the gene-based (GB) SNP

dataset, and the 3,510 SNPs that mapped to RGAs formed the RGA-

based (RGAB) SNP dataset. These datasets were used in sequential

analyses. The GEMMA software and R package GAPIT were

employed to detect QTNs using default settings (Zhou and

Stephens, 2012; Wang and Zhang, 2021). The R package mrMLM

was applied to detect QTNs using parameters SearchRadius = 20,

CriLOD = 3, and Bootstrap = FALSE (Zhang et al., 2020). The R

package IIIVmrMLM implementing the 3VmrMLM model was

used to detect main-effect QTNs and the QEIs (Li et al., 2022a). For

the detection of the main-effect QTNs, the R package IIIVmrMLM

was used with the following parameters: method = “Single_env”,

SearchRadius = 20, and svpal = 0.01. For QEI detection, the

parameters used were method = “Multi_env”, SearchRadius = 20,

and svpal = 0.01. The association signals of the 3VmrMLM model

were detected using a LOD score ≥ 3 (Li et al., 2022a). The threshold

of significant association of GEMMA and FarmCPU was

determined using a critical P-value at the 5% significant level that

was subjected to Bonferroni correction (P-value = 2.03 × 10−7 for

the ALL dataset, P-value = 7.67 × 10−7 for the GB dataset, and P-

value = 1.42 × 10−5 for the RGAB dataset). Manhattan plots were

generated using the IIIVmrMLM package with default settings.
QTN identification, candidate gene
prediction, allele and haplotype analysis

In order to identify QTNs associated with pasmo resistance in

flax, a GWAS was performed using individual year datasets

(PAS2012–PAS2016) and a five-year average dataset (PASmean)

in combination with the ALL, GB and RGAB genotypic datasets.

QTNs detected in different genotypic datasets were analyzed

independently and common QTNs were identified based on

detection by two or more models or detection in two or more

phenotypic datasets. Mann-Whitney U tests were used to validate

significant differences between QTN alleles associated with pasmo

severity. The significant QTNs were represented by tag QTNs for

downstream analyses. R2 values were calculated to determine the

proportion of total variation explained by the pasmo resistance

associated QTNs/QEIs. A total of 1,327 RGAs have previously been

identified in the flax reference genome (You et al., 2018b). The co-

localized RGAs within an estimated 4 kb distance of the averaged

whole genome LD decay and local LD block defined flanking
frontiersin.org
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regions of the detected QTNs/QEIs were considered as candidate

genes. LDBlockShow v1.40 (Dong et al., 2021) was utilized to

estimate the local LD block regions on the chromosomes. For

allele analysis, the single SNP with HIGH functional effect

prediction on the coding region (CDS) of each candidate gene

were selected and tested for significant differences in pasmo severity

using the Wilcox non-parametric test at the 5% probability level.

Likewise, for haplotype analysis, all the SNPs within each candidate

gene that were predicted with HIGH or MODERATE functional

effect were considered. Subsequently, these SNPs underwent testing

using the Wilcox non-parametric test at the 5% probability level to

identify significant differences. A SNP with a HIGH functional

effect prediction is assumed to have a disruptive impact on the

protein, while a SNP with a MODERATE functional effect

prediction is expected to be non-disruptive but could possibly

change the protein’s effectiveness.
Results

Evaluation of pasmo resistance

Pasmo resistance was evaluated in 445 flax accessions over five

consecutive years (PAS2012–PAS2016). The geographic

distribution and morphotypes of these accessions are shown in

Figure 1A. Correlation coefficients were calculated among PAS2012,

PAS2013, PAS2014, PAS2015, PAS2016, PASmean, pasmo best

linear unbiased prediction (PASBLUP) and pasmo best linear

unbiased estimation (PASBLUE) datasets, and ranged from 0.33

to 1.00, with the highest correlation observed between PASmean

and PAS2014 (r = 0.83) (Figure 1B). PASmean was further analyzed

due to its almost identical correlation coefficients with PASBLUP

and PASBLUE (r = 1.00). The coefficient of variation (CV) of

PAS2012–PAS2016 and PASmean datasets ranged from 24.17% to

39.24% (Supplementary Table S1). Significant differences in pasmo

severity were observed between linseed, fibre accessions, and SBLs

in this flax genetic panel. High resistance (low severity) to pasmo

was observed in the 75 SBLs compared to the 370 accessions from

the flax core collection (Figure 1C). The average pasmo severity

over five years was 6.56 ± 1.05 for the 290 linseed accessions, 4.98 ±

1.50 for the 80 fibre accessions, and 4.13 ± 1.35 for the 75 breeding

lines (Figure 1C). The data distribution and correlation analysis

indicated that resistance against pasmo in flax is controlled by

polygenes and potentially genetic by environment interactions.
Population structure

To analyze the genetic structure of the 445 flax accessions, a

population structure analysis was performed using the ALL SNP

dataset of 246,035 SNPs. The results indicated the 445 accessions

were divided into five populations (Figure 2A). Population one

consisted of 19 linseed accessions and 75 SBLs; population two was

composed of 67 fibre accessions and 51 linseed accessions;

population three contained 11 fibre accessions and 72 linseed

accessions; population four comprised 39 linseed accessions, while
Frontiers in Plant Science 05222
population five consisted of only two fibre accessions and 109

linseed accessions. PCA and phylogenetic analysis by neighbor-

joining (NJ) (Chen et al., 2014) also showed identical classification

of the flax genetic panel into five groups (Figures 2B–D and

Supplementary Figure S1). Therefore, a population structure Q

matrix with K = 5 was adopted for downstream GWAS analyses.

The linkage disequilibrium (LD) analysis showed that the LD

decayed rapidly before 4 kb and subsequently became flat for this

flax genetic panel (Figure 2E). Therefore, the 4 kb flanking region of

each QTN was used for putative candidate gene prediction in

subsequent analyses.
Identification of QTNs associated with
pasmo resistance

A total of 372 significant QTNs were identified using six pasmo

resistance datasets (PAS2012–PAS2016 and PASmean) and three

genotypic datasets (ALL, GB and RGAB) using the single-locus

model GEMMA and the multi-locus models FarmCPU, mrMLM

and 3VmrMLM (Figure 3 and Supplementary Table S2). When the

ALL genotypic dataset was used, 3VmrMLM detected the most

QTNs (149), followed by mrMLM (89), FarmCPU (25), and

GEMMA (4) (Table 1). Forty-seven QTNs were detected by both

3VmrMLM and mrMLM, two by 3VmrMLM, mrMLM, and

FarmCPU, and another two by mrMLM, FarmCPU, and

GEMMA (Figure 3A). Only one QTN (QTN-Lu4-14738243) was

detected in three out of the six phenotypic datasets (PAS2012–

PAS2016 and PASmean) (Figure 3B and Supplementary Table S2).

For the GB genotypic dataset, 3VmrMLM detected the most

QTNs (105), followed by mrMLM (90), and GEMMA detected a

single QTN (Table 1). Among these, 67 were detected by both

3VmrMLM and mrMLM, four by 3VmrMLM, mrMLM, and

FarmCPU, and one by mrMLM, FarmCPU, and GEMMA

(Figure 3C). Moreover, the same common QTN (QTN-Lu4-

14738243) was detected in three out of the six phenotypic

datasets (Figure 3D and Supplementary Table S2).

Similarly, 3VmrMLM detected the most QTNs (55) in the

RGAB genotypic dataset, followed by mrMLM (28), FarmCPU

(10), and GEMMA (2) (Table 1). Interestingly, QTN-Lu10-

11656889 was detected by all four models (Figure 3E and

Supplementary Table S2). Besides, three common QTNs (QTN-

Lu8-23634276, QTN-Lu10-11656889, and QTN-Lu15-14719354)

were detected in three out of six phenotypic datasets (Figure 3F and

Supplementary Table S2). Notably, QTN-Lu14-2333894 was

detected by all three genotypic datasets (Supplementary Figure

S2A and Supplementary Table S2).

In summary, 3VmrMLM detected the highest number of total

QTNs and common QTNs in the six phenotypic datasets regardless

of the genotypic dataset. The largest number of QTNs detected in

multiple environments (three out of six phenotypic datasets) was

identified using the RGAB genotypic dataset.

All significant QTNs were evaluated for consistency across

multiple phenotypic datasets and models, and those detected in ≥

two datasets or ≥ two models were retained for further analysis. A

total of 55, 80, and 32 QTNs were thus identified from the ALL, GB,
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and RGAB genotypic datasets, respectively (Supplementary Table

S2). In agreement with the total number of QTNs detected, the

majority of the retained QTNs were detected by 3VmrMLM across

all three genotypic datasets, with 52 QTNs in ALL, 75 QTNs in GB,

and 32 QTNs in RGAB (Table 1 and Supplementary Table S2).

Allelic test of significance for these QTNs were performed using the

Mann-Whitney U test for the dataset from which the QTNs were

detected. A total of 82 non-significant QTNs (U test at the 5%

probability level) were removed, leaving 132 significant QTNs used

as tag QTNs in subsequent analyses (Figure 4 and Supplementary

Tables S2, S3). The majority of the tag QTNs were detected by

3VmrMLM across all three genotypic datasets, with 41 in ALL, 62 in

GB, and 30 in RGAB (Table 1). The R2 values of the 132 tag QTNs

ranged from 0.52% to 22.42% (Table 1 and Supplementary Table
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S3), and varied across the four models due to the differences in

statistical models. For example, the R2 of 3VmrMLM-detected tag

QTNs in the ALL genotypic dataset ranged from 0.66% to 16.98%,

while the R2 of GEMMA-detected tag QTNs ranged from 1.11% to

10.00%. Similar results were observed in the GB and RGAB

genotypic datasets (Table 1). Of note, eight tag QTNs were

identified in both ALL and GB genotypic datasets, and explained

1.06% to 12.72% of the total variation for pasmo severity

(Supplementary Table S3 and Supplementary Figure S2B). The

position of all tag QTNs for pasmo severity are illustrated on a

CIRCOS map (Figure 4). A total of eight tag QTNs were considered

large-effect QTNs, i.e., R2 ≥ 10% (Table 2 and Supplementary Table

S4). Based on these QTNs, significant negative correlations were

observed between the number of favorable alleles (NFAs) in an
A

B
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C

FIGURE 2

Population structure of 445 flax accessions. (A) Population structure estimated by ADMIXTURE. (B, C) Scatter plots of the first three principal
components (PCs) of 445 flax accessions. (D) Phylogenetic analysis of 445 flax accessions based on 246,035 single nucleotide polymorphisms
(SNPs). Accessions of clades one, two, three, four and five are indicated in blue, green, yellow, mauve and red, respectively. (E) Genome-wide LD
decay analysis of the genetic panel.
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accession and the six pasmo severity datasets (PAS2012–PAS2016

and PASmean) (r = −0.39 ~ −0.71) (Supplementary Figure S3A–F),

with the strongest correlation observed in the PASmean dataset

(r = −0.71) (Supplementary Figure S3F).
Candidate genes for pasmo resistance

To identify the genes putatively involved in pasmo resistance in

flax, we scanned resistance gene analogs (RGAs) within the

estimated 4 kb flanking region of the QTNs identified from the

ALL genotypic dataset, and identified the tag QTNs located within
Frontiers in Plant Science 07224
RGAs as candidate genes for the QTNs identified from the GB or

RGAB genotypic dataset. The 37 RGAs that co-localized with 39 tag

QTNs were considered candidates for pasmo resistance in flax

(Supplementary Table S4). These RGAs were mainly classified into

eight types, including receptor-like protein (RLP), receptor-like

kinase (RLK), TIR-NBS-LRRs (TNL), TIR-unknown (TX), NBS-

LRR (NL), TIR-NBS (TN), transmembrane-coiled coil protein

(TM-CC), CC-NBS-LRR (CNL), and others. The majority of

these RGAs were RLK (19) followed by TM-CC (5) (Figure 5).

Out of the 132 tag QTNs, QTN-Lu10-11656889 was identified by

four models from the RGAB genotypic dataset, and explained 22.42%

of the total variation. This QTN was located within the NL gene
A B

D

E F

C

FIGURE 3

Venn diagrams of QTNs detected using four GWAS models (GEMMA, FarmCPU, mrMLM, and 3VmrMLM) for the three single nucleotide
polymorphism (SNP) datasets: ALL (A), GB (C), and RGAB (E), and QTNs detected using six different phenotypic datasets (PAS2012–PAS2016 and
PASmean) for the three SNP datasets: ALL (B), GB (D), and RGAB (F). ALL, all SNPs; GB, gene-based SNPs; RGAB, resistance gene analog (RGA)
-based SNPs.
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TABLE 1 Comparison of quantitative trait nucleotide (QTN) identification for different GWAS models and genotypic datasets.

Statistical
model

Genotypic
dataset

NO. of detected
QTNs

NO. of common QTNs by models
or datasets

NO. of non–
significant QTNs

NO. of tag
QTNs

R2 range
(%)

GEMMA ALL 4 2 0 2 1.11–10.00

FarmCPU ALL 25 6 0 6 1.11–12.11

mrMLM ALL 89 51 10 41 0.66–12.72

3VmrMLM ALL 149 52 12 41 0.66–16.98

GEMMA GB 1 1 0 1 1.11

FarmCPU GB 17 8 1 7 1.11–13.30

mrMLM GB 90 74 12 62 0.68–20.54

3VmrMLM GB 105 75 13 62 0.68–20.54

GEMMA RGAB 2 2 0 2 9.34–22.42

FarmCPU RGAB 10 9 2 7 0.54–22.42

mrMLM RGAB 28 25 4 23 0.52–17.40

3VmrMLM RGAB 55 32 3 30 0.52–17.40
F
rontiers in Plant S
cience
 08225
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ALL, all SNPs: GB, gene SNPs: RGAB, resistance gene analog (RGA) based SNPs.
FIGURE 4

Circos map of quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) for pasmo severity in flax. Track A: 15 flax
chromosomes. Track B: Heatmap of SNP density with bin sizes of 0.1 Mb for the ALL dataset (246,035 SNPs). Track C: Heatmap of SNP density with
bin size of 0.1 Mb for the GB dataset (65,147 SNPs). Track D: Heatmap of SNP density with bin size of 0.1 Mb for the RGAB dataset (3,510 SNPs).
Track E: QTNs detected using four statistical models: GEMMA, FarmCPU, mrMLM, and 3VmrMLM. Track F: QTNs identified using all four statistical
models. Track G: QEIs detected using the 3VmrMLM model. ALL, all SNPs; GB, gene-based SNPs; RGAB, resistance gene analog (RGA)-based SNPs.
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Lus10032759 (Supplementary Figure S4A and Supplementary Table

S4) which had four haplotypes Hap1 (AAAA, n = 336), Hap2

(TTAA, n = 18), Hap3 (TTGG, n = 89), and Hap4 (AAGG, n = 2)

(Figure 6A). Significant differences in pasmo severity were observed

between accessions with the Hap1 and Hap3 in all six phenotypic

datasets, with accessions carrying Hap3 exhibiting lower pasmo

severity than those carrying Hap1 (Figure 6A). QTN-Lu5-1715943

also had a relatively large effect (R2 = 16.77%) in the RGAB genotypic

dataset. The candidate gene for this QTN was the RLK-type RGA

Lus10008486 (Supplementary Figure S4B and Supplementary Table

S4). The accessions with Hap2 (TTGG, n = 83) showed significantly

lower pasmo severity than those with Hap1 (TTAA, n = 333), Hap3

(GGGG, n = 26), and Hap4 (GGAA, n = 3), again in almost all six

phenotypic datasets (Figure 6B) In addition, the TM-CC type RGA

Lus10025565, identified by the QTN-Lu14-2333894, also had a
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relatively large effect (R2 = 13.77%), as detected from the GB

genotypic dataset (Supplementary Figure S4C and Supplementary

Table S4). The pasmo severity of accessions with Hap2 (CCAA,

n = 283) was significantly different from those with other two

haplotypes, with lower pasmo severity observed in Hap2

accessions than in Hap1 (CCCC, n = 125) and Hap3 (TTAA,

n = 37) accessions (Figure 6C).
QEI detection and candidate genes

Using the 3VmrMLM model, a total of 50 QEIs underlying

pasmo resistance in flax were identified from the ALL, GB, and

RGAB genotypic datasets across the five individual year phenotypic

datasets (PAS2012–PAS2016), as shown in Figures 4, 7A–C, and
TABLE 2 Large-effect quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) detected in two genotypic datasets.

GD R2 (%) QTN/QEI Chr Pos Gene ID Annotation

RGAB 10.79 QTN-Lu4-14335180 4 14335180 Lus10041466 TM-CC

RGAB 27.34 QEI-Lu5-1569144 5 1569144 Lus10004719 TNL

RGAB 16.77 QTN-Lu5-1715943 5 1715943 Lus10008486 RLK

RGAB 13.34 QTN-Lu5-15543693 5 15543693 Lus10024053 TM-CC

RGAB 11.88 QEI-Lu5-15543693 5 15543693 Lus10024053 TM-CC

RGAB 10.07 QTN-Lu10-11256857 10 11256857 Lus10032735 RLK

RGAB 22.42 QTN-Lu10-11656889 10 11656889 Lus10032759 NL

RGAB 17.40 QTN-Lu10-11657307 10 11657307 Lus10032759 NL

RGAB 15.77 QTN-Lu12-5214501 12 5214501 Lus10018309 TN

GB 13.77 QTN-Lu14-2333894 14 2333894 Lus10025565 TM-CC
GD, genotypic dataset: Chr, chromosome: Pos, position: TM-CC, transmembrane coiled-coil protein: TNL, TIR-NBS-LRRs: RLK, receptor-like protein kinase: NL, NBS-LRR. GB, gene-based
SNPs: RGAB, resistance gene analog (RGA)-based SNPs.
FIGURE 5

Distribution of candidate resistance gene analogs (RGAs) associated with tag quantitative trait nucleotides (QTNs) and QTN-by-environment
interactions (QEIs). RLP, receptor like protein: RLK, receptor like kinase: CNL, CC-NBS-LRR: TNL, TIR-NBS-LRRs: TX, TIR-unknown: NL, NBS-LRR:
TN, TIR-NBS: TM-CC,transmembrane-coiled coil protein.
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Supplementary Table S5. Overall, 27, 18, and nine QEIs were

identified from the ALL, GB, and RGAB genotypic datasets,

respectively. Four of these QEIs were detected in both the ALL

and GB genotypic datasets: QEI-Lu1-3346281, QEI-Lu3-4320878,

QEI-Lu4-14847340, and QEI-Lu9-17104439. Notably, no QEI loci

for pasmo resistance were detected on chromosomes 8 and 15

(Supplementary Table S5).

The following four QEIs located on genes and detected from the

GB or RGAB dataset were also identified as tag QTNs: QEI-Lu5-

15543693 (R2 = 11.88%), QEI-Lu11-19819154 (R2 = 5.10%), QEI-

Lu14-2333894 (R2 = 6.01%), and QEI-Lu14-1935665 (R2 = 2.85%)

(Supplementary Table S2, S5 and Supplementary Figure S5).

The nine RGAs predicted as candidate genes for ten QEIs were

further analyzed (Supplementary Table S6 and Figure 5). The TM-CC

type RGA Lus10024053was the candidate gene for the large-effect QEI-

Lu5-15543693, with Hap1 (GGAA, n = 301), Hap2 (GGTT, n = 9),

Hap3 (AATT, n = 54), and Hap4 (AAAA, n = 81). The severity of
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pasmo infection in accessions with Hap4 was significantly lower than

that of accessions with the other three haplotypes in the PAS2012,

PAS2013, PAS2014, and PAS2016 datasets (Figure 8A; Supplementary

Figure S4D; Supplementary Table S6). Additionally, the RLK type RGA

Lus10025492 was identified as the candidate gene of QEI-Lu14-

1935665, with Hap1 (AAAA, n = 53), Hap2 (AAGG, n = 269),

Hap3 (CCGG, n = 122), and Hap4 (CCAA, n = 1). A significantly

lower pasmo severity of Hap2 was observed in PAS2013, PAS2014, and

PAS2016 compared to Hap3 (Figure 8B; Supplementary Figure S4E;

Supplementary Table S6). Similarly, the RLK RGA Lus10040160 was

identified as the candidate gene of QEI-Lu7-4573781. Lus10040160

hasHap1 (TTTT, n = 271), Hap2 (GGTT, n = 88), and Hap3 (TTCC,

n = 86), and significant differences in pasmo severity were observed

between the Hap1 and Hap3 in the PAS2013, PAS2014, and PAS2016

datasets. The pasmo resistance level of accessions with Hap3 was

significantly higher than that of accessions with Hap1 in those years

(Figure 8C; Supplementary Figure S4F; Supplementary Table S6).
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FIGURE 6

Analyses of the candidate genes Lus10032759, Lus10008486 and Lus10025565 for pasmo resistance for the five individual years and the mean over
years. (A) Haplotype and pasmo severity analysis of Lus10032759 in 445 flax accessions. (B) Haplotype and pasmo severity analysis of Lus10008486
in 445 flax accessions. (C) Haplotype and pasmo severity analysis of Lus10025565 in 445 flax accessions. Letters indicate significant differences at
the 5% probability level.
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Discussion

Comparison across GWAS models

The detection of QTNs in GWAS can vary depending on the

statistical algorithms implemented in the models. In this study,

three genotypic datasets (ALL, GB, and RGAB) were evaluated

across six phenotypic datasets for pasmo resistance. The results

showed that the 3VmrMLM model detected the most QTNs,

followed by mrMLM and GEMMA. Most of the QTNs detected

by at least two models were identified by 3VmrMLM. These

findings support previous studies indicating that multi-locus

models outperform single-locus models in QTN detection, and

suggest that 3VmrMLM high statistical power and low false positive

rate are advantageous (Cui et al., 2018; Hou et al., 2018; Zhong et al.,

2021; He et al., 2022; Li et al., 2022b; Liu et al., 2022; Yu et al., 2022;

Zhang et al., 2022).

After removing non-significant QTNs, the most tag QTNs were

also identified by 3VmrMLM, followed by mrMLM and FarmCPU.

The largest R2 ranges were also observed in 3VmrMLM identified

tag QTNs in all four models used, indicating its ability to identify

tag QTNs with either large or small effects. Taken together, the

3VmrMLM model seems a good alternative to other single-locus

and multi-locus models in GWAS. The 3VmrMLM model was

developed to effectively detect main-effect QTNs, QEIs, and QQIs

while providing unbiased estimates of their effects through an

analysis of variance (ANOVA) model. This model builds upon
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the framework of compressed variance component mixed model

(Li et al., 2022a) and presents technical improvements. One key

reason for the superior performance of the 3VmrMLM model is its

ability to consider all genetic effects in the mixed genetic model

while simultaneously controlling for all polygenic backgrounds

(Li et al., 2022a; Li et al., 2022b).
Evaluation of QTNs associated
with pasmo resistance

Flax pasmo resistance is a quantitative trait, characterized by

features of quantitative genetics. The challenge of visually

measuring the resistance prompted us to adopt the pasmo

severity scale (0–9) as a means to assess the severity of pasmo

disease symptoms in our experimental genotypes. This severity

scale provides a practical and standardized approach for

quantitatively representing pasmo disease symptoms, despite its

categorical appearance in scoring pasmo resistance. By utilizing this

scale, we were able to capture the gradation in the expression of the

trait among different genotypes, enabling a more comprehensive

evaluation of the potential genetic factors influencing pasmo

severity. Notably, this method has been commonly used for

evaluating powdery mildew resistance in flax (You et al., 2022).

Using the multiple years’ flax pasmo severity data, a total of the

132 tag QTNs were detected in this study, out of which 29 were

previously reported in a study of the flax core collection consisting of
A
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FIGURE 7

Manhattan plots for pasmo resistance associated QTN-by-environment interactions (QEIs) identified using the 3VmrMLM model for three single
nucleotide polymorphisms (SNPs) datasets: ALL (A), GB (B), and RGAB (C). Black horizontal lines in the Manhattan plots represent the genome-wide
significant threshold. The red arrows indicate the QEIs co-detected in ALL (A) and GB (B) SNP datasets. The green and blue arrows indicate the
candidate genes detected in ALL, GB, and RGAB SNP datasets. ALL, all SNPs; GB, gene SNPs; RGAB, resistance gene analog (RGA)-based SNPs.
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370 accessions that utilized the same phenotyping method (He et al.,

2018). In the aforementioned study, which focused on the 370 flax

accessions, a subset of the current study, a total of 67 QTLs with large

effects were identified by GWAS using various models, including

GLM, MLM, FarmCPU, GEMMA, mrMLM, FASTmrEMMA, ISIS

EM-BLASSO, pLARmEB, pKWmEB and FASTmrMLM models (He

et al., 2018). Furthermore, four tag QTNs (QTN-Lu8-17271798,

QTN-Lu13-2007925, QTN-Lu15-974597, and QTN-Lu13-

14282050) were found to be situated within 1.01–16.97 kb

upstream/downstream of QTLs previously reported in He et al.

(2018) (Supplementary Table S3). To identify novel QTNs and their

corresponding candidate genes associated with pasmo resistance in

flax, multi-model and multi-environment GWAS were conducted

using the ALL, GB, and RGAB genotypic datasets. A total of 31 (ALL),

49 (GB), and 27 (RGAB) novel tag QTNs were identified using 445
Frontiers in Plant Science
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flax accessions (370 core accessions and 75 SBLs), which is an

improvement compared to our previous study. Eight tag QTNs

(R2 = 1.11%–12.72%) were identified in both the ALL and GB

datasets. Additionally, one and seven out of eight large-effect QTNs

(R2 ≥ 10.00%) were identified from the GB and RGAB datasets

respectively (Table 2 and Supplementary Table S3). Among the tag

QTNs with the top five R2 (16.98%–22.42%), two, two and one tag

QTNs were identified from the GB, RGAB, and ALL datasets,

respectively (Supplementary Table S3). These results are consistent

with previous studies suggesting that using gene-based or RGA-based

SNPs for GWAS is beneficial for detecting QTNs with large effects and

predicting key candidate genes (Huang et al., 2011; Zhu et al., 2018;

Deng et al., 2020; You et al., 2022; Zhang et al., 2022). Therefore, the

use of gene-based or RGA-based SNPs for GWAS is a powerful and

efficient approach for identifying QTNs with large and small effects.
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FIGURE 8

Analyses of the candidate gene Lus10024053, Lus10025492 and Lus10040160 for pasmo resistance associated QTN-by-environment interactions
(QEIs) for the five individual years. (A) Box plot of pasmo severity of Lus10024053 haplotypes. (B) Box plot of pasmo severity of Lus10025492
haplotypes. (C) Box plot of pasmo severity of Lus10040160 haplotypes. Letters indicate significant differences at the 5% probability level.
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Candidate genes associated with pasmo
resistance and their effects on main-effect
QTNs and QEIs

Main-effect QTNs are QTNs with stable effects across different

environments, while QEIs represent loci that may be effective only

in some environments. Given the needs of global climate change

and phenotypic plasticity research, QEIs have the potential to be

exploited to dissect complex traits in future GWAS. In this study,

candidate gene prediction of QTNs and QEIs was based on well-

characterized RGAs in flax. RGAs have been identified as key

candidate genes underlying plant disease resistance in several

studies (Kassa et al., 2017; He et al., 2018; Fu et al., 2020; You

et al., 2022). A total of 37 RGAs were identified as potential

candidate genes of 39 tag QTNs and nine as candidates for ten

QEIs. They were summarized into RLK, TM-CC, and NBS-LRR

type RGAs. In general, the RLK, TM-CC, and NBS-LRR genes

account for a large proportion of R genes, playing important roles

in plant disease resistance against fungal pathogens. Well-known

examples include wheat leaf rust resistance conferred by the Lr21

(NBS-LRR) gene (Huang et al., 2003), resistance to the hemi-

biotrophic fungus Phytophthora infestans conferred by the potato

R7 (NBS-LRR) gene (Leister et al., 1996; Hammond-Kosack and

Jones, 1997), broad-spectrum mildew resistance conferred by the

Arabidopsis RPW8 (TM-CC) gene (Xiao et al., 2001), and rice blast

resistance conferred by the Pi-d2 (RLK) gene (Chen et al., 2006).

The RLK, TM-CC, and NBS-LRR type RGAs associated with pasmo

resistance in this study may contribute to a better understanding of

the genetic mechanisms underlying pasmo resistance in flax.

Furthermore, the molecular mechanisms of these candidate genes

warrant further validation.
Breeding applications of pasmo resistance
associated QTNs

The present study revealed significant differences in pasmo

resistance levels between linseed, fibre accessions, and SBLs

within a flax genetic panel. Interestingly, 75 SBLs exhibited higher

pasmo resistance levels than the flax core collection, which included

370 accessions (Figure 1C). Moreover, the number of favorable

alleles (NFA) in fibre accessions was greater than in linseed

accessions, and fibre accessions with more favorable alleles were

found to be more resistant to pasmo than linseed accessions

(Supplementary Figure S6), as demonstrated in a previous study

(He et al., 2018). Flax have obtained commercial importance due to

the utilization of the stem for high quality fiber (Oomah, 2001; You

et al., 2019; Rahman and Hoque, 2023). One of the major objectives

in the fiber flax breeding program is to improve fiber yield and

quality (Galinousky et al., 2020; Rahman and Hoque, 2023). The

productivity of fiber flax is severely affected by devastating fungal

disease pasmo, which causes yield loss and fiber quality reduction

(Yadav et al., 2022). Therefore, the 75 SBLs represent valuable

genetic resources for improving pasmo resistance in elite varieties

through direct hybridization.
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Negative correlations were observed between the NFA and

pasmo resistance of the five-year pasmo severity (PAS2012–

PAS2016) and PASmean datasets in Supplementary Figure S3A–F

(r = −0.39 ~ −0.71), with the highest correlation found in the

PASmean dataset (r = −0.71). This additive effect of identified tag

QTNs suggests that accessions carrying more favorable alleles are

suitable for high pasmo resistance breeding through the pyramiding

of loci. For example, SBL 8031 had 17 favorable alleles (PASmean =

2.2), SBL 8040 had 17 favorable alleles (PASmean = 2.4), and SBL

8032 had 18 favorable alleles (PASmean = 2.4).

Although large-effect tag QTNs, such as QTN-Lu10-11656889

(R2 = 22.42%) and QTN-Lu12-2992110 (R2 = 16.68%), may be

available for improving pasmo resistance through marker-assisted

selection (MAS), several tag QTNs with small effects would be

better captured through genomic prediction/selection with the aim

to transform flax breeding from a slow and labor-intensive mode

into an efficient and accurate one. The breeding values of complex

traits, such as pasmo resistance, are predicted by cross-validated

models, which are an alternative strategy to MAS (Lipka et al., 2015;

Poland and Rutkoski, 2016; He et al., 2019; You et al., 2022).

Marker-assisted backcrossing and genomic selection/prediction

strategies have already significantly enhanced disease resistance in

many crops (Buerstmayr et al., 2008; Buerstmayr et al., 2009; Poland

and Rutkoski, 2016; Crossa et al., 2017; He et al., 2019; Xu

et al., 2021).

The QEI loci identified in this study constitute an alternative

genetic information for improving flax pasmo disease, specifically to

cope with environmental changes. These QEI loci can be useful for

predicting the performance of flax varieties in specific

environments. By identifying specific genetic markers associated

with QEI loci, breeders can develop flax varieties that are better

adapted to specific environmental conditions. The combined

utilization of pasmo resistance-associated QTNs and QEIs holds

the promise of driving the molecular breeding of flax with broad-

spectrum and durable resistance against Septoria linicola.
Conclusion

Our study demonstrates that pasmo resistance in flax is a

complex trait, controlled by multiple genes, and influenced by

gene-environment interactions. The 3VmrMLM model, which

detected more QTNs and QEIs, is a promising alternative to

other multi-locus GWAS models. Gene-based and RGA-based

SNPs as genotypic datasets in GWAS proved to be efficient for

identifying QTNs with both large and small effects and predicting

candidate genes. Our research identified 372 significant QTNs and

50 QEIs, providing potential targets for improving pasmo resistance

in flax breeding programs. Furthermore, we identified 37 RGAs for

39 tag QTNs and nine RGAs for ten QEIs, suggesting the potential

involvement of RLK, TM-CC, and NBS-LRR genes in pasmo

resistance. Our findings on gene–environment interactions can

guide breeding strategies that account for environmental factors.

The 50 QEI loci identified in our study can help improve our

understanding of the genetic mechanisms involved in pasmo
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resistance and its interactions with environmental factors,

ultimately leading to the development of more resilient and better

adapted flax varieties. Our study has important implications for the

sustainable production of flax and provides valuable information

for developing improved flax varieties with enhanced pasmo

resistance, which is critical for ensuring the long-term viability of

this important oil and fiber crop. The large-effect QTNs and

candidate genes identified in this study can be used as molecular

markers for marker-assisted selection in future studies to accelerate

the breeding process for pasmo-resistant flax varieties.
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Introduction: Ordinal traits are important complex traits in crops, while

genome-wide association study (GWAS) is a widely-used method in their gene

mining. Presently, GWAS of continuous quantitative traits (C-GWAS) and single-

locus association analysis method of ordinal traits are the main methods used for

ordinal traits. However, the detection power of these two methods is low.

Methods: To address this issue, we proposed a new method, named MTOTC, in

which hierarchical data of ordinal traits are transformed into continuous

phenotypic data (CPData).

Results: Then, FASTmrMLM, one C-GWAS method, was used to conduct GWAS

for CPData. The results from the simulation studies showed that, MTOTC

+FASTmrMLM for ordinal traits was better than the classical methods when

there were four and fewer hierarchical levels. In addition, when MTOTC was

combined with FASTmrEMMA, mrMLM, ISIS EM-BLASSO, pLARmEB, and

pKWmEB, relatively high power and low false positive rate in QTN detection

were observed as well. Subsequently, MTOTC was applied to analyze the

hierarchical data of soybean salt-alkali tolerance. It was revealed that more

significant QTNs were detected when MTOTC was combined with any of the

above six C-GWAs.

Discussion: Accordingly, the new method increases the choices of the GWAS

methods for ordinal traits and helps to mine the genes for ordinal traits in

resource populations.

KEYWORDS

ordinal trait, genome-wide association study, salt-alkali tolerance, soybean,
hierarchical data
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1 Introduction

The hierarchical data (HData), phenotypic data for ordinal

traits, is commonly used to describe many important traits in

crop germplasm resources. This includes count data for

quantitative traits and hierarchical data for resistance traits, such

as the number of main stem nodes (Chang et al., 2018), the number

of branches (Shim et al., 2019), and disease resistance (Megerssa

et al., 2020). Ordinal traits are important in crop breeding and have

a considerable impact on crop yield and quality. Genome-wide

association studies (GWAS) for ordinal traits can further promote

the mining of relevant excellent genes, which plays a key role in

molecular design breeding and gene cloning. Cuevas et al. (2018)

divided the degree of infection of anthracnose-inoculated sorghum

leaves into five levels and identified three loci for anthracnose

resistance in chromosome 5 using the GWAS methods. Chang

et al. (2018) detected three loci significantly associated with “the

number of nodes on the main stem” in 368 soybean cultivars with

62,423 SNPs. Meanwhile, Shim et al. (2019) identified five

quantitative trait nucleotides (QTNs) for soybean branch number

via GWAS and linkage analysis and mined a candidate

gene Glyma.06g210600.

Ordinal traits are discrete traits that are controlled by multiple

genes. However, their phenotypic data is hierarchical and non-

continuous and contains relatively limited information;

accordingly, GWAS for ordinal traits is more complex than that

for continuous quantitative traits. The threshold model represents a

reasonable method for the genetic analysis of ordinal traits, and

most association mapping methods are developed under this

framework (Xu et al., 2005; Osval et al., 2015). Generalized linear

model is based on the threshold model and link phenotypic data

with latent variables through a link function. They are widely used

for genetic analysis of ordinal traits and can deal with non-normal

data (Feng et al., 2013; Song et al., 2016; Wang et al., 2018). The

logistic regression model is another classical way for dealing with

association studies of ordinal traits (Tan et al., 2007; Hoggart et al.,

2008; Wu et al., 2009; Jiang et al., 2021). When sample size is

limited, the application of a set-valued (SV) system model can

improve the statistical power and the accuracy of parameter

estimation (Bi et al., 2015). Bayesian and maximum likelihood

methods are both widely used for parameter estimation in GWAS

(Xu et al., 2005; Hoggart et al., 2008; Wang et al., 2018), while

several studies have also employed non-parametric methods for

association analysis of ordinal traits (Sun et al., 2016; Wang et al.,

2017; He and Kulminski, 2020). However, most of them were either

single-locus or were only suitable for the analysis of binary traits,

and they had very few applications in crop. GWAS for continuous

quantitative traits and single-locus methods are currently the main

methods used for association analysis of ordinal traits; however,

both have low power in QTN detection.

Accordingly, in this study, we proposed a method for

transforming ordinal phenotypes into continuous phenotypes

(MTOTC). First, the hierarchical phenotypic data for ordinal

traits (HData) was transformed into continuous phenotypic data

(CPData). Subsequently, FASTmrMLM (Tamba and Zhang, 2018),

one GWAS method suitable for continuous quantitative traits, was
Frontiers in Plant Science 02235
used to perform GWAS for CPData. In Monte Carlo simulation

studies, we validated the feasibility of the new method through the

statistical power, false-positive rate in QTN detection and the

accuracies for the estimates of QTN effects and positions, and

obtained the number of hierarchical levels suitable for MTOTC

+FASTmrMLM. The new method was validated by re-analyzing the

salt-alkali resistance traits in soybean germplasm resource

population of Zhang et al. (2014) and Zhou et al. (2015). This

study provides more choices for association analysis of ordinal traits

and helps to identify excellent genes for important complex traits

in crops.
2 Theory and methods

Here we proposed a method, named MTOTC, to transform the

discrete hierarchical data (HData) of ordinal traits into continuous

phenotypic data. Then, GWAS for continuous quantitative traits

(C-GWAS) are used to analyze the transformed continuous

phenotypic data. The new method was described as below.
2.1 Genetic mapping population

In Monte Carlo simulation studies, 199 Arabidopsis thaliana

lines harboring 10,000 SNPs with a minimum allele frequency >0.1

(Atwell et al., 2010) were selected as the genetic mapping

population. For real data analysis, the population was comprised

of 286 soybean cultivars assessed for salt-alkali tolerance, the

phenotypic data consisted of the main root length index in 2009

and 2010 (Zhang et al., 2014), and the marker data were 54,296

high-quality SNP markers present in Zhou et al. (2015).
2.2 Method for transforming ordinal
phenotypes into continuous phenotypes

To transform ordinal phenotypes into continuous phenotypes,

we proposed the MTOTCmethod. In detail, the Chi-square test and

logistic regression were used to initially select the SNPs that were

significantly related to the trait. Subsequently, these significant

SNPs and ordinal phenotypes were used to construct a multi-

locus model, Bayesian method was used to estimate the SNP

effects, and the effect estimates were used to predict the

continuous phenotypic data (CPData). This is MTOTC. Then, the
FIGURE 1

Technology framework of the MTOTC method in this study.
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predicted CPData is analyzed by C-GWAS methods, such as

FASTmrMLM (Figure 1).

2.2.1 The Chi-square test and logistic regression
The Chi-square test in R 4.0.5 (function “chisq.test”) was used

to scan the SNPs in the whole genome using a single marker method

(P-value ≤0.05). To further improve the quality of the significant

correlated SNPs in the initial screening for reducing interference

and improving detection accuracy, logistic regression was used as a

secondary SNP screening method. Logistic regression was

performed using function “glm” (2 hierarchical levels) and “polr”

(the number of hierarchical levels greater than 2) with a P-value

≤0.05. The aim of this step was to further eliminate SNPs that were

not associated with the traits for simplifying the iterations in the

following multi-locus genetic model.

2.2.2 Multi-locus genetic model
Based on the potentially associated markers identified in the

above-described initial screening, a multi-locus model was

established to transform ordinal phenotypes into continuous

phenotypes. The linear model is expressed as:

y = Wa +oq
i=1Xibi + ϵ (1)

where y represents n� 1 ordinal phenotype vector, with n

representing sample size; W = (w1,  w2,  …,  wc)  represents n� c

matrix of covariates (fixed effects), including a column vector of 1

and population structure, and represents c � 1vector offixed effects,

including intercept; Xiand represent respectively n� 1genotype

vector and effect of the i-th potential associated SNP; q represents

the number of SNPs selected in the initial screening step; ϵ eMVNn

(0,  s 2
e In)  represents n� 1error vector.

The population structureQmatrix used in the linear model was

calculated using Structure software (Pritchard et al., 2000). Based on

the Q matrix, the population is divided into corresponding

subgroups, and the optimal subgroup number K value is

determined according to the corresponding standard, yielding the

final Q matrix. The optimal value of the Arabidopsis population

structure was calculated as K=2, and the optimal value of the salt-

alkali tolerant soybean population structure in the actual study

was K=3.

2.2.3 Parameter estimation
In the second step of the novel method, a multi-locus linear

mixed model for transforming ordinal phenotypes into continuous

phenotypes was established, based on the empirical Bayesian

algorithm (Xu, 2010). And significant loci were screened in

threshold value LOD=3.0.

In model (1), set bi to obey the following prior normal

distribution:

P(bijs 2
i ) = N(0js2

i )

P(s 2
i jt ,  w) ∝ (s 2

i )
−1
2(t+2) � exp −

w
2s 2

i

� �
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The parameters were estimated using empirical Bayes, as

follows, and the Newton–Raphson method.

s 2
i =

E(bT
i bi) + w
t + 3

a = (WTV−1W)−WTV−1y

s 2
e =

1
n
(y −Wa)T y −Wa −oq

i=1XiE(bi)
� �

E(bi) = s 2
i X

T
i V

−1(y −Wa)

Among them,

E(bT
i bi) = E(bT

i )E(bi) + tr½Var(bi)�

Var(bi) = Is 2
i − s 2

i X
T
i V

−1Xis
2
i

(t ,  w) = (0,   0)

V =oq
i=1XiX

T
i s

2
i + Is 2

e

Then, the empirical Bayesian estimates of these SNPs effects

were obtained in the multi-locus model (1) based on the selected

significant SNP markers and ordinal phenotype, and estimates of

these effect were used to predict the phenotype, obtaining the

continuous phenotypic data (CPData) of ordinal trait.
2.3 GWAS with MTOTC method for ordinal
trait

When continuous phenotypic data was obtained by the above

MTOTC method, a C-GWAS method could be used to detect

significant loci. In this work, FASTmrMLM, one C-GWAS method,

was used. So loci significantly associated with ordinal traits were

detected by FASTmrMLM using the obtained continuous

phenotypic data and the potential associated markers identified in

the above-described initial screening. The GWAS method is

henceforth referred to as MTOTC+FASTmrMLM. Moreover, the

effects of five other C-GWAS (FASTmrEMMA, mrMLM, ISIS EM-

BLASSO, pLARmEB, and pKWmEB) methods are also discussed

based on the MTOTCmethod for ordinal trait, in order to verify the

feasibility of MTOTC.
2.4 Monte Carlo simulation datasets for
ordinal trait

We conducted six simulation studies to evaluate the feasibility

of the new method. For each study, the loci 278, 2143, 2054, 3698,

1716, 6178, and 8501, located on chromosomes 1, 2, 2, 2, 1, 4, and 5,

respectively, were selected as the causal loci related to the simulated

trait. There were three types of phenotypic data in the simulation

experiment—original data (OData), which were continuous and
frontiersin.org
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generated by Monte Carlo simulation; HData, which were

generated from the above OData according to specific

distribution proportions (i.e., classification proportion of

phenotype distribution); and CPData, which were generated from

the above HData by MTOTC. Then, FASTmrMLM, one multi-

locus C-GWAS algorithm, was used to conduct GWAS for CPData.
3 Results

3.1 Monte Carlo simulation studies

3.1.1 Threshold value in the initial screening
To determine the most suitable threshold value for the Chi-

square test and logistic regression in the initial screening, four

probability thresholds (0.0001 [i.e., 1/SNP number], 0.01, 0.05, and

0.10) were set for the Chi-square test in the first simulation study,

while three probability thresholds (0.0001 [i.e., 1/SNP number], 0.01,

and 0.05) were set for logistic regression. The Chi-square test can

eliminate a large number of SNPs that are not significantly related to

a given phenotype. However, the simulation study showed that some

SNPs screened in the above Chi-square test (those with a P-value

>0.98 and an unusually large absolute value of effect estimate in

logistic regression) were not truly related to the phenotype and

interfered greatly with subsequent association analysis. Therefore,

to further improve the quality of the screened significantly related

SNPs and detection accuracy, logistic regression was used as a

secondary screening method for SNPs in MTOTC.

In the Chi-square test, the single-locus retention rate decreased

with decreasing P-values (i.e., threshold values) (Figure 2A). For

instance, the single-locus retention rate at loci 278 and 2143 with P-

values of 0.05 and 0.10 was as high as 96.62%~99.68%, which are

very close. When the P-value was 0.01, the single-locus retention

rate began to decrease, and when the P-value was 0.0001, the

retention rate dropped to between 59.06% and 68.45%. Moreover,

the total retention rate (i.e., the proportion of retained loci among

the total loci after chi-square test screening) was the lowest when

the P-value was 0.0001, followed by 0.01, 0.05, and 0.10 (Figure 3A).

In logistic regression after the Chi-square test, the single-locus

retention rate was the highest when the P-value was 0.05
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(Figure 2B). For instance, the retention rates of loci 278 and 2143

were as high as 97.56%~99.68% when the P-value was 0.01 or 0.05;

when the P-value was 0.0001, the retention rate dropped to between

60.51% and 69.88%. Additionally, the total retention rate was the

lowest (only 0.22%) when the P-value was 0.0001, followed by 0.01

and 0.05 (Figure 3B).

Owing to too low single-locus retention rate at the P-values of

0.01 and 0.0001, the two P-values were unsuitable as a threshold for

initial screening. Although the total retention rate was high when

the P-value was 0.10, this P-value retains more loci that are not

associated with the trait, in which it did not contribute to

simplifying the model. Therefore, the probability threshold

P=0.05, which is commonly used in statistics, was selected as the

probability threshold for the Chi-square test and logistic regression

of the initial screening in this study. In addition, we also

investigated the effect of threshold value on the single-locus

retention rate and the total retention rate under different

proportions distribution in binary data and the similar results

were observed.

3.1.2 MTOTC+FASTmrMLM displayed greater
power than other classical mapping methods

In Monte Carlo simulation studies, the GWAS results of

hierarchical data using MTOTC+ FASTmrMLM were compared

with those using two classical mapping methods (Chi-square test

and logistics regression) (Table 1). The results showed that these

methods had greater power at the three loci 278, 2143, and 3698, but

had less power (<10%) at the other four loci. Compared with the

two classical mapping methods, MTOTC+FASTmrMLM had

higher power at the three loci 278, 2143, and 3698, and lower

false-positive rate, when the number of hierarchical levels of HData

was ≤4. The power of the classical methods was higher in a few

instances, it was less than 1.5-fold that of MTOTC+FASTmrMLM,

but their false-positive rates were 6.8–9.5-fold higher than that of

MTOTC+FASTmrMLM. In addition, the results showed that when

the number of hierarchical levels was<5, MTOTC+FASTmrMLM

was more suitable for HData analysis as compared with

FASTmrMLM alone. Moreover , in Table 1 , MTOTC

+FASTmrMLM had a relatively higher F1 score, especially for

binary data (HData with two hierarchical levels). Here the F1
BA

FIGURE 2

The effect of threshold value on the single-locus retention rate after the initial screening. (A) is the single-locus retention rate after chi-square test
screening; (B) is the single-locus retention rate after logistic regression screening.
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score combines the precision and recall, it is used to effectively

measure the accuracy of the statistical methods and balance power

and FPR. Therefore, MTOTC is recommended for the analysis of

HData under four or fewer hierarchical levels.

3.1.3 The effect of the number of hierarchical
levels on the new method

The third simulation study investigated the effect of the number

of hierarchical levels on MTOTC. Based on symmetrical

distribution, the number of hierarchical levels was set to 2, 3, 4,

and 5, respectively, and the number of replicates was 10,000.
Frontiers in Plant Science 05238
Meanwhile, we compared the results of OData, HData and

CPData using FASTmrMLM.

Compared with CPData from the other hierarchical levels, the

distribution of CPData2 (i.e., the CPData converted from the HData

of 2 hierarchical levels by MTOTC) was closer to the original data

(OData). First, the frequency distribution of the CPData was closer

to that of the OData when the hierarchical level was low, especially

when it was equal to 2 (Figure 4). As the number of hierarchical

levels increased, the peak of CPData began to shift to the right and

was far from the peak of the OData, which was expected to affect the

GWAS results. The frequency distribution of the OData and the
BA

FIGURE 3

The effect of threshold value on the total retention rate after the initial screening. (A) is the total retention rate in chi-square test; (B) is the total
retention rate in logistic regression.
TABLE 1 Comparison of different genome-wide association study methods.

Hierarchical number Locus Chi-square test logistic regression FASTmrMLM
MTOTC+

FASTmrMLM

2

Power(%)

278 66.20 22.50 41.85 57.38

2143 57.70 19.40 28.62 55.98

3698 18.40 10.10 9.89 22.76

Mean of Power (%) 20.87 7.60 13.84 19.54

FPR (‰) 7.27 0.07 0.44 0.77

F1 score 0.04 0.13 0.16 0.17

3

Power(%)

278 62.00 71.30 53.41 70.87

2143 56.40 57.20 45.76 66.64

3698 20.00 26.90 19.66 36.82

Mean of Power (%) 20.47 23.30 22.06 26.53

FPR (‰) 6.15 4.77 0.45 0.70

F1 score 0.04 0.06 0.24 0.24

4

Power(%)

278 68.40 80.30 65.70 75.98

2143 58.50 65.40 58.71 71.83

3698 20.80 37.30 27.76 45.69

Mean of Power (%) 21.77 27.37 28.29 28.53

FPR (‰) 8.11 5.90 0.45 0.63

F1 score 0.03 0.06 0.29 0.26
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corresponding CPData with different hierarchical levels in the 10th

and 613th replicates, randomly selected out of the 10,000 replicates

using the uniformly distributed random number generator in R, is

shown in Figure 4. Second, the range of the coefficient of variation

(CV) of the OData was between 29.5% and 55.5%. Among the

10,000 replicates, the number of replicates beyond the CV range of

the OData (4.09%, 18.94%, 21.47%, and 25.37% of CPData2,

CPData3, CPData4, and CPData5, respectively) also increased

with increasing hierarchical level. Thus, the CV range of CPData2

was the closest to that of the OData. Third, among the 10,000

replicates, the skewness range between the CPData and the OData

was the closest at 2 hierarchical levels. Among them, the skewness

range of the OData was between −1.00 and 0.46 and the range of

CPData2 was between −1.28 and 0.35. As the number of

hierarchical levels increased, the skewness of the CPData

gradually deviated from that of the OData; the kurtosis showed

the same tendency as the skewness.

MTOTC performed well for the estimates of QTN position

under different numbers of hierarchical levels. The position

estimates via MTOTC+FASTmrMLM (i.e., the position estimates

of the CPData via FASTmrMLM) were unbiased at loci 278, 2143,

and 3698 (Supplementary Table 1). Although the position estimates

at loci 2054 and 8501 in CPData2, and at loci 1716 and 6178 in all

the CPData were biased, the relative mean absolute deviations of

their position estimates were all less than 8.96E-05. The accuracy of

the estimates of QTN positions for ordinal traits was significantly

improved by MTOTC when the number of hierarchical levels was

less than 5, i.e., the estimates of QTN positions for the CPData were

better than those for the HData when FASTmrMLM was used

(Supplementary Table 1).

The effect of MTOTC on the relative power at loci 278, 2143,

and 3698 was the greatest when the number of hierarchical levels is

equal to 2 (Supplementary Figure 1). Here, “the effect of MTOTC
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on the relative power” refers to the increment of the relative power

of CPData compared to the relative power of HData. The relative

power of the CPData (50%~100%) was significantly higher than

that of the HData (22%~88%) and was relatively closer to the power

of the OData. When the number of the hierarchical levels of the

CPData was less than or equal to 5, the relative power exhibited an

increasing trend with increasing the number of hierarchical levels

and was significantly superior to that of the HData.

The false-positive rates of CPData2, CPData3, CPData4, and

CPData5 via MTOTC+FASTmrMLM were 0.77‰, 0.70‰, 0.63‰,

and 0.55‰, respectively.

3.1.4 The effect of the number of replicates on
the new method

The fourth simulation study assessed the impact of the number

of replicates on the estimates of QTN effects and positions, relative

power, and false-positive rate using MTOTC+FASTmrMLM. Based

on the results of CPData2 (1:1), CPData3 (1:3:1), and CPData5

(1:2:4:2:1), 10 replicates were set at equal intervals from 1,000 to

10,000. As a result, the results across various numbers of replicates

at each locus and for each hierarchical levels (CPData2, CPData3,

and CPData5) were insignificant (Figure 5). This indicated that the

number of replicates did not affect the power, false-positive rate,

and the estimates of QTN effects and positions. Therefore, 1,000

replicates were used in subsequent simulation studies.

3.1.5 The effect of distribution proportion
skewness on the new method

In the fifth simulation study, we investigated the effect of

distribution proportion skewness on the new method under three

hierarchical levels. Here the distribution proportion skewness were

set as symmetrical distribution (distribution proportion, 1:2:1),

uniform distribution (1:1:1), and skewed distribution (4:2:1). The
B C D

E F G H

A

FIGURE 4

The frequency distribution of the OData and the corresponding CPData for different hierarchical levels in the 10th and 613th repetition. (A–D) is the
10th repetition, (E–H) is the 613th repetition. CPData2 transformed from HData of two hierarchical levels by MTOTC; CPData3 transformed from
HData of three hierarchical levels by MTOTC; CPData5 transformed from HData of five hierarchical levels by MTOTC.
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indicators were the relative power, false-positive rate, the estimates

of QTN effects and positions. The skewed distribution had the

lowest relative power at loci 278, 2143, and 3698, followed by the

uniform distribution, and the symmetrical distribution

(Supplementary Figure 2). The MAD and mean squared error

(MSE) of QTN position estimates showed unbiasedness under the

three distribution proportion skewness. The skewed distribution

(7.09‰) was slightly higher false-positive rate than symmetrical

distribution (6.71‰) and uniform distribution (6.82‰). When the

kurtosis values of the three distributions for the CPData and the

OData were compared, it was found that the steepness of the

CPData under 1:2:1 was closer to that of the OData (the kurtosis

values for the OData, 1:2:1 CPData, 1:1:1 CPData, and 4:2:1 CPData

ranged from 2.163–5.415, 1.963–5.412, 1.958–5.196, and 1.980–

3.830, respectively). The CPData under 1:2:1 and 1:1:1 and the

OData were relatively close in terms of skewness (the skewness of

OData, 1:2:1 CPData, 1:1:1 CPData, and 4:2:1 CPData were in the

range of −1.001~0.462, −1.466~0.319, −1.256~0.282, and

−0.812~0.777, respectively). The skewness of the CPData under

4:2:1 and the OData differed markedly. Therefore, the accuracy of

symmetric distribution via MTOTC+FASTmrMLM was higher

than that of uniform distribution and skewed distribution.

3.1.6 The effect of distribution proportion
kurtosis on the new method

Here we studied the effect of distribution proportion kurtosis on

the new method. The proportions were set as 1:2:1, 1:4:1, and 1:5:1.

The association detection results of the 1:2:1 proportion had the
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best, e.g., the relative powers of the 1:2:1 proportion at loci 2143,

278, 3698, and 1716 via MTOTC+FASTmrMLM was better than

those under others distribution proportion (Figure 6A). The MSE

and MAD of effect estimates at locus 278, 2143, and 3698 were

lower at 1:2:1 than at 1:4:1 and 1:5:1; however, the differences were

insignificant (Figures 6B, C), while the trends at the other loci were

unclear. Under the three distribution proportions, the MSE and

MAD of QTN position estimates were all unbiased at loci 278, 2143,

2054, and 3698. However, a lower false-positive rate was observed

with the 1:2:1 distribution proportion (Figure 6D). Moreover, the

steepness of the CPData under distribution proportion 1:2:1 was

closer to that of the OData (the kurtosis values of the OData, 1:2:1

CPData, 1:4:1 CPData, and 1:5:1 CPData were 2.163~5.415,

1.963~5.412, 1.967~7.343, and 1.974~7.920, respectively). The

skewness showed the same tendency as the kurtosis (the skewness

ranges of the OData, 1:2:1 CPData, 1:4:1 CPData, and 1:5:1 CPData

were −1.001~0.462, −1.466~0.319, −1.788~0.142, and

−1.796~0.150, respectively). In summary, the distribution of the

CPData at the 1:2:1 proportion was closer to that of the OData, and

MTOTC worked be t t e r , c ompa red w i th th e o th e r

distribution proportions.

3.1.7 The performance of MTOTC with different
GWAS methods

The HData of ordinal trait were transformed by MTOTC, and

the obtained CPData were found to be suitable for association

analysis via FASTmrMLM when there were five or fewer

hierarchical levels, owing to high power. Meanwhile, similar
B

C D

A

FIGURE 5

The impact of repetition number of simulation experiment on the association analysis results of CPData (2143 Locus). (A, B) MSE and MAD of QTN
effect at 2143, respectively; (C) false-positive rates; (D) relative power.
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results were obtained when MTOTC was combined with others

methods in the mrMLM software (Zhang et al., 2020)

(Supplementary Figure 1; Supplementary Table 1). They were also

suitable for GWAS for the CPData of ordinal traits, having the

characteristics of high relative power, low false-positive rates, and

high accuracy of position and effect estimates. Moreover, similar

trends from FASTmrMLM in the simulation experiments with the

number of the hierarchical levels and their distribution proportions

were observed as well (Supplementary Figure 2). MTOTC +

FASTmrMLM had the best performance, followed by mrMLM

(Wang et al., 2016), ISIS EM-BLASSO (Tamba et al., 2017), and

FASTmrEMMA (Wen et al., 2018); and finally by pLARmEB

(Zhang et al., 2017) and pKWmEB (Ren et al., 2018). Therefore,

MTOTC can be integrated with different methods to conduct

GWAS for ordinal traits. Considering the diversity and

complexity of phenotypic data in ordinal traits in practice,

multiple methods might be simultaneously used in a

complementary manner. Accordingly, MTOTC improves the

performance in identifying significant loci for ordinal traits.
3.2 Real data analysis

To validate the new method, the salt-alkali tolerant data in 286

soybean accessions obtained in 2009 and 2010 from Zhang et al. (2014)

was re-analyzed in this study. The experiments were conducted in a

completely randomized Design, and the number of high-quality SNP
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markers in this population was 54,296 (Zhou et al., 2015). First,

MTOTC was applied to obtain the CPData. Then, the index data,

HData5 [hierarchical data generated from the index data by 1:1:1:1:1

(Shao, 1986)], CPData2 (continuous phenotypic data generated from

HData2 by MTOTC), and CPData5 (continuous phenotypic data

generated from HData5 by MTOTC) for salt-alkali tolerance in

soybean were analyzed using the mrMLM, ISIS EM-BLASSO,

pLARmEB, FASTmrEMMA, pKWmEB, and FASTmrMLM methods.

3.2.1 QTNs significantly associated with soybean
salt-alkali tolerance

For the four types of phenotypic data of salt-alkali tolerance, a

greater number of significant QTNs were detected in CPData than

in the index data or HData. Six GWAS methods mapped 65 and 99

QTNs in CPData2 and CPData5 of salt tolerance traits, respectively,

and 134 and 60 QTNs in CPData2 and CPData5 of alkali tolerance

traits, respectively. pLARmEB detected a greater number of QTNs

in CPData (116 for salt tolerance traits and 166 for alkali tolerance

traits) compared with the other five GWAS methods, which may be

related to its relatively higher false-positive rate. Additionally, the

numbers of significant QTNs detected by pKWmEB, mrMLM, and

FASTmrMLM in CPData (44, 25, and 14 for the salt tolerance trait

and 25, 21, and 19 for the alkali-tolerance trait, respectively) were

second only to the number of QTNs detected with pLARmEB.

Four QTNs (locus 9682 on chromosome 2 [Chr2-9682], Chr11-

54042, Chr13-64738, and Chr13-65248) for salt tolerance were

simultaneously detected in the index data and at least one CPData;
frontiersin.o
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FIGURE 6

The effect of phenotype distribution kurtosis on the association detection results of MTOTC+FASTmrMLM. (A, B) MSE and MAD of QTN effect at
2143, respectively; (C) false-positive rates; (D) relative power.
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however, none of them was detected in HData5. For instance, Chr13-

64738 was simultaneously detected in CPData2 by five methods and

in the salt tolerance index data by two methods. Chr13-65248 was

detected in CPData5 by four methods and in both CPData5 and the

index data by FASTmrMLM. Three QTNs (Chr7-34669, Chr13-

67342, and Chr20-105040) for alkali tolerance were simultaneously

detected in the index data and in at least one CPData, two of them

were also detected in HData5.

The results of six GWAS methods for the CPData of salt-alkali

tolerance showed that only a few significant QTNs were coincident

between 2009 and 2010, which can be explained by the differences

in environmental influences between the two years. For salt
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tolerance, no QTNs were found to overlap between 2009 and

2010 in the six methods. For alkali tolerance, only Chr1-5051 and

Chr16-82333 were detected in both years. There was indeed an

environmental (year) effect according to variance analysis of the

phenotypic results for the two years (Zhang et al., 2014).

3.2.2 Candidate genes for salt-alkali tolerance
Potential candidate genes were mined from 100 kb upstream to

100 kb downstream (Liu et al., 2020) of significant QTNs that were

detected in at least two types of data or by two methods (Tables 2

and 3). Functional annotation information in the SoyBase database

(Error! Hyperlink reference not valid. http://www.Soybase.org/)
TABLE 2 Salt stress-related candidate genes from six genome-wide association study methods.

Candidate
genes

QTN
positions

Methods Functional annotation
Arabidopsis
homologous

Glyma02g38320 43804331 mrMLM1**, pLARmEB3** transmembrane transport AT5G22900

Glyma02g38350 43804331 mrMLM1**, pLARmEB3** Pentatricopeptide repeat (PPR
-like) superfamily protein

AT5G37570

Glyma02g38370 43804331 mrMLM1**, pLARmEB3** zinc ion binding AT2G40770

Glyma02g38380 43804331 mrMLM1**, pLARmEB3** catalytic activity AT5G05200

Glyma02g38395 43804331 mrMLM1**, pLARmEB3** respiratory burst involved in
defense response

AT5G05190

Glyma04g13670 13441084 FASTmrEMMA3**, mrMLM3**, pLARmEB3** oxidoreductase activity AT4G25240

Glyma05g25331 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

WRKY DNA-binding domain AT2G34830

Glyma05g25420 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

zinc ion binding AT5G37930

Glyma05g25450 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

catalytic activity AT5G44440

Glyma05g25460 # 31519270 FASTmrEMMA3*, ISIS EM-BLASSO3*, mrMLM3*, pKWmEB3*,
pLARmEB3*

catalytic activity AT2G34790

Glyma08g13260 9687628 FASTmrEMMA3**, FASTmrMLM3**, ISIS EM-BLASSO3**,
mrMLM3**, pKWmEB3**, pLARmEB3**

Serine/threonine protein kinase AT3G16030

Glyma10g40400 # 47864560 FASTmrMLM2*, ISIS EM-BLASSO2*, mrMLM2*, pKWmEB2*,
pLARmEB2*

zinc ion binding AT5G67450

Glyma10g40510 # 47864560 FASTmrMLM2*, ISIS EM-BLASSO2*, mrMLM2*, pKWmEB2*,
pLARmEB2*

zinc ion binding AT4G15090

Glyma10g40520 # 47864560 FASTmrMLM2*, ISIS EM-BLASSO2*, mrMLM2*, pKWmEB2*,
pLARmEB2*

oxidoreductase activity AT4G33910

Glyma11g14030 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** protein serine/threonine kinase
activity

AT3G20830

Glyma11g14040 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** sequence-specific DNA binding
transcription factor activity

AT1G51190

Glyma11g14050 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** zinc ion binding AT1G51200

Glyma11g14081 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** catalytic activity AT3G18080

Glyma11g14090 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** transmembrane transport AT3G20870

Glyma11g14100 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB3** zinc ion binding AT1G51220

Glyma11g14110 # 10094063 mrMLM1**, pKWmEB1**, pLARmEB4** Zinc finger, C3HC4 type (RING
finger)

AT3G63530

(Continued)
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was also used to screen candidate genes. A total of 34 potentially

candidate genes for salt tolerance and 25 potentially candidate genes

for alkali tolerance were mined.

For salt tolerance, 19 candidate genes were detected

simultaneously in the index data and CPData5. Among them,

Glyma05g25331 , Glyma05g25420 , Glyma05g25450 , and

Glyma05g25460 were all detected by five GWAS methods in

CPData5 in 2009. Only one gene, Glyma13g25266, was detected

in both the index data and CPData2 detected by five GWAS

methods in CPData2 and two methods in the index data in 2010.

In addition, five candidate genes were detected only in CPData2 by

five methods, and nine candidate genes were detected only in

CPData5 by three or more methods. No overlapping genes were

found between HData5 and the index data or the CPData (Table 2).

For alkali tolerance, 7 candidate genes for alkali stress were

concurrently detected in the index data and CPData5. For instance,

Glyma07g20380 was simultaneously detected by 2, 1, and 6 GWAS

methods in the index data, HData5, and CPData5 in 2010,

respectively (Table 3). Two candidate genes were detected in the

index data and CPData2. Ten candidate genes were simultaneously

detected in CPData2 and CPData5. Glyma10g02920 was detected by

one GWAS method in CPData2 and five GWAS methods in
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CPData5 in 2009. Glyma07g20380 was detected by all six

association analysis methods in CPData5 in 2010.

3.2.3 QTN based haplotype and phenotypic
difference analysis

Based on the above 34 salt stress-related candidate genes and 25

alkali stress-related candidate genes, Haploview software was used

to perform haplotype block analysis. And the phenotypic

differences across haplotypes were examined using the t-test in

SAS9.4. Four stable QTNs for salt tolerance and six stable QTNs for

alkali resistance were screened to form haplotype blocks based on

linkage disequilibrium (Supplementary Figures 3 and 4).

In haplotype block with the significant QTNs Chr13-64738 for

salt tolerance, t-test showed significant phenotypic differences

between haplotypes ACAT and AATT (P=0.0341 in 2009 and

P=0.0083 in 2010), between haplotypes TCAT and AATT

(P=0.0091) in 2010, and between haplotypes TCAT and TCTT

(P=0.0471) in 2010. However, for haplotype blocks of other salt

tolerance QTNs, it was showed that the significant phenotypic

differences existed between haplotypes only in a single year, and

the haplotype pairs with significant differences included haplotype

AGTGC and TACCC (P=0.0348), AGTGC and TGTCA (P=0.0345)
TABLE 2 Continued

Candidate
genes

QTN
positions

Methods Functional annotation
Arabidopsis
homologous

Glyma12g03490 2356018 FASTmrEMMA3*, FASTmrMLM3*, ISIS EM-BLASSO3*,
mrMLM3*, pKWmEB3*, pLARmEB3*

transmembrane transporter AT2G21050

Glyma12g03570 2356018 FASTmrEMMA3*, FASTmrMLM3*, ISIS EM-BLASSO3*,
mrMLM3*, pKWmEB3*, pLARmEB3*

catalytic activity AT4G34980

Glyma12g03580 2356018 FASTmrEMMA3*, FASTmrMLM3*, ISIS EM-BLASSO3*,
mrMLM3*, pKWmEB3*, pLARmEB3*

transmembrane transporter AT5G09220

Glyma13g25266 # 28469311 FASTmrEMMA2**, FASTmrMLM1,2**, ISIS EM-BLASSO2**,
pKWmEB2**, pLARmEB1,2**

hyperosmotic salinity response AT1G61120

Glyma13g27630 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** protein serine/threonine kinase
activity

AT3G20530

Glyma13g27680 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** transmembrane transport AT1G61800

Glyma13g27691 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** zinc ion binding AT4G14220

Glyma13g27701 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** response to oxidative stress AT3G06050

Glyma13g27710 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** response to oxidative stress AT3G06050

Glyma13g27740 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** oxidoreductase activity AT3G06060

Glyma13g27770 # 30845044 FASTmrEMMA3**, FASTmrMLM1,3**, mrMLM3**, pKWmEB3** sequence-specific DNA binding
transcription factor activity

AT1G54830

Glyma15g42440 49869431 FASTmrEMMA2*, mrMLM2*, ISIS EM-BLASSO2*, pKWmEB2*,
pLARmEB2*

Myb-like DNA-binding domain AT2G44430

Glyma15g42460 49869431 FASTmrEMMA2*, mrMLM2*, ISIS EM-BLASSO2*, pKWmEB2*,
pLARmEB2*

Serine/threonine protein kinase AT2G32850
1: index data; 2: continuous phenotypic data (CPData2) generated from HData2 by MTOTC; 3: continuous phenotypic data (CPData5) generated from HData5 by MTOTC; *: 2009; **: 2010, #:
candidate genes were further screened by haplotype block analysis.
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for Chr5-24153; haplotype GCG and ATA (P=0.0408) for Chr10-

52140; haplotypes GTAGA and GTAGT (P=0.0397), GTAGT and

AAGTT (P=0.0540) for Chr11-54042.

There were two significant QTNs Chr16-82333 and Chr3-14262

for alkali tolerance with significant phenotypic differences across

haplotypes in both years. The Chr16-82333 recorded significant
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differences between haplotypes CTGACG and CCGGAG (P=0.0158

in 2009, P=0.0614 in 2010), between haplotypes CTGACG and

CCGGAG (P=0.0005 in 2009), between haplotypes CTGACG and

CCGAAG (P=0.0231 in 2009), between haplotypes TCGAAG and

CCGAAG (P=0.0619 in 2009, P=0.0261 in 2010), and between

haplotypes CCAAAG and CCGGAG (P=0.0296 in 2010). For Chr3-
TABLE 3 Alkali stress-related candidate genes from six genome-wide association study methods.

Candidate
genes

QTN
positions

Methods Functional annotation
Arabidopsis
homologous

Glyma01g41510 # 53035914 pLARmEB2,3* Protein serine/threonine kinase
activity

AT5G60900

Glyma01g41520 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT4G17500

Glyma01g41527 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT5G47230

Glyma01g41560 # 53035914 pLARmEB2,3* zinc ion binding AT5G53110

Glyma01g41581 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT5G47370

Glyma01g41610 # 53035914 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT3G13540

Glyma03g28210 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G32560

Glyma03g28222 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G26850

Glyma03g28234 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G32560

Glyma03g28247 # 36121029 FASTmrEMMA2**, pLARmEB2** F-box family protein AT2G26850

Glyma07g20380 # 20580766 FASTmrEMMA3**, FASTmrMLM1,3**, ISIS EM-BLASSO3**,
mrMLM3**, pKWmEB3**, pLARmEB1,3**

Pentatricopeptide repeat (PPR)
superfamily protein

AT3G48810

Glyma13g44560 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* transmembrane transport AT3G19640

Glyma13g44570 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT4G37850

Glyma13g44582 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT2G22760

Glyma13g44594 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT4G37850

Glyma13g44640 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* Serine/threonine-protein kinase
PBS1

AT1G80640

Glyma13g44660 # 43999096 FASTmrMLM1*, pLARmEB1,3*, pKWmEB3* sequence-specific DNA binding
transcription factor activity

AT5G25190

Glyma16g25280 # 29252235 pLARmEB2,3* sequence-specific DNA binding
transcription factor activity

AT2G18350

Glyma16g25310 # 29252235 pLARmEB2,3* transmembrane transport AT1G75220

Glyma16g25320 # 29252235 pLARmEB2,3* transmembrane transport AT1G75220

Glyma19g39270 46014852 FASTmrMLM1*, pKWmEB1*, pLARmEB1* response to oxidative stress AT4G11290

Glyma19g39320 46014852 FASTmrMLM1*, pKWmEB1*, pLARmEB1* oxidoreductase activity AT4G03140

Glyma19g39340 46014852 FASTmrMLM1*, pKWmEB1*, pLARmEB1* Regulation of transcription AT5G62000

Glyma20g31790 # 40400845 pLARmEB1,2* zinc ion binding AT3G52300

Glyma20g31800 # 40400845 pLARmEB1,2* transmembrane transport AT2G35800
1: index data; 2: continuous phenotypic data (CPData2) generated from HData2 by MTOTC; 3: continuous phenotypic data (CPData5) generated from HData5 by MTOTC; *: 2009; **: 2010, #:
candidate genes were further screened by haplotype block analysis.
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14262, the haplotype pairs with significant differences were detected

as follows: TTT and TCT (P=0.0217 in 2009, P=0.0085 in 2010),

TTT and GCT (P=0.0102 in 2010), GCT and TCT (P=0.0171). The

other haplotype blocks of alkali tolerance showed significant

phenotypic differences between haplotypes only in a single year

and they include: GTGT and TTAT (P<0.0001), TTGT and TTAC

(P=0.0038), TTAT and TAGT (P=0.0132) for Chr13-67342; CAG

and TGT (P=0.0183) for Chr1-5051; ATCG and GATC (P=0.0009)

for Chr7-34669; TAGGCG and AATGCA (P=0.0157), and

TAGGCG and TATGCG (P=0.0128) for Chr20-105040.

Genes with significant phenotypic differences across haplotypes

were considered as the candidate genes (Tables 2 and 3), including

22 salt stress-related candidate genes and 22 alkali stress-related

candidate genes. Among them, six salt stress-related candidate

genes (Glyma05g25420 , Glyma11g14030, Glyma11g14040 ,

Glyma11g14050, Glyma13g27691, Glyma13g27701) and six alkali

stress-related candidate genes (Glyma03g28222, Glyma03g28234,

G l yma0 3 g 2 8 2 4 7 , G l yma16 g 2 5 3 2 0 , G l yma20 g 3 1 7 9 0 ,

Glyma20g31800) were found in the haplotype block.
4 Discussion

In this study, we established a method for transforming ordinal

phenotypes into continuous phenotypes (MTOTC) based on

hierarchical data for ordinal trait phenotypes and molecular

marker data in resource populations. Therefore, the process of

association analysis for ordinal traits is as follows: first, MTOTC is

used to transform HData into continuous phenotypic data

(CPData), and then a C-GWAS method (i.e. GWAS method for

continuous quantitative traits) is selected to analyze the CPData to

identify the QTNs that are significantly associated with

ordinal traits.

In this study, simulation experiments and soybean saline-alkali

tolerance analysis indicated that the new method, MTOTC, is

suitable for ordinal traits when they are less than five hierarchical

levels. Moreover, the combination of MTOTC with any one of the

proposed C-GWAs methods exhibited high power, low false-

positive rates, and low bias in estimating the positions and effects

of the QTN. The purpose of MTOTC is to provide a different

approach for undertaking GWAS for ordinal traits. The feasibility

of the MTOTC method was verified in real data analysis of soybean

salt-alkaline tolerance using 286 soybean accessions. Compared

with HData5 (i.e., the data classified as five hierarchical levels), a

greater number of significant QTNs was detected concurrently by at

least two GWASmethods or in two years, and more candidate genes

for salt and alkali stress were screened in the CPData for salt and

alkali tolerance traits. A greater number of QTNs was detected

simultaneously by multiple GWAS methods in the CPData than in

the index data and HData for salt-alkaline tolerance. For the three

types of data, the number of QTNs detected simultaneously was

respectively 4, 1, and 1 in salt tolerance and respectively 5, 2, and 3

in alkali resistance.When the phenotype distribution of the CPData

generated by the new method were closer to those from the index
Frontiers in Plant Science 12245
data of salt-alkali tolerance, the GWAS results were better, and a

greater number of candidate genes could be mined. This may be

beneficial for selecting the appropriate distribution proportion to

obtain hierarchical data of ordinal trait, screening stable QTNs, and

promoting the development of molecular breeding. We also applied

symmetric distribution (1:2:4:2:1) to generate HData5 for the salt

tolerance index data and used MTOTC to generate the

corresponding CPData5. The phenotype distribution of CPData5

with symmetric 1:2:4:2:1 exhibited a large deviation from that of the

index data, and the phenotype distribution of CPData5 with

uniform 1:1:1:1:1 was closer to that of the index data. Under the

six methods, there were no overlapping QTNs in CPData5 and the

index data for salt tolerance, which was far inferior to the above

uniform distribution observed with the distribution proportion

1:1:1:1:1, under which three coincident QTNs were detected in

CPData5 and the index data. This result corresponded precisely to

the results presented in simulation study 5.

MTOTC performed well in the initial SNP screening. After

preliminary screening under a P ≤ 0.05 threshold, a large number of

SNPs that were significantly unrelated to the trait could be

eliminated. Meanwhile, the simulation experiment showed that

the retention rates of related loci remained high. MTOTC serves

to simplify the model and save a substantial amount of computing

time for subsequent association studies.

MTOTC helps to improve association analyses of ordinal traits.

Regarding coefficient of variation, skewness, kurtosis, and frequency

distribution, compared with the HData, the results obtained for the

CPData were closer to those of the OData. Meanwhile, the results

using six GWAS methods showed that the statistical power, the

false-positive rate, and the position estimates in CPData were better

than those in HData. Moreover, MTOTC performed better when

the frequency distribution of the CPData was close to that of

the OData.

The fewer hierarchical levels, the more suitable MTOTC is.

Regarding the relative power in CPData under different hierarchical

levels, a trend of increasing relative power with increasing number

of hierarchical levels was found for all six methods when there were

four or less hierarchical levels. When there were five hierarchical

levels, the power of MTOTC+FASTmrMLM was close to that of

FASTmrMLM in HData, but slightly lower than the power from

logistic regression; only three GWAS methods had higher relative

power in CPData than in HData. In addition, MTOTC had a

tendency to increase variation, especially with increasing numbers

of hierarchical levels. This indicates that MTOTC is more suitable

for ordinal traits with fewer hierarchical levels, especially those with

two or three levels . Among the six GWAS methods,

FASTmrEMMA, FASTmrMLM, and mrMLM are significantly

better when combined with MTOTC. This is partly attributed to

that the distribution and parameter estimation principles set in

MTOTC were relatively consistent with those in these three

GWAS models.

This study will contribute to further research in association

analysis of ordinal traits. This is especially in improving the

retention rate of small-effect loci in preliminary screening,
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reducing the impact on variability when transforming ordinal

phenotypes into continuous phenotypes, and developing novel

methods for association analyses of ordinal traits.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

MY, JF, and YW designed the methodologies. MY, JF, JZ, and

JCZ drafted the manuscript, conducted simulation studies, and

analyzed the data. TZ and JF revised the paper. All authors

contributed to the article and approved the submitted version.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Major National Agricultural Science and

Technology Projects of China (2022ZD0400704), the National
Frontiers in Plant Science 13246
Key R & D Program of China (2021YFD1201603), the National

Natural Science Foundation of China (32070688).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1247181/

full#supplementary-material
References
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Ruijie Chen2,3, Fei Gao2,3, Aifen Wang2,3, Ting Li1

and Yibo Wang2,3*
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Henan, China, 22Experiment Station, Henan LongPing-Lantron AgriScience and Technology Co., LTD,
Zhengzhou, Henan, China, 3LongPing High-tech Corp., Zhengzhou, Henan, China
Plant height (PH) and ear height (EH) are important traits associated with biomass,

lodging resistance, and grain yield in maize. There were strong effects of genotype x

environment interaction (GEI) on plant height and ear height of maize. In this study,

203 maize inbred lines were grown at five locations across China’s Spring and

Summer corn belts, and plant height (PH) and ear height (EH) phenotype data were

collected and grouped using GGE biplot. Five locations fell into two distinct groups

(or mega environments) that coincide with two corn ecological zones called

Summer Corn Belt and Spring Corn Belt. In total, 73,174 SNPs collected using GBS

sequencing platform were used as genotype data and a recently released multi-

environment GWAS software package IIIVmrMLM was employed to identify QTNs

and QTN x environment (corn belt) interaction (QEIs); 12 and 11 statistically

significant QEIs for PH and EH were detected respectively and their phenotypic

effects were further partitioned into Add*E and Dom*E components. There were 28

and 25 corn-belt-specific QTNs for PH and EH identified, respectively. The result

shows that there are a large number of genetic loci underlying the PH and EH GEIs

and IIIVmrMLM is a powerful tool in discoveringQTNs that have significant QTN-by-

Environment interaction. PH and EH candidate genes were annotated based on

transcriptomic analysis and haplotype analysis. EH related-QEI S10_135

(Zm00001d025947, saur76, small auxin up RNA76) and PH related-QEI S4_4

(Zm00001d049692, mads32, encoding MADS-transcription factor 32), and corn-

belt specific QTNs including S10_4 (Zm00001d023333, sdg127, set domain

gene127) and S7_1 (Zm00001d018614, GLR3.4, and glutamate receptor 3.4 or

Zm00001d018616, DDRGK domain-containing protein) were reported, and the

relationship among GEIs, QEIs and phenotypic plasticity and their biological and

breeding implications were discussed.

KEYWORDS

maize, multi-environment-GWAS, plant height, ear height, QTN, QTN-by-Environment
interaction (QEI)
Abbreviations: QEI, QTN that shows QTN-by-environment interaction; GWAS, genome-wide

association study.
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Introduction

Maize is a cereal plant of the grass family (Poaceae) and its

domesticated form, the grain corn, is one of the most important

crop for food, feed, energy, and industrial materials in the world.

China is the second largest grain corn producer after USA and

Summer corn belt (33%) and Spring corn belt (47%) are ecological

regions that contribute 80% of China’s total corn grain output (Shu

et al., 2021; Dai et al., 2010). Plant height and ear height are two

important maize traits that affect biomass, lodging resistance, and

corn grain yield. Enhancing yield and yield stability through

genetically controlling plant height and ear height have been

important goals in maize genetics and corn breeding. A large

number of QTL and QTN loci in maize that associated with plant

height and ear height have been identified and reported by

quantitative trait loci (QTL) mapping and genome-wide

association studies (GWAS) and verified by genetic fine mapping,

transcriptomic analyses, and functional genetic analysis (Bai et al.,

2010; Zhang et al., 2011; Li et al., 2016; Zheng et al., 2016; Ding

et al., 2017; Si et al., 2020; Wang et al., 2023; Jin et al., 2023; Napier

et al., 2023; Zhou et al., 2023); among them, Dwarf 8, Dwarf 9

encodes maize DELLA proteins (Lawit et al., 2010), Ga3ox2 encodes

a GA3 b-hydroxylase (Teng et al., 2013), ZmTE1, likely regulates

auxin signaling, cell division, and cell elongation (Wang et al.,

2022a), ZmRPH1 that regulate both plant height and ear height,

encodes a microtubule-associated protein (Li et al., 2020), ZmDLE1

is associated with a candidate gene that effectively regulate maize

plant height and ear height (Zhou et al., 2023), and a set of growth

regulating factors genes (ZmGRF) that co-express with a large set of

plant height and ear height loci (Si et al., 2020). In the classic

Brachytic2 locus (Multani et al., 2003), a number of different alleles

or genetic variants have been reported that show various degree of

phenotype effect on plant height and ear height and that

differentially regulate downstream genes involved in gibberellin

and brassinosteroid biosynthesis, auxin transport and cellulose

synthesis (Xing et al., 2015; Wei et al., 2018).

Phenotypic plasticity is the property of a given genotype to

produce different phenotypes in response to distinct environmental

conditions (Pigliucci, 2001) or the ability of a single genotype to

produce different phenotypes in response to environmental stimuli

(Napier et al., 2023) and it is a joint result of overall environmental

effect and genetic effects across environments (Li et al., 2018; Liu

et al., 2020b). Genotype x Environment Interaction (GEI) is a

special case of environmental plasticity where the two genotypes

respond in opposite directions to the changes in the environment

(Mather and Caligari, 1974; Laitinen and Nikoloski, 2019).

Genotype x Environment Interaction (GEI) on corn yield and

agronomic traits has been a major goal of the USA Maize

Genomes to Fields Initiative (Alkhalifah et al., 2018; Rogers et al.,

2021). Phenotypic plasticity and GEI in maize and other crops have

been well-known in plant height and ear height (Wallace et al.,

2016; Perrier et al., 2017; Mu et al., 2022). Some environmental

factors, such as the difference between day and night temperature

(also referred to as DIF) have been shown to influence internode

length and plant height (Myster and Moe, 1995). Corn inbred lines
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with tropical germplasm introgression have been shown to respond

to daylength or photoperiod (Coles et al., 2010; Lin et al., 2021; Su

et al., 2021; Fei et al., 2022; Osnato et al., 2022). Explaining and

predicting phenotypes requires the holistic examination of

genomes, environments, and their interaction throughout the

spatial and temporal dimensions of an organism’s life cycle (Li

et al., 2021; Schneider, 2022). In traditional G x E studies, a

genotype is treated as a black box of the entire genome, and

various statistical models were developed to understand the

pattern and mechanism of GEI (Mather and Caligari, 1974; Shu

and Fan, 1986; Cooper and DeLacy, 1994; Malosetti et al., 2013).

Further partitioning Genome x Environmental interaction or GEI

into QTN x E (QEI) or Gene x E (GEI)) is a breakthrough and only

becomes feasible in recent years with the availability of whole

genome sequencing technology, transcriptomic technology, the

availability of abundant DNA polymorphic markers such as SNP

and SSR, and improved GWAS methodologies (Xiao et al., 2017;

Laitinen and Nikoloski, 2019; Li et al., 2022a; Li et al., 2022b; Jin

et al., 2023; Napier et al., 2023).

In this study, we have conducted a multi-environment GWAS

using the newly released GWAS software package developed by Li

et al. (2022a); Li et al. (2022b) called IIIVmrMLM with the objective

of detecting QEIs and QTNs, and estimating their additive-by-

environment (add*E) and dominance-by-environment (dom*E)

interaction effects of QEIs, and additive effects(add) and

dominant effects(dom) of corn-belt specific QTNs. Candidate

genes in the surrounding chromosomal regions of these QEIs and

QTNs are mined and verified by transcriptomic analysis and

haplotype analysis, and their implications to understanding the

GEI, and phenotypic plasticity of PH and EH were discussed.
Materials and methods

Germplasm and phenotype evaluation

A diversity panel of 490 inbred lines from Shu et al. (2021) was

used for this study, 203 inbred lines (accessions) that grow and seed

well in both the Summer Corn Belt and Spring Corn Belt were

elected for phenotyping in 2013. Five locations or environments

with different latitudes across the Summer and Spring Corn Belt

that produce over 80% of China’s grain corn were selected for

phenotyping, which include a location at the southern end of the

Summer Corn Belt, Dancheng (DC, latitude 33.645°N, and

longitude 115.177°E) and a location at the northern end of

China’s Spring Corn Belt, Binxian (BX, latitude 45.759°N, and

longitude 127.486°E), and three locations in between: Zhengzhou

(ZZ, latitude 34.859°N, and longitude 113.368°E, Summer Corn

Belt), Ningjin (NJ, latitude 37.652°N, and longitude 116.800°E,

Summer Corn Belt), and Tieling (TL, latitude 42.547°N, and

longitude 124.159°E, Spring Corn Belt). At all five locations, the

same set of 203 inbreds were planted in the same three-row plots in

a complete randomized design (Niu et al., 2013) and five individuals

were randomly sampled from each plot to measure plant height and

ear height.
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Phenotype and environment analysis

The mean values of each inbred for PH and EH in each location

(Table S1) were used in the summary statistics, correlation analysis,

GGE biplot, and Two-way ANOVA. Summary statistics were

obtained by R package ‘pastecs’, and correlation analysis and

plots between different environments for plant height and ear

height were completed by R package ‘PerformanceAnalytics’.

Mega-environments were identified by GGE biplot using the

GGEBiplotGUI_1.0-9 package (Frutos et al., 2014) in RStudio

software (RStudio, PBC, Boston, MA, USA). Relationships

between PH and EH in each location were examined using

Pearson correlation coefficients by R. The mean values of plant

height and ear height in each mega-environment group were used

as phenotype values to identify the significant QTN-by-

environment interactions (QEIs). Two-way ANOVA was carried

out using the SAS 9.3 (SAS Institute Inc., Cary, NC, USA).
DNA sequencing, genotyping, linkage
disequilibrium and population structure

Leaf sample from each inbred line was used for DNA extraction

with a CTAB procedure. DNA sequencing follows a protocol of Elshire

et al. (2011). Genomic DNA was digested with the restriction enzyme

ApeK1. Genotyping-by-Sequencing or GBS libraries were constructed

in 96-plex and sequenced on Illumina HiSeq 2000. SNP calling was

performed using the TASSEL-GBS pipeline (Glaubitz et al., 2014) and

B73 RefGen V2.0 as the reference genome. Initially, 876,297 SNP was

filtered with minor allele frequency (MAF) > 5%, missing rate < 20%

(Shu et al., 2021; Shu et al., 2023), and data for 73,174 high-quality SNP

loci was kept for genome-wide association studies (GWAS). Minor

allele frequency (MAF) and proportion heterozygous of filtered SNPs

(73,174 SNPs) was calculated by TASSEL 5.2.25. The percentage of

SNP with different Minor allele frequency (MAF) and proportion

heterozygous was counted and shown in a bar chart (Figure S1).

Linkage disequilibrium (LD) analysis was carried out by

TASSEL 5.2.25 (https://www.maizegenetics.net/tassel, Bradbury

et al., 2007) with LD window size 50 for all filtered SNP on each

chromosome. Structure 2.3.4 (Hubisz et al., 2009) was used to detect

the population structure among all 203 maize inbred lines using

7296 Tag-SNP extracted from 73175 SNPs by Haploview 4.2

(Barrett et al., 2005). Burn-in period and Monte Carlo Markov

Chain (MCMC) replication number were set as 5,000 and 50,000

respectively for each run. Seven independent runs were performed

with subpopulation number k= 3 to 9. The delta K values were

estimated and output by Structure 2.3.4.
Genome wide association studies
by IIIVmrMLM

IIIVmrMLM, A software package that implements the 3VmrMLM

model (Li et al., 2022a; Li et al., 2022b) was employed for genome-wide

association studies (GWAS). In the single-locus module, 3VmrMLM

includes two steps: 1) genome-scanning was employed, and SNP loci
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that were significant (p < 0.01) inWald test were kept for the following

analysis. A midresult file is output after step 1; 2) all the loci identified

in step 1 were incorporated into the Multi-locus Model, all the effects

were estimated by empirical Bayes, and the loci with LOD score larger

than 3.0 of likelihood ratio test were outputted.

In this study, 73,174 filtered SNPs were used as genotype data,

the Q matrix was calculated by the Structure 2.3.4 software under

the best K value, the parameter “method” was set to “Multi_env”

mode, other parameters were set as default values. The critical P-

value and LOD score were set as 0.05/m and 3.0, respectively, for

significant and suggested QTNs and QEIs, where m is the number

of markers (Li et al., 2022b).

To identify QEIs, the phenotype data from five locations were

grouped into the summer corn belt group (E1) containing data from

three locations (Dancheng, Zhengzhou, Ningjin) and the spring

corn belt group (E2, containing data from Tieling and Binxian), the

mean value of all locations within each corn-belt group was

calculated for each genotype and used as input data to

IIIVmrMLM software under “Multi_env” module. The additive-

by-environment (add*E) and dominance-by-environment (dom*E)

interaction effects of QEIs were estimated and outputted in the

final result.

To identify summer corn belt specific QTNs, the trait phenotype

data of a genotype from three locations within the Summer Corn Belt

was used, and the phenotype value at each location was used as input

data for the IIIVmrMLM software under “Multi_env”module. Similarly,

phenotype data from two locations within the spring corn belt was used

to identify spring corn belt specific QTNs. The additive effects(add) and

dominant effects(dom) of corn-belt specific QTNs were estimated and

outputted in the final results of Summer and Spring Corn Belt.
Candidate gene annotations of QEIs and
QTNs, and patterns of QTN x E interaction

The fasta sequences containing significant QEIs and QTNs

identified by IIIVmrMLM were re-aligned to the B73 v4 reference

genome using NCBI BLAST-2.12.0+ (Camacho et al., 2009) to obtain a

more accurate physical position for better gene annotations (https://

www.maizegdb.org/gbrowse). To identify candidate genes that are

associated with a QEI or QTN, we first conducted a primary

screening within the chromosomal region 100kb up and down the

significant QEI or QTN, then software ANOVAR was used for further

screening; ANOVAR only output a candidate that meets the following

criteria: the significant QTN orQEI is located within the transcriptional

sequence of the candidate (further categorized as in Exon (synonymous

or non-synonymous), Intron,3′-UTR, and 5′-UTR or within 1kb

upstream or downstream of the candidate. The patterns of key QEIs

were visualized by line chart.
Candidate gene identification and tissue-
specific expression analysis

The polymorphic SNPs surrounding key significant QEIs and

QTNs and their PH and EH phenotype association from the
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midresult file and the relationship between SNPs and gene

structures was studied using scatter and gene structure diagram.

For each candidate gene, transcriptomic databases at MaizeGDB

(MaizeGDB, https://www.maizegdb.org/) were searched for its

expression profiles in different organs and tissues across different

developmental stages. Haplotype analysis was used to verify the

phenotype effect of important QTNs.
Results

Phenotypic analyses and mega-
environment grouping

The descriptive statistics for PH and EH at five locations or

growth environments are presented in Table 1. Variation of PH,

measured by CV ranges from 12% to 15% within each location. The

range and the degree of variation in PH in the Spring Corn Belts is

larger than in the Summer Corn Belt. The absolute values of

kurtosis and skewness were all less than 1 (Table 1), indicating

that the phenotype data do not significantly depart from a normal

distribution and are suitable for GWAS. Variation of EH measured

by CV ranges from 19.3% to 29.6% within each location, Which is

larger than PH. The range of variation in EH in the Spring Corn

Belt is much larger than in the Summer Corn Belts.

The phenotypic correlation between each environment-pair for

PH and EH among three Summer Corn Belt locations [Dancheng

(DC), Zhengzhou (ZZ), and Ningjin (NJ)] and between two Spring
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Corn Belt locations Tieling (TL) and Binxian (BX), are shown in

Figures 1A and C. As the scatter plot and correlation coefficients in

Figure 1A show, the within-corn belt location-pair correlation

coefficients (PH*PH) are 0.77, 0.77, and 0.66 for three Summer

Corn Belt locations and 0.66 for two Spring Corn Belt locations for

PH, which are significant at 0.01 level. Whereas, the six between-

corn belt correlation coefficients are from 0.03 to 0.12, which are not

significant at the 0.05 level. The same pattern was observed for EH

(Figure 1C), suggesting a high location-location correlation within

each corn belt and nearly zero location-location correlation between

the two corn belts. The lack of phenotypic correlation between the

two corn belts was also revealed by biplot for PH (Figure 1B) and

EH (Figure 1D), which shows that the location vectors within the

same corn belts form tight bundles, and the two vector bundles

form a nearly vertical angle. Thus, GGE biplot groups the five

locations into two mega environments which fit well with the

assignment of five locations into two corn belts widely adopted by

maize breeders and grain corn growers. The above analyses revealed

the high similarity in a growth environment and in PH and EH

phenotype within a corn belt and large divergences in growth

environment and PH and EH phenotype between the two corn

belts. The correlation coefficients between PH and EH (PH*EH)

within each location range from 0.51 to 0.75 (Table 1), which is

significant at 0.001 level.

To verify the results of environmental grouping, variance

analysis was conducted to reveal the differences between mega

environments (Table S2). The results showed that there were

significant genotype x mega environment interactions in both PH
TABLE 1 Descriptive statistics for PH, EH among 203 accessions across five environments.

Traits
Corn
belt

Environments Latitude
No. of
Inbreds

Max.-
Min.
(cm)

Mean
± SD

CV
(%)

Skewness Kurtosis CC(with EH)

PH

E1

DC 33.6° N 202 110-241
178.0 ±
21.4

12 0.13 0.14 0.56***

ZZ 34.9° N 203 113.8-263.6
174.3 ±
25.1

14.4 0.49 0.42 0.75***

NJ 37.7° N 201 115-250
184.6 ±
24.3

13.2 0.37 0.04 0.65***

E2

TL 42.5° N 203 149-290
209.3 ±
29.8

14.2 0.23 -0.46 0.65***

BX 45.8° N 202 89-245
169.6 ±
25.4

15 -0.16 0.07 0.51***

EH

E1

DC 33.6° N 202 32-109
66.8 ±
13.8

20.7 0.01 -0.29

ZZ 34.9° N 203 30.4-115.8
68.7 ±
13.3

19.3 -0.06 0.35

NJ 37.7° N 201 40-110
74.3 ±
14.4

19.3 0.21 -0.06

E2

TL 42.5° N 203 43-130
85.1 ±
18.7

22 0.06 -0.7

BX 45.8° N 201 23.5-114.1
60.2 ±
17.8

29.6 0.21 -0.14
DC, Dancheng; ZZ, Zhengzhou; NJ, Ningjin; TL, Tieling; BX, Binxian. CC, Correlation coefficient. ***P < 0.001.
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and EH. Genotype x mega environments accounted for 30.7% and

31.2% of the total variance for PH and EH respectively. Whereas

genotype variance accounted for 32.2% and 29.2% of the total

variance for PH and EH, respectively. Therefore, genotype x mega

environments interaction is a very important factor in determining

the phenotypic plasticity observed in PH and EH.
Characteristics of genotype data, linkage
disequilibrium and population structure

Among the 876,297 SNPs collected from 203 inbred lines,

73,174 high-quality SNP loci after a filtering procedure (see

Material and Methods) were kept for all analyses in this project.

The minor allele frequency (MAF) distribution (see Figure S1A)

indicates the existence of abundant allelic polymorphism for

genome-wide marker-trait association. About 60% of SNPs with

heterozygosity less than 5% are only suitable to additive allelic effect

analysis (see Figure S1B), the other 40% of SNPs with

heterozygosity higher than 5% are suitable to both additive and

dominant allelic effect analysis. The LD decay across all 10

chromosomes reached down to r2 = 0.1 when the distance
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between two adjacent SNP increased up to 60 kb (Figure S2A).

The population structure analysis showed that the delta K value

reached the peak at K=3, indicating that this diversity panel of 203

inbreds can be divided into three subgroups (Figure S2B), namely,

M-Reid+P, SS+Iodent+Lan, and LRC+TSPT, respectively

(Figure S2C).
Identification of significant QEIs and the
patterns of QTN x E interactions

12 significant QEIs for PH and 11 significant QEIs for EH were

identified and reported in Table 2 and they are visualized as pink

dots on the Manhattan plots (Figure S3A, B), 9 of 12 QEIs for PH

and 8 of 11 QEIs for EH are QEIs with additive effect as a key effect,

whereas 3 of 12 QEIs for PH and 3 of 11 QEIs for EH are QEIs with

dominant effect as a key effect. S3_224 and S10_135 are two QEIs for

EH with the largest LOD (QE) and variance.

To visualize and verify the QTN x environment interaction in

QEIs identified from IIIVmrMLM graphically, the patterns of QTN

x environment interaction of five QEIs from Table 2 were shown by

line chart (Figure 2). The QTN x environment interaction was
B

C D

A

FIGURE 1

Phenotypic correlations between five environments within and between two corn belts viewed by correlation matrix and GGE biplot for PH and EH.
(A) and (C) are correlation matrix among five environments for PH (A) and EH (C); (B) and (D) are GGE biplots for PH (B) and EH (D). ***P < 0.001.
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TABLE 2 QEIs between two mega-environmental groups and associated candidate genes for PH and EH.

|dom|/|
add|

Key
effect

Gene ID
Gene
Symbol

Category

1.57 add Zm00001d031277,
Zm00001d031278

ZAT3/
DOF1.6

Upstream

0.00 add Zm00001d004132 cl36164_1 UTR5

5.85 dom Zm00001d007630 RPS2 Non-syn.

29.39 dom Zm00001d042199 PSB28 Syn.

1.90 add – Intergenic

0.30 add Zm00001d049691,
Zm00001d049692

mads32 Syn.

0.94 add Zm00001d036014 E3/UBPL Intronic

0.62 add Zm00001d037655 - Non-syn.

0.00 add Zm00001d019648 nbp1 Syn.

24.27 dom Zm00001d008396 - UTR5

0.17 add Zm00001d026606 cdj5 Non-syn.

0.55 add Zm00001d028386 Downstream

0.28 add Zm00001d029772 prh126 Non-syn.

0.85 add Zm00001d034076 mmp165 Non-syn.

2.63 dom Zm00001d001837 myb133 Non-syn.

0.29 add Zm00001d041064 NUP1 Non-syn.

0.44 add Zm00001d044272 bhlh94 UTR5

2.57 dom Zm00001d049616 gpat9 Syn.

0.01 add - - Intergenic

0.10 add Zm00001d012848 - Non-syn.

0.23 add Zm00001d018122 E3/UBPL Non-syn.

2.07 dom Zm00001d012428 - Non-syn.

0.99 add Zm00001d025947 saur76 Intergenic

*E2, additive effect of E2(Spring Corn Belt); Dom*E2, dominant effect of E2(Spring Corn Belt);
erozygous >0.05, Key effect would be add; if |dom|/|add|>2, and Proportion Heterozygous>0.05,
ene, Non-syn.(non-synonymous) represent the SNP locate in the exonic region of the candidate
acid change.
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Trait
Marker (V4,

abbr)
Chr#

Position
(V4, bp)

Ref/
Alt

LOD
(QE)

Add*E1 Dom*E1 Add*E2
Dom*
E2

Var r2 (%) Het.

PH S1_185 1 184855257 G/A 7.0 3.1 4.8 -3.1 -4.8 10.7 2.6 0.09

S2_85 2 85448512 A/C 10.1 -4.4 4.4 19.3 4.6 0.12

S2_237 2 236504893 G/A 8.1 1.9 11.1 -1.9 -11.1 13.1 3.1 0.08

S3_156 3 155997977 A/G 9.3 0.2 -7.2 -0.2 7.2 14.5 3.5 0.28

S3_159 3 158641942 A/C 6.6 3.4 6.4 -3.4 -6.4 11.9 2.9 0.02

S4_40 4 40463790 T/C 11.5 -4.5 1.4 4.5 -1.4 19.8 4.7 0.02

S6_66 6 66264336 G/A 6.7 -3.4 -3.2 3.4 3.2 11.5 2.7 0.08

S6_133 6 133125635 A/G 16.6 -5.5 -3.4 5.5 3.4 28.6 6.8 0.11

S7_48 7 47993521 C/G 10.3 -4.1 4.1 16.8 4.0 0.11

S8_7 8 7205104 T/G 9.1 0.3 7.7 -0.3 -7.7 14.1 3.4 0.23

S10_149 10 148903473 C/T 13.5 6.4 1.1 -6.4 -1.1 21.6 5.2 0.49

EH S1_33 1 32857527 G/T 11.5 -3.1 -1.7 3.1 1.7 7.0 4.4 0.35

S1_86 1 86353115 G/A 5.7 -2.3 0.6 2.3 -0.6 2.9 1.9 0.46

S1_283 1 283402157 A/C 7.7 2.3 -1.9 -2.3 1.9 5.1 3.2 0.01

S2_2 2 1669905 T/C 8.7 -1.4 -3.8 1.4 3.8 4.9 3.1 0.24

S3_94 3 94315573 C/A 7.0 -2.5 0.7 2.5 -0.7 3.9 2.5 0.41

S3_224 3 223519980 C/T 17.3 3.3 1.5 -3.3 -1.5 10.3 6.5 0.04

S4_38 4 37703788 A/G 5.8 -1.9 4.9 1.9 -4.9 3.7 2.3 0.01

S4_225 4 224650169 T/C 14.2 3.6 -0.1 -3.6 0.1 8.1 5.1 0.36

S5_1 5 1080954 T/C 7.6 -2.6 -0.3 2.6 0.3 4.9 3.1 0.27

S5_215 5 214720899 A/C 10.3 3.0 0.7 -3.0 -0.7 5.6 3.6 0.41

S8_174 8 174327122 C/A 5.0 -1.2 2.4 1.2 -2.4 2.7 1.7 0.29

S10_135 10 134518892 G/C 20.9 3.4 3.4 -3.4 -3.4 11.8 7.4 0.03

EH, ear height; PH, plant height; LOD(QE), LOD score for QEIs; Add*E1, additive effect of E1(Summer Corn Belt); Dom*E1, dominant effect of E1(Summer Corn Belt); Ad
Var, the variance of each QTN; Het., proportion heterozygous; |dom|/|add|, namely |dom*E1|/|add*E1| or |dom*E2|/|add*E2|; Key effect: if |dom|/|add|≤2, or Proportion He
Key effect would be dom. Category: location of SNPs in genes and effect, upsteam, downstream, UTR5, intergenic, intronic represent SNP locate the region of the candidate g
genes which cause an amino acid change, Whereas syn.(synonymous) represent the SNP locate in the exonic region of the candidate genes which do not cause an amino
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further partitioned into add*E and dom*E as shown in Table 2.

S3_156 is a QEI for PH with large negative dom (dominance)*E1

interaction (-7.2) at E1(Summer Corn Belt) locations and large

positive dom (dominance)*E2 interaction (7.2) at E2 (Spring Corn

Belt) locations, and with an absolute dom/add ratio of 29.39,

Figure 2A illustrates the interaction pattern of its three genotypes

and shows that heterozygotic AG genotype has significantly shorter

PH than both “AA” and “GG” genotype at Summer Corn Belt (E1),

but has much taller PH at Spring Corn Belt (E2). Another QEI with

a dominant effect as key effect is S8_7 for PH (Figures 2C), with a

high absolute dom/add ratio of 24.27. The QEIs S4_40 for PH and

S3_224 for EH are QEIs with additive effect as key effect and

absolute dom/add ratio of 0.3 and 0.44, respectively (Table 2), the

genotype CC and TT show opposite phenotype performance in the

Summer and Spring Corn Belts (Figures 2B, D). The QEI S10_135

has an absolute dom/add ratio of 0.99 (Table 2), indicating a nearly

equal amount of dom*E and add*E interaction (Table 2; Figure 2E).

The candidate genes for S3_224 and S10_135 are Zm00001d044272

(bhlh94, bHLH-transcription factor 94) and Zm00001d025947

(saur76, small auxin up RNA76), respectively. The candidate
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genes for S4_40 are Zm00001d049691(SDH6 , Succinate

dehydrogenase subunit 6 mitochondrial) and Zm00001d049692

(MADS32, MADS-transcription factor 32), likely an important

QEI for PH.
Identification of significant corn-belt-
specific QTNs and annotations

28 and 23 QTNs for PH and EH respectively were identified

from Summer Corn Belt data, thus are called summer-corn-belt-

specific QTNs (Table S3; Figure 3). 25 and 26 QTNs for PH and EH

respectively were identified within the Spring Corn Belt, and thus

are called spring corn belt specific QTNs. Among the total 102 corn-

belt specific QTNs reported in Table S3, 56 QTNs show an additive

effect as key effect (|dom/add|<2.0) and 46 QTNs show a dominant

effect as key effect (|dom/add|>2.0).

QTN S10_4 (Zm00001d023333, sdg127, set domain gene127)

and S7_1 (Zm00001d018614, GLR3.4: glutamate receptor 3.4 or

Zm00001d018616, DDRGK domain-containing protein) are two
TABLE 3 Corn-belt-specific QTNs for PH and EH in Summer and Spring Corn Belt.

Trait
Corn
belt

Marker
(V4, abbr)

Chr#
Position
(V4, bp)

LOD
(Q)

Add Dom Var
r2
(%)

Het.
|dom|/
|add|

Key
effect

Gene ID
Gene
Symbol

Category

PH E1 S1_255 1 255244221 7.8 2.5 0.9 5.6 1.0 0.05 0.37 add Zm00001d033230 RLK29 Non-syn.

PH E1 S1_259 1 259066746 55.8 7.3 -0.1 21.6 3.8 0.06 0.01 add Zm00001d033325 dof39 upstream

PH E1 S7_1 7 910582 18.5 4.2 -4.8 17.9 3.1 0.06 1.15 add Zm00001d018614 GLR3.4 Non-syn.

PH E1 S10_4 10 3618262 9.2 2.9 2.6 8.3 1.4 0.06 0.88 add Zm00001d023333 sdg127 Non-syn.

PH E2 S7_151 7 150642747 76.4 17.2 2.1 34.7 3.0 0.12 0.12 add Zm00001d021386 ZFP2 Non-syn.

PH E2 S10_15 10 15032123 67.9 7.0 16.4 19.3 1.7 0.73 2.34 dom Zm00001d023677 sweet13a Syn.

EH E1 S1_273 1 273051629 8.8 2.2 -0.3 4.3 2.1 0.07 0.13 add Zm00001d033765 MAPKK9 upstream

EH E1 S4_118 4 117960613 29.5 -3.9 -1.0 9.5 4.8 0.01 0.25 add
Zm00001d050715,
Zm00001d050716

invan3 upstream

EH E1 S7_1 7 1024439 6.6 -1.6 1.6 2.5 1.2 0.06 0.97 add Zm00001d018615 GLR3.4 Non-syn.

EH E1 S10_4 10 3618262 7.1 1.9 -0.1 3.5 1.7 0.06 0.07 add Zm00001d023333 sdg127 Non-syn.

EH E2 S1_7 1 7065140 16.4 -0.9 7.9 15.3 3.0 0.28 8.98 dom
Zm00001d027503,
Zm00001d027508

CaBP/
PKs

Non-syn.

EH E2 S4_41 4 41323782 21.1 5.3 10.2 2.0 0 0 add
Zm00001d049715,
Zm00001d049717

iaa16 Syn.
fron
the abbreviation in this table is same as Table 1 and 2. |dom|/|add|: the absolute ratio of dominant effect to additive effect.
B C D EA

FIGURE 2

Patterns of QTN x E interaction in Summer and Spring Corn Belts for PH and EH. (A–C) three QEIs S3_156 (A), S4_40 (B) and S8_7 (C) for PH;
(D, E) two QEIs S3_224 (D) and S10_135 (E) for EH.
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significant summer corn belt specific QTNs for both PH and EH

(Tables 3, S3). There are a set of candidate genes located within 7.0

Mb region of chromosome 1, near the three summer corn belt

specific QTNs S1_255, S1_259, and S1_262; Zm00001d033319 (V4:

chr1:258878226:258879592, Auxin-responsive protein IAA4) is

located 200kb from S1_259 (V4:chr1:259066746) and

Zm00001d033369 (V4:chr1:260633725:260634703, Gibberellin-

regulated protein 1) is located between S1_259 and S1_262 (Teale

et al., 2006; Wang et al., 2017; Luo et al., 2018; Wang and Wang,

2022b; Wu et al., 2023). Another spring corn belt specific QTN,

S1_263 (V4: chr1:262565751) is also located in this region. QTN

S1_255, S1_259, and S1_262 have additive effects as key effects in the

Summer Corn Belt, and the QTN S1_263 has a dominant effect as

key effect in the Spring Corn Belt (Tables 3, S3).
Candidate genes association mapping and
tissue-specific expression analysis

Candidate gene search has found that the significant QEI

S3_224 identified by 3VmrMLM is located on the 5’UTR region

of Zm00001d044272 (bhlh94), its gene structure is shown in Figure

S4. Another QEI, S4_40 (full ID: S4_40463790, V4: chr4:40463790)

is on the exon of two partially overlapping candidate genes
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Zm00001d049691 (V4:chr4 :40460274 - 40464504) and

Zm00001d049692 (chr4:40462578 - 40464305) (Figure 4. Tables 2,

S4). Tissue-specific expression analysis shows Zm00001d049691

(SDH6) expresses in stems, leaves, embryos, roots, spikelets, and

silks, Zm00001d049692 (MADS32) expresses in stems, splikelets,

and silks, and Zm00001d049690 (CY P89A2) only expresses in roots

(Figure S5). SDH encodes succinate dehydrogenase, which is

activated by salt stress (Fedorin et al., 2023) and is also regulated

by light (Eprintsev et al., 2016). Another MADS-transcription

factors, ZmMADS4 and ZmMADS67 both increase leaf number

and delayed flowering, indicating that they promote the floral

transition (Sun et al., 2020) and overexpression of ZmMADS69

causes early flowering (Liang et al., 2019).

Three SNPs surrounding QTN S10_4 l oca ted in

Zm00001d023333 are significant at 0.01 level (-log10-P >2) for

PH and EH in the Summer Corn Belt (Figures 5A, B). Two of them:

the S10_3620568 and S10_3620675 are located on 5’UTR and the

S10_3618266 is located on CDS (Figures 5C, D). Zm00001d023333

(Chr10:3606398-3621010, sdg127, SET domain gene127) encodes a

histone-lysine N-methyltransferase ATXR7. Another two SET

domain family genes, SET domain group 8 (SDG 8) in

Arabidopsis thaliana (Zhao et al., 2005) and SDG712 in rice

(Zhang et al., 2021) could delay flowering by repressing the

expression of FLOWERING LOCUS C (FLC) and florigen genes,
B

C

D

A

FIGURE 3

Manhattan plots of corn-belt-specific QTNs for PH and EH in Summer and Spring Corn Belt. (A,B) corn-belt-specific QTNs and candidate genes for
PH in Summer Corn Belt (A) and Spring Corn Belt (B); (C, D) corn-belt-specific QTNs and candidate genes for EH in Summer Corn Belt (C) and
Spring Corn Belt (D).
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respectively. The above research findings suggest that

Zm00001d023333 we identified in this study might affect PH and

EH by delaying flowering time and lengthening vegetative growth.

Haplotype analysis has shown that the three SNPs can form six

haplotypes (Hap0, Hap1, Hap2, Hap3, Hap4, Hap5) (Figure 5E).

Hap 1 (ATA) and Hap 4(GCC) are the major haplotypes, with 36

and 32 inbreds, respectively. Hap 1 (ATA) is higher than Hap 4

(GCC) in terms of both PH and EH (Figures 5F, G).

Several SNPs significantly associated with PH and EH are

identified surrounding QTN locus S7_1. Some of them are

located on the CDS of the two candidate genes Zm00001d018614

and Zm00001d018616. Expression of Zm00001d018616 (about 30

FPKM) at the mRNA level is ten times higher than

Zm00001d018614 (about 3 FPKM) in the stem (Figure S6).

Zm00001d018614 and Zm00001d018615 are genes encoding

glutamate receptor, which are involved in seed germination

inhibition and seedling heat tolerance (Kong et al., 2015; Li et al.,

2019). Another candidate gene, Zm00001d018617 (ga2ox12,

gibberellin 2-oxidase12, Chr7:1105512-1106576), is a member of

gibberellin oxidase gene family which might affect PH (Paciorek

et al., 2022), but its expression is not detected in stem tissues of

maize (Figure S6).

Three SNPs associated with PH are identified surrounding

QTN S10_15, a spring-corn belt specific QTN and they are all

located in the CDS region of candidate gene Zm00001d023677

(sweet13a, V4:chr10:15030181-15032801) (Figure S7); two SNPs,

S10_15032123 and S10_15032153, are synonymous SNV whereas

the third SNP, S10_15032160, is nonsynonymous SNV which

causes an amino acid change (Table S5). Haplotype analysis has

shown that the three SNPs can form four haplotypes (H1, H2, H3,

H4). The PH of heterozygous haplotype H2 (CG/CG/TG) is

significantly higher than that of the homozygous haplotype H2

(CC/GG/GG) (Figure S7). The candidate gene Zm00001d023677

(sweet13a) encodes a SWEET protein of the MtN3/saliva family

(Xuan et al., 2013). Another SWEET protein coding gene

CmSWEET17, has been reported to be involved in the process of

sucrose-induced axillary bud outgrowth in strawberry (C.
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morifolium), possibly via the auxin transport pathway (Liu

et al., 2020a).
Discussion

Mega environment, phenotypic plasticity,
and mega-environmental GEI and QEI

Partitioning multi-environments into a set of environment

clusters or mega environments has been well-studied in which,

the multi-environments were grouped using PCA, clustering, and

GGE biplot (Shu and Fan, 1986; Yan and Kang, 2003). Yan (2015)

defined a mega-environment as a group of geographical

environments that share the same (sets of) genotypes consistently

across years. Other researchers have defined a mega-environment

as a group of growing environments that are similar in terms of

genotype response and that show a repeatable relative performance

of a set of crop genotypes across years (Yan and Rajcan, 2002).

Mega-environments are often identified through the analysis of

multiple-environment trial data for a set of genotypes. The purpose

of the mega-environment analysis is to understand the nature of

environmental variation across experimental locations, whether

there is structure or segmentation among the locations. Our result

shows that there is significant segmentation among the 5 locations

and they can be divided into two mega-environments, there is very

little variation among locations within a mega environment and the

two segments fall right into the two corn belts that have been widely

adopted by breeders and corn growers. Our results also show that

the GGE model, with a biplot display, is an effective tool for

displaying environment structure and segmentation which explain

why it has become popular in analyzing multiple-environment trial

data to determine environment cluster (Yan and Kang, 2003; Yan

et al., 2011; Yan, 2015; Dai et al., 2010).

Understanding the genetic basis of phenotypic plasticity in

general and the genotype x environment interaction (GEI) in

particular is of primary importance in traditional crop genetics
B

A

FIGURE 4

Association of SNPs surrounding significant QEI S4_40 with candidate genes. (A) associations of the twelve SNPs using mean value of PH in Summer
and Spring Corn Belt; (B) gene distribution around S4_40(V4:chr4:40463790).
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and plant breeding, and a large body of literature on models and

strategies is available (Shu and Fan, 1986; Cooper and DeLacy, 1994;

Malosetti et al., 2013; Li et al., 2018; Liu et al., 2020b; Schneider,

2022). The genetic bases of genotype x environment interaction

(GEI) for PH and EH are difficult to study due to environment

structure and segmentation among experiment locations and the

multi-locus nature of their genetic control. In this study, we deal

with multi-environmental segmentation by grouping multiple

locations into mega-environments using GGE biplot and deal

with multi-locus nature by dissecting it into QTN x environment

interaction or QEIs using multi-environmental GWAS. Our results

show that genotype x mega environment interaction (GEI)

accounted for about 30% of the total variation for both PH and

EH, almost equal to the genotypic variation among 203 inbred lines

in proportion (which is also about 30%). Therefore, genotype x

mega environments interaction has a significant contribution to the

phenotypic plasticity observed in PH and EH.

Understanding the molecular mechanism underlying the detected

pattern of phenotypic plasticity in general and G x E, in particular, has

been a major effort in the last decade. QTL mapping and genome-wide
Frontiers in Plant Science 10257
association studies (GWAS) have been shown effective means in

identifying a large number of QTL/QTN and QEIs (Xiao et al., 2017;

Jin et al., 2023; Napier et al., 2023) and transcriptomic analysis and

functional genomics have been shown as important ways to identify

candidate genes and verify their biological functions (Seyfferth et al.,

2021; Han et al., 2023; Napier et al., 2023; Wang et al., 2023). Various

statistical models and bioinformatic algorithms have been proposed to

improve the effectiveness of GWAS but no significant progress has

been made on GWAS that can partition GEI and identify QEIs. We

have shown that the 3VmrMLM GWAS models and the IIIVmrMLM

software package recently released can effectively identify QEIs. The

software package has also been applied to data from rice, soybean, and

other crops to identify QEIs and hunt candidate genes underlying QEIs

(Zhang et al., 2022; Zuo et al., 2022; Zhao et al., 2023). We have shown

that by employing 3VmrMLM multi-environment GWAS models, we

were able to go beyond the traditional G x E interaction analysis and

were able to identify and annotate a set of QEIs for PH and EH.

Among the candidate genes annotated by transcriptomic

analysis, Zm00001d049692 (MADS32) surrounding QEI S4_40,

might affect PH in different ecological zones by both increasing
B

C

D

E

F

A

G

FIGURE 5

Association of SNPs surrounding significant QTN S10_4 with candidate genes and their haplotype Effects. (A, B) associations of the 11 SNPs with PH
(A) and EH (B) in Summer Corn Belt. The dot is red with the threshold of -log10(PValue)>2; (C) gene distribution around QTN S10_4(V4:
chr10:3618266); (D) gene structure of Zm00001d023333; (E) haplotypes of the three significant SNPs; (F, G) boxplots of haplotypes for PH (F) and
EH (G) in Summer Corn Belt.
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leaf number, delay flowering time, and lengthen vegetative growth

period, similar to ZmMADS4 and ZmMADS67 (Sun et al., 2020).

Zm00001d044272 (bhlh94) surrounding QEI S3_224 might be

involved in low-temperature respons iveness , MeJA-

responsiveness, abscisic acid responsiveness because of its cis-

regulatory elements and affect root growth and elongation in

response to stressful conditions as the manner of RICE SALT

SENSITIVE3 (RSS3) in rice (Toda et al., 2013). These findings

will facilitate the understanding of the molecular basis of the G x E

observed in PH and EH.
Corn belt-specific QTNs

As has been partly described in the Material and Method

section, the summer corn-belt average and spring corn-belt

average were used to identify QEI, which is defined as the QTN

that shows significant QTN x corn-belt interaction by IIIVmrMLM.

When QTN x environment interaction is significant, the significant

positive and negative genotype effects were canceled out during

averaging, therefore the QTN main effects become less meaningful.

We obtain corn belt specific QTNs by feeding the IIIVmrMLM

software with multi-location data within a corn belt. A corn belt

specific QTN is a QTN that shows a significant genotype effect

within either summer or spring corn belt data. QEIs explain the

phenotypic plasticity across different corn belts and are frequently

the targets to select against by breeders seeking stress tolerance and

trait stability whereas corn-belt specific QTNs expain the genetic

variation within a corn-belt and are frequently targets to select for

by breeders seeking genetic gain and stable phenotypic performance

in the corresponding corn belt.

We have identified a set of main effect QTNs or corn belt

specific QTNs. In the Summer Corn Belt, four candidate genes
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Zm00001d018614, Zm00001d018615, Zm00001d018616, and

Zm00001d018617 are identified surrounding QTNs S7_1

(Figures 6, S6). Zm00001d018617 is also identified by Zhang et al.

(2019) as a candidate gene for PH. Zm00001d033230 surrounding

QTN S1_255 (V4:chr1: 255244221, Tables 3, S3; Figure 3) is

associated with PH in the Summer Corn Belt in our study, which

is also identified as a candidate gene associated with PH in Zmdle1,

a dwarf and low ear maize mutant (Zhou et al., 2023).

Zm00001d049715 (IAA25) surrounding QTN S4_41 is associated

with EH in the Spring Corn Belt, which is also identified as a

candidate gene for PH by Zheng et al. (2016) through meta-

QTL analysis.
3VmrMLM multi-environment
GWAS models

The selection of appropriate statistical models to detect andmeasure

association is critical to the success of GWAS. The models should be

able to deal with various features of phenotypic and genotype data, such

as continuity and normality of phenotypic data, population structure

and kinship in genotype data, and various confoundings from other

covariables in a model. The R software package provided by Zhang’s

group, IIIVmrMLM V1.0 (Li et al., 2022a; Li et al., 2022b), is a GWAS

model that fits the data of strong G x E. Under the framework of a

compressed variance component mixed model, each marker on the

maize chromosome was first scanned for statistical significance and a

less stringent Banforroni correction was adopted in the statistical test

and the significant marker loci identified were then incorporated into a

new multi-locus genetic model and their effects were estimated by

Empirical Bays and all non-zero effects were further evaluated by the

likelihood ratio test. Another feature of the 3VmrMLM model is that it

can take advantage of heterozygosity discovered in genomic sequence
A

B

D

C

FIGURE 6

Significant QTN S7_1 and associated SNPs on candidate gene Zm00001d018614 (GLR3.4) and Zm00001d018616 (DDRGK domain-containing
protein). (A, B) associations of the 28 SNPs for PH (A) and EH (B) in Summer Corn Belt; (C) gene distribution around S7_1 (V4:chr7:910582);
(D, E) gene structure of Zm00001d018614 (D) and Zm00001d018616 (E).
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data. Heterozygosity has been detected in many DNA sequence projects

in corn inbred lines that have been selfed for 6-10 generations,

Traditionally, this so-called residual heterozygosity is treated as

sequencing errors, or as missing data and is filtered out and ignored.

The recent hi-fi sequencing technology has shown this heterozygosity is

not a sequencing error and is instead a true variation in inbred lines. The

3VmrMLMmodel can utilize this important information to reveal QTN

x QTN and QTN x environment interaction.
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SUPPLEMENTARY FIGURE 1

Frequency distribution of minor allele and proportion of heterozygous genotypes
in 203maize inbred lines based on 73175 SNPs dataset. (A)minor allele frequency;

(B) proportion of heterozygous genotypes.

SUPPLEMENTARY FIGURE 2

Linkage disequilibrium decay and genetic diversity in the genome-wide
association study (GWAS) panel. (A) linkage disequilibrium decay across all

10maize chromosomes; (B) the plot of delta K; (C) population structure of the
203 lines at K = 3.

SUPPLEMENTARY FIGURE 3

Manhattan Plot of QEIs and associated known candidate genes. (A) QEIs and

their associated genes for PH identified from mean values of PH in Summer
Corn Belt (E1) and Spring Corn Belt (E2). (B) QEIs and their associated genes

for EH from mean values of EH in Summer Corn Belt (E1) and Spring Corn
Belt (E2).

SUPPLEMENTARY FIGURE 4

Association of SNPs surrounding significant QEI S3_224 with candidate

genes. (A) associations of the fourteen SNPs using mean values of EH in
Summer Corn Belt (E1) and Spring Corn Belt (E2). (B) gene structure of

Zm00001d044272(bhlh94).

SUPPLEMENTARY FIGURE 5

Tissue-specific expression profiles of candidate genes around QTN S10_4

retrieved from maizeGDB.(A) Zm00001d049690 (B) Zm00001d049691

(C) Zm00001d049692.

SUPPLEMENTARY FIGURE 6

Tissue-specific expression profiles of candidate genes around QTN S7_1

retrieved from maizeGDB. (A) Zm00001d018614 (B) Zm00001d018615
(C) Zm00001d018616 (D) Zm00001d018617.

SUPPLEMENTARY FIGURE 7

Association of SNPs surrounding significant QTN S10_15 with candidate genes

and their haplotype Effects. (A) associations of the SNPs surrounding S10_15 for
PH in Spring Corn Belt. (B) proportion of heterozygous genotypes of the SNPs

surrounding S10_15. (C) gene structure of Zm00001d023677. (D) haplotypes of
the three significant SNPs. (E) boxplots of haplotypes for PH in five locations.
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Compressed variance
component mixed model
reveals epistasis associated
with flowering in Arabidopsis
Le Han1†, Bolin Shen1†, Xinyi Wu1, Jin Zhang1,2

and Yang-Jun Wen1,2*

1College of Science, Nanjing Agricultural University, Nanjing, China, 2State Key Laboratory of Crop
Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
Introduction: Epistasis is currently a topic of great interest in molecular and

quantitative genetics. Arabidopsis thaliana, as a model organism, plays a crucial

role in studying the fundamental biology of diverse plant species. However, there

have been limited reports about identification of epistasis related to flowering in

genome-wide association studies (GWAS). Therefore, it is of utmost importance

to conduct epistasis in Arabidopsis.

Method: In this study, we employed Levene’s test and compressed variance

component mixedmodel in GWAS to detect quantitative trait nucleotides (QTNs)

and QTN-by-QTN interactions (QQIs) for 11 flowering-related traits of 199

Arabidopsis accessions with 216,130 markers.

Results:Our analysis detected 89 QTNs and 130 pairs of QQIs. Around these loci,

34 known genes previously reported in Arabidopsis were confirmed to be

associated with flowering-related traits, such as SPA4, which is involved in

regulating photoperiodic flowering, and interacts with PAP1 and PAP2,

affecting growth of Arabidopsis under light conditions. Then, we observed

significant and differential expression of 35 genes in response to variations in

temperature, photoperiod, and vernalization treatments out of unreported

genes. Functional enrichment analysis revealed that 26 of these genes were

associated with various biological processes. Finally, the haplotype and

phenotypic difference analysis revealed 20 candidate genes exhibiting

significant phenotypic variations across gene haplotypes, of which the

candidate genes AT1G12990 and AT1G09950 around QQIs might have

interaction effect to flowering time regulation in Arabidopsis.

Discussion: These findings may offer valuable insights for the identification and

exploration of genes and gene-by-gene interactions associated with flowering-

related traits in Arabidopsis, that may even provide valuable reference and

guidance for the research of epistasis in other species.
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Introduction

Arabidopsis thaliana, an important flowering plant, has

emerged as a model organism for molecular plant genetics

research in recent years (Koornneef and Meinke, 2010). Its

compact genome, short life cycle, ease of cultivation, and

abundant genetic resources make it widely utilized in

fundamental biology, crop enhancement, and biotechnology. The

flowering phase of Arabidopsis plays a crucial role in determining

the precise timing of reproduction, seed, and fruit development.

Therefore, studying the regulation and molecular mechanisms of

flowering time in Arabidopsis remains an important area of

research. By discovering the genetic factors and regulatory

pathways affecting flowering time in Arabidopsis, it is possible to

identify homologous genes and manipulate their expression in

agronomic crops, optimize crop flowering time to adapt to

specific environments and agricultural practices, improve crop

yields, and produce crops that are more adapted to climate

change and stress resistance.

Flowering in Arabidopsis has complex regulatory mechanisms

and pathways, and the phenotypic material of flowering under

different regulatory pathways is particularly important to elucidate

the genetic mechanism of flowering (Qi et al., 2018). In the

photoperiodic pathway, Arabidopsis perceives light signals

through photoreceptors and transmits them to its biological

clock. The biological clock, responsive to changes in day length,

ultimately transforms the light signals into flowering signals via the

CONSTANS (CO) gene (Imaizumi and Kay, 2006). Under long-day

treatments, the CO gene facilitates flowering, whereas under short-

day treatments, it retards the process (Teper-Bamnolker and

Samach, 2005; Balasubramanian et al., 2006). In addition,

vernalization plays a vital role in regulating flowering. By

suppressing the activity of the FLOWERING LOCUS C protein,

low-temperature induction during vernalization unlocks

Arabidopsis’s flowering potential (Helliwell et al., 2015). In

additional to the vernalization pathway, it was shown that the

flowering time of Arabidopsis in 25-27°C short days was similar that

in 23°C long days, suggesting that higher temperature promotes

flowering in Arabidopsis (Balasubramanian et al., 2006). These

studies indicate that in the research on flowering-related traits of

Arabidopsis, factors such as photoperiod, vernalization, and

temperature need to be considered.

Epistasis, referred to as loci-locus interactions (He et al., 2019),

plays an important role in phenotypic variation and has received

much attention over the years. As a major factor in molecular

evolution (Breen et al., 2012), epistasis plays a crucial role in

quantitative genetic analysis and is now one of the main causes of

‘missing heritability’ (Mackay and Moore, 2014; Upton et al., 2016).

In Arabidopsis, flowering time as a complex quantitative trait is

regulated by genes such as photoperiod, but also by other

physiological processes such as temperature signaling and

vernalization, which are both independent and interrelated.

Therefore, these physiological processes involve a large number of

loci and even genes that often interact with each other, and

individual genetic loci or genes may have a small effect on

flowering time in Arabidopsis, but together with other genes may
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have a large effect on phenotypic variation (Zhang et al., 2014),

making it particularly important to investigate epistatic loci for

flowering-related traits in Arabidopsis.

Recently, researchers have proposed many epistasis detection

algorithms for complex traits based on traditional genome-wide

association studies (GWAS) or artificial intelligence (AI). The most

basic approach to explore epistasis is regression-based methods

such as PLINK (Purcell et al., 2007), which has the advantage of

high computational efficiency, rapid analysis of tens of thousands of

markers and epistasis, and wide application in case-control datasets,

but a high false positive rate. BOOST (Wan et al., 2010), which uses

a Boolean representation of genotype data, can save memory space

and improve computational speed at the same time, but it can only

handle binary phenotype data and not for continuous quantitative

traits such as yield and flowering time, which is a very limited

application scenario. For continuous traits in plants, mixed linear

model (MLM)-based methods perform better due to accounting for

environmental factors, controlling for population stratification, and

explaining cryptic correlations among individuals. QTXNetwork is

a multi-locus mixed model proposed by Zhang et al. (2015). This

method first detects each marker to identify potential quantitative

trait nucleotides (QTNs), QTN-by-environment interactions

(QEIs), and all the pairs of markers to identify potential QTN-by-

QTN interactions (QQIs), and then all the potential QTNs, QEIs,

and QQIs are placed into a genetic model to identify significant loci.

However, the associated polygenic backgrounds in the first step

were not taken into account. Ning et al. (2018) proposed a rapid

epistatic mixed-model association analysis (REMMA) algorithm,

which used the best linear unbiased prediction (BLUP) to predict

additive and dominant effects, their epistatic effects and their

variances, and then Wald Chi-squared test was used to identify

the significance of all the effects. However, their power could be

further improved. Multifactor dimensionality reduction (MDR)

(Moore, 2004), a classical nonparametric machine learning

method, was originally designed for identifying epistasis in case-

control studies. Quantitative MDR (QMDR) (Gui et al., 2013; Yu

et al., 2015) represents a robust, model-free extension of MDR

accommodated for quantitative phenotypes. None of them,

however, effectively address the challenges posed by limited

interpretability and overfitting in AI and lengthy computation

times required for genome-wide markers.

To overcome the above issues, Li et al (2022a; 2022b).

established a compressed variance component mixed model

method, named 3VmrMLM, to detect QTNs, QEIs, and QQIs

while controlling for all the possible polygenic backgrounds. It

reveals epistatic effects by reducing the number of variance

components, while ensuring high statistical power. Additionally,

the method efficiently reduces computation time and effectively

addresses potential confounding factors arising from various

polygenic backgrounds.

A number of gene-by-gene interactions associated with

flowering time have been identified in Arabidopsis. For example,

Zhao et al. (2022) identified a novel flowering repressor, UBA2c,

and showed that the expression of a key flowering repressor gene,

FLM, is promoted by inhibiting the histone modification

H3K27me3, thereby suppressing premature flowering in plants.
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Hanano and Goto (2011) found that the interaction of FD with

TFL1 by BiFC assay induces Arabidopsis flowering repressor genes

to fine-tune flowering time and inflorescence meristem tissue

development, which in turn affects flowering time. However, most

gene-by-gene interactions related flowering in Arabidopsis have

been obtained by biological methods such as transcriptome analysis,

and few gene-by-gene interactions have been identified by GWAS.

In this study, QQIs and QTNs for eleven flowering-related traits

in natural populations of Arabidopsis were investigated using

3VmrMLM with data from https://www.Arabidopsis.org.

Differentially expressed genes were identified under temperature,

photoperiod, and vernalization treatments. Candidate genes and

gene-by-gene interactions were identified by functional enrichment,

haplotype and phenotypic difference analysis. Epistasis for

flowering-related traits of Arabidopsis will help identify

interacting genes and provide references for studying epistasis in

other crops.
Materials and methods

Genotypic and phenotypic data

The dataset of Arabidopsis (Atwell et al., 2010) including the

phenotypic and genotypic data were obtained from https://

www.Arabidopsis.org. The dataset consisted 23 flowering-related

traits, 199 individuals, and 216,130 markers.

Among 23 traits, we focused on eleven traits related to flowering

under three different environmental conditions, including

temperature, photoperiod, and vernalization treatments. They were

Days to flowering time under Long Day (LD), Days to flowering time

under Long Day with vernalization at 4°C during 5 weeks (LDV),

Days to flowering time under Short Day with vernalization at 4°C

during 5 weeks (SDV), Days to FT under LD with vernalization for 0

weeks, 2 weeks, 4 weeks, 8 weeks (0W, 2W, 4W, 8W), Flowering time

at 10°C, 22°C (FT10, FT22), leaf number at flowering time at 10°C,

22°C (LN10, LN22) (Supplementary Data.zip).

To explore the relationship among the above flowering-related

traits, we computed the Pearson correlation coefficients (PCCs)

using the cor.test function in R (Version 4.2.1) and generated a

phenotypic correlation heatmap using the ggcorrplot function from

the ggcorrplot package. A hierarchical cluster analysis of the

phenotypes was also performed using the hclust function in R to

divide traits into groups that correlated more significantly into the

same group (Figure 1A).
GWAS method

To rapidly and accurately analyze epistasis for GWAS, we

combined Levene’s test (Brown and Forsythe, 1974) with

3VmrMLM. Firstly, we conducted Levene’s test from the OSCA

software tool (http://cnsgenomics.com/software/osca; Zhang et al.,

2019) for mining the potential epistatic single nucleotide

polymorphisms (SNPs) as well as alleviating computational

burden. We utilized “––vqtl -mtd 2” for Levene’s test with median
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and “––maf 0.01” for removing data with minor allele frequency

(MAF) < 0.01 in OSCA, resulting in the top 5,000 loci for each trait.

Subsequently, we used the IIIVmrMLM package (https://

github.com/YuanmingZhang65/IIIVmrMLM; Li et al., 2022b) in

R to detect QQIs and QTNs, with parameter set to “Epistasis”.

3VmrMLM determines the significance of QQIs or QTNs using

either Bonferroni correction (P-value < 0.05/[m × (m–1)]/2, where

m is the number of markers) for significant association or a

logarithm of odds (LOD) score of 3.0 for suggestive association,

either criterion indicates a significant association with the traits. We

used Vp = Vepi + Vadd + Vr (Figure 2) for each trait to calculate the

proportion of the sum of epistatic variance (Vepi) to the phenotypic

variance (Vp), where Vadd is the sum of additive variance of detected

QTNs and Vr is the residual variance.
Identification of known genes

We identified genes located within a 20 kb distance around

significant loci, specifically focusing on known genes that have been

previously reported in relevant articles. Then the Arabidopsis

Information Resource (TAIR) (https://www.arabidopsis.org/) and

National Center for Biotechnology Information (NCBI) (https://

www.ncbi.nlm.nih.gov/) were employed for gene annotation.

Known gene mining involved three steps. First, extracting genes

within a 20 kb region around significant loci detected by

3VmrMLM from the Arabidopsis gene library downloaded from

TAIR. Second, screening for genes impacting flowering-related

traits and containing relevant keywords. Third, confirming the

association between genes and flowering time in Arabidopsis, as

well as their confirmed epistatic interactions with other genes by

retrieving literature from TAIR and NCBI. Finally, known genes

will be identified.
Differential expression and functional
enrichment analyses

After excluding known genes reported in the literature, we

performed differential expression analysis on the remaining

unreported genes using the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). We utilized the

GSE197581, GSE190748, and GSE40455 series for targeting

differentially expressed genes (DEGs) in response to different

temperature, photoperiod, and vernalization treatments. The

GSE197581 series included two samples of Arabidopsis at 22°C and

10°C, with three biological replicates. The GSE190748 series consisted

samples subjected to long-day (16h light/8h dark) and short-day (8h

light/16h dark), with two biological replicates. The GSE40455 series

included samples to four weeks of vernalization and samples

subjected without vernalization treatment, with four biological

replicates. For the GSE190748 and GSE40455 series, we used the

“analyze with GEO2R” tool to identify genes with an absolute

log2FoldChange greater than 1 and a P-value less than 0.05. For

the GSE197581 series, we used the provided data from the website

and identify genes with an absolute log2FoldChange greater than 1
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and the false discovery rate (FDR) less than 0.05. Subsequently, the

DEGs obtained above were intersected with the detected unreported

genes around QQIs and QTNs, resulting in identification of DEGs

associated with flowering-related traits. For gene ontology (GO)
Frontiers in Plant Science 04265
based functional enrichment analysis, we submitted the above

flowering-related DEGs information to the DAVID platform

(https://david.ncifcrf.gov/), and selected the enriched gene ontology

terms with a significance threshold of P-value less than 0.05.
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FIGURE 2

Phenotypic variation explained by the epistatic and additive effects for eleven flowering-related traits. (A–K) correspond to the traits LD, LDV, SDV,
FT10, FT22, 0W, 2W, 4W, 8W, LN10, and LN22, respectively.
A B

FIGURE 1

(A) Pearson correlation coefficients and correlation clustering of flowering-related traits. The lower diagonal represents the correlation coefficients, and the
red boxes indicate the clustering results. (B) Distribution of QQIs, QTNs, and known genes across all chromosomes for eleven flowering-related traits.
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Haplotype analysis for identifying
candidate genes

We used the HaploView software (Version 4.1) to perform

linkage disequilibrium and haplotype block studies (Barrett et al.,

2005) based on the SNPs within these genes and 2 kb upstream of

them, which are obtained from GO enrichment analysis.

Meanwhile, we employed the t.test function in R to examine the

phenotypic differences among haplotypes. Candidate genes were

identified as those exhibiting significant phenotypic differences

across various haplotypes. This approach allowed us to identify

potential genes associated with the traits of interest.
Results

Phenotypic correlation and clustering

PCCs were obtained from correlation analysis of eleven

quantitative traits (Figure 1A). The phenotypic correlations of all

flowering-related traits showed positive. There were two pairs of

PCCs more than 0.90, 2W and 4W (PCCs = 0.93), FT22 and LN22

(PCCs = 0.92), and only one pair of PCCs less than 0.50, LN10 and

8W, but their PCCs also reached 0.48. The above results indicate

that eleven traits play an important role in the regulation of

flowering time in Arabidopsis, and there is a very significant

positive correlation between any two pairs.

Hierarchical cluster analysis of all traits by the hclust function in

R ranked the phenotypes with more significant correlations and

divided them into three groups (Figure 1A). The first group was

SDV and 8Wwith a correlation coefficient of 0.69; the second group

was 0W, FT22, and LN22 with PCCs ranging from 0.83 to 0.92; and

the third group was FT10, LN10, LDV, LD, 2W, and 4W with PCCs

ranging from 0.68 to 0.93. Clustering of these phenotypes revealed a

higher overall correlation between these traits and a greater

likelihood of interactions between loci, which was further

confirmed following by the pleiotropy of known genes (Table 1).
Epistasis mining using 3VmrMLM

After Levene’s test in the raw dataset, 3VmrMLM used in the

top 5,000 markers detected 130 QQIs (107 significant and 23

suggested QQIs; Supplementary Table 1) and 89 QTNs (61

significant and 28 suggested QTNs; Supplementary Table 2) that

were strongly associated with the flowering-related traits.

Overall, QQIs and QTNs are distributed on all chromosomes

(Figure 1B). For QQIs, 3VmrMLM detected a large number of loci,

with the highest distribution on chromosome 1 and 5, with 71 and

70 loci, respectively. Although it has a relatively small distribution

on chromosomes 2 and 4, it also has more than 35 loci (Figure 1B).

For QTNs, the distribution of loci on chromosome 2 was relatively

uniform, with the number ranging from 14 ~27, except for a

minimum of 7 loci on chromosome 2 (Figure 1B). On

chromosome 1 and chromosome 5, QQIs and QTNs are relatively

large, and we can analyze that these two chromosomes have a great
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influence on the genetic variation of flowering-related traits

(Figure 1B). In addition, the number of QQIs far exceeded the

number of QTNs, indicating that epistasis is a very important link

to explore the genetic mechanism of traits related to flowering time,

and the interaction between loci is relatively common.

Six of the 11 traits obtained more than 10 QQIs (Supplementary

Table 1). FT22 detected the most QQIs, reaching 19 QQIs, with P

values of 2.965E-09~1.386E-04, LOD scores of 3.154~7.645,

respectively, and 7 positive effects (Figure 3B; Supplementary

Table 1). FT10 detected 11 QQIs with P values of 2.293E-10~

9.951E-05 and LOD scores of 3.289~8.730, where SNP72738 on

chromosome 2 and SNP167863 on chromosome 5 also were the

QQIs for 2W and LN22 traits, respectively (Supplementary

Figure 1C; Supplementary Table 1). LN10 detected 16 QQIs,

second only to FT22, with P values of 1.327E-10~5.173E-05 and

LOD scores of 3.558~8.962, respectively (Figure 3D; Supplementary

Table 1). LN22 detected 10 QQIs, with P values of 6.250E-

10~1.190E-04 and LOD scores of 3.216~8.304, respectively

(Supplementary Figure 1G; Supplementary Table 1). LDV

detected 14 QQIs, with P values of 4.326E-15~1.174E-04 and

LOD scores of 3.221~13.365, 7 positive effects, respectively

(Figure 3A; Supplementary Table 1). SDV detected 14 QQIs, with

P values of 4.136E-11~1.379E-04, LOD scores of 3.156~9.457, and 4

positive effects, respectively. Notably, SNP200347 on chromosome

5 was involved in interactions with both SNP179236 and

SNP32689. Trait 0W detected 12 QQIs, with P values of 2.605E-

14~1.318E-05 and LOD scores of 4.123~12.608, respectively

(Supplementary Figure 1D; Supplementary Table 1). Trait 2W

detected 14 QQIs, with P values of 3.985E-09~8.515E-05 and

LOD scores of 3.353~7.520, respectively, and SNP72738 was

found to be involved in intercrossing with SNP2739 and

SNP72795 s imul taneous ly in th i s t ra i t (F igure 3C;

Supplementary Table 1).

8 QQIs were detected for both 4W and 8W, with P values of

5.906E-13 ~3.681E-06, LOD scores of 4.652~11.266, respectively,

and only 2 positive effects for 4W (Supplementary Figure 1E;

Supplementary Table 1). P values of 4.899E-08~1.064E-04 and

LOD scores of 3.261~6.462 for 8W (Supplementary Figure 1F;

Supplementary Table 1). Although LD obtained the least number of

QQIs, only four, with P values of 2.792E-08~8.968E-07 and LOD

scores of 5.242~6.699, respectively, the phenotypic contribution of

all four pairs of epistatic loci was >4%, with the pair SNP66960 and

SNP71678, located on chromosome 2, having the largest percentage

of phenotypic variance explained (PVE) of all QQIs at 8.187%.

(Supplementary Table 1).

For QTNs, a total of 89 significant/suggestive QTNs were

detected to be associated with at least one of the 11 flowering-

related traits (Figure 3; Supplementary Figure 1; Supplementary

Table 2). Among these QTNs, 3, 4, 8, 10, 6, 6, 13, 11, 11, 13, and 7

QTNs were associated with LD, LDV, SDV, FT10, FT22, 0W, 2W,

4W, 8W, LN10, and LN22, respectively (Supplementary Table 2),

and the PVE of all QTNs for each trait were 22.193%, 21.875%,

22.864%, 34.906%, 18.446%, 25.868%, 24.760%, 28.297%, 34.328%,

45.205%, and 28.797%, respectively, with P values ranging from

1.757E-10 to 1.986E-04 and LOD scores of 3.006 to 8.843 (Figure 2;

Supplementary Table 2). Notably, SNP31054 and SNP101868 on
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A B
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FIGURE 3

Chord diagrams for QQIs and QTNs detected by 3VmrMLM. (A–D) correspond to the traits LDV, FT22, 2W, and LN10, respectively. The inner circle
displays the detected QQIs or QTNs (△ indicates overlapping loci between QQIs and QTNs), the height of red dots represents the epistatic effects
of QQI pairs, and the height of blue dots represents the additive effects of corresponding QTNs. The outer circle indicates the known genes in
vicinity of significant loci.
TABLE 1 Pleiotropic genes reported around QQIs/QTNs.

Gene Bp Marker QQI/QTN Trait Annotation Reference

AGL17
(AT2G22630)

chr2:9618207..9622163 SNP66970 QQI LD MADs domain containing protein involved in
promoting flowering

Han et al., 2008

SNP66990 QQI LN22

SNP67001 QQI FT22

LUH
(AT2G32700)

chr2:13866721..13872246 SNP72705 QTN 2W WD40 repeat and LUFS domain containing protein that is
similar to LUG

Stahle et al., 2009

SNP72736 QQI FT22

SNP72738 QQI FT10

BOP2
(AT2G41370)

chr2:17237727..17240609 SNP77354 QQI 2W cytoplasmic and nuclear-localized NPR1 like protein Chahtane
et al., 2018

SNP77376 QQI LN10

ATH1
(AT4G32980)

chr4:15914670..15918153 SNP157833
SNP157883

QQI
QQI

LDV increased levels of ATH1 severely delay flowering Li et al., 2012

0W

CPL3
(AT4G01060)

chr4:460395..461246 SNP125917 QTN 2W Myb-related protein similar to CPC Zhang and
Shen, 2022

SNP125988 QTN FT10
F
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chromosomes 1 and 3 were involved in both 2W and 4W

phenotypic variants, and in addition, SNP103582 on chromosome

3 was detected on both LN10 and FT10 (Figure 3D; Supplementary

Figure 1C; Supplementary Table 2).

The total PVE for each trait, considering both additive and

epistatic effects, was calculated using the IIIVmrMLM package in R,

and the results were visualized in Figure 2. The PVE of QQIs for the

traits LD, LDV, and FT22 were 25.856%, 23.438%, and 19.163%,

respectively, as shown in Figures 2A, B, E. Accordingly, these values

were higher than the PVEs of the corresponding QTNs. The

analysis of QQIs and QTNs revealed that most locus exhibited

either epistatic or additive effects in contributing to phenotypic

variation of each trait (Figure 2; Supplementary Tables 1, 2).

However, we also identified some specific SNPs, such as

SNP42592 for LDV, both SNP103582 and SNP29978 for LN10,

SNP200347 for SDV, SNP125854 for 0W, SNP101868 for 4W, both

SNP111498 and SNP181717 for 8W, which were involved in both

additive and epistatic effects (Figures 3A, D; Supplementary

Figures 1B, D, E, F; Supplementary Tables 1, 2).
Known genes around QQIs and QTNs for
flowering-related traits in Arabidopsis

TAIR (https://www.arabidopsis.org/) was used to mine the

known genes around QQIs and QTNs (20 kb upstream and

downstream of each locus). A total of 34 known genes were

found to be located around the significant/suggested loci,

including 29 QQIs and 12 QTNs (Figure 3; Supplementary

Figure 1; Supplementary Table 3).

For QQIs, 3, 4, 2, 1, 6, 4, 2, 0, 1, 5, and 1 known genes were

explored in LD, LDV, SDV, FT10, FT22, 0W, 2W, 4W, 8W, LN10,

and LN22, respectively (Supplementary Table 3). Specifically, the

known genes BRN2 (AT1G03457, near SNP1471) and FKF1

(AT1G68050, near SNP44317) associated with LDV (Figure 3A;

Supplementary Table 3) interact with the AtBRN and CDF2 protein

to promote or repress flowering in Arabidopsis, respectively (Kim

et al., 2013; Lee et al., 2018). The known gene SPA4 (AT1G53090)

associated with FT22 is located near SNP32482 (Figure 3B;

Supplementary Table 3). There has been reported that SPA4 is

involved in regulating photoperiodic flowering in Arabidopsis and

interacts with the flower inducer CO to regulate flowering stability,

while it interacts with PAP1 and PAP2 and is involved in repressive

regulation at the transcriptional level, affecting light conditions

growth of Arabidopsis under light conditions (Laubinger et al.,

2006; Maier et al., 2013). Two known genes, FT (AT1G65480) and

FAS1 (AT1G65470), were detected simultaneously near SNP42063

(Figure 3D; Supplementary Table 3), and two known genes, ASA1

(AT3G02260) and AGL4 (AT3G02310), were detected near

SNP81934 under LN10 (Figure 3B; Supplementary Table 3),

where FT interacts with FD(AT4G35900) and 14-3-3 proteins to

produce a florigen-activation complex, control flowering time, and

correct the expression of floral homologs to promote flowering

(Collani et al., 2019); the known gene AGL4 interacts with DNA

and may be involved in forming a tetrameric DNA-binding

complex to control flower development and thus affect flowering
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time (Jetha et al., 2014). The known gene HOS1 (AT2G39810, near

SNP76337) associated with trait 0W (Supplementary Figure 1D;

Supplementary Table 3) is localized to the nuclear membrane and

interacts with Nup96, and loss of function of Nup96 would lead to

disruption of HOS1 protein, resulting in excessive accumulation of

CO protein, a key activator of flowering under long-day that

suppresses early flowering in Arabidopsis under long-day (Lazaro

et al., 2015).

For QTNs, 1, 2, 1, 2, 3, 1, and 2 known genes were explored in

LDV, SDV, FT10, FT22, 2W, 4W, and LN22, respectively, and only

QQI-related genes were obtained for the remaining four traits

(Supplementary Table 3). Among the significant loci associated

with SDV, FD (AT4G35900) was found to be located near

SNP159681 (Supplementary Figure 1B; Supplementary Table 3),

and it was shown that FD acts as a transcriptional activator of floral

tissue identity genes to regulate flowering time in Arabidopsis, while

the FD transcription factor was shown to interact with TFL1 by

BiFC assay to induce flowering time and inflorescence meristem

tissue by Arabidopsis repressor genes development is fine-tuned

(Hanano and Goto, 2011; Gorham et al., 2018). In the case of FT22,

two known genes, AN (AT1G01510) and AGL28 (AT1G01530),

were detected simultaneously near SNP350 (Figure 3B;

Supplementary Table 3), and AN has been shown to control leaf

morphology and thus indirectly affect flowering time in

Arabidopsis. (Stern et al., 2007); AGL28 can act as a flower

activator by up-regulating the expression of known flower

promoters within the autonomous pathway, and i ts

overexpression will up-regulate the expression of FCA and

LUMINIDEPENDENS, leading to early flowering in Arabidopsis

(Yoo et al., 2006). One known gene associated with LDV, MBR2

(AT4G34040), located near SNP158615 (Figure 3A; Supplementary

Table 3), was shown in earlier studies to promote flowering through

a PFT1 dependent and independent mechanism (Iñigo et al., 2012).

The gene SPA1 (AT2G46340, near SNP80254) is known to be

associated with 2W (Figure 3C; Supplementary Table 3), and is a

key repressor of light signaling in the ovary to regulate flowering

time by regulating the photoperiod (Ranjan et al., 2011). Near the

QTN SNP135761, which is significantly associated with LN22,

CRY1 (AT4G08920; Supplementary Figure 1G; Supplementary

Table 3) is known to mediate blue light to promote flowering in

Arabidopsis, which is more sensitive to flowering photoperiod

under blue light, suggesting that CRY1 plays an important role in

flowering regulation (Mockler et al., 2003).

Interestingly, out of these 34 known genes, five pleiotropic genes

were involved in the performance variation of at least two traits in

terms of QQI or QTN (Table 1). In terms of QQI, the known gene

AGL17 (AT2G22630), which was detected around SNP67001,

SNP66970, and SNP66990 and was associated with FT22, LD,

and LN22 (Table 1; Figure 3B; Supplementary Figures 1A, G), has

been confirmed to play a role in the photoperiodic pathway of

Arabidopsis and is positively controlled by the photoperiodic

pathway regulator CO. It can promote the flowering of

Arabidopsis thaliana (Han et al., 2008). At the same time, the

known gene ATH1 (AT4G32980, around SNP157833), which is

related to LDV and 0W (Table 1; Figure 3A; Supplementary

Figure 1D), is necessary for controlling the morphology of
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Arabidopsis flower stalk. In addition, there is an interaction between

ATH1 and KNAT2, and the protein complex plays a role in

regulating flower pedicle development (Li et al., 2012). BOP2

(AT2G41370), detected near SNP77354 and SNP77376, is

associated with two traits, 2W and LN10 (Table 1; Figures 3C,

D), and studies have shown that the LFY and BOP2 proteins

physically interact to inhibit bracteal formation and reduce

flowering time in a short period of time under certain conditions

(Chahtane et al., 2018). In terms of QTN, a known gene CPL3

(AT4G01060, near SNP125917 and SNP125988) was detected to

have additive effects on both 2W and FT10 (Table 1; Figure 3C;

Supplementary Figure 1C), and CPL3 gene has pleiotropic effects on

flowering development and epidermal cell size of Arabidopsis by

regulating internal duplication (Zhang and Shen, 2022).

Notable is, known gene LUH (AT2G32700), located near

SNP72736, SNP72705, and SNP72738, exhibited associations with

FT22, 2W, and FT10 (Table 1; Figures 3B, C; Supplementary

Figure 1C). Furthermore, it displayed both additive and epistatic

effects (Table 1; Figures 3B, C; Supplementary Figure 1C). LUH

showed epistatic effect at FT10 and FT22, and additive effect at 2W. It

was shown that LUH interacts with YAB to regulate distal axis

pattern, lateral organ growth, and inflorescence foliation. At the

same time, its leaf-based signaling pathway promotes paraxial cell

identity in leaves and initiation and maintenance of embryo bud

apical meristem SAM (Stahle et al., 2009). More detailed information

about the genes surrounding QTNs and QQIs identified by

3VmrMLM can be found in Supplementary Table 3.
Response to different treatments and GO
enrichment pathway

We conducted a comprehensive analysis of gene expression

changes under different treatments to gain insights into their

responses. Through differential expression analysis on the unreported

genes, we successfully identified distinct expression patterns of the 35

genes (Supplementary Table 4). Specifically, we found 18 genes that

exhibited significant differential expression between 22°C and 10°C

treatments (Figure 4A; Supplementary Table 4), 15 were significantly

upregulated at 10°C, while only three genes showed significant

downregulation at this temperature. For instance, AT3G55980,

located near the SNP120225 locus associated with LN22, exhibited a

log2FoldChange of 2.79 and a P-value of 1.05E-07, as illustrated in the

upper right corner of the volcano plot. This gene was found to be

enriched in the nucleus (Figure 4A; Supplementary Table 4). Similarly,

14 genes showed significant differential expression between long-day

and short-day treatments (Figure 4B; Supplementary Table 4),

suggesting their involvement in light-dependent processes.

Specifically, eight genes exhibited significant upregulation under

short-day treatments, while six genes were significantly upregulated

under long-day treatments. Additionally, we observed differential

expression in 3 genes between 4 weeks and 0 weeks treatments

(Figure 4C; Supplementary Table 4), highlighting their role in a

time-dependent response. These findings offer valuable insights into

the biological underpinnings of the newly identified genes associated

with flowering-related traits in Arabidopsis.
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To gain further functional insights, we performed GO functional

enrichment analysis on the identified DEGs. This analysis revealed

that out of the 35 DEGs, 26 genes were significantly enriched in 4

distinct GO terms associated with various biological processes

(Figure 4D). Furthermore, it was shown that 20 genes located in

proximity to QQIs and QTNs were specifically enriched in the

nucleus (GO:0005634) (Figure 4D). For example, AT3G55980,

known as AtSZF1, has been reported to be associated with the

nucleus and is involved in the Arabidopsis salt stress response (Sun

et al., 2007). Notably, AT4G01870 and AT4G31800 were found to be

simultaneously associated with three important biological processes

(Figure 4D). Specifically, AT4G31800, known as WRKY18, enhances

developmentally regulated defense responses in transgenic plants

without causing significant negative effects on plant growth

(Pandey et al., 2010). On the other hand, AT4G01870 is involved in

the chemical reactions and pathways leading to the synthesis of

camalexin, an indole phytoalexin (https://www.arabidopsis.org/). In

addition, we observed three genes AT1G52040, AT4G03230, and

AT1G48930 related to carbohydrate binding (Figure 4D), with

AT1G48930 possessing a carbohydrate-binding structural domain

(CBM49) that plays a role in Arabidopsis root hair and endosperm

development, among other functions (del Campillo et al., 2012).

Interestingly, we identified a pair of QQIs, AT1G09950 and

AT1G12990, in close proximity to the SNP5324 and SNP7584 loci,

respectively (Table 2). AT1G09950 is involved in cellular

components. It affects seed germination and early seedling growth

by increasing sensitivity to abscisic acid (Ren et al., 2010). Meanwhile,

AT1G12990 is associated with the regulation of the defense response

(GO:0031347) and the defense response against bacteria

(GO:0042742) for glycosyltransferase activity (https://

www.arabidopsis.org/).
Haplotype and phenotypic difference
analysis of candidate genes

To further validate the association between genes and

flowering-related traits, we performed haplotype analysis on the

SNPs within the 2 kb upstream regions of the 26 genes identified

from the GO enrichment analysis. In total, 20 candidate genes were

identified, which significant phenotypic differences were observed

among their haplotypes (Table 2). These genes were associated with

six different traits, namely LDV, SDV, FT10, FT22, LN10, and LN22

(Table 2). Among them, 16 genes were located near QQIs, while 4

genes were located near QTNs. It is worth noting that the loci near

AT1G03445 and AT1G68040, which correspond to these genes, also

contain previously reported known genes. More detailed

information was listed in Table 2; Supplementary Table 5.

Figure 5 illustrates the analysis of AT1G12990 (CDS coordinates

[5’-3’]: 4433605-4436102), AT4G01870 (CDS coordinates [5’-3’]:

808376-810611), and AT3G62610 (CDS coordinates [5’-3’]:

23154630-23156585) to reveal intragenic variations impacting

flowering time and identify favorable haplotypes. Figure 5A

presents the linkage disequilibrium and haplotype block with 8

SNPs for the gene AT1G12990, located near the SNP7584 locus, a

QQI for FT22 (Table 2). After removing 53 missing values from the
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phenotypic data, the remaining 146 individuals were classified into

four haplotypes based on seven SNPs (SNP7613, SNP7614,

SNP7615, SNP7617, SNP7618, SNP7619, and SNP7620).

Haplotype IV (TGTGTTT) exhibited significantly higher median

phenotypic values for FT22 compared to the other three haplotypes

(Figure 5B). Haplotype IV consisted 25 individuals, among which

12 had a maximum phenotypic value of 250 for the FT22 trait, while

the other three haplotypes had values of 1, 4, and 1, respectively.

Additionally, a t-test demonstrated significant differences between

haplotype IV and haplotypes I (CGGGGTG, P-value = 5.65E-07), II

(CGGGTTG, P-value = 9.16E-06), and III (TGGGTTG, P-value =

7.98E-07; Supplementary Table 5). Similarly, the candidate gene

AT1G09950 (CDS coordinates [5’-3’]: 4433605-4436102), located

near the SNP5324 locus, showed an interaction effect with the

SNP7584 locus for the FT22 trait. Supplementary Figure 2A depicts

the linkage disequilibrium and haplotype block analysis using 11

SNPs. After removing 42 missing values from the phenotype data,

the remaining 157 individuals were divided into three haplotypes

based on seven SNPs (SNP5265, SNP5266, SNP5267, SNP5268,

SNP5269, SNP5271, and SNP5272). Supplementary Figure 2B

demonstrates significant differences between haplotype I

(ATATAGT) and haplotype III (GAGGTCT, P-value = 1.73E-02;

Supplementary Table 5). Therefore, we inferred that the candidate

genes AT1G12990 and AT1G09950 may interact with each other

and play a role in flowering time regulation in Arabidopsis.

Figures 5C, D present the haplotype block and phenotype

differences of the candidate gene AT4G01870, detected around the
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SNP126845 locus, a QQI for FT10 (Table 2; Supplementary

Table 5). Haplotype III (TTGTTT) exhibited the highest median

phenotypic values and showed significant differences with

haplotype I (GTCTGG, P-value = 4.20E-02) and haplotype II

(TTGTTG, P-value = 6.87E-03; Supplementary Table 5).

Similarly, the candidate gene AT3G62610 was detected around the

SNP124387 locus, a QQI for LDV (Table 2; Supplementary

Table 5). Figures 5E, F illustrate the haplotype block and

phenotype differences. Hence, we suggest that the candidate genes

AT4G01870 and AT3G62610 may influence the flowering time

in Arabidopsis.

Additionally, the candidate gene AT4G01250 (CDS coordinates

[5’-3’]: 522530-524249) was detected around the SNP126164 locus,

a QTN for FT10, while the candidate gene AT4G00970 (CDS

coordinates [5’-3’]: 418327-421885) was detected near the

SNP125834 locus, a QTN for LN10 (Table 2; Supplementary

Table 5). Supplementary Figures 2C–F display the haplotype

block and phenotype differences of these two genes. We

hypothesize that the candidate genes AT4G01250 and AT4G00970

may also affect the flowering time in Arabidopsis.

In summary, we propose that the four candidate genes

mentioned above, located near QQIs, may exert potential

influence on their corresponding traits, among them AT1G12990

and AT1G09950 might have gene-by-gene interaction.

Furthermore, several candidate genes near QTNs exhibited

significant differences in phenotypes across haplotypes

(Supplementary Table 5). However, further experimental
A B
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FIGURE 4

Volcano plots for expression values of (A) 18 genes under different temperature treatments (22°C vs. 10°C), (B) 14 genes under different photoperiod
treatments (long-day vs. short-day), and (C) 3 genes under different vernalization time treatments (4 weeks vs. 0 weeks). (D) Results of functional
enrichment analysis based on gene ontology. The genes highlighted within the red, blue, and green boxes belong to the group of significant DEGs
between 22°C vs. 10°C treatments, long-day vs. short-day treatments, and 4 weeks vs. 0 weeks treatments, respectively.
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verification is required to determine whether these candidate genes

interact with each other in regulating flowering in Arabidopsis.
Discussion

Levene’s test for potential epistasis

Due to the substantial computational requirements in QQI

detection, particularly when considering the population structure

and polygenic backgrounds in 3VmrMLM, it is advisable to limit

the number of markers to less than 5,000 (Li et al., 2022a; Li et al.,

2022b). To obtain the potential epistasis and alleviate the

computational burden, we employed Levene’s test, which can be

used to detect potential loci for heterogeneity of variances due to

potentially interacting SNPs such as QTN-by-QTN interactions

(Zhang et al., 2019). However, the direct application of Levene’s test

to the raw data did not reveal any significant interacting loci due to

the large number of markers and the stringent threshold of the

Bonferroni correction. Moreover, potential limitations of Levene’s

test include no covariates are allowed and only equality of variances,

but not means, can be tested (Dumitrascu et al., 2019), that is, it
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could neither consider the population structure nor obtain the effect

estimate of markers. Therefore, for each trait, we firstly selected the

top 5,000 significantly associated variance-controlling SNPs

detected by Levene’s test, which also exhibited that P values were

less than 0.05, and then performed QQI detection of 3VmrMLM

using these top 5,000 loci for input. Combining potential epistasis

loci selection with 3VmrMLM significantly improves detection

accuracy while greatly reducing computation time.
Genetic basis for flowering-related traits
in Arabidopsis

3VmrMLM detected 130 QQIs and 89 QTNs significantly

associated with 11 flowering-related traits in the analysis of

epistasis. Among them, the PVE of QQIs for the traits LD, LDV,

and FT22 were 25.856%, 23.438%, and 19.163%, respectively

(Figures 2A, B, E), which were higher than those of QTNs at

22.193%, 21.863%, and 18.446% (Figures 2A, B, E), indicating that

QQIs contribute more to phenotypic variation than QTNs for these

three traits and epistasis is a non-negligible factor contributing to

phenotypic variation. Notably, A pair of loci SNP66960 and
TABLE 2 Results of 20 candidate genes and functional annotation.

Trait QQI/QTN Marker Candidate Gene Bp Annotation

LDV QQI SNP1471 AT1G03445 chr1:854410..859701 erine–threonine protein phosphatase

QQI SNP11417 AT1G19050 chr1:6577833..6579314 two-component response regulator

QQI SNP44317 AT1G68040 chr1:25502864..25505263 S-adenosyl-L-methionine-dependent methyltransferases
superfamily protein.

QQI SNP124387 AT3G62610 chr3:23154630..23156585 regulates flavonol biosynthesis.

QQI SNP161720 AT4G39260 chr4:18273829..18275216 verprolin

SDV QQI SNP66659 AT2G21830 chr2:9303713..9306025 encodes a putative DegP protease.

QQI SNP128333 AT4G03230 chr4:1418841..1423337 G-type lectin S-receptor-like Serine/Threonine-kinase.

QTN SNP90818 AT3G16540 chr3:5626290..5628857 encodes a putative DegP protease.

FT10 QQI SNP126845 AT4G01870 chr4:808376..810611 tolB protein-like protein

QTN SNP126164 AT4G01250 chr4:522530..524249 involved in regulation of dark induced leaf senescence.

FT22 QQI SNP5324 AT1G09950 chr1:3240531..3241863 response to aba and salt 1

QQI SNP7584 AT1G12990 chr1:4433605..4436102 beta-1,4-N-acetylglucosaminyltransferase family protein

QQI SNP73495 AT2G34010 chr2:14368536..14370438 verprolin

LN10 QQI SNP14480 AT1G23390 chr1:8308965..8310916 kelch domain-containing F-box protein

QQI SNP119021 AT3G54150 chr3:20050564..20052931 S-adenosyl-L-methionine-dependent methyltransferases
superfamily protein

QTN SNP125834 AT4G00970 chr4:418327..421885 encodes a cysteine-rich receptor-like protein kinase.

QTN SNP151832 AT4G23180 chr4:12137995..12140930 encodes a receptor-like protein kinase.

LN22 QQI SNP45945 AT1G70090 chr1:26400694..26402815 encodes a protein with putative galacturonosyltransferase activity.

QQI SNP90174 AT3G15750 chr3:5334844..5336485 essential protein Yae1

QQI SNP120225 AT3G55980 chr3:20776220..20778952 CCCH-type zinc finger protein involved in salt stress and
immune responses.
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SNP71678, located on chromosome 2 under LD, had the highest

PVE among all traits in terms of QQI, at 8.187% (Supplementary

Table 1). In its vicinity, the known gene SVP (AT2G22540;

Supplementary Figure 1A; Supplementary Table 3) has been

shown to be an important regulator during the transition to

flowering and floral development, while SVP interacts with

OsMADS22 and OsMADS47 to interfere with normal Arabidopsis

flower development (Fornara et al., 2008).

The known genes BRN2 (AT1G03457) located near QQI

SNP1471 (P-value = 4.32628E-15, LOD = 3.2212) and FKF1

(AT1G68050) located near QQI SNP44317 (P-value = 1.37721E-

07, LOD = 5.8963; Figure 3A; Supplementary Table 3) are both

associated with LDV and interact with AtBRN, CDF2 protein to

promote or repress flowering in Arabidopsis, respectively (Kim

et al., 2013). The known gene SPA4 (AT1G53090) associated with

FT22 is located near QQI SNP32482 (P-value=1.35181E-08,

LOD=7.0044; Figure 3B; Supplementary Table 3). SPA4 is

involved in regulating Arabidopsis photoperiodic flowering and

was found to interact with both CO, PAP1 and PAP2 to jointly

regulate flowering stability and growth under light conditions

(Laubinger et al., 2006; Maier et al., 2013).Two known genes, FT

(AT1G65480) and FAS1 (AT1G65470) , were detected

simultaneously near QQI SNP42063 (P-value=9.97104E-07,

LOD=5.6226) under the LN10 trait (Figure 3D; Supplementary
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Table 3), where FT interacts with FD (AT4G35900), and 14-3-3

proteins interact to produce florigen-activation complex to control

flowering time and correct expression of floral homologs and

promote flowering (Collani et al., 2019). On the other hand, the

known genes with QTN effects FD (AT4G35900, near QTN

SNP159681; Hanano and Goto, 2011; Gorham et al., 2018),

AGL28 (AT1G01530, near QTN SNP350; Yoo et al., 2006), MBR2

(AT4G34040, near QTN SNP158615; Iñigo et al., 2012) and 8 other

genes have been reported to influence flowering through different

pathways to exert either facilitative or repressive effects on flowering

(Figure 3; Supplementary Figure 1; Supplementary Table 3).

Note that we also uncovered five pleiotropic known genes that act

on multiple traits in terms of QQI or QTN. The known gene AGL17

(AT2G22630), detected around QQI SNP67001, SNP66970, and

SNP66990, is associated with three traits FT22, LD, and LN22

(Table 1; Figure 3B; Supplementary Figures 1A, G). It has been

shown to be positively regulated by the photoperiod pathway

regulator CO to promote flowering in Arabidopsis (Han et al.,

2008). The known genes ATH1 (AT4G32980, around QQI

SNP15783; Table 1; Figure 3A; Supplementary Figure 1D)

associated with LDV and 0W are required for the control of

Arabidopsis flower stem morphology and interact with KNAT2 to

help regulate flower tip development (Li et al., 2012). BOP2

(AT2G41370) was detected around QQI SNP77354 and QQI
A
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FIGURE 5

Linkage disequilibrium and haplotype block analysis for the candidate genes (A) AT1G12990 associated with FT22, (C) AT4G01870 associated with
FT10, and (E) AT3G62610 associated with LDV, respectively. (B) Comparison of FT22 across various haplotypes I (CGGGGTG), II (CGGGTTG), III
(TGGGTTG), and IV (TGTGTTT). (D) Comparison of FT10 across various haplotypes I (GTCTGG), II (TTGTTG), and III (TTGTTT). (F) Comparison of LDV
across various haplotypes I (AAAG), II (AGTA), and III (CGTA). In the boxplots, the center line represents the median, the box limits indicate the upper
and lower quartiles, and the whiskers extend 1.5 times the interquartile range. Data points beyond the whiskers are considered outliers and plotted
individually. The number of stars indicates the significance level from t-test (*0.05, **0.01, ***0.001).
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SNP77376 were detected in the vicinity, associated with 2W and

LN10 (Table 1; Figures 3C, D), and BOP2 proteins interaction with

LFY has been reported to shorten flowering time in a short period of

time (Chahtane et al., 2018). The known gene CPL3 (AT4G01060,

around QTN SNP125988 and QTN SNP125917) was detected to

have additive effects on both FT10 and 2W (Table 1; Figure 3C;

Supplementary Figure 1C), confirming a pleiotropic effect on

flowering development in Arabidopsis (Zhang and Shen, 2022). The

known gene LUH (AT2G32700, around QQI SNP72736, QTN

SNP72705, and QQI SNP72738) was uncovered to be involved not

only in three traits FT22, 2W, and FT10, but also found to have

additive and epistatic effects (Table 1; Figures 3B, C; Supplementary

Figure 1C), and studies showed that LUH interacts with YAB and

plays a regulatory role on lateral organ growth and inflorescence leaf

management (Stahle et al., 2009). The phenotypic association results

of BOP2 (AT2G41370) and CPL3 (AT4G01060) were consistent with

the phenotypic clustering results shown in Figure 1A. Additionally,

the traits LN22 and FT22 associated with AGL17 (AT2G22630), as

well as the traits 2W and FT10 associated with LUH (AT2G32700),

were also grouped together (Figure 1A; Table 1). These findings

further support the reliability of our analysis.

Except for known genes, we also identified 20 candidate genes in

this study (Table 2). Among them, AT1G12990, AT1G09950,

AT4G01870, and AT3G62610, located near QQIs, specially, former

two genes showed potential gene-by-gene interactions related to

flowering traits in Arabidopsis. Specifically, AT1G12990 was found

in proximity to the SNP7584 locus, while AT1G09950 was found near

the SNP5324 locus, and remarkably, these loci coincided with a

significant pair of QQIs associated with the trait FT22 (P-value =

7.08064E-05, LOD = 3.4287; Supplementary Table 1). AT4G01870

was detected near the SNP126845 locus, forming a QQI with

SNP185421 for FT10 (P-value = 5.12209E-08, LOD = 6.443;

Supplementary Table 1). Additionally, AT3G62610 was found

around the SNP124387 locus, forming a QQI with SNP69012 for

LDV (P-value = 4.70143E-06, LOD = 4.5505; Supplementary

Table 1). These candidate genes also showed differential expression

under 22°C vs. 10°C and long-days vs. short-days treatments

(Figures 4B, C; Supplementary Table 4). AT1G12990 and

AT4G01870 were associated with the regulation of defense response

(GO:0031347) and defense response to bacterium (GO:0042742),

while AT1G09950, AT4G01870, and AT3G62610 were involved in

nucleus-related functions (GO:0005634). Notably, significant

phenotypic differences were observed across different haplotypes.

Therefore, we hypothesize that these candidate genes, namely

AT1G12990, AT1G09950, AT4G01870, and AT3G62610, in

proximity of QQIs, may play a role in influencing flowering in

Arabidopsis. Specially, AT1G12990 and AT1G09950 might exist

potential gene-by-gene interaction. However, further experimental

validation, such as functional validation, is necessary to explore these

gene-by-gene interactions for flowering-related traits.
Methods comparison

To better analyze the QQIs results obtained from the

3VmrMLM method, we performed epistasis analysis in the raw
Frontiers in Plant Science 12273
dataset using PLINK (Purcell et al., 2007). The command used for

detecting pairs of epistatic loci was “plink –file genotype –pheno

phenoq.txt –epistasis –epi1 P-value –allow-no-sex –out result”, with

a threshold using Bonferroni correction. The number of significant

interacting loci detected for each trait using PLINK ranged from

2,903 to 41,132 (Supplementary Table 6). It is well-known that

PLINK uses a simple linear model, which computes quickly even

with large sample sizes, but it does not consider the polygenic

background, leading to an increased false positive rate (Purcell et al.,

2007). In addition, except for trait 0W, the number of significant

QQIs detected by PLINK that overlap with those detected by

3VmrMLM ranged from 1 to 34. Among them, for trait FT22,

PLINK detected a total of 41,132 QQIs, out of which 34 were

simultaneously detected by 3VmrMLM (Supplementary Table 6).

This suggests that QQIs detected by 3VmrMLM are likely to be

potential interacting loci.

We also employed the REMMA method (Ning et al., 2018), a

mixed linear model-based approach, for conducting epistasis analysis

in the raw dataset. This method incorporates both additive and

dominance relationship matrices, offering theoretical control over

Type I errors when examining pairwise epistatic SNPs. Among the

eleven traits, three (SDV, FT22, and 8W) showed significant

interacting loci, with 429, 72, and 3,541 loci detected, respectively

(Supplementary Table 6). The QQIs associated with SDV overlapped

with those detected by 3VmrMLM (Supplementary Table 6).

Similarly, we employed the QMDR approach (Yu et al., 2015)

based on machine learning to analyze epistasis. Because no results

were obtained in the raw dataset due to the large number of markers

and strict Bonferroni correction threshold. Thus, the strategy for top

5,000 marker selection and LOD scores greater than 3.0 was identical

to that described for 3VmrMLM in order to be comparable. As listed

in Supplementary Table 6, only six traits (LD, SDV, FT22, LN22, 4W,

and 8W) showed significant interaction loci, while the remaining

traits did not. Overall, 3VmrMLM excels in both efficiency and

accuracy when analyzing epistasis.
Conclusion

In this study, we performed the novel 3VmrMLM method in

GWAS to investigate the epistatic association with eleven flowering-

related traits in Arabidopsis. A total of 130 pairs of QQIs and 89

QTNs were successfully detected. Furthermore, through genome

annotation and previous research, 29 known genes around QQIs

and 12 known genes around QTNs were identified. Among the

above known genes, five genes, namely AGL17 (AT2G22630), ATH1

(AT4G32980), BOP2 (AT2G41370), CPL3 (AT4G01060), and LUH

(AT2G32700), were demonstrated an epistatic or additive effect for

at least two traits. Moreover, 16 candidate genes around QQIs and 4

candidate genes around QTNs were validated using differential

expression analysis, functional enrichment analysis, and haplotype

and phenotypic difference analysis. Notably, AT1G12990 and

AT1G09950 around QQIs exhibited potential gene-by-gene

interactions influencing flowering. These findings contribute to

the identification and exploration of epistasis associated with

flowering-related traits in Arabidopsis.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283642
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2023.1283642
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

LH: Data curation, Formal analysis, Investigation, Validation,

Visualization, Writing – original draft. BS: Data curation, Formal

analysis, Investigation, Validation, Visualization, Writing – original

draft. XW: Data curation, Resources, Writing – review & editing. JZ:

Writing – review & editing, Funding acquisition. Y-JW:

Conceptualization, Funding acquisition, Supervision, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was supported by the National Natural Science Foundation of

China (32070688 and 32270694), the Postdoctoral Science

Foundation of Jiangsu (2020Z330), and the Fundamental

Research Funds for the Central Universities (JCQY202108).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 13274
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1283642/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Chord diagrams for QQIs and QTNs detected by 3VmrMLM. (A~G)
correspond to the traits LD, SDV, FT10, 0W, 4W, 8W, and LN22,

respectively. The inner circle displays the detected QQIs or QTNs (△
indicates overlapping loci between QQIs and QTNs), the height of red dots

represents the epistatic effects of QQI pairs, and the height of blue dots

represents the additive effects of corresponding QTNs. The outer circle
indicates the known genes in vicinity of significant loci.

SUPPLEMENTARY FIGURE 2

Linkage disequilibrium and haplotype block for the candidate gene (A)
AT1G09950 associated with FT22, (C) AT4G01250 associated with FT10,

and (E) AT4G00970 associated with LN10. (B) Comparison of FT22 across

various haplotypes I (ATATAGT), II (GAGGACT), and III (GAGGTCT). (D)
Comparison of FT10 across various haplotypes I (TATACTATCT), II

(TGGACCATCA), III (TGGACTAAAT), and IV (TGGACTATCT). (F) Comparison
of LN10 across various haplotypes I (AGCCCACTGA), II (AGCTCGCCGT), III

(CAATCGCCGT), and IV (CAATGGCCCT). For boxplots, center line shows
median, box limits indicate upper and lower quartiles, and whiskers extend 1.5

times the interquartile range, while data beyond the end of the whiskers are

outlying points that are plotted individually. The number of stars represents
the result of t test at different significance levels (*: 0.05, **: 0.01, ***: 0.001).

SUPPLEMENTARY DATA SHEET

All the phenotypic values of the traits and all the marker genotypes, which are
derived from Atwell et al. Nature 2010; 465(7298), 627-631.
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Glossary

0W Days to FT under LD with vernalization for 0 weeks

2W Days to FT under LD with vernalization for 2 weeks

4W Days to FT under LD with vernalization for 4 weeks

8W Days to FT under LD with vernalization for 8 weeks

AI artificial intelligence

BLUP best linear unbiased prediction

DEGs differentially expressed genes

FT10 Flowering time at 10°C

FT22 Flowering time at 22°C

FDR false discovery rate

GWAS genome-wide association studies

GEO Gene Expression Omnibus

GO gene ontology

LD Days to flowering time under Long Day

LDV Days to flowering time under Long Day with vernalization at 4°C
during 5 weeks

LOD logarithm of odds

LN10 leaf number at flowering time at 10°C

LN22 leaf number at flowering time at 22°C

MAF minor allele frequency

MDR multifactor dimensionality reduction

MLM mixed linear model

NCBI National Center for Biotechnology Information

PCCs Pearson correlation coefficients

QEIs QTN-by-environment interactions

QMDR quantitative MDR

QQIs QTN-by-QTN interactions

QTNs Quantitative trait nucleotides

REMMA rapid epistatic mixed-model association analysis

SDV Days to flowering time under Short Day with vernalization at 4°C
during 5 weeks

SNPs single nucleotide polymorphisms

TAIR The Arabidopsis Information Resource.
F
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