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Editorial on the Research Topic

Demonstrating quality control (QC) procedures in fMRI

Introduction

This Research Topic, “Demonstrating quality control (QC) procedures in fMRI1,” focused

on promoting quality control descriptions and discussions within the FMRI community.

We invited anyone in the field to participate and perform their QC protocol of choice on

sets of task-based and resting state FMRI data, describing their steps and criteria in detail.

Ten teams participated, utilizing processing and QC methods that are available from a wide

variety of software packages. The resulting set of articles represents a didactic resource for

the field moving forward, as a reference for teaching and describing QC procedures.

The examined data collection came from real, unaltered, and publicly available datasets

from widely used distributions. Even if a repository is curated, one would likely still expect

to see some QC issues arise—that is one of the fundamental reasons this Research Topic was

organized, and the aim of this project is certainly not to derogate the collections themselves

but simply to use “real world” datasets for demonstrating detailed QC. The assortment was

selected explicitly to include a full gamut of “good” to “poor” quality datasets. In the end,

among the QC issues found and reported by the Project contributors were: extreme subject

motion, severe ghosting, upside-down EPIs, incomplete FOV coverage, low TSNR, severe

EPI distortion and dropout, left-right flipping of datasets, mismatched subjects, systematic

spatio-temporal EPI artifacts, incorrect slice-timing, task-correlated motion, invalid task

performance and anomalous correlation patterns. These are all issues that can affect study

results, and this highlights how anyone undertaking an FMRI project should include careful

QC assessments as part of their workflow.

Here we first describe how the focal data collection was assembled. We then give an

overview of the software utilized, and highlight commonalities across the contributions of

the participating teams, as well as differences and unique aspects of each. Finally, we present

recommendations based on the accumulated Project contributions for the neuroimaging

community around QC considerations, which apply when using either public data or

acquiring one’s own.

1 https://www.frontiersin.org/research-topics/33922/demonstrating-quality-control-qc-

procedures-in-fmri
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Methods

Project instructions for participants

We briefly describe the Project instructions for participants (see

https://osf.io/qaesm/ for more details). Participants were asked to

perform their preferred QC steps on provided task-based and/or

resting state FMRI data collections, and to describe their evaluation

criteria in detail, including representative examples. Researchers

could choose any desired processing steps for a whole brain study,

with the final EPI data aligned to a specified MNI template (see

below). “Whole brain” included subcortical structures but excluded

the cerebellum, as many datasets do not fully cover the latter.

The participants could perform any QC steps they would

normally use for such an analysis, using any software, visualization

or processing. Each analyzed subject’s dataset would be placed into

one of the following categories: “include” (passing all QC criteria;

high confidence to use in a study); “exclude” (fails one or more QC

criteria; high confidence to remove); and “uncertain” (questionable

for whether to include).

For the Project write-ups, the participants were asked to

explicitly list all their evaluative criteria, and to denote quantitative

and qualitative ones. Additionally, authors should:

Describe each item listed in the QC criteria table(s) in

sufficient detail for others to apply the same criteria. The criteria

may also be structured as a protocol. Write the descriptions in

a didactic manner, as if explaining each item to a new research

assistant. Please detail quantities used.

Finally, each Project should contain a presentation of a variety

of interesting and representative QC examples across each of

the categories.

Dataset selection

To facilitate the QC discussions, we created a single, common

collection from public repositories for participating researchers to

analyze. Here we list the source datasets, as well as the approach for

selecting them.

We chose to start with example investigations of commonly

used data, namely human acquisitions at 3T with a single echo,

which have long formed the bulk of FMRI studies. For the Project’s

initial distribution of data, the acquisition site and original subject

IDs were anonymized, to reduce possible evaluation biases. Since

FMRI analysis is often performed on groups of subjects, and some

QC factors might be considered “relative” to the group, subject ID

numbering was used to identify sets of subjects from a particular

site. Separate sites were labeled with group numbers, and subject

IDs were simply remapped with the first digit reflecting group

membership: Group 0 = sub-001, sub-002, . . . ; Group 1 = sub-

101, sub-102, . . . ; etc. (see the table in the Supplementary material

for the full mapping). No properties of the datasets (data values,

header information, etc.) were altered in this process. The datasets

are publicly available from the “FMRI Open QC Project” webpage2

2 doi: 10.17605/OSF.IO/QAESM: https://osf.io/qaesm/.

(Taylor et al., 2023), which also contains further details of the

Project description.

For the resting state collections, we browsed available data

repositories that had open use agreements, including ABIDE-1

and ABIDE-2 (Di Martino et al., 2014), AOMIC (Snoek et al.,

2021), Functional Connectome Project (FCP; Biswal et al., 2010),

MPI-LEMON (Babayan et al., 2019), SALD (Wei et al., 2018), and

SLIM (Liu et al., 2017), as well as a large number of OpenNeuro

(Markiewicz et al., 2021) collections. In total, over 230 separate

resting state data collections were initially examined for this project.

The first selection stage was to find collections with the

following properties:

• Having >12 subjects, each of whom has at least one EPI and

one T1w volume in the same session directory.

• EPI: TR > 1.5 s, all voxel edges < 4.1mm, number of volumes

> 100, non-zero srow values in the NIFTI header.3

• T1w: all voxel edges < 2.1mm, non-zero srow values in the

NIFTI header.

This reduced the number of collections to 56.

Then, quick processing and brief visual investigation were

performed. Data collections with systemic issues, such as overly

tight FOV (cutting off the cerebellar cortex), very poor EPI tissue

contrast, obvious ghosting in the EPIs, and odd coordinate systems

(e.g., not approximately centered around the coordinate origin,

suggesting possible DICOM conversion and header issues) were

removed from further consideration. From the remaining sets,

we selected collections with a variety of voxel sizes, run lengths

and numbers of runs, and particularly those that appeared to

contain both reasonable data and a variety of occasional (but

not systemic) QC considerations. To finalize the Project data

collection size, we aimed to balance the breadth of data properties

to explore with the number of researchers likely to participate:

having more sites/subjects would likely increase the former but

decrease the latter.

Therefore, we settled on having seven resting state FMRI sites

from various data repositories and formed “groups” of∼20 subjects

each. Most of the Project groups were subsets of their original

repository collections; the subsets generally had a range of subject

motion and other underlying considerations. Some repositories

originally contained explicit categorization of subjects as “control”

and non-control, such as having TBI (traumatic brain injury)

or psychiatric diagnosis; those designations did not influence

data selection, and subjects were typically drawn from multiple

categorizations, as most MRI studies contain such combinations.

The final list of included resting state datasets (Groups 1–7)

is provided in Table 1, with a brief description of properties

by site/group.

Similar considerations to the above were used for selecting

task-based FMRI data. As an additional factor, there are a wide

variety of possible task designs, with differing degrees of complexity

for modeling and analysis. Quality control considerations of the

paradigm timing, both in terms of setup and subject response, are

3 That is, have a defined voxel grid, where the a�ne sform matrix in the

NIFTI header is nonzero.
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TABLE 1 List of the sites from which project datasets were selected, along with brief descriptions of EPI properties.

Brief descriptions of the resting state datasets used in the project

Group 1: ABIDE-1, KKI (Barber et al., 2012; Nebel et al., 2014), N = 20 subjects used (of 55 total). FMRI acquisition details: Philips Achieva 3T scanner, EPI axial

slice acquisition with fat saturation and SENSE (factor=3), flip angle= 75◦ , TE= 30ms, TR= 2.5 s, voxel size= 2.67× 2.67× 3.0mm, slice timing provided in

JSON sidecar, PE direction= j-; subjects instructed to focus on a crosshair on black computer screen.

Group 2: ABIDE-1, Trinity (Delmonte et al., 2012), N = 20 subjects used (of 49 total). FMRI acquisition details: Philips Achieva 3T scanner, EPI axial slice

acquisition with fat saturation and SENSE (factor=2), flip angle= 90◦ , TE= 28ms, TR= 2.0 s, voxel size= 3.0× 3.0× 3.841mm, slice timing provided in JSON

sidecar, PE direction= j-, subjects instructed to close eyes during scan.

Group 3: ABIDE-2, KUL-3 (Bernaerts et al., 2016), N = 16 subjects used (of 28 total). FMRI acquisition details: Philips Achieva Ds 3T scanner, EPI axial slice

acquisition with fat saturation and with SENSE (factor=2), flip angle= 90◦ , TE= 30ms, TR= 2.5 s, voxel size= 1.562× 1.562× 3.1mm, slice timing provided in

JSON sidecar, PE direction= j-, subjects instructed to focus on a white fixation cross on black background.

Group 4: FCP, Baltimore (Pekar and Mostofsky, 2010), N = 23 subjects used (of 23 total). FMRI acquisition details: 3T scanner (unspecified type), TR= 2.5 s,

voxel size= 2.667× 2.667× 3.0mm, subjects instructed to keep eyes open and fixate (target unspecified) during scan.

Group 5: OpenNeuro, ds000220 (Roy et al., 2017), N = 20 subjects used (of 26 total). FMRI acquisition details: Philips Achieva and Siemens Trio 3T scanners, EPI

axial slice acquisition with segmented k-space (no SENSE), flip angle= 90◦ , TE= 34ms, TR= 2 s, voxel size= 1.85× 1.85× 4.0mm, instructions to

subjects undescribed.

Group 6: OpenNeuro, ds000243 (Petersen et al., 2018), N = 20 subjects used (of 120 total). FMRI acquisition details: Siemens Magnetom Trio 3T scanner, 12

channel head coil, flip angle= 90◦ , TE= 34ms, TR= 2.5 s, voxel size= 4.0× 4.0× 4.0mm, instructions to subjects undescribed.

Group 7: OpenNeuro, ds000245 (Yoneyama et al., 2018), N = 20 subjects used (of 45 total). FMRI acquisition details: Siemens Verio 3T scanner, 12 channel head

coil, flip angle= 80◦ , TE= 30ms, TR= 2.5 s, voxel size= 3.0× 3.0× 3.51mm, slice timing provided in JSON sidecar, subjects instructed to close eyes

during scan.

Brief description of the task-based state datasets used in the Project

Group 0: OpenNeuro, ds000030, “task-pamenc” (Poldrack et al., 2016; Bilder et al., 2018), N = 30 subjects used (of 272 total). FMRI acquisition details: Siemens

TrioTim 3T scanner, EPI acquisition with segmented k-space and fat saturation (acceleration factor PE= 2), flip angle= 90◦ , TE= 30ms, TR= 2 s, slice timing

provided in JSON sidecar, PE direction= j-.

See the Supplementary material for a detailed subject list from each site. In some cases, properties varied across the site, which was noted within some QC evaluations, and properties shown here

are those for the first subject in each group. Group 4′s details were not provided in original project downloads, because the dataset JSON sidecar files did not contain acquisition information.

This description comes from the “Release Table (April 6, 2012)” spreadsheet from the FCP download website: https://www.nitrc.org/docman/?group_id=296. For Groups 5–7, voxel size was

included only in the NIFTI dataset, not included in the JSON sidecar.

important in much of FMRI research. For this Project we decided

to use task FMRI data from a single site and paradigm, and we

wanted to select a relatively straightforward design with a small

number of stimulus classes, to simplify explication, processing and

modeling considerations.

Thirty subjects from the following task-based dataset were

selected. Table 1 provides a brief description of this “Group 0,”

including FMRI acquisition properties contained within the JSON

sidecar files in the Project download. The specific task was a paired

memory encoding task (“pamenc”) with button-pushing responses

(see Poldrack et al., 2016, for details). In addition to the originally

distributed events TSV file, we also provided a simplified task

file with only three columns: stimulus onset time, duration and

a trial type label (“TASK,” “CONTROL”). Teams were free to use

either set of timing information—or even to not use any—as part

of their QC. Onset timing was essentially identical for all but

two subjects (whose onsets were uniformly 2 s later), separated by

2.5–18.5 s (mean = 7.5 s). Response times, which could represent

event duration, had per-subject means of 0.51–1.57 s (range= 0.0–

2.43 s) for CONTROL events and 0.45–2.65 s (range = 0.0–4.0 s)

for TASK events. Inter-stimulus interval times ranged from 1.3 to

17.3 s (mean= 6.4 s).

We note that de-identifying the task data to fully blind

teams from the source dataset was challenging, because BIDS

(Brain Imaging Data Structure specification) encodes the task label

explicitly in the dataset filenames. For example, an EPI dataset

is called sub-001_task-pamenc_bold.nii.gz, where “pamenc” is the

label for the specific task; searching online for “fmri pamenc” leads

to the original repository. Because we did not want to change any

dataset properties besides the subject IDs (to avoid introducing

any errors by mistake), we neither relabeled columns within the

subject timing files nor changed the task label in the filenames.

Therefore, in theory, participating teams could have investigated

more background details about the task data; we are unaware if any

did, but, in practice, essentially the same QC considerations would

still apply.

In the end, the available Project data collection was comprised

of seven groups of 139 total resting state FMRI subjects and 1

group of 30 task-based FMRI subjects. Each subject had one T1w

anatomical reference and 1 or 2 EPI functional runs from a single

session directory. These collections were intended to provide a

basis for QC examples, with a full spectrum of data quality within

each group and a diverse assortment of items to discuss across the

subjects: having a mix of both reasonable and poor quality data

would facilitate clearer depictions of QC procedures and contrasts.

The collections were initially investigated for this purpose, using

a quick inspection. However, during the course of the analysis for

the Project itself, it became apparent with a more complete QC

procedure that the EPI datasets for two groups actually did contain

systemic artifacts (see Reynolds et al.). While this is certainly worth

examining and understanding from a QC point of view, it had not

been the intention to include such datasets within this project. This

occurrence does primarily highlight two important points: (1) an

in-depth quality control investigation is necessary on at least some

subset of a data collection to truly understand its contents, whether

using shared or acquired data; and (2) QC must be performed from
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the start of data acquisition (also using an in-depth examination),

to avoid the propagation of systemic issues.

The repositories from which subjects were drawn contained a

wide range of age spans: from 8–13 to 56–78 years. Neither age

nor sex nor any other subject-specific information was included in

the accompanying participants.tsv file, as part of anonymization.

In “real” FMRI studies that use a standard template to define a

common final space, it is generally considered preferable to match

that template to the age of the subjects, such as the Haskins

pediatric template (Molfese et al., 2021) for studies of children;

and, increasingly, templates and atlases exist for a wider variety

of geographical locales, such as Korean (Lee et al., 2005), Chinese

(Tang et al., 2010), and Indian (Holla et al., 2020) populations,

which may also provide a better reference. However, since the

present project was focused on subject-level QC considerations and

not on a group-level report, researchers were asked to use just a

single reference template for simplicity and uniformity: the widely

used MNI-2009c ICBM152 T1w, non-linear asymmetric volume

(Fonov et al., 2011). Any particularly notable mismatches to the

template dataset would be deserving items for QC commentary by

the participating teams.

BIDS packaging

The selected datasets were then merged into BIDS-valid resting

state and task-based collections. We used multiple versions of

the BIDS validator (1.2.5 and 1.9.9) to ensure BIDS compliance.

As noted above, we did not alter the data or metadata supplied

from the source dataset. Since each of the datasets was already

available publicly in a BIDS structure, we only needed to rename

the directories and files according to our site-based enumeration

(see Supplementary material).

We first merged the seven resting state groups into a single

data collection, and then deposited the appropriate top-level text

files (dataset_description.json, participants.∗, etc.) into each of the

resting state and task-based collections. For resting state Group 4,

we noticed that the JSON sidecar for the functional image in the

source dataset was provided at the dataset level instead of at the

participant level. To maintain consistency with the other groups,

we copied this sidecar to the latter and renamed the file accordingly.

We also note that for resting state Groups 4 and 5, JSON sidecars for

the T1w images had not been supplied in the source dataset. Since

metadata fields contained in these sidecars are often contingent on

conversion software version, we opted to preserve the absence of

this metadata.

We found no validation errors in the resting state collection and

noted five warnings: (1) some images were not supplied with slice

timing info; (2) not all subjects contained the same number of EPI

files (e.g., some subjects in Group 6 had two functional runs, while

the rest of that group and all other groups only contained one per

subject); (3) not all subjects/sessions/runs had the same scanning

parameters, sometimes even within a single group/site; (4) NIFTI

header fields for unit dimensions were missing in the anatomical

volumes for some subjects (xyzt_units was 0 for most of Group 1

and all of Group 2); and (5) two subjects (sub-506 and sub-507)

had a mismatch between the number of items in the SliceTiming

array and the k dimension of the corresponding NIFTI volume.

For the task-based collection we found no validation errors and one

warning: the tabular file contained custom columns not described

in the data dictionary for the timing files. We avoided altering any

of these warnings, as they existed in the original data, and left these

as possible QC items for teams to discuss.

Participating teams and software utilized

One goal of this Research Topic was to have as wide a

representation of software tools and research labs as possible, in

order to have a maximal breadth of QC descriptions. The Research

Topic was advertised widely on general MRI analysis message

boards, such as the INCF’s Neurostars, and on email lists, such

as the open “niQC” email group, which was created to foster

discussions on neuroimaging quality control. It was advertised at

major neuroimaging conferences and workshops, such as ISMRM

and OHBM. Email notices were also sent to members of software

development groups, to project consortia (e.g., ENIGMA) and

to many FMRI labs across the field. In the end, there were 10

participating teams, from labs across three continents.

Across the contributions, there was a wide array of software

used for each of the processing and QC phases. We list the

processing and QC software packages used by each team in

Table 2. We note that virtually all of the tools and implemented

procedures exist in freely available (and mostly open source)

software. As a result, this means that this set of Topic contributions

assembles detailed QC descriptions across many widely used

software packages that can immediately be used across the field for

training, processing and research applications.

Results

Common themes across teams

There were several common themes running across the

participating teams’ analyses.

1) Each team found subjects to exclude based on one or

more aspects of data quality. As noted above, these collections

all come from standard public data repositories. These repositories

are great resources for the field for open data sharing, increasing

multisite studies and having validation datasets, but there should

generally not be the expectation that they are fully curated for

data quality (and as noted in below in Theme 7, it may be

impracticable to do so in a general way). Exclude-or-uncertain

rating fractions varied across the teams, but many excluded 25%

or more (Figure 1). In some cases, subtle but systematic artifacts

were even found that led to recommending the complete exclusion

of Groups 2 and 4 (see Reynolds et al.). These findings stress the

importance of performing QC: researchers should always check that

data contents are appropriate for their study, whether acquiring

collections themselves or downloading them.

2) Each team evaluated one or more subject’s datasets

as “uncertain.” This is reasonable and expected, particularly

when first investigating a data collection. This categorization

would almost by definition be expected to be heterogeneous
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TABLE 2 Software used by each participating team for data processing and quality control.

Team Software for processing Software for QC

(A) Birn AFNI, FSL, ANTs AFNI

(B) Di and Biswal SPM, Matlab SPM, Matlab

(C) Etzel fMRIPrep (with ANTs, AFNI, FreeSurfer, FSL, Nipype) R (with knitr, RNifti and fields), AFNI

(D) Lepping et al. AFNI AFNI, REDCap

(E) Lu and Yan DPABI, DPABISurf, DPARSF, fMRIPrep, FreeSurfer, ANTs, FSL,

AFNI, SPM, PALM, Matlab, DARTEL

DPABISurf, DPARSF, fMRIPrep, Matlab

(F) Morfini et al. CONN (with ART), SPM12, Matlab CONN, SPM12, Matlab, FSLeyes

(G) Provins et al. MRIQC (with ANTs, AFNI, FreeSurfer, FSL, Nipype, SynthStrip),

fMRIPrep (with ANTs, AFNI, FreeSurfer, FSL, Nipype)

MRIQC (with ANTs, AFNI, FreeSurfer, FSL, Nipype, SynthStrip), fMRIPrep

(with ANTs, AFNI, FreeSurfer, FSL, Nipype)

(H) Reynolds et al. AFNI, FreeSurfer AFNI

(I) Teves et al. FreeSurfer, AFNI AFNI

(J) Williams et al. FSL, cinnqc (with FSL and pyfMRIqc) pyfMRIqc

Citations for each are included here, in alphabetical order: AFNI (Cox, 1996), ANTs (Avants et al., 2012), ART (Ardekani and Bachman, 2009), cinnqc (https://github.com/bwilliams96/

cinnqc), CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012; Nieto-Castanon, 2020), DARTEL (Goto et al., 2013), DPABI (Yan et al., 2016), DPABISurf (Yan et al., 2021), DPARSF (Yan and

Zang, 2010), fields (Nychka et al., 2017), fMRIPrep (Esteban et al., 2019), FreeSurfer (Fischl and Dale, 2000), FSL (Smith et al., 2004), FSLeyes (McCarthy, 2022), knitr (Xie, 2014), Matlab

(www.mathworks.com), MRIQC (Esteban et al., 2017), Nipype (Gorgolewski et al., 2011), PALM (Winkler et al., 2014), pyfMRIqc (Williams and Lindner, 2020), REDCap (Harris et al., 2009,

2019), RNifti (Clayden et al., 2020), SPM (https://www.fil.ion.ucl.ac.uk/spm/; Ashburner, 2012), and SynthStrip (Hoopes et al., 2022).

across researchers, given their different backgrounds, experience,

opinions, expectations and intended use for the data. QC

considerations and criteria will adapt over time, likely reducing

the number of uncertain evaluations, but it is still a useful

categorization to have in a QC procedure. It is essential to

identify unknown or “surprising” features of a data collection or

processing procedure. In a real study, this rating would likely

be a temporary evaluation that leads to checking acquisition

or other aspects more in-depth, perhaps even leading to a

corrective measure or change in the acquisition. A subject

given this rating may eventually be evaluated as either include

or exclude.

3) Nearly all QC protocols started by investigating the

unprocessed data’s consistency and “metadata” properties. These

included checking the number of EPI runs, voxel sizes, acquisition

parameters, and other properties that are generally contained in

the NIFTI headers and/or JSON sidecars; standard data collections

are also likely to be accompanied by further subject descriptions

(age, demographic, etc.). Even when acquiring one’s own data, it is

necessary to be sure that these underlying properties are consistent

and meet expectations. Alterations in scanner settings, software

version, DICOM field conversion and more can easily occur, and

these can detrimentally alter dataset features, affecting final results

or compatibility for inclusion within a study.

4) Each team identified consistency, reliability or mismatch

errors within subject datasets. For example, all teams found

two datasets that had upside-down EPI datasets, and some

also identified left-right flip errors between a subject’s EPI

and anatomical volumes, which is a disturbingly common

problem in FMRI (see Glen et al., 2020). Two teams even

suspected that a subject’s EPI and anatomical volumes came

from different subjects, based on sulcal and gyral pattern

mismatch. These kinds of fundamental data issues are difficult,

if not impossible, to reliably correct after the fact. Some

groups chose to address the EPI-anatomical consistency issues

by assuming the anatomical dataset was correct, but while

that may produce EPI-anatomical consistency, the presence

of such header problems greatly reduces the reliability in

absolute left-right identification. As was noted by multiple

teams, fiducial markers are needed for clear identification (and

some were identified in the visual inspections of some Project

datasets here).

5) Each QC protocol used qualitative criteria and visual

inspection of datasets. These included checking the raw

data and inspecting derived images (e.g., TSNR or standard

deviation maps) for suitability, as well as for artifacts. Visual

checks were also used to evaluate the success of processing

steps, such as alignment or statistical modeling. While these

procedures cannot be performed automatically, they benefit

greatly from systematization within a QC protocol, which software

developers aim to facilitate. These qualitative checks carry the

requirement for researchers to learn how to distinguish reasonable

and problematic data, as well as to accurately communicate

their methodology.

6) Most, but not all, protocols included

quantitative/automatic checks. The teams employed a variety of

quantities based on subject motion, TSNR and other measures.

These tests are useful and find some of the most common kinds

of expected problems. It was perhaps surprising that not every

protocol included quantitative checks (while all did include

qualitative ones, noted in Theme 5). This may reflect that

visualization is still key to evaluating several data features and

processing steps, and quantitative criteria typically originate as

useful extensions of such understanding. It is likely that more

developments for automating certain checks will be made over

time, but this process also typically is rooted in visual inspection

during the “training phase” of determining meaningful quantities

and reasonable thresholds.
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FIGURE 1

The set of QC evaluations for each subject (Group 0 = sub-001, sub-002, …; Group 1 = sub-101, sub-102, …; etc.), by each participating analysis

team (see Table 2 for each column label, A–J). Group 0 contained task-based FMRI, and Groups 1–7 contained resting state FMRI. Groups within the

data collection contained a range of data quality, from reasonable to poor. A large number of subjects were given evaluations of exclude or

uncertain, showing the need for QC in FMRI studies. There is also variation among team evaluations, which was expected due to their di�erent

treatments of subject motion, signal coverage, and other focal features. This is discussed below in the Results.

7) QC parameters were closely tied to a specific analysis and

research goal.Nearly every groupmade the point that some subject

data and data collections may be appropriate for one particular

analysis but not another. As a consequence, it is likely not possible

to simply adopt existing QC ratings on a given data collection from

a separate study when using that data for a new project. While

prior QC evaluations may inform those of a new analysis, the

burden is always on the researcher to be sure of the contents of

the data for their current application. There is no “one size fits all”

set of criteria, as there is no single method for designing a study

(sample size, number of groups, task paradigm, etc.), acquiring

data (different field strengths, echo number, etc.), performing
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analysis (ROI- vs. voxel-based; surface vs. volumetric; etc.)

and so on.

8) Non-EPI items can affect FMRI analysis, too. While the

vast majority of QC evaluations focus on the EPI volume and its

spatiotemporal properties, checks on the accompanying data can

also affect the usability of the dataset as a whole. For example,

some cases of notable anatomical variability were cited by most

teams, such as having extremely large ventricles (and its limiting

effect on the accuracy of template registration), as well as other

anatomical anomalies. In other data collections one might find

alterations to structure due to tumors, surgery or hemorrhages,

which might necessitate removing a subject from the analysis or

at least constrain the analysis options. Similarly, evaluating the

stimulus timing in its own right was shown to be useful (Etzel;

Reynolds et al.). For more complicated study designs, one might

also analyze accompanying data such as physiological time series

(such as cardiac and respiratory rate), etc. All the input data used

for analysis needs to be reviewed.

9) Each team made their processing and QC pipelines

publicly available. This kind of open processing (e.g., using

GitHub, OSF or another accessible webpage) is becoming more

common within the field, but it is important for this practice

to keep growing. Given the didactic nature of this Research

Topic, we hope that having these methods directly available will

encourage the implementation for more detailed QC protocols

and reporting.

Individual elements and focuses among
teams

Each of the submissions also introduced their own unique

perspective and tools for quality control. We briefly list some

examples here.

Birn analyzed the seven resting state groups. This paper

explored the effects of using different motion thresholds, as well as

the inclusion/exclusion of low-frequency fluctuation bandpassing,

during processing. In particular, it investigated some trade-offs of

trying to remove artifactual features with reducing the degrees of

freedom in each subject’s data, using network based dissimilarity

matrices of QC-FC (Ciric et al., 2017; see below) that can be used

for quality control evaluation.

Di and Biswal analyzed 1 task group (using stimulus timing)

and the seven resting state groups. The authors included tissue-

based segmentation estimates within their visual checks of

anatomical-to-template volumetric registration. Tissue-masks were

also used within a set of time-series checks of subject motion-

related artifacts, where principal components of white matter and

cerebrospinal fluidmasks were examined for similarity withmotion

regressors and global mean signals.

Etzel analyzed 1 task group (using stimulus timing). This work

focused on the task-based FMRI data. Among other QC steps,

it included checks for participant behavior and responsiveness,

such as by basing some criteria on patterns of button-pushing.

Being confident that subjects had followed the task assignment to a

reasonable degree is indeed paramount in neuroimaging, whether

for explicit task-based paradigms or for naturalistic and resting

state ones (with eye-tracking, alertness monitoring, etc.).

Lepping et al. analyzed the seven resting state groups. While

all teams had an explicit list of QC criteria, this team created

a REDCap checklist form to itemize and store the dataset

assessments. They emphasized how this system facilitated the

training and replicability aspects of the QC, which are vital aspects

in any evaluation procedure. This also provided a convenient

mechanism for sharing QC results.

Lu and Yan analyzed the seven resting state groups. This team

included surface-based processing and criteria as part of their QC

procedure, even though the analysis itself was explicitly volumetric.

This allowed the evaluation to contain an interesting intersection

of anatomy- and function-based assessment. They also briefly

explored the differences of group-level tests with and without

incorporating their excluded subjects.

Morfini et al. analyzed the seven resting state groups. Among

other QC criteria, this team used multiple “QC-FC” analyses (Ciric

et al., 2017) to evaluate the data at the group-level, an approach

which incorporates both the quality of underlying data itself and

the denoising/processing steps utilized on it. For example, one QC-

FC measure involved calculating correlation matrices from 1,000

random voxels across a gray matter template in standard space.

Provins et al. analyzed one task group (not using stimulus

timing) and the seven resting state groups. This work included

exclusively qualitative assessments of quality, including signal

leakage from eye movements, carpet plots and ICA-based

components. One particular point of emphasis was on the

importance of examining “background” features within the field of

view (FOV), as patterns there can reveal several kinds of artifacts,

such as aliasing ghosts, subject motion spikes, or scanner issues.

Reynolds et al. analyzed one task group (using stimulus timing)

and the seven resting state groups. This QC procedure was

organized into 4 or 5 separate stages for the resting state and

task FMRI data, respectively, including GUI-based checks with

InstaCorr (interactive “instant correlation;” Song et al., 2017) to

follow up on observed spatio-temporal features as necessary. The

authors also explicitly placed QC within the larger context of

understanding the contents of the dataset and having confidence

in what goes into the final analysis, rather than viewing it simply as

a subject selection/rejection filter.

Teves et al. analyzed one task group (using stimulus timing)

and one resting state group. This team organized their work as a

QC assessment guide for both new and experienced researchers,

and they emphasized the importance of interactive training and

discussions with new researchers. They also used the comparison

of EPI-anatomical alignment cost function values as a measure to

trigger a visual check for potentially mismatched datasets.

Williams et al. analyzed one task group (not using stimulus

timing) and five resting state groups. In particular, this work

focused on the issue of inter-rater variability and reliability.

Even within a single lab performing QC, there can be different

assessments of datasets: qualitative evaluations can vary, as well

as the choice of specific quantitative thresholds. This issue is also

critical for describing QC procedures as accurately as possible to

others when reporting results.
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General di�erences in team perspectives

Overall, there were some general differences in teams’

approaches and scopes, which influenced QC discussions and

selections. These did not reflect decisions that would necessarily be

described as either right or wrong, but rather different choicesmade

by teams that would contribute to variability of dataset evaluations

(see Figure 1).

Firstly, the range of QC items necessarily depended on what

processing steps were implemented, and the latter choice can vary

widely across the field of FMRI analysis. There is no generally

defined set of processing steps to apply when performing QC of

an FMRI dataset. For example, some groups included subject-level

(or “first level”) regression modeling within their processing, while

others did not.4

Secondly, for the task FMRI dataset, some teams chose to

ignore the timing files in their QC processing, while others included

the stimulus information. Some even analyzed and interpreted

the performance information in detail on its own within the

list of exclusion criteria (e.g., Etzel). These again reflect different

choices and degrees for understanding the presented data, and will

necessarily contribute to variability in subject selections. For more

complicated task designs (which certainly exist within the field),

one would expect the QC approaches to have further variability,

and to be closely tied to the analyses at hand, such as which stimulus

contrasts are particularly central to the analysis.

Thirdly, the issue of subject motion was viewed and treated

differently. Some teams used estimated motion-based parameters

(e.g., Enorm or FD) for censoring (or “scrubbing”) time points

to remove potentially contaminated volumes, and then to include

the number of censored volumes within subject exclusion criteria.

Other teams adopted processing approaches to mitigate effects of

subject motion in other ways (within minimal or no censoring),

with the stated aim of avoiding potential biases, arbitrary thresholds

and loss of subject data. These philosophical choices will result in

very different criteria for QC evaluations, given that typical data

collections contain a range of subject motion profiles.

Fourthly, there were also different interpretations of how much

signal dropout and distortion within a volume was acceptable

before excluding a subject. For example, one team excluded 166

out of 169 subjects (and listed the remaining 3 as uncertain) from

the evaluations of these features (Provins et al.). In a real study,

this consideration might take the form of listing brain regions of

particular interest and verifying the signal quality there specifically.

Additionally, beyond the fact that researchers make their own

choices when determining what data are satisfactory to include

in their research, the Project guidelines omitted details such as

research goals, which might imply anatomical regions of particular

interest. Similarly, subject group types were omitted, which might

identify subjects for whom elevated levels of typical motion, or

anatomical anomalies, would be expected. Researchers also made

independent choices on how to treat within-group inhomogeneity

4 In some cases, this may reflect a di�erentiation of “processing” vs

“preprocessing,” in which the former includes subject-level regression while

the latter does not. However, these terms are not used consistently across

the field. Within the Project description, “processing” was consistently used.

of acquisition, such as whether subjects were required to be scanned

on the exact same grids or to have the same number of EPI runs. As

such, for this Project variance in QC perspectives was expected.

Discussion

The immediate goals of this project were:

1. To promote the broader adoption of quality control practices

in the FMRI field. There are many QC tools and protocols

available in publicly available software (e.g., those in AFNI,

CONN, DPARSF, fMRIprep, MRIQC, pyfMRIqc, and SPMwere

all used here), perhaps more than people have typically realized,

and this set of Research Topic articles provides a didactic

collection of them for researchers and trainees to use.

2. To facilitate the inclusion of more details in QC protocol

descriptions. Each Project contribution contained an explicit

list of QC criteria, along with demonstrations of most features.

We hope these help start to systematize QC reporting within

the field.

3. To develop the view of QC as more than “just” vetting

datasets, but rather as more deeply understanding the

contents of the collection and analysis as a whole. This should

allow for greater confidence in final results, and hopefully

improve reproducibility and reliability across the field.

4. To share QC criteria across researchers who are performing

analysis and developers creating tools, thereby improving the

set of available QC tools in the process. We would expect

increasing clarity and potentially homogeneity of QC methods

as a result of this work.

One longer term goal is to motivate the development of new

QC methods, techniques and criteria. As noted in several Project

papers, MRI acquisitions and analyses are complex and always

changing, so evaluation criteria should continue to adapt. For

instance, new images may summarize a feature in a clearer way,

or more quantitative methods could be developed to streamline

QC procedures. It is our experience as methods researchers and

software developers that these kinds of advances are often rooted in

visualization and understanding: quantitative checks are essentially

extensions of qualitative ones, in which understanding is rooted. The

present project collected a large number of datasets with varied

properties, so that many people could view and comment on them

in detail—we hope this provides a useful incubator for further QC

development, which can be expanded across more data collections

and researchers.

Another long term goal of this project is to facilitate the

development of a common language and clear description of

QC items. Several teams noted that there is not currently any

general commonality in criteria or descriptions in the field, and

that developing one would improve the ability to use, understand

and communicate QC in work. For example, even referring to

an apparently straightforward mathematical measure like TSNR

(temporal signal-to-noise ratio) can lead to confusion, since there

can be multiple reasonable definitions. Therefore, analysts should

specify which definition they are using (as well as ensure that they

are using a reasonable one), not only a numerical threshold.
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QC recommendations for researchers

The following are recommendations for implementing quality

control in FMRI studies, drawing from the accumulated Project

contributions, guidance and suggestions.

1) Check new acquisitions immediately—delays can lead

to wasted data. Performing in-depth evaluations is crucial with

the first few subjects in a protocol, to avoid systematic errors

from the start. Maintaining checks remains important as scanner

settings can easily be changed by accident or through an upgrade,

etc., and this can flag alterations in data quality or properties.

Acquiring good data is always better than trying to fix problematic

data retrospectively.

2) Conduct detailed QC checks whenever using a new data

collection or starting a new project. Most public repositories

explicitly note that curation should not be assumed, and prior

checks may have focused on different purposes, regions of

interest or type of analysis. QC also integrates directly with

verifying processing steps, and different analyses may have different

properties and requirements.

3) Treat QC as understanding data, not just “removing bad

data.” FMRI datasets are complicated, and many small details can

affect downstream results. Treating QC as purely the elimination

of bad data can lead to selection bias and to missing systematic

issues—often checking why some datasets get removed provides

useful insight into the entire collection. Understanding the full

properties (and realistic limitations) of data will generally lead

to better interpretation of it. Researchers should be confident in

their data and its contents, and in-depth QC is the only way to

achieve this.

4) Apply both qualitative and quantitative checks.

Visual verifications remain fundamental in data analysis, as

shown by the participating teams here. These can be usefully

systematized for maximal efficiency and utility, and these inform

and complement automatic checks of derived quantities. This

combination also typically helps with the development of new

QC measures.

5) Clearly define and describe all QC steps and measures.

This is necessary to maintain consistency of the QC within a lab

or group setting, as evaluations of features can change over time

or differ among people. All quantities should be clearly defined,

since there may be multiple derivations; thresholds are not useful

if their associated quantities are not clearly described. Having clear

checklists facilitates implementing the QC, as well as reporting it in

papers and presentations.

6) Coordinate QC evaluations with the paradigm and aims

of the current study. In practice, it is difficult to make one QC

evaluation apply to all possible purposes, due to the variability

of study design, regions of interest, etc. Viewing previous QC

evaluations might be useful, but those could be missing important

characteristics for the present work or be overly harsh/lenient.

Include explicit QC discussions in the planning stages of each

study design.

7) Ensure (at least some) in-depth QC, even for large studies.

The typical amount of time, expense and per-researcher effort of

acquiring any subject is large (e.g., planning, piloting, grant writing,

training, acquiring, and analyzing). As many QC steps are already

integrated into analysis software, the relative effort of checking

data and processing quality is actually quite small compared to

that of the other stages of acquisition and analysis—QC should

not be skipped simply because it comes near the end of processing.

Big data can still be corrupted by systematic issues in acquisition

and analysis. Even when applying automatic checks across all

subjects, in-depth QC (including visualization and qualitative

checks) should still be applied to at least meaningful subsamples

across scanners and systematically across time, to avoid wasted data

and resources as well as artifactual results.

8) Share QC advice and recommendations. Stating what

QC steps are most useful for identifying certain features or

for validating data for certain analyses benefits everyone in the

neuroimaging community. Similarly, adding new tests and features

helps other researchers and software developers directly.

9) Make QC scripts public where possible. While textual

descriptions of methods in papers are useful and provide

explanatory context, there are many influential details for both

processing and QC that exist only at the level of code. Researchers

presenting findings in posters, talks and other presentations would

also be encouraged to provide links to their processing and QC

scripts. Having the code available provides a valuable resource for

the field, and hopefully this will help promote the wider adoption

of QC integration into FMRI processing.

10) Make QC evaluations public where possible. Many of

the QC protocols and software tools implemented in Project

contributions produced reports that can be shared and/or archived.

These include PDFs, HTML pages, RedCap reports, and JSON

files. These could be included in NeuroVault uploads, for instance,

as well as linked to papers, presentations and data repositories.

Additionally, provide QC feedback to public repository hosting

sites and/or to the researchers who acquired the original data:

just like software packages, data collections have version numbers

because fixes and updates can be required; QC feedback can benefit

the neuroimaging community.

11) Stay up to date with QC developments. QC measures

and methods will change over time. New acquisition and analysis

approaches will lead to new artifacts and other considerations to

evaluate; new ideas and software developments provide new checks

and solutions.

Conclusions

This Project demonstrates that there are many tools and

procedures currently available for performing quality control in

FMRI. It also presents a healthy warning that much can go wrong

with the complex data acquisitions and analyses that go into FMRI,

and QC should be included in all studies, whether researchers are

using public datasets or acquiring their own scans. With careful

preparation and quality control investigations, researchers can be

more confident that their results are based on reasonable data and

the intended processing. In short, we urge researchers to choose a

quality control method that is thorough and understandable, and

to keep looking at the data.
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A functional MRI pre-processing
and quality control protocol
based on statistical parametric
mapping (SPM) and MATLAB
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Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ,

United States

Functional MRI (fMRI) has become a popular technique to study brain functions

and their alterations in psychiatric and neurological conditions. The sample

sizes for fMRI studies have been increasing steadily, and growing studies

are sourced from open-access brain imaging repositories. Quality control

becomes critical to ensure successful data processing and valid statistical

results. Here, we outline a simple protocol for fMRI data pre-processing and

quality control based on statistical parametricmapping (SPM) andMATLAB. The

focus of this protocol is not only to identify and remove data with artifacts and

anomalies, but also to ensure the processing has been performed properly. We

apply this protocol to the data from fMRIOpen quality control (QC) Project, and

illustrate how each quality control step can help to identify potential issues. We

also show that simple steps such as skull stripping can improve coregistration

between the functional and anatomical images.

KEYWORDS

functional MRI, head motion, pre-processing, quality control, resting-state, skull

stripping

1. Background

Functional MRI (fMRI), especially blood-oxygen-level dependent (BOLD) fMRI

(Ogawa et al., 1992), has become a popular technique to study brain functions underlying

cognitive and affective processes, and to investigate brain alterations in psychiatric and

neurological disorders. The sample sizes of fMRI studies have been steadily increasing

over the years (Poldrack et al., 2017; Yeung et al., 2020), and many researchers have

taken advantages of large open-access datasets, such as 1,000 Functional Connectomes

Project (Biswal et al., 2010), autism brain imaging data exchange (ABIDE) (Di Martino

et al., 2014), Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2015),

and OpenNeuro (Markiewicz et al., 2021). The wide availability and the heterogeneity

in acquisition protocols and data quality make it challenging for data processing

and statistical analysis. Quality control on the data processing has become a critical

component in research but has not been fully charted.
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The quality assurance for an fMRI study span from data

acquisition to data processing and statistical analysis (See

Lu et al., 2019 for an overview). Here we assume that the

data have already been collected or obtained from an online

repository. Then the quality assurance starts with checking

the quality of the images, and mainly involves the data

processing steps. There are automated quality control measures

for specific steps, e.g., assessing the quality of MRI images

(Esteban et al., 2017) and brain registration (Benhajali et al.,

2020). But published studies on quality control usually do

not cover the entire processing pipeline. In this paper, we

outline a processing pipeline for fMRI data that has been

used in our lab, and detail the quality control procedure

after each of the pre-processing steps. The pre-processing

pipeline is suitable for all resting-state, task state, and movie

watching conditions (Di and Biswal, 2019, 2020, 2022; Di

et al., 2020, 2022a,b). The protocol is based on Statistical

ParametricMapping (SPM) (https://www.fil.ion.ucl.ac.uk/spm/)

under MATLAB environment. The quality control issues may

be similar when using other major software, e.g., Analysis of

Functional NeuroImages (AFNI) (Cox, 1996) and the FMRIB

Software Library (FSL) (Jenkinson et al., 2012). But the

implementations of quality control in other software are outside

the scopes of this paper.

Quality control is mainly 2 fold. The first is to identify

artifacts and issues in the images. This includes spatial domain

issues, such as ghost artifacts, lesions, and brain coverage, as

well as temporal domain issues, such as head motion and

other physiological noises. The second is to ensure that the

data processing steps can run properly. Practically, many data

processing steps rely on iterations, which are sensitive to

initial conditions. Quality control is critical to ensure that

these processing steps can run properly but are not stuck

in local minima. In addition, given the complexity of the

fMRI data, there might always be unexpected issues in the

images or different processing steps. Visualizations of different

aspects of the images will always be helpful to spot the

unexpected issues.

Here, we first describe the pre-processing and quality

control protocol in detail, including visualizations, exclusion

criteria, and the steps needed for processing assurance. The

protocol mainly relies on SPM and MATLAB functions.

Some visualizations are inspired by previous works, such

as TSDiffana (http://imaging.mrc-cbu.cam.ac.uk/imaging/

DataDiagnostics) and Power et al. (2014). And secondly,

we apply the protocol to the data of the Open QC Project

(https://osf.io/qaesm/). We illustrate how quality issues can

be identified, and what steps are needed to ensure proper

data processing. One particular step is the usage of skull-

stripped anatomical images for functional-anatomical images

coregistration (Fischmeister et al., 2013). By using the OpenQC

dataset, we examine how skull stripping can potentially

improve the coregistration compared with using the raw

anatomical images.

2. Pre-processing and quality
control protocol

2.1. Software

SPM12: v7771 under MATLAB R2021a environment.

2.2. Procedure

The outline of the pre-processing and quality control steps is

shown in Figure 1. The codes are available at https://github.com/

Brain-Connectivity-Lab/Preprocessing_and_QC.

2.2.1. Q1. Data initial check

The purposes of the initial check include checking the

consistency of imaging parameters across participants, and

checking the image quality, coverage, and orientations of the

functional and anatomical images.

First, check the key parameters that may affect pre-

processing, including the number of volumes, repetition time

(TR), and voxel sizes. Plot the parameters across participants

(e.g., Supplementary Figure 1) or the histograms may be helpful.

If a few participants have different parameters, e.g., fewer

volumes, they may be removed from further analyses. If many

participants have various numbers of volumes, onemay consider

keeping the same number of volumes across all the participants.

Otherwise, one may also consider including covariates in group

level models to account for the parameter variations.

Second, check the anatomical images using SPM Check

Registration functionality. The first image is the anatomical

image of a participant in native space, and the second is

the single subject T1 weighted template image in MNI space

(Figure 2A). The contour of the first image can be overlayed

onto the second image. Focus on, (1) whether the anatomical

image has the same orientation and similar initial position to the

template, (2) any artifacts, e.g., ghosting, and brain lesion. If any

anomaly is noted, then the image needs to be further checked for

the whole brain volume. If the anatomical image is located far

from the MNI template, or rotated into a different orientation,

then manually reorient the image to the template direction and

reset the origin to the anterior commissure.

Thirdly, check the first functional image using SPM Check

Registration functionality. This is the same as the previous

step, except that the first image is a functional image. Focus

on (1) whether the functional image has the same orientation

and similar initial position to the MNI space template, (2) any

artifacts, e.g., ghosting, and (3) the spatial coverage.

2.2.2. P1. Anatomical image segmentation

The purpose of this step is to segment the anatomical image

of a participant into gray matter (GM), white matter (WM),
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FIGURE 1

Pre-processing (P) and quality control (Q) steps.

cerebrospinal fluid (CSF), and other tissues, and obtain the

parameters (deformation fields) for the spatial normalizations

of the functional images. A bias corrected anatomical image

is also generated, which will be used for functional-anatomical

image registration.

Use SPM Segment functionality. The input volume is the

subject’s anatomical image. Additional non-default setting: (1)

“Save Bias Corrected” -> “Save Bias Corrected”; (2) “Warped

Tissue” for the first three tissue types (GM, WM, and CSF) ->

“Unmodulated”; and 3) “Deformation Fields” -> “Forward.”

DARTEL (a fast diffeomorphic registration algorithm)

may be used to generate a sample specific template for

spatial normalization (Ashburner, 2007). It can improve cross-

individual registrations, especially for a homogeneous sample

from a specific population, e.g., children or old adults. But for a

large sample size with diverse demographics, DARTEL may not

be necessary and is computationally expensive.

2.2.3. Q2. Anatomical image segmentation
check

The purpose of this step is to check the quality

of segmentation.

Use SPM Check Registration functionality. The first image

is the segmented gray matter density image in MNI space

(wc1xxx), and the second image is the single subject T1 weighted

image in MNI space (Figure 2B). The contour of the first image

can be overlayed onto the second image. Next, overlay the

segmented images of GM, WM, and CSF (wc1xxx, wc2xxx, and

wc3xxx) to the first image.

If misclassification of any tissues is noted, then double check

the original anatomical image. If the misclassification could be

caused by the position/orientation of the raw anatomical image,

try to manually reorient the anatomical image. If brain lesions

or image quality issues are noticed, this participant’s data should

be excluded.

2.2.4. P2. Functional images realign

The purpose of this step is to align all the functional images

of a run to the first image. Rigid body head motion parameters

(rp files) are also obtained.

Use SPM Realign: Estimate & Reslice functionality. For

“Data:Session”: input all the functional images. Non-default

setting: “Resliced images”: “Mean Image Only.”

2.2.5. Q3. Head motion check

The purpose of this step is to check the distributions of head

motion in the sample, and remove participants with excessive

head motions from further analyses.

Calculate framewise displacement (FD) in translation and

rotation based on the rigid body transformation results from the
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FIGURE 2

Example visualizations of each quality control step. (A) Image initial check (Q1). (B) Segmentation check (Q2). (C) Head motion check (Q3). (D)

Coregister check (Q4). (E) Normalization check (Q5). (F) Time series check (Q6).

P2 step (Di and Biswal, 2015). The formula for FD at time t are

as follows,

FDtranslation,t

=

√

(hpx,t − hpx,t−1)
2
+ (hpy,t − hpy,t−1)

2
+ (hpz,t − hpz,t−1)

2

FDrotation,t

=

√

(hpα,t − hpα,t−1)
2
+ (hpβ ,t − hpβ ,t−1)

2
+ (hpγ ,t − hpγ ,t−1)

2

Where hp represents the head position parameters estimated

relative to the first image. x, y, and z represent the

three translation directions, and α, β , and γ represent the

three rotation directions. Plot the distributions of maximum

framewise displacement across all the participants (Figure 2C).

A pre-specified threshold of maximum framewise displacements

>1.5mm or 1.5◦ (approximately half of the voxel sizes)

can be used to exclude participants. However, the threshold

may depend on the sample characteristics. See below for

more discussions.

2.2.6. P3. Functional-anatomical images
coregister

The purpose of this step is to coregister the functional images

to the anatomical image of the same individual.

First, generate a skull-stripped bias-corrected anatomical

image using SPM Image Calculator (ImCalc) functionality.

Input Images: (1) the bias-corrected anatomical image, (2)

through (4) c1xxx, c2xxx, and c3xxx segmented tissue images,

respectively. Expression: i1.∗ ((i2+ i3+i4) > 0.5).

Second, use SPM Coregister:Estimate functionality.

“Reference Image”: the skull-stripped bias-corrected anatomical

image; “Source Image”: the mean functional image generated

in the realign step; “Other Images,” all the functional images of

the run.

2.2.7. Q4. Coregistration check

The goal of this step is to check the quality of coregistration

between the functional and anatomical images.

Use SPMCheck Registration functionality. The first image is

a functional image of a participant in native space, and second
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image is the skull stripped anatomical image in native space

(Figure 2D). The contour of the first image can be overlayed onto

the second image.

Check whether the contour of the functional image aligns

with the anatomical image. If the two images are not alignedwell,

then manual reorientation of the images may be needed.

2.2.8. P4. Spatial normalization

The purpose of this step is to spatially normalize all

the functional images into the common MNI space.

The normalization parameters are obtained from the

segmentation step.

Use SPM Normalize:Write functionality.

“Data:Subject:Deformation Field”: y_xxx file from the

anatomical image folder; “Images to Write”: all the functional

images of a run. Non-default setting, “Voxel sizes”: 3 3 3. The

resampling voxel size should be similar to the original voxel

size. For the fMRI QC data, we used a common voxel size of 3×

3 × 3 mm3. This may be modified according to the actual voxel

size. The resampled voxel size also affects the estimates of spatial

smoothness, which may in turn affect voxel-wise statistical

results (Mueller et al., 2017).

2.2.9. Q5. Normalization check

The purpose of this step is to check the spatial registrations

of the fMRI images to an MNI space template.

Use SPMCheck Registration functionality. The first image is

the normalized functional image of a participant in MNI space,

and the second image is the single subject anatomical image in

MNI space. The contour of the first image can be overlayed onto

the second image (Figure 2E).

2.2.10. P5. Voxel-wise general linear model

For resting-state data, this step is used to regress out

variations of no-interest, such as low-frequency drift, head

motion, and WM/CSF signals. The residual images will be

further used to calculate functional connectivity or resting-state

parameters, such as amplitude of low-frequency fluctuations

(ALFF) (Yang et al., 2007), regional homogeneity (ReHo) (Zang

et al., 2004), and physiophysiological interaction (PPI) (Di and

Biswal, 2013). For task fMRI, the purpose of this step is mainly

to derive task related activations.

For resting-state data, firstly, define WM and CSF masks

by thresholding and resampling the subject’s segmented tissue

images using SPM Image Calculator (ImCalc) functionality.

“Input Images”: (1) the first functional image (to define the voxel

dimension), and (2) wc2xxx or wc3xxx normalized tissue density

image. “Expression”: i2 > 0.99. The threshold is used to ensure

only WM or CSF voxels are included in the masks.

Secondly, extract the first principal component of the signals

in the WM and CSF masks, respectively.

Thirdly, use General Linear Model (GLM) functionality

in SPM to perform the regression. The regressors include 24

Friston’s head motion model (Friston et al., 1996), the first PC

of theWM and CSF, respectively, and a constant term. Note that

an implicit high pass filter is also included in the GLM with a

cut-off of 1/128Hz. This GLM step essentially performs artifact

removal and filtering together, which can prevent introduced

artifacts when doing these two steps separately (Lindquist et al.,

2019).

Fourthly, estimate the GLM using SPM Model estimation

functionality. Non-default setting, “Write residuals”: Yes.

For task fMRI data, also use the GLM functionality in SPM to

perform the regression. Define task regressors using the design

timing parameters. Additional regressors include 24 Friston’s

head motion model (Friston et al., 1996) and a constant term.

Note that an implicit high pass filter is also included in the

GLM with a cut-off of 1/128Hz. Next, estimate the GLM using

SPMModel estimation functionality. The residual images can be

saved to check model fitness, but usually they are not needed for

further analyses.

2.2.11. Q6. Time series check

For resting-state data, the purpose of this step is to check

the time series of global signals, and their relations to head

motion and physiological noises. Mean global signals and

pairwise variance [similar to DVARS, temporal derivative of

variance (Power et al., 2014)] are commonly used to quality

control fMRI time series. Outliers of the variance time series are

usually caused by head motion. Therefore, plotting head motion

parameters together with the variance and global signals can

help to illustrate the relationships. A further question is whether

the linear regression step can effectively minimize the noises in

the global signals.

Plot time series as Figure 2F. Top row, first, the global mean

intensity for the raw fMRI images; second, six rigid body head

motion parameters in mm or degree; third, the first PC of

the signals in the WM and CSF; and fourth, the global mean

intensity for the pre-processed fMRI images within a brain

mask. The correlations among all these time series are shown

in the last column. Bottom row, first, pairwise variance between

consecutive images for the raw fMRI images; second, framewise

displacement in translation and rotation; third, derivative

(difference) of the first PCs inWMandCSF; and fourth, pairwise

variance between consecutive images from the pre-processed

fMRI images within a brain mask. The correlations among all

these time series are shown in the last column.

The pairwise variance time series is a simple way to spot

extreme values. One can use three standard deviations as a

criterion to identify the extreme values. Similar spikes can

usually be seen in the framewise displacement time series, and
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TABLE 1 Key imaging parameters in the eight sites of the fMRI Open QC project.

Site n Number of functional volumes TR (s) Functional image voxel size Anatomical image voxel size

x y z x y z

Task 30 242 2 3 3 4 1 1 1

Rest 1 20 128 or 156 2.5 2.67 or 2.29 2.67 or 2.29 3 1 1 1

Rest 2 20 150 2 3 3 3.84 1 1 or 0.93 1 or 0.93

Rest 3 16 162 2.5 1.56 1.56 3.1 0.98 1.2 0.98

Rest 4 23 123 2.5 2.67 2.67 3 1 1 1

Rest 5 20 144 2 3 or 1.85 3 or 1.85 4 1 1 1

Rest 6 20 130–724 2.5 4 4 4 1 1 1

Rest 7 20 198 2.5 3 3 3.51 1 1 1

Shaded cells indicate the presence of different parameters within the site. TR, repetition time.

sometimes are also visible in the derivatives of the WM/CSF

signals. This will result in high correlations among the pairwise

variance, framewise displacement, and WM/CSF derivatives.

Also focus on the pairwise variance time series from the pre-

processed images to check whether they are no longer correlated

with the framewise displacement or WM/CSF derivatives. A

threshold, e.g., r > 0.3, can be used to identify large correlations.

For task data, the effects of interest are usually the brain

activity related to the task design. Then the focus of this step

is to check whether the global signals and head motions are

correlated with the task design. Therefore, in addition to the

time series of global signals and head motion, also plot the task

design time series and their derivatives. If the global signals or

head motion parameters are correlated with the task design, or

the pair wise variance or framewise displacement are correlated

with the derivatives of the task design, then one may consider

controlling these factors in the first level GLMs.

2.3. Other processing steps

Spatial smoothing is not included in this protocol. It is

only necessary when voxel-wise statistical analysis is used. If

the analysis is ROI based connectivity analysis, then smoothing

is not necessary. Moreover, when calculating ReHo, which is

a commonly used resting-state measure, the data should also

be un-smoothed.

3. Materials and methods

3.1. Datasets

The data were obtained from the fMRI Open QC Project

(https://osf.io/qaesm/). There are anatomical and functional

MRI data of 169 participants from eight sites. Seven sites

are resting-state fMRI, and the remaining one is task-based

TABLE 2 FMRI quality control criteria.

FMRI quality control criteria Exclude a subject if:

A. Imaging parameters Deviating from other participants

B. Anatomical image quality and coverage Visual assessment

C. Functional image quality and coverage Visual assessment

D. Segmentation failure Visual assessment

E. Maximum framewise displacement >Than 1.5mm or 1.5◦

fMRI. The data were aggregated from different online resources,

including 1,000 Functional Connectomes Project (Biswal et al.,

2010), ABIDE (Di Martino et al., 2014), and OpenNeuro

(Markiewicz et al., 2021).

TheMRI images were acquired using differentMRI scanners

and imaging protocols. All the MRI scanners were 3T. Table 1

lists some key parameters useful for data analyses. Note that

some parameters vary within a site. More imaging parameters

for all the participants are shown in Supplementary Figure 1.

3.2. Pre-processing and quality control

We followed the protocol outlined in Section 2. For each

quality control step, an image was saved for each subject. The

output images were visually inspected across all the participants.

The quality control and exclusion criteria are summarized in

Table 2.

3.3. Data analysis

In the functional-anatomical images coregister step,

the current protocol uses the bias-corrected skull-stripped

anatomical image as the reference. Because the signals
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in the skull in the EPI images are weak, in theory it is

preferable to coregister the functional images to the skull-

stripped anatomical images. However, this is not the default

recommendation in SPM. A study has suggested that using

the skull-stripped image may improve group-level statistical

results (Fischmeister et al., 2013). However, no formal

comparison has been performed. We hypothesize that in

most cases using the non-skull stripped images will perform

the same as the skull stripped images. However, in a small

number of cases, using the raw anatomical image may fail.

By using the fMRI QC dataset, we estimate the number of

cases that would fail when using the raw anatomical image as

the reference.

Specifically, we also performed the coregister step by

using the raw anatomical image as the reference. We

calculated the spatial distance between the functional

images to the different reference images. The Euclidean

distances were calculated in translation and rotation,

separately. We used a threshold of 9mm or 9◦ (∼3

voxels) to identify cases with excessive differences.

We then overlaid the two functional images with

the anatomical images to identify potential causes of

the discrepancy.

4. Results

4.1. Q1. Data initial check

Supplementary Table 1 shows some key imaging parameters

of the functional and anatomical images for every participant.

In resting-state site 1, two participants had fewer fMRI volumes

than the rest of the group, which should be removed from

analysis. In resting-state site 6, the numbers of fMRI volumes

varied between 130 and 724. We kept the first 130 volumes

from all the participants for further analysis. The voxel sizes

of fMRI images in resting-state site 1 and site 5 varied across

participants. Given that only a few participants had different

voxel sizes from the majority participants of a site, these

participants should be removed from further analysis. The voxel

sizes of the anatomical images in resting-state site 2 also varied

across the participants. However, it may have minimum impact

on the functional images and were therefore were kept for

further analysis.

The anatomical images were visually inspected for their

quality, coverage, and relative positions to the MNI template.

All the images were close to the MNI template, indicating

that no manual origin setting was needed. One participant’s

image (sub-509) showed enlarged ventricles (Figure 3A),

which should be removed from further analysis. Another

participant’s image (sub-203, not shown) had mildly enlarged

ventricle, which extended to the right lingual territory. We

classified this participant as uncertain. This participant may

FIGURE 3

Example anatomical and functional MRI images with quality

issues. (A) The anatomical image has enlarged ventricle. (B) The

functional image appears upside down relative to the template

image in Montreal Neurological Institute (MNI) space.

be included if the visual areas were not the main regions

of interest.

The quality and coverage of the first fMRI images

seemed acceptable for all the participants. However, two

participants’ images (sub-518, sub-519) appeared upside down

(e.g., Figure 3B). The images were manually reoriented to the

template orientation.

4.2. Q2. Anatomical image segmentation
check

The segmentation procedure seriously failed in two

participants (sub-509 and sub-511). For sub-509, most gray

matter regions were identified as CSF (Figure 4A). And for sub-

511, part of the visual gray matter was missing, and no CSF was

identified (Figure 4B).

Five other participants (sub-108, sub-405, sub-420, sub-512,

and sub-514) also have minor segmentation issues, particularly

in the CSF (e.g., Figure 4C). Since fMRI analysis usually focuses

on gray matter, the misclassifications of CSF may not affect

the normalizations of gray matter. These participants may be

included in the following analysis. We labeled them uncertain

because they may not be included in other types of analysis, such

as voxel-based morphometry (Ashburner and Friston, 2000).

4.3. Q3. Head motion and variance check

When using the pre-specified threshold of maximum

framewise displacement > 1.5mm or 1.5◦, 12 participants were

removed from further analysis. Figure 5 shows the distributions
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FIGURE 4

Example anatomical images with segmentation issues. Top row shows segmented tissue images of gray matter (red), white matter (green), and

cerebrospinal fluid (blue) in Montreal Neurological Institute (MNI) space. Bottom row shows the single subject T1 image in MNI space with the

segmented gray matter contours. (A) Shows the participant where most of the gray matter was misclassified as CSF. (B) Shows missing classified

gray matter in the visual cortex and no classifications of CSF. (C) Shows that many soft tissues and bones outside the cortex were miss-classified

as CSF.

FIGURE 5

Distributions of maximum framewise displacement (FD) in

translation and rotation. The red lines indicate the 1.5mm and

degree thresholds used for excluding participants.

of maximum framewise displacement across all the participants.

It appears that the 1.5mm and 1.5◦ threshold only remove a

few participants with excessive head motions. This is desirable

because the removal is supposed to only apply to outliers.

4.4. Q4. Functional-anatomical images
coregister

For all the participants, the functional images were

properly coregistered to their respective anatomical images.

This was achieved with the previous quality assurance

steps. For example, if the upside-down functional images

(sub-518 and sub-519) were not manually reoriented,

the coregistration step would fail. Figure 6A shows

an example of a functional image registered upside-

down with the anatomical image, which was stuck at a

local minimum.

Moreover, if the raw anatomical image was used as

a reference, the functional images may mis-aligned with

the anatomical image in many participants. Figures 6B, C

shows two examples. In Figure 6C, the top edge of the fMRI

image was aligned to the skull when registered to the raw

anatomical image. This is a typical scenario of misalignment.

In Figure 6B, the functional image has a signal dropout in the

prefrontal region. The distorted prefrontal edge was aligned

with un-distorted prefrontal edge in the anatomical image,

which resulted in a misalignment. This can be prevented

by using the skull-stripped image as the reference. For each

participant, we calculated spatial distance in translation

and rotation between the functional images coregistered

using the two reference images (Supplementary Figure 2).

Four participants (2.4%) had spatial distance larger

than 9 mm.

4.5. Q6. Normalization

All participants’ data were successfully normalized into the

MNI space.
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FIGURE 6

(A) Example coregister failure when the functional image was not reoriented correctly. Top row shows the coregistered functional image, and

bottom row shows the anatomical image with the contour of the top image. (B, C) Example coregister failures when coregistered to the raw

anatomical image compared with to the skull-stripped bias-corrected anatomical image. The red brains show the functional images

coregistered to the skull-stripped anatomical image, while the blue brain show the functional images coregitered to the raw anatomical image.

Top row, the underlay images are the functional images coregistered using the other methods to highlight their di�erences. Bottom row, the

underlay images are the skull-stripped and the raw anatomical images.

4.6. Q7. Time series check

Figure 7 shows an example participant with large head

motions. Both the global mean signals (Figure 7A) and

pairwise variance (Figure 7F) showed a spike at around the

50th image. The rigid body motion parameters (Figure 7B)

and framewise displacement (Figure 7G) showed similar

spikes. However, the shapes of the spikes in the rigid body

motion parameters appeared different from the global signals

(Figure 7A), indicating that simply regressing out the rigid

body parameters cannot fully remove motion related noises. In

contrast, framewise displacement (Figure 7G) showed strikingly

similar patterns as the pairwise variance (Figure 7F). Similarly,

the rigid bodymovement related changes can be seen in theWM

signals (Figure 7C), but only the derivatives (Figure 7H) showed

similar spike patterns as the pairwise variance (Figure 7F). Next,

we check whether the GLM step has successfully minimized

the motion related components in the fMRI signals. The global

mean signals of the pre-processed images (Figure 7D) no longer

contained the spike, and so did the pairwise variance time

series (Figure 7I). This is supported by the fact that the pairwise

variance from the pre-processed data was not correlated with

framewise displacement, which contrasted with the pairwise

variance from the raw data (Figure 7J). This suggests that the

GLM process can effectively minimize head motion effects in

this participant, even though this participant was excluded with

our pre-specified threshold.

Figure 8 shows an example participant with large head

motions from the task data. The head motion effects were not

clearly present in the global mean signals (Figure 8A), but can

be clearly seen in the pairwise variance time series (Figure 8E),

which can be confirmed in the rigid body motion parameters

(Figure 8B) and framewise displacement time series (Figure 8F).

For the task-based fMRI, it is critical to verify whether head

motion is related to the task design. In Figures 8C, G, we plotted

the time series of task design and their derivatives. It seems that

head motions were not correlated with the task design, which

can be further confirmed in Figures 8D, H.

4.7. Summary of quality control results

In total, two participants were discarded due to missing time

points; five were discarded due to different fMRI voxel sizes; one

was discarded due to poor anatomical image quality; one was

discarded due to segmentation failure; and 11 were discarded

due to large head motions. Another 5 participants’ data had

mild issues in the anatomical images or tissue segmentations,

which were marked as uncertain. A list of all the excluded

or uncertain participants and their reasons is summarized in

Supplementary Table 1.

5. Discussion

In this paper, we outlined a protocol for fMRI pre-processing

and quality control based on SPM and MATLAB. We applied

the protocol to the fMRI Open QC dataset, and identified
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FIGURE 7

(A) Global mean intensity for the raw fMRI images. (B) Six rigid-body head motion parameters in mm or degree. (C) The first principal

component (PC) of the signals in the white matter (WM) and cerebrospinal fluid (CSF). (D) Global mean intensity for the pre-processed fMRI

images within a brain mask. (E) Correlations among (A) through (D). (F) Variance between consecutive images from the raw data. (G) Framewise

displacement (FD) in translation and rotation. (H) Derivatives of the first PCs in WM and CSF. (I) Variance between consecutive images from the

pre-processed fMRI images within a brain mask. (J) Correlations among (F) through (I).

FIGURE 8

(A) Global mean intensity for the raw fMRI images. (B) Six rigid-body head motion parameters in mm or degree. (C) The task design regressors of

the Task and Control conditions. (D) Correlations among (A) through (C). (E) Variance between consecutive images from the raw data. (F)

Framewise displacement in translation and rotation. (G) Derivatives of the task design regressors. (H) Correlations among (E) through (G).

quality issues after each step of pre-processing. We also

demonstrated that quality control can ensure proper processing.

And specifically, using the skull-stripped anatomical image can

help to effectively prevent mis-registrations between functional

and anatomical images.

Using a skull-stripped anatomical image as a reference in the

coregister step is not the default setting in SPM, but the SPM

manual does recommend that if the step is unsuccessful then

the skull-stripped images should be used. The current analysis

showed that only a small portion of participants have failed this

step. However, because they are rare, they are easily overlooked.

And in some cases, e.g., Figure 6B, it is not easy to spot the

failure visually unless the two functional images are overlayed

directly over each other. On the other hand, making the skull-

stripped image only takes one simple step with minimal time

and computation efforts. Therefore, we recommended that the

skull strip should always be performed.

Head motion is a major factor that affect fMRI signals

(Friston et al., 1996) and functional connectivity measures

(Power et al., 2012; Van Dijk et al., 2012). Different methods

have been developed to detect and minimize head motion

related artifacts (Friston et al., 1996; Muschelli et al., 2014;

Power et al., 2014, 2019). The Friston’s 24 model has been

shown to be an effective way to reduce motion related artifacts
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(Yan et al., 2013), which is adopted in the current protocol.

In addition to correcting motion related artifacts from the

fMRI data, identifying and excluding participants with excessive

head motion are also critical. In the current protocol, we set

a threshold of 1.5mm and 1.5◦ to remove participants with

excessive head motions. We note that the threshold is arbitrary.

More critically, the distributions of head motion in a sample

should always be checked. If the overall headmotions are large in

the sample, then a more lenient threshold may be considered. If

there aremultiple groups, e.g., case and control, the distributions

of head motion should be compared between groups. Any

group differences may need to be controlled in the group-level

statistical models. But one needs to keep in mind that excluding

participants with large head motion may introduce sampling

bias (Kong et al., 2014; Nebel et al., 2022).

Lastly, we note that the quality and formats of fMRI

data varied greatly from different sources. We have only

demonstrated a handful of quality issues that are present in

the fMRI QC project. There are always unexpected issues when

processing new data, especially when data are derived from

online repositories. Making visualizations of different aspects of

the data (e.g., images and time series) is always helpful to ensure

proper data processing and to spot unexpected issues.
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The implementation of adequate quality assessment (QA) and quality control

(QC) protocols within the magnetic resonance imaging (MRI) research

workflow is resource- and time-consuming and even more so is their

execution. As a result, QA/QC practices highly vary across laboratories

and “MRI schools”, ranging from highly specialized knowledge spots to

environments where QA/QC is considered overly onerous and costly despite

evidence showing that below-standard data increase the false positive

and false negative rates of the final results. Here, we demonstrate a

protocol based on the visual assessment of images one-by-one with reports

generated by MRIQC and fMRIPrep, for the QC of data in functional (blood-

oxygen dependent-level; BOLD) MRI analyses. We particularize the proposed,

open-ended scope of application to whole-brain voxel-wise analyses of BOLD

to correspondingly enumerate and define the exclusion criteria applied at the

QC checkpoints. We apply our protocol on a composite dataset (n = 181

subjects) drawn from open fMRI studies, resulting in the exclusion of 97% of

the data (176 subjects). This high exclusion rate was expected because subjects

were selected to showcase artifacts. We describe the artifacts and defects

more commonly found in the dataset that justified exclusion. We moreover

release all the materials we generated in this assessment and document all the

QC decisions with the expectation of contributing to the standardization of

these procedures and engaging in the discussion of QA/QC by the community.

KEYWORDS

quality control, quality assessment, fMRI, MRIQC, fMRIPrep, exclusion criteria,

neuroimaging

1. Introduction

Quality assessment (QA) and quality control (QC) of magnetic resonance imaging

(MRI), implemented at several stages of the processing and analysis workflow, are

critical for the reliability of the results. QA focuses on ensuring the research workflow

produces data of “sufficient quality” (e.g., identifying a structured artifact caused by

an environmental condition that can be actioned upon so that it doesn’t replicate

prospectively in future acquisitions). On the other hand, QC excludes poor-quality

data from a dataset so that they do not continue through the research workflow and

potentially bias results. Indeed, below-standard MRI data increase the false positive
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and false negative rates in the final analyses (Power et al., 2012;

Alexander-Bloch et al., 2016; Ducharme et al., 2016; Zalesky

et al., 2016). For example, Power et al. (2012) showed that

unaccounted-for head motion in functional MRI (fMRI) data

introduces systematic but spurious spatial correlations that are

wrongly interpreted as functional brain connectivity.

Despite efforts toward automation, the implementation

of QA/QC checkpoints remains unstandardized and typically

involves the screening of the images one by one. Therefore,

QA/QC is time-consuming and frequently seen as overly

onerous to the development of projects. In the absence

of a consensus on systematic approaches to QA/QC and

corresponding data curation protocols, laboratories currently

rely on their internal know-how. Such knowledge is generally

acquired through individual researchers (here, referred to as

“raters”) repeatedly screening data. Thus, the knowledge is

usually contingent on the context of the studies for which they

are acquired and local practices rather than some principled

definition of quality criteria that generalize across applications.

This leads to a wide variety of QA/QC procedures and protocols

across institutions, which add to the inherently large intra-

and inter-rater variabilities given a specific QA/QC approach.

Therefore, appropriate protocols and tools are required to

make QA/QC more consistent across institutions and improve

intra- and inter-rater reliability. Substantial work has been

proposed to provide efficient interfaces such as MRIQC

(Esteban et al., 2017), MindControl (Keshavan et al., 2018) or

Swipes4Science (Keshavan et al., 2019). Large consortia have

also made remarkable investments in this important task and

have developed QA/QC protocols, e.g., the Human Connectome

Project (Marcus et al., 2013) or the INDI initiative (QAP;

Shehzad et al., 2015). One related but conceptually innovative

approach was proposed for the QC of the MRI data of

the UK Biobank (Alfaro-Almagro et al., 2018), where quality

was defined in a more utilitarian manner as the success of

downstream processing. With the rise of large-scale datasets

such as the UK Biobank, manually checking the data becomes

infeasible. Alfaro-Almagro et al. (2018) described an automated

QC approach wherein raw data were screened for having the

wrong dimensions, corrupted, missing, or otherwise unusable,

and excluded from further preprocessing (first checkpoint). The

second checkpoint was applying a supervised learning classifier

to the T1-weighted (T1w) images. Although image exclusions

often occurred in response to qualitative issues on images (e.g.,

visual identification of artifacts), some images were discarded

without straightforward mapping to quality issues, and the

classifier was only trained to identify problems in T1w images,

so it could not be applied to BOLD data or other modalities.

Many researchers have similarly attempted automation, either

by relying on no-reference (as no ground truth is available)

image quality metrics (IQMs) to train a machine learning model

(Mortamet et al., 2009; Shehzad et al., 2015; Esteban et al., 2017)

or by training deep models on 3D images directly (Garcia et al.,

2022). However, predicting the quality of images acquired at a

new site yet unseen by the model remains a challenging problem

(Esteban et al., 2017, 2018). Another challenge to developing

deep models is the need for large datasets with usable and

reliable QA/QC annotations for training. Moreover, the QA/QC

annotations must be acquired across sites and rated by many

individuals to ensure generalizability (Keshavan et al., 2019).

Here, we demonstrate a protocol for the QC of task-

based and resting-state fMRI studies. This contribution is part

of the research topic “Demonstrating Quality Control (QC)

Procedures in fMRI.” The participants of the research topic were

given a composite dataset with anatomical and functional data

selected from published studies to demonstrate QC protocols

in practice. We describe how the overall application scope

(that is, the intended use of the data) determines how QC

is carried out and define the exclusion criteria for anatomical

(T1-weighted; T1w) and functional (blood-oxygen dependent-

level; BOLD) images at two QC checkpoints accordingly.

We first performed QC of the unprocessed data using the

MRIQC visual reports (Esteban et al., 2017). Second, for

the data that surpassed this first checkpoint, we assessed the

results of minimal preprocessing using the fMRIPrep visual

reports (Esteban et al., 2019). Thus, reaching a consensus on

the definition of QA/QC evaluation criteria and establishing

standard protocols to ascertain such criteria are the keystone

toward more objective QA/QC in fMRI research.

2. Methods

2.1. Data

We used the data collection preselected by the research topic

organizers to showcase examples of each exclusion criterion.

The dataset gathers resting-state and task fMRI data from

several open, public repositories (Biswal et al., 2010; Di Martino

et al., 2014; Markiewicz et al., 2021). Therefore, the dataset is

eminently multi-site and highly diverse in acquisition devices,

parameters, and relevant settings. The selection criteria of

datasets and subjects were not disclosed to the research topic

participants. The dataset is split into two cohorts: subjects with

resting-state scans and subjects with task scans. Every subject

has one T1w image and one or two BOLD fMRI scans. Data

were released following the Brain Imaging Data Structure (BIDS;

Gorgolewski et al., 2016).

2.2. Scope of application

Considering the dataset’s characteristics, we narrowed the

planned analysis’s scope to “whole-brain, voxel-wise analyses

of spatially standardized task and resting-state BOLD fMRI.”

Note that by “whole-brain”, we mean cortex and subcortical

structures but not cerebellum because we expected those

regions to fall outside of the field of view in a number

of the BOLD datasets. For the implementation of such an

Frontiers inNeuroimaging 02 frontiersin.org

28

https://doi.org/10.3389/fnimg.2022.1073734
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Provins et al. 10.3389/fnimg.2022.1073734

application, we propose our fMRI protocol (Esteban et al.,

2020), which uses fMRIPrep to prepare the data for analysis.

fMRIPrep was executed with default settings (for the exact

description of the preprocessing see Supplementary material,

section 4). Therefore, data are spatially standardized into the

MNI152NLin2009cAsym space (Fonov et al., 2009) accessed

with TemplateFlow (Ciric et al., 2022). The protocol involves an

initial QC checkpoint implemented with MRIQC and a second

QC checkpoint on the outputs of fMRIPrep.

2.3. QC protocol

2.3.1. Standard operating procedures (SOPs)

To formalize the scope and the QA/QC criteria and

protocols, we proposed our MRIQC-SOPs template (https://

github.com/nipreps/mriqc-sops) as a scaffold to create custom

standard operating procedures (SOPs) documents tailored to

the specific project and maintained under version control.

We demonstrated MRIQC-SOPs to create the corresponding

documentation of this study. These SOPs contain the lists

presented in Tables 1–3 and the QC criteria details laid

out in Section 2.4 in a format adapted to the SOPs. The

SOPs documents can be visualized at http://www.axonlab.org/

frontiers-qc-sops/ and can be accessed as stated in the Data and

Software availability statement.

2.3.2. Image processing

Image processing was carried out according to our protocol

(Esteban et al., 2020). First, we ran MRIQC with a Docker

container of its latest version 22.0.1 (Listing 1 shows an example

script). This version performs head motion estimation with

AFNI (version 22.0.17; Cox, 1996), followed by brain extraction

with SynthStrip (Hoopes et al., 2022) and several image

registration tasks with ANTs (version 2.3.3.dev168-g29bdf;

Avants et al., 2008). Since data were already BIDS compliant, no

formatting or adaptation actions were required before running

MRIQC. MRIQC generated one visual report per T1w image

and BOLD scan, which author CP evaluated as part of the

QC protocol described below. The panels presented in the

visual report are specific to the modality, meaning that different

visualizations are presented for an anatomical scan compared

to a functional scan. Once all the visual reports had been

evaluated as indicated below (Assessment of the unprocessed

data), we executed fMRIPrep only on those subjects for which

the T1w and at least one BOLD scan had passed the initial QC

checkpoint. As for MRIQC, fMRIPrep could be directly run

on the BIDS inputs using the corresponding Docker container

at version 22.0.0 (see Supplementary material, section 4). As a

result, fMRIPrep yielded preprocessed data and one individual

QA/QC report per subject. Based on these individual reports,

we established our second QC checkpoint, which was executed

by author CP. The scripts we ran to execute MRIQC on the task

fMRI data and fMRIPrep on the preprocessed data can be found

in the Supplementary material, section 3.

2.3.3. Assessment of the unprocessed data

Visualization of reports was performed on a 27” monitor.

The reports corresponding to each BOLD scan were assessed

first, following the reports’ ordering of visualizations. Once

the full report had been visualized, CP would return to

specific sections of the report when a second assessment was

necessary. Finally, author CP reported her QC assessment on

a spreadsheet table (included in the Supplementary material),

indicating which criteria led to exclusion. The exclusion criteria

are described in detail in Section 2.4. A similar protocol was then

applied for screening all reports corresponding to T1w images.

2.3.4. Assessment of the minimally
preprocessed data

Visualization of reports was performed on a 27” monitor.

The reports corresponding to subjects that passed the previous

checkpoint were screened one by one by CP. Author CP

manually noted down the corresponding assessments on a

spreadsheet table (included in the Supplementary material).

2.4. Assessment of quality aspects and
exclusion criteria

Our exclusion criteria are all based on the visual inspection

of the individual MRIQC and fMRIPrep reports, so they are all

qualitative. Exclusion criteria are defined in reference to specific

artifacts and qualitative aspects of BOLD and T1w images.

Furthermore, we did not differentiate criteria for task and

resting-state scans because our defined scope was not specific

enough (e.g., lacking in objectives to determine whether some

regions are of particular interest), except for the hyperintensity

of single slices criterion. Each criterion is labeled for further

reference in the document, the rater’s notes, and the SOPs

documents. Table 1 exhaustively lists the exclusion criteria based

on the MRIQC visual report of BOLD data, Table 2 lists the

criteria used to flag T1w data based on the MRIQC visual

report, and Table 3 lists the exclusion criteria based on fMRIPrep

visual reports. These tables are also cross-referenced with each

criterion’s label.

2.4.1. Exclusion criteria for unprocessed BOLD
data assessed with MRIQC visual reports

2.4.1.1. Artifactual structures in the background

(Criterion A)

Because no BOLD signal originates from the air surrounding

the head, the background should not contain visible structures.

However, signals sourcing from the object of interest can spill
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Listing 1

Execution of MRIQC with a Docker container. MRIQC follows the standards laid out by BIDS-Apps (Gorgolewski et al., 2017). As such, the

command line using containers is composed of a preamble configuring Docker, the name of the specific Docker image (nipreps/mriqc:22.0.1),

and finally, MRIQC’s arguments. Because SynthStrip is a deep-learning-based approach, the brain masking step requires at least 8GB of memory

(specified by the—memory flag).

Table 1 Resting-state and task fMRI exclusion criteria based on the

MRIQC visual report.

QC of unprocessed fMRI

data based on MRIQC

visual report

A) Artifactual structures in the background

B) Susceptibility distortion artifacts

BA) Signal drop-out

BB) Brain distortions

C) Aliasing ghosts

D) Wrap-around that overlaps with the brain

E) Structured crown region in the carpet plot

EA) due to motion peaks

EB) due to periodic motion

EC) due to coil failure

ED) drift of unknown source

F) Artifacts detected with independent

components analysis

G) Hyperintensity of single slices

H) Vertical strikes in the sagittal

plane of the standard

deviation map

I) Data formatting issues

The order of the criteria is arbitrary.

into the background through several imaging processes, e.g.,

aliasing ghosts, spillover originating from moving and blinking

eyes, or bulkheadmotion. Structures in the background aremost

clearly noticeable in MRIQC’s “background noise panel” view,

but they are frequently detectable in the standard deviation map

Table 2 T1w flagging criteria based on the MRIQC visual report.

QC of unprocessed T1w data based

on the MRIQC visual report

J) Artifactual structures in

the background

K) Susceptibility distortion artifacts

KA) Signal drop-out

KB) Brain distortions

L) Aliasing ghost

M) Wrap-around that overlaps with

the brain

N) Data formatting issues

O) Motion-related and Gibbs ringing

P) Extreme intensity non-uniformity

Q) Eye spillover

The order of the criteria is arbitrary.

view. Structure in the background is not a problem in itself as

it is situated outside of the brain; the issue is that the latter

artifact is likely overflowing on the brain, thus compromising

brain signal. The aliasing ghost is a particular case of spurious

structures in the background, discussed in further detail in

criterion C below. We classified under exclusion criteria A all

other structures that did not correspond to an aliasing artifact.

Supplementary Figure 1 shows several illustrative examples.

2.4.1.2. Susceptibility distortion artifacts (B)

Susceptibility distortions are caused by B0 field non-

uniformity (Hutton et al., 2002). Indeed, inserting an object in

the scanner bore perturbs the nominal B0 field, which should

be constant all across the FoV. Specifically, tissue boundaries
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Table 3 Resting-state and task exclusion criteria based on the

fMRIPrep visual report.

QC of preprocessed data

based on fMRIPrep

visual report

R) Failure in normalization to

MNI space

S) Inaccurate brain mask

T) Residual susceptibility distortion

U) Error in brain tissue segmentation

of T1w images

V) Surface reconstruction problem

W) Co-registration problem

X) Regions identified for the extraction

of nuisance regressors potentially

cover neural signal sources

The order of the criteria is arbitrary.

produce steps of deviation from the nominal B0 field, which

are larger where the air is close to tissues. Because of these

deviations, the signal is recorded at locations slightly displaced

from the sampling grid along the phase encoding axis leading

to susceptibility distortions (Esteban et al., 2021). Susceptibility

distortions manifest in two different ways on the BOLD average

panel of the MRIQC visual report (Supplementary Figure 2):

as signal drop-out, that is, a region where the signal vanishes

(criterion BA), or as brain distortions (criterion BB). Signal

drop-outs often appear close to brain-air interfaces, as explained

below; these include ventromedial prefrontal cortex, the anterior

part of the prefrontal cortex, and the region next to the ear

cavities. Susceptibility distortion artifacts can be corrected by the

susceptibility distortion correction implemented in fMRIPrep,

provided that a field map associated with the BOLD image has

been acquired and is correctly referenced in the dataset. This

means that the presence of susceptibility distortions does not

necessarily constitute an exclusion criterion. However, given the

application scope of this paper, since no field maps were shared

with the dataset and because we did not identify regions of

little interest where these artifacts may be less detrimental, any

signal drop-out observed resulted in the exclusion of the scan.

In practice, legacy datasets without field maps can still be usable

if researchers take adequate mitigation approaches (which also

require rigorous QA/QC).

2.4.1.3. Aliasing ghosts (C)

A ghost is a type of structured noise that appears as shifted

and faintly repeated versions of the main object, usually in the

phase encoding direction. They occur for several reasons, such as

signal instability between pulse cycle repetitions or the particular

strategy of echo-planar imaging to record the k-space during

acquisition. Ghosts are often exacerbated by within-volume

head motion. Sometimes they can be spotted in the BOLD

average view of the MRIQC visual report, but they are more

apparent in the background noise visualization.We excluded the

scans for which ghosts were approximately the same intensity

as the brain’s interior in the background noise visualization.

Supplementary Figure 3 compares an aliasing artifact that led to

exclusion and one that did not.

2.4.1.4. Wrap-around (D)

Wrap-around occurs whenever the object’s dimensions

exceed the defined field-of-view (FOV). It is visible as a piece

of the head (most often the skull, in this dataset) being folded

over on the opposite extreme of the image. We excluded subjects

based on the observation of a wrap-around only if the folded

region contained or overlapped the cortex. In the MRIQC visual

report, the wrap-around can be spotted on the BOLD average,

standard deviationmap, and the background noise visualization.

However, we found that the background noise visualization

is the clearest to assess whether the folded region overlaps

the brain (Supplementary Figure 4). Note that increasing the

screen’s brightness helps when looking for both aliasing ghosts

andwrap-around overlapping the brain, as low brightnessmakes

the artifacts harder to see.

2.4.1.5. Assessment of time series with the carpet

plot (E)

The carpet plot is a tool to visualize changes in voxel

intensity throughout an fMRI scan. It works by plotting

voxel time series in close spatial proximity so that the eye

notes temporal coincidence (Power, 2017). Both MRIQC and

fMRIPrep generate carpet plots segmented in relevant regions.

One particular innovation of these carpet plots is that they

contain a “crown” area corresponding to voxels located on a

closed band around the brain’s outer edge. As those voxels

are outside the brain, we do not expect any signal there,

meaning that if some signal is observed, we can interpret it

as artifactual. Therefore, a strongly structured crown region in

the carpet plot is a sign that artifacts are compromising the

fMRI scan (Provins et al., 2022a). For example, motion peaks

are generally paired with prolonged dark deflections derived

from spin-history effects (criterion EA). Periodic modulations

on the carpet plot indicate regular, slow motion, e.g., caused by

respiration, which may also compromise the signal of interest

(criterion EB). Furthermore, coil failures may be identifiable as

a sudden change in overall signal intensity on the carpet plot

and generally sustained through the end of the scan (criterion

EC). In addition, sorting the rows (i.e., the time series) of

each segment of the carpet plot such that voxels with similar

BOLD dynamics appear close to one another reveals non-

global structure in the signal, which is obscured when voxels

are ordered randomly (Aquino et al., 2020). Thus, strongly

polarized structures in the carpet plot suggest artifact influence

(criterion ED). Supplementary Figure 5 illustrates the four types

of carpet plot patterns. Finding temporal patterns similar in

gray matter areas and simultaneously in regions of no interest

(for instance, cerebrospinal fluid or the crown) indicates the

presence of artifacts, typically derived from head motion. If the

planned analysis specifies noise regression techniques based on

information from these regions of no interest [which is standard

and recommended (Ciric et al., 2017)], the risk of removing

signals with neural origins is high, and affected scans should

be excluded.
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2.4.1.6. Artifacts detected with independent

components analysis (F)

MRIQCwas run with the --ica argument, which generates an

independent component decomposition using FSL MELODIC

(version 5.0.11; Beckmann and Smith, 2004). Such techniques

have been thoroughly described elsewhere (Griffanti et al., 2017).

Components are easily screened with the specific visualization

“ICA components” in the corresponding BOLD report, and each

component is mapped on a glass brain with an indication of

their frequency spectrum and their corresponding weight over

time. One recurring artifactual family of components emerges

when motion interacts with interleaved acquisition giving rise

to the so-called spin-history effects. The spin-history effects

appear as parallel stripes covering the whole brain in one

direction (see Supplementary Figure 6). They are a consequence

of the repetition time not being much larger than the T1

relaxation time in typical fMRI designs. This implies that

the spins will not completely relax when the next acquisition

starts.1 In addition, specific movements (e.g., rotation around

one imaging axis, such as nodding) will exacerbate spin-

history effects as slices will cut through the brain at different

locations between consecutive BOLD time points. These two

considerations combined mean that motion will produce spins

with different excitation histories, and thus, the signal intensity

will differ. Components showcasing parallel stripes concurring

with slices in extreme poles of the brain or even across the whole

brain are likely to capture these effects.

2.4.1.7. Hyperintensity of single slices (G)

Above the carpet plot, MRIQC and fMRIPrep represent

several time series to support the interpretation of the carpet. In

particular, the slice-wise z-standardized signal average is useful

for detecting sudden “spikes” in the average intensity of single

slices of BOLD scans. When paired with the motion traces,

it is possible to determine whether these spikes are caused by

motion or by possible problems with the scanner (e.g., white-

pixel noise). Spikes caused by motion typically affect several or

all slices, while spikes caused by white-pixel noise affect only one

slice and are generally more acute (see Supplementary Figure 7).

White-pixel noise is generally caused by some small pieces

of metal in the scan room or a loose screw on the scanner

that accumulates energy and then discharges randomly. This

creates broad-band RF noise at some point during the signal

read-out, leading to one spot in the k-space with abnormally

high intensity. In the image domain, it manifests as an abrupt

signal intensity change in one slice at one time point. The

problem is particularly acute for EPI scans because of all the

gradient blipping during the read-out. For resting-state data,

we discarded BOLD scans containing these spikes regardless

of their physical origin (motion vs. white-pixel noise) because

correlation analyses are likely biased by such peaks. Conversely,

1 https://imaging.mrc-cbu.cam.ac.uk/imaging/CommonArtefacts

task data analyses are typically more robust to this particular

artifact. Therefore the presence of only one or more relatively

small spikes led to the scan being flagged for careful inspection

after the preprocessing.

2.4.1.8. Vertical strikes in the sagittal plane of the

standard deviation map (H)

The sagittal view of the standard deviation map might show

vertical strike patterns that extend hyperintensities through the

whole sagittal plane (see Supplementary Figure 8). We excluded

all images showcasing these patterns. Although we did not

find an explanation of the mechanism behind this artifact,

email conversations dating from 2017 seemed to point at an

interaction between physiology and environmental issues in the

scanning room that may affect the receiver coils.

2.4.1.9. Data formatting issues (G)

As part of the NIfTI format (Cox et al., 2004), the file header

contains metadata storing several relevant parameters, of which

the orientation information is critical for the interpretability

of the data. The orientation parameters indicate how the data

matrix is stored on disk and enable visualizing rows and

slices at the correct locations (Glen et al., 2020). However,

mistakes may occur while recording information at the scanner,

converting DICOM to NIFTI format, or during a subsequent

processing step. Such mistakes result in the brain image not

being correctly visualized and preprocessed, with axes either

being flipped (e.g., the anterior part of the brain is labeled as

posterior) or switched (e.g., axial slices are interpreted as coronal

ones). These issues may render the dataset unusable, e.g., if the

orientation information describing whether the data array has

been recorded from left to right or right to left is lost. Examples

are shown in Supplementary Figure 9.

2.4.2. Criteria for flagging unprocessed T1w
data based on the MRIQC visual report

Given our planned analysis, the T1w image will be

used solely to guide the spatial alignment to the standard

MNI152NLin2009cAsym template. In addition, surface

reconstructions from the T1w image will guide the co-

registration of structural and functional (BOLD) images in

fMRIPrep. Since the latter preprocessing steps are relatively

robust to structural images with mild artifacts, we did not

impose exclusion criteria on the unprocessed T1w images.

However, we annotated subjects with visible artifacts in the T1w

images to ensure rigorous scrutinizing of spatial normalization

and surface reconstruction outputs from fMRIPrep (if both

modalities passed the first QC checkpoint with MRIQC). The

explanation and the description of the criteria J to N are the

same as their counterpart in Section 2.4.1 and are illustrated in

Supplementary Figure 10.
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2.4.2.1. Motion-related and Gibbs ringing (O)

Large head motion during the acquisition of T1w images

often expresses itself with the appearance of concentric ripples

throughout the scan (see Supplementary Figure 10E). In the

most subtle cases, motion-related ripples look similar to the

fine lines generated by Gibbs ringing. The latter emerges

as a consequence of the truncation of the Fourier series

approximation and appears as multiple fine lines immediately

adjacent and parallel to high-contrast interfaces. While Gibbs

ringing is limited to the adjacency of sharp steps in intensity

at tissue interfaces, the ripples caused by motion generally span

the whole brain and are primarily visible in the sagittal view of

MRIQC’s mosaic views.

2.4.2.2. Intensity non-uniformity (P)

Intensity non-uniformity is characterized by a smooth

variation (low spatial frequency) of intensity throughout the

brain caused by the stronger signal sensed in the proximity

of coils. It is noticeable on the zoomed-in view on the T1w

image (see Supplementary Figure 10F). Furthermore, intensity

non-uniformity can be a problem for automated processing

methods that assume a type of tissue [e.g., white matter (WM)]

is represented by voxels of similar intensities across the whole

brain. An extreme intensity non-uniformity can also be a sign of

coil failure.

2.4.2.3. Eye spillover (Q)

Eye movements may trigger the signal leakage from the

eyes through the imaging axis with the lowest bandwidth (i.e.,

acquired faster), potentially overlapping signal from brain tissue.

On data preserving facial features, the streak of noise is visible in

the background at the levels of the eyes. However, because all the

data in this study are openly shared after defacing (for privacy

protection reasons), the signal around the face has been zeroed,

leading to this leakage not being visible (Provins et al., 2022b). A

strong signal leakage can, however, be noticeable on the zoomed-

in view of the T1w image (see Supplementary Figure 10G for an

example of the latter case).

2.4.3. Exclusion criteria of pre-processed data
based on fMRIPrep visual report

2.4.3.1. Failure in normalization to MNI space (R)

Because the conclusions of the hypothetical analysis

are based on data normalized to a standard template, the

normalizationmust be successful. The fMRIPrep report contains

a widget to assess the quality of the normalization to MNI

space. The widget flickers between the MNI template and the

individual’s T1w image normalized to that template. To verify

successful normalization, we assessed the correct alignment of

the following structures (in order of importance): (1) ventricles,

(2) subcortical regions, (3) corpus callosum, (4) cerebellum,

and (5) cortical gray matter (GM). A misalignment of the

ventricles, the subcortical regions, or the corpus callosum

led to immediate exclusion. However, we were more lenient

with the misalignment of cortical GM because volumetric

(image) registration may not resolve substantial inter-individual

differences (e.g., a sulcus missing in an individual’s brain but

typically present in the population of the template). Any extreme

stretching or distortion of the T1w image also indicates a

failed normalization.

2.4.3.2. Inaccurate brain mask (S)

The brain mask computed from the T1w image is shown

in the “brain mask and brain tissue segmentation of the

T1w” panel under the anatomical section of the fMRIPrep

visual report. The latter should closely follow the contour

of the brain. An inaccurate brain mask presents “bumps”

surrounding high-intensity areas of signal outside of the cortex

(e.g., a mask including patches of the skull) and/or holes

surrounding signal drop-out regions. Having an accurate brain

mask makes the downstream preprocessing of an fMRI scan

faster (excluding voxels of non-interest) and more accurate

(less bias from voxels of non-interest). Consequently, it is

important to discard subjects for which the brain mask is not

well defined. Note that the brain mask plotted in the “brain mask

and (anatomical/temporal) CompCor ROIs” panel under the

functional section is not identical to the brain mask mentioned

in this paragraph, as it is computed from the BOLD image.

This mask must not leave out any brain area. Therefore, an

exclusion criterion can be established when the mask intersects

brain-originating signals.

2.4.3.3. Residual susceptibility distortion (T)

For cases that were not excluded following criterion B,

susceptibility distortions were evaluated with the fMRIPrep

report after preprocessing. Any observation of susceptibility

distortion artifacts led to the exclusion of the scan (see

Supplementary Figure 11).

2.4.3.4. Error in brain tissue segmentation of T1w

images (U)

The panel “brain mask and brain tissue segmentation

of the T1w” under the anatomical section of the fMRIPrep

report shows contours delineating brain tissue segmentations

overlaid on the T1w image. To confirm the good quality

of the segmentation, we first verified that the pink contour

accurately outlined the ventricles, whereas the blue contour

followed the boundary between GM and WM. The first

exclusion criterion was thus the inclusion of tissues other than

the tissue of interest in the contour delineations. T1w scans

showcasing a low signal-to-noise ratio because of thermal noise

will present scattered misclassified voxels within piecewise-

smooth regions (generally more identifiable in the WM and

inside the ventricles). These scans were excluded except for

images where these voxels are only present at subcortical

structures (e.g., thalamus) or nearby tissue boundaries. In the
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latter case, the misclassification results from partial volume

effects (i.e., indeed, such voxels contain varying fractions of

two or more tissues). Supplementary Figure 12 illustrates the

difference between individual dots caused by noise vs. partial

volume effects.

2.4.3.5. Surface reconstruction problem (V)

The WM surface (blue outline) and the pial surface (red

outline) reconstructed with FreeSurfer [version 7.0.1, Fischl,

2012] are overlaid on the participant’s T1w image, in the panel

dedicated to surface reconstruction visualization under the

anatomical section of the fMRIPrep report. Since the cerebellum

and the brainstem are excluded from the surface reconstruction,

the outlines will not include these areas. QC assessment of

FreeSurfer outcomes is comprehensively covered elsewhere (e.g.,

White et al., 2018; Klapwijk et al., 2019), and fMRI studies

using vertex-wise (surface) analyses should rigorously assess

these surfaces. In this protocol, we only excluded data when

the reconstructed surfaces were extremely inaccurate, which

typically only happens in the presence of artifacts easily captured

previously by MRIQC (Section 2.4.2).

2.4.3.6. Co-registration problem (W)

The fMRIPrep report contains a widget to assess the

accuracy of the alignment of BOLD runs into the individual’s

anatomical reference (co-registration). The widget flickers

between the reference T1w image and the BOLD average

co-registered onto it. Extracted brain surfaces’ contours are

represented as further anatomical cues. Here, we checked

the alignment of image intensity edges and the anatomical

landmarks (e.g., the ventricles and the corpus callosum) between

the BOLD and the T1w images.

2.4.3.7. Regions identified for the extraction of

nuisance regressors potentially cover neural signal

sources (X)

fMRIPrep calculates CompCor (Behzadi et al., 2007)

nuisance regression time series to remove physiological and

head motion artifacts from BOLD scans. Two families of

CompCor methodologies are provided within the outputs:

temporal CompCor (tCompCor) uses voxels presenting

the highest temporal variability, and anatomical CompCor

(aCompCor) extracts signal from regions of no interest (e.g.,

a conservative mask including core areas of the ventricles and

the WM). fMRIPrep provides a panel to assess the adequacy

of these regions from which CompCor will extract regressors

(“brain mask and anatomical/temporal CompCor ROIs”). In

addition to the masks corresponding to CompCor, the “crown”

mask can also be assessed in this visualization. If the study plan

prescribes using CompCor or brain-edge regressors, it is critical

to exclude BOLD runs where any of these masks substantially

overlap regions of interest.

3. Results

Following our predefined exclusion criteria, we excluded

all the BOLD scans at the first QC checkpoint, except 4/151

for the resting-state subset and 1/30 for the task subset (97%

of the subjects were excluded). The high exclusion rate was

expected as this dataset had been preselected to contain data

expressing a wide range of artifacts. In a standard dataset,

the exclusion rate usually lays between 10 and 25% (Esteban

et al., 2017). By far, the most common reason for exclusion

was the presence of susceptibility distortion (exclusion criterion

B). Other commonly found artifacts that met the exclusion

criteria included aliasing ghost (C), problematic wrap-around

(D), and structured carpet plots (E). The number of times each

criterion has been cited as a reason for exclusion is reported

in Supplementary Table 1. Moreover, 58/181 T1w images were

flagged for thorough scrutinization of the normalization and the

surface reconstruction outputs of fMRIPrep. One T1w image

was exceptionally excluded based on the MRIQC visual report

because of extreme motion-related ringing. An overview of

how often a scan was flagged based on which criterion can be

found in Supplementary Table 2. Out of the five subjects that

passed the first QC checkpoint, two were excluded based on

the inspection of the fMRIPrep visual reports for the presence

of previously undetected signal drop-out. Some of our criteria

did not result in the exclusion of data in this dataset: spin-

history effects, failed normalization, problematic brain masks of

either T1w or BOLD images, surface reconstruction problem,

and failed co-registration.

3.1. QC of MRI data substantially relies on
the background

The visual assessment of the “background noise” section

of MRIQC reports helps unveil several artifactual structures

suggesting further issues within the regions of interest (see

Figure 1A). Aliasing ghosts that manifest as faint and shifted

copies of the brain visible in the background are a particular type

of structure in the background (see Figure 1B). Secondly, the

background enclosed by the crown region plays an important

role in detecting structure in the carpet plot. The influence of

motion outbursts can be seen as prolonged dark deflections (see

Figure 1C). Conversely, the presence of periodic modulation of

the intensity can be attributed to periodic motion related to

respiration (see Figure 1D). Thirdly, following the assumption

that the slice-wise noise average on the background should

be smooth, peaks in the single slices indicate some issue at

the acquisition (i.e., white-pixel noise illustrated in Figure 1E).

Overall, in adult MRI, no BOLD signal originates from the

background, meaning that structures visible in the background
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FIGURE 1

QA/QC of MRI data relies substantially on the background. Several exclusion criteria listed in Tables 1, 2 are based on the background. (A) Heavy

structure in the background constitutes an exclusion criterion as the artifact likely extends inside the brain thus compromising signals of interest.

(B) Aliasing ghosts appear as a faint and shifted copy of the brain in the background. (C, D) Since the crown comprises voxels outside the brain,

the structure in the crown region of the carpet plot springs from artifacts. For example, two types of motion-related patterns can be

distinguished. (C) Prolonged dark deflections are often caused by motion outbursts, visible as peaks in the framewise displacement (FD) trace.

(D) Periodic fluctuations of intensity throughout the carpet plot can be attributed to periodic motion due to respiration. (E) The presence of

sudden intensity change in a single slice can be attributed to white-pixel noise and constitutes an exclusion criterion.

come from artifacts. This consideration renders the background

a convenient resource to assess MRI scans.

3.2. Setting QC checkpoints at several
steps of the preprocessing is important

In this protocol, we illustrate how we set up two QC

checkpoints: one for unprocessed data using MRIQC visual

report and one for minimally preprocessed data using fMRIPrep

visual report. Only the data that survived the first QC checkpoint

with MRIQC were run through fMRIPrep, illustrating how QC

must drop data that meet exclusion criteria. The checkpoint

leveraging fMRIPrep’s visual report is important not only to

capture problems in the processing of the data (e.g., failure in

co-registration) but it also offers another opportunity to look at

the data from different perspectives. To illustrate this point, we

simulated a scenario where exclusion criteria were intendedly

misapplied in the QC checkpoint based on MRIQC for one

subject (sub-408), and as a result the dataset was inappropriately

run through fMRIPrep. Figure 2A presents the tCompCor

mask obtained for this subject, which suggests the presence

of an artifact by its shape and its large overlap with the region

of interest. These considerations justified the exclusion of the

subject. Note furthermore that we did not detect that specific

artifact in the MRIQC visual report (even after specifically

looking out for it), illustrating the value of looking at the data

using many different visualizations. Besides, viewing many slices

cutting in several planes helps to not overlook exclusion criteria

as illustrated in Figures 2B, C. Indeed, a signal drop-out that

appeared very clearly on a specific sagittal slice (see Figure 2B)

was more subtle to detect on axial slices (see Figure 2C). This
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FIGURE 2

Setting QA/QC checkpoints at several steps of the preprocessing is important. Overlooking exclusion criteria while inspecting the visual reports

can happen. Thus, having several QA/QC checkpoints set up along the preprocessing pipeline is valuable to catch those missed substandard

scans. (A) In this particular case, the shape of the tCompCor mask looks suspiciously induced by an artifact, which led us to exclude this subject

from further analysis. (B) This sagittal slice of the BOLD average presented in the fMRIPrep visual report clearly shows susceptibility distortion on

the superior frontal cortex. This specific slice however did not appear in the MRIQC visual report. (C) The signal drop-out was furthermore more

subtle on the axial slices, leading to an overlook of this artifact on the QA/QC checkpoint of unprocessed data.

specific sagittal BOLD average slice was displayed in the panel

“Alignment of functional and anatomical MRI data (surface

driven)” of the functional part of the fMRIPrep report, a

panel for which the original purpose is to assess the quality

of co-registration and not to visualize BOLD average. This

reinforces again the importance of viewing the data from

different perspectives.

3.3. Exclusion criteria depend on the
particularities of the project

How QA/QC is performed must be defined in close relation

to the scope, goals, and approach of the project at hand. The

first consideration is the types of data available. For example,

the absence of field maps in the dataset led us to exclude

a substantial portion of subjects that presented susceptibility

distortion artifacts (see Figure 3A). Susceptibility distortion

artifacts not only appeared as signal drop-outs or brain

distortions, but they also interacted with head motion creating

ripples that blurred the structure and destroyed contrast (see

Supplementary Figure 2E). If field maps had been acquired and

shared with the dataset, such artifacts could have been corrected

by the susceptibility distortion correction run by fMRIPrep. This

means that distortion present in the preprocessed data would

grant exclusion at the corresponding checkpoint, but distortion

present in the unprocessed data should not be considered an

exclusion criterion. This example also highlights the importance

of defining the exclusion criteria according to the placement

of the QA/QC checkpoint within the research workflow. A

further consideration is that the research question informs the

regions where quality is most important. In the hypothetical

scenario that a study investigates functional activity in the

motor cortex, a wrap-around that affects the prefrontal cortex

(see Figure 3B) would unlikely bias analyses limited to the

region of interest. As such, it would not be considered an

exclusion criterion in a study about the motor cortex. On the

contrary, it would be very problematic for a study focusing

on, e.g., decision-making. Finally, the planned analysis also

determines the implementation of QA/QC protocols. In this

paper, we did not exclude T1w images presentingmotion-related

ringing (see Figure 3C) because the application was scoped as

a functional, voxel-wise analysis. If, instead, we would have set

the application’s scope as a vertex-wise (surface) analysis, then

ringing on the T1w image would have granted exclusion, as the

reconstructed brain surfaces from T1w images presenting the

artifact would have been unreliable.

4. Discussion

We presented a QC protocol implemented on top of our

previous fMRI analysis protocol (Esteban et al., 2020). We
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FIGURE 3

The exclusion criteria depend on the particularities of the project. (A) fMRIPrep can correct for susceptibility distortions when field maps are

available. In this project, we however consider susceptibility distortion artifacts as exclusion criteria because no field maps were shared with the

dataset. (B) A wrap-around overlapping the prefrontal cortex would not necessarily yield scan exclusion if the research question would focus on

e.g., motor cortex. Our application scope has been defined as voxel-wise whole-brain fMRI analysis, thus this wrap-around is problematic. (C)

Motion-related ringing on the T1w image does not constitute an exclusion criterion in our protocol, because the T1w is used solely for guiding

the normalization and the co-registration. However, if the application scope would use surface-based analysis, this ringing would distort surface

reconstruction.

further restricted the scope of the planned analyses within

standard whole-brain, voxel-wise models for both task and

resting-state fMRI. Under such delineation of the application,

we proposed two QC checkpoints: first, on the unprocessed

data with MRIQC, and second, on the minimally preprocessed

data with fMRIPrep. To fully reflect best practices, we only

preprocessed the data corresponding to subjects for which

the T1w image and at least one BOLD run had passed the

first QC checkpoint. In this report, we also described the

exclusion criteria that we believe would match the planned

application and clearly remark that it is critical that researchers

define these exclusion criteria in the most comprehensive way

before the data are acquired (or accessed, in case of reusing

existing data).

Here, we also restricted our protocol to describe QC

decisions (i.e., excluding sub-standard data that risk biasing

the final results). We did not describe relevant QA aspects

and actions that can be triggered by QC outcomes because

all data in the study were reused. Indeed, the outputs of QC

should be leveraged to prevent quality issues from propagating

through prospective acquisition. One example of how QA is

limited in studies reusing data is the availability of field maps

to correct susceptibility-derived distortions in BOLD images.

Indeed, when field maps are available, fMRIPrep will run

susceptibility distortion correction by default. However, no

field maps were available in the dataset. Although we could

have used fMRIPrep’s “field map-less” approach to address

susceptibility distortions, we decided such a decision would

complicate the QC protocol description with an experimental,

non-standard feature of fMRIPrep. A second QA aspect

derived from the example dataset is the choice of the

phase encoding direction. The phase encoding direction is

generally the most limited in terms of bandwidth, and as

a result, most artifacts propagate along that direction. For

example, in the case of eye spillover, eye movements are

likely to produce artifacts, thus selecting the phase encoding

to occur along the anterior-to-posterior direction over left-

to-right will produce a larger overlap of artifacts with the

brain. In practice, if a particular task involves eye motion

(e.g., blinking, saccade), the left–right direction could be the

better choice if no other consideration conflicts regarding

phase encoding.

One often overseen aspect of QA/QC protocols is

establishing strategies to account for raters’ reliability. Indeed,
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intra-rater variability and drifts are strongly driven by the

protocol implementation settings (e.g., changing the size of

the screen or other screen technical capabilities), training,

and attrition. Raters’ training is particularly relevant, and it

originates systematic differences in how QA/QC criteria are

applied over the time span of the project. Therefore, it is

critical to use mitigation strategies like randomly selecting a

few earlier reports for re-evaluation or annotating subjects

one is uncertain about and returning to it later in the QC

process. Similarly, the implementation of QA/QC protocols

must also plan for multiple raters and anticipate a plan to

counter inter-rater variabilities and drifts idiosyncratic to

each of them (e.g., defining a training program with specific

examples, inter-rater “calibration”, etc.). Learned insights can

be transferred in several ways: 1. from other subjects that

expressed the artifact more clearly, 2. from examining the

report of another modality of the same subject, 3. from a

more senior rater, or 4. from visual inspection of other tools’

output. For example, if the brain is not perfectly aligned with

the imaging axes, the space between the cerebellum and the

temporal lobe at the basal part of the brain appears bigger

on one side of the other on axial slices. Inexperienced raters

may interpret that some artifact occurred, although, in fact,

the image is just visualized with some obliquity with respect

to the sagittal plane. This misinterpretation would be more

likely for BOLD images, as this might look like a single-sided

signal drop-out.

A fundamental aspect of a robust QC protocol we have

showcased is its funneling design. At every QC checkpoint, we

must pre-establish some exclusion criteria that will result in

dropping sub-standard data. For datasets limited in sample size,

excluding data may reduce the power of the study below the

planned estimation. More generally, even when the analysis plan

anticipated some data replacement measures for data dropped

at the earlier QC checkpoints, excluding data increases the

costs of the study (in terms of scan time, subject time, etc.).

In this case, real-time QA/QC (that is, during the acquisition

or immediately after) is a promising strategy to minimize

data exclusion and replacement costs (Heunis et al., 2020).

Therefore, establishing these criteria will present the researcher

with the challenge of striking an appropriate balance between

being excessively stringent (and therefore, discarding too many

images) and too lenient to the point that results are not reliable.

For this reason, it is important to establish QC criteria from

the perspective of all the QC checkpoints in the pipeline and

to ensure the best trade-off. When developing this manuscript,

we understood that setting the scope to “whole-brain voxel-

wise” analyses would allow more flexible QC criteria for the T1w

images at the MRIQC step and only mark borderline images

for a more rigorous screening after the second QC checkpoint.

Conversely, we also discovered some artifacts in the fMRIPrep

visual report that could have been spotted in the MRIQC visual

report of the same participant. Going back to the MRIQC

visual report, we could understand why this detail escaped us

at the first iteration and learn from our mistake. Therefore,

layering QC checkpoints is critical to ensure the robustness of

the whole protocol.

4.1. Limitations and deviations from our
standard QC protocols

Several limitations stem from the specifics of the dataset

used in this study. First, we could not take advantage of the

MRIQC group report, in which the IQMs extracted from all

images in a dataset are presented in scatter plots, because this

dataset was composed frommultiple sources, which makes these

reports hard to interpret without “harmonizing” the IQMs. On

a single-site dataset, we would use the MRIQC group report to

spot outliers in the IQMs distributions and double-check their

corresponding visual reports for exclusion criteria. Second, we

used the same exclusion criteria for the resting-state and task

fMRI data, with the exception of criterion G (hyperintensity of

single slices). In this particular case, we excluded resting-state

runs showcasing G because this artifact will likely introduce

correlations in the data that will potentially be interpreted as

functional connections in such analyses. Conversely, models

typically applied for analyzing task paradigms are generallymore

resilient to biases introduced by these hyperintensities. Third,

the quality of the T1w images may have been overestimated

because the data are defaced. As we explored in a recent

pilot study (Provins et al., 2022b) defacing, though necessary

to protect participants’ privacy when sharing data publicly,

likely biases manual QA/QC of anatomical images. One of our

conclusions was that defaced images were perceived as having a

better quality overall. Fourth, as a result of the QC data funnel

mentioned above, the number of subjects for which we assessed

the visual reports of fMRIPrep was severely limited to only the

five out of 181 that passed the first QC checkpoint with MRIQC.

The number of subjects successfully passing the first checkpoint

would have been much higher if available field maps had been

available within each subject’s data, considering that criterion

B (susceptibility distortions) was by large the top one criterion

that granted exclusion of images. Lastly, the scope of the study

was limited to describing the protocols and communicating

our assessments. Although it would have been of interest to

evaluate inter-rater and intra-rater variabilities, the settings were

not adequate to address such questions. Indeed, with such a

high (and expected) exclusion rate, in addition to the task of

identifying as many subpar images as possible, both sources

of variability in quality annotations will be certainly minimal.

We explored such variabilities in Provins et al. (2022b) and we

are currently extending the study with the pre-registration of a

larger scale analysis (Provins et al., 2022c).
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5. Conclusion

Establishing appropriate QC protocols adds to the list of

practices conducive toward reliable neuroimaging workflows.

Moreover, standardizing these protocols is critical to minimize

intra-, and inter-rater, as well as intra- and inter-laboratories

variabilities, thereby achieving consensus regarding QA/QC

across researchers and opening ways to consistently train

machine agents to automate the process. Therefore, the research

topic in which this work is framed is a timely initiative

pursuing such goals. We demonstrated the implementation of

a QC protocol in a standard functional MRI analysis workflow

at two checkpoints: (i) assessing the unprocessed data (with

MRIQC) and (ii) assessing minimally preprocessed data (with

fMRIPrep). We expect this thorough description of the QC

protocol and associated data exclusion criteria built upon this

research topic’s initiative to promote best practices in QA/QC

and help researchers implement their protocols for functional

MRI more effectively.
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Quality control practices in FMRI
analysis: Philosophy, methods
and examples using AFNI
Richard C. Reynolds*, Paul A. Taylor and Daniel R. Glen
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Quality control (QC) is a necessary, but often an under-appreciated, part

of FMRI processing. Here we describe procedures for performing QC on

acquired or publicly available FMRI datasets using the widely used AFNI

software package. This work is part of the Research Topic, “Demonstrating

Quality Control (QC) Procedures in fMRI.” We used a sequential, hierarchical

approach that contained the following major stages: (1) GTKYD (getting to

know your data, esp. its basic acquisition properties), (2) APQUANT (examining

quantifiable measures, with thresholds), (3) APQUAL (viewing qualitative

images, graphs, and other information in systematic HTML reports) and (4)

GUI (checking features interactively with a graphical user interface); and for

task data, and (5) STIM (checking stimulus event timing statistics). We describe

how these are complementary and reinforce each other to help researchers

stay close to their data. We processed and evaluated the provided, publicly

available resting state data collections (7 groups, 139 total subjects) and task-

based data collection (1 group, 30 subjects). As specified within the Topic

guidelines, each subject’s dataset was placed into one of three categories:

Include, exclude or uncertain. The main focus of this paper, however, is the

detailed description of QC procedures: How to understand the contents of an

FMRI dataset, to check its contents for appropriateness, to verify processing

steps, and to examine potential quality issues. Scripts for the processing and

analysis are freely available.

KEYWORDS

FMRI, quality control, AFNI, resting state, reproducibility, processing, data
visualization, task-based

Introduction

Quality control (QC) is a vital part of FMRI analyses, although it is often not
detailed in studies or presentations. The presence of poor quality data can reduce the
power and generalizability of results. Undetected non-physiological artifacts can greatly
skew outcomes and alter study results. Importantly, some exclusionary criteria could
also systematically bias results away from an accurate interpretation of the data and
underlying brain behavior.
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In theory, FMRI QC appears to be a straightforward process:
Sort a data collection into “good” datasets to use, and “bad”
datasets to exclude. Some set of metrics or quantities can
be calculated to do this screening automatically, and then
processing can proceed with the good subset. In practice,
however, QC is a notably more challenging procedure because
of the combined complexities and varieties of both FMRI
acquisition and analyses.

We consider QC to be an integral part of the processing
itself, rather than a separate step, because what it means to be
a “usable” dataset depends on the processing steps and design of
the final analysis. Consider a few basic examples:

1. The cerebellum in a subject’s dataset is truncated by the
acquisition field of view (FOV): This subject’s data might
be included in the final analysis of a purely cortical
study but excluded in the case of a cerebellar-specific or
whole brain study.

2. EPI signal strength and distortions can vary across
the brain. Having a low temporal signal-to-noise ratio
(TSNR) within the basal forebrain region might exclude
a subject from a subcortical study, but not from one of
the visual cortex.

3. Subject motion is one of the most difficult effects to
account for within any study, particularly in resting state
FMRI where it can drastically influence results. How many
time points can be censored before a subject is deemed to
have “too much” motion to include, and does this number
change if one is studying a group that is predisposed
to motion (e.g., young adolescents or Parkinson’s disease
patients)? And what is even the “correct” censoring limit
to utilize?

In this paper we describe a number of QC measures for both
task-based and non-task (e.g., resting state or naturalistic) FMRI
processing that are implemented in the AFNI software suite
(Cox, 1996). This paper is part of a community-wide FMRI open
QC project, “Demonstrating Quality Control (QC) Procedures
in fMRI,” where various groups of developers and researchers
detail their own methods for QC of data. Specifically, we note the
following goals and procedures from the Project description:1

This project aims to showcase examples of QC practices
across institutions and to foster discussions within the
field. Here, we welcome researchers and developers across
the globe to describe their QC methods in detail and to
show them “in action” for a varied dataset acquired across
multiple sites and scanners. . . We welcome researchers to

1 See here for the main Project page: https://www.frontiersin.
org/research-topics/33922/demonstrating-quality-control-qc-
procedures-in-fmri and here for further details and download
links for the datasets (https://doi.org/10.17605/OSF.IO/QAESM):
https://osf.io/qaesm/wiki/home/.

present their quality control assessments of the subjects in
the provided data collection, listing which would be included
or excluded from further analyses, and which might be
considered borderline or “uncertain.”

Our own perspective is based on our individual and
collective experiences as researchers, collaborators, educators
and software developers of the AFNI toolbox. The design
principle of the AFNI toolbox is, “To help keep researchers close
to their data,” and this influences our view of QC measures, as
well. Rather than viewing QC as simply filtering datasets into
“good” or “bad” bins, we regard it as the larger procedure of
being as sure as possible about the contents of the data collection,
from acquisition properties to artifact checking to regression
evaluation. We note that some QC steps are quantitative (they
can be derived directly from one or more numbers), some are
qualitative (e.g., they require visualization) or a combination.
Some involve interactively investigating the datasets in a GUI,
which can be facilitated in AFNI by scripting. Some QC items
can be evaluated “per subject” and are essentially independent
of any other member of the data collection, while others involve
the relative comparison of a property.

Here, we detail a set of QC procedures for FMRI subjects
and provide examples of applying these to the Project datasets.
The first stage of QC can occur before any real “processing”
of datasets has taken place, called “getting to know your data”
(GTKYD). It is not necessarily part of inclusion/exclusion
criteria, but it importantly ensures consistency of acquisition
parameters and data properties. Next, systematic quantitative
and qualitative stages are set up directly within afni_proc.py’s
processing pipeline and QC HTML: APQUANT and APQUAL,
respectively. For task-based FMRI, the STIM stage investigates
the stimulus event and timing information. Finally, the GUI
(graphical user interface) stage should always be used for some
set of subjects in a study, to verify dataset properties in depth,
and it can also be useful for investigating unknown features that
may be found in other QC stages. In short, we implement a wide
variety of QC procedures to be detailed, and we partition these
into conceptual groupings in order to aid systematization. We
aim to be as descriptive as possible, to provide a starter guide for
possible QC during FMRI processing.

Methods: Data and processing

The datasets downloaded from the Project website and
analyzed here were originally distributed as part of the following
public repositories, according to the Project instructions:
Functional Connectome Project (FCP; Biswal et al., 2010),
ABIDE (Di Martino et al., 2014), and OpenNeuro (Markiewicz
et al., 2021). They are due to be specifically identified in detail in
a future publication of the Project, but we note that each subject’s
dataset was acquired in a single session at 3T using a single echo
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EPI sequence, and overall they have fairly “typical” acquisition
parameters (in terms of TR, voxel size, etc.—see below).

Here, AFNI v23.3.02 (Cox, 1996) and FreeSurfer v7 (Fischl
and Dale, 2000) software packages were used for processing
each of the resting state and task-based FMRI data collections.
For each collection, AFNI’s afni_proc.py was used to set
up the full FMRI processing pipeline, which runs through
regression modeling and includes an automatically generated
quality control (APQC) HTML report. The full set of scripts in
each case are available online: https://github.com/afni/apaper_
afniqc_frontiers.

As noted in the Introduction, some QC details rely on
processing choices and on the analysis being performed. In
the present Project, there was no stated group analysis, so
we considered investigating these datasets in preparation for a
generic cortical, voxelwise analysis. For this QC, we note issues
regarding issues in cerebellum or midbrain, but do not exclude
subjects based on these (these regions were often excluded or
only partially included in the EPI FOVs).

Resting state FMRI data and processing

The provided resting state data collection consists of
acquisitions from seven different sites, each of approximately
20 subjects, with a total of 139 subjects. Each site is signified by
the hundreds-digit of the subject ID, by which we refer to each
subset. That is, Group 1 contains sub-101, sub-102, etc.; Group
2 contains sub-201, sub-202, etc.

For each subject, there is one T1w anatomical and one EPI
time series, except within Group 6, in which several (but not
all) subjects have two EPI time series. The whole brain, T1w
anatomical volumes typically have voxels with approximately
1.0 mm resolution, though there is some inter- and intra-group
heterogeneity. The EPI time series have the following ranges
of properties: TR = 2.0–2.5 s; minimum voxel edge = 1.56–
4.00 mm, and maximum voxel edge = 3.10–4.00 mm (with
varied anisotropy); in-plane matrix size = 64–128, and through-
plane matrix size = 32–47; number of volumes (per run) = 123–
724. Four out of seven sites had acquired (at least some) EPI
and anatomical volumes obliquely. Further details about the
heterogeneity of basic dataset properties are enumerated within
the first stage of QC results (GTKYD), below.

The first step of processing was to run FreeSurfer’s recon-all
on each T1w anatomical volume, providing an initial brain mask
and parcellations for reference. FreeSurfer parcellations were
entered into afni_proc.py as “follower” datasets, to be mapped
to the final template space and to provide optional reference
locations there. Note that if performing an ROI-based analysis,
blurring would typically not be included in the processing steps.
AFNI’s @SSwarper program was also run on each T1w volume,
to provide both a final skullstripping (SS) mask and a non-linear
warp [via 3dQwarp; Cox and Glen (2013)] from that anatomical

to the MNI-2009c (asymmetric) template space [Fonov et al.
(2011)]. Identical @SSwarper commands were used for Groups
1–6, and for Group 7 a different cost function (nmi, normalized
mutual information, instead of lpa, local pearson correlation
absolute value) was utilized to improve results. These outputs
of @SSwarper were included in the afni_proc.py command,
described below.

AFNI’s afni_proc.py program was used to generate a full,
reproducible FMRI processing pipeline across each Group.
While the afni_proc.py command contains the specified
“control variables” of each processing block, the created
script (which is automatically commented) can also be read
to understand the exact implementation details. Because
each resting state group was acquired with slightly different
parameters, particularly voxel size, individual afni_proc.py
commands were created here for each so that parameters
such as “applied blur” would be appropriate for each. In an
expressly multisite study, which would combine subjects across
all sites/Groups into a single analysis, this approach might
differ—for example, one might apply an option to blur all EPI
datasets to the same full-width at half-max (FWHM) value, for
final uniformity. Here, the only parameters that varied across
each group’s afni_proc.py commands were the values of the
applied blur size (“-blur_size”) and final EPI voxel dimensions
(“-final_dxyz”).

The afni_proc.py processing included initial despiking and
slice timing correction. The EPI volume with the minimum
fraction of outliers in the brain mask was selected to be
a reference for motion correction (rigid-body alignment
across the FMRI time series) and EPI-anatomical alignment
(linear affine transformation with 12 degrees of freedom).
EPI-anatomical alignment was calculated by first creating a
brightness-homogenized version of the reference EPI volume
and then using the “lpc+ZZ” cost function for local Pearson
correlation (Saad et al., 2009). For anatomical-template
alignment, the non-linear warp from the previous @SSwarper
step was included. An EPI volume extents mask was applied
to omit voxels that, due to motion, did not have acquired
data throughout the entire time course. An EPI brain coverage
mask was generated for the purpose of calculating statistics, but
following the default behavior in afni_proc.py, this mask was not
otherwise applied, leaving the time series basically unmasked,
allowing for more complete QC (we recommend masking at
the group level). A Gaussian blur was applied to each time
series, with FWHM of approx. 1.5–2x the mean EPI voxel
dimension (see scripts). Time series were scaled to have a mean
of 100, to put the data in units of percent change. This scaling
has a negligible effect on correlations, though it is helpful if
computing parameters such as fALFF, for example.

The final processing block within the afni_proc.py
command includes regression modeling, which amounts to
projection of signals of non-interest, in the case of resting state
analysis. This included censoring, for volumes with Enorm
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(Euclidean norm of first differences of motion parameters)
>0.2 mm or an outlier fraction >5% within a whole brain
mask. Default polynomial regressors were used to model the
slow baseline drifts. The six time series from rigid-body EPI
alignment and each of their derivatives were included “per-run”
as motion regressors. Bandpassing within the standard low
frequency fluctuation (LFF) range of approx. 0.01–0.1 Hz was
not included in this processing, since it has been shown that
useful physiological data exist in the FMRI time series above
0.1 Hz (e.g., Gohel and Biswal, 2015; Shirer et al., 2015), and
such bandpassing incurs a large statistical cost in terms of
degrees of freedom (Caballero-Gaudes and Reynolds, 2017).
The consequences for FMRI QC of including standard LFF
range bandpassing are discussed below.

Task-based FMRI data and processing

The provided task-based data collection consists of 30
subjects (subject IDs: sub-001, sub-002, etc.) acquired at a single
site. A single task paradigm was used, and timing files were
provided in both original BIDS format and in a simplified,
columnar format. For each subject, there is one T1w anatomical
and one EPI time series. The whole brain, T1w anatomical
volumes have 1.00 mm isotropic voxels. The EPI time series have
the following properties: TR = 2.0 s; voxel dimensions = 3.00
mm × 3.00 mm × 4.00 mm; matrix dimensions = 64 × 64 × 34;
number of volumes = 242; oblique slices.

As for the resting state processing above, FreeSurfer recon-
all and AFNI @SSwarper commands were run on each subject’s
T1w anatomical volumes. In setting up stimulus timing, we
note that there are many ways to interpret and make a model
from the event files. We chose to model the 2 event types,
Task and Control, using reaction time for event duration, and
the full duration if a subject did not respond in time. Control
events had durations between 0 and 2 s, while task events lasted
between 0 and 4 s. AFNI’s timing_tool.py was used to apply
this interpretation.

In the task-based afni_proc.py, the same processing blocks
and options for slice timing correction, intra-EPI registration
(for motion correction), EPI-anatomical alignment, anatomical-
template alignment, mask estimation and scaling. The despiking
block was not used. The blur size was set to 6 mm, the
application of which was restricted to the estimated mask.

The regression model included censoring for volumes
with Enorm ≥0.3 mm (a slightly higher value than for the
resting state processing, since the latter tends to be more
sensitive to motion effects) or an outlier fraction >5% within
a whole brain mask. The six time series from rigid-body EPI
alignment were included per-run as motion regressors. In
the task design, there were two stimulus classes: “Task” and
“Control” events (the latter name should not be confused with
the standard subject specification of “control group”; also, in

this Project, there were no such group classifications). These
were modeled as duration modulated blocks, normalized to a
2 s response time [“-regress_basis_multi ‘dmUBLOCK(-2)”’],
and serial correlation within the time series was accounted
for with 3dREMLfit (“-regress_reml_exec”). Two general linear
tests (GLTs) were specified as potential conditions of interest:
The contrast “Task - Control,” and the average stimulus response
“0.5∗ (Task + Control).”

General, simple and fast FMRI “quick”
processing

The previous two sections describe the detailed processing
options selected for the resting state and task-based processing
commands implemented for these specific data collections. For
each, several processing options and control parameters are
selected by the user, tailored to the study design and research
question. These are useful and appropriate for full dataset
processing, e.g., as part of a group analysis.

However, we note an additional tool called
ap_run_simple_rest.tcsh that is much simpler to set up
for quick, general processing for any FMRI dataset; it is
particularly useful for QC purposes. The AFNI program is
a wrapper for afni_proc.py with a particularly simple front
end: The only required options are the input dataset names

FIGURE 1

An overview of the QC stages presented in the current study.
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(some additional ones can be entered, too). Importantly, this
program can be used to generate the vast majority of the QC
information that is detailed below. In particular, almost every
quantitative QC criterion (described under APQUANT) should
be essentially identical.

This alternative analysis tool was designed with the focus of
providing efficient checks for datasets as individual subjects are
acquired, and can even be implemented to perform QC while
the subject is in the scanner—thus, data could be reacquired
if there were a particular problem such as severe motion or
EPI dropout. Similarly, it could be easily created automatically
as the scanner saves data to storage, to generate a uniform
QC HTML report that would be immediately available to
all researchers acquiring data. This tool uses affine template
registration and processes data as resting state, making it simple,
fast, and suitable to provide detailed QC. While the seed-based
correlation QC maps can be considered slightly noisier than in a
full processing case that implements non-linear alignment, they
should still be reasonable and useful for quick QC purposes.
In this work, we describe the QC items using the specific
afni_proc.py commands, but the same considerations would
apply to the “quick” outputs here.

Procedures for FMRI quality
control

A schematic overview of the QC stages is shown in Figure 1.

1) GTKYD: Getting to know your data

The first stage in the QC procedure here is referred to as
GTKYD, which has two primary features. First, this checks
the consistency of several key data and header properties
within the group, such as dataset orientation, matrix size
and more. Second, this investigates the reasonableness of the
dataset properties, such as voxel size (units and isotropy),
minimum/maximum values within the volumes (for possible
scanner saturation) and more. Problematic values in either of
these “relative” and “absolute” checks, respectively, might be
a sign of acquisition mistake, DICOM-to-NIFTI conversion
trouble, incorrect header information, BIDS construction, or
other errors when creating the collection.

In general, this GTKYD stage is not intended to be used
to include/exclude individual subjects. Instead, its purpose is
to verify that the datasets contain their expected properties
and are appropriate for the analysis at hand. Questions or
potential issues should lead to double-checking the acquisition
sequence and reconstruction steps, whether collected by the
researchers performing the analysis, or, for public or shared
data, by contacting those who did acquire it. In the first case,
we recommend performing the QC steps immediately and

repeatedly as each subject in a study is collected, to protect
against long-running and fundamental issues in the data, which
may lead to wasted acquisition time and expense. In all cases,
GTKYD reduces the possibility of analyzing fundamentally
problematic or inappropriate data.

The GTKYD properties checked here included the following
for both EPI and anatomical volumes:

• header-info: Matrix size, orientation, voxel dimensions,
datum type, NIFTI qform_code, NIFTI sform_code

• data-info: Number of runs, minimum value, maximum
value.

Additionally, the following was checked for EPI:

• header-info: TR, number of time points, slice timing.

2) APQUANT: Quantitative review of
basic processing features

This stage describes the automation of quantitative QC
measures output during afni_proc.py processing. This includes
scriptable subject exclusion criteria, as well as checks for
processing consistency and additional warnings. The output of
this stage, created by AFNI’s gen_ss_review_table.py (GSSRT)
program, is a list of subjects to exclude/include.

During processing with afni_proc.py, a results directory is
created for the full output, including storage of intermediate
datasets, text files, and other information. In particular for this
QC step, a single file of “basic” review quantities related to the
processing is made. This essentially contains a dictionary of
summary information about the processing—such as software
version used, input datasets, censor fractions, and more—for
each subject. For example, the “TRs censored” field records how
many time points were censored during the subject’s processing,
“motion limit” records the threshold value used for Enorm
censoring, and “global correlation GCOR” records the average
correlation across all pairs of brain-masked voxels. These single
subject review dictionaries can be combined across the group
into an information table, using GSSRT, with one subject per
row and one dictionary key (or review field) per column.

Importantly, one can provide a “checklist” of features
to query, and create a sub-table of subjects that have one
or more properties. For example, one could apply a set of
exclusion criteria by generating a subtable of all subjects
who have too many censored time points or too low an
average TSNR. Additionally, one can create descriptive tables
to verify that all subjects had similar EPI voxel sizes and were
analyzed with the same software version. This combination of
afni_proc.py’s basic processing dictionary and GSSRT’s table-
generating functionality is very flexible and useful for staying
informed about a wide range of properties about the data
processing as a whole.
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Here, we created three separate review tables for each group:
One for checking the analysis consistency across subjects; one
for checking for possible concerns in the data at a “warning”
level; and one for applying strict exclusion criteria. The GSSRT
fields and comparison operators for each table’s checklist are
shown in Table 1. As noted in the table, all the same criteria were
applied to both resting state and task-based FMRI collections,
with one additional exclusion criterion for the latter. Additional
criteria could be selected, as well, depending on the study. For
example, while it was not used in this study, a Dice coefficient
for the overlap between the EPI mask and the anatomical mask
would be useful for cases where a specified minimum fraction of
brain coverage is required.

It is important to note that the specific threshold values we
have used for the quantitative keys could differ across studies.
For example, rodent datasets would have much smaller head
size and voxels, and one might expect less motion if they were
anesthetized. One might allow for different motion criteria in
a study of motion-prone children. The appropriateness of a
particular TSNR threshold may vary with scanner. Over time,
more knowledge may be accrued to inform better parameter
selections, from the point of view of sensitivity and specificity.
The present values seemed reasonable for this study and
may form a starting basis for other ones, but should not be
taken as absolute.

3) APQUAL: Qualitative and visual
checks using afni_proc.py’s QC HTML

In complement to the APQUANT stage, this section
describes performing a qualitative, visual-based assessment
of the processing results. In particular, this is done using
afni_proc.py’s QC report (APQC), which is an automatically
generated HTML document. It is an interactive HTML
for investigating various features of the data, including the
original data, alignment, statistical maps and modeling, motion,
warnings, and more. Ratings and comments can be saved for
each QC block.

While some features of processing can be assessed
quantitatively, many others essentially require visualization. For
example, image registration is driven by a quantitative cost
function, but then separate assessment is needed to verify that
tissue boundaries and sulcal and gyral patterns appear to be well-
aligned. Furthermore, there are numerous potentially artifactual
patterns that can appear in datasets; these can be most easily
identified by the human eye, and either recognized directly or
marked for requiring further exploration. In many cases, fully
understanding a subject’s dataset and problems that may exist
with it requires having a multifaceted appreciation for it, and
the APQC HTML provides one form of this.

The APQC HTML is organized in successive “QC blocks,”
whose elements are grouped by processing steps and conceptual

relatedness. Most blocks are common to both task-based and
non-task processing, though some features are distinct (as noted
in the descriptions below). Additionally, some features depend
on the details of processing—e.g., the anatomical-to-template
alignment block only exists if one is registering the subject to
a template space. In the following, we describe the current QC
blocks and features for single-echo FMRI processing. For each
block, we provide a list of elements or keys that describe specific
features in a QC assessment, and these terms are used when
evaluating the present data collection in the Results section.
These keys may provide a generalizable categorization for QC
reporting. They are also likely to grow in number over time.

vorig
Views of the original space EPI (specifically, the volume

registration reference) and anatomical volumes, as well as their
overlap.∗

• EPI: FOV coverage, signal dropout, ghosting overlap, poor
tissue contrast (esp. if alignment fails), spatial distortion
(see better check in ve2a), inhomogeneity.

• anat: FOV coverage, ringing, poor tissue contrast (esp.
if alignment fails), inhomogeneity, skull stripping (if
previously applied).

• overlap: Initial EPI/anat overlap (informational, in case
EPI-anatomical alignment fails).

ve2a
Views of the EPI-to-anatomical alignment results:

Anatomical edges overlayed on the EPI.∗

• global: Overall quality of alignment (e.g., from sulcal, gyral
and ventricle patterns; note CSF can affect the appearance
of the outer edge).

• local: Part of volume matching is poor (particularly around
regions of interest), which can be due to FOV coverage, EPI
signal dropout, distortion, other.

va2t
Views of the anatomical-to-template results: Template edges

overlayed on the anatomical.∗

• global: Overall quality of alignment (e.g., from sulcal, gyral
and ventricle patterns).

• local: Part of volume matching is poor due to, e.g., FOV
coverage, distortion, SS, regional mismatch, other.

∗One of the va2t, ve2a or vorig QC blocks will contain a view
of the final EPI mask overlayed on the final reference volume,
determined by whether the final space is a template, the subject’s
anatomical or the subject’s EPI, respectively.
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TABLE 1 Lists of QC criteria for generating review tables of different properties after completing single subject processing with afni_proc.py.

APQUANT checklists (rest and task FMRI)

Consistency checklist (rest, task)

Key/field Comp. Description

’AFNI version’ VARY Does the package version vary?

’num regs of interest’ VARY Does the number of regressors of interest vary?

’final voxel resolution’ VARY Do the final voxel dimensions vary?

’num TRs per run’ VARY Does the number of EPI time points per run vary?

Warnings checklist (rest, task)

Key/field Comp. Description

’final DF fraction’ LE 0.7 Is the remaining fraction of degrees of

freedom >= 0.7? (NB: Bandpassing would affect this.)

Visualize DF summary in APQC ’regr’ block.

’censor fraction’ GE 0.15 Is the fraction of censored time points >= 0.15?

’average censored motion’ GE 0.1 After censoring, is the remaining average

motion (Enorm) >= 0.1 mm?

’max censored displacement’ GE 6 Are any two volumes >= 6 mm apart?

’global correlation (GCOR)’ GE 0.15 Is GCOR >= 0.15?

Visualize in APQC ’regr’ block as corr_brain.

’TSNR average’ LT 150 Is the within-mask average TSNR <= 150?

Visualize in APQC ’regr’ block as TSNR-final.

Exclusion criteria checklist (rest)

Key/field Comp. Description

’final DF fraction’ LE 0.6 Is the remaining fraction of degrees of

freedom <= 0.6? (NB: Bandpassing would affect this.)

Visualize DF summary in APQC ’regr’ block.

’censor fraction’ GE 0.2 Is the fraction of censored time points >= 0.2?

’average censored motion’ GE 0.15 After censoring, is the remaining average

motion (Enorm) >= 0.15 mm?

’max censored displacement’ GE 8 Are any two volumes >= 8 mm apart?

’global correlation (GCOR)’ GE 0.20 Is GCOR >= 0.20?

Visualize in APQC ’regr’ block as corr_brain.

’flip guess’ EQ DO_FLIP Is there an EPI-anatomical left-right flip?

Visualize in APQC ’warns’ block.

Exclusion criteria checklist (task)

Key/field Comp. Description

’final DF fraction’ LE 0.6 Is the remaining fraction of degrees of

freedom <= 0.6? (NB: Bandpassing would affect this.)

Visualize DF summary in APQC ’regr’ block.

’censor fraction’ GE 0.2 Is the fraction of censored time points >= 0.2?

’average censored motion’ GE 0.15 After censoring, is the remaining average

motion (Enorm) >= 0.15 mm?

’max censored displacement’ GE 8 Are any two volumes >= 8 mm apart?

’global correlation (GCOR)’ GE 0.20 Is GCOR >= 0.20?

Visualize in APQC ’regr’ block as corr_brain.

’flip guess’ EQ DO_FLIP Is there an EPI-anatomical left-right flip?

Visualize in APQC ’warns’ block.

’fraction TRs censored’ GE 0.2 Is the fraction of time censored from any

stimulus response >= 0.2?

These key or field values are automatically placed in a text file within each subject’s results directory by afni_proc.py. Each set of key/fields and comparisons (Comps.) is then used within
a gen_ss_review_table.py command to create a summary table. The following comparison operators are used here: VARY = “differs across subjects”; GE = “greater than or equal to”; LE
= “less than or equal”; and EQ = “equal to.” For each group of subjects, a set of consistency, warning and drop criteria tables were made.
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• mask-overlap: Estimated coverage of usable FMRI signal
(typically intersected with the subject anatomical).

vstat
Views of relevant statistical modeling. For non-task FMRI,

when a recognized template space is used, seed-based correlation
maps of the default mode, visual and auditory networks are
shown. For task-based FMRI, the views include the full F-stat
of modeling, as well as coefficient + stat maps of stimuli and
contrasts of interest.2

• quality: Overall expected/recognizable network correlation
(or task statistical) patterns observed, such as full spatial
coverage (no missing regions); network specificity (no extra
regions); reasonable magnitude; extra-cranial patterns.

• artifact: Ghosting; striping; strong slice-based patterns;
large spatial patterns across/unconstrained by tissue type;
notably non-physiological patterns.

We note that in these images, and in several others within
the APQC HTML, the thresholds are applied transparently.
That is, suprathreshold regions are shown opaque (or with
maximum translucency) and outlined, and subthreshold values
are displayed with increasing transparency as the magnitude
of the value decreases. This reduces the sensitivity to choice
of threshold, and allows focal regions to be highlighted
(with opacity and outlining) while still showing information
throughout the brain (Allen et al., 2012; Taylor et al., 2022).
Moreover, brain masks are typically not applied, to show results
throughout the full FOV, which helps to further identify any
potential artifacts.

mot
Motion-related information: Plots of Enorm, outlier

fraction, and motion parameter time series (with any censoring
information shown), and a grayplot of residuals. Provides a useful
reference (censor- and motion-related quantities are primarily
checked across the group using GSSRT).

• enorm: Odd patterns; regular signals, which are likely
not physiological (e.g., mechanically driven); many time
points with just sub-threshold values, which might
drive spurious correlation (might lead to re-processing);
overall value range.

• outliers: (same items as “enorm,” above); evaluate for
synchrony against enorm.

• volreg-pars: Similar properties to “enorm” above; note that
these parameters are not directly thresholded for censoring.

2 By default, afni_proc.py creates images of the full F-stat and up to
4 additional coefficient + statistics pairs, depending on the number of
stimuli and contrasts in the regression model. The user may specify any
number of stimulus and contrast results to show, however.

• grayplot: Strong vertical patterns may suggest high residual
correlation (primarily checked in “regr-corr_brain”
visualization and quantified in “qsumm” with GCOR).

regr
Regression modeling information: Degree of freedom (DF)

summary; view of correlation map with whole brain average
residual signal (checks brainwide similarity of residuals, such as
for large breathing, and motion effects remaining); and TSNR
maps (good scenario: Relatively consistent TSNR around brain
regions of interest). For task datasets, plots of the individual
regressors of interest, as well as their sum, are shown (with any
censor bands, for reference).

• task-ideal-sum: (NB: Strongly paradigm dependent) any
problem with the sum of regressors; large gaps and/or
spikes might generally be worth noting.

• task-ideal-stim: (NB: Strongly paradigm dependent) any
problem with an individual regressor of interest; duplicated
stim timing (scripting mistake); stimulus-correlated
motion may be worth noting.

• df-count: Too few degrees of freedom in output results
(often due to censor fraction and/or bandpassing); typically
checked automatically with GSSRT.

• corr_brain-artifact: (similar to vstat-artifacts) ghosting,
correlation/anticorrelation striping, strong slice-based
patterns, large spatial patterns across/unconstrained by
tissue type, notably non-physiological patterns.

• corr_brain-quality: Too high (also typically quantified via
GCOR and checked with GSSRT) or too low.

• TSNR_volreg: Mainly informational, since this is calculated
before regression modeling and noise regression (look for
similar features as in TSNR_final-∗ items).

• TSNR_final-loss: Notable dropout/low signal in regions
of interest (e.g., often low in frontal/temporal lobes and
subcortical nuclei).

• TSNR_final-artifact: Non-physiological patterns of
TSNR magnitude, particularly dropout (e.g., vertical
bands/stripes).

radcor
Radial correlation maps: The value of correlating each voxel

with a Gaussian-weighted local average (FWHM = 40 mm in
human datasets). A typically good scenario is relatively high
values approximately constrained to GM; motion effects often
appear as high correlation/anticorrelation patterns around the
edge of the brain, which are often reduced after volreg.

• tcat-artifact: Mainly informational, since this is calculated
for initial data with no motion correction (look for similar
features as in radcor_volreg-∗ items).
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• volreg-artifact: Patches of high radcor values spanning
multiple tissue types (can be sign of coil artifact or
other non-physiological effects); artifacts here often inspire
investigations with InstaCorr, as referred to in Procedure 4.

warns
List of warnings from various checks throughout processing,

including for: Regression matrix correlations; high censor
fractions; pre-steady state outliers; left-right flip between input
EPI and anatomical. Several can be checked with GSSRT (with
useful details here for verification).

• regr_mat: High pairwise correlations in regression
matrix (varied).

• gen-censor: High total/overall censoring fraction (typically
checked with GSSRT).

• task-stim-censor: High censoring fraction for one or more
particular stimuli (optionally checked with GSSRT).

• press: EPI data appear to have pre-steady state volumes at
the start (via outlier check; though sometimes this is simply
due to motion in first time points).

• flip: EPI-anatomical might have relative flip, as checked
with cost function alignment and to-be verified with
provided images (Glen et al., 2020).

qsumm
Basic quantitative information of processing, such as AFNI

software version, voxel sizes; motion limits and counts; TSNR; and
more. Provides a quick reference (many of these quantities should
be checked across the group using GSSRT).

• anomalous: An unexpected value, such as final voxel
resolution, software version number, etc.

• suprathresh: Unexpectedly or problematically large value
(e.g., censor fraction, GCOR).

• subthresh: Unexpectedly or problematically small value
(e.g., average TSNR, maximum F-stat).

• missing: Quantity not present, perhaps due to coding error
(e.g., missing censor fraction, missing censor fraction per
run).

4) GUI: In-depth investigation with the
graphical user interface

This stage describes exploring one or more datasets
interactively. While this may require more time to perform than
some other steps, it provides the best means for understanding
things like the detailed alignment of two volumes, the combined
spatio-temporal aspects of EPI time series (with “InstaCorr,”
described here), etc. To facilitate this process, afni_proc.py
automatically generates multiple scripts to load particular
datasets and visualization functionality in the AFNI GUI.

• align: Check alignment (or registration) features.
• graph: View the time series plots of one or more voxels.
• instacorr: Flag peculiar spatio-temporal patterns in the

time series data.
• other: Any other feature(s) using the afni and/or suma

GUIs, plugins, etc.

align
There are a large number of features in the AFNI toolbox

and GUI to inspect the alignment or registration between
two datasets (e.g., see Appendix A in the Supplementary
material of Glen et al., 2020). The default method is to
show one volume as a grayscale background (underlay)
dataset, while the other is shown in color as the “overlay”
dataset. There are several methods for viewing the datasets
interactive in different ways, depending on the properties of
the datasets (matching or differing tissue contrasts, blurriness,
etc.), which can help to focus on various features. These
include: Toggling the underlay/overlay datasets, adjusting
underlay contrast/brightness, adjusting overlay opacity, viewing
the underlay edges, using a horizontal or vertical “image
comparison” slider bar, and using a slider to fractionally blend
the datasets.

graph
The AFNI GUI includes an interactive and expandable

graph window for displaying the time series of one or
more voxels. Observing properties of the time series, even
when no stimulus has been provided, can provide useful
insight, particularly into possible artifacts or non-neuronal
confounds. For example, subject motion effects can be
observed as peaks and sudden shifts in the amplitudes
across many voxels. Drift or shimming-related changes can
also be noted. One can also load a reference time series
(e.g., one with the ideal task response) and investigate
patterns, similarity or possible features showing stimulus-
correlated motion.

InstaCorr
The InstaCorr functionality (which stands for “Instant

Correlation”) within the AFNI GUI is the prime tool for an in-
depth investigation of a 4D EPI dataset. Briefly, InstaCorr allows
one to freely explore spatio-temporal patterns within a dataset
by clicking and dragging a seed location anywhere throughout
the volume; the resulting seed-based correlation patterns update
continually and instantaneously, so that one can quickly assess
a full FOV (see, e.g., Jo et al., 2010; Song et al., 2017).
This is particularly useful for exploring functional networks,
potential scanner artifacts, and more. Processing features such
as baseline regression, bandpassing, smoothing, masking and
setting a seed radius can all be selected within the InstaCorr
setup menu. The afni_proc.py processing now automatically
creates a “run_instacorr∗.tcsh” script to run InstaCorr on the

Frontiers in Neuroscience 09 frontiersin.org

49

https://doi.org/10.3389/fnins.2022.1073800
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073800 January 24, 2023 Time: 21:45 # 10

Reynolds et al. 10.3389/fnins.2022.1073800

regression model’s output; running the script automatically
opens the AFNI GUI with InstaCorr setup on the residuals
dataset.

Here, we used InstaCorr in conjunction with the APQUAL
step, when one or more QC images showed a questionable
pattern. For example, we could observe whether there were:
Large, non-physiological patches of high correlation; slice-
constrained artifacts; and more. Resting state FMRI analysis
often depends on correlation patterns, making InstaCorr
verification particularly important. In task-based FMRI, it
can provide useful exploration of areas where responses are
unexpectedly low.

5) STIM: Task-specific investigations of
stimulus timing

This stage describes understanding and evaluating the
stimulus event timing for a task-based analysis. This includes
answering whether events are presented at consistent intervals
or randomized, of consistent duration or variable, and based on
the subjects or not, both for duration and possibly amplitude
modulators in the regression model. It includes answering
similar questions for inter-stimulus intervals (ISIs). And it
includes evaluating the stability of the regression matrix,
i.e., whether small noise fluctuations could have a noticeable
effect on the results.

There are several tools within AFNI that can be helpful
for investigating various stimulus related features across
the group, such as summaries of timing, duration and
interstimulus intervals. These can be particularly useful in
understanding variations or potential issues in subject results.
Such investigations are essential during an experiment design
phase, before acquiring subject data, and are similarly important
for understanding event timing in a study from an external
group, or even in review. Detailed investigations can be done for
just a few subjects, while statistical reviews of stimulus durations
and interstimulus interval timing can be performed and then
summarized across all subjects, while looking for peculiarities
or outlier subjects.

Two items that are often computed after the regression
matrices exist are regressor correlations and condition
numbers. Negative pairwise correlations are often expected,
particularly in cases with two or just a few stimulus classes.
As a measure of predictability, this happens when one
stimulus response is “on” and another stimulus response
is generally “off,” or lower. Such a pair of regressors
might have a modestly high, negative correlation that is
considered acceptable. Condition numbers (of the full
model and conceptual sub-models) help identify when
a model is becoming mathematically unstable, often
from a stimulus design mistake, or by having too little
non-stimulus time.

• events: (for just a few subjects) visually review event
timing across all classes together, including onsets
times, durations, and offsets from previous events, along
with any modulators.

• stim-stats: Show min/mean/max/stdev of stimulus
durations, per class and subject.

• isi-stats: Show min/mean/max/stdev of interstimulus
intervals, per subject.

• X-cormat: (done in APQUANT.warns section, above)
look for large pairwise correlations among the regression
matrix regressors.

• X-cond: Look for high condition numbers across subsets of
the regression matrix, including the baseline, motion terms,
regressors of interest, and combinations of these sets up to
the full matrix.

Results for resting state data
collections

GTKYD summary

GTKYD was the first stage of checking each group’s data.
In the present study, no subjects were excluded because of this
stage’s results, but they did inform some processing choices
(and in other cases, they indeed might lead to a group not
being included in a study). Table 2 shows a summary of basic
dataset properties that were inconsistent across a group. For
example, in Group 5 six out of 20 subjects have an anatomical
volume with differing orientation. This may reflect acquisition
or reconstruction inconsistency, but importantly it may hide
an error in correctly assigning directionality within the volume.
While most mistaken “flips” of directionality within a dataset
can be quickly detected visually, this is not so for left-right
flips; for humans, relative EPI-anatomical flips can typically be
reliably detected (Glen et al., 2020), but this is not the case for
animal datasets or when all datasets for a subject are flipped.

Surprisingly, most groups (5 out of 7) contain heterogeneity
of at least one basic dataset property. In Group 5, the
EPI voxel dimensions of five subjects differ notably, which
will affect SNR throughout the brain; additionally, the high
anisotropy of the five outlier subjects can produce artifacts
due to alignment and regridding. In Group 6, the numbers
and lengths of runs vary within the group in complicated
ways. These forms of heterogeneity can affect the statistical
properties of estimated quantities, and lead one to question the
appropriateness of combining these subjects in a group analysis
(when not performing an explicitly large, multisite study, and
these differences have a larger relative variance within the
paradigm). Each of these items should lead to checking with the
source of the data. If acquiring the data locally, performing the
GTKYD check with each new subject can help identify problems
or changes immediately, and minimize data waste.
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TABLE 2 Summary of the first stage of resting state FMRI QC: GTKYD (“getting to know your data”).

GTKYD: “Getting To Know Your Data” results (resting state FMRI)

Property Description

Group 1: EPI

matrix size diff sub-118 has 112×112×47, from group std 96×96×47

num vols diff sub-114 and sub-115 have 128, from group std 256

vox dim diff sub-118 has 2.29×2.29×3.0 mm3, from group std 2.67×2.67×3.0 mm3

Group 1: anatomical

matrix size diff sub-104, sub-109, sub-112 and sub-117 have 256×180×256, from

group std 256×200×256

Group 2: EPI

large max values approx. 2-4×106

oblique

Group 2: anatomical

vox dim diff sub-203 has 1×0.93×0.93 mm**3 from group std 1×1×1 mm**3

matrix size diff sub-118 has 160×288×288, from group std 160×256×256

Group 3:

no warnings

Group 4: EPI

no slice timing

Group 5: EPI

matrix size diff sub-501, sub-502, sub-503, sub-504, sub-509 have 128×128×34,

instead of group norm 80×80×35; others have 80×80×35 and 80×80×39

mm3 instead of group std 3.0×3.0×4.0 mm3

datum diff sub-501, sub-502, sub-503, sub-504 and sub-509 have float,

instead of group std short

(some) oblique

no slice timing

Group 5: anatomical

orient diff sub-501, sub-502, sub-503, sub-504, sub-509 and sub-519 have RPI,

instead of group std LPI

matrix size diff much heterogeneity

oblique

Group 6: EPI

diff num of EPI sub-601, sub-602, sub-603, sub-604, sub-605, sub-606, sub-607 and

sub-620 only have 1, instead of group std 2

diff length of EPI sub-601, sub-602, sub-603, sub-604, sub-605, sub-606, sub-607 and

sub-620 have 240, 360, 480 or 724 time points, instead of group standard 130-133

oblique

no slice timing

Group 6: anatomical

matrix size diff sub-601, sub-602, sub-603, sub-604, sub-605, sub-606, sub-607,

sub-612, sub-619, and sub-620 have 256×256×256, split with others

having 256×256×176

oblique

(Continued)
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TABLE 2 (Continued)

GTKYD: “Getting To Know Your Data” results (resting state FMRI)

Group 7: EPI

oblique

Group 7: anatomical

(some) oblique

For each group, this displays cases of heterogeneity in basic dataset properties, as well as noteworthy values for checking or for informing processing choices. Items shown here might
prompt verification with the source of the data collection, whether it has been downloaded from a shared repository or is being acquired locally.

Table 2 also contains absolute quantities that were notable
either to prompt verification from the source of the data
or to inform processing choices. As an example of the
former, Group 2’s EPI values ranged from zero to over
2 × 106; while FMRI datasets have no inherent units and
this may not be a problem, these values are three orders of
magnitude larger than typical dataset values, and therefore
worth verifying their acquisition and reconstruction parameters
to ensure that no numerical features (truncation, saturation,
loss of contrast) have been introduced. Additionally, the
EPI datasets in Groups 4, 5 and 6 did not contain slice
timing information, which can be used for minor adjustment
across the slicewise acquisitions. The lack of this information
may be a reconstruction or distribution oversight, and hence
obtainable. Finally, different software packages utilize obliquity
information (the coordinate information that describes whether
a dataset is acquired obliquely, away from simple cardinal
orientations) differently during processing, such as: Applying
it and regridding the data; ignoring it and effectively shifting
coordinates; or leaving it in the header to be applied. Therefore,
the choice and order of processing steps, particularly when
it is present in an anatomical volume, may be affected by
its presence. Here, we chose to remove obliquity of any
anatomical volumes (while preserving the coordinate origin)
as an initial processing step, to avoid issues with other
software.

APQUANT evaluation

The quantitative drop criteria listed in Table 1 were applied
to the processed data, followed by APQUAL evaluations for each
subject and, in several cases, GUI checks. A brief summary table
of applying these stages of QC to the afni_proc.py-processed
datasets is shown in Table 3, listing subjects in one of the
three specified categories: Include (“high confidence to use in
the hypothetical study”), Exclude (“high confidence to remove”)
and Uncertain (“there is a question about whether to include”).
The Supplementary Table 1 contains a table with more detailed
descriptions for each subject.

In these tables, the QC comments are named hierarchically,
in the following format: STAGE.type[.subtype](detail), using
the terms listed in the previous section. For example,

APQUANT.excl.(“flip guess”) represents the label for the left-
right flip check within the exclusion criterion check during the
APQUANT stage. Some “detail” elements are not contained
within the brief table, but are included in the more complete
Supplementary Table 1. This notation has been introduced
to provide a clear, brief reference to the source of the
particular QC criterion.

There were 139 total resting state subjects processed. As
discussed further below, Groups 2 (20 subjects) and 4 (23
subjects) were found to have artifacts across all subjects,
following APQUAL and GUI QC checks. Of the remaining 96
subjects, 42 were categorized to include in further analysis, 37 to
exclude, and 17 were listed as uncertain. Of the 37 to exclude, 31
were evaluated as such using APQUANT criteria: 21 by censor
fraction, 8 by GCOR, and 2 by left-right flip checking (though
one additional subject was categorized as “uncertain,” primarily
due to left-right flip checking, as discussed in the APQUAL
section below). The left-right flip evaluations were always
visually verified during the APQUAL stage. The quantitative
GCOR value typically correlates highly with the APQUAL’s
“regr.corr_brain” evaluation, as well.

The warning-level APQUANT criteria were additionally
noted in subject evaluations (see the detailed Supplementary
Table 1). In particular, these were combined with APQUAL
criteria for determining additional “exclusion” or other
categorizations, as described below.

APQUAL evaluation

Figures 2–10 contain example images of the APQUAL
evaluations, which are (by definition) qualitative and visual.
Each figure shows multiple examples of the same APQC block
from the HTML report. Each QC image is labeled with a
colorband along its side, based on whether it would lead to
excluding the subject (red), including the subject (green) or
uncertain evaluation (yellow). Many images also contain arrows
highlighting features of note.

vorig
Figure 2 shows QC examples from looking at one volume

of the original EPI data (here, the “minimum outlier” volume
from the EPI time series, which had the fewest outliers within the
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TABLE 3 A brief summary of resting state FMRI dataset evaluations, based on the APQUANT, APQUAL and GUI QC checks.

QC evaluations (brief): Groups 1-7 (resting state FMRI)

Group 1 (I = 7, E = 8, U = 5) 508 E APQUAL.vstat.artifact

sub eval comment 509 E APQUAL.vorig.EPI

101 E APQUANT.excl(’flip guess’) 510 I

102 U GUI.instacorr(odd patterns) 511 E APQUANT.excl(’censor fraction’)

103 I 512 E APQUANT.excl(’censor fraction’)

104 E APQUANT.excl(’censor fraction’) 513 U APQUAL.vorig.EPI

105 I 514 I

106 E APQUANT.excl(’censor fraction’) 515 I

107 U APQUAL.vorig.EPI(ringing feature) 516 I

108 I 517 U APQUAL.vorig.EPI

109 I 518 E APQUAL.vorig.EPI

110 U APQUAL.vstat.quality 519 E APQUAL.vorig.EPI

111 E APQUANT.excl(’GCOR’) 520 I APQUAL.regr.tsnr_final.quality

112 I

113 I Group 6 (I = 10, E = 7, U = 3)

114 E APQUAL.vstat.artifact sub eval comment

115 E APQUANT.excl(’flip guess’) 601 E APQUANT.excl(’GCOR’)

116 E APQUAL.warn.flip 602 I

117 U APQUAL.regr.TSNR_final-artifact 603 E APQUANT.excl(’GCOR’)

118 E APQUANT.excl(’censor fraction’) 604 I

119 I 605 I

120 U APQUAL.regr.TSNR_final-artifact 606 E APQUAL.regr.corr_brain-quality

607 I

Group 2 (I = 0, E = 20, U = 0) 608 I

sub eval comment 609 E APQUANT.excl(’GCOR’)

2* E GUI.instacorr(’scanner artifact?’) 610 E APQUANT.excl(’GCOR’)

611 I

Group 3 (I = 9, E = 5, U = 2) 612 E APQUANT.excl(’GCOR’)

sub eval comment 613 E APQUANT.excl(’GCOR’)

301 U APQUAL.vstat.quality 614 I

302 I 615 U APQUAL.regr.corr_brain-quality

303 I 616 I

304 I 617 I

305 U APQUAL.vstat.quality 618 U APQUANT.warn(’GCOR’)

306 I 619 U APQUAL.vstat.quality

307 E APQUANT.excl(’censor fraction’) 620 I

308 I

309 E APQUANT.excl(’censor fraction’) Group 7 (I = 9, E = 10, U = 1)

310 I sub eval comment

311 I 701 E APQUANT.excl(’censor fraction’)

312 I 702 I

313 I 703 E APQUANT.excl(’censor fraction’)

314 E APQUANT.excl(’censor fraction’) 704 U APQUAL.vstat.quality

(Continued)
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TABLE 3 (Continued)

315 E APQUANT.excl(’censor fraction’) 705 E APQUANT.excl(’censor fraction’)

316 E APQUANT.excl(’censor fraction’) 706 E APQUANT.excl(’censor fraction’)

707 I

Group 4 (I = 0, E = 23, U = 0) 708 E APQUANT.excl(’censor fraction’)

sub eval comment 709 I

4* E GUI.instacorr(’scanner artifact?’) 710 I

711 I

Group 5 (I = 7, E = 7, U = 6) 712 E APQUANT.excl(’censor fraction’)

sub eval comment 713 E APQUANT.excl(’censor fraction’)

501 U APQUAL.regr.TSNR_final-artifact 714 E APQUANT.excl(’censor fraction’)

502 U APQUAL.regr.TSNR_final-artifact 715 E APQUANT.excl(’censor fraction’)

503 U APQUAL.vstat.quality 716 E APQUANT.excl(’censor fraction’)

504 U APQUAL.regr.TSNR_final-artifact 717 I

505 I 718 I

506 I 719 I

507 E APQUANT.excl(’censor fraction’) 720 I

The following abbreviations for evaluations (“eval”) are used: E, exclude; I, include; U, uncertain. Both Groups 2 and 4 were found to have artifacts in each of their datasets, and hence all
categorized for exclusion. A more detailed summary is provided in the Supplementary Table 1, with further comments about most subjects.

brain mask and was used as a reference for motion correction
and alignment to the anatomical). In panel A, sub-315’s EPI
shows a medium-sized patch of signal dropout. The associated
anatomical volume contained a smaller spot at that location, so it
is likely due to some local object (rather than a scanner artifact).
This places a question of the full signal effects in this region,
but since it is only moderate size and relatively constrained
to the central sulcus, it might be reasonable to include the
subject.

In Figure 2B, there is a strong ghosting signal present, as
further investigated using InstaCorr. It is particularly noticeable
throughout the central region of the brain, and, therefore,
the signal patterns would be highly non-physiological, and
the subject should be excluded. The subject in panel C has
a smaller amount of ghosting and a “ringing” artifact in the
inferior slices. The exact degree of signal effect is uncertain,
hence the QC rating. In panel D, we see that sub-509
has extremely large ventricles, which reduce the quality of
anatomical-to-template alignment, and may also reduce the
quality of EPI signal. The subject also has a large amount of
frontal and subcortical signal dropout, which renders inclusion
uncertain.

Finally, there were multiple subjects in Group 5 who had
upside-down EPI volumes, as shown in Figure 2E. Such large
header errors warrant rejection, because the correct left-right
designation is not possible to reliably ascertain a posteriori,
without a marker. While it would be possible to try to fix the
header and then assess results against the subject’s anatomical
using AFNI’s left-right flip check, given the nature of this header

issue one might not be sure of the correctness of the anatomical
volume’s reconstruction. Therefore, given the high uncertainty
of basic properties, such subjects should likely be excluded
(though, in a different setting, one might contact the source of
the data and query whether the initial reconstruction could be
corrected).

ve2a
Figure 3 shows the alignment of an EPI volume (underlay)

to the same subject’s anatomical (overlay, as edges). While
EPIs typically contain geometric distortions (e.g., EPI distortion
along the phase encode axis), affine registration is typically
adequate to align most major structures to the higher-resolution
and -detailed anatomical, as shown in panel A. However, EPI
images often contain signal dropout, particularly bordering
the sinus cavities, bordering the orbitofrontal cortex and
subcortex. The ve2a block (views of EPI-anatomical alignment)
provide useful images for assessing locations of dropout (as do
TSNR maps, described below). Panel B shows several locations
of poor signal strength and attenuation, which renders the
suitability of sub-210’s data uncertain. Panel C shows a case
where the geometric distortions make global EPI-anatomical
alignment difficult (see the signal pileup in the anterior and
attenuation/extension in the visual cortex).

An important point for judging EPI-anatomical alignment
is exemplified in Figure 3D. The most important features to
verify as matching are the tissue boundaries, sulci and gyri: The
internal structures. At the edge of the brain, cerebrospinal fluid
(CSF) can variously appear brightly, and make alignment details

Frontiers in Neuroscience 14 frontiersin.org

54

https://doi.org/10.3389/fnins.2022.1073800
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073800 January 24, 2023 Time: 21:45 # 15

Reynolds et al. 10.3389/fnins.2022.1073800

FIGURE 2

APQUAL examples for the “vorig” QC block: Visualizations of the original datasets (here, just the EPIs). In this figure and below, the colored
bands to the left of each item denote whether the given QC item would suggest that the subject should be excluded (red), included (green) or
leads to an “uncertain” evaluation (yellow); also, see Table 3 for brief, overall evaluations for each subject, and the Supplementary Table 1 for
detailed QC comments. (A) The EPI contains a moderately sized dropout region (but it is mostly contained within the central sulcus). (B) This EPI
contains severe ghosting artifact. (C) The inferior slices show a ringing artifact, and the frontal region is geometrically distorted. (D) This
subject’s large ventricle may negatively affect alignment to template space, and there is notable dropout in the orbitofrontal region and
subcortex. (E) The EPI is upside down, a significant header or data conversion problem.
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FIGURE 3

APQUAL examples for the “ve2a” QC block: Visualizations of the EPI-to-anatomical alignment (underlay = EPI; overlay = anatomical edges).
(A) Structures appear generally well-registered. (B) There is notable EPI signal loss in the frontal and subcortical regions. (C) The EPI contains
large distortions: Signal pileup in the anterior, and geometric stretching and signal attenuation in the visual cortex. (D) In judging EPI-anatomical
alignment, interior structures matter most and CSF (bright, and highlighted with arrows) should be ignored.
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FIGURE 4

APQUAL examples for the “vstat” QC block: Visualizations of statistical information after regression modeling [here, the seed-based correlation
map showing the default mode network (DMN]). The Pearson correlation values are overlaid, and are also used for thresholding, which is
applied transparently: Suprathreshold voxels are opaque and outlined in black, while sub-threshold values are also shown but with opacity
decreasing with value. This “highlighting” form of thresholding is applied here and below. (A) Expected regions are present, and high correlation
regions show network-related spatial specificity (some noise, blurring, and asymmetry are expected). (B) A large, non-physiological region of
high correlation is shown, and appears to be artifactual. (C) The expected network is discernible, but there is notable noise and distortion.
(D) Almost no intra-network correlation is observed.
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FIGURE 5

APQUAL examples for the “vstat” QC block: Visualizations of the statistical information after regression modeling (here, the seed-based
correlation map showing the visual network). (A) Expected regions are present, and high correlation regions show network-related spatial
specificity (some noise, blurring, and asymmetry are expected). (B) A large, non-physiological region of high correlation is shown, expanding
across multiple tissue boundaries, and appears to be artifactual. (C) Almost no intra-network correlation is observed. (D) The high correlation
pattern extends far beyond the expected network (to nearly all GM).
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FIGURE 6

APQUAL examples for the “regr” QC block: Regression evaluation through the correlation pattern of the brain-averaged residual time series
(“corr_brain” maps). (A) Regions of low-medium correlation are mainly located through the GM. (B) The whole brain volume correlates highly
with the global average, suggestive of strong non-physiological signals remaining in the data. (C) High correlation extends through the
intracranial regions, with large negative filaments, suggestive of strong non-physiological signals remaining in the data. (D) Strong patterns of
high correlation remain in the data, outside of GM.
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FIGURE 7

APQUAL examples for the “regr” QC block: TSNR maps of the final data after regression modeling (for each voxel, TSNR is the mean of the
modeled time series divided by the standard deviation of the residuals). (A) TSNR is relatively constant and high throughout the brain volume
(only very small regions of low signal, in the anterior temporal lobes). (B) Large regions of low-TSNR, particularly in the subcortex and
orbitofrontal regions, which may impact cortical results. (C) Vertical strips of low TSNR are present, which may affect connectivity analyses (and
which, after GUI-based investigation with InstaCorr, appear to be due to a significant artifact, shown in Figure 10, leading to subject exclusion;
hence, the inclusion of red in the colorband to the left of the image).

difficult to assess or create an impression of poor alignment. The
CSF is particularly bright in Panel D (and for many subjects in
Group 7), but the structural alignment still appears to be quite
high (albeit in the presence of some geometrical distortions).

vstat.DMN
Figure 4 shows part of the “vstat” QC block, which provides

views of statistics based on the regression modeling. For resting
state FMRI, this includes seed-based correlation maps when the

final data is in a recognized template space, and the images in
this panel use a seed in the left posterior cingulate cortex [L-
PCC; coordinate (5L, 49P, 40S) in the MNI template space],
which is a standard part of the standard default mode network
(DMN) along with medial prefrontal cortex and left/right
inferior parietal lobules. This (and the other vstat seed-based
vstat maps) provides a useful QC check for noise, artifact and
modeling, since generally consistent spatial network patterns
appear across age groups, species and alertness/sleep levels.
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FIGURE 8

APQUAL examples for the “warns” QC block: Warnings created during processing, here for possible left-right flipping between the EPI and
anatomical volumes. The warning field contains the APQUANT evaluation, based on cost function comparison (blue arrows), with its comment
on the original (yellow arrow) and flipped EPI volumes. Importantly, images of each alignment result within the test are shown, for visual
verification of the results. (A) The structures of the original EPI match well with the anatomical volume (and those of the flipped version do not),
suggesting consistency. (B) The structures of the original EPI do not match well with the anatomical volume, while those of the flipped version
do, suggesting inconsistency in the datasets.

Panel A shows what would be a typically reasonable result
for a single subject map for sub-505: The higher correlation
regions approximately follow the expected DMN pattern with
acceptable specificity and approximate symmetry. Given the
generally low SNR of FMRI, as well as length of scanning,
one expects small noise patterns of correlation/anticorrelation.
Note that here “transparent thresholding” is applied to the
overlay, so that results below Pearson |r| = 0.3 are still

observed, and brain masking is not applied: These features
reduce the sensitivity of results to threshold value and allow
for subtle patterns anywhere within the acquired FOV to be
observed, which is vital for artifact detection (Taylor et al.,
2022).

Figure 4B shows an example of an obvious artifact
appearing in the correlation map of sub-203. The slice-wise
nature of strong correlation throughout the brain is highly
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FIGURE 9

Combining APQUAL blocks: ve2a and warns (see Figures 3, 8). The structures of the aligned EPI do not match well with those of the anatomical,
even though neither appears heavily distorted [ve2a, (A)]. The left-right flip check provides a “medium” level warning, because the cost function
comparison is ambiguous [warns, (B); see blue arrows]. Visually, neither the original nor flipped EPI matches well with the anatomical structures,
even though all other subjects in the group had strong alignment. Since the structures appear to differ, this suggests that the EPI and anatomical
volumes for this dataset may actually come from different subjects.

non-physiological, and strongly suggests this subject should
be excluded from further analyses. Motion levels and other
quantitative QC properties for this subject were not even at a
warning level. The other two seed-based maps of the visual and
auditory networks did not show obvious artifactual patterns,
but the “corr_brain” map and “radcor” maps in the QC did
show further extent of odd patterns. As described below, we
also applied the GUI to investigate this subject (and others
within Group 2), further verifying the presence of artifact
(which unfortunately led to the exclusion of all subjects within
Group 2).

Panels C and D of Figure 4 show other issues that
can be arise in seed-based correlation maps: Noisiness
(without an obvious artifact), which includes relatively high
correlation/anticorrelation scattered around the FOV and/or

mildly distorted patterns, as for sub-118; and widespread low
or missing correlation patterns, as for sub-413 (and alignment
quality was verified, so seed location did not appear to be
obviously erroneous). In either case, the lack of strong artifact
pattern makes it difficult to decide to exclude either subject
from these images alone, and further investigations would be
needed to avoid biasing the final group selection. (In these
cases, the APQUANT stage showed suprathreshold censoring
levels of 61% for sub-118, and the GUI-based InstaCorr check
revealed notable artifact patterns in the frontal region for sub-
413; therefore, from those separate criteria, each subject was
excluded).

vstat.vis
Figure 5 shows another vstat visualization, for the visual

network [seed located at coordinate (4R, 91A, 3I) in the MNI
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FIGURE 10

GUI examples of QC, using AFNI’s InstaCorr: This provides deeper understanding of the spatiotemporal patterns of the data through interactive
driving of seed-based correlation. Several subjects in Groups 2 and 4 had difficult to interpret APQUAL QC results, particularly in seed-based
correlation maps (vstat); upon further inspection here, it was apparent that those subjects contained large artifacts within the EPI datasets, as
evinced by large correlation/anticorrelation patterns from seed locations in deep WM (Group 2) and extensive, non-physiological
correlation/anticorrelation patterns from frontal GM/WM seeds (Group 4). In the end, these artifacts appeared to be present in all subjects of
these groups, so that all were categorized for exclusion.

template space]. Panel A shows an expected correlation map for
the same sub-505, which essentially contains high correlation
in the V1/V2, V3, occipital areas and visual-associated areas.
In contrast, panel B shows the presence of large patches of
strong correlation and anticorrelation in other parts of the brain
for sub-209. Furthermore, these patterns are not constrained
by physiological or tissue boundaries. In total, this leads to

excluding this subject (as noted above, GUI follow-up across
Group 2 further verified extended artifacts).

In Figure 5C, a low/missing correlation pattern is observed
for sub-305, again leading to an uncertain evaluation from this
image. For this subject, the same low correlation was observed
across all seed-based maps, but there was no obvious criterion
for exclusion, and therefore the “uncertain” rating remained. In
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panel D, sub-403’s network map shows unexpectedly extensive
regions of high correlation, throughout most of the gray matter
(GM). While this “overfull” region of high correlation differs
notably from the visual network regions, the lack of distinct,
non-physiological patterning makes it difficult to exclude a
subject from this image. (This subject’s APQUANT criteria were
all below threshold, but as noted above, a GUI QC check with
InstaCorr revealed that all subjects in Group 4 had a notable
artifact within their dataset, leading to their exclusion).

regr.corr_brain
Figure 6 displays another volumetric visualization, which is

the “regr” block’s “corr_brain” map: The brainwide average of
the regression model’s residual time series (the “global signal”) is
correlated with each voxel in the FOV. This essentially provides
a visual assessment and corollary to the GCOR parameter (Saad
et al., 2013), which is used as a warning and exclusion criterion
in the APQUANT QC. Panel A shows a correlation map for
sub-505, whose data had generally reasonable correlation maps
(and a very subthreshold GCOR = 0.05). Much of the GM
shows a generally positive and “medium-level” correlation, with
typically low correlation in other tissues. This can be contrasted
with sub-610, whose map has universally quite high correlation
and leads them to being excluded (as did the associated
GCOR = 0.47, in the APQUANT stage).

Figure 6C shows another problematic corr_brain map.
While the GCOR = 0.08 for sub-508 is well below threshold,
the relatively high correlation patterns across all tissues and
anticorrelation boundaries appear to be artifactual. We note
that this subject also displayed artifactual patterns in the vstat
seed-based correlation maps. The high correlation patterns for
sub-118 in panel D do not show the same whole brain coverage,
but they do appear to be strongly non-physiological, and lead to
this subject also being excluded. (Recall this subject’s “uncertain”
noisy correlation map in Figure 3C, as well as the fact that
censoring levels were also at a level for exclusion).

regr.TSNR
In Figure 7, TSNR maps for the final, regressed data are

shown3. As typical TSNR ranges can vary with scanner site, the
colorbar is defined relative to a 5–95% ile interval within the
brain mask (providing the min-max values of the hot colors,
respectively). Panel A shows a relatively good TSNR pattern:
While there is some dropout in the orbitofrontal regions and
temporal lobes for sub-313, such effects are present in nearly
all FMRI and the TSNR strength is relatively constant across
the brain and GM. If the low TSNR is not in a focal region
of the study, then this subject would be fine to include in
the subsequent analyses; for studies that include these regions

3 TSNR can be variously defined in FMRI studies. Here, TSNR is the ratio
of the mean of the voxel’s final time series to the standard deviation of
its residual time series.

of typical signal loss, one would have to adjust acquisition
parameters to avoid problematic distortions. (Note that one
can observe the tight FOV for this subject’s EPI, which would
preferably be larger to avoid TSNR issues in the superior slices,
as well).

The TSNR map for sub-614 in Figure 7B shows a larger
area of dropout in the inferior regions of the brain. As shown
in the images, a larger fraction of the temporal lobe, subcortex
and orbitofrontal regions have notably lower TSNR than the rest
of the brain. As whole brain connectivity studies often include
these regions, it is likely that such differences in FMRI signal
could affect the final results, depending on the hypotheses and
exact paradigm. Therefore, this subject may not be appropriate
to include in the study, and is rated “uncertain” from these
images.

Figure 7C shows a TSNR map for sub-403 with relatively
full whole brain coverage of constant TSNR, even in the
inferior and subcortical regions. However, there are notable
vertical stripes of low-TSNR that appear in each hemisphere
in the anterior regions (see the sagittal slices). Such non-
physiological patterns suggest some kind of artifactual signal
issue, such as significantly strong ghosting, which may affect
large areas of interest. Therefore, these patterns may mean
that this subject would be inappropriate to include in
further analyses. However, we note that in a follow-up QC
analysis using InstaCorr in the AFNI GUI, these striped
locations showed extreme and non-physiological patterns of
correlation/anticorrelation (described further below, and see
Figure 10). These low TSNR stripes were observed across
Group 4, and the GUI follow-up revealed the same artifact
in all subjects, leading to the exclusion of this group. Thus,
in this group the low-TSNR striping was a hallmark of an
artifact that always led to excluding a subject, but it is possible
that in other datasets, that might not be the case. At the
least, such patterns warrant detailed follow-up, likely using the
GUI.

warns.flip
The APQC HTML contains a “warns” section that is

comprised of the results of various automatic checks that
occur during afni_proc.py processing (see list, above). Each
has an associated warning level of “none,” “mild,” “medium,”
“severe,” or “uncertain.” Figure 8 shows the results of a
particular warning that spans the APQUANT and APQUAL
QC: Checking for left-right flips between the EPI and
anatomical volumes. Panel A’s results suggest that sub-606
does not show an inconsistency: The cost function value
of the original data set is much lower than the flipped
version (blue arrows; and note that cost functions are
minimized in the alignment process), and the images below
allow one to visually verify that the cortical patterns of the
original EPI are much more consistent with those of the
anatomical volume. NB: The structures of the superior cortex
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tend to be much less left-right symmetric than the inferior
regions and subcortex, and therefore provide more convincing
evidence.

Figure 8B shows an example of the quantitative flip-
check strongly suggesting that sub-101’s original EPI and
anatomical volumes have a relative left-right flip. This result
is visually verifiable in the associated images. Since the
absolute left-right definition cannot be known (without external
indication such as a vitamin E tablet in the FOV), this subject
would be excluded from further analysis. The data for sub-
115 in this group similarly appeared to have a left-right
flip.

A particularly interesting case of left-right flip check results
is shown in Figure 9. Here, sub-116’s ve2a check initially showed
a relatively poor EPI-to-anatomical alignment. Additionally,
the left-right flip check provides a “medium” level warning,
because the cost function values when using the original
or flipped EPI are extremely close; in such as case, the
recommendation whether to flip or not is difficult to interpret,
as it is effectively “within the error bars” of the alignment’s cost
function estimation. Looking at all of the images, it appears as
if the cortical structures of the EPI and anatomical volumes
do not match well in either case. Given that the EPI distortion
is not very large and that the EPI-anatomical alignment for
all other subjects from the site displayed excellent structural
correspondence, these QC results suggest that the two volumes
in sub-116’s dataste did not actually come from the same subject.
When using a publicly downloaded dataset, this is only a
supposition and cannot be directly verified, and, therefore, we
are uncertain about whether to include this “subject” in further
analyses.

GUI evaluation with InstaCorr

The APQUAL and APQUANT items listed above provide
useful QC information: The quantitative and visual aspects
provide complementary aspects for efficiently and systematically
understanding many aspects of the data. For example, the
EPI and anatomical left-right flip check can be quantitatively
evaluated, but should always be visually verified. As shown for
sub-116 in Figure 9, data visualizations are sometimes even
necessary for interpreting quantitative findings appropriately.
However, in some cases even the APQUAL visualizations did
not contain enough information to confidently make a QC
evaluation. Therefore, the GUI stage of QC was used in
several cases, in particular using the “run” script provided by
afni_proc.py to efficiently start the AFNI GUI with InstaCorr
set up, to explore the spatiotemporal properties of the EPI data.

Figure 10 shows a set of representative GUI snapshots
when applying InstaCorr. As noted above, some of the
correlation patterns for subjects in Groups 2 and 4 were not
as expected: Some contained large patches of correlation and

anticorrelation; some contained faint (subthreshold) patterns
that were difficult to interpret; some contained extremely
low or missing spatial patterns. For all subjects in these
groups, the GUI follow-up revealed strong artifactual patterns
in seed-based correlations, and example of these are shown
for a subset of each group and contrasted with what might
be considered a reasonable pattern at the same location
in subject that did not appear to have artifacts (sub-
108).

The seed location for each of the Group 2 subjects
(sub-216, sub-218 and sub-219) is located in deep white
matter (WM), which should have minimal patterns of
correlation. As in the left column, one might expect a
small, local patch of correlation even in WM, due to
data blurring, remaining motion artifacts, vascular-driven
BOLD response in WM, and more. However, the large
patterns of high correlation/anticorrelation for each Group
2 subject spans tissue boundaries non-physiologically. Since
these patterns overlap variously with GM, they do not
appear possible to separate typical resting state connectivity
analyses, and therefore all of Group 2’s subjects were
categorized for exclusion.

InstaCorr analysis for Group 4 (sub-401, sub-402, and
sub-403) revealed a different location of artifact, as shown
in the lower panels of Figure 10. With a seed located in
either the left or right frontal GM or WM, again strong
patterns of high correlation and anticorrelation appeared,
in this case alternating and even extending outside the
brain. Again, these patterns are in contrast with expected
local and/or localized symmetric patterns of correlation,
depending on the GM/WM content of the seed region.
These artifactual patterns throughout the frontal cortex
GM also imply that resting state connectivity analyses
would be strongly affected by non-physiological features, and
therefore all of Group 4’s subjects were also categorized for
exclusion.

Group summary QC notes

After performing the detailed single subject checks listed
above, it can be useful to summarize features or trends that
appear across the group. These may be helpful for judging the
overall applicability of a data collection for a particular study
question. Additionally, these may aid planning future studies, by
either replicating important features or by avoiding non-ideal
aspects, possibly adjusting acquisition parameters. In general,
the following overall properties of each group are based on the
visualization methods described in the APQUAL stage.

Group 1 had several subjects with relatively low visual
cortex correlation in vstat.vis seed-based correlation maps,
even though the other network correlation maps were more
standardly represented. There were some light vertical striping
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patterns in the frontal brain regions of the TSNR plots,
suggesting some mild ghosting effects. Finally, in the individual
motion parameter plots, the dP (translation along A-P axis)
tended to have a noticeably linear increase across time, which
might be due to frequency drift (e.g., Foerster et al., 2005)
or even from settling into a pillow; while not necessarily a
problem, this is an example of a group-wide feature in the data
that is worth understanding, particularly if acquiring one’s own
data.

Subjects in Group 2 had relatively high corr_brain maps, and
the TSNR dipped noticeably in the center of the brain. The radial
correlation (radcor) patterns were noticeably high centrally, and
this led to discovering the presence of a strong artifact across
all subjects, using InstaCorr. If subject data were still being
acquired, such an artifact might encourage close examination of
all datasets coming from that particular scanner.

Groups 3 and 4 each had relatively tight FOV for the EPI
acquisitions. These might negatively affect signal quality in some
boundary regions.

Group 4’s EPI volumes had quite short time series (123
points). The TSNR plots showed a strong vertical striping
pattern, which led to the discovery of a notable frontal artifact
across all subjects, using InstaCorr. The motion plots revealed a
steady dP translation over time (as well as some notable linear
trends in other parameters).

In Group 5, the basic acquisition features of voxel
dimension and matrix size were quite heterogeneous.
Non-linear alignment of the highly anisotropic EPI voxels
(1.87 mm × 1.87 mm × 4.0 mm) produced slight swirls in
patterns, which is one reason that acquiring anisotropic voxels
is not recommended for standard group analyses; it also creates
a grid-based dependence for the acquired data (e.g., which brain
regions are averaged together depends on the orientation of a
subject’s head in the scanner), a property that should be avoided.
There was also noticeable signal loss in the orbitofrontal and
temporal lobes, as well as the subcortex, which may lead to the
exclusion of most of these subjects in some whole brain studies,
depending on the specific regions of interest.

Group 6 also had a large heterogeneity in basic acquisition
parameters, particularly in terms of number of EPI runs and
run lengths, as well as matrix sizes. There was notable geometric
distortion in the EPIs, particularly along the phase encode axis,
with both signal pileup and attenuation; due to the different
patterns of distortion, the phase encode direction may have been
inconsistent across the group. TSNR was high across much of
the brain, but low in the orbitofrontal and temporal lobes. There
were relatively high values of the corr_brain (the correlation of
the average residual signal across the brain).

Group 7 had notably bright CSF in the frontal portions
of the brain in the EPI, but this did not appear detrimental
to alignment or analyses. This group seemed relatively
prone to motion, with many subjects having unusually high
censor fractions.

TABLE 4 Summary of the first stage of task-based FMRI QC: GTKYD
(“getting to know your data”).

GTKYD: “Getting To Know Your Data” results
(task-based FMRI)

Property Description

Group 0: EPI

orient diff sub-010 has RIA, from group std RPI

oblique

anatomical

(some) oblique

This displays cases of heterogeneity in basic dataset properties, as well as noteworthy
values for checking or for informing processing choices. Items shown here might prompt
verification with the source of the data collection, whether it has been downloaded from
a shared repository or is being acquired locally.

Results for task-based data
collection

GTKYD summary

Similar to the analysis of resting state FMRI, GTKYD was
the first stage of checking each group’s data, and no subject
exclusions were made from this step. The summary of basic
dataset properties for the single group of task-based FMRI
(Group 0, 30 subjects) is shown in Table 4. One subject’s EPI had
a different orientation from the rest of the subjects. While all EPI
volumes were acquired obliquely, only a subset of anatomical
volumes were acquired obliquely.

The table of GTKYD checks for the task-based FMRI group
is shown in Table 4. Here, one subject’s EPI had a different
orientation than the rest. While all EPI volumes were acquired
obliquely, only some of the anatomical volumes had obliquity
information; as with the resting state data, we chose to deoblique
these anatomicals as an initial processing step. Finally, no slice
timing information was present for these EPI volumes.

APQUANT

Table 5 shows a brief summary applying APQUANT
exclusion criteria (itemized in Table 1) and additional APQUAL
and GUI checks to the task-based FMRI group. The same subject
dataset categorizations (described above): Include, Exclude and
Uncertain. The Supplementary Table 1 contains a table with
more detailed descriptions for each subject.

The task-based FMRI data from 30 total subjects were
processed. Following the QC checks, 15 were categorized
to include for further analysis, 7 to exclude and 8 were
listed as uncertain. Each excluded subject had at least one
APQUANT criterion that resulted in that categorization (and
typically multiple ones, as well as APQUAL items; see the
detailed Supplementary Table 1). Most of the “uncertain”
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TABLE 5 A brief summary of task-based FMRI dataset evaluations, based on the APQUANT, APQUAL and GUI QC checks.

QC evaluations (brief): Group 0 (task-based FMRI)

Group 0 (I = 15, E = 7, U = 8)

sub eval comment

001 I 016 U APQUAL.vstat.quality

002 I 017 E APQUANT.excl(’fraction TRs censored’)

003 I 018 I

004 I 019 I

005 U APQUAL.vstat.quality 020 U APQUAL.vstat.quality

006 I 021 U APQUAL.vorig.EPI

007 I 022 E APQUANT.excl(’fraction TRs censored’)

008 I 023 U APQUAL.vstat.quality

009 E APQUANT.excl(’fraction TRs censored’) 024 E APQUANT.excl(’fraction TRs censored’)

010 U APQUAL.vstat.quality 025 U APQUAL.vstat.quality

011 I 026 E APQUANT.excl(’fraction TRs censored’)

012 E APQUANT.excl(’fraction TRs censored’) 027 E APQUANT.excl(’fraction TRs censored’)

013 U APQUAL.vstat.quality 028 I

014 I 029 I

015 I 030 I

The following abbreviations for evaluations (“eval”) are used: E, exclude; I, include; U, uncertain. A more detailed summary is provided in the Supplementary Table 1, with further
comments about most subjects.

categorizations were due APQUAL examination, particularly to
visualization of the statistical results, which are described in the
next section.

APQUAL evaluation

Figures 11–14 contain example images of the APQUAL
evaluations for Group 0. These figures come from the APQC
HTML report, of which most QC blocks are the same as for
resting state FMRI. One exception is the vstat block, which
shows F-stats and modeling coefficients (effect estimates) and
associated statistics. The same colorband labels used for the
resting state examples (see Figure 2) are used, as well as arrows
to highlight features of note. In general, there were fewer QC
issues with this group than for Groups 1–7. Therefore, we focus
on different features in the overlapping blocks, as well as some
of the stimulus-specific QC considerations.

vorig
Figure 11 shows QC examples from the “minimum outlier”

EPI, used as a reference for motion correction and anatomical
alignment. In panel A, sub-030’s volume does not display any
obvious artifact or major distortion. The tissue contrast is also
reasonable (some of the superior slices have slightly higher
brightness, but the maximum value did not show saturation).
In panel B, the FOV is much tighter for sub-020, and there
is a notable ghosting artifact: The brain and skull from the

posterior part of the brain is wrapped around to the anterior,
and here appears to overlap with the brain volume. While
different degrees of ghosting occur in many EPI acquisitions,
there is a question here of whether the visible overlap suggests
problematically strong signal interference in a non-negligible
region of the study. In panel C, the inferior slices show the
presence of ghosting or phase artifact. The distortion is limited
to approximately the bottom ten slices, but this includes large
portions of the frontal and temporal lobes (as well as other parts
of the brain).

vstat
Figure 12 shows images of the full F-stat maps, which are

part of each “vstat” block for task-based FMRI. As a ratio of
explained variance to unexplained variance after regression,
the full F-stat provides information on the relative model fit
(higher values = better fit). These images provide a useful
QC check for noise, stimulus modeling and motion reduction,
though their details and expected patterns will (necessarily) vary
strongly by paradigm. While there might be some expectation
of regions of high F-stat that should be observed (e.g., the visual
cortex when an on/off stimulus is presented visually; the motor
cortex when button responses are used; some particular region
from a previous study or theoretical rationale), it is difficult
to apply an unexpected patterns as a drop criterion, unless
an obvious artifact is observed, for example. Strong deviations
across many subjects may be a sign of study design issues, subject
unresponsiveness, stimulus timing issues or simply unexpected
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FIGURE 11

APQUAL examples for the task-based FMRI group from the “vorig” QC block: Visualizations of the original datasets (here, just the EPIs). See
Table 5 for brief, overall evaluations for each subject, and the Supplementary Table 1 for detailed QC comments. (A) The EPI does not appear to
have any major artifact, ghosting or distortion, and tissue contrast is reasonable. (B) The FOV of this volume is overly tight for this subject, so
that there is ghosting of the posterior brain and skull which overlaps the anterior portion. (C) The inferior slices show a ghosting or phase
distortion artifact—part of the frontal and temporal lobe regions are notably distorted.

findings. While worth noting and commenting on, variations in
statistical patterns will still be expected, and one must be careful
not to bias results in the QC process.

In the present study, panel A of this figure (sub-001) shows
what is likely a reasonable quality F-stat map for the present
paradigm. A similar F-stat range (99% ile within the brain mask
>40) and spatial pattern [high values in visual cortex, and
left and right inferior frontal junction (IFJ); see green arrows
in Z = 27S] were observed across many subjects, particularly
among those with no obvious exclusion criterion. The high
F-stat regions are localized in GM, and no obvious artifact or
non-physiological patterns are observed.

Panels B and C show two subjects (sub-005 and sub-016,
respectively) with generally lower F-stat values across the brain
(99%ile within the brain mask <10). Note that motion and
censoring levels for these subjects were not particularly, and
no quantitative (APQUANT) criteria suggested excluding them.
In the vstat images, the relative noise levels are higher and
observed throughout the intranial region, and there are fewer

obvious patterns of localized clusters of high F-stat. In B,
relatively high F-stat clusters appear in the IFJ, but are barely
observable in the visual cortex; in C, the opposite is the case,
with the ventricles also showing surprisingly high F-stat. Such
variations from the “standard” pattern are difficult to interpret,
but are worrisome for including these subjects in group analysis.
Further exploration was made using InstaCorr in the GUI
(described below).

One of the additional vstat images automatically created
was for the “TASK” stimulus, which is shown in Figure 13.
This shows the coefficient (effect estimate) for the stimulus as
the overlay, which here has units of BOLD% signal change,
scaled to a 2 s stimulus, due to the inclusion of the scaling
block and typical mean stimulus durations. Observing the
coefficient (instead of just overlaying the statistic itself) is
useful for interpreting the model results and judging their
reasonableness. The stimulus (and contrast) plots also contain
useful sign information, which is lacking in the F-stat images.
Here, the locations of large effect and statistical significance
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FIGURE 12

APQUAL examples for the task-based FMRI group from “vstat” QC block: Visualizations of statistical and modeling information after regression
(here, the full F-stat from the regression modeling, highlighting regions of high model fitting). (A) High F-stat values are localized in GM (esp.
visual cortex, and perhaps some in expected regions, if background knowledge is present), and this spatial pattern is fairly typical across the
group (green arrows). (B) Compared to (A) the F-stat values are much lower (poorer fits) and less localized in GM, including the visual cortex,
though the frontal regions in slice Z=27S are observable; scattered noise has relatively high amplitude. (C) Compared to (A) F-stat values are
much lower (poor fits) and less localized in GM, though part of the visual cortex is observed clearly; the ventricles have relatively high F-stat.
(D) This dataset has similarly reasonable properties as dataset A, even though 57% of its time points were censored due to motion (note the
second value in the degree of freedom count, df = 92, is much lower than the other volumes); this subject was still excluded, because of the
automatic quantitative (APQUANT) criteria.

Frontiers in Neuroscience 29 frontiersin.org

69

https://doi.org/10.3389/fnins.2022.1073800
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073800 January 24, 2023 Time: 21:45 # 30

Reynolds et al. 10.3389/fnins.2022.1073800

typically mirror the high F-stat locations for panels A–D. Note
that in panels B, the IFJ regions do not appear to have very
strong “Task” stimulus response (relatively low magnitudes
and statistics values). In panel C, the ventricles (which had
high F-stat values in the same panel of Figure 13) show
negative coefficients for this stimulus. While these images
provide further useful details, again we note that the GUI
was used to provide further information for sub-005 and sub-
016.

vstat, mot, regr
Figure 14 shows several QC block results for sub-024. The

vstat image in panel A shows a noisy statistical pattern and
overall low peak F-stat values. Looking at other QC blocks
or data aspects may provide useful information about why
this dataset looks different, such as: Subject motion, lack of
stimulus response, mismatched timing files, acquisition artifact
or something else. This insight may be particularly important
if checking datasets as they are acquired, to determine if study
design or setup may be leading to a higher chance of having poor
quality datasets.

For this figure’s sub-024, 36% of the time points were
censored during processing (as well as >34% of each stimulus
class’s response time), and the Enorm and outlier fraction plots
(with threshold values and censoring bands) are shown in panel
B. This high censor fraction led to this being categorized to be
excluded in the APQUANT section, both because of the large
information loss during stimulus events and due to the likely
presence of remaining motion effects in the non-censored time
points in practice; however, some subjects with high censor
fractions do have stimulus response maps that appear to have
reasonable quality (see panel D of Figures 12, 13), particularly
if the motion is not strongly linked to stimulus events. Panels C
and D show the ideal BOLD response curves for this subject, for
both the individual stimuli and their sum, respectively, which
also contain the censoring bands for reference. In this case,
one might observe a possible trend of censoring during or
immediately following stimulus events: It is possible that this
subject has stimulus correlated motion, so that regression out
motion regressors would also remove much of the stimulus-
specific features. If several subjects contained such a correlation,
then this would suggest the study design should be adjusted, or
further procedures taken to reduce motion (e.g., giving specific
instructions for the subjects, or having subjects practice the task
and then provide feedback if motion appears high). Further QC
investigations using an interactive GUI are described in the next
section.

GUI evaluation: InstaCorr

Following the APQUANT and APQUAL stages described
above, we further explored several of the datasets using the GUI,

again using the “run” InstaCorr script provided by afni_proc.py.
This can be useful generally to observe artifacts or systemic
spatiotemporal features in the data. In particular, the APQUAL
reports showed most subjects having strong task responses in
visual areas, while others did not, some even when motion was
low. This prompted a review using InstaCorr, which showed
multiple features. Figure 15 shows InstaCorr images from sub-
001 and sub-005 as respective examples of having strong task
responses and not. While sub-005 had a poor task response,
there were high correlations in the visual area (top row) and IJF
(second row), akin to those of sub-001. Were we collecting this
data locally, we would review the stimulus timing file creation, to
be sure there were no mistakes. But sub-005 also shows unusual
correlation and anti-correlation patterns between GM and deep
WM, as well as with the ventricles. This led to the “uncertain”
QC evaluation of sub-005.

STIM evaluation

All subjects had essentially the same event onset timing,
within 0.1 s, except for 2 subjects (sub-002, sub-026) for whom
all events started 2 s later. Onsets (ignoring stimulus duration)
were separated by times from 2.5 up to 18.5 s, with a mean
of 7.5 s and a standard deviation of 3.5. When response time
was applied for the duration, Control events had per-subject
duration means from 0.51 up to 1.57 s, with an overall range
of ≈0.0–2.43 s. Task events had per-subject means from 0.45
up to 2.65 s, with an overall range of≈0.0–4 s (with the latter
being the maximum possible). ISI times (onset separations
minus stimulus durations) ranged from 1.3 to 17.3 s, with
a mean of 6.4 s. With well separated events, there were no
concerning pairwise correlations between regressors. Though
we note that since there were only two conditions, they were
mildly predictive of each other, leading to typical pairwise
correlations around −0.4 for those regressors of interest. The
regression matrix condition numbers (computed as the ratio of
the largest to smallest eigenvalues) very modestly ranged from
41.6 to 325.0, and were that high only due to correlations among
the motion regressors.

Group summary notes

The EPI volumes for Group 0 tended to have a tight
FOV, particularly along the anterior-posterior brain axis. For
several subjects, the strength of ghosting was large enough to
be observed overlapping the frontal brain regions, which can
create artifacts. There was notable EPI distortion in the inferior
slices of several subjects, and the TSNR was generally low in the
subcortex, temporal lobe and orbitofrontal lobe. Additionally,
nearly every subject had the same timing onset; it is more
common in newer studies that subjects would have randomized
stimulus timing, though with similar statistical properties.
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FIGURE 13

APQUAL examples for the task-based FMRI group from “vstat” QC block: Visualizations of statistical and modeling information after regression
(here, the “TASK” stimulus coefficient is shown as the overlay colors, and its t-statistic values are used for thresholding). Each panel corresponds
to that of Figure 12, though a different aspect of the modeling is shown here: Namely, the task stimulus coefficient that, after scaling, now has
physical units of BOLD percent change, as well as the associated statistic (used for thresholding). Similar comments generally apply for each
subject to those of Figure 12, but note that: For sub-005 [panel (B)], the high F-stat regions in frontal regions in Z = 27S were not strongly
associated with this task, unlike in panels (A,D); and for sub-016 [panel (C)], the ventricle pattern noted in the previous figure are negatively
associated with the main task.
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FIGURE 14

Combining APQUAL blocks: vstat (see Figure 12), mot (for combined motion estimates and censoring), and regr block plots of stimulus
responses. The full F-stat map for sub-024 in panel (A) is noisy and shows relatively poor model fitting across the brain (cf Figures 12A, D). In
trying to understand more about this subject’s data, the motion estimate responses are shown in panel (B), where a large fraction of time points
have been censored (>36%; shown in the red bands). Furthermore, in viewing the locations of censoring with respect to the ideal stimulus
response curves for this subject [panels (C,D)], one sees that much of the motion appears to occur during many of the stimulus events. Thus, it
is possible that this subject exhibits stimulus-correlated motion, which is particularly difficult to remove with modeling.

Discussion

We have described a multi-stage process of QC for FMRI
datasets. The stages are layered and complementary to help

researchers understand their neuroimaging datasets, which
themselves are complex and require many levels of processing
that should be verified. We also introduced a standardized
ontology to organize the recording and reporting of the QC
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FIGURE 15

GUI examples of QC for task-based FMRI, using AFNI’s InstaCorr, to explore the spatiotemporal patterns of the EPI residuals with interactive
seed-based correlation. The crosshairs show the seed location for two different subjects: sub-001 (left col) and sub-005 (right col); the same
seed location is used, per row of images. The positive correlation responses are quite similar in both supra-threshold spatial coverage and
magnitude for seeds in the visual cortex and IFJ (top and second rows, respectively). However, large, unexpected anticorrelation patterns in GM
were observed for sub-005, leading to this subject being evaluated as “uncertain.”

procedure. These QC methods have grown and adapted over
time, and will surely continue to do so, particularly through
collaborations, encounters with more data, and neuroimaging
community interactions such as the one at the core of this
Research Topic project. It should be emphasized again that even
beyond “including” and “excluding” subjects from a study,
the larger–and perhaps more important—perspective of this
process is to become confident of the contents of the data being
analyzed. This principle applies to both public data that has
been downloaded (which may or may not have been curated,
or might have been curated with different analyses in mind)
as well as to locally acquired data. Scanner upgrades, manual
entry to scanner consoles, “automatic” console settings (that can
change due to subject weight, for example), and more can affect
the properties of acquired data in subtle but important ways.
The researcher always has the responsibility to be aware of the
dataset contents and their relative applicability for a given study.

Quality control, in the holistic sense emphasized throughout
this paper, should start at the earliest stages of a study.
Researchers should be “close to their data” from the very

beginning, to reduce chances of downstream problems.
Consider the following four steps:

1. Perform GTKYD, APQUANT and APQUAL checks, and
review the results systematically.

2. Compare GTKYD, APQUANT and APQUAL results with
previous studies.

3. (for task data) Review the duration and ISI statistics from
any stimulus timing files.

4. Use the GUI to check steps of the processing (in particular
running the automatically generated InstaCorr scripts) and
look for any peculiarities.

When acquiring the first few subjects in a new project, it
is important to perform a detailed review of the QC results
across all stages, performing Steps 1–4; the same applies when
starting with a shared data collection, examining a few subjects
in detail. Any problems or questions should be dealt with
immediately, to avoid data waste. After this in-depth review
of the first few subjects, Steps 1–3 can be performed for the
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remaining subjects, with GUI investigations performed if any
abnormalities are found.

The QC procedure of filtering subjects from further analysis
is a subtle one: A researcher must balance the goal of basing
results on reliable, non-artifactual data with the need to avoid
introducing a bias. To date, there are no universal set of criteria
for this process, and the heterogeneity of acquisition techniques,
subject populations, research questions and analysis methods
suggest this would be a challenging task. For any QC criterion, a
desired trait is that in practice results are not overly sensitive
to its thresholding value. For example, if a small change in
a quantitative threshold leads to a large change in subjects
excluded, one might try to find an alternate QC measure with
a better delineation. One expects that over time and with
more experience and feedback, QC measures will evolve to
improve FMRI analysis.

Both quantitative and qualitative criteria have unique
benefits; in many cases, they provide complementary checks and
verifications. Quantitative ones are easier to apply uniformly,
but in fact many quantities and their threshold values are
based on much qualitative “training” and experience with
datasets (and the many ways in which artifactual features
can arise). Qualitative criteria require particular attention to
be applied consistently, but, as evinced here, they provide a
necessary perspective on data that is otherwise missed due to
the inherently large data compression of derived quantities. If
possible, qualitative criteria should not be central to the current
analysis (to avoid bias), though that may not always entirely
be possible (in which case, one must rely on the consistency
of assumptions).

The primary QC criteria presented here relied on derived
quantities (in the GTKYD, APQUANT, and STIM stages) and
static images (in APQUAL) of the data. These are useful and
able to be generated in automatic and systematic ways during
processing (in the present work, via afni_proc.py). However,
in some cases such items may only flag potential data quality
issues, and a full understanding requires exploring the data
itself more deeply. EPI datasets are inherently 4-dimensional,
and occasionally too much information has been lost within
the 1-dimensional scalar quantities or 3D image montages
to understand an observed feature. Interactive exploration is
then necessary to avoid “false rejections” of usable data (which
is wasteful and may bias results) and “false inclusions” of
problematic data (which introduce non-physiological features
and again may bias or distort results). Here, we showed how GUI
interactions could be used to more fully explore the underlying
properties of the data, particularly with AFNI’s InstaCorr4.

In applying these QC principles and tools to the examination
of this project’s eight publicly available datasets, we found quite a
number of issues that ranged from incorrect header information

4 We note that the APQC HTML’s “vstat” block of images for resting
state is essentially a quick, systematized version of InstaCorr exploration.

(coordinate orientations, left-right flips) to ingrained data
issues (temporally correlated artifacts, significant distortion,
ghosting and dropout). In general, the exclusion criteria
applied here were relatively light; some features such as
inconsistent voxel size or acquisition parameters could be
cause for rejection in an actual research study. Similarly,
many datasets had distortion, dropout or other artifacts
that particularly affected local brain regions, but the extent
was judged as not severe enough for removal here. For a
particular study’s hypotheses, though, such localized issues may
render a subject’s data unusable. In the end, sizable fractions
of these groups contained datasets that were categorized
for exclusion, and another fraction with uncertain features
for additional examination. Two groups contained systemic
artifacts, likely rendering the data problematic for further
analyses. This points to the necessity of performing full QC,
and we hope that this Research Topic elevates QC’s role in the
neuroimaging field: Understanding the data is an important part
of processing it.

The data collections presented here provided an illustrative
subset of the issues that exist in FMRI data. Many other
problematic features can appear, such as major dropout
from bad coils, zipper-striped artifacts, signal saturation,
mechanical features in time series (e.g., from anesthesia
devices), and more. Furthermore, different acquisition methods
or processing choices will lead to different QC checks.
For surface-based analysis, one would want to visualize the
accuracy of the surface mesh estimation. For multi-echo
FMRI, one might visualize maps of estimated T2∗, as well
as any temporal components projected out of the time
series data. When combining data from several scanners,
sites or even studies, the heterogeneity of datasets might
prompt another layer of QC comparisons. It is important
to note that QC criteria will never be set in stone, but
will need to be adjusted based on the type of analysis,
the subjects, and scanner and acquisition properties, which
change over time.

The exact role of QC in determining final group outcomes
is not well known (at present, at least). Certainly, cross-study
accuracy, reproducibility and reliability should be improved
by reducing artifacts in data collections. “Big data” does not
preclude the need for reasonable QC—having a large fraction
of problematic/artifact-heavy subjects can still be a problem
whether the number of subjects is N = 50 or N = 5000. The
QC process does require time and effort, but it is always a
small fraction of the total effort that must be put into the study:
Grant writing, pilot studies, subject recruitment, scanning,
processing/reprocessing and (hopefully) publication. Choosing
to save a relatively miniscule amount of QC time within a project
can be quite costly, if the final results of a team’s work end up
being based on unreliable data. Furthermore, if detailed QC is
practiced at the early stages of data gathering, one would also
expect it to greatly reduce the overall time of QC, because subtle
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issues could be observed and addressed before the number of
subjects grows large.

There is often a desire to reduce all QC to a simplified,
automated process. However, all quantities and thresholds
used in QC procedures have been based on visualizing a
large number of datasets and understanding their contents
in depth. Even now, our current understanding of FMRI
data quality is incomplete. Moreover, this process will
always evolve: Study designs vary, and the technology
of data acquisition is always changing. Image and time
series visualization is the key to understanding data,
and this layer should not be omitted from processing
and quality evaluation. Ignoring visualization reduces
the strength of QC, and hinders the ability to improve
and develop new QC criteria—even quantitative ones.
The QC results from this current project reinforce the
importance of visualization: Researchers (particularly trainees
just starting in the field) need to understand the data
being processed, in order to avoid basing conclusions on
unreliable datasets.

Conclusion

This work addresses the question, “When should FMRI
quality control be done?” with a resounding answer: “Early
and often.” We present our approach to QC of FMRI data,
organized as a set of stages that are integrated into standard
processing with the AFNI software package. One aspect of
this is evaluating subject datasets to be either included or
excluded for a group level analysis. But the larger goal of the
presented procedure is for researchers to deeply understand
the contents of their data and to be sure of its appropriateness
for their analyses of interest. This procedure applies when
acquiring one’s own datasets, but remains vital when using
publicly available or shared datasets. In all cases, a researcher
has the responsibility to assess the properties of the data
collection, and our approach here has been designed to
facilitate this process with multiple layers of QC investigation.
It includes a mix of scriptable, automated, visual and user-
interactive checks that reinforce each other, many of which
are created as standard outputs of the afni_proc.py pipeline
generating tool. The stages begin with verifying the fundamental
properties of the datasets, and continue through the single
subject modeling. Using the real, public data provided in
this Research Topic project, we have shown how each QC
stage provided vital information about subjects for determining
the suitability to include in further analyses. The range of
issues present in this real data shows the continuing need
for such QC procedures. We hope that researchers, data
repository managers and particularly trainees in the field will
find these methods and provided scripts useful when working
with their own data.

Data availability statement

Publicly available datasets were analyzed in this study. These
data can be found here: https://osf.io/qaesm/wiki/home.

Ethics statement

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

Author contributions

All authors listed have made a substantial, direct, and
intellectual contribution to the work, and approved it
for publication.

Funding

This work utilized the computational resources of the NIH
HPC Biowulf cluster (http://hpc.nih.gov). RR, DG, and PT
were supported by the NIMH Intramural Research Program
(ZICMH002888) of the NIH/HHS, USA.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnins.2022.1073800/full#supplementary-material

Frontiers in Neuroscience 35 frontiersin.org

75

https://doi.org/10.3389/fnins.2022.1073800
https://osf.io/qaesm/wiki/home
http://hpc.nih.gov
https://www.frontiersin.org/articles/10.3389/fnins.2022.1073800/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.1073800/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073800 January 24, 2023 Time: 21:45 # 36

Reynolds et al. 10.3389/fnins.2022.1073800

References

Allen, E., Erhardt, E., and Calhoun, V. (2012). Data visualization in the
neurosciences: Overcoming the curse of dimensionality. Neuron 74, 603–608.
doi: 10.1016/j.neuron.2012.05.001

Biswal, B., Mennes, M., Zuo, X., Gohel, S., Kelly, C., Smith, S., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.
107, 4734–4739. doi: 10.1073/pnas.0911855107

Caballero-Gaudes, C., and Reynolds, R. (2017). Methods for cleaning the BOLD
fMRI signal. Neuroimage 154, 128–149. doi: 10.1016/j.neuroimage.2016.12.018

Cox, R. (1996). AFNI: Software for analysis and visualization of functional
magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173.

Cox, R., and Glen, D. (2013). “Nonlinear warping in AFNI,” in Proceedings of the
presented at the 19th annual meeting of the organization for human brain mapping,
Seattle, WA.

Di Martino, A., Yan, C., Li, Q., Denio, E., Castellanos, F., Alaerts, K., et al.
(2014). The autism brain imaging data exchange: Towards a large-scale evaluation
of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667. doi:
10.1038/mp.2013.78

Fischl, B., and Dale, A. (2000). Measuring the thickness of the human cerebral
cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97, 11050–
11055.

Foerster, B., Tomasi, D., and Caparelli, E. (2005). Magnetic field shift due to
mechanical vibration in functional magnetic resonance imaging. Magn. Reson.
Med. 54, 1261–1267. doi: 10.1002/mrm.20695

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins,
D. L., et al. (2011). Unbiased average age-appropriate atlases for pediatric studies.
Neuroimage 54, 313–327. doi: 10.1016/j.neuroimage.2010.07.033

Glen, D., Taylor, P., Buchsbaum, B., Cox, R., and Reynolds, R. (2020). Beware
(Surprisingly common) left-right flips in your MRI Data: An efficient and robust
method to check MRI dataset consistency using AFNI. Front. Neuroinformatics
14:18. doi: 10.3389/fninf.2020.00018

Gohel, S., and Biswal, B. (2015). Functional integration between brain regions
at rest occurs in multiple-frequency bands. Brain Connect. 5, 23–34. doi: 10.1089/
brain.2013.0210

Jo, H., Saad, Z., Simmons, W., Milbury, L., and Cox, R. (2010). Mapping
sources of correlation in resting state FMRI, with artifact detection
and removal. Neuroimage 52, 571–582. doi: 10.1016/j.neuroimage.2010.0
4.246

Markiewicz, C., Gorgolewski, K., Feingold, F., Blair, R., Halchenko, Y., Miller,
E., et al. (2021). The OpenNeuro resource for sharing of neuroscience data. Elife
10:e71774. doi: 10.7554/eLife.71774

Saad, Z., Glen, D., Chen, G., Beauchamp, M., Desai, R., and Cox, R. (2009). A
new method for improving functional-to-structural MRI alignment using local
Pearson correlation. Neuroimage 44, 839–848. doi: 10.1016/j.neuroimage.2008.0
9.037

Saad, Z. S., Reynolds, R. C., Jo, H. J., Gotts, S. J., Chen, G., Martin,
A., et al. (2013). Correcting brain-wide correlation differences in
resting-state FMRI. Brain Connect. 3, 339–352. doi: 10.1089/brain.2013.
0156

Shirer, W., Jiang, H., Price, C., Ng, B., and Greicius, M. (2015). Optimization of
rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability,
and group discrimination. Neuroimage 117, 67–79. doi: 10.1016/j.neuroimage.
2015.05.015

Song, S., Bokkers, R., Edwardson, M., Brown, T., Shah, S., Cox, R., et al. (2017).
Temporal similarity perfusion mapping: A standardized and model-free method
for detecting perfusion deficits in stroke. PLoS One 12:e0185552. doi: 10.1371/
journal.pone.0185552

Taylor, P., Reynolds, R., Calhoun, V., Gonzalez-Castillo, J., Handwerker,
D., Bandettini, P., et al. (2022). Highlight results, don’t hide them: Enhance
interpretation, reduce biases and improve reproducibility. bioRxiv [Preprint]. doi:
10.1101/2022.10.26.513929

Frontiers in Neuroscience 36 frontiersin.org

76

https://doi.org/10.3389/fnins.2022.1073800
https://doi.org/10.1016/j.neuron.2012.05.001
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1002/mrm.20695
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.3389/fninf.2020.00018
https://doi.org/10.1089/brain.2013.0210
https://doi.org/10.1089/brain.2013.0210
https://doi.org/10.1016/j.neuroimage.2010.04.246
https://doi.org/10.1016/j.neuroimage.2010.04.246
https://doi.org/10.7554/eLife.71774
https://doi.org/10.1016/j.neuroimage.2008.09.037
https://doi.org/10.1016/j.neuroimage.2008.09.037
https://doi.org/10.1089/brain.2013.0156
https://doi.org/10.1089/brain.2013.0156
https://doi.org/10.1016/j.neuroimage.2015.05.015
https://doi.org/10.1016/j.neuroimage.2015.05.015
https://doi.org/10.1371/journal.pone.0185552
https://doi.org/10.1371/journal.pone.0185552
https://doi.org/10.1101/2022.10.26.513929
https://doi.org/10.1101/2022.10.26.513929
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1070413 January 30, 2023 Time: 14:28 # 1

TYPE Original Research
PUBLISHED 03 February 2023
DOI 10.3389/fnins.2023.1070413

OPEN ACCESS

EDITED BY

Daniel R. Glen,
National Institute of Mental Health (NIH),
United States

REVIEWED BY

Adrian W. Gilmore,
National Institute of Mental Health (NIH),
United States
Andrew Jahn,
University of Michigan, United States

*CORRESPONDENCE

Brendan Williams
b.williams3@reading.ac.uk

†These authors have contributed equally to this
work

SPECIALTY SECTION

This article was submitted to
Brain Imaging Methods,
a section of the journal
Frontiers in Neuroscience

RECEIVED 14 October 2022
ACCEPTED 11 January 2023
PUBLISHED 03 February 2023

CITATION

Williams B, Hedger N, McNabb CB,
Rossetti GMK and Christakou A (2023)
Inter-rater reliability of functional MRI data
quality control assessments: A standardised
protocol and practical guide using pyfMRIqc.
Front. Neurosci. 17:1070413.
doi: 10.3389/fnins.2023.1070413

COPYRIGHT

© 2023 Williams, Hedger, McNabb, Rossetti and
Christakou. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Inter-rater reliability of functional
MRI data quality control
assessments: A standardised
protocol and practical guide using
pyfMRIqc
Brendan Williams1,2*, Nicholas Hedger1,2†, Carolyn B. McNabb3†,
Gabriella M. K. Rossetti1,2† and Anastasia Christakou1,2

1Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom,
2School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom,
3Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical
and Life Sciences, Cardiff University, Cardiff, United Kingdom

Quality control is a critical step in the processing and analysis of functional magnetic

resonance imaging data. Its purpose is to remove problematic data that could

otherwise lead to downstream errors in the analysis and reporting of results. The

manual inspection of data can be a laborious and error-prone process that is

susceptible to human error. The development of automated tools aims to mitigate

these issues. One such tool is pyfMRIqc, which we previously developed as a

user-friendly method for assessing data quality. Yet, these methods still generate

output that requires subjective interpretations about whether the quality of a given

dataset meets an acceptable standard for further analysis. Here we present a

quality control protocol using pyfMRIqc and assess the inter-rater reliability of four

independent raters using this protocol for data from the fMRI Open QC project

(https://osf.io/qaesm/). Data were classified by raters as either “include,” “uncertain,”

or “exclude.” There was moderate to substantial agreement between raters for

“include” and “exclude,” but little to no agreement for “uncertain.” In most cases only

a single rater used the “uncertain” classification for a given participant’s data, with

the remaining raters showing agreement for “include”/“exclude” decisions in all but

one case. We suggest several approaches to increase rater agreement and reduce

disagreement for “uncertain” cases, aiding classification consistency.

KEYWORDS

fMRI, resting state fMRI, task fMRI, quality control, inter-rater reliability

Introduction

Functional magnetic resonance imaging (fMRI) data are inherently multi-dimensional with
many potential sources of artefacts that can lead to spurious results (Power et al., 2012; Van
Dijk et al., 2012). Therefore, ensuring data are of sufficient quality for analysis is an essential
step in the processing of fMRI data. This is especially important for large multi-site studies
such as the Adolescent Brain Cognitive Development study (Casey et al., 2018), and the Human
Connectome Project (Van Essen et al., 2013), where time required to perform detailed, manual
screening of individual data can quickly become intractable. To address this, many quality
control tools and pipelines now exist to help users make informed decisions about quality in
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their datasets (Marcus et al., 2013; Esteban et al., 2017; Alfaro-
Almagro et al., 2018). These tools–which automate part of the quality
control process–aim to decrease the time taken to assess data quality,
minimise the amount of prior knowledge needed to make informed
decisions, and reduce errors during assessment.

Several tools currently exist for assessing the quality of fMRI data,
including MRIQC (Esteban et al., 2017), and Visual QC (Raamana,
2018). This list also includes pyfMRIqc, which we developed at the
Centre for Integrative Neuroscience and Neurodynamics (CINN),
University of Reading (Williams and Lindner, 2020). Many of our
neuroimaging facility users at CINN are Ph.D. students and early
career researchers, who join a community that prioritises practical
training and learning opportunities. As part of this commitment, we
develop software which is user-friendly and empowers individuals
to become confident and informed researchers. pyfMRIqc helps
users to make informed decisions about the quality of their data
by generating various image quality metrics and presenting them
in an easily interpretable way in a visual report. pyfMRIqc also has
extensive online documentation that describes to users how these
plots are generated and what they show, and aids their interpretation
with examples. Users of pyfMRIqc can generate these reports with
minimal programming experience, requiring only a single line of
code to run the software and without the need for using containerised
environments for generating output. As part of the work presented
here, we additionally developed a piece of software, “cinnqc,” which
we used to automate the minimal pre-processing and curation of
data for pyfMRIqc, and to identify cases where data deviate from the
expected acquisition parameters for the dataset.

Previous reports describe the use of inter-rater reliability for the
quality assessment of structural imaging data (Backhausen et al.,
2016; Esteban et al., 2017; Rosen et al., 2018; Benhajali et al.,
2020). For instance, Benhajali et al. (2020) developed a method
for quickly assessing the registration of T1 weighted images to
standard MNI space. Raters included citizen scientists who had
no previous experience with MRI data, as well as expert raters.
Their protocol resulted in good reliability, particularly with respect
to which images were deemed to fail quality assessment, between
expert raters, with citizen scientists also showing agreement. The
study therefore demonstrated that this straightforward approach
for assessing registration quality was consistent between individuals
with different skill levels. Another protocol assessed for reliability
between raters was presented by Backhausen et al. (2016), who
aimed to provide a workflow for the quality control assessment of
T1 images both during and after image acquisition to maximise
useful sample size. Images were classified into three categories (pass,
check, fail), and these three categories were associated with significant
differences in cerebral cortex, left amygdala, and total grey matter
volume estimations. Reliability between two raters for the three
classification categories was high [intra-class correlation coefficient
(α = 0.931)], in line with results from Rosen et al. (2018), who found
good consistency between expert raters when a three category rating
system was used (although notably concordance was significantly
lower when using five categories). Lastly, Esteban et al. (2017)
demonstrated fair to moderate agreement between two raters when
assessing the quality of T1 data from the ABIDE dataset. These
studies demonstrate that reasonable reliability can be expected of
subjective decisions about the quality of structural imaging data,
particularly when three categories are used to classify data. However,
in the case of functional data, and despite its potential utility, inter-
rater reliability has not been similarly evaluated to help understand
the consistency of subjective decisions about data quality. To assess

whether experienced raters are reliable in their classifications of
functional data quality across datasets, we used data from the fMRI
Open QC project,1 which included data with different acquisition
parameters from multiple sites.

We assess the inter-rater reliability of fMRI data quality
assessments for task-based and resting state data. We describe
quantitative and qualitative criteria for classifying data quality,
present a quality control protocol for assessing raw fMRI
data quality using pyfMRIqc, assess reliability between four
independent raters using this protocol, and provide example cases
of different data quality issues using output from pyfMRIqc. Raters
classified data into one of three assessment categories, “include,”
“uncertain,” or “exclude.” Using our protocol, we find moderate
to substantial reliability between raters, particularly for “include”
and “exclude” decisions, but less agreement between raters for the
uncertain classification.

Materials and methods

Participants

Imaging data participants
Imaging data from 129 subjects were included. Each subject had

a T1 weighted high-resolution anatomical image, and a single-band
echo-planar imaging (EPI) image for either task-based or resting state
functional magnetic resonance imaging (fMRI) acquisition. Task-
based fMRI data were included for 30 subjects. Resting-state fMRI
data were included for 99 subjects; resting-state data originated from
five sites, with approximately 20 subjects per site. Data originated
from the following publicly available datasets: ABIDE, ABIDE-II,
Functional Connectome Project, and OpenNeuro (Biswal et al., 2010;
Di Martino et al., 2014; Markiewicz et al., 2021). Data from each
site were treated as separate datasets for the purpose of performing
quality assessment. The expected acquisition parameters for data
from each site are summarised in Table 1. The data presented here
are available on the Open Science Framework page of the fMRI Open
QC project (see text footnote 1).

Quality control raters
Quality control assessments were completed by four independent

raters (BW, NH, CBM GMKR), who were all postdoctoral research
fellows, and all raters had previous experience in quality assessment,
processing and analysis of functional neuroimaging data. Two raters
(BW and GR) had previously used pyfMRIqc to perform quality
assessment of fMRI data. Additionally, BW was involved in the
development of pyfMRIqc. Each rater reviewed data for 104 of the
129 subjects, using outputs from cinnqc and pyfMRIqc. Subject
assignment ensured at least four subjects from each site were
reviewed by all four raters, and every other subject was reviewed by
three raters. Assignments were also balanced so that the proportion
of overlapping cases was equal across raters (see SupplementaryData
Sheet 1 for details of rater assignments).

Data processing

Minimal pre-processing of anatomical T1 weighted and
functional EPI data was performed using the FSL toolbox (version

1 https://osf.io/qaesm/
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TABLE 1 Expected acquisition parameters for subjects in each site in the main dataset.

Subjects Modality Voxel size (mm) Matrix Volumes TR (s)

sub-001→ sub-030 T1w 1× 1× 1 176× 256× 256 1

EPI 3× 3× 4 64× 64× 34 242 2

sub-101→ sub-120 T1w 1× 1× 1 256× 200× 256 1

EPI 2.67× 2.67× 3 96× 96× 47 156 2.5

sub-201→ sub-220 T1w 1× 1× 1 160× 256× 256 1

EPI 3× 3× 3.840789 80× 80× 38 150 2

sub-301→ sub-316 T1w 0.976562× 1.2× 0.976562 256× 182× 256 1

EPI 1.5625× 1.5625× 3.1 128× 128× 45 162 2.5

sub-401→ sub-423 T1w 1× 1× 1 256× 200× 256 1

EPI 2.667× 2.667× 3 96× 96× 47 123 2.5

sub-701→ sub-720 T1w 1× 1× 1 192× 256× 256 1

EPI 3× 3× 3.51 64× 64× 39 198 2.5

T1w modality is the high-resolution T1 weighted anatomical image. EPI modality is the functional (BOLD) task-based (sub-001→ sub-030) and resting state (sub-101→ sub-720) echo-planar
images. TR is the time taken in seconds to acquire a single volume of EPI data.

6.0) from the Oxford Centre for Functional MRI of the Brain
(FMRIB’s Software Library2) (Jenkinson et al., 2012). Data pre-
processing, curation, and quality control was automated using
“cinnqc.”3 cinnqc provides wrapper scripts for executing and
curating output from FSL pre-processing functions (e.g., motion
correction, registration, and brain extraction), and also generating
pyfMRIqc reports for minimally pre-processed data. To pre-process
data, the T1 image was skull stripped using the Brain Extraction Tool
(Smith, 2002), then grey matter, white matter, and cerebrospinal
fluid tissue segmentation was performed using FMRIB’s Automated
Segmentation Tool (Zhang et al., 2001). Functional EPI data were
motion corrected with MCFLIRT (Jenkinson et al., 2002), using affine
transformations to align the first volume of functional data with each
subsequent volume. Functional EPI and anatomical T1 data were
then co-registered using the epi_reg function,4 and a linear affine
transformation was used to convert a brain extracted mask of the
T1 anatomical image to functional EPI space using FMRIB’s Linear
Image Registration Tool (Jenkinson and Smith, 2001; Jenkinson
et al., 2002). The brain mask in functional EPI space was then
re-binarised using a threshold of 0.5. Image quality metrics and
plots were generated using pyfMRIqc (Williams and Lindner, 2020)
to aid data quality assessment, e.g., the identification of artefacts
that were participant-, sequence-, technique-, or tissue-specific.
pyfMRIqc was run with the following input arguments: -n < motion
corrected EPI data >, -s 25, -k < brain extracted mask in functional
space > -m < motion parameter output from MCFLIRT >.

Resources

Ubuntu 20.04.4 LTS
FSL version 6.0 (see text footnote 2).
Anaconda 4.10.1
Python 3.8.8

2 www.fmrib.ox.ac.uk/fsl

3 https://github.com/bwilliams96/cinnqc

4 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide#epi_reg

• cinnqc 0.1.0
• easygui 0.98.3
• matplotlib 3.3.4
• nibabel 3.2.1
• numpy 1.20.1
• pandas 1.2.4

Quality assessment protocol

Raters were given the following instructions before beginning
quality assessment:

TABLE 2 Quantitative criteria for determining dataset inclusion/exclusion.

Criteria Exclusion criteria

Motion Any relative movements > Voxel size
More than 5 relative
movements > 0.5 mm1

Max absolute motion > 2 mm (1.5 mm is
marginal)1

Slice-wise SNR < 99 (99→ 150 is marginal)1*

Consistent voxel sizes No2 (to 2d.p.)

Consistent number of volumes No2

Consistent number of scans in the dataset No3

T1w whole brain coverage No4

EPI whole brain coverage in the mean
image of the pyfMRIqc report and the
first volume

No4

*Some slices will return slice-wise TSNR values of NaN. NaN values are returned because the
slice does not have any voxels that SNR are calculated for; if this is the case, then the presence
of these NaN values should not be used for the purpose of exclusion. Some slices will include
a large proportion of non-brain voxels which will have lower values relative to brain voxels
decreasing the slice-wise TSNR mean. If this is the case then use your discretion in your
assessment of slice-wise TSNR.
1 : Center for Brain Science, Harvard University (https://cbs.fas.harvard.edu/facilities/
neuroimaging/investigators/mr-data-quality-control/); 2 : Human Connectome Project
(Marcus et al., 2013); 3 : BIDS standard (Gorgolewski et al., 2016); 4 : UK Biobank
(Alfaro-Almagro et al., 2018).
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The following criteria need to be used to classify all images5 :

• Include–no quality assessment issues that indicate the
dataset is problematic.
• Uncertain–some quality assessment issues that makes the

inclusion of dataset marginal.
• Exclude–quality assessment issues that mean the data should not

be included.

Each image classified as either “uncertain” or “exclude” should
include an explanation of why the given classification was made.
Please be as descriptive as possible when explaining your decision-
making.

Quality assessment decision-making should be supported by
the output produced by cinnqc and pyfMRIqc. cinnqc and
pyfMRIqc derivatives can be found online in the directories
/cinnqc/ examples/{fmriqc-open-qc-task, fmriqc-open-qc-rest-100,
fmriqc-open-qc-rest-200, fmriqc-open-qc-rest-300, fmriqc-open-qc-
rest-400, fmriqc-open-qc-rest-500, fmriqc-open-qc-rest-600, fmriqc-
open-qc-rest-700}/derivatives/cinnqc/of the cinnqc GitHub page (see
text footnote 3).

Quantitative data assessment
Quantitative quality assessment criteria for T1 and EPI data

based on acquisition parameters and derived metrics from the data
are summarised in Table 1. Thresholds for absolute and relative
motion, as calculated using MCFLIRT, are given to limit its effect
on data quality. Motion thresholds are defined in Table 2 and
are summarised in the pyfMRIqc report. Yet, even motion that
is sub-threshold could still impact data quality. Qualitative data
assessment should be carried out to check whether any motion
incidents coincide with a problematic change in signal. Temporal
signal to noise (TSNR, referred to as SNR in pyfMRIqc) is calculated
as mean intensity divided by the standard deviation of voxels (25th
centile mean intensity) outside the brain-extracted mask in functional
space. It is calculated by pyfMRIqc on minimally pre-processed data.
Slice-wise TSNR should be checked in the pyfMRIqc report, and
potentially problematic slices should be followed up using qualitative
assessments. Field of view, number of volumes, and scans are checked
using cinnqc, and a file with the suffix ∗_notes.txt is generated to
describe any potential issues. Note, some voxel dimensions may
appear to be different due to rounding, but if they are equal to 2
decimal places then subjects do not need to be excluded. T1 and
EPI data should have whole brain coverage, which includes the
cerebral cortex and subcortical brain regions (but not necessarily
the cerebellum). A summary of quantitative assessment criteria can

5 Additional information about classifications not given in the protocol but
which was agreed by raters:

• Include cases would pass all quantitative and qualitative quality control
criteria and pyfMRIqc plots or manual inspection of data would not
indicate any issues with data.

• Uncertain cases would pass all quantitative quality control criteria, but
pyfMRIqc plots or manual inspection of data may indicate marginal issues
in the data that could warrant exclusion.

• Exclude cases would fail at least one quantitative quality control criteria,
and/or pyfMRIqc plots or manual inspection of data indicate data quality
issues that would warrant exclusion.

be found in Table 2, and a summary of the expected acquisition
parameters can be found in Table 1.

Qualitative data assessment
pyfMRIqc generates a number of plots and tables that can

be helpful in the qualitative assessment of data. Mean and slice-
wise scaled squared difference (SSD) is calculated by squaring the
difference in voxel intensity between consecutive volumes, and
dividing by the global mean squared difference. In the QC plots
section, mean and slice-wise SSD graphs can be used to identify
global, and slice-wise changes in signal intensity, respectively. SSD
is also plotted alongside the global normalised mean voxel intensity,
normalised SSD variance, plus absolute and relative motion to
visualise relationships between changes in SSD, signal intensity, and
motion. Further, mean, minimum, and maximum SSD is plotted
slice-wise to determine whether issues are present in specific slices.

The plot of the “Mean voxel time course of bins with equal
number of voxels” is generated by binning voxels into 50 groups,
based on their mean intensity, and calculating the mean intensity
for voxels in each bin for each volume. Bins are ordered top-down
from lowest mean intensity voxels (non-brain/cerebrospinal fluid) to
highest (grey matter, then white matter voxels). This plot enables easy
visualisation of signal variance and was originally described by Power
(2017), where further information can also be found.

The “Masks” plot can be helpful in indicating whether there
were issues during acquisition or processing (such as brain extraction
and/or registration of T1 and EPI data). For instance, there may be
many brain voxels that are not highlighted in blue. If this is the
case, then scans should be carefully checked for signal distortion
(described below), or processing steps may need to be manually re-
run with adjusted input parameters. Poor registration (for instance,
misalignment of gross anatomical structures including brain surface,
or grey matter/white matter/cerebrospinal fluid boundaries) may be
indicative of other data quality issues.

The “Variance of voxel intensity” plot visualises the variance
in signal in each voxel over the timeseries of the functional
run. The png image given in the pyfMRIqc report is thresholded
(voxel intensities are divided into 1,000 equal width bins, and the
intensity of the highest bin with at least 400 voxels is used) to aid
visualisation, however a nifti version of the image is also included
which is unthresholded. This nifti image is useful for more in-depth
investigation if there are potential quality issues or the figure appears
problematic. The “Sum of squared scaled difference over time” plot
presents the voxel-wise sum of SSD over the functional run. Similarly
to the “Variance of voxels intensity” plot, we applied a threshold for
the png figure for readability (sum of squared scaled differences are
divided into 50 equal width bins, and the upper threshold of the fifth
bin is used), but the nifti image does not have a threshold.

To inspect data for signal distortion, load T1 images from the
subject’s BIDS directory; for EPI images, load the image with the
suffix ∗_example-func.nii.gz from the subject’s cinnqc BIDS derivative
directory, and the mean voxel intensity nifti file from pyfMRIqc. If
visual abnormalities are present, this could impact the signal (e.g.,
image distortion, signal loss, artefacts such as ringing or ghosting),
or processing (e.g., brain extraction, registration, motion correction)
of T1 or EPI data. To determine if this is the case, the plots
from pyfMRIqc can be used to aid subject classification. Detailed
explanations for interpreting pyfMRIqc plots and tables can be found
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TABLE 3 Qualitative criteria for determining dataset inclusion.

Criteria Threshold

Aberrant pyfMRIqc
output

Plots or tables that indicate problematic EPI data, supported by
visual inspection of functional data

T1w signal
distortion

Visual abnormalities in the acquisition of the T1w image, such
as ringing artefacts that would impair registration to standard
template

EPI signal distortion Visual abnormalities in the mean image of the pyfMRIqc report
or the first volume of the fMRI data that would impair
registration to standard template

Atypical brain
structure

Morphology that would impair registration to standard
template (pathological or non-pathological).

TABLE 4 Example cases that were used during the calibration session for
raters before independently assessing the whole dataset.

Subject Include Uncertain Exclude Notes

sub-013 1 Many volumes
with relative
movement > 0.1.
Motion events
around volumes
65 and 205
appear to cause
global decrease
in signal

sub-103 1 Peak in SSD
between
volumes 95–100
looks like its
driven by eye
movement

sub-207 1 More than 5
relative motion
events > 0.5.
Max absolute
movement is
marginal

in the pyfMRIqc User Manual.6 A summary of qualitive assessment
criteria can be found in Table 3.

Rater calibration and reliability assessment

Each rater independently assessed and classified subjects using
the quality assessment protocol described above. To ensure quality
assessment criteria were interpreted consistently, BW used the quality
assessment protocol to identify exemplar subjects for issues and
presented these training cases to the other raters (Table 4).

Fleiss’ kappa (Fleiss, 1971) was calculated using the “irr” package
in R (Gamer et al., 2019) to assess pair-wise and category-wise inter-
rater reliability between raters; to correct for multiple comparisons
we used the Holm method to control the family-wise error rate
using the “p.adjust” function in R (Holm, 1979; R Core Team, 2020).
We chose to use Fleiss’ kappa instead of Cohen’s kappa, because
Fleiss’ kappa also allows us to determine how similar pairs of raters
are across classifications by calculating category-wise agreement.

6 https://drmichaellindner.github.io/pyfMRIqc/

We used the criteria described by Landis and Koch (1977) to
interpret Fleiss’ kappa using the following benchmarks to describe
the strength of agreement: poor agreement < 0.00; slight agreement
0.00–0.20; fair agreement 0.21–0.40; moderate agreement 0.41–0.60;
substantial agreement 0.61–0.8; almost perfect agreement 0.81–1.00.
Overall agreement across raters and categories was calculated using
Krippendorff ’s alpha (Krippendorff, 1970), which is useful as a
measure of overall agreement because it is not restricted by the
number of raters or the presence of missing data in the sample
(Hayes and Krippendorff, 2007). Krippendorff ’s alpha and bootstrap
95% confidence intervals (1,000 iterations, sampling subjects with
replacement) were calculated in R using scripts from Zapf et al.
(2016).

Results

Each subject was categorised as either “include” (rater one: 68,
rater two: 73, rater three: 80, rater four: 74), “uncertain” (rater one: 10,
rater two: 12, rater three: 3, rater four: 9), or “exclude” (rater one: 26,
rater two: 19, rater three: 21, rater four: 20) by the four raters. Overall
percentage agreement between raters is summarised in Table 5.

Inter-rater reliability between pairs of raters was calculated
using Fleiss’ Kappa; overall agreement between all pairs of raters
was moderate and significantly greater than chance level (rater 1–
2: κ = 0.536, z = 6.143, p < 0.001; rater 1–3: κ = 0.437, z = 4.639,
p < 0.001; rater 1–4: κ = 0.456, z = 5.17, p < 0.001; rater 2–3: κ = 0.448,
z = 5.071, p < 0.001; rater 2–4: κ = 0.596, z = 6.818, p < 0.001;
rater 3–4: κ = 0.578, z = 6.022, p < 0.001). Category-wise Kappa for
all raters was moderate and substantial for “include” and “exclude”
assignments respectively and was significantly greater than chance
level (“include”: κ = 0.514, z = 6.661, p < 0.001; “exclude”: κ = 0.731,
z = 9.472, p < 0.001). However, this was not the case for “uncertain”
assignments, where agreement between raters was slight (κ = 0.013,
z = 0.166, p = 1.0). We also calculated Fleiss’ Kappa category-wise
for pairs of raters (Figure 1). All raters had moderate to substantial
agreement, and performed at significantly greater than chance level
for “include” (rater 1–2: z = 5.697 p < 0.001; rater 1–3: z = 3.849
p < 0.001; rater 1–4: z = 3.591 p < 0.001; rater 2–3: z = 4.409
p < 0.001; rater 2–4: z = 5.269 p < 0.001; rater 3–4: z = 5.253
p < 0.001) and “exclude” (rater 1–2: z = 5.405 p < 0.001; rater
1–3: z = 5.3 p < 0.001; rater 1–4: z = 6.645 p < 0.001; rater 2–
3: z = 5.231 p < 0.001; rater 2–4: z = 5.887 p < 0.001; rater 3–4:
z = 6.525 p < 0.001) assignments, but not for “uncertain” (rater 1–
2: z = 1.471 p = 1.0; rater 1–3: z = −0.537 p = 1.0; rater 1–4: z = 1.0
p = 0.716; rater 2–3: z = 0.529 p = 1.0; rater 2–4: z = 4.272 p < 0.001;
rater 3–4: z = −0.415 p = 1.0) assignments (Figure 1). Overall
agreement in the dataset, as assessed using Krippendorff ’s alpha was
0.508 [95% bootstrap confidence intervals (0.381, 0.615)]; removing
instances where “uncertain” was assigned increased Krippendorff ’s

TABLE 5 Overall percentage agreement between raters for
“include”/“uncertain”/“exclude” assignments.

Rater 1 Rater 2 Rater 3 Rater 4

Rater 1 – 78.481 75.949 75.641

Rater 2 78.481 – 75.949 83.333

Rater 3 75.949 75.949 – 84.615

Rater 4 75.641 83.333 84.615 –
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FIGURE 1

Reliability between pairs of raters for each category was assessed using Fleiss’ Kappa. Agreement between raters at significantly greater than chance level
is denoted as ***p < 0.001.

alpha to 0.694 [95% bootstrap confidence intervals (0.559, 0.802)].
In total, at least two raters categorised 97 subjects as include, 6
subjects as uncertain, and 26 subjects as exclude. Supplementary
Table 1 summarises the subject-wise group majority classification
(“include”/“uncertain”/“exclude”).

QC “exclude” criteria examples

Data acquisition artefacts
Imaging acquisition artefacts were identified in five subjects by

at least one rater. These issues included ghosting (aliasing), ringing,
and wraparound artefacts (Table 6). In Figure 2 we present these
three artefacts, with the relevant output from pyfMRIqc used to
identify the issue. For the first subject, ghosting (aliasing) in the mean
functional image from pyfMRIqc was detected (Heiland, 2008). This
can be detected visually as the presence of spurious signal outside

TABLE 6 Number of datasets excluded by single, majority, and all raters for
each of the relevant exclusion reasons.

Single
rater

Majority
raters

All
raters

Abnormal brain morphology 2 0 0

Aliasing 1 2 0

Global signal 10 1 0

Incorrect acquisition
parameters

4 0 0

Motion 9 4 17

Non-whole brain coverage 1 0 0

Ringing artefact 1 0 0

SNR 5 1 0

Unidentified artefact 4 0 0

Wraparound artefact 1 0 0

In all cases where raters excluded a subject, the rater also provided notes explaining their
reasons for exclusion. Here, these notes are categorised into groups, and the number of times a
single, majority (two of three when three raters were assigned or two/three when four raters
were assigned) or all raters mentioned that category in their notes is reported. Note that
raters could give multiple reasons for excluding a subject, which means that agreement for
exclusion could be based on different reasons. Subject and category-wise frequencies for single,
majority, and all raters, as well as the number of raters excluding each subject are included in
Supplementary Data Sheet 2.

the perimeter of the head. In the second case, wraparound of the
functional signal was detected in the mean functional image (Arena
et al., 1995). Wraparound can be detected when part of the head is
partially occluded by the field of view. In this case, the most posterior
portion of the head appears instead in the anterior portion of the
image and is most noticeable visually on axial and sagittal slices.
The third case contained in-plane artefacts in the data due to eye
movements (McNabb et al., 2020). In this case, both the variance
in voxel intensity, plus a peak in the maximum and sum of the
scaled squared difference in affected slices (particularly slices 15–
17) indicated the presence of physiologically unrelated changes in
signal. These effects are especially pronounced around volumes 19–
21, where there is a peak in the variance of the sum of squared
difference. A video of flickering in affected slices is included in
Supplementary Video 1.

Motion
30 datasets were classified as “exclude” by at least one rater

with issues relating to motion described in the notes (Table 6). Of
these cases, 17 exceeded acceptable values set out in our quantitative
criteria for absolute and relative motion (Table 2). The remaining
cases were classified as “exclude” based on the residual effects of
motion upon the data, despite the quantitative measure of motion
being sub-threshold (Friston et al., 1996). This includes decreases in
global signal coinciding with the onset of motion events (Figure 4),
plus peaks in scaled squared difference and banding in the binned
carpet plot (Figure 3; Power, 2017).

Signal loss
Sudden changes in global signal can be assessed in several ways

using pyfMRIqc. For instance, Figure 4 demonstrates when motion
artefacts lead to a sudden decrease in global signal (Power et al., 2017).
The onset of head motion around volumes 12 and 70, identified by the
peaks in the mean and variance of the scaled squared difference plus
the sum of relative and absolute movements, is immediately followed
by a decrease in the normalised mean voxel intensity of around
two standard deviations for approximately ten volumes (Figure 4).
Banding is also present in the binned carpet plot, where sudden
changes in signal coincide with changes in intensity across all bins. Six
of the reviewed subjects were reported as having SNR related issues
by at least one of the four raters, and eleven were reported as having
global signal issues (Table 6).
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FIGURE 2

Example cases of three different types of data acquisition artefacts detected using output from pyfMRIqc.

Atypical brain structure
Two subjects were excluded by one rater due to the presence

of atypical brain structure in the T1 weighted anatomical image
(Table 6). Both cases are detailed in Figure 5, with one subject having
a right ventricle that was enlarged and covering greater than both
the extent of the left ventricle and where we would typically expect
the ventricle to cover. The second subject had an unexpected mass
in their left ventricle, and hypointensities in white matter across the
whole brain. We are unable to comment on the clinical relevance
of these anatomical features as none of the authors have clinical
expertise.

Uncertain cases

27 subjects were classified as “uncertain” by at least one rater;
“uncertain” was used as a classification by a single rater for 21
subjects, and more than one rater for six subjects. For the subjects
classified as “uncertain” by one rater, the other two/three raters gave
the same classification (“include”/“exclude”) for 20 of the 21 subjects;
one subject received one “include,” one “uncertain,” and one “exclude”
classification. For the remaining six cases where more than one rater
classified subjects as “uncertain,” the notes for four subjects indicated
the presence of issues related to residual motion that were below
our threshold, while the notes for the other two subjects indicated
the presence of possible pathology in the T1 image and aliasing in
functional data. Lastly, only one dataset was rated as “uncertain”
by all raters (Figure 4), with raters “uncertain” about the effects of
sub-threshold residual motion on the data.

Discussion

This work aimed to describe a protocol for assessing the quality
of raw task-based and resting state fMRI data using pyfMRIqc,
and to assess the reliability of independent raters using this
protocol to classify data with respect to whether it meets an
acceptable standard for further analysis. We used data from the fMRI

Open QC Project [(see text footnote 1), data were derived from
ABIDE, ABIDE-II, Functional Connectome Project, and OpenNeuro
(Biswal et al., 2010; Di Martino et al., 2014; Markiewicz et al.,
2021)]. Overall, we found moderate agreement between raters, and
moderate to substantial category-wise agreement between raters
for include/exclude classifications. Poor to moderate category-wise
agreement was found for the uncertain classification, with reliability
at significantly greater than chance level for only one pair of raters.
Krippendorff ’s alpha for the include/exclude categories across all
raters was sufficient to tentatively accept the raters’ classifications
were reliable (Krippendorff, 2004, p. 241). We also provide examples
for different types of quality issues that were identified in the dataset.

For the “uncertain” classification we found that there was a lack
of reliability between raters, with two pairs of raters having negative κ

values, indicating no agreement (McHugh, 2012), and a further three
pairs having coefficients close to 0. The lack of reliability between
raters for the “uncertain” classification appears to be driven by the
uncertainty of a single rater for a given subject. Of the 27 subjects
rated “uncertain” by any rater, 21 (78%) were not rated “uncertain”
by the other raters. Of the 6 subjects rated “uncertain” by more than
one rater, uncertainty related to concerns about motion (N = 4),
aliasing (N = 2), and possible pathology (N = 2). This included one
subject (sub-013) who was classified by all raters as “uncertain” due
to residual effects of motion, yet other similar subjects (e.g., sub-
010 and sub-016) were unanimously classified as “exclude” despite
having visually similar plots, and less maximum absolute motion
(Figure 3). In our quantitative exclusion criteria (Table 2), we give
explicit thresholds for absolute and relative movement events, and
though 17/30 excluded data sets were excluded by at least one rater
due to exceeding our quantitative movement thresholds, 13/30 were
excluded based on qualitative assessment of movement effects on
data quality. These thresholds are relatively arbitrary, and despite
being a helpful heuristic, they did not appear to capture all cases
where motion had an adverse effect on data. pyfMRIqc counts the
number of relative motion events > voxel size, 0.5 mm and 0.1 mm,
and though we set our thresholds for the number of relative motion
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FIGURE 3

Example cases of three different types of motion artefacts detected using output from pyfMRIqc. One subject (sub-013) was classified as uncertain by all
raters, while sub-010 and sub-016 were classified as exclude by all raters.

events > voxel size and 0.5 mm based on previous guidelines,7 we
did not set a threshold for motion events > 0.1, but < 0.5 mm. In
cases where motion was sub-threshold but still an issue, persistent
but small motion events could negatively impact data as we did not
include a threshold for small (0.1 < motion < 0.5) motion events.
Nevertheless, it is worth mentioning that data reviewed here by
raters was only minimally pre-processed and that approaches such
as ICA-based denoising (Pruim et al., 2015), the inclusion of motion
parameters in a model (Friston et al., 1996), and removing volumes
affected by motion (Power et al., 2012) can, and often are used during
data pre-processing to decrease the negative effects of motion on the
signal in fMRI data. However, though these approaches are helpful for
cleaning data that may otherwise be discarded, we feel that consensus
guidelines for (un)acceptable levels of motion are needed to improve
consistency within the neuroimaging community, in the same way
the BIDS standard (Gorgolewski et al., 2016) has been widely adopted
as the de facto data formatting structure.

It is important to note that despite the data only being minimally
pre-processed, the purpose of pyfMRIqc is not to determine whether
data processing steps worked as expected, but to assess the quality
of the data itself. We motion corrected data so that our metrics (e.g.,
scaled squared difference) are calculated for contiguous voxels in time
and space but we do not directly measure whether all physical motion
was corrected for. Brain extraction, spatial normalisation, distortion
correction, and denoising, are all commonly used and important
pre-processing steps in the pipeline of fMRI data analysis, and the
efficacy of these pre-processing steps should also be checked as part
of a robust analysis pipeline for ensuring data quality. Therefore, the

7 https://cbs.fas.harvard.edu/facilities/neuroimaging/investigators/mr-
data-quality-control/

output generated by pyfMRIqc should be treated as one part of a
broader data processing procedure. Additionally, because the image
quality metrics generated by pyfMRIqc have no absolute reference –
that is they cannot be compared to a reference value since there is
no ground truth – the detection of data quality issues is dependent
on individual interpretation. One way to address this issue is by
generating a database of reference values to aid outlier detection.
This is the process used by MRIQC, which crowdsources image
quality metrics to generate population-level distributions (Esteban
et al., 2017). However, we are currently unable to generate these
distributions with pyfMRIqc.

Cognitive biases may also influence subjective decision-making
about the quality of fMRI data. The acquisition and preparation of an
fMRI dataset involves great economic and time cost, and researchers
may be motived more by these sunk costs to minimise loss from
their own data than from secondary datasets. People tend to be loss
averse (Kahneman and Tversky, 1979), and the thought of “wasting”
the resources put into acquiring the dataset could bias individuals
to perceive data quality issues as less problematic than if the data
were collected independently. For instance, Polman (2012) found
that people are less loss averse when making decisions for others
compared to themselves, and that this reduction of loss aversion may
be due to a decreasing effect of cognitive bias on decision making.
Compared with others, people also disproportionately value things
they have created themselves (Norton et al., 2012), and may therefore
be reluctant to discard data they perceive as having value. Reappraisal
is one strategy that can be used to decrease loss aversion (Sokol-
Hessner et al., 2009, 2013), and could improve decision-making by
changing the perspective of discarding data from a waste of spent
resource to a way of maximising ability to detect effects and improve
data quality. The adoption of open research practices, such as the
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FIGURE 4

An example case of global signal loss following motion detected using output from pyfMRIqc.

preregistration of data quality control procedures and acceptable
thresholds could also decrease the risk of biases influencing decision-
making, while at the same time reducing questionable research
practices more generally (Niso et al., 2022). However this has not yet
been widely adopted in the neuroimaging community (Borghi and
Gulick, 2018).

There are several limitations in the protocol and software as
presented here. Firstly, our finding that often only a single rater
classified a dataset as “uncertain” suggests that the quality control
protocol presented (which is published unedited from its pre-
assessment state), lacked nuance for interpreting edge cases that
would otherwise have been classified as either “include” or “exclude.”
Given that pyfMRIqc was initially designed to aid decision-making
about the quality of raw/minimally pre-processed fMRI data, we
suggest that future users err on the side of caution with respect
to marking datasets for exclusion, and first fully pre-process data
using their pipeline of choice and then determine whether this had
a positive impact and reduced data quality issues. Second, cinnqc,
and by extension pyfMRIqc, do not formally quantify the success of
the minimal pre-processing steps. When designing software for users

FIGURE 5

T1 weighted images for two cases of atypical brain structure that were
present in the dataset.

with minimal programming experience, prioritising ease of use over
functionality can reduce the freedom of more advanced users. For
instance, brain extraction currently uses default arguments in FSL
to identify brain and non-brain tissue (Smith, 2002). This process
can sometimes exclude brain voxels (particularly at the boundary of
the brain), or include non-brain voxels in the brain extracted image.
However, these issues can be ameliorated via optional arguments that
change the default values, but this requires fine tuning on a per-
subject basis, or the use of other software like HD-BET or ANTsX
(Isensee et al., 2019; Tustison et al., 2021). A method for integrating
these features would improve the computational reproducibility of
the quality control procedure, as currently users would need to
generate these files separately and use the cinnqc nomenclature to
integrate output with the rest of the pipeline. A third limitation is that
pyfMRIqc does not currently provide visualisation for distributions
of “no-reference” image quality metrics. As previously mentioned,
MRIQC currently crowdsources these values from users by default
to generate robust distributions (Esteban et al., 2017). Though
pyfMRIqc does not currently have the userbase to make this an
effective method for identifying outliers at the population level,
visualising the distribution of these values for at least the group
level would help users to make more informed decisions about the
quality of data they have in their sample. Future versions of pyfMRIqc
would be improved by focusing on including these features in the
software, and could potentially integrate reference values from the
MRIQC Web-API for equivalent metrics in a similar way to how
MRIQCEPTION8 works.

In summary, we present a quality control protocol for pyfMRIqc
(Williams and Lindner, 2020), implement it on data from the fMRI
Open QC project (see text footnote 1), and assess its reliability using
four independent raters. Data were classified by each rater as either
“include,” “uncertain,” or “exclude,” based on the protocol and output

8 https://github.com/elizabethbeard/mriqception
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generated by pyfMRIqc and cinnqc, which automated minimal pre-
processing, data curation, and identification of deviated acquisition
parameters in the dataset. Our results indicate that our reliability
between raters was good for “include” and “exclude” decisions,
with κ values that ranged from moderate to substantial agreement.
However, coefficients for the “uncertain” classification demonstrated
little reliability between raters, and below chance level for all but
one pair of raters. Furthermore, we found that in all but one cases
where only one rater used the “uncertain” classification the other
raters agreed with each other. We suggest that improvements in
agreement between raters could be made by consulting sample-wide
distributions of image quality metrics, increasing the clarity of the
quality control protocol, and implementing further separate pre-
processing steps before reassessing the data and deciding whether or
not to exclude them.
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This article is an evaluation of the task dataset as part of the Demonstrating Quality

Control (QC) Procedures in fMRI (FMRI Open QC Project) methodological research

topic. The quality of both the task and fMRI aspects of the dataset are summarized

in concise reports created with R, AFNI, and knitr. The reports and underlying tests

are designed to highlight potential issues, are pdf files for easy archiving, and require

relatively little experience to use and adapt. This article is accompanied by both the

compiled reports and the source code and explanation necessary to use them.
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1. Introduction

This article is part of the Demonstrating Quality Control (QC) Procedures in fMRI (FMRI

Open QC Project) methodological research project, and describes procedures for efficiently

evaluating its task dataset. These procedures examine both the task (behavioral performance,

stimuli presentation, etc.) and fMRI (motion, appearance of preprocessed images, etc.) aspects

of the dataset. The code and criteria presented here are versions of that used for the Dual

Mechanisms of Cognitive Control (DMCC; Braver et al., 2021; Etzel et al., 2022) and multiple

other projects in the Cognitive Control and Psychopathology Laboratory at Washington

University in St. Louis (USA), and we hope will be useful and easily adapted by others.

QC procedures are often a balancing act between being so cursory that important problems

are not identified, and so onerous that QC procedures are skipped entirely. The files and

procedures presented here attempt to thread the needle; clearly highlighting the problems

of greatest potential risk to the dataset and analysis integrity and validity, while remaining

concise and easy to learn. These are intended to serve as a first step; a QC summary to allow

efficient screening for potential issues, not to include all the details necessary to investigate any

issues found.

These procedures are built around two dynamic report documents edited for the Open

QC task fMRI dataset. The dynamic report framework is particularly well-suited to scientific

programming because images, results, source code, and discussion are together in a single

document. These reports are compiled to pdf files (convenient for archiving and have the

same appearance wherever viewed), but there are many options for both output format and

programming language. Regardless of the implementation details, I urge scientists to strive for

clarity, simplicity, and stability when writing QC (or analysis) code over brevity and style purity,

and hope that the documents included here can serve as a useful template.

2. Methods

One of the few statements a group of fMRI methods experts might all agree with is that there

is a wide variety of methods for fMRI acquisition, processing, and analysis, none of which are

unequivocally “best” for all (or even a specific) research questions. Given this methodological

variety, quality judgments also widely diverge; the same images may be deemed suitable for one
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analysis, but too flawed for another. There is also lack of consensus on

which images to evaluate for quality, with some researchers using the

raw images, others the preprocessed, and yet others a combination

or after a processing pipeline used only for QC. Thus, one of the

first decisions when approaching a new fMRI project is to determine

which QC aspects are most relevant for the study, and how they will

be evaluated.

In general, I believe the QC procedures should be dictated by

each project’s hypotheses and analyses, not by a standard protocol

or fixed thresholds. Accordingly, I suggest performing QC on the

images preprocessed as they will be for analysis. For example, if

surface analyses are planned, the QC should include the surface

reconstruction, and temporal mean, standard deviation (sd), and

tSNR (temporal signal to noise ratio, here, mean/sd) images of the

vertex timecourses (rather than the voxels used here). If a particular

software package has been chosen, then the QC should be done using

the images and motion parameters created by that package. Similarly,

if images will be analyzed in subject space, the QC should be in subject

space as well.

The reasoning behind this suggestion to perform QC on the

preprocessed images is as a minimum, essential step; not to preclude

other tests, but to maximize the likelihood of detecting an error

arising anywhere in the pipeline. If a preprocessed image has high

quality, its raw version is likely also of high quality, but a poor

preprocessed image may or may not be the result of a low-quality raw

image (e.g., if the participant moved during field mapping, warping

may be introduced during the distortion correction preprocessing

step). Again, I am not advising against including additional QC

steps; procedures like evaluating image registration may be critically

important in some cases. But I do advise that the preprocessed images

always be examined for quality; that other image QC steps be in

addition, not a replacement.

When considering task fMRI QC, participant behavior (e.g., task

performance) is also of fundamental importance. Note that this is

not evaluating whether the participant responded as theoretically

predicted, but rather confirming that they were attempting to

perform the instructed task (and not, say, sleeping or responding

randomly). If the task requires frequent responses (e.g., button push

and spoken word), response frequency may be useful as a proxy

for attentiveness: long stretches without a response suggests the

participant stopped performing the task. Other tasks may not require

responses during the imaging session, but rely upon something like

monitoring eye gaze or the results of a memory test performed after

the session. Whatever the paradigm, for QC the aim is to determine

a non-biased way to identify participants who did not have the

minimally-valid task performance.

2.1. Data processing

The FMRI Open QC Project task dataset (Gorgolewski et al.,

2017; Markiewicz et al., 2021) was provided in BIDS (Brain Imaging

Data Structure; Gorgolewski et al., 2016) format specifically for QC

demonstration, with the only guideline the assumption that the target

analyses would be performed after spatial normalization to an MNI

anatomical template and not include the cerebellum.

Given such minimal requirements, I chose to preprocess

the images with fMRIPrep 21.0.1 (Esteban et al., 2019;

RRID:SCR_016216), which is reliable and straightforward to

use, and has become our (and many other) group’s default choice

for fMRI preprocessing. Since surface analysis was not required,

I chose to run fMRIPrep with volumetric preprocessing only,

using the target MNI152NLin2009cAsym output template; the

commands and generated text describing the preprocessing

it performed are in the Supplementary material. No other

preprocessing was done before the image QC procedures described in

this manuscript.

2.2. Resources

Two documents were prepared for QC assessment: one for

the fMRI (openQC_fMRIQC), and the other for the stimuli

and behavioral performance (openQC_behav). Both the compiled

(.pdf) and source (.rnw) versions of each are available at

https://osf.io/ht543/. These are dynamic report files, written in R

(version 3.6.3, RRID:SCR_001905; R Development Core Team, 2020)

and knitr (version 1.39; Xie, 2014, 2015, 2022); all code is contained

within the source (.rnw) versions of each file. The documents depend

upon the RNifti (version 1.3.0; Clayden et al., 2020) and fields

(version 11.6; Nychka et al., 2017) R packages, as well as AFNI 22.0.11

(RRID:SCR_005927; Cox, 1996; Cox and Hyde, 1997).

The task timing and responses in openQC_behav were

read directly from the provided _events.tsv files. Similarly,

openQC_fMRIQC read the six motion regressors and framewise

displacement (FD) directly from the _desc-confounds_timeseries.tsv

files produced by fMRIPrep (columns trans_x, trans_y, trans_z,

rot_x, rot_y, rot_z, and framewise_displacement). The voxelwise

temporal mean, standard deviation (sd), and tSNR (mean/sd) images

were calculated with AFNI 3dTstat and 3dcalc functions, using

the entire run (without censoring); see the startup code chunk

in openQC_fMRIQC.rnw. While the number of censored frames

(with FD above threshold) is included in the QC criteria as detailed

below, I prefer not to censor when calculating the temporal mean,

sd, and tSNR images during QC, to visually exaggerate differences

between runs.

2.3. QC criteria

Four criteria necessary for task fMRI QC are presented below

and applied to the FMRI Open QC Project task dataset. I want to

emphasize that these are (in my opinion) necessary criteria, but not

sufficient for all cases, nor a comprehensive list of all aspects of

dataset quality. Indeed, while preparing this manuscript a reviewer

commented that no criteria involved checking the raw (before

preprocessing) anatomical or functional images. In our ongoing

projects such a criterion is actually used: the experimenter rates the

quality of the anatomical images immediately after acquisition, so

that poor-quality scans can be repeated (https://osf.io/a7w39/). We

no longer routinely evaluate the raw functional images, since when

we have performed such checks they seem to add time and complexity

without identifying issues beyond than those also found with the

preprocessed images (Criterion D below). This decision to focus

QC on preprocessed images is a judgement made for our particular

Frontiers inNeuroimaging 02 frontiersin.org
89

https://doi.org/10.3389/fnimg.2023.1070274
https://scicrunch.org/resolver/RRID:SCR_016216
https://osf.io/ht543/
https://scicrunch.org/resolver/RRID:SCR_001905
https://scicrunch.org/resolver/RRID:SCR_005927
https://osf.io/a7w39/
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Etzel 10.3389/fnimg.2023.1070274

research aims and resource limitations; please consider what is most

important in your situation.

2.3.1. Criterion A: Excessive motion
It can be surprisingly difficult to quantify how much motion is

“excessive,” especially in fMRI datasets with high apparent motion

(Inglis, 2016; Etzel, 2017a; Power et al., 2019; Fair et al., 2020). For

task fMRI we have adapted the procedure described in Siegel et al.

(2014), and censor individual frames with FD > 0.9. Further, if more

than 20% of the frames in a run are censored, then the entire run is

omitted (Etzel, 2017b; Etzel et al., 2022). While these are quantitative

thresholds, I advise also viewing plots of the motion regressors during

QC (first part of openQC_fMRIQC.pdf), and not solely rely on a

count of censored frames or other summary statistic, since respiratory

task entrainment, forceful blinking, machine vibrations, and many

other things can cause unexpected (and potentially problematic)

patterns in the motion regressors. We do not generally exclude runs

or participants for an unusual motion pattern alone, but such patterns

should be monitored as part of routine QC, since they may indicate

that a problem is developing with image acquisition (e.g., a hardware

fault), or help inform analysis strategy (e.g., if have respiratory task

entrainment, including many motion regressors in the GLMs may

remove substantial task information).

The censoring threshold of FD> 0.9 suggested here ismuchmore

lenient than advised by many researchers (including Siegel et al.,

2014, which suggests 0.5 for typical adults), though we have found it a

useful starting point. The choice of censoring threshold and method

(e.g., on FD, enorm, or translation; single frame or adjacent as well)

depends on multiple factors, perhaps most importantly study design

and planned analysis. If temporal correlations will be used (e.g., for

functional connectivity analyses), stringent motion thresholds and

filtering techniques are essential (Satterthwaite et al., 2013; Ciric et al.,

2017, 2018). With task designs, higher motion levels may be tolerable,

if not strongly linked to trial types. The linkage of (apparent) motion

and trial timing is common (Perl et al., 2019), however, and poses

a serious methodological challenge. Plotting trial onsets with the

motion regressors (as in openQC_fMRIQC.pdf) can aid in spotting

potentially significant confounding of task and motion, but much

work remains to be done in this area.

2.3.2. Criterion B: Improper task presentation
To estimate task-related responses consistently across

participants we generally need approximately the same amount

of imaging data from each participant, so this criterion is to exclude a

participant if<½ of their trials have usable data (in the sense of being

analyzable). Given the wide variety of task paradigms, the definition

of “usable” data also varies, but at minimum both the fMRI images

and task presentation details (e.g., stimulus onset time) must be

present for the trials to be usable. For examples of the types of cases

that may lead to this criterion being met, consider that incomplete

task runs may result from hardware failure (e.g., projector bulb

breaks; the participant mentions after scanning that they did not

hear the audio stimuli), participant request (e.g., they ask to end a

run early), or presentation error (e.g., the experimenter started the

wrong task script; the task was programmed incorrectly and did not

present the necessary trials).

While not implemented here, fMRI images for the run being

present is not sufficient for a particular trial to be analyzable: it

may have occurred during a period of excessive motion, and so be

censored (which removes the affected frames from analysis). There is

accordingly an interaction between criteria A and B: if a participant

has many frames above the censoring threshold, the timing between

the task trials and censored frames should be evaluated, as not all

frames have the same impact. For example, some participants tend

to move outside of task blocks (e.g., at the end of a run), which will

change the number of analyzable trials less than if the motion occurs

during the trials themselves.

2.3.3. Criterion C: Invalid task performance
Note that this is not excluding participants who performed the

task “incorrectly” according to the experimental hypotheses, but

rather those who did not perform the expected task at all, such as not

following the instructions or attending to the stimuli. For example,

if the task involves responding to visual stimuli, we want to exclude

participants who fell asleep or closed their eyes throughout stimulus

presentation. Given the wide variety of protocols and priorities there

is no universally applicable way to describe valid task performance;

the most important aspects of each experiment should be considered,

and criteria incorporate features like catch trials or eye gaze if present.

In the FMRI Open QC Project task dataset we only have the

task information that can be gleaned from the BIDS events.tsv

files; far less than is typical. Proceeding nevertheless, it appears that

participants were asked to make a button-press response after every

trial, the trials were fairly short and rapid (seven ormore eachminute;

openQC_behav.pdf), and most participants responded accurately to

most trials. In these types of designs it can work well to define invalid

task performance quantitatively by no-response trials: exclude if a

participant fails to respond to five ormore trials in a row ormore than

40 percent of the total trials within a run [thresholds adopted from

the HCP task protocols (WU-Minn Consortium of the NIH Human

Connectome Project, 2013)]. Note that this criterion is not of correct

trial responses, but of any trial response (in cases where every trial

requires a response).

Qualitatively, the responses should be reviewed for unambiguous

patterns indicating that the participant was not performing the task

correctly, such as using only one response button or responding in a

repetitive sequence instead of to the stimuli.

The motivation for including quantitative thresholds is the need

to distinguish inattention from poor task performance in the most

unbiased way possible. Assuming the experimenters wish to include

participants with a range of performance, people finding the task

difficult will generally have a mix of correct- and incorrect-response

trials, and slower RTs than people finding it easy. If the task requires

a response to be made within a certain amount of time, slower RTs

can lead to some trials not have a recorded response, even though

the person was attentive and trying to perform the task. Thus, we

may interpret 10 no-response trials differently if they were scattered

evenly throughout the run (suggesting task difficulty, particularly

if accompanied by low accuracy or slow RTs) than in a group of

sequential trials (suggesting inattentiveness, particularly if trials with

responses tend to be fast and accurate).

Plots such as in Figure 3 and careful examination of response

patterns in pilot data or previous experiments may assist in

setting the quantitative thresholds for a particular experiment. The
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TABLE 1 Task-based fMRI QC criteria: exclude the run for a subject if:

Name Type Details

A Excessive motion Quantitative 20% or more of the frames have more than 0.9mm FD

B Improper task presentation Quantitative Less than half of the trials have usable data (e.g., due to hardware failure).

C Invalid task performance

(e.g., participant fell asleep)

Quantitative and qualitative There is no response for five or more trials in a row or more than 40% of the

total. Also exclude if the pattern of responses indicates unambiguously invalid

performance (e.g., only one response button used).

D Failed image acquisition

and/or preprocessing

Qualitative The preprocessed temporal mean, sd, and tSNR images do not resemble the MNI

anatomical template (e.g., distorted shape), have the expected properties (e.g., the

sd image does not resemble an arteriogram), have unusual structured noise, or

are otherwise clearly and excessively affected by artifacts.

appropriateness of the quantitative thresholds of five or more no-

response trials in a row or 40% of the total can’t be evaluated in this

case (given the lack of experimental details), but can serve as a default

or starting point. While any threshold is imperfect, this may pose a

smaller risk than that of experimenter bias if only qualitative criteria

are used to determine which participants to exclude.

2.3.4. Criterion D: Failed image acquisition and/or
preprocessing

For this criterion, qualitatively review temporal mean, sd, and

tSNR (mean/sd) images of each run, looking for incorrect or unusual

cases requiring further investigation. Visual arrays with multiple runs

side-by-side assist in evaluating typical variability, and thus also in

spotting exceptions. We have found it useful to concentrate the

initial QC evaluation on a few easy-to-spot features. First, check the

volumetric temporal mean images for “alien” or “escaping” brains.

No preprocessed image will exactly match the anatomic template, but

distortions should not be extreme (“aliens”), and the brain should

always be centered in the same part of the image (not “escaping”

the frame). Second, the mean volumetric images should have clearly

visible brain structure (i.e., resemble an anatomical scan), while the

sd images should be brightest around the edges and in large vessels.

Throughout, the images should be examined for unusually structured

noise, dark areas, or other oddities. Surface images are more difficult

to qualitatively review, since they are typically plotted on a single

surface underlay and only include the gray matter ribbon. However,

a useful QC feature is to look for the central sulcus in the temporal

mean images, which should be clearly visible as “tiger stripes” at the

top of each hemisphere; non-anatomical dark patches or “polka dot”

patterns should also be noted.

If something is spotted during these qualitative checks of the

statistical images, the run should be investigated in detail before

deciding whether or not to exclude it. For example, if the raw

(unprocessed) images appear as expected but the preprocessed

images do not, an error likely occurred during preprocessing and

may be possible to correct. If the raw images are also affected, then

the run is likely unusable, and the source of the problem should be

investigated to see if its recurrence can be avoided. Sometimes it is

unclear whether an unusual run should be included or not, such as

when dropout or noise is only slightly higher than typical. In these

uncertain cases it can be useful to evaluate whether the results of

positive control analyses (e.g., of strong effects such as button presses;

Niso et al., 2022) are within the range of other participants, and

exclude if not.

3. Results

Applying these criteria to the Open QC dataset, in my judgment

three participants should be excluded from the hypothetical

analysis: one for failed image acquisition (Table 1 criterion D

and sub-010), and two for invalid task performance (Table 1

criterion C, sub-016, and sub-025). The others vary in quality,

particularly of the images, but do not reach the exclusion

thresholds. openQC_fMRIQC.pdf and openQC_behav.pdf (https://

osf.io/ht543/) contain the necessary figures and statistics to evaluate

the Open QC task dataset in terms of the Table 1 criteria, as will be

described here.

3.1. Results from applying the image-related
criteria

The first document, openQC_fMRIQC.pdf, is intended to

highlight key image-related features of the task fMRI runs: motion

(criterion A) and success of acquisition and preprocessing (criterion

D). The first section has line plots of the six realignment parameters

and FD for each run, with trial onsets, censoring threshold (FD >

0.9), and censored frames marked. The number and proportion of

censored frames are printed on each plot, for ease of comparing to

the 0.2 censoring exclusion criterion. No participants reached this

threshold, and while movement clearly varies across participants, I

do not suggest excluding any due to excessive (or highly unusual)

movement. Interestingly, the degree of apparent motion varies across

participants; for example minimal in sub-011 and sub-030, but clear

in sub-012 and sub-022. Some participants have brief instances

of overt head motion, such as sub-003 and sub-018. Overall, the

FD > 0.9 frame censoring threshold seems reasonable for this

dataset, appropriately identifying the larger overt, but not apparent,

head motion.

The second section of openQC_fMRIQC.pdf has plots of the

temporal mean, standard deviation, and tSNR (mean/sd) images

for each participant, for applying criterion D (or more concretely,

looking for oddities; images that are not like the others). As shown

in Figure 1, while all other participants’ images resemble the MNI

preprocessing target template, sub-010 is clearly a different shape.

Other than the distorted sub-010 images, the summary images

have the expected characteristics (e.g., anatomical structures are

visible on the means; sd have bright vessels). To further evaluate

sub-010, I looked at the provided raw image file (sub-010_task-

pamenc_bold.nii.gz); if the raw image looks typical, we could suspect
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FIGURE 1

Temporal mean images for six participants, calculated after preprocessing. sub-010 (outlined in red) is highly distorted. This figure is from page 12

of openQC_fMRIQC.pdf.

FIGURE 2

Frame 100 of the raw image timeseries (_bold.nii.gz) for sub-010 [left, (A)] and comparison sub-008 [right, (B)], viewed in MRIcron (Rorden et al., 2007;

RRID:SCR_002403). sub-010 was not acquired with the same parameters as sub-008 (and the other participants).

that the problem was introduced during preprocessing. However,

here, the problem is present in the raw image as well: Figure 2 shows

frame 100 from sub-010 on the left, and for a comparison example,

sub-008 on the right. The image orientation and planes are clearly

different for sub-010, so the unusual appearance in Figure 1 was not

introduced by preprocessing. Further, the phase encoding direction

and other fields in sub-010_task-pamenc_bold.json vary from the

other participants. We can thus conclude that the image acquisition
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FIGURE 3

Task trial onset time (colored by trial type), response (at onset + reaction time), and accuracy (black ticks) for 10 participants. Vertical gray lines are at

1-min intervals. Numbers at right margin give the number of LEFT (blue) and RIGHT (red) responses, total responses (black; 64 if no trials lacked a

response), and proportion correct of the trials with a response. sub-016 responded correctly to all trials in the 1st min, but then had more and more trials

without a response, suggesting that they became less attentive as the run progressed. sub-025 was also excluded due to criterion C, and while their

strings of no-response trials did not reach the 5-trial threshold until the last minute of the run, they missed noticeably more trials in the second than first

half of the run.

was incorrect for sub-010, and the participant’s imaging data should

be excluded.

In some cases the raw images first appear odd, but are recoverable

(e.g., by changing parameters or preprocessing template). Other

issues arise from errors that causes the images to have fundamentally

different properties than the rest of the dataset (e.g., if the wrong head

coil or encoding direction was used), and so must be excluded. If this

was an ongoing experiment, the researchers should investigate how

it came about that the wrong acquisition protocol was used for the

session, and if changes to the SOPs [Standard Operating Procedures

(Etzel et al., 2022; Niso et al., 2022), https://osf.io/6r9f8] could avoid

the mistake happening again.

3.2. Results from applying the task-related
criteria

The second document, openQC_behav.pdf, is intended to

highlight and evaluate key aspects of the task presentation (criterion

B) and behavioral performance (criterion C). The code in chunk

code2 counts how many trials of each type were presented to each

participant, and prints an error message if the counts are not as

expected. For this dataset, it checks the number of CONTROL and

TASK trials in each run, and since all participants have the same

number, no participants were excluded for criterion B. If some aspect

of the task paradigm is key for valid analysis (e.g., each stimulus must

be presented exactly twice), this should be explicitly tested in this

section, and any violations clearly highlighted.

The plot in openQC_behav.pdf, excerpted in Figure 3,

summarizes the task presentation and performance for each

participant (y axis). Time is along the x axis, and each green

(CONTROL) and yellow (TASK) plotting symbol indicates the type

and onset time of a trial (read from the origcopy _events.tsv files).

The blue (LEFT) and red (RIGHT) lines show the time and type of

each button press, with black tick marks on correct responses. The

numbers in the right margin list the number of LEFT and RIGHT

responses, their total, and the proportion correct of trials with a

response. While dense, with practice a lot of task and performance

information can be quickly scanned in plots like these, including

trial timing and randomization (e.g., here we can see that all

participants had the same trial order and timing), and unexpected

response patterns.

To reduce the chances of missing an exception, the quantitative

task performance criteria (C) are tested explicitly in chunk code2.

Three notifications are printed: that sub-016 has both >40% no-

response trials and 5 or more no-response trials in a row, and

that sub-025 has 5 or more no-response trials in a row. These

strings of trials without a response are visible in the participants’

rows in Figure 3, as stretches of trial onsets (green and yellow

lines) without the corresponding responses (red and blue lines).

Accordingly, both sub-016 and sub-025 should be excluded from
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analysis due to excessive missing responses. We can also observe

that participants made very few errors in this experiment; nearly

all responses that were made, were correct (sub-013 is lowest at

0.88 accuracy). In some paradigms or analyses it may be relevant

to establish additional criteria, such as excluding participants with

accuracy below a threshold.

4. Discussion

This article presented an evaluation of the FMRI Open

QC Project task dataset, as part of the Demonstrating Quality

Control Procedures in fMRI methodological research project.

Both the task and fMRI aspects of the dataset were examined,

applying the criteria summarized in Table 1 via the figures

and statistics in the two dynamic report summary documents

(openQC_fMRIQC.pdf and openQC_behav.pdf; R, AFNI, and

LaTeX) available at https://osf.io/ht543/. Using these criteria,

I suggest that three participants should be excluded from the

hypothetical analysis: one for failed image acquisition and two for

invalid task performance.

I do not believe that there is a “perfect” or even “ideal” procedure

for QC in psychological or neuroimaging research: new potential

issues are identified continually, and the sheer amount of data

makes checking every piece impossible. Nevertheless, there clearly

is a terrible way to do QC: by omission. We have likely all been

involved in a project where a critical artifact or error was discovered

late, sometimes so severe that the dataset must be abandoned or a

publication corrected.

Since the FMRI Open QC Project task dataset was complete

(acquisition finished years ago) and small (only one run per person),

I included all of the participants in each of the two QC summary

documents. This is only appropriate on completed datasets, however.

For new and ongoing projects, QC summary documents should

be created for each participant on a continual basis, and reviewed

as soon after each session as possible, a task made efficient by

dynamic reports and clear guidance on how to review the reports

[examples of such single-subject QC reports from the DMCC project

(Braver et al., 2021; Etzel et al., 2022) are at https://osf.io/7xkq9 and

https://osf.io/z62s5]. While no one can guarantee that such ongoing

QC procedures will prevent disaster, they can certainly help reduce

the odds of collecting an unusable dataset, by allowing researchers to

catch serious issues early, when they can still be corrected.

The material presented here is intended to serve both as

inspiration and a template for adapting to your own datasets. The

code in the summary documents is designed to be straightforward

and approachable; easy to edit for other datasets or reimplement in a

new language. A number of QC software packages which can generate

reports without programming are also available, including MRIQC

(Esteban et al., 2017). However, accomplished, I suggest QC include

reviewing the images themselves, not only summary statistics.

Particularly with task fMRI, but to some extent with any

study of living participants, both the task/behavior and imaging

parts of the dataset need to be included in the QC. Which

aspects and criteria are most important will vary with each

dataset and analysis, so I suggest starting by considering which

features absolutely must be true for the analyses and inferences

to be valid, and ensuring that those features are covered in

the QC procedures. We may not be able to achieve “perfect”

QC, analysis, or results, but good QC procedures can let us be

confident that what we are analyzing and reporting is real, not

wholly invalid.
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Quality control (QC) is an important stage for functional magnetic resonance

imaging (fMRI) studies. The methods for fMRI QC vary in different fMRI

preprocessing pipelines. The inflating sample size and number of scanning

sites for fMRI studies further add to the difficulty and working load of the QC

procedure. Therefore, as a constituent part of the Demonstrating Quality Control

Procedures in fMRI research topic in Frontiers, we preprocessed a well-organized

open-available dataset using DPABI pipelines to illustrate the QC procedure in

DPABI. Six categories of DPABI-derived reports were used to eliminate images

without adequate quality. After the QC procedure, twelve participants (8.6%)

were categorized as excluded and eight participants (5.8%) were categorized

as uncertain. More automatic QC tools were needed in the big-data era while

visually inspecting images was still indispensable now.

KEYWORDS

quality control, fMRI, neuroimaging, DPABI, pipeline

1. Introduction

Quality control (QC) is an important stage for functional magnetic resonance imaging
(fMRI) studies. Images with a variety of artifacts, noticeable head motion artifacts, a low
signal-to-noise ratio, inadequate slices, etc., are eliminated by researchers. Some nuisance
signals such as head motion artifacts would be further regressed out and included as
covariates in the following statistic. In the present study, we illustrated the fMRI quality
control routine in DPABI by preprocessing a well-organized fMRI dataset.

Quality control for fMRI is becoming more challenging at this point. The challenge stems
from several sources. First, to reduce the false positive rate and increase the reproducibility
of an fMRI experiment, the sample size required has significantly improved over the past
decade. More MRI data result in increased human power consumption in the non-automatic
QC procedures such as visually screening the T1-weighted images with unacceptable motion
artifacts (Backhausen et al., 2016). Second, even if the workload of researchers has been
lessened by well-known preprocessing tools like fMRIPrep (Esteban et al., 2019), C-PAC
(Michael et al., 2013), and DPABI (Yan et al., 2016), the optimum quality control procedures
in these preprocessing pipelines still call for human involvement in the process. Several
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fully automatic brain MRI QC tools have been developed but
the generalizability of them needs to be further validated on
the independent datasets (Mortamet et al., 2009; Alfaro-Almagro
et al., 2018; Bastiani et al., 2019). Third, the generalizability of
findings drawn from multi-center image acquisition studies could
be significantly improved. However, the variability across MR
manufacturers, scanning procedures, daily scanner QC standards,
and other factors may prevent researchers from applying a
consistent criterion to exclude data. Therefore, a meta-data report
for all the preprocessed participants would contribute to avoiding
mistakes such as deficiency of time points in functional sessions
or abnormal TR. In general, the present QC tools are designed to
reduce the mechanically repetitive operations of users by providing
and illustrating more user-friendly quality assessments. These tools
may significantly alleviate the working load added by increased
sample size and multi-center design, but could not replace the
decision-making procedure of human beings in QC. Last but not
least, the open-science data-sharing trend offers an unpretentious
opportunity to reuse existing data or combine a vast number
of images to carry out ambitious large-scale analyses. However,
the inclusion of meta-data of samples could be various among
different datasets and acquisition parameters might be unavailable
for some datasets. Even worse, some flaws can be hard for users
of these open datasets to identify (e.g., the flipped left-right
direction, redundant images for an MR series, wrong participant
sex labels, etc.). To summarize, the issues raised above demand
that researchers prioritize the quality control procedure and
integrate more efficient and user-friendly tools into preprocessing
pipelines.

Most of the popular fMRI pipelines have their unique QC
routines. The MRIQC is a pioneer specialized QC framework that
incorporates a variety of techniques (Esteban et al., 2017). In recent,
the main contributors of MRIQC developed another important
pipeline fMRIPrep for fMRI preprocessing. The fMRIPrep would
produce a series of intuitive dynamic graphs and charts to
demonstrate the effectiveness of Bold-T1 image co-registration,
brain surface reconstruction, spatial normalization, and the severity
of head motion after fMRI preprocessing. These graphs and
reports are frequently invoked by QC procedures in the other
pipelines such as DPABISurf (Yan et al., 2021) and ENIGMA
HALFpipe (Waller et al., 2022). For example, HALFpipe provides
an interactive webpage for users to evaluate an integrated quality
report derived from fMRIPrep and other tools for each participant.
And DPABI also combines all the reports from a group of
participants into three reports to reduce repetitive operations.
As mentioned above, QC was essential for large-scale, multi-
center imaging projects. Therefore, the recent large-scale projects
like UKBiobank (Alfaro-Almagro et al., 2018), ABCD (Hagler
et al., 2019), and ENIGMA (Waller et al., 2022) also created
their own (combination of) QC methods. In addition to these
specialized QC tools, imaging formatter such as DCM2NIIX (Li
et al., 2016), BIDS-validator and DPABI_InputPreparer could
also be used to check for the absence of imaging meta-data in
QC. DPABI is a widely-used user-friendly toolbox for fMRI data
processing. Both existing QC tools and in-house QC procedures
have been integrated into the volume-based pipeline DPARSF,
surface-based pipeline DPABISurf and specialized QC modules.
The purpose of this work was to demonstrate how to QC
fMRI data in DPABI. Participants with poor image quality

were excluded based on a set of criteria which was thoroughly
described.

2. Materials and methods

2.1. Participants

A collection of resting-state fMRI data, called fmri-open-qc-
rest, was used for demonstrating the QC procedure in DPABI.
The fmri-open-qc-rest dataset includes participants pooled from
7 different datasets, each with about 20 subjects (total N = 139).
It’s a demonstrating data of the fMRI Open QC Project and the
anonymous samples were selected from widely-used open-available
datasets such as the functional connectome project (FCP) (Biswal
et al., 2010), the autism brain imaging data exchange (ABIDE) (Di
Martino et al., 2014) and the OpenNeuro resource (Markiewicz
et al., 2021). The sex and age of participants were not available in
the fmri-open-qc-rest dataset.

2.2. Surface-based MRI preprocessing

Both a volume-based pipeline (DPARSF) and a surface-based
pipeline (DPABISurf) in DPABI were used to preprocess the MRI
data. Surface-based methods are increasingly common in the most
recent studies and are superior to volume-based methods in terms
of structure localization, spatial smoothing, and reproducibility
(Coalson et al., 2018). However, the surface-based methods
were time-consuming and omitted the analysis of subcortical
and cerebellar areas. The volume-based approaches would be
appropriate for conducting whole-brain analysis, preprocessing
large datasets, etc. Additionally, the DPARSF pipelines reorient/QC
module offered a user-friendly graphical user interface for visually
assessing the image quality before the remaining laborious stages
(e.g., structure segmentation).

In specific, surface-based preprocessing was performed by
DPABISurf (Yan et al., 2021), a surface-based fMRI data analysis
toolbox evolved from DPABI/DPARSF. DPABISurf used docker
technology to wrap the whole computing environment for
fMRIPrep (Esteban et al., 2019), FreeSurfer (Fischl, 2012), ANTs
(Tustison et al., 2014), FSL (Jenkinson et al., 2012), AFNI (Cox,
1996), SPM (Ashburner, 2012), GNU Parallel (Tange, 2011), PALM
(Winkler et al., 2014), MATLAB (The MathWorks Inc., Natick,
MA, USA), Docker1 and DPABI (Yan et al., 2016), etc. The pipelines
mentioned above have their own preprocessing and QC procedures
and an elaborate comparison among these pipelines could be
found in the ENIGMA HALFpipe references (Waller et al., 2022).
The resting-state functional images and T1-weighted images were
preprocessed by the following steps. (1) Checking the BIDS JSON-
format image meta-data; (2) intensity non-uniformity correction
and skull-stripping; (3) tissue segmentation of cerebrospinal fluid
(CSF), white matter (WM), and gray matter (GM); (4) brain surface
reconstruction; (5) deleting initial 10 time points; (6) boundary-
based registration of BOLD and T1 images; (7) BOLD image spatial

1 https://docker.com
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normalization to fsaverage5 space; (8) head-motion, WM, and CSF
signal and linear trend nuisance regression; (9) bandpass filtering
(0.01–0.1 Hz); (10) spatial smoothing [full-width at half-maximum
(FWHM) of 6 mm]. Detailed preprocessing procedures can be
found in our previous research (Chen and Yan, 2021).

Of note, slice-timing corrections were not conducted because
there were errors in the slice-timing information of some
participants. Normally, DPABISurf/DPARSF would read the slice-
timing information from DICOM header files (if the input images
were in DICOM format) and metadata files in the BIDS format
or the DPABI format (if the input images were in NIFTI format).
As the demonstrating data in the fmri-open-qc-rest dataset were in
NIFTI format, the slice-timing correction procedures would use the
related metadata in the BIDS schema. The related information such
as acquisition time for each slice and the scanning sequence (e.g.,
interleave or sequence while scanning different slices in a volume)
were recorded in separated JSON files in the BIDS data-structure
and could not be extracted from the NIFTI images themselves. In
the fmri-open-qc-rest dataset, slice-timing-related information of
some participants was missing or incorrect. The exact details were
provided in see Section “3.2. Issues in MRI meta-data.” Therefore,
we skipped the slice-timing correction while this procedure might
be necessary for the images with a relatively long repetition time
(Sladky et al., 2011) (e.g., TR = 2.5 for most of the participants in
the dataset).

2.3. Volume-based MRI preprocessing

Volume-based data preprocessing in our study was carried
out using the Data Processing Assistant for resting-state fMRI
(DPARSF) (Yan and Zang, 2010), which was based on SPM (Friston
et al., 1994) and had been integrated into Data Processing and
Analysis of Brain Imaging (DPABI) (Yan et al., 2016). The first 10
time-points of the fMRI series were discarded. The head motion
was corrected by a six-parameter (rigid body) linear transformation
with a two-pass procedure (Yan et al., 2013). Reorient/QC was
a module in DPARSF pipeline for both adjusting the orientation
of the images and visually checking the image quality of each
T1-weighted or BOLD image. We rated each image by a 5-point
scale. The 5-point rating scales provided semiquantitative scores
for the results of the visually evaluation in reorient/QC module.
More points equaled better images. The derived reports would
record both the rating scores and the comments for images.
After the whole Reorient/QC procedures were finished, a QC-
score-threshold of 3 was set in the following dialog box. The
images with extremely bad quality were not be involved in the
further preprocessing procedure to avoid contaminating other
samples in the certain procedures (e.g., creating a group template).
After coregistering the structural and functional images and
unified segmentation (Ashburner and Friston, 2005) on T1 image,
spatial normalization to MNI-152 space [a coordinate system
created by Montreal Neurological Institute (Fonov et al., 2009)]
was performed using the Diffeomorphic Anatomical Registration
Through Exponentiated Lie algebra (DARTEL) tool (Goto et al.,
2013). The Friston 24-parameter model (Friston et al., 1996) was
applied to regress out head motion effects. White matter signal,
cerebrospinal fluid signal and linear trends were regressed out

from each voxel’s time course. Finally, all images were filtered by
temporal bandpass filtering (0.01–0.1 Hz) to reduce the effect of
low-frequency drift and high-frequency physiological noise.

2.4. Quality control procedure

In general, we adopted six DPABI-derived reports to exclude
participants with insufficient quality. The detailed criteria
according to the reports were listed in Table 1. The QC procedures
were integrated into two pipelines with graphic user interfaces
(GUI) for the volume-based methods and surface-based methods.
A detailed introduction to these modules could be found in the
related course at http://rfmri.org/Course. An intuitive exclusive
tool for checking spatial normalization quality in the volume-based
preprocessing was displayed in Figure 1. The detailed criteria
for eliminating samples derived from these reports were listed in
Table 1.

A. The QC rating scores derived from the Reorient/QC module
in the DPARSF pipeline. The Reorient/QC module is a GUI
designed for visually checking and manually orientation-
adjusting the raw T1-weighted and functional images. The
QC scores for each subject were given by the user according
to the imaging quality. Subjects with structural or functional
image QC scores below 3 would not be included in
further preprocessing.

B. The head-motion reports from DPABISurf/DPARSF pipeline.
There were two reports about the head-motion of participants.
The first one was a brief report for excluding participants
according to several commonly-used rules (e.g., maximum
rigid displacement or rotation exceeding 3 mm or 3 degrees).
The second one was a detailed head-motion report spreadsheet
recording the head-motion in different directions and the
framewise displacements (FD) would be used as another
threshold of mean head-motion (Jenkinson et al., 2002). We
set a mean FD-Jenkinson head-motion threshold to 0.2.

C. The dynamic graph for checking co-registration between
structural images and functional images of each participant
derived from DPABISurf pipeline. Bad BOLD-T1 co-
registration, MRI artifacts and flipped image direction can be
distinguished from this report.

D. The dynamic graph for checking brain surface reconstruction
for each participant derived from DPABISurf pipeline. Bad
brain surface reconstruction can be distinguished from this
report. Of note, bad skull stripping may lead to inaccurate
surface reconstruction and structural metrics estimation and
can be recognized in this report.

E. The dynamic graph for checking spatial normalization from
individual space to standard (MNI) space of each participant
derived from DPABISurf pipeline. Bad spatial normalization,
MRI artifacts, low signal-to-noise ratio, anomalous structural
occupancy or abnormity can be distinguished from this report.
The three graphical reports (e.g., co-registration, surface
reconstruction and spatial normalization) of every participant
were summarized into three HTML page in the derived QC
folder in the DPABI working directory.
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TABLE 1 Resting state functional magnetic resonance imaging (fMRI) quality control (QC) criteria: Exclude a subject if.

Index Criteria Derived from

A1 Low brain coverage (quantitative and qualitative) DPARSF, QC report

A2 Severe signal loses in temporal lobe (qualitative) DPARSF, QC report

A3 Head-motion related artifacts (qualitative) DPARSF, QC report

A4 Other MRI artifacts (qualitative) DPARSF, QC report

A5 Flipped/Uncertain scan direction (qualitative) DPARSF, QC report

A6 Anomalous structural occupancy or abnormity (qualitative) DPARSF, QC report

B1 Maximum head-motion exceeding 3 mm or 3 degree (quantitative) DPARSF/DPABISurf, Realign parameters

B2 Averaged framewise displacements exceeding 0.2 (quantitative) DPARSF/DPABISurf, Realign parameters

C1 Bad BOLD-T1 co-registration (qualitative) DPABISurf, QC_EPItoT1 report

C2 Head-motion related artifacts (qualitative) DPABISurf, QC_EPItoT1 report

C3 Other MRI artifacts (qualitative) DPABISurf, QC_EPItoT1 report

C4 Flipped/Uncertain scan direction (qualitative) DPABISurf, QC_EPItoT1 report

D1 Bad brain surface reconstruction (qualitative) DPABISurf, QC_SurfaceReconstruction report

D2 Bad skull stripping (qualitative) DPABISurf, QC_SurfaceReconstruction report

E1 Bad spatial normalization (qualitative) DPABISurf, QC_T1toMNI report

E2 Head-motion-related artifacts (qualitative) DPABISurf, QC_T1toMNI report

E3 Other MRI artifacts (qualitative) DPABISurf, QC_T1toMNI report

E4 Low signal-to-noise ratio (qualitative) DPABISurf, QC_T1toMNI report

E5 Anomalous structural occupancy or abnormity (qualitative) DPABISurf, QC_T1toMNI report

F1 Abnormal TR, number of volumes, etc., (quantitative) DPARSF/DPABISurf, Meta-data report

“Other MRI artifacts” indicate a variety of visually recognizable MRI artifacts, including susceptibility artifacts, wraparound artifacts, coil-related artifacts, chemical artifacts, etc.

F. The meta-data report spreadsheet (TRInfo.tsv) of images
generated by DPARSF or DPABISurf. Abnormal meta-data
records such as a smaller number of volumes, atypical TR and
strange voxel sizes can be distinguished from this report. This
report was considered a unique QC resource in DPABI because
the mistakenly included images and incomplete images could
be easily discriminated using the meta-data reports.

2.5. Sex difference with/without quality
control

To preliminarily illustrate the effect of quality control in
statistical analysis, we conducted two-sample t-tests to show
the sex differences in some common fMRI metrics. Of note, a
comprehensive evaluation of the QC-effect in group-level analysis
(e.g., taking into account the site-effect and the reduced sample
size after eliminating samples) would be a larger and separate
topic. Importantly, the sex labels of the participants were not
provided by the organizers of fmri-open-qc-rest dataset and we
used a T1-weighted image-based classifier to predict the sex of each
participant (Lu et al., 2022). Considering the sex classifier achieved
about 95% accuracy, we supposed that the estimated classifier
values would be close to the ground truth. Sex differences were
tested in both the images with QC and the images without any QC.
For the statistics without QC, thirteen estimated male participants
and seven estimated female participants were excluded. The

fMRI metrics included regional homogeneity (ReHo), (fractional)
amplitude of low-frequency fluctuations (fALFF/ALFF) and degree
centrality (DC). The sites and the mean FD-Jenkinson scores were
included as covariates. The statistical maps of the two-sample
t-tests were corrected for family-wise error rate (FWER) using
Gaussian random field (GRF) correction. The vertex-wise threshold
was 0.001 and the cluster-wise threshold for GRF correction was
0.017 (0.05/3, 3 for Bonferroni correction of two hemispheres and
one subcortical area).

3. Results

3.1. Quality control summary

In sum, 12 participants were excluded after quality control in
DPABI and 8 participants might be further excluded on a stricter
standard, accounting for 8.6 and 5.8% of the whole fmri-open-qc-
rest sample (please see a detailed excluding list with subject ID in
Supplementary Table 1). The detailed QC criteria were described
in the following sections. The orders of these sections were
determined by the frequency of being triggered and the importance
of the excluding criterion in each section (e.g., from high to low).

3.2. Issues in MRI meta-data

There were several potential issues in the meta-data of images
that were identified before preprocessing.
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FIGURE 1

Graphic user interfaces of the spatial normalization quality control (QC) tools in DPABI.

Firstly, the functional images in site-2 and site-5 could not
pass the BIDS metadata validation procedure in DPABI. The
bids-validation tools reported that “slice-timing values contain
invalid value as it is greater than the repetition time” for five
participants (e.g., from sub-501 to sub-504, sub-509). Therefore,
the five participants with the specific slice-timing errors were
labeled as “uncertain,” as we suspected the acquisition sequences
were thoroughly distorted. In addition, some of the participants
did not have any slice-timing information in the BIDS schema.
As we skipped the slice-timing correction in preprocessing, these
participants were not excluded from the present study.

Secondly, the number of volumes (time points) was not
consistent in site-1 and site-6. It may be acceptable for site-6 as
we anticipate that site-6 were constructed by multiple sub-site.
But the two participants (e.g., sub-114 and sub-115) with fewer
volumes compared with the others in site-1 may suggest data loss in
practice. We did not label these suspicious samples as “uncertain”
or “excluded” as we did not know the actual scanning protocols for

these participants. However, we still raised this frequently occurring
issue (inconsistent number of volumes for the images with the same
scanning protocol) to inform the beginner of MRI data processing.

Thirdly, sub-605 had two runs of the BOLD series in the
raw data while the others only had one run in each session. No
additional information was available to help determine which run
was more appropriate for further processing. We arbitrarily used
the latter one and did not exclude this participant. Because in the
practice, the additional run of an MRI series was probably due to
the unsatisfying quality of the previous run of the same series (e.g.,
head-motion exceeding the criteria).

3.3. Head-motion related artifacts

The head-motion induced artifacts were the most frequently
reported issue in the QC procedure. Seven out of twenty
“uncertain” or “excluded” participants were potentially excluded
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due to unacceptable head-motion. Some of them were visually
identified and the others were identified by the head-motion report
generated by DPARSF/DPABISurf (Figure 2A). Of note, the criteria
related to the head-motion should be determined according to the
research topic (Nebel et al., 2022).

3.4. Bad brain surface reconstruction

The core procedure of the surface-based methods was brain
surface reconstruction. The surface reconstruction could fail due
to a variety of quality problems (e.g., low brain coverage of field
of view, low signal-to-noise ratio, abnormal brain structure and
imaging artifacts, Figure 2B). In addition, the low quality of
skull stripping may also hamper accurate surface reconstruction
(Figure 2C).

3.5. Bad spatial normalization

There were two structural images of the participants that
failed to achieve satisfying spatial normalization (Figure 2D).
Spatial normalization (and related structural segmentation) could
fail due to the low quality of images and local minimum in
optimization induced by certain random seeds under extremely
rare circumstances. Spatial normalization could be substantially
improved by the reorientation procedure (e.g., manually rigid
translation and rotation before spatial normalization) in DPARSF.

3.6. Other MRI artifacts

Besides head-motion, there are many MRI artifacts that could
affect the image quality, including magnetic susceptibility artifacts,
wraparound artifacts, coil-related artifacts, chemical artifacts and
et al. (e.g., the T1-weighted images of sub-305 were blurred by
unknow MRI artifacts, Figure 2E).

3.7. Abnormal brain structures

It’s very challenging for neuroscientists to distinguish abnormal
brain structures from normal anatomy or tiny MRI artifacts
(Figures 2F, G). For example, sub-509 was labeled as uncertain
because of the large ventricle. The QC classifiers of the UKBiobank
would also take “Bad registration: Structurally atypical: Big
Ventricles” as a problem situation. However, large ventricles might
be common in the aged population and may not relate to disorders.
Therefore, the eliminating criteria could be changeable according
to the aim of the studies.

3.8. Flipped Z-axis direction

The functional MRIs of two subjects (sub-518 and sub-
519) were flipped along the z-axis (Figure 2H). These results
underlined the importance of visually checking the images. Flipped
images along z-axis (up-down) could be further reversed and are

less destructive, but images flipping along the x-axis (left-right)
would be harder to recognize and would significantly affect brain
symmetry research.

3.9. Sex differences with/without quality
control

As shown in Figure 3, both of the statistical maps of ReHo
sex differences (with/without QC) showed significantly decreased
spontaneous activity strength in the posterior cingulate cortex
in the male group, which was consistent with the pre-existing
literature (Chen et al., 2018). However, the maximal effect size
values (Cohen’s f2) with QC (0.234 in the left hemisphere, 0.173 in
the right hemisphere and 0.161 in the subcortical area) were higher
than that without QC (0.221 in the left hemisphere, 0.152 in the
right hemisphere and 0.153 in the subcortical area). Similarly, the
maximal effect size values in the sex difference statistical maps of
DC, fALFF, and ALFF with QC were higher than that without QC
(Supplementary Figures 1–3).

4. Discussion

In the present study, a well-organized open-available MRI
dataset was quality controlled by DPABI pipelines both in
volume space and surface space. Twenty (14.4%) participants
were categorized as excluded or uncertain. The reasons for these
participants to be excluded could be summarized into eight
categories: MRI meta-data issues, head-motion related artifacts,
bad brain surface reconstruction, bad spatial normalization, other
MRI artifacts, abnormal brain structures, and flipped images. In
general, we believed that the QC procedure in DPABI could
effectively improve the validity of the following analysis.

As mentioned in the description of fMRI Open QC Project,
there is no single correct way to do QC. The criteria (thresholds)
should be adjusted according to the population and the aim of the
study. For example, head-motion related artifacts are still the most
prevalent reason for excluding participants. Three types of criteria
for controlling head-motion effect were used in the present study:
(1) visual screening, (2) thresholding maximum head-motion, and
(3) thresholding mean FD-Jenkinson. For studies whose research
population is children or brain disorder patients, setting a strict
threshold may dramatically reduce the available samples which is
not acceptable for some longitudinal studies. While for studies
in which head-motion artifacts must be minimized, some time-
consuming but effective algorithms such as ICA-AROMA (Pruim
et al., 2015) could be used to further remove head-motion effects.
Another example is that participants with extremely large ventricles
might be excluded from a group of children, but might be kept
in a group of aged participants. In addition, all the QC criteria
should be taken into account to determine the imaging quality
of a participant. For example, the quality of skull stripping is
low for both sub-312 and sub-315. But sub-312 was categorized
as “uncertain” while sub-315 was categorized as “excluded” due
to the additional uncertain structural occupancy and artifact on
the parietal lobe. In addition, some of the QC procedures in
DPABI were not conducted in the present study. For example,
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FIGURE 2

Representative examples of quality control (QC) items for which subjects were categorized as excluded or uncertain. (A–H) Examples of images with
inadequate quality. The suspicious areas were highlighted using white arrows. The lower panel of the graph showed an example of the included
participants.
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FIGURE 3

Sex difference of regional homogeneity (ReHo) in the
fmri-open-qc-rest dataset with/without quality control. The effect
size (Cohen’s f2) derived from the two-sample t-tests between
males and females were displayed. The brain areas showed
significantly lower ReHo in the male group than in the female group
were highlighted in blue. L indicated the left hemisphere. R
indicated the right hemisphere. V indicated the subcortical area.

ICA-AROMA is an outstanding algorithm to control head-motion
related artifacts based on independent component analysis (ICA).
As this algorithm is extremely time-consuming, it is an optional
method in DPABISurf but is not conducted in default, while some
other pipelines would include ICA-based nuisance regressions
using a modified ICA-AROMA algorithm (Waller et al., 2022).
Moreover, a detailed list of exclusion criteria and excluded subject
IDs in the studies based on public datasets would save time for other
researchers and improve the reproducibility of the findings.

Eliminating participants with bad image quality is a critical
procedure to improve the quality of research. In a broader
sense, the quality control in fMRI research should also include
the daily scanner QC using water phantom, contraindications
inspection (e.g., metal braces) while recruiting participants, correct
patient positioning, head-motion suppression using sponge mat
or optimized coil, avoiding meta-data loss at image archive
platforms, checking critical meta-data before preprocessing,

carefully eliminating participants using QC reports generated by
preprocessing pipelines, rigorous coding and statistic, etc. The
acquisition protocols also interact with the QC procedure. For
example, the multiband acquisition could improve the temporal
resolution but decrease the signal-to-noise ratio (SNR) (Smith et al.,
2013). Therefore, the SNR should be included as an important
criterion in studies using multiband protocols. Discussing all these
procedures is out of the scope of the present study, but the steps
mentioned above would also influence participant-eliminating.

Therefore, more automatic QC tools are critical. For example,
the sex of participants could be mistakenly recorded, and this
mistake is hard to recognize. Recently, a T1-weighted image-based
classifier trained using more than 85,000 MRI samples from more
than 217 sites/scanners achieved 95% accuracy in a sex classification
task on the independent datasets. This sex classifier could be an Ex
post check procedure for sex labels.2 As mentioned in the results
3.8 section, flipped images along the x-axis (left-right) would be a
very subtle situation that is not easy to distinguish. The oil capsule
marks for labeling left or right are not available for every dataset
and the tricks [e.g., brain torque (Toga and Thompson, 2003)] for
visual checks may not work for every participant. Fortunately, an
efficient tool built in the AFNI fMRI processing procedure that can
automatically distinguish the flipped images has been developed
(Glen et al., 2020). Besides the specialized QC modules in DPABI,
the input preparer module and the data organization checking
module could also help avoid including incomplete images. And a
new harmonization module in DPABI containing comprehensive
multi-center imaging harmonizing methods would be available
soon. In addition, as mentioned in the introduction, the design
philosophy of DPABI was to minimize the repetitive and non-
standardized human involvement in fMRI preprocessing, but the
decision-making part of human involvement is still unavoidable.
The UKBiobank imaging team has developed an automated
machine learning based QC tool which performed excellently
on the UKBiobank dataset. However, the UKBiobank’s scanning
protocols are uniform across all of the scanning sites, which might
result in overfitting and poor generalizability. The generalizability
of this promising tool needs to be further validated on a variety of
datasets.

In summary, the QC procedures for fMRI in DPABI are
illustrated by preprocessing a well-organized open dataset. A set
of reports derived from DPABI pipelines could be utilized for
excluding images with bad quality. More automatic QC tools are
needed in the big-data era while visually inspecting images is
still indispensable.
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The monitoring and assessment of data quality is an essential step in the

acquisition and analysis of functional MRI (fMRI) data. Ideally data quality

monitoring is performed while the data are being acquired and the subject is

still in the MRI scanner so that any errors can be caught early and addressed. It

is also important to perform data quality assessments at multiple points in the

processing pipeline. This is particularly true when analyzing datasets with large

numbers of subjects, coming frommultiple investigators and/or institutions. These

quality control procedures should monitor not only the quality of the original and

processed data, but also the accuracy and consistency of acquisition parameters.

Between-site di�erences in acquisition parameters can guide the choice of certain

processing steps (e.g., resampling from oblique orientations, spatial smoothing).

Various quality control metrics can determine what subjects to exclude from

the group analyses, and can also guide additional processing steps that may

be necessary. This paper describes a combination of qualitative and quantitative

assessments to determine the quality of fMRI data. Processing is performed

using the AFNI data analysis package. Qualitative assessments include visual

inspection of the structural T1-weighted and fMRI echo-planar images, functional

connectivity maps, functional connectivity strength, and temporal signal-to-noise

maps concatenated from all subjects into a movie format. Quantitative metrics

include the acquisition parameters, statistics about the level of subject motion,

temporal signal-to-noise ratio, smoothness of the data, and the average functional

connectivity strength. These measures are evaluated at di�erent steps in the

processing pipeline to catch gross abnormalities in the data, and to determine

deviations in acquisition parameters, the alignment to template space, the level of

head motion, and other sources of noise. We also evaluate the e�ect of di�erent

quantitative QC cuto�s, specifically the motion censoring threshold, and the

impact of bandpass filtering. These qualitative and quantitative metrics can then

provide information about what subjects to exclude and what subjects to examine

more closely in the analysis of large datasets.

KEYWORDS

connectivity, motion, fMRI, artifacts, quality control

Introduction

Functional MRI (fMRI) signal changes are relatively small and sensitive to various

sources of noise, such a scanner artifacts, head motion, and other physiological fluctuations.

Generating functional activation or connectivity maps from the acquired data therefore

typically consists of a number of processing steps aimed at reducing this noise and aligning

the brain images into a common space for group-level analyses. The programs used to
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perform this processing can vary between research groups, and

each step often has multiple options that can be chosen by the

researcher. An integral part of this processing pipeline is quality

control (QC) to determine what processing steps or options are

needed, to determine the source of any problems in the pipeline, to

determine whether a subject should be excluded from group-level

analyses, and ultimately to ensure the accuracy and validity of the

final results.

Quality control should ideally be performed first in real-time,

while the subject is being scanned and still in the MRI scanner.

The advantage to this is that corrupted data can be immediately

identified and then re-acquired or otherwise addressed. It is also

critical to performQC at multiple stages during the pre-processing.

This QC can be both qualitative and quantitative. Qualitative

measures, such as viewing the data at different stages during the

processing, is extremely useful because of the myriad ways that the

data can be corrupted or that the processing can go awry. A trained

researcher can then determine what additional processing steps

may be needed or what options or parameters should be adjusted.

Quantitative measures of QC, such as the signal-to-noise ratio or

the amount of head motion, are also important, particularly for

large datasets where qualitative QC can be time consuming. These

quantitative measures also allow for more reproducible analyses

and inform the level of confidence in the final imaging results.

The most common problems affecting the quality of resting-

state functional MRI data include imaging artifacts, subject

head motion, and errors in aligning the data to a common

template space. Imaging artifacts can include B0-field distortions

or malfunctions in the RF coil leading to spikes or variations of

signal intensity near malfunctioning coil elements. Head motion is

common in fMRI and has long been recognized as a problem that

needs to be minimized and reduced (Friston et al., 1996). Resting-

state functional connectivity studies are particularly sensitive to the

effects of motion since connectivity is measured by the temporal

similarity of fMRI time series between two or more regions using

some metric, such as the Pearson’s correlation coefficient (Biswal

et al., 1995). Two regions with correlated non-neuronal signal

variations (noise) would result in an erroneously inflated functional

connectivity, while two regions with uncorrelated noise would

result in reduced connectivity. Even small amounts of motion can

have significant impact on functional connectivity (Power et al.,

2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Alignment of

the functional data requires both the alignment of the T2∗-weighted

EPI to the T1-weighted structural image and the alignment of the

T1-weighted structural to the template. The alignment between the

EPI and T1 needs to take into account the differences in contrast

between a T1-weighted and a T2∗-weighted image. Alignment of

the T1 to template space can involve non-linear transformations

(e.g., image warping), and the accuracy of these depends of the

quality of the removal of non-brain tissue (“brain extraction” or

“skull-stripping”). Finally, problems can occur due to user error,

such as prescribing an imaging volume that misses part of the brain

or making an error in converting between file formats.

This paper provides several suggested QC procedures and

measures for the analysis of resting-state functional MRI. This

QC consists of both qualitative and quantitative measures, which

are described in detail in the Methods section, and are applied

to T1-weighted structural and resting-state functional MRI data

provided by the OpenQC project. Finally, a determination is

made whether to include or exclude each participant from further

analyses, or when the inclusion or exclusion is borderline or

depends on other factors.

Methods

MRI data

The MRI data consisted of T1-weighted structural MRI

scans and T2∗-weighted echo-planar imaging (EPI) resting-state

functional MRI scans from 139 subjects drawn from 7 different

sites, provided by the OpenQC project. These data were drawn

from various publicly available MRI data repositories—ABIDE,

ABIDE-II (Di Martino et al., 2014), Functional Connectome

Project (Biswal et al., 2010), and OpenNeuro (Markiewicz et al.,

2021). The EPI datasets all had a single echo time and did not

have simultaneous multi-slice acquisitions. B0-field inhomogeneity

measures (e.g., B0-field maps or EPIs with reversed phase

encoding) were not provided.

Processing pipeline

All data processing was performed using AFNI unless otherwise

indicated (Cox, 1996). Processing scripts are available on GitHub:

https://github.com/rbirn/OpenQC. The ICBM 152 non-linear atlas

version 2009 was used as the template “MNI” brain (Fonov

et al., 2011). The T1-weighted image volume was aligned to

the MNI template by removing non-brain tissue signals and

non-linearly warping the image to the template (using AFNI’s

@SSwarper). The T1-weighted image was segmented into gray

matter, white matter, and CSF using FSL’s fast (Zhang et al.,

2001). The functional MRI echo-planar imaging (EPI) data were

processed by first removing the first 4 volumes to assure that the

magnetization is at steady-state. The data were then corrected

for slice-timing differences (3dTshift), rotated and resampled to

remove any oblique orientation (3dWarp), and registered to the

first volume in each time series to reduce the effects of head

motion (3dvolreg). B1-field inhomogeneities (bias field) were

estimated using N4BiasFieldCorrection from ANTs (Tustison et al.,

2010). The data were then divided by this bias field to correct

for B1-field inhomogeneity. The echo-planar image was aligned

to the T1-weighted structural scan using a 12-parameter affine

transformation (align_epi_anat.py). The EPI-to-T1 and T1-to-

template transformations were then concatenated and used to non-

linearly warp the fMRI data to the MNI template. In order to

further reduce the effects of physiological noise and head motion,

several nuisance regressors were included in a general linear

model and projected out of the data (3dTproject). These included

the average signal over the whole brain, the average signal over

eroded white matter, average signal over CSF, the 6 realignment

parameters, and the temporal derivatives of each of these regressors.

This general linear model also included 2 polynomials (to account

for slow drifts) and a set of sines and cosines to band-pass filter the

data from 0.01 to 0.1Hz. Time points where the volume-to-volume

motion exceeded a predefined motion censoring threshold, as well

Frontiers inNeuroimaging 02 frontiersin.org107

https://doi.org/10.3389/fnimg.2023.1072927
https://github.com/rbirn/OpenQC
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Birn 10.3389/fnimg.2023.1072927

as the preceding time points, were excluded (censored) from the

nuisance regression. Three different motion censoring thresholds

were evaluated: 0.2, 0.4, 1.0mm. Prior studies have shown that

one source of variability in multi-site studies are differences

in the spatial smoothness of the data (Friedman et al., 2008).

Since the data in this study were acquired at different sites and

different spatial resolutions, rather than applying a fixed amount

of spatial smoothing, the data were then iteratively smoothed to

a achieve a final full-width at half maximum (FWHM) of 8mm

(using 3dBlurToFWHM). For comparison, the data processing was

repeated without regressing out the average whole-brain signal

(global signal regression, GSR).

Functional connectivity maps were generated for 4 seed regions

of interest—4mm radius spheres located in the posterior cingulate

(MNI coordinate: 0, 50, 31), the left primary motor cortex (MNI

coordinate: 36, 20, 60), left auditory cortex (MNI coordinate: 43,

25, 14), and the left primary visual cortex (MNI coordinate: 30, 87,

9). These seed regions identify the default mode network, motor

network, auditory network, and visual network, respectively. The

preprocessed signal was averaged over each seed region of interest,

and the Pearson’s correlation coefficient between this seed time

course and all other voxel time courses was computed. In addition

to these voxel-wise functional connectivity maps, connections

betweenmultiple regions across the whole brain was investigated by

computing a functional connectivity matrix. The brain was divided

into 333 regions of interest according to a parcellation by Gordon

et al. (2016). The preprocessed signal was averaged over each region

of interest, and all pairwise correlations were computed.

For comparison of QC metrics, data were also processed using

the more automated pipeline provided with AFNI, afni_proc.py.

This pipeline used as input the original resting-state EPI and

the T1 processed (brain extracted and aligned to template space)

by @SSwarper, and included the following processing steps:

removal of first 4 time points; alignment of EPI to T1; volume

registration (motion correction); non-linear warping to template

space; nuisance regression using average signal over eroded white

matter and CSF, motion, and their derivatives; band-pass filtering

(0.01–0.1Hz); and blurring to a FWHM of 8mm. This pipeline by

default derives a set of quality control metrics from each subject

and assembles them into an html-formatted document that can be

viewed in a web browser.

Quality control procedures

First, several imaging parameters were extracted from the data

and compared. This included the spatial resolution (voxel size),

matrix size, repetition time (TR), obliquity, and number of time

points (image volumes) acquired. These values informed some

of the processing choices and QC criteria. Specifically, the fact

that data were acquired at different spatial resolutions motivated

iterative blurring of the data to a final resolution rather than

applying a fixed spatial blur across subjects. The observation that

some data were acquired with oblique orientations necessitated

that this be accounted for when registering the EPI to the T1-

weighted structural scan and the T1-weighted structural to the

template. The total number of time points acquired needs to

be considered when applying certain QC criteria (e.g., the total

number of “good” time points). The imaging parameters were also

examined for any deviations from other scans acquired at that

site. The processing pipeline described above was then run on

each dataset. Log files were generated that contained any status or

error messages (typically output to the screen). These log files were

examined when the processing pipeline failed to produce the final

preprocessed data output.

The image quality and alignment of each subject’s T1-weighted

structural scan to template space was examined by concatenating

the T1-weighted images across subjects. Similarly, a single echo-

planar image volume, after warping to template space but before

nuisance regression or spatial smoothing, was extracted from each

subject and concatenated across subjects. These series of image

volumes were then be played as a movie within the AFNI GUI to

identify any misalignments or other imaging artifacts. Functional

connectivity maps for each of the seed regions were similarly

concatenated and played as a movie, with the subject’s T1-weighted

image as the underlay and the functional connectivity as an overlay.

QC metrics

A number of quantitative metrics were computed, using the

first (non afni_proc.py) pipeline described above, to assess data

quality. These are briefly described below.

Left-right flip
Potential errors in the left-right orientation (i.e., accidental flips

of the data in the L-R direction) were investigated by flipping the

structural T1 dataset in the left-right direction and repeating the

alignment between the EPI and T1. This is performed using the -

check_flip option in AFNI’s align_epi_anat.py. If the cost function

for the alignment is lower for the flipped dataset, either the EPI or

T1 is likely flipped in the L-R direction.

FWHM
The smoothness of the acquired EPI data were determined by

computing the full-width at half-maximum (FWHM) in each of

the 3 cardinal directions (using 3dFWHMx). This measure can be

used to determine whether variations in the image matrix are due

to differences in the acquisition (e.g., acquiring data at a higher

resolution) or to differences in the processing (e.g., resampling the

data to a higher resolution). This information can then guide other

processing choices, such as the amount of smoothing to apply, or

whether to smooth to a predetermined amount of smoothness.

Temporal signal-to-noise ratio (TSNR)
The temporal signal to noise ratio was computed by dividing

the mean signal over time in each voxel of the original acquired

image by its standard deviation over time. This measure can be

good at identifying data severely corrupted by head motion, RF coil

problems (e.g., spiking), or other imaging artifacts. This measure

does vary with the imaging parameters (resolution, number of

averages, parallel imaging acceleration, field strength, echo time,
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etc.), so it is difficult to set a strict cutoff. However, the average

TSNR over the whole brain can be compared to other subjects

within the group acquired with similar imaging parameters at

that site.

Mean Enorm
Volume-to-volume head motion was assessed by first

computing the temporal difference of each image realignment

parameter (3 translations, 3 rotations), and then computing the

Euclidean norm (square-root of the sum of squares, Enorm)

of these temporal differences at each time point, with shifts in

millimeters and rotations in degrees. Note that a 1 degree rotations

corresponds to a displacement of 1mm at a radius of 57mm,

roughly the distance from the center of mass to the edge of the

brain. The mean value of the Enorm across time provides a

measure of the mean (average) volume-to-volume motion for that

imaging run.

Max Enorm
The maximum of the Enorm time course (computed as

described above) across time provides a measure of the maximum

motion from one time point to the next. The rationale for excluding

subjects based on the maximum motion is that large motion is

more likely to be associated with changes in B0-field distortions,

moving into different parts of the RF coil sensitivity, and spin-

history effects. However, if large motion is infrequent, there are

approaches to reduce the resultant signal changes (Birn et al., 2022).

Number of “good” time points
The number of time points remaining after censoring time

points exceeding a certain motion (Enorm) threshold. A related,

and from a quality control viewpoint equivalent, metric is the

degrees-of-freedom remaining after censoring, band-pass filtering,

and nuisance regression. Enough degrees-of-freedom should

remain to accurately estimate the functional connectivity. A degree-

of-freedom cutoff of 15 was used for this study. Studies have

also shown that the specificity (Van Dijk et al., 2010), test-retest

reliability (Birn et al., 2013) and the identification accuracy (Finn

et al., 2015) of functional connectivity increases with both greater

number of time points and duration of acquisition. A QC cutoff of

at least 5min of good data has been used by prior studies (Van Dijk

et al., 2010; Power et al., 2014, 2015). However, 3 of the sites in this

study acquired only 5min of data or less. Therefore, a QC cutoff of

4min was used for this study.

Dice_e2a
The Sorensen-Dice coefficient between the echo-planar fMRI

brain image and T1-weighted structural is computed as two times

the intersection between whole-brain masks of the echo-planar

image and T1-weighted image (after alignment, in template space)

divided by the sum of the areas of each of these masks. The goal of

this metric is to measure the accuracy of the EPI-to-T1 alignment.

This measure can be computed using the AFNI program 3ddot.

Dice_a2t
The Sorensen-Dice coefficient between the T1-weighted

structural and MNI template is computed similar as above, but

with whole-brain masks of the T1-weighted and MNI template

images. The goal of this metric is to measure the accuracy of the

T1-to-template alignment.

FCS
The functional connectivity strength (FCS) is the average

functional connectivity from each voxel to all other voxels in the

brain. Mathematically this is identical to computing the correlation

between each voxel time series and a scaled version of the global

signal. This scaled version of the global signal is computed by

dividing each voxel’s signal intensity time course by its standard

deviation over time, and then computing the average of these

scaled signals over the entire brain. This metric can be used to

identify abnormally high correlations that may result from some

RF coil problems, for example a loose connection in one of the coil

elements causing spikes in the signal. These signal spikes occur at

the same time across large portions of the image thus causing the

time courses to be highly correlated. The rationale for using this

measure in addition to TSNR is that a single spike may not affect

the TSNR very much, but can affect the correlation of that voxel

time course with all other voxel in that slice.

Similarity to mean FC
The similarity of the mean functional connectivity is

determined by computing the correlation between each subject’s

functional connectivity matrix and the group average functional

connectivity matrix (using AFNI’s 3ddot). This metric can

identify potential outliers in functional connectivity. For

comparison, the similarity was also using the Euclidean distance

between each subject’s functional connectivity matrix and the

group mean functional connectivity matrix. To distinguish

this metric from the similarity using Pearson’s correlation,

we call this the “Dissimilarity” since a greater Euclidean

distance is associated with a reduced similarity and thus

greater dissimilarity. This was computed using AFNI’s 3dcalc

and 3dROIstats.

Determination of QC criteria

A common QC criterion is to exclude time points whose

framewise displacement (volume-to-volume motion) exceeds

0.2mm (Power et al., 2014, 2015). We wanted to examine

whether this censoring threshold was appropriate for the current

study. Therefore, the processing pipeline was run for 3 different

motion censoring thresholds: 0.2, 0.4, and 1.0mm. In addition,

we compared the functional connectivity both with and without

bandpass filtering.

One measure that has been used to assess the effectiveness

of different processing choices is the correlation between the

functional connectivity and a quality control metric, such as the

mean Enorm—a measure referred to as QC-FC (Ciric et al.,

2018). This is essentially testing whether there is a difference
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FIGURE 1

(Top Row) T1-weighted image in native space for a subject with enlarged ventricles. (Bottom Row) T1-weighted image non-linearly aligned to

template space as underlay, with the gray/white matter boundaries from the template brain overlayed in red. Dice coe�cient between the subject’s

T1 and the template = 0.96.

in functional connectivity as a function of head motion, i.e.,

between high-motion and low-motion subjects. We therefore

computed the correlation between the functional connectivity and

the mean Enorm for each connection in the connectivity matrix.

We then computed a histogram of these correlation values. An

additional metric that has been used to evaluate the effectiveness

of different processing choices is the distance dependence of

motion artifacts (Power et al., 2012, 2014, 2015; Ciric et al., 2018).

This is computed as the correlation between the QC-FC metric

described above and the distance between each of the nodes in the

connectivity matrix.

We also looked at the similarity of each subject’s functional

connectivity matrix to the group average functional connectivity

matrix, as described above. We then examined the correlation

of this similarity with motion, specifically the mean Enorm. The

rationale for the motion censoring threshold that we chose is

provided in the results section (below).

Resources

The following software packages and versions were used in

the analysis:

AFNI Version AFNI_21.2.07 (precompiled binary

linux_openmp_64, Sep. 20, 2021).

FSL Version 6.0.4.

ANTs Version 0.0.0 (compiled May 26, 2020).

Results

The set of quality control (QC) summary criteria used for

excluding or identifying problematic subjects in this study are

shown in Table 1. The quality control procedures identified a

number of problems with the data, leading to the exclusion of

some of the subjects and modified processing for others. Very

similar results were obtained from the afni_proc.py and our custom

AFNI pipeline.

Examination of the imaging parameters showed that some of

the datasets were acquired (or reconstructed) at a different matrix

size compared to others from the same site. For example, sub-118

had a matrix size of 112 voxels while all other scans from that site

had a matrix size of 96 voxels. The json files associated with the

data all indicate that the data from this site was acquired with a

matrix size of 84× 81. For site 5, 15 subjects had a matrix size of 80
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FIGURE 2

Alignment between the EPI and T1-weighted structural image. (A) Histogram of the Dice coe�cients of the EPI and anatomical T1-weighted brain

masks (Dice_e2a). (B–D) Case examples of the alignment between the EPI (in grayscale) and T1 (in red outline). (B) Subject 617 shows a slight

misalignment between the EPI and T1 in the superior region of the brain (yellow arrow), and has a relatively low Dice coe�cient = 0.88 compared to

the rest of the group. (C) Subject 116 shows a slight misalignment, a stretching of the EPI in the left-right direction (yellow arrows), but has a Dice

coe�cient close to the mean of the group, Dice = 0.91. (D) Subject 613 shows a good alignment between the EPI and T1 in the cortex, but has a

signal dropout in the frontal lobe resulting in a relatively low Dice coe�cient = 0.87.
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voxels while 5 subjects had a matrix size of 128 voxels. The datasets

from this site with 128 voxels had significantly greater smoothness

(FWHM in the x- and y-directions) compared to the datasets with

80 voxels (p < 0.004), suggesting that the data was re-interpolated

after acquisition, resulting in increased blurring.

Visualization of the original EPI datasets indicated that two

datasets (sub-518, sub-519) were upside down, with the I-S axis

inverted. Alignment between the EPI and T1 indicated that two

subjects (sub-101, sub-115) had either the EPI or T1 flipped in the

L-R direction. Visualization of the T1-weighted structural images

indicated that one subject (sub-509) had much larger ventricles

than the rest of the sample (Figure 1).

Visualization of the T1-weighted images concatenated across

subjects and played as a movie indicated good alignment of each

T1 to the template. Alignment of the EPI to template space was

generally quite good, but had a greater variability across subjects

with some brain areas showing a slight misalignment to the

template brain in some subjects (Figure 2). Closer examination of

the processing in these subjects indicated that this misalignment

to template space was due to a poor alignment between the EPI

and T1-weighted image, even after automatic alignment. The Dice

coefficient between the EPI and T1 (Dice_e2a) was lower for some

of the misaligned participants compared to the rest of the group.

However, some participants had lower Dice coefficients due to B0-

field inhomogeneity induced signal dropout, and other subjects

had Dice coefficients close to the group mean despite showing

substantial misalignments (Figure 2).

As expected, temporal signal-to-noise ratio (TSNR) was

reduced in subjects with higher amounts of motion (Figure 3). The

converse was not necessarily true—some subjects with low motion

also had low TSNR, possibly due to other non-motion sources of

noise. No outliers or abnormalities were found in the temporal SNR

or functional connectivity strength to indicate any coil artifacts.

Similarly, the entire cortex was scanned in all subjects.

The most common problem across datasets was excessive head

motion. At an Enorm censoring threshold of 0.2mm, 15 subjects

did not have enough degrees of freedom left for the nuisance

regression and bandpass filtering. A total of 26 subjects had very

low degrees of freedom (<15), and 16 subjects had <4min of data

left after censoring. At a censoring threshold of 0.4mm, 2 subjects

did not have enough degrees of freedom after censoring, 4 subjects

had very low degrees of freedom, and 2 subjects had <4min of

data left after censoring. Two subjects had one or more movements

>3mm. A closer examination of the subject with the largest motion

of 6.5mm (sub-102) revealed that the motion occurred right at the

end of the imaging run (Figure 4). The effect of this motion can

therefore be eliminated by censoring the time points at the end of

the imaging run.

Rationale for QC criteria: Motion censoring
threshold

The correlation between functional connectivity and mean

Enorm (QC-FC) was highly similar for censoring thresholds of

0.2, 0.4, and 1.0mm (Figure 5). The mean correlation of FC with

motion was close to zero (0.00001 for a motion censoring threshold

FIGURE 3

Temporal signal-to-noise ratio (TSNR) vs. the mean

volume-to-volume motion as measured by the Euclidean norm

(Enorm) of the temporal di�erence of the 6 realignment parameters.

As motion increases, the TSNR decreases. Note that subjects with

higher motion have lower TSNR, but the converse is not necessarily

true—subjects with low motion can also have low TSNR, possibly

due to other non-motion sources of noise.

of 0.2mm, 0.001 for censoring threshold 0.4mm, and 0.004 for

a censoring threshold of 1.0mm). The histogram showed slightly

wider tails, indicating some connections with greater correlation

with motion, at a censoring threshold of 1.0mm compared to 0.4

or 0.2mm. The QC-FC was slightly increased when no bandpass

filtering was performed. There was very little distance dependence

of the QC-FC. At a motion censoring threshold of 0.2mm,

the correlation between QC-FC and distance was −0.004 (95%

confidence interval: −0.012 to 0.004). At a motion censoring

threshold of 0.4mm the distance dependence correlation was

−0.0009 (−0.009, 0.007), and at a motion censoring threshold of

1.0mm the correlation was 0.005 (−0.003, 0.013).

There was very little difference in the group functional

connectivity matrices using censoring thresholds of 0.2, 0.4, or

1.0mm (Figure 6). The similarity of each subject’s functional

connectivity to group mean functional connectivity was nearly the

same whether the group functional connectivity matrix was formed

using 0.2 vs. 0.4mm censoring thresholds (R2 = 0.999) (Figure 7).

Therefore, it does not matter which motion threshold was used

as the group functional connectivity for comparison in computing

the similarity.

With a censoring threshold of 0.2mm, the similarity was

strongly dependent on the mean motion with lower similarity for

subjects with higher motion (R2 = 0.27) (Figure 8A). However, at

a motion censoring threshold of 0.4mm, the similarity was only

weakly related to subject motion (R2 = 0.04) (Figure 8C). The

similarity of functional connectivity to the group mean was greater

for a censoring threshold of 0.4mm compared to 0.2mm and this

difference was greater in high-motion subjects (Figure 9A). That

is, high-motion subjects had a higher similarity of their functional

connectivity matrices to the group average using a 0.4mm

threshold compared to a more stringent 0.2mm. This suggests
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FIGURE 4

Estimated head motion realignment parameters for subject sub-102, which had the largest maximum volume-to-volume motion of 6.5mm.

However, this motion occurred at the end of the run, so the e�ects of this motion can be eliminated by censoring the last few time points.

FIGURE 5

Histograms of the correlation between a quality control (QC) criterion—the mean Enorm—and the functional connectivity (FC): QC-FC, for 3

di�erent motion censoring thresholds (02 = 0.2mm, 04 = 0.4mm, 10 = 1.0mm) with (f) and without (nf) temporal bandpass filtering (0.01–0.1Hz).

that the decreased similarity in high-motion subjects at a 0.2mm

censoring threshold is due to the reduced degrees of freedom

from aggressive time point censoring rather than corruption

of the functional connectivity due to motion. Similarity was

further increased, particularly in high-motion subjects, by using

a motion-censoring threshold of 1.0mm (Figure 9B). However,
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FIGURE 6

Group average functional connectivity matrices for data with di�erent motion-censoring thresholds: (A) volume-to-volume motion (Euclidean

norm, Enorm) < 0.2mm, (B) Enorm < 0.4mm, (C) Enorm < 1.0mm. (D–F) Connectivity values (Fisher-Z transformed correlation coe�cients) for (D)

Enorm < 0.2mm vs. Enorm < 0.4mm, (E) Enorm < 0.4mm vs. Enorm < 1.0mm, (F) Enorm < 0.2mm vs. Enorm < 1.0mm. Group average matrices

are highly similar for these 3 di�erent levels of motion censoring.

FIGURE 7

Similarity of each subject’s functional connectivity matrix (using a

censoring threshold of 0.4mm) to the group average functional

connectivity matrix that used either 0.2mm (y-axis) or 0.4mm

(x-axis) censoring threshold. The similarity is nearly identical (R2
=

0.9988) regardless of which threshold was used in the formation of

the group maps.

this threshold is much higher than is currently used in the field,

and combined with the slightly higher correlation with motion

(QC-FC) at a 1.0mm censoring threshold, we decided to use a

0.4mm censoring threshold as the cutoff.

Figure 10 shows the similarity vs. degrees of freedom for a

censoring threshold of 0.2 and 0.4mm. Similarity is reduced for

lower degrees of freedom. Moreover, there is no clear cutoff for

the similarity at low degrees of freedom. The similarity appears

to be roughly linearly related to the degrees of freedom for low

degrees of freedom (<50), plateauing at higher degrees of freedom.

We decided to use a cutoff of 15 degrees of freedom to reduce the

influence of severe motion while still retaining enough subjects in

the group analysis.

Similarity of functional connectivity to the groupmean was also

increased by eliminating the band-pass filtering step (see Figures 8,

9). One example of this is shown in Figure 11 for a subject (sub-507)

that had only 7 degrees of freedom left after bandpass filtering and

motion censoring with a threshold of 0.4mm. This connectivity

matrix appears quite noisy (Figure 11A) At a motion censoring

threshold of 0.2mm and no bandpass filtering, the functional

connectivity matrix is more similar to the group average functional

connectivity (Figure 11B). The connectivity matrix for this subject

at a motion censoring threshold of 0.4mm is very similar to

a threshold of 0.2mm when no bandpass filtering is applied
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FIGURE 8

The similarity between each subject’s functional connectivity matrix and the group-average functional connectivity matrix for di�erent motion

censoring thresholds (0.2, 0.4, 1.0mm) with and without bandpass filtering (BP). BP, bandpass filtering (0.01–0.1Hz), no BP, no bandpass filtering. (A)

At a motion censoring threshold of 0.2mm with bandpass filtering, subjects with higher motion (mean Enorm) show reduced similarity (R2
= 0.27).

(B) Without bandpass filtering, similarity is increased, but subjects with higher motion still show lower similarity (R2
= 0.19). (C) At a motion censoring

threshold of 0.4mm with bandpass filtering, similarity to the group mean connectivity is only weakly correlated with motion (R2
= 0.05). (D) Without

bandpass filtering, there is again only a weak correlation with motion. (E) At a motion censoring threshold of 1.0mm and bandpass filtering, there is

very little correlation between the similarity and motion (R2
= 0.00002). (F) Without bandpass filtering at a motion threshold of 1.0mm, there is very

little correlation with motion across subjects (R2
= 0.0014).
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FIGURE 9

Di�erence in the similarity of each subject’s functional connectivity matrix to the group mean for di�erent levels of motion censoring, with (f) and

without (nf) bandpass filtering. (A) With bandpass filtering, similarity is increased for connectivity matrices computed at a motion threshold of 0.4 vs.

0.2mm, particularly in subjects with high motion. (B) Similarly with bandpass filtering, similarity is increased for a motion censoring threshold of

1.0mm compared to 0.4mm, particularly for high-motion subjects. (C) At a motion-censoring threshold of 0.2mm, not performing bandpass

filtering increases the similarity compared to performing bandpass filtering, particularly in high-motion subjects. (D) At a motion-censoring threshold

of 0.4mm, similarity to the group-mean is increased for most subjects without vs. with bandpass filtering, but less dependent on the mean level of

motion. (E) Without bandpass filtering, a motion censoring threshold of 0.4mm has greater similarity than a threshold of 0.2mm, particularly for

high-motion subjects. (F) Without bandpass filtering, using a motion censoring threshold of 1.0mm compared to 0.4mm can result in either

increases or decreases in similarity to the group mean, with little correlation to mean motion.

(Figure 11C). Increase in similarity when eliminating the bandpass

filtering step was observed even in low-motion subjects (Figure 12).

Subject sub-501 had a mean Enorm of 0.03mmwith no time points

censored at a threshold of 0.4mm. Thirty-two degrees of freedom

were left with bandpass filtering, and 119 degrees of freedom were

left without bandpass filtering. The pattern of within-network and

between-network connectivity was noisier and less like the group

average maps when bandpass filtering was applied. Figures 12C, D
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FIGURE 10

Similarity of each subject’s functional connectivity matrix to the group mean for a motion censoring threshold of (Top) 0.2mm and (Bottom) 0.4mm,

vs. the degrees of freedom left after motion censoring, bandpass filtering, and nuisance regression. The similarity appears to be roughly linearly

related to the degrees of freedom for low degrees of freedom (<50), plateauing at higher degrees of freedom.

shows the connectivity matrix from a low-motion subject (sub-

606) that had longer time series (720 time points), with no time

points censored at a threshold of 0.4mm, 306 degrees of freedom

left after bandpass filtering and 699 degrees of freedom without

bandpass filtering. Functional connectivity matrices are highly

similar with and without bandpass filtering since both have high

degrees of freedom.

The similarity was further improved by relaxing the motion

censoring from 0.2 to 0.4mm (Figure 9E). That is, the increase

in similarity for a motion censoring threshold of 0.4 vs. 0.2mm,

both without bandpass filtering, was greater in subjects with higher

mean_enorm, again likely due to the greater degrees of freedom

with a more relaxed censoring threshold. Without bandpass

filtering, the similarity was slightly correlated with mean_enorm

at a censoring threshold of 0.2mm (R2 = 0.19, Figure 8B),

but only weakly correlated with subject motion at a censoring

threshold of 0.4mm (R2 = 0.05, Figure 8D). The improvements

in similarity with vs. without bandpass filtering was correlated

with the mean_enorm at a censoring threshold of 0.2mm (R2 =

0.30, Figure 9C) but not 0.4mm (R2 = 0.03, Figure 9D). These

results all suggest that the similarity is improved by not applying

bandpass filtering and by using a less stringent censoring threshold

(e.g., 0.4mm) due to the increased degrees of freedom. Without

bandpass filtering, using a motion censoring threshold of 1.0mm

compared to 0.4mm resulted in either increases or decreases in

similarity to the group mean for different subjects, with little

correlation to mean motion (Figure 9F). Similar results were

obtained when the similarity was computed using the Euclidean

distance between each subject’s functional connectivity matrix

and the group mean rather than the Pearson’s correlation (see

Supplementary material).

Similar results were obtained with and without global signal

regression (GSR). The similarity to the group mean functional

connectivity was slightly higher with GSR, with a mean similarity

(Pearson’s correlation) of 0.54 with GSR compared to 0.53 without

GSR (p < 1e-12) (see Supplementary material).

Discussion

Several datasets were identified by the quality control

procedures as having deviations from expected parameters or other

issues. Whether a subject should be excluded or not from further

group analyses depends on the particular issue, whether this issue

can be addressed, and the goals of the study. For example, excluding

subjects with abnormal brain anatomy (e.g., enlarged ventricles)
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FIGURE 11

Functional connectivity matrices from sub-507. (A) With a motion censoring threshold of 0.4mm, only 7 degrees of freedom are left, and matrix is

quite noisy, quite di�erent than the group mean functional connectivity matrix. (B) At a motion censoring threshold of 0.2mm and no bandpass

filtering, the functional connectivity matrix is more similar to the group average functional connectivity. (C) Connectivity matrix at a motion

censoring threshold of 0.4mm is very similar to a threshold of 0.2mm when no bandpass filtering is applied.

TABLE 1 QC criteria summary table.

Resting state fMRI QC criteria: Exclude (or re-examine)
a subject if:

(A) Fewer than 15 degrees-of-freedom are left after motion censoring, nuisance

regression, and band-pass filtering

(B) Fewer than 4min (240 s) of data remain after motion censoring

(C) Maximum Enorm (volume-to-volume motion) > 3mm

(D) The data are left-right flipped and the correct orientation cannot

be determined

(E) Temporal signal-to-noise and/or FCS indicate the presence of an RF coil

artifact (e.g., spiking)

(F) Part of the cortex is out of the field of view (qualitative)

(G) There are large abnormalities in the anatomy (qualitative)

(H) There are significant mis-alignments in the data to template space that

cannot be fixed with different processing choices (qualitative)

may be advisable in studies attempting to characterize typical

functional connectivity, but not in studies where such deviations

are more common or of interest.

Data that had a different spatial resolution from others at that

site can still be processed since all of the data are aligned and re-

interpolated to a common resolution in template space, and the

current study is already combining data from multiple sites which

had acquired data at different spatial resolution. The data from site

500 with the higher spatial resolution (matrix size of 128 voxels vs.

80 voxels) did have greater smoothness, but the impact of this is

reduced by smoothing all of the data to a similar final smoothness.

The echo-planar images from 2 subjects were flipped in the

I-S direction. This may have resulted from either an error in the

conversion of the DICOM files to NIFTI format, or in erroneously

setting the subject position in the scanner as supine-feet-first rather

than supine-head-first. This flip can in principle be easily corrected,

but the process is a bit more complex since the data were acquired

with an oblique orientation. In addition, one needs to check

whether the left-right orientation is also flipped. This could be done

by comparing the alignment of the original and flipped versions of

the EPI to the T1. Flips in the left-right orientation were identified

in 2 additional subjects. It is unclear whether the error is in the

EPI or the T1, but may be determined by examining the original

DICOM files. These four subjects were designated as “uncertain”—

if the correct left-right orientation can be determined, then they can

be included; if the correct orientation cannot be determined then

they should be excluded.

A motion censoring threshold of 0.2mm is commonly used in

the field. However, the findings here suggest that this threshold

is too stringent for the current study, likely due to the reduced

degrees of freedom with aggressive censoring. The similarity

of each subject’s functional connectivity to the group mean is

increased using a threshold of 0.4mm and this similarity is no

longer correlated with the mean motion, which was the case

for the more stringent thresholding of 0.2mm. Relaxing the

threshold to 0.4mm did not increase the correlation of the

functional connectivity with motion (QC-FC). Similarly, there was

no observable distance dependence of QC-FC at all three motion

censoring thresholds evaluated.

Bandpass filtering between 0.01 and 0.1Hz (or in some

studies 0.008–0.08Hz) is commonly performed in the field. The

rationale for this processing step is that the fluctuations of

interest typically occur at very low temporal frequencies (<0.1Hz)

(Biswal et al., 1995; Cordes et al., 2001), while non-neuronal

fluctuations such as cardiac and respiratory fluctuations occur at

much higher frequencies. However, with the typical acquisition

rates (repetition times, TR), this physiological noise is aliased to

lower frequencies and is not necessarily reduced by the bandpass

filtering. Furthermore, bandpass filtering significantly reduces the

degrees of freedom, which can affect the quality of the functional

connectivity estimates (e.g., see Figure 11). The similarity of the

functional connectivity to the group mean increases for nearly

all subjects when no bandpass filtering is performed (this is
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FIGURE 12

Functional connectivity matrices for 2 low-motion subjects with and without bandpass filtering (0.01–0.1Hz). Degrees of freedom (dof) after motion

censoring, nuisance regression, and with/without bandpass filtering are shown in the title. (A, B) Sub-501, mean Enorm = 0.03, no time points

censored and 140 time points left at a censoring threshold of 0.4mm. (A) With bandpass filtering, 32 degrees of freedom are left. (B) Without

bandpass filtering, 119 degrees of freedom are left. Note that the pattern of within-network and between-network connectivity is noisier and less like

the group average maps when bandpass filtering is applied. (C, D) Sub-606, mean Enorm = 0.03mm, no time points censored and 720 time points

left at a censoring threshold of 0.4mm. (C) With bandpass filtering, 306 degrees of freedom are left. (D) Without bandpass filtering, 699 degrees of

freedom are left. Functional connectivity matrices are highly similar with and without bandpass filtering since both have high degrees of freedom.

the case regardless of which group connectivity matrix is used

for comparison—with vs. without bandpass filtering). When

stringent (0.2mm) motion censoring is applied, the similarity

to the group mean is much greater without bandpass filtering

compared to with bandpass filtering, particularly in higher motion

subjects. This is likely due to the very low degrees of freedom

in high motion subjects with both a stringent motion censoring

threshold and bandpass filtering. The degrees of freedom are

higher without bandpass filtering, which is likely the reason for

an increase in similarity (compared to with bandpass filtering)

in the higher motion subjects. At a more relaxed (0.4mm)

motion censoring threshold, the similarity does not depend on the

mean motion, but is increased (by varying amounts) for nearly

all subjects.

The similarity of a subject’s functional connectivity to

the group mean is a useful way to identify outliers and to

determine appropriate processing steps and quality control criteria

(e.g., bandpass filtering, motion censoring threshold). A useful

qualitative QC step is to visualize the functional connectivity

maps from key seed regions (e.g., seed regions from the posterior

cingulate to identify the default mode network) and see if they

match the expected patterns. While not performed in the current

study, quantitative metrics could be computed to measure how

well the patterns of these seed-based connectivity maps match

the expected pattern. An extension of this approach, in order to

measure connectivity for multiple regions throughout the brain

is to compute a connectivity matrix from a systematic brain-

wide parcellation of the brain and examine the similarity of

each subject’s connectivity matrix to the group mean connectivity

matrix. However, it is important to keep in mind that the

goal in many functional connectivity studies is to determine the

association of individual differences in functional connectivity with
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some other variable. That is, we want individual differences in

functional connectivity, but not those that are due to differences

in subject motion. For that reason, we used the correlation of

the similarity with subject motion as a guide to determine the

appropriate QC criteria (motion censoring threshold), rather than

using the similarity as a QC cutoff. In addition, this measure of

similarity may not capture all artifacts, such as systematic errors

across the entire sample.

The benefits from a motion threshold of 0.4mm compared

to 0.2mm found here does not necessarily generalize to all other

studies, in particular those acquiring much larger number of time

points. The low similarity observed in many subjects in this study

is due to the very low degrees of freedom remaining when more

aggressive censoring is applied, particularly in combination with

bandpass filtering. In studies like HCP and ABCD, where the TR is

lower andmanymore time points have been acquired, there may be

sufficient degrees of freedom left for robust estimation of functional

connectivity even with more aggressive motion censoring.

The inclusion of global signal regression resulted in a

statistically significant, although small, increase in the similarity of

each subject’s functional connectivity matrix to the group mean.

This could reflect improved denoising fromGSR. However, because

of the lack of ground truth in resting-state functional connectivity,

one should be cautious about using only QC criteria to guide

processing choices. If any of the nuisance regressors (global signal,

CSF signal, or white matter signal) contain effects of interest then

regressing them could distort functional connectivity estimates

despite improving QC metrics.

Another commonly used QC criteria is to exclude participants

with large or “gross” motion, that is, if any frame-to-frame

displacement exceeds a predefined threshold, such as 0.55mm

(Satterthwaite et al., 2012, 2013) or 5mm (Parkes et al., 2018). The

motivation behind this exclusion criterion is that larger motion

is more likely to be associated with B0-field changes, spin-history

effects, and RF coil sensitivity effects. However, if such large

motion occurs relatively infrequently (e.g., only a few times during

an imaging run), a recent study has shown ways to reduce the

effects of this large motion (Birn et al., 2022). For this reason, the

maximum motion was not used as a strict exclusion criterion in

the current QC study, but simply to flag potential subjects whose

functional connectivity maps should be more closely examined for

potential artifacts.

Another common problem is the alignment of the EPI data to

template space. Since the alignment of the T1 weighted structural

images in template space was highly similar across subjects, the

errors in the EPI alignment likely result from challenges in aligning

the EPI to the T1. Errors in the EPI-to-template alignment were

easy to identify using qualitative measures (visualization of the

data), but we were not able to find any quantitative metrics that

could accurately capture these errors. Misalignments between the

EPI and T1 could potentially be reduced by adjusting the EPI-

to-T1 alignment cost function or adjusting the parameters of the

brain extraction. For example, removal of non-brain tissue (“brain

extraction” or “skull-stripping”) that is too aggressive can cause

clipped regions of the T1 to be stretched to fit the boundaries

and gyri of the template brain. This is not often as visible on the

aligned T1s (since the borders of the brain match), but can cause

EPI data that is well-aligned to the T1 to be pushed outside the

template brain. The subject identified as having a misalignment

was designated as “uncertain” since modified processing may result

in a better alignment. Whether this subject should be excluded or

included depends on the effort an investigator is willing to expend

to find the processing options that result in an accurate alignment.

While the current study did not include B0-field maps, studies

that do include such measures could use both qualitative and

quantitative QC metrics to look at the effectiveness of B0-field

distortion correction. For example, the EPI and T1 could be

compared before and after correction to verify that the distortion

correction was applied in the correct orientation (as determined

by the phase encoding direction and polarity) and by the correct

amount (as determined by the echo spacing). A Dice coefficient

between the EPI and T1 could quantify this QC measure.

Qualitative measures, such as visualizing the data at different

points during the processing pipeline, are an indispensable tool

for quality control. One reason for this is the myriad number

of ways that the processing can go awry. This quality control

step can be quite time consuming, and therefore the challenge,

particularly for large studies, is making this process as efficient

as possible. One way to do this is to concatenate one image

(e.g., T1, EPI, or connectivity map in template space) from each

subject, and then scroll through the subjects manually or in a

movie format. This procedure was quite useful in identifying

subjects where the alignment of the EPI to template space was

not ideal. These errors in alignment were not captured very

well by the Dice coefficient between the EPI and T1-weighted

image. This may be because the Dice coefficient between the EPI

and T1 is also reduced by B0-field associated signal dropout in

the orbitofrontal and temporal lobes, which vary across subjects

depending on the shape of the subject’s head, the angle of the

head to the direction of the magnetic field, and the obliquity of

the slice prescription. This signal dropout results in a lower Dice

coefficient even with an accurate alignment between the EPI and

T1-weighted image.

Many of the measures discussed above are provided with the

QC output from the AFNI tool afni_proc.py. This QC output

includes an alternative way to visualize the alignment of the EPI-

to-T1 and T1-to-template—as outlines of the sulci and gray/white

matter boundaries on top of either the EPI or the aligned T1.

Since afni_proc.py was designed to output QC from individual

subject data, it does not provide a movie of the alignment across

subjects. However, such a movie could easily be generated by

extracting one volume (of the EPI, T1, or connectivity map

in template space) from each subject and concatenating the

datasets. Alternatively, the image snapshots provided by afni_proc’s

QC could be concatenated into a movie. Such movies can be

particularly useful in identifying outliers in the alignment in a large

group of subjects.

Conclusions

A number of quality control procedures and criteria are

recommended for the analysis of resting-state functional MRI data.

First, it is important to visualize the data at multiple points in

the processing pipeline. The accuracy of alignment to template

space can be evaluated by concatenating one brain volume from
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each subject, and then scrolling through the subjects manually or

in a movie format. Similarly, outliers in functional connectivity

can be determined by concatenating functional connectivity maps

from key seed regions in the brain that are known to be

part of robust functional networks consistently observed across

different subjects—specifically the posterior cingulate to identify

the default mode network, primary motor cortex to identify

the motor network, primary visual cortex to identify the visual

network, and primary auditory cortex to identify the auditory

network. Useful quantitative measures include the temporal signal-

to-noise ratio, the degrees of freedom remaining after motion

censoring and nuisance regression, and the total duration data

remaining after motion censoring. While band-pass filtering of

the data is currently the standard in the field, future studies may

want to re-evaluate the use of this processing step particularly

in studies that acquire limited amount of data. Finally, the

quality control thresholds used should be examined for each

study and may need to be adjusted based on the total amount

of acquired data. For example, the QC cutoff of 4min of good

data and 15 degrees of freedom was based on the duration

of the runs that were part of the study. Ideally one would

want as much data as possible for the best reliability, but this

needs to be balanced with the amount of data available and

the amount of denoising desired. It is essentially a trade-off

between including in the group analysis fewer subjects with

“cleaner” data (fewer artifacts) or more subjects with (potentially)

noisier data. The balance of this trade-off depends on the

levels of motion and other artifacts and the success of noise

reduction approaches.
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Functional connectivity MRI 
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Quality control (QC) for functional connectivity magnetic resonance imaging (FC-
MRI) is critical to ensure the validity of neuroimaging studies. Noise confounds 
are common in MRI data and, if not accounted for, may introduce biases in 
functional measures affecting the validity, replicability, and interpretation of FC-
MRI study results. Although FC-MRI analysis rests on the assumption of adequate 
data processing, QC is underutilized and not systematically reported. Here, 
we describe a quality control pipeline for the visual and automated evaluation 
of MRI data implemented as part of the CONN toolbox. We  analyzed publicly 
available resting state MRI data (N = 139 from 7 MRI sites) from the FMRI Open 
QC Project. Preprocessing steps included realignment, unwarp, normalization, 
segmentation, outlier identification, and smoothing. Data denoising was 
performed based on the combination of scrubbing, motion regression, and 
aCompCor – a principal component characterization of noise from minimally 
eroded masks of white matter and of cerebrospinal fluid tissues. Participant-level 
QC procedures included visual inspection of raw-level data and of representative 
images after each preprocessing step for each run, as well as the computation of 
automated descriptive QC measures such as average framewise displacement, 
average global signal change, prevalence of outlier scans, MNI to anatomical and 
functional overlap, anatomical to functional overlap, residual BOLD timeseries 
variability, effective degrees of freedom, and global correlation strength. Dataset-
level QC procedures included the evaluation of inter-subject variability in the 
distributions of edge connectivity in a 1,000-node graph (FC distribution displays), 
and the estimation of residual associations across participants between functional 
connectivity strength and potential noise indicators such as participant’s head 
motion and prevalence of outlier scans (QC-FC analyses). QC procedures are 
demonstrated on the reference dataset with an emphasis on visualization, and 
general recommendations for best practices are discussed in the context of 
functional connectivity and other fMRI analysis. We hope this work contributes 
toward the dissemination and standardization of QC testing performance 
reporting among peers and in scientific journals.

KEYWORDS

fMRI, quality control, neuroimaging (anatomic), CONN toolbox, functional connectivity, 
resting state, preprocessing, denoising
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1. Introduction

Since its inception, neuroimaging has escalated our 
understanding of the brain in both health and disease. Functional 
magnetic resonance imaging (fMRI) is among the most common 
neuroimaging techniques, as it allows us to approximate neural 
activity in vivo and non-invasively by measuring the blood 
oxygenation level-dependent (BOLD) signal. Brain functional 
connectivity (FC), or the temporal coupling of BOLD signals from 
anatomically distant regions, is widely used to probe neural 
functioning, neurodiversity, and their relationship with behavior 
during explicit or implicit (i.e., at rest) tasks. However, the BOLD 
signal is noisy and only marginally representative of neural activity. 
It is generated from complex interactions between neuronal, 
metabolic, cardiac, vigilance, and other physiological processes 
(Bianciardi et al., 2009; Liu, 2016; Liu and Falahpour, 2020) and is 
commonly affected by machine-related and participant-specific 
characteristics. In many fMRI analyses, these noise sources act as 
nuisance effects, increasing variability of the BOLD signal and 
ultimately reducing the power and replicability of fMRI analysis 
results. In functional connectivity analyses, their effect is 
considerably more damaging, as many of these noise sources are 
highly correlated across different areas and will bias functional 
connectivity estimates, acting as confounder effects and affecting 
the validity and interpretation of FC-MRI analysis results.

Commonly, anatomical and functional data undergo a series of 
transformations aimed at minimizing the effects of these well-known 
sources of BOLD signal variability prior to statistical analysis. 
Functional and anatomical data are usually first preprocessed with a 
set of steps addressing mainly spatial properties of the data that are a 
direct consequence of the specificities of the fMRI acquisition 
procedure. Specifically, preprocessing focuses on intra-participant 
coregistration, e.g., compensating for head motion across different 
functional scans, correcting for inter-slice temporal differences and 
magnetic susceptibility distortions, when appropriate, as well as inter-
participant coregistration, e.g., by spatially projecting each subject’s 
anatomy to a common reference space. However, despite these 
common preprocessing steps, functional timeseries after 
preprocessing usually still contain substantial variability associated 
with non-neural sources, including cardiac, respiratory, and residual 
subject motion effects, limiting the ability to effectively use these data 
for statistical analyses without additional control or correction of 
these factors. For these reasons, and particularly in the context of 
functional connectivity analyses, preprocessed functional timeseries 
are often usually then denoised by a combination of band-pass 
filtering and regression of temporal components characterizing these 
additional noise sources. Many effective alternatives have been 
suggested to achieve optimal preprocessing (Friston et  al., 1996; 
Murphy et al., 2009; Chai et al., 2012; Hallquist et al., 2013; Power 
et al., 2014; Ciric et al., 2017) and denoising performance (Parkes 
et al., 2018; Maknojia et al., 2019; Tong et al., 2019; De Blasi et al., 
2020; Golestani and Chen, 2022; for a review, see Caballero-Gaudes 
and Reynolds, 2017). Regardless of the specific pipelines applied, 
preprocessing and denoising have been shown to successfully reduce 
the effect of known nuisance factors.

However, the beneficial effect of preprocessing and denoising 
depends on the ability of each step to successfully achieve its intended 
goal. Quality control (QC) procedures are designed to evaluate the 

quality of the data and to detect potential problems either in the 
original data or arising from failed or insufficient preprocessing and 
denoising steps. Quality control is an integral part of preparing fMRI 
data for statistical analyses, as without it there is no meaningful way 
to avoid problems in the data from affecting statistical analyses, 
leading to results that may fail to replicate, may be disproportionately 
influenced by the presence of outliers, or may be  confounded by 
physiological or other non-neural sources of variability among 
participants. While data quality is an agreed-upon essential element 
for fMRI analysis, what constitutes “good” data and “appropriate” QC 
procedures are still open questions. Perhaps owing to the complexity 
of assessing data quality in the absence of a ground truth, QC is often 
underappreciated and not systematically reported. Yet, QC and QC 
reporting are crucial to data interpretation and needed to develop 
standardized guidelines (Taylor et al., 2022).

Several studies have addressed the topic of MRI data quality, 
whether from the perspective of quality assurance (QA) or from a QC 
point of view. Although interwoven, QA and QC are complementary 
in that QA is usually a process-oriented approach aimed at preventing 
issues (e.g., Friedman and Glover, 2006; Glover et al., 2012; Liu et al., 
2015; for a review see Lu et al., 2019), whereas QC is output-oriented 
and evaluates the quality of the images resulting from said process. As 
such, even an optimal QA does not address the objectives of QC 
testing. Recent efforts from the field have resulted in the proliferation 
of QC tools and protocols for the evaluation of specific analytical step 
(Backhausen et al., 2016; Storelli et al., 2019; Benhajali et al., 2020), 
pipelines-specific outputs (Griffanti et al., 2017; Raamana et al., 2020; 
Chou et al., 2022), and raw-level data [e.g., MRIQC (Esteban et al., 
2017) and pyfMRIqc (Williams and Lindner, 2020)]. Additionally, 
many pipelines have been developed to preprocess (e.g., fMRIprep; 
Esteban et al., 2019), denoise (e.g., Tedana; DuPre et al., 2021), or 
generally analyze fMRI data from specific consortia [e.g., ABCD 
(Hagler et al., 2019), UK Biobank (Alfaro-Almagro et al., 2018), HCP 
(Marcus et  al., 2013), Configurable Pipeline for the Analysis of 
Connectomes C-PAC1 (Craddock et al., 2013; Sikka et al., 2014)]. 
While principally focused on data analysis, these tools also strongly 
support automatic and visual QC, and effectively aid the identification 
of issues in the data and during data analysis. These works, together 
with our and the other papers presented in this special issue (Taylor 
et al., 2022), help build a rich diversity of approaches and perspectives. 
Each provides unique contributions which help expand the field and 
build a consensus on best practices.

In this study, we describe the quality control pipeline for volume-
based connectivity analysis using the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012; Nieto-Castanon, 2020). 
We analyzed publicly available resting-state data (n = 139) from the 
FMRI Open QC Project (Taylor et  al., 2022) to demonstrate 
participant-level and group-level QC procedures in an integrated 
framework with data preprocessing and denoising. Visual and 
automated QC procedures were demonstrated for the assessment of 
raw-level, preprocessed, and denoised data. Finally, we proposed a QC 
workflow based on the combination of visual and automated QC 
measures. Ultimately, we  hope this work contributes toward the 
dissemination and standardization of QC testing and reporting.

1 https://www.nitrc.org/projects/cpac/
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2. Materials

2.1. Dataset overview

We analyzed data from the FMRI Open QC Project (Taylor et al., 
2022) fmri-open-qc-rest collection v1.0.0, which combined 
subsamples of public data-packages including ABIDE and ABIDE-II 
(Di Martino et al., 2013), the Functional Connectome Project (Biswal 
et al., 2010), and OpenNeuro (Markiewicz et al., 2021). Data was 
accessed as already transformed nifti and json files curated to be in 
BIDS format v1.6.0 (Gorgolewski et al., 2016).

The fmri-open-qc-rest collection included (f)MRI data from 139 
participants acquired with 3.0T MRI scanners from seven sites. Each 
participant had available data corresponding to one MRI scanning 
session when one anatomical image and one or two echo-planar 
imaging (EPI) resting state functional BOLD runs were collected.

2.2. Software information

MRI data processing and statistical analyses were performed using 
the CONN toolbox (RRID:SCR_009550) version 22.a (Nieto-
Castanon and Whitfield-Gabrieli, 2022) and SPM version 12 release 
7,771 (Wellcome Department of Imaging Neuroscience, UCL, 
London, United Kingdom) in MATLAB R2022a (The MathWorks 
Inc., Natick, MA, United Kingdom).

3. Methods

Code and scripts required to replicate the analysis presented in 
this manuscript can be found at https://github.com/alfnie/conn.

3.1. Preprocessing

Functional and anatomical images were preprocessed using the 
default minimal preprocessing pipeline in CONN (Nieto-Castanon, 
2020, 2022), represented in Figure  1 (top). This pipeline includes 
functional realignment and unwarp (Andersson et  al., 2001) for 
intermodality coregistration of all scans to the first scan, slice-timing 
correction (STC; Henson et al., 1999) compensating for acquisition 
time differences among different slices, outlier detection (Whitfield-
Gabrieli et al., 2011) identifying individual scans with suprathreshold 
framewise displacement (FD) and/or global signal change (GSC) 
values, direct functional normalization (Calhoun et  al., 2017) 
projecting functional images into standard Montreal Neurological 
Institute 152 (MNI) reference space resampled to 2 mm isotropic 
voxels, and spatial smoothing with a 8 mm full width at half maximum 
Gaussian kernel. Anatomical data preprocessing comprised direct 
segmentation and normalization (Ashburner and Friston, 2005) which 
iteratively performed tissue segmentation into six tissue classes, 
including gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) using SPM12 posterior tissue probability maps, and 
normalization to IXI-549 MNI space, resampling the output 
anatomical images to 1 mm isotropic voxels.

Several automated measures were extracted as run-level timeseries 
(i.e., as 1st-level covariates) at various stages of preprocessing, 

following Nieto-Castanon (2020, 2022). Table  1 (QC timeseries 
section) includes a summary of each of these QC timeseries 
definitions, and Figure 1 provides a schematic representation of all 
preprocessing steps and associated QC timeseries. The QC timeseries 
named realignment is estimated during the realignment and unwarp 
preprocessing step, and it represents the estimated participant 
in-scanner head motion. The individual parameters in this timeseries 
represent the degree of relative translation (three parameters, in mm 
units) and rotations (three parameters, in radians) of the head at each 
individual scan, when compared to its position at the beginning of the 
functional run. Following SPM12 convention, rotation parameters are 
defined using the real word-space point (coordinate 0,0,0) as the 
center of rotation. The QC timeseries named Global Signal Change 
(GSC) and Framewise Displacement (FD) are computed during the 
outlier detection preprocessing step. GSC timeseries are defined at each 
scan as the absolute value of the scan-to-scan change in global BOLD 
signal, using SPM global BOLD signal definition. GSC timeseries are 
then scaled to standard units within each run by subtracting their 
median value and dividing by 0.74 times their interquartile range 
(Whitfield-Gabrieli et  al., 2011). FD timeseries are defined as the 
maximum change in the position of six points placed at the centers of 
each face in a 140 × 180 × 115 mm bounding box around the brain and 
undergoing the same rotations and translations as the participant’s 
head. From these measures, outlier scans are identified as the scans 
with FD values above 0.5 mm and/or GSC values above 3 standard 
deviations (Whitfield-Gabrieli et al., 2011), with the resulting list of 
potential outlier scans summarized in the QC timeseries 
named scrubbing.

In addition to being useful on their own to characterize image and 
subject properties during data acquisition in the scanner, relevant 
statistics of these 1st-level measures are also used to define additional 
summary measures, as shown in Table 1 (QC summary measures 
section) and discussed in section 3.3.2.

3.2. Denoising

In order to minimize the presence of non-neural noise sources, 
including cardiac, respiratory, and residual subject motion effects in 
the BOLD signal, functional data were denoised with the CONN fMRI 
default denoising pipeline (Nieto-Castanon, 2020). This pipeline 
comprises three main sequential steps (Figure 1, bottom) seeking to 
characterize noise components in the BOLD signal (noise components 
extraction) and minimize their effect on the BOLD timeseries (linear 
regression and temporal band-pass filtering steps). First, participant-
specific minimally eroded WM and CSF masks were generated using 
a one-voxel binary 3D erosion of the corresponding tissue masks 
derived from each subject’s anatomical segmentation. The QC 
timeseries named WM and CSF (Table 1) are defined as the principal 
components of the BOLD signal extracted from these minimally 
eroded masks, following the anatomical aCompCor method (Behzadi 
et al., 2007), which has been shown to minimize the effect of nuisance 
confounds (Chai et al., 2012). Principal components from WM and 
CSF areas were computed after discounting motion and outlier effects 
(within a space orthogonal to the realignment and scrubbing 
QC timeseries).

Next, ordinary least squares regression removed from each voxel 
BOLD timeseries the effect of all identified noise components, 
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including 5 components from white matter (from the QC timeseries 
WM), 5 components from CSF (from the QC timeseries CSF), 12 
estimated participant-motion parameters (6 parameters from the QC 
timeseries realignment and their first order temporal derivatives), 
participant-specific outlier scans (from the QC timeseries scrubbing), 
as well as the effect of session and its first order derivative convolved 
with the canonical hemodynamic response function (aiming to 
minimize the influence of transients in the first few scans of each run), 
and constant and linear session effects (aiming to minimize the 
influence of linear trends in each run). Lastly, temporal band-pass 
filtering (0.008–0.09 HZ) was applied to each run individually 
(Hallquist et al., 2013) in order to focus on slowly varying BOLD 
signal fluctuations.

3.3. CONN quality control pipeline

QC of raw-level, preprocessed, and denoised data was carried out 
following CONN quality control pipeline, building off from Nieto-
Castanon (2020, 2022) and summarized in Figure 2.

3.3.1. Quality control of raw-level data
Raw-level functional runs (all slices and all scans) and anatomical 

images (all slices) were visually inspected using multislice interactive 
displays of each participant’s data, as well as a combined montage of a 
single slice across all participants. We also inspected information from 
json sidecar files and header of nifti files to gather information about 

image resolution and scanner acquisition parameters. The goal of this 
step was to familiarize ourselves with the data, identify potential 
sources of heterogeneity, possible incongruencies among different 
sites or subjects, and inspect the data for potential outliers or artifacts 
that may require additional consideration during preprocessing.

3.3.2. Quality control of preprocessed data
Plots of representative brain slices and automated QC measures 

were generated for each individual subject and functional run to 
visualize the outputs of preprocessing, identify potential failures of 
functional and anatomical preprocessing steps, or otherwise confirm 
that between-run spatial heterogeneity across subjects and runs had 
been in fact minimized as a result of these steps.

Visual QC included the assessment of the accuracy of functional 
normalization through the inspection of plots rendering the mean 
BOLD signal across all scans of the normalized functional data for each 
participant overlaid onto the 25% boundaries of the gray matter a priori 
probability maps from SPM’s IXI-549 MNI-space template. Similarly, 
the accuracy of structural normalization was assessed through the 
inspection of plots displaying each participant’s normalized anatomical 
images overlaid onto the same gray matter boundaries. Segmentation 
and anatomical to functional alignment were assessed through plots 
overlaying the boundaries of each participant’s anatomical GM masks 
onto the normalized anatomical or functional data.

The presence of potential residual artifacts in functional 
timeseries was reviewed based on plots displaying a movie of the 
central axial slice (MNI z = 0 mm) of the functional data over time 

FIGURE 1

Schematic of preprocessing and denoising analysis flow and automated QC measures. The figure illustrates the CONN’s minimal default preprocessing 
and denoising pipelines and the automated quality control measures generated from each step. Automated QC measures were considered Covariates 
(1st-level) if they represented run-specific timeseries (i.e., one value per scan) or Covariates (2nd-level) if they were the collection of aggregated within-
run estimates (i.e., one value per run). BOLD, blood oxygen level dependent; CSF, cerebrospinal fluid; DOF, degrees of freedom; FD, framewise 
displacement; GM, gray matter; GCOR, global correlation; GS, global signal; HRF, hemodynamic response function; QC, quality control; WM, white 
matter. This figure was adapted with permission from Nieto-Castanon (2020), Copyright© 2020 Alfonso Nieto-Castanon.
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TABLE 1 Summary of automated quality control measures.

QC timeseries (1st-level covariates)

GSchange The global signal change timeseries is computed as the absolute value of the scan-to-scan 

change in global BOLD signal, computed separately at each scan/timepoint and scaled to 

standard units within each run.

0 < x < ∞. Higher values indicate higher sudden 

variability in signal intensity.

FD The framewise displacement timeseries is computed as the maximum change in the position 

of six control points placed at the center of a bounding box around the brain, computed 

separately at each scan/timepoint.

0 < x < ∞. Higher values indicate higher sudden 

displacements in head position.

Scrubbing The scrubbing covariate contains one separate timeseries per identified outlier scan. Each of 

these timeseries contain a single 1-value at the identified scan, and 0-values at all other 

timepoints. They are computed by thresholding GSchange and FD at the desired values.

x ∈ {0,1}. 1 indicates a scan identified as a potential 

outlier

Realignment The realignment covariate contains six timeseries, three characterizing head translations 

along the x/y/z directions in mm units, and three characterizing rotations around the x/y/z 

axes in radians.

-∞ < x < ∞. Higher absolute values indicate larger relative 

motion between a scan compared to the first scan within 

the same run

WM The WM covariate contains multiple timeseries, characterizing the principal components of 

the BOLD signal within white matter areas, sorted by decreasing variance.

-∞ < x < ∞. Higher absolute values indicate larger 

departures from the average BOLD signal within WM

CSF The CSF covariate contains multiple timeseries, characterizing the principal components of 

the BOLD signal within cerebrospinal fluid tissue areas, sorted by decreasing variance.

-∞ < x < ∞. Higher absolute values indicate larger 

departures from the average BOLD signal within CSF

QC summary measures (2nd-level covariates)

MaxMotion The maximum of motion is the maximum value of the FD timeserie from each run, 

calculated considering all original scans.

0 < x < ∞. Higher values indicate more extreme motion 

spikes.

InvalidScans Invalid scans is the number of scans identified as outliers during outlier detection based on 

scan-to-scan GS and framewise displacement change.

0 < x < total number of scans. Higher values indicate 

higher presence of potential outlier scans.

ValidScans Valid scans is the number of valid or non-outlier scans. 0 < x < total number of scans. Lower values indicate fewer 

surviving scans.

PVS The proportion of valid scans is the ratio between non-outlier scans to all scans, representing 

a normalized measure of valid scans in the presence of potential differences in scanning 

lengths.

0 < x < 1. Lower values indicate higher presence of 

potential outlier scans.

MeanGSchange The mean global signal change is the mean value of GSchange timeseries, calculated by 

aggregating GSchange across non-outlier scans only.

-∞ < x < ∞. Higher values indicate higher residual 

variability in the global signal after scrubbing

MeanMotion The mean motion is the mean value of the FD timeseries, calculated by aggregating FD 

across non-outlier scans only.

0 < x < ∞. Higher values indicate higher residual motion 

after scrubbing.

NORMfunc The normalized space to functional accuracy is the Dice similarity coefficient between the 

IXI-549 MNI-space gray matter tissue mask thresholded at a 25% probability level and the 

binarized GM masks derived from the functional data and thresholded at a level that 

produced the same number of suprathreshold voxels as in the MNI-space mask.

0 < x < 1. Lower values indicate a worse normalization of 

functional data.

NORManat The normalized space to anatomical accuracy is calculated similarly to NORMfunc but it 

compares the IXI-549 gray matter mask to the binarized GM mask derived from the 

anatomical data instead.

0 < x < 1. Lower values represent worse normalization of 

anatomical data.

AFO The anatomical-to-functional overlap is the Dice similarity coefficient between the 

anatomical gray matter mask, thresholded at a 50% probability level, and the functional gray 

matter mask, thresholded at a level that resulted in the same number of suprathreshold 

voxels.

0 < x < 1. Lower values represent a worse inter-modality 

coregistration.

tissue_vol The gray matter, white matter, or cerebrospinal fluid tissue volumes is the count of voxels 

with tissue-specific probability >50% from participant-specific segmented anatomical tissue 

ROIs.

0 < x < ∞. Extreme values indicate a combination of 

individual anatomical differences and normalization 

performance.

tissue_eroded_

vol

The tissue eroded volume is the count of voxels in the tissue-specific ROIS resulting from 

anatomical segmentation after a 1-voxel erosion procedure.

0 < x < ∞. Extreme values indicate a combination of 

individual anatomical differences and normalization 

performance.

DOF The effective degrees of freedom are calculated as the total number of scans minus the 

number of regressors involved in the denoising’s linear regression step, multiplied by the 

fraction of the Nyquist frequency covered by denoising’s band-pass frequency filter.

-∞ < x < all original scans. Lower values indicate 

potential lack of precision when estimating modeled 

effects in the BOLD signal.

(Continued)
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(i.e., over all scans). This movie was rendered above the timeseries 
traces of (i) the GSC QC timeseries representing scan-to-scan 
changes in the global BOLD signal, (ii) the FD QC timeseries, 
characterizing subject motion, and (iii) the outlier QC timeseries, 
characterizing scans identified as potential outliers. The movies 
were reviewed to visually assess the amount of motion and imaging 
artifacts in the data, and identify potential artifacts in the functional 
data which may not be  apparent in the motion, GSC, or 
outlier timeseries.

Several automated QC summary measures were generated based 
on preprocessing outputs and related QC timeseries. These measures 
are described in Table 1 (QC summary measures section). Some of 
these measures provided an agnostic description of features of the 
original functional data, including the maximum value of GSC 
(MaxGSchange) and FD (MaxMotion). Since, often, these worst-
case instances have already been identified as potential outlier scans, 
these measures inform about the state of the data prior to 
preprocessing. Other measures such as MeanGSchange or 
MeanMotion represent average GSC or FD values limited only to 
valid (non-outlier) scans, so they can be  considered as more 
informative about the state of the data after preprocessing. Other 
useful statistics include the total number of run-specific outlier scans 
(InvalidScans), the number of non-outlier scans (ValidScans), and 
the proportion of valid scans (PVS), providing several indicators of 
the overall quality and amount of valid data within each individual 
run for each subject. Last, and aiming to directly quantify the 
performance of spatial normalization and its indirect effect on inter-
modality coregistration, the measures NORMfunc (functional 
normalization) and NORManat (anatomical normalization) measured 
the similarity between the gray matter mask in the normalized data 
and in a reference MNI atlas. Relatedly, AFO (anatomical to 
functional overlap) measured the similarity between gray matter 
masks in functional and anatomical images, evaluating the accuracy 
of inter-modality coregistration.

Participant-level denoising exclusion criteria included cases that 
were considered extreme in either the visual QC step, or in the 
automated QC summary measures. For automated QC summary 
measures, extreme values were considered those above the threshold 
Q3 + 3 IQR (or below Q1–3 IQR, for those cases when extreme low 
values were indicative of problems in the data), where Q1 and Q3 

represent, respectively, the first and third quartiles of the distribution 
of a measure across the entire dataset, and IQR represents their 
difference (inter-quartile range).

3.3.3. Quality control of denoised data
QC of denoised data aimed at evaluating the quality of the 

functional data after denoising. Since denoising is the last step when 
preparing the data before computing functional connectivity measures 
or performing other statistical analyses, quality control measures of 
the denoised data provide a way to globally evaluate the suitability of 
the resulting fMRI data for functional connectivity or other 
statistical analyses.

Participant-level visual QC aimed at evaluating possible 
patterns or other features that may be visible in the BOLD signal 
timeseries after denoising and which may be indicative of a possibly 
too liberal or too conservative denoising strategy. In particular, 
we reviewed run-specific plots rendering carpetplots (Power, 2017) 
of fully preprocessed BOLD timeseries before and after denoising, 
together with the traces of GSC, FD, and outliers timeseries. These 
were inspected to confirm that sudden and synchronized variations 
in signal intensity had been flagged as outliers, and that there are 
no visible residual large-scale patterns in the BOLD signal 
timeseries, which could indicate the persistence of global or 
widespread noise sources (for example, respiratory-related motion 
or artifacts can appear as patterns with frequency around 0.3 Hz). 
Carpetplots carry a rich set of information about the timeseries 
which, in combination with other indicators of potential problems 
in the data, allow researchers to hypothesize potential sources of 
noise that may be  prevalent in the data, guiding the search of 
possible solutions.

Several QC summary measures were computed characterizing 
properties of the BOLD signal after denoising (Figure  1). These 
measures are described in Table 1 (QC summary measures section). 
The QC measure DOF computes the effective degrees of freedom of 
the BOLD timeseries after denoising. Lower values (close to zero or 
negative) indicate that denoising is overly aggressive for the number 
of functional scans available, and that noise correction comes at the 
expense of loss of meaningful variability severely impacting our ability 
to accurately estimate any model parameters of interest from the 
BOLD timeseries, such as functional connectivity measures or 

TABLE 1 (Continued)

QC summary measures (2nd-level covariates)

BOLDstd The BOLD standard deviation is the temporal standard deviation of the BOLD signal, after 

grand-mean scaling to 100 across the entire brain and denoising, averaged across all runs 

and all voxels in the analysis mask.

0 < x < ∞. High values may indicate the presence of 

potential noise, while values close to 0 may indicate lack 

of retained signal.

GCOR The mean global correlation (Saad et al., 2013) is the average of Pearson’s r correlation 

coefficients between the denoised BOLD timeseries of all pairs of voxels within the analysis 

mask.

-∞ < x < ∞. High absolute values may indicate the 

presence of residual noise sources in the BOLD signal.

QC-FC % Quality Control to Functional Connectivity distributions (Ciric et al., 2017) represent the 

observed distribution of correlations across participants between individual QC measures 

and functional connectivity strength (edges in a fixed graph of 1,000 random voxels within 

the MNI-space gray matter template mask). QC-FC % match level represents the distance 

between these observed distributions and those that could be expected by chance, as 

computed using permutation analyses.

0% < x < 100%. Values above 95% indicate negligible 

modulations associated with nuisance factors in the 

correlation structure of the BOLD signal.

All quality control measures are automatically calculated by CONN (v22.a) during data preprocessing and denoising, but all could also be derived post-hoc from data fully or partially 
processed by other software.
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task-related responses. The QC measure BOLDstd characterizes the 
stability of the BOLD signal after denoising. BOLDstd is a measure 
similar to MeanGSchange but computed from the data after denoising. 
It is inversely related to the BOLD signal temporal signal-to-noise 
ratio and, similarly to GCOR, high values are often indicative of the 
presence of potential noise sources in the residual fMRI data, although 
it needs to be interpreted with care as unusually low values can also 
indicate low effective degrees of freedom associated with the loss of 
meaningful variability from the BOLD timeseries. The QC measure 
GCOR (Global Correlation; Saad et al., 2013) represents the mean of 
functional connectivity measures (BOLD signal bivariate correlation 
coefficients) among all voxels, and it has been proposed as an effective 
control covariate for group-level analyses. GCOR often takes small 
positive values, caused by local correlations resulting in positive 
skewness in the distribution of functional connectivity values. High 
values can indicate an insufficient denoising strategy, and negative 
values can result from overly aggressive denoising, global signal 
regression, or biased-inducing denoising strategies.

Additional QC procedures and measures were derived from the 
distribution of functional connectivity (FC) values, computed as 
Pearson’s r correlation coefficients between the BOLD signal 
timeseries after denoising among all pairs from a fixed set of 1,000 
random voxels within the MNI-space gray matter template mask, in 

order to evaluate a relatively dense sample of connections from the 
whole-brain connectome.

Visual inspection of these distributions allowed us to evaluate 
the relative presence of residual noise sources in the BOLD 
timeseries of each individual participant, which tend to shift the 
entire FC distribution toward positive values, altering the FC 
distribution center (representing the value GCOR) and its overall 
shape in a manner that is highly variable across different 
participants and across different runs. In comparison, the relative 
absence of noise sources is expressed as FC distributions that appear 
relatively centered (with a small positive distribution mean, and a 
distribution mode approximately at zero) and similar across 
different runs and participants.

Participant-level exclusion criteria included severe departures 
from expected FD distribution shapes after denoising – that is, with 
significantly skewed, shifted, flat, or bimodal distributions after 
denoising – as well as the presence of extreme outlier values in any of 
the computed QC measures (using the same Q3 + 3 IQR or Q1–3 IQR 
thresholds as before).

Last, the QC measure QC-FC % (percent match in QC-FC 
correlations) represents an individual quality control measure 
characterizing a property of the entire dataset, rather than properties 
of individual participants or runs. This measure is also computed from 

FIGURE 2

Flowchart of quality control pipeline.
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these same distributions of FC values (one FC distribution per 
participant), but this time focusing on QC-FC inter-subject 
correlations (Ciric et al., 2017), evaluating whether changes in the 
spatial correlation structure of the BOLD data covaried with 
participant-level quality control measures. In particular, using the 
same sample of connections from the whole-brain connectome 
estimated in the FC distribution step above, we computed the bivariate 
Pearson’s r correlation coefficients across participants between each of 
the estimated connectivity values and representative QC measures 
(MeanMotion, InvalidScans, and PVS). The resulting distributions of 
QC-FC correlations were evaluated to detect systematic biases by 
computing the distributional distance between these distributions and 
those expected by chance (in the absence of QC-FC correlations, as 
estimated using permutation analyses). QC-FC % values were used to 
evaluate whether the chosen combination of preprocessing and 
denoising steps, as well as the choice of thresholds for participant-level 
exclusion criteria and other QA procedures resulted in satisfactory 
fMRI data quality levels, and to choose between possible alternatives 
when necessary. Match levels above 95% were considered indicative 
of negligible modulations in the BOLD signal correlation structure, 
while lower values are considered indicative of the persistence of 
potential problems in the denoised data, requiring either alternative 
preprocessing and denoising choices or more severe participant 
exclusion criteria (Figure 2).

4. Results

4.1. Participants and data characteristics

Information reported here derive from investigating the nifti files 
characteristics directly or from their sidecar json files, which had been 
generated prior to release via unspecified procedures (n = 124) or via 
dcm2niix (Li et al., 2016) v1.0.20170314 (n = 15).

In this study, we analyzed resting state and anatomical MRI data 
from 139 participants acquired from 7 sites, including 151 functional 
runs and 139 anatomical images (mprage, 3D TFE, or unspecified). All 
sites contributed 20 participants except for site #3 (n = 16) and site #4 
(n = 23). Throughout the manuscript, individual participants are referred 
to using both the collection’s ID number (e.g., sub-___) where the first 
digit reflects the acquisition site of origin, and using ascending numbers 
(e.g., S___) representing participants ordered from site #1 to site #7.

The fmri-open-qc-rest collection was characterized by data with 
heterogeneous image resolution, scanner acquisition parameters, and 
experimental design. A detailed characterization of data features 
broken down by acquisition site is reported in 
Supplementary Tables S1, S2 for anatomical images, and in Table 2 for 
functional data.

Gathered information about functional data suggested that data 
were acquired by Siemens or Philips MRI scanners of various models 
(Trio Tim, Prisma Fit, Verio and Magnetom Trio, or Achieva or 
Achieva DS), using head coils with 12, 32, or unspecified number of 
channels. Data sampling differed on temporal (2- or 2.5-s TR) and 
spatial parameters, such as voxel dimensions (ranging from 
1.6 × 1.6 × 3.1 to 4 mm isotropic) and number of acquired slices 
(between 32 and 45). No information was available regarding whether 
any online processing was performed during or after acquisition, for 
example prospective motion correction or denoising. By design, the 

experience of the participants was also different. Total time spent for 
the functional BOLD imaging acquisition ranged between 288 and 
1,810 s (approximately between 5 and 30 min) which was acquired 
either in one continuous run or split into two (n = 12). During the 
functional data acquisition, participants were exposed to different 
visual stimuli (black screen with crosshair, eyes closed, or unspecified) 
and instructions (rest, relax and think of nothing particular, 
or unspecified).

Information incongruencies were encountered for sub-506 (S85) 
and sub-507 (S86) functional data, wherein 39 slice timings were 
reported in the sidecar json files but only 35 slices were available as per 
the nifti header information. This may suggest that these functional 
runs were not in a raw-level form or that the json files included 
faulty information.

There was no available information regarding several elements 
which had been shown to carry meaningful individual differences and 
which were relevant for data interpretation. No information was 
available regarding participant demographics (age, sex, medical and 
mental health history, mental and physical status at time of acquisition, 
psychoactive medication, etc.), participant inclusion and exclusion 
criteria, informed consent and assent. For example, the task 
description of sidecar json files of site #1 could be  interpreted as 
suggesting that participants might include children who were asked 
to withhold taking psychostimulants the day prior to and the day of 
scanning; and the procedure description reported from the json files 
of site #5 could imply that participants were recruited under a study 
of brain traumas. Additionally, no information was available about the 
study paradigm, study design, or presence of experimental 
manipulation prior to or during data acquisition. Relatedly, it was not 
possible to determine whether the same individual was scanned in 
different sites or longitudinally, or if data were deemed unusable by 
the experimenters for any reason.

Critically, we  did not know whether all or any of the above 
elements covaried with site and, consequently, whether potential inter-
site variability encompassed meaningful individual differences in 
addition to heterogeneity associated with differences in scanner or 
acquisition details. Given the information available, or lack thereof, 
site was identified as a control variable. We  cannot rule out that 
differences among sites may include meaningful factors, such as 
sample’s age, health or medical status, or study design. These may 
legitimately affect BOLD signal properties of interest, including 
functional connectivity measures, in a manner that cannot 
be effectively separated from other sources of differences among sites, 
such as those resulting from differences between MR acquisition 
parameters or noise sources. Because of this, whenever possible 
we limited analyses of intersubject variability to focus only on within-
site analyses, explicitly disregarding variability across sites due to the 
unavoidable issues when attempting to interpret sources of inter-
site variability.

4.2. Raw-level data QC

Visual QC of the functional data identified different types of 
artifacts. We noticed artifacts appearing as spatial susceptibility 
distortion or signal drop out (e.g., sub-304 [S44]; Figure  3A), 
ghosting/aliasing (e.g., sub-717 [S136]; Figure  3B), signal 
inhomogeneity localized in regions of high tissue contrast [e.g., 
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sub-314 (S54); Figure  3C], of unspecified nature, or their 
combination [e.g., sub-409 (S65); Figure 3D]. For a complete list 
of identified artifacts broken down by participant and modality see 
Supplementary Table S3.

Incorrect orientation of functional data was encountered for 
sub-518 (S97) and sub-519 (S98), which appeared upside-down. 
We considered to correct it by either applying a 180° rotation along 
the y-axis (i.e., preserving the relative position between the x, y, z axes) 
or a non-rigid reflection along the z-axis (i.e., flipping the data via a x, 
y, −z axis transformation which effectively would swap the signal 
between the left and right hemispheres). We opted to flip the data in 
both instances, based on the better visual match achieved between the 
flipped functional data and its respective anatomical data 
(Supplementary Figure S1).

During visual QC of anatomical data, we noticed few artifacts. 
Several participants from site #5 showed potential signs of past 
surgeries, as identified by localized darker areas (appearing as dots) 
traveling through contiguous slices reaching from the cortex to 
subcortical medial areas [e.g., sub-509 (S88); Figure 4A, z = 4]. Often, 
these artifacts were localized in areas which appear to correspond to 
artifacts in the participant’s functional data (Supplementary Figure S2). 
Sub-509 (S88) showed areas of intensity inhomogeneities bilaterally 
(Figure 4A, y = 5 and x = −35) which appeared as bands in the y axis, 
and large asymmetrical lateral ventricles (Figure 4A, x = −17). Other 
cases of potential anatomical variations or artifactual signal intensity 
were encountered including in sub-719 (S138; Figure 4B). Few cases 
of ringing-like patterns more prominently visible along the z-axis were 
noticed in a sub-218 (S38; Figure 4C) and in a few other anatomical 

TABLE 2 Functional MRI data information for each acquisition site.

Site #1 Site #2 Site #3 Site #4 Site #5 Site #6 Site #7
N 20 20 16 23 20 20 20
Collection ID Sub-101 to 120 Sub-201 to 220 Sub-301 to 316 Sub-401 to 423 Sub-501 to 520 Sub-601 to 620 Sub-701 to 720
CONN ID S1 to S20 S21 to S40 S41 to S56 S57 to S79 S80 to S99 S100 to S119 S120 to S139

MRI scanner Philips Achieva Philips Achieva Philips Achieva DS /

Philips Achieva (5) 

Siemens Trio  

Tim (14)  

Siemens Prisma  

Fit (1)

Siemens 

Magnetom Trio
Siemens Verio

Head coil / / 32 channels / / 12 channels /

Flip angle [°] 75 90 90 /
90 (17)  

80 (3)
90 80

Phase encoding 

direction
j- j- j- /

j- (15)  

/ (5)
/ j-

Parallel acquisition 

technique
SENSE SENSE SENSE /

/ (15)  

no_stimulation 

SENSE (5)

/ /

Voxel dimension 

[mm3]

2.7×2.7×3 (19) 

2.3×2.3×3 (1)
3x3x3.8 1.6×1.6×3.1 2.7×2.7×3

3×3×4 (15) 

1.9×1.9×4 (5)
4×4×4 3×3×3.5

Field of view [slices]
96×96×47 (19) 

112×112×47 (1)
80×80×38 128×128×45 96×96×47

80×80×35 (10) 

128×128×34 (5) 

80×80×34 (4) 

80×80×39 (1)

64×64×32 64×64×39

Repetition time [s] 2.5 2 2.5 2.5 2 2.5 2.5

Acquired EPI runs 1 1 1 1 1
1 (8)  

2 (12)
1

Scans acquired
156 (18)  

128 (2)
150 162 123 144 [240–724] 198

Acquisition 

duration [s]

390 (18)  

300 (2)
300 405 307.5 288 [600–1,810] 495

Slice timings 

available
Yes Yes Yes /

Yes (13)  

/ (5)  

wrong (2)

/ Yes

Task stimuli
White cross over 

black screen
Eyes closed

White cross over 

black screen
/ Eyes open / Eyes closed

Task instructions / Rest
Relax and think of 

nothing particular
/ / / /

Number of 

properties present in 

json file(s)

31 29 32 2

15 (5)  

20 (13)  

21 (2)

8 (8)  

8 each  

run (12)

14

The information reported refers to all participants of each site, unless otherwise specified by the number in parentesis reflecting the subset of participants. Participants are identified by the 
collection’s ID number (e.g., sub-___) and by increasing numbers (e.g., S___) representing participants in ascending order. mm, millimeters; MRI, magnetic resonance imaging; properties of a 
json file, key-value pairs included in the json files; s, seconds; SENSE, sensitivity encoding; °, degrees; “/” indicates that information was not available.
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A

C D

B

FIGURE 3

Spatial artifacts of raw-level functional data. (A) Spatial distortions and signal drop out in superior/orbito-frontal regions in sub-304 (S44). (B) Aliasing or 
ghosting in the coronal (y = 19) and axial (z = 45) slices from sub-717 (S136). For visualization purposes only, intensity values have been scaled so that low 
and high values would appear darker, making more evident artifacts such as those highlighted by the white arrows stemming from the superior (left 
image) and frontal (right image) regions of the head. (C) Unspecified signal inhomogeneity artifacts affecting sub-314 (S54) functional scans localized 
near areas of high intensity contrast such as CSF to WM. (D) Ghosting, spatial distortions, and signal inhomogeneities are noticeable in sub-409 (S65) 
functional data across all scans and several slices. For all panels, the images render the first functional scan of raw-level data.

images (see Supplementary Table S3). Additionally, there were few 
cases with noticeable motion-related and ghosting, of which sub-519 
(S98; Figure 4D) was an example. Inasmuch the preprocessing of 
anatomical images for FC-MRI analysis was instrumental to preparing 
the functional data, a low(er) quality of anatomical images was not 
considered a major roadblock unless it produced a faulty segmentation 
or normalization.

During anatomical visual QC, we  also observed what could 
be described as a skin marker on the forehead (right hemisphere) of 
most participants from site #5 (n = 15) including all those scanned 
with Philips Achieva, and in a few from site #7. While there was no 
available information regarding which hemisphere the marker was 
placed on, and under the assumption that they would be placed in a 
standardized fashion, the consistent lateralization with which the 
marker was observed for all participants was considered as a hint of 
lack of left–right flip relative to one another.

Cross-modality visual comparison aided the characterization of 
artifacts. For example, unspecified signal intensity inhomogeneity 
was noticed in the functional data of sub-315 (S55; Figure  5A, 
x = 2), which corresponded to an undefined artifact or anatomical 
feature (Figure  5B). The artifact was localized in the medial-
superior area above the cingulate cortex in the interhemispheric 
fissure, appearing dark in the functional data and bright in the 
anatomical images. Additionally, several examples of highly 
localized signal inhomogeneity with sharp intensity differences 
were characteristic of participants from site #5. From a visual 
inspection, those appeared similar to those reported in Figure 5, but 

the comparison with the anatomical data suggested that those could 
potentially derive from past brain surgeries (e.g., sub-509 [S88]; 
Supplementary Figure S2).

Overall, only one run corresponding to sub-409 (S65) was deemed 
to be excluded based on extreme spatial corruption severely affecting 
multiple slices and persistent across all scans. All other cases 
mentioned above were flagged as uncertain (see 
Supplementary Table S3 for a complete list) as we considered that in 
the absence of additional indications their potential effect on the 
quality of the BOLD signal may not be  severe enough to 
warrant exclusion.

4.3. Preprocessed data QC

Since fieldmaps were not available, our preprocessing included a 
direct, rather than indirect, normalization procedure to try to 
minimize EPI-specific warping caused by susceptibility distortions 
(Calhoun et al., 2017). Similarly, we skipped STC because slice timing 
information was available for only a portion of runs (n = 89 out of 151) 
and most importantly, it was selectively missing for entire sites (#4, #6, 
and some cases from site #5). We  elected to skip STC for all 
participants in order to prevent introducing variability driven by 
distinct analytical approaches into the results, which, in light of the 
characteristics of the fmri-open-qc-rest collection, could exacerbate 
potential inter-site (and in the case of site #5, even intra-site) 
heterogeneity even further.
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A
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FIGURE 4

Spatial artifacts of anatomical raw-level data. (A) Sub-509 (S88) presented signs of potential past surgery (z = 4) appearing as dark, small, localized areas 
traveling through several slices, signal intensity inhomogeneity localized bilaterally along the y-axis (y = 5 and x = −35), and individual anatomical 
variations of size and shape of the lateral ventricles (x = −17). (B) Individual anatomical differences in the form of an asymmetrical mass or unspecified 
signal inhomogeneity localized in the lateral ventricle of a sub-719 (S138). (C) Motion-related artifacts or ringings in sub-218 (S38). (D) Sub-519 (S98) 
showed severe aliasing, ghosting, and/or motion-related artifacts.

A B

FIGURE 5

Example of cross-modality visual quality control for artifact characterization. Potential artifact of unspecified type in sub-315 (S55) functional (panel A) 
and anatomical (panel B) data. (A) Signal inhomogeneity affecting several axial slices localized in the interhemispheric fissure. The first scan is displayed 
here, however similar artifacts are noticeable across all scans. (B) Unspecified anatomical artifacts rendered in contiguous sagittal (x = 22 to x = 16) and 
axial slices (x = 38 to x = 50) in the top and bottom row, respectively. White circles indicate areas where artifacts are visible in a location comparable 
between functional and anatomical data. Note, the anatomical and functional images displayed here were in raw-level form, hence the spatial 
coordinates refer to subject-space and might differ across modalities.
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FIGURE 6

Preprocessed anatomical data. The same axial slice (MNI z = 18) of the fully preprocessed anatomical images is rendered for each participant (n = 139). 
For visualization purposes only, the BOLD signal intensity was scaled by the average value within each image.

Visual QC of preprocessed data identified severe failures of 
anatomical normalization and segmentation for sub-509 (S88) and 
sub-511 (S90). In both cases, the normalized anatomical and 
segmented tissue ROIs appeared fragmented and showed poor 
continuity within tissue type but sharp differences across tissues, see 
Figure 6 (slices in row 7 columns 4 and 6) and Figure 7B (bottom).

Beyond those issues, visual inspection of the functional and 
anatomical data and potential residual artifacts in the functional 
timeseries identified no other obvious failures of functional 
preprocessing, including for the cases flagged as uncertain during 
raw-level data QC. For an overview of the full dataset after 
preprocessing, see Figure 6 (anatomical images, n = 139) and Figure 8 
(functional scans, n = 151).

Automated QC measures (InvalidScans, PVS, MeanMotion, 
NORManat, NORMfunc, and AFO in Figure 9; other measures are reported 
in Supplementary Figure S3) were generated from n = 151 functional 
runs and n = 139 anatomical images (Figure  9, left). Low extreme 
outliers (values 3 IQR below the 1st quartile) were identified for 
NORManat [n = 2, sub-509 (S88) and sub-511 (S90)] and AFO [n = 1, 

sub-509 (S88)], which corresponded to the cases identified during visual 
inspection. These data were also identified as extreme low outliers based 
on the distribution of total tissue volumes (Supplementary Figure S4). 
We visually inspected again the cases identified as mild low outliers 
from the distribution of NORManat (n = 2; see sub-716 [S135] in 
Figures 7A,B), NORMfunc (n = 0), and AFO (n = 0) and confirmed that 
those indicated an acceptable preprocessing performance.

Several extreme low PVS outliers were identified (n = 7 with PVS 
below 75%): sub-118 (S18), sub-405 (S61), sub-519 (S98), sub-703 
(S122), sub-706 (S125), sub-708 (S127) and sub-714 (S133) as well as 
several, mostly overlapping, extreme high InvalidScans participants 
(n = 6 with 48 or more InvalidScans): sub-519 (S98), sub-607 (S106), 
sub-703 (S122), sub-706 (S125), sub-708 (S127) and sub-714 (S133). 
The only participant with extreme high InvalidScans who did not have 
low PVS was sub-607 (S106), who, despite having 50 outlier scans, 
accounted for less than 7% of the total scanning session.

One participant [sub-111 (S11)] had a GCOR value (0.0534) 
borderline but below the level of extreme outlier (GCOR = 0.0535). 
However, this participant showed no obvious artifactual effects in 
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carpetplots, or from other visual checks, nor had values in the mild 
(1.5 IQR) or extreme (3 IQR) outlier range for any other QC measure. 
Given that GCOR potentially includes some amount of meaningful 
intersubject variability, we elected not to exclude this run in order to 
avoid suppressing possibly natural variability.

Last, confirming our previous observations, there were strongly 
significant differences in all QC measures between the different sites 
(InvalidScans F(6,132) = 4.24 p = 0.0006, PVS F = 3.33 p = 0.0044, 
MeanMotion F = 8.85 p < 0.0001, NORManat F = 13.22 p < 0.0001, 
NORMfunc F = 23.49 p < 0.0001, and AFO F = 13.42 p < 0.0001).

4.4. Denoised data QC

The distribution of automated QC measures (DOF, BOLDstd, and 
GCOR) for all denoised data (n = 151 corresponding to 139 
participants) is reported in Figure 9 (right). There were no extreme 

outliers in BOLDstd, nor extreme low absolute DOF values, and 
participants with the lowest DOF values in this dataset [sub-519 (S98) 
DOF = 17.1, sub-405 [S61] DOF = 24.2, and sub-714 (S133) 
DOF = 26.2] were already identified as extreme outliers with low PVS 
values. As with preprocessing QC measures, there were strongly 
significant differences in all QC denoising measures evaluated when 
compared between the different sites [DOF F(6,132) = 27.92 p < 0.0001, 
BOLDstd F = 19.65 p < 0.0001, and GCOR F = 12.98 p < 0.0001].

After preprocessing but before denoising, the distributions of 
functional connectivity estimates (FC distributions, Figure 10 left 
column) revealed severe biases, with connectivity values centered 
at r = 0.27 on average across all participants, and also showed high 
levels of variability in the FC distribution center, with standard 
deviation 0.12 across participants. After denoising, the FC 
distributions (Figure  10, central column) were centered around 
r = 0.031, and had low variability (standard deviation 0.01 across 
participants). Visually, FC distributions after denoising appeared 

A B

FIGURE 7

Automated and visual quality control of normalized anatomical data. (A) Distribution of the overlap between the normalized anatomical data (n = 139) 
and the MNI-space (NORManat). Extreme outliers are identified as values 3 IQR above the 3rd quartile or below the 1st quartile (red dotted lines). Mild 
outliers are values 1.5 IQR above the 3rd quartile or below the 1st quartile (red dashed lines). (B) The same reference axial slice (MNI z = 18) renders the 
normalized anatomical images from five participants. The participants’ anatomical image is, on the left, overlaid on the 25% boundaries of the gray 
matter a priori probability maps MNI-space template (blue outline), and on the right, against each participant’s anatomical gray matter boundaries. The 
participants reported in the figure are ordered from top to bottom based on their NORManat values. Specifically, compared to the full dataset, sub-107 
(S7) had the highest value, sub-301 (S41) was close to the median value, sub-716 (S135) was close to the low mild outlier threshold, sub-511 (S90) and 
sub-509 (S88) were the two lowest values and extreme outliers. GM, gray matter; MNI, Montreal Neurological Institute space; NORManat, overlap 
between the MNI-space and the normalized anatomical data.
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FIGURE 8

Preprocessed unsmoothed functional data. The same axial slice (MNI z = 18) for the first and the last functional scan are rendered for all runs (n = 151). 
For visualization purposes only, the BOLD signal intensity of each scan was scaled by its average value.

more centered and similar across participants, and nearly 
symmetrical with slightly longer positive than negative tails, as 
expected (for comparison, Supplementary Figure S5 displays 
examples of FC distributions that could result if our denoising 
strategy had been overly or insufficiently aggressive in this 
same dataset).

No individual runs were identified as potential outliers after 
denoising from visual inspection of these results. Site #6 included 
several runs with distinctive narrower FC distributions, but these were 
associated with scanning length that were considerably longer 
(identified in the Figure 9 DOF distribution as having significantly 
higher degrees of freedom compared to other runs in this dataset). 
We did not exclude these runs but depending on the planned analyses 
it may be advisable to consider homogenizing the scanning duration 
length of the fMRI data.

QC-FC correlations were estimated separately within each site to 
avoid potential site confounder effects. Before denoising, QC-FC 
correlation distributions showed poor percentage match levels, 
indicating the persistence of motion and data quality effects on 
functional connectivity estimates after preprocessing. Specifically, 
percentage match levels were below the 95% cutoff for InvalidScans 
[average within-site %match = 86.70 ± 11.77 ranged (65.82; 97.59)], 

MeanMotion [85.37 ± 13.94 (56.78; 98.52)], and PVS [83.70 ± 11.51 
(65.82, 97.59)], see Figure 11 (left) and Table 3 (top).

Denoising increased the percentage match levels of QC-FC 
distributions (Figure  11 middle and Table  3 middle) for 
InvalidScans [average within-site % match = 94.24 ± 2.56 (91.47; 
97.68)], MeanMotion [96.82 ± 1.07 (95.64; 98.89)], and PVS 
[94.21 ± 2.50 (91.47; 97.26)]. Despite this, several QC-FC 
correlations still did not pass the desired 95% cutoff for at least one 
of the three evaluated QC measures, including site #3, site #4, site 
#5, and site #7 (Table 3).

Excluding all runs with identified extreme outliers in any of the 
evaluated QC measures (n = 10, 1 run identified during raw-level 
visual QC, 2 runs with problems in spatial normalization, and 7 runs 
with extreme low PVS) increased the percentage match level of 
QC-FC distributions for InvalidScans [average within-site % 
match = 96.79 ± 2.07 (92.35; 98.48)], MeanMotion [97.64 ± 1.03 
(96.12; 99.21)], and PVS [96.75 ± 2.04 (92.35; 98.48)]. Despite this, 
QC-FC correlations of site #3 still did not pass the desired 95% cutoff. 
Since the distribution of PVS did not show a clear cutoff among those 
participants with extreme outliers and those with mild outliers, 
we  decided to re-evaluate QC-FC correlations varying the PVS 
threshold used for participant-level exclusion, excluding one 
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additional participant at a time, in order to identify the minimal 
number of excluded participants that would result in suprathreshold 
QC-FC match levels for all QC measures. The results indicate that 
removing one additional participant, i.e., the 8 participants with 
lowest PVS values (instead of 7 when using the originally suggested 
extreme-outliers threshold), was sufficient to push all sites above the 

desired 95% threshold in QC-FC match levels across InvalidScans 
[97.3 ± 0.89 (95.92; 98.48)], MeanMotion [97.77 ± 0.86 (97; 99.21)], 
and PVS [97.26 ± 0.86 (95.92; 98.48)], see Figure 11 (right column) 
and Table 3 (bottom). Automated QC measures of the final n = 11 
excluded participants and their carpetplots are reported in 
Supplementary Figures S6 and S7, respectively.

FIGURE 9

Automated quality control measures of preprocessed and denoised data. Distributions of automated QC measures extracted from the full fmri-open-
qc-rest collection (n = 139 anatomical and n = 151 functional data). QC measures were calculated from preprocessed functional (InvalidScans, PVS, 
MeanMotion, NORMfunc, and AFO), preprocessed anatomical (NORManat and AFO), and denoised functional (DOF, BOLDstd, and GCOR) data. Extreme 
outliers were identified as values 3 IQR below the 1st quartile or above the 3rd quartile (red dotted lines). Mild outliers were defined as values 1.5 IQR 
below the 1st quartile or above the 3rd quartile (red dashed lines). BOLDstd, standard deviation of the BOLD signal; DOF, degrees of freedom; GCOR, 
global correlation; IQR, interquartile range; NORMfunc, MNI-space template to functional overlap; NORManat, MNI-space template to anatomical overlap; 
PVS, proportion of valid scans.

FIGURE 10

Functional connectivity density distributions. Density distributions of within-run FC strengths (r coefficients) between all pairs among 1,000 randomly 
selected voxels from functional runs of the entire data collection (n = 139) before (left) and after denoising (central), and after excluding outlier runs 
(right, n = 128). FC distributions are plotted for data from each site independently (top) and from all sites jointly (bottom row). FC, functional 
connectivity.
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5. Discussion

In this study, we presented the CONN quality control pipeline 
(Table 4; Figure 2) based on a combination of visual and automated 
QC procedures. Publicly available resting state data were analyzed to 
showcase a complete QC workflow for the screening of raw-level, 
preprocessed, and denoised data for volume-based FC-MRI analysis. 
This pipeline includes visual-QC steps, where researchers visually 
judge the severity of potential artifacts in the raw, preprocessed, and 
denoised data, as well as a number of automated QC measures 
quantifying relevant aspects of the functional data. We recommend 
that researchers use the combination of visual- and automated- QC 
measures to motivate possible changes in their data preprocessing or 
denoising strategy that would address the issues raised by these 
measures, or, ultimately, to determine a list of individual participants 
or runs that may need to be excluded from the main analyses. The 
choice of a threshold for participant exclusion should be informed by 
the characteristics of one’s own sample and the needs of their research 
questions or planned analyses. Rather than using absolute thresholds 
in QC measures, we suggest that sample-specific thresholds, such as 
the choice of a classical “extreme outliers” threshold of Q3 + 3 IQR for 
extreme high values (or Q1–3 IQR for extreme low values) are a 
reasonable starting point for participant exclusion. Last, our QC 
workflow uses the measure QC-FC %, characterizing the presence of 
inter-subject associations between functional connectivity and subject 
motion or outlier prevalence, and the stability of the FC distributions 
across different runs and participants (FC mean ± SD), as a way to 
evaluate the overall quality of the data, helping guide possible choices 
between alternative preprocessing and denoising strategies or 
participant exclusion thresholds.

Our QC workflow included a combination of procedures, of 
which some can be quantified precisely and even automated, while 
others cannot and will ultimately rely on each researcher’s experience 
and judgment. In both cases, our approach is not that there is an 
“optimal” or even “correct” form of QC, but rather to encourage 
researchers to understand the rationale behind performing QC, 
follow a reasonable set of procedures, justify their choices during QC, 
and report their decision process when sharing their results to the 
community. For example, there is currently no agreed-upon correct 
choice or criterium of what constitute severe ghosting or other image 
artifacts, but our recommendation is for researchers to perform 
visual QC to evaluate the presence and severity of artifacts in their 
data, and then to define, based on their own criteria, experience, 
research goals, and specificities of their sample, what constitutes 
possibly extreme cases that would justify their exclusion. From this 
general perspective, we have attempted to provide specific measures 
and thresholds that could be used as precise exclusion criteria when 
possible (as sample-specific outliers, using a Q3 + 3 IQR threshold for 
individual QC measures, and as an absolute 95% threshold in QC-FC 
percent match levels), while also leaving room for other less easily 
quantifiable aspects of QC (using severity scores based on a 
researcher’s own criteria during visual QC, and judging the overall 
level of centering and similarity of the QC distributions across the 
different subjects in our sample).

In that context, several automated QC measures were proposed 
to aid the identification of potential problems in the data or faulty 
preprocessing. NORManat, NORMfunc, and AFO measures can 
be  useful to evaluate functional normalization, anatomical 
normalization, and between modality coregistration success. 
Similarly, the relative severity of participant motion and other events 

FIGURE 11

QC-FC correlation distributions. QC-FC plots tested functional connectivity associations with three nuisance factors (MeanMotion, InvalidScans, and 
PVS). Plots were generated from functional data from all participants (n = 139) before (left) and after (middle) denoising, and after excluding outlier runs 
(right) identified during raw-level, preprocessed, and denoised data QC (n = 128). Analyses were performed within each site independently (top) and 
across all sites jointly (bottom row). Red boxes indicate QC-FC with at least one QC-FC distribution that did not reach above the 95% cutoff. Red 
dotted lines represent a theoretical artifact-free null-hypothesis distribution. QC, quality control; FC, functional connectivity.
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that may cause outliers in the scan timeseries can be quantified using 
measures such as average of framewise displacement (MeanMotion), 
and the number or proportion of identified outlier scans (PVS). 
Measures evaluating the effective degrees of freedom of the BOLD 
signal timeseries after denoising (DOF), as well as its variability and 
intercorrelation (for example BOLDstd and GCOR), can also 
be  useful to identify potential problems in the BOLD signal of 
individual participants before proceeding to statistical analyses. As 
other QC measures computed after preprocessing and denoising, 
outlier values in these measures may depend on the combination of 
most analytical steps that preceded it, so they do not directly suggest 
a potential source or cause of the identified problems. Finally, QC-FC 
correlations evaluate whether changes in the spatial correlation 
structure of the BOLD data covaried with participant-level quality 
control measures, such as the extent of participant motion, and the 
number or proportion of outlier scans, so they can be used as general 
measures of data quality to guide other data processing choices.

In this dataset these measures were used to evaluate the quality of 
the fMRI data and help guide our choices of denoising and exclusion 
procedures. Altogether, the QC pipeline and exclusion criteria 
adopted (Table 4) excluded 8% of the participants and minimized the 
presence of a variety of noise sources in the data as evaluated using a 
combination of visual and automated QC measures and procedures.

Many reasons may explain why bias persists after a successful 
preprocessing and adequate denoising, and these reasons create a 
multi(uni)verse of effective possibilities to counteract. Although 
relevant to the understanding of QC procedures, the evaluation of 
different processing pipelines was outside the scope of this paper and 
has been discussed in several seminal papers about preprocessing 
(Friston et al., 1996; Strother et al., 2004; Murphy et al., 2009; Chai et al., 
2012; Hallquist et al., 2013; Power et al., 2014; Ciric et al., 2017) and 
denoising strategies (Churchill and Strother, 2013; Parkes et al., 2018; 
Maknojia et al., 2019; Tong et al., 2019; De Blasi et al., 2020; Golestani 
and Chen, 2022; for a review, see Caballero-Gaudes and Reynolds, 2017).

TABLE 3 FC density distributions and QC-FC correlations.

Site n n excluded FC mean ± SD InvalidScans-FC MeanMotion-FC PVS-FC QC-FC 
performance

Before denoising (n = 139)

Site #1 20 / 0.27 ± 0.13 90.81 91.38 92.01 Below cutoff

Site #2 20 / 0.29 ± 0.08 65.82 56.78 65.82 Below cutoff

Site #3 16 / 0.24 ± 0.07 97.59 98.52 97.59

Site #4 23 / 0.17 ± 0.08 75.85 78.41 75.85 Below cutoff

Site #5 20 / 0.2 ± 0.07 87.58 91.03 87.58 Below cutoff

Site #6 20 / 0.32 ± 0.13 97.46 91.71 75.24 Below cutoff

Site #7 20 / 0.39 ± 0.11 91.78 89.76 91.78 Below cutoff

All 139 / 0.27 ± 0.12 55.18 58.83 64.64 Below cutoff

After denoising (n = 139)

Site #1 20 / 0.04 ± 0.02 95.73 98.89 95.96

Site #2 20 / 0.04 ± 0.01 97.19 97.02 97.19

Site #3 16 / 0.03 ± 0.01 92.35 96.12 92.35 Below cutoff

Site #4 23 / 0.02 ± 0.01 93.01 96.07 93.01 Below cutoff

Site #5 20 / 0.03 ± 0.02 92.27 95.64 92.27 Below cutoff

Site #6 20 / 0.03 ± 0.01 97.68 97.04 97.26

Site #7 20 / 0.02 ± 0.01 91.47 96.99 91.47 Below cutoff

all 139 / 0.03 ± 0.01 91.41 94.20 90.02 Below cutoff

After denoising and excluding outliers (n = 128)

Site #1 19 1 0.04 ± 0.02 96.40 97.60 96.48

Site #2 20 0 0.04 ± 0.01 97.19 97.02 97.19

Site #3 15 1 0.03 ± 0.01 95.92 97.00 95.92

Site #4 21 2 0.02 ± 0.01 98.00 98.01 98.00

Site #5 17 3 0.03 ± 0.02 98.48 98.50 98.48

Site #6 20 0 0.03 ± 0.01 97.68 97.04 97.26

Site #7 16 4 0.02 ± 0.01 97.47 99.21 97.47

All 128 11 0.03 ± 0.01 97.24 95.84 93.97 Below cutoff

Values reported under FC mean represent the average ± standard deviation across participants of GSC, the mean values of the FC density distributions, and QC-FC represent the percentage 
match level values, characterizing the presence of inter-subject associations between functional connectivity and subject motion or outlier prevalence. Bold font indicates % match values that 
are above the 95% cutoff. QC-FC performance values indicate whether any QC-FC measure percentage match level is below the 95% cutoff. FC, functional connectivity; GSC, global signal 
change; PVS, proportion of valid scans; QC, quality control.
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TABLE 4 CONN quality control pipeline checklist and exclusion criteria for whole brain resting state functional connectivity analysis.

Category QC Checklist Tools Exclusion criteria

Raw-level data

Source of heterogeneity 

of no interest (defined 

by the data intended 

used)

Acquisition parameters MRI data (A) Data that do not meet criteria 

for the specific analysis goals as 

defined by each individual research 

study

Demographic Sidecar json files

Task design Scan sequences protocol

Artifacts Ghosting

Visual inspection (scan-to-scan and slice-to-

slice)

(B) Data corrupted beyond repair as 

judged by rater

Aliasing

Foreign objects artifacts

Dropouts/truncation

Ringing

Spatial distortions

Contrast inhomogeneities

Personalized 

preprocessing needed

Artifacts that may require 

personalized consideration
Visual inspection (slice-to-slice)

Challenging data 

features

Motion related artifacts 

Anatomical variations

Visual inspection (scan-to-scan and slice-to-

slice)

Preprocessing

Failures of functional 

preprocessing

Artifacts in the timeseries Visual comparison between the scan-to-scan 

movie of a reference functional slice with 

motion, GSC, and outlier timeseries traces

Normalization Visual comparison between normalized 

functional data and MNI template

(C) † Functional data which cannot 

be preprocessed satisfactorily as 

judged by raterVisual comparison between anatomical gray 

matter and normalized functional data

Automated QC measure NORMfunc (D) † Cases with extreme values, as 

judged by a sample-specific Q1-3 

IQR threshold criterion

Failures of anatomical 

preprocessing

Normalization and segmentation Visual comparison between normalized 

anatomical data and MNI template

(E) † Anatomical data which cannot 

be preprocessed satisfactorily as 

judged by raterVisual comparison between anatomical gray 

matter and normalized anatomical data

Automated QC measures AFO and NORManat (F) † Cases with extreme values, as 

judged by a sample-specific Q1-3 

IQR threshold criterion

Denoising

Residual noise factors Within-participant Visual comparison of carpetplots with motion, 

GSC, and outlier timeseries traces

Between-participant Other QC variables: distribution of participant-

level QC measures

(G) † Cases with extreme values in 

PVS, MeanMotion, or DOF, as 

judged by a sample-specific Q3 + 3 

IQR or Q1-3 IQR threshold criterion

Distribution of functional connectivity values (H) † Extremely skewed, shifted, 

flat, or bimodal functional 

connectivity distributions after 

denoising, as judged by rater.

Also used to guide preprocessing, 

denoising, and participant-

exclusion-criteria choices.

Distribution of QC-FC associations, for 

InvalidScans, MeanMotion, and PVS

Used to guide preprocessing, 

denoising, and participant-

exclusion-criteria choices.

Cases with extreme values could be represented by values below 3 times the interquartile range above the 3rd quartile or below the 1st quartile, depending on the specific QC measure, 
compared to the full dataset distribution. BOLD, blood oxygenation level-dependent; FC, functional connectivity; GCOR, global correlation; MNI, Montreal Neurological Institute; QC, 
quality control; TPM, tissue probability map. † Indicates exclusion criteria applied only if potential remediatory analytical or processing alternatives fail.
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It is nevertheless important to note that not all measures that are 
used to evaluate the quality of the fMRI data in the context of QC 
procedures can or should be used to compare different preprocessing or 
denoising pipelines. In general, global or sample-level properties such 
as QC-FC %, characterizing between-subject QC-FC correlations, and 
FC mean ± SD, characterizing between-subjects variability in the shape 
of FC distributions, are meaningful measures that can be used to guide 
choices in preprocessing and denoising, and in particular to compare 
the relative success of different preprocessing pipelines. In contrast, 
many measures, such as BOLDstd, DOF, MeanGSchange, which are 
designed to provide useful contrasts when comparing different 
participants undergoing the same acquisition and analytical procedures, 
should be considered with extreme care in the context of comparing 
different analytical procedures or pipelines, as they provide only a very 
limited view of the overall quality of the data, with often contradictory 
results when interpreted as direct measures of data quality.

We encourage researchers to consider preprocessing and 
denoising strategies as an array of tools to use on their data, and rely 
on quality control measures described above to help guide and 
substantiate their choice of the best tools to use for each dataset. 
Indeed in our case, QC testing did suggest to evaluate alternative 
analytical approaches to attempt to improve the overall quality of the 
results. For example, there were two cases [sub-509 (S88) and 
sub-511 (S90)] in which anatomical normalization failed. This could 
have suggested that trying alternative normalization procedures 
customized to the dataset could have been tested. For example, 
normalization approaches using lesion-informed templates (which 
could have been relevant for site #5), age-specific normalization 
templates, or different normalization parameters could have led to 
overall better normalization performance for these two cases and 
perhaps others. Moreover, we  did not perform STC to avoid 
introducing artificial heterogeneity between and within sites driven 
by differences in preprocessing pipelines. Our choice was based on a 
lack of information regarding slice timings for a portion (41.6%) of 
the data. But in a real-life context, we would have reached out to the 
research groups where the data originated trying to find said 
information. Similarly, we would have reached out to the site#5 to 
confirm that sub-518 (S97) and sub-519 (S98) functional data 
needed to be  flipped rather than rotated. Also, the QC-FC 95% 
benchmark was not reached for PVS when considering data from all 
sites jointly (Figure 11, bottom row). That indicates that if we want 
to perform analyses jointly across all sites, we would need to correct 
site effects, as those potentially contain a mixture of noise sources 
together with perhaps other meaningful differences in sample 
demographics, but similarly other site homogenization approaches 
could be attempted to try to reduce or remove the residual QC-FC 
correlations across sites. In deciding the best course of action for the 
fmri-open-qc-rest collection, we  faced a tradeoff between 
maximizing power (i.e., including as much data as possible) and 
prioritizing the optimal approach for the majority – but perhaps not 
the totality – of the data. Excluding a portion of runs (n = 11 out of 
151 runs, corresponding to n = 11 out of 139 participants) resulted in 
an overall more lenient approach to the rest of the data and 
minimized the estimated residual bias driven by invalid scans, 
proportion of valid scans, and mean motion within each site 
independently and improved it across all sites jointly. Ultimately, the 
data and the research question motivating one’s own analysis will 
define what the “best” approach entails, potentially involving 
different analytical strategies. Whichever that is, we  stress how 

reporting the rationale guiding preprocessing and denoising choices 
in a study and supporting those choices with reports describing the 
associated QC measures and procedures used, is a key element for 
results interpretation and reproducible science.

The proposed QC workflow, checklist, recommendations, and 
exclusion criteria are agnostic of the analytical software employed. While 
designed and discussed around the implementation in CONN, our 
recommendations generalize to data fully or partially analyzed 
(preprocessed and/or denoised) via other software packages including 
AFNI (Cox, 1996), SPM (Friston and Al, 2007), FSL (Jenkinson et al., 
2012), FreeSurfer (Fischl, 2012), fMRIprep (Esteban et al., 2019), Tedana 
(DuPre et al., 2021), MRIQC (Esteban et al., 2017), pyfMRIQC (Williams 
and Lindner, 2020), and others. For example, NORManat, NORMfunc, and 
AFO are measures diagnostic of preprocessed data quality, but they can 
be computed independently of the software or process that generated 
them. Furthermore, while the analytical details used to generate well-
known metrics (framewise displacement, CompCor components, etc.) or 
methods (ICA, AROMA, CompCor) may vary across software packages, 
we expect that the recommendations provided in this manuscript should 
generalize beyond the specific measures used in the example presented in 
this manuscript. For example, we have no reasons to believe that the data 
exclusion based on the extreme departures of PVS relative to the sample’s 
distribution should be  specific to the outlier threshold or motion 
estimation method that we  used, rather they could generalize to 
alternative definitions of FD (Jenkinson et al., 2002; Power et al., 2012). In 
a similar fashion, considerations about visual QC could be expanded to 
apply to data inspected through MRI image viewers or visual plots 
generated with alternative methods.

The FMRI Open QC Project dataset (Taylor et al., 2022) combines 
information from multiple sites. The preprocessing, denoising, and QC 
steps discussed in this manuscript did not directly address the issue of 
data harmonization across sites (Friedman et al., 2006; Yu et al., 2018). 
Effective harmonization of features across sites would require a 
considerably richer array of information from the sampled participants in 
order to be able to differentiate among intersite differences that may carry 
meaningful information, such as those due to differences in age and 
health status of participants sampled in different sites or studies, from 
intersite differences that may be related to other factors of no interest, such 
as those introduced by specific acquisition details used in each study. 
Despite this, the quality control procedures described in this manuscript 
attempted to focus, whenever possible, on features of the entire dataset, 
treating site as one would normally treat different subject groups in a 
single-site study, except for QC-FC correlations, where we chose to focus 
only on intrasite analyses as otherwise the results would be naturally 
confounded by some of the very large differences in QC measures 
observed among sites. QC procedures in the context of multisite studies 
would benefit from an integrated approach to data homogenization and 
quality control, which is still an open area of research.

Most of the QC pipeline that we had described for resting state 
functional connectivity analysis is also suitable for task-based 
connectivity and task-based activation analyses. The QC workflow and 
exclusion criteria related to raw-level data visual inspection, 
preprocessed data visual and automated procedures (e.g., NORManat, 
NORMfunc, AFO, and PVS) apply to (f)MRI data regardless of the final 
intended analysis goal. However the nature of the analysis (connectivity 
vs. activation) and of the behavioral/cognitive processes elicited during 
data acquisition (to rest or to perform an explicit task) carry distinct 
potential dangers on the final statistical analyses and require customized 
considerations. For example, motion is highly problematic for functional 
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connectivity analysis, as it introduces biases reducing the accuracy of 
results, so it is thus usually more aggressively controlled for in the 
context of resting state analyses. In contrast, in task-activation studies, 
this is usually less of a concern as motion tends to simply reduce power 
(i.e., lowering statistical significance of the results) rather than 
introducing spurious results. Yet, activation analysis could suffer from 
a similar curse when motion artifacts are unbalanced between task 
conditions (e.g., larger subject motion during rest blocks compared to 
task blocks), so in the context of task-activation analyses QC measures 
that focus on the presence of task-correlated motion are often 
recommended. While the general QC workflow described in this 
manuscript can be equally used in the context of task-activation or other 
types of analyses, we would expect that the inclusion of additional QC 
measures focusing on analysis-specific features or sources of concern 
(e.g., quantifying the presence of task-correlated motion or other task-
correlated noise sources in the context of task-activation analyses) 
would be necessary in order to better capture the suitability of the 
resulting data for those specific analyses.

Overall, the guidelines of our QC approach were to improve data 
quality and quantify residual nuisance effects. However, these guidelines 
were constrained by at least four limitations, which are the objective of 
open and active lines of work in the neuroimaging field. First, the field 
currently lacks a ground truth of what the BOLD signal is. It follows that 
quantifying the differences between the actual signal and the true signal 
was limited in its scope. Second, neural and non-neural signals are best 
thought of as a continuum rather than two ontological classes. Although 
regarded as a viable approach to minimize well-known bias, regressing 
out “non-neural” components might also have removed neural signals 
too (for example see Wang et  al., 2021). Third, we  applied similar 
processing to all data regardless of specific acquisition parameters, but 
it has been shown that non-harmonized MRI data could introduce 
spurious heterogeneity in FC estimates. However, potential sources of 
heterogeneity (e.g., inter-run, inter-participant, and inter-site variability; 
Greve et al., 2012) may be intertwined with true individual differences. 
Considering all available data, hence maximizing power and 
heterogeneity, may promote generalizability and reproducibility of 
neuroimaging results. Lastly, we defined exclusion criteria and cutoffs 
based on relative terms rather than absolute, which risks leading further 
away from a standardization of QC procedures. However, we argue that 
this shortcoming not only provides a necessary level of flexibility in view 
of the heterogeneity in acquisition details, sample characteristics, and 
experimental designs across different studies and fields, but also that it 
might effectively be overcome if QC procedures were to be consistently 
reported alongside FC results, however varied the QC strategies may be. 
Similarly to how distinct analytical approaches are regarded as equally 
valid in addressing the same research questions (Botvinik-Nezer et al., 
2020), different QC pipelines could represent effective alternatives. As 
the description of the processing analytical details applied to fMRI data 
are considered necessary for interpretation and replicability purposes, 
likewise QC procedures are instrumental to results interpretation. Thus, 
QC reporting should become an integral part of neuroimaging studies.

6. Conclusion

In this study, we presented the CONN quality control pipeline 
for the visual and automated QC testing of resting state fMRI data 
for FC-MRI analysis, demonstrated on publicly available and 

heterogeneous data. We complemented knowledge and guidelines 
from the literature with additional automated QC strategies. 
Several, modular, and mutually non-exclusive procedures were 
included and emphasized how automated QC testing can help 
guide choices of preprocessing, denoising, and exclusion 
procedures. Overall, visual and automated QC were reciprocally 
informative, and their synergy was necessary for a sensitive 
evaluation of fMRI quality at all stages of the data life cycle. 
We hope this work contributes to the understanding, dissemination, 
and standardization of QC testing and QC reporting among peers 
and in scientific journals.
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Designing and executing a good quality control (QC) process is vital to robust 
and reproducible science and is often taught through hands on training. As FMRI 
research trends toward studies with larger sample sizes and highly automated 
processing pipelines, the people who analyze data are often distinct from those 
who collect and preprocess the data. While there are good reasons for this trend, 
it also means that important information about how data were acquired, and 
their quality, may be missed by those working at later stages of these workflows. 
Similarly, an abundance of publicly available datasets, where people (not always 
correctly) assume others already validated data quality, makes it easier for trainees 
to advance in the field without learning how to identify problematic data. This 
manuscript is designed as an introduction for researchers who are already familiar 
with fMRI, but who did not get hands on QC training or who want to think more 
deeply about QC. This could be  someone who has analyzed fMRI data but is 
planning to personally acquire data for the first time, or someone who regularly 
uses openly shared data and wants to learn how to better assess data quality. 
We describe why good QC processes are important, explain key priorities and 
steps for fMRI QC, and as part of the FMRI Open QC Project, we demonstrate some 
of these steps by using AFNI software and AFNI’s QC reports on an openly shared 
dataset. A good QC process is context dependent and should address whether 
data have the potential to answer a scientific question, whether any variation in 
the data has the potential to skew or hide key results, and whether any problems 
can potentially be addressed through changes in acquisition or data processing. 
Automated metrics are essential and can often highlight a possible problem, but 
human interpretation at every stage of a study is vital for understanding causes 
and potential solutions.

KEYWORDS

fMRI, quality control, neuroimaging, reproducibility, resting state, GLM, noise removal

1. Introduction

The fundamental question that a quality control (QC) process should answer is, “Will these 
data have the potential to accurately and effectively answer my scientific question and future 
questions others might ask with these data?” The secondary goal of QC is to identify data 
anomalies or unexpected variations that might skew or hide key results so that this variation can 
either be reduced through data processing or excluded. Even for a perfectly designed study, 
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problems can arise during nearly every step of the data acquisition and 
analysis. While a specific problem might be unexpected, the existence 
of problems should be expected. Failure to check the quality of data 
will result in incorrect or misleading interpretations of data. Therefore, 
a QC process should be a fundamental element in the design of any 
study. While good QC processes will not guarantee good results, they 
can greatly reduce the chances of generating misleading or 
incorrect results.

QC is both a key part of scientific progress in fMRI and a 
neglected topic. Overviews of good practices mention the importance 
of a good QC process (Poldrack et al., 2008; Nichols et al., 2017), but 
do not describe the elements of a good QC process in depth. Detailed 
QC protocols for fMRI studies tend to be published only for large or 
multi-site studies, do not always present context, and only a few 
include operating procedures for non-automated steps (Friedman and 
Glover, 2006; Marcus et al., 2013; Alfaro-Almagro et al., 2018; Kim 
et al., 2019; Scott et al., 2020; Huber et al., 2021; Huguet et al., 2021). 
Publications and seminars that systematically discuss and debate 
expectations and methods of QC for fMRI are rare. Automated or 
semi-automated QC tools have long been part of fMRI processing 
pipelines (Cox, 1996) and there is a growth in QC tools for specific 
phases of acquisition and processing (Dosenbach et al., 2017; Esteban 
et al., 2017; Heunis et al., 2020). Still, despite the central importance 
of good quality data for scientific reproducibility, there is only a 
modest amount of education and methods development research that 
focuses on improving QC processes.

Our anecdotal experience is that learning how to think about 
fMRI QC and the practical parts of checking data are often taught 
through hands-on training, particularly when people acquire data. 
With a rising number of researchers working with shared data and not 
acquiring data, a smaller proportion of neuroimagers may be receiving 
this necessary training during formative career stages. This is paired 
with an assumption that data that are published and shared are 
reasonable quality data. We have repeatedly heard shared datasets 
being referred to with terms such as “gold standard data,” which is 
another way of saying data users think they can trust downloaded data 
without running their own QC process.

To reduce these training gaps and push for more work and 
innovation, we document our approach to fMRI QC with two goals 
in mind: (1) Outline a quality control framework for fMRI for 
scientists who have not learned these skills during formative training 
periods. (2) Highlight QC priorities for a researcher who uses data 
they did not collect. We demonstrate a QC process, primarily using 
AFNI software, on a sample dataset as part of the FMRI Open QC 
Project.1 For this project, multiple groups demonstrate their QC 
procedures with a variety of software packages on the same data.

While no manuscript can replace hands-on training, 
we  highlight ways of thinking about fMRI QC that may guide 
additional learning. Our framework and demonstration are 
centered on the idea that automation should augment rather than 
replace human judgement. Also, discussions about QC often focus 
on what data to accept vs. exclude, but timely human judgement can 
identify problems that can be  corrected through changes in 

1 QC Project main page: https://www.frontiersin.org/research-topics/33922/

demonstrating-quality-control-qc-procedures-in-fmri

acquisition and analysis. This interaction between automation and 
human judgement will become more critical to understand and 
improve as fMRI datasets increase in size. Large studies require a 
clear plan for which aspects of QC can be automated and where the 
finite amount of human intervention and judgement is most useful. 
To that end, we provide a framework for thinking about general 
approaches with a specific focus on where human intervention is 
particularly important.

2. Quality control framework for fMRI

QC asks whether and how data can be used. For fMRI data, this 
comes down to addressing two questions (1) Which voxels have 
useable data? (2) Are the locations of those voxels in the brain 
accurately defined? Answers to the first question involve ensuring 
consistent fields of view across all scans, computing basic QC metrics 
such as signal-to-noise ratio (SNR) and the temporal-signal-to-noise 
ratio (TSNR), and searching for spatial and temporal artifacts which 
may render these areas unreliable for modeling. Answers to the second 
question involve looking at functional alignment between runs, 
functional to anatomical alignment, anatomical alignments to a 
common stereotaxic space, and anatomical alignments across 
study participants.

The quality checks needed to answer these questions are not 
the same for all study purposes and the best tools to answer them 
vary by study phase and purpose. As discussed in a generalized QC 
framework by (Wang and Strong, 1996), QC includes both intrinsic 
and contextual measures. Intrinsic measures characterize inherent 
properties of the data. For example, the average temporal-signal-
to-noise ratio (TSNR) of gray matter voxels might be intrinsically 
useful. However, contextual measures depend upon the research 
hypothesis. For example, the TSNR values of voxels in the temporal 
pole might only matter in the context of studies with hypotheses 
about the temporal pole. Similarly, some functional-to-anatomical 
alignments are intrinsically poor, but an imperfect alignment 
might be sufficient in the context of a study that focuses on large 
regions-of-interest (ROIs) or spatially smoothed data. As another 
example, a modest amount of head motion or breathing artifacts 
might be addressable through data processing for some studies but 
could be problematic in the context of a study with task-correlated 
breathing (Birn et  al., 2009) or with population biases in head 
motion (Power et al., 2012). This distinction between intrinsic and 
contextual quality is critical because many discussions of fMRI QC 
focus on whether to keep or exclude data, yet there are often 
situations where data can be processed to be useful for a subset of 
potential applications, underscoring the need to keep the 
application of data central when assessing quality.

We organize our QC framework into four phases: during study 
planning, during data acquisition, soon after acquisition, and during 
processing. This structure should guide when to think about certain 
steps, but the same overall issues cross all phases, and they are not in 
a strict temporal order. For example, an issue identified during 
processing may prompt changes to study design or acquisition. An 
additional element of QC is QC of the acquisition hardware, which 
should be checked regularly as part of the operational procedures of 
any fMRI research facility. Since there are already multiple resources 
for this type of fMRI QC (Friedman et al., 2006; Liu et al., 2015; Cheng 
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and Halchenko, 2020), we are limiting our scope to QC that is specific 
to the data collected during a study. The appendix summarizes the 
suggestions in this framework for use as a guide when designing a 
study-specific QC protocol.

2.1. QC during study planning

Good QC procedures depend on having the QC-relevant 
information stored in a representationally consistent manner where 
they can be efficiently accessed (Wang and Strong, 1996). This requires 
effort during the planning stage of a study to make sure this 
information will be identified, collected, and organized. Defining QC 
priorities during the planning phase also supports future data sharing. 
The information that needs to be organized to support a robust QC 
protocol will also be accessible to future users of the data.

Expert study-specific advice is highly recommended during 
study planning. If one has access to experts in experimental design 
and acquisition, seek out their advice during this phase rather than 
the “What is wrong with my data?” phase. Many of the QC 
protocols referenced in the introduction feature study-specific 
examples and show how others have prioritized and organized 
QC-relevant information. Key topics to consider when planning a 
study are:

 • What QC measures will support the goals of the study? For 
example, if a study has a priori ROIs then QC measures for those 
ROIs and pilot scans that optimize those QC measures can flag 
issues that prompt acquisition changes and avoid wasted data.

 • Minimize variability in operating procedures across scan sessions 
by generating checklists and written instructions that clearly 
describe what experimenters should do during the scan (e.g., 
acquisition instructions), and should tell to participants [e.g., 
clear task or rest instructions and protocols to decrease head 
motion (Greene et al., 2018)]. The same applies to preprocessing 
and QC measures to calculate soon after each scan so that issues 
can be efficiently identified. (Strand, 2023) is a general overview 
for how good procedures can help avoid errors and improve 
data quality.

 • What data should be  collected during acquisition that will 
support QC later? This includes both logs of expected and 
unexpected events such as: participant behavior (e.g., task 
behavioral response logs, feedback from participants, observed 
movement during runs, seemed to fall asleep in a run, needed to 
leave scanner & get back in), issues with stimulus presentation, 
qualitative observations and quantitative measures of real-time 
data quality, respiratory and cardiac traces, external sources of 
variation between participants [e.g., time of day, caffeine intake, 
endogenous and exogenous sex hormone variation (Taylor et al., 
2020)] and all scanning parameters.

 • How QC measures will be organized and shared. Acquisition-
stage QC is useful only if it is connected to the data, 
understandable by others, and easy to share.

 • Finally, pilot sessions should go beyond attempting to optimize 
MRI acquisition parameters, to play a role in addressing all the 
above QC topics, so that when acquisition for a study begins, the 
procedures for acquiring, organizing, and rapidly checking QC 
metrics are already in place.

2.2. QC during data acquisition

It is better to design and follow a QC-focused scanning protocol 
and proactively collect good data than to retrospectively attempt to 
remove or fix bad data. That means one should aim to look at 
reconstructed MRI data as soon as feasible to identify unusual dropout 
or serious artifacts. When scanners are equipped with real-time fMRI 
capabilities, this initial inspection can happen as volumes are being 
acquired. While all modern scanners allow people to look at volumes 
during a scanner session, additional, real-time systems such as AFNI 
(Cox and Jesmanowicz, 1999) and NOUS (Dosenbach et al., 2017) can 
help identify artifacts in time series and excessive motion events, 
prompting researchers to notify the participant and to re-collect data. 
Real-time quality checks should be  extended to any concurrent 
peripheral measurements such as respiratory or cardiac traces, 
behavioral responses, EEG, and eye tracking, to name a few. Stimulus 
presentation scripts can also integrate some rapid feedback so that 
experimenters can identify participants who are not performing a task 
as expected. Even if a session-specific issue observed during 
acquisition is not correctable in real-time, it can be flagged during 
acquisition for closer attention during processing or can lead to 
protocol changes to improve future scanning sessions.

2.3. QC soon after acquisition or download

Rapid QC after acquisition can focus on intrinsic issues that might 
not have been obvious during acquisition. If done between acquisition 
sessions, information gathered this way can identify ways to improve 
future acquisitions and avoid unexpected downstream analysis problems. 
The most important thing to check is that the expected data are present, 
have understandable and accurate file names, and are properly 
documented. Shared datasets often have a few surprises (e.g., missing or 
corrupted files, duplicated data, incomplete runs). For example, early QC 
can help identify and fix a task presentation script that insufficiently 
logged behavioral responses and times. These early checks should also 
include confirming that each MRI run and peripheral measurement, 
such as respiration and cardiac traces, have the correct number of 
samples, and look as expected. Checks should also determine if fMRI 
data look anatomically correct and have consistent orientation and brain 
coverage. This should also include checking whether parameters in data 
headers are plausible and match documentation. For example, 
we recently saw a dataset where the publication accurately listed a slow 
5.1 s TR for a specialized sequence, but the files were incorrectly saved 
with a 1.5 s TR in their headers. This caused problems when processing 
steps read the incorrect TR from the file headers.

For shared data, check if there is any information about the QC 
procedure or a list of excluded runs or participants. If there is no 
information on problems with the data, that is likely a warning sign 
that there was no systematic QC procedure, and one should examine 
the data more carefully before using. If there was a clear QC procedure, 
one can also check if contextual metrics for newly planned analyses 
were included. For example, if the initial analysis focused on task 
responses and new plans focus on connectivity measures, the initial 
QC may not have focused on potential temporally correlated artifacts.

While full processing of data can be a slow process, an initial, 
limited preprocessing aimed at generating key automated QC 
metrics should be  run as soon as possible. Even if a full 
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preprocessing pipeline is not finalized, running some basic 
preprocessing steps can identify issues that will help tally what data 
are useable and can help better optimize the final preprocessing 
pipeline. For example, if anatomical to functional alignment is poor 
in many participants during initial preprocessing, then time can 
be  devoted to figuring out ways to optimize the alignment 
algorithms for a given dataset.

2.4. QC during data processing

The big advantage of integrating QC into a data processing pipeline 
is that QC metrics and key images for visual inspection can 
be  automatically calculated for multiple steps in the pipeline. For 
example, AFNI’s afni_proc.py pipeline automatically generates a QC 
html page with values and images that aid human interpretation of data 
quality. By compiling automatically calculated measures, someone with 
modest training can view reports to identify many things that look odd 
and are worth showing to a more experienced researcher.

While the processing steps have a fixed order, examination and 
interpretation of QC measures do not. Therefore, automated QC 
pipelines should calculate and organize measures from across the 
processing stream to aid human interpretation. This is particularly true 
for shared data where issues with unprocessed data may not have been 
checked or documented. For example, a few authors were recently 
working with a shared dataset where the acquired slices did not cover 
the most superior 5 mm of the cortex. This was flagged as a failure of 
the registration algorithm, but by going back to the unprocessed data, 
it became clear that the alignment was fine, but data were missing.

After data are processed, check if there are any warnings or errors 
from the execution of the processing script. These may seem obvious, 
but subtle downstream errors from unnoticed script failures happen. 
This is also the easiest place to see if the same warnings repeatedly 
appear and warrant changes to a processing pipeline. AFNI makes this 
easy by compiling the warnings from all processing steps in AFNI’s QC 
output so that users can look in one place to see if any parts of the script 
failed to execute or if serious data issues were automatically flagged.

Then quality checks can be  separated into answering the two 
questions from the beginning of this section: (1) Which voxels in a 
dataset have usable data? (2) Are the locations of those voxels in the 
brain accurately defined?

2.4.1. QC during data processing: Usable voxels
The most straightforward check is noting areas of the brain that 

were included in the scan’s field-of-view. Since most pipelines attempt 
to mask out non-brain voxels, one must make sure the mask is not 
excluding brain voxels or retaining voxels outside the brain. fMRI data 
always suffers from signal dropout and distortions, so voxels within 
the brain are expected to be missing, but, for a study with the same 
acquisition parameters, the location and amount of dropout and 
distortion should be relatively consistent. A dataset with unusually 
large amounts of dropout should be checked to see if there are other 
issues. Even if dropout is fairly consistent, the QC process should 
identify voxels with usable data in only a subset of participants. 
Particularly for ROI-based analyses and connectivity measures, voxels 
with data in only a fraction of a population can cause non-trivial 
biases in data that are hidden under ROI averages or averaged 
group maps.

The temporal signal-to-noise ratio (TSNR = detrended mean/
standard deviation) is a rough, but useful measure of fMRI quality that 
highlights issues that can be missed by looking only at the magnitudes, 
since the standard deviation of time series will be affected by temporal 
acquisition artifacts and head motion spikes. On a voxel-wise map, the 
spatial pattern of TSNR values can vary based on acquisition options. 
For example, a 64-channel head coil with many small receiver coils 
will likely have relatively higher TSNR values on the surface versus the 
middle of the brain compared to a 16-channel coil (although the raw 
TSNR values should be higher everywhere). In addition to viewing 
TSNR maps, with consistent acquisition parameters, TSNR should 
be similar across a study, so data warrants closer examination if the 
average TSNR for the whole brain, white matter, or gray matter is 
lower in some runs.

Mean images and TSNR are useful for identifying potential 
problems, but not necessary for understanding causes and potential 
solutions. By recognizing different types of MRI artifacts, it is possible 
to figure out if a problem can be solved through data processing, or 
censoring time points or voxels. Not every artifact is a problem. For 
example, the differences in TSNR between the surface & the center of 
the brain with multi-channel head coils is not inherently a problem, 
but it can affect studies that directly compare or correlate cortical 
surface and subcortical responses (Caparelli et al., 2019). MRI imaging 
artifacts are best understood with hands-on training, but there are 
some key things to look for. Any contrast changes that do not seem to 
follow brain tissue or are not symmetric between hemispheres might 
be artifacts. It is important to look at data from multiple views (i.e., 
axial and sagittal) because some artifacts may be  obvious within 
acquired slices and others may be visible across slices. If there is a 
bright artifact in one location, it might be possible to exclude data 
from that location, but many types of artifacts are obvious in one 
location and present, but less obvious over a larger portion of the 
brain, which would make data unusable. Processing that includes 
masking or temporal scaling of the data can often hide these artifacts, 
but they can be more visible in TSNR versus mean images or if the 
contrast is adjusted to give values nearer to zero more brightness. 
Another useful tool is to look at power spectra of data, which can 
identify if an artifact is fluctuating at consistent frequencies. 
Temporally periodic artifacts can be due to acquisition problems that 
might affect an entire dataset or by respiratory and cardiac fluctuations 
which are potentially addressable.

If the brain volume overlaps itself or there is a replicated part of 
the brain where it should not be, this wrapping or ghosting can inject 
signal from one part of the brain into another part and make a run 
unusable. A way to examine the seriousness of a ghosting or wrapping 
artifact is to correlate the rest of the brain to voxels within the artifact. 
AFNI’s instacorr interface lets users interactively correlate data to 
specified voxels and is particularly useful for this. Instacorr does not 
depend on AFNI processing so it can be used on data processed with 
other packages. If a voxel in an artifact is correlated with other clusters 
of voxels in a non-anatomical pattern (e.g., The signal in one brain 
region correlates with the same-shaped ghosted region elsewhere in 
the volume) that is a serious sign that the artifact corrupted the data.

One additional tool for identifying temporal artifacts in voxels is 
to look at partially-thresholded and unmasked activation maps for 
both task-locked GLM models and correlations to the global averaged 
signal or white matter. While one cannot reject a dataset if the task of 
interest is not significant, if a study uses a visual task and there is no 
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task-locked activity in the primary visual cortex, then there are likely 
additional issues with the data. If there is task-locked activity outside 
of the brain or on tissue/CSF boundaries, that is a sign of ghosting, 
motion artifacts, or task-locked breathing (Birn et al., 2009). If there 
is not a task, correlation maps can highlight similar issues, but they 
can also be used to identify population differences. For example, given 
the widely documented differences in global signal across populations 
(Power et al., 2012; Gotts et al., 2013; Yang et al., 2014), any study that 
plans to regress out the global signal as noise needs to correlate the 
global signal to the other voxels in the brain and test whether the 
correlation between the global signal and voxels systematically varies 
between populations or other contrasts of interest.

There are many automated QC metrics, in addition to TSNR, that 
can be used to automatically exclude data in voxels or highlight areas 
of concern. The most common ones are spike detection and motion 
estimates. Those can be used to both censor specific volumes and to 
automatically decide whether a run has too many censored volumes 
to be useable. The remaining degrees of freedom (DOF) after temporal 
filtering, censoring, and noise regression can be used to decide if 
sufficient DOF remain for statistical tests. The effect of temporal 
filtering on the loss of degrees of freedom is sometimes ignored in 
fMRI studies. AFNI also outputs a spatial smoothness estimate for 
each dataset. These numbers are not especially useful in a single run, 
but for a given set of acquisition parameters, the smoothness estimate 
should be roughly consistent across a study. If smoothness estimates 
vary widely, it is worth looking more carefully at outlier runs.

2.4.2. QC during data processing: Alignment
Evaluating individual voxel data quality benefits greatly from 

automation, but masking and alignment results often require manual 
inspection and interpretation. This is because different acquisitions 
can have different contrasts and parameters, so what works well for 
one dataset might not work as well for another. Artifacts and 
non-trivial spatial distortions in unprocessed data can also affect 
masking and alignment. Automated metrics for alignment quality will 
keep improving, such as with a metric to automatically warn that the 
left and right sides of the brain are flipped (Glen et  al., 2020). 
Automation can be  used to compile images that facilitate human 
inspection. AFNI’s html reports include images where the sulcal edges 
from a participant’s anatomical volume are overlayed onto the 
functional images or common anatomical templates. This is a quick 
way to catch clearly mis-aligned brain edges or sulci and potential 
issues that are worth a closer examination of the full volumes’ 
alignments.

Visual checks can focus on several factors. If collected during the 
same session, an anatomical image should have a decent alignment to 
the functional data even without processing. Atypical brain structures 
can be viewed before processing. An expert can tell which types of 
variation are concerning – either to the volunteer or to data processing 
– but a less experienced reviewer can flag anything that is asymmetric 
for expert review. Benign cysts, larger ventricles, and other atypical 
structures do not require rejecting data, but they can affect spatial 
alignment between participants as well as the locations of functional 
brain areas. As such, those occurrences should be noted, and more 
attention should be spent on assessing alignment quality.

Since most fMRI research uses multi-channel receiver coils, one 
very common artifact is intensity inhomogeneity, where the voxels 
closest to the head coil have a higher magnitude signal than voxels 

nearer to the center of the brain. This inhomogeneity can look bad, 
but it is not inherently a problem. That said, it can affect the accuracy 
of brain masking and alignment so, if the data has a lot of 
inhomogeneity, it is useful to spend more time checking brain 
masking and alignment.

It is worth taking time to make sure a brain mask excludes sinuses 
and non-brain tissue, and that a mask does not remove parts of the 
brain. Inconsistent masking often leads to flawed anatomical-to-
functional alignment and flawed reregistration between participants. 
Unless problems are caused by artifacts or distortions, it is often 
possible to fix alignment issues by tuning function parameters or by 
hand-editing masks.

Once many participants in a study are processed and aligned to a 
template, a summation of all the fMRI coverage maps is very useful 
for identifying brain regions that are included in only a portion of 
study participants. Excessive blurring on the average of the aligned 
images can also signal faulty alignment for a subset of participants. 
From our experience, looking at such coverage maps is strangely 
uncommon. A concatenated time series of all anatomical images and 
an average anatomical are very useful for checking the consistency of 
alignment across a population.

2.5. Peripheral measures

QC for fMRI studies often focuses on the MRI data, but 
unprocessed and processed peripheral measurements can also 
be sources of error. While many peripheral measures can be collected 
and checked, we will highlight a few examples for how to think about 
such measures in general. To be used with fMRI, peripheral measures 
need to log their timing in relation to fMRI volume acquisitions. 
Errors can arise in peak detection for respiratory and cardiac traces. 
Movement of a finger within a pulse oximeter can create noisy sections 
with what looks like rapid changes in heart rate that can negatively 
affect some peak detection algorithms. Anyone who collects 
respiratory data will also find spontaneous breath holds, which will 
affect fMRI data. Breath holds will cause large, brain-wide signal 
changes that bias results or merely be a non-trivial source of noise. For 
task-based fMRI, check response logs to confirm the expected 
information was logged and participants were compliant with task 
demands. Also check to make sure that head motion or respiration 
patterns are not task-correlated, since non-neural signal sources that 
are task-locked will bias results.

For all QC steps, it is crucial to consider that algorithms often fail 
in subtle ways rather than with clear errors, and these are the hardest 
errors to catch. It is therefore imperative that all steps be thoroughly 
vetted to ensure all assumptions required by the program are met and 
that programs are used consistently with their documented intent.

3. Methods

The previous section contains information on how to think about 
planning QC for a dataset. The following examples on shared datasets 
show how some of these concepts work in practice. As already noted, 
a QC process checks both intrinsic quality measures and contextual 
measures that are often dependent on the scientific question that a 
researcher has in mind. Additionally, because the data have already 
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been collected, we do not demonstrate the phases of QC before and 
during data collection (though in the discussion we will note some 
operational steps that could have been taken with these data). Since, 
we do not know the intended purposes for these data, we can make 
some assumptions about context, but our attention will primarily 
focus on intrinsic QC. We are focusing our contextual QC on issues 
that might affect connectivity measures for rest data or task responses 
for task data, without making assumptions about regions of interest.

We classify data which we believe could answer such questions as 
“included,” data which could not answer common or basic questions 
as “excluded,” and data which may be suitable for some questions but 
not others as “unsure.” Automation scripts were used to ensure 
consistency across subjects; the full processing and figure generation 
code and instructions may be found in our GitHub repository.2 Each 
processing step was given its own script with the expectation that 
users could check results before proceeding.

Data were initially checked using a basic visual inspection to 
identify anything of concern in the data including missing 
information, artifacts, whether the image field of view included the 
whole brain (excluding the cerebellum and brain stem), and whether 
there were noticeable anatomical or image abnormalities. Concerns 
were noted, and screenshots were uploaded to a shared folder. 
Anything requiring additional discussion prompted either a message 
or a video chat between researchers to either (a) decide that the object 
of concern was inconsequential or (b) properly identify the problem 
and mark it.

For processing of the data after these inspections, T1 anatomical 
images were segmented using freesurfer’s recon-all (Fischl and Dale, 
2000), and a non-linear transformation for warping anatomical 
images to the MNI template space was calculated using AFNI’s  
@SSwarper (Cox, 1996). SSwarper’s output includes QC images, which 
were checked both to make sure that the brain mask had complete 
coverage and did not include skull, and that the individual brain had 
been properly aligned to the MNI template.

AFNI’s afni_proc.py program was used to perform slice timing 
correction, rigid-body motion correction, alignment of anatomical 
and echo-planar images, blurring to 6 mm full-width half-maximum, 
and regression of physiological-and motion-related signals. Volumes 
which contained more than 0.25 mm of head motion from 
neighboring volumes were censored. Voxels which were determined 
to be outliers by AFNI’s 3dToutcount were tallied and volumes which 
had more than 5% of voxels as outliers were censored.

For all data, the ANATICOR method (Jo et al., 2010) was used to 
compute regressors associated with scanner instabilities and 
physiological noise. In addition, we also regressed motion estimates 
and their first derivatives. For rest data (subjects 101–120), additional 
regressors were used to bandpass between 0.01 and 0.1 Hz, which 
significantly reduced the remaining DOF for the data. For task data, 
this step was omitted.

In the case of task data (subjects 001–030), tasks were modeled 
using the simplified task timings supplied with the data. The labeled 
task conditions were “control” and “task,” and each trial had an onset 
time and duration. We modeled task responses in our GLM with 

2 https://github.com/nimh-sfim/

SFIM_Frontiers_Neuroimaging_QC_Project

AFNI’s default double-gamma hemodynamic response function using 
both the onset and duration information.

For inspecting the outputs of all other steps, we relied primarily 
on afni_proc’s webpage-based QC report. Many figures in this 
manuscript use QC images that were automatically compiled in this 
report. Automatic motion correction and outlier censoring were used 
to see whether subjects exceeded 20% of volumes censored; in these 
cases, subjects were excluded.

The echo planar image (EPI) to anatomical alignment was checked 
by ensuring that anatomical edges matched the gyral shapes on the 
EPIs, that the ventricles were aligned, and that the brain was not 
distorted to the point of being displaced past the anatomical boundary.

Anatomical-to-template alignment was checked by ensuring 
subject-warped edges matched the template image’s edges, and, that 
the gyral shapes on both the anatomicals and the brain edges matched. 
The final EPI mask was checked to ensure it covered all likely areas of 
interest (i.e., those targeted by scientific inquiry).

Model fits for regressors of interest were examined to make sure 
that good fits were not spatially aligned with previously identified 
artifacts. A similar inspection was performed for seed-based 
correlation maps to make sure that the underlying correlation 
structure was free of artifactual patterns.

For the task data, while we do not know the expected patterns, the 
modeled task responses were examined to see if they presented a 
plausible design with a sufficient number of uncensored trials per 
task condition.

Lastly, the warnings automatically generated by afni_proc were 
checked: these include unusually high correlations with nuisance 
regressors, total percentage of censored volumes, pre-steady-state 
detection, possible left–right flips, and EPI variance line warnings. For 
likely left–right flips, without additional information, we  cannot 
ascertain whether the EPI or anatomical has the correct orientation; 
thus, such subjects are marked for exclusion. EPI variance line 
warnings are a marker of potential temporal artifact and instacorr was 
used to examine potential artifacts for severity.

4. Results

The task data contained numerous problems during the initial 
visual inspection process. Across the dataset, dropout and distortion 
were substantial in the unprocessed images. There were also very 
visible motion artifacts (e.g., Figures 1, 2). Four subjects were all 
automatically excluded because more than 20% of volumes 
exceeded motion and outlier censoring thresholds. Most subjects 
showed substantial dropout in the temporal lobe and some showed 
cerebellar dropout (Figure 3A). Several subjects showed atypically 
high correlations between a white matter ROI and gray matter 
voxels and areas of highest activation to the full F test for the task 
outside of the brain or in CSF (Figure 4). Based on EPI variance line 
warnings, visual inspection with instacorr identified several subjects 
with non-trivial artifacts (Figure  5A). Additionally, multiple 
subjects showed mild to moderate correlations between the task 
and control condition timing, which reduces that statistical power 
to independently estimate effect sizes for the two conditions. Since 
we  did not create the study design, we  did not exclude any 
participants solely because of this correlation. In total, 14 subjects 
were marked for inclusion, 12 were marked for exclusion, and 4 
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were marked unsure out of a 30-subject data set. An overview of our 
findings across both datasets are shown in Table 1.

For the rest data, more of the brain was consistently covered 
(Figure 3B). Two subjects were automatically excluded because more 
than 20% of volumes exceeded motion and outlier censoring 
thresholds. Areas of general concern in the rest data included 
correlations between gray matter and a white matter ROI, poor 
correlations to expected networks from ROIs like the posterior 
cingulate, and EPI variance line warnings followed by instacorr 
inspection of artifacts. In these data, instacorr often showed issues 
related to EPI variance warnings in the unprocessed EPIs, but when 
censored volumes were removed by processing, instacorr-observable 
artifacts were reduced, and the remaining data were usable. The 
threshold between inclusion and exclusion based on these criteria was 
subjective, and the decision to exclude was typically based on several 
borderline reasons for concern, such as more than 10% of volumes 
censored and signs of artifacts in the data. We  likely would have 
excluded more subjects if other subjects with this study were less noisy 
(Figure 6). Two subjects were excluded because the left and right sides 
of the brain were likely flipped between the anatomical and EPI data 
and an additional subject looked like the anatomical volume was from 

a different brain than the EPI (Figures 7A–D). Given 3 participants 
showed an EPI and anatomical mismatch, there is a risk of an 
underlying issue with file naming and organization in these data. If 
we were using these data as part of a study, we would try to identify 
the origin of the flipping to confirm the scope of the problem and 
possibly identify the true left vs. right so that these participants would 
not need to be  excluded. In total, 13 subjects were marked for 
inclusion and 7 for exclusion out of a 20-subject data set.

5. Discussion

We outlined priorities for QC of fMRI studies and then 
demonstrated them on two datasets. While priorities are best 
organized around conceptual goals, QC steps are ordered by when 
potentially serious problems are noticed. For the exemplar data, 
high motion, non-trivial distortion or dropout, and warnings signs 
for artifacts were rapidly apparent and dominated our focus. 
We highlight TSNR and several other measures as important QC 
metrics in our priorities, but we did not highlight them in practice. 
This is because some data did have low TSNR and artifacts that were 

FIGURE 1

Subject 017 had a high number of censored volumes due to motion. This figure depicts several volumes in which the motion artifact is very clear. 
Banding due to the magnitude of head motion during acquisition are visible on the sagittal and coronal slices. Within the axial slice, this motion makes 
part of the lateral ventricles disappear because of displacement during acquisition. Such a large motion artifact should be visible on the console even in 
an axial-only view. Operationally, it would be useful to note this during acquisition and consider collecting an additional run while the subject is 
present.
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clearly visible in TSNR maps, but these were in runs that were 
already rejected for other reasons. For these data, TSNR measures 
might have improved understanding of the effect of motion 
artifacts, but TSNR did not add value to decisions of what to include 
or exclude. In other datasets, TSNR has been the first place where 
something problematic is noticed.

This emphasizes a critical point of QC protocols. Datasets can 
have unique quirks, and the most useful QC checks for fMRI data are 
not universal across all studies. We’ve interacted with researchers who 
had a bad experience with head motion in a study and prioritized 
checks for head motion above all else. In fact, when the Organization 
for Human Brain Mapping put together a consensus statement on 
results reporting, it included a general recommendation to document 
QC measures, but only specified motion and incidental findings for 
fMRI data (Nichols et al., 2017). Reporting on alignment quality, MRI 
artifacts, degrees of freedom available, and consistency of the imaging 
field of view were not mentioned. For QC to become an intrinsic part 
of data acquisition, processing, and sharing, guidelines should 
be updated to include at least these valuable QC metrics.

A good QC process is designed to identify and address issues as 
soon as possible. The shared task data had many problems that were not 
addressable by the stage we received them. With the goal of improving 
the quality of shared data, we want to highlight QC steps that could have 
helped avoid collecting a dataset with such problems. Some problems, 
like the artifacts from extreme motion depicted in Figure 1, should have 
been observable during data acquisition. Real-time motion tracking, 
would identify high motion runs during scanning and potentially create 
an opportunity for additional acquisitions. Additional real-time 
monitoring of peripheral data, like eye tracking, behavioral responses, 
or cardiac and respiratory traces would identify drifts in consciousness 
or attention to the task. Once data are collected, rapidly running some 
subject-level analyses may identify correctable problems. For example, 
many of the acquisition issues in the rest data that might cause the 
spatio-temporal artifacts we  saw would have been visible early in 
collection and might have been fixable through changes in acquisition. 
We reiterate that it is imperative to run analyses as early as possible to 
avoid acquiring large amounts of data with problems that do not arise 
until the study is analyzed months or years after acquisition began.

FIGURE 2

Subject 029 had a more subtle motion artifact than depicted for subject 017. The banding is visible during the period with the most motion but is 
otherwise more subtle and would be less likely to be noticed during acquisition without automated QC metrics.
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Between the original and revised submission of this manuscript, 
we noticed a serious error in our processed data that we missed even 
while using a detailed QC protocol. For a subset of task subjects, the 
skull stripped anatomical volumes were mis-labeled and we aligned 
fMRI data to the wrong anatomicals. This created an unintentionally 

good case-study on the limits of QC and how we could have caught 
this error earlier. We introduced this work by stating the purpose of 
QC is to identify whether data is of sufficient quality to be used for its 
intended purpose. In this case, we observed bad EPI to anatomical 
alignments, and wrote that the data would be not usable for their 

A

B

FIGURE 3

EPI coverage maps in MNI space for (A) task and (B) rest data sets. More yellow indicates that more subjects retained usable data for a given voxel. 
More purple indicates voxels where fewer subjects have usable data. The black outline surrounds voxels where all subjects have useable data. While 
both datasets show dropout in orbitofrontal and inferior temporal areas, the dropout is less consistent and more pervasive in the task data where much 
of the temporal lobe does not have usable data in a non-trivial fraction of subjects. The black line in (A) also highlights that not all subjects have 
cerebellar coverage.
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intended purpose until alignment was fixed. If we planned to use these 
data for a larger study, we would have tried to fix the alignment, but 
for this demonstration, we ended by noting the alignment issues. This 

occurrence highlights how human interpretation is a fundamental 
part of QC and understanding why data are low quality is sometimes 
more important than merely identifying low quality data. Even while 

A

B

FIGURE 4

The full F stat map shows the decile of voxels with the highest F values for the full task GLM. The correlation to the white matter ROI shows voxels that 
correlated to white matter after the task design is regressed from the data. (A) For sub-001\u00B0F stat peaks are large and mostly in gray matter. (B) For 
sub-016, the F values are smaller, and the peaks are in lateral ventricles, CSF, and outside of the brain. The white matter correlation maps are harder to 
identify as clearly good or bad, but more pervasive correlations to gray matter as in (B) are an additional warning of a problem. Notably, both subjects have 
relatively little head motion (1.7% of volumes censored for sub-001 and 3.7% of volumes for sub-016) but AFNI also flagged sub-016 as having the task 
condition and not the control condition mildly correlated to motion. These maps provide evidence that task-correlated motion affected data quality.

A B

FIGURE 5

After seeing warnings due to “extent of local correlation” and “EPI variance lines” in AFNI’s automatic QC, instacorr was used to examine more closely. 
(A) For the correlation seed at the crosshair, Sub-018, shows an artifactual pattern of correlations (p < 0.001) across large portions of the posterior 
cortex and cerebellum. Time series shows that some of this follows several large jumps in motion. (B) For Sub-002, an unusually large hypointensity 
was noticed in the unprocessed EPI that was alarming during the initial review. Anatomical viewing of the same slices shows a slightly large superior 
cistern and 4th ventricle. Correlations to the cross hairs on the unpressed image (p < 0.001 with translucency below threshold) shows slightly larger 
correlations to CSF in the interhemispheric fissure. This observation will likely not cause problems for univariate statistical tests, but it could cause 
analysis issues if ROIs include this larger area of CSF that contains some internal correlations.
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TABLE 1 QC Classifications for all subjects.

Subject ID Status Notes

sub-001 Include Dropout in temporal lobe

sub-002 Include Dropout in temporal lobe

sub-003 Unsure Dropout in temporal lobe; larger corr between white matter ROI & gray matter; 10.3% vols censored; instacorr showing potentially serious 

motion artifacts

sub-004 Include Dropout in temporal lobe

sub-005 Unsure Dropout in temporal lobe; larger corr between WM & GM; Instacorr shows several widespread artifacts, possibly respiratory

sub-006 Include Dropout in temporal lobe; larger corr between WM & GM

sub-007 Include Dropout in temporal lobe

sub-008 Include Dropout in temporal lobe

sub-009 Exclude 35% vols censored; very large corr between WM & GM; activation hotspots outside of brain

sub-010 Include Dropout in temporal lobe; larger corr between WM & GM

sub-011 Include Dropout in temporal lobe

sub-012 Exclude Instacorr showing some artifacts; 12.8% vols censored; Full F stat map hotspots outside of brain and speckled inside brain; Dropout in 

temporal lobe

sub-013 Exclude 10.3% vols censored, task vols more censored than control; Full F stat map hotspots outside of brain and speckled inside brain; instacorr 

showing some artifacts; Dropout in temporal lobe

sub-014 Include Dropout in temporal lobe; larger corr between WM & GM

sub-015 Include Larger corr between WM & GM

sub-016 Exclude Dropout and distortion in temporal and frontal lobes affecting alignment; activation hotspots in CSF; task correlation to motion

sub-017 Exclude 40% vols censored; Dropout in temporal lobe

sub-018 Exclude Instacorr showed nontrivial MRI artifact correlations

sub-019 Include Dropout in temporal lobe; larger corr between WM & GM

sub-020 Include Dropout in temporal lobe

sub-021 Include 12.4% vols censored; Dropout in temporal lobel and cerebellum

sub-022 Exclude Instacorr showed nontrivial MRI artifact correlations; 17.8% vols censored; Full F stat map speckled inside brain; Dropout in temporal 

lobe

sub-023 Exclude Hotspots of activity outside of brain and little robust in-brain hotspots; very large corr between WM & GM; radial corr map shows 

probably artifacts; 14.9% vols censored; Dropout in temporal lobe

sub-024 Exclude 33.5% vols censored

sub-025 Exclude 15.3% vols censored; task-correlated motion; more motion censoring in task vs. control; very large corr between WM & GM

sub-026 Unsure 19.4% vols censored; larger corr between WM & GM; Dropout in temporal lobe; slightly more censored vols in task vs. control

sub-027 Exclude 19.4% vols censored; Hotspots of activity outside of brain and little robust in-brain hotspots; very larger corr between WM & GM; 

Dropout in temporal lobe

sub-028 Include 7.9% vols censored

sub-029 Exclude 20.2% vols censored

sub-030 Unsure Instacorr and local corr maps showed localized artfacts that might require exclusion depending on areas of research interest

sub-101 Exclude Likely Left/right flip; 20.5% vols censored

sub-102 Include 5.8% vols censored

sub-103 Include 2.6% vols censored; instacorr correlations not great, but nothing clearly exclusionary

sub-104 Include 16% vols censored; instacorr correlations not great, but nothing clearly exclusionary

sub-105 Include 11.5% vols censored; instacorr correlations not great, but nothing clearly exclusionary

sub-106 Exclude 13.5% vols censored; Very large global correlations to seeds

sub-107 Include 19.2% vols censored

sub-108 Include 4.5% vols censored

sub-109 Include 3.8% vols censored

(Continued)
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emphasizing the importance of human interpretation, we leaned too 
heavily on an automated summary image to reject an alignment. This 
is a critical point since, as study sample sizes increase and data 
rejection is automated and not followed up by human interpretation, 
the more likely usable data will be  automatically rejected and 
systematic issues underlying data rejection will be overlooked.

Automated measures combined with human interaction and 
judgement were essential to the QC process. While automated 
measures such as correlations to a white matter ROI, statistical result 
maps, and line variance warnings mandated closer attention, it was 
direct inspection of volumes and time series, including with using 
instacorr, that became essential for identifying wide-spread issues that 
warranted data exclusion. Our initial error with mismatching 
anatomicals and EPIs also highlights the importance and limits of 
automated QC for registration. The alignment measures showed bad 
alignments, but not why. For several subjects, the mismatched 
volumes were subtle even with a close inspection. AFNI’s warning for 
left–right flips is an example where automation can highlight a serious 
alignment problem that is also subtle. More innovation in automated 
metrics to assess alignment quality, such as the demonstrated left/right 
flipping test, is needed. For example, a post hoc analysis of our 
mismatched processing showed that while the cost functions used for 
alignment are sensitive to the precise contrasts of the EPI and 
anatomical volumes, since the anatomicals and EPI images had similar 
contrasts across the dataset, the cost function values for the 
mismatched fits were clearly higher than the good fits in comparison 
to other subjects in each dataset (Figure 7E). This is a potential new 
automated metric that could flag concerning alignments for follow-up 
by human inspection.

At many points in this project, it was clear that hands-on training 
was essential. The two authors who conducted most of the visual 
inspect of results have been working with fMRI data for slightly more 
than a year. Though the more experienced authors gave consistent 
instructions, it was impossible to give them comprehensive written 
instructions that covered the range of issues they observed solely 
within these datasets. For example, there were several cases where 
anomalies in images, like a line of CSF that was unusually visible in a 
single slice caused serious concerns during the initial review, but 

expert feedback showed it was not a serious problem (Figure 5B). 
Improving the training of novice neuroimagers was an interactive and 
iterative process, where they presented concerning observations and 
the more experienced neuroimagers helped them understand what 
issues were or were not actual concerns. Over time, they were able to 
more independently make appropriate QC judgements. Therefore, 
such training needs to go beyond a lecture and involve mentored 
examination of actual datasets.

We have endeavored to provide some points of discussion when 
devising ways to train people in QC and provide a stable framework 
for creating a process tailored to individual researchers’ needs. 
Teaching best practices for quality control is far beyond the scope 
of a single manuscript. Since we focus on QC, rather than what to 
do after QC, we do not substantively discuss MRI artifacts nor ways 
to reduce certain artifacts through changes in acquisition or 
analysis. There are existing reviews on fMRI noise and noise 
reduction (Liu, 2016; Caballero-Gaudes and Reynolds, 2017), but 
we are not aware of any published reviews or even book chapters 
that specifically focus on MRI artifacts for fMRI. While recorded 
lectures and blog posts cover MRI artifacts, learning to understand 
and interpret fMRI artifacts remains heavily dependent on 
hands-on training.

Automation remains essential to QC. Appropriate use of 
automation can be a very important part of both analysis and quality 
control when paired with human interpretation and rigorous 
inspection. When steps are properly automated, human induced 
errors can be reduced, resulting in more consistent and reproducible 
results across subjects or analyses. Automated pipelines are also more 
likely to be neatly organized and understandable, with notes integrated 
into the scripts that run them rather than scattered across an entire 
project. This can drastically ease the burden of finding important data 
or tables to inspect. For the QC metrics demonstrated here, head 
motion, temporal outlier detection, DOF counts and accompanying 
censoring and warnings were automatic and appeared robust. Flagging 
of left–right flipping, while only partially automated, proved invaluable 
as it is a very difficult problem to spot. Additionally, having a report 
which organizes much of the relevant information in one place to 
systematically review, saved many personnel hours during the data 

TABLE 1 (Continued)

Subject ID Status Notes

sub-110 Include 4.5% vols censored

sub-111 Exclude 7.7% vols censored; Very large global correlations to seeds

sub-112 Include 6.4% vols censored

sub-113 Include 0.6% vols censored

sub-114 Exclude 4.7% vols censored; Very large global correlations or anti-correlations to seeds

sub-115 Exclude Likely left/right flip

sub-116 Exclude Neither left–left nor left/right flip is great. With close inspection, unclear if anatomical is same brain as EPI

sub-117 Include 1.9% vols censored

sub-118 Exclude 30.1% vols censored

sub-119 Include 10.9% vols censored

sub-120 Include 1.3% vols censored; instacorr correlations not great, but nothing clearly exclusionary

Task subjects are 001–030, rest subjects are 101–120. Notes explain why a subject was excluded or unsure or highlight something worth continued monitoring in included subjects.
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review process and made it possible for the human review to efficiently 
focus on actual issues.

We used and benefitted from many automated QC measures that 
are now built-in defaults when AFNI’s afni_proc.py command is run. 
Automation is a work in progress and each tool has strengths and 
weaknesses. We  note some places where AFNI’s automation can 
improve under the assumption that these may benefit other tools as 
well. In particular, connections between reports and the underlying 
data that generated them could be improved so that it could be easy 
to quickly navigate to from a concerning image, such as an image of a 
few slices with questionable alignment, to explore the full alignment 
in more depth. Another gap in AFNI’s automated measures is that 
there are few automated summaries of QC measures 
across participants.

The publication describing MRIQC tools discusses potential 
inconsistencies by basing too many decisions on human judgements 
and recommends a push toward more automated measures (Esteban 
et al., 2017). While we agree automated measures are essential and 
they acknowledge human judgement is still important, we think there 

can be dangers from over automation or excessive trust in automated 
thresholds for QC metrics. Automated measures can suffer biases of 
omission. For example, the lack of automated measures for alignment 
quality is paired with the lack of a field-wide discussion on the noise 
and reproducibility issues due to sub-optimal alignments. Automated 
measures that reject data without human interpretation can also mask 
underlying and solvable issues.

We believe it is imperative to continue discussing QC priorities, 
processes, standards, and tools. Moreover, discussions of 
reproducibility and reliability of fMRI data need to go beyond 
concerns over head motion and precise yet arbitrary statistical 
thresholds. Focusing just on one QC concern, like head motion, is like 
a building inspector looking for signs of water damage. Water damage 
can be a serious issue and expertise is required to know how to look 
for such damage, but there is a risk to over-focusing on water damage 
and missing signs that the floor is about to collapse. Good quality 
control requires a more comprehensive assessment. The neuroimaging 
community can do more to understand the full range of problems that 
exist in data today, so that we  can get better at identifying and 

A

B

C

FIGURE 6

Automated QC image from 3 rest data study subjects with low head motion (only 4%–6% of volumes censored). An atlas-based posterior cingulate 
(PCC) ROI is calculated and the correlation maps (r values), should highlight some default mode network (DMN) connections. Too much correlation 
between a white matter (WM) ROI and gray matter can be concerning. Local correlations are the correlations of each voxel to surrounding voxels in a 
2 cm sphere and can highlight scanner artifacts. EPI variance line warnings highlight lines of high variance that might be artifacts. (A) sub-109 has a 
plausible DMN from the PCC seed, no excessive correlations to white matter, no non-anatomical local correlations, and the variance warnings were 
checked with instacorr and did not show pervasive issues after preprocessing. (B) sub-102 was typical for these data. The DMN is present, but not as 
clean, there are more WM correlations in and out of the brain, and EPI variance warnings showed some issues with instacorr, but not enough to reject. 
If typical subjects in this dataset were cleaner, we might have rejected sub-102. (C) sub-114 is a clear rejection with non-anatomical anticorrelations to 
the PCC, large artifacts in WM correlations, a large local correlation, and EPI variance warnings paired with concerning artifacts visible with instacorr.
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documenting problems. Particularly as data sharing becomes the 
norm, the more we can do to improve QC processes today, the more 
likely our current data will still be useful for future research.

We have demonstrated a typical QC process for our research 
group. We have likely missed some data quality problems that other 
researchers may catch because processes vary and are often tailored to 
different research approaches. This is one of the reasons we highlight 
the importance of the underlying scientific questions and context for 
good QC. We hope more researchers will share their QC protocols, so 
that a wide array of approaches can be compared and used to improve 
the next generation of QC tools and processes.

6. Conclusion

Good data quality is essential for reproducible science. Quality 
control processes help validate data quality and ensure data are 
suitable to address experimental questions. Timely QC steps 
during the early stages of a study can improve data quality and save 
resources by identifying changes to acquisitions or analyses that 
can address problems that arise during QC. QC is an ongoing 
process that does not end after the early stages of a study. Shared 
data are not inherently quality-checked data, and even shared data 
that includes a documented QC process and output may not 

A B

C

C

D

FIGURE 7

Three subjects in the resting data triggered a left–right flip warning which happens when the cost function for anatomical to EPI alignment finds a 
better local minimum after flipping the anatomical. The grayscale EPI image used for alignment is shown with the edges of the aligned anatomicals. 
(A) The original alignment for sub-115 looks ok, but (B) shows the alignment for sub-115 with the anatomical image flipped and the gyral edges are 
clearly better matched. Sub-115 generated a “severe” left–right flip warning. Sub-116 does not have a great alignment for the original (C) or flipped 
(D) anatomical and generated a “medium” left–right flip warning. Since neither fits well, sub-116 may have been shared with the wrong anatomical 
image. (E) The cost function minimums for the successful alignments in the rest dataset were − 0.36 to −0.5 while the 3 flipped alignments were more 
than −0.13. Similarly, when the task data were unintentionally aligned to the wrong anatomicals, the cost functions were much higher. While cost 
functions are relative measures, the values may be useable as an intra-study alignment QC measure.
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be  sufficient since priorities for quality checks can be  study 
context-dependent.

A good QC process should be integrated into study planning. 
While automation should be  used wherever possible, human 
observations and interpretations are critical. Much discussion of QC 
focuses on the binarized decision of whether to keep or exclude data, 
but we  find that a key element of QC is to identify potentially 
correctable issues. Particularly, as fMRI studies increase in size or 
aggregate multiple datasets, good QC processes will require planning 
that includes decisions on what can be  automated and what will 
require peoples’ time.

Much public discussion about reproducible neuroimaging has 
focused on appropriate sample sizes, statistical tools, and thresholds. 
We posit that normalizing timely and rigorous QC is an equal if not 
more important step our field can take to improve reproducibility. 
While we present a framework for thinking about fMRI QC along 
with a demonstration of one existing QC pipeline on a couple of 
shared datasets, this is far from sufficient. Quality control priorities 
and methods deserve more attention, discussion, and innovation from 
the neuroimaging community.
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Background: A variety of quality control (QC) approaches are employed in 
resting-state functional magnetic resonance imaging (rs-fMRI) to determine data 
quality and ultimately inclusion or exclusion of a fMRI data set in group analysis. 
Reliability of rs-fMRI data can be improved by censoring or “scrubbing” volumes 
affected by motion. While censoring preserves the integrity of participant-level 
data, including excessively censored data sets in group analyses may add noise. 
Quantitative motion-related metrics are frequently reported in the literature; 
however, qualitative visual inspection can sometimes catch errors or other issues 
that may be missed by quantitative metrics alone. In this paper, we describe our 
methods for performing QC of rs-fMRI data using software-generated quantitative 
and qualitative output and trained visual inspection.

Results: The data provided for this QC paper had relatively low motion-censoring, 
thus quantitative QC resulted in no exclusions. Qualitative checks of the data 
resulted in limited exclusions due to potential incidental findings and failed pre-
processing scripts.

Conclusion: Visual inspection in addition to the review of quantitative QC metrics 
is an important component to ensure high quality and accuracy in rs-fMRI data 
analysis.

KEYWORDS

artifacts, functional magnetic resonance imaging (fMRI), resting state—fMRI, 
reproducibility of results, quality control

Introduction

Quality control (QC) in functional magnetic resonance imaging (fMRI) data is a critical 
step in ensuring accurate interpretation of results and reliable and replicable findings. Data may 
be corrupted at acquisition due to hardware or software malfunctions, artifacts from metallic 
objects, spurious physiological signals (heart rate, respiration, etc.) or participant motion. 
Further, incidental findings of atypical anatomic formations, lesions, or other injury may 
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be grounds for data exclusion if those findings are related to inclusion 
and exclusion criteria for the study, or if they cause errors in certain 
processing steps. There is a clear need for consensus on QC approaches 
for fMRI data, and for a revisiting of reporting standards to improve 
cross-study interpretation and replicability (Esteban et  al., 2017). 
There are emerging approaches to crowd-source the QC of imaging 
data sets using a combination of expert curation and a gamified 
interface for identifying scans. In this paper, we describe our fMRI QC 
methods from data acquisition through individual preprocessing. Our 
methods rely on standard tools available through the analysis software 
we  use and also include visual inspection by trained reviewers at 
multiple stages of the process. While the field recognizes the value of 
quantitative metrics and automated processes for evaluating data 
quality, we believe there is added value in qualitative assessment that 
cannot be  captured by quantitative measures of displacement, 
censoring, or signal intensity or homogeneity. We apply these QC 
strategies to a publicly available data set and report out standardized 
outcomes identified in the Frontiers Research Topic, Demonstrating 
Quality Control (QC) Procedures in fMRI.

Across MRI imaging protocols, fMRI data are particularly 
sensitive to participant head motion. Strategies exist to minimize 
participant head motion at data acquisition, such as the use of foam 
padding around the head, a strap across the forehead, bite bars, or 
real-time feedback to the participant and prospective motion 
corrections (Thulborn, 1999; Lazar, 2008; Vanderwal et al., 2015). 
However, these often require specialized settings, sequences, or 
equipment and are not sufficient to eliminate all movement and some 
data will be lost to motion corruption.

One of the most observable effects of head motion on fMRI data 
is the increase or decrease in signal in the affected volumes. In the case 
of blood oxygen level dependent (BOLD) imaging, data are acquired 
in slices through the volume of the brain over the course of a few 
seconds. The slice to be imaged is excited with a radio-frequency (RF) 
pulse, and the echo is read out a few milliseconds later. If the excited 
slice has moved in space, the echo will not be accurately read, leading 
to reduced signal in that slice. Additionally, the next slice to 
be acquired may have been excited by the preceding pulse and may 
have residual signal. A second RF pulse in that slice would lead to 
increases in signal readout. For these reasons, the volumes 
surrounding a motion spike are often also unreliable, and these effects 
may last for several seconds (Power et al., 2014). Compounding this 
issue is that all voxels within a slice or volume are not likely to 
be impacted the same way, as motion is rarely limited to translation 
along a single axis. Because of this, the relationship between signal 
within a given voxel and motion parameters is not linear (Power et al., 
2015). Motion can decrease the fMRI signal temporal stability by 
causing signal alterations across volumes which eventually increase 
false outcomes (Satterthwaite et  al., 2013). Moreover, motion can 
potentially modulate connectivity-related measurements because it 
produces global signal changes resulting in spurious results (Rogers 
et al., 2007).

Certain populations may be especially prone to movement during 
fMRI scanning. Children, older people, people with back pain, or 
people with high impulsivity may not be able to hold still for an entire 
functional scan, which can last for several minutes (Fox and Greicius, 
2010; Couvy-Duchesne et  al., 2014; Kong et  al., 2014; Couvy-
Duchesne et al., 2016; Pardoe et al., 2016). Therefore, the development 
of new approaches and the optimization of current strategies to reduce 

motion-related artifacts in fMRI data sets are critical for imaging 
studies of these populations. Because resting state correlation relies on 
low frequency modulation within the signal, longer scans are 
recommended (up to ~10 min in some cases) (Birn et  al., 2013), 
potentially exacerbating the problem of participant movement. 
Participants may tolerate several shorter scans with breaks in between 
– collecting multiple resting state scans and concatenating across them 
improves the signal-to-noise ratio (Chen et al., 2010); however, no 
strategy completely eliminates the impacts of participant head motion 
(Power et al., 2014, 2015).

The statistical approach of including motion parameters as 
nuisance regressors in the analysis reduces the impact of motion and 
has been widely adopted as a standard processing step (Johnstone 
et al., 2006). It has been shown that removing, or censoring, only the 
volumes most affected by motion prior to statistical analysis improves 
reliability (Power et  al., 2012; Carp, 2013; Power et  al., 2013). 
Additional ‘scrubbing’ or removing physiological noise signals is also 
helpful for removing spurious correlations due to head motion (Siegel 
et al., 2014). However, censoring alone still has problems. One is how 
to choose the optimal censoring threshold, which may depend on the 
level of motion in a data set (Power et al., 2014). Once a threshold has 
been chosen, another concern is that correlation estimates from 
participants with reduced data sets after censoring may be noisy or 
have extreme values that may influence group statistics or reduce 
power. To address this, many studies also exclude entire participants 
or scans that exceed pre-specified censoring limits (Power et al., 2015). 
Excluding participants with greater than 10% censored is often used 
as a threshold, and less conservative censoring thresholds of 15–25% 
have been used with pediatric populations (Siegel et al., 2014). An 
entirely different approach from censoring is to use independent 
components analysis (ICA) to identify the signal associated with head 
motion (Griffanti et al., 2014; Siegel et al., 2014; Patriat et al., 2015, 
2016; Pruim et al., 2015). Since reliability is dependent on the length 
of usable data, some researchers exclude participants with usable 
resting state scan data less than ~5 min after censoring (Van Dijk et al., 
2012; Andellini et al., 2015).

Censoring or scrubbing solutions allow for removing motion 
corrupted data will preserving some data and avoiding excluding 
entire participant data sets. If motion corruption causes data to not 
be missing at random, excluding more data in one group than another 
can cause bias in estimation and result in loss in power or invalid 
testing procedures (Little and Rubin, 2002). Moreover, excluding 
acquired data introduces a waste of resources and excessive costs for 
research services and personnel time. Given the challenge of recruiting 
well-characterized participants from clinical populations, the 
commitment of participants, and the cost of data collection and 
analytic staff, there are financial and social burdens to unnecessarily 
excluding data.

While motion artifacts have been well-documented to lead to 
both type I and type II errors in downstream analyses, other issues can 
and do arise during functional data acquisition and analysis. These 
include incidental findings of anatomic variability in the images which 
could indicate a medical concern or a benign anatomic difference that 
is of little medical concern. These findings, however, could be reason 
for participant exclusion, for example there is an incidental finding 
that indicates a previous stroke and stroke is an exclusion criterion for 
the study. Also, these anatomic variabilities could lead to issues with 
misalignment or normalization into template space, therefore, visual 
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inspection of the results is warranted. In addition to anatomic 
variabilities and incidental findings, script failures are another source 
of error in rs-fMRI data analysis. Analysis of rs-fMRI data is 
performed as a series of steps, with each step taking the output from 
the previous step, performing another process, and then generating a 
new output image. Errors are possible at each step, and it is critical to 
determine that scripts are performing correctly so that the input–
output–input chain does not result in errors in the final output data 
set. These errors are sometimes difficult to find if one only examines 
quantitative QC metrics, but can be easy to assess visually, for example 
if the entire functional series of images have been flipped upside down 
during processing but are centered with the anatomic image, global 
metrics of homogeneity will not differ between a correctly aligned and 
incorrectly aligned image. If such processing errors are allowed into 
group analysis, the spatial location of anatomy will not match across 
all participants.

In this paper, we describe our processes for rs-fMRI QC, including 
review of quantitative and qualitative software-generated metrics and 
visual inspection at each processing step to ensure the most accurate 
data are carried forward in the analysis process. Further, we advocate 
for including as much data as possible to minimize bias and honor the 
participant time and research resources provided.

Materials and methods

We performed an analysis of previously published and publicly 
available human participants’ data provided as part of the 
Demonstrating QC Procedures in fMRI Research Topic (Biswal et al., 
2010; Di Martino et al., 2014; Markiewicz et al., 2021). Briefly, resting 
state fMRI (rs-fMRI) data were pulled from publicly available datasets 
(ABIDE, ABIDE-II, functional Connectome Project, Open Neuro) 
across seven imaging sites, with approximately 20 participants from 
each site. Imaging parameters are summarized in Table 1. For this 
Research Topic, the Project leaders renamed the data with new 
participant IDs and organized them into BIDS common directory 
format. Each participant had one anatomical image and one or two 
rs-fMRI sequences. Imaging parameters for the rs-fMRI sequences are 
reported in Table 1. No information on participant demographics or 
other characteristics was provided. For the remainder of the paper, 
we  will refer to this data set as the “QC data set.” All procedures 
involving human participants were performed in accordance with the 
ethical standards of the Declaration of Helsinki, and the study was 
approved by the Institutional Review Board where the data were 
collected. Informed consent was obtained from all participants.

Data processing

MRI data preprocessing and statistical analyses took place in 
Analysis of Functional Neuroimages (AFNI v22.1.10) (Cox, 1996) and 
implemented using afni_proc.py (Example 11b). Anatomical data 
were skull stripped and normalized to standard Montreal Neurological 
Institute (MNI) space using non-linear warping with AFNI command 
@SSwarper and these parameters were applied to the functional data 
for spatial normalization. The first two volumes of the functional scans 
were removed, and data were despiked. Volumes were slice time 
corrected and co-registered to the minimum outlier within the run. 

Volumes where more than 5% of the brain voxels were considered 
outliers and were removed from the analysis. In addition, volumes 
with motion greater than 0.2 mm within a volume were censored and 
removed from the analysis. Nuisance variables included motion 
parameters (3 translation, 3 rotation), average ventricle signal, and 
average white matter signal. Ventricle signals were estimated by 
combining an MNI ventricle mask with the participant’s cerebral 
spinal fluid mask derived from the anatomic images. Using multiple 
regression, a residual time series was calculated for each voxel. The 
residual time series was then smoothed with a 4 mm FWHM Gaussian 
kernel, resampled to a 2.5 × 2.5 × 2.5 mm grid, and transformed to 
MNI space.

Quality control process

Data quality was determined using a combination of quantitative 
metrics and qualitative assessment (Figure 1). Quantitative metrics 
included verification of final voxel resolution and outputs from AFNI’s 
APQC of average motion per TR, max motion displacement, and 
censor fraction. Quantitative metrics were recorded in our REDCap 
QC checklist (see supplement) for ease of summary and comparison 
across participants.

Qualitatively, data were viewed by trained staff who made 
inclusion/exclusion decisions. Training of staff included walking 
through each step of our REDCap QC checklist (see supplement) and 
implementing a double data check system where new staff and trained 
staff both check and verify the same datasets. Staff were considered 
trained after inclusion/exclusion decisions were consistent with those 
made by trained/established staff. This method is a step-by-step 
approach to reviewing data and documenting the results of each of 
these steps utilizing a standardized REDCap form. This approach is 
easy to train new raters – we have successfully trained people across 
all levels of education, from high school students to those with PhDs 
– and the double-data entry step facilitates inter-rater reliability 
assessment. Data entry into REDCap also allows summary data to 
be easily compiled across participants, and if the checklist is used 
across multiple studies, data can be easily compared across projects. 
The inclusion of image examples of poor quality data within our 
REDCap checklist should improve the replicability and inter-rater 
reliability as well.

Raw DICOM files were converted to NIFTI format prior to being 
shared publicly, however, when starting from raw DICOM files, our 
QC process begins with a verification of data completeness comparing 
file count, file size, and image acquisition parameters against study 
protocols. We downloaded the NIFTI files and scrolled through the 
brain slice by slice within AFNI in order to assess each modality for 
any acquisition issues, distortion of images, or incidental findings. @
SSwarper outputs were visually inspected for good alignment (clear 
match between the skull-stripped brain and the MNI base template 
space) and skull-stripping (little to no clipped/missing brain data) 
prior to being processed with the individual data set afni_proc.py 
script. We then followed AFNI’s standard processing guidelines to 
check the processed data using the afni.proc.py quality control output. 
REDCap QC included checking the APQC and recording of following: 
excessive motion, warping, and distortion of the original data, 
alignment issues between the epi to anatomy and anatomy to the MNI 
template, inspection of the statistics volumes for excessive noise within 
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TABLE 1 Resting state fMRI imaging parameters from the seven imaging sites.

Site Scanner Field 
strength

Orientation In-plane resolution Spacing 
between Slices

Repetition time 
(TR)

Echo time 
(TE)

Number 
of Slices

Number 
of 
volumes

Parallel 
reduction 
(Yes/No)

1 Phillips 

Achieva

3T Axial 2.67 mm × 2.67 mm 3.0 mm 2,500 ms 30 ms 47 156 Yes

2 Phillips 

Achieva

3T Axial 3.0 mm × 3.0 mm 3.84 mm 2,000 ms 28 ms 38 150 Yes

3 Phillips 

Achieva DS

3T Axial 2.56 mm × 2.56 mm 3.1 mm 2,500 ms 30 ms 45 162 Yes

4 Unknown 3T Unknown 2.67 mm × 2.67 mm 3.0 mm 2,500 ms Unknown 47 123 Unknown

5 Phillips 

Achieva OR 

Siemens 

TrioTim OR 

Siemens 

Prisma_fit

3T Axial 1.88 mm × 1.88 mm/3.0 mm × 3.0 mm/3.0 mm × 

3.0 mm

4.0 mm/4.0 mm/4.0 mm 2,000 ms/2000 ms/2,000 ms 34 ms/30 ms/ 

25 ms

Varied 

34–39

144/144/144 Unknown

6 Siemens 

MAGNETOM 

Trio

3T Unknown 4.0 mm × 4.0 mm 4.0 mm 2,500 ms 27 ms 32 varied 130–

724

Unknown

7 Siemens Verio 3T Unknown 3.0 mm × 3.0 mm 3.51 mm 2,500 ms 30 ms 39 198 Unknown
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and outside of the brain, excessive motion, low degrees of freedom, 
warnings, and a brief summary of the @ss_review_basic. Motion and 
warnings regarding the severity of the overall censor fraction were 
recorded at three thresholds based on AFNI warning levels (excluding 

severe censoring >50%, excluding medium censoring >20%, excluding 
mild censoring >10%).

In addition to the steps described above, which follow 
standard processing guidelines from AFNI, if excessive motion 

FIGURE 1

Data checking steps include qualitative and quantitative evaluation of the imaging data to determine inclusion in group level analysis.
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was present (>20% censoring), we further checked the epi using 
@epi_review to visually inspect each run. If major alignment or 
warping issues were present, we used the @ss_review_driver to 
visualize the data and troubleshoot challenges in the 
pre-processing steps. This additional visual inspection process 
may help identify when a script failed and provide visualization 
of slices that may not be  shown in the APQC file. Data were 
considered usable if there were no incidental findings, if the 
functional images were clear with little to no warping or blurring, 
and if the functional images were well aligned with both the 
anatomic images and the template. Data were excluded if the 
preprocessing scripts did not successfully complete after 
three attempts.

Results

Of the 129 available data sets, six data sets were excluded due to (A) 
Script did not complete successfully (n = 2), (B) Distortion in the 
functional image (n = 1), or (C) Incidental findings (n = 3; Table 2). No 
data sets were excluded due to motion, leaving 123 data sets to be included 
for subsequent analysis (Figure 2). The QC data set contained relatively 
low levels of motion in terms of quantitative metrics: total censor fraction 
(Mean = 11%, SD = 17%) and max displacement (Mean = 1.25 mm, 
SD = 0.77 mm). Despite a relatively low censor fraction and max 
displacement, 30.9% of the data sets had mild censoring or greater 
(>10%), 14.6% had medium censoring or greater (>20%), and 6.5% of the 
data sets had severe censoring greater than 50% (Table 3).

FIGURE 2

Resting state fMRI data processing and QC workflow.

TABLE 2 Excluded resting state data sets.

ID Exclude QC criteria failed (rationale) Notes/Examples

315 X C (incidental finding, black hole in epi file)

405 X C (incidental finding, black hole in epi file)

409 X B (distortion in the epi file)

518 X A (brain was flipped, script failed 3+ times)
During the volume registration step the functional data flipped and problem could not 

be resolved

519 X A (brain was flipped, script failed 3+ times)
During the volume registration step the functional data flipped and problem could not 

be resolved

716 X
C (incidental finding, atrophy and lesions in epi 

file)
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Discussion

The QC approach described above avoids the use of thresholds 
for excluding participants and favors inclusion of as many data sets 
as possible and emphasizes qualitative approaches to QC. A variety 

of QC approaches can be  used to determine data quality and 
ultimately inclusion or exclusion of a fMRI data set in group 
analysis, and there are no standards for reporting qualitative 
approaches. Image artifacts, incidental anatomic findings, and 
alignment failures that may cause mislocalization of functional data 

TABLE 3 Resting state data sets exceeding quantitative QC criteria for motion by severity level.

ID Mild censoring (>10%) Medium censoring (>20%) Severe censoring (>50%)

101 X X

102 X

104 X X

105 X

106 X X

107 X X

109 X

111 X

112 X

114 X

208 X

214 X

307 X X X

309 X X

314 X X

316 X X X

402 X

408 X

422 X

502 X

504 X

506 X

507 X X X

508 X

509 X

511 X X

512 X X

601 X

620 X X

701 X X

703 X X X

705 X X

706 X X X

708 X X X

710 X

712 X X X

713 X X

714 X X X

715 X X

Totals 39 21 8
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in anatomic space are our primary reasons for excluding data. These 
features may be  missed if only quantitative metrics are used to 
evaluate data quality. Global metrics such as homogeneity and 
censoring are unlikely to vary if an image is flipped upside down or 
if there is an area of localized hypointensity on the BOLD images 
indicating a potential incidental finding.

Regarding motion, rather than removing entire data sets from 
group analysis based on excessive censoring as is commonly done, 
we  advocate for relying on within participant censoring and 
scrubbing methods to clean motion-related artifacts. There is a 
non-inclusion aspect as well as real dollar cost when excluding data. 
Often funded by grants, research money is spent recruiting 
participants, acquiring data, and paying staff to analyze those data. 
In addition, participants have volunteered their time into studies. 
Hence, we as researchers have a social and financial obligation to 
use the data we have collected to the fullest extent and to get the 
greatest power out of them that we can. This dataset had relatively 
little motion; however, nearly 15% would have been excluded had 
we  used a threshold approach at medium (>20%) censoring. 
We have successfully used this inclusive approach in several studies 
where motion was a greater concern, including studies in a pediatric 
population (Lepping et al., 2015, 2019).

Some aspects of motion are more challenging to compensate. 
Minimizing participant motion at data acquisition is ideal; however, 
this is not realistic in all situations. Several publications offer 
methods for prospective motion correction for echo-planar imaging 
(EPI) (Muraskin et al., 2013; Herbst et al., 2015; Maziero et al., 
2020). This is achieved by using an in-scanner camera for head 
tracking to measure head motion in real time and prospectively 
adjusting the acquisition positioning accordingly. Other useful 
methods have been developed for fMRI to adjust acquisition 
positioning during scanning by measuring and correcting for head 
motion in real time and prospectively for EPI sequences and with 
further improvement when combined with retrospective motion 
correction methods (Lee et al., 1998; Thesen et al., 2000; Beall and 
Lowe, 2014; Lanka and Deshpande, 2019). While not perfect, some 
of these prospective methods have been successfully used in 
resting-state functional connectivity analyses (Lanka and 
Deshpande, 2019), however, these methods are not available for all 
researchers, and additional sequence and statistical considerations 
are still needed.

Many of the imaging analysis software packages have added QC 
tools that have made it easier to assess data quality and report standard 
quality metrics across packages. AFNI’s APQC html output solidified 
many of the quality assessment steps we were doing already, including 
many of the qualitative visual inspection steps. Additional 
functionality, if provided in the software packages, would further 
improve the QC process. First, the APQC html file does not currently 
support saving the data checking within the file itself. Because of this, 
we have used a separate tool, our REDCap checklist to house the 
assessments. Second, we have incorporated examples of poor quality 
data within our REDCap checklist. If that were included in the 
software output, raters could easily see what the data should not look 
like, and training for qualitative assessment would be more consistent. 
Next, other tools within AFNI create QC output files that indicate 
whether alignment or other downstream steps are likely to fail. Adding 
that to the APQC process would be useful. Finally, we use the REDCap 
checklist and project database to export summary QC data for an 

entire project. It would be  helpful to have a group summary QC 
output directly from the analysis software.

Conclusion

While quantitative QC metrics including motion are important data 
to consider when assessing fMRI data quality, some data quality issues 
may be missed if only quantitative assessments are conducted. Our use 
of visual inspection throughout the data analysis process ensures that 
anatomic incidental findings, image artifacts, and processing errors are 
removed prior to group analysis. Our REDCap checklist can be used to 
facilitate training of staff and reporting image quality.
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