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Editorial on the Research Topic 


Big data and artificial intelligence technologies for smart forestry


Machine learning and data analysis are becoming increasingly important in the field of Smart Forestry, as it allows for the analysis of large amounts of data in order to make predictions and identify patterns. This can be used for a variety of purposes, such as predicting the growth and health of trees, identifying areas that are at risk of disease or pests, and optimizing the management of forests. Additionally, machine learning can be used to analyze satellite and drone imagery, which can provide valuable information about the condition of forests and help with monitoring and conservation efforts.

Overall, machine learning enables Smart Forestry to be more efficient, effective, and sustainable. There are various types of data that can be analyzed in the context of Smart Forestry using machine learning. Some examples include:

	Climate data: Information about temperature, precipitation, and other weather conditions can be used to predict the growth and health of trees, as well as identify areas that may be at risk of disease or pests.

	Soil data: Data about the chemical and physical properties of soil, such as pH levels, can be used to predict the growth and health of trees, and to identify areas that may be suitable for different types of trees or forestry practices.

	Remote sensing data: Satellite and drone imagery can provide valuable information about the condition of forests, such as tree cover, canopy height, and biomass. This can be used to monitor changes in forests over time and to identify areas that may be at risk of deforestation or degradation.

	Inventory data: Information about the number, species, and size of trees can be used to predict future growth and health of the forest, and to optimize the management of the forest.

	Harvest data: Information about past harvesting practices can be used to optimize future harvesting schedules and methods.



Overall, machine learning and big data analysis can analyze and make predictions from the large amounts of data generated from various sources, such as sensors, drones, and satellites, to support better decision making in Smart Forestry.

Forest monitoring based on SAR, Lidar, optical remote sensing, and IoT can provide support for large spatial scale forest management and decision-making. With the development of big data technologies, the speed of smart forestry construction and the level of forestry information management has significantly improved. On the one hand, high-performance architectures for big data can significantly improve the efficiency of large-scale forestry research; on the other hand, artificial intelligence models can effectively extract the vegetation features and ecological parameters of the forest from the remote sensing data. Therefore, the development, integration, and application of big data technology have become the focus of forestry research. Meanwhile, research on forest plants driven by data and process-based models has also received much attention. Special attention is paid to the application of smart forestry based on big data and remote sensing.

This Research Topic entitled “Big Data and Artificial Intelligence Technologies for Smart Forestry” is a collection of papers dealing with forest monitoring and analysis and presents the scientific research achievements of emerging technologies such as big data, remote sensing and IoT applied in the field of forestry. We are pleased to present a collection of accepted papers which present interesting ideas and results of experiments that contribute to the field of smart forestry by the use of artificial intelligence models.
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Due to the cold climate and dramatically undulating altitude, the identification of dynamic vegetation trends and main drivers is essential to maintain the ecological balance in Tibet. The normalized difference vegetation index (NDVI), as the most commonly used greenness index, can effectively evaluate vegetation health and spatial patterns. MODIS-NDVI (Moderate-resolution Imaging Spectroradiometer-NDVI) data for Tibet from 2001 to 2020 were obtained and preprocessed on the Google Earth Engine (GEE) cloud platform. The Theil–Sen median method and Mann–Kendall test method were employed to investigate dynamic NDVI changes, and the Hurst exponent was used to predict future vegetation trends. In addition, the main drivers of NDVI changes were analyzed. The results indicated that (1) the vegetation NDVI in Tibet significantly increased from 2001 to 2020, and the annual average NDVI value fluctuated between 0.31 and 0.34 at an increase rate of 0.0007 year−1; (2) the vegetation improvement area accounted for the largest share of the study area at 56.6%, followed by stable unchanged and degraded areas, with proportions of 27.5 and 15.9%, respectively. The overall variation coefficient of the NDVI in Tibet was low, with a mean value of 0.13; (3) The mean value of the Hurst exponent was 0.53, and the area of continuously improving regions accounted for 41.2% of the study area, indicating that the vegetation change trend was continuous in most areas; (4) The NDVI in Tibet indicated a high degree of spatial agglomeration. However, there existed obvious differences in the spatial distribution of NDVI aggregation areas, and the aggregation types mainly included the high-high and low-low types; and (5) Precipitation and population growth significantly contributed to vegetation cover improvement in western Tibet. In addition, the use of the GEE to obtain remote sensing data combined with time-series data analysis provides the potential to quickly obtain large-scale vegetation change trends.

Keywords: vegetation greenness, ecosystem monitoring, spatial–temporal analysis, Google earth engine, Hurst exponent


INTRODUCTION

As a link between the atmosphere, soil, and water bodies, vegetation constitutes an indispensable component of terrestrial ecosystems and plays an important role in the material cycle and energy flow (Ni, 2001; Yan et al., 2020). Environmental and climate problems such as soil erosion, soil desertification, and the greenhouse effect caused by vegetation destruction cannot be ignored (Fattet et al., 2011; Dong et al., 2021). It is crucial to monitor and predict vegetation change trends and identify associated drivers (Fensholt et al., 2009).

Tibet is the main body of the Tibetan Plateau and the birthplace of the Yangtze and Yarlung Tsangpo rivers, whose ecological changes affect the climate of East Asia and even the world (Luo et al., 2018; Yi et al., 2018). However, under global warming and enhanced human activities, environmental problems such as desertification are becoming increasingly serious (Wang et al., 2016). Due to the complex influences of harsh climatic and geographical conditions, the vegetation ecosystem in Tibet is fragile and sensitive, and there exists notable spatial heterogeneity in the relationship between vegetation and climate and human activities (Immerzeel et al., 2008). Monitoring Tibetan vegetation trends and identifying its response to climate change and other factors can deepen the understanding of vegetation change mechanisms on the Tibetan Plateau, which is essential for the conservation of vegetation ecosystems and environmental restoration in alpine regions (Chen et al., 2020).

The methods for vegetation surveys in alpine regions mainly include field surveys and remote sensing detection. Field surveys are highly accurate; however, the harsh environment and vastness of the area make manual surveys extremely difficult, and real-time vegetation renewal across the whole area is almost unattainable (Li et al., 2014). Remote sensing technology, with its fast, real-time, and wide coverage, provides a new and convenient way to monitor terrestrial ecosystems and is widely used in areas such as vegetation growth management and remote sensing for land cover change monitoring (Zhan et al., 2002; Jiang et al., 2021). The use of remote sensing data sources to construct vegetation indices sensitive to vegetation growth has become a major method to monitor and assess regional vegetation environments. The normalized difference vegetation index (NDVI), as an index representing vegetation greenness, can visually reflect the vegetation growth status and distribution density and is an important index for vegetation change monitoring and climate response research (Rouse et al., 1974; Yuan and Bauer, 2007). In recent years, the use of remote sensing data to extract NDVI time series for vegetation growth monitoring has become one of the main ways to evaluate vegetation ecosystems in large regions (Jiang et al., 2015; Zou et al., 2020). However, the acquisition of real-time vegetation NDVI data in alpine regions is always limited due to the cloud volume, data availability, and computational efficiency. In addition, existing studies on vegetation dynamics in Tibet or the Qinghai-Tibet Plateau involving remote sensing require massive data download and preprocessing procedures, which represents a very high workload and an extremely time-consuming endeavor, with limited applications in efficient large-scale vegetation monitoring. The Google Earth Engine (GEE) is an online cloud platform for data processing that can quickly acquire and batch process massive remote sensing data (Dong et al., 2016; Gorelick et al., 2017). Currently, the GEE has been successfully used to acquire remote sensing images such as Landsat or Sentinel data for mangrove monitoring, land cover change determination, and deforestation detection (Tamiminia et al., 2020; Samanta et al., 2021). In addition, MODIS data that can provide periodic surface information is also provided in GEE. As an evaluation index of vegetation greenness, MODIS-NDVI has the potential to quickly identify and monitor large-scale vegetation (Jepsen et al., 2009). However, the efficiency and effectiveness of the GEE in the acquisition of time-series data of large areas for vegetation greenness monitoring in alpine and high-altitude regions require further validation.

Time-series vegetation indices for vegetation change evaluation have been widely employed (Jiang et al., 2015; Zou et al., 2020). In Wang and Han (2012), based on meteorological data and SPOT vegetation NDVI data from 1999 to 2008, linear correlation analysis was performed to analyze the spatial and temporal variation patterns of the vegetation cover across the Tibetan Plateau. The results indicated that the annual NDVI exhibited a significant increasing trend and that the ecological environment of the Tibetan Plateau was developing along a favorable direction under the influence of climate change. Ding et al. (2015) successfully obtained the start of the growing season (SGS) on the Tibetan Plateau from 1982 to 2012 based on normalized difference vegetation index (NDVI) data obtained from the GIMSS and SPOT. Zou et al. (2020) calculated the spatial and temporal trends of vegetation indices and surface temperature on the Tibetan Plateau and explored the relationship between vegetation and surface temperature changes and climatic factors. The results demonstrated that the vegetation cover on the Tibetan Plateau generally followed an increasing trend and significant spatial and temporal heterogeneity levels from 2001 to 2012. However, these studies mainly focused on national scales or the entire Tibetan Plateau region. This could ignore the local distribution characteristics of Tibetan vegetation due to spatial heterogeneity and the specificity of altitude and climate. In addition, the validity and timeliness of the research cycles selected in these studies have progressively become inadequate.

Trends in vegetation dynamics can reflect the direction of vegetation change during the study period, and possible trends can be predicted, which can guide the implementation of specific measures to manage future vegetation changes. The Hurst exponent, which can reflect the autocorrelation of time series and hidden long-term series trends, has been widely used in hydrological, meteorological, and environmental research. Studies have used the Hurst exponent to predict future vegetation dynamics. Peng et al. (2012) used the Hurst exponent method to predict future vegetation changes on the Tibetan Plateau based on an AVHRR GIMMS-NDVI dataset from 1982 to 2003, and the results indicated that the obtained future vegetation change trends were consistent across most of the Tibetan Plateau. Notably, Chen et al. (2020) used the Hurst exponent method to demonstrate that the Tibetan Plateau occurs at a high risk of vegetation degradation. However, as one of the main bodies of the Qinghai-Tibetan Plateau, the prediction of future vegetation change based on historical trends in Tibet has not been reported.

In this study, MODIS-NDVI data were obtained based on the GEE platform to reveal the latest trends of vegetation change in Tibet from 2001 to 2020 and to quantify the contribution of climate change and human activities. To reduce the influence of outliers, a more robust Theil–Sen median method and Mann–Kendall test were employed to evaluate the spatial patterns and trends of the NDVI. The Hurst exponent was established to predict the future trend of vegetation. In addition, the spatial autocorrelation of the NDVI in Tibet was examined to provide a scientific basis for ecological environment construction in the Tibetan Plateau region and other alpine regions.



MATERIALS AND METHODS


Study Area

Tibet is located on the Qinghai-Tibet Plateau (78°25′–99°06′E, 26°50′–36°53′N) (Figure 1) in southwestern China. Due to the altitude and latitude, the climate difference between Southern and Northern Tibet is obvious. Southern Tibet is mild and rainy, with an annual average temperature of 8°C. Northern Tibet exhibits a typical continental climate, with an annual average temperature below 0°C and a freezing period longer than 6 months. With a total area of 1,228,400 km2 and an average altitude exceeding 4 km, the distribution of water and heat resources is uneven, and the ecosystem is relatively fragile. The vegetation types mainly include forests, meadows, grasslands, deserts, and alpine vegetation. The area of natural pastures is 83 million hectares, accounting for 67% of the land area of the whole region, and the forest coverage reaches 6.32 million hectares. And the main tree species include spruce (Picea asperata Mast), fir (Abies fabri (Mast.) Craib), and larch (Larix ologensis).

[image: Figure 1]

FIGURE 1. Location and altitude distribution in the study area.




Data Sources

NDVI data were provided by the National Aeronautics and Space Administration (NASA) MODIS Terra (MOD13Q1) satellite and acquired from the GEE cloud platform. The acquired MOD13A2 data encompassed 16-day vegetation index products, which have been verified to effectively reflect the vegetation growth status. MOD13A2 began providing vegetation index data with a spatial resolution of 1 km in February 2000, and low-cloud and low-view NDVI values were selected from all acquisitions over 16 days to ensure the best available pixel values (Fensholt et al., 2009). NDVI images from 2001 to 2020 were obtained and preprocessed via reprojection, splicing, and clipping. To eliminate the influence of clouds, the maximum value compositing (MVC) method was applied to all pixels to obtain the best annual grid data over 20 years (Leeuwen et al., 1999).

To identify the drivers of NDVI change, climate change and human activity factors were selected for comparison and analysis. The drivers considered in this study included the annual cumulative precipitation, annual average temperature, annual population density data, and nighttime light data. Precipitation and temperature data were obtained from the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences,1 population density data were obtained from WorldPop,2 and nighttime light data were obtained from the NPP-VIIRS data website.3 Due to the limitation of the time-series length of nighttime light data, data from 2013 to 2020 were selected. The resolution of all data was resampled to match the 1 km spatial resolution of the NDVI data to ensure consistency between the different data sources (Figure 2). In addition, major meteorological and geological disasters in Tibet and important policies on vegetation were obtained from the Statistical Yearbook of Tibet (Statistical Bureau of Tibet, 2015, 2016).

[image: Figure 2]

FIGURE 2. Spatial pattern of the average values of (A) the annual cumulative precipitation, (B) annual average temperature, and (C) annual population density in Tibet from 2001 to 2020.




Methods


Coefficient of Variation

The coefficient of variation (Cv) can suitably reflect the time-based difference and change degree of spatial data and can be used to evaluate the stability of time-series data (Weber et al., 2004). The larger the Cv value is, the more discrete the distribution of the NDVI values and the more drastic the vegetation changes, while the smaller the Cv value is, the more concentrated the distribution of the NDVI values and the more stable the vegetation. Coefficient of variation values of the NDVI was calculated by the pixel to analyze the NDVI difference in Tibet and its stability over 20 years. Cv can be calculated with Equation 1.

[image: image]

where Cv is the coefficient of variation,[image: image] is the NDVI value in year i, and [image: image] is the average NDVI value from 2001 to 2020.



Trend Analysis

The Theil–Sen median method is a robust nonparametric approach for trend calculation, which is often used in combination with the Mann–Kendall test to evaluate the trend and significance of time-series data (Fernandes and Leblanc, 2005; Kisi and Ay, 2014). This method is insensitive to measurement errors and outlier data, which can reduce the influence of outliers on the results and has been widely used in trend analysis of long time-series data (Jiang et al., 2015). The equation to calculate β in the Theil–Sen median method is as follows:

[image: image]

where [image: image] and [image: image] are the NDVI values in years j and i, respectively. In this study, 2020 ≥ j ≥ i ≥ 2001. Additionally, when β is greater than 0, the vegetation NDVI exhibits an increasing trend; when β is less than 0, the NDVI exhibits a decreasing trend; and when β is equal to 0, the NDVI remains stable and unchanged. The vegetation NDVI trend results can be classified into five classes: significant degradation, slight degradation, stable unchanged, slight improvement, and significant improvement.



Hurst Exponent

The Hurst exponent method based on rescaled interval (R/S) analysis is a time-series analysis method based on fractal theory and exhibits wide applications in the fields of climate change and population migration (Peng et al., 2012). R/S analysis can measure how the fluctuation range of a given time series varies with the time span, which can be used to predict the future trend of vegetation (Jiang et al., 2015; Li et al., 2021).

The main principle of R/S analysis is the development of a time series that defines an average series and {NDVI(t), t = 1, 2,····n}, for any positive integer τ ≥ 1. The calculation procedures are as follows:

Defined mean sequence:

[image: image]

Cumulative deviation:

[image: image]

Range:

[image: image]

Standard deviation:

[image: image]

Hurst exponent:

[image: image]

where H is the Hurst exponent, which is calculated via the least square method. For 0.5 < H ≤ 1, this indicates that vegetation change exhibits persistence, and the future change trend is consistent with past change trends, and the larger H is, the stronger the persistence. For H = 0.5, the vegetation change exhibits randomness, and the future change trend cannot be determined. For 0 ≤ H < 0.5, this suggests that the determined vegetation change exhibits inverse persistence, and the future change trend is the opposite to past change trends. In addition, the NDVI change trend was coupled with the Hurst exponent to obtain the persistence in the NDVI change trend. The definition of the trend is ruled as shown in Table 1.



TABLE 1. The rule of definition of the NDVI change trend.
[image: Table1]



Correlation Analysis

Pearson correlation coefficient values were separately calculated in R software using climate factors and human activity data contemporaneous with the above NDVI time series to reveal the main drivers of NDVI changes (Jiang et al., 2015; Sun et al., 2019). Pearson’s correlation can be expressed by R, as calculated with Equation (8). Positive or negative values indicate whether the drivers are positively or negatively correlated, respectively, with the NDVI. Larger absolute values indicate stronger correlations.

[image: image]

where n is 20, [image: image] and [image: image] denote the individual values of the drivers and NDVI, respectively, in the ith year, while [image: image] and [image: image] are the mean values of the drivers and NDVI, respectively, over 20 years.





RESULTS


Spatial Pattern of the Vegetation NDVI

Figure 3A shows the spatial distribution pattern of the average NDVI in Tibet from 2011 to 2020. The NDVI value in Tibet approximately decreased from southeast to northwest. Northwestern Tibet mainly comprises bare land and snowy areas with dry and cold climatic conditions and poor vegetation ecological conditions, resulting in low NDVI values. The southeastern region mainly includes a valley plain with a low altitude, belonging to semihumid and humid climate areas, with suitable hydrothermal conditions and an excellent ecological environment. This region is the main distribution area of crops and woodlands in Tibet, so the NDVI value is high. The statistical results of the average NDVI values in Tibet over the past 20 years indicated that the nonvegetated area with an NDVI value below 0.1 accounted for 10.4% of the total plateau area and the area with a low NDVI value (0.1–0.4) accounted for 59.8% of the total plateau area. The area with an NDVI value ranging from 0.5 to 0.6 accounted for 5.7% of the total plateau area, and the area with an NDVI value above 0.6 accounted for 18.1% of the total plateau area.

[image: Figure 3]

FIGURE 3. (A) Spatial pattern of the average values and (B) interannual variation in the NDVI in Tibet from 2001 to 2020.


To clarify the state of the vegetation cover in Tibet and the characteristics of vegetation NDVI changes over time, the interannual NDVI change trend was mapped (Figure 3B). The annual average NDVI in Tibet increased and fluctuated between 0.31 and 0.34 at a rate of 0.0007 year−1, among which the vegetation NDVI exhibited a slowly fluctuating decreasing trend from 2001 to 2010. However, the fluctuation in the NDVI from 2010 to 2020 was more drastic and revealed an overall increasing trend, indicating that the vegetation cover conditions gradually improved. In 2015, the annual cumulative precipitation in Tibet significantly decreased, and extreme disaster weather events, such as severe snowfall, drought, and hailstorms, occurred in different areas, resulting in the lowest vegetation NDVI values in 20 years. In response, the Chinese government adopted a series of activities and policies including the construction of protective forest system, sand control and management, and return of cultivated land to forest to realize revegetation from 2015 to 2016, resulting in a significant increase in vegetation cover.

To detect the aggregation features and local distribution pattern of the NDVI in Tibet, global Moran’s index and local Moran’s index values were calculated. From 2001 to 2020, global Moran’s index of the NDVI in Tibet fluctuated between 0.956 and 0.966 (p < 0.01), indicating that the NDVI exhibits high spatial agglomeration (Figure 4A). In addition, global Moran’s index fluctuated sharply from 2001 to 2015, exhibiting a downward trend, indicating that the spatial agglomeration degree gradually decreased. Figure 4B shows that there existed obvious differences in the spatial distribution of the vegetation NDVI aggregation areas in Tibet, and the aggregation types mainly included the high-high and low-low types. Low-low type areas were mainly distributed in the west and north, and the associated patches were large. High-high type areas were mainly distributed in the east and south. The areas without significant aggregation were mainly concentrated in the central region, and the patches were relatively discontinuous. There occurred few low-high and high-low aggregation areas. The NDVI values in the western and northern regions of Tibet were generally low, while those in the eastern region were generally high (Figure 4B).
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FIGURE 4. (A) Global Moran’s index variation in the NDVI and (B) spatial pattern of local Moran’s index in Tibet from 2001 to 2020.




Stability of Vegetation NDVI Changes

The mean value of the coefficient of variation of the vegetation NDVI in the study area was 0.13, and the area exhibiting relatively high and high-fluctuation changes jointly accounted for 18.7% of the total area (Figure 5). The order of the areas considering each degree of variation was relatively low fluctuation change > medium fluctuation change > low fluctuation change > relatively high fluctuation change > high-fluctuation change (Table 2). Areas with a low fluctuation change in the NDVI mainly occurred in the southeast and northeast, where the climate is warm and humid, the vegetation types are abundant, the vegetation growth conditions are superior, and the vegetation NDVI was generally high and stable in the time series. Areas with a high-fluctuation change were scattered in the west, south-central, and east. The western part belongs to the highland area, where the ecosystem is very fragile and vulnerable to the natural environment. The south-central region exhibits a high population density and urban development level, leading to drastic vegetation changes, which in turn is reflected in the high fluctuation in the vegetation NDVI. The high-fluctuation area in the east is mainly the water area.
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FIGURE 5. Spatial distribution of the coefficient of variation of the NDVI from 2001 to 2020 in Tibet.




TABLE 2. Coefficient of variation statistics of the NDVI from 2001 to 2020 in Tibet.
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Trend Changes of the Vegetation NDVI

The NDVI trends of Tibetan vegetation revealed significant regional differences in the spatial distribution. The stable areas were mainly located in the western part of the study area, while the slightly degraded and significantly degraded areas were mainly located in the central and northern parts, respectively, of the study area. The NDVI trends in the central and eastern parts of the study area were different and more notably fragmented. The areas with an improved vegetation cover in Tibet over the past 20 years were larger than the areas with a degraded vegetation cover. The area with an improved vegetation cover accounted for 56.6% of the total area of the region, the area with a stable and unchanged vegetation cover accounted for 27.5% of the total area, and the area with a degraded vegetation cover accounted for only 15.9% of the total area (Figure 6).
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FIGURE 6. Spatial pattern of the NDVI change trends from 2001 to 2020 in Tibet.




Sustainability of Vegetation NDVI Variations

The mean Hurst exponent of the NDVI in Tibet reached 0.53. Areas with a Hurst exponent smaller than 0.5 accounted for 36.6% of the total study area, and the percentage of areas with a Hurst exponent larger than 0.5 was 63.4%, indicating a strong positive persistence of the vegetation NDVI in general. The results of the vegetation NDVI trends were superimposed and coupled with the Hurst exponent to obtain vegetation NDVI trends and their persistence (Figure 7). The results could be classified as sustainability and significant degradation, sustainability and slight degradation, sustainability and stable unchanged, sustainability and slight improvement, sustainability and significant improvement, and uncertain future trends.

[image: Figure 7]

FIGURE 7. Spatial distribution of the NDVI trends based on the Hurst exponent.


The area of continuously improving regions account for 41.2% of the total area, mainly distributed in the northwest and southeast; the area of continuously stable and unchanged regions accounted for 13.2% of the total area, mainly distributed in the central and western regions; the area of continuously degraded regions accounted for 9.0% of the total area, scattered in the central region; and the area of regions with uncertain future change trends accounted for 36.6% of the total area, mainly distributed in small parts of the eastern and central regions.



Correlation Analysis Between Drivers and NDVI Changes

Over the past 20 years, the average annual cumulative precipitation in Tibet reached approximately 396.91 mm, and the annual cumulative precipitation fluctuated within the range from 319.96 to 407.43 mm, at a rate of 0.463 mm year−1. The annual average temperature was approximately −2.27°C, fluctuating within the range from approximately −1.70°C to −2.61°C, at a rate of 0.0063°C year−1 (Figure 8A). The trend of the annual cumulative precipitation was the opposite to that of the annual average temperature, and the trend of climate change in Tibet indicated warm and dry conditions. Moreover, the changes in both the annual average population density and NDVI in Tibet over the last 20 years exhibited increasing trends, and the annual average population density increased year by year at a rate of 0.0304 persons year−1. The minimum value of the population density was 2.25 persons/km2, and the maximum value was 2.81 persons/km2 (Figure 8B).
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FIGURE 8. Variations in the (A) annual cumulative precipitation, annual average temperature, (B) NDVI, and annual population density data in Tibet from 1997 to 2017.


The correlations between the annual cumulative precipitation and annual average temperature and the average annual NDVI were not significant. However, the average annual population density exhibited a significant positive correlation with the average annual NDVI with a correlation coefficient of 0.61 (p < 0.01). These results indicated that precipitation and temperature imposed no significant effect on vegetation cover recovery and that human activities were the main drivers of NDVI changes in Tibet as a whole.

To capture local information on the drivers of NDVI changes in Tibet in more detail and precision, the correlation coefficient values between the NDVI and the annual cumulative precipitation, annual average temperature, and population density were calculated pixel by pixel, and spatial distributions were obtained (Figure 9). The correlation coefficient values between the NDVI and annual cumulative precipitation in Tibet ranged from −0.98 to 0.98, with the areas with a significant negative correlation accounting for approximately 1.7% of the total area, and those with a significant positive correlation accounting for approximately 8.2% of the total area, mainly in the western and central regions. The correlation coefficient values between the NDVI and annual average temperature ranged from −0.96 to 0.94, with the areas with significant positive and negative correlations accounting for approximately 2.8% of the total area, and those with significant negative correlations mainly occurring in the western and central regions. In addition, the correlation coefficient values between the NDVI and population density varied between −0.93 and 0.94, with 1.4% of the regions exhibiting a significant negative correlation and 5.0% of the regions attaining a significant positive correlation, which were mainly distributed in the western region.
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FIGURE 9. Spatial distribution of the correlation coefficient values and significance between the NDVI and (A), (B) annual cumulative precipitation, (C), (D) annual average temperature, and (E), (F) annual population density in Tibet from 2001 to 2020.


To further identify the impact of human activities on NDVI changes in Tibet, nighttime light data were used for correlation analysis. The results indicated that the annual average nighttime light intensity in Tibet fluctuated and increased with the annual NDVI. There existed a significant correlation between the NDVI and nighttime light data in most parts of western Tibet, which further verified that human activities represented the main factor promoting vegetation activities (Figure 10).

[image: Figure 10]

FIGURE 10. Spatial distribution of correlation coefficients and significance between NDVI and nighttime light data in Tibet from 2013 to 2020.





DISCUSSION


Vegetation NDVI Change Trend and Drivers

Climate change and human activities have been verified as the main factors causing vegetation change (Zhang et al., 2018; Zou et al., 2020). Vegetation is particularly sensitive to climate change during its growth period, especially in high-altitude areas with an extremely fragile ecology (Zhou et al., 2004; Xu et al., 2017). The results in our study demonstrated that the NDVI in Tibet has slightly increased over the last 20 years, similar to the conclusion obtained by Zhang et al. (2018) regarding the overall vegetation on the Tibetan Plateau. However, vegetation degradation in central and northern Tibet cannot be ignored. Global warming and drought are the main causes of vegetation degradation in northern regions, while human activities significantly impact vegetation recovery in central regions. Precipitation is not the dominant climatic factor of the increase in vegetation greenness in Tibet, but the fragile alpine grassland ecosystem is vulnerable to climate events, which leads to drastic changes in biodiversity and affects vegetation greening. In addition, Liu et al. (2021) demonstrated that across the whole Qinghai-Tibet Plateau, climate warming, humidity, and livestock control contribute to the significant vegetation restoration. With accelerated urbanization, destruction of vegetation can occur in some areas, but measures such as ecological reforestation projects and natural forest protection projects in China have been verified to positively impact vegetation recovery in Tibet (Wu et al., 2012; Zhang and Jin, 2021). Due to the significant decrease in precipitation and extreme catastrophic weather events, the vegetation NDVI in Tibet reached its lowest value within 20 years in 2015. In order to promote vegetation recovery, the Chinese government adopted a series of activities and policies from 2015 to 2016, including construction of protective forest systems, returning farmland to forest, construction of wildlife reserves, and protection of important wetlands, which led to a significant increase in NDVI (Statistical Bureau of Tibet, 2015, 2016).

There are various indicators for the evaluation of human activities, and auxiliary data, such as nighttime light data, have been demonstrated to be effective in facilitating environmental change analysis and vegetation monitoring (Zhang and Seto, 2011; Liu et al., 2014). With the advantages of a wide coverage, high efficiency, and notable visualization, nighttime lights can directly reflect the extent and intensity of human activities and provide the potential to assess socioeconomic development, population migration, carbon emissions, pollution, and environmental monitoring data (Doll et al., 2006; Elvidge et al., 2012; Li et al., 2013). To further determine the causes of NDVI change and vegetation restoration in western Tibet, NPP-VIIRS time-series data were used to analyze the influence of nighttime light data on NDVI changes in this study. The results provided further evidence indicating that human activities were the main factor contributing to vegetation change. As an emerging data source, nighttime light data could be effectively used as an indicator of human activities for vegetation driver identification.



Limitations and Prospects

The validity of vegetation greenness indicators extracted from different sensors is inconsistent. Remote sensing data such as GIMMS-NDVI and NSMC-NDVI data have been widely used in vegetation monitoring and land change detection (Sha et al., 2013; Wang et al., 2021). However, these data exhibit a low spatial resolution, and the data are no longer updated. MODIS-NDVI data have provided vegetation greenness products since 2001 and exhibit a larger distribution range than that of other data types, which is very effective for timely monitoring of vegetation in large areas (Jepsen et al., 2009). More vegetation indices, such as the enhanced vegetation index (EVI), which can reduce the impact on vegetation canopy background signals and atmospheric effects, exhibit the potential to improve the sensitivity to vegetation in high-biomass areas and have been used for forest parameter mapping and mangrove change detection purposes (Jiang et al., 2020; Samanta et al., 2021). However, in plateau areas with a low vegetation coverage, the NDVI can directly characterize the vegetation coverage. Compared to other indices, the NDVI remains the most commonly used and effective parameter to reflect the change in vegetation greenness (Eastman et al., 2013; Chen et al., 2020).

In addition, the spatial pattern and variation in vegetation greenness may vary drastically with elevation differences (Wang et al., 2021). The topography notably influences the distribution and growth of vegetation, and as one of the regions with the highest average altitude worldwide, the drastic topographic fluctuations and harsh climate in Tibet result in locally obvious differences in the vegetation distribution (Wang et al., 2019, 2022). Spatial autocorrelation can reveal whether and to what extent the attribute characteristics of neighboring elements in geographic space are related and has become a common method for the study of vegetation growth, carbon cycle, heat island effect, and other changes in vegetation ecology and the environment (Li et al., 2021; Yang et al., 2021). Global Moran’s index and local Moran’s index were used to detect the aggregation and local effects of the vegetation NDVI in Tibet, and the results revealed that the NDVI experienced high spatial agglomeration from 2001 to 2020. From 2001 to 2007, global Moran’s index exhibited a fluctuating upward trend, while the NDVI gradually decreased. However, from 2008 to 2020, global Moran’s index greatly fluctuated, demonstrating a downward trend as a whole, reaching the lowest value in 2018 (Figure 4). The main reason is that extreme weather events and disasters frequently occurred in Tibet in 2018, resulting in serious losses of agricultural production and construction facilities. Moreover, there exist obvious differences in the spatial distribution of NDVI accumulation areas in Tibet. Due to a large number of cities and populations, the vegetation distribution in the central region is relatively fragmented, so the aggregation phenomenon is not notable (Zhang et al., 2018). However, the availability of high-resolution remote sensing data is limited by factors such as cloudiness and data computational efficiency, causing difficulties in the exploration of local distribution patterns of vegetation in more detail on long time scales.

The obtained NDVI growth rate was slightly lower than that determined by Chen et al. (2020) because the vegetation restoration area of the Qinghai-Tibet Plateau was mainly located in Sichuan Province and Qinghai Province, which occur in the eastern and northern parts, respectively, of the plateau. These provinces experienced better vegetation recovery due to grazing control, reforestation, and climate change. However, the effect of vegetation recovery was limited in Tibet due to its geographical location and topography, which deserves more attention. In addition, regarding future trends of vegetation, the change trend in most vegetation areas was not notable, and there occurred a risk of degradation, which is similar to the conclusion of Chen et al. (2020).

Global Moran’s indices of the NDVI in Tibet from 2001 to 2020 were extremely significant, which indicated that the aggregation phenomenon was obvious and continuous. However, further validation is necessary, which yields positive implications for the study of the elevation gradient on the distribution and migration of vegetation (Walker et al., 2014). In addition, the vegetation in Tibet at the local scale is fragile, and the control mechanisms of vegetation change are complex. The reasons for the influence of anthropogenic and climatic factors on NDVI trends should be further investigated via quantitative analysis.




CONCLUSION

In this study, NDVI time-series data from 2001 to 2020 in Tibet were obtained based on MOD13Q1 data retrieved from the Google Earth Engine platform. The coefficient of variation method, Theil–Sen median method with the Mann–Kendall test, and Hurst exponent method were used to identify the spatial and temporal changes and future trends of the vegetation cover characteristics of Tibet, and the main driving forces affecting the changes in vegetation NDVI were analyzed. The main conclusions in this study were as follows: (1) the distribution of NDVI values in Tibet exhibited the spatial characteristics of high values in the southeast and low values in the northwest. The vegetation improvement area accounted for 56.6% of the total study area, the stable unchanged area accounted for 27.5% of the total study area, and the vegetation degradation area accounted for only 15.9% of the total study area. (2) The NDVI changes in Tibetan vegetation over the past 20 years were not very volatile, and the areas with relatively low and moderate fluctuation changes dominated. The areas with high-fluctuation changes were scattered in the west, central, and east, and the areas with low fluctuation changes were mainly distributed in the southeast and northeast. (3) Regarding future change trends, the long time series of the vegetation NDVI in Tibet was generally persistent, and the total area of continuous improvement accounted for 41.2% of the total area of the region, mainly distributed in the northwest and southeast. (4) In regard to the drivers of NDVI changes, overall, climatic factors and population growth did not significantly influence vegetation NDVI changes in Tibet over the last 20 years. However, precipitation and human activities in the west were the main drivers of localized vegetation cover improvement.
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In forestry studies, deep learning models have achieved excellent performance in many application scenarios (e.g., detecting forest damage). However, the unclear model decisions (i.e., black-box) undermine the credibility of the results and hinder their practicality. This study intends to obtain explanations of such models through the use of explainable artificial intelligence methods, and then use feature unlearning methods to improve their performance, which is the first such attempt in the field of forestry. Results of three experiments show that the model training can be guided by expertise to gain specific knowledge, which is reflected by explanations. For all three experiments based on synthetic and real leaf images, the improvement of models is quantified in the classification accuracy (up to 4.6%) and three indicators of explanation assessment (i.e., root-mean-square error, cosine similarity, and the proportion of important pixels). Besides, the introduced expertise in annotation matrix form was automatically created in all experiments. This study emphasizes that studies of deep learning in forestry should not only pursue model performance (e.g., higher classification accuracy) but also focus on the explanations and try to improve models according to the expertise.
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1. INTRODUCTION

Due to climate change, environmental damage, and other related factors, extreme weather events (e.g., wildfires, heat waves, and floods) are occurring more frequently all over the world in recent years (Stott, 2016). As essential cogs in the global ecosystem, forests have many ecological functions including conserving water, protecting biodiversity, and regulating climate (Führer, 2000; Zhang et al., 2010). Therefore, forest care is vital for our future. Fortunately, the United Nations has proposed 17 Sustainable Development Goals, where the 13th goal climate action, and 15th goal life on land pertain to forest care1. This has promoted studies in forestry.

Remote sensing technology has provided data with high spatio-temporal resolution and many spectral bands for forestry research, which allows researchers to use more information to build a model than traditional ways of collecting data in the wild. Due to the ability to gain knowledge from large amounts of train data, artificial intelligence technology represented by deep learning models has also been applied in forestry to accomplish diverse tasks (Wang et al., 2021) including tree species classification (Wagner et al., 2019) and damage assessment (Hamdi et al., 2019; Tao et al., 2020). In terms of the data types, most studies in forestry have used deep learning models to analyze remote sensing data (Zhu et al., 2017; Diez et al., 2021), such as unmanned aerial vehicle (UAV) data (Diez et al., 2021; Onishi and Ise, 2021), high-resolution satellite images (Li et al., 2017), and 3-D point cloud data (Zou et al., 2017). There are also some studies based on other data types including the images of digital cameras (Liu et al., 2019) and the characteristics of individual trees (Ercanlı, 2020). Deep learning models are regarded as black boxes due to their complicated network structures and a large number of parameters (Castelvecchi, 2016). Although trained models can achieve excellent performance, it is difficult for researchers and users to understand how they make decisions. This indicates that the model may not have gained the correct knowledge (e.g., Clever Hans2), and also undermines the users' confidence in the deep learning models.

To interpret the black-box models, researchers focus on the studies of explainable artificial intelligence (XAI) methods (Samek et al., 2019). Many XAI methods with different principles have been proposed and can be divided into three categories: visualization methods, model-agnostic methods, and deep-learning-specific methods. The first category consists of new visualization methods to display the parameters of complex models (e.g., random forests and neural networks) (Zeiler and Fergus, 2014; Zhao et al., 2018), such as clustering the original model parameters or displaying feature maps of part layers. Model-agnostic methods can be used to interpret any model because these methods only consider the variation of model outputs following perturbing inputs (Ribeiro et al., 2016b; Molnar, 2020). Common model-agnostic approaches include individual conditional expectation (ICE) (Goldstein et al., 2015), local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016a), and Shapley additive explanations (SHAP) (Lundberg and Lee, 2017). Besides, some studies have proposed advanced model-agnostic approaches to combine the local explanations (i.e., sample-based) and global explanations (i.e., feature/variable-based) (Giudici and Raffinetti, 2021). The deep-learning-specific methods such as layer-wise relevance propagation (LRP) (Bach et al., 2015) and gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al., 2017) are designed to interpret trained deep learning models based on detailed network information (e.g., gradients). These methods are typically used to get sample-based explanations in image classification tasks. Several studies use multiple XAI methods to interpret trained models, such as using Grad-CAM to obtain the contributions of input pixels as well as visualizing the feature maps of part layers (Xing et al., 2020). In addition to computer science, XAI methods have been applied in various fields including medicine (Tjoa and Guan, 2020), geography (Cheng et al., 2021), and disaster assessment (Matin and Pradhan, 2021). However, few studies have attempted to interpret models in the field of forestry (Onishi and Ise, 2021), even though deep learning methods have been widely applied in this field.

XAI methods provide explanations of deep learning models, but this is not sufficient for practical purposes. For specific tasks, researchers wish to guide the training based on expertise in a way that the models gain the correct knowledge (i.e., what we believe the model should learn) and avoid the Clever Hans effect (Lapuschkin et al., 2019; Anders et al., 2022). The approaches used to guide the training of deep learning models are known as feature unlearning (FUL) methods, and these methods utilize one of two main ideas: The first idea is perhaps the most direct, in which models are retrained with reformed train data (e.g., explanatory interactive learning (XIL); Teso and Kersting, 2019; Schramowski et al., 2020). For instance, if some error-prone samples are affecting the model's performance, it can be improved by simply removing these samples from the train data and then retraining the model. The second idea is to design a new loss function to highlight the weight of important features according to expert knowledge, such as adding a mask to mark useless pixel areas in image classification tasks. The common methods with this idea include right for the right reasons (RRR) (Ross et al., 2017) and contextual decomposition explanation penalization (CDEP) (Rieger et al., 2020). Several more complicated methods exist such as learning not to learn (LNTL) (Kim et al., 2019). In addition to using new loss functions and retraining models based on new train data, LNTL also alters the network structure. Many FUL methods have been proposed, but most are not commonly used in practice. In this study, we will apply FUL methods in the field of forestry.

This study aims to improve the deep learning models in forestry based on the obtained model explanations and specialized expertise. Deep learning models can mine massive amounts of original data. XAI methods can shed light on the black boxes and provide explanations. If the explanations are not as expected, FUL methods can be used to guide the training and improve the credibility and performance of deep learning models. The main contributions of this paper can be summarized as: (1) using explanations and expertise to improve deep learning models, which is the first such attempt in the field of forestry; (2) emphasizing that explanations reflect how the model make decisions, which is vital for black-box models; (3) a new research framework is proposed and serves as a reference for deep learning studies in forestry.

The paper is organized as follows: Section 2 describes the proposed research framework and the basic principles of applied Grad-CAM and RRR methods. We also introduced three indexes to assess the model explanations. To verify this study, three experiments based on simulated data and real data were carried out in Section 3. The results show that the model accuracy can be improved and the explanations can be altered as expected. Section 4 discusses the impact of outlier data and sampling variability on model performance. We summarized this research and provided future directions in Section 5.



2. METHODS


2.1. Research Frameworks of Deep Learning Studies

In common studies that utilize deep learning models to accomplish tasks, the focus is mostly on achieving higher performance rather than making sure that the trained models make decisions properly (i.e., black-box models) (as displayed in Figure 1A). In further studies, XAI methods have been applied to explain the trained models and obtain the explanations corresponding to the results (as displayed in Figure 1B). Based on the explanations and expertise, researchers can judge whether the trained models have gained the correct knowledge from the data. In this article, we propose a new research framework (as displayed in Figure 1C). It has four steps including training an original model, getting the model explanations, introducing the expertise based on the current explanations, and retraining the model with the introduced expertise. The FUL methods are used to guide the training when the original model explanations are inconsistent with expertise. Compared to the other two frameworks, the framework of our research is not only pursuing the model performance but also using explanations and expertise to interpret and improve the deep learning models. In this study, we select the image classification tasks in forestry as the specific application of the proposed research framework.


[image: Figure 1]
FIGURE 1. Three frameworks of deep learning studies (A: get the results only; B: get the results and explanations; C: improve the model based on explanations and expertise).




2.2. The Applied XAI Method: Gradient-Weighted Class Activation Mapping

This research uses the Grad-CAM method (Selvaraju et al., 2017) to obtain the corresponding explanations of each input (i.e., intuitive visualization of pixel importance) from the trained deep learning models. Grad-CAM is a prominent XAI method that has been applied extensively in computer vision tasks. Considering that all three experiments in this research are based on image data, we take the reliable Grad-CAM method to represent XAI methods and do not discuss others nor their differences in resulting explanations. Grad-CAM is based on the class activation map (CAM) methods (Zhou et al., 2016). It uses the gradient information in the training process to determine the neurons' importance in the model's decision, i.e., the neurons with larger absolute values of gradients are more important.

Given M as the trained neural network, X ∈ ℝU×V×B as the input image with width U, height V, and B bands, A as the feature maps with width P, height Q, and K bands (i.e., A1, A2, …, Ak) in the last convolutional layer, Y = [y1, y2, …, yn] as the output variable before the softmax in a n-classification task, [image: image] denotes the gradient corresponding to class c, Equations (1) and (2) represent the formula for the Grad-CAM explanations [i.e., G(M, X, c)]. Figure 2 also illustrates the Grad-CAM method.
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[image: Figure 2]
FIGURE 2. Schematic diagram of the Grad-CAM method.


where [image: image] denotes the global average pooling process, [image: image] denotes the weight of feature map k corresponding to class c in the linear combination. ReLU(·) is placed to only consider features that have a positive impact on classification. It is noted that the preliminary Grad-CAM explanations are of the same size as the feature maps A (i.e., P × Q). Thus, need to use the Trans(·) function to transform them into the size of inputs (i.e., U × V).



2.3. The Applied FUL Method: Right for the Right Reasons

This research selects the RRR method (Ross et al., 2017) as an example of many FUL methods to improve deep learning models based on expertise. The basic idea of RRR is to add another right reason loss (RRR loss) into the common loss function (e.g., cross-entropy) and guide the model training. As mentioned in the Grad-CAM method introduction, the gradient information of variables reflects their influences on the deep learning model. The new loss aims to reduce the input gradient of useless pixels identified by the annotation matrix of each sample and drive the model to focus on the important features according to expertise. The annotation matrix can be viewed as a binary mask that splits pixels into two parts for the specific task. Zero-element and one-element label the useful pixels and useless pixels, respectively.

According to the experimental results, the original RRR formula (Ross et al., 2017) has been altered in this research. Given θ as the model parameters, Xi as an input image, Yi as the model output of Xi, Ai as the corresponding annotation matrix with the same size as inputs, the new loss function using the RRR method (i.e., NLoss) can be represented by Equations (3)–(6).
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where GradXi denotes the gradient of input Xi in the training process. RLoss is the added loss. Sum(·) is the function to sum all the elements of the controlled gradient Ai · GradXi. CLoss is the common loss such as cross-entropy. Balance(·) is the function to control the values of two losses in an order of magnitude. λ is the weight of the RRR loss in model training.

The annotation matrix is critical for guiding model training. In practical applications of forestry, it is difficult to set the annotation matrix of each sample due to the huge amounts of train data and the required expertise. For the RRR method, the annotation matrix of some samples can be set as a zero matrix. In this case, the loss function for model training will essentially reduce to the common one. Besides, the annotation matrix is used to label the useless area, which is easier than labeling the important features and increases the robustness of mask setting (e.g., just label unquestionably useless pixels such as the background). Take the task of identifying diseased leaves as an example (displayed in Figure 3). The bacterial spots in a leaf are labeled in Figure 3b depending on expertise. But the labeling is difficult to accomplish automatically and avoid omissions. In comparison, the useless background pixels for this task are labeled in Figure 3c by simple image processing (e.g., background extraction).


[image: Figure 3]
FIGURE 3. An example of diseased leaves and the corresponding masks (i.e., annotation matrix) (a: original image; b: labeling the important bacterial spots; c: labeling the useless background). The labeled pixels are red.




2.4. Explanation Assessment

This research aims to guide the training of deep learning models based on expertise. It manifests as better model performance and closer explanations to the predetermined real masks (i.e., annotation matrix). We use three indicators, root-mean-square error (RMSE)3, cosine similarity (CosineS)4, and the proportion of important pixels (PIP) labeled in real masks, to assess the obtained explanations from three aspects including absolute difference, relative difference, and differences in key features.

Given A = [a1, a2, …, aN] as an obtained explanation, B = [b1, b2, …, bN] as the real mask with the same size of A, Equations (7) to (9) represent three indicators of explanation assessment.
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where N is the total number of pixels for an image (explanations and real masks). IP is the set of pixels with the highest contribution values in a certain top percent [e.g., 1, 5, 10%, should be less than [image: image]] in explanations. RM is the set of pixels labeled in corresponding real masks. Num(·) is the function to count the number of elements in a set. Higher PIP values indicate that more key pixels from the explanations are labeled in the real mask.




3. MATERIALS AND RESULTS


3.1. Data and Three Tasks

Image classification is a common task in forestry. To verify this study, we designed three tasks: distinguishing between real leaves and simulated data (binary classification), identifying diseased leaves (binary classification), and classifying plant species (multiclass classification), based on the open-source PlantVillage dataset (Hughes and Salathé, 2015). PlantVillage dataset contains leaf images of multiple plant species and also has labels for each sample such as healthy and diseased. It has been used in many studies on plant disease identification (Mohanty et al., 2016; Geetharamani and Pandian, 2019; Abade et al., 2021).


3.1.1. Distinguishing Between Real and Simulated Data

This study aims to highlight that the expertise can improve the training of deep learning models and make the explanations of models more similar to the predetermined annotation matrix (i.e., the real mask). But for a specific task, it is difficult to assess explanations fairly due to the human errors in generating the corresponding real mask of each input sample. Therefore, we simulated images with definite real masks. The specific way of simulated data generation is to select a few images of healthy pepper leaves and then randomly add some transparent circles (number, size, and location are random) into the leaf (as displayed in Figure 4). The real masks of generated images are the pixels outside the added circles. The purpose of adding transparent circles is to simulate the thinning of diseased leaves. The training objective of this experiment is to distinguish between real pepper leaves and fake leaves. To increase the difficulty of the task, added circles are allowed to be located in the background of simulated images.


[image: Figure 4]
FIGURE 4. Simulated leaves generation. The labeled pixels in the real mask are red.


The total number of samples (half real half fake) in this experiment is 2956. Train data, validation data, and test data contain 1773 (60%), 591 (20%), and 592 (20%) samples, respectively. The training process was implemented based on the PyTorch framework.5 The applied network is AlexNet (Krizhevsky et al., 2012), a well-known network in computer vision tasks. It is noted that we choose AlexNet as an example and do not consider other known networks. Since this research focuses more on model improvement based on expertise rather than absolute classification accuracy. Besides, for better comparability between the results, we used the same network structure in all three experiments, with the only alteration being the number of neurons (2 or 10) in the output layer. For the task of distinguishing between real and fake leaves, we trained two models with the same number of epochs (i.e., 90) and got two explanations for each input using the Grad-CAM method (Selvaraju et al., 2017). The RRR method (Ross et al., 2017) was only applied in the second training process, which means that the second model considers the specific expertise provided by the real masks. The weight λ of the RRR loss (Equation 5) was 1.5 in this experiment.



3.1.2. Identifying Diseased Leaves

Identifying diseased samples is a common task in forestry. This experiment aims to prove that the expertise and explanations can improve the deep learning models trained for the identification of diseased pepper leaves. The total number of image samples is 1994, including 997 images of healthy leaves and 997 images of diseased leaves. We divided the samples into three parts for the model training, which are the train data (1196 samples, 60%), validation data (399 samples, 20%), and test data (399 samples, 20%). The network structure for this experiment is the same as the first experiment (i.e., AlexNet). The difference between this experiment and the simulation experiment is difficult to mark the key pixels for the diseased leaf identification. However, for the RRR method, it is sufficient to label the assuredly useless pixels. Therefore, we separated the background pixels of each sample using the GrabCut algorithm (Rother et al., 2004) and labeled these pixels as the real masks. Figure 5 displays two such examples. We trained two deep learning models, similar to the previous simulation experiment. The number of epochs is 60 for both training processes and the expertise in annotation matrix form was only used for the second training. The weight λ of the RRR loss (Equation 5) was 2 in this experiment.


[image: Figure 5]
FIGURE 5. Examples of the real masks of the healthy leaf and the diseased leaf. The labeled pixels in masks are red.




3.1.3. Classifying Plant Species

This experiment trains deep learning models to classify plant species, which is also a common task in forestry. We selected leaf images of 10 plant species, namely cherry, peach, potato, soybean, strawberry, raspberry, tomato, blueberry, apple, and grape. Compared with the previous two binary classification tasks, this multiclass classification is more complex. The total number of samples in this experiment is 1520, and each plant species has the same number of samples (i.e., 152). To train the model, we randomly divided the samples into three parts: train data (912 samples, 60%), validation data (304 samples, 20%), and test data (304 samples, 20%). The network structure is identical to those of the previous two experiments (i.e., AlexNet), except that the number of neurons in the output layer is 10. The leaf shape is an important feature for species classification, unlike in the task of diseased leaf identification. Therefore, we labeled the pixels outside the minimum bounding rectangles of leaves as the real masks in this experiment, which retains the information of the leaves shapes. Figure 6 illustrates two examples of such masks. Similar to the previous two experiments, we trained two deep learning models and applied the RRR method in the second training. The weight λ of the RRR loss (Equation 5) was 2 in this experiment. The number of epochs is 90 for both training processes.


[image: Figure 6]
FIGURE 6. Examples of the real masks of two species' leaves. The labeled pixels in masks are red.





3.2. Results

In terms of the first task, Figure 7 displays eight samples of input images and the two corresponding explanations. The quantitative results of the explanation assessment of the first task are given in Table 1. Figure 7 shows that many sample explanations are changed after incorporating expertise. The locations of pixels with higher contribution values typically shift from the center of leaves toward the added circles, which indicates that the model has gained more correct knowledge from the predetermined masks. The explanation assessment results in Table 1 show that all the indexes of new explanations (i.e., applying the RRR method) are better than those of the original explanations. Moreover, the classification accuracy has also increased 2.9% with the expertise, which is achieved while using the same train data, network structure, and training epochs. For the task of distinguishing between real leaves and simulated data, the results show that the consideration of expertise does indeed improve the deep learning model in terms of both accuracy and explanations.


[image: Figure 7]
FIGURE 7. Examples of model explanations for the first task. The three rows display the input image, original explanation, and the explanation with the consideration of expertise. The pixels outside the added circles of each input are labeled as the real masks. A warmer color in the explanation indicates a higher contribution value, denoting a more important pixel for the classification task.



Table 1. Accuracy and explanation assessment for the task of distinguishing between real and fake leaves.

[image: Table 1]

In terms of the second task, Figure 8 displays the examples of eight samples' explanations (four healthy leaf samples and four diseased leaf samples) obtained by the Grad-CAM method. The explanations of the two trained models look similar, but it can be seen that with the utilization of the RRR method, the warm pixels appear less at the corners of the image in the corresponding explanations, especially for the second and third examples of diseased leaves. It proves that the second trained deep learning model has been driven to ignore corner background pixels according to the predetermined masks. Table 2 shows the results of model accuracy and explanation assessment for the task of identifying diseased leaves. The classification accuracy and all three explanation assessment indexes of the second trained model improve on the original ones. The slight improvement in classification accuracy (0.02%) maybe due to the already high original accuracy (>95%). It may also be caused by the simplicity of the real masks, i.e., labeling the useless background pixels, which leverages limited expertise. Nevertheless, the results of this experiment prove that it is possible to improve the deep learning models of identifying diseased leaves.


[image: Figure 8]
FIGURE 8. Examples of model explanations for the second task. The two columns reflect the explanations of healthy leaves and diseased leaves. For each column, the three rows display the input image, original explanation, and the explanation with the consideration of expertise. A warmer color in the explanation indicates a higher contribution value, denoting a more important pixel for the classification task.



Table 2. Accuracy and explanation assessment for the task of identifying diseased pepper leaves.

[image: Table 2]

In terms of the last task, Figure 9 illustrates examples of model explanations for each of the 10 plant species. With the expertise in annotation matrix form, the trained model focuses more on the center pixels, pertaining to the leaf rather than the corners, as can be seen obviously in the apple and grape samples, which is analogous to the explanation improvement in the experiment of identifying diseased leaves. Additionally, the model with RRR utilization has an increased focus on the leaf edges (e.g., the cherry sample in Figure 9), which is consistent with common sense. Table 3 provides the results of model accuracy and explanation assessment for the task of classifying plant species. The second model surpasses the first model in both accuracy and explanation assessment indicators. The improvement in classification accuracy (4.6%) is the largest among all three experiments, despite labeling a relatively small number of useless pixels (as displayed in Figure 6) in the masks. The results of this experiment show that it is possible to improve the deep learning models for complex tasks.


[image: Figure 9]
FIGURE 9. Examples of model explanations for the third task. The 10 columns reflect the explanations of 10 species' leaves. The three rows display the input image, original explanation, and the explanation with the consideration of expertise. A warmer color in the explanation indicates a higher contribution value, denoting a more important pixel for the classification task.



Table 3. Accuracy and explanation assessment for the task of classifying plant species.

[image: Table 3]

The consideration of model explanations and corresponding expertise can improve deep learning models in forestry, as demonstrated by the three experiments. The degree of model improvement is directly related to the task difficulty and quality of the expertise.




4. DISCUSSION

Deep learning models require mining task-related knowledge from the data. But for some practical applications, it is difficult to avoid outliers in the train data. The outliers will affect the model training because they contain the wrong information for the task. However, the new research framework proposed in this study can reduce such impact. Based on this framework, sample-based explanations can be obtained by using XAI methods. The corresponding explanations of outlier data may be different from other normal samples' explanations, which helps identify outliers and remove them from the train data. Moreover, as mentioned in Section 2.3, the applied FUL method RRR does not require labeling the annotation matrix of all samples. It means that the corresponding real masks of potential outlier data can be set as a zero matrix, which has no additional impact on model training.

The sampling variability could also affect the performance of deep learning models. To verify that the proposed framework is robust to the train data, we take the third task (i.e., classifying plant species) as an example and use the five-fold cross-validation method. The original data are divided into five equal parts. For each experiment, four of them form the train data, while the other one is used for testing. All the network parameters and experimental processes are the same as the ones in the above experiment (Section 3.1.3). Table 4 provides the results of model accuracy and explanation assessment (take RMSE as an example) in the five-fold cross-validation. The max and min values of accuracy and RMSE are close, which proves that the model performance is stable for different train data. Besides, the models using RRR surpass the original models in both classification accuracy (the average, max, and min values of classification accuracy) and explanation assessment (the average and max values of RMSE). The result verifies that this study is robust to sampling variability.


Table 4. Accuracy and explanation assessment (RMSE) results for the five-fold cross-validation.

[image: Table 4]



5. CONCLUSIONS

This research aims to improve deep learning models in forestry based on model explanations and corresponding expertise. Based on the review of relevant studies on deep learning applications in forestry, XAI methods, and FUL methods, we proposed a new research framework which includes consideration of explanations and expertise produces a reliable model in actual tasks. To prove our point, we designed and performed three experiments for various training tasks based on plant leaf data. The qualitative and quantitative comparison of accuracy and model explanations shows that the predetermined annotation matrices (i.e., expertise) can guide and improve deep learning models. For all three experiments, the classification accuracy is increased (up to 4.6% in a 10-class classification task) when considering expertise, and the improvement in model explanation is also reflected by three indexes of explanation assessment (i.e., RMSE, CosineS, and PIP). Besides, we also discussed the impact of outlier data and sampling variability on this study.

This research highlights the important role of model explanations and expertise for deep learning studies in forestry, especially with the growing impact of artificial intelligence and big data and the ever-increasing utilization of deep learning methods in this field. Furthermore, it serves as a reference for relevant studies. It should be mentioned that the masks we used were relatively simple, therefore we can expect the deep learning models to have an even greater improvement with higher quality expertise. Our experiments consisted entirely of image classification tasks in this study. The idea of using explanations and expertise to improve deep learning models can also be applied in other tasks such as time-series forecasting; all that is required is to utilize the available XAI and FUL methods, or design new ones. We intend to extend the application scenarios in the future.
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FOOTNOTES

1Sustainable Development Goals: https://sdgs.un.org/goals.

2Clever Hans: https://en.wikipedia.org/wiki/Clever_Hans.

3Root-mean-square error: https://en.wikipedia.org/wiki/Root-mean-square_deviation.

4Cosine similarity: https://en.wikipedia.org/wiki/Cosine_similarity.

5PyTorch: https://pytorch.org/.
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Deriving individual tree crown (ITC) information from light detection and ranging (LiDAR) data is of great significance to forest resource assessment and smart management. After proof-of-concept studies, advanced deep learning methods have been shown to have high efficiency and accuracy in remote sensing data analysis and geoscience problem solving. This study proposes a novel concept for synergetic use of the YOLO-v4 deep learning network based on heightmaps directly generated from airborne LiDAR data for ITC segmentation and a computer graphics algorithm for refinement of the segmentation results involving overlapping tree crowns. This concept overcomes the limitations experienced by existing ITC segmentation methods that use aerial photographs to obtain texture and crown appearance information and commonly encounter interference due to heterogeneous solar illumination intensities or interlacing branches and leaves. Three generative adversarial networks (WGAN, CycleGAN, and SinGAN) were employed to generate synthetic images. These images were coupled with manually labeled training samples to train the network. Three forest plots, namely, a tree nursery, forest landscape and mixed tree plantation, were used to verify the effectiveness of our approach. The results showed that the overall recall of our method for detecting ITCs in the three forest plot types reached 83.6%, with an overall precision of 81.4%. Compared with reference field measurement data, the coefficient of determination R2 was ≥ 79.93% for tree crown width estimation, and the accuracy of our deep learning method was not influenced by the values of key parameters, yielding 3.9% greater accuracy than the traditional watershed method. The results demonstrate an enhancement of tree crown segmentation in the form of a heightmap for different forest plot types using the concept of deep learning, and our method bypasses the visual complications arising from aerial images featuring diverse textures and unordered scanned points with irregular geometrical properties.

Keywords: airborne LiDAR, deep learning, heightmap, individual tree crown segmentation, forest parameter retrieval


INTRODUCTION

Trees play an important role in the functioning of ecosystems by providing a range of ecological services, such as storing carbon dioxide, preventing flooding and desertification, providing forest habitats, and promoting atmospheric circulation (Liu et al., 2017; Zhang et al., 2019). Acquiring individual tree information is beneficial for forest growth assessment and sustainable forest management (Zhou et al., 2020). Constituting the premise for measuring numerous parameters (e.g., the tree position, height, crown width and distribution density), the effective detection of individual trees using various remote sensing technologies has become one of the primary tasks for precision forestry.

With the rapid growth of remote sensing technology, such as aerial photography, oblique photogrammetry and light detection and ranging (LiDAR), remote sensing has been widely utilized in the acquisition of forest information and land cover data. Moreover, a wide variety of methods have been introduced to process different types of remote sensing data in a range of forest conditions, and they can be divided into two categories. The first category is based on image-processing techniques and computer graphics; these techniques can identify and extract individual tree crowns (ITCs) by directly processing aerial images, heightmaps [i.e., digital surface models (DSMs) or canopy height models] and LiDAR point clouds coupled with image segmentation (Zhou et al., 2020) and point cloud clustering algorithms, to accomplish the recognition or classification of individual trees. Examples of methods in the first category are the marker-controlled watershed method (Hu et al., 2014), graph-cut algorithm (Strîmbu and Strîmbu, 2015), simulation of fishing net dragging (Liu et al., 2015), energy function minimization-based approach (Yun et al., 2021), geometrical feature-driven point cloud merging at the super voxel scale (Ramiya et al., 2019) and trunk location as guidance and point density-based feature employment (Mongus and Žalik, 2015).

The second category for ITC segmentation comprises deep learning-based models for processing unmanned aerial vehicle (UAV) images and forest point clouds. Trees are identified by feeding input UAV images (Lei et al., 2022) and point clouds into multiple conceptual layers using deep learning convolutional neural networks (Zhang et al., 2020a) and tuning the training hyperparameters through a gradient descent strategy, leading to the choices of parameters falling within a reasonable range. These optimization objectives have driven numerous synergetic studies using UAV images and deep learning techniques in forest applications, such as the utilization of U-net (Cao and Zhang, 2020) to map forest types in the Atlantic Forest (Wagner et al., 2019), the employment of DeepLab and an attention domain adaptation network for detecting Amazonian and Southeast Asia palms (Ferreira et al., 2020; Zheng et al., 2020), the adoption of Faster-RCNN for tree seedling mapping (Pearse et al., 2020) and the construction of multitask end-to-end optimized deep neural networks (MEON) for oak and pine detection (Weinstein et al., 2020). Moreover, numerous studies have introduced various deep learning models to process forest point clouds, for example, combining PointNet with point cloud voxelization for ITC segmentation (Chen et al., 2021), proposing a pointwise directional deep embedding network for enhancing the boundaries of instance-level trees (Luo et al., 2021), developing a projection strategy for tree point clouds to generate a set of multiperspective views for various tree species and identify boles using two-dimensional (2D) image processing neural networks (Zou et al., 2017; Hamraz et al., 2019), and using PointNet++ for wood-leaf classification and tree species recognition based on terrestrial laser scanning data (Xi et al., 2020).

Despite the many approaches proposed to segment individual trees from UAV images and LiDAR data, each category has its drawbacks and restrictions. The efficacy of methods based on image processing and computer graphics is usually decreased by the different color or texture appearances of tree crowns constituting the forest plots (Gomes et al., 2018), illumination differences between locally radiant and shaded surfaces causing varying brightness levels within ITCs (Zhou et al., 2020), and overlapping ITCs, which weaken the accuracy of treetop detection and tree crown boundary delineation (Yun et al., 2021). In addition, the efficiency of computer graphics algorithms for ITC extraction is always exacerbated by the geometrical complexity of tree crowns characterized by more apices in the crown periphery and certain conjunctions caused by pendulous and locally protruding branches belonging to the adjacent tree crowns (Hu et al., 2014).

The deep learning-based methods for processing forest UAV images (Xie et al., 2022) and LiDAR data (Hu et al., 2020) also encounter similar sensitivity and susceptibility challenges in tree crown recognition caused by the complexity of forest environments (Qian et al., 2021), image-capture angles (Yin et al., 2021) and interferences stemming from local solar radiation (Kattenborn et al., 2019). Furthermore, the predicted bounding boxes produced by common small-target detection networks, e.g., You Only Look Once (YOLO) and Faster Regional-based Convolutional Neural Network (R-CNN), have regular rectangular shapes, making it difficult to detect the anisotropic shapes of tree crowns. On the other hand, the high dimensional and the unstructured nature of three-dimensional (3D) point clouds mapped the geometrical peculiarity of tree crown periphery, which introduces extreme complications for the segmentation task and makes it difficult to implement deep learning networks with high accuracy (Liu et al., 2020). In addition, many adverse factors, such as mutual occlusions throughout the forest (Zhang et al., 2020b), the need for joint mining of local and global semantic features (Luo et al., 2021) and additional post-treatment for the segmentation results yielded by deep learning networks (Zhang et al., 2020c), need to be considered when using artificial intelligence applications in forestry.

In this work, three novel concepts were proposed to address the above restrictions. First, we transformed aerial laser scanning (ALS) data to heightmaps, which are selected as the data source for the deep learning neural networks. Heightmaps are beneficial for ITC segmentation because these maps avoid the interference encountered in forest aerial images due to variations in solar radiation intensity (Zhang et al., 2022) and texture features induced by different phenological periods of target trees (Zhang and Bai, 2020). In addition, the heightmaps preserve morphological characteristics of the upper tree crowns that reflect a tendency of reduction from treetops to all surrounding areas, and these characteristics are used as salient features to enhance the task of tree crown recognition. Second, to complete data augmentation for obtaining for training samples feed to the deep learning neural networks, three advanced generative adversarial networks (GANs), i.e., the cycle-consistent GAN (CycleGAN), the Wasserstein GAN + gradient penalty (WGAN-GP) and an unconditional GAN trained on a single natural image (SinGAN), were employed to generate synthetic heightmaps of tree crown plot to enhance the recognition capabilities and classification accuracy of the YOLO-v4 deep learning neural network (Bochkovskiy et al., 2020). Third, we adopted a mean shift algorithm instead of a K-means clustering algorithm for adaptive determination of the initial centers of the training sample properties and proposed an elliptic paraboloid fitting method to refine the recognition results of the YOLO-v4 network and determine the point cloud affiliation in the intersecting regions between adjacent bounding boxes with the aim of accurately delineating ITC boundaries with overlapping branches or leaves. Finally, the applicability of the proposed frameworks were verified using various forest plot types, and the calculated ITC width was validated by the values obtained from field measurements.



MATERIALS AND METHODS


Study Site and Data Collection

In this study, three different study sites were investigated, i.e., a tree nursery, forest landscape and mixed forest habitat located at the foot of Nanjing’s Purple Mountain (32.07°N, 118.82°W) and Nanjing Forestry University (32.07°N, 118.78°W), Nanjing, in southeastern China. The city of Nanjing is located south of the Qinling–Huaihe Line, China, and has a subtropical monsoon climate. The annual average temperature is 15.7°C, and the average temperatures in the coldest month (January) and the hottest month (July) are −2.1°C and 28.1°C, respectively. The annual precipitation is 1021.3 mm. The first study site is a tree nursery, where sweet osmanthus (Osmanthus fragrans Lour.) and Acer palmatum Thunb. have been planted. The trees are arranged in order with a uniform spacing with a relatively small tree crown and lower heights. The second study site is a forest landscape with 3 species of conifers and 23 species of broad-leaved trees, where many dwarf shrubs grow beneath the forest canopy. The third study site is the mixed tree habitat, where 4 species of conifers and approximately 17 species of broad-leaved trees have been planted. The dominant tree species include China fir (Cunninghamia lanceolata (Lamb.) Hook.) and Metasequoia glyptostroboides Hu & W. C. Cheng.

In October 2019, the Velodyne HDL-32E sensor (Velodyne Lidar, Inc., San Jose, CA, United States) on the DJI FC6310 UAV was used to acquire airborne LiDAR data from the three study sites. The sensor transmits 700,000 laser pulses per second and records the return value of each laser pulse. The horizontal field of view is 360°, and the vertical field of view ranges from +10.67° to –30.67°. The angular resolutions of the sensor are approximately 1.33° (vertical) and 0.16° (horizontal) at 600 revolutions per minute. The beam divergence is approximately 2 mrad with an average footprint diameter of 11 cm. The flight altitude was 60 m with a 15% overlap. In October 2019, aerial photographs of the three study sites were taken using a digital camera mounted on the same UAV flying at a speed of 20 m/s and at an altitude of approximately 100 m.

In October 2019, we collected forest field measurements, including the position, species, height, and crown width of each tree in the field. A Blume-Leiss ALTImeter (Forestry Suppliers, Inc., Jackson, MS, United States) was used to measure tree heights trigonometrically (Sun et al., 2016). The crown lengths of each tree in the north–south (N–S) and east–west (E–W) directions were measured with a tape along the trunk in both perpendicular directions. Coupled with field measurements, we marked the position of each treetop that could be recognized by visual inspection in the aerial photographs. Although a manual measurement approach is inherently subjective, this method is considered to provide a reliable and effective source of information on the tree crown distribution and affords an auxiliary means for verifying our retrieved results. Partial aerial photographs taken from the sample plots provided by Figure 1A the tree nursery, Figure 1B the forest landscape area, and Figure 1C the mixed tree habitat are shown in Figure 1.


[image: image]

FIGURE 1. Partial aerial photographs of the studied forest plots. (A) The tree nursery at the foot of Nanjing’s Purple Mountain and the (B) forest landscape and (C) mixed forest habitat on the campus of Nanjing Forestry University.




Training Samples Comprised of Heightmaps Generated From Point Clouds

We first adopted a Gaussian filter (Xu et al., 2020) to remove noise and outliers from the point cloud data. Then, the point cloud data provided by the airborne LiDAR system were separated into ground points and non-ground points by using cloth simulation filtering (Qi et al., 2016). By orthographically projecting the non-ground point clouds, a planar raster (i.e., heightmap) was generated in the form of a DSM converted from point clouds; the raster comprised uniformly distributed and horizontal square grids (pixels) ci of size d with the assigned elevation value equal to the highest elevation of all scanned tree points within each cell ci. Consequently, we rescaled the range of grid values in the DSM (heightmap) to Liu et al. (2017); i.e., we specified the value of each grid cell as the fraction relative to the maximum height of the current scanned points regarding the study forest plot. Because the average point density was approximately 130 points per square meter and the average point spacing across our studied forest plots was approximately 10 cm, we set the size d of the squared grid cell to 15 cm. This guaranteed at least three scanned points within one grid cell, thereby avoiding empty cells and preserving the detailed morphological features of the target forest canopy. Next, we used LabelImg to manually label 812, 703, and 754 trees (green boxes) in the heightmaps of the tree nursery, forest landscape area, and mixed tree habitat, respectively. Figure 2 shows some manually collected training samples at each of the three study sites.


[image: image]

FIGURE 2. Diagrams showing some of the training samples manually labeled using the LabelImg tool. The tree crowns in the heightmaps were generated from the airborne LiDAR data of (A) the tree nursery, (B) the forest landscape area, and (C) the mixed tree habitat.




Augmenting the Training Data Using Three GAN Variants

Deep learning models always require a large amount of training data to optimize a massive number of parameters if the models are to learn how to extract high-quality features. GANs have made a dramatic leap in modeling the high-dimensional distributions of visual data and have shown remarkable success in synthesizing high-fidelity images and in generating stylized task-oriented training samples without additional manual annotation and device collection.

In this section, to generate visually appealing samples comprising tree crown heightmaps as supplementary training samples, we deliberately selected three advanced GANs, i.e., Cycle-GAN with unpaired image-to-image translation (Zhu et al., 2017), WGAN-GP with improved training (Gulrajani et al., 2017), and SinGAN (Shaham et al., 2019), and we addressed the conceptual differences between them.


Network Structure and Loss Function of Cycle-Consistent Generative Adversarial Networks

For CycleGAN, image-to-image translation is utilized to learn the mapping between the input images and output images using a training set of aligned image pairs. Many tasks, such as style transfer, object transfiguration, season transfer and photo enhancement, can be achieved. Here, we selected two sets of manually annotated images (each set containing 513 individual tree heightmaps) as the paired training data to generate another two sets of synthetic training samples to double the number of training samples. The loss function [image: image] of equation (1) is used to optimize the parameters of the two generators GA→B and GB→A, which transfers one dataset (xA or xB) to a new dataset [GA→B(xA) or GB→A(xB)] under the instructions of the semantic features of another training set (xB or xA). This approach satisfies three criteria: (i) the generator takes its output data as the input data, and it can yield the same result; (ii) the output of the generator can confuse the corresponding discriminator; and (iii) the generator should follow backward cycle consistency, i.e., GB→A(GA→B(xA)) ≈ xA, where || ||1 denotes the 1-norm.

[image: image]

The loss functions [image: image] for two discriminators (i.e., DA and DB), which explore the robust performance to discriminate between real (xA or xB) and fake (GA→B(xA) or GB→A(xB)) samples, are determined as follows.

[image: image]

CycleGAN’s generator network comprises three parts, namely, an encoder, a converter, and a decoder, which are composed of three convolutional layers, nine residual blocks, and two fractionally strided convolutional layers. The network is illustrated in Figure 3A. First, the original input data size is 64×64×3. To increase the contributions of pixels along the borders of the original image, we use a padding function to expand the original data, and the input data size after padding is 70×70×3. After that, the encoder performs three convolutions, and the number of feature maps increases from 3 to 64, then to 128, and finally to 256. In each convolution, the InstanceNorm2d function is used for normalization during the evaluation, and ReLU is an activation function. After the convolutions are finished, the output data size is 16×16×256. As the training progresses deeper, the network uses ResnetBlock to avoid vanishing and exploding gradient problems. Therefore, the generator can achieve better performance because ResnetBlock adds skip connections based on simple forward propagation. However, ResnetBlock does not change the data size, so the output data size after 9 ResnetBlocks is still 16×16×256. Then, the decoder performs 2 deconvolutions, and the data are upsampled in size from 16×16×256 to 64×64×64. Finally, one last padding function and convolution function are used, and the final output data size is 64×64×3. The Tanh activation function is finally applied to make the final data comparable to the original data.
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FIGURE 3. Schematic diagram showing the (A) generator and (B) discriminator of CycleGAN.


In CycleGAN’s discriminator, InstanceNorm2d is used for normalization during evaluation first, and the input data size is 64×64×3. Then, the network performs a convolution that obtains 64 feature maps and compresses the data size to 32×32×64. After that, InstanceNorm2d is added to perform three convolutions such that the number of feature maps increases from 64 to 512. The output data size is 7×7×512, which is also considered the input data size for the next convolution. Finally, after this last convolution, the final output data size is 6×6×1, which is a matrix. Each value in this matrix represents the true possibility of a receptive field in the image corresponding to a patch of the image. Unlike the discriminator networks of previous GANs, which use only one probability to judge the authenticity of the whole generated result, CycleGAN’s discriminator makes a judgment on each small patch. In other words, the discriminator performs a comparison between the real data and input data on 6×6 = 36 patches and normalizes their similarity to a value between 0 and 1. During the training process, CycleGAN calculates the arithmetic mean of this matrix to judge the difference from the real image. The network is illustrated in Figure 3B.

Figure 4 shows the operating principles between two generators and two discriminators in CycleGAN, i.e., GA→B, GB→A, DA, and DB, where the two generators have the same network structure as the discriminators. In the training process, generator GA→B will perform convolutions on input data A to generate GA→B(xA). Then, this generated result will be carried into DB to output a matrix. CycleGAN uses Markovian discriminator, that is, a discriminator makes convolutions to the input data, which are generated by the generator, and maps the input to a patch matrix. This process allows the discriminator to evaluate the results of the generator, and CycleGAN can learn the features of data B. After the network generates GA→B(xA), the result is also carried into GB→A to generate GB→A(GA→B(xA)), which is used to calculate the cycle loss between xA and GB→A(GA→B(xA)). This ensures that the final output bears a similarity to data A rather than only having features of data B. For data B, CycleGAN applies the same operations to achieve the generation of GB→A(xB), which is similar to data B but has the features of data A.
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FIGURE 4. Schematic diagram showing the operating principles between the generator and discriminator of CycleGAN.




Loss Function and Network Structure of Wasserstein Generative Adversarial Networks + Gradient Penalty

Wasserstein generative adversarial networks + gradient penalty uses a 1-Lipschitz constraint coupled with a gradient penalty item to strengthen its discrimination performance. The improved loss functions [image: image] and [image: image] are shown in equations (3) and (4), respectively, where x is real data, z is random array data, D is the discriminator, G(z) denotes the generated fake samples, and mean() represents the computational average of all the elements in the input array. The third item on the right side of equation (3) denotes the gradient penalty item, which consecutively generates samples through linear interpolation between the real and generated data in each iterative step to drive the discriminator toward a better solution. The minimization of equation (4) allows the generator to deceive the discriminator.

[image: image]

WGAN-GP’s generator network contains five parts, which are illustrated in Figure 5A. The first part is a convolutional layer, followed by three deconvolutional layers and finally a simple convolution function. The first four parts each comprise a convolution function (ConvTranspose2d), a normalization function (BatchNorm2d, which is used for normalization during evaluation) and a ReLU activation function layer. All kernels are of size 4×4 with a stride of two except the stride of the first convolution, which is 1. The generator first increases the number of channels from 3 to 100, so the input data size is 11×11×100; after convolution, the size becomes 8×8×1024. Then, the network performs four deconvolutions, and the number of feature maps decreases from 1024 to 128, so the output data size is 64×64×128. Finally, through a simple convolution function, the final output data size is 128×128×3. Finally, a Tanh activation function is used to make the final data comparable to the original data.
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FIGURE 5. Schematic diagram showing the (A) generator and (B) discriminator of WGAN-GP.


The input in the discriminator is the output of the generator, so the input data size is 128×128×3. The discriminator network structure is similar to that of the generator, which has 4 parts, as illustrated in Figure 5B. The first three convolution layers comprise a convolution function, an instance normalization function, and an activation function. After convolution, the data size becomes 16×16×1024. Then, there is a deconvolution function with a stride of 1, and the final output data size is 13×13×1; the final output is not a single probability but a matrix. Similar to CycleGAN, each value in the matrix represents a true possibility of a receptive field in the image. During the training process, WGAN-GP uses the “mean” function to calculate the average value of this matrix to judge the difference from the real image.



Loss Function and Network Structure of SinGAN

SinGAN can learn from a single natural image and contains a pyramid of fully convolutional GANs to capture the internal feature distribution of various scale patches within the image. Moreover, SinGAN can generate high-quality and diverse samples that carry the same visual content as the input image. Three items constitute the loss function of the SinGAN discriminator, which is shown in equation (5). In each iteration step, the fake images yielded by generator G are based on the joint input as zs + xs + 1, where s is the sample scale with a smaller value representing a coarser scale through the upsampling operation and vice versa for larger values, xs + 1 represents an upsampled version of the image from the finer scale s + 1, zs denotes the random noise at scale s, and D is the discriminator. Similar to [image: image] in WGAN, a gradient penalty exists in the discriminator loss function [image: image] that ensures a specific set of input noise maps at the sth scale coupled with the generated image at the coarser scale s + 1 to satisfy the conditions of generating the original images at the sth scale as much as possible. Usually, the input image is transformed into eight scales from coarse to fine, and the generator and discriminator work at each scale to propagate the results to the next (finer) scale with injected random noise to optimize the neural connection weights. Formula (6) shows the loss function of the SinGAN generator, whose aim is to generate real images to confuse the discriminator. Additional noise [image: image] is incorporated with a random noise zs to achieve different style transfers and foreground object texture transfers to match different backgrounds.

[image: image]

In SinGAN’s generator, at each scale s, the input data comprise xs + 1 (an upsampled image that is generated by the previous generator Gs + 1) and corresponding random noise zs. Each generator scale contains five convolution layers, which can be divided into three parts (the head has one convolution, the body has two convolutions, and the tail has one convolution). In the head and body convolutions, the structure is the same, comprising a convolution function (ConvTranspose2d), a normalization function (BatchNorm2d, which is used for normalization during evaluation) and a ReLU activation function layer. In contrast, the tail part contains only a convolution function. However, the parameters of the input and output channels of the convolution change every five scales; we list the parameters of the first five scales in Figure 6A. The generated data xs are the convoluted result added to the input upsampled image xs + 1.
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FIGURE 6. Schematic diagram showing the (A) generator and (B) discriminator of SinGAN.


SinGAN’s discriminator, whose structure is depicted in Figure 6B, has an adversarial goal. The network has the same structure as SinGAN’s generator, which also comprises five convolution layers and is divided into three parts (the head has one convolution, the body has two convolutions, and the tail has one convolution). Moreover, the parameters of the input and output channels of the convolution change every five scales along with the generator.

SinGAN’s network structure is similar to the pyramid structure shown in Figure 7 and is based on the idea of upsampling from coarse to fine. That is, the size of the effective patch decreases from the bottom to the top of the pyramid, and upsampling occurs at each scale. The input data at the coarsest scale are only random noise zs; except at this scale, the generator generated G(zs−1 + xs) through noise zs−1 and upsampled data xs, and the output data will be carried into the discriminator for a comparison with the real data. Similar to that of CycleGAN, SinGAN’s discriminator is also a Markovian discriminator; thus, the output data are a matrix, and each value in this matrix represents the true possibility of a 11×11 receptive field in the image. During the training process, SinGAN calculates the arithmetic mean of this matrix to judge the difference from the real image. From the coarsest scale to the finest scale (from Gs to G0), the discriminator’s receptive field sizes are all 11×11. Because different scales have different input data sizes but the receptive field size is the same, amazing effects are generated. At the coarsest scale, the patch size is 1/2 of the size of the image; thus the GAN network can learn the global structure of the image. As the scale becomes finer, SinGAN can gradually add details that were not generated at the previous scales.
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FIGURE 7. Schematic diagram showing the pyramid structure in SinGAN’s generator and discriminator.





Improved YOLO-v4 Network

As an end-to-end detection system, the entire network structure of YOLO is shown in Figure 8. Different from the original YOLO-v4 network structure, we use the PANet structure on four valid feature layers, which increases the scale compared with the original three scales. This means that we have an extra output feature map. YOLO-v4 utilizes global reasoning for the whole image to predict the relevant information of all the objects, mainly including the prediction of the bounding boxes and corresponding confidence. The YOLO-v4 detection processes are as follows: First, the appropriate bounding box priors are automatically generated by clustering the labeled bounding boxes using K-means clustering, and the number of clusters is set as B, which means that the number of anchor boxes is B. This value guarantees that the model is simple while achieving high recall. Then, the image is input into the YOLO-v4 network for feature extraction, and the feature map with a size of M×M is output. The network predicts bounding boxes for each grid cell of the output feature map and predicts the confidence and location coordinates [image: image] of each bounding box. Then, it constrains the four coordinates to obtain the center coordinates (px, py) and the value of width and height (pw, ph) of the predicted box relative to the image. lx and ly are the confidence scores, which represent the offset of the current cell grid relative to the upper left corner of the image, and [image: image] and [image: image] are the width and height of the anchor boxes, respectively. In formulas (7) and (8), the sigmoid function σ is used to limit x and y in the current grid, which facilitates convergence, and the formulas for calculating the bounding box coordinates are as follows.
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FIGURE 8. Schematic diagram showing the network structure of YOLO for ITC segmentation, where CycleGAN, WGAN-GP, and SinGAN were used for training data argumentation. YOLO was adopted for ITC detection from the heightmaps of the studied forest canopy.


Second, YOLO-v4 obtains the confidence of the predicted boxes by determining whether the center of an object is in each grid cell. If it does not exist, the confidence value is zero; otherwise, the confidence value is the intersection over union (IoU) of the bounding box prior and the ground truth, where IoU is the ratio of their intersection area to their union area. The range of IoU is between 0 and 1, where 0 means that two boxes do not overlap at all and 1 indicates that the two boxes are equal., i.e., [image: image]. For [image: image], we set the threshold to 0.5. If [image: image], the prediction score should be ignored; otherwise, only when the [image: image] value of a bounding box prior and the ground truth are greater than that of any other bounding box prior is the object score of the corresponding predicted box 1.

Finally, YOLO-v4 chooses an independent logical classifier for class prediction. When the method is applied to our dataset, YOLO predicts a 3D tensor for each scale of output, M×M×[3×(4 + 1 + 1)], which represents the four parameter values of prediction, that is, three scales, four coordinates, one object, and one class.

In our experiment, the purpose was to identify ITCs from a whole heightmap, and we expected to find more appropriate anchor boxes through a clustering algorithm in this small target detection problem, which was helpful for improving the average precision and speed of small target detection. In the original YOLO-v4 model, K-means clustering, which is an unsupervised algorithm, is used to obtain the anchor boxes to predict the coordinates of the bounding boxes. K-means aims to partition n observations into B clusters, in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.

At the beginning, K-means obtains the sizes of all the bounding boxes and then randomly selects B cluster centroids, and these cluster centroids have a width [image: image] and height [image: image]. Then, the following process is repeated until convergence: For the number of n bounding boxes in the training dataset, we seek the manual annotation using ImageLabel and obtain a series of bounding box widths as [image: image] and heights as [image: image]. Then, the cluster it should belong to is calculated, and for each cluster μ(μ = 1,…, B), the centroid of the cluster is recalculated. The objective function of K-means is as follows.
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In formula (11), n is the number of sample bounding boxes in the training dataset, B is the number of clusters, [image: image] are the coordinates of the bounding boxes, and [image: image] is the cluster centroid. This formula describes the tightness of samples in the cluster around the mean of the cluster. The similarity of samples in the cluster increases as the value of E decreases. In summary, K-means is a cyclic process of finding a more suitable cluster centroid and assigning samples to the closest cluster centroid until the objective function converges.

As mentioned above, in the original YOLO-v4 clustering algorithm (K-means), distance is the only factor that affects the clustering results; thus, other attributes are not considered. If the cluster contains noise samples or isolated samples that are far from the data sample space, a large fluctuation arises in the calculation of the cluster center. This fluctuation greatly impacts the mean value calculation and even makes the cluster center seriously deviate from the dense area of the cluster sample, resulting in substantially biased results. In addition, K-means needs to specify the number of clusters in advance before processing the data, and the designation of this number is highly subjective. Here, to select more suitable anchor boxes for small target detection, we sought to optimize the clustering algorithm and adopted Mean Shift, which is a non-parametric, feature-space mathematical analysis technique for locating the maximum of a density function. A detailed description of Mean Shift is as follows.

Mean Shift uses kernel density estimation, which is the most popular density estimation method. In our experiment, the anchor boxes have two properties: length and width. For samples in the training dataset, we seek the manual annotation using ImageLabel and obtain a series of bounding boxes with their approximate sizes, i.e., [image: image] and [image: image]. In addition, we initialize a center box [image: image] whose width is [image: image] and whose height is [image: image]. Hence, we implement kernel density estimation in two-dimensional space, and the expression is as follows.
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In formula (12), H is the bandwidth, which is the parameter to be specified, [image: image] is the number of data points in set [image: image], K(X) is the kernel function, [image: image], and [image: image]. [image: image] is a set comprising [image: image] bounding boxes Xi that satisfy formula (13), which indicates that the distances between all the bounding boxes Xi in [image: image] and the center box [image: image] are less than a given threshold ξ. The normalization constant C, which makes the kernel function K(X) integrate to one, is assumed to be strictly positive.
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Different kernel functions K(X) correspond to different transformations of the original sample data. The common profile of the kernel function can be classified into four types: linear kernel, polynomial kernel, radial basis function kernel and sigmoid kernel. The specific mathematical expressions for these types are as follows:
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For our study, bounding boxes only have two features, i.e., width and height. This number of features is relatively small compared to the larger number of features in the training samples. The linear kernel KL(x) employs dot products to optimize the efficiency of resolving the problem, and the sound predictive performance of KL(x) is achieved when the feature number of the samples is larger. However, this is not suitable for our bounding box classification that only includes two features. The computational complexity of the polynomial kernel (Xu et al., 2022) is relatively high, and it may suffer from numerical instability because a detrimental tendency beyond control is prone to occur when γxTx + c < 1, KP(x) trends to zero with increasing d, which is in contrast to the opposite case when γxTx + c > 1, KP(x) tends to infinity. Hence, reasonable parameter assignment for the three parameters of a, c, and d is comparatively not easy. Sigmoid kernel KS(x) is typically suitable for neural networks but is computationally expensive. RBF kernel KR(x) is a popular kernel function (Fan et al., 2022) used in various kernelized learning algorithms, which maps a single vector to a vector of higher dimensionality with the superior classification performance for the larger number of training samples with fewer features, similar to the input data of the bounding box properties.

According to (12) and (14), the kernel density estimation (12) can be rewritten as follows.
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The process of Mean Shift is to calculate the vector [image: image] and then update the position of the center point to make the center of the circle move in the direction of the maximum density in the dataset. The derivative of formula (15) is required to calculate vector [image: image], and the derivative function is shown below.
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Then, if we simplify the equation even further, we can obtain formula (17).
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Only if the second half of formula (17) equals 0 can [image: image]. Therefore, vector [image: image] can be described as follows.
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After obtaining and applying [image: image] to the current center point [image: image], we obtain the new center point [image: image] and repeat the above process. With each iteration, the current center point moves toward the new center point. Finally, [image: image] becomes the new cluster center, which can be described as formula (19).

[image: image]

After several iterations, when the distance between the center point and the point where the gradient of kernel density estimate (12) is zero and less than the threshold ξ, the iteration ends, and we obtain the final cluster center [image: image] to represent the highest-probability density center.

When the first round of iteration ends and the final cluster center [image: image] is calculated, another center box [image: image] is set up from the beginning. If [image: image] is close to [image: image], [image: image] drifts to [image: image], which coincides with [image: image] after the Mean Shift algorithm. In this case, [image: image] cannot be defined as a new highest-probability density center. Only if the distance between [image: image] and [image: image] is relatively far, which means [image: image] is in another density region, will [image: image] drift to a truly new highest-probability density center [image: image]; this means that Mean Shift calculates a new highest-probability density center.

Because of the disadvantages of K-means, noisy samples or isolated samples in the cluster may seriously affect the clustering results, and the number of categories is highly subjective. However, Mean Shift can analyze the information of bounding boxes through [image: image] and [image: image], which are manually annotated, and find the center boxes with the highest-probability density. As a result, Mean Shift can filter out noise samples or isolated samples and identify the number of categories automatically, which can improve the clustering results to provide more appropriate anchor boxes for future detection.



Training Data Augmentation and Testing for Improved YOLO-v4 Network

We utilized the labeled images as training samples to train CycleGAN, WGAN-GP, and SinGAN. The CycleGAN, WGAN-GP, and SinGAN models trained on the augmented data were used to produce additional outputs of the samples, generating 1187, 1326, and 1263 supplementary training samples for the tree nursery, forest landscape area, and mixed tree habitat, respectively. In conjunction with the manually labeled images, all the training samples were brought into the improved YOLO-v4 network to find the appropriate weights of the neural connections. In addition, we extracted nine sample plots from the tree nursery, forest landscape, and mixed tree habitat and manually labeled 59, 84, 333, 65, 45, 82, 96, 76, and 117 trees planted in these nine sample plots as the sample trees for testing.

Before training, we conducted transfer learning based on the pretrained model by using the convolutional weights of the pretrained model trained on the Common Objects in Context (COCO) dataset (Belongie, 2014) to set the initial weights. Moreover, the dimensions (width × height) of the input images (i.e., heightmaps) for the training set were resized to the defaults of416×416. For the training process, we trained the YOLO network for approximately 70,000 iterations. We used a batch size of 64 and a momentum of 0.9 for gradient-based optimizers with a decay of 0.0005. The initial learning rate was set to 0.001 for fast convergence. As the training process proceeded, the final learning rate decreased to 0.0001 for numerical stability. The total training time was approximately 24 h.

The testing process of the YOLO network included three main steps: (1) taking the selected nine sample plots from the three forest plot types as the testing sets and the corresponding heightmaps generated from the scanned points of these sample plots; (2) resizing these heightmaps as 416×416 and bringing them into the YOLO network for feature extraction and target recognition; and (3) analyzing the output feature maps and verifying the predicted bounding boxes of the tree crowns by reference field data.

During testing, three different detection metrics were employed: the number of true positives (TP), which is the actual number of trees that are correctly detected; the number of false positives (FP), which is the number of incorrectly detected (non-existent) trees (that is, the commission error); and the number of false negatives (FN), which is the number of undetected actual trees (that is, the omission error). Here, TP + FP represents the total number of trees detected by our method, whereas the total number of actual trees is expressed as TP + FN.

The detection efficiency of the model is the main factor affecting the test results. To evaluate the performance of our method, this paper selects the precision (p), recall (r), and (F1) score (F1) as the evaluation indexes. Here, p represents the number of trees correctly detected divided by the total number of trees detected by the model; r represents the number of trees correctly detected by the model divided by the actual number of trees, that is, the detection rate; and F1 represents the harmonic mean between p and r (Gao et al., 2020). The closer the values of p, r, and F1 are to 1, the greater the efficiency and the better the performance of the YOLO network. Briefly, p, r, and F1 are defined by the following equations.
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Overlapping Tree Segmentation Using the Fitted Elliptical Paraboloids

After the bounding boxes for all of the tree crowns in the heightmaps are predicted by YOLO, intersecting areas always exist between adjacent bounding boxes, even those placed correctly around many neighboring trees, as shown in Figures 9A,D,G. Hence, the affiliation of the points in the intersecting area to the specific tree crown must be determined. According to the biophysical characteristics of trees, tree crowns usually have approximately regular geometrical shapes and smooth peripheries caused by the transport of nutrients from the roots to distal tips and gravitropism (Duchemin et al., 2018). An elliptic paraboloid, an open surface generated by rotating a parabola about its axis, was adopted here to fit each adjacent tree crown based on the points in the non-intersecting regions of each bounding box. Then, the distances between the points in the intersecting area and the fitted elliptical paraboloids of each adjacent tree crown were taken as a criterion to determine the affiliation of points in the intersecting area, as shown in Figures 9C,F,I.
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FIGURE 9. Results of tree detection by improved YOLO-v4, the elliptic paraboloid fitting of tree crowns, and the segmentation of overlapping trees. As shown in (A,D,G), the white points and green rectangular boxes represent the point cloud of adjacent trees and the bounding boxes, respectively. The paraboloid fitting results of each adjacent tree crown and the point cloud of each tree are shown in (B,E,H). (C,F,I) Are the results of the segmentation of points in the intersecting area based on our method.


Here, we adapted the least squares method (Savitzky and Golay, 1964) to calculate the parameters of the optimal paraboloid surface of the τth tree Sτ based on the points [image: image] in the non-intersecting area of the bounding box predicted by the improved YOLO-v4 network.

According to the geometric features of tree crowns, we set the fitted paraboloid to be open downward, and its vertex was located at the corresponding treetop [image: image] with a and b equal to the half-crown width in the N–S and E–W directions, respectively. The specific formula is defined as follows.
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Then, the least squares method was employed here to seek the best-fitting paraboloid for the points [image: image] by minimizing the sum of the distances between the points and the fitted paraboloid surface, i.e., making the following equation obtain the smallest value.
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In formula (24), ψ represents the total number of points of the τth tree in the non-intersecting area of the bounding box predicted by the YOLO network. To calculate the optimal parameters a and b, which is an unconstrained extremum problem of a binary function with a and b as independent variables, the derivatives of formula (24) with respect to a and b are calculated. The mathematical expressions are as follows.
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Notably, the solution to equation set (25) is not unique. When multiple solutions exist, multiple solutions of function f exist. Here, we choose the values of a and b corresponding to the smallest values as the optimal parameters. After calculating the optimal parameters a and b, the fitted paraboloid surface determined by formula (24) for each tree crown can be drawn. The schematic diagrams are shown in Figures 9B,E,H.

After obtaining the fitted elliptic paraboloids for the adjacent tree crowns, the next task is to calculate the shortest distance [image: image] between the points [image: image] in the intersecting area and Sτ. For this purpose, we sought the points [image: image] on the elliptic paraboloids closest to [image: image] with the shortest distance, i.e., the normal vector of the paraboloid at point [image: image] should be parallel to the vector between [image: image] and [image: image]. Then, we used equation set (26) to calculate the coordinates of [image: image] for each point [image: image] in the intersecting area.
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In the above equation, ⋅ represents the dot product, and the solution, namely, the corresponding [image: image] on the fitted elliptic paraboloid with the shortest distance to [image: image], can be obtained. In a group of several adjacent trees, a point within the intersecting areas of the boundary boxes defined by YOLO can be determined by comparing the shortest distance from the point to each fitting paraboloid, i.e., the smallest magnitude of the distance from the point to the fitted paraboloid of the τth tree corresponding to the affiliation of the point to the τth tree. The segmentation results of the point cloud in the intersecting areas are shown in Figures 9C,F,I.




RESULTS


Evaluation of the You Only Look Once Detection Effect

To verify the feasibility of the optimized clustering approach, we used K-means and Mean Shift to cluster bounding boxes on the same dataset. The dataset contained 9 sample plots belonging to the three forest plot types (812, 703, and 754 trees were manually annotated in the heightmaps of the tree nursery, forest landscape area, and mixed tree habitat, respectively) for a total of 2269 tree samples. Figure 10 shows the clustering results generated by these two clustering algorithms.
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FIGURE 10. Clustering results generated by the (A) K-means clustering algorithm and (B) Mean Shift clustering algorithm. The blue dots represent the cluster centers, and the coordinates are next to these cluster centers, while the x-coordinate is the width and the y-coordinate is the height.


The differences and anchor box detection results after clustering optimization are compared in Table 1. In the table, the average precision is calculated by the IoU of the bounding box prior and the ground truth, which is the ratio of their intersection area to their union area, and the calculation method is described in section “Improved YOLO-v4 Network.” The cluster centers for the sizes of anchor boxes obtained by the Mean Shift algorithm significantly improve the target detection performance, with the detection speed being 2.46 frames per second (FPS) higher than that of the original YOLO-v4 network. In addition, the average detection precision is increased by 1.75%, reaching 91.42%. After demonstrating the effectiveness of our optimization method, a mean shift clustering algorithm was used for ITC detection testing. The testing process and evaluation metrics are presented in Section “Individual TreeCrown segmentation using a deep learning model.”


TABLE 1. Comparison of the average detection precision and FPS between YOLO trained on K-means and YOLO trained on Mean Shift on the same manually annotated ITC dataset (all trained on the overall training samples of the three study sites).
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Results of the Training Process

The training loss curve of the improved YOLO-v4 model is shown in Figure 11A. The loss decreases rapidly in the first 50 epochs and gradually stabilizes after 150 epochs, with a final loss of approximately 0.04. The time and rate of convergence of the loss curve depend mainly on the selection of an appropriate learning rate (Zhang et al., 2020c). At the beginning of training, a higher initial learning rate needs to be set due to the lack of known information. As training progresses, the learning rate must be reduced such that the loss function can converge to the optimal value more smoothly. Our training obtained a small final loss, which shows that the error between the predicted value and the ground-truth value of the network is small and that the model exhibits good performance.
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FIGURE 11. (A) Loss curve and (B) accuracy curve of the improved YOLO-v4 model in the training process.


The training accuracy curve of the improved YOLO-v4 model is shown in Figure 11B. The accuracy increased rapidly and exceeded 80% in the first 50 periods, then it steadily increased until reaching nearly 98% after 200 periods; this indicates that our classifier makes very small prediction errors.



Synthetic Tree Crown Heightmap Generation by CycleGAN, WGAN-GP, and SinGAN

CycleGAN was used to generate synthetic heightmaps of ITCs. We randomly collected two sets of training samples (Train A and Train B, each set containing 513 random individual tree heightmaps from three forest plot types). As each of these heightmaps is unique, stylistic differences exist between these two sets. CycleGAN captures special characteristics from Train B and determines how these characteristics can be translated into Train A, which is in the absence of any paired training examples. As a result, we can generate heightmaps using special learned features from Train B, and the style transfer-generated heightmap results can be used in the YOLO model. The training and generated synthetic tree crown heightmaps are shown in Figure 12.
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FIGURE 12. Diagrams showing some of the training samples and generated samples. We collected two sets of training samples in CycleGAN: Train A and Train B. The purpose was to generate style transfer images that are similar to Train A but have the features of Train B.


To augment the training sets for the YOLO model, we considered generating more “different” heightmaps. WGAN-GP was used to generate more synthetic heightmaps of ITCs and the training dataset containing 1264 random individual tree heightmaps from three forest plot types. The trained parameters of the WGAN-GP models during the training stage were saved every 100 iterations as the number of training iterations increased. Additionally, synthetic images of tree crowns were generated based on the training parameters every 100 iterations and compared with the expected target images. After the generative process of WGAN-GP, we chose 10 sets of training parameter files and the corresponding 10 sets of generated heightmaps (including the 0th iteration). When the generator uses the training parameters at the 100th and 200th iterations (which do not satisfy the loss convergence for the neural network), the generated image textures are completely random and contain much noise. As the training progress continued and the number of iterations reached 300 and 400, the generator learned certain basic features of the real data, and some generated heightmaps already resembled the real data. Then, the quality of the synthetic images was improved by considering additional training iterations. We chose the 1100th and 1900th iterations to show that the evolution results of the generated images looked very realistic and were very close to the expected image. The generated synthetic tree crown heightmaps with an increasing number of training iterations are shown in Figure 13.
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FIGURE 13. Heightmaps generated using WGAN-GP with an increasing number of iterations. At the 0th, 100th, and 200th iterations, the generated data distributions are very different from the real data distributions. However, as the training process continues, the generator can produce heightmaps of tree crowns with the same or nearly the same quality and successfully fool the discriminator in WGAN-GP.


After using CycleGAN and WGAN-GP to generate synthetic heightmaps of ITCs, SinGAN, an unconditional generative model that can be learned from a single natural image, was used to generate synthetic heightmaps of a large area. SinGAN can generate high-resolution images from a forest plot. In total, 47 relatively large heightmap samples containing clear tree crowns were selected from three forest plot types to serve as training datasets for SinGAN. The generator learned an increasing number of characteristics of the training images as training scale increased. After 10 scales, the generated heightmaps had the same aspect ratio as the original image, and three generated samples are shown in Figure 14, revealing that in all these cases, the generated samples depict new realistic structures and configurations of objects while preserving the visual content of the training image. Due to SinGAN’s multiscale pipeline, the structures at all scales, from the global arrangement of big tree crowns to the fine textures of the seedlings, are nicely generated.
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FIGURE 14. SinGAN was used to generate the heightmaps of a forest plot. Diagrams showing the generated synthetic heightmaps of (A) the tree nursery, (B) the forest landscape area, and (C) the mixed tree habitat. Although a portion of the generated image is slightly fuzzy, most of the tree crowns can be visually identified. Thus, these images with the tree crowns in the synthetic heightmaps manually labeled using the LabelImg tool can be used as new training sets.




Individual TreeCrown Segmentation Using a Deep Learning Model

We selected three forest plots from each of the three forest plots for the test set, yielding a total of nine forest plots. In the test set, 476, 192, and 289 sample trees were from the nursery, forest landscape area and mixed tree plantation, respectively. After testing the test set using the small target detection framework of improved YOLO-v4, 432, 166, and 238 trees were detected correctly, respectively, 50, 36, and 55 non-existent tree crowns were detected by mistake, and 66, 38, and 60 trees were missed. The tree crown detection results (green boxes) of improved YOLO-v4 in the test sets of the Figure 15A tree nursery, Figures 15D,G forest landscape, and Figure 15J mixed forest habitat are shown in Figure 15. Figures 15B,E,H,K visually represent the ITC detection test results, and each detected tree is identified by different colors. In addition, we performed elliptic parabolic fitting for each tree, and the results are shown in Figures 15C,F,I,L.
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FIGURE 15. Individual tree crown detection results via our deep learning network for the partial testing set of heightmaps for the (A) nursery, (D,G) forest landscape area, and (J) mixed tree plantation. (B,E,H,K) Correspond to (A,D,G,J), respectively, which intuitively display the ITC detection results for the four study sites. (C,F,I,L) Show the results of elliptic parabolic fitting for each tree in the four plots, corresponding to (A,D,G,J), respectively.


Table 2 lists the ITC detection results for the 9 sample plots belonging to the three forest plot types. The p-values of the nine sample plots ranged from 0.75 to 0.87, and the average value of p for the nursery (0.86) was higher than that for the forest landscape area (0.80) and mixed forest habitat (0.78). Considerable differences in the r values (ranging from 0.75 to 0.85) relative to the omission error were also observed among the nine sample plots. Moreover, compared to the range of F1 values calculated for the forest landscape areas (0.80–0.82) and mixed tree plantations (0.75–0.83), the F1 values of the sample plots of the nursery were all ≥ 0.84.


TABLE 2. Accuracy assessment of ITC detection by our deep learning method for the three forest plot types in the nursery, forest landscape area and mixed tree plantation.
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Although the nursery contained twice as many trees as either the mixed tree plantation or the forest landscape area, the numbers of commission errors and omission errors in the nursery were less than those in the mixed tree plantation and forest landscape area. A reasonable explanation for this situation is that the canopy environments of the forest landscape area and mixed tree plantation are complex due to the high degree of tree species diversity, large variations in tree ages, and different growth statuses of the trees, whereas the trees in the nursery have simple horizontal and vertical structures. Therefore, the performance of the deep learning network in the nursery is better than that in the mixed tree plantation and forest landscape areas. To test this interpretation, we analyzed the comparison between the linear regression models for the predicted canopy size and field measurement data at the three study sites.

First, we transformed the cardinal directions of the heightmaps of the studied forest plots with north at the top and east at the right.

Then, after predicting the width (vertical) and length (horizontal) of the bounding boxes by YOLO on each heightmap and determining the affiliation of the points in the intersecting regions, the crown lengths in the N–S and E–W directions were obtained.

Figure 16 shows the linear regression results based on the canopy lengths in the N–S and E–W directions predicted by our deep learning method and the field measurement data at the three study sites. The linear regression models of the predicted crown widths and field data in the three study sites were analyzed with two statistical indicators: the coefficient of determination R2 and the root-mean-square error (RMSE). The largest R2 (90.91 ± 0.51%) and smallest RMSE (0.36 ± 0.10 m) were achieved in the nursery (Figure 16A plot 1) due to the uniform planting arrangement of small, homogeneous trees. Relatively lower R2 values (87.51 ± 0.75%) and larger RMSEs (0.61 ± 0.01 m) were obtained in the forest landscape area (Figure 16B plot 5) due to the existence of well-designed plants with varying heights, which formed beautiful scenery with a multilayered forest structure. However, certain parts of the shorter tree crowns in the subcanopy layer may be obstructed by neighboring taller trees from a bird’s-eye view. The smallest R2 (84.82 ± 0.41%) and relatively large RMSEs (0.68± 0.05 m) were obtained in the mixed tree plantation (Figure 16C plot 7) due to the anisotropic crown shape and interlacing branches of adjacent trees.
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FIGURE 16. Scatter plots showing the relationship of the predicted crown lengths from improved YOLO-v4 versus the field measurement data in (A) sample plot 1 of the tree nursery, (B) plot 5 of the forest landscape, and (C) plot 7 of the mixed tree plantation, where the red squares represent the crown lengths in the N–S direction and the green squares represent the crown lengths in the E–W direction. The red and green lines are the fitted lines for the N–S direction and E–W direction using least squares regression, respectively.


The linear regression results of canopy lengths in the N–S and E–W directions predicted by the deep learning network for the above three plots indicate that the complexity of the canopy environment affects the prediction accuracy of the deep learning network.




DISCUSSION

By effectively extracting and analyzing the feature information from a large number of training samples, deep learning provides technical assistance for the actualization of intelligent systems in the fields of self-driving cars (Li et al., 2020), target recognition (Jin et al., 2021) and tracking, and automatic voice recognition (Ma et al., 2021). In recent years, methods that combine remote sensing data with deep learning techniques have been increasingly applied to solve problems in forestry, such as individual tree segmentation (Wang et al., 2019), tree species classification (Hamraz et al., 2019), and crown information interpretation (Wu et al., 2020). In this study, the deep learning-based improved YOLO-v4 network combined with a heightmap converted from airborne LiDAR data was first used to detect ITCs in different types of forest plots.


Feasibility of Our Method

Aerial photography provides high-resolution remote sensing images (Song et al., 2021) and is often used to map, manage, and analyze tree distributions (Xu et al., 2019). However, the captured tree crowns consistently exhibit considerable differences in appearance due to varying capture positions between UAV-loaded cameras and the target trees. In addition, solar illumination directions, atmospheric turbidity, weather conditions and the varying phenological periods of tree crowns reduce the certainties of tree crown recognition. Airborne LiDAR facilitates acquisition the vertical structure of the upper forest canopy at multiple scales with variable spot sizes (Phua et al., 2017). Although the development of LiDAR technology has enabled studies via the acquisition of small- to medium-scale regional data, the efficacy is still affected by various factors, e.g., mutually occluded vegetative elements, intermediate and suppressed trees hidden below the upper forest canopy, and the diverse geometrical features of tree crown appearances diminishing the uniform presentation of tree crowns. To overcome the restrictions of aerial photography, we considered using the YOLO deep learning model based on a heightmap directly generated from airborne LiDAR data. When employed in combination with some refinement of this deep learning method and trained by GAN-generated augmented datasets, a high ITC segmentation accuracy can be achieved without external objective factors.

Individual tree crown in the nursery, forest landscape area, and mixed tree plantation environments were detected using our deep learning method with 86.8, 81.4, and 79.9% overall recall, respectively (the data is the overall recall of three plots from each forest plot type, which is not in Table 2), indicating that our method can attain a relatively stable ITC detection rate in different forest environments. The ITC detection rate tends to decrease with increases in the tree species diversity, planting density and canopy structural complexity. Compared with other automated methods (Hu et al., 2014) used to delineate ITCs (72–74% detection rate) in high-density LiDAR data, our deep learning method displayed a pronounced enhancement in its tree crown detection ability. Moreover, compared with a previous study using different airborne remotely sensed data [i.e., Multidetector Electro-Optical Imaging Scanner (MEIS)-II data and IKONOS satellite image data] to identify individual trees (Corresponding et al., 2004), our method has similar or greater accuracy. Since our method exhibited good robustness and scalability in different types of forest plots and achieved relatively high accuracy in the automatic and real-time detection of tree crowns, the proposed method based on a deep learning framework has potentially wide applications in forestry and related fields (Ma et al., 2022).

In this study, the degree of complexity of the forest canopy structure increased from the nursery to the forest landscape area and then to the mixed tree plantation. In an open system, gaps always exist between tree saplings, and the lateral and vertical growth of small trees at the initial growth stage with immature tree crown are rarely obscured by the adjacent tree crowns at roughly equal heights. In addition, the small degree of species diversity, the lack of understory trees in the sample plots and the minimal differences in tree crown shapes also yielded a favorable impact on the testing of trees in the nursery. Therefore, compared with the forest landscape area and mixed tree plantation, our method achieved the highest overall values of the three indexes, namely, p(0.82), r(0.87), and F1 (0.84), for a single study site when assessing the nursery testing samples.

For the various tree species living in well-pruned and maintained landscapes and mixed tree plantations, strong lateral branches with multifoliate clumps usually appear, which causes spurious peaks, with the surrounding area having a declining height and a tendency to be mistakenly detected as an isolated tree crown. Complete crown surfaces of morphological vagueness are difficult to extract with respect to trees with overlapping and interlacing branches as well as blurred crown drip lines such that the number of tree crowns may be overestimated from multiple clumped tree crowns during the detection process of deep learning. In the forest landscape area and mixed tree plantation, omission errors were caused mainly by the understory vegetation and suppressed trees located between adjacent trees forming interlocked tree crowns. During the point cloud data acquisition for the dense forest, only part of the laser pulse can reach the lower layer of the canopy through the forest gaps due to the occlusion caused by the vegetation elements in the emergent and canopy layers, which deteriorates the forest information description from the middle and lower canopy point cloud data (Almeida et al., 2019). Hence, we selected only trees taller than 3 m for analyzing and evaluating the ITC detection efficacy in the forest landscape area and mixed tree plantation.

In addition, the pixel values of a grayscale heightmap range from 0 to 1, corresponding to the z values of point clouds in each grid (pixel). Usually, 0 is the lowest height representing the ground, and 1 is the highest height value coinciding with the treetop of the tallest tree in the plot. If the suppressed trees below the general level of the forest canopy have relatively small heights and exhibit an inconspicuous dark gray color contrasting with the dark color of ground points, they possibly represent indistinct visual texture features and impair the deep learning recognition ability. An image processing strategy for color contrast enhancement, i.e., histogram equalization, is recommended for heightmaps to strengthen the hidden image features of dwarf tree crowns.



Comparison of Detection Results Using Different Methods

A comparative experiment was conducted to explore the performance of our method versus the traditional watershed method (Hu et al., 2014).

The results of the watershed segmentation algorithm and our deep learning approach are presented in Figure 17. In total, 212 trees were detected correctly (solid blue square) in sample plots, whereas 32 non-existent trees were mistakenly detected as trees. In addition, 54 trees, especially sub-canopy trees, were not detected (green hollow dots) when using the watershed segmentation algorithm. Although the watershed segmentation algorithm shows good and relatively stable effects compared to other traditional canopy detection algorithms under different environments, some parameters, i.e., the size and variance of the smoothing template or the threshold for water expansion control, depend upon calibration for specific conditions (Yun et al., 2021). The deep learning method shows better performance in generality and robustness with respect to high tree species diversity and different forest plot types (Chen et al., 2021). The results show that the detection rate of ITCs by the watershed segmentation algorithm is 79.7%, which is 3.9% lower than that of our deep learning network. An extrapolation of these findings is that as tree species diversity and planting density in the sample plots increase, an increase in this gap of tree crown detection accuracy between two methods will appear.
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FIGURE 17. A comparison results of individual tree crown segmentation shown in (A) the tree nursery, (B) the forest landscape area, and (C) the mixed tree habitat using the watershed segmentation algorithm (yellow areas with extracted green boundaries) versus our deep learning algorithm (red boxes). The blue squares represent the correctly detected treetops of tree crowns by watershed segmentation, and the green hollow dots represent the tree crowns missed by watershed segmentation.


In the second experiment, to explore the differences between training the YOLO network on the dataset of manually labeled ITCs and training the network on a dataset enhanced with the GAN-generated synthetic ITCs, we compared the detection performances after testing the improved YOLO-v4 detection model on three forest plot types. As all the network models we experimented with used the same initial weights and hardware conditions, the dataset was the only difference.

Table 3 shows a comparison between the detection results of the YOLO network trained on the manually labeled dataset and those of the YOLO network trained on a dataset enhanced with the GAN-generated synthetic dataset, where the manually labeled dataset consisted of 2269 training sample trees and 340 test sample trees from the three types of forest plots, and the enhanced dataset consisted of 3776 training sample trees and the same 340 test sample trees as the manually labeled dataset. We assessed the detection accuracy and speed of the two YOLO networks with p, r and FPS, as FPS is a common measure for detecting the speed of object detection methods based on deep learning.


TABLE 3. Comparison results between the detection accuracy of YOLO trained on a manually labeled dataset and that of YOLO trained on an augmented GAN-generated synthetic dataset on the same testing samples (all trained on the overall training samples of the three study sites).
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In our experiments, training on the dataset enhanced with the GAN-generated synthetic dataset achieved superior performance, surpassing that achieved by training on manually labeled datasets in terms of both accuracy and speed. In terms of accuracy, the p and r values of the enhanced dataset outperformed those manually labeled by approximately 0.08 and 0.05, respectively. On our test set, the speed of YOLO trained on the enhanced dataset outperformed that of YOLO trained on the manually labeled dataset by 15 FPS.




CONCLUSION

Our results show the effectiveness of the proposed deep learning object detection algorithm based on airborne LiDAR data at identifying ITCs from the heightmaps generated from point cloud data. Coupled with the synthetic training samples generated by CycleGAN, WGAN-GP, and SinGAN to augment the training sets, the deep learning network of the YOLO-v4 model was adopted to detect ITCs and calculate the corresponding crown widths of individual trees from heightmaps. In addition, we optimized the clustering algorithm in the YOLO-v4 network by adopting Mean Shift to replace K-means and proposed a method based on elliptic paraboloid fitting to determine the affiliation of the points in the intersecting regions between adjacent bounding boxes generated by the improved YOLO-v4 network for crown width estimation. The algorithm was validated by the test sets from three different types of forest plots (i.e., a tree nursery, a forest landscape area, and a mixed tree plantation), achieving the successful detection of 86.8, 81.4, and 79.9% of the tree crowns, respectively, in the three different test sets. The tree crown detection accuracy obtained in this study was slightly higher than that reported by previous studies. Therefore, our algorithm can quickly and accurately detect ITCs from various types of forest plots containing multiple tree species. Our method has pioneering potential for the small target detection capacity of deep learning networks to detect ITCs from heightmaps and affords heuristic perspectives guiding the development of deep learning techniques for forest point cloud analysis.
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Weed control has received great attention due to its significant influence on crop yield and food production. Accurate mapping of crop and weed is a prerequisite for the development of an automatic weed management system. In this paper, we propose a weed and crop segmentation method, SemiWeedNet, to accurately identify the weed with varying size in complex environment, where semi-supervised learning is employed to reduce the requirement of a large amount of labelled data. SemiWeedNet takes the labelled and unlabelled images into account when generating a unified semi-supervised architecture based on semantic segmentation model. A multiscale enhancement module is created by integrating the encoded feature with the selective kernel attention, to highlight the significant features of the weed and crop while alleviating the influence of complex background. To address the problem caused by the similarity and overlapping between crop and weed, an online hard example mining (OHEM) is introduced to refine the labelled data training. This forces the model to focus more on pixels that are not easily distinguished, and thus effectively improve the image segmentation. To further exploit the meaningful information of unlabelled data, consistency regularisation is introduced by maintaining the context consistency during training, making the representations robust to the varying environment. Comparative experiments are conducted on a publicly available dataset. The results show the SemiWeedNet outperforms the state-of-the-art methods, and its components have promising potential in improving segmentation.

Keywords: weed mapping, semantic segmentation, semi-supervised learning, precision agriculture, crop recognition


INTRODUCTION

Weeds are unwanted wild plants that grow naturally and spread rapidly, and tend to compete with crops for water, sunlight, fertiliser, soil nutrition, etc. (Hasan et al., 2021). In recent years, weeds are regarded to pose the most threat to crop growth and could have a serious negative impact on crop yield and food production (Harker and O’Donovan, 2013). Therefore, it is essential to deploy resources to monitor the growth of weeds and reduce weeds for healthy crop cultivation. There are two traditional strategies that are used to reduce the influence of weeds: mechanical weed control (e.g., mowing, mulching and tilling) and chemical weed control (i.e., using herbicides; Rakhmatulin et al., 2021). Both strategies have drawbacks. Mechanical weed control might lead to erosion, and the mechanical arm can easily damage the crop and harm beneficial organisms, e.g., earthworm and spiders, in the soil. Current chemical weed control relies on the traditional full-drench spraying without distinguishing between crops and weeds, where most herbicides hit the ground but some of them may drift away (Kudsk and Streibig, 2003). This could result in wastage of large volume of pesticides, high costs and pollution of soil and water.

Due to the increased cost of labour, more attention has been given to health and environmental issues, and the automation of weed control has become an effective solution. Such automation enables weeding with reduced labour costs, where selective spraying techniques are capable of significantly reducing the use of herbicides. The prerequisite of an automatic weed management system is to detect weeds accurately (Liu and Bruch, 2020). Machine vision using field or airborne cameras is an efficient means to accomplish this task. Abouzahir et al. (2021) employed classical hand-drafted descriptor, i.e., HOG to construct visual words, and used a neural network for weed and plant classification. Che’Ya et al. (2021) designed a classification model based on hyperspectral reflectance for recognising three types of weeds. Islam et al. (2021) used different machine learning (ML) methods, i.e., random forest, k-nearest neighbours, and support vector machine, to detect weeds in arial images, and shows the use of random forest achieves the best performance. The above-mentioned methods only focus on image-level classification of weeds.

To better implement the subsequent control of weeds, weed detection needs to locate the position and identify the boundary between crop and weed precisely, i.e., to generate a weed map. To this end, semantic segmentation can be applied to automatically segment the weeds and crop. With the rapid advance of ML and deep learning (DL), semantic segmentation based on ML and DL (Long et al., 2015; Ronneberger et al., 2015; Chen et al., 2017; Zhao et al., 2017) has become more widely used for mapping weeds. Lottes et al. (2017) proposed mapping weeds by including vegetation detection, plant-specific feature extraction and classification using RGB images acquired from a low-cost unmanned aerial vehicle (UAV). Castro et al. (2018) attempted to segment weeds using UAV imagery during the early growth stage of the crops. Alexandridis et al. (2017) designed four detection classifiers to distinguish Silybum marianum from other vegetation, where different types of features, i.e., three spectral bands and texture are extracted for the classifiers. However, traditional machine learning methods only capture low-level hand-crafted features, i.e., shape, texture, colour, etc., which tend to be not robust and lack generalization.

For DL based weed mapping, Sa et al. (2018) collected multispectral and RGB imagery covering 16,550 m2 sugar beet fields using a five-band RedEdge-M and a four-band Sequoia camera. Their method utilises a semantic segmentation model to distinguish the vegetarian from soil and improves its effectiveness via varying channels or their combinations. Compared to only using RGB channel, the model uses nine multispectral channels to achieve the best performance with AUC [i.e., area under the ROC (i.e., Receiver Operating Characteristic) curve of 0.839, 0.863, and 0.782 for background, crop, and weed, respectively]. Huang et al. (2018) applied full convolutional network (FCN) to generate weed distribution maps, where a fully connected conditional random field (CRF) is employed to enhance the spatial details. Experimental results show the method outperforms pixel-based support vector machine (SVM) and the traditional FCN-8 s in terms of mean Intersection-over-Union (IoU) and accuracy. Ramirez et al. (2020) proposed a weed segmentation framework based on DeepLabv3 architecture using an aerial image. They demonstrated that increasing the balance of data and enhancing the spatial information resulted in better performance in terms of AUC and F1-score. Ma et al. (2019) constructed a semantic segmentation method based on FCN to distinguish weed from rice seedlings with promising accuracy in segmenting weed, rice seedlings, and soil background. You et al. (2020) proposed a weed/crop segmentation model based on deep neural network (DNN), which integrates four additional modules, i.e., hybrid dilated convolution and dropblock, universal function approximation block, attention block, and spatial pyramid refined block. The performance of the model on two publicly available datasets is better than the state-of-art segmentation methods. However, all of the above-mentioned methods adopt fully supervised semantic segmentation networks, which require large amount of pixel-wise annotated data and are thus labour intensive. Although data augmentation techniques (i.e., image rotation, cropping, flipping, etc.) are used to alleviate the problem of insufficient training data, the methods still need hundreds of pixel-wise annotated images for training an optimal model. In addition, due to the severe overlapping of weeds and crop in the field, it is not trivial to annotate the weed and crop pixel by pixel.

Compared with collecting annotated data that is time-consuming and labour-intensive, unannotated data are much easier to acquire. In addition, semi-supervised learning can make full use of the rich information in unannotated data, which significantly alleviates the workload of annotating images while retaining accuracy. Therefore, such an approach offers effective solution for mapping crop and weeds. To the best of our knowledge, there are few studies working on semi-supervised weed and crop mapping or classification. Pérez-Ortiz et al. (2015) proposed a weed mapping system using multispectral images acquired from UAV, which involves computing different vegetation indices, and row detection via Hough transform. They used different machine learning paradigms to achieve the best performance. However, their system is not end-to-end, and is not suitable for generalization due to the manually adjusted parameters used. Lottes and Stachniss (2017) proposed an online crop/weed mapping method by integrating vision-based classification and geometry-based classification, achieving a classification performance with an accuracy of greater than 95% in two sugar beet fields. However, these two methods are based on traditional machine learning, which is not end-to-end, and heavily rely on feature extraction and classifier design. This is prone to error and could lead to the poor generalization. Jiang et al. (2020) proposed a model based on graph convolutional network to classify multi-species crops and weeds, by exploiting both labelled and unlabelled image features. Khan et al. (2021) used generative adversarial network to augment the training samples, enhancing the capability in distinguishing crop from weeds in UAV imagery. Nevertheless, both methods only focus on exploiting semi-supervised learning for image-level classification of crop and weeds, not tackling the pixel-wise mapping problem.

Unlike image-level classification, pixel-wise crop/weed segmentation is much more challenging due to two essential characterises exclusively existing in crop and weed field. First, weeds tend to grow disorderly and might spread amongst crop plants, which may lead to overlapping and occlusions. Second, there exists the ambiguity in weed/crop mapping, where it could be difficult to distinguish the crop from the background as they share the similarity in colour and texture. Furthermore, UAV is a popular means for monitoring farmland and mapping the crop and weeds, as they are flexible, cost-saving, easily manipulated and do not affect the fields through soil compaction as ground vehicles do. Therefore, we focus on the weed and crop mapping using UAV imagery, which brings an additional challenge, namely the size of crop and weed is smaller in these images.

In this paper, we aim at exploring the problem of crop and weed mapping using UAV imagery and propose a semi-supervised segmentation framework for segmenting weeds and crop in order to significantly reduce the requirement of manually annotated data. To address the challenges in crop/weed segmentation using semi-supervised learning, the proposed method uses an attention strategy by integrating it to encoded feature from the encoder of the segmentation model to generate the attention enhanced feature. The enhanced feature provides useful information of the targets, i.e., crop and weeds, and highlight the target feature while mitigating the impact of background. To avoid the ambiguity caused by the similarity between crop and weeds, we employ online hard example mining (OHEM) to separate the regions that are easily confused by refining the positive samples with low confidence. In summary, the proposed method automatically segments the weeds, crop and soil (background) accurately, where semi-supervised learning greatly reduces the cost of labour and the training time.

The main contributions of our work are:

1. An efficient semi-supervised semantic segmentation model, specifically for crop and weed mapping using UAV optical imagery. To the best of our knowledge, we are the first to address the challenges exclusively existing in crop/weed mapping based on semi-supervised learning.

2. A multiscale enhanced feature by integrating the selective kernel attention with the encoded features, highlighting the significant features of the target crop and weeds, and further increasing the ability to identify the weed/crop in varying scales in UAV images.

3. OHEM for focusing more on those pixels that not easily distinguishable, effectively reducing inaccurate segmentation caused by the similarity and overlapping between crop and weeds.

The remainder of the paper is structured as follows: The proposed method and dataset are presented in detail in section Proposed Method and Data. Section Results and Discussion discusses the implementation setting, experimental results, and comparative analysis. The conclusions drawn are presented in section Conclusion and Future Work.



PROPOSED METHOD AND DATA

This section provides the details of the proposed method including the encoder, attention module, and the joint loss for supervised and unsupervised learning. The overall framework of the proposed method, SemiWeedNet, is shown in Figure 1. The section also presents the data used in our experiments to evaluate the performance of the proposed method.

[image: Figure 1]

FIGURE 1. Overall framework of the proposed method, SemiWeedNet.



Semi-supervised Method for Crop/Weed Segmentation


DeeplabV3+ Architecture

The DeepLab series network was originally proposed by Chen et al. (2014), which addresses the poor localization characteristic of deep network by integrating feature from the final network layer with a fully connected CRF. The DeepLabV3 network (Chen et al., 2017) incorporates atrous convolution modules and an augmented atrous spatial pyramid pooling (ASPP), discarding the CRF, to enhance the capability of extracting multi-scale information and encoding the global structure information. To locate sharper object boundary, DeepLabv3+ (Chen et al., 2018) as shown in Figure 2 extends DeepLabV3 by integrating an effective decoder to refine the results.

[image: Figure 2]

FIGURE 2. The architecture of DeepLabV3+, where 1 × 1 Conv and 3 × 3 Conv denote the convolution with the kernel size of 1 × 1 and 3 × 3, respectively, Unsample denotes the bilinear upsampling operation, and Concat denotes the concatenation of feature.


In addition, Xception model are employed in DeepLabv3+, where depth-wise separable convolution is applied to replace the convolutional layers in ASPP and decoder. In this paper, we employ DeepLabV3+ as our basic encode-decode framework due to its two competitive advantages: (1) Enabling to depict the multiscale feature that is widely existing in crop/weed maps; and (2) Significantly reducing the computational complexity, which is appropriate for field monitoring.

DeepLabV3+ comprises an encoder and a decoder. The input image for the encoder is extracted by the depth-separable convolutional layers of the different channels in the backbone model. The extracted feature maps are then processed by the ASPP module and the channel attention (CA) module. This is followed by 1 × 1 convolution, where the atrous convolution with an atrous stride of 6, 12, and 18 and the global average pooling are used for stitching. The CA module is then used to fuse the feature maps obtained from the ASPP module, where the 1 × 1 depth separable convolution is used in the CA module to reduce the dimensionality. The final features containing 256 channels, extract rich contextual information and effectively capture high-level semantics.

The feature maps extracted from the encoder are first bilinearly up-sampled by a factor of 4, and simultaneously concatenated with the corresponding low-level features from the backbone with the same spatial resolution. An additional 1 × 1 convolution is applied to the low-level features to decrease the dimensionality of the channel. A 3 × 3 convolution is applied to the features and followed by another simple bilinear up-sampling. The features are then gradually refined to recover spatial information and are used to generate the final segmentation results.



Multiscale Enhancement Module

Although the DeepLabv3+ model aggregates multiscale features, its convolution kernel size is fixed and thus is insufficient for our scenarios due to the high variability of the targets (i.e., crop and weeds) and complex background. Based on our observation, the traditional DeepLabV3+ encoder–decoder module sometimes fails to identify the entire regions of weeds and crop, especially in some small size areas, leading to a highly incorrect segmentation. To solve the problem, we design a multiscale feature enhancement module (MFEM) by integrating the effective attention mechanism to the encoded feature, where Selective Kernel Attention (SKA) is exploited due to its computational efficiency. SKA extracts the different size of the convolutional kernels by combining squeeze-excitation module with multi-scale information, where the features extracted using different kernel size are refined and thus achieve better representation. SKA consists of three parts: Split, Fuse, and Select as illustrated in Figure 3. The Split operator generates multiple paths with various kernel sizes based on different sized receptive fields of neurons. The Fuse part then combines the information of multiple paths to acquire a more comprehensive representation for selection weights. The Select part aggregates the feature maps of kernels with varying size based on the selection weights.

[image: Figure 3]

FIGURE 3. Selective kernel attention enhancement module.


Specifically, given a feature map [image: image], we perform the mapping by applying two convolution operations with the kernel size of 3 and 5 as

[image: image]

where H, W, and C, respectively, denote the height, width, and number of channels for feature maps. [image: image] and [image: image] comprise depthwise convolutions, Batch Normalisation (BN; Ioffe and Szegedy, 2015) and ReLU (Nair and Hinton, 2010) activation.

After the Split part, the Fuse part fuses the two mapped features via element-wise summation, which is capable of better enhancing the global structure information while retaining the local details in crop images. The module consists of four sub-modules: split, fuse, and scale, i.e.,

[image: image]

where the fused feature maps [image: image] combine the feature information both from [image: image] and [image: image]. The feature maps are then embedded in channel-wise statistics [image: image] via global average pooling, where the c-th element of [image: image] is computed by compressing the spatial information of [image: image], i.e.,

[image: image]

To promote the meaningful feature and suppress un-informative one, a simple fully connected (FC) layer is applied to reduce the dimensionality, followed by the BN and ReLU. The resultant feature descriptor is defined as

[image: image]

where [image: image] denotes the BN operation, [image: image] denotes the ReLU function, and [image: image]. We use a reduction ratio r to control the value of d, i.e.,

[image: image]

where [image: image] denotes the minimal value of d.

In the Select part, a soft attention across channels is exploited to adaptively select different spatial scales of information, which is supervised by the feature descriptor z. A softmax operator is applied on the channel-wise digits, i.e.,

[image: image]

where [image: image] and a and b, respectively, denote the soft attention vector for [image: image]and [image: image]. Here, [image: image] is the c-th row of A and [image: image] is the c-th elements of a. Similarly, for [image: image] and [image: image]. The final feature map V is computed via the attention weights on various kernels, i.e.,

[image: image]

where [image: image].

The proposed MFEM effectively achieves multi-scale information existing in crop/weed segmentation by adaptively adjusting the respective field sizes, which significantly improves the performance of segmentation in the field.



Consistency Regularisation for Unsupervised Learning

There are two batches of inputs, [image: image] and [image: image], respectively denoting labelled and unlabelled data. As for the general semantic segmentation, the encoder architecture [image: image] embeds the labelled image in the feature maps [image: image], and the decoder makes predictions [image: image]. The learning process is provided by ground truth labels [image: image] using the standard cross entropy loss [image: image]. With respect to an unlabelled image, we randomly crop two patches [image: image] and [image: image] with an overlapping region [image: image], and then augment [image: image]and [image: image] using low-level augmentation. The two augmented patches are then fed to the encoder model [image: image] to obtain the feature map [image: image] and [image: image], respectively. Following the work in (Chen et al., 2020), the obtained two features are embedded using nonlinear projection as Φ, i.e.,

[image: image]

[image: image]

Accordingly, the features from the overlapping areas in [image: image] and [image: image] are referred as [image: image] and [image: image], respectively, where the [image: image] and [image: image] should remain consistent under different contexts.

To this end, we use a context-ware consistency constraint, i.e., Directional Contrastive (DC) Loss, to enable the features from the overlapping areas to remain consistent with each other. The DC loss is inspired by the contrastive loss, which pulls the positive samples closer while separating the negative samples belonging to other classes. In our case, the features from overlapping locations [image: image] and [image: image] are regarded as a positive pair as they share the same pixels despite under different contexts, and any two features in [image: image] and [image: image] from different locations are regarded as a negative pair. Unlike contrastive loss, the DC loss further exploits a directional alignment for the positive pairs, which effectively avoids the high confident feature from suppressing the low confident one. This is because the prediction with higher confidence tends to be more accurate, and the feature with lower confidence need to be aligned to its higher confident counterpart. The confidence of each feature [image: image] is measured using maximum probability among all classes, i.e., [image: image]. For the t-th unlabelled image, the DC loss [image: image] is computed as

[image: image]

[image: image]

[image: image]

where [image: image] denotes the loss between the features at the two locations [image: image] and [image: image], N is the number of spatial locations of overlapping area, h and w represent the 2-D spatial locations, [image: image] denotes negative counterpart of the feature [image: image] and [image: image] represents the exponential function of the cosine similarity s between two features with a temperature [image: image], i.e., [image: image], and [image: image] denotes the set of negative samples. Since more negative samples result in better performance, a memory bank is used to store the features from the last few batches to acquire more negative samples (Lai et al., 2021). The final loss is then computed by summing the loss of each image, i.e.,

[image: image]

where T denotes the batch size during training.



Loss Function With OHEM Strategy

The joint loss function of the proposed semi-supervised based method comprises two parts: cross entropy loss [image: image]for supervised learning, and consistency constraint loss [image: image] for unsupervised learning, which is defined as

[image: image]

where [image: image] is the hypermeter that balances the supervised loss and the unsupervised loss.

Based on our observation on samples, there are two problems that we need to address. First, the samples of different classes, i.e., crop, weeds and soil are imbalanced, leading to inefficient training. This is because the model may focus more on the samples that can be easily learned and ignore those samples that are difficult to be distinguished, degrading the model performance. Second, the ambiguous boundary of crop and weed due to overlapping and occlusion makes it more difficult for the model to identify the targets. The standard cross entropy loss could not handle these two problems. Thus, we employ OHEM to refine the training of the model, which focuses on those samples, which are difficult for the model to predict during training. The OHEM is first used to filter the input pixels, where pixels that are difficult to predict with a high impact on classification are selected for training in stochastic gradient descent (Shrivastava et al., 2016). Specifically, we modify the loss layer to select the difficult examples, where the loss for all pixels is computed, and is then sorted to select the difficult pixels. The nondifficult pixels are finally set to 0, and hence no gradient updates. The OHEM effectively deals with the problem of difficult samples existing in crop/weed mapping, which lead to better training, and thus increases the performance in segmentation.




Dataset

To evaluate the effectiveness of the proposed semi-supervised learning segmentation method for crop/weed mapping, we use a publicly available dataset WeedMap (Sa et al., 2018) to conduct experiments. This dataset is collected from two sugar fields in Switzerland and Germany using two UAV platforms mounting two multispectral sensors, i.e., RedEdge and Sequoia. The platforms include Orthomosaic and Tile folders which, respectively, generate orthostatic maps and the associated tiles at a fixed size of 480 × 360. There are seven subsets of images denoting the different parts of the fields, where the subsets numbered from 000 to 004 are acquired by RedEdge in Germany, and those numbered from 005 to 007 are acquired by Sequoia in Switzerland. These images are used to generate tile images from an orthostatic map by using a sliding window, where some tiles may contain invalid pixel values. In our experiment, we select the effective tile images that contain no invalid pixels, and only choose the RGB channel as the input of our model. Overall, 289 RGB pixel-wise labelled images are collected from the subfolders of 000 to 004 (as shown in Figure 4). These images are randomly split into training set and testing set in the ratio of 8:2.

[image: Figure 4]

FIGURE 4. Image samples with ground truth mask from WeedMap. Green denotes the crop, Red denotes the weed, and Black denotes the background (soil).





RESULTS AND DISCUSSION

In this section, the implementation details are demonstrated, the segmentation results are compared with state-of-the-art methods qualitatively and quantitatively. This section also presents the ablation study to evaluate the contributions of the various elements of the proposed method.


Implementation Details

DeepLabV3+ is employed as the encoder–decoder network of the proposed method, SemiWeedNet, due to its effectiveness on multi-scale information, where Resnet50 and Resnet101 are used as the backbone. Since other existing state-of-the-art methods adopt Resnet as the backbone, we replace Inception model with the Resnet in our experiment for fair comparison.

The proposed method is implemented using Pytorch toolbox on a workstation with an NVIDIA RTX3080Ti GPU. The input images are resized to 480 × 480 pixels, and then augmented using random flipping. During training, we use SGD optimizer and set the learning rate, weight decay, and momentum to 0.02, 0.0001, and 0.9, respectively. The training batch size is set to 8, including 4 labelled and 4 unlabeled images. The weight [image: image] for unsupervised loss is set to 0.7.

The Intersection-over-Union (IoU) for each class and mean Intersection-over-Union (mIOU) are employed as our evaluation metrics. IoU is also known as the Jaccard Index, and is a statistic indicating the similarity and diversity of samples. In semantic segmentation, IoU denotes the ratio of the intersection of the pixel-wise classification results and the ground truth, to determine the spatial overlap between the prediction and ground truth, i.e.,

[image: image]

where [image: image] denotes the total number of pixels both predicted and labelled as class I, and [image: image] denotes the number of pixels of class i-th predicted to belong to class j, and [image: image] is the total number of pixels of class ith in ground truth segmentation. The mIoU is computed by averaging the IoU of all classes, i.e.,

[image: image]



Performance of SemiWeedNet and Analysis

To evaluate the effectiveness of SemiWeedNet, we made comparisons with state-of-the-art methods including CAC (Lai et al., 2021), ST++ (Yang et al., 2021), Adv-Semi (Hung et al., 2018) and cycleGAN (Zhu et al., 2017). We implemented these methods within a unified framework following their official code, where the same base backbone (i.e., Resnet) is used and the same data lists are used for training and testing. We compared the proposed method under the setting with various labelled data proportions, i.e., 2/8, 3/7, 5/5 and full labelled data. In the full data setting, images fed to the unsupervised branch are simply collected from the labelled set.

The segmentation performance of individual class using our method under various data proportions are shown in Figure 5 (using Resnet50 backbone) and Figure 6 (using Resnet101 backbone). We used only 20% labelled images incorporating unlabelled images and achieve a competitive performance with training using full labelled data, which significantly reduces the demand for annotating images.

[image: Figure 5]

FIGURE 5. Performance of the proposed method using Resnet 50 under different labelled data proportions.


[image: Figure 6]

FIGURE 6. Performance of the proposed method using Resnet 101 under different labelled data proportions.


In addition, we conducted experiments to compare the proposed method with other methods, and the results are shown in Table 1. The table shows that the segmentation result of proposed method outperforms other methods by a large margin on all data proportions. This is due to the facts that the proposed method uses the effective attention module to enhance the ability of capture the weed and crop with different scales. Furthermore, the online hard sample mining addresses the problem of overlapping between crop and weed. Both Adv-Semi and cycleGAN suffer from unstable training due to the use of adversarial learning, achieving unsatisfactory performances in our scenarios. ST++ and CAC use pseudo label based self-training method, which might lead to incorrect labeling especially in images with overlap and occlusion.



TABLE 1. Comparison with the baseline (SupOnly, i.e., using only supervised loss) and other state-of-the-art on WeedMap dataset with 2/8, 3/7, 5/5, and full labelled data.
[image: Table1]

We also present a visual comparison with other state-of-the-art methods in Figure 7. The figure shows that the proposed method is the only method which effectively identifies the crop and weeds with small size, and the results are almost consistent with the ground truth.

[image: Figure 7]

FIGURE 7. Visual comparison between our method with state-of-the-art methods and SupOnly.




Performance of SemiWeedNet Variants and Analysis

To thoroughly assess the performance of SemiWeedNet, we conducted an ablation study to illustrate the contribution of its key modules, and the results are shown in Table 2. We used DeepLabV3+ with Resnet101 as the segmentation network, and the baseline method, i.e., the model trained without using SKA enhancement and OHEM. We performed four sets of experiments: (1) Using baseline method; (2) Using SKA enhanced features; (3) Using OHEM; and (4) Using SemiWeedNet. Table 2 shows that SemiWeedNet yields a constant improvement under different data proportions, where both SKA enhancement and using OHEM have generally improved the performance for segmenting crop and weeds using UAV imagery. This verifies the effectiveness of the attention mechanism and hard sample mining strategy.



TABLE 2. Ablation study under different labelled data proportion.
[image: Table2]




CONCLUSION AND FUTURE WORK

In this paper, we focus on addressing the problem of automatic mapping crop and weeds using UAV acquired images from the real field environment, and propose a semi-supervised based semantic segmentation method, which significantly reduces the workload of manual annotations. Due to the complexity of the application environment, the multiscale enhancement module is designed by intergrading an effective attention mechanism to the encoded features to highlight the useful features of the targets, i.e., crop and weeds, while mitigating the influence of the background. OHEM is employed in the training of the model, which aims at addressing the similarity and overlapping of crop and weeds which resulted in poor recognition performance. An auxiliary consistency constraint is further introduced to fully exploit the information of the large amount of unlabelled images, to extract the meaningful and discriminative features for crop and weed segmentation. The performance of the proposed method is evaluated using WeedMap dataset, which demonstrates the superiority of our method compared with state-of-art methods and also shows the promising potential of our deigned modules. In the future, interesting possible extensions of this work could be designing a lightweight model by reducing the parameters and increasing the inference speed.
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Plant disease visualization simulation belongs to an important research area at the intersection of computer application technology and plant pathology. However, due to the variety of plant diseases and their complex causes, how to achieve realistic, flexible, and universal plant disease simulation is still a problem to be explored in depth. Based on the principles of plant disease prediction, a time-varying generic model of diseases affected by common environmental factors was established, and interactive environmental parameters such as temperature, humidity, and time were set to express the plant disease spread and color change processes through a unified calculation. Using the apparent symptoms as the basis for plant disease classification, simulation algorithms for different symptom types were propose. The composition of disease spots was deconstructed from a computer simulation perspective, and the simulation of plant diseases with symptoms such as discoloration, powdery mildew, ring pattern, rust spot, and scatter was realized based on the combined application of visualization techniques such as image processing, noise optimization and texture synthesis. To verify the effectiveness of the algorithm, a simulation similarity test method based on deep learning was proposed to test the similarity with the recognition accuracy of symptom types, and the overall accuracy reaches 87%. The experimental results showed that the algorithm in this paper can realistically and effectively simulate five common plant disease forms. It provided a useful reference for the popularization of plant disease knowledge and visualization teaching, and also had certain research value and application value in the fields of film and television advertising, games, and entertainment.
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plant disease simulation, symptom classification, time-varying model, deep learning, similarity test


Introduction

Dynamic visualization of plant diseases (Dickinson, 2020) can not only promote the development of agricultural informatics, but also has important implications for the study of plant phenomics (Pieruschka and Schurr, 2019). At a time of recurring epidemics, it can provide an innovative approach to the traditional study of plant diseases and can add interest to teaching in agriculture and forestry. It also exists in increasing demand in the film and television advertising and game entertainment industries, and can be applied to virtual space construction, virtual reality (VR) interaction, and game specific scene modeling. Combining the interrelationship between disease and environment in plant disease ecology and the description of plant disease pathogenesis patterns in epidemiology, one of the hot issues today is the realization of reasonable and realistic plant disease simulations.

Plant disease visualization simulation includes the simulation of characteristics such as disease spot distribution, color, geometry and textural properties. Kider et al. (2011) developed a fungal-bacterial reaction-diffusion model to parameterize the physical properties involved in fruit decay as a way to simulate the aging and decay process of fruits. Based on this, Fan et al. (2013) used an improved reaction-diffusion model to model the appearance of fruit ring-spot decay. Miao et al. (2014) modeled the spatial movement of cucumber powdery mildew spots using the cellular texture proposed by Worley (1996) to model the mildew layer formed by powdery mildew using Shell rendering, taking the distribution, movement mode, and final morphology of the spots as three spatial information of the spots. Xu et al. (2017) proposed a time-varying appearance model by extracting information on the apparent characteristics of the disease from real disease images and reasonably extrapolating the disease spot infestation process, which was applied to the apparent modeling of plant diseases. Liu and Fan (2015) proposed a modified plasto-spring model combined with cell mechanics to implement simulation modeling of fruit sunburn disease. Wu et al. (2018) proposed a 3D visualization model for controlling the fruit decay process using global decay parameters and decay resistance parameters, which can flexibly and quickly perform each point on the fruit model manipulated to complete the simulation of fruit shape deformation and decay appearance. Leaf discoloration or wilting is also a manifestation symptom of common plant diseases. Tang et al. (2013) implemented leaf deformation based on a modified mass-spring model, which regarded the color change as a sequence of continuous discrete states, and combined these two parts based on a Markov chain model to realize the leaf change process under different environmental parameter settings. Jeong et al. (2013) represented the leaf as a triangular-Voronoi bilayer structure and simulated the complex curl and fold of the leaf by uneven contraction. As can be seen from the above, there are abundant studies related to plant disease simulation, but most of the proposed simulation algorithms are aimed at a particular plant disease symptom to analyze its apparent morphological characteristics to realize the simulation, lacking the exploration of common problems existing in different plant diseases, with complicated methods and large constraints.

Plant morphology can reflect the gene expression, reproductive growth and resource acquisition of plants. The implementation of morphological modeling of plants using computer languages, as opposed to the graphical information of plants kept in the form of pictures, is also an important reference for this paper. Geometric topology-based modeling is the closest modeling approach to plant morphological structure. Chen et al. (2018) extracted modeling constraint rules and improved the parametric L system to generate complex 3D models of trees based on tree observation data and forestry theory knowledge. Wen et al. (2021) defined the mathematical representation of 3D plant nodes, specified the conversion method between its skeleton model and network model, and completed the plant population of different maize varieties by assembling 3D plant nodes 3D modeling. Such methods generate models with a strong sense of realism, but require professionals to provide specific plant growth rules and parameters that can describe plant morphology, which is more difficult for non-agroforestry professional users. Sketch-based modeling is a relatively flexible and interactive approach. Liu et al. (2019) built a system for interactive modeling of trees in VR based on 3D gestures with the help of a head-mounted display and a 6-DOF motion controller for interaction. Zhang et al. (2021) defined 3D sketches drawn by users in VR as an envelope of tree leaves and trunks that can automatically generate a complete 3D-tree model, and it can be edited twice. Such methods support direct user control over the generation of plant forms, but there are trade-offs to be made in terms of interactivity, usability, and fine-grained control over plant forms. Modeling based on measurement data mainly includes image-based and point cloud-based modeling. Chen et al. (2017) proposed a hierarchical denoising method based on multi-viewpoint image sequences to build 3D models of crops in order to improve the accuracy of 3D point cloud reconstruction. Liu et al. (2021) used conditional generative adversarial networks to predict the 3D skeleton of trees from individual images and 2D contours drawn by users, respectively. A tree model was generated using procedural modeling techniques. Such methods often face problems such as expensive collection equipment and cumbersome data processing. Curvilinear surface-based plant morphology modeling can better establish the connection between morphological structure and physiological function. Alsweis et al. (2017) extracted image contours using a curvature-scale spatial angle detection algorithm and proposed a procedural biologically motivated method to model leaf vein morphology at different levels. Isokane et al. (2018) used Bayesian expansion to infer plant branching probabilities and proposed a method to observe and infer the 3D plant branching structure hidden beneath the leaves from multiple perspectives. Such methods need to ensure smooth and continuous boundary, complicated operation and low efficiency of the algorithm. In general, the above approaches to modeling plant morphology have mainly focused on the organ structure and growth changes of the plant itself in a healthy state, while modeling the morphology of plants affected by disease infestation is lacking.

The phenomena of discoloration, aging, and corrosion occurring on the surface of an object are to some extent common to the different disease symptoms on the plant epidermis due to disease infestation, so the research on texture simulation can provide effective reference for the simulation of plant diseases. Zhang et al. (2014) extracted the texture features of real rust spot pictures, which can be selected and set texture weights when drawing the model parameters to achieve texture blending and obtain different states of rust simulation. Kamata et al. (2014) considered the factors of surface geometric features (convexity, occlusion, orientation, and location) of metals and their anticorrosive coating peeling areas for corrosion calculations to simulate corrosion phenomena in peeling areas. Bellini et al. (2016) calculated the estimated age map of weathering phenomena in a texture of a given input image based on the prevalence of plaque-like patches in that image, generated a complete weathering texture and simulate the de-weathering and weathering processes. Zhang et al. (2018) proposed a first-order quasi-static cracking node method (CNM) to simulate cracking in a 3D surface model and established a new stress and energy combined cracking criterion to deal with crack generation and extension. Munoz-Pandiella et al. (2018) proposed a technique based on a fast physics-inspired method that Ishitobi et al. (2020) used a triangular grid to simulate the weathering of a rust-proof coated metal surface after mechanical deterioration in three steps based on fundamental mechanics: “separation-splitting-exfoliation.” In texture representation and synthesis, Guingo et al. (2017) propose a two-layer representation of textures, with a noise layer capturing fine Gaussian patterns and a structure layer capturing non-Gaussian patterns and structures, synchronizing the two layers by a set of masks to make them consistent. Cavalier et al. (2019) propose a method based on local control of speckle noise by controlling the pulse distribution and a spatially defined kernel to create the desired texture appearance in a user-interactive manner. Due to the essential difference between the object of application and the principle of texture generation, a generation algorithm suitable for plant disease apparent texture needs to be explored on the basis of the reference.

In summary, it is of high research and application value to realize a plant disease visualization simulation with high realism, high universality and stable operation. In this paper, we deconstruct and analyze five common and distinctive disease symptom patterns in plant diseases, and propose a time-varying generic model of plant disease without violating the theory of plant pathology to show the dynamic process of plant disease infestation under different environmental conditions. Using disease symptoms as the basis for plant disease classification, we propose simulation algorithms corresponding to five common disease symptoms respectively, and realize visual simulation of different types of multiple plant diseases. Deep learning is used to check the similarity of simulation results in terms of the accuracy of symptom type recognition.



Algorithms for plant disease simulation


Time-varying generalized model for plant diseases

The infected host plant, the pathogenic agent and the environmental conditions conducive to disease development are known as “the disease triangle” (Scholthof, 2007). The occurrence of disease is the result of the fulfillment of these three necessary conditions. Therefore, the external environment in which the plant is located directly influences the growth of the plant and the spread of the disease. Meteorological factors are most closely related to the occurrence and prevalence of plant diseases, mainly including temperature, humidity, rainfall, light, wind, etc. In agroforestry research, data recording and analysis of environmental and plant diseases enable monitoring and prediction of plant disease development (Moyer et al., 2016; Shang et al., 2018; Chappell et al., 2020). The time-varying generic model is established with the principles of plant disease prediction as the main theoretical basis, and they are the three principles of continuity, analogy, and relevance. Due to professional and equipment limitations and lack of accurate meteorological measurement data, this paper combines the description of the process of different plant disease epidemics, ignores the influence of other factors, and assumes that the acceleration of the actual spread of disease spots is mainly influenced by two conditions: atmospheric temperature and humidity. Within the scope of the existence of unidirectional effects of temperature and humidity on phytophthora, a time-varying generic model is developed to represent the common relationship between different plant diseases under the influence of environmental conditions.

For any plant disease, define the current spot morphology as State, expressed as Equation (1):

[image: image]

where M refers to M1, M2, M3, M4, and M5 in sequence for the disease symptom types described in the text in the actual code operations, denoted as variable parameters controlling the extent (size or number) of disease spot spread in the simulation algorithm. It will be described in detail in specific sections. C denotes the color component matrix of the disease spots.

In this paper, V denotes the rate of disease diffusion, a denotes the acceleration of disease spot diffusion, and t denotes the diffusion time. To simplify the model and ignore the influence of other factors, the actual acceleration of disease spot diffusion is assumed to be influenced by two conditions: atmospheric temperature and humidity, and a quantitative relationship of uniform form is established in the range where temperature and humidity play a unidirectional role on plant diseases. Tan (1991) had proposed the Richards function as a general model to simulate the temporal dynamics of plant disease epidemics, and through detailed derivation, proved that it can reflect the epidemiological pattern of many plant diseases. Based on this theoretical formula, the following definition is made in this paper, as shown in Equations (2–4):
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where m is the shape parameter of the growth curve, reflecting the type of disease growth function. α and β are the influence coefficients of temperature and humidity on the disease, respectively, and the corresponding values of α and β are different for different plant diseases. T denotes temperature (°C) and Q denotes relative atmospheric humidity (%). ε is the value of random error caused by other factors on acceleration, which is neglected in the actual operation. Mmax is the maximum value of M.

For the color of the disease spot C, in order to make the color change process tend to be smooth, this paper uses the key frame linear interpolation method for simulation, and the color is updated once for each rendering of the screen. The color value in the most severe state is Cmax, and the initial spot color value is Cmin, then the color value C at time t is shown in Equation (5):

[image: image]

where tmax denotes the maximum value of the diffusion time.



Types of symptoms with continuous area changes


Discoloration symptom simulation

Discoloration refers to a change in color of the diseased plant. In this section, Ginkgo yellows disease is selected for the study to simulate the discoloration symptoms.

The leaf yellowing shows a gradual process from green to yellow. As shown in Figure 1B, the grayscale remapping transformation is represented by a right-angle coordinate system, with the x-axis being the grayscale value before mapping and the y-axis being the grayscale value after mapping. In order to represent the color change process more richly, after normalization, the initial ginkgo grayscale gradient map (Figure 1A) is grayscale remapped. Three key points[Key1(x1, y1), Key2(x2, y2), Key3(x3, y3)] divide the whole process into three processing segments, and the default starting coordinates of the first segment are (0, 0), as shown in Equation (6):

[image: image]

where x1, y1, x2, y2, x3, y3 are the exact values in practical application to determine the mapping function of each segment. Figure 1C shows the grayscale gradient after the three-stage mapping, where the coordinates of Key1, Key2, and Key3 are taken as (0.43, 0.14), (0.76, 0.60) and (0.94, 1.0), respectively, and the rendering results are shown in Figure 1D.


[image: image]

FIGURE 1
Schematic diagram of ginkgo yellows simulation. (A) Initial grayscale gradient map, (B) segmented grayscale conversion, (C) grayscale map after grayscale conversion, (D) rendering result.


Keeping the vertical coordinates unchanged, the horizontal coordinates of Key1 and Key2 are dynamically assigned from large to small, and the amount of change is M1. The calculation of the grayscale mask image for generating uniformly discolored ginkgo yellowing disease is shown by Equation (7):

[image: image]

where (x, y) denotes the position of the pixel point. All image calculation formulas are performed simultaneously for each pixel point in the image, which essentially indicates the calculation of the value of each pixel point and is not repeated below. I1(x, y) denotes the image after segmented gray linear transformation, I0(x, y) denotes the initial gray gradient image, and Slope is the slope of the line between the key points, which takes the value of 1.4.



Powdery mildew symptom simulation

Powdery mildew symptom is characterized by the appearance of powdery or moldy material visible to the naked eye on the surface of the disease. In this paper, we take cucumber powdery mildew as the research object, use Worley noise to control the location of the occurrence of the disease spot and the geometry of the spot itself, and use Perlin noise (Perlin, 1985) to simulate the powdery mildew layer formed by the disease spot block to simulate the powdery mildew symptom.

The texture edges of the Worley noise-like Voronoi map are clearly straight lines, so further transformations are needed. First, the Unity Shader is used to fill the noise after grayscale processing, so that the grayscale of each cell is randomized, and then blurred, and finally the threshold is set to binarize the image, so that the grayscale map can describe the shape of the lesion. After trial and error, a threshold value of 0.71 worked best. The process is shown in Figure 2A.
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FIGURE 2
Schematic diagram of cucumber powdery mildew simulation. (A) Transformation of Worley noise, (B) Perlin noise superimposition, (C) generation of powdery mildew spot texture.


In order to reflect the granularity characteristics of the spots, the Perlin noise with different parameters is superimposed to generate fractal noise to simulate the effect of powdery mildew. It can be adjusted by changing the frequency and amplitude of the two parameters. Users can choose the number of superimpositions according to the actual simulation needs, and the generated Perlin noise function is shown in Equation (8):

[image: image]

where Scale() is the two-dimensional noise range, n is the number of noise functions superimposed, Noise() is the Perlin noise function. In this paper, we take n as 3, and the simulated noise effect after superposition is shown in Figure 2B.

Combining the above steps, Ahpha blending of the two in the Unity Shader generates a grayscale map of the spot texture of cucumber powdery mildew, which is I2(x, y), expressed by Equations (9, 10):

[image: image]
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where Iworley(x, y) is the grayscale image generated by Worley noise and Iperlin(x, y) is the grayscale image generated by Perlin noise. After color mapping, the simulation result is rendered on the model, as shown in Figure 2C. The equal scale deflation of the crystals in Worley noise can control the size of the lesions. For some cells that are already small, the cells are scaled to a certain level and the small cells will disappear. Therefore, the cell is dynamically deflated from large to small to simulate the dynamic process of the spot from nothing to something, from small to large. The grayscale mapping representing the disease spots is updated in real time. The amount of deflation change is M2, as shown in Equation (11):

[image: image]

where Noisew() denotes the function that can deflate the cell size in noise and Cell denotes the cell in Worley noise.




Types of symptoms of quantitative changes


Ring pattern symptom simulation

Ring pattern symptom is characterized by ring spot pattern. Initially, the plant surface produces brown, round, water-stained spots, which gradually form concentric whorls of varying shades of color as the spots spread. In this paper, we take apple ring rot as the specific object of study and describe the simulation of ring pattern symptom.

In this paper, the entire spot is split into two parts, the initial water-stained spot and the concentric whorl, and the generated gray-scale image of the spot morphology, which is I3(x, y), is expressed as Equation (12):

[image: image]

where IS(x, y) is represented as a grayscale image of water-stained spots and IY(x, y) is represented as a grayscale image of concentric whorls.

It is reasonably assumed that the small water-stained spots initially produced by the onset of disease determine the overall size, color basis, and outermost morphology of the spots as they spread and amplify. This part is disassembled step by step, and the regular circle is randomly perturbed by using Gaussian noise. Finally, the simulation results of this part are obtained by combining image operations, and the specific process steps are as follows.


(1)Four regular circular grayscale maps are generated in turn, with size satisfying Circle1 > Circle2 > Circle3 > Circle4. Shape1 and Shape4 are obtained by preprocessing Circle1 and Circle4. The result is shown in Figures 3A,B. Circle2 and Circle3 are perturbed by Gaussian twice, and the result after the first perturbation is subtracted from the result after the second perturbation to obtain Shape2 and Shape3. The result is shown in Figures 3C,D.

(2)The shape obtained in the above step is subtracted three times in turn, and the transparency of the result is adjusted to facilitate the subsequent superimposition of the whorl part to obtain the shape of the initial water-stained spots, as shown in Figure 4.


[image: image]

FIGURE 3
Pre-processing of shapes. (A) Generation of Shape1, (B) generation of Shape4, (C) generation of Shape2, (D) generation of Shape3.
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FIGURE 4
Generation of initial water stain-like spot.




From a microscopic point of view, whorls are seen as formed by colonies in the process of continuous growth movement and cessation of aggregation. In this paper, each circle of the whorl from deep to shallow is regarded as a layer-by-layer radial gradient mapping that can be increased with time. The amount of change in the overall deflation of the spot shape is M3, and the current number of circles is determined by rounding the value of M3. Then the gray-scale image generation of the water-stained spot part is calculated as shown in Equations (13, 14):

[image: image]
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where Shape denotes the initial water-stained spot, ShapeS denotes the water-stained spot portion after deflation, and Image() denotes a function that converts the input into an image format of the same size as the plant texture mapping.

The grayscale image generation for the concentric whorl section is calculated as shown in Equations (15, 16):

[image: image]
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where Rand() is the random function for perturbation, GradientMap() is the gradient mapping function from 0 to 255, r0 is the radius of the initial circle, and NTurns is the value of M3 rounded to represent the number of whorl circles. A random function is added to perturb the regular concentric whorl pattern (Figure 5A), which is closer to the real one. The new texture mapping map generated at each moment is continuously stored and updated. The mapping map of the initial water-stained spots after superimposed diffusion (Figure 5B) is rendered to obtain the results of apple whorl disease, as shown in Figure 5C.
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FIGURE 5
Schematic diagram of cucumber powdery mildew simulation. (A) Concentric circle map after random disturbance, (B) map after superposition of initial lesion, (C) rendering result.




Rust spot symptom simulation

Rust spot symptom is characterized by the appearance of different shaped spots on the plant surface formed by aggregations of small particles of varying sizes and distinctive projections. The rust spot symptom is simulated using wheat stripe rust as a specific study object.

Based on the characteristics of wheat stripe rust in parallel strips, this paper uses mask mapping to mark the areas affected by wheat stripe rust. The white color is used to mark the areas where stripe rust develops, and the areas where it does not develop are marked in black. The corresponding mask map is shown in Figure 6A.
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FIGURE 6
Schematic diagram of wheat stripe rust simulation. (A) Mask map, (B) particulate matter, (C) detail picture after bump treatment, (D) rendering result.


The generated spore mounds are viewed as consisting of a dense distribution of raised granules. In this paper, this granularity is represented by drawing a near-elliptical shape in two dimensions that can be used for gradient mapping, and the results after different color mapping are shown in Figure 6B. A number of granular points (the maximum number is 1,000*1,000) with 2 × 2 shape pixels are set, and the position distribution of the granules is randomly perturbed using a Gaussian random function.

In this paper, we use a normal map to simulate the bump of rust particles. When the type of normal texture is set to Normal map in Unity, the built-in function UnpackNormal can be used to properly sample the normal texture and extract the normal information by adjusting the bump level. The result is obtained by applying it to the Surface Shader for output. The detail is shown in Figure 6C. The rendering result is shown in Figure 6D.

In this paper, based on the description of the rust disease process, Unity Shader is used to update the mask mapping in real time based on dynamic color scale adjustment. This is able to simulate the dynamic process of disease spot from nothing to something and from sparse to dense in the actual rendering.

For grayscale images, the algorithm for input color scale adjustment is to first calculate the difference Diff between the white field threshold threHigh and the black field threshold threShadow. Then, the algorithm traverses each pixel in the mask mapping and calculates the difference GrayDiff between the input gray value Gray and threShadow for each pixel. If the value of GrayDiff is less than or equal to 0, the adjusted pixel gray value Gray’ is 0. Otherwise, the adjusted gray value is obtained by calculating the power of the inverse of the Midtone with the ratio of GrayDiff to Diff as the base and multiplying by 255, as shown in Equations (17–20).
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where Midtone0 is denoted as the initial midtone value and M4 is the amount of change. After the above adjustment, the grayscale image of the input color scale adjusted by the input color scale Iin(x, y) is obtained. Then, the ratio coefficients of the deviation of the white field threshold outHigh and the black field threshold outShadow and 255 in the output color scale are calculated. After a series of calculations, the color-adjusted grayscale image is obtained as the updated mask mapping, which is I4(x, y), as shown in Equation (21).
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In this paper, the value of threShadow is 86 and threHigh is 255; the value of outShadow is 0 and outHigh is 255. The dynamic adjustment of the color scale is done by dynamically and linearly adjusting the middle tone value M4 for real-time rendering to simulate the change process of wheat stripe rust.



Scatter symptom simulation

Scatter symptom is characterized by the natural distribution of the spots on the plant surface, mostly scattered, rarely in patches, with a relatively smooth surface. In this paper, we take rose black spot as the specific object of study to realize the simulation of scatter symptom.

In this paper, we use the Perlin noise function to perturb the regular circular spots in two-dimensional space in terms of distribution and shape, respectively, so that we can generate the disease spots that meet the characteristics of scattered morphological symptoms, as shown in Figure 7. The algorithm process steps are as follows.


(1)The Perlin noise function is used as a random function to generate a number of regular circles for random distribution in the 2D plane, and the dynamic scaling of the radius of the circles can control the size of the spots. After adjustment, the scaling value of Perlin noise used here for position perturbation is set to 32. The larger the scaling value, the more intensive the Perlin noise calculation.

(2)A random function is used to affect the size of the generated regular circles, setting the random range of shape scaling multipliers between 0.5 and 1.0. The Perlin noise function is again used, here scaled to a value of 8, to perturb the regular circular shape to deform it, thus generating an irregular speckle pattern.

(3)The white patches generated above to represent the diseased spots are adjusted in gray scale. After performing color mapping, the color of the disease spots is adjusted by adjusting the value of HSI (Zhi et al., 2020). An image subtraction operation is performed with the original leaf texture mapping to generate the scattered spots of the disease in 2D view. After applying it to the 3D model, the final rendering result is obtained.




[image: image]

FIGURE 7
Schematic diagram of rose black spot simulation.


The number of scattered spots is predetermined for the background program. According to step (1) above, the scattered spot locations of rose black spot are determined by Perlin noise as a random generator. Each random point generated by the random function corresponds to some random value in the interval.

The random value corresponding to the i random point is valuei, and the threshold that can be changed in real time for judgment is M5. Display(i) is the function that determines whether each random point will be shown to be rendered as a disease spot, as shown in Equation (22).

[image: image]

Each random point initially generated is traversed, and when the corresponding random value is less than or equal to the set threshold value indicates that the point is displayed, otherwise, the point is not displayed, thereby updating the current spot texture mapping I5(x, y).




Simulated similarity test

Convolutional neural network is the leading architecture for image classification, recognition, and detection tasks in deep learning (Rawat and Wang, 2017; Li et al., 2020). In this paper, real images are used as the training set and the model is trained using ResNet (He et al., 2016). The simulation results are used as a test set to get their recognition accuracy of disease symptom types as a way to complete the simulation similarity test.


Structural design of ResNet model

The advanced nature of the ResNet model allows its structure to be changed and adapted flexibly according to the requirements. The network structure built in this paper is shown in Figure 8. It consists of 56 layers of network. Among them, Conv is the convolutional layer and stride is the step size. BN is Batch Normalization, which aims to regularize the image (Zhu et al., 2017). The activation function is Relu. Pool is the pooling layer. FC is the Fully Connected Layers. Because there are two sequences of steps with repeated operations in the ResNet model for feature extraction of image information, the steps with repeated operations are directly summarized into two different modules B1 and B2 to simplify the structure diagram in order to represent the network structure more clearly. The practical role of both modules is to continuously extract the feature information of the image. The algorithm flow steps of the model are as follows.


(1)Initial feature extraction is performed on the training set images using a convolution kernel of size 3 × 3 with a step size of 1. The BN layer is used to normalize the disease features. ReLU activation function (Lin and Shen, 2018) is used to non-linearize the disease features. Each subsequent convolutional calculation is followed by batch normalization and activation function, which will not be reviewed later.

(2)The image features are further extracted and fused with the input feature information using 2 sets of convolution kernels of size 3 × 3 with a step size of 1. This process is seen as the overall module B1 (Figure 8A), and the B1 calculation operation is repeated twice.

(3)Deep features are extracted using one set of convolutional kernels of size 3 × 3 with a step size of 2 and one set of convolutional kernels of size 3 × 3 with a step size of 1. The result of this step is added to the result obtained by computing the original input image using a set of convolutional kernels of size 1 × 1 with step size 2, and the result after the summation is converted to a function using the activation function. This process may be seen as overall module B2 (Figure 8B).

(4)The calculation process of B1 and B2 is repeated three times in order to further extract the deep features of the image.

(5)When the network finishes processing the image with feature extraction, the feature map is compressed using the average pooling operation to reduce the amount of network computation. Finally, Softmax classifier (Zeng et al., 2014) is used to output the probabilities of the corresponding categories through a fully connected layer of size 5. The label with the highest probability is output as the predicted classification result.
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FIGURE 8
Adjusted ResNet network structure. (A) B1, (B) B2, (C) overall structure.




Data acquisition and pre-processing

The experimental images collected for training in this paper consist of PlantVilage (Hughes and Salathe, 2015), a publicly available online dataset for plant disease image classification, and a self-built dataset. A total of 1,000 RGB color images of different disease symptom types are collected. The experimental images collected for testing are all obtained simulated result maps, with a total of 200 RGB color images. The self-built dataset was obtained from the image data crawled in the Agroforestry Science website using crawler software, and the useless data were removed by manual screening. Under the guidance and advice of agroforestry-related professionals, we finished organizing the image data and tagging the category labels. In this paper, the pixel size of all images was adjusted to 256 × 256 × 3, and the original images with less than 256 × 256 × 3 pixels were zero-filled. In order to obtain experimental images that better meet the training requirements, some of the images in this paper are adjusted in terms of sharpness, contrast, sharpening, and interference information processing.



Result of similarity test

The parameters of the model training were set as follows: the learning rate was set to 0.005, the number of iterations was 600 rounds, and the loss function was the cross-entropy loss function, and the training accuracy could reach 98.1%. The performance of the model is evaluated by randomly taking 20% of the real image dataset as the validation set, and the accuracy obtained is 92%, which is a high recognition accuracy, indicating that the model can be used to simulate the similarity test.

The simulated result maps of each type of plant diseases were identified as a test set, so as to achieve the purpose of similarity test proposed in this paper, and the overall accuracy of the test obtained is 87%. Because there are certain differences between simulated results and real images, some interference factors are difficult to avoid, including the difference between 3D models and real plants, the difference between the apparent texture of simulated diseases and real diseases, and the color space ratio, etc., the recognition accuracy will be significantly lower than that of the validation set when the test set is simulated results. The formula for calculating the recognition accuracy of different symptom types is shown in Equation (23):
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where Obk refers to the recognition accuracy of the k symptom, Correctk refers to the number of image samples with correct recognition results for the k symptom type, and Error refers to the number of image samples with incorrect recognition results for the k symptom.

The obtained recognition for each type is shown in the Table 1. It can be seen that the overall results of the simulated similarity test using deep learning are good. Ring pattern has the most distinctive features and is significantly different from other symptom types, with the highest recognition accuracy. In contrast, the plant diseases of rust spot are more easily misidentified as powdery mildew or scatter types. The formation of rust spot at a certain period of time is similar in distribution and shape to these two symptom types, and the identification accuracy is relatively lowest.


TABLE 1    Recognition accuracy of different disease symptom types.

[image: Table 1]




Results


Display interface operation

In this paper, we analyze the functional requirements of the plant disease simulation user interface and design a simulation display interface based on a message-driven model instead of a command-line program using Unity. Users can: (1) select the simulation object and open the model file (.obj file), set the growth conditions of temperature and humidity, and enter the simulation algorithm process of the corresponding object; (2) slide the time module to observe the change process, and the system writes the current rendering time and real-time frame rate to the real-time information area in real time; (3) use the right mouse button to rotate the model. The W, S, A, and D keys of the keyboard control the zoom in, zoom out, left, and right movement of the model, respectively. The W, S, A, and D keys of the keyboard can control the zoom in, zoom out, left and right movement of the model, respectively.
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FIGURE 9
Simulation results of different plant diseases under different parameters control. (A) Ginkgo yellows, (B) cucumber powdery mildew, (C) apple ring rot, (D) wheat stripe rust, (E) rose black spot.




Experimental results

In order to show the simulation effect clearly and intuitively, the complex plant model is pre-processed in this paper, and only the parts of plant organs with diseases are reserved for display. The average frame rates of different plant disease simulations are shown in Table 2, indicating that the simulation can be performed efficiently in real time. Figure 9 shows the simulation results of the above plant diseases under different environmental conditions and different disease occurrence times. It can be seen that the severity of plant disease damage to the plant epidermis increases with time, gradually spreading to infest the entire surface of the organ when the temperature and humidity are in the right range for the growth of the disease.


TABLE 2    Average frame rates of different plant diseases.
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Discussion

Plant diseases are diverse and complex. The number of phenological patterns under the influence of different exogenous and endogenous conditions is even more uncountable. When visualizing them, it is difficult to classify and simulate plant diseases from a plant pathology perspective. In this regard, this paper defines a common relationship between the diffusion process of plant diseases under the influence of environment and designs a generic time-varying model of plant disease. In this paper, by observing and analyzing the apparent symptoms of diseases, we classify plant diseases by symptom characteristics and propose an apparent simulation algorithm to realize visual simulation of different plant diseases. To verify the generalizability of the algorithm, this paper implements the apparent simulation of five other plant diseases using the proposed five symptom simulation algorithms, respectively, as shown in Figure 10.


[image: image]

FIGURE 10
Simulation results of other plant diseases under different parameters control. (A) Tobacco mosaic, (B) lettuce downy mildew, (C) pear ring rot, (D) corn rust, (E) pear scab.


In addition to the proposed deep learning-based similarity check method, to be able to evaluate the simulation results more comprehensively, this paper designs the “Questionnaire on the Effectiveness of Plant Disease Simulation Based on Feature Classification.” We invite users to visually compare the simulation results with real pictures. Using a Likert scale, users rated the simulation results quantitatively and made suggestions for optimization, and the questionnaire data were analyzed using SPSS software (Pallant, 2013). In order to be able to cover different types of users to participate in the evaluation, users of different age groups, different educational stages and different industries were invited to this paper, and a total of 242 valid questionnaires were collected. The age groups covered from below 16 to above 45 years old, with the age group of 16–35 years old dominating; the education levels covered from junior high school to above master’s degree, with bachelor and master’s degree dominating; the professions included agriculture and forestry related, computer related and other professions, with reasonable composition. Descriptive analysis of the overall effect evaluation was conducted, and the results obtained are shown in Table 3. It can be obtained that the median evaluation score of each symptom type is 4, which indicates that it is similar, indicating that the overall simulation effect meets expectations and is recognized by users.


TABLE 3    Descriptive statistics.

[image: Table 3]
Combined with the shortcomings and suggestions made by users on the simulation results collected from the non-scale questions in the questionnaire, they are summarized as follows: in terms of details, users suggested that the gradient texture of the simulated area of discoloration is not obvious, the stacking effect of powdery mildew needs to be refined, the boundary treatment of ring pattern is not detailed enough, the color of rust spot needs to be further processed, and the apparent differentiation between different periods of scatter is not enough. These also provide valuable reference directions for the subsequent optimization work.



Conclusion

The time-varying generic model proposed in this paper simplifies the unqualified and complex processes into quantitative common relationships in a uniform computational manner. It can also set different influence coefficients to express the variability of plant diseases by the action of influencing factors, effectively integrating algorithmic resources. The simulation algorithm proposed in this paper for different disease symptoms generates the texture of disease spots in two-dimensional space, and then renders them on the three-dimensional model to get the final effect. For discoloration, this paper mainly uses the three-stage gray-scale remapping to realize the discoloration simulation with a sense of hierarchy; for powdery mildew, this paper combines Worley noise and Perlin noise application to realize the simulation; for ring pattern, this paper combines image processing and noise disturbance deformation to simulate the pattern of spots into two parts: initial water-stained spots and concentric circles; for rust spot, this paper uses mask mapping to mark specific onset areas, simulates the raised particles of rust spots through bump mapping, and uses color scale adjustment to complete the changes of spot texture; for scatter, this paper makes double application of Perlin noise to represent the distribution of spots and disturbance rule shape, and sets dynamic thresholds to complete the simulation of scatter from less to more. In the simulation similarity test, the recognition accuracy reached 87%, indicating that the disease phenology simulation algorithm in this paper can effectively and realistically realize the process simulation of different plant diseases. The overall complexity of the algorithm is moderate, and it operates efficiently, which provides a new solution for disease simulation research and can be extended to more types of disease simulation. In the future, we will work on three aspects: enriching the types of disease symptoms, optimizing the general model of disease time variation, and improving the overall functions to increase the freedom of simulation.
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As one of the four most important woody oil-tree in the world, Camellia oleifera has significant economic value. Rapid and accurate acquisition of C. oleifera tree-crown information is essential for enhancing the effectiveness of C. oleifera tree management and accurately predicting fruit yield. This study is the first of its kind to explore training the ResU-Net model with UAV (unmanned aerial vehicle) images containing elevation information for automatically detecting tree crowns and estimating crown width (CW) and crown projection area (CPA) to rapidly extract tree-crown information. A Phantom 4 RTK UAV was utilized to acquire high-resolution images of the research site. Using UAV imagery, the tree crown was manually delineated. ResU-Net model’s training dataset was compiled using six distinct band combinations of UAV imagery containing elevation information [RGB (red, green, and blue), RGB-CHM (canopy height model), RGB-DSM (digital surface model), EXG (excess green index), EXG-CHM, and EXG-DSM]. As a test set, images with UAV-based CW and CPA reference values were used to assess model performance. With the RGB-CHM combination, ResU-Net achieved superior performance. Individual tree-crown detection was remarkably accurate (Precision = 88.73%, Recall = 80.43%, and F1score = 84.68%). The estimated CW (R2 = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%) and CPA (R2 = 0.9498, RMSE = 0.2675 m2, rRMSE = 9.39%) values were highly correlated with the UAV-based reference values. The results demonstrate that the input image containing a CHM achieves more accurate crown delineation than an image containing a DSM. The accuracy and efficacy of ResU-Net in extracting C. oleifera tree-crown information have great potential for application in non-wood forests precision management.
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 UAV imagery, deep learning, image segmentation, tree-crown detection, Camellia oleifera


Introduction

Camellia oleifera, along with oil palm, coconut, and oil olive, is one of the world’s four most important woody oil-tree, and it is China’s top woody oil-tree. Camellia oleifera is widely used in cosmetics, medicine, tannin production, bio-feed, sterilization, and other fields, in addition to its primary use in the production of edible camellia oil (Zhang et al., 2013). However, the management of C. oleifera continues to rely excessively on manual labor and possesses insufficient scientific and technological support. For mastering the growth distribution of C. oleifera, rapid yield measurement, and achieving accurate management of C. oleifera forests, accurate and efficient acquisition of C. oleifera crown information is crucial (Yan et al., 2021; Ji et al., 2022).

In recent years, UAV remote sensing technology with a visible digital camera has become one of the most important methods for obtaining crop growth data due to its high resolution, real-time, and adaptability, allowing for the efficient acquisition of high-precision tree-crown data (Wang et al., 2004; Dash et al., 2019; Pearse et al., 2020; Shu et al., 2021). For crown information extraction, object-oriented classification (Zhang et al., 2015; Wu et al., 2021), watershed (Imangholiloo et al., 2019; Wu et al., 2021), local maximum (Lamar et al., 2005), and region-growing method (Pouliot and King, 2005; Bunting and Lucas, 2006) are often used. These techniques have yielded successful crown detection results for pure forests, plantations, or specific tree species and images. However, image processing parameter settings are too dependent on expert knowledge (Chadwick et al., 2020), making it difficult to automatically extract image information (Laurin et al., 2019). Therefore, new methods are required to rapidly extract tree-crown data to improve tree growth monitoring.

In recent years, image segmentation techniques based on deep learning technology that can automate and batch-process data have been widely adopted (Li et al., 2016; Kattenborn et al., 2021). Among them, the U-Net network based on Fully Convolutional Network (FCN) focuses more on segmentation details due to its capability of feature stitching and multi-scale fusion, which performs well in image segmentation (Ronneberger et al., 2015). In forestry, the U-net model has been applied successfully to tasks such as extracting tree canopy information from UAV imagery. Li et al. (2019) extracted the crown of the poplar with an accuracy of 94.1% using the U-Net network. However, if the number of U-Net network layers is excessive, network degradation will occur, and segmentation accuracy will decrease (Yang et al., 2020). The unique residual structure of the residual network can effectively mitigate the network degradation problem caused by the deep network structure and speed up network convergence (He et al., 2016). ResU-Net, which is created by combining Res-Net and U-Net, can include more layers and prevent model performance degradation (Ghorbanzadeh et al., 2021). Tong and Xu (2021) fused ResNet-34 and U-Net convolutional neural networks to create the ResNet-UNet (ResU-Net) stumpage segmentation model, improving accuracy and robustness significantly. However, the research mentioned above focuses primarily on macrophanerophytes, and there are fewer studies on the extraction of C. oleifera crown parameters. In addition, when detecting tree crowns, images with only three bands (red, green, and blue) are typically used as model input images (Neupane et al., 2019; Weinstein et al., 2019). Few studies have used multi-band images with elevation data (digital surface and canopy height models) as input images to train models for detecting tree-crown and estimating tree-crown width and projection area.

According to this context, this study is the first to apply ResU-Net to C. oleifera tree-crown extraction. UAV imagery with added elevation information (DSM and CHM) is used to create ResU-Net training datasets. This study investigates the capability of the semantic segmentation model ResU-Net to extract C. oleifera crowns from multi-band combined images with elevation information derived from UAV imagery. This study aims to (1) propose combined images with elevation information for a ResU-Net model to detect the tree-crown information of C. oleifera and (2) evaluate the models trained using various image combinations and select the optimal model for practical applications. This study is expected to provide more precise data support for the extraction of C. oleifera tree-crown information to better monitor and manage non-wood forests.



Materials and methods

Figure 1 illustrates the framework of this study. As input images, six distinct band-combined images were created first. The input and tree-crown binary images are split and amplified to obtain the training data set. The training dataset is utilized for the training of the proposed model. Then, six distinct ResU-Net models were utilized to estimate the number of plants, crown width, and projection areas at the study site. The model’s performance was then evaluated, including the precision of individual tree-crown detection, crown width, and crown projection area estimation.

[image: Figure 1]

FIGURE 1
 Flowchart of individual tree-crown detection, crown width, and projection area assessment in this study. DSM, digital surface model; DEM, digital elevation model; CHM, canopy height model; EXG, excess green index.



Study site

The study site is located in Chenjiafang Town, Xinshao County, Shaoyang City, Hu-nan Province, between 111°08′–111°05′E and 27°15–27°38′N (Figure 2). The region has a humid mid-subtropical continental monsoon climate and average annual precipitation of 1365.2 mm, making it a typical low-hilly terrain in the south. Camellia oleifera was planted in the study area on a total area of 59.18 hm2 in 2014.
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FIGURE 2
 Location of the study site, Chengiafang County, Hunan, China; (A) digital surface model (DSM); (B) orthomosaic with RGB bands; (C) example of manually delineated Camellia oleifera crowns (in yellow) based on orthomosaic.




Data collection and preprocessing


Image acquisition

The UAV imagery was collected using Phantom 4 RTK1 on July 4, 2021, in diffuse light weather to avoid the influence the tree shadows have on the aerial survey results. The UAV is equipped with a 1-inch COMS sensor. The focal length of the sensor is 24 mm, the aperture range is f/2.8–f/11, and the image resolution of the camera is 5,472 × 3,648 pixels (JPEG format). The flight altitude was set to 40 m, the course speed was 3 m/s, the bypass overlap rate was set to 70%, the heading overlap rate was set to 80%, and a total of 1,127 images were captured. The UAV imagery was pre-processed using Agisoft Metashape 1.7.1 software from Agisoft LLC, Russia, which generated the digital surface model (DSM) and the RGB-banded orthomosaic. The DSM is minimally filtered (window size is 20 × 20) and then smoothed with a mean filter (window size is 5 × 5) to generate the digital elevation model (DEM), which is then subtracted from the DSM to generate the canopy height model (CHM).

The objects in the UAV imagery are primarily plants (green in color) and backgrounds (soil, rocks, plant debris, etc., which are primarily earthy in color), so the red, green, and blue bands of orthomosaic are calculated to generate EXG images (Equation 1), which are used to highlight green plants and suppress backgrounds such as shadows, rocks, and soil (Woebbecke et al., 1995).

[image: image]

Where R, G, and B are the three standard bands of red, green, and blue, respectively.



Field survey data

Using UAV imagery, select 235 C. oleifera trees randomly and determine their exact location. Utilize a measuring rod to determine the height of the trees in the study area. The method is feasible because the height of C. oleifera is limited (<3 m), the tops of the trees are visible, and the distance between trees is known.



Tree-crown delineation

The tree crowns of C. oleifera were manually outlined in ArcMap 10.7 (ESRI, United States) using orthomosaic and CHM data (Table 1). There were a total of 1,862 crowns outlined (Figure 2C). Then, the manually delineated tree-crown image is binarized, the background pixel value is changed to 0, the pixel value of the C. oleifera crown area is changed to 255, and a tree-crown binary image is generated that corresponds to the tree-crown in the UAV image.



TABLE 1 Statistics of crown width and crown projection area.
[image: Table1]

The CV2 function provided by OpenCV, an open-source computer vision library, was used to count the number of pixels contained in the tree-crown of each of the 235 trees (Section “Field survey data”) based on the tree-crown mask image and calculate the crown projection area (CPA) based on the image resolution. Using Canny’s algorithm (Hu et al., 2018) to extract the edge features of each crown of 235 trees, followed by the ellipse fitting algorithm (Yan et al., 2008) to obtain each crown’s external ellipse. Calculate the long and short axes of the ellipse as the maximum and minimum values of C. oleifera crown width, and then calculate the mean of these two values to obtain the average crown width of C. oleifera (Zhang et al., 2021). The crown width and projection area of 235 trees were calculated based on the 0.01532703 m image resolution.



Dataset preparation


Input image

The blue, green, red, and EXG products are used as input images for the division of the tree crown. The CHM or DSM was added to the combined images to compare the effects of input images containing different elevation information on the model’s ability to accurately estimate the crown width and projection area (Table 2).



TABLE 2 Combination of different images for ResU-Net training.
[image: Table2]



Training dataset

Thousand eight hundred and sixty-two delineated trees (Section “Tree crown delineation”) were separated into a training and validation set and a test set for this study. First, the six-band combination images containing information about the tree crowns of 1,627 trees and the corresponding binary tree-crown images are divided into 256 × 256 pixel image tiles for processing. In addition, the training data are rotated by 90°, 180°, and 270° from its original orientation to increase the number of training samples and enhance the model’s robustness. In summary, six training datasets, each one containing 3,375 images, were obtained for this study.

To evaluate the performance of the final model, 235 C. oleifera trees with crown width and projection area reference information from UAV imagery were used as the test set.





ResU-Net model

Since C. oleifera tree-crown images contain a large number of background interference factors, such as weeds and soil, ResNet101, which has a strong feature extraction capability (Laurin et al., 2019), is used as the backbone network and combined with the U-Net (Ronneberger et al., 2015) network design concept to create the ResU-Net network model in this study. ResU-Net presents the Residual Block (Res-block) structure (illustrated in Figure 3B) based on the U-Net network, which can effectively overcome the network degradation and gradient dispersion issues caused by an increase in network depth and accelerate network convergence (Wu et al., 2019). ResU-Net requires a smaller training set and focuses more on image segmentation details without compromising accuracy (Yang et al., 2019), and it can recognize the crown of C. oleifera at the pixel level.

[image: Figure 3]

FIGURE 3
 ResU-Net network structure: (A) ResU-Net network framework; (B) Res-block modules.


The encoder (to the left of the dashed line) and decoder (right of the dashed line) make up the ResU-Net structure, as shown in Figure 3A. The encoder is used to downsample the input image, capture image context information, and extract image semantic information features. The decoder upsamples the image using transposed convolution and concatenates features of the same dimension to provide detailed feature information (Chen et al., 2021).

For the encoder, the input image passes through a Convolution layer (CONV) with a convolution kernel of 7 × 7 and a step size of 2, followed by a Max Pooling Layer. The image size is decreased to a quarter of its original size, and the number of channels is increased to 64. Following this, the tree-crown features are extracted through the residual block (Res-block) until an 8 × 8 feature vector with a depth of 2048 is obtained.

The initial step for the decoder is to increase the size of the feature layer and decrease its depth by upsampling. Next, the downsampled and upsampled feature layers of equal size are concatenated. The concatenated feature layers are fused using a 3 × 3 convolutional layer, a Batch Normalization layer (BN), and a Rectified linear unit after each concatenation (ReLU). The tree-crown binary mask of C. oleifera is obtained through a final convolution operation.

The hold-out method is selected for cross-validation, and the mIoU of the model is set to stop in advance without increasing within 10 epochs to prevent overfitting of the model. Only the model with improved accuracy after each training is saved. Res-Net weights pre-trained on ImageNet are used for transfer learning. The ResU-Net model was then trained using the six training datasets. Set the learning rate parameter to 0.001, the epochs to 100, and the batch size to 4 when training the model. Based on these six distinct composite images, six ResU-Net models were generated. All models were trained on a Windows 10 desktop with an Intel i7 6700k CPU, 6 GB GPU, and 24 GB RAM using PyCharm 2010.1.4 software based on the Pytorch framework for deep learning.



Accuracy evaluation

To determine the optimal ResU-Net model, the accuracy of tree detection, crown width, and projection area assessment were calculated separately. The test set, which contained crown width and projection area reference data from the UAV images, was utilized to assess the performance of each model.

The intersection over union (IoU) was used to assess the ResU-Net model’s accuracy in detecting tree crowns (Equation 2). IoU measures the area of the union and intersection of the crown polygons of the test set and the crown polygons predicted by the model. When IoU exceeded 50%, it was deemed acceptable. ResU-Net model’s detection of individual tree crowns was evaluated using precision, recall, and F1 score (Equations 3–5). Precision is the proportion of accurately detected trees in a model detection. The recall is the proportion of correctly identified trees in the test set. The F1 score indicates the overall test accuracy, which is based on recall and precision (Shao et al., 2019; Hao et al., 2021).
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where TP is the number of correctly identified trees by the model and IoU is >50%. FN is the number of trees omitted by the model when the IoU is <50%, and FP is the number of other tree or weed species found. The term Aactual refers to the crown polygons of the test set. The crown polygons predicted by the ResU-Net model are indicated by Apredicted. The intersection operation represents the area shared by Aactual and Apredicted, whereas the union operation represents the area formed when Aactual and Apredicted are combined.

The 235 tree-crown widths and projection area from the UAV imagery were then compared to the six ResU-Net model predictions. Coefficient of determination (R2), root mean square error (RMSE), and relative RMSE (rRMSE) were utilized to evaluate the model’s accuracy in estimating tree-crown width and projection area (Equations 6–8). R2 is utilized to assess fitness, while RMSE and rRMSE are employed to estimate error.

Finally, a comprehensive analysis of the accuracy of individual tree-crown detection, crown width, and predicted area assessment was conducted to determine the best ResU-Net model for crown width and crown projection area assessment.
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where N represents the number of trees that the model has detected. yi denotes the crown width and predicted area from the assessed datasets. [image: image] represents the average crown width and predicted area from the assessed datasets; xi denotes the crown width and predicted area from the reference dataset; and [image: image] represents the average crown width and predicted area from the reference dataset.




Results


Detection of individual tree crown

Figure 4 illustrates examples of the ResU-Net model identifying individual tree crowns at the study site. The accuracy of crown detection and delineation is shown in Table 3. RGB-CHM had the highest precision (88.73%) for tree detection, followed by RGB-DSM (87.92%), RGB (85.00%), EXG-CHM (82.30%), EXG-DSM (80.71%), and EXG had the lowest precision (80.68%). The RGB-CHM combination had the highest recall rate (80.43%), while the EXG-DSM combination had the lowest (67.66%). The F1 score of the RGB-CHM combination reached 84.38%, followed by RGB-DSM (82.35%), RGB (82.20%), EXG-CHM (77.48%), EXG (75.57%), and EXG-DSM (73.61%). The RGB-CHM combination had the highest IoU (91.38%) for tree-crown delineation, while the EXG-DSM combination had the lowest (87.07%).
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FIGURE 4
 Example of tree-crown detection and segmentation. (A) original image; (B) manually delineated result; (C–H) are the crown detection results of the ResU-Net model based on the combination of RGB, RGB-CHM, RGB-DSM, EXG, EXG-CHM, and EXG-DSM.




TABLE 3 The accuracy of individual tree-crown detection using different combinations.
[image: Table3]

The results of all ResU-Net models yielded precision >80%, recall >65%, F1 score >70%, and IoU >85%. When the input image is based on the RGB or EXG combinations of ResU-Net and contains CHM, the precision, recall, F1 score, and IoU are greater than when the input image contains DSM, reflecting the higher precision of tree-crown detection and delineation in the CHM combination. The model’s average processing time for tree-crown detection in each image is 0.16 s, which meets the requirements of practical applications.



Extraction of tree-crown width

Using the UAV-based tree-crown width as reference. As a result of their proximity to the study area’s boundaries, certain canopies were omitted from the evaluation of the model’s accuracy in estimating tree-crown width, resulting in incomplete shapes. The accuracy of the ResU-Net model in estimating the tree-crown width based on RGB, RGB-CHM, RGB-DSM, EXG, EXG-CHM, and EXG-DSM as input images, respectively, is illustrated in Figure 5.

[image: Figure 5]

FIGURE 5
 Linear regressions of tree-crown width between UAV imagery and different ResU-Net models. (A) RGB; (B) RGB-CHM; (C) RGB-DSM; (D) EXG; (E) EXG-CHM; (F) EXG-DSM. The dotted line represents a 1:1 match, and the red line represents the trend of the tree-crown width relationship based on the ResU-Net model and UAV imagery.


All the results of the six models for estimating tree-crown width yielded R2 > 0.70. The tree-crown width estimation based on the RGB combinations yielded higher accuracy (R2 > 0.89, 6.47% ≤ rRMSE ≤ 7.48%). The accuracy based on the EXG combinations is lower (R2 < 0.84, 9.15% ≤ rRMSE ≤ 11.51%). Among them, the accuracy of estimating tree-crown width using the DSM combination was the lowest, while the CHM combination produced better results, and the RGB-CHM combination achieved the highest accuracy (R2 = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%).



Extraction of tree-crown projection area

The projected tree-crown area estimated by six distinct ResU-Net models was compared to the UAV-based crown projection area (Figure 6). The accuracy of tree-crown projection area estimation based on the RGB combinations (R2 > 0.92, 9.39% ≤ rRMSE ≤ 11.70%) was higher than that based on the EXG combinations (R2 < 0.85, 15.04% ≤ rRMSE ≤ 19.06%). Among them, the CHM model was more accurate than the DSM model. The model with the RGB-CHM combination produced the highest accuracy (R2 = 0.9498, RMSE = 0.2675 m2, rRMSE = 9.39%), while the model with the EXG combination produced the lowest accuracy, which is comparable to the tree-crown width from the UAV imagery. ResU-Net model predictions were lower compared to the UAV-based crown width and crown projection area because of the overlapping and shading conditions with unclear boundaries.
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FIGURE 6
 Linear regressions of crown projection area between UAV imagery and different ResU-Net models. (A) RGB; (B) RGB-CHM; (C) RGB-DSM; (D) EXG; (E) EXG-CHM; (F) EXG-DSM. The dotted line represents a 1:1 match, and the red line represents the trend of the crown projection area relationship based on the ResU-Net model and UAV imagery.


The ResU-Net model accurately estimated the tree-crown width and crown projection area. RGB was more accurate than EXG when it came to modeling accuracy. The accuracy is greater when the input image of ResU-Net-based RGB or EXG combinations contains CHM than when the input image contains DSM. Comparing the accuracy of individual tree-crown detection, tree-crown width, and projection area between models, the RGB-CHM combination was the optimal combination for the ResU-Net model’s detection of tree-crown width and projection area.




Discussion

This study proposes to use the combined images and elevation data from UAV imagery to create datasets for training ResU-Net models to automatically extract C. oleifera tree-crown and estimate crown width and crown projection area parameters. The results demonstrate that the trained ResU-Net model can detect tree crowns and accurately estimate crown width and crown projection area. The ResU-Net model has excellent generalizability and high stability, allowing it to fulfill the need for C. oleifera tree-crown data in agricultural production.


Performance of the model


Individual tree-crown detection

The optimal ResU-Net model based on the RGB-CHM combination achieved high accuracy for tree-crown detection (precision = 88.73%, recall = 80.43%, F1 score = 84.68%, and IoU = 91.38%). Hao et al. (2021) and Braga et al. (2020) used the Mask-RCNN model to detect macrophanerophyte canopies, yielding F1scores of 84.68% and 86%, which are comparable to the F1-score of this study, whereas the IoU values yielded 91.27% and 61% are smaller than the IoU of this study, respectively. Jin et al. (2020) reported that the F1-score of 74.04% and accuracy of 79.45% for tree-crown detection based on U-Net and marker-control watershed algorithm, which is lower than the F1 score and accuracy of this study.

Next, this study compares the performance of the ResU-Net with the classical watershed algorithm, the U-Net model, the U-Net++ model (Zhou et al., 2018), and the DeepLabV3 Plus model (Chen et al., 2018) for tree-crown detection (Figure 7). According to the crown detection results, the crown detection accuracy based on the deep learning method is significantly higher than that of the classical watershed algorithm. Since C. oleifera trees are lower and there is interference from grass and other tree species, etc., the watershed algorithm is less precise. The accuracy of tree-crown detection using the ResU-Net model was slightly higher than that of the U-Net (precision = 86.18%, recall = 79.57%, F1 score = 82.74%, and IoU = 90.75%) and U-Net++ model (precision = 87.50%, recall = 77.45%, F1 score = 82.17%, and IoU = 90.96%). Using the DeepLabV3 Plus model for tree-crown detection yielded the accuracy (precision = 89.41%, recall = 79.72%, F1 score = 84.29%, and IoU = 91.85%) comparable to the ResU-Net model. In conclusion, the detection accuracy of different network models for tree crowns is similar, indicating that the application of deep learning methods for extracting C. oleifera tree crowns from UAV visible images is universal, and the accuracy is generally high. With the advancement of deep learning techniques, we can utilize more robust network models for C. oleifera tree-crown detection in the future study.
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FIGURE 7
 Comparison of tree-crown detection results between ResU-Net and other methods. (A) original image; (B) manually delineated result; (C–G) are examples of tree-crown detection using the ResU-Net model, DeepLabV3+ model, watershed algorithm, U-Net model, and U-Net++ model.




Crown width assessment

The key innovation of this study is to use the ResU-Net model and combine images with elevation data to estimate crown width. The RGB-CHM combination provided the most accurate measurements of crown width (R2 = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%). Few studies combine the ResU-Net model with elevation data to estimate the crown width of C. oleifera. Consequently, the accuracy of crown width and projection area estimation in our study is compared to that of studies employing alternative remote sensing techniques. Wu et al. (2021) used the optimized watershed with multi-scale markers method to estimate C. oleifera crown width yielded R2 = 0.75. Dong et al. (2020) estimated the crown width of apple and pear trees using local maximum and marker-controlled watershed algorithms, yielding R2 values of 0.78 and 0.68, respectively. Compared to these conventional remote sensing techniques (e.g., watershed, local maximum algorithms), the present method has greater accuracy in estimating crown width, and it can be automated.



Crown projection area assessment

The RGB-CHM combination provided the most accurate measurements of crown projection area (R2 = 0.9498, RMSE = 0.2675 m2, and rRMSE = 9.39%). Mu et al. (2018) estimated the peach crown projection area using adaptive thresholding and marker-controlled watershed segmentation with R2 = 0.89 and RMSE = 3.87 m2. Dong et al. (2020) estimated the crown projection area of apple and pear trees using local maximum and marker-controlled watershed algorithms, yielding R2 values of 0.87 and 0.81, respectively. Ye et al. (2022) estimated the olive crown projection area using the U2-Net model, producing R2 > 0.93, which is comparable to our study. However, it yielded MRE = 14.27% higher than our study (MRE = 12.23%).

Next, compared to the crown projection area extracted using RGB (R2 = 0.9220), R2 increased by 0.0278 with the addition of CHM, and by 0.0059 with the addition of DSM, respectively. Compared to the crown width extracted using RGB (R2 = 0.8936), R2 increased by 0.0335 with the addition of CHM, and by 0.0146 with the addition of DSM, respectively. As can be seen, the addition of CHM to the model has a greater impact on the prediction accuracy of the CW and CPA than the addition of DSM. However, the increased value (<0.05) of the model accuracy after adding the elevation information is low, because the C. oleifera planting areas are mainly hilly with little elevation change, and the C. oleifera are shrubs with low tree height. To verify the reliability of the experimental results of this study, it is necessary to conduct in-depth experiments in a region with a large height difference in the future study.

In addition, this study discovered that the accuracy of the EXG combinations was lower than that of the RGB combinations, indicating that the limited features of EXG (grayscale maps) reduce the model’s accuracy (Hao et al., 2021). Therefore, it is recommended that adequate features are included in the training process.




Factors of influence on model performance


Accuracy of CHM extraction

The accuracy of canopy height model (CHM) extraction influences the model-detected tree crown, the estimated crown width, and the crown projection area. To evaluate the accuracy of CHM, the UAV-derived tree height estimates were compared with field measurements in this study.

In this study, the CHM and the manually outlined tree-crown vector map were combined. Then, ArcMap 10.7 was utilized to extract the maximum value of CHM for each tree-crown region and estimate the tree height from the UAV imagery. For the accuracy of the results, incomplete C. oleifera crowns at the image margins were omitted. There were 183 complete canopies that corresponded to the estimated tree height values when measured on the ground. As depicted in Figure 8, the correlation between the estimated tree height and field measurements was strong, with R2 of 0.7853, RMSE of 0.2688 m, and rRMSE of 17.64%. The estimated tree heights were lower than field measurements, likely due to the high density of C. oleifera forests and lack of bare ground, which prevented the filtering method from obtaining sufficient ground area when DSM was processed. Consequently, the digital elevation model (DEM) is higher than the true elevation value, whereas the CHM is lower than the true CHM.
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FIGURE 8
 Linear regressions of tree height between the field measurement and different ResU-Net models.


Airborne laser scanning (ALS) has a high penetrability and is considered the best option for tree detection with high accuracy in dense canopy areas (Sankey et al., 2017; Pourshamsi et al., 2021). Therefore, orthophotos and ALS can be combined as input data when training the model.



Spatial image resolution

The spatial resolution of the image has a significant impact on the accuracy of the model’s detection of tree crowns. By comparing 0.3, 1.5, 2.7, and 6.3 cm spatial resolutions, Fromm et al. (2019) determined that the model had the highest average accuracy for detecting conifer seedlings when the spatial resolution was 0.3 cm. Schiefer et al. (2020) concluded that, when using five spatial resolution images for crown detection, the lower the spatial resolution, the lower the model detection accuracy. Studies have demonstrated that the higher the spatial resolution, the more precise the model’s crown detection. However, when the resolution exceeds a certain threshold, it does not improve the accuracy of models significantly (Hao et al., 2021). The model’s accuracy is also dependent on the size of the tree crowns, and the ratio of the tree-crown diameter to the spatial resolution is a crucial factor in determining the detection accuracy. Yin and Wang (2019) suggested that images with a spatial resolution greater than a quarter of the crown diameter had the highest accuracy for crown detection; however, 0.25 m resolution had the highest accuracy for mangrove crowns compared to 0.1, 0.5, and 1 m resolutions. An excessively high spatial resolution will generate interference due to excessive detail and noise, which is not conducive to model crown detection.

In addition, the measurement error resulting from manual delineation and the calculation error of crown parameters will also have an impact on the model estimation results. For optimal tree-crown extraction results, the measurement method must be optimized. The ratio relationship between spatial image resolution and tree-crown size must be further investigated in a subsequent study.





Conclusion

Combining the ResU-Net model with images that add elevation information (CHM or DSM) from UAV imagery can effectively and automatically detect C. oleifera tree crowns and estimate the crown width and crown projection area, which has significant application potential. ResU-Net model with RGB-CHM combination outperformed other models with different combinations (Precision = 88.73%, IoU = 91.38%, Recall = 80.43%, and F1 score = 84.38%). The model’s accuracy using RGB combinations was superior to the model’s accuracy using EXG combinations. The accuracy of crown width and crown projection area estimation is dependent on the input elevation data (DSM or CHM), and the model with CHM data is more accurate. In this study, the ResU-Net model with RGB-CHM combination provided the most accurate estimates of crown width (R2 = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%) and crown projection area (R2 = 0.9498, RMSE = 0.2675 m2, rRMSE = 9.39%). In conclusion, the combination of the deep learning model ResU-Net and UAV images containing elevation information has great potential for extracting crown information from C. oleifera. This method can obtain high-precision information on the tree crowns of C. oleifera trees at a low cost and with a high degree of efficiency, making it ideal for the precise management and rapid yield estimation of C. oleifera forests.
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The 3D reconstruction of forests provides a strong basis for scientific regulation of tree growth and fine survey of forest resources. Depth estimation is the key to the 3D reconstruction of inter-forest scene, which directly determines the effect of digital stereo reproduction. In order to solve the problem that the existing stereo matching methods lack the ability to use environmental information to find the consistency of ill-posed regions, resulting in poor matching effect in regions with weak texture, occlusion and other inconspicuous features, LANet, a stereo matching network based on Linear-Attention mechanism is proposed, which improves the stereo matching accuracy by effectively utilizing the global and local information of the environment, thereby optimizing the depth estimation effect. An AM attention module including a spatial attention module (SAM) and a channel attention module (CAM) is designed to model the semantic relevance of inter-forest scenes from the spatial and channel dimensions. The linear-attention mechanism proposed in SAM reduces the overall complexity of Self-Attention from O(n2) to O(n), and selectively aggregates the features of each position by weighted summation of all positions, so as to learn rich contextual relations to capture long-range dependencies. The Self-Attention mechanism used in CAM selectively emphasizes interdependent channel maps by learning the associated features between different channels. A 3D CNN module is optimized to adjust the matching cost volume by combining multiple stacked hourglass networks with intermediate supervision, which further improves the speed of the model while reducing the cost of inferential calculation. The proposed LANet is tested on the SceneFlow dataset with EPE of 0.82 and three-pixel-error of 2.31%, and tested on the Forest dataset with EPE of 0.68 and D1-all of 2.15% both of which outperform some state-of-the-art methods, and the comprehensive performance is very competitive. LANet can obtain high-precision disparity values of the inter-forest scene, which can be converted to obtain depth information, thus providing key data for high-quality 3D reconstruction of the forest.

KEYWORDS
 forestry 3D reconstruction, depth estimation, stereo match, linear-attention, self-attention, stacked hourglasses


Introduction

Three-dimensional scene reconstruction is an important research direction in the field of computer vision, which is widely used in popular fields such as object detection and recognition, automatic driving and robot navigation. The 3D reconstruction of an inter-forest scene uses binocular cameras and UAVs to take low-altitude photography from different perspectives to realistically reproduce the 3D structure of forest objects, effectively solving the problems of limited vision, overlapping and obscuring trees, artificial inaccessibility, harsh conditions, dangerous environment and other survey difficulties. The visual forest scene clearly and comprehensively shows the structural information of trees, such as the trunk, main branches, side branches, tree height, crown height, and crown width. Professionals analyze the structural characteristics, spatial isolation degree, size differentiation degree and horizontal distribution pattern of trees through the survey of the tree structure and its surrounding environment, which provides a strong basis for scientific regulation of tree growth, optimization of forest structure and fine survey of forestry resources such as stand volume and stand density, and plays an important role in evaluating the economic, ecological and social value of forests.

Scene depth estimation is a key step in the 3D reconstruction of the forest, which directly determines the effect of 3D reconstruction. Binocular stereo matching imitates human binocular perception by finding the corresponding points between the left and right image planes and using the geometric relationship of the corresponding points to obtain the disparity value d. For the pixel point (x, y) in the left image, the coordinates of its corresponding point in the right image are (x-d, y), and the disparity value can be converted into the depth information of the scene by F*L/d, where F represents the focal length of the camera and L is the distance between the two camera centers. The binocular stereo matching method has high matching accuracy and speed, and the binocular camera has the advantages of easy portability, flexible operation and low cost. Its non-contact and non-radiation characteristics can achieve 3D environment perception in the forest without causing any damage to the environment, and maximize the protection of the forest's ecological environment. James Garforth (Garforth and Webb, 2019), University of Edinburgh, UK, pointed out that the use of vision sensors for 3D reconstruction of forest scenes, and based on this, forest resource information collection and intelligent forestry robots for navigation, positioning and operational target identification are the most promising methods.

Gatziolis et al. (2015) developed a system for accurately acquiring 3D models of trees by using a small UAV with a lightweight, inexpensive camera that moves slowly along a predetermined trace to acquire images, and by using computer vision methods to process the images to obtain detailed 3D structures of the trees. Ni et al. (2016) used binocular stereo vision to recover 3D information on tree crowns. Using multi-view acquisition of the target images, combining the SfM method to recover the camera calibration matrix of each image, to achieve a sparse projection reconstruction of the target, and using a spherical pivot algorithm for surface modeling, to achieve a dense reconstruction of the tree crown. Finally, the reconstruction is converted to a metric by obtaining ground truth points in camera calibration. Zhang (2003) used an improved SURF algorithm to find the feature points in the two images and designed a matching strategy suitable for tree trunk edges. Zhang then performed a 3D reconstruction of the tree and developed a system for close-up photography and stereo measurement of trees (FVision). Han (2003) used the camera of a mobile phone as a device for tree image acquisition, and reconstructed the 3D structure of trees, calculating tree-measurement factors such as tree height, tree diameter, and wood volume. Malekabadi et al. (2019) used a stereo vision system to obtain tree disparity maps to analyse the potential of geometric properties. Xu (2015) built a parallel binocular vision platform, marked four rectangular red information points on trees, extracted the coordinates of the information points using the merging algorithm based on membership degree and 2D maximum entropy theory, and realized the inverse study of tree growth such as tree height and wood volume based on the incremental changes of each information point within a year. Zhang et al. (2022) built a binocular vision-based shape reconstruction and measurement system for front-end vision information of spherical hedges, improved semi-global block matching (SGBM) algorithm to get a disparity map of spherical hedges, according to the disparity map and parallel structure of the binocular vision system, the 3D point cloud of the target is obtained.

At present, there are still relatively few studies at home and abroad on the use of binocular vision methods for rapid 3D reconstruction of forest scenes. However, with the wide application of deep learning in the fields of target recognition, semantic segmentation and natural language processing, the application of deep learning to stereo matching has explored richer feature representation and aggregation algorithms, which has greatly improved the performance of stereo matching compared to traditional methods.

The application of CNNs to stereo matching was first proposed by Zbontar and LeCun (2016), who designed a deep twin network Siamese to compute the matching cost, using traditional crossover-based cost aggregation and semi-global matching methods to process the matching cost to obtain the disparity map. Shaked and Lior (2017) proposed to replace two steps in the traditional algorithmic process with two deep neural networks: a highway network to calculate the matching cost and a global disparity network to obtain the initial disparity map and the confidence degree of the predicted result, which would facilitate better detection of anomalies in the subsequent disparity correction step. With the development of fully convolutional neural networks (FCNs) (Long et al., 2015), it has been used in pixel-level labeling task to learn disparity map from end-to-end and achieved good results. Mayer et al. (2016) proposed the first end-to-end network, DispNet, which outputs a predicted disparity map by feeding a pair of binocular image pairs through an hourglass-type “encoder-decoder” architecture. Pang et al. (2017) extended the basis of DispNet by proposing a two-stage composition of the stacked network (CRL) cascaded residual learning: the first stage is used to regress the initial disparity, and the second stage corrects the initial disparity generated from the first stage to form multi-scale residuals, and finally the outputs of the two stages are summed to form the final disparity map. Recent research study has mostly used end-to-end disparity maps regression based on a series of feature volume and 3D aggregation networks for better contextual aggregation. GC-Net (Kendall et al., 2017) innovatively proposed the form of cost volume based on the end-to-end network architecture of DispNet, where the cost volume of 4D is obtained by concatenating the left feature with their corresponding right feature from across each disparity level. The 3D convolution network is the first used to learn the global context information from neighbor pixels and disparities to predict the disparity probability. PSMNet (Chang and Chen, 2018) uses a pyramidal pooling layer, SPP, and a 3D CNN to replace the feature extraction and cost matching modules in GC-Net, SPP can make full use of global environmental information by aggregating environmental information at different scales and locations to build a matching cost volume. The 3D CNN adjusts the matching cost volume by combining multiple stacked hourglass networks with intermediate supervision, which enables the PSMNet to make fuller use of contextual information compared to the GC-Net approach.

However, the above methods all have their own shortcomings. The stereo matching algorithm of CNN is limited by the perceptual field of the convolutional network and still has a large number of incorrect matching results in such ill-posed regions as weak textures and reflection. DispNet does not combine different scales and different location information to construct matching costs and lacks contextual information features. GC-Net uses a 4D cost volume to represent the correspondence between left and right images, and uses 3D CNNs to learn global contextual information in both the spatial dimension and the disparity dimension, but does not consider the correlation between contexts. PSMNet uses average pooling to compress features to four scales, up-sampling by bilinear interpolation, and expanding the receptive field by dilated convolution, but increasing the receptive field size is not equivalent to capturing the correlation between contexts, and it ignores the contribution of distant pixels to the current region, thus lacking the interaction between local information and the long-range dependence of global network information.

The attention mechanism (Zhang et al., 2019) is able to capture rich contextual relevance by learning contextual information and adaptively integrating local and global information, which compensates well for the limitations of convolutional operations. DANet (Fu et al., 2019) uses a Self-Attention mechanism to integrate contextual information to achieve good results for the segmentation task of scenes.

Combining the experience of scene segmentation with the idea of making full use of local and global environmental information on the whole image, we apply it to the depth estimation of complex forest scenes and propose a stereo matching network LANet based on the Linear-Attention mechanism. Our main contributions can be summarized as follows.

(1) An innovative forestry application is proposed for fine surveying in the forest: LANet, an end-to-end stereo matching network is proposed to obtain disparity maps for forest scenes. An AM attention module including SAM and CAM is designed to obtain a rich representation of pixel-level features of forest scenes.

(2) A Linear-Attention mechanism is proposed in SAM, which captures long-range dependencies by learning rich contextual relationships while reducing the overall complexity of Self-Attention from O(n2) to O(n) in both time and space. Self-Attention is used in CAM to selectively emphasize interdependent channel maps by learning the correlation between different channel features, thereby improving feature discrimination.

(3) Optimizing stacked 3D hourglasses reduces the computational cost and improves inference speed by combining multiple stacked hourglass networks with intermediate supervision to adjust matching cost volumes, and using 1 × 1 × 1 3D convolutions in shortcut connections within each hourglass module, removing shortcut connections between different output modules of the hourglass.



Methodology

The LANet that we propose for depth estimation optimization in the 3D reconstruction of the inter-forest scene consists of five parts: ResNet, Attention Module (AM), Construction of Matching cost, 3D CNN Aggregation, and Disparity Prediction, as illustrated in Figure 1. Details of this model are provided as follows.


[image: Figure 1]
FIGURE 1
 Architecture overview of proposed LANet.



Details of the network structure

Table 1 lists the layers of each module and the corresponding parameter settings. H, W denotes the height and width of the image, C denotes the number of channels, D denotes the maximum disparity, and S1 and S2 denote convolution stride. Each 3D convolution by default contains batch normalized BN and linear activation ReLU,* indicate that ReLU is not included. ** indicate that ReLU and BN are not included, only convolution.


TABLE 1 Layers and parameter settings of the proposed LANet.
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ResNet is adopted as the backbone network for feature extraction, and its construction is similar to PSMNet, with the half dilation settings and without the SPP pooling module. The first stage convolution layers conv0_1, conv0_2, and conv0_3 use three 3 × 3 convolution filters to cascaded to obtain shallow features, and the output feature map size is 1/2 of the original image. The second stage convolution layers conv1_x, conv2_x, conv3_x, and conv4_x basic residual blocks are used to learn to extract deep semantic features. Downsampling with stride 2 was used in conv0_1 and conv2_1, and dilated convolution is applied to enlarge the receptive field in conv3_x and conv4_x. The output feature map size is 1/4 of the original size after ResNet processing.

The AM attention module adaptively aggregates long-range contextual information to enhance the representation of features. It consists of two parts: SAM and CAM. SAM contains three parallel 1 × 1 2D convolutions for calculating Q, K, and V, and two linear projection layers E and F are used for dimensional-reduction processing of K and V. The size and channels of the calculated feature based on the Linear-Attention mechanism remain unchanged, then the number of channels is halved by a 1 × 1 2D convolution. CAM is calculated on the original feature map, and the size and channel of the feature after calculation based on the Self-Attention mechanism remain unchanged, then the number of channels is also halved by a 1 × 1 2D convolution.

The construction of a matching cost module cascades conv2_16, conv4_3, SAM, and CAM with low-level structural information, high-level semantic information, and global and local information to construct a 1/4H × 1/4W × 320 feature map. Two 2D convolution layers shared by weights were used to fuse the feature map and compress its channel to 32. A 4D matching Cost-volume of 1/4D × 1/4H × 1/4W × 64 was formed by connecting the left feature map of 2D and the right feature map under each disparity correspondence.

The 3D CNN Aggregation module aggregates semantic and structural feature information in the disparity dimensions and spatial dimensions to predict refined cost volumes, which contains two structures: basic structure and stacked hourglass structure. The basic structure is used to test the performance of each module. It consists of six 3D convolutional groups, each consisting of two 3D convolutional layers with stride 1, kernel size 3 × 3 × 3, BN and ReLU, and the output of each group is summed with the result of the next group, while the last group is not summed. The stacked hourglass structure is used to optimize the network. The pre-hourglass network in a stacked hourglass structure consists of four 3D convolutions with BN and ReLU. Three stacked 3D hourglass networks in stacked hourglass structures have the same architecture: 3Dstack x_1, 3Dstack ×_2, 3Dstack x_3, and 3Dstack x_4. Two downsamplings are performed during the 3D convolution encoding process, and two upsamplings are performed during the 3D deconvolution decoding process accordingly i.e., the 3D deconvolution with a convolution filter of 3 × 3 × 3 is used to recover the dimensions, while the number of channels is halved.

The disparity prediction module performs two 3D convolutions with a convolution kernel of 3 × 3 × 3 on each output unit of Output1, Output2, and Output3 to obtain a 4D volume of 1/4D × 1/4H × 1/4W × 1, applying trilinear interpolation to recover the same dimension H × W × D as the input image size, which is converted to a probability volume using a softmax function along the disparity dimension.



Attention module

The SPP spatial pyramid pooling module in PSMNet expands the receptive field by using different scales of convolution to capture the global context information, but it does not further integrate and interact with the extracted features and lacks long-distance dependencies between information, so it cannot exploit the correlation between pixels to capture scene information. We designed an attention module AM, which models semantic relevance in the spatial and channel dimensions, respectively, captures long-range dependencies between global contexts, and adaptively integrates local and global information after feature extraction to obtain a better feature representation at the pixel level.


Spatial attention module

Spatial attention module encodes broader contextual information into local features from a global view of the entire feature map, adaptively aggregates information from the spatial environment, finds correlations between pixel features at different positions, and similar semantic features promote each other to improve intra-class cohesion and semantic consistency. Self-Attention in Transformer (Vaswani et al., 2017) is calculated as follows.

[image: image]

where [image: image], P ∈ ℝn×n is a context mapping matrix which represents the correlation of pixels at different positions. [image: image] are the query matrix, key matrix and value matrix of input embedding, respectively, Q = XWQ, K = XWK, V = XWV, [image: image] is the input sequence, n is sequence length, dm is the embedding dimension, WQ, [image: image], [image: image] are three learnable matrices and dm, dk, dv are the hidden dimensions of the projection subspaces, for the rest of this article, we will not differentiate between dk and dv and just use d.

Self-Attention first calculates the dot product with Q ∈ ℝn×d and K ∈ ℝn×d, after scaling and normalization the attention matrix P ∈ ℝn×n is obtained, and then fuses the values of V with the values of P. Since both Q and K are n × d dimensional matrices, the time complexity of multiplying the two is O(n2), and since the matrix P is an n × n dimensional matrix, the space complexity is also O(n2). Therefore, the cost of training and deploying the model when using Self-Attention on large size images is very high, even if the input image size is brought down by CNN, the time and space overhead it entails can significantly slow down the network. Therefore, A Linear-Attention is proposed, which can reduce the overall complexity of Self-Attention in time and space from O(n2) to O(n), without degrading performance and criteria, and at the same time with greater memory and time efficiency.

[image: image]

Where [image: image], P ∈ ℝn×k. The contextual mapping P in Self-Attention is low-rank, and most of the information of matrixP is concentrated in the few largest singular values, P can be approximated by a low-rank matrix [image: image], thus we can reduce the complexity of Self-Attention by changing its architecture. The main idea of the proposed Linear-Attention (Figure 2) is a low-rank approximation method, specifically adding two (k × n)-dimensional linear projection matrices E and F, respectively, when calculating Key and Value, which reduces the original Key and Value layer KWK and VWV from (n × d)-dimensional to (k × d)-dimensional. as in Figure 3. The (n × k)-dimensional contextual mapping matrix [image: image] is then calculated by scaled dot-product, as in Equation (2).


[image: Figure 2]
FIGURE 2
 Linear-Attention architecture.



[image: Figure 3]
FIGURE 3
 Linear mapping layers.


According to the above operation, Linear-Attention has a value [image: image] and its time and space complexity is mainly O(nk) of [image: image]. If we choose a very small projected dimension k, such that k≪n, the overall complexity can be reduced to linear O(n). It can be proved that when k = O(d/ε2), [image: image] of Linear-Attention can be approximately equivalent to P·(VWV) of Self-Attention and the error is not greater than ε.

Proof. We first proof Self-Attention is low rank and then there exists matrices E, F ∈ ℝn×k that make Self-Attention linear complexity.

Proof 1. We define S and DS as follows

[image: image]

[image: image]

where DS is an n × n diagonal matrix, the context mapping matrix P is defined as

[image: image]

define [image: image] as follows with approximation error ε > 0

[image: image]

Let R ∈ ℝn be a k × n matrix, 1 ≤ k ≤ n, with independent and identically distributed entries from N(0, 1/k), the rank of [image: image] satisifies [image: image].

According to the Johnson-Lindenstrauss lemma (JL, for short) (Arriaga and Vempala, 2006).

[image: image]

For any row vector x ∈ ℝn of matrix P and any column vector y ∈ ℝn of matrix VWV, we can obtain

[image: image]

furthermore, we have

[image: image]

The above step (I) utilizes Boole's inequality

[image: image]

Step (II) is based on the JL Lemma (8).

Therefore, we prove that for any Q, K, V ∈ ℝn×d, WQ, WK, WV ∈ ℝd×d and any column vector y ∈ ℝn of matrix VWV, when k = 5log(n)/(ε2 − e3), there exists a low-rank matrix [image: image], such that

[image: image]

Proof 2.

Define E = δR and F = e−δR, where R ∈ ℝk×n, 1 ≤ k ≤ n, with independent and identically distributed entries from N(0, 1/k), δ = 1/2n is a constant, row vector x ∈ ℝn of matrix P and column vector y ∈ ℝn of matrix VWV, we have

[image: image]

In Equation (12), step(I) is Based on the triangle inequality, step (II) is the result of plugging in E = δR and F = e−δR, and step (III) is based on the JL Lemma (13)

[image: image]

we have

[image: image]

Step (IV) utilizes the Cauchy inequality, the step (V) utilizes the fact that exponential function is Lipchitz continuous in a compact region. Then we can choose a small enough δ = θ(1/n), such that

[image: image]

Step (VI) is based on the JL Lemma (8), we have

[image: image]

Therefore, we prove that exist E = δR and F = e−δR, whereR ∈ ℝk×n, 1 ≤ k ≤ n, with independent and identically distributed entries from N(0, 1/k), δ = 1/2n is a constant, for any row vector x ∈ ℝn of matrix P and any column vector y ∈ ℝn of matrix VWV, such that

[image: image]

Furthermore,

[image: image]

By setting k = 5log(nd)/(ε2 − e3), whered = rank(S)

Based on the above analysis, Linear-Attention features are calculated as follows. The output size of RestNet is 1/4H × 1/4W × 128, which is represented as the input feature of SAM as X ∈ ℝH×W×C, feeding X into three 2D convolution layers of 1 × 1 to generate new feature maps Q, K, V ∈ ℝH×W×C, respectively, Q = XWQ, K = XWK, V = XWV and reshape them to Q, K, V ∈ ℝn×d, where n = 1/4H × 1/4W and d=C. E, F ∈ ℝk×n, according to the experiment in Table 4, we set the value of k to 512, and the performance of the model is the best at this value. In order to reduce the parameters of the network, let E and F share the parameters. We perform a matrix multiplication between QWQ and the transpose of EKWK, after that a softmax layer is applied to calculate the spatial attention map [image: image].

[image: image]

where [image: image] indicates the influence of position i on position j. A larger value of [image: image] indicates a greater correlation between the features of the two positions.

We perform a matrix multiplication between [image: image] and FVWV and reshape the result to RH×W×C, then multiply it by a scale parameter α and perform an element-wise sum operation with the original feature map of X ∈ ℝH×W×C. Finally, we get the spatial attention feature map Y ∈ ℝH×W×C.

[image: image]

Where α denotes the scale factor, which gradually learns a weight from 0 to get more weight. Equation (20) shows that the feature Yj at each location is a weighted sum of the features at all locations and the original locationXj. Thus, it has global contextual information and selectively aggregates contextual information according to the spatial attention map, and semantic features with high relevance promote each other and fuse similar features in the global space, which improves the compactness and semantic consistency within the features and plays an important role for feature representation and extraction in ill-posed regions.



Channel attention module

Each channel corresponds to a class-specific semantic feature map, which models the importance of individual feature channels and captures long-range semantic dependencies between channel features to improve the identification of channel features. Unlike the spatial attention mechanism, CAM does not involve O(n2) complexity and we use Self-Attention, the channel attention architecture is shown in Figure 1. Specifically, we reshape the input feature X ∈ ℝH×W×C to Q′, K′, V′ ∈ ℝn×d and, where n = 1/4H × 1/4W and d=C, then perform a matrix multiplication between the transpose of Q′ and K′. We apply a softmax layer to obtain the channel correlation matrix P′ ∈ ℝd×d.

[image: image]

Where [image: image] denotes the influence of the ith channel on the jth channel, the more similar the features expressed by the two channels, the greater the response value between them. Matrix multiplication of V′ and [image: image] yields an ℝn×d feature map, which is reshaped to ℝH×W×C and then multiply the result by a scale parameter β and performs an element-wise sum operation with the original feature map of X ∈ ℝH×W×C. Finally, we get the channel attention feature map Z ∈ ℝH×W×C.

[image: image]

Where β denotes the scale factor, which is initialized to 0 and gradually learns to assign larger weights. It can be inferred from Equation (22), that the final feature Z of each channel is a weighted sum of the features of all channels and the original features, which ensures that the channel attention mechanism is able to capture the long-range semantic dependencies between channel features and obtain more contextual semantic information, and helps to improve the identification of features. The process of channel attention is similar to that of spatial attention, except that X is not processed before calculating the correlation matrix in the channel dimension, in order to maintain the original relationship between different channel maps. The feature of any two channels is directly multiplied by dimension transformation to obtain the correlation strength of any two channels. After softmax operation, the channel Attention matrix is obtained. Finally, Attention is fused by weighting, so that global correlation can be generated between all channels and stronger semantic response features can be obtained.




3D CNN aggregation

The 3D CNN Aggregation module aggregates semantic and structural feature information in the disparity dimensions and spatial dimensions to predict refined cost volumes. We use two 3D CNN structures for cost-volume regularization: the basic structure and the stacked hourglass structure. The basic structure is the same as PSMNet, and the stacked hourglass structure is optimized in this study. PSMNet uses a 3D stacked hourglass structure to aggregate multi-scale environmental information to achieve high matching accuracy, however, this 3D stacked hourglass structure has a lot of redundant information resulting in a large number of model parameters, high runtime cache usage and inefficient learning of the network. To solve this, the following modifications are made to reduce the number of parameters in the network and increase the inference speed of the network computation. The structure of the optimized stacked hourglass structure is shown in Figure 1 and Table 1.

First, Shortcut connections between different hourglass output modules have been removed: i.e., between output1 and output2 and between output2 and output3, so that the auxiliary output modules output1 and output2 can be removed during the inference process to save computational costs.

Second, A 1 × 1 × 1 3D convolution shortcut is used inside each hourglass module for direct connection, compared to a 3 × 3 × 3 3D convolution, the computational parameters of the network are reduced, and the number of calculations for its multiplication is reduced to 1/27 of the original, at which point it runs very fast and in negligible time, thus enabling the network to run faster without increasing the computational cost.

The optimized 3D CNN aggregation module consists of a pre-processing network and an hourglass network, with the pre-processing network used to extract low-level features and provide geometric constraints for disparity prediction. The hourglass network learns more semantic and structural information about the contextual environment and is able to refine the low-texture blur and occlusion parts, which are used to compute the final disparity map. The 3D stacked hourglass network uses an “encode-decoder” structure to solve the problem of over-computation caused by 3D CNNs, where the encoder uses a 3D convolution of step 2 to downsample and the decoder uses a step 2 deconvolution to recover size. In order to reduce the loss of spatial information caused by the “encoder-decoder” structure, we connect features of the same size corresponding to the encoder and decoder allows the lost detail information and information from the lower-level feature maps to be added during the process of deconvolution to recover the resolution of the feature maps.



Disparity prediction

The three hourglasses correspond to three outputs and three losses. During the training phase, the total loss is obtained from the weighted sum of the three losses. During the testing phase, each hourglass output generates a disparity map, and the final disparity map is obtained from the last output. First, each value in the cost volume is transformed into a probability value p along the disparity dimension by using Softmax, then the disparity value k for each pixel is multiplied by the corresponding probability pk and cumulative summed. Finally, the disparity estimation [image: image] is obtained by regression method using a differentiable Soft Argmin function (Kendall et al., 2017).

[image: image]

Where Dmax indicates the maximum disparity. For each pixel, we have a D max -length vector which contains the probability p for all disparity levels. k and pk denote a possible disparity level and the corresponding probability.

Since the smoothed L1 loss function is more robust and less sensitive to abnormal values than the L2 loss function, the L1 loss function is widely used in object detection for bounding box regression, and the disparity calculation can also be considered as a regression problem, so we use the L1 loss function (Goodfellow et al., 2016). The total loss was calculated as follows.

[image: image]

in which

[image: image]

Where λi denotes the coefficient of the ith disparity prediction, di denotes the ith ground truth disparity map and [image: image] denotes the ith prediction disparity map.




Data and performance evaluation metrics

The Scene Flow dataset (Mayer et al., 2016) is a large-scale public dataset of synthetic non-real scenes applied to binocular stereo matching, which is created through computer graphics rendering techniques and provides dense ground-truth disparity maps for all image pairs. As shown in Figure 4. It contains three sub-datasets: Flyingthings 3D, Monkaa and Driving, with a total of 39,049 pairs, of which 34,801 training image pairs and 4,248 test image pairs. In this study, 90% of the training image pairs are used as the training set, and 10% are used as the validation set. The details are listed in Table 2.


[image: Figure 4]
FIGURE 4
 Visualization of scene flow dataset.



TABLE 2 Details of scene flow dataset.

[image: Table 2]

Figure 4 is a display of four samples. The images in the first row are the left images of the Scene Flow dataset, the images in the second row are the right images of the Scene Flow dataset, and the images in the third row are the disparity images corresponding to the left images.

Forest is a dataset of real Forest scenes that we created ourselves, which were collected from the forestry field of Northeast Forestry University. As shown in Figure 5. The acquisition device is a ZED2 binocular depth camera with a pixel resolution of 1,280*720, which can acquire binocular image pairs and their corresponding disparity maps simultaneously. The original image pairs and their corresponding disparity maps are cropped into images with a resolution of 1240*426 to form the forest dataset, of which 80% are used as the training set, 10% as the validation set, and 10% as the test set. Forest dataset contains a total of 400 pairs of binocular image pairs and their corresponding dense disparity maps of five types of forest vegetation, including Larix gmelinii, Pinus sylvestris var. mongolica, Pinus tabulaeformis var. mukdensis, Fraxinus mandschurica Rupr, and Betula platyphylla Suk. The details are listed in Table 3.


[image: Figure 5]
FIGURE 5
 Visualization of forest dataset.



TABLE 3 Layers and parameter settings of the proposed LANet.

[image: Table 3]

The recognized performance evaluation metrics in the binocular stereo matching task are as follows.

(1) End-point-error

End-point-error (EPE) represents the average Euclidean distance between the predicted disparity and the true disparity of a pixel.

[image: image]

where N denotes the total number of pixel points, di denotes the true disparity of the ith pixel, and [image: image] denotes the predicted disparity of the ith pixel.

(2) T-pixel-error

T-pixel-error indicates that the absolute value of the difference between the predicted disparity and the true disparity exceeds the number of t pixel points as a percentage of the number of pixels in the whole image, the higher the percentage the more false matching points and the lower the matching accuracy.

(3) D1-all

D1-all is the percentage of pixels with errors of more than three pixels or 5% of disparity error from all test images.

(4) Parameter

The parameter is the total number of parameters for model training, in millions.

(5) Runtime

Runtime is the average running time to generate a disparity map, in seconds.



Experimental results and discussion


Experimental detail setting

The current mainstream training method for binocular stereo matching algorithms is to pre-train on Scene Flow and then fine-tune on the target dataset, which can achieve better results on the target dataset. In this study, the pre-training dataset uses the clean pass in Scene Flow and its corresponding disparity map of the left image, and the target dataset uses Forest and its corresponding disparity map of the left image, the detailed setup of the experiment is shown below.

The network was based on Python 3.9.7, the PyTorch 1.11.0 framework, and the optimizer used Adam (Diederik and Ba, 2015) with β1= 0.9 and β2= 0.999. The network model was trained on an Nvidia TITAN Xp GPU 3090 with batch size set to 8 and the coefficients for the three outputs set to λ1= 0.5, λ2= 0.7, and λ3 = 1.0, respectively.

The model was trained from scratch on the Scene Flow dataset for 16 epochs, with an initial learning rate of 0.001. After the 10th epoch, the learning rate decayed by half every 2 epochs, ending at 0.000125, and the training process took about 19 h. During training, images were randomly cropped to size H = 256 and W = 512. The maximum disparity (D) was set to 192. The model trained on Scene Flow was used directly in the ablation experiments. A full image of size 960 × 540 was directly fed to the network for disparity prediction, and during the network evaluation, we removed “invalid” images with less than 10% of valid pixels (0 ≤ d < Dmax) from the test set, only “valid” images were tested. The pre-trained model on Scene Flow was fine-tuned on Forest for 800 epochs, with the initial learning rate of 0.001 and the learning rate decaying by half every 200 epochs, ending at 0.000125. The fine-tuning took about 12 h to obtain the final model, which was used to evaluate the final accuracy and effectiveness of the model.



Results


Results of experiments on scene flow

(1) Ablation experiments on Scene Flow

In this section, ablation experiments are conducted on the Scene Flow dataset to verify the performance of each key module and key parameters in LANet. In Table 2, Res is the ResNet module, CAM is the channel attention module, SA is a spatial attention module using the Self-Attention mechanism, SAM is a spatial attention module using the Linear-Attention mechanism, kx is the dimension of E in the model and E and F share parameters, Basic is the basic structure and Hourglass is the stacked hourglass network. The performance of the CAM and SAM modules is evaluated by using the basic structure since Basic does not learn additional contextual information through an “encoder-decoder” process. The performance of each module was evaluated by one-pixel-error (>1px), two-pixel-error (>2px), and three-pixel-error(>3px) errors and EPE and Runtime, respectively, and the experimental results are shown in Table 4.


TABLE 4 Ablation experiments on scene flow.

[image: Table 4]

It can be seen from Table 4 that CAM and SAM were added to significantly reduce the error rate compared to Res_Base, the EPE decreased from 1.65 to 1.21 and 1.10 of k128, respectively, and three-pixel-error (>3px) decreased from 6.41 to 5.36 and 5.04 of k128, respectively. It is demonstrated that the attention modules CAM and SAM help to reduce the false match rate. In order to examine the performance of Linear-Attention, the Res_SA_Base module is added for comparison, and k is set to different values. When k=128, the EPE of Res_SAM_k128_Base is 1.10 higher than 1.03 of Res_SA_Base, but the inference time of Res_SAM_k128_Base is 0.16s, which is much lower than 0.24s of Res_SA_Base. When the value of k increases, the EPE of Res_SAM_kx_Base gradually approaches that of Res_SA_Base. When k=512, the EPE of the two is almost the same, while the inference time of Res_SAM_kx_Base does not change much and is significantly faster than that of Res_SA_Base. This verifies that when the error rates of the two are close, the speed of linear-attention is significantly faster than that of self-attention. Res_CAM_SAM_k512_Base has obvious advantages over Res_CAM_SAM_k512_Hourglass, which reduces the three-pixel-error of the overall network from 3.95 to 2.31 and EPE from 0.95 to 0.82.

(2) Comparison experiments with other methods on Scene Flow

In order to examine the performance of the model, LANet is compared with the state-of-the-art methods such as Edgestereo, GC-Net, and PSMNet on the Sceneflow test set from the three performance evaluation metrics of three-pixel-error, EPE and Parameter.

As listed in Table 5, the three-pixel-error of each model is basically in proportion to its EPE, but there is no direct relationship with the number of parameters. The number of parameters in GCNet is 3.5M, which is small, but its error rate is higher. Due to a large number of convolution layers in the CRL, the number of parameters is up to 78.77M, and the model is bloated and inefficient. The PSMNet shows a good performance in all metrics, while LANet shows better.


TABLE 5 Comparison experiments on scene flow.

[image: Table 5]

(3) Visualization of Scene Flow

Figure 6 illustrates some examples of the disparity maps estimated by the proposed LANet and PSMNet on Scene Flow. Where the first column is the left images of Scene Flow, the second column is the ground truth, the third column is the disparity maps estimated by LANet, and the fourth column is the disparity maps estimated by PSMNet.


[image: Figure 6]
FIGURE 6
 Visualization on scene flow. (A) Left images, (B) ground truth, (C) LANet, and (D) PSMNet.


The red rectangle in Figure 6 is all fine structure areas. It can be observed that the disparity effect is more obvious in the complex and precise areas of the “wheels” in the first group and the repetitive texture areas of the “tool” in the fourth group. LANet performs relatively well in these areas, not only retaining the complex and fine features of the “wheel” but also obtaining more reliable disparity maps in the “tool” repetitive texture area and the “shelf” occluded area. For objects with large and regular, more accurate matching can be achieved.



Results of experiments on Forest

(1) Setting of loss function weights

Properly setting the loss weights for each output module enables effective error return from the front to back of the entire network, which helps to improve network performance effectively. The stacked hourglass of the 3D CNN has three training outputs out1, out2, and out3 corresponding to three loss of weights λ1, λ2, and λ3, which are assigned a value between 0 and 1. In order to find the best loss weight, experiments with different weight combinations are designed and applied to the verification set of Scene Flow and Forest, as shown in Table 6.


TABLE 6 Setting of weighting factors.

[image: Table 6]

The loss weights nearer to the end of the network are more important to the training of the network, so we set them relatively large, and the outputs of other modules play a supporting role in the training of the network. The best performance is obtained when the weights of λ1, λ2, and λ3 are 0.5, 0.7, and 1.0, respectively when the EPE is 0.82 on Scene Flow and 0.68 on Forest. For the basic structure, we treat these three loss weights equally and set them to 1.

(2) Comparison of model performance on Forest

In this group of experiments, three performance evaluation metrics, D1-all, EPE and Runtime, were used to examine the performance of each method on the Forest dataset. The results are shown in Table 7.


TABLE 7 Comparison experiments on Forest.

[image: Table 7]

After fine-tuned on Forest, LANet showed better performance than that on the SceneFlow dataset, with an EPE reduction from 0.82 to 0.68. LANet was tested on a 3090 GPU and Forest dense test set, with an image resolution of 1240*426. The runtime was closely related to the performance of the experimental device and the size and density of the image, under our experimental conditions, the D1-all, EPE and runtime of PSMNet are 2.61, 1.25 and 0.48, respectively, while those of LANet are 2.15, 0.68 and 0.35, respectively, which are better than the baseline model PSMNet. In terms of Runtime, iResNet is 0.2 and DispNet is 0.14, which is better than our 0.35, but their accuracy is very low, which D1-all is 3.58 and 3.08, respectively, while ours is 2.15.

(3) Model visualization of Forest

Figure 7 shows the visualization of disparity maps generated by LANet, PSMNet, and GCNet on Forest, with color representing the different disparity values and black indicating points where the disparity values are very small and can be ignored at longer distances.


[image: Figure 7]
FIGURE 7
 Visualization on forest.


The yellow and green rectangular are areas of poor model matching, usually found in locations containing delicate and intricate structures such as branches, tree trunks, leaf edges, and weakly textured areas such as the rear glass of a car and obscured locations. In column A, the pink part of the yellow rectangular area shows the trees in the distance and the dark red part show the sky, with significant differences in predictions between models at the borders of the trees and the sky. PSMNet and GCNet can keep the main outline of the edge, but the matching of the delicate and intricate structure is not accurate enough, while LANet can keep the delicate and intricate features of the edge better and the prediction is closer to the true value. In column B, the yellow rectangular area is the distant tree trunk and the rear glass of the car. For the prediction of the red trunk, PSMNet and GCNet appear pixel missing, while the prediction of LANet is more accurate. For the pink rear glass of the car, LANet has a slight depth color deviation, while PSMNet has more depth color deviation and GCNet has more depth color error. In column C, the green rectangular area is the trunks and leaves in the distance. With LANet showing pixel discontinuities and a little missing for the red trunks, PSMNet and GCNet show larger pixel missing or even trunks missing. For the purple leaf part, LANet can better retain edge features, while PSMNet lacks some small edge features, and GCNet has too many edge predictions, resulting in a mismatch.





Discussion

The proposed network was evaluated on two stereo-matched datasets, Scene Flow and Forest. Ablation experiments are conducted to verify the performance of each key module and key parameters in LANet. The results in Table 4 demonstrated that CAM and SAM significantly help to reduce the false match rate, and SAM performs better than CAM. The performance of the hourglass is significantly better than that of the Basic, indicating that the stacked hourglass module can better aggregate the feature information of disparity dimension and spatial dimension than the basic module, thus further improving the matching accuracy. The comparison between Res_SA_Base and Res_SAM_kx_Base verifies that when the error rates of the two are close, the speed of linear-attention is significantly faster than that of self-attention. Through the three sets of experiments of Res_SAM_kx_Base, it is found that when the k value becomes larger, their EPE gradually approaches that of Res_SA_Base, while the inference time does not change much, and is significantly faster than that of Res_SA_Base. When k = 512, the effect is the best, therefore, we choose k = 512 as the subsequent experimental parameters.

In order to investigate the overall performance of LANet, we also conducted experimental comparisons with other state-of-the-art models. As shown in Table 5, benefiting from the effective design of the attention mechanism and the refinement of the matching cost aggregation stage, with a three-pixel-error of 2.31, EPE of 0.82 and parameter number of 4.5M on Scene Flow, LANet achieves higher accuracy than PSMNet in the case of fewer parameters. The results in Table 7 show that the EPE of LANet is reduced from 0.82 to 0.68 after fine-tuning on Forest, and the accuracy is further improved, making it outperform the comparison model in terms of accuracy. The D1-all and running time of LANet are 2.15 and 0.35, respectively. Although its speed is not the fastest, combined with the above metrics, the comprehensive performance of LANet is very competitive.

Four testing examples on Scene Flow are illustrated in Figure 6 to demonstrate that LANet obtains relatively accurate disparity maps for delicate and intricate objects and overlapping occlusion objects. LANet can not only retain the delicate and intricate features of the “wheel” but also obtain more reliable disparity maps in the “tool” repetitive texture area and the “shelf” occluded area. Three testing examples on Forest shown in Figure 7 illustrate that LANet achieves more robust results in ill-posed regions. By comparison with PSMNet and GCNet, LANet performs relatively well, not only retaining the salient information of the object (e.g., branches, leaf edges, edge regions of tree trunks) but also still being able to extract valid features for more accurate matching in large weakly textured regions (e.g., glass, sky, roads) and obscured regions. The comparison model, however, has insufficient ability to identify valid features in these ill-posed regions due to the lack of interaction between global and local information, which can produce some false matches and affect the matching accuracy of the model. In addition, Although the comparison methods achieved high performance metrics on the target test set, they generally use fewer dataset samples during fine-tuning (e.g., KITTI only used 200 pairs), and many methods suffered from severe overfitting and poor generalization performance, resulting in an unsatisfactory performance on the Forest dataset.

Figures 6, 7 are the visualization results of the experimental comparison of various methods. The clarity of Figure 6 is high, and many details can be seen clearly, while Figure 7 is not as clear as Figure 6. The reasons for that are analyzed as follows. Figure 6 is an artificially synthesized close-up dataset, and the author has done some optimization processing on the dataset for binocular stereo matching to make the clarity of the figure higher, so we can see many details clearly. In contrast, Figure 7 is our own dataset of real inter-forest scenes. Because of the long distance and complex object structure of the field scenes, coupled with the fact that the authors did not optimize the dataset, Figure 7 does not look as clear as Figure 6, but this does not affect the accuracy of the model.

The results further show that the proposed attention mechanism can effectively identify salient features and fine structure features of different objects by capturing global long-range dependencies and aggregating rich global and local information, so as to extract more comprehensive and effective features to reduce matching errors and improve the disparity prediction accuracy. Robust results can still be obtained in some delicate and intricate regions, overlapping occlusion regions and other ill-posed regions, generating dense and reliable disparity maps for Forest scenes.



Conclusion

This research makes full use of the global and local information of the forest scene environment to find consistent correlations in the ill-posed areas and proposes an end-to-end stereo matching network LANet, which uses the attention mechanism to better compensate for the shortage of convolutional receptive field and the lack of long-distance dependence of context information in PSMNet. The proposed Linear-Attention can significantly enhance the representation of contextual semantic features while reducing the computational complexity of Self-Attention from O(n2) to O(n), which will help improve the accuracy and speed of the network. The optimized 3D stacked hourglass aggregation network reduces the inference time and further improves the speed of the network. LANet achieves better accuracy than some state-of-the-art methods on SceneFlow and Forest, and obtains more robust results in delicate and intricate regions, overlapping occlusion regions and other ill-posed regions, generating dense and reliable disparity maps of the inter-forest scene, which will provide key data for 3D reconstruction of forest scenes. While the generalization performance of LANet on other datasets is to be further tested. In addition, in order to make the model have stronger learning ability and better robustness so that it can better adapt to the complex outdoor forest operation scenes, the number and variety of samples in the Forest dataset need to be expanded, and the quality of original disparity maps requires to be further improved, which will be an important study in the future research.
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Rapid and accurate identification of tree species via remote sensing technology has become one of the important means for forest inventory. This paper is to develop an accurate tree species identification framework that integrates unmanned airborne vehicle (UAV)-based hyperspectral image and light detection and ranging (LiDAR) data under the complex condition of natural coniferous and broad-leaved mixed forests. First, the UAV-based hyperspectral image and LiDAR data were obtained from a natural coniferous and broad-leaved mixed forest in the Maoer Mountain area of Northeast China. The preprocessed LiDAR data was segmented using a distance-based point cloud clustering algorithm to obtain the point cloud of individual trees; the hyperspectral image was segmented using the projection outlines of individual tree point clouds to obtain the hyperspectral data of individual trees. Then, different hyperspectral and LiDAR features were extracted, respectively, and the importance of the features was analyzed by a random forest (RF) algorithm in order to select appropriate features for the single-source and multi-source data. Finally, tree species identification in the study area were conducted by using a support vector machine (SVM) algorithm together with hyperspectral features, LiDAR features and fused features, respectively. Results showed that the total accuracy for individual tree segmentation was 84.62%, and the fused features achieved the best accuracy for identification of the tree species (total accuracy = 89.20%), followed by the hyperspectral features (total accuracy = 86.08%) and LiDAR features (total accuracy = 76.42%). The optimal features for tree species identification based on fusion of the hyperspectral and LiDAR data included the vegetation indices that were sensitive to the chlorophyll, anthocyanin and carotene contents in the leaves, the partial components of the transformed independent component analysis (ICA), minimum noise fraction (MNF) and principal component analysis (PCA), and the intensity features of the LiDAR echo, respectively. It was concluded that the framework developed in this study was effective in tree species identification under the complex conditions of natural coniferous and broad-leaved mixed forest and the fusion of UAV-based hyperspectral image and LiDAR data can achieve enhanced accuracy compared the single-source UAV-based remote sensing data.
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1 Introduction

Tree species information is a prerequisite for undertaking research on the diversity of forest species, which is essential for constructing prediction models for forest ecosystems. Accurate identification of tree species is of great significance for forest resource monitoring, biodiversity assessment, biomass retrieval, and forest carbon sinks (Lu et al., 2019). To date, the traditional field survey of tree species typically relies on setting up sample plots for a manual survey, which has disadvantages such as high field-work intensity, high cost and long cycle time. In contrast, the application of remote sensing technology in forest inventory has the characteristics of high efficiency, short survey time and low cost, and can reflect the dynamic changes of surface vegetation. With the continuous development of space technology and communication sensing technology, remote sensing has developed from the traditional optical remote sensing stage to multi-source remote sensing via different platforms, especially hyperspectral remote sensing and high-precision light detection and ranging (LiDAR) technologies (Feng et al., 2020).

Hyperspectral remote sensing, as a passive remote sensing technology, obtains continuous spectral information by acquiring the electromagnetic waves reflected by ground objects. Compared with other remote sensing technologies, it has the advantages of high spectral resolution and a powerful ability to distinguish nuances of ground objects (Li et al., 2019). Previous studies have demonstrated that hyperspectral technology can be used to identify tree species (Jensen et al., 2012; Fricker et al., 2019; Modzelewska et al., 2020; Wan et al., 2020; Zhao et al., 2021). Feature extraction is the key step of tree species identification by hyperspectral technology and then the extracted features are used together with classification algorithms to classify the image pixels and realize tree species identification. Jensen et al. (2012) identified temperate tree species in urban area using airborne hyperspectral data, and the results showed that the classification accuracy increased from 82% to 91.4% after combining vegetation indices, band means and band ratios with principal component analysis (PCA) transform features compared with PCA method only. Fricker et al. (2019) used airborne hyperspectral images and RGB images for identification of tree species in mixed coniferous forests, and carried out individual tree level studies on the dominant species and dead trees with the aid of convolutional neural networks. Their results showed that the identification accuracy of tree species via the hyperspectral image was superior to that of the RGB image. Modzelewska et al. (2020) classified seven different tree species by acquiring airborne-derived hyperspectral images of natural and planted forests. An MNF (minimum noise fraction) transformation was applied to obtain the uncorrelated components from the hyperspectral data and then a support vector machine (SVM) model was used to produce thematic maps of tree species. Their results showed that the overall classification accuracy of planted forests (77%) was higher than that of natural forests (64%). Wan et al. (2020) used GF-5, Hyperion and Landsat8 satellite-derived hyperspectral data to classify mangrove tree species by random forest (RF) and SVM models and the corresponding identification accuracies were 87.12%, 86.82% and 73.89%, respectively. Zhao et al. (2021) extracted spectral features, texture features, vegetation indices and statistical features for feature selection and identification of tree species from the UAV-based hyperspectral images of a protected plantation forest with simple structure in Xinjiang, China and a higher classification accuracy was obtained. To sum up, the accuracy of individual tree species identification in most studies was not very high by using the spectral information of hyperspectral data only. Since hyperspectral data only contains two-dimensional information of the object being measured, which has poor segmentation ability for individual trees, especially under complex forest conditions, most studies on tree species identification via airborne and spaceborne hyperspectral images were performed at the plot scale (Wu and Zhang, 2020). Other technologies should be used in combination with hyperspectral technology in order to carry out fine identification at the individual tree level.

The LiDAR is an active remote sensing technology that uses laser light emitted from an optoelectronic sensing device to determine the distance to a target and obtain spatial information about the target (Wang et al., 2019). Compared with traditional optical passive remote sensing, LiDAR data can accurately extract vertical information of forest stands, and this capability offers unparalleled advantages in forestry applications (Man et al., 2020). The general process of tree species identification based on LiDAR data includes individual tree segmentation, features extraction (e.g., three-dimensional texture, clustering degree, structure and echo intensity), and tree species classification (Li et al., 2013; Zhang and Liu, 2013). Sooyoung et al. (2009) used multi-temporal airborne LiDAR data for the identification of tree species at the individual tree level based on the echo intensity of trees before and after defoliation, and the comparison results showed that the LiDAR data after defoliation was more suitable for identification than that before defoliation. Shi et al. (2018a) performed feature extraction and tree species identification at the individual tree level based on LiDAR data acquired by an airborne Riegl LMS-Q680i scanner in a mixed forest in Central Europe. The results showed that the feature of echo intensity provided a higher identification capability compared with the geometric features. Even though the identification of tree species at the individual tree level can be achieved with LiDAR data, a limited number of such studies using LiDAR data only were conducted. The reason for this is that the LiDAR technique lacks information at the spectral dimension level, thus only the geometric and echo features can be used to conduct tree species identification. Clearly, the lack of feature information had certain negative impacts on the accuracy of identification.

It is thus difficult for a single remote sensing data source to meet the high-precision requirements for tree species identification. However, LiDAR and hyperspectral data are highly complementary; therefore, the fusion of the two types of data has been gradually applied in tree species identification. The main idea of combining LiDAR and hyperspectral data for tree species identification is as follows: the LiDAR data is used for individual tree segmentation, and the hyperspectral features and LiDAR features are extracted separately and used together with classification algorithms for tree species identification (Liu et al., 2013; Shen and Cao, 2017). In 2012, Dalponte et al. conducted an identification study based on the acquired airborne LiDAR, multispectral and hyperspectral data. They found that the identification of the tree species was more accurate with the addition of tree height information and the accuracy of identification for the fused LiDAR and hyperspectral data was superior to that of either using just the LiDAR or multispectral data. In 2013, the Chinese Academy of Forestry developed the LiCHy (LiDAR, CCD and Hyperspectral) airborne observation system to obtain the vertical structure, horizontal structure and spectral attributes of ground objects at a higher spatial resolution, which has been widely used in forest resource surveys (Li et al., 2016; Pang et al., 2016; Wu et al., 2018; Jia et al., 2020; Zhang et al., 2020; Pang et al., 2021).

In recent years, the combined UAV-based hyperspectral and LiDAR data have been used for tree species identification in consideration of the flexibility and cost (Sothe et al., 2019; de Almeida et al., 2021; Jiang et al., 2021). For example Sankey et al. (2017, 2018) employed UAV hyperspectral and LiDAR data for monitoring forests with varying tree cover (22%-55%) and densities (1-3.5 trees/10-m cell) and sparse vegetation in arid and semi-arid areas, and used decision tree methods for the identification of tree species. Their results showed that the identification performance was better for the fused data set compared with that of the single data set. Cao et al. (2021) extracted feature information of mangroves in southern China based on UAV-based hyperspectral and LiDAR data, and compared the classification accuracies of three different classifiers (random forest, logic model tree, rotation forest ensemble learning algorithm). The results proved that the addition of the canopy height information from LiDAR could improve the accuracy of tree species identification compared with hyperspectral data alone and the rotation forest ensemble learning algorithm was more accurate and stable in classifying mangrove species. Hartling et al. (2021) used UAV multispectral, hyperspectral, and LiDAR data to conduct a comparative study on tree species identification. The results showed that the identification using the hyperspectral data was significantly better than that of the multispectral data, and the height and shape profile extracted from the LiDAR data were conductive to identifying tree species. Since the research on the fusion of UAV-based hyperspectral and LiDAR data for tree species identification is still in the initial stage, the number of relevant studies is quite limited and most of them focused on simple forest conditions. The studies on tree species identification based on the fusion of UAV-based hyperspectral data and LiDAR data in dense and structurally complex forests such as conifer and broad-leaved mixed forests were rarely reported. It is also known that the hyperspectral image and Lidar data contain huge amount of information, thus the extraction of efficient features is the key step of realizing rapid and accurate tree species identification. However, the best feature combination for conifer and broad-leaved mixed forests was still unknown, which hampered the application of the fused UAV-based hyperspectral data and LiDAR data in different forest conditions. Therefore, it is necessary to conduct individual tree-level species identification based on the UAV-based hyperspectral image and Lidar data on conifer and broad-leaved mixed forests.

The general objective of this study is to develop an accurate tree species identification framework that integrates UAV hyperspectral image and LiDAR data under the complex condition of natural coniferous and broad-leaved mixed forest. Specifically, the objectives are to: (1) obtain the high-precise hyperspectral data and LiDAR point cloud at the individual tree level for a natural coniferous and broad-leaved mixed forest; (2) extract hyperspectral features and LiDAR features, and analyze the feature importance by RF algorithm in order to select appropriate features for the single-source and multi-source data, and (3) perform tree species classification by SVM algorithm and determine the best feature combination for tree species identification in the study area.



2 Study area and data acquisition


2.1 Overview of the study area

The study area (Figure 1) is located in Maoershan Experimental Forest Farm in Shangzhi City, Heilongjiang Province of China (127°30′~127°34′ E, 45°20′~45°25′ N), which is a part of the western slope region of Zhangguangcai Range in the Changbai Mountains. The area is a low hilly area with an average slope of 10° and an average elevation of 300 m. The region has a temperate continental monsoon climate, with an average annual temperature and precipitation of 3.1°C and 629 mm, respectively. The soil is fertile, and the soil types are mainly dark brown soil, white mud soil, meadow soil, swamp soil, etc. The flora belongs to the Changbai Mountain flora, and the existing stand types include natural secondary forests at different stages after the destruction and succession of the original zonal climax community. Major arbor species include Populus davidiana, Ulmus pumila, Betula platyphylla, Fraxinus mandshurica, Phellodendron amurense, Juglans mandshurica, Quercus mongolica, Acer pictum, Tilia amurensis, Pinus koraiensis and Larix gmelinii.




Figure 1 | Location of the study area (The red frame of the RGB image on the left is the study area; LiDAR and hyperspectral zoomed-in views are on the right).





2.2 Data acquisition


2.2.1 UAV data acquisition

Before the flight of the UAV, the flying path for the study area was determined. The flight was conducted on August 26, 2021 and the weather was clear and cloudless, and the wind speed was less than 3.0 m/s. The LiDAR sensor was mounted on an UAV Pegasus D200 (Feima Robotics Technology Company), the flight speed was set to 5.0 m/s, and the flight altitude was 80 m. The laser source was a RIEGL mini VUX-1UAV. A measurement distance of >250 m was employed with an accuracy range of ±1 cm. The number of echoes was 5, the echo intensity was 16 bit, the wavelength was 905 nm, and the point density was about 180 points/m2.

The hyperspectral imaging sensor was mounted on an UAV DJI M300RTK, with a flight speed of 4.5 m/s and a flight height of 100 m. The hyperspectral imaging sensor was a Resonon Pika L. The wavelength range was 400–1000 nm, the spectral resolution was 2.1 nm, and the pixel size was 5.86 µm. The shooting method was linear push-broom imaging, and the spatial resolution of the hyperspectral images was 10 cm.



2.2.2 Ground survey data

On September, 2021, the tree species in the sample plot were investigated in detail. The RGB image obtained by the UAV for the sample plot was acquired and printed. Then, the actual investigation of different tree species was carried out in the sample plot, and the tree species and locations were marked on the drawing of the RGB image. Combined with a visual interpretation method, the detailed distribution information of tree species in the study area was obtained.





3 Methods

At first, the point clouds of individual trees were obtained by using the distance-based point cloud clustering algorithm for segmentation of individual trees based on the LiDAR data, and the UAV hyperspectral image was segmented by the point cloud projection outline to obtain the hyperspectral data of the individual trees. We then calculated and extracted the point cloud features and the hyperspectral features for the individual trees. After fusing the two types of features, the average value reduction algorithm of the Gini coefficient in the RF algorithm was used to calculate the importance of the features; the SVM algorithm was also used to complete the identification of the tree species. Next, the feature screening results were obtained according to the results for the accuracy of identification of the tree species. Finally, a thematic map for the tree species was produced. The flowchart of the overall process is presented in Figure 2.




Figure 2 | Flowchart for the identification of tree species based on fusion of the hyperspectral and LiDAR data.




3.1 Data preprocessing

The original point cloud data of the UAV LiDAR was denoised by LiDAR360 software to remove the high-level gross errors caused by flying objects (such as birds), and the low-level gross errors caused by multipath errors or laser rangefinder errors during measurement. Then, an improved progressive TIN densification proposed by (Zhao et al., 2016) was used to separate the ground points, and the parameters were selected as follows: moderate terrain scene, iteration angle 10°, and iteration distance 1.5m. Finally, the point cloud data were normalized according to the separated ground points and cut to obtain the point cloud data for the study area. For the original hyperspectral data, stitching, radiometric calibration, geometric correction, and atmospheric correction were implemented, and then the Savitzky-Golay convolution smoothing algorithm was used to remove the burr noise from the hyperspectral image. During data collection, the GNSS and IMU carried by the UAV can ensure the spatial accuracy of the data. However, there are still slight deviations between the two types of data. In order to improve the accuracy of hyperspectral data, the coordinates of the common ground objects such as the boundary points of tree crowns, road corners were extracted from point cloud data, which were used together with the function of quadratic polynomial correction in ArcGIS to realize the registration of hyperspectral data. The data error was within 1 pixel (10 cm), which can fully satisfy the requirements of this experiment.



3.2 Data acquisition for individual trees

The acquisition of accurate data for individual trees laid the foundation for the identification of tree species at the individual tree level. The three-dimensional information contained in the LiDAR data ensures the unparalleled advantages in individual tree segmentation compared with other remote sensing data. Generally, two basic approaches are available for the segmentation of individual tree point clouds. The first method is based on canopy height model (CHM), which is to compress the three-dimensional point cloud data to a two-dimensional plane, thus reducing the computational complexity; however, this data reduction approach causes the loss of information, and the point cloud difference will produce errors in the process of CHM generation, resulting in a relatively low segmentation accuracy for individual trees under a complex stand with a high canopy density (de Almeida et al., 2021). The other method is to use segmentation of individual trees which directly faces the point cloud. This method can not only use more point cloud spatial information to improve the accuracy of segmentation (Li et al., 2020), but also can be used to extract structural parameters and features of the individual tree based on the point cloud data. Therefore, this study used a distance-based point cloud clustering algorithm (Li et al., 2012) to segment the forest stand point cloud data and to obtain the point cloud data at the individual tree level.

The hyperspectral data for individual trees were obtained based on the LiDAR point cloud data of individual trees. Given that the LiDAR data was registered with the hyperspectral data, the positions of the individual trees in LiDAR data corresponded to those in the hyperspectral data. The concave hull algorithm was used on the point cloud data of the individual tree to obtain the projection outline vector file, and then the projection profile was used to segment the registered hyperspectral image to obtain the hyperspectral canopy data.



3.3 Feature extraction


3.3.1 Hyperspectral feature extraction

Hyperspectral data contains a massive amount of spectral information, which may be used for the accurate identification of tree species. Although the complete hyperspectral image for individual trees has been obtained through segmentation, the overlapping and crossing of tree branches at the edges of the hyperspectral image may result in the existence of mixed pixels. In addition, previous studies have demonstrated that the spectral signal of the tree canopy illuminated by sunlight was dominated by first-order scattering, which was less affected by soil and shade, hence the data set was more suitable for tree crown modeling and identification (Coops et al., 2003). Therefore, in order to obtain more accurate hyperspectral information at the individual tree level, this study selected the spectral average of 100 sunlight pixels around the center of the individual tree as the hyperspectral data of individual tree. Since the difference in reflectivity between sunlight pixels and shadow pixels in the near-infrared region was obvious (Shen and Cao, 2017),this study determined the sunlight pixels at the 850 nm near-infrared band with reflectivity greater than 0.25. The hyperspectral data obtained at the individual tree level were subjected to PCA in order to select the first 10 components (PCA1~PCA10), and minimum noise fraction rotation (MNF) to select the first 15 components (MNF1 ~MNF15), and independent component analysis (ICA) to select the first 20 components (ICA1~ICA20), respectively. In addition, 18 vegetation indices were extracted, as shown in Table 1. So a total of 363 hyperspectral features including 300 original bands (bands 1~300) and 63 components and indices were selected for identification purposes.


Table 1 | Calculation table for the vegetation index.





3.3.2 LiDAR feature extraction

The LiDAR point cloud data contains not only accurate 3D information of the target, but also information on the reflection intensity, thus the technique provides a strong capability for accurate segmentation of individual trees, and this information clearly aids the tree species identification process. Based on the information of the point cloud for individual trees, four parameters, namely, tree height (HT), crown width (WC), crown area (AC) and crown volume (VC), were extracted in the LiDAR360 software, and three shape features associated with individual trees, that is, the ratio of the crown width to tree height (RW/H), the ratio of the crown area to tree height (RA/H) and the ratio of the crown volume to tree height (RV/H) were computed according to the above parameters. The formulae used for the calculations are given in Table 2.


Table 2 | Calculation of shape features.



The clustering degree of the point cloud for different tree species is different. Therefore, the average height (Hnmean), the standard deviation (Hnstd), the coefficient of variation (HnCV), the skewness (HnS), the kurtosis (HnK) of the point cloud of individual trees and the cumulative heights of 25%, 50%, 75% and 95% (Hn25, Hn50, Hn75, Hn95) for the point cloud of individual trees were calculated, respectively. Among them, n = 0, 1, 2, which represents the total echo point cloud, the first echo point cloud and the second echo point cloud, respectively. Differences in the morphological structure of different tree species may also lead to some differences in the spatial distribution of the respective point clouds, thus the number of points at different quantile heights can be used as a reflection of the tree structure (Lu et al., 2019). Consequently, the ratio (HnPm) of the number of point clouds in the height range of 0-20%, 20-40%, 40-60%, 60-80%, and 80-100% to the total number of point clouds for individual trees were extracted as distribution features of the point clouds. The calculation is expressed as Eq. (1), where n = 0, 1, 2, representing the total echo point cloud, the first echo point cloud and the second echo point cloud, respectively; Pm is the proportions of point clouds within a height range, where m= 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%;   is the number of different echo point clouds within the height range; Nn is the total number of echo point clouds for an individual tree.

 

Since the intensity features of the echo had high degree of importance for identification of tree species (Shi et al., 2018a), the average intensity (Inmean), the standard deviation (Instd), the coefficient of variation (InCV), the skewness (InS), the kurtosis (InK) of the point cloud for individual trees were calculated, respectively. Among them, n = 0, 1, 2, which represents the total echo point cloud, the first echo point cloud and the second echo point cloud, respectively. As a result of the above extraction and calculation, the total number of point cloud features for LiDAR in this study was 60.




3.4 Ranking of feature importance

A total of 423 hyperspectral features and LiDAR point cloud features were obtained by the above methods. If all the features were involved in recognition of the tree species, this would increase the computational complexity and workload of the recognition process, and the high-dimensional features would reduce the accuracy of the tree species identification due to the existence of the Hughes phenomenon (Luo et al., 2005; Richards and Jia, 2008; Taskin et al., 2017). The RF algorithm has a strong advantage for assessing the importance of variables (Ziegler and Konig, 2014), thus this study used the Gini exponential mean descent method in the RF algorithm to analyze the importance of the features of the hyperspectral image (HSI), LiDAR features, and HSI+LiDAR fusion features, respectively. After obtaining the ranking, correlation analysis was performed on these features, and only the one with the highest importance was retained among the features with high correlation.



3.5 Identification of tree species

The SVM algorithm is a supervised machine learning method based on statistical theory and the main idea is to generate a random hyperplane which keeps moving until the samples belonging to different categories are located on both sides of the hyperplane, thus it is a method specifically designed for classifying small sample training areas. The SVM algorithm can remedy the shortcomings of traditional classification methods such as the maximum likelihood method in the case of large volumes of data with high-dimensional and multi-source features and improve the generalization performance, thus it is widely used in the remote sensing field (Bahria et al., 2011; Liu et al., 2013; Zhang and Liu, 2013; Xun and Wang, 2015). This study used the SVM classification algorithm to obtain the identification results for the tree species via the different data sources and the different combinations of features by gradually increasing the features according to the importance of the features.



3.6 Verification of accuracy and acquisition of optimal features

In order to evaluate the capability of different feature combinations in tree species identification, 60% samples for each species was selected randomly as the modeling sample and the remaining 40% were used as the test samples. The accuracy of the results was assessed using the producer accuracy (PA), the user accuracy (UA), the commission, the omission, the overall accuracy (OA) and the Kappa coefficient. The feature combination with the highest and stable identification accuracy of tree species was taken as the optimal feature screening result of tree species identification in the study area. According to the tree species identification results, a thematic map of tree species in the sample plot was made. Finally, box charts were made for the selected features to analyze the identification ability of different features for tree species.




4 Results and analysis


4.1 Segmentation results for individual trees


4.1.1 LiDAR point cloud segmentation results for individual trees

There were 1040 dominant trees in the sample plot, and 936 trees were detected during segmentation, of which 880 were classified correctly. Most of the mis-segmented trees were under-segmented, probably because the sample plot was natural coniferous and broad-leaved mixed forest, with a complex stand structure, high densities and overlapping canopies. A small amount of over-segmentation was found to exist in the tall broadleaf canopy. The rate of detection for individual trees was 90%, and the total accuracy for individual tree segmentation was 84.62%. The correctly segmented individual trees, including 132 Juglans mandshurica (JM), 363 Larix gmelinii (LG), 223 Tilia amurensis (TA), 73 Quercus mongolica (QM), and 89 Ulmus pumila (UP). The results for the individual trees segmentation and the projection profile are illustrated in Figure 3.




Figure 3 | The point cloud and the projection profile of individual trees.





4.1.2 Segmentation results for hyperspectral image

The hyperspectral image was segmented based on the point cloud projection profile of individual tree to obtain the hyperspectral data. The segmentation results for the hyperspectral image and the average spectral curve of the central sunlight pixels in the hyperspectral image for different tree species are shown in Figures 4, 5, respectively. Some of the strip data in the acquired hyperspectral images were anomalous due to cloud shadow, which were eliminated for identification purposes. It can be seen from Figure 4 that the concave hull algorithm can well describe the individual tree canopy, and the central area of the canopy corresponds accurately. Some of the tree canopy borders in the hyperspectral image are dark in color, which is not land but low shadows at the edge of the tree canopy. It can be seen from Figure 5 that the average spectral curve corresponding to the central sunlight pixels of the hyperspectral image for different tree species shows the differences in reflectance in the visible light of green light bands, and the differences are more significant in the near-infrared bands.




Figure 4 | Segmentation results for hyperspectral image.






Figure 5 | Average spectral curves for different tree species.






4.2 Results of feature extraction and ranking importance

Based on the point cloud and the hyperspectral data of individual trees, the identification features for the tree species were extracted. The top 40 normalized results for each type of features (i.e., HSI features, LiDAR features, and HSI+LiDAR features) in terms of ranking importance are shown in Figure 6. With regard to the features extracted from the hyperspectral data, the MNF, the ICA, and the PCA transformed components and the vegetation indices have higher importance compared to the original spectrum. For the features extracted from the LiDAR data, the features of first and total echo intensity are ranked as the top two features. The ranking of the HSI+LiDAR features shows that the importance of the spectral features is generally stronger than that of the LiDAR features, which indicates that the LiDAR data contains less information pertinent to the identification of tree species in comparison with that of the hyperspectral data.




Figure 6 | The ranking of features based on importance.





4.3 Identification results of tree species

Based on the SVM algorithm, the three types of data features, namely, HSI, LiDAR and HSI+LiDAR, were modeled and subjected to the identification process by gradually increasing the number of features from 1 to 40 according to their relative importance. The variation tendency of accuracy based on multiple (120 times) identification results of tree species is shown in Figure 7.




Figure 7 | Accuracy of identification of tree species.



It can be seen from Figure 7 that an increase in the number of features can result in a significant improvement in the accuracy when the number of features is relatively small. However, when the number of features reaches a certain number, the trend in the curves becomes more stable. The optimal accuracy can be realized when the number of HSI+LiDAR features, LiDAR features and HSI features is 21, 9, and 19, respectively. The optimal results of identification and the indices for accuracy evaluation based on the three types of features are presented in Tables 3, 4, and 5.


Table 3 | Optimal results of tree species identification and accuracy indices based on HSI features.




Table 4 | Optimal results of tree species identification and accuracy indices based on LiDAR features.




Table 5 | Optimal results of tree species identification and accuracy indices based on HSI+LiDAR features.



The identification results and evaluation indices in Tables 3, 4, and 5 show that the three types of data had better performance for the identification of coniferous and broad-leaved tree species. Although the LiDAR data yielded the poorest identification capability, the fusion of LiDAR with HSI resulted in an enhanced identification performance compared with the use of the HSI data only. In general, the combined HSI+LiDAR features yielded the highest accuracy of identification, followed by the HSI features and LiDAR features. The thematic map of tree species identification based on the optimal results for the HSI+LiDAR feature combination is presented in Figure 8.




Figure 8 | Thematic map of tree species.





4.4 The capability of features for tree species discrimination

According to the identification results based on the combination of the HSI+LiDAR, the optimal number of features selected in this study was 21, including 19 HSI features and 2 LiDAR features. The box plot (Figures 9, 10) shows the capability of these 21 features in identifying 5 different tree species. For comparison purposes, the identification capability of the other three variables in the LiDAR features was also mapped. Although they were not selected for inclusion in the final fused data set, it can be seen from Figure 10 that these three feature variables of LiDAR did have some effect on the identification of the tree species. For instance, ICA4 and MNF6 can well separate coniferous and broad-leaved trees, and the PCA5 and RGRI features differed obviously in Juglans mandshurica compared with other species. Similarly, PRI and MNF8 were beneficial for the identification of Quercus mongolica. Overall, the extracted features presented clear differences among the different tree species, and the differences between coniferous and broad-leaved trees were higher than that among different broad-leaved trees. In addition, as previously highlighted, the HSI features had a stronger capability to identify different tree species than the LiDAR features.




Figure 9 | HSI features capability for tree species discrimination (JM, Juglans mandshurica; LG, Larix gmelini; TA, Tilia amurensis; QM, Quercus mongolica; UP, Ulmus pumila).






Figure 10 | LiDAR features capability for tree species discrimination (JM Juglans mandshurica; LG Larix gmelini; TA Tilia amurensis; QM Quercus mongolica; UP Ulmus pumila).






5 Discussion

In this study, identification of tree species using the HSI features alone could achieve a high level of accuracy, whereas the identification of tree species using LiDAR features on their own was less accurate. However, it was found that the combination of hyperspectral and LiDAR features could achieve an improvement in accuracy over HSI, and this finding is consistent with the conclusions of independent studies (Dalponte et al., 2012; Hartling et al., 2021). Zhao et al. (2020) has pointed out that the average spectrum of the tree canopy can represent the spectrum of individual trees and can weaken the influence of mixed pixels, making the approach more suitable for identification at the individual tree level than pixel-based identification. Most of the current research concerning the fusion of hyperspectral and LiDAR data for the identification of tree species is based on the use of airborne derived data. This type of study can cover large study areas, but the hyperspectral data typically has relatively low resolution. In our study, data acquisition was based on UAV hyperspectral images at low flight altitude, and the platform was capable of acquiring hyperspectral images with a spatial resolution of 10 cm. The hyperspectral data of individual trees obtained by a point cloud projection profile has more pixels, so that a large number of high quality pixels may be selected to generate the average spectral curve for the individual tree. Considering the complexity of natural mixed coniferous and broad-leaved forests, some mixed pixels do exist in the overlapping canopy boundaries. Therefore, the selection of sunlight pixels in the central area of the canopy to obtain the average spectral curve for individual trees can further reduce the influence of mixed pixels and improve the identification accuracy of tree species.

According to the results of tree species identification presented in Figure 8, and given the distinct differences of the preferred features in Figures 9, 10 among the five different tree species, it is clear that the features extracted and optimized are suitable for the identification of tree species investigated in the area under study. Using the feature selection capabilities of the RF algorithm, feature variables that have a positive impact on species identification can be selected, and the feature dimension can be greatly reduced without affecting the overall accuracy of identification, thereby reducing the complexity of species identification and improving the overall efficiency of the identification process.

The optimal feature combination includes 8 vegetation index features, 3 ICA transformed components, 5 MNF transformed components, 2 PCA transformed components, 1 original spectral band feature, and 2 LiDAR intensity features. Previous studies have also confirmed that the use of biochemical parameter-based vegetation indices as a means to characterize and identify tree species can effectively improve the accuracy of identification (Maschler et al., 2018; Shi et al., 2018b; Wu and Zhang, 2020). The present study further demonstrated that certain vegetation index highly correlated with biochemical parameters can be used for identification of tree species. Among them, the photochemical reflectance index (PRI) is very sensitive to the changes in the carotenoid content of vegetation, while the magnitudes of the anthocyanin reflectance index 1 (ARI1) and the anthocyanin reflectance index 2 (ARI2) values reflect mainly the contents of anthocyanin in leaf tissue. The red green ratio index (RGRI) is influenced mainly by both the anthocyanin and chlorophyll contents. However, Wu and Zhang (2020) and Maschler et al. (2018) pointed out that the identification of tree species based only on the use of several vegetation indices was not sufficiently robust, and further feature extraction methods should be included in the process. Therefore, in this study, the ICA, MNF, and PCA transformation methods were applied in the feature extraction process. Although it is not easy to explain these transformed components in the context of remote sensing mechanism, present research and other studies showed that ICA, PCA, and MNF transformations can compress useful high-dimensional hyperspectral data into useful components and improve the accuracy of identification. As shown in this study, ICA4 did achieve a good separation of coniferous and broad-leaved tree species. In general, the feature extraction capability of the ICA and MNF transformation methods, in the context of tree species identification, was superior to that of the PCA transformation method. It is worth noting that PCA, MNF and ICA transformations were used as methods for the reduction of data dimensions, and the useful information obtained from the dimensional reduction was concentrated in the front part of the components. For example, the higher the PCA component, the higher the amount of information; the higher the MNF components, the higher the signal-to-noise ratio. However, present results showed that the most “superior” component didn’t necessarily have the highest importance in identification of the tree species.

The two most important features of LiDAR were the mean of the first echo intensity and the mean of the total echo intensity, respectively. The first echo intensity can reduce multiple scattering effects in discrete echo systems. The subsequent LiDAR features included some features related to tree height such as the 95% quantile height of the first echo and the ratio of the number of point clouds at 80-100% height, these findings being similar to those reported previously (Korpela et al., 2010; Shi et al., 2018a). Although such studies and the present study have demonstrated that the features of tree height have a positive impact on the identification of tree species, it is believed that the tree height-related features will show some differences in identification capability for the different regions from the perspective of model applicability. Despite the fact that the spectrum of the same tree species in different regions may be affected by some factors (e.g., season, weather, sensors, etc.), this can be explained in terms of the remote sensing mechanism; also, the morphological structure of the same tree species does not vary significantly in normal forest stands, however, the tree height does vary greatly in different locations due to the growth cycle or environmental factors. Therefore, in the model transfer studies, it may be possible to give priority to the selection of spectral features, morphological structure of the tree and the echo intensity features in order to achieve enhanced results.

In general, most of the optimal features for identification of tree species were derived from hyperspectral data, while relatively few LiDAR features were utilized. The possible reasons include: (1) The LiDAR data contains less information than the hyperspectral data; (2) The high spatial resolution (10 cm) and high spectral resolution (2.1 nm) of the hyperspectral data obtained by the UAV system were of high quality, and were able to provide more accurate features for identification of tree species than airborne data; (3) The study area for this research was a natural mixed forest of coniferous and broadleaf trees with complex forest conditions and high canopy closure, which resulted in the incomplete acquisition of understory information by the LiDAR data, while the acquisition of the hyperspectral canopy information was almost unaffected. Therefore, the combined effect of these three factors contributed that the identification capability via the hyperspectral features was superior to that of LiDAR. Although the LiDAR data did not play such a prominent role as the hyperspectral data in the identification of the tree species, the LiDAR data were, nevertheless, indispensable to the success of this research. Due to the 3D information acquired by LiDAR, the data set has unparalleled advantages relative to other remote sensing in segmentation of individual trees. In this study, we used the distance-based point cloud clustering algorithm to segment the LiDAR data into individual trees basis and projected the profile for individual trees based on the point cloud for individual trees; the hyperspectral data was then segmented by the profile to obtain the hyperspectral data of individual trees. Therefore, the LiDAR and hyperspectral data complemented each other. The LiDAR data played an indispensable role in the acquisition of individual tree data, which laid the foundation for species identification at individual tree level. Thus, fusion of the HSI features and the LiDAR features achieved the best accuracy for identification of tree species.

It is noted that the combined UAV hyperspectral imagery and LiDAR data was used to identify tree species in natural mixed coniferous and broad-leaved forests in Northeast China. Although it proved possible to correctly classify the tree species, there is still a need for further in-depth and systematic studies. The availability of accurate data at the individual tree level is clearly the basis for ongoing research on tree species identification. In the future, we will explore whether HSI can be involved in individual tree segmentation and develop a point cloud optimization algorithm for individual tree segmentation to improve the effect of segmentation in natural coniferous and broad-leaved mixed forests. In the present work, the traditional machine learning algorithms were used for identification of tree species and feature selection. Future research can be conducted by using other exiting algorithms or new algorithms such as deep learning. Finally, due to the influences of temporal and spatial variations, the universality of achievements in remote sensing technology has always been a focus and difficulty for research. In this study, the best HSI and LiDAR features for identification of tree species in the study area were selected, however, their applicability to other geographical regions needs to be verified.



6 Conclusions

In this study, hyperspectral image and LiDAR data for a complex natural coniferous and broad-leaved mixed forest were performed by UAV. The accurate identification of tree species at the individual tree level was realized by combining the two types of data. The screening of optimal features for identification of tree species was conducted and a thematic map for tree species was created. By comparing the identification results for tree species with different data sources, it was demonstrated that the fusion of the hyperspectral and LiDAR data features resulted in improved accuracy for species identification. The optimal hyperspectral and LiDAR features for identification of tree species included the use of vegetation indices which were sensitive to chlorophyll, anthocyanin and carotene in the leaves, the partial components of the transformed ICA, MNF and PCA, and the LiDAR echo intensity features, respectively. The research will provide data support for diversity monitoring of forest species, forest biomass inversion and estimation of forest carbon stocks. The data can also act as a useful reference source for application of multi-source remote sensing technology in forestry.
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The cliff ecosystem is one of the least human-disturbed ecosystems in nature, and its inaccessible and often extreme habitats are home to many ancient and unique plant species. Because of the harshness of cliff habitats, their high elevation, steepness of slopes, and inaccessibility to humans, surveying cliffs is incredibly challenging. Comprehensive and systematic information on cliff vegetation cover is not unavailable but obtaining such information on these cliffs is fundamentally important and of high priority for environmentalists. Traditional coverage survey methods—such as large-area normalized difference vegetation index (NDVI) statistics and small-area quadratic sampling surveys—are not suitable for cliffs that are close to vertical. This paper presents a semi-automatic systematic investigation and a three-dimensional reconstruction of karst cliffs for vegetation cover evaluation. High-resolution imagery with structure from motion (SFM) was captured by a smart unmanned aerial vehicle (UAV). Using approximately 13,000 records retrieved from high-resolution images of 16 cliffs in the karst region Guilin, China, 16 models of cliffs were reconstructed. The results show that this optimized UAV photogrammetry method greatly improves modeling efficiency and the vegetation cover from the bottom to the top of cliffs is high-low-high, and very few cliffs have high-low cover at the top. This study highlights the unique vegetation cover of karst cliffs, which warrants further research on the use of SFM to retrieve cliff vegetation cover at large and global scales.
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cliff, vegetation cover, structure from motion, unmanned aerial vehicle, close-range photogrammetry


Introduction

A cliff is a unique geomorphic terrain that supports a diverse range of rare plants (Boggess et al., 2017). However, for humans, cliffs are hostile environments that make any explorations challenging. As an extremely crucial ecological environment, the relatively small size and fragility of habitats available for vegetation on cliffs make species extinction highly likely as cliff environments are very different from other environments. Because of its extremely hostile environments, systematic surveys of cliffs are challenging. Cliff information, such as vegetation coverage, biodiversity, and endemic species, has attracted much attention from many botanists, biologists, and environmental scholars (Fazio et al., 2019; Gerivani and Savari, 2020). Fractional vegetation cover (FVC) is defined as the projected percentage of the total study area that is vegetated (i.e., contains roots, stems, and leaves) (Wan et al., 2021). FVC is used to characterize the degree of vegetation cover; it is an important indicator of surface vegetation cover and the ecological environment. Therefore, vegetation coverage largely reflects the quality of the ecological environment of a cliff. The normalized difference vegetation index (NDVI) is used to detect both vegetation growth status and vegetation coverage, and to eliminate radiation errors. The band calculation of satellite images can be used as a direct reflection of vegetation coverage (Carlson and Ripley, 1997). Most vegetation cover research concentrated on variations of large-scale ground vegetation using the calculation of NDVI (Chen H. et al., 2021).

However, most cliffs have slopes of up to 90° and are small in scale, making it hard to calculate cliff vegetation cover using satellite images and traditional ground projection methods (Ferrer Velasco et al., 2022). In addition, because of the inaccessibility of cliffs (Zhou et al., 2021), classic large-scale vegetation surveys are not suitable for karstic cliff forest landscapes. Therefore, an accurate, efficient, and practical method for analyzing the vegetation cover of cliffs is urgently needed (Deng et al., 2022; Vitali, 2022). Calculation of vegetation cover in special and small-scale areas (such as sinkholes and cliffs) requires the use of aerial remote sensing and ground measurements such as terrestrial lidar and artificial climbing sampling (Boggess et al., 2021). So far, few studies have explored the vegetation coverage of cliffs, examples of which are the Tiankeng sinkhole (Jiang et al., 2021) and cliff flora (Strumia et al., 2020). The main difficulty of currently available cliff vegetation coverage measurements is that the cliffs are too high to allow for obtaining a manual control group, and it is difficult to efficiently conduct surveys on a large scale.

With the continuing development of technology, drones have become an indispensable tool for cliff surveys. Unmanned aerial vehicle (UAV) oblique photogrammetry technology uses a UAV with a camera to acquire data a certain survey area to be surveyed in one vertical direction and four inclined directions. The advantages of this method include a wide field of view, comprehensive data collection, and the ability to create high-precision digital elevation models (DEMs), digital surface models (DSMs), point clouds, and reconstructions (Huynh et al., 2021; Lastilla et al., 2021). However, three-dimensional (3D) model details are incomplete and still rely on other measurement methods such as laser radar (Yin et al., 2020; De Almeida et al., 2021) or manual patching of modeling details, which is time-consuming and costly. The traditional modeling method obtains a series of images of the target through real photography or online download, which are then imported into 3D software as reference drawings. The modeler manually recovers the target from the base 3D geometry based on personal experience. However, this approach has many limitations. Firstly, it requires a high level of modeler expertise. Secondly, in practice, the target to be reconstructed is all-embracing, and may be a leaf, a tree, or even a whole forest. These limitations obstruct the realization of high-quality 3D reconstruction by traditional manual modeling technology. Consequently, labor costs remain high and collecting relevant data remains time-consuming and labor-intensive. To meet the challenge of high-quality modeling (Burdziakowski, 2018), many state of the art in fields (Ali et al., 2019; Shafiq et al., 2022) use many technologies such as UAV and artificial intelligence for three-dimensional reconstruction.

Structure from motion (SFM) is currently widely used and has shown great potential in the field of high-efficiency and low-cost 3D reconstructions (Dering et al., 2019; Barrile et al., 2022). SFM is a technique for estimating 3D structures in a sequence of multiple two-dimensional images containing visual motion information. Firstly, a series of 2D images is sent to a computer and inter-matching of these images is used to infer camera parameters. Secondly, using the actual spatial coordinate system and the plane coordinate system of UAV images, perspective transformation is performed on UAV images. In addition, by using automatic computer graphics processing technology, aerial triangulation can be used to obtain spatial parameters. Thirdly, a network model is created using 3D point cloud data, which can restore the real scenery of the target body to the greatest extent possible.

SFM offers many powerful and effective techniques that help with terrain change monitoring (Cucchiaro et al., 2021). Several recent studies have highlighted that the use of SFM technology makes it possible to monitor geomorphology for many years in the same location (Hayakawa and Obanawa, 2020; Koukouvelas et al., 2020). Furthermore, SFM can also be applied to investigate coastal cliff stability, and historical UAV images can be analyzed to identify long-term geomorphic changes in retreating coastal dune areas (Mancini et al., 2017; Berquist et al., 2018; Grottoli et al., 2020). In related research on cliffs, scholars have used a combination of UAV photogrammetry and human identification to mark plants on the cliff surface and study the number of plant species as well as their distribution on the cliff (De Simone, 2020). In artificial intelligence, a rock block identification method was developed based on UAV photogrammetry (and its computer implementation) of cliff face rock (Wang et al., 2019). Recently, SFM has been used for the 3D reconstruction of coastal cliffs (Gonçalves et al., 2021).

Based on the advantages of SFM in these aspects and the characteristics of cliff research, this paper presents a semi-automatic UAV-based 3D vegetation cover measurement method. This method takes UAV surround photos of the cliff under unmanned interference conditions from multiple angles, reconstructs the 3D model of the cliff by SFM, and segments the point cloud to evaluate the cliff vegetation cover.



Materials and methods

The following procedure was used to conduct the research (Figure 1). First, a rough 3D model was established by five-way flight, and route planning for the surrounding photography is carried out based on the rough 3D model. Then, the surrounding photos are obtained automatically by surrounding photography. Following this, an 3D reconstruction and a high-precision model are obtained. Both the vegetation point cloud and the non-vegetation point cloud are extracted by segmenting the dense point cloud. The cliff face is selected based on the high-precision model, and high-resolution cliff images are obtained through artificial close-range photogrammetry. Finally, the accuracy of the model and the vegetation coverage of the cliff are estimated by combining the point cloud extraction results and the high-precision cliff image set.


[image: image]

FIGURE 1
Flow of the cliff three-dimensional (3D) model reconstruction.



Study area

In China, karst landscapes occupy a total of 130 km2, and the largest karst areas are in the provinces of Guangxi and Guizhou. In the mid-twentieth century, research on Chinese karst landscapes made significant progress. In the 1980s, research began to exploit the medicinal value, ecological restoration, and biodiversity of karst plants. The karst landscape of Guilin has undergone many alterations over the years, and today’s cliffs have autonomous summits with heavy flora cover at both the bottom and the top, as well as a badly weathered core region. Because of the extended lack of human disturbance, the escarpment’s biodiversity is higher than that of low-elevation plains.

The study area is located in a typical karst landscape area in Guilin, Guangxi Zhuang Autonomous Region, China (Figure 2A), contains 16 investigation points (Figure 2B). The surface morphology of the area is complex and diverse, and the landform type is mainly peaks depressions and peaks valleys, which mainly formed by the dissolution of carbonate rocks. Rock peaks are dense (Figure 2C), bedrock is exposed, showing complex and broken topography. It has received a lot of attention because of its unique topographic features (Figures 2D–H). The parent rock type is limestone and the soil type is red soil. This region has a subtropical monsoon climate with abundant sunshine throughout the year, rain and heat in the same period, mild climate, and average temperatures of 7.9°C in January, 28.0°C in July, and 18.8°C annually. Guilin is rich in vegetation types, with 70.91% forest coverage.
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FIGURE 2
(A) The study site at Guilin (China). (B) The 16 cliffs in the study area. (C–H) The different sizes of cliffs.


The process of selecting the study site has the following steps: firstly, the overall survey area is determined in the high-definition satellite images, and then after the field survey of the situation around the cliff, such as the independence of the cliff, whether it is a restricted area, etc., the cliff survey site is finally determined.



Data acquisition and processing

Prior to images acquisition, typical cliffs covering the entire study area were pre-selected via Google satellite images as representatives for follow-up investigations. After on-the-spot investigation and flight tests, the 16 cliffs of Guilin were explored. The UAV DJI Mavic2 Pro was used to acquire the digital image datasets required for the 3D reconstruction of cliffs. The features of Mavic2 Pro are: 20 million effective pixels; 28 mm focal length; 31 min maximum flight time per battery; 907 g weight; compact and easy to carry; maximum flight altitude of 500 m; 1,080 p high-definition image transmission; maximum speed of 120 Mbps; the images taken can be viewed in real time; the import of self-designed routes is supported; low battery power automatically prompts automatic return.

However, the height of cliffs exceeds 100 m and the UAV must fly in the plane above the cliff, resulting in the unavailability of considerable information about the cliff, especially its bottom. Many studies have shown that in complex cliff conditions, the use of orthorectified and oblique images can reduce 3D modeling errors and optimize the survey route (Ali et al., 2019; Shafiq et al., 2022). The reason is that the more complex the angle of capture, the better the reproduction (Nesbit and Hugenholtz, 2019; Kozmus Trajkovski et al., 2020). Consequently, for this study, the five-way flight was utilized to build a rough 3D model, established a route based on the rough model for surrounded photogrammetry, and set up the restricted area and survey area (Figure 3).


[image: image]

FIGURE 3
Survey area and restricted area of the study area. The area with the red edge is the restricted area, and the area with the blue edge is the survey area. (A–D) Orientation of the cliff: east, south, west, and north, respectively. There are five areas in (F), including four restricted area and one survey area. (E) The area with the widest view in the study area.


The rough 3D model information combined with the plan mission function of Agisoft Metashape 1.7.2 was used to automatically plan the route to the cliff in all directions based on the basic point cloud data (Figure 4). UAV survey parameters such as the minimum flight safety height, capture distance, and image overlap were set based on the actual size of the cliff. The vertical flight of drone will consume more electricity than the horizontal flight. Therefore, the route was designed so that the UAV moves horizontally before moving vertically to maximize the efficiency. The flight speed of the drone was 5 m/s. All routes ensured that every inch of the cliff could be photographed.
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FIGURE 4
The survey route of the surrounding photography, showing 99 photograph points per flight route. (A) The first route, located at the top of the cliff. The first waypoint of (B) continues after the last waypoint of (A), and so on. The last point of (C–F) completed photo capture, after which the drone returned automatically.


After the modeling is completed, close-range photogrammetry was also started from the bottom to top of the cliff, at a height interval of 10 m. Images of the cliff were taken as close as possible from a distance of 3 m from the cliff. After the modeling was completed, the close-range picture and 3D model were compared to locate the plant of cliff face for further vegetation cover evaluation.



Cliff 3D reconstruction

A series of images obtained from the UAV survey was processed and the 3D reconstruction process was automated through Metashape. Dense point clouds and 3D mesh models were output. For the 3D reconstruction, several steps are necessary: (1) aligning photos; (2) reconstructing of dense point clouds; (3) denoizing the dense point clouds; (4) creating the 3D surfaces of the cliffs. The computer configuration and processing time of 3D reconstruction are shown in Table 1. After the 3D reconstruction was complete, the dense point cloud was segmented and divided into two categories: a vegetation point cloud and a non-vegetation point cloud. Then, the proportions of the two categories were calculated separately to evaluate vegetation coverage.


TABLE 1    Modeling hardware information.

[image: Table 1]

The fineness and integrity of the 3D model were evaluated by judging whether the model structure is out of proportion, distorted, or deformed, and details are missing. The modeling data were analyzed from the following three aspects: (1) the relationship between the oblique photo and the surrounding photo; (2) the effect of the shooting distance on model accuracy; (3) the relationship between modeling photo and modeling time.



Cliff vegetation cover estimation

Based on the 3D point cloud model for coverage calculation, there are two main steps: point cloud sampling and segmentation, followed by vegetation coverage calculation.

(1) Point cloud sampling

Noisy point clouds generated by natural conditions, human manipulation or machine errors greatly affect the experimental results. Therefore, the original 3D point cloud model must be denoized first, which is divided into ground point separation and vegetation denoizing (Chen K. et al., 2021).

(2) Segmentation of vegetation point clouds

The EXGI value is calculated using the RGB value of the point cloud, which is greater than 0.015 for vegetation and less than or equal to 0.015 for non-vegetation. Ground point clouds above 10 m were then filtered using high-pass filtering, and the cliff point clouds were segmented and divided into 10 gradients evenly ranging from low to high according to the elevation of cliff. The EXGI values for each gradient were used for comparative analysis of changes in plant cover.
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Results


Basic characteristics of cliff unmanned aerial vehicle data

By analyzing the cliff data, the number of photos, bottom perimeter, area, and volume of each cliff wall were obtained (Tables 2, 3). Analysis of these data and the practical survey uncovered an unusual rule: the modeling effect is not directly proportional to the modeling photos; the determinant of the modeling effect is the degree of plant growth and coverage. In general, the larger the height, volume, and area of the cliff, the more photos and shooting time are needed. Conversely, in practice, it was found that a small number of photos can be sufficient for building a satisfactory model for cliffs with larger rock area.


TABLE 2    Specifications of the produced unmanned aerial vehicle (UAV) images.
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TABLE 3    The bottom perimeter, surface area, and volume of the cliff.
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Table 2 presents basic information of the 3D modeling dataset. The results show that the number of oblique photographs is determined by the bottom orthophoto area and the vertical height of the cliff. The larger the bottom area, the higher the number of photos taken under the same flight conditions. In addition, the higher the height of the cliff wall, the larger the oblique photography area is to ensure the complete capture of details of the bottom of the cliff.



3D modeling results

To test the feasibility of the design scheme, quality analysis was performed for texture details, the relationship between oblique photos and the effect of shooting distance on model accuracy. Further examination clearly showed, that the 3D model details are essentially without loopholes, have realistic and uniform tones, provide a complete and realistic display of the exterior information of the cliff, and present complete and clear texture details. Because the cliff 3D modeling used surrounding photography, the integrity of blind area identification and the high-resolution nature of the image data could be successfully increased. The comparison between the rough model and the high-precision model is shown in Figure 5. The texture of the model built by five-way flight is rough and lacks considerable texture details. The texture of the model built by flying around is clear, and can intuitively show the distribution of plants and the characteristics of the wall. Providing detailed models is very important for applications involving spatial analysis and realistic visualization.
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FIGURE 5
(A) Low-resolution model of No.13; (B) high-resolution model of No.13; (C) low-resolution model of No.14; (D) high-resolution model of No.14.


By analyzing the relationship between data and model, the following two rules were covered:


(1)The relationship between oblique photos and surround photos

The number of oblique images is not proportional to the surrounding photos. The significance of this lack of proportionality is that there is no need for excessively pursing a high number of photos taken by oblique photography. If sufficient overlap is ensured, it is still possible to set an automatic flight route for the collection of modeling data. As an example, there are 102 oblique photos and 769 surrounding photos of No.13 cliff, and 242 oblique photos and 771 surrounding photos of No.14 cliff. Compared with No.14 cliff, No.13 cliff has a large volume and a high height, and less photos were collected. The modeling results of No.13 cliff are better. The reason is that No.13 cliff has a high degree of exposure, and plants are mostly climbing plants and vines, with huge shrubs or trees only distributed on the top of cliff.

(2)The effect of shooting distance on model accuracy

Research showed, that a shooting distance of 20 m is suitable, but the shooting distance is not the decisive factor for the accuracy of the model. Rather, the photo overlap determined by the shooting distance is the decisive factor. The farther the distance, the smaller the overlap, while the closer the distance, the greater the overlap.





Cliff vegetation cover

Figure 6 shows that almost all cliffs have the highest coverage at both the bottom and top, with the lowest value occurring between gradients 3 and 7. From this, it can be predicted that the altitude will have the highest coverage within 30% of the overall altitude. If the vegetation at the top is sparse, rock exposure is considerable, and the cliff is highly unstable and sensitive to severe weathering. The chance of collapse is substantial. If there are residential area nearby, it can be monitored for a long time to predict collapse, especially on rainy days when the risk is greatest.
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FIGURE 6
Gradient change of coverage. The vertical axis represents the relative height of the cliff divided into 10 gradients with equal distances within each gradient. The point cloud is divided into two categories after segmentation statistics via formulae (1), (2), and (3): plant point cloud and cliff point cloud. The x-axis shows the altitude gradient. The y-axis shows the ratio of the plant point cloud to the total point cloud.


Based on the high-precision model, high-resolution plant images were captured via close-range photogrammetry from the side of the cliff. The photo alignment function can match the high-resolution image with the model, so that the specific location of plants on the cliff can be quickly obtained. This is of great significance to the study of plant distribution. High security and long-term fixed-point monitoring can be realized. In Figure 7, the camera positions are distributed evenly on cliffs, and the model and drone photos are basically consistent.
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FIGURE 7
(A) Close-range photogrammetry of the cliff. In the picture, a total of 11 photos were taken of the cliff face, and the interval height of each photo was 10 m. Cliff number and shot order of close-range photo were renamed. (B–D) The upper, middle, and lower parts of the cliff model. (E–G) The upper, middle, and lower parts of close-range images.





Discussion


Model texture analysis

There are a few holes on the surface of the cliffs and buildings as shown in Figure 8. Model holes and cracks in the 3D model can be repaired with software. Individual buildings are often distorted, deformed, and stretched as shown in Figure 8. Holes in roof models are generally cause by inadequate photo angles and heights. Buildings along or near hills without sufficient photo overlap are likely to show damage and deformation.
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FIGURE 8
(A–C) Holes of vegetation in the lower part of cliff model. (D–F) Distortion of high vegetation cover on model surface. (G–I) Holes of house building in the lower part of cliff model. (J–L) Cliff rock without vegetation cover of the model.


Analysis showed that in the cliff environment, vegetation is most prone to the phenomenon of fuzzy texture. Because of small changes in the position of rocks and buildings (Isokane et al., 2018), better results can often be achieved after re-shooting. Because of the high degree of the overlap, rocks on the cliffs cause a few problems such as drawing at the shelter of the eaves and fuzzy texture of the model details. Particularly the bottom of the cliff with more plants is prone to such problems. The solution is to take multiple shots, improve both shooting angle and overlap, and supplement the photo database. In the cliff environment, vegetation is the most prone to the phenomenon of distortion, while better results of rocks and buildings can be achieved after re-shooting because of long-term stability. In addition, we found that under the same flight conditions and modeling software, the UAV type had a slight effect on the modeling accuracy, but had little effect on the overall model accuracy.



Factors influencing the modeling

In this paper, a UAV surrounded photogrammetry modeling method for karst cliff vegetation coverage is proposed. The method analyzes different features of the cliffs and automatically creates different 3D wrap-around UAV photography routes. These improved the integrity, quality, and efficiency of high-resolution UAV image acquisition of karst cliffs in extremely harsh conditions. The generated 3D model achieves the extraction of clear texture details, high authenticity, and reliable geometric accuracy. Further methods to improve the efficiency and accuracy of UAV flight using relevant methods will be considered in the future (Kose and Oktay, 2021). UAVs are now widely used to create high-resolution 3D models, particularly in the fields of engineering, surveying, and mapping. Image quality is crucial in UAV surveys which is directly influenced by the photographic angle, flight mode, and degree of image overlap. For photogrammetry, the distribution and number of ground control points (G) are important. In fact, no definite conclusion was found in the relationship between the distribution and number of GCPs and accuracy (Rock et al., 2011). However, modeling accuracy is primarily determined by the quality and quantity of photos taken, and GCPs have little impact. Moreover, GCPs can only be set in flat and open areas that are evenly distributed throughout the whole study area, which cannot be found in the steep terrain of these cliffs. Consequently, GCPs were not set in this study. Furthermore, because of the specificity of the cliff and the characteristics of vegetation modeling, the method used has limitations for modeling mountainous areas with high vegetation cover. Although a consumer-grade UAV can be used for estimating vegetation cover, airborne laser radar would achieve a more accurate representation. Issues such as how to estimate the parameters of the cliff to obtain more precise measurements should be thoroughly researched.

In addition, some photos, particularly in the area with plant abundance at the bottom of the cliff, cannot be photo aligned during SFM calculation, affecting the modeling effect. In this case, more photos were manually captured from the bottom of the cliff when planning the route. However, the disadvantage is that the terrain is greatly undulating, and the accuracy of the results obtained by covering and blocking of seriously undulating areas cannot meet the requirements. There are difficulties in data collection in no-fly areas and areas where satellite positioning cannot be performed. In this study, the JPG format was used for drone photos instead of the RAW format. The reason is that if the RAW format is used, the shooting time for each waypoint will be too long, which is time-consuming and seriously affects the work efficiency. Therefore, this is not conducive to modeling and processing of drone data.



Acquisition of vegetation cover

Traditional measurement methods of vegetation coverage can be divided into ground measurement and remote sensing estimation methods. Ground measurements are often used at field scales, while remote sensing estimates are often used at regional scales. At present, many methods for measuring vegetation coverage using remote sensing have been developed. A more practical method is to use a vegetation index to approximate vegetation coverage. The most commonly used vegetation index is the NDVI. Vegetation coverage can be estimated by counting the pixel size of images captured by UAV remote sensing. The disadvantage is that the edge of a single photo will be distorted. Overall, currently used vegetation coverage surveys have in common that they require the surveyed area to be a flat surface. For example, areas covered by rocks such as sinkholes and cliffs will be ignored. Because of the limitations of the drone, the default photo format the drone uses during the collection process is JPG. The UAV images have red, green, and blue bands. Thus, the 3D model point clouds built using UAV images have RGB values and are suitable for calculating vegetation cover using the excess green index (EXGI). An in-depth literature screening shows that the EXGI contrasts the green portion of the spectrum against the red and blue to distinguish vegetation from the soil. This approach can also be used to predict NDVI and has been shown to outperform other indices that work with the RGB spectrum (Larrinaga and Brotons, 2019). Therefore, EXGI values were used to calculate vegetation cover in this study.

However, the method proposed here can overcome the limitations of traditional methods and vegetation coverage surveys can be conducted on 90° slopes. Although the presented vegetation coverage analysis method is fast and convenient, its disadvantage is that it is difficult to model high- vegetation coverage areas. Further research is needed to obtain a better solution for vegetation coverage calculation.




Conclusion

The karst cliffs in Guilin are taken as experimental object, and a unique method for constructing a 3D model of cliffs was developed. This method uses the dense point cloud to calculate the EXGI value and the overall vegetation coverage. 3D modeling and coverage estimation of cliffs are difficult but nevertheless, very important. The proposed method can obtain the data required for such estimations and can do so in a relatively short time. This method allows the model to obtain a large amount of data for future research on cliff rock and changes in plant coverage. A historically constructed model can be used as a database to save information for future restoration of a specific cliff detail. The initial model was built based on a five-way flight to design the route around the flight, which saves a considerable amount of time compared with manual patching. Furthermore, this approach is beneficial for filling in the details of the cliff. In practice, it is much faster to model the details of the cliff by taking additional shots based on the original model. Further research will improve the algorithm to also analyze plant thickness, plant growth, and cliff stability in addition to vegetation coverage. As the modeling process imposes high requirements on photogrammetry software and computer hardware, it is necessary to automate and simplify various steps of the proposed method, which will be the direction of further research.
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Wood density, as a key indicator to measure wood properties, is of weighty significance in enhancing wood utilization and modifying wood properties in sustainable forest management. Visible–near-infrared (Vis-NIR) spectroscopy provides a feasible and efficient solution for obtaining wood density by the advantages of its efficiency and non-destructiveness. However, the spectral responses are different in wood products with different moisture content conditions, and changes in external factors may cause the regression model to fail. Although some calibration transfer methods and convolutional neural network (CNN)-based deep transfer learning methods have been proposed, the generalization ability and prediction accuracy of the models still need to be improved. For the prediction problem of Vis-NIR wood density in different moisture contents, a deep transfer learning hybrid method with automatic calibration capability (Resnet1D-SVR-TrAdaBoost.R2) was proposed in this study. The disadvantage of overfitting was avoided when CNN processes small sample data, which considered the complex exterior factors in actual production to enhance feature extraction and migration between samples. Density prediction of the method was performed on a larch dataset with different moisture content conditions, and the hybrid method was found to achieve the best prediction results under the calibration samples with different target domain calibration samples and moisture contents, and the performance of models was better than that of the traditional calibration transfer and migration learning methods. In particular, the hybrid model has achieved an improvement of about 0.1 in both R2 and root mean square error (RMSE) values compared to the support vector regression model transferred by piecewise direct standardization method (SVR+PDS), which has the best performance among traditional calibration methods. To further ascertain the generalizability of the hybrid model, the model was validated with samples collected from mixed moisture contents as the target domain. Various experiments demonstrated that the Resnet1D-SVR-TrAdaBoost.R2 model could predict larch wood density with a high generalization ability and accuracy effectively but was computation consuming. It showed the potential to be extended to predict other metrics of wood.
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1 Introduction

Wood density is an important physical property to test the mechanical properties of wood (Li et al., 2019), and it is also an important indicator to identify the quality of wood (Thomas et al., 2009). From the perspective of forestry, wood density can be used to predict the physical and mechanical properties of wood, such as hygroexpansion, hardness, and strength (Missanjo and Matsumura, 2016). Accurate prediction and evaluation of wood properties can provide the theoretical and scientific bases for many aspects such as material improvement, plantation cultivation, improvement of the comprehensive utilization rate of wood, and restoration and maintenance of wood-frame buildings (Fukatsu et al., 2013; Francis et al., 2017; Alade et al., 2022). Therefore, rapid and accurate acquisition of wood density is of great significance to modern forestry production. Traditional wood density detection methods include the drainage method, weighing method, and mechanical force-based density detection method (Alves et al., 2020). However, the processes of the above methods are complicated and time-consuming, which are not conducive to the density testing of large quantities of wood in practice. Visible–near-infrared (Vis-NIR) spectroscopy records the combination vibrations of hydrogen-containing groups at the molecular level of samples (Benedet et al., 2020), which can be combined with chemometric techniques for rapid, non-destructive qualitative and quantitative analyses of wood properties (Chen and Li, 2020). It provides an efficient and feasible solution for the real-time determination of wood density. However, many obstacles still exist in the practical estimation of wood density by spectral non-destructive testing (NDT) methods, such as high collinearity of spectral data, oversensitivity of spectra to instruments and environments, and poor predictive performance of the models. Overcoming these obstacles has also become a research priority in chemometrics.

In recent years, deep learning (DL) methods have been favored by many researchers in the field of spectroscopy, mainly because DL has obvious advantages in solving high-dimensional spectral data as a deep non-linear network mapping structure model (Cai et al., 2022). There are hundreds or thousands of characteristic wavelengths in a spectrum, and spectral features can be excavated and learned from superficial to in-depth and layer-by-layer by DL, which is similar to imitating the thinking mode of the brain (Ghosh et al., 2019). Multi-layer neural networks, as a common form of DL, can realize end-to-end non-linear mapping of spectral data; thereby, abstract features in spectra are simplified, and complex classification and regression problems in spectra are realized (Sommers et al., 2020).

In the field of agriculture and forestry, the application of spectroscopy has become a research boom combined with DL gradually (Chen et al., 2016; Kawamura et al., 2021; Qiao et al., 2021). In the detection and adjustment of forest resources, we can grasp the dynamic pattern of forest resources in time while macro-regulating the state of economic management. Distinguishing tree species with different economic values has great potential by combining airborne hyperspectral remote sensing technology with DL. Trier et al. (Trier et al., 2018) employed convolutional neural network (CNN) to classify the Vis-NIR spectral channels of the main tree species in the Norwegian forest, resulting in good classification rates. Mayra et al. (Mayra et al., 2021) proposed 3D-CNN combined with hyperspectral remote sensing to identify a variety of major tree species in Finland accurately. Identifying the quality of agroforestry economic products rapidly can improve the quality of the products, by assisting manufacturers in adjusting their cultivation programs in a timely manner, during the cultivation process (Assadzadeh et al., 2020). The flaw detection, pesticide detection, and species identification of agricultural and forestry products can promote the rapid development of the entire production chain (Jin et al., 2018; Feng et al., 2019; Zhang et al., 2020a).

However, the optical measurement signal is disturbed by the type of instrument, detection principle, and detection environment (temperature, humidity, noise, etc.) greatly, leading to large deviations in results and poor model applicability, making it difficult for spectroscopic techniques to be widely used. Calibration transfer is one of the effective methods to solve this technical problem (Qin and Gong, 2016). The generalization ability of the model can be improved by calibration transfer from two perspectives. One is exploring the linear relationship between master and slave models to improve the adaptability of the models themselves; the other is correcting different data domains through statistical methods or chemometric methods to eliminate the deviations between different data domains as much as possible. In the first perspective, slope/bias correction (SBC) (Bouveresse et al., 1994) is typical. In the second perspective, various methods such as piecewise direct standardization (PDS) (Wang et al., 1991), spectral space transformation (SST) (Du et al., 2011), and canonical correlation analysis (CCA) (Fan et al., 2008) are applied widely. Many investigations have indicated that the generalization ability of the model is improved and the discrepancies between different data fields are ameliorated by applying the above methods, but the results are uneven, and most of them are not ideal. Most calibration transfer methods are limited by data dimension and sample size and cannot deal with related issues flexibly.

In the field of DL, researchers have discovered a concept similar to calibration transfer called transfer learning (TL) (Sun et al., 2019). Analogously, the master model in the calibration transfer corresponds to the source domain in TL, and the slave model in the calibration transfer corresponds to the target domain in TL. The core of TL is to find the similarity between known and unknown domains and apply the knowledge and laws to the unknown domain learned in the known domain (Larsen and Clemmensen, 2020). The theory of global sharing of model parameters in DL is consistent with TL, and the shortcomings of “dimensional disaster” in high-dimensional data can be solved by deep neural networks (Johnstone and Titterington, 2009), so deep transfer learning has developed rapidly in the field of spectroscopy. In agriculture and forestry, applications of transfer learning include the following: first, the most common application was the identification of tree species, including the rapid identification of economical woods (Li et al., 2022), pests, and quality defects (Chen et al., 2020; Ahmad et al., 2021; Alencastre-Miranda et al., 2021). Second, TL was used for forest and farmland management and ecosystem status assessment (Astola et al., 2021; Jin et al., 2021). Third, TL is used for the prediction of the properties of wood and agricultural products (Singh et al., 2021).

In CNN-based transfer learning, using a pretrained network to initialize the network parameters of any layer and constraining the parameter changes with a smaller learning rate (fine-tuning) (Shin et al., 2016) and fine-tuning only the weights of the final fully connected layer of the network (feature extractor) (Gao and Mosalam, 2018) are two common application scenarios. In particular, the classifier can be modified or added after the pretrained network during feature extraction to make it a feature extractor for the target domain (Li et al., 2020a).

In the CNN extraction of neck features, each convolution kernel is acted as a filter to perform convolution operations, and the weights of features are reassigned according to the layer-by-layer recognition of the convolution kernels, thereby increasing the separability of linearly inseparable datasets (Mei et al., 2017). The activation function of CNN (such as Softmax and ReLU) performs macro-control on the feature weights (Roy et al., 2020). In this process, the samples with the Intersection-over-Union (IoU) greater than 0.5 are marked as positive samples by CNN and vice versa as negative samples (Cai and Vasconcelos, 2021). Usually, CNNs require a large number of samples, and correspondingly, the prediction accuracy of small sample data (e.g., spectral data) significantly declines. Support vector machine (SVM) is different from the principle of CNN, which maps non-linear features into high-dimensional space to achieve classification (increasing IoU). Some studies have proved that using SVM as the classifier of CNN (CNN-SVM) can improve the prediction ability of CNN for small sample datasets (Niu and Suen, 2012). For regression problems, a support vector regression machine (SVR) is used as a regressor of CNN (Zhou et al., 2021).

Although the risk of overfitting CNN models can be reduced by CNN-SVM, in the TL domain, CNN-SVM also lacks the ability to adjust the sample weights in the source and target domains dynamically when the two vary greatly. At the same time, CNN-SVM cannot update the hyperplane division rules in time, which lacks flexibility in the face of unpredictable external disturbances in actual production. In summary, this study took larch wood density as the research object and aimed to propose a parameter-calibrated transfer learning method to predict wood density under different moisture contents. The deep Resnet network is used for the first time to construct a Vis-NIR spectral model, and SVR is used as a regressor for the network to accommodate spectral datasets with small sample sizes. At the same time, the algorithm attempts to achieve automatic calibration of sample parameters depending on whether the contribution values of their weights are positive or negative during the iterative process. The hybrid model validates the feasibility and potential of deep migration learning strategy in quantitative spectral analysis and explores the application of machine learning in the direction of wood non-destructive testing.

This paper is organized as follows. Section 2 details the larch air-density measurements and spectra under different moisture content conditions used in this study and the proposed Resnet1D-SVR-TrAdaBoost.R2 hybrid model; the prediction results of different calibration transfer and transfer learning methods, the validation of the target domain correction sample size, and the performance of different moisture content correction transfer models are presented in Section 3; the maximum iteration number of iterations on model performance and the application of hybrid models in forestry are discussed in Section 4; the results of the study are summarized in Section 5.



2 Methods and materials


2.1 Description of proposed models

The model proposed in our paper is Resnet1D-SVR-TrAdaBoost.R2, which consists of two parts chiefly: one is the Resnet-SVR used for building the transfer model, and the other is the TrAdaBoost.R2 used for parameter calibrating.

The core principle of CNN is to learn the mapping relationship between input and output (Aslam et al., 2021). It avoids explicit feature extraction and learns implicitly from the mapping relationship in the data when used as a feature extractor. As a kind of one-dimensional (1D) input data, Vis-NIR spectral data have the disadvantages of high collinearity and spectral peak overlap (Li et al., 2020a), so increasing the network depth is beneficial to extract more effective spectral features. Meanwhile, to avoid the problem of network degradation, Resnet is chosen as the feature extractor. The residual building block is a shortcut connection and a key part of Resnet, which helps to avoid the gradient explosion/vanishing problem during the back-propagation of errors, thereby improving the robustness of deep network models (Wen et al., 2020).

A deep 1D Resnet model is constructed in this study to process the Vis-NIR spectral 1D data, which includes an input layer, and four residual building blocks; after being flatten, the features are followed by four fully connected (FC) layers with sizes of 512, 128, 64, and 32 and an output layer (Figure 1). Each residual building block consists of two basic blocks, each of which consists of two convolutional layers (Conv), a batch normalizations layer (BN), and a shortcut. The size of the convolution kernel is 3, and the number of convolution channels is set as 64, 128, 256, and 512 in ascending order. The activation function of each layer except the output layer is set as the rectified linear element function (ReLU), and the activation function of the output layer is set as a linear function (Linear) to make the network a regression model. Adam optimizer is used for training by the proposed model (Bera and Shrivastava, 2020). In order to speed up the convergence of training data and reduce the amplitude of training vibrations, the batch size is determined to be 5. The mean square error (MSE) is used as the loss function of Resnet, and then, the coefficient of determination (R2) and the mean absolute error (MAE) are selected as the evaluation metrics of the model. In addition, the ReduceLROnPlateau function and EarlyStopping function provided by Keras are introduced to avoid the model falling into the local optimum.




Figure 1 | Flowchart of the 1D Resnet architecture.



According to the nature of convolution and pooling computation, it can eliminate the influence of the spectral feature drift part on the selected feature vector and reduce the risk of overfitting. The fully connected layer of CNN can be considered as a linear classifier operator for the features extracted by the previous convolutional layer (Zhang et al., 2020b). The values output via the Flatten layer already contain features of the spectrum, and it is feasible to consider these output features as inputs to other regression methods for analysis (Li et al., 2020a). Since the high prediction accuracy of the CNN model is based on large sample size, in spectral analysis problems, the number of wavelength variables often far exceeds the number of samples. Therefore, the hybrid Resnet-SVR model is proposed to improve the learning ability for small samples and solve the tough problem of the application of spectral quantitative analysis in traditional DL.

In the basic process of Resnet-SVR, there are two main steps: first, the preprocessed spectral dataset is fed input to the proposed Resnet model for pretraining, and second, the features extracted by Resnet are input to the SVR for training and evaluation (Figure 2). Among them, the kernel function of SVR is determined as radial basis function (RBF), and the hyperparameters of SVR (penalty factor C, kernel parameter gamma, and kernel width epsilon) are optimized using particle swarm optimization (PSO) algorithm to achieve the optimal regression effect (Han et al., 2021). In the PSO, the population size is set to 50, the individual learning factor c1 = 1.5, the social learning factor c2 = 1.7, the maximum number of iterations is set to 50, and the cross-validation fold is set to 10-fold.




Figure 2 | Schematic diagram of Resnet1D-SVR-TrAdaBoost.R2.



Transfer learning is a type of machine learning method that uses the knowledge learned previously to solve problems in new fields more quickly for similar fields. Among them, the transfer of features and models is used in current research widely. The general idea of transfer learning in this study can be summarized as extracting similar features to minimize the differences in related domains and then developing models to find parameters shared between related domains to reduce the demand for target domain data, while the parameters are calibrated with the aim of adapting the model to the target domain, thereby improving the learning effect. Recently, with the popularity of deep learning methods, deep neural network models with characteristics of global weight sharing have also been used in transfer learning (deep transfer learning) gradually, which can extract more expressive features automatically, and therefore applied to computer vision, text dataset processing, and voice or audio recognition widely (Zhang et al., 2020c).

TrAdaBoost is a traditional transfer learning framework (Yehia et al., 2021). TrAdaBoost assumes that the input features and output labels of the source and target domains with different distributions are the same and assigns an initial weight to each input sample. In each round of iteration, the weight of target domain samples that are misclassified will be increased, and the weight of source domain samples that are misclassified will be decreased, which is the same as the strategy of AdaBoost to update weight (Yu et al., 2021). Two-stage TrAdaBoost.R2 is an extension of AdaBoost.R2 (Li et al., 2021) for solving regression problems of TL, which can solve the problem of negative transfer of source and target domains. In the first stage, when the weights of the target domain tend to reach zero, binary search is used to replace the error rate to update the weights of the source domain. In the second stage, the weights of source domain weight are fixed, and AdaBoost.R2 is called to update the weights of the target domain. The details of the two-stage TrAdaBoost are described in Table 1.


Table 1 | Detailed steps of Resnet1D-SVR-TrAdaBoost.R2.



The overall Resnet1D-SVR-TrAdaBoost.R2 assembles the above three models and combines their advantages to enable more accurate predictions on source and target domain datasets. The schematic diagram of Resnet-SVR-TrAdaBoost.R2 is shown in Figure 2. Decision tree (DF), which is often used as a learning algorithm in TrAdaBoost.R2, is replaced by a more suitable SVR. The input to SVR is provided by the bottleneck features (Output from the flatten layer) extracted by the pretrained model of Resnet. The algorithm details of Resnet-SVR-TrAdaBoost.R2 are shown in Table 1.

It is worth mentioning t hat there are two parameters that have a great influence on the generalization ability of Resnet1D-SVR-TrAdaBoost.R2 and need to be tuned. One is the number of calibration samples (M) in the target domain. A large number of calibration samples in target domain can improve the performance of the model, but they will also increase the learning time and cost. Hence, there is a trade-off between them. The second is the maximum number of iterations (N) of the TrAdaBoost.R2 part. Increasing N within a reasonable range can improve the robustness of the model, but overfitting will be result when it is too large. It is necessary to find a relatively suitable N, so we discussed the issue of M and N effects in detail in the following sections.

Keras (2.6.0) with Tensorflow (2.6.0) was used as the backend to implement our algorithms, running on Intel Core i7-11800H CPU at 2.30 GHz with 16 GB RAM and NVIDIA 6 GB GeForce RTX 3060 Laptop GPU.



2.2 Larch wood dataset

The larch samples were collected from Xinghuo Forest Farm (45°43′5.73″N, 129°13′34.37″E), Fangzheng County, Heilongjiang Province, China, which is the natural secondary forest farm of larch. Four plots on the sunny side and the shaded side were set up with a plot size of 20 m × 20 m. Three typical sample trees were selected from each plot. After each sample tree was felled, the portable chain saw was used to cut multiple wood discs continuously from the bottom to the top near the standard diameter at breast height (1.3 m at breast height). The tress were brought back to the laboratory and peeled by hand; the wood strips of 2 cm × 2 cm × 4 cm were extracted from the wooden discs with a total of 181 larch wood samples. Each sample was labeled and recorded. The samples were placed in a ventilated and dry room temperature (20°C) environment for 4 weeks, and their equilibrium moisture content was about 10%, and then the air-dry density of wood samples was determined according to the International Organization for Standardization (ISO) 13061-2: 2014 (Dahali et al., 2021).

To avoid the effects caused by surface roughness, 80-mesh sandpaper was used to polish each side of the samples five times to make the surface roughness parameter Ra close to 12.5 μm. The temperature was controlled at 20°C; the moisture content was set to 70%, 50%, 30%, and 10% in four groups; the air-dried wood samples were soaked in water for 20 days, then dried in an oven, and weighed; the moisture content of the samples was calculated every 5–15 min after drying until the moisture content of the samples was within the range of the specified variation group. When the specified moisture content value is reached, the Vis-NIR spectrum data of the samples were measured immediately. A portable spectrometer has a wavelength range of 350–2500 nm and composed of 2,151 data points; ASD LabSpec® Pro FR/A114260 was used to measure the spectrum. A fiber optic probe was used to scan one time each at two different positions on the cross-section of the sample, and each scan time was about 1.5 s. The samples were continuously scanned 30 times during the set scan period. The average of the two measurements was taken as the original spectral data.

The internal structure of wood samples is varied with moisture content, which results in different spectral distributions, such as baseline shift, a small part of the absorption peak shift, and absorption peak shape change, but the overall trend of the spectra is similar (Figure 3). In this study, the spectral data for wood samples with 10% moisture content were used as the source domain dataset, and the spectral data for wood samples at other moisture content levels (70%, 50%, and 30%) were used as the target domain datasets. The calibration transfer was investigated in terms of the measuring environment.




Figure 3 | Vis-NIR spectra for wood samples with different moisture content (10%, 30%, 50%, and 70%). Vis-NIR, visible–near-infrared.





2.3 Preprocessing of spectral data

Through an extensive literature review, a combination of two spectral transformation methods was selected for the preprocessing of original wood spectra (null). The 21-point Savitzky–Golay smoothing (SGS) algorithm was used to eliminate noises (Xu et al., 2021), and then the influence of particle sizes and scattering on the spectra of the sample surfaces were eliminated by combining standard normal variate (SNV) correction (Li et al., 2020b). We also compared the synchronous two-dimensional (2D) correlation spectra (Zhang et al., 2021) of wavelengths before and after the preprocessing (Figure 4). It is shown that the correlation between wavelengths after preprocessing (SGS+SNV) is stronger than that before preprocessing (null) significantly, which indicates that the original spectrum has more redundant information unrelated to wood density and starker collinearity, and preprocessing can improve the quality of spectral. This result is consistent with Li’s finding (Li et al., 2020c).




Figure 4 | Two-dimensional correlation spectra of wavelengths for different spectral preprocessing. (A) Null. (B) SGS+SNV. r is the correlation coefficient to evaluate correlations between wavelength variables. SGS, Savitzky–Golay smoothing; SNV, standard normal variate.



In addition, the high leverage value combined with the studentized residual t-test method (Xie et al., 2017) was used to screen the singular sample numbers of the four moisture content groups in the larch wood dataset. Four groups of outlier numbers were merged into one, and the sample data corresponding to the serial number of the four groups of data were removed. Finally, 12 samples (Nos. 4, 6, 27, 39, 40, 48, 44, 45, 57, 68, 97, and 154) were eliminated, and a total of 169 samples of larch wood were obtained. The sample set partitioning based on the joint x–y distances (SPXY) method (Xu et al., 2019) was used to divide the four groups of datasets into the correction set and prediction set. Among them, the calibration set and prediction set had 118 and 51 samples, respectively. For concision, the statistical result when wood density in the 10% moisture content dataset was demonstrated (Figure 5), and we found that the other three “calibration-prediction” group pairs had similar results. It can be found that both the calibration set and prediction set are in normal distribution, and the mean value, standard deviation, and range of wood density in both datasets are similar, demonstrating that the division result can represent the overall distribution.




Figure 5 | Descriptive statistics of wood density in 10% moisture content dataset. (A) Calibration set. (B) Prediction set.






3 Results


3.1 Effects of the number of calibration samples in the target domains for calibration transfer

The purpose of the calibration transfer method is to improve the performance of the target domain model with as few calibration samples of the target domain as possible. Therefore, it makes sense to determine an appropriate range of calibration sample sizes in the target domain. In this study, the number of calibration samples for different target domains (M) was set as 20, 40, 60, 80, 100, 120, and 140. The SPXY method was used to collect the calibration and prediction samples of the target domains to ensure the representativeness of distribution for each moisture content group. Among them, the predicted sample size was set to 30 for both source and target domains, and the calibration samples are selected from the remaining samples.

For the proposed Resnet1D-SVR-TrAdaBoost.R2, a robust source domain model (10% moisture content group) was first constructed. The 118 calibration samples selected in Section 2.3 were used to train the Resnet1D model, and R2 and root mean square error (RMSE) of the prediction were used to evaluate the generalization ability. To remove the effect of random parameters in the CNN, the finalized model (R2 = 0.7174, RMSE = 0.0312) was the one that was closest to the mean (R2 = 0.7145, RMSE = 0.0318) of 20 repetitions of training. Next, the weights Ws of the source domain model were saved and loaded into the target domain model as a pretrained model. The first 10 convolutional layers were frozen to fine-tune the weights of the target domain model, and then, the bottleneck features after the flattening layer were imported into the SVR regressor. The maximum number of iterations (N) was set to 50.

To verify whether Resnet1D-SVR-TrAdaBoost.R2 method is effective and whether it is better than traditional methods, we added PLSR+SBC (partial least squares regression (PLSR) model transferred by SBC method), Resnet1D-TL (Resnet1D model based on transfer learning), and Resnet1D-SVR (Resnet1D-SVR model based on transfer learning) in this protocol for comparison. The proposed Resnet1D-SVR-TrAdaBoost.R2 was used as the calibration transfer method; the experiments in the target domain groups with a wood moisture content of 70%, 50%, and 30% were implemented; and the results of three groups were averaged (Figure 6). It is worth mentioning that the results in each group were the average of 15 times running, to overcome the impacts of random parameters. There is no doubt that the obtained results are the least desirable when the target domain data are used to train the model directly, so no comparison is made here.




Figure 6 | Effects of the number of target domains for calibration transfer. (A) R2. (B) RMSE. RMSE, root mean square error.



In Figure 6, as the sample size of the target domain increased, the performance of the models improved gradually. All models achieved the best predictions at 140 samples. When M was 20, the performance of Resnet1D-TL (R2 = 0.0404, RMSE = 0.051) was the worst; it implied that the calibration ability of deep transfer learning was poor when there were few samples in the target domain. When M was greater than 40, the prediction effect of the PLSR+SBC model was the worst, which means that even if the target domain samples were sufficient relatively, the calibration ability of the deep transfer learning-based methods was still stronger than the traditional calibration transfer methods, and with the increased of samples, the gap was widening. The trend of Resnet1D-SVR-TrAdaBoost.R2 and Resnet1D-SVR was similar, but the performance of Resnet1D-SVR-TrAdaBoost.R2 was better, which shows that TrAdaBoost.R2 was necessary to calibrate the parameters. It is worth mentioning that there is an exception here; when M was 40, the prediction effect of Resnet1D-SVR (R2 = 0.3095, RMSE = 0.0445) was better than that of Resnet1D-SVR-TrAdaBoost.R2 (R2 = 0.2897, RMSE = 0.0450). Comparing the result data, we found that the model evaluation metrics (R2 and RMSE) of Resnet1D-SVR fluctuated greatly during the repeated experiments, and the prediction effect was not stable enough, so the high average result was accidental. When M was greater than 60, Resnet1D-SVR-TrAdaBoost.R2 had the absolute advantage of accuracy in target domain samples.



3.2 Performance comparison of models built by different calibration transfer methods

In this subsection, the performance of models built with different calibration transfer methods was compared, and the calibration capabilities of Resnet-SVR-TrAdaBoost.R2 were discussed. In this protocol, the calibration and prediction samples selected in Section 2.3 were used to test the methods, and the weight Ws of the source domain model was the same as described in Section 3.1. PLSR and SVR without any calibration transfer (PLSR-Target, SVR-Target) were chosen as a comparison. PLSR+SBC, PLSR+PDS (PLSR model transferred by PDS method), SVR+PDS (SVR model transferred by PDS method), Resnet1D-TL, and Resnet1D-SVR were chosen as baselines. For the proposed Resnet1D-SVR-TrAdaBoost.R2, the maximum number of iterations (N) was set to 50. The experiments with a wood moisture content of three groups were implemented in the target domain sample sets, and the average results were presented (Figure 7). It is worth mentioning that the results in each group were the average of 20 times running and overcame the impacts of random parameters.




Figure 7 | R2 and RMSE values of different calibration transfer methods in source and target domains. RMSE, root mean square error.



As shown in Figure 7, the non-linear method (SVR) had a much better performance in both source and target domains as compared with the linear method (PLSR). In the traditional calibration transfer method based on PLSR, the calibration ability of SBC has an outstanding performance (R2 = 0.3021, RMSE = 0.0495). The prediction ability of SVR+PDS (R2 = 0.3113, RMSE = 0.0468) was the best among non-transfer learning methods, especially since the R2 value of SVR+PDS in the source domain was 0.0188 higher than Resnet1D-TL, but Resnet1D-TL performed better in the target domain. Overall, the prediction accuracy of the models built by the transfer learning method was higher. Among them, a strong generalization ability of Resnet1D-SVR-TrAdaBoost.R2 was exhibited in both the source domain (R2 = 0.7152, RMSE = 0.0313) and the target domain (R2 = 0.4106, RMSE = 0.0422). The performance of the prediction model was the best among all methods in the target domain.



3.3 Performance of calibration transfer models for different larch wood moisture content

Air-dry density is a strength indicator, which is often used in the production and circulation of wood. Moisture content and density of wood are related closely. If the actual moisture content is lower than the equilibrium moisture content, moisture hygroscopicity of wood will be exhibited; otherwise, moisture evaporation of wood will be exhibited. Therefore, it is essential to establish a model that can predict the air-dry density of wood in different moisture contents. In this subsection, the calibration transfer between different moisture contents was investigated. PLSR was used to establish the prediction models of each moisture content group and used as a standard. PLSR-Target was used as a reference, and the proposed Resnet1D-SVR-TrAdaBoost.R2 was used to calibrate. Calibration and prediction samples were the same as in Section 2.3. The number of N is 50.

In the actual measurement, there are individual differences in the moisture content of a batch of wood. Therefore, we added a new experimental group, and the SPXY method was used to select 40 samples from each target domain experimental group (moisture content of 30%, 50%, and 70%), and these samples were merged into a calibration set with 120 samples. Similarly, 30 samples were selected from the remaining samples and merged into a prediction set with 90 samples. The calibration transfer results are shown in Figure 8.




Figure 8 | Correlation between standard test values and Vis-NIR predicted values derived from calibration transfer models for 30% (A), 50% (B), 70% (C), and mixed (D) moisture content. Vis-NIR, visible–near-infrared.



The above results indicated that the scatter points of the predicted values (PLSR-Target) with 50% and 70% moisture content were above the PLSR predicted line mostly, and the overall trend of the predicted value was large. Most of the scatter points of the predicted values with 30% moisture content were located near the PLSR prediction line, which means that as the moisture content increased, the hygroscopic effects of the woods were enhanced, and the free water in intracellular was also increased. The increase of moisture content and the change of internal structure could interfere with the Vis-NIR spectrum seriously during the hygroscopicity of wood, which generated the poor prediction effect of the model. Different moisture contents affect the response function, and large systematic errors will occur when the 10% moisture content model was used to predict spectra under other moisture content conditions.

After calibration transfer by Resnet1D-SVR-TrAdaBoost.R2, it can be seen that the predicted scatter points of the 30%, 50%, and 70% moisture content groups were close to the PLSR line intuitively, while the scatter points of the mixed moisture content group were relatively close. This experiment showed that Resnet1D-SVR-TrAdaBoost.R2 had a robust generalization ability even though the spectra were affected by the detection environments greatly, and it had the potential for practical application for different water content or mixed water content.




4 Discussions

The above experiments have proved that the prediction approach of larch wood density from Vis-NIR spectroscopy based on parameter calibrating and transfer learning (Resnet1D-SVR-TrAdaBoost.R2) proposed in the present study had a great generalization ability in calibration transfer. The advantages and limitations of this hybrid method would be discussed from three aspects including model performance, the effect of the maximum number of iterations (N) on modeling, and the practical application of the model in forestry production.


4.1 Comparison of model predictive ability

For the prediction results in Section 3.3, residual plots (Figure 9) were used to compare and analyze the applicability and residuals of the proposed Resnet1D-SVR-TrAdaBoost.R2 with other calibration transfer methods. For concision, the results when the target domain was 70% moisture content group were shown, and the results for other groups were similar. The four residual values fell on both ends of the 0-axis evenly, proving that the prediction values of the four methods are distributed equally. The prediction values within the range of ±0.15 have strong interpretability, which proves that the prediction model has strong reliability. The residuals of Resnet1D-SVR-TrAdaBoost.R2 were smaller than those of PLSR-PDS and SVR-PDS significantly, and prediction values of Resnet1D-SVR-TrAdaBoost.R2 had extreme interpretability in the range of ±0.1. The performance of PLSR-SBC was between Resnet1D-SVR-TrAdaBoost.R2 and the other two methods; the results were consistent with the results of Figure 7.




Figure 9 | Residual analysis for target domain with 70% moisture content group: PLSR+SBC (A), PLSR+PDS (B), SVR+PDS (C), Resnet1D-SVR-TrAdaBoost.R2 (D).



Currently, traditional calibration transfer methods (e.g., SBC and PDS) attempt to minimize data differences in sample sets or target values and thus use the master model to make predictions about the properties of slave data, and most new algorithms are proposed based on this underlying principle (Fan et al., 2008; Du et al., 2011; Workman, 2018), while others seek an explicit feature space transformation that maps the spectra of the source and target domains into a space orthogonal to the interfering factors (Zhu et al., 2008; Igne et al., 2009; Das et al., 2012). All of these methods require the support of a large amount of data to discover similar patterns between different data domains. At the same time, the quality of the data can cause large interference with the above methods, which is why numerous spectral preprocessing methods (Zhen et al., 2008) and feature band selection methods (Fu et al., 2022) are proposed to reduce the interference as much as possible, which requires a large number of comparison experiments, and the cost of model application is increased. The proposed hybrid model has a feature extractor, which can exclude the interfering bands in the training and reduce the dependence of the model on the quality of the original data; meanwhile, the depth model can learn the underlying information in the data during the training process, which reduces the demand of the model on the sample size; the introduction of the fine-tuning and TrAdaBoost.R2 methods makes it have a certain self-renewal capability. Comprehensive analysis shows that this hybrid model is better than the traditional calibration transfer methods.



4.2 Effects of maximum iterations on model performance

The proposed model of Resnet1D-SVR-TrAdaBoost.R2 was established based on AdaBoost.R2 strategy. The performance of the model was affected by the maximum number of iterations (N). If N was too small, the calibration effect of the model was unsatisfactory; otherwise, the complexity and computing time of the algorithm were increased. Therefore, we explored the impact of N on the generalization performance of the model. For concision, the effects when the target domain was 30% moisture content group were shown (Figure 10), and the results for other groups were similar. The trends of the evaluation metrics R2 and RMSE were similar, and when the number of samples (M) in the target domain calibration set increased from 20 to 140, the trends were almost the same. This means that increasing the value of N could improve the generalization performance of the Resnet1D-SVR-TrAdaBoost.R2 model significantly. When the number of N was greater than 50, the performance of the model tended to be stable, so the number of N was set as 50 in this study. In practical applications, it is recommended to set the number of N to be greater than 30.




Figure 10 | Effects of the value of maximum iterations on model performance.





4.3 Practical application in forestry industries

The results show that Resnet1D-SVR-TrAdaBoost.R2 has good generality and accuracy, but some limitations also need to be noted.

In practical applications, the measurement cost of target domain calibration samples (M) in calibration transfer is high. For the air-dry density prediction of wood under different moisture contents, volume measurement, drying, and weighing of wood were required, which were costly and time consuming. In forestry industries, a huge part of the manpower and material resources are consumed in the measurement of many wood properties. Therefore, it is necessary to reduce the need for labeling samples. The proposed hybrid method could reduce the demand for measured samples of the target domain to a certain extent. By comparing the performance of models built with different numbers of M, it could be seen that Resnet1D-SVR-TrAdaBoost.R2 still fails to achieve good prediction accuracy when M was less than 80, but the performance of the model could reach a satisfactory level when M was larger than 80 (as shown in Figure 6).

Overall, the performance of Resnet1D-SVR-TrAdaBoost.R2 hybrid method was better than that of other methods. Therefore, in actual production, if the requirements for prediction accuracy are high, Resnet1D-SVR-TrAdaBoost.R2 will be the optimal choice. In addition, the specific number of recommendations for M may be instructive for the application of transfer learning techniques in practical forestry. At the same time, scientific and standardized field sampling is recommended to ensure the representativeness of labeling samples.

The proposed hybrid algorithm requires iterative training, and Vis-NIR spectral data have many characteristic variables, so the training time of the algorithm is long, and the computing capacity of the device is required to be higher. During the experiments, the running time of Resnet-SVR-TrAdaBoost.R2 was about 30 s, while the running time of SBC and PDS was only 1–2 s. In actual production, if fast detection speed is required without much high accuracy, the traditional calibration transfer methods can be satisfied. However, if higher prediction accuracy is required, then Resnet-SVR-TrAdaBoost.R2 will be a satisfactory choice.

It is worth mentioning that the prediction ability of Resnet1D-SVR-TrAdaBoost.R2 was the best when the difference in target and source domain distributions was larger (as shown in Figures 7, 8). Compared with the traditional deep transfer learning algorithm, the prediction performance of Resnet1D-SVR-TrAdaBoost.R2 was more stable and accurate, but more parameters in the training process were needed to train and required more sample size and training time. Furthermore, although Resnet-SVR-TrAdaBoost.R2 was validated under different measurement conditions, validation under other tree species was incomplete. Therefore, the proposed hybrid method needs to be further tested for its applicability to other species.




5 Conclusion

The problem of low optimization performance of traditional calibration transfer methods when there are significant non-linear differences between the spectra of different measurement environments was addressed. A deep transfer learning strategy (Resnet1D-SVR-TrAdaBoost.R2) based on TrAdaBoost.R2 parameter calibrating and SVR feature optimization was proposed in this study. The method was fully analyzed, verified against field observations, and compared with conventional calibration transfer methods.

The experimental results showed that the proposed hybrid method had a good performance. When predicted with larch wood air-dry density in different moisture contents, the spectra of the high-dimensional and non-linear were extracted by the proposed method. The non-linear differences between source and target domains were weakened by SVR, and finally, the parameters of each sample were calibrated by TrAdaBoost.R2. In terms of prediction accuracy, the prediction accuracy of the proposed hybrid method was superior to other methods (source domain: R2 = 0.7152, RMSE = 0.0313; target domain: R2 = 0.4106, RMSE = 0.0422). In terms of demand for calibration samples of the target domain, the performance of the proposed hybrid method (M > 80) was superior to the traditional transfer learning strategy (M = full calibration samples), also better than Resnet1D-SVR (M > 90).

Furthermore, the satisfactory prediction accuracy could be obtained by a proposed hybrid method when the source domain was different from the target domain. In addition, the hybrid strategy used for the density retrieval of larch wood also performed well in the density inversion of larch wood in mixed moisture content. A limitation is that compared to traditional calibration transfer strategies, the method had a longer running time, and its requirements for the calculation capacity of the equipment were higher. By comprehensive consideration, all the results indicated that Resnet1D-SVR-TrAdaBoost.R2 performed well with high versatility, accuracy, and portability in density inversion of larch wood and was an accurate and feasible method.
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Accurate and timely information on the number of densely-planted Chinese fir seedlings is essential for their scientific cultivation and intelligent management. However, in the later stage of cultivation, the overlapping of lateral branches among individuals is too severe to identify the entire individual in the UAV image. At the same time, in the high-density planting nursery, the terminal bud of each seedling has a distinctive characteristic of growing upward, which can be used as an identification feature. Still, due to the small size and dense distribution of the terminal buds, the existing recognition algorithm will have a significant error. Therefore, in this study, we proposed a model based on the improved network structure of the latest YOLOv5 algorithm for identifying the terminal bud of Chinese fir seedlings. Firstly, the micro-scale prediction head was added to the original prediction head to enhance the model’s ability to perceive small-sized terminal buds. Secondly, a multi-attention mechanism module composed of Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA) was integrated into the neck of the network to enhance further the model’s ability to focus on key target objects in complex backgrounds. Finally, the methods including data augmentation, Test Time Augmentation (TTA) and Weighted Boxes Fusion (WBF) were used to improve the robustness and generalization of the model for the identification of terminal buds in different growth states. The results showed that, compared with the standard version of YOLOv5, the recognition accuracy of the improved YOLOv5 was significantly increased, with a precision of 95.55%, a recall of 95.84%, an F1-Score of 96.54%, and an mAP of 94.63%. Under the same experimental conditions, compared with other current mainstream algorithms (YOLOv3, Faster R-CNN, and PP-YOLO), the average precision and F1-Score of the improved YOLOv5 also increased by 9.51-28.19 percentage points and 15.92-32.94 percentage points, respectively. Overall, The improved YOLOv5 algorithm integrated with the attention network can accurately identify the terminal buds of densely-planted Chinese fir seedlings in UAV images and provide technical support for large-scale and automated counting and precision cultivation of Chinese fir seedlings.




Keywords: UAV-based remote sensing, Chinese fir seedling, YOLOv5 algorithm, deep learning, attention machanism



1 Introduction

Cunninghamia lanceolata (Lamb.) Hook is one of southern China’s most critical timber species for afforestation. It plays an essential role in forest carbon sink in China, for its cultivation area accounts for 20% of the national plantation forest area, and its stock volume accounts for 25% of the national plantation volume (Liu et al., 2022). Due to the increasing demand for improved seedlings for reforestation in harvested sites, the scale of Chinese fir seedling cultivation has been expanding recently. In this context, it is critical to attaining the accurate number and cultivation density of Chinese fir seedlings, which can provide essential support for scientific cultivation and intelligent management, such as thinning time, precise seedling determination, and water, fertilizer, and light management (Mateen and Zhu, 2019; Dorbu et al., 2021). Moreover, it is vital in disease prevention and control, seedling emergence rate estimation, and nursery asset valuation (Chen et al., 2017; Shen et al., 2020).

Traditionally, the method of determining the number of Chinese fir seedlings is based on statistics by manually calculating the number of sampled plots. This method is inefficient and may also lead to significant errors, which is limited in its large-scale application (Marques et al., 2019; Mohan et al., 2021). With the rapid development of spatial information technology, the means of monitoring by remote sensing has gradually attracted widespread attention. However, due to the low spatial resolution, the traditional satellite-based remote sensing cannot observe small targets such as Chinese fir seedlings (Zhu et al., 2021b), so it is challenging to accurately identify the seedlings with it. In recent years, the emergence of the UAV remote sensing platform has brought an opportunity to solve this problem. This platform, flying at a height much lower than the satellites, can acquire images with super-spatial resolution (pixel size<10cm) (Colpaert, 2022). Therefore, the UAV-based images can clearly display the structural features (shape, size, and texture) of ground objects (Bhandari et al., 2018; Osco et al., 2021), which to a large extent overcomes the limitations of traditional remote sensing, making the extraction of tiny targets possible (Yin et al., 2021). The terminal bud is an integral part of the morphological structure of Chinese fir seedlings. Because of its apparent characteristics of growing upward, the terminal bud can be a symbolic feature for detecting a single Chinese fir seedling. The UAV-based remote sensing can be a new potential means for acquiring accurate numbers and cultivation density of Chinese fir seedlings by detecting their terminal buds.

Deep learning algorithm based on artificial intelligence is a new field of machine learning. Thanks to its robust feature extraction capability, this algorithm has more tremendous advantages than traditional machine learning algorithms in processing massive high-dimensional data (Zhu et al., 2017; Ball et al., 2018; Cheng et al., 2020; Changhui et al., 2021). The successful application of deep learning technology in computer vision provides essential technical support for the intelligent extraction of plant information in agriculture and forestry (Haq et al., 2021; Bian et al., 2022; Ye et al., 2022). Among them, the YOLO series algorithms are the most widely used target detection algorithms (Tong et al., 2020; Wu et al., 2020) Many scholars have improved them for different application scenarios to improve detection accuracy and efficiency further. Lv et al. (2022) proposed an improved YOLOv3 model and used it to detect crop pests in natural agricultural environments by combining it with image enhancement; Wang et al. (2022) proposed an improved lightweight YOLOv4-based model to detect dense plums in orchards; Zhang et al. (2022) proposed an improved YOLOv5-CA model for real-time control of disease transmission on grapevines in precision viticulture. However, the current standard YOLO networks are designed for objects with large size and low density (Zhu et al., 2021b), while the terminal buds of Chinese fir seedlings in UAV images are small target objects. Their area ratio in the image is minimal and has characteristics of high density, sever overlapping, and occlusion, so they are prone to false detection and missed detection. Meanwhile, the morphology of lateral branches of Chinese fir seedlings is similar in shape to the terminal buds of Chinese fir seedlings The number and density of lateral branches are both much larger than that of terminal buds, which makes their background in UAV images very complicated. Moreover, terminal buds of densely-planted seedlings vary in size, including micro, small, medium and large ones, due to the different growth states of individuals, which further increases the difficulty of detection. Therefore, the direct application of the existing target detection network of the YOLO algorithm in detecting of the terminal buds of Chinese fir seedlings from UAV images will have a significant error.

In this study, we propose a method for recognizing the terminal bud of densely-planted Chinese fir seedling based on an improved YOLOv5 algorithm using a UAV RGB image. The method is based on the standard YOLOv5 algorithm which is improved by adding micro-scale prediction heads, new connections between backbone and neck networks, and introducing an attention mechanism module consisting of a Convolutional Block Attention Module (CBAM) and an Efficient Channel Attention (ECA). The specific objectives of this study are: 1) to evaluate the accuracy, stability, and efficiency of the improved YOLOv5 algorithm that integrates attention mechanism in detecting terminal bud of Chinese fir seedlings; 2) to compare the performance of the improved YOLOv5 algorithm with current mainstream target detection algorithms (YOLOv3, Faster R-CNN, and PP-YOLO).



2 Materials and methods


2.1 The study area

The study area (117°40′E, 26°50′N) is located at the breeding base of Chinese fir seedlings in Yangkou state-owned forestry farm in Shunchang County, Fujian Province, China (Figure 1). This area is characteristic of the mid-subtropical maritime monsoon climate, with an annual average temperature of 18.5°C, an annual average rainfall of 1756 mm, an annual sunshine duration of about 1740 hours, and a frost-free period of about 305 days. The Chinese fir seedlings cultivated include 14 excellent asexual lines and three generations of live seedlings, such as “Yang 020”, “Yang 062” and “Yang 003”, of which the seedling density is 50~55 thousand per mu and the qualified seedlings are 40-45 thousand plants. The county’s total nursery area reaches 11.13 ha, and the seedlings are usually planted in mid-December every year.




Figure 1 | Study area. (A) Geographical location of the study area, (B) Overview of study Area, (C) Local details of the study area.





2.2 Data collection and dataset construction

On November 28th, 2021, a DJI Air2S drone (DJI Technology Co., Ltd., Shenzhen, China) collected visible light images of Chinese fir seedlings in the research area (Figure 2). The drone has a visible-light sensor (1 inch) with 20 million pixels (pixel size of 2.4 μm) and a camera equivalent focal length of 22 mm. Rainbow software was used for route planning. The flight altitude was set to 4.4 m, and the overlap rate in the side direction and the heading were set to 80%. Meanwhile, the shutter speed was set to 1/320s to avoid blurred images caused by the slow shutter speed during the drone’s movement. A total of 1935 photos were acquired, and orthophotos were generated by stitching with Pix4d software (Pix4D China Technology Co., Ltd, Shanghai, China).




Figure 2 | Flow of image data acquisition.



Due to the vast data of UAV images and the limited performance of computer hardware, it is hard to input the images into the YOLO network framework for processing at one time. Therefore, it is necessary to first crop the orthophoto into sub-blocks with a size of 1200×1200 pixels. Then, a rectangular box outside the target terminal bud was drawn using the image data labeling software (LabelImg) to label the terminal bud manually. To ensure that the rectangular box contains as little background as possible, it is drawn according to the minimum rectangular box principle. Finally, the labeled sample data were divided into the training set, validation set, and test set according to the ratio of 7:2:1 to construct the terminal bud dataset of the Chinese fir seedling by the VOC format. The dataset of the Chinese fir seedling terminal bud consists of 173 images with a size of 1200*1200, and contains a total of 25,938 terminal bud annotation boxes with different sizes, occlusions, defects, angles, and illumination; the aspect ratio of the annotation box is between 0.8 and 1.6, the overlap is between 0 and 0.25, and the number of pixels for length and width is between 12 and 48.



2.3 Data augmentation


2.3.1 Data augmentation of training set

Data augmentation is an effective means to expand the training dataset, which can enhance the robustness and generalization of the model under uncertain factors such as different illumination angles, growth states, and fuzzy occlusions (Shorten and Khoshgoftaar, 2019). Traditional data augmentation methods include two main types: global photometric distortion and geometric distortion. Global photometric distortion mainly performs random image adjustment of hue, saturation, brightness, and contrast, while global geometric distortion performs random scaling, cropping, flipping, and rotating operations on standard images. This study introduces novel augmentation methods based on the two traditional augmentation methods mentioned above (Figure 3). In recent years, research in computer vision has shown that data augmentation by fusing multiple images can improve the target detection performance of models in complex scenes. Mixup (Zhang et al., 2017), Cutmix (Yun et al., 2019), and Mosaic (Bochkovskiy et al., 2020) are the three most commonly used data augmentation methods for multi-image fusion. The Mixup fusion method is a computer vision algorithm for image mixing enhancement. It expands the training data set by fusing different images. Its principle is to randomly select two samples from the images contained in training set for random weighted summation, and its sample labels are also weighted and summed accordingly. The Mixup principle is shown in equations 1~3.




Figure 3 | Data augmentation. (A) Photometric distortion, (B) Geometric distortion, (C) Mixup, (D) Mosaic.









Note: β refers to the beta distribution, α, λ, mixed_batchx is the mixed sample, and mixed_batchy is the label corresponding to the mixed sample.

Unlike the traditional method of using 0-value pixels to occlude the image randomly, the Cutmix method randomly uses a particular area of an image to complete the occlusion of the image. As an improved version of Cutmix, Mosaic randomly selects four images for cropping and mosaicking, which significantly enriches the background features of the training objects and enables the model to perform well in complex scenes. Therefore, this study introduces two new fusion methods, Mixup, and Mosaic, into the data augmentation processing.



2.3.2 TTA and WBF

Test Time Augmentation (TTA) is a method for extending test datasets, which can effectively improve the performance of deep learning models (Moshkov et al., 2021). Its working principle is that in the inference (prediction) stage, the standard image is first scaled, flipped, and rotated. Then the trained model is used to predict the different versions of each image in the test data set. Finally, the different augmentation results of the same image are analyzed together to obtain the result with the slightest error.

In the target detection task, better results can be obtained by fusing multiple predictions. There are three main algorithms commonly used at present (Figure 4): Non-Maximum Suppression (NMS) (Neubeck and Van Gool, 2006), Soft-NMS (Bodla et al., 2017), and Weighted Boxes Fusion (WBF) (Solovyev et al., 2021). The NMS method is based on the principle that when there are multiple overlapping boxes in the prediction result and the Intersection over Union (IoU) ratio is greater than a certain threshold, they are considered to belong to the same object. This method only retains the highest confidence box and deletes the others. Soft-NMS is an improved algorithm based on NMS, which sets a decay function for the confidence of adjacent prediction boxes based on the IoU value instead of setting their confidence to 0 and deleting them. The weighted box fusion algorithm used in this paper (Figure 5) works differently from the previous two. WBF calculates fusion weights according to the confidence levels of different terminal bud prediction boxes generated after TTA augmentation. The coordinates of multiple prediction boxes are fused to serve as the final prediction boundaries of the terminal buds of Chinese fir seedlings.




Figure 4 | Schematic diagram of test time augmentation (TTA).






Figure 5 | Principle of the weighted box fusion algorithm.



Among them, in the process of generating a new box by fusion, the shape and position of the new boxes are more inclined towards the box with a larger weight, as shown in Equation 4.



Where Xa, Ya, Xb, Yb are the coordinates of the top-left and bottom-right vertices of the fused predictors, respectively; C is the confidence level of the fused predictors; Xai, Yai, Xbi, Ybi are the coordinates of the top-left and bottom-right vertices of the participating predictors; Ci is the confidence level corresponding to each predictor, and Z is the number of participating predictors. Both NMS and Soft-NMS will eliminate some of the prediction boxes, while WBF fuses all the prediction boxes to form the final result, reducing the model’s prediction error to some extent. Therefore, this paper uses the WBF algorithm. It can be seen from Figure 6 that the actual application effect and performance of the WBF algorithm are significantly improved compared with both NMS and Soft-NMS.




Figure 6 | Schematic diagram of Non-maximum inhibition (NMS), Soft-NMS, and Weighted Box Fusion (WBF). The red box is the real boundary box of the terminal bud of Chinese fir seedlings, and the yellow box is the model prediction box. (A) Original prediction results, (B) NMS / Soft-NMS, (C) WBF.






2.4 Attentional mechanisms


2.4.1 CBAM attention module

Since the importance of the features of the target object in each channel is different, and the importance of pixels at various locations in each channel also varies, only by considering these two different levels of importance simultaneously can the model recognize the target object more accurately. Therefore, we insert the Convolutional Block Attention Module (CBAM) into the neck of the modified YOLOv5 (Woo et al., 2018), which is a simple and effective lightweight attention module with a dual attention mechanism, i.e., a Channel Attention Module (CAM) and a Spatial Attention Module (SAM).

CBAM generating attention can be divided into two parts (Figure 7). First, a network intermediate feature map F ∈ R (C × H × W) is given as input, where C represents the number of channels, H and W denote the length and width of the feature map in pixels. Different channels perform global maximum pooling and mean pooling on the input feature map F. The two one-dimensional vectors after pooling are sent to a multi-layer perceptron (MLP) composed of a hidden layer for combining operations. Second, the Sigma function adds and activates the corresponding elements to generate one-dimensional channel attention. Finally, the channel attention feature map Mc is multiplied one by one with the elements of the input feature map F to obtain the feature map F’ weighted in the channel dimension; the generated feature map F’ is input to the spatial attention module, and the global maximum pooling and mean pooling are performed by spatial dimension. The two feature maps generated by pooling (the number of channels is 1) are concatenated and activated by the sigmoid function to generate the spatial attention feature map Ms, which is then multiplied by F’ by element, and finally an attention-weighted feature map with two-dimension (channel and spatial) is obtained.




Figure 7 | Structure diagram of the convolutional block attention module (CBAM).





2.4.2 ECA attention module

The ECA (Efficient Channel Attention) attention mechanism is a channel attention mechanism based on the SE (Squeeze and Excitation) attention module with lightweight improvements(Wang et al., 2020). Its structure is shown in Figure 8.




Figure 8 | Structure diagram of the Efficient Channel Attention (ECA) module.



Since the channel attention module (CAM) in CBAM reduces the spatial dimension of feature maps through global average pooling and max pooling operations to obtain nonlinear correlation information among different channels, the process of CBAM to control the complexity of the model through dimensionality reduction will have a side effect on the interaction information among the channels, resulting in a decrease in the prediction accuracy. Yet the ECA model can solve this problem. The ECA module captures nonlinear information across channels by fast one-dimensional convolution instead of fully connected layers, allowing the network to learn channel attention more efficiently while reducing the amount of computation. The size of the convolution kernel of the one-dimensional convolution in Figure 8 is k, which represents the coverage of cross-channel information, i.e., the current channel and the adjacent k channels are jointly involved in predicting channel attention. The ECA module adopts an adaptive approach to determine k, as shown in Equation 5.



Note: Where, c is the channel dimension, | x | represents the nearest odd number to x.




2.5 Target detection network structure of improved YOLOv5

YOLOv5 is currently recognized as one of the most effective target detection models, which is not only highly accurate and fast but also highly flexible (Luo et al., 2022). The network structure of YOLOv5 is mainly divided into the backbone part for feature extraction, the neck part for feature fusion, and the head part for target detection (Zhang et al., 2021; Xue et al., 2022). The backbone module adopts Cross Stage Partial Network (CSPNet) and Spatial Pyramid Pooling-Fast (SPPF) to extract input image feature and transmit them to the neck module. The neck module uses the Path Aggregation Network (PANet) to generate a feature pyramid and bi-directionally fuse low-level spatial features with high-level semantic features to enhance the detection ability of objects at different scales. The head module is responsible for generating target prediction boxes to determine the category, coordinates, and confidence level of the detected object (Wen et al., 2021). Its network contains four network structures of different sizes (YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x), thus allowing the user to choose the appropriate model according to their actual needs (Song et al., 2021). Since this research mainly considers the accuracy problem when selecting the recognition algorithm, and does not require high real-time requirement of the algorithm, the YOLOv5x network with the deepest network depth and the widest feature map width is selected.

Although YOLOv5 has good detection and inference performance, it still has certain limitations if it is directly applied to detect of dense small targets such as terminal buds of Chinese fir seedlings. To more accurately detect the terminal buds of Chinese fir seedlings from UAV images, this study optimized and improved the YOLOv5 network and proposed an improved YOLOv5 that integrates the attention mechanism. The specific network structure is shown in Figure 9.




Figure 9 | Improved YOLOv5 network structure diagram.



This paper has the following four improvements to the standard YOLOv5 architecture:

(1) To improve the detection performance of YOLOv5 for tiny terminal buds of Chinese fir seedlings, a new Micro-scale Predictive Head (MSPH) is added to the head section of YOLOv5, which is derived from 4-fold downsampling to generate a larger feature map (size 304 × 304). Compared with 8, 16, and 32 times downsampling detection heads of the standard YOLOv5 model, this micro-scale head can utilize higher-resolution feature maps in the shallow layers to capture more delicate feature information of the tiny terminal buds. The improved head section has four prediction heads of different scales, which can be used to detect tiny, small, medium, and large targets, respectively, which can effectively improve the model’s ability to detect terminal buds of different sizes.

(2) Based on the idea of a residual network, a new network connection is added (as shown by the dashed arrow in Figure 9). By introducing the feature information of the backbone network into the feature fusion layer of the neck network, the back propagation of the gradient can be strengthened, the phenomenon of gradient decay can be avoided, and the loss of feature information of small objects can be reduced.

(3) The attention module was added to the neck feature fusion layer to highlight the critical information of the terminal buds of Chinese fir seedlings (Figure 10). The new attention module is implemented by a combination of CBAM and ECA-Net, where the ECA-Net module implements channel attention and spatial attention is derived from the original CBAM module. The ECA-Net module first learns the features processed by global average pooling through one-dimensional convolution. It multiplies the updated channel weights with the input feature map to generate a new feature map. Secondly, the spatial attention module (SAM) in the CBAM module takes the feature map generated by the ECA-Net module as input, generates a spatial attention feature map, and adds it to the original feature map to simulate the residual block structure. Finally, a Relu activation function is applied to the summed feature maps to generate feature maps with a dual attention mechanism. By integrating the CBAM-ECA attention module in the network structure of the neck, the model makes it less susceptible to the complex background and can obtain more important feature information of the terminal buds from the complex background. This can effectively increase the model’s robustness and improve its recognition ability.




Figure 10 | The structure of the attention modules.



(4) The TTA multi-scale test method is introduced in the image inference prediction stage, i.e., data augmentation is performed on the images of the test dataset. The test images are scaled (3 different multiples) and horizontally flipped to obtain six images of different scales. The model can achieve better prediction performance and reduce generalization errors by testing these six images and fusing the prediction results using the WBF algorithm.

The workflow of the improved YOLOv5 is shown in Figure 11. In the data preprocessing stage, the data augmentation process is mainly performed for MixUp, Mosaic, photometric distortion and geometric distortion, and the enhanced image dataset will be input into the improved YOLOv5 network for training. In the prediction stage, the model is firstly tested with TTA multiscale, and the test images are scaled by 1.30 times, 0.83 times and 0.67 times. Then the images are flipped horizontally, and finally, the enhanced test images are input into the improved YOLOv5 network and the TTA prediction results are fused using the WBF algorithm to obtain the final results.




Figure 11 | Improved YOLOv5 workflow chart.





2.6 Accuracy evaluation

Five metrics are used to evaluate the model accuracy: precision, recall, F1-Score, Mean Average Precision (mAP), and Frames Per Second (FPS). If the intersection over union (IoU) ratio between the prediction box and the manually labeled bounding box of the terminal buds of Chinese fir seedlings is greater than 0.5, the prediction box is marked as correctly identifying the sample TP; otherwise, it is marked as FP. If the manually labeled bounding box of the terminal buds of Chinese fir seedlings has no matching prediction box, it is marked as FN. Precision evaluates the number of true positive cases in the predicted positive case results from the perspective of model prediction results, i.e., the accurate number of terminal buds predicted by the model. Recall is from the perspective of true data set samples, describing the number of true positive cases in the test set identified by the model, i.e., the number of true terminal buds correctly determined by the model. F1-Score is the weighted summed average of the precision and recall; the higher the value, the higher the robustness of the model. The mAP is often used as an indicator to measure detection accuracy in target detection. Compared with precision and recall, it can better reflect the model’s global performance. The equation for calculating the above indicators is as follows:









Note: Where, N represents the number of IoU threshold, k is the IoU threshold, P (k) is the precision, and R (k) is the recall.




3 Result


3.1 Model training and validation

The hardware and software environment of this experiment is shown in Table 1. Since the VisDrone2021 UAV image dataset contains many targets of different sizes, the improved YOLOv5 model was first pre-trained using the VisDrone2021 large dataset. Then the dataset of the terminal buds of Chinese fir seedlings was trained through transfer learning. The Adam optimization algorithm was used in the training process, and the initial learning rate was set to 0.0025. The learning rate was reduced by the Cosine annealing method so that the last iteration’s learning rate decayed to 0.12 of the initial learning rate. Due to the high resolution of the dataset (1200×1200 pixels), only the batch size is set to 16 to prevent GPU memory overflow.


Table 1 | Experimental software and hardware environment.



The trends of different accuracy indicators in the training process are shown in Figure 12A. It can be seen that, in the first 100 iterations of training, the accuracy rate and recall rate of the model increased rapidly, while the loss value decreased rapidly. All the indicators leveled off after 100 iterations, indicating that the model was close to convergence. After 300 iterations of training, the slope of each accuracy indicator curve of the improved model converged to 0, and the loss rate was close to the minimum, indicating that the model had converged. The loss rate is close to the minimum value, indicating that the model has converged, and the training is terminated at this time to prevent overfitting.




Figure 12 | (A) Variation trend of different accuracy indicators during the model training, (B) Performance evaluation results of improved yolov5 with different IoU thresholds.



It can be seen from the confidence versus accuracy curves (Figure 12B) that when the confidence level is greater than 0.15, the accuracy rate of the model is greater than 80%. When the confidence level is less than 0.8, the recall rate is maintained at a fairly high level, and when the confidence is greater than 0.8, the recall rate sharply drops until it approaches 0. When the confidence level is between 0.05 and 0.8, the F1-Score is all greater than 80%, indicating that the improved YOLOv5 has higher accuracy and stability within the large-span confidence interval. The above three indicators show that the improved YOLOv5 model has good prediction performance.



3.2 Ablation experiments

In this paper, various improvements were made to the standard YOLOv5 model. To assess whether these improvements were effective and their interactions, the causality of each improvement component was analyzed using ablation experiments (Zhu et al., 2021a). The testing results of the performance of different models using the constructed dataset of Chinese fir seedling terminal buds are shown in Table 2.


Table 2 | Results of ablation experiment.



By comparing the M1 model with the standard YOLOv5 model, it can be found that the addition of the micro-scale prediction head can effectively increase the model’s accuracy. The M1 model has a recall rate 3.96 percentage points higher than that of the standard YOLOv5, and it has a precision and a recall significantly higher than that of the standard YOLOv5 (p<0.05), indicating that the use of the micro-scale prediction head can reduce the leakage of tiny terminal buds to a certain extent. M2 is based on M1, on which new connections are added, leading to an increase by 0.39 and 1.34 percentage points in the precision and recall rates, respectively, and it has a precision and a recall significantly higher than that of the standard YOLOv5 (p<0.05). The performance of different attention modules was also tested to evaluate their effectiveness. In order to highlight the key feature information of the terminal buds and suppress the useless background information, attention modules were added to the network and the detection abilities of different modules were evaluated. When M3 model incorporates CBAM dual channel attention mechanism, the performance of the M3 model was poor, and its precision and recall rate decreased by 0.81 and 0.65 percentage points, respectively. No significant difference (p>0.05) between M3 and M2 indicates that the new microscale prediction head and the new connection method have a functional conflict with the CBAM attention module, leading to certain side effects. By replacing the CBAM attention module with ECA attention module, the M4 model has a precision rate of 93.04% and a recall rate of 93.45%, which is significantly higher (p<0.05) than the M3 model. When combining ECA and CBAM in M5 to implement the attention mechanism, although there is no significant difference (p>0.05) in performance between M5 and M4, the M5 model’s performance is better than the model using the CBAM or ECA attention module alone. Its precision and recall rates are as high as 93.43% and 93.87%, respectively. This result indicates that the attention mechanism combining ECA-Net and CBAM can improve the model’s accuracy to a greater extent, which is an ideal combination. In addition, the performance of the multi-scale test with the introduction of TTA was also tested, and the results showed that the accuracy of the model (M6) with TTA was further improved, and its precision and recall rates were 95.55% and 95.84%, respectively; there is a significant difference (p<0.05) in accuracy between M6 and other models, so we adopts the M6 model as the final version of improved YOLOv5 model in our study.

To more intuitively display the target feature information extracted by the model, this paper visualized the features of the model before and after improvement (Figure 13). By comparison, it is found that the standard YOLOv5 (Figure 13A) can only detect the large terminal buds, but it was challenging to identify the tiny terminal buds. In contrast, the M1 model (Figure 13B), with the addition of the micro-scale prediction head, can detect more terminal buds. Still, it also brought more background noise, affecting terminal bud identification accuracy. For the final improved model M6 (Figure 13C), by introducing an attention mechanism, it can focuse on the terminal bud region to utilize more detailed features and suppress useless background information, thereby improving the recognition accuracy and efficiency of the model.




Figure 13 | Feature visualization results. (A) YOLOv5, (B) Improved model M1, (C) Improved model M6.





3.3 Comparison of recognition effect of terminal buds of Chinese fir seedlings

By comparing the improved YOLOv5 algorithm proposed in this paper with the current mainstream target detection algorithms (YOLOv3, Faster R-CNN and PP-YOLO) (Figure 14), it can be seen that the YOLOv3 algorithm has a poor recognition effect on large-scale and high-density small target objects. It can only effectively recognize the terminal buds with large size and apparent features, and its bounding box localization accuracy is also the worst. Faster R-CNN, a two-stage algorithm, has a different structure from the one-stage YOLOv3, and its accuracy is greatly improved compared to the YOLOv3. However, the effect of detecting tiny targets is still unsatisfactory, and there are many omissions. The improved PP-YOLO algorithm based on YOLOv3 performs better than Faster R-CNN. Although the number of terminal buds identified is still lower than the actual number, the generated prediction box boundaries are basically consistent with the actual terminal bud boundaries, and the accuracy is high. The improved YOLOv5 with the fusion attention mechanism proposed in this paper can better solve the recognition problem caused by high density, complex background and target size differences. It can be clearly seen from the figure that the improved YOLOv5 can accurately identify the terminal buds of different sizes (tiny, small, medium and large). Moreover, under the action of the dual attention mechanism (space and channel) and data augmentation, the terminal buds with high occlusion, partial defects and mutual adhesion can still be accurately detected. It can be seen that the detection performance of the improved YOLOv5 model is significantly better than that of the other three algorithms.




Figure 14 | Comparison of recognition of the terminal bud of Chinese fir seedlings for different algorithms.





3.4 Performance comparison of different models

By comparing the quantitative evaluation indicators of the improved model and other models (Table 3), we can see that the YOLOv3 model has the fastest detection speed, with an FPS of 19.36. Still, its recognition effect is poor, and the precision rate, recall rate, mAP, and F1-Score are the lowest among the four. Faster R-CNN has a significant improvement in accuracy compared to YOLOv3, in which mAP and F1-Score are increased by 8.84 and 12.63 percentage points, respectively, but its detection speed is poor, with FPS only 1.14. Compared with Faster R-CNN, the accuracy rate of PP-YOLO is greatly improved and significantly higher than Faster R-CNN (p<0.05), but it still cannot meet the requirement of accurate detection of terminal buds of Chinese fir seedlings. Since the improved YOLOv5 adds a micro-scale prediction head, its calculation amount has increased. Still, its network balances the two indicators of recognition accuracy and completeness, and has the optimal recognition effect, with a precision rate of 95.55%, a recall rate of 95.84%, an mAP of 87.25%, and an F1-Score of 95.69%. Compared with the other three models, the average precision rate and F1-Score of the improved YOLOv5 are increased by 9.51-28.19 percentage points and 15.92-32.94 percentage points, respectively. In addition, the improved YOLOv5 is significantly higher(p<0.05) from other mainstream algorithms in many indicators. It can be seen that the improved YOLOv5 model can better meet the requirements of accurate identification of terminal buds of Chinese fir seedlings.


Table 3 | Comparison of different target detection algorithms.






4 Discussions

Accurate and rapid acquisition of information on the number of densely planted Chinese fir seedlings is an essential issue in the current precision cultivation of Chinese fir seedlings. However, in the late stage of plant cultivation, the overlapping of lateral branches among individuals is too severe to identify the entire individual, while in the high-density planting nursery, the terminal bud of each seedling grows upward and has distinctive characteristics, which can be used as an identification feature. Therefore, this study optimized and improved its network structure based on the latest YOLOv5 model. It also constructed an improved YOLOv5 to recognize terminal buds of Chinese fir seedlings by fusing attention mechanisms and other advanced image processing methods. The results showed that the improved YOLOv5 outperformed the other three mainstream target detection models (YOLOv3, Faster R-CNN, and PP-YOLO), indicating that it is feasible to use the improved YOLOv5 model to detect and identify the terminal buds of densely-planted Chinses fir seedlings with high accuracy.

The improvement of the detection accuracy of the improved model firstly benefits from the introduction of micro-scale prediction heads. The terminal buds of Chinese fir seedlings account for a tiny proportion in the UAV image. The number of pixels in the length and width is generally between 12 and 48, which means that the three detection heads of the standard YOLOv5 model are performing high magnification (8-fold, 16-fold and 32-fold), it will lead to a large amount of loss of feature information of the tiny terminal buds (Zhao et al., 2021), resulting in a significant error of the model. The introduction of the micro-scale prediction head (4-fold the rate of downsampling) in the current enables the model to retain the feature information of the tiny terminal buds better. However, with the introduction of the micro-scale prediction head, some small background noises were also generated, and the lush lateral branches of Chinese fir seedlings complicate the background information of the terminal buds. Therefore, by adding a new attention mechanism module consisting of CBAM and ECA to the neck network, the model can focus on the key region of the terminal buds, further promoting the improvement of the model accuracy. It should be noted that the channel attention module in CBAM reduces the dimension of the feature map (Zhu et al., 2021a) by pooling operations to obtain the correlation between different channels. However, the pooling operation achieves image dimensionality reduction; it will also negatively affect the channel attention prediction, leading to poor model performance when the CBAM module is used alone. Therefore, this study replaces the channel attention module in CBAM with the ECA attention module with higher learning efficiency, which can effectively capture cross-channel interaction information without dimensionality reduction and significantly improve the model performance. In addition, due to the typical occlusion and overlapping of terminal buds of densely-planted Chinese fir seedlings and the differences in individual growth states, the generalization of the network trained using the original image data is poor. However, data augmentation can improve the diversity of target features and solve the problem of unbalanced or missing sample data (Wan et al., 2021), enhancing the robustness and generalization of the trained model to a certain extent. Finally, this study introduces the TTA multi-scale test and WBF fusion algorithm in the inference and prediction stage. A more realistic prediction result is obtained by performing multi-scale transformation of the test set images and weighted fusion of multiple prediction results with different resolutions. Other studies have also shown that this is an effective strategy to improve the detection effect of small objects (Zhu et al., 2021b).

It should be noted that although the improved YOLOv5 algorithm has significantly improved detection accuracy, its detection speed has decreased, with an FPS of only 7.29, which has not yet reached the standard of real-time detection. Hence, it is necessary to explore further the optimization of the model network parameters in the later stage. For example, it is required to promote the lightweight of the network through pruning operation, reduce the number of model parameters, and improve the computing efficiency to achieve real-time detection of the terminal buds of Chinese fir seedlings, which facilitates its deployment on mobile terminals and embedded devices, and further expands its application scope. At the same time, since the image collected by the UAV will be distorted, dislocated, and ghosted to a certain extent during the stitching process, some terminal buds cannot be well distinguished and labeled. There are still some shortcomings in researching labeled datasets. Therefore, it is necessary to continue focusing on the improvement of feature extraction algorithm and image data quality in future studies.



5 Conclusion

In this paper, we propose an improved YOLOv5 algorithm that integrates deep self-attention networks. The algorithm adds a new micro-scale prediction head to the standard YOLOv5 network, which can capture more feature information of tiny terminal buds. At the same time, the high-resolution shallow features in the backbone network are introduced into the feature fusion layer, which further reduces the loss of feature information of tiny terminal buds. In addition, the attention module combining CBAM and ECA attention mechanisms is also added to the feature fusion layer, which helps the model extract feature information of key regions of terminal buds in complex backgrounds, and the TTA multi-scale test and WBF fusion algorithm were used to further improve the detection ability of this method in the dense fir seedling terminal buds in UAV images. The results of this study show that the improved YOLOv5 has significantly improved the recognition accuracy compared with the standard YOLOv5. Compared with other current mainstream target detection algorithms (YOLOv3, Faster R-CNN, and PP-YOLO), the precision, recall, mean accuracy, and F1-score of the improved YOLOv5 are also improved to varying degrees. Still, the complexity of the improved YOLOv5 network is high, and the image quality needs to be improved. In the future, it is necessary to explore a high-performance, lightweight network and optimize the image quality to achieve accurate real-time detection. In summary, the improved YOLOv5 model can be applied to accurately identify of the terminal buds of densely-planted Chinese fir seedlings and target identification in high-density, multi-occlusion, and complex background scenes. It can provide technical reference for the application of consumer-grade UAVs in precision breeding, phenotype monitoring and yield prediction of Chinese fir seedlings and has specific application prospects.
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The semi-transparency property of smoke integrates it highly with the background contextual information in the image, which results in great visual differences in different areas. In addition, the limited annotation of smoke images from real forest scenarios brings more challenges for model training. In this paper, we design a semi-supervised learning strategy, named smoke-aware consistency (SAC), to maintain pixel and context perceptual consistency in different backgrounds. Furthermore, we propose a smoke detection strategy with triple classification assistance for smoke and smoke-like object discrimination. Finally, we simplified the LFNet fire-smoke detection network to LFNet-v2, due to the proposed SAC and triple classification assistance that can perform the functions of some specific module. The extensive experiments validate that the proposed method significantly outperforms state-of-the-art object detection algorithms on wildfire smoke datasets and achieves satisfactory performance under challenging weather conditions.
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1 Introduction

Failure to detect and control wildfire in a timely manner can result in devastating disasters to forests (Ray et al., 2017; Niccoli et al., 2019). Therefore, it is very important that forest safety monitoring systems are able to detect fire and smoke in a timely and effective manner (Barmpoutis et al., 2014). Early research into fire monitoring systems mainly focused on the detection of flames. However, smoke detection is more suitable than fire detection for forest monitoring systems because fires develop slowly in the early stages and are not easily detected by cameras. As a result, fire detection-based security monitoring systems do not provide alerts in time compared to smoke detection-based security monitoring systems. Therefore, smoke detection is more suitable than fire detection for the role of fire monitoring algorithms in forest scenarios (Filonenko et al., 2017). Sensor-based smoke detectors rely on smoke ionization to produce particulate matter and then perform smoke detection (Adamian et al., 1996). This principle means that the sensor-based smoke detector can only achieve good performance in small scale scenarios, but it cannot be applied to forests with large areas and complex landscapes like forests (Lin et al., 2018). To solve this problem, many researchers have carried out studies on computer vision-based smoke detection algorithms (Dimitropoulos et al., 2016). Earlier smoke detection algorithms could only determine the presence of smoke in a scene and could not localize it (Miyazawa, 2002). However, precise localization of smoke areas can help fire-fighting systems to provide more accurate alerts. Therefore, the accurate localization of smoke has become an important issue in the field of computer vision in recent years (Jia et al., 2016). In this article, we will refer to this as smoke detection.

Most of the early vision-based smoke detection was based on inference algorithms with shallow feature representations (Kaabi et al., 2017). These methods use visual features to represent smoke, such as color, speed, transparency and direction (Barmpoutis et al., 2014). However, current smoke detection algorithms based on feature representations still suffer from some shortcomings due to the lack of robust mechanisms for characterizing smoke motion and external morphology (Jia et al., 2019), which means that the performance will decline significantly when the running environment changes. Therefore, these kinds of smoke detection methods still need further improvement in terms of generalization and interference (Yuan et al., 2019).

With the development of artificial intelligence in industry, agriculture and forestry (Chen et al., 2017; Ferrag et al., 2017; Ray et al., 2017; Zhu et al., 2018; Ferrag et al., 2020; Liu et al., 2020), many researchers have begun to focus on deep learning-based smoke detection algorithms, while the performances remain unsatisfactory for the following reasons: 1) The shape of the smoke is constantly changing and its visual characteristics are susceptible to be influenced by the background; 2) Smoke has different visual features at different stages of combustion, so it is difficult for CNNs to learn high-dimensional features of smoke that are adapted to different stages of combustion; 3) As shown in Figure 1, some of the objects that appear in the forest have an appearance similar to that of smoke, which makes the model susceptible to misinterpretation of these normal conditions in practical applications. Therefore, a good wildfire smoke detection algorithm needs to be able to accurately detect smoke regions in the complex environments.




Figure 1 | Some challenging images. (A, B) are smoke images; (C, D) are vapour and fog images.



Combining the above issues with the current problems in the field of smoke detection, this paper proposes SAC for the following reasons: 1) the traditional learning-based object detection algorithms are usually dedicated to the design of the model structure, ignoring the impact of the training data on performance in different scenarios. 2) traditional object detection algorithms are designed to working in clear scenes by default. However, in real-world applications, the images captured by camera are often affected by unusual weather conditions, resulting in reduced detection accuracy. 3) traditional fully supervised object detection relies to some extent on over-fitting of background information. Thus, when the running scenario changes significantly, the performance of the model will be severely degraded.

In order to address the above issues, the following contributions have been made in this paper:

	In this paper, a new SAC method is proposed to solve the problem of insufficient amount of training data. Specifically, we first obtain pseudo-labels for the unlabeled data by using a preliminary model trained on the labelled data. The original unlabeled image was then cropped into eight patches based on pseudo-labelling, and eight different data augmentation methods were then randomly applied to these patches. The next step is to make the model’s detection on the patch consistent with the pseudo label by back propagation. The experimental results show that the proposed SAC can effectively improve the detection accuracy as well as the robustness of the model.

	In this paper we optimized the traditional fully supervised LFNet model for fire smoke detection and proposed a simplified LFNet-v2. Specifically, we remove the multi-scale feature extraction module and attention mechanism used in LFNet due to the proposed SAC method and triple classification assistance can help the model to better understand the smoke and background. In addition, the removal of these two modules could improve the inference speed of LFNet-v2.

	In order to avoid the disturbance of smoke in forest scene by objects with similar visual features, a triple classification assistance is proposed. Specifically, in the training phase, the proposed method adds the sky class as a detection class compared to the traditional smoke detection. This training strategy can help the model better recognize the smoke and the background.



The rest of this article is arranged as follows. Related work on traditional fire monitoring methods and learning-based fire monitoring methods are given in Section 2.1 and Section 2.2 respectively. The proposed method is introduced in Section 3. The comparison and ablation experimental results are introduced in Section 4. The conclusion is drawn in the Section 5.



2 Related Work

Early work in the computer vision community on smoke monitoring focused on smoke detection based on visual features, but this approach tended to have significant false positives and negatives. Recently, learning-based smoke detection methods have evolved significantly with the increase in computing power. In order to describe the progress made in the field of artificial intelligence in terms of fire and smoke detection algorithms, this section analyzes the relevant literature from two different perspectives, namely traditional machine learning-based and modern deep learning-based fire monitoring algorithms respectively.


2.1 Traditional fire monitoring methods

Early research into smoke detection focused on the underlying visual features of the image. For example, Chen et al. simultaneously used the RGB and HIS color spaces to studying the dynamic characteristics of the smoke (Chen et al., 2004). Marbach et al. studied the YUV color space at the pixel level and used it to determine whether a fire was occurring in the current scene (Marbach et al., 2006). Celik et al. proposed a fire detection algorithm based on the pixel-level YCbCr color space, and also put forward a new rule for distinguishing chromaticity and brightness (Celik and Demirel, 2009). Habiboğlu et al. proposed a real-time fire detector based on SVM (Habiboğlu et al., 2012).

The smoke detection methods based on color representation are susceptible to brightness and are poorly robust to changes in the environment (Chaturvedi et al., 2022). In recent years, more and more researchers have been using different characterization methods for smoke detection of fires. Among these works, Borges et al. combined color, texture and roughness with the Bayesian classifier to recognize the fire and smoke (Borges and Izquierdo, 2010). Toreyin et al. adopted spatiotemporal wavelet analysis to detect the areas of fire in the video (Töreyin et al., 2006). Di Lascio combined the color and motion information in the video to detect the fire (Lascio et al., 2014). Dimitropoulos et al. adopted the spatiotemporal features for fire detection, and then used SVM to classify the candidate regions (Dimitropoulos et al., 2014). Even though these methods can improve the performance of the model, they often have poor robustness and generalization abilities. To address this problem, many researchers have begun to focus on deep learning-based smoke detection methods.



2.2 Deep learning-based fire monitoring methods

Recently, deep learning has gradually replaced machine learning as a mainstream approach to fire and smoke detection (LeCun et al., 2015). Based on SqueezeNet (Iandola et al., 2016), Khan et al. proposed a lightweight fire detection algorithm, which can locate and identify objects simultaneously (Muhammad et al., 2018). This method can balance fire detection accuracy and inference speed well with few parameters. Yin et al. adopted a deep normalized CNN to speed up training and improve the performance of the smoke detection (Yin et al., 2017). Zhang et al. used both real and synthetic smoke images in their training set (Zhang et al., 2018). However, the experimental results show that these methods cannot solve the problem of insufficient training dataset.

Learning-based detection methods can automatically extract features that are beneficial for smoke detection. However, the performance of these methods will be severely degraded by the lack of training data for forest scenes due to the inherent disadvantages of the fully supervised training strategy. To address this problem, this paper proposes a semi-supervised smoke detection method that allows the model to achieve high accuracy despite using insufficient data. The specific details of the proposed method are described in detail in the next section.




3 Methodology

The structure of the LFNet-v2 is shown in Figure 2. Since the SAC and triple classification assistance proposed in this paper can provide the functionality of some special modules applied in LFNet to a certain extent, this paper simplifies the classical fire and smoke detection model LFNet (Shen et al., 2020) and proposes LFNet-v2. Specifically, we removed the multiscale feature extraction module from LFNet because the SAC strategy proposed in this paper allows the network to adapt to different contexts. In addition, we also removed the attention mechanism that plays an important role in LFNet for the same reason. Lastly, since our work focuses on smoke detection only, we discard the original loss function SCP (x) designed specifically for the fire detection, and merely use the loss function employed in YOLOv3 (Redmon and Farhadi, 2018) for LFNet-v2.




Figure 2 | The framework of the proposed LFNet-v2.




3.1 The framework of LFNet-v2

The structure of LFNet-v2 is shown in Figure 2. Similar to YOLOv3, LFNet-v2 first normalizes the size of the input image to 416 * 416 * 3 by using a uniform grey fill box, and then halves the image size by Conv2D, which has a convolution kernel of 3, a step size of 2 and a padding of 1. Finally, an input image of size (416, 416, 3) will eventually be transformed by LFNet-v2 into a high-dimensional feature map of size (13, 13, 256). One important characteristic of LFNet-v2 is the incorporation of a residual block (He et al., 2016). The advantages of residual network is easiness for optimization, which can also improve accuracy by increasing network depth. Internal skip connections are adopted in the residual block, which can deal with the gradient vanishing problem caused by the increasing depth in the depth of the neural network. A residual block with kernel size 3 and step size 2 is first run for LFNet-v2. We perform this convolution at this feature layer and add the results to LAYER. As a result, the network structure of LFNet-v2 can be deepened considerably.

The PReLU (He et al., 2015) is used for each convolution of LFNet-v2. After convolution, each part will be normalized using Instance Normalization (IN) (Ulyanov et al., 2016), and then PReLU will be employed. A common ReLU sets all negative values equal to zero, whereas a nonzero slope is assigned by PReLU to all negative ones, and its mathematical expression is:



In the last step, convolution is performed to the Resblocks of the 6th, 8th and 10th layers of the network, and the convolution blocks of size (13,13,6), (26,26,6) and (52,52,6) are output respectively. Lastly, features of uniform size are spliced together by feature splicing, and the heads of three different sizes of (52,52,18), (26,26,18) and (13,13,18) are obtained, which are used to detect large, medium and small size of smoke, respectively.


3.1.1. Loss function

The task of the LFNet-v2 is the accurate localization of the smoke region. Therefore, the loss function in YOLOv3 is used directly in this paper, which consists of object location offset loss, classification loss and target confidence loss as follow:



where, λ1, λ2 and λ3 are the balance coefficients, Lconf (o, c) is the confidence loss, Lcla (O, C) is the classification loss, and Lloc (l, g) is the localization loss. In this paper, We set λ1, λ2 and λ3 to 1, 0.5 and 1 respectively. Notice that since an auxiliary multi-class strategy is used to enable the model to better extract scene information in this paper, the classification loss is retained in our model. It should be emphasised that the design of the loss function is not the focus of this paper, but the model proposed in this paper can still achieve better results using this underlying loss function.




3.2 Smoke-aware consistency

Methods that can maintain consistency between image features under perturbation have achieved good performance in semi-supervised learning (Tarvainen and Valpola, 2017). On the other hand, as the surface features of smoke images are not very distinct and there is no fixed paradigm for the shape and color of smoke, it is difficult to perturb the network on the extracted smoke image features by applying simple data augmentations to the input image. Furthermore, one reason for the apparent discrepancy in detection results obtained on different images is that the model was over-fitted to the limited training data, which made the model overly dependent on background information when extracting smoke features. This means that although the model achieves consistency in low-dimensional augmentation, it still fails to produce a consistent embedding distribution across content. In addition, one reason for the significant variation in features across backgrounds is that the model over-adapts to the limited training data, resulting in features that are too dependent on contextual cues and not sufficiently self-aware. One way to deal with this problem is to generate more robust features by maintaining consistency between features across contexts, which can also alleviate the over-fitting problem to some extent. Inspired by this, we propose the SAC method, which is a novel and effective semi-supervised training strategy. Experimental results show that the proposed method outperforms general data augmentation methods.

Figure 3 shows the semi-supervised training framework used in this paper. Specifically, there are two groups of different inputs, which are xl and xu, representing the labeled and unlabeled data respectively. The labeled image xl is input to the encoder network ε to obtain the feature map fl = ε(xl); then, the detection head H obtains prediction result pl = H(fl); finally, it is supervised by the ground truth label yl for back propagation. The model can obtain certain smoke detection ability using the labeled data, which can help the unlabeled data to obtain the pseudo-label ỹo.




Figure 3 | Overview of the proposed SAC.



For the unlabeled image data xu, eight different patches are obtained based on the pseudo-label ỹo by random matting in eight different directions on the same overlapping area. Then, one of eight different image augmentations is chosen randomly and performed to one of these eight different patches, and these augmentations are: 1. Glass Blur; 2. Histogram Equalization; 3. Motion Blur; 4. Gamma Contrast; 5. Gaussian Noise; 6. Average Blur; 7. Fliplr; 8. Snow. The example of image augmentation and image matting are shown in Figure 4.




Figure 4 | Examples of data augmentation and patch interception schemes used in the SAC.



Subgraphs of unlabeled image data after low dimensional data augmentation are then fed into LFNet-v2 for smoke detection. Notice that since LFNet-v2 is a model trained using a small amount of labeled data, the model detection accuracy is not very reliable. Therefore, this paper proposes to improve the detection performance of LFNet-v2 on unlabeled data by following two supervised methods. First, it is required that the pseudo-labelling of xu in the perturbed cropping region is back-propagated between the detection result of xu and ỹu by the formula (2); second, it is required that all subgraphs between ỹu1 and ỹu8 are back-propagated by the formula (2).

In the meantime, the availability of pseudo-labels ỹo for unlabelled data xu cannot be determined as the shape of smoke produces different visual features during drifting, which would pose a significant challenge for fire and smoke detection where training data is scarce. To address this problem, we set the offset coefficient μ of the pseudo-labels according to the detection accuracy achieved on the labeled validation set, so that the pseudo-labels will drift in a certain random direction according to the coefficient μ. As the detection accuracy decreases, the larger the scale in which the pseudo-labels drift.

During the experiment, the performances of the proposed SAC method in this paper were proved via specific comparison and ablation experiments. The proposed SAC framework is optimized following Algorithm 1.



Algorithm 1 | SMOKE-AWARE CONSISTENCY





3.3 Triple classification assistance

Figure 1 indicates that forest smoke is often easily confused with objects in the background, such as clouds and the sky. For the model to better distinguish the background and smoke region, this paper proposes a triple classification assistance strategy. Specifically, images of smoke in forests fall into three categories: background, smoke and sky. Extensive experiments show that the proposed triple classification assistance can help the model distinguish the image features that are easily confused with the smoke features and improve the model’s detection performance. We compared the performance of this model with or without classification assistance to verify its practical value for forest scene smoke detection.




4 Experiments

To verify the superiority of the proposed method, this section compares it with other state-of-the-art algorithms for classification and detection of smoke images. In addition, we have carried out sufficient ablation experiments to prove the practical value of the innovation proposed in this paper. All the comparison algorithms train a total of 60 epochs and performed on a server with Intel (R) Core (TM) i7-8750H CPU 10720GHz, 16.0GB RAM, and NVIDIA 1070. The deep learning framework used to train these algorithms is PyTorch 1.7.


4.1 Dataset

In order to prove that the proposed method can provide stable performances under suboptimal imaging conditions, we classify images into the following categories by refer to the method in (Khan et al., 2019): 1) Smoke; 2) Smoke with fog; 3) Non-smoke; 4) Non-smoke with fog. It is worth noting that the method proposed in (Khan et al., 2019) is a smoke recognition algorithm for the haze weather only, but the proposed method is applicable to any specific conditions. For example, the experimental results show that the proposed algorithm has good performance in foggy forest scene. In this case, the smoke images for foggy days are synthesized using the atmospheric scattering model (McCartney, 1977). The mathematical equation for the atmospheric scattering model is as follows:



Where I(x) is the haze-degraded image, J(x) is the haze-free scene, α is the global atmospheric light representing the ambient light in the atmosphere, and t(x) is the transmission of the intrinsic luminance in the atmosphere. In this paper, we set α and t(x) to 0.7 and 0.5, respectively.

As shown in Table 1, the data set used in this paper includes 4,014 images, 50% of which are synthetic foggy images, and the rest 50% are the original images. We use fully supervised smoke detection (FSSD) and semi-supervised smoke detection (SSSD) methods as comparison algorithms to demonstrate the superiority of the proposed method. Table 1 details the distribution of the dataset, and Figure 5 shows some images of the dataset used in this paper. For fully supervised learning, 60% labeled images are used for training, 20% labeled images for verification and 20% unlabeled images are used for testing. For semi-supervised learning, 30% labeled images and 50% unlabeled images are used for training, and 50% unlabeled images are used for testing. But, the test sets of FSSD and SSSD are consistent. Many smoke detection algorithms can only determine the presence or absence of smoke in the current scene, but cannot accurately locate areas of smoke. Therefore, in order to compare algorithms that can only accomplish smoke image classification as comparison algorithms as well. We evaluate the proposed method from two perspectives, image classification and object detection.


Table 1 | Overall statistics of training, validation, and testing data for the proposed system.






Figure 5 | Representative images of smoke, smoke with fog, non-smoke, non-smoke with fog.





4.2 Smoke classification

Some security systems only need the model to determine if there is smoke in the current scene and do not need to obtain the exact location of the smoke area. Therefore, image classification methods are sufficient to meet the requirements of such systems. To demonstrate the image classification capability of the proposed model, we set the confidence level of smoke detection to 0.4 and then compare this method with other state-of-the-art image classification algorithms.

Comparison algorithms can be classified into three different types: the first type is the fully supervised image classification algorithm applied to non-specific scenes, the second type is fully supervised images classification algorithms specifically designed for smoke image classification, and the third type is common semi-supervised image classification algorithms. Specifically, the fully supervised image classification algorithms for non-specific scenes include mobileNet (Howard et al., 2017), ResNet18 (He et al., 2016) and VGG16 (Simonyan and Zisserman, 2014); the fully supervised smoke image classification algorithms include DCNN (Gu et al., 2019), SIUM (Yu et al., 2019) and DarkCDCN (Liu et al., 2019); the semi-supervised image classification algorithms include SESEMI (Tran, 2019) and SRC-MT (Liu et al., 2020).

Figure 6 represents the training process and the final classification accuracies of each model. Specifically, Figure 6A shows that MobileNet is a fully supervised image classification algorithm with an accuracy of 81.5%, and the accuracies of VGG16 and ResNet18 are 82.1% and 84.1%, respectively. Therefore, ResNet18 achieved the best performance among all fully supervised algorithms for non-specific scenes. Although the proposed method only achieved an accuracy of 79.1%, it was only trained on 30% labeled data. In contrast, MobileNet, VGG16 and ResNet18 were subjected to 80% of the labeled data. Nevertheless, the accuracy of the LFNet-v2 was merely 5% lower than that of ResNet18, which shows that the proposed LFNet-v2 still managed to achieve great classification performance with insufficient training data.




Figure 6 | Study on the performance of wildfire scene image classification algorithm. (A) denotes the classification accuracy of the commonly used superintendency image classification algorithm; (B) denotes the classification accuracy of the commonly used superintendency image classification algorithm; and (C) denotes the classification accuracy of the commonly used semi-superintendency image classification algorithm.



Figure 6B shows that LFNet-v2 outperformed the other fully supervised smoke detection algorithms, with a classification accuracy of 79.1%. The classification accuracies of the algorithms for comparison are as follows: the DCNN (Gu et al., 2019) had an accuracy of 78.5%, SIUM (Yu et al., 2019) achieved an accuracy of 76.2%, and the accuracy of DarkC-DCN (Liu et al., 2019) was 77.1%. The classification accuracy of LFNet-v2 was 0.6%, 2.9% and 2.0% higher than that of DCNN, SIUM and DarkC-DCN, respectively. Experiments have shown that smoke image classification algorithms that are not specifically designed for forest scenes do not provide accurate classification when applied to forest scenes.

Figure 6C demonstrates the performances of two classic semi-supervised image classification algorithms, i.e., SESEMI (Tran, 2019) and SRC-MT (Liu et al., 2020), which achieved the classification accuracies of 72.5% and74.1%. LFNet-v2 had an accuracy of 79.1%, 6.6% and 5% higher than that of SESEMI and SRC-MT, respectively.

In summary, Figure 6 shows that although the classic semi-supervised image classification algorithms can generally achieve relatively good performances on the smoke images with forest scenes, these models cannot achieve very high accuracy because there is no special module designed for such forest scene. However, the proposed algorithm achieves better classification results than the usual semi-supervised image classification algorithms.

Table 2 describes the performance of smoke detection algorithms based on image classification in more detail. As can be seen from the Table 2, the proposed LFNet-v2 performs better in fog than other comparison algorithms. Specifically, in the foggy non-smoke scene, the classification accuracy of the proposed model was as higher as 73.4%, which was the second highest among all algorithms for comparison, only next to ResNet18 with a classification accuracy of 74.3%. In the foggy smoke scenes, the accuracy of the proposed method was 91.2%, which was the highest among various algorithms. In contrast, the accuracies of ResNet18 and SIUM were both 82.1%, which was in the second place. Therefore, the proposed method is more suitable for classification of degraded images under sub-optimal imaging conditions. However, for the clear non-smoke forest scenes, other algorithms for comparison slightly outperformed the algorithm proposed in this paper. Specifically, the detection accuracy of the algorithm was only 90.1% for obvious smoke scene, 8.3% lower than the SRC-MT maximum.


Table 2 | Comparison of the proposed method with eight state-of-the-art image classification methods.



Table 2 shows that the proposed method achieves a classification accuracy of only 79.1%, ranking fourth among all comparison algorithms. However, it is worth noting that the top three algorithms are fully supervised detection algorithms with 80% of the labelled training data, while the proposed algorithm are trained using only 30% of the labeled data. However, the classification accuracy of this algorithm is still 6.6% and 5% higher than the other two semi-supervised image classification algorithms.



4.3 Smoke detection

Advanced intelligent fire-fighting robots need to accurately locate areas of smoke in order to complete a series of fire-fighting instructions (Park et al., 2019). To the best of our knowledge, this paper is the first semi-supervised smoke detection algorithm. Therefore, the proposed method is compared with the general fully supervised smoke detection algorithms, general fully supervised object detection algorithms and general semi-supervised object detection algorithms to be used to demonstrate the superiority of the algorithm proposed in this paper. Specifically, the fully supervised object detection algorithms include the Faster RCNN (Ren et al., 2015), CenterNet (Zhou et al., 2019), and YOLOx (Ge et al., 2021); the fully supervised smoke detection algorithms include the DSATA (Zhao et al., 2020), Frizzi et al. (2016), and 3DCNN (Lin et al., 2019); the semi-supervised object detection algorithms are the Soft-Teacher (Xu et al., 2021) and STAC (Sohn et al., 2020). Although many excellent evaluation strategies have been proposed recently (Rodríguez-Fdez et al., 2015), we still choose the most classic COCO criteria as our evaluation strategy, including AP (averaged average precision over different IoU thresholds, the primary evaluation metric of COCO), AP50 (average precision for IoU threshold 0.50), AP75 (average precision for IoU threshold 0.75), APS (AP for small objects), APM (AP for medium objects), and APL (AP for large objects).

The smoke detection results are shown in Table 3. The proposed LFNet-v2 achieved the highest mAP of 0.452, meaning that it had the best overall performance in the whole dataset. Moreover, the mAP achieved by LFNet-v2 under foggy scenes was 0.427, which was still significantly higher than the mAPs achieved by other comparison algorithms. For clear scenes, the mAP value of the algorithm proposed in this paper is 0.477, the third lowest of all algorithms, 0.026 and 0.006 lower than the mAP of CenterNet and STAC respectively. Furthermore, Table 3 shows that the proposed method achieved the highest AP50, AP75, APM and APL in foggy scenarios and the highest AP50 and APM in clear scenes. For images in the whole dataset, the proposed LFNet-v2 achieved the best performances in AP50, AP75, APM and mAP, and the second best performances in APL, which was 0.004 lower than the highest APL obtained by the CenterNet. The APS of LFNet-v2 ranked only third, 0.056 and 0.037 lower than the APS achieved by SoftTeacher and CenterNet, respectively.


Table 3 | Comparison of the proposed method with eight state-of-the-art object detection methods.





4.4 Running times

The inference speed of LFNet-v2 presented in this article is shown in Table 4. In this experiment, the proposed method is compared with other algorithms in terms of model size and inference speed, and these algorithms include SSD (Liu et al., 2016), M2DET (Zhao et al., 2019), Faster R-CNN (Ren et al., 2015), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5 and LFNet (Shen et al., 2020). The sizes of all images input into the model were 416 * 416. The model’s inference speed of 34.30 FPS ranked third among all comparison algorithms. SSD and YOLOv3 had the highest inference speeds of 37.03 and 36.55 respectively. However, the inference speed of LFNet-v2 was only 7.37% and 6.15% lower than that of these two methods, respectively. Since SSD and YOLOv3 are classical real-time object detection algorithms, it can be inferred that the proposed LFNet-v2 can also perform real-time smoke detection tasks in forest scenes. In addition, the model size of LFNet-v2 is 21.5MB, which is much smaller than other algorithms. Specifically, the model size of LFNet-v2 is 90.8% smaller than that of YOLOv3. This suggests that the algorithm proposed in this paper is more suitable than other real-time object detection algorithms for devices with limited storage resources. Therefore, the proposed LFNet-v2 possess high practicality.


Table 4 | Inference speed and model size.





4.5 Ablation study

To demonstrate the practical value of the innovation proposed in this paper, we conduct ablation experiments by removing or replacing certain modules in this section.


4.5.1 Smoke-aware consistency

As shown in Figure 7, the red curves represent the classification performances achieved by LFNet-v2 with the SAC approach, while the green curves represent the classification performances achieved by LFNet-v2 without the SAC approach; the yellow curves represent the detection performances achieved by LFNet-v2 with the SAC approach, while the black curve represents the detection performances achieved by LFNet-v2 without the SAC.




Figure 7 | The smoke classification and detection accuracy when the proposed SAC adopts different numbers of image patches.



From Figures 7A–F show the cases of two, four, six, eight, ten, and twelve patches cropped from the original images according to the pseudo labels, respectively. Figure 7D shows that for smoke classification and detection, the best strategy is to crop eight patches from the original images according to the pseudo labels. Specifically, when eight patches were cropped from the original image for SAC, the classification accuracy improved by 28% and the mAP improved by a value of 0.19 compared to the model without the SAC method. Classification and detection performance then did not improve significantly as more patches were cropped out of the original image. The main reason for this is that the eight patches cover eight directions centered on the pseudo label as shown in Figure 4. Therefore, cropping too many patches leads to redundancy of background information and does not significantly improve model performance. With the number of cropped patches still increasing, the performance impact of SAC will trend downwards.



4.5.2 Different image augmentation strategies

Table 5 illustrates the impact of low dimensional data augmentation on the wildfire smoke detection. As can be seen from Table 5, the model performs best when eight different data augmentation methods are used simultaneously. When only one data augmentation method was chosen, the model performed the worst, with mAP of only 0.427. In addition, we can see from the trend in the Table 5 that the more methods of data augmentation that are used, the better the performance of the model are achieved.


Table 5 | Ablation study for different data augmentation on SAC.





4.5.3 Triple classification assistance

In this paper, we propose a triple classification assistance strategy to divide the forest smoke detection task into three categories: i.e., smoke, sky, and background. The results of the ablation experiments associated with it are shown in Table 6.


Table 6 | Ablation study for triple classification assistance on eight state-of-the-art object detection networks.



In Table 6, the double means that the scene is divided into background and smoke only, while the triple means that the scene is divided into background, smoke and sky. Table 6 shows that triple classification assistance had the greatest impact on CenterNet, with its detection performance improved by 0.111, followed by SIUM (0.105) and STAC (0.103). In addition, the triple classification help also improved the mAP of LFNet-v2 by 0.07.




4.6 The effectiveness of smoke-aware consistency

In this subsection we analyze the practical effectiveness of the proposed SAC for smoke detection in forest scenes based on intuitive sensing effects.


4.6.1 Adaptive ability for different background

This subsection mainly focuses on the adaptability of LFNet-v2 to different backgrounds. As shown in Figure 8, the first and second rows of images are the detection results of LFNet-v2 without the SAC training strategy, while the third and fourth rows are the detection results of LFNet-v2 with the SAC training strategy. The front and back of/represent confidence and intersection over Union (IOU) respectively. The front and back of/in each captions for sub-image represent the mean value of confidence and IOU respectively. It can be observed from Figure 8 that when SAC strategy is applied, LFNet-v2 can obtain better confidence, and the variance between IOU is smaller for different environmental backgrounds than the case when SAC is not used.




Figure 8 | Ablation experiment on the adaptability of SAC to different backgrounds.





4.6.2 Adaptive ability for different size

The influence of SAC on the performance of smoke image detection of different sizes is discussed in this paper. The first and second rows of Figure 9 are the results of LFNet-v2 output without SAC training, while the third and fourth rows are the results of LFNet-v2 output with SAC training. Moreover, the images in the first row and the third row are the images of fires and smoke in the original forest scene, while the images from the second row and fourth row are those after our method was carried out on the smoke region. As shown in Figure 9, when using the SAC strategy in the model, LFNet-v2 could achieve higher confidence, which hardly affected the accuracy of the smoke.




Figure 9 | Ablation experiment on the adaptability of SAC to smoke with different size.





4.6.3 Anti-disturbance ability for different degradation

This subsection discusses how the detection capability of the model will change when it is exposed to different disturbances. As shown in Figure 10, it is obvious that when LFNet-v2 uses the SAC strategy, the detection ability of the model was significantly improved, both in terms of confidence and IOU. As can be seen from Figure 10, SAC increases the confidence of the model by 0.798 and 0.645 and increases the IOU by 0.165 and 0.170 respectively for the same scenario.




Figure 10 | Ablation experiment of anti-disturbance ability of SAC to different degraded environments.







5 Conclusion

In this paper we propose a deep learning-based smoke detection model for forest scenes with smaller model size and faster inference. In addition, we also design a new semi-supervised training strategy, SAC strategy, which can improve the performance of the model against interference in different scenes and with different smoke sizes. The experimental results show that this method is better than other smoke detection algorithms in forest scenes.

However, the inference speed of the current model remains relatively slow. For this reason, in the future we will continue to optimize the model structure so that the computational complexity of the model enable real-time smoke detection on high-resolution images captured by drones (Alsamhi et al., 2021; Saif et al., 2021; Alsamhi et al., 2022; Alsamhi et al., 2022).
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Pine cones are important forest products, and the picking process is complex. Aiming at the multi-objective and dispersed characteristics of pine cones in the forest, a machine vision detection model (EBE-YOLOV4) is designed to solve the problems of many parameters and poor computing ability of the general YOLOv4, so as to realize rapid and accurate recognition of pine cones in the forest. Taking YOLOv4 as the basic framework, this method can realize a lightweight and accurate recognition model for pine cones in forest through optimized design of the backbone and the neck networks. EfficientNet-b0 (E) is chosen as the backbone network for feature extraction to reduce parameters and improve the running speed of the model. Channel transformation BiFPN structure (B), which improves the detection rate and ensures the detection accuracy of the model, is introduced to the neck network for feature fusion. The neck network also adds a lightweight channel attention ECA-Net (E) to solve the problem of accuracy decline caused by lightweight improvement. Meanwhile, the H-Swish activation function is used to optimize the model performance to further improve the model accuracy at a small computational cost. 768 images of pine cones in forest were used as experimental data, and 1536 images were obtained after data expansion, which were divided into training set and test set at the ratio of 8:2. The CPU used in the experiment was Inter Core i9-10885@2.40Ghz, and the GPU was NVIDIA Quadro RTX 5000. The performance of YOLOv4 lightweight design was observed based on the indicators of precision (P), recall (R) and detection frames per second (FPS). The results showed that the measurement accuracy (P) of the EBE-YOLOv4 was 96.25%, the recall rate (F) was 82.72% and the detection speed (FPS) was 64.09F/S. Compared with the original YOLOv4, the precision of detection had no significant change, but the speed increased by 70%, which demonstrated the effectiveness of YOLOv4 lightweight design.




Keywords: pine cones detection, YOLOv4, EfficientNet-b0, BiFPN, ECA-Net, Hard-Swish



1 Introduction

As an important forest product, Korean pine cone has high edible and medicinal value. At present, pine cone picking is mainly realized by people climbing trees to knock them down, and then collecting them on the ground. Because pine cones are small and scattered in the forest, and their color is close to the ground after landing, the whole picking process is time-consuming and labor-intensive. In the process of pine cone picking, there are not only potential dangers but also the possibility of missing the pine cones. Therefore, a pine cone identification method based on machine vision is necessary. On the one hand, it can be integrated into the drone to realize the observation of pine cones and guide manual picking in forest and monitor the growth state of pine cones and guide the cultivation of Korean pine; on the other hand, the method can be integrated into ground devices for automatic collection of fallen pine cones. Therefore, it has important application value to study a fast and accurate identification method of pine cones in forest.

Pine cone detection falls into the category of small target detection, a topic has been receiving extensive attention from scholars in recent years. Related researchers have developed from traditional methods based on shape, color and texture features to convolutional networks (Fang et al., 2018). For grape picking, Rodrigo et al selected HOG (Histogram of Oriented Gradients) and LBP (Local Binary Pattern) to extract shape and texture features of grapes, and then used SVM-RBF to build a grape recognition classifier (Perez-Zavala et al., 2018). For apple harvesting, Zartash et al used HS model to locate and segment the apple images, and then used refinement denoising and Hough transform to realize accurate location of the apples (Kanwal et al., 2019). Gu Suhang et al introduced the ASIFT feature to repair the target hollow areas generated by K-means clustering, and used the gPb contour detector and the dynamic threshold Otsu method successively to generate clear and continuous target contours (Gu et al., 2017). In order to improve the detection accuracy of traditional detection methods, the design requires an organic combination of multiple methods, which requires cumbersome steps and complex procedures. As target detection based on deep learning gradually becomes a research hotspot, Lin et al used Faster RCNN to detect strawberry flowers in various environments, with an accuracy rate of 86.1 (Lin et al., 2020). He et al proposed Mask-RCNN on the basis of Faster RCNN, adding a prediction branch and replacing ROI pooling with ROI Align, which improved the detection accuracy (He et al., 2020). Yue Youjun et al used Mask-RCNN optimized by the boundary weighted loss function to realize the recognition and localization of apples in complex environments (Yue et al., 2019).

The two-stage algorithm has high detection accuracy, good versatility and robustness, but the training and detection process takes a long time. For this, Redmon et al proposed YOLOv1 (Redmon et al., 2016), which discards the candidate frame generation structure and combines feature extraction, candidate frame classification and regression in an end-to-end network. YOLOv1 improved the detection rate significantly compared with the two-stage algorithm, but its detection accuracy was reduced. After that, Redmon proposed YOLOv2 (Redmon and Farhadi, 2017), using a new feature extraction network DarkNet19, introducing a batch normalization (BN) layer to enhance the network convergence speed, and using k-means clustering algorithm to automatically find prior anchor boxes, thereby improving detection performance. Redmon also proposed YOLOv3 (Redmon and Farhadi, 2018), which designed a DarkNet53 full convolution network without fully connected layer, combined with the FPN idea, and fused feature maps of three scales to improve target detection performance. On the basis of YOLOv3, Bochkovskiy et al proposed the YOLOv4 detection model by combining data enhancement Mosaic method, CSP feature extraction module, spatial feature pyramid (SPP), PANet feature fusion and other improved ideas, and the detection accuracy was further improved (Bochkovskiy et al., 2020). However, the CSP-DarkNet53 backbone network and the PANet feature fusion structure require a large amount of computation, which lead to the reduction of model computational efficiency.

General detection models often require a large number of parameters and thus result in high computational complexity, therefore, they cannot meet the requirement of real-time required by embedded devices and thus requires lightweight improvement. Wang et al proposed YOLOv4-tiny, which reduces the number of detection branches by compressing the network depth, and uses strategies such as FPN feature fusion structure to reduce the amount of computation and improve the operation efficiency (Wang et al., 2021). Fu Huitong et al used a lightweight GhostNet network module to reconstruct the backbone network for the large computational load of YOLOv4 (Fu et al., 2021). Ye Zixun et al proposed a lightweight MN3-YOLOv4-Lite model (Ye and Zhang, 2021), which took MobileNetv3 as the backbone network and replaced the ordinary convolution in the 3-layer and 5-layer convolution blocks with the depthwise separable convolution, realizing the lightweight network. EfficientNet (Tan and Le, 2019) combines the advantages of various feature extraction networks, and then used grid search method to determine the optimal structure, and achieved better detection effect with less computational cost. Efficientnet series has many versions. Among them, b0 is the basic one, which performs well in both accuracy and efficiency. Other versions of Efficient stack the convolution layers to improve the accuracy. Although the accuracy is slightly improved, the amount of calculation is increased by geometric multiples, which is not conducive to real-time detection. Subsequently, EfficientDet (Tan et al., 2020) introduced an efficient BIFPN feature fusion structure, through cross-layer connection and changing concating into adding, which reduced the amount of computation. In order to improve the accuracy of the model, Li Mukai et al (Li et al., 2020) introduced the SENet (Hu et al., 2020) attention mechanism in YOLOv3 to detect small pedestrian targets in infrared images. The accuracy and recall rate were both improved, but the two fully connected layers were computationally intensive. SGE-Net (Li et al., 2019)expressed different semantic features by grouping sub-features on the basis of SE-Net, so as to learn and suppress noise in a more targeted manner. Efficient Channel Attention Network (ECA-Net) (Wang et al., 2020) reduced the amount of computation significantly by introducing a more efficient 1 D-convolution for local feature interaction.

To sum up, among many target detection algorithms, the two-stage algorithm, represented by fast RCNN, has high detection accuracy, but its efficiency is low. The efficiency of the YOLO algorithm is better than the two-stage algorithm as a whole, but the detection accuracy is not as good as the former. With the improvement of the YOLO version, the detection accuracy is gradually improved, and the complexity of the algorithm is also increased. Yolov4 takes into account both detection accuracy and efficiency, but the efficiency still needs to be improved. Aiming at real-time detection of small pinecone targets, this paper uses YOLOv4 as the framework of the detection model, and implements the lightweight design to solve the problems of low computational efficiency and poor real-time performance. In terms of lightweight design, the input end uses EfficientNet-b0 as the feature extraction network, and the neck adopts the channel-transformed BiFPN structure for feature fusion; in terms of improving network accuracy, the neck is embedded in the ECA-Net attention module after feature fusion, and the H-Swish activation function is used to optimize the performance of the model. The main contribution are as follows:

	The lightweight Efficientnet-b0 and the BIFPN feature fusion structure with channel change are introduced for lightweight improvement, which reduces model parameters and improves detection efficiency.

	Aiming at the problem that the lightweight of the model leads to the decline of detection accuracy, the lightweight attention mechanism ECA net and the efficient activation function H-Swish are introduced, which improves the detection accuracy to the greatest extent by introducing a few parameters.

	A novel lightweight network EBE-YOLOv4 is constructed, which combines Efficientnet-b0, BIFPN, and ECA net, and applied to the pine cone detection in the forest. Through collecting and expanding the sample set, the test results after network training proved the effectiveness of the lightweight model.



The other parts of the paper are as follows: Section 2 is the improved method of the lightweight detection model for pine cones in forest, Section 3 is the experimental results and discussion, and Section 4 is the conclusion and prospect.



2 Pine cones detection model


2.1 The structure of YOLOv4

YOLOv4 is divided into 3 sections, and its structure is shown in Figure 1. They are the backbone network for feature extraction, neck network for feature fusion, and prediction output. The backbone network is CSPDarkNet53, which consists of 1 CBM and 5 CSP modules. In the backbone network, Mish activation function is introduced into the basic convolution structure, as shown in “CBM” in Figure 1. The CSP feature fusion structure, which is composed of three convolutional layers and some Res residual modules, is adopted to enhance the feature extraction ability. Among the 5 CSP modules, the number of Res residual modules is 1, 2, 8, 8, and 4, respectively. P3, P4 and P5 are the three feature layers of YOLOv4. P3 is obtained after three down samples of the original image, P4 is obtained after four down samples, and P5 is obtained after five down samples. The SPP module is introduced in the neck network to promote the information extraction of small-size features, and the PANet of bidirectional feature fusion is introduced to enhance the extraction of underlying feature information. Among them, CBL3 and CBL5 are stacks of 1×1 and 3×3 convolutional layers, which are stacked 3 and 5 times, respectively. In addition, the CIoU Loss function and the DIoU NMS algorithm (Zheng et al., 2020) are used in model training and output prediction.




Figure 1 | The structure of YOLOv4.





2.2 Lightweight structure design based on YOLOv4(EBE-YOLOv4)

As is shown in Figure 2, in Lightweight improvement strategy, the backbone network adopts EfficientNet-b0 to achieve a balance between feature extraction capability and computational efficiency. The feature fusion module of neck network adopts the BiFPN structure and undergoes channel transformation to facilitate feature fusion. In addition, in order to improve the detection accuracy after lightweight improvement, the lightweight channel attention module, ECA-Net, is embedded to improve the detection accuracy. Finally, the neck network adopts the H-Swish activation function to fine-tune the model for better detection performance.




Figure 2 | The network structure of EBE-YOLOv4.




2.2.1 EfficientNet-b0

EfficientNet (Wang et al., 2020) uses the Auto ML method to optimize the network structure, strike a balance in network depth, network width and image resolution, reduce model parameters, and improve detection efficiency. The basic structure of the network adopts the mobile inverted residual convolution (MBConv) to achieve better detection results with the least amount of parameters. As shown in Figure 3, the first 1×1 Conv realizes the function of increasing the dimension, and the second 1×1 Conv completes the function of reducing the dimension. Six MBConv modules are stacked to form the feature extraction structure MBConv6, the parameter design of each stage is shown in Table 1.




Figure 3 | MBConv module structure.




Table 1 | The structure of EfficientNet-b0 network.





2.2.2 BiFPN feature fusion

The feature fusion method of YOLOv4 adopts the PANet structure, as shown in Figure 4A. The whole structure is divided into two feature aggregation paths from top to bottom and bottom to top respectively, and uses the concatenation method to fuse features which causes the sharp increase in the number of feature channels and the large amount of calculation. Here, the BiFPN feature fusion structure is introduced to reduce the amount of computation. On the basis of PANet, BiFPN deletes the intermediate nodes between the top input and the bottom input, and introduces cross-layer connections to simplify the network structure. In addition, the feature fusion of the weighted addition is adopted, which not only solves the problem of large amount of computation caused by the surge in the number of channels, but also increases the weight of important channels to improve the detection accuracy. The original BiFPN is a 5-layer feature structure. In this study, in order to simplify the parameters and match the YOLOv4 structure, the number of feature layers is reduced to 3, as shown in Figure 4B.




Figure 4 | Schematic diagram of feature fusion: (A) PANet feature fusion; (B) BiFPN feature fusion.



The front end of the BiFPN is the channel transfer module to reduce the computation. As shown in Table 2, The four transfer channel combinations on P3,P4,and P5 are designed for the BiFPN structure. Group 1 is the original YOLOv4 channel number; the number of channels between different groups is halved in turn from Group 2 to Group 4. Through experimental comparison, the structure of channel 3 is optimized to be the final BiFPN feature fusion channel.


Table 2 | The transfer channel of BiFPN.





2.2.3 ECA-Net attention

Ordinary SE-Net channel attention is divided into two sections: squeezing and excitation. In the squeezing section, the input features of a 1D-vector are obtained through global average pooling (GAP). As is shown in Figure 5A, In the excitation section, the two-layer fully connected layer (FC) reduces the dimension first and then increases the dimension and obtains the weight of each channel through Sigmoid, which is multiplied with the original feature map and then output. The dimensionality reduction operation is not conducive to the capture of channel features, and the fully connected layer includes a large amount of parameters, which affects the real-time performance. To solve the problems above, ECA-Net is adopted to discard the dimensionality reduction and dimensionality increase operations, and use 1D-convolution instead of double fully connected layers to perform local feature interaction and reduce the amount of calculation. The structure is shown in Figure 5B.




Figure 5 | The structures of SE and ECA: (A) SE-Net module; (B) ECA-Net module.



Among them, k, the size of 1D convolution kernel, is related to the number of channels C, as shown in Equation(1).



Where, ood means to take the nearest odd number. In order to reduce the padding value in the convolution, the smaller odd number is generally taken.



2.2.4 H-Swish activation function

Swish activation function is shown in Equation(2). Due to the high computational complexity of the Sigmoid function, the gradient is prone to disappear during backpropagation, which leads to information loss. Hard-Swish (H-Swish) introduces Relu6, which reduces the computational cost and avoids gradient vanishing and gradient explosion, defined as Equation(3).





Figure 6 shows the curves of H-Swish and Swish. It is seen from the figure that their trajectories are approximately coincident. Therefore, H-Swish can replace the Swish function.




Figure 6 | Swish and H-Swish.





2.2.5 Loss function

The loss function of YOLOv4 in network training is composed of three parts: confidence loss, boundary loss and classified loss. If there is no objective in a certain boundary, only confidence loss is calculated, and if there is an objective, three kinds of losses are calculated. Loss function expression is shown in formula (4).



In the formula, S2 and B:Feature map scale and prior frame; λnoobj Weight factor;  :If there is a target at the first box of the grid, take 1 and 0 respectively, and if there is no target, take 0 and 1 respectively; ρ():Euclidean distance; c:The diagonal distance between the predicted box and the actual box closure area; b,w,h :central coordinates and width of the prediction box; bgt,wgt,hgt :center coordinates and width height of the actual frame;  :confidence levels of the prediction and tagging boxes;  Category probability of prediction box and annotation box.

The confidence loss and classification loss are calculated by cross-entropy method, and the boundary box regression loss is calculated by CIoU loss function. Compared with the traditional mean square error loss function, the problem of sensitivity to the scale of the target object is CIoU effectively avoided.





3 Experiment and result analysis


3.1 Data set and data amplification

This paper takes the Korean pine cones as the research object, and carries out the detection research of the pine cone in the forest environment. Because the pinecones we studied are almost mature, the color and size of the pinecones are basically similar. A dataset of pine cone images was established through camera field shooting, and the collection location was Jiamusi Forest Farm, Heilongjiang, China. Images were acquired in July, 2019. Data collection includes two scenarios: landing and tree. In the ground pine cone scene, the background color changes obviously. We pay attention to the close shot, long shot, dark environment, etc. Shooting from different angles in 3 time periods during the day, the shooting distance is 3-10m, and a total of 768 images were shot with a resolution of 5312×2988 and labeled with LabelImg. The size of the pine cone fruit in the dataset is between 25×25 and 600×600 pixels, mainly about 300×300, accounting for about 0.57% of the image area, which is a small target that is difficult to detect.

In order to improve the richness of image data and enhance the generalization ability of the model, the dataset was amplified. Contrast transformation, random color, Gaussian noise and salt-and-pepper noise were performed to increase 768 images, totaling 1536 images of pine cones in forest. Figure 7 shows the pictures of the pine cone and the corresponding pictures after amplification. The images in the first line are the original ones, and the images in the second line are those obtained through the corresponding processing.




Figure 7 | Part of the original image and the image after data processing: (A) Contrast Transform; (B) random color; (C)Gaussian noise; (D) salt and pepper noise.





3.2 Model training and evaluation

The experimental environment is Windows10 system, Pytorch deep learning framework. Hardware equipment CPU is Inter Core i9-10885 @2.40Ghz, memory 64GB, graphics card is NVIDIA Quadro RTX 5000, video memory 16GB. 1536 images are divided into training set and test set according to the ratio of 8:2.

In the network training stage, mosaic data enhancement operation is started to improve the generalization of the model. In order to reduce the cost of the training time, part of the network layer is frozen first, and then the whole network is unfrozen for training. Considering that the training process adopts the “freeze and thaw” strategy, the cosine annealing learning rate does not start, but the learning rate random decay strategy is adopted. The image input size is 416×416×3. Due to the Adam optimizer, the convergence speed is very fast, and the training time is set very short, which is 150 epochs. The first 60 epochs are frozen training, and the initial learning rate is 0.001. the last 90 epochs are thawing training, the initial learning rate is reduced to 5×10-5. The larger the Batch Size, the better the model generalization, but it has higher requirements on GPU computing resources. Finally, the Batch Size is set to 8.

Precision rate (P), recall rate (R), AP, F1 and Matthews correlation coefficient (Mcc) are used to evaluate the model detection accuracy, Where AP is the area of P-R curve, F1 reflects the balance of P and R. The calculation is shown in Equations (5-9); the model detection speed is measured by the inference time(IT) and its reciprocal, the number of detected pictures per minute(FPS).











Where, NTP is the number of positive samples that are detected as positive samples, NFP is the number of negative samples that are incorrectly classified as positive samples, and NFN is the number of positive samples that are not detected as positive samples (positive samples are the pine cone areas in the picture, and negative samples are background regions).



3.3 Results and analysis

For the above lightweight improvements, the corresponding experiments are designed. The experiments are divided into three parts. First, the effectiveness of EBE-YOLOv4 in pine cones detection is analyzed. Then, the ablation experiments of lightweight optimization process are designed, and the speed and accuracy are tested respectively. Finally, the advantages of EBE-YOLOv4 are verified by comparing with other lightweight networks


3.3.1 The test of EBE-YOLOv4

Figures 8, 9 present the parameter change curves of YOLOv4 and EBE-YOLOv4 during the training process respectively. It is seen from the figures that the precision rate (P) of the two models is basically the same in the later stage of training, and the recall rate (R) of YOLOv4 is slightly higher than that of the improved lightweight model, but the difference is not obvious. In addition, the lightweight process also affects the loss of the model, making the Loss of the EBE-YOLOv4 model slightly higher than that of YOLOv4, which may directly affect the confidence of pinecone detection.




Figure 8 | The changes of the P and R indicators during the training process:(A) P curve;(B) R curve.






Figure 9 | Loss changes during training.



Figures 10, 11 are schematic diagrams of the detection of pine cones in forest. Figure 10 shows the pine cones on the tree, and Figure 11 shows the pine cones on the ground. It is seen from Figure 11 that the detection result of EBE-YOLOv4 network is slightly inferior to that of YOLOv4, but it does not affect the final result of recognition.




Figure 10 | Pine cone detection based on EBE-YOLOV4.






Figure 11 | Detection results of YOLOv4 and EBE-YOLOv4:(A) Detection based on YOLOv4; (B) Detection based on EBE-YOLOv4.





3.3.2 Ablation experiment

In order to verify the effectiveness and superiority of the model improvement, step-by-step ablation experiments are set up, and the experimental process settings are shown in Table 3. Group 0 is the original YOLOv4 network, group 1 adds the EfficientNet-b0 backbone network on the basis of group 0, group 2 adds the BiFPN feature fusion structure on the basis of group 1, group 3 adds ECA-Net module on the basis of group 2, and group 4 introduces H-Swish function on the basis of group 3.


Table 3 | Ablation experiment design.



In addition, based on the optimization of the EfficientNet-b0 backbone network, the neck feature fusion network is compared. The original PANet and the Bi-FPN structure designed in Table 2 are used, respectively, and the experimental results are shown in Table 4. It is seen from Table 4 that the FPS of EfficientNet-b0-YOLOv4 using the PANet structure is 51.50. After introducing the BiFPN structure of different channels, the FPS of these detection models is significantly improved, and P, R and Mcc do not drop obviously. Among them, the design of 128×3 channels is used in group 3, and the FPS is 65.48, which is slightly lower than that of 66.25 in group 4, but P and R and the comprehensive detection accuracy index Mcc are better than group 4. Therefore, channel 3 is selected as BiFPN feature fusion structure.


Table 4 | Effectiveness test of neck feature fusion.



The results of ablation experiment are shown in Table 5, in which, Groups 0-2 are the lightweight improvement process, during which, the FPS increased from 37.65 to 65.91, an increase of 75.1%, while P and R decreased from 95.97% and 83.95% to 94.11% and 79.08% respectively, down by 1.9% and 4.9% respectively, and Mcc also decreased from 89.63% to 86.95%, a decrease of 2.7%. Groups 2-4 are the detection accuracy of the optimization model, through which the inference time(IT) slightly increases from 15.17 to 15.60, while the accuracy is significantly improved from 94.11 and 79.08 to 96.25 and 82.72 respectively, and Mcc is improved from 86.95% to 89.23%.


Table 5 | Statistics of ablation experiment.



Among them, the ECA-Net focuses on improving the index R, and the H-Swish function has a significant improvement effect on both P and R, and the improvement of Mcc is also more obvious.



3.3.3 Lightweight network comparison experiment

To verify the effectiveness and superiority of the method we proposed in this paper, the detection results of YOLOv3, YOLOv4, YOLOv4-tiny and MN3-YOLOv4-Lite (Fu et al., 2021) are compared, and the detection results are shown in Table 6. Compared with YOLOv3 and YOLOv4, not only the detection accuracy, but also the FPS is greatly improved, and the improvement ranges from 42.95, 37.67 to 64.09 respectively. As an increase of 49% and 70% is seen, the real-time performance has been significantly improved.


Table 6 | Comparative experiments.



Compared with YOLOv4-tiny and MN3-YOLOv4-Lite, the test results are different due to different improvement strategies. YOLOv4-tiny uses the operation of compressing the network depth and reducing the number of output branches, which greatly reduces the amount of calculation, but the feature extraction ability is weakened, and the detection accuracy is reduced. Therefore, the running speed of YOLOv4-tiny is about 9.5 (f/s) higher than the model we proposed in this paper, while the P and R indexes are reduced by 12.6% and 8.6% respectively, the Mcc index is reduced by 11.8%, and the accuracy is significantly reduced. MN3-YOLOv4-Lite introduces Mobilenetv3 and depth convolution. For the model structure and the feature extraction ability are not changed, the accuracy is maintained, but the speed increases low, lower than 7.5 (f/s) of the model we proposed.





4 Conclusion

This paper studies the rapid and accurate identification of pine cones in forest. Based on YOLOv4 framework, a lightweight design for rapid detection and a structural optimization strategy for improving accuracy are proposed. By introducing the lightweight backbone network EfficientNet-b0, the neck network adopts the BiFPN feature fusion structure of channel transformation, which reduces the computational complexity of the model. After the feature fusion, a lightweight attention module ECA-Net is added, which improves the model detection accuracy under the premise of adding a small amount of computation. At the same time, the Hard-Swish activation function is used to improve the comprehensive performance of the model. Through the detection experiment of pine cones in forest, the designed lightweight YOLOv4 model has significantly improved performance compared with YOLOv4, YOLOv4-tiny and MN3-YOLOv4-Lite in terms of precision, recall rate and detection speed, and thus realizing faster and more accurate identification of pine cones in forest.
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Aiming at the problems of complex structure parameters and low feature extraction ability of U-Net used in vegetation classification, a deep network with improved U-Net and dual-way branch input is proposed. Firstly, The principal component analysis (PCA) is used to reduce the dimension of hyperspectral remote sensing images, and the effective bands are obtained. Secondly, the depthwise separable convolution and residual connections are combined to replace the common convolution layers of U-Net for depth feature extraction to ensure classification accuracy and reduce the complexity of network parameters. Finally, normalized difference vegetation index (NDVI), gray level co-occurrence matrix (GLCM) and edge features of hyperspectral remote sensing images are extracted respectively. The above three artificial features are fused as one input, and PCA dimension reduction features are used as another input. Based on the improved U-net, a dual-way vegetation classification model is generated. Taking the hyperspectral remote sensing image of Matiwan Village, Xiong’an, Beijing as the experimental object, the experimental results show that the precision and recall of the improved U-Net are significantly improved with the residual structure and depthwise separable convolution, reaching 97.13% and 92.36% respectively. In addition, in order to verify the effectiveness of artificial features and dual-way branch design, the accuracy of single channel and the dual-way branch are compared. The experimental results show that artificial features in single channel network interfere with the original hyperspectral data, resulting in reduction of the recognition accuracy. However, the accuracy of the dual-way branch network has been improved, reaching 98.67%. It shows that artificial features are effective complements of network features.
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1.  Introduction.


1.1.  Research background.

Affected by urban development, population growth, forest fires and other factors, the protection of vegetation resources is under great pressure. Accurate identification of vegetation types and real-time control of their changes are greatly significant for environmental protection and sustainable development (Weiss et al., 2020; Ortac and Ozcan, 2021).

In recent years, the development of remote sensing technology has made it a powerful tool for vegetation resource survey and change monitoring (Wang, 2022). Before the emergence of remote sensing technology, the traditional vegetation identification methods are mostly based on field investigations, which consumes a lot of manpower and material resources. Moreover, the forest vegetation covers a large area, has a variety of vegetation types and complex terrain. These factors greatly increase the difficulty of field investigation, and cannot meet the need for updating vegetation information rapidly (Yang et al., 2022). Due to the advantages of small volume and mass, easy operation, high flexibility and short operation cycle, unmanned aerial vehicle (UAV) remote sensing system is increasingly used to obtain vegetation information quickly and accurately. At the same time, the wide application of UAV remote sensing technology also brings the progress of observation technology. Spectral images with higher resolution may lead to greater differences within the same ground objects and reduce the differences between different ground objects, that is, the confusion phenomenon of the same object with different spectrum and the different object with the same spectrum, which further increases the challenge of land cover classification of high-resolution remote sensing images. Thanks to the development of deep learning in the field of computer images, the land cover classification of remote sensing images have been gradually upgraded from the traditional manual feature design method to the automatic learning deep feature extraction method. Deep learning network extracts discriminative high-level semantic features from remote sensing images in a hierarchical manner for ground object recognition, and achieves better classification accuracy than traditional methods (Kumar and Jayagopal, 2021). Although deep learning has been widely used to study and solve the problem of high-resolution remote sensing scene classification, there are still many problems to be solved.

This paper aims to explore an accurate and fast method for extracting vegetation from hyperspectral data. Based on the design of lightweight semantic segmentation network, an improved U-Net network is designed to solve the lightweight method of semantic segmentation model without reducing the classification accuracy. By the design of multi-source spectral image fusion, the problem of low accuracy of vegetation classification of hyperspectral images is solved, which provides strong support for vegetation classification of UAV hyperspectral images.



1.2.  Related work.

In recent years, the development of remote sensing technology has made hyperspectral a powerful tool for vegetation resource investigation and change detection (Wu et al., 2017; Zhou et al., 2021). However, high-resolution spectral images will lead to greater internal differences of similar ground objects. At the same time, the differences between different ground objects will be relatively reduced, resulting in the confusion about the same object with different spectra and the different objects with the same spectrum (Kumar et al., 2022), which increases the challenge of hyperspectral image vegetation classification.

Thanks to the development of deep learning in the field of image analysis, the classification method of land cover remote sensing image, has been gradually upgraded from the traditional manual design feature method to automatic feature extraction. Deep learning extracts differentiated high-level semantic features from remote sensing images in a hierarchical manner and can obtain better accuracy than traditional classification methods (Zhong et al., 2017).

Convolutional neural network (CNN) is one of the most important directions in deep learning research. When it is used as a visual system model, it constructs a convolutional layer by imitating the characteristics of neuronal input and conductive signals in biological systems. The sample data is input to the convolutional layer for feature extraction, and the extracted feature vectors are more expressive through the activation function. Yang et al. took the high spatial resolution remote sensing imagery World View-2 of Bazhou, Hebei Province as data source, and used the deep convolution neural network SegNet to extract the rural buildings in the remote sensing image. The results show that with the Kappa coefficient of 0.90, the overall classification precision of SegNet exceeds 95%, its performance is better than the traditional classification model (Yang et al., 2019).

Lin et al. identified tree species in low-altitude aerial images based on FC-DenseNet, and the average recognition accuracy of 13 species reached more than 75% (Lin et al., 2019). U-Net is a fully convolutional network based on an encoder-decoder structure, which has concise segmentation logic and excellent segmentation efficiency (Verma et al., 2020), so it is widely used in the field of remote sensing image segmentation (Lu et al., 2021). Bragagnolo et al. classified the forest vegetation and non-vegetation areas of Amazon based on U-Net, and evaluated the forest cover change. The experimental results show that the overall classification accuracy reaches 94.7%, and U-Net can identify polygonal and fragmented forest areas (Bragagnolo et al., 2021) in a better way. Sharp U-Net (Zunair and Hamza, 2021) used deep convolution of encoder feature map with a sharpened kernel filter to generate a sharpened intermediate feature map with the same size as the encoder map to merge features of different dimensions. Compared with U-Net, which simply combines features of different dimensions by skip connection, Sharp U-Net can obtain finer grained features, thus further improving the classification accuracy.

U-Net has been widely used in the field of remote sensing image segmentation, but its ability to extract deep abstract information from hyperspectral images is limited. There are still problems in vegetation classification, such as uneven edges and misclassification (Xu et al., 2022). Deep learning methods often have the problems of large computation when dealing with high-dimensional remote sensing data. Therefore, it is of great significance to study the lightweight classification model of remote sensing images. Among them, two improved networks, Res-UNet and Mobile-UNet, are considered to be successful especially. Res-UNet introduces residual connection on the basis of U-Net, which makes the network have better feature learning ability by deepening the number of network layers. Based on U-Net, Mobile-UNet introduces depthwise separable convolution to construct lightweight deep neural network to reduce the number of parameters and operation cost. Zhu et al. proposed a land cover classification method for hyperspectral images based on a fused residual network, which used residual units to learn advanced features with more discriminative power (Zhu et al., 2021).Inspired by ResNet, Zhang et al. combined residual structure with simplified U-Net to form an RSU module (residual U-block) to extract multi-scale features and local features. The results show that the method can integrate global features while maintaining high-resolution semantic information, and improve the problem of incomplete edge segmentation of ground objects (Zhang et al., 2022).

Although remote sensing images contain rich spatial information and scale effect, which can be analyzed from different scales to obtain different levels of ground object features and spatial relationship rules, the deep learning method can only extract and recognize remote sensing images from a set scale level, lacking comprehensive consideration of multi-scale spatial information (Dalponte et al., 2018). Therefore, some researchers complement the advantages of the deep learning method and the artificial feature design method. Their effort weakens the black box feature of the deep learning method, and can obtain vegetation coverage information that is more accurate and reliable. Zhou et al. proposed artificial designed features that can provide supplementary information for CNN model in image classification tasks and put forward a framework combining CNN with Color Histogram, Histogram of Oriented Gradient, HOG, LBP Histogram, SIFT (Scale-Invariant Feature Transform), using feature encoder and joint training strategy for multi-feature fusion classification (Zhou et al., 2018). Cao et al. proposed a multi-type feature fusion classification method for hyperspectral and LiDAR. In addition to CNN features, the fusion features also include PCA, vegetation index and GLCM features of hyperspectral data, as well as DSM and intensity features of LiDAR data (Cao et al., 2018).

Taking the hyperspectral remote sensing image of Matiwan Village, Xiongan New Area as experimental object, this paper introduces residual connect and lightweight depthwise separable convolution based on U-Net framework, which replaces the traditional convolution layer of U-Net, extracts deep features, improves recognition accuracy, and reduces model complexity. In hyperspectral images, there are many types of land cover, and the boundary between vegetation classes is not obvious, which is easy to cause misclassification. Therefore, NDVI, GLCM and edge features are introduced to the deep network, and a dual-way branch input mode is designed to provide richer and more accurate feature information for the classification model, and solve the problem of insufficient features of a single type of remote sensing data. This method makes up for the deficiency of spectral information by using the spatial information and vegetation edge details provided by multi-source data, and provides support for vegetation classification method of hyperspectral images.

The main contributions are as follows:


	
The residual connect and lightweight depthwise separable convolution are introduced to improve the U-Net framework for vegetable classification model, which extracts deep features, improves recognition accuracy, and reduces model complexity.


	
A dual-way branch input model is designed. One branch is PCA and the other is the combination of NDVI, GLCM and edge features, which provide richer and more accurate features for the classification model.







2.  Material and methods.


2.1.  Data source.

The study area is in Matiwan Village, Xiongzhou Town, Xiongan New Area, Hebei Province, China with geographical coordinate of 38° 9 ' E, 116° 07 ' N, taken in October 2017. Data is provided by the National Data Center for Tibetan Plateau Science (http://data.tpdc.ac.cn). The terrain is higher in the northwest and slightly lower in the southeast, with an altitude of 7-19 m. It is a gently dipping plain with deep soil layer, open terrain and low vegetation coverage rate. It is located in the middle latitude zone and has a warm temperate monsoon continental climate. The research objects include 19 land cover types, among them, agricultural and forestry vegetation is the main research object. The research area has the characteristics of diverse ground objects and complex background information, which cause great challenges to the hyperspectral image classification task.

The hyperspectral image is collected by the high resolution special aviation system full spectrum multimodal imaging spectrometer developed by Shanghai Institute of Technical Physics of the Chinese Academy of Sciences (Cen et al., 2020). Referring to the synchronously measured ground and atmospheric data, the pseudo color image about the reflectivity of various surface coverage types is obtained through geometric, radiometric and atmospheric correction. With a spectral range of 400-1000 nm, the image has 256 bands, and the spatial resolution is 0.5 m. The region of interest is obtained after ENVI clipping, as shown in 
Figure 1
.




Figure 1 | 
Hyperspectral image of MaTiWan Village.




According to Land Use Present Situation Classification (GB/T 2010-2017), Technical Regulations for Forest Resources Planning and Design, combined with the actual land cover, we have established the land cover classification system in the study area. The classification system is used to select samples on the image. Each pixel category represents the land cover type of its location. Cover types and the number of corresponding samples are shown in 
Table 1
.


Table 1 | 
Vegetation classification system of Matiwan Village.







2.2 Dimensionality reduction based on PCA

The spectral information in hyperspectral images is rich. However, there is a certain correlation among hyperspectral bands, which may easily lead to “Hughes” in hyperspectral classification (Zhang et al., 2019). The PCA of hyperspectral images can not only improve the recognition ability of vegetation types, but also improve the computational efficiency and reduce the computational complexity.

Assuming that the number of samples of hyperspectral image is “a” and the number of bands is “b”, the hyperspectral data can be represented by matrix M. In the formula, m
ab
represents the value of band b in the a-th sample.



First, PCA gets the matrix X by standardizing M, and then calculates X covariance matrix R. At last, eigenvalues and the corresponding eigenvectors R of the covariance matrix is calculated, and the largest eigenvectors corresponding to eigenvalues are taken out, thus the desired principal components are obtained.

The ENVI remote sensing analysis software is used to reduce the dimension of hyperspectral images, and PCA is performed on the original images to obtain 6-D principal component features, the hyperspectral image of Matiwan Village after dimensionality reduction is shown in 
Figure 2
.




Figure 2 | 
Pseudo color image after PCA.








2.3.  The improved U-Net.

Depth-wise separable convolution decouples the correlation between the ordinary convolution space and dimensions. The ordinary convolution process is divided into depthwise convolution and pointwise convolution, reducing the complexity of model calculation by compressing the number of convolution kernels in convolution operation (Kulkarni et al., 2021). The residual structure enables the model to learn deeper features, enhances the propagation ability of features, extracts more ground feature details, and then improves the network segmentation ability (Zhang et al., 2019).

In view of the advantages of depthwise separable convolution, we combine them to form a feature extraction module with the structure shown in 
Figure 3
. After the modules are located in 3×3 depthwise convolution and 1×1 pointwise convolution, the batch normalization operation is carried out, and the input and output are directly added to learn the residual function to form the skip connection. In addition, the feature extraction module adopts the h-swish with smooth, non-monotonic and fast characteristics (Li et al., 2020; Wang et al., 2022), and the formula of h-swish is (2).






Figure 3 | 
Feature extraction module.




In the training process, the classification of each pixel is treated as a binary classification problem with only two cases of 0 and 1 that need to be predicted by the model. For each category, the predicted probability is   and  , and the binary cross-entropy loss function is as follows:



In formula(3), m is the sample size, y

i
 is the label of sample i, and  is the predicted value of sample i.

The improved U-Net model is shown in 
Figure 4
 The network consists of encoding part, decoding part and skip connection. Among them, the encoding part and the decoding part both contain five layers, and two feature extraction modules are added to each layer. The symmetric decoding and encoding part form a U-shaped structure. In the encoding part, features are extracted through the feature extraction module, and 2×2 max pooling is repeatedly used for down-sampling to extract image features from the context. In the decoding part, the proposed module is also used to replace the convolution layer in the U-Net. In order to ensure the same resolution in the fusion, 2×2 up-sampling is performed on the basic feature map in front of each layer to restore the image size. In the last layer, each pixel is classified by 1×1 convolution. In the skip connection, the features extracted from the encoding and decoding parts are fused to ensure a better combination of shallow detail information and deep background semantic information.




Figure 4 | 
Improved U-Net model.





2.4.  Artificial features extraction.


2.4.1.  Normalize difference vegetation index (NDVI).

NDVI can partially remove or weaken the impact of satellite observation angle, solar altitude angle, topographic relief, and the impact of small amount of cloud shadow and atmospheric radiation on image (Garcia-Salgado and Ponomaryov, 2016). It is a surface vegetation measurement index widely used in vegetation and plant phenology research. This index is in direct proportion to the coverage of surface vegetation, and usually detects the vegetation growth status and vegetation coverage. Because the low vegetation and trees in the hyperspectral data of the research object account for a large proportion of pixels, and the distribution is irregular and interspersed around buildings and waters, NDVI can be used to reflect the vegetation coverage, so as to distinguish vegetation and non-vegetation features.

The formula of NDVI is:



In formula(4), NIR is near infrared band, R is Gray value of red band.

The range of NDVI is [-1,1]. When NDVI is positive, it indicates that there is vegetation coverage, which increases as the coverage expands. When NDVI is negative, it indicates that the ground is covered by clouds, water, snow, etc., which is highly reflective of visible light. When NDVI is 0, it indicates rock or bare soil, etc., at the same time, NIR and R are approximately equal. The NDVI calculated by ENVI5.3 is shown in 
Figure 5
.




Figure 5 | 
NDVI of the study area.





2.4.2.  Gray level co-occurrence matrix (GLCM).

Texture reflects the gray distribution of pixels in the image and their surrounding spatial neighborhood. The surface characteristics of image scenery can be well described by using texture features (Mei et al., 2016). GLCM is a widely used texture analysis method. The parameters such as similarity, mean, homogeneity and entropy with clear results are selected as the texture features of the classification model. For PCA transformed images, the window size is set to 3 × 3. Based on the window size above, the parameters such as dissimilarity, mean, homogeneity and entropy are calculated to obtain the texture feature image of hyperspectral data. As shown in 
Figure 6
.




Figure 6 | 
GLCM for Homogeneity, Mean, Dissimilarity and Entropy: (A) Homogeneity; (B) Mean; (C) Dissimilarity; (D) Entropy.






2.4.3.  Edge features.

In image processing, the edge of the image is the region where the most obvious gray value changes could be seen. Image edge detection can reduce the amount of data significantly and retain important structural attributes in the image (Zhao and Du, 2016). Here we use Sobel to detect the image edge. The transverse and longitudinal Sobel convolution factors are shown in formula(5) and formula(6), respectively, and the experimental results are shown in 
Figure 7
:








Figure 7 | 
Edge detecting based on Sobel.







2.5 The improved U-Net with dual-way branch

The structure of improved network is shown in 
Figure 8
. The network input is composed of two input terminals. The upper end is the hyperspectral image data after PCA dimensionality reduction, and the other end is the manually extracted NDVI, GLCM and the data image of edge features obtained by Sobel through concat operation, all sized by 512 × 512 × 6. The backbone network is U-Net, which has 4 times up-sampling and 4 times down-sampling. For the multi-source data input, the model uses a feature extraction module combining residual structure and depthwise separable convolution in the down-sampling process. After each down-sampling, the concat operation is used for feature fusion first. Then the spectral spatial semantic features and texture detail semantic features, which are extracted from multi-source data by hierarchical fusion of shared decoder, are used to improve the inter class difference and intra class consistency, and help the model to maintain the fine granularity between the edges of vegetation categories during the scale restoration of feature map. In the up-sampling phase, restore the feature map through 2×2 up-sampling, then carry on concat feature fusion of shallow features and deep features by skip connection. Among them, deep features of the up-sampling part are extracted by the feature extraction module. Finally, the soft classifier is used to judge the category of pixels.




Figure 8 | 
The dual-way input model based on improved U-Net.







3.  Experiments and results analysis.

The computer used in the experiment is configured as NVIDIA Quadro RTX 5000, Intel(R) Core™ I9-1085h. Under Windows operating system, based on PyCharm2019.2.3, using python3.7, run the experiment through pytorch framework. In the experiment, the hyperspectral image after PCA dimensionality reduction is divided into 512 × 512, and divided into training set and test set according to the ratio of 8:2. Set the sample set of batch training to 4, the maximum number of training iterations to 600, and the initial learning rate of the network to 0.0001. When the epoch is equal to 100, the learning rate becomes 0.0001, which makes the network find the local optimal solution; The initial weight is the pre-training weight of ImageNet.


3.1 Analysis of network optimization performance

To verify the segmentation performance of the improved model, the classification accuracy of U-Net, Res-UNet, Mobile-UNet and the improved U-Net are compared with hyperspectral images after PCA dimensionality reduction. 
Figure 8
 shows the curve of the accuracy and loss function with the number of iterations during the training process. 
Table 2
 shows the accuracy of the test set segmentation results, parameters, train time and test time of each network model. It is seen from 
Figure 9A
 that the highest accuracy is obtained from the model training method (Our-Net) proposed in this paper. Res-UNet is similar to its accuracy, followed by U-Net, and accuracy of Mobile-UNet is the lowest. In addition, compared with the other three models, the improved U-Net tends to be stable after about 100 training iterations, and then get to convergence within the shortest time. According to 
Figure 9B
, the fastest loss reduction is obtained from the improved model.


Table 2 | 
Comparison of precision, recall, parameters, train time and test time of four different models.






Figure 9 | 
Comparative experiment of training process: (A) Conversion curve of each model during training; (B) Loss function transformation curve of each model.






Table 2
 shows that depthwise separable convolution can improve the computational efficiency of the model significantly, but it reduces the classification accuracy of the network at the same time; The residual structure requires the model to learn deeper features, and then improves the network segmentation ability, making up for the lack of feature extraction ability of depthwise separable convolution. The shortcut connection of residual unit does not introduce additional parameters during network training, and will not add additional calculations to the network.






3.2 Improved U-net with features fusion in single channel

The hyperspectral images after PCA and different artificial features are obtained respectively, and then trained in the form of single branch input to the improved U-Net. 
Figure 10
 shows the visual prediction results of some test sets. 
Figure 11
 shows the overall classification accuracy of different feature fusion ways in single channel.




Figure 10 | 
Training results of different multi-source data superposition on the improved U-NET: (A) Original spectral image; (B) PCA; (C) PCA+NDVI; (D) PCA+NDVI+Sobel; (E) PCA+NDVI+Sobel+GLCM.





Figure 11 | 
The comparison of overall classification accuracy of different feature fusion ways in single channel.




It can be seen from 
Figure 10
 that the effect of vegetation classification is the best when the original dimension reduced hyperspectral image is used in the single branch network. As the number of input channels increases, the classification effect decreases. The accuracy of vegetation classification by overlaying and fusing NDVI+Sobel+GLCM is 20.94% and 27.39% lower than the experimental results by fusing NDVI and Sobel+NDVI respectively, and 32.33% lower than the prediction results by using the original hyper-spectral data as input. In 
Figure 10E
, it can be seen that some vegetation could not be recognized. The major reason for the decline of segmentation accuracy is that hyperspectral images have rich spectral information, and there will be some interference between the original hyperspectral data and artificial features, which will affect the accuracy of classification models. Therefore, multi-source data cannot be simply superimposed directly on a single source network.





3.3.  Improved U-net with dual-way input.

In 
Table 3
, No.1 is the input image of the single branch network, which is the hyperspectral image of the original Matiwan Village after PCA dimensionality reduction. No.2 means that in a dual branch network, one input data source is PCA and the other is NDVI. The input of No.3 and 4 is similar to No.2, among them, one input in the network is PCA, and the other is NDVI+GLCM and NDVI+GLCM+Sobel.


Table 3 | 
The influence of different feature fusion ways on experimental results.



By comparing the prediction results of No. 2 with those of No.1, it can be seen that the prediction results of Experiment 2 are 0.88% and 1.31% higher than those of No.1, except that the F1 scores of low vegetation and trees, the scores of other features are almost unchanged, the overall classification accuracy is improved by 0.34%. This is because NDVI data can only distinguish vegetation from non-vegetation, but it is difficult to make further distinctions.

In terms of classification accuracy, the F1 score and Acc of No. 3 are improved, and the overall accuracy is 1.2% and 0.86% higher than that of No.1 and No. 2 respectively. This is because adding texture features can express the spatial scale and spatial structure information of images in a better way. For objects such as waters and bare areas with obvious differences in texture features, the classification accuracy of texture data is greatly improved than that of original data. However, the F1 score of buildings doesn’t improve significantly, the main reason is the small number of samples of buildings in the selected hyperspectral data and the uneven distribution of the number of pixels in each coverage category.

Comparing the results of No.4 and No.3, it can be seen that the vegetation classification results with edge features have improved in F1 score and Acc. F1 score of building, forest, low vegetation, waters and bare areas increased by 0.02%, 0.33%, 0.19%, 0.11% and 0.05% respectively. The addition of edge features makes the network model perform better in distinguishing the details of vegetation edges.

To sum up, it can be seen that the addition of GLCM has a significant impact on the classification results of the model. It helps the model to distinguish the ground objects that are difficult to distinguish in terms of spectral and spatial characteristics, and makes the network model more accurate in distinguishing waters, buildings and bare areas. The dual-way branch combination of PCA and NDVI, GLCM, and Sobel not only provides spatial feature information, but also makes contributions to feature extraction in land class boundary recognition, shape attribute and physical quantity description, which makes the classification results more accurate, and makes up for the loss of semantic feature edge detail information.



Table 4
 shows the statistics of classification accuracy using PCA+NDVI+GLCM+Sobel multi-source data. The classification accuracy of several types of ground objects with small sample size is not high, such as soybean, vegetable field and robinia pseudoacacia. In addition, as the spectral similarity between elm, sophora japonica, maize and acer negundo is high, it shows the phenomenon of hyperspectral “different body with same spectrum”, so, there is misclassification in it, which has a certain impact on the classification accuracy.


Table 4 | 
Overall classification accuracy assessment of different categories based on improved U-Net model.



Select 3 images randomly in the test set for display, as shown in 
Figure 12
. It can be seen that the dual-way branch with the multi-features fusion method proposed in this paper has the best vegetation classification effect. It can not only distinguish the vegetation types more accurately, but also describe the edges and details of different vegetation areas in a better way, and the segmentation result of the coverage boundary is more obvious.




Figure 12 | 
Comparison of experimental results of different data features superposition methods: (A) Test set; (B) PCA; (C) PCA+NDVI; (D) PCA+NDVI+GLCM; (E) PCA+NDVI+GLCM+Sobels.











4.  Conclusions.

In this paper, hyperspectral images are used to obtain representative feature parameters, such as spatial information, texture information, edge information, etc. And the classical semantic segmentation model, U-Net, is improved. The features automatically extracted by the deep learning model and artificial features are fused for vegetation classification. The main works are as follows:

The dimension of hyperspectral image is reduced through PCA, and the band combination of effective image containing the most spectral information is obtained. The NDVI and GLCM of the image are calculated to obtain the spatial spectral features and texture features of hyperspectral image, and the edge features are calculated by Sobel; A feature extraction module is proposed, which uses depthwise separable convolution instead of traditional convolution in U-Net to extract multi-scale features of hyperspectral images, reduces network complexity, and introduces residual connection to extract deep semantic information to improve classification accuracy. Finally, a dual branch multi-source data feature fusion method is proposed for vegetation classification. The experimental results show that the method studied in this paper has advantages in overall accuracy. The dual-way branch data fusion effectively avoids the mutual interference between different data types. The advantages of hyperspectral and artificial features have been brought into full play. The addition of different artificial features can improve the accuracy in the classification of different covers, and the model can identify the boundary of vegetation in a more accurate and clear way. This vegetation classification method is practical.

In addition, due to a large number of hyperspectral feature types and uneven distribution of samples in each coverage category, how to preprocess the data set to improve the difference between spectra, and how to amplify the data of small sample categories to improve the overall classification accuracy will be the focus of future research.
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Understanding the macro-mechanical behavior of wood at the micro-scale is of great significance for the design of cell-wall-like composite materials and pulp papermaking. In order to predict tracheid mechanical properties and analyze its relationship with tracheid features, based on the FCN network model, a double-channel FCN network with sparse attention (D-SA-FCN) was designed by introducing the double-channel mechanism and the sparse attention mechanism. The features of tracheid of larch were extracted numerically and the data set was established by using the compression strength data, the gray level co-occurrence matrix, cell segmentation and geometric analysis. A feature analysis algorithm based on PCA and random forest was established to optimize the feature values. The training set accuracy of the D-SA-FCN network model reached 85.75% with the five-level mechanical property level according to the classification standard. The accuracy of the training model is 71.48% and 79.52% when the morphological and texture features are input respectively. The results show that texture features had a more significant impact on mechanics to a certain extent and the D-SA-FCN could reduce the computational complexity and improve the prediction accuracy.




Keywords: larch, tracheid features, FCN, dual channel, sparse attention, feature selection



1 Introduction

Wood is a kind of natural raw material, with green, easy processing, renewable and other performance features, in production and life and other aspects occupy an important position. As a structural material, wood has elasticity and toughness, good seismic and impact resistance, small thermal conductivity, belongs to the category of thermal insulation materials, in a dry environment for a long time, is not easy to conduct, and has good durability; As a building material, wood has a small dead weight and high bearing capacity, which is renewable, degradable and easy to construct. Based on the above advantages, wood is widely used in industry, agriculture and daily life and other fields.

Many scholars have long been engaged in the treatment and analysis of wood micro-structure. IIic (1983) developed a wood cell image processing system based on the basic knowledge of image processing, which can obtain many features of wood microscopic images and extract the area ratio and cell cavity area from the cell xylem. Donaldson (1998) used digital image analysis technology to measure the size of wood cells and com-pared the differences between images collected by conventional transmission light microscopy and confocal laser scanning electron microscopy as digital image sources. Ning et al. (2005) used image analysis based on digital image processing technology to achieve digital measurement of wood tissue ratio, saturation rate, control distribution density, cell wall thickness, diameter/chordal diameter, wall cavity ratio and morphological amount. Mohan et al. (2014) extracted wood microscopic image features through grey co-occurrence matrix and other methods. MITOBABA (2017) summarizes the calculation methods of DOL coefficient or DOL adjustment coefficient obtained by DOL prediction model in timber structure design codes. Kinjouo et al. (2021) analyzed of the variability of xylem anatomical features were done by semi-automatic measurements using the SpectrumSee digital image analysis software. Kitin et al. (2021) distinct chemical fingerprints of the wood of Afzelia pachyloba and A. bipindensis demonstrated an effective method for identifying these two commercially important species.

The relationship between micro properties and macro properties of wood has been gradually studied by scholars. Figueroa-Mata et al. (2018) obtained the microscopic structure image of wood through an image acquisition device and extracted the visual features of wood by using digital image processing technology, and proposed a wood recognition method with simple operation, high recognition efficiency and low cost. Kvist et al. (2018) used the method of fluorescence recovery after photobleaching (FRAP) to perform diffusion measurements locally in the wood microstructure. Salma et al. (2018) obtained results able to identify the microscopic image of wood as a wood species with average SVM accuracy of 85%. Fahey et al. (2019) designed a method to quickly predict the cell wall composition of solid wood samples through a powerful combination of NIR spectroscopy and PLS regression, thereby avoiding milling. Lens et al. (2020) aimed to review existing computer vision methods and compare the success of species identification based on (1) several image classifiers based on manually adjusted texture features, and (2) a state-of-the-art approach for image classification based on deep learning, more specifically Convolutional Neural Networks (CNNs). Zhao et al. (2021) proposed a classification method of wood species based on the fusion of i-BGLAM texture features and spectral features of hyperspectral images, and the classification accuracy achieved by the fusion method of i-BGLAM extracted texture features and average spectral features can reach 100%. Henriques et al. (2022) updated the elastic modulus parameters for identifying the orthogonal anisotropy of pine by the finite element model. da Silva et al. (2022) introduced a new image dataset containing microscopic images of the three main anatomical sections of 77 Congolese wood species.

Attention mechanism and channel fusion algorithms have gradually attracted the attention of scholars and applied to deep learning algorithms. Zeng et al. (2020) proposed a lightweight neural network based on MobilenetV2, which removed some redundant reverse residual blocks and reduced the channel expansion coefficient of the reverse residual block, greatly reducing the amount of calculation and parameters. Zhu et al. (2021) proposed a wood microscopic image classification method based on decomposition-aggregation network model, which combined image geometric transformation and Mixup data expansion technology. Konovalenko et al. (2021) constructed a classifier based on the integration of two deep residual neural networks ResNet50 network and ResNet152 to detect three types of defects on planar metal surfaces. Fan et al. (2021) proposed a convolutional neural network entity relation classification model integrating location and lexical level feature embedding, and gave the calculation representation method of features. This network entity relation classification model has good classification effect. Yuan et al. (2021) proved that shortening the network length can greatly speed up the image recognition speed, and combining the multi-scale segmentation method can effectively improve the recognition accuracy.

In this paper, the texture features of the wood microscopic image were extracted by gray level co-occurrence matrix. Meanwhile, the morphological features of tracheid were obtained by image segmentation of wood cells. Combined with the random forest algorithm, the analysis model of wood tracheid features and mechanical properties was constructed, and the effects of different properties on its mechanical properties were analyzed.



2 Material and data


2.1 Material

Larch is the main coniferous tree species in the Greater Hinggan Mountains of China, with abundant wood storage. It is the main forest group species in northeast China and Inner Mongolia, with heavy and solid, strong compressive and bending strength.

Adult larch from Greater Khingan Mountains was selected as the experimental subjects. According to GB/T 1935-2009 (2009) standard, the length, width and height of the sample are 20mm,20mm and 30mm respectively. Random sampling was performed at the junction of the heart sapwood and the normal part of the growth wheel. 200 larch mechanical test specimens were obtained, and then the specimens were numbered one by one.



2.2 Data collection


2.2.1 Image data acquisition

COXEN’s scanning electron microscope (Coxen, made in Korea) was used for image acquisition with a resolution of 1800*1600. The experimental specimen was placed on the loading platform at the bottom of the device, and the surface of the specimen was observed at ×200 and ×500 double magnification by adjusting the focal length of the microscope. The images were captured and saved in the field of vision. At four different positions of the specimen, one image was taken at ×200 and ×500 ratio and eight microscopic images were taken for each specimen. A total of 1600 microscopic images of 1600*1200 size were collected. Figure 1 shows the microscopic image of specimen No. 1.




Figure 1 | Microscopic images of experimental specimens.





2.2.2 Collection of mechanical properties

The destructive test of the mechanical properties of larch specimens was carried out by a universal testing machine (Kexin, made in China). The hydraulic cylinder was applied to the larch specimen at a uniform speed, and the specimen was destroyed within 1.5min~2.0min, that is, the load detected by the sensor was significantly reduced. The failure load of the specimen was recorded by the control module of the mechanical property testing device, and a total of 200 groups of failure loads were recorded. Figure 2 is the load change curve of part specimens.




Figure 2 | Load variation curve of experimental specimens.



According to GB/T1935-2009 (2009) when the water content of the specimen is 12%, the compressive strength parallel to the grain of wood of the specimen is calculated according to Formula 1 and is accurate to 0.1mpa.

	

Where, σw is the compressive strength parallel to the grain of wood when the moisture content of the specimen is 12% (MPA); Pmax is failure load (N); b is sample width (mm); t is thickness of sample (mm).

According to the calculation formula of the failure load and the compressive strength, the compressive strength parallel to the grain of wood of the test piece was calculated, and the grade of larch was divided according to the performance classification standard of Larch (GB50005-2017, 2017), which was used as the basis of model classification. The classification results are shown in Table 1.


Table 1 | Standard for classification of larch properties.







3 Method


3.1 Method flow

As shown in Figure 3, after the mechanical data and microscopic image data were collected and pre-processed, the eigenvalues of the grey co-occurrence matrix in the microscopic image were extracted as the tracheid texture eigenvalues, and the average tracheid area and average tracheid circumference were extracted as the morphological eigenvalues. Combined with numerical analysis, a random forest model was used to optimize the eigenvalues. With the optimized features and processed microscopic images as the input of the network, and mechanical properties as the classification basis, a D-SA-FCN neural network model was established. The innovation and usability of the model were determined by comparing various classification models. Meanwhile, the sparse attention mechanism is introduced to construct the D-SA-FCN network model. According to the model classification results, combined with the input parameters to complete the numerical analysis.




Figure 3 | Method flow chart.





3.2 Extraction of features

In this paper, the grey co-occurrence matrix was used to extract the texture features of the tracheid microscopic image. The grey co-occurrence matrix described the texture features of the image by calculating the spatial correlation features of grey. The eigenvalues were the grey distribution information of the image in the direction, local neighborhood and variation amplitude.

The difference in position relation also can cause the difference in the grey level co-occurrence matrix. The commonly used position relation is 0°, 45°, 90° and 135°. To improve the operation efficiency, the position relation of 0° was taken in this paper. Through comparative analysis of many tests, the sliding window size is 8*8, the grey level was 16, and the step size was 4. Nine texture features were extracted by using a grey co-occurrence matrix, which was Angle second-order distance, contrast, correlation, entropy, variance, mean sum, variance sum, deficit moment, and entropy. The specific calculation formula is as Table 2.


Table 2 | The specific calculation formula of texture features.



The extracted eigenvalues of the grey co-occurrence matrix of some images are shown in Table 3.


Table 3 | Eigenvalues of the grey co-occurrence matrix.





3.3 Morphological features

The morphology of the tracheid affects the physical properties of wood. It is helpful to judge the mechanical properties of wood by analyzing tracheid size, wall cavity ratio, length to width ratio and other tracheid properties. The premise of morphological feature extraction of the tracheid is tracheid segmentation. The manual labeling method is time-consuming and labor-consuming and subject to subjective factors. Although the watershed algorithm can improve efficiency, it will ignore the tracheid wall to some extent. In this paper, a universal cell segmentation method based on deep learning, was used to complete the segmentation of tracheid in microscopic images. On this basis, labeled area analysis was used to calculate the average tracheid area and average tracheid perimeter in microscopic images. Figure 4 shows the extraction process of the tracheid.




Figure 4 | Cell segmentation and morphological analysis.



For two kinds of images with 200 and 500 magnification, different scales are used for conversion. The morphological features of microscopic images such as aver-age tracheid area (AREA) and average tracheid perimeter (PERIMETER) will be extracted, as shown in Table 4.


Table 4 | Features of tracheid morphology.





3.4 Numerical analysis

Although random forest can complete feature optimization, if the input redundancy is too high, the effectiveness of optimization will be affected. Therefore, before feature optimization through the random forest model, the redundancy between feature variables should be reduced. In this paper, by calculating the correlation coefficient between the parameters, the redundant parameters are analyzed and screened out. The correlation coefficient matrix is shown in the Table 5. And as can be seen from it, the correlation between ASM and SA, SV and SE are 0.986, 0.955 and 0.935, respectively. ASM with more independent parameters is selected. Finally, the optimal texture features are ASM, CON, CORR, ENT, VAR and IDM. As shown in Figure 5, abnormal data were eliminated according to the boxplot of each texture feature. According to standard 3-segama, 43 pieces of data were removed, resulting in 1557 pieces of remaining data.


Table 5 | Correlation coefficients among features.






Figure 5 | Texture feature outliers removed.





3.5 Feature selection

The random forest model not only has been widely used in the classification problem but also has a certain application in feature selection, this is because the random forest model in fitting data, the input parameters have a measure of the importance of a variable, the numerical random forest model after fitting thought given to the importance of the in-put parameters. The larger the value of the variable importance measure is, the more important the corresponding input parameter is for the accuracy of classification.


3.5.1 Decision tree

The decision tree is a basic classifier that divides features into two categories. The constructed decision tree has a tree-shaped structure and can be considered as a collection of IF-THEN rules. The main advantages of the model are readability and fast classification speed.

The influencing parameters of decision tree classification ability are as follows: maximum number of features to be selected, maximum depth of decision tree, the mini-mum number of samples required for internal node redivision, the minimum number of samples of the leaf node, minimum sample weight of leaf node, the maximum number of the leaf node, and minimum impurity of node division.



3.5.2 Random forest and its indicators

A decision tree is constructed by using sub-datasets and randomly selected features. All decision trees constitute a random forest, and each decision tree outputs a result. By voting the judgment results of the decision tree, the output result of the random forest is obtained.

There are two factors influencing the accuracy of random forest classification: first, the correlation between any two trees in the forest, the greater the correlation, the lower the accuracy; Second, the classification ability of each tree in the forest, the stronger the classification ability of each tree, the higher the accuracy of the whole forest.



3.5.3 Establishment of random forest network model

The data set was composed of 1557 specimens. In each data, angular second moment, contrast, entropy, negative moment, correlation, average tracheid area, and average tracheid circumference were used as the classification features of random forest, and the compressive strength parallel to the grain of wood was used as the actual features. The model sets the number of training sets as 1401, and the number of test sets as 156.

A different number of the decision tree model accuracy, and different maximum depth model accuracy, when the number of decision trees to 900, and when the maximum depth of 35, the classification accuracy of 72.25%, and increase the number of decision trees or maximum depth, accuracy will not be promoted and even fell. The training accuracy rate of the test set was 72.25%, and the average absolute error was 5.57.

According to the random forest model, the influence degree of each input parameter on the results is shown in Figure 6, CON, CORR, AREA, PERIMETER and ASM have a greater impact, accounting for 20%, 18%, 17%, 15% and 14%. Among them, VAR, ENT and IDM have less influence, accounting for 9%, 5% and 2%. Finally, CON, CORR, AREA, PERIMETER and ASM were selected as the selected feature parameter arrays, and they were input into the random forest network model again, and the accuracy reached 75.31%.




Figure 6 | The weighted value of each input parameter.






3.6 Sparse attention

The attention mechanism in neural networks is a resource allocation scheme to allocate computing resources to more important tasks and solve the problem of information overload when computing capacity is limited. This paper adopts a novel self-attention mechanism called the ed sparse attention mechanism. The main purpose of the sparse attention mechanism is to reduce traditional Transformer’s time and space complexity. With a top-k selection, attention is reduced to sparse attention, the most helpful part of the attention is retained, and other irrelevant information is removed. This selective approach is effective in preserving important information and eliminating noise. Attention can be focused more on the value factors that contribute the most.

In the self-attention layer, the input embedding matrix X is mapped to the output matrix and parameterized by the connection mode S={S1,⋯,Sn} , where Si represents the index set of the input vector corresponding to the i th output vector. The output vector is a weighted sum of the transformations of the input vectors.

	

	

	

Where, Wq , Wk , and Wv represent the weight matrices which transform a given xi into a query, key, or value, and d is the inner dimension of the queries and keys. The output at each position is a sum of the values weighted by the scaled dot-product similarity of the keys and queries.


3.6.1 Attention comparison

As shown in Figure 7, Atrous Attention imposes a constraint on the correlation by forcing each element to be only at a distance of k,2k,3k,⋯ . Where k>1 is a preset hyperparameter. Since computational attention is now “hopping”, each element is actually only related to about n/k elements, so that the efficiency and memory usage are ideally O(n2/k) . In other words, it can go straight down to the original 1/k . Local Attention gives up global association and introduces local association. Each element is only associated with k elements before and after it and itself, that is, a window of 2k+1 size, whose time complexity is O((2k+1)*n) , that is, it grows linearly with n, but sacrifices long-distance correlation. Sparse Attention combining the first two. The attention value is set to 0 for all locations except those with a relative distance of no more than k and a relative distance of 2k,3k,⋯ . Local tight correlation and remote sparse correlation.




Figure 7 | Attention matrix and correlation diagram of three kinds of Self Attention.





3.6.2 Sparse attention combination

Standard intensive attention is simply a linear transformation of defined participating functions.

	

Where, Wp denotes the post-attention weight matrix.

The first way is to use an attention type for each remaining block and interlace them either sequentially or in a proportion determined by the hyperparameters.

	

Where, r is the index of the current residual block and p is the number of factorized attention heads.

Another way is to use multi-head attention, where n attention products are computed in parallel and then concatenated along feature dimensions.

	

Where, the A can be the separate attention patterns, the merged patterns.




3.7 D-SA-FCN network


3.7.1 FCN network

FCN classifies images at pixel level, thus solving the problem of image segmentation at semantic level. Different from the classic CNN, which uses the fully connected layer after the convolutional layer to obtain feature vectors of fixed length for classification, FCN can accept input images of arbitrary size. The deconvolution layer is used to up sample the feature map of the last convolutional layer to restore it to the same size as the input image. Thus, a prediction is generated for each pixel, and the spatial information in the original input image is preserved. Finally, pixel-by-pixel classification is performed on the up sampled feature map.



3.7.2 Dual FCN network

The input diversity of this paper includes an array of optimized eigenvalues and a matrix array of processed microscopic images, and there is a large difference between the two groups of inputs. Therefore, a Dual FCN neural network is designed, and its mathematical model is as follows:

	

Where f(x) represents the multi-layer perceptron with the optimized array of eigenvalues as the input; g(x) represents the multilayer perceptron with a matrix array of processed microscopic images as input; t(x) means that f(x) and g(x) are combined and randomly shuffled; F[t(x)] represents a multilayer perceptron with mixed features as input.



3.7.3 D-SA-FCN network

As shown in Figure 8, compared with the traditional CNN neural network, the FCN neural network replaces the fully connected layer at the back of the network with a 1×1 convolutional layer, so that it can accept input images of any size and realize pixel-level classification. For the FCN neural network with the feature matrix and microscopic image as input, the input layer has great differences. A network model with two inputs is de-signed, and the feature matrix and microscopic image are assumed to undergo different processing layer mechanisms. After extracting the respective classification features, feature fusion is performed to obtain the fusion features, and then the full convolution model is used to complete the final classification prediction.




Figure 8 | D-SA-FCN network model structure.



In this paper, the realization of the classification model mainly includes initialization and model training. Initialization includes setting neural network parameters, building network structure, setting loss function and setting optimizer. According to the empirical value, the learning rate is set to 0.01, with a total of 500 batches, each batch size is 128. The sigmoid function is selected for the input layer activation function, and the element value is mapped between [0,1], which is beneficial to accelerate the network learning speed. The Sigmoid function is defined as:

	

For the activation function of the hidden layer, ELU function is selected to accelerate the convergence speed. The ELU function is defined as:

	

Because of the multi-classification model in this paper, Softmax function is selected as the activation function of the output layer. The Softmax function is defined as:

	

Where, xi is the output value of the i th node, and C is the number of output nodes, that is, the number of categories of classification.

The loss function selects cross entropy, and its multi-classification formula is defined as:

	

Where M is the number of categories, yic is the sign function (if the true category of sample i is c take 1, otherwise take 0), pic is the predicted probability that the observed sample i belongs to category c .

The optimizer selects the stochastic gradient optimization algorithm SGD.

The model accuracy is different from the conventional random forest model accuracy algorithm, and the formula is as follows:

	

Where, T1 , T2 , T3 , T4 and T5 are the number of correct samples as Ic, IIc, IIIc, IVc and Vc, respectively; TALL is the number of all samples.





4 Result and discussion


4.1 Model results

The neural network was set to 500 batches, the size of each batch was 128, and the model learning rate was 0.01. The samples were divided into training sets and test sets in a ratio of 8:2. The D-SA-FCN network training effect is shown in Figure 9. The accuracy of the final training is 96.87%, and that of the test is 85.75%.




Figure 9 | Accuracy of D-SA-FCN model training set and test set.



Figure 10A shows the comparison between the real value and the predicted value of the test set. The predicted trend line and standard line are drawn according to the predicted situation. It can be seen that the prediction of the intermediate value is closer to the real value. Figure 10B shows the margin of the real data value and the predicted value. The mean and standard deviation of the calculated travel value are 0.16 and 2.75, indicating that the prediction is relatively accurate.




Figure 10 | (A) True value and predicted value comparison chart and trend line (B) The margin of true value and predicted value.



According to the established classification basis, complete the classification of the predicted value of the model. Figure 11A shows the result of the prediction classification. The test set classification level and actual level are shown in Figure 11B. By comparing and analyzing the predicted classification and the real classification of the test set, the ac-curacy of the model was calculated according to the formula, and the final accuracy was 85.75%.




Figure 11 | (A) Predicted classification result map (B) Comparison between test set classification results and actual results.





4.2 Data analysis

The comparison results between the accuracy of the D-SA-FCN training model and the accuracy of the random forest and regression models are shown in Table 6. It can be seen that the influence of each eigenvalue on mechanical properties is from large to small, which are CON, CORR, AREA, PERIMETER and ASM. Furthermore, the feature array with texture features and morphological features as inputs was input into the D-SA-FCN to train the model. The accuracy rates were 79.52% and 71.48%, respectively. By comparison, it is found that the tracheid texture features of the larch microscopic image have a greater effect on its mechanical properties.


Table 6 | Features and mechanical properties response.





4.3 Ablation experiment

In order to verify the effect of model optimization, ablation experiments were conducted on network channels, attention mechanism and data enhancement in the experiment, and the experimental results are shown in Table 7. The results show that using dual channels instead of single channels, increasing attention mechanism and data enhancement can improve the accuracy of the model.


Table 7 | Ablation Experiment.





4.4 Comparison

As shown in Table 8, the D-SA-FCN network model is superior to the random forest model, CNN network model, Residual network model, single FCN network model, double FCN network model, and Bayesian network model in terms of performance. The accuracy of the test set is improved by 16.5%, 10.22%, 8.71%, 7.39%, 5.24%, and 4.19% respectively. Compared with the classical machine learning model random forest model, the model in this paper adopts deep learning algorithm, introduces feedforward and recursive network, which greatly im-proves the accuracy of prediction. Compared with CNN network and Residual network, the model in this paper changes the final fully connected layer to the convolution layer with specific parameters, and changes the classification level from image to pixel level. The single FCN model for all input used the same way, lack of correlation between the input parameters of digging. Although the Bayesian network model can fully describe the relationship between data, there are some shortcomings in the weight calculation of different input parameters. The D-SA-FCN network model designed in this paper sets up two different processing mode layers for different input parameters, sets up a fusion mechanism for extracted features, and then further carries out convolution processing to more accurately mine the correlation between each input parameter and between input and output, and further improves the accuracy of the model.


Table 8 | Model comparison.






5 Conclusion

In this scheme, larch in the Greater Khingan Mountains of China was taken as the specimen, the optical scanning microscope microscopic images were taken as the texture features, the gray co-occurrence matrix was taken as the morphological features, such as the area and perimeter of the average tracheid after cell segmentation, and the compression strength parallel to the grain of wood was taken as the mechanical property basis. The traditional FCN network model was improved, and the dual channel mechanism and sparse attention mechanism were introduced to improve the robustness of the model, and the mechanical property neural network classification of D-SA-FCN model was established.

The optimized feature array and simplified microscopic images were used as the input of D-SA-FCN neural network model to complete the five-level classification of larch mechanical properties according to national standards. The accuracy of training set and test set reached 96.87% and 85.75%, respectively. When morphological and texture features are input, the accuracy of the training model is 71.48% and 79.52%, respectively. Texture feature has a more significant effect on mechanics to a certain extent. The D-SA-FCN network model can reduce the computational complexity, improve the prediction accuracy and meet the requirements of wood micromechanical properties research by completing ablation experiments on the direction of channel, attention and data enhancement.

This paper also needs to be improved in the following aspects. First, there are only two kinds of tracheid morphological feature extracted, so parameters such as tracheid microfiber Angle and spectral features can be attempted. Second, five classifications of mechanical properties have been completed according to the national standards, and the number of classifications is small. We can try to carry out more detailed classification on the basis of the national standards. Thirdly, the mechanical properties of wood are only classified based on the compression strength parallel to the grain. The flexural strength parallel to the grain and the horizontal grain can be added as the mechanical property indexes to study the correlation between the micro and macro properties of wood.
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