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Editorial on the Research Topic

Application of radiomics in understanding tumor biological behaviors
and treatment response
Introduction

Cancer is a serious threat to human health worldwide, with a high mortality rate and

increasing morbidity over the years (1). In general, patients with the same clinical stage

have significant differences in survival and prognosis due to the high heterogeneity of

tumor biological behavior. It is challenging to individualize treatment according to a

uniform tumor stage treatment model. Radiomics is one of the indispensable tools for

screening, diagnosis, treatment, and follow-up of multiple tumors. Recent data suggest that

advanced post-treatment anatomic imaging with post-processing and registration

capabilities can be used to characterize the likelihood and the location of potential

failures to optimize treatment strategies and improve quality of life

With the wide application of artificial intelligence, the emerging radiomics technology,

as a quantitative and high-throughput radiology method, has shown the ability to obtain

quantitative texture information from existing medical image data from anatomical

structures non-invasively, and has become the gold standard for pre-treatment staging

and post-treatment tumor control evaluation (2). In addition, radiomics can further

leverage existing “big data” analysis of images to provide hitherto unimaginable

predictive power. It leverages powerful big data/machine learning techniques to refine its

approach to massive data processing to identify clinically applicable, non-invasive methods

to extract oncology outcomes and toxicity prevention data from large-scale data. This
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approach offers superior scalability, clinical applicability, cost-

effectiveness, ease of implementation and an unmatched

value proposition
Papers included in this Research Topic

Radiomics is playing an increasing role in cancer diagnosis and

treatment as well as biological research. We introduced this

Research Topic to develop a comprehensive predictive model that

provides standard recommendations for the multidisciplinary

management of multiple cancer causes.The long-term goal is to

reduce the mortality rate of cancer patients and improve their

quality of life, thereby increasing cost efficiency. We are encouraged

by the strong support of the research community for our Research

Topic. We were very pleased to see many excellent works submitted

to our research project, and we finally published 16 papers,

including 13 original studies and 3 reviews, most of which

were retrospective studies. The thesis covers brain glioma,

nasopharyngeal carcinoma, breast cancer, small cell lung cancer,

renal cell carcinoma, hepatocellular carcinoma, pancreatic cancer,

rectal cancer and other tumors. The objectives of the study

are diverse, including tumor status assessment, differential

diagnosis, survival and recurrence assessment, and genomic

feature prediction.

Accurate identification and evaluation using radiomics is

helpful to develop appropriate treatment plans for patients and

avoid unnecessary treatment measures such as surgery,

postoperative radiotherapy and chemotherapy. For example,

Wang et al. analyzing mammography (DM) images using

radiomics, a radiomic line model was established to distinguish

benign and malignant circular masses. Gao et al. used radiomics

features based on enhanced CT images from the corticomedullary

stage (CMP) and nephrography stage (NP) in combination with

important clinical factors to distinguish between papillary renal cell

carcinoma type 1 (pRCC) and pRCC type 2 tumors by multivariate

logistic regression analysis before surgery. In addition, Lu et al. built

a radiomic nomogram model based on CT images for patients with

focal autoimmune pancreati t is and pancreatic ductal

adenocarcinoma in accurate areas. The AUC of the training

group and the test group were 0.87 and 0.83, respectively. As a

non-invasive predictive tool, the model can improve the accuracy of

diagnosis while reducing patient trauma and achieving optimal

compliance. The classification and type of tumors are different, and

the treatment methods are not consistent. For example, according

to the multitask learning model developed by Huang, Y. et al. in

combination with support vector machines to distinguish

glioblastoma from isolated brain metastases, the mean AUC of

the model in the training set and validation set was as high as 0.993

and 0.987. If the preoperative prognosis is primary glioblastoma,

aggressive triple therapy, such as postoperative concurrent

chemoradiotherapy, is required.

Image-based radiomics models can assist clinicians in treatment

evaluation, including predicting the response of individual cancer

patients to chemotherapy or immunotherapy, as well as monitoring
Frontiers in Oncology 026
recurrence and metastasis. These aspects are clearly reflected in the

research papers accepted for this radiomics Research Topic: Jiang

et al., Yang et al., Wang, Y. et al., Lin et al., and Huang, Y.-M. et al.

used several radiomics based ML models and columns to predict

patient outcomes, such as survival, mortality, efficacy, postoperative

metastasis, and recurrence. Wang, Y. et al.‘s radiomics model based

on GIST morphological features plays an important role in tumor

risk stratification, and the AUC value of the model is 0.933.It can

provide reference for clinical diagnosis and treatment plan,

formulate the best treatment strategy for individuals according to

the predicted results of the model, create customized treatment plan

for patients, and improve the treatment effect and later quality

of life.
Conclusion

Radiomics has shown promising results in some areas of

oncology, including tumor screening, detection, diagnosis,

treatment, and prognosis prediction. The 16 studies collected

under this study theme apply radiomics to construct

comprehensive predict ive models to provide optimal

recommendations for multidisciplinary management of multiple

tumors to address treatment options in clinical practice. Imaging

has demonstrated the potential to improve the foresight and

accuracy of the diagnosis and treatment of cancer patients. It is

promising to applicate radiomics in clinical practice to improve the

efficiency of clinicians, reduce the possibility of clinical decision-

making errors, and reduce unnecessary procedures, interventions,

and medical costs.

All the studies in the subject of this study are retrospective and

have certain limitations. The data levels included in each study are

not sufficient, and there is no unified standard reference for

algorithms such as image source, lesion delineation and feature

extraction. These studies are still complex for clinicians and difficult

to be thoroughly accepted. More research may need to focus on

image and data standardization between different institutions, data

sharing, and prospective studies to increase generalization

of results.

This Research Topic involves a number of studies and presents

the application of radiomics in understanding tumor biological

behavior and treatment response. We thank all reviewers and

authors for their contributions to this Research Topic. We hope

that this Research Topic will attract more attention in related fields.
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Objective: The objective of this study is to develop a radiomics nomogram for the
presurgical distinction of benign and malignant round-like solid tumors.

Methods: This retrospective trial enrolled patients with round-like tumors who had
received preoperative digital mammography (DM) no sooner than 20 days prior to
surgery. Breast tumors were segmented manually on DM images in order to extract
radiomic features. Four machine learning classification models were constructed, and
their corresponding areas under the receiver operating characteristic (ROC) curves (AUCs)
for differential tumor diagnosis were calculated. The optimal classifier was then selected
for the validation set. After this, predictive machine learning models that employed
radiomic features and/or patient features were applied for tumor assessment. The
models’ AUC, accuracy, negative (NPV) and positive (PPV) predictive values, sensitivity,
and specificity were then derived.

Results: In total 129 cases with benign and malignant tumors confirmed by pathological
analysis were enrolled in the study, including 91 and 38 in the training and test sets,
respectively. The DM images yielded 1,370 features per patient. For the machine learning
models, the Least Absolute Shrinkage and Selection Operator for Gradient Boosting
Classifier turned out to be the optimal classifier (AUC=0.87, 95% CI 0.76-0.99), and ROC
curves for the radiomics nomogram and the DM-only model were statistically different
(P<0.001). The radiomics nomogram achieved an AUC of 0.90 (95% CI 0.80-1.00) in the
test cohort and was statistically higher than the DM-based model (AUC=0.67, 95% CI
0.51-0.84). The radiomics nomogram was highly efficient in detecting malignancy, with
accuracy, sensitivity, specificity, PPV, and NPV in the validation set of 0.868, 0.950, 0.778,
0.826, and 0.933, respectively.

Conclusions: This radiomics nomogram that combines radiomics signatures and clinical
characteristics represents a noninvasive, cost-efficient presurgical prediction technique.

Keywords: machine learning, radiomics nomogram, round-like tumors, digital mammography, breast
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BACKGROUND

Breast cancer (BC) represents the most common malignant
disease in females globally (1–3). However, BC mortality has
declined remarkably since the 1970s (4) due in large part to
mammography screening and enhanced systemic therapy (5, 6).
Digital mammography (DM) constitutes a widely accepted
means of breast tumor detection in clinic (6, 7) and has come
to play a critical role in the evaluation of breast tumors, taking
precedence over other techniques in detecting calcification in
breast tumors. Normally, breast cancers display an irregular
shape and a spiculated margin in DM images, with or without
microcalcification. However, some malignant tumors appear as
round-like masses, including mucinous carcinoma, intraductal
papillary carcinoma, medullary carcinoma, infiltrating ductal
carcinoma, intramammary metastases, metaplastic carcinoma,
lymphoma, and phyllodes tumors (8, 9). The margins of these
tumors can be circumscribed, microlobulated, and indistinct.
Clinicians therefore face a challenge in distinguishing the above
tumors from benign lesions by DM alone, especially for dense
breast tissues. In addition, the prognosis and clinical treatment of
these tumors are necessarily different. Preoperative assessment of
round-like tumors can thus help to optimize treatment.

The signals of round-like masses without suspicious malignant
or benignmacrocalcification inDMare comparable, although their
internal structures and densities show substantial differences (9).
Previous findings (10) recommend that the classification according
to the Breast Imaging Reporting and Data System (BI-RADS) of
breast masses found on DM images should be determined in
combination with ultrasound (US) or magnetic resonance
imaging (MRI), except for completely calcified or fatty masses.
Routine imaging techniques such as mammography and US show
overt limitations in the differential diagnosis of round-like masses.
Although the multimodal technique of breast dynamic contrast-
enhanced MRI (DCE-MRI) is highly accurate in distinguishing
benign frommalignant tumors (11) aswell as indifferentiatingwell-
circumscribed breast malignant lesions from benign ones (8), it
requires contrastmedia injection and is very expensive. In addition,
traditional multimodal diagnosis greatly relies on the radiologist’s
experience. Though DM is the most applied technique in assessing
breast tumors, no quantitative parameters have yet been derived
fromDM images (12). Therefore, the identification of ameasurable
DM marker may greatly increase the diagnostic value of this
technique for breast tumors. Radiomics could be used to convert
digital images into high-dimensional data by extracting a variety of
Abbreviations: DM, Digital mammography; BI-RADS, Breast Imaging Reporting
and Data System; US, ultrasound; MRI, magnetic resonance imaging; DCE-MRI,
dynamic contrast-enhanced MRI; PACS, Picture Archiving and Communication
System; CC, cranial caudal; MLO, mediolateral oblique; DICOM, Digital Imaging
and Communications in Medicine; ROI, Region of interest; ICC, intraclass
correlation coefficient; CI, confidence interval; mRMR, maximum correlation
minimum redundancy; LASSO, least absolute shrinkage and selection operator;
SVM, support vector machine; k-NN, k-Nearest Neighbor; ROC, receiver
operating characteristic; AUC, area under the receiver operating characteristic
curve; DCA, Decision curve analysis; PPV, positive predictive value; NPV,
negative predictive value.
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quantitative indices and could thus help to quantitatively evaluate
tumor heterogeneity and improve clinical decisionmaking (13, 14).

To this end, this work aims to develop a radiomics nomogram
for distinguishing benign from malignant round-like masses
without spiculated margins and suspicious malignant
calcification or benign macrocalcification, in order to help
optimize treatment plans.
METHODS

Data Cohort
Our institutional review board approved this retrospective study,
with no requirement for informed consent. Individuals who
received DM screening with benign (excluding fibroadenoma)
or malignant tumors confirmed by pathological analysis were
continually enrolled between January, 2017 and December, 2019.
Due to a high prevalence of fibroadenoma, patients who received
DM screening with fibroadenoma confirmed by pathological
analysis were continually enrolled between January and
December, 2019. Patient data were obtained from the Picture
Archiving and Communication System (PACS) of the Affiliated
Minhang Hospital of Fudan University, Shanghai, China.

The inclusion criteria were: (1) the presence of an oval or round
tumor; (2) aDMexamcarriedoutwithin 20preoperative days, with
image quality meeting post-processing requirements; (3)
nonmalignant or cancerous breast tumor confirmed by
histopathology. The exclusion criteria were: (1) receiving
treatments, (chemotherapy, surgery, radiotherapy and/or anti-
HER2 therapy) before DM screening; (2) the tumor being
incompletely displayed in the cranial caudal (CC) or mediolateral
oblique (MLO) views; (3) the tumor being architecturally distorted
(except for scarring caused by a previous injury or surgery); (4) the
tumor showing calcification of BI-RADS 2/4b/4c/5; (5) the tumor
having spiculated margins; and (6) the tumor not being displayed
due to extremely dense breasts. Ultimately, 129 masses (51
nonmalignant and 78 cancerous) were included, and their
histopathologic diagnoses are presented in Table 1. The 129
study cases, age 54.6 ± 13.7 years (range, 23–86 years) old, were
randomly assigned to the training (n = 91) and test (n = 38) sets.

DM and Image Processing
A GE Senographe Essential DM system (GE Healthcare,
Milwaukee, WI) was utilized for data acquisition. In every case,
optimal MLO and CC view images were converted into Digital
Imaging and Communications in Medicine (DICOM) files. ITK-
SNAP software (http://www.itk-snap.org) was utilized for breast
tumor segmentation, and regions of interest (ROIs) were
manually segmented on MLO and CC views independently by
two radiologists (WY and LW) with 10 and 14 years of
experience in DM image evaluation, respectively. In cases of
obscured tumor margins, both radiology experts reached a
consensus by performing an additional image analysis.

Feature Extraction and Selection
Radiomic features were obtained with AK v3.2.2 software (GE
healthcare). In total 1,370 features were obtained, including
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histogram, shape, gray-level co-occurrence matrix (GLCM),
gray-level run-length matrix (GLRLM) and gray-level size zone
matrix (GLSZM) features. For interobserver agreement
evaluation, CC views were randomly chosen in 30 cases, and
another radiologist delineated ROIs independently. After this,
intraclass correlation coefficients (ICCs) of these features were
calculated. Based on the ICC’s 95% confidence interval (CI) (15),
values >0.90, from 0.75 to 0.9, from 0.5 to 0.75, and <0.5 were
considered to reflect excellent, good, moderate, and poor
reliability, respectively. Only features with ICC ≥0.75 were
included in subsequent analysis.

The patients were randomized into the training and test sets
(ratio of 7:3, respectively). Initially, the maximum correlation
minimum redundancy (mRMR) algorithm was used for
eliminating redundant and irrelevant parameters in the
training set, of which 30 features that showed high correlations
with labels were retained. Next, least absolute shrinkage and
selection operator (LASSO) analysis with 10-fold cross-
validation was performed to further select features via l
optimization. The coefficients of select features then underwent
compression to zero at the optimal l value, and only parameters
that showed a nonzero coefficient were further retained.

Patient, DM, and US Features
The following clinical information was obtained from the
patients’ medical records: age, sex, family history of breast
cancer, life habits (drinking/smoking), and childbearing
information. Next, DM data were analyzed by two radiologists,
as stated above, who recorded the following parameters:
(1 ) tumor s ize (max imum diameter) ; (2 ) marg in
(circumscribed, obscured, microlobulated, or indistinct); (3)
density (low, equal, or high); and (4) location (depth)
(anterior, middle, or posterior). Additionally, US data were
recorded as described in the US report. The imaging features
of US were: (1) echo pattern (anechoic, hypoechoic, isoechoic,
complex cystic, and solid, heterogeneous, or hyperechoic); (2)
edge (clear, partially clear, or unclear); (3) shape (regular,
Frontiers in Oncology | www.frontiersin.org 310
partially regular, or irregular); and (4) blood flow (presence
or none).
Radiomics Signature, Clinical Model, and
Radiomics Nomogram
Four machine learning models, support vector machine (SVM), k-
Nearest Neighbor (k-NN), C-Tree, and logistic regression, were
constructedbasedon thepreviouslyobtainedoptimal feature subset
described above. All classifiers underwent training with 10-fold
cross-validation with 10 repeats in the training cohort. Their
predictive performances were then assessed with cross-validation
data and validated in the validation cohort, and the optimal
classifier in the validation set was selected. Next, radiomics scores
(rad-scores) for various patients were determined. The radiomics
signature was evaluated for predictive accuracy by the area under
the receiver operatingcharacteristic (ROC)curve (AUC) inboth the
training and test cohorts.

Clinical data, including age, MG, and US characteristics
(continuous data) were analyzed by independent samples t-test or
the Wilcoxon test (for example, age and tumor size (DM)), and the
Chi square test or Fisher’s exact test were carried out for analyzing
categorical variables such as tumor size (DM),margin (DM), density
(DM), location (depth) (DM), echo pattern (US), edge (US), shape
(US), and blood flow (US). Univariate logistic analysis was applied to
select risk factors for cancerous tumors (P<0.05), and this was
followed by backward stepwise multivariate logistic regression and
likelihood ratio tests in order to build a clinical prediction model. In
order to satisfy the collinearity condition, features with both the
largest calculated VIF and VIF >10 were eliminated. The model’s
performance was then determined by ROC curve evaluation.

After this, a radiomics nomogram was built as described
above for the clinical model, including the obtained radiomics
signature, and its performance was also examined by ROC
analysis. Finally, the Hosmer-Lemeshow test was performed to
assess consistency between actual and predicted values. The
radiomic framework is shown in Figure 1.
TABLE 1 | Features of 129 breast tumors confirmed by histology.

Histopathologic type No. of masses Proportion (%) No. of masses with
calcifications

BI-RADS category of accompanying calcifications

Benign 51 39.5 0
Fibroadenoma 44 34.1 0
Intraductal papilloma 2 1.6 0
Benign phyllodes tumor 4 3.1 0
Tubular gland lymphoma 1 0.7 0

Malignant 78 60.5 5
Invasive ductal carcinoma 53 41.1 4 4a (3)

3 (1)
Intraductal papillary carcinoma 8 6.2 0
Ductal carcinoma in situ 1 0.8 0
Neuroendocrine carcinoma 1 0.8 0
Malignant phyllodes tumor 3 2.3 0
Mucinous carcinoma 11 8.5 1 4a
Sarcomatoid carcinoma 1 0.8 0
No., number; BI-RADS, Breast Imaging Reporting and Data System.
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Radiomics Nomogram Validation
and Evaluation
The radiomics nomogram was examined in the training (n = 91)
and test (n = 38) cohorts, respectively, with regard to
differentiation, calibration and clinical values, and the AUC
was determined in order to evaluate the nomogram’s
performance in distinguishing malignant and benign tumors.
The Hosmer–Lemeshow test and the calibration curve were
utilized as well to determine the goodness-of-fit. Additionally,
internal validation was carried out in the test cohort. A rad-score
was derived in the test cohort based on the algorithm built in the
training cohort, and decision curve analysis (DCA) was
performed to estimate the nomogram’s robustness in a
clinical setting.
Statistical Analysis
The software packages R v. 3.5.1 (https://www.Rproject.org) and
SPSS were utilized for all statistical analysis.
RESULTS

Patient and DM/US Features
All patients in this study were female. Regarding some clinical
factors, of the 129 patients, three patients (malignant, 2;
benign, 1) had a family history of breast cancer; two patients
(malignant, 1; benign, 1) had a smoking habit; four patients
(malignant, 2; benign, 2) had a drinking habit; and two patients
with benign tumors had never given birth. Table 2 summarizes
patient and DM/US features. Age, margin (DM), density
(DM), location depth (DM), edge (US), shape (US), and
blood flow (US) differed significantly between malignant and
benign tumors.

In our univariate logistic regression analysis, factors including
age, margin (DM), density (DM), location depth (DM), edge
(US), shape (US), and blood flow (US) showed significant
associations with malignant masses (all P<0.05; Table 3), and
multivariate logistic regression analysis suggested that age,
location depth (DM), shape (US), and rad_score were
Frontiers in Oncology | www.frontiersin.org 411
independent predictors of malignant masses (Table 4). These
clinical variables were then employed to construct a clinical
model that had an AUC value of 0.78 (0.61-0.95) in the testing
cohort, which was higher than that of DM 0.67 (0.51-0.84).
Radiomics for Predictive Modeling
In the training set, 13 top-performing features (histogram, shape,
and texture features), including 5 and 8 from the CC and MLO
views, respectively, were finally selected by the LASSO logistic
regression model (Figures 2A, B). Figure 2C shows the selected
radiomics features, and the MLO view had more features than
the CC view (8 and 5, respectively). Four classification machine
learning models were constructed using the above selected 13
top-performing features, and the performances of the four
classification machine learning models are shown in Figure 3.
The logistic regression model had high AUC values of 0.91 for
the training set (Figure 3A) and 0.87 for the test set (Figure 3B),
but the LASSO-based machine learning model showed the best
detection performance. The boxplot in Figure 4 shows the
accuracies, AUCs, NPV, PPV, and sensitivities and specificities
of the four models after a 100-time cross-validation.

Figure 2D shows the rad-score of each patient determined by
logistic regression. Individualswith cancerous tumors generallyhad
higher rad-scores compared to the benign group, and rad-scores
were statistically different between individuals with benign and
malignant masses in the training and test cohorts (both P<0.001).
The generated radiomics signature had good predictive accuracy,
with AUCs of 0.91 (95%CI 0.86–0.98) and 0.87 (95%CI 0.76–0.99)
in the training and test sets, respectively (Figure 2E).
Nomogram
According to multivariate logistic regression, location (depth),
shape (US), age, and the radiomics signature all independently
predicted malignancy in round-like tumors and were therefore
included in a radiomics nomogram (Figure 5A). Figures 5B, C
depict the nomogram’s calibration curves. In both the training
and test cohorts, the curves reflected good calibration, and the
Hosmer-Lemeshow test showed non-significance (P=0.375),
(Figures 5B, C).
FIGURE 1 | Flow chart of radiomic analysis of round-like masses on DM images.
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Figures 6A, B both present four ROC curves that compare
digital mammography, the clinical model, the radiomics
signature, and the radiomics nomogram for efficiency in
differentiating round-like masses. The DeLong’s test showed
that the ROC curves of the radiomics nomogram and digital
mammography were statistically different (P<0.001), and the
radiomics nomogram had an AUC of 0.90 (95% CI 0.80-1.00)
in the test set, suggesting a significantly higher performance
versus the prediction model constructed only with digital
mammography features, which had an AUC of 0.67 (95% CI
0.51-0.84) in the test cohort.

The radiomics nomogram had high efficacy in detecting
malignancy, with accuracy, sensitivity, specificity, PPV, and
NPV of 0.890, 0.941, 0.825, 0.873,and 0.917, respectively, in
the training cohort, and 0.868, 0.950, 0.778, 0.826, and 0.933 in
Frontiers in Oncology | www.frontiersin.org 512
the test cohort, respectively (Table 5). Machine learning-based
mammography radiomics had an AUC of 0.87 (95% CI 0.76-
0.99), indicating a better performance than the clinical model
(AUC=0.78, 95% CI 0.61-0.95 in the test cohort) (Figure 6B). In
the test set, the radiomics signature had higher specificity and
PPV compared to the radiomics nomogram, and the radiomics
nomogram had improved predictive ability (accuracy, sensitivity,
and NPV) compared to the radiomics signature in distinguishing
benign and malignant round-like tumors (Table 5).
DISCUSSION

This study developed a radiomics signature for predicting
malignancy in round-like masses that had good accuracy in
TABLE 2 | Patient and DM/US characteristics.

Characteristic Pathological type P value

Benign Malignant

Margin (DM) circumscribed 17 18 0.021*
obscured 31 41
microlobulated 0 0
indistinct 3 19

Density (DM) low-density 1 1 0.000*
equal-density 41 34
high- density 9 43

Location/Depth (DM) anterior 7 15 0.050*
middle 35 38
posterior 9 25

Echo pattern (US) anechoic 0 1 0.104
hypoechoic 49 64
isoechoic 1 1
complex cystic and solid 1 3
heterogeneous 0 9
hyperechoic 0 0

Edge (US) clear 7 3 0.002*
partially clear 43 58
unclear 1 17

Shape (US) regular 6 3 <0.001*
partially regular 44 41
irregular 1 34

Blood flow (US) none 22 13 0.001*
presence 29 65

Age # 45 (41~52) 60.5 (50.5~70) <0.001*
Size # 1.9 (1.6~2.8) 2.3 (1.6~3.225) 0.158
April 2022 | Volume 12 | Article
*means P<0.05; # means nonnormal distribution obtained after SK normality test; DM, digital mammography; US, ultrasound.
TABLE 3 | Positive results of univariate analysis for the differential diagnosis of round-like breast tumors.

Variable 2.5%CI 97.5%CI OR value P value

Age 1.031 1.110 1.068 0.001*
Margin (DM) 1.236 3.347 1.951 0.008*
Density (DM) 2.010 13.221 4.917 0.001*
Location_Depth (DM) 1.022 4.422 2.064 0.050
Edge (US) 2.335 51.850 8.197 0.005*
Shape (US) 4.334 95.747 15.082 0.000*
Blood_flow (US) 1.228 9.486 3.321 0.020*
*means P<0.05; DM, digital mammography; US, ultrasound; CI, confidence interval; OR, odds ratio.
677803
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identifying the type of lesions (AUC=0.87 in the entire population).
Further, a novel radiomics nomogram, built by utilizing
multivariate logistic regression data, showed good calibration and
was able to distinguish benign from malignant tumors in both the
training and test data sets. The AUC of this signature was 0.90,
suggesting a higher predictive value of the nomogram compared to
mammography alone (AUC=0.67) as well as to the clinical model
(AUC=0.78) that was established on the basis of age, DM, and US.
In clinic DM and US characteristics are relied upon routinely for
Frontiers in Oncology | www.frontiersin.org 613
differential diagnosis. However, their values are dependent upon the
radiologist’s experience. In addition, radiomics features are purely
objective and quantitative.

This study compared four commonly used classification
machine learning methods (SVM, C-Tree, k-NN, and logistic
analysis) and found that LASSO had the best performance. As
shown above, LASSO had higher AUC compared with the
remaining classification machine learning methods. Indeed,
LASSO can perform both feature selection and normalization
A

B

D E

C

FIGURE 2 | Selection of radiomics features and evaluation of the prediction performance of the radiomics signature. (A) Selection of the hyperparameter (l) in the
least absolute shrinkage and selection operator (LASSO) model via ten-fold cross-validation based on minimum error; vertical black dotted line, optimal value of l
(best fit). (B) Coefficients and log(l) values; features with nonzero coefficients are shown. (C) The 13 features showing nonzero coefficients are displayed. The
features utilized for constructing the radiomics signature are shown on the y-axis with the corresponding coefficients in LASSO Cox analysis on the x-axis. (D) Rad-
scores of benign and malignant masses in the training and test groups. Yellow and blue represent the actual classification: the greater the separation of yellow and
blue, the better the rad-score’s predictive accuracy. (E) Receiver operating characteristic (ROC) curves of the radiomics signature in the training and test set.
TABLE 4 | Positive results of multivariate logistic regression analysis for the differential diagnosis of round-like breast tumors.

Variable 2.50%CI 97.50%CI OR P value

Location_Depth (DM) 1.197 16.582 3.978 0.036*
Shape (US) 1.900 57.442 7.969 0.013*
Age 1.024 1.134 1.072 0.006*
Rad_score 2.821 33.017 8.060 <0.001*
Intercept <0.001 <0.001 <0.001 <0.001*
April 2022 | Volume 12 | Article
*means P<0.05; DM, digital mammography; US, ultrasound; CI, confidence interval; OR, odds ratio.
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for improving prediction accuracy (16) and is able to combine
selected radiomic parameters for generating a radiomic signature
(17, 18).

Additionally, the radiomics model had a higher ratio of
features based on the MLO view compared with the CC view
in this study, consistent with one previous study (19), suggesting
that the MLO view might be more informative than its CC
counterpart. Of course, combining both views provides more
data as compared to each individual view (19). The radiomics
features selected for modeling in this study included first-order,
shape, and texture (including GLCM, GLSZM, and GLRLM)
features. Texture features accounted for the largest proportion
(7/13), and their correlation coefficients were relatively larger
than other features as well. This also indicates that radiomics can
reveal deep internal features.

Large Area Low Gray Level Emphasis (LALGLE) assesses the
joint distribution of larger size zones showing lower gray-level
Frontiers in Oncology | www.frontiersin.org 714
values in a tumor image. In this study, both the original
extraction technique and wavelet analysis were able to extract
features from the oblique MLO and CC views. The feature weight
was large, and two of three features had the highest magnitude of
correlation coefficients (-0.556 and -0.48) in the feature set.
Therefore, these features were negatively correlated with
malignant status, which may be explained by the fact that most
malignant masses have relatively dense cells and elevated density.

Size Zone Nonuniformity Normalized (SZNN) assesses size
zone volume variability on a whole image, with reduced values
suggesting elevated homogeneity among zone size volumes. The
correlation coefficient here (0.334) was relatively large in the
feature set, and positively correlated with malignant status,
indicating high heterogeneity of malignant lesions. Furthermore,
autocorrelation reflects the magnitude of texture fineness and
coarseness, and in this study, this latter feature was positively
correlated with malignant status, with a correlation coefficient of
FIGURE 4 | Performance comparison of the four classification machine learning models in distinguishing benign from malignant masses.
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves for the four classification machine learning models in the training set (A) and test set (B).
April 2022 | Volume 12 | Article 677803
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A B

FIGURE 6 | Receiver operating characteristic (ROC) curves for digital mammography, the clinical model, the radiomics signature and the radiomics nomogram in the
training set (A) and test set (B).
A

B C

FIGURE 5 | Radiomics nomogram for predicting malignant status of round-like tumors (A). Calibration curves of the radiomics nomogram in the training set (B) and test set (C).
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 677803815
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0.133. The texture of malignant masses is generally coarser than
that of benign counterparts. Compared with most irregular
malignant masses, round-like masses show relatively more
uniform growth rates and finer texture, which may explain the
lower correlation coefficient.

Five first-order features were also selected in this study, and
most of them had low correlation coefficients. Only MLO_wavelet-
HHL_firstorder_Mean had a high correlation coefficient (0.329),
indicating that the feature was positively correlated with malignant
status, which can be explained by the elevated density of malignant
tumor cells. Comparing the tumor and contralateral breast gland
density by univariate analysis of clinical characteristics, significant
differences were found between benign and malignant masses
as well.

Multiple studies have shown that radiomics can provide valuable
information for clinical diagnostic and prognostic assessments (20–
26), and previous researchers have already evaluated DM-derived
radiomics for categorizing microcalcification (27), tumors (28), and
breast cancer bymolecular properties (19, 29). This study focusedon
the masses that are most difficult to assign to the malignant and
benign groups by DM. Consistent with the literature (12), jointly
applying DM and radiomics was able to increase overall diagnostic
performance remarkably. Such a combination can be used to
examine tumor heterogeneity more comprehensively and
quantitatively when compared to morphological visual
assessment alone.

However, this study is not without its limitations. First,
diseased and normal tissues show no overt boundaries in DM,
and ROIs were not automatically generated. Therefore,
irregularities resulting from manual selection were inevitable.
Second, since the sample sizes of cases with specific
histopathological subtypes of breast cancer were small, their
differential diagnoses by radiomics could not be performed.
Further research is therefore needed to address this issue.
Finally, our results require multicenter verification with large
trials in order to generate more evidence for clinical application.
CONCLUSIONS

This study revealed that DM-based radiomics has good
performance in distinguishing benign from malignant round-
like masses, and the first-of-its-kind radiomics nomogram was
developed and validated for such discrimination, achieving good
Frontiers in Oncology | www.frontiersin.org 916
accuracy. Indeed, DM-derived radiomics has an important
clinical value in providing quantitative data to help clinicians
read and interpret mammograms.
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TABLE 5 | Performances of the predictive models in distinguishing benign from malignant tumors.

Model Accuracy Sensitivity Specificity PPV NPV

Training DM 0.670 (0.564-0.765) 0.879 0.552 0.527 0.889
Clinics 0.791 (0.693-0.869) 0.909 0.681 0.727 0.888
Radiomics 0.835 (0.743-0.905) 0.782 0.917 0.935 0.733
Combined 0.890 (0.807-0.946) 0.941 0.825 0.873 0.917

Test DM 0.684 (0.513-0.825) 0. 923 0.56 0.522 0.933
Clinics 0.711 (0.541-0.846) 1 0.577 0.522 1
Radiomics 0.789 (0.627-0.904) 0.696 0.933 0.941 0.667
Combined 0.868 (0.719-0.956) 0.95 0.778 0.826 0.933
April 2022 |
 Volume 12 | Article 6
DM, digital mammography; PPV, positive predictive value; NPV, negative predictive value.
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Radiomics for Predicting
Response of Neoadjuvant
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Carcinoma: A Systematic
Review and Meta-Analysis
Chao Yang1, Zekun Jiang1, Tingting Cheng2,3, Rongrong Zhou3,4, Guangcan Wang1,
Di Jing3,4, Linlin Bo1, Pu Huang1, Jianbo Wang5, Daizhou Zhang6, Jianwei Jiang7,
Xing Wang8, Hua Lu1*, Zijian Zhang3,4* and Dengwang Li1*

1 Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health
Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, China,
2 Department of General Practice, Xiangya Hospital, Central South University, Changsha, China, 3 National Clinical Research
Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 4 Department of Oncology,
Xiangya Hospital, Central South University, Changsha, China, 5 Department of Radiation Oncology, Qilu Hospital, Cheeloo
College of Medicine, Shandong University, Jinan, China, 6 Shandong Provincial Key Laboratory of Mucosal and Transdermal
Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, Jinan, China, 7 Optical and Digital Image
Processing Division, Qingdao NovelBeam Technology Co., Ltd., Qingdao, China, 8 Software Research and Development
Center, Shangdong AccurDx Diagnosis of Biotech Co., Ltd., Jinan, China

Purpose: This study examined the methodological quality of radiomics to predict the
effectiveness of neoadjuvant chemotherapy in nasopharyngeal carcinoma (NPC). We
performed a meta-analysis of radiomics studies evaluating the bias risk and treatment
response estimation.

Methods: Our study was conducted through a literature review as per the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We included
radiomics-related papers, published prior to January 31, 2022, in our analysis to examine
the effectiveness of neoadjuvant chemotherapy in NPC. The methodological quality was
assessed using the radiomics quality score. The intra-class correlation coefficient (ICC)
was employed to evaluate inter-reader reproducibility. The pooled area under the curve
(AUC), pooled sensitivity, and pooled specificity were used to assess the ability of
radiomics to predict response to neoadjuvant chemotherapy in NPC. Lastly, the Quality
Assessment of Diagnostic Accuracy Studies technique was used to analyze the bias risk.

Results: A total of 12 studies were eligible for our systematic review, and 6 papers were
included in our meta-analysis. The radiomics quality score was set from 7 to 21 (maximum
score: 36). There was satisfactory ICC (ICC = 0.987, 95% CI: 0.957–0.996). The pooled
sensitivity and specificity were 0.88 (95% CI: 0.71–0.95) and 0.82 (95% CI: 0.68–0.91),
respectively. The overall AUC was 0.91 (95% CI: 0.88–0.93).
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Conclusion: Prediction response of neoadjuvant chemotherapy in NPC using machine
learning and radiomics is beneficial in improving standardization and methodological
quality before applying it to clinical practice.
Keywords: nasopharyngeal carcinoma, neoadjuvant chemotherapy, systematic review, meta-analysis,
machine learning
INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant head and neck
cancer that occurs in the nasopharyngeal space and can spread to
the base of the skull and other organs (1–3). Its anatomical
location is relatively hidden, causing nearly 70% of NPC patients
to be diagnosed at a locally advanced stage (4–6). The
pathological subtypes of nasopharyngeal tumors mostly include
poorly differentiated or undifferentiated squamous cell
carcinomas, which are more sensitive to chemoradiotherapy
(7–9). Therefore, definitive concurrent chemoradiotherapy
has become the standard of care for NPC patients with locally
advanced diseases (10, 11). However, the efficacy of neoadjuvant
chemotherapy has been shown to vary greatly in clinical
practice, and approximately 30% of patients will develop
chemoradiotherapy-related adverse events (12–15).

Radiomics is a highly efficient extraction feature that obtains
massive amounts of data from medical images. It transforms
imaging data into a high-resolution mineable data space using
automated or semiautomated analysis methods (16–18). Given
its precise and systematic nature, radiomics can retrieve data that
enable the detection of minimal lesions and the prediction of
treatment outcomes (19–24). As a result, radiomics is widely
used in the study of NPC, and there is huge interest in employing
radiomics to predict neoadjuvant chemotherapy efficacy in NPC
patients. This information can assist physicians in selecting an
optimal scheme and in achieving the maximal anticancer effect.
Nevertheless, radiologic data analysis is highly reliant on the
subjective interpretation of skilled radiologists. The quantitative
data and autonomous imaging markers can serve as an adjunct
to expert clinical opinion, thus increasing the prognostic
precision (25, 26).

The purpose of this research was to evaluate the
methodological quality and analyze the effectiveness of
neoadjuvant chemotherapy in NPC among the published
radiomics papers. We also performed a meta-analysis of
relevant studies to predict the treatment response of
neoadjuvant chemotherapy, using the radiomics method,
in NPC.
R, complete response; ICC, intra-class
eal carcinoma; OR, odds ratio; PD,
RISMA, Preferred Reporting Items for
PRISMA-DTA, Preferred Reporting
nalyses for Diagnostic Test Accuracy;
gnostic Accuracy Studies; RECIST,
umors; REML, restricted maximum
SD, stable disease; SROC, summary
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MATERIALS AND METHODS

Study Protocol and Literature Search
This study was conducted as per the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses for Diagnostic Test
Accuracy (PRISMA-DTA) guidelines (27). Four databases (Web
of Science, PubMed, Embase, and Cochrane Library) were
screened to select relevant articles published prior to January
31, 2022. The search terms included were as follows:
(Nasopharyngeal Carcinoma OR Carcinomas, Nasopharyngeal)
AND (Machine Learning OR Artificial Intelligence OR
radiomics) AND (CT OR MRI OR Magnetic Resonance
Imaging). Please refer to the Supplementary Material for
more details on the medical subject heading (MESH terms).

Two independent researchers screened article titles and
abstracts to determine inclusion in this study. Case reports,
non-original publications, and research on topics of interest
other than the effectiveness of neoadjuvant chemotherapy in
NPC were excluded. To further evaluate relevant articles, the full
texts of articles were retrieved and read to determine eligibility
for analysis. The reference list of included papers was also
reviewed for potential eligible inclusion. The types of images
included in our study included MRI, CT, and PET.

Data Collection
The main endpoints were extracted and adjusted to the largest
area under the curve (AUC) in the verification dataset and also
prioritized external validation datasets. Among the articles with
no external verification dataset, the internal verification dataset
(i.e., the test set) was employed. In the absence of an internal
verification dataset, the validation set from the training dataset
(e.g., leave-one-cross-validation, fivefold cross-validation, and
tenfold cross-validation) was employed. The collected models
contained radiologically relevant characteristics and sometimes
contained characteristics, such as clinical information,
pathological types, radiotherapy dose, region of interest (ROI),
and imaging features extracted.

Study Evaluation
The radiomics quality score (RQS) assessed the methodological
quality of eligible publications, and the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) determined the bias
risk (28–30).

RQS assesses an investigation’s methodological quality by
examining protocols, images and segmentation reproducibility,
feature reduction and verification, biological verification, clinical
application, and model performance, with enhanced evidence
and open science (28). The detailed RQS report is provided in the
Supplementary Material. Overall, 16 items were included in the
May 2022 | Volume 12 | Article 893103

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Radiomics for Nasopharyngeal Carcinoma
RQS, with scores ranging from −8 to 36. The RQS scores were
then converted to percentages, whereby −8 to 0 was 0% and 36
was 100% (28). Two experienced physicians independently
scored the RQS of eligible articles.

QUADAS-2 evaluates the bias risk in varying domains
(“Patient Selection”, “Index Test”, “Reference Standard”, and
“Flow and Timing”) and can be customized to a particular study
question. The bias risk for each included study was determined
by the QUADAS item of Review Manager 5.4 in order to
determine the quality of diagnostic articles (31).

Meta-Analysis
A meta-analysis of investigations related to the prediction of the
treatment response of neoadjuvant chemotherapy in NPC
patients was further performed. The data were retrieved by 2
independent reviewers. The internal validity was assessed by a
third reviewer. Only studies that provided a two-by-two
contingency table or enough data to reconstruct such a table
were eligible for analysis. In cases where multiple models were
presented, only models with the largest AUC were chosen in
our analysis.

Statistical Analysis
Random-effects meta-analyses were conducted with the
restricted maximum likelihood (REML) and presented as a log
odds ratio (OR). The threshold effect was determined by
calculating the sensitivity and specificity of Spearman’s
correlation coefficients. Forest plots and summary receiver
operating characteristic (SROC) curve were generated. The
pooled AUC, sensitivity, and specificity were used to assess the
ability of radiomics to predict the treatment response of
neoadjuvant chemotherapy in NPC patients. A funnel plot
assessed publication bias. Cochran’s Q test and I2 score
evaluated heterogeneity among eligible studies. An I2 value of
0%–25% meant unremarkable heterogeneity, 25%–50% meant
reduced heterogeneity, 50%–75% meant moderate heterogeneity,
and >75% meant high heterogeneity (32).
Frontiers in Oncology | www.frontiersin.org 320
R (version 4.1.2, https://cran.r-project.org/), IBM SPSS
Statistics (version 24; IBM Corporation, Armonk, NY, USA),
Stata (version 16.0, https://www.stata.com/), and Review
Manager (version 5.4) were employed for statistical analyses.
RESULTS

Literature Search
We initially identified 613 relevant articles; 317 articles were
considered for careful evaluation after the elimination of duplicate
publications. Upon screening of the titles and abstracts, 18 relevant
articles were extracted for further analysis. Four articles that did not
contain a radiomics-basedmodel and two conference abstracts were
excluded from the analysis. A total of twelve articles that used
radiomics-based prediction models were selected for the final
systematic review (33–44). Five of the articles examined survival
analysis, and seven articles examined the prediction of treatment
response. One article that predicted treatment response did not
provide enough information to reconstruct a contingency table and
calculate the overall outcome (43). Therefore, six articles were
included in our meta-analysis. Our PRISMA flowchart is
presented in Figure 1. The detailed information on all eligible
publications is provided in Table 1. We summarized detailed
information about the selected articles, such as institution, study
duration, and type of radiomics features used. The detailed
summary table is available in Tables S4 and S5.

Evaluation Criteria for Neoadjuvant
Chemotherapy
The response evaluation of neoadjuvant chemotherapy in all
included studies was based on the Response Evaluation Criteria
in Solid Tumors 1.1 (RECIST 1.1) (45). Complete response (CR)
and partial response (PR) were defined as response to treatment,
while stable disease (SD) and progressive disease (PD) were
defined as no response to treatment.
FIGURE 1 | A schematic of the publication selection process.
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TABLE 1 | Details of eligible studies.

Author nation, year Study Type Cancer ROI Imaging Training set Test set External Validation

Piao China, 2021 (33) Retrospective observational NPC GTVnx MRI 108 0 0
Wang China, 2018 (34) Retrospective observational NPC GTVnx MRI 120 0 0
Zhang China, 2020 (35) Retrospective observational NPC GTVnx MRI 81 34 0
Zhang China, 2020 (36) Retrospective observational NPC GTVnx MRI 169 19 45
Chen China, 2021 (37) Retrospective observational NPC GTVnx GTVnd MRI 847 400 396
Zhao China, 2020 (38) Retrospective observational NPC GTVnx MRI 100 23 0
Peng China, 2019 (39) Retrospective observational NPC GTVnx GTVnd PET/CT 470 237 0
Zhong China, 2020 (40) Retrospective observational NPC GTVnx MRI 447 191 0
Dong China, 2019 (41) Retrospective observational NPC GTVnx MRI 254 248 0
Yang China, 2022 (42) Retrospective observational NPC GTVnx CT 208 89 0
Hu China, 2021 (43) Retrospective observational NPC GTVnx

GTVnd
CTV
PTV

MRI 200 84 0

Liao China, 2021 (44) Retrospective observational NPC GTVnx MRI 200 86 0
Frontiers in Oncology | www.f
rontiersin.org
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 2022 | Volume
NPC, nasopharyngeal carcinoma; GTVnx, nasopharynx gross tumor volume; GTVnd, lymph node gross tumor volume; CTV, clinical target volume; PTV, planning target volume; MRI,
Magnetic Resonance Imaging; CT, Computed Tomography; PET, Positron Emission Tomography.
TABLE 2 | RQS elements, as reported by Lambin et al. (28), and the mean rating of our eligible studies.

RQS scoring item Interpretation Average

Image protocol
quality

+1 for well-documented protocols, +1 for publicly available protocols 1.25

Multiple
segmentations

+1 if segmented multiple times (different physicians, algorithms, or perturbation of regions of interest) 0.92

Phantom study on
all scanners

+1 if texture phantoms were used for feature robustness assessment 0

Imaging at multiple
time points

+1 if multiple time points for feature robustness assessment 0

Feature reduction
or adjustment for
multiple testing

−3 if nothing, +3 if either feature reduction or correction for multiple testing 3

Multivariable
analysis with non-
radiomics feature

+1 if multivariable analysis with non-radiomics features 0.67

Detect and discuss
biological correlates

+1 if present 0.33

Cutoff analyses +1 if cutoff either predefined or at median or continuous risk variable reported 0.71
Discrimination
statistics

+1 for discrimination statistic and statistical significance, +1 if resampling applied 1.75

Calibration statistic +1 for calibration statistic and statistical significance, +1 if resampling applied 1.17
Prospective study
registered in a trial
database

+7 for prospective validation within a registered study 0

Validation −5 if validation is missing, +2 if validation is based on a dataset from the same institute, +3 if validation is based on a dataset from
another institute, +4 if validation is based on two datasets from two distinct institutes, +4 if the study validates a previously published
signature, +5 if validation is based on three or more datasets from distinct institutes

1.83

Comparison to
“gold standard”

+2 for comparison to gold standard 1.83

Potential clinical
utility

+2 for reporting potential clinical utility 1.5

Cost-effectiveness
analysis

+1 for cost-effectiveness analysis 0

Open science and
data

+1 if scans are open source, +1 if region of interest segmentations are open source, +1 if code is open source, +1 if radiomics features
are calculated on a set of representative ROIs and the calculated features and representative ROIs are open sources

2.04

Total score
(maximum score:
36 points)
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Study Evaluation
The RQS scores, ranging from 7 to 21 (maximum score: 36), are
summarized in Table 2. The publication with the highest RQS
percentage was 58.3%. The intra-class correlation coefficient (ICC)
between independent reviewers who assessed the publications was
0.987 (95% CI: 0.957–0.996, p < 0.001), which showed excellent
reproducibility among readers. The RQS scores examined by the
two readers are presented in the Supplementary Material.
Elevated intra-class association represented the high reliability of
quality assessment. Lastly, reviewers reassessed any disagreements
until a consensus was reached.

The bias risk, as assessed by QUADAS-2, is presented in
Figure 2. The publications with high, unclear, or low bias risk in
the four domains of patient selection, index test, reference
standard, and flow and timing were 0, 4, and 2, respectively.
Particularly, three publications failed to present a clear report of
the patient selection process. Therefore, they received an unclear
bias risk in the patient selection domain (34, 38, 42). One
study received an unclear bias risk in the index test domain
(33). Three studies received an unclear bias risk in the flow and
timing domain (33, 34, 38). All studies in the meta-analysis
displayed relatively reduced concerns regarding applicability in
the three domains (patient selection, index test, and
reference standard).

Meta-Analysis
Seven, out of twelve, selected systematic studies discussed the use
of radiomics in predicting the treatment response of neoadjuvant
chemotherapy. Only six studies provided sufficient data to
allow the reconstruction of a contingency table to compute an
Frontiers in Oncology | www.frontiersin.org 522
overall outcome. Hence, only six studies were included in the
meta-analysis.

Spearman’s correlation analysis revealed no threshold effect
(r = 0.486, p = 0.3556). The SROC curve, pooled AUC, pooled
sensitivity, and pooled specificity were used to assess the ability
of radiomics to predict the response of neoadjuvant
chemotherapy in NPC patients. Based on our data analysis, the
pooled sensitivity and specificity were 0.88 (95% CI: 0.71–0.95)
and 0.82 (95% CI: 0.68–0.91), respectively, as evidenced by
the corresponding forest plots in Figure 3. The pooled AUC
was 0.91 (95% CI: 0.88–0.93). Cochran’s Q was 29.16 (p < 0.01),
and the I2 score was 85.8%, which represented a high level of
heterogeneity within eligible studies with statistically significant
heterogeneity. Figure 4 depicts the forest plot of the treatment
outcome, computed as log OR. The log OR of the radiomics
model predicting the neoadjuvant chemotherapy treatment
response in NPC patients was 0.31 (95% CI: -1.58–2.21). The
SROC curve is provided in Figure 5. The funnel plot correlating
the outcome to standard error is presented in Figure 6. Given
that we had less than 10 eligible articles in our meta-analysis,
Egger’s test was not applicable, as suggested by the Cochrane
guidelines (46).
DISCUSSION

Radiomics has excellent prospects in multiple applications and
can potentially aid in retrieving more quantitative data from
standard medical images (47). In recent years, radiomics has
developed rapidly in NPC research. However, despite ongoing
FIGURE 2 | Assessment of the methodological quality of publications included in the meta-analysis, based on the bias risk and applicability using the QUADAS-2
tool. Green, yellow, and red circles denote low, unclear, and high bias risks, respectively.
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FIGURE 3 | Forest plots. (A) sensitivity; (B) specificity.
FIGURE 4 | Forest plot of the study outcome, as evidenced by the log odds ratio of six included meta-analysis studies examining the radiomics accuracy in
predicting the treatment response to neoadjuvant chemotherapy in treating nasopharyngeal carcinoma. TP, number of patients correctly predicted in the sensitive
group; FN, number of patients incorrectly predicted in the resistance group; FP, number of patients incorrectly predicted in the sensitive group; TN, number of
patients correctly predicted in the resistance group; x-axis, log-transformed odds ratios; REML, restricted maximum likelihood.
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efforts to standardize radiomics extraction features and analysis,
their usage outside research is not yet justified (48).

We found several articles based on radiomics to predict
response to neoadjuvant chemotherapy in NPC patients,
mostly over the last 3 years. This suggested that the use of
radiomics in neoadjuvant chemotherapy for NPC patients is
novel and remains groundbreaking. Based on our analysis, the
characteristics of radiomics investigations were similar among all
eligible publications. First, the ROI was manually segmented by
two radiologists. Second, the radiomics features were extracted,
Frontiers in Oncology | www.frontiersin.org 724
and relevant features were selected. Third, a model predicting
neoadjuvant chemotherapy effectiveness in treating NPC was
constructed and evaluated. The texture features were deemed as
the most frequent type of radiomics features in the twelve
selected articles, and the detailed information is presented in
Table S4.

Ten of the twelve articles employed texture features in their
highest AUC models. The wavelet features were deemed as a
frequent occurrence, and others included first-order features and
shape features. During the prediction of neoadjuvant
FIGURE 6 | A funnel plot of meta-analyzed studies.
FIGURE 5 | The summary receiver operating characteristic (SROC) curve.
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chemotherapy efficacy in NPC, radiomics features including
texture, wavelet, first order, and other features extracted from
images by artificial intelligence algorithms were able to show a lot
of hidden information. With an increasing number of radiomics
studies, several studies also revealed that textural features could
provide additional predictive information (49–53). This
systematic analysis found that the Gray Level Run Length
Matrix features, the Gray Level Size Zone Matrix features, and
the Gray Level Co-occurrence Matrix features are more
frequently used. The textural features were shown to provide
good results in predicting the efficacy of neoadjuvant
chemotherapy treatment for NPC. One possible reason is that
texture features contain information related to the efficacy of
neoadjuvant chemotherapy treatment.

The advent of radiomics has made great contributions to
overcoming limitations of user-dependent interpretation, thus
assisting physicians in solving clinical problems. However, it was
undeniable that the quality of our current research on radiomics
is uneven. RQS is a common method for assessing the quality of
radiomics studies and has been shown to accurately evaluate the
methodological quality of radiomics studies. This is essential for
the critical appraisal of a massive amount of research articles and
prioritizing the verification of high-quality data. Since the first
RQS application produced certain variations in inter-rater
agreements (54), our independent RQS scoring was conducted
by two independent readers experienced in radiomics. This way,
we achieved a good level of agreement in terms of overall rating
(ICC=0.987) and all scoring elements. The ICC, corresponding
to each score category, was greater than 0.75. The RQS of our
eligible studies were between 7 and 21 points, with a maximum
of 36. But all eligible studies were retrospective in nature;
therefore, 7 points was lost. We recommend future prospective
studies to obtain higher-quality evidence. Moreover, none of the
studies we analyzed conducted a cost–benefit analysis, and no
phantom investigations were performed in terms of scan images.
These deficiencies in research should be resolved in future
radiomics research.

Our meta-analysis examined the prediction accuracy of
neoadjuvant chemotherapy efficacy in NPC patients, based on
radiomics. The SROC curve, obtained from the meta-analysis,
is a ROC curve drawn from the OR of different radiomics
studies. We demonstrated an enhanced prediction with a
pooled AUC of 0.91. Our pooled sensitivity and pooled
specificity reached 0.88 and 0.82, respectively. In terms of the
publications that were eligible for meta-analysis, our
QUADAS-2 assessment revealed a reduced bias risk while
highlighting some critical matters. Particularly, three articles
exhibited incomplete reporting of the inclusion–exclusion
criteria, which can inadvertently introduce bias in the patient
selection process (34, 38, 42). Moreover, one study received an
unclear bias risk in the index test domain (33), due to the low
number of features analyzed to the point of potential bias. In
addition, three studies received an unclear bias risk in the flow
and timing domain. Among them, one study failed to report the
neoadjuvant chemotherapy duration (38). The remaining two
studies showed less standardized processes (33, 34), and neither
study employed a test set to validate the radiomics model. One
Frontiers in Oncology | www.frontiersin.org 825
study (33) employed a leave-one-out cross-validation method
to evaluate the model, and another (34) used the bootstrap-
validated model. Although internal validation in the training
set can evaluate the performance of the radiomics model, this
validation method may have introduced bias. All these
concerns are sources of possible bias and should be clearly
stated to eliminate bias.

The limitations of our work include the following. First, all
studies were retrospective, and no prospective radiomics
studies were found. Second, the radiomics features may have
been affected by imaging technology. In the future, multicenter
prospective investigations should be conducted to fully
examine the predictability of radiomics studies (55). Third,
RQS is a purely methodological scoring system that does not
account for alterations in the study aim. Fourth, our sample size
was relatively low, and the included studies were all from
China. Fifth, although the QUADAS-2 assessment provided
some unclear bias risks, no high bias sources were found.
Moreover, being a qualitative score, the QUADAS-2
interpretation is not easily interpretable. Given our small
sample size, our publication bias assessment is open to
question. Sixth, we noted a high study heterogeneity, but this
is typically common among machine learning meta-analyses
and diagnostic meta-analyses (56–59).
CONCLUSION

Radiomics studies investigating the efficacy of neoadjuvant
chemotherapy in NPC patients demonstrated promising
results. We, therefore, recommend properly designed
prospective trials in the future, including the validation and
standardization of methodological data analysis.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
AUTHOR CONTRIBUTIONS

Conceptualization: CY, ZJ, TC, RZ, JW, DZ; Data collection: CY,
GW, ZJ, PH; Data analysis: CY, ZJ, ZZ, LB; Data curation: GW, CY,
JJ, XW; Writing-original draft preparation: CY; Writing-review and
editing: ZJ, DJ, ZZ, HL; Supervision: DL, ZZ and HL. All authors
have read and agreed to the published version of the manuscript.
FUNDING

This work was funded by the National Natural Science
Foundation of China (61971271), the Taishan Scholars
Project of Shandong Province (Tsqn20161023), the Jinan
City-School Integration Development Strategy Project
May 2022 | Volume 12 | Article 893103

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Radiomics for Nasopharyngeal Carcinoma
(JNSX2021023), the Natural Science Foundation of Shandong
Province (ZR2019PF011), the Natural Science Foundation of
Hunan Province, China (S2021JJKWLH0218), and 2020
Hunan Provincial clinical medical technology innovation
guidance project (S2020SFTLJS0217).
Frontiers in Oncology | www.frontiersin.org 926
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.893103/
full#supplementary-material
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal AJCCJC. Erratum:

Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin
(2020) 70(4):313. doi: 10.3322/caac.21609

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer Statistics in
China, 2015. CA Cancer J Clin (2016) 66(2):115–32. doi: 10.3322/caac.21338

3. Wei KR, Zheng RS, Zhang SW, Liang ZH, Li ZM, Chen WQ. Nasopharyngeal
Carcinoma Incidence and Mortality in China, 2013. Chin J Cancer (2017) 36
(1):90. doi: 10.1186/s40880-017-0257-9

4. Pan JJ, Ng WT, Zong JF, Chan LL, O'Sullivan B, Lin SJ, et al. Proposal for the
8th Edition of the AJCC/UICC Staging System for Nasopharyngeal Cancer in
the Era of Intensity-Modulated Radiotherapy. Cancer (2016) 122(4):546–58.
doi: 10.1002/cncr.29795

5. Mao YP, Xie FY, Liu LZ, Sun Y, Li L, Tang LL, et al. Re-Evaluation of 6th
Edition of Ajcc Staging System for Nasopharyngeal Carcinoma and Proposed
Improvement Based on Magnetic Resonance Imaging. Int J Radiat Oncol
(2009) 73(5):1326–34. doi: 10.1016/j.ijrobp.2008.07.062

6. Tang LL, Chen WQ, Xue WQ, He YQ, Zheng RS, Zeng YX, et al. Global
Trends in Incidence and Mortality of Nasopharyngeal Carcinoma. Cancer
Lett (2016) 374(1):22–30. doi: 10.1016/j.canlet.2016.01.040

7. Wei WI, Sham JST. Nasopharyngeal Carcinoma. Lancet (2005) 365
(9476):2041–54. doi: 10.1016/s0140-6736(05)66698-6

8. Micheau C, Rilke F, Pilotti S. Proposal for a New Histopathological
Classification of the Carcinomas of the Nasopharynx. Tumori (1978) 64
(5):513–8. doi: 10.1177/030089167806400509

9. Marks JE, Phillips JL, Menck HR. The National Cancer Data Base Report on
the Relationship of Race and National Origin to the Histology of
Nasopharyngeal Carcinoma. Cancer (1998) 83(3):582–8. doi: 10.1002/(sici)
1097-0142(19980801)83:3<582::aid-cncr29>3.0.co;2-r

10. Tang LL, Chen YP, Mao YP, Wang ZX, Guo R, Chen L, et al. Validation of the
8th Edition of the UICC/AJCC Staging System for Nasopharyngeal
Carcinoma From Endemic Areas in the Intensity-Modulated Radiotherapy
Era. J Natl Compr Canc Ne (2017) 15(7):913–9. doi: 10.6004/jnccn.2017.0121

11. Qiu WZ, Huang PY, Shi JL, Xia HQ, Zhao C, Cao KJ. Neoadjuvant
Chemotherapy Plus Intensity-Modulated Radiotherapy Versus Concurrent
Chemoradiotherapy Plus Adjuvant Chemotherapy for the Treatment of
Locoregionally Advanced Nasopharyngeal Carcinoma: A Retrospective
Controlled Study. Chin J Cancer (2016) 35:2. doi: 10.1186/s40880-015-
0076-9

12. Liu SL, Sun XS, Yan JJ, Chen QY, Lin HX, Wena YF, et al. Optimal
Cumulative Cisplatin Dose in Nasopharyngeal Carcinoma Patients Based
on Induction Chemotherapy Response. Radiother Oncol (2019) 137:83–94.
doi: 10.1016/j.radonc.2019.04.020

13. Lan XW, Xiao Y, Zou XB, Zhang XM, OuYang PY, Xie FY. Outcomes of
Adding Induction Chemotherapy to Concurrent Chemoradiotherapy for
Stage T3N0-1 Nasopharyngeal Carcinoma: A Propensity-Matched Study.
Onco Targets Ther (2017) 10:3853–60. doi: 10.2147/OTT.S133917

14. Yen RF, Chen THH, Ting LL, Tzen KY, Pan MH, Hong RL. Early Restaging
Whole-Body(18)F-FDG PET During Induction Chemotherapy Predicts
Clinical Outcome in Patients With Locoregionally Advanced
Nasopharyngeal Carcinoma. Eur J Nucl Med Mol I (2005) 32(10):1152–9.
doi: 10.1007/s00259-005-1837-5

15. Peng H, Chen L, Zhang Y, Li WF, Mao YP, Liu X, et al. The Tumour Response
to Induction Chemotherapy has Prognostic Value for Long-Term Survival
Outcomes After Intensity-Modulated Radiation Therapy in Nasopharyngeal
Carcinoma. Sci Rep-Uk (2016) 6:24835. doi: 10.1038/srep24835

16. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: Extracting More Information From Medical
Images Using Advanced Feature Analysis. Eur J Cancer (2012) 48(4):441–6.
doi: 10.1016/j.ejca.2011.11.036

17. Kumar V, Gu YH, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.
Radiomics: The Process and the Challenges. Magn Reson Imaging (2012) 30
(9):1234–48. doi: 10.1016/j.mri.2012.06.010

18. Mayerhoefer ME, Materka A, Langs G, Haggstrom I, Szczypinski P, Gibbs P,
et al. Introduction to Radiomics. J Nucl Med (2020) 61(4):488–95.
doi: 10.2967/jnumed.118.222893

19. Castellano G, Bonilha L, Li LM, Cendes F. Texture Analysis of Medical
Images. Clin Radiol (2004) 59(12):1061–9. doi: 10.1016/j.crad.2004.07.008

20. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi: 10.1148/
radiol.2015151169

21. Jiang ZK, Dong YJ, Yang LK, Lv YH, Dong S, Yuan SH, et al. CT-Based Hand-
Crafted Radiomic Signatures Can Predict PD-L1 Expression Levels in Non-
Small Cell Lung Cancer: A Two-Center Study. J Digit Imaging (2021) 34
(5):1073–85. doi: 10.1007/s10278-021-00484-9

22. Yang FC, Zhang JY, Zhou L, Xia W, Zhang R, Wei HF, et al. CT-Based
Radiomics Signatures can Predict the Tumor Response of Non-Small Cell
Lung Cancer Patients Treated With First-Line Chemotherapy and Targeted
Therapy. Eur Radiol (2022) 32(3):1538–47. doi: 10.1007/s00330-021-08277-y

23. Giannini V, Mazzetti S, Bertotto I, Chiarenza C, Cauda S, Delmastro E, et al.
Predicting Locally Advanced Rectal Cancer Response to Neoadjuvant
Therapy With (18)F-FDG PET and MRI Radiomics Features. Eur J Nucl
Med Mol Imaging (2019) 46(4):878–88. doi: 10.1007/s00259-018-4250-6

24. Zhuang Z, Liu Z, Li J, Wang X, Xie P, Xiong F, et al. Radiomic Signature of the
FOWARC Trial Predicts Pathological Response to Neoadjuvant Treatment in
Rectal Cancer. J Transl Med (2021) 19(1):256. doi: 10.1186/s12967-021-02919-x

25. Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Huang EP,
et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology
(2015) 277(3):813–25. doi: 10.1148/radiol.2015142202

26. Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT,
et al. Quantitative Imaging Biomarkers: A Review of Statistical Methods for
Technical Performance Assessment. Stat Methods Med Res (2015) 24(1):27–
67. doi: 10.1177/0962280214537344

27. McInnes MDF, Moher D, Thombs BD. Preferred Reporting Items for a
Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies:
The PRISMA-DTA Statement (Vol 319, Pg 388, 2018). Jama-J Am Med Assoc
(2019) 322(20):2026–. doi: 10.1001/jama.2019.18307

28. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: The Bridge Between Medical Imaging and Personalized
Medicine. Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/
nrclinonc.2017.141

29. Whiting PF, Rutjes AWS,Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al.
QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic
Accuracy Studies. Ann Intern Med (2011) 155(8):529–U104. doi: 10.7326/
0003-4819-155-8-201110180-00009

30. Park JE, Kim D, KimHS, Park SY, Kim JY, Cho SJ, et al. Quality of Science and
Reporting of Radiomics in Oncologic Studies: Room for Improvement
According to Radiomics Quality Score and TRIPOD Statement. Eur Radiol
(2020) 30(1):523–36. doi: 10.1007/s00330-019-06360-z

31. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The Development
of QUADAS: A Tool for the Quality Assessment of Studies of Diagnostic
Accuracy Included in Systematic Reviews. BMC Med Res Methodol (2003)
3:25. doi: 10.1186/1471-2288-3-25

32. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring Inconsistency
in Meta-Analyses. Brit Med J (2003) 327(7414):557–60. doi: 10.1136/
bmj.327.7414.557

33. Piao Y, Jiang C, Wang L, Yan F, Ye Z, Fu Z, et al. The Usefulness of
Pretreatment MR-Based Radiomics on Early Response of Neoadjuvant
May 2022 | Volume 12 | Article 893103

https://www.frontiersin.org/articles/10.3389/fonc.2022.893103/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.893103/full#supplementary-material
https://doi.org/10.3322/caac.21609
https://doi.org/10.3322/caac.21338
https://doi.org/10.1186/s40880-017-0257-9
https://doi.org/10.1002/cncr.29795
https://doi.org/10.1016/j.ijrobp.2008.07.062
https://doi.org/10.1016/j.canlet.2016.01.040
https://doi.org/10.1016/s0140-6736(05)66698-6
https://doi.org/10.1177/030089167806400509
https://doi.org/10.1002/(sici)1097-0142(19980801)83:3%3C582::aid-cncr29%3E3.0.co;2-r
https://doi.org/10.1002/(sici)1097-0142(19980801)83:3%3C582::aid-cncr29%3E3.0.co;2-r
https://doi.org/10.6004/jnccn.2017.0121
https://doi.org/10.1186/s40880-015-0076-9
https://doi.org/10.1186/s40880-015-0076-9
https://doi.org/10.1016/j.radonc.2019.04.020
https://doi.org/10.2147/OTT.S133917
https://doi.org/10.1007/s00259-005-1837-5
https://doi.org/10.1038/srep24835
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1016/j.crad.2004.07.008
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s10278-021-00484-9
https://doi.org/10.1007/s00330-021-08277-y
https://doi.org/10.1007/s00259-018-4250-6
https://doi.org/10.1186/s12967-021-02919-x
https://doi.org/10.1148/radiol.2015142202
https://doi.org/10.1177/0962280214537344
https://doi.org/10.1001/jama.2019.18307
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1007/s00330-019-06360-z
https://doi.org/10.1186/1471-2288-3-25
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1136/bmj.327.7414.557
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Radiomics for Nasopharyngeal Carcinoma
Chemotherapy in Patients With Locally Advanced Nasopharyngeal
Carc inoma . Onco l Re s ( 2021) 28(6 ) : 605–13 . do i : 10 . 3727/
096504020X16022401878096

34. Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR Imaging
Radiomics Signatures for Response Prediction to Induction Chemotherapy in
Patients With Nasopharyngeal Carcinoma. Eur J Radiol (2018) 98:100–6.
doi: 10.1016/j.ejrad.2017.11.007

35. Zhang L, Ye Z, Ruan L, Jiang M. Pretreatment MRI-Derived Radiomics May
Evaluate the Response of Different Induction Chemotherapy Regimens in
Locally Advanced Nasopharyngeal Carcinoma. Acad Radiol (2020) 27
(12):1655–64. doi: 10.1016/j.acra.2020.09.002

36. Zhang L, Wu X, Liu J, Zhang B, Mo X, Chen Q, et al. MRI-Based Deep-
Learning Model for Distant Metastasis-Free Survival in Locoregionally
Advanced Nasopharyngeal Carcinoma. J Magn Reson Imaging (2021) 53
(1):167–78. doi: 10.1002/jmri.27308

37. Chen X, Li Y, Li X, Cao X, Xiang Y, Xia W, et al. An Interpretable Machine
Learning Prognostic System for Locoregionally Advanced Nasopharyngeal
Carcinoma Based on Tumor Burden Features. Oral Oncol (2021) 118:105335.
doi: 10.1016/j.oraloncology.2021.105335

38. Zhao L, Gong J, Xi Y, Xu M, Li C, Kang X, et al. MRI-Based Radiomics
Nomogram may Predict the Response to Induction Chemotherapy and
Survival in Locally Advanced Nasopharyngeal Carcinoma. Eur Radiol
(2020) 30(1):537–46. doi: 10.1007/s00330-019-06211-x

39. Peng H, Dong D, Fang MJ, Li L, Tang LL, Chen L, et al. Prognostic Value of
Deep Learning PET/CT-Based Radiomics: Potential Role for Future
Individual Induction Chemotherapy in Advanced Nasopharyngeal
Carcinoma. Clin Cancer Res (2019) 25(14):4271–9. doi: 10.1158/1078-
0432.CCR-18-3065

40. Zhong LZ, Fang XL, Dong D, Peng H, Fang MJ, Huang CL, et al. A Deep
Learning MR-Based Radiomic Nomogram may Predict Survival for
Nasopharyngeal Carcinoma Patients With Stage T3N1M0. Radiother Oncol
(2020) 151:1–9. doi: 10.1016/j.radonc.2020.06.050

41. Dong D, Zhang F, Zhong LZ, Fang MJ, Huang CL, Yao JJ, et al. Development
and Validation of a Novel MR Imaging Predictor of Response to Induction
Chemotherapy in Locoregionally Advanced Nasopharyngeal Cancer: A
Randomized Controlled Trial Substudy (NCT01245959). BMC Med (2019)
17(1):190. doi: 10.1186/s12916-019-1422-6

42. Yang Y, Wang M, Qiu K, Wang Y, Ma X. Computed Tomography-Based
Deep-Learning Prediction of Induction Chemotherapy Treatment Response
in Locally Advanced Nasopharyngeal Carcinoma. Strahlenther Onkol. (2022)
198(2):183–93. doi: 10.1007/s00066-021-01874-2

43. Hu CM, Zheng DC, Cao XS, Pang PP, Fang YH, Lu T, et al. Application Value
of Magnetic Resonance Radiomics and Clinical Nomograms in Evaluating the
Sensitivity of Neoadjuvant Chemotherapy for Nasopharyngeal Carcinoma.
Front Oncol (2021) 11:740776. doi: 10.3389/fonc.2021.740776

44. Liao H, Chen XB, Lu SL, Jin GQ, Pei W, Li Y, et al. MRI-Based Back Propagation
Neural Network Model as a Powerful Tool for Predicting the Response to
Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal
Carcinoma. J Magn Reson Imaging (2021). doi: 10.1002/jmri.28047

45. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New Response Evaluation Criteria in Solid Tumours: Revised RECIST
Guideline (Version 1.1). Eur J Cancer (2009) 45(2):228–47. doi: 10.1016/
j.ejca.2008.10.026

46. Nasser M. Cochrane Handbook for Systematic Reviews of Interventions. Am J
Public Health (2020) 110(6):753–4. doi: 10.2105/Ajph.2020.305609

47. Gul M, Bonjoc KC, Gorlin D, Wong CW, Salem A, La V, et al. Diagnostic
Utility of Radiomics in Thyroid and Head and Neck Cancers. Front Oncol
(2021) 11:639326. doi: 10.3389/fonc.2021.639326

48. Zwanenburg A, Vallieres M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte
A, et al. The Image Biomarker Standardization Initiative: Standardized
Quantitative Radiomics for High-Throughput Image-Based Phenotyping.
Radiology (2020) 295(2):328–38. doi: 10.1148/radiol.2020191145

49. Jiang Z, Wang B, Han X, Zhao P, Gao M, Zhang Y, et al. Multimodality MRI-
Based Radiomics Approach to Predict the Posttreatment Response of Lung
Frontiers in Oncology | www.frontiersin.org 1027
Cancer Brain Metastases to Gamma Knife Radiosurgery. Eur Radiol (2022) 32
(4):2266–76. doi: 10.1007/s00330-021-08368-w

50. Zhang X, Xu X, Tian Q, Li B, Wu Y, Yang Z, et al. Radiomics Assessment of
Bladder Cancer Grade Using Texture Features From Diffusion-Weighted
Imaging. J Magn Reson Imaging (2017) 46(5):1281–8. doi: 10.1002/
jmri.25669

51. Cunliffe A, Armato SG3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA.
Lung Texture in Serial Thoracic Computed Tomography Scans: Correlation of
Radiomics-Based Features With Radiation Therapy Dose and Radiation
Pneumonitis Development. Int J Radiat Oncol Biol Phys (2015) 91(5):1048–
56. doi: 10.1016/j.ijrobp.2014.11.030

52. Tian Q, Yan L-F, Zhang X, Zhang X, Hu Y-C, Han Y, et al. Radiomics Strategy
for Glioma Grading Using Texture Features From Multiparametric MRI.
J Magn Reson Imaging (2018) 48(6):1518–28. doi: 10.1002/jmri.26010

53. Bo L, Zhang Z, Jiang Z, Yang C, Huang P, Chen T, et al. Differentiation of
Brain Abscess From Cystic Glioma Using Conventional MRI Based on Deep
Transfer Learning Features and Hand-Crafted Radiomics Features. Front Med
(Lausanne) (2021) 8:748144. doi: 10.3389/fmed.2021.748144

54. Sanduleanu S, Woodruff HC, de Jong EEC, van Timmeren JE, Jochems A,
Dubois L, et al. Tracking Tumor Biology With Radiomics: A Systematic
Review Utilizing a Radiomics Quality Score. Radiother Oncol (2018) 127
(3):349–60. doi: 10.1016/j.radonc.2018.03.033

55. Park CM. Can Artificial Intelligence Fix the Reproducibility Problem of
Radiomics? Radiology (2019) 292(2):374–5. doi: 10.1148/radiol.2019191154

56. Cuocolo R, Cipullo MB, Stanzione A, Romeo V, Green R, Cantoni V, et al.
Machine Learning for the Identification of Clinically Significant Prostate
Cancer on MRI: A Meta-Analysis. Eur Radiol (2020) 30(12):6877–87.
doi: 10.1007/s00330-020-07027-w

57. Cronin P, Kelly AM, Altaee D, Foerster B, Petrou M, Dwamena BA. How to
Perform a Systematic Review and Meta-Analysis of Diagnostic Imaging
Studies. Acad Radio (2018) 25(5):573–93. doi: 10.1016/j.acra.2017.12.007

58. Kao YS, Hsu Y. A Meta-Analysis for Using Radiomics to Predict Complete
Pathological Response in Esophageal Cancer Patients Receiving Neoadjuvant
Chemoradiation. In Vivo (2021) 35(3):1857–63. doi: 10.21873/invivo.12448

59. Ugga L, Perillo T, Cuocolo R, Stanzione A, Romeo V, Green R, et al.
Meningioma MRI Radiomics and Machine Learning: Systematic Review,
Quality Score Assessment, and Meta-Analysis. Neuroradiology (2021) 63
(8):1293–304. doi: 10.1007/s00234-021-02668-0

Conflict of Interest: Author DZ is employed by Shandong Provincial Key
Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda
Pharmaceutical Group Co., Ltd., Shandong Academy of Pharmaceutical Sciences.
Author JJ is employed by Qingdao NovelBeam Technology Co., Ltd. Author XW is
employed by Shangdong AccurDx Diagnosis of Biotech Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The handling editor XM declared a shared parent affiliation with the author JW at
the time of review.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yang, Jiang, Cheng, Zhou, Wang, Jing, Bo, Huang, Wang, Zhang,
Jiang, Wang, Lu, Zhang and Li. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
May 2022 | Volume 12 | Article 893103

https://doi.org/10.3727/096504020X16022401878096
https://doi.org/10.3727/096504020X16022401878096
https://doi.org/10.1016/j.ejrad.2017.11.007
https://doi.org/10.1016/j.acra.2020.09.002
https://doi.org/10.1002/jmri.27308
https://doi.org/10.1016/j.oraloncology.2021.105335
https://doi.org/10.1007/s00330-019-06211-x
https://doi.org/10.1158/1078-0432.CCR-18-3065
https://doi.org/10.1158/1078-0432.CCR-18-3065
https://doi.org/10.1016/j.radonc.2020.06.050
https://doi.org/10.1186/s12916-019-1422-6
https://doi.org/10.1007/s00066-021-01874-2
https://doi.org/10.3389/fonc.2021.740776
https://doi.org/10.1002/jmri.28047
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.2105/Ajph.2020.305609
https://doi.org/10.3389/fonc.2021.639326
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1007/s00330-021-08368-w
https://doi.org/10.1002/jmri.25669
https://doi.org/10.1002/jmri.25669
https://doi.org/10.1016/j.ijrobp.2014.11.030
https://doi.org/10.1002/jmri.26010
https://doi.org/10.3389/fmed.2021.748144
https://doi.org/10.1016/j.radonc.2018.03.033
https://doi.org/10.1148/radiol.2019191154
https://doi.org/10.1007/s00330-020-07027-w
https://doi.org/10.1016/j.acra.2017.12.007
https://doi.org/10.21873/invivo.12448
https://doi.org/10.1007/s00234-021-02668-0
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Pei Yang,

Central South University, China

Reviewed by:
Jun Shen,

Sun Yat-sen University, China
Bassem Youssef,

American University of Beirut, Lebanon
Stefania Volpe,

University of Milan, Italy

*Correspondence:
Xiaoying Zhao

jay2491112@163.com
Xingwang Wu

duobi2004@126.com

Specialty section:
This article was submitted to

Genitourinary Oncology,
a section of the journal
Frontiers in Oncology

Received: 14 January 2022
Accepted: 11 May 2022
Published: 03 June 2022

Citation:
Gao Y, Wang X, Wang S, Miao Y,

Zhu C, Li C, Huang G, Jiang Y, Li J,
Zhao X and Wu X (2022) Differential

Diagnosis of Type 1 and Type 2
Papillary Renal Cell Carcinoma

Based on Enhanced CT
Radiomics Nomogram.

Front. Oncol. 12:854979.
doi: 10.3389/fonc.2022.854979

ORIGINAL RESEARCH
published: 03 June 2022

doi: 10.3389/fonc.2022.854979
Differential Diagnosis of Type 1
and Type 2 Papillary Renal Cell
Carcinoma Based on Enhanced
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Objectives: To construct a contrast-enhanced CT-based radiomics nomogram that
combines clinical factors and a radiomics signature to distinguish papillary renal cell
carcinoma (pRCC) type 1 from pRCC type 2 tumours.

Methods: A total of 131 patients with 60 in pRCC type 1 and 71 in pRCC type 2 were
enrolled and divided into training set (n=91) and testing set (n=40). Patient demographics
and enhanced CT imaging characteristics were evaluated to set up a clinical factors
model. A radiomics signature was constructed and radiomics score (Rad-score) was
calculated by extracting radiomics features from contrast-enhanced CT images in
corticomedullary phase (CMP) and nephrographic phase (NP). A radiomics nomogram
was then built by incorporating the Rad-score and significant clinical factors according to
multivariate logistic regression analysis. The diagnostic performance of the clinical factors
model, radiomics signature and radiomics nomogram was evaluated on both the training
and testing sets.

Results: Three validated features were extracted from the CT images and used to
construct the radiomics signature. Boundary blurring as an independent risk factor for
tumours was used to build clinical factors model. The AUC value of the radiomics
nomogram, which was based on the selected clinical factors and Rad-score, were
0.855 and 0.831 in the training and testing sets, respectively. The decision curves of
the radiomics nomogram and radiomics signature in the training set indicated an overall
net benefit over the clinical factors model.

Conclusion: Radiomics nomogram combining clinical factors and radiomics signature is
a non-invasive prediction method with a good prediction for pRCC type 1 tumours and
type 2 tumours preoperatively and has some significance in guiding clinicians selecting
subsequent treatment plans.

Keywords: radiomics nomogram, papillary renal cell carcinoma, differential diagnosis, computed tomography,
tumour subtypes
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignancy of
the kidney in adults, accounting for approximately 85% of renal
tumours (1). Clear cell RCC (ccRCC), papillary RCC (pRCC)
and chromophobe RCC (chRCC), accounting for 70-80%, 10-
20% and 3-7% of RCCs, respectively (2). PRCC is the second
most common subtype after ccRCC. Among the subtypes of
RCC, pRCC has a higher 5-year survival rate and a better
prognosis. In 1997, Delahunt et al. initially subdivided pRCC
into type 1 and type 2 according to morphological and
immunohistochemical characteristics (3). Typically, type 1
exhibits papillae covered by a single layer of monolayer
cuboidal epithelium with a lack of cytoplasm, whereas type 2 is
characterized by the presence of nuclear pseudostratification (4).
Previous studies have shown that type 2 tumours tend to have a
higher pathological stage, a higher nuclear grade, as patients with
type 2 tumours have a worse prognosis (5–7). As type 2 tumours
are more aggressive, an early and accurate diagnosis is essential.
Due to the low malignancy of type 1 tumours, relatively
conservative treatment options such as follow-up, ablation and
partial nephrectomy are usually available in clinical practice.
According to the National Comprehensive Cancer Network
(NCCN) RCC guidelines, less aggressive RCC can be treated
by active surveillance or partial nephrectomy. In contrast, most
highly aggressive RCC patients usually undergo radical
nephrectomy with consideration of adjuvant therapy. The
precise preoperative differentiation between these two types of
the tumours will determine different treatment options and
different prognoses.

Pathological biopsy by percutaneous puncture biopsy or
surgical excision is the most accurate method of identifying the
pRCC subtype, but it is after all an invasive test, and we would
like to be able to make a non-invasive diagnosis preoperatively.
Although some studies have shown a higher heterogeneity of
type 2 tumours compared to type 1 tumours on conventional
computed tomography (CT) and magnetic resonance imaging
(MRI) images, typically type 2 tumours are large, have blurred
margins and tend to invade blood vessels and metastasize to
surrounding lymph nodes (8–10). However, these two types of
tumours have many overlapping imaging features on
conventional CT or MRI images, and it is often difficult to
distinguish subtypes of pRCC based on imaging features alone.

Radiomics is a recent emerging research approach that uses
high-throughput data feature extraction algorithms to translate
medical images into high-dimensional, useable quantitative
image features, and it uses various algorithms for deeper
analysis of the features. This method can be used not only for
preoperative pathological classification and grading of the
tumour, but also for the prediction of prognosis and survival
rate of tumour patients (11–13). Currently, radiomics studies for
RCC have been focused on the identification of the three most
common subtypes of RCC (ccRCC, pRCC, chRCC) and on the
nuclear grading of RCC (10, 14–18). For example, Deng et al.
(14)showed that CT-based texture analysis was not only able to
identify ccRCC and pRCC, but also to predict the Fuhrman grade
of the tumour. Some studies have shown that CT and MRI-based
Frontiers in Oncology | www.frontiersin.org 229
texture analysis techniques can differentiate between pRCC
subtypes (10, 17, 18). However, to the best of our knowledge,
apart from some studies that have identified pRCC subtypes
based on textural features alone, there is no study that combines
radiomics features with clinical factors to make a differential
diagnosis of pRCC subtypes. In our study, we quantified
radiomics signature by calculating the rad-score value form
contrast-enhanced CT images of each patient and attempted to
build a contrast enhanced CT-based radiomics nomogram that
included both rad-score and clinical factors to better
discriminate between the two subtypes of pRCC.
MATERIALS AND METHODS

Patients
The ethics review board at our hospital approved this
retrospective study and patient informed consent was waived.
Patients who underwent non-enhanced and contrast-enhanced
CT scans from January 2013 to October 2021 at our hospital for
diagnosing kidney disease were considered. Percutaneous
puncture or surgical excision specimens diagnosed as pRCC
type 1 or 2 were selected by searching the hospital’s picture
archiving and communication system (PACS). The inclusion
criteria were as follows: (1) Patients who had a definitive
pathologic diagnosis of pRCC. (2) Patients with available
preoperative plain and enhanced CT scans, and the image
quality was satisfactory for analysis (clear image with no
artifacts). (3) Patients with complete clinic-pathological data.
The exclusion criteria were as follows: (1) The subtype of pRCC
patients could not be determined as type 1 or type 2. (2) Patients
who had a history of abdominal surgery. (3) Patients received
abdominal radiotherapy or chemotherapy prior to CT scan.

CT Image Acquisition
CT scan protocols are shown in Table 1. A power injector
administered a 90-100-ml of nonionic contrast medium
(Omnipaque, GE Healthcare or Ultravist, Bayer, Schering
Pharma) into the antecubital vein at a rate of 3 mL/s. Pre-
contrast CT of the abdomen was first acquired, followed by three
TABLE 1 | CT scan protocols.

Manufacturer Siemens General Electric Philips

Scanner model Sensation 64 Discovery 750 Brilliance
Sequence Axial Axial Axial
Gantry rotation time (s) 0.5 0.5 0.5
Tube voltage (kV) 120 120 120
Tube current (mA) 200 250-400 180-450
Detector collimation (mm) 64×0.6 64×0.625 64×0.625
Matrix 512×512 512×512 512×512
Pitch 1.0 1.375 1.0
Slice thickness (mm) 5 5 5
Corticomedullary phase (s) 30 30 30
Nephrographic phase (s) 80 80 80
Excretory phase (s) 180 180 180
June 202
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post-contrast CT scans obtained in the corticomedullary phase
(CMP, acquired 30 s after contrast injection), nephrographic
phase (NP, acquired 80 s after contrast injection) and excretory
phase (EP, acquired 180 s after contrast injection).

CT Characteristic Evaluation
The CT image were scrutinized by two radiologists with 4 years
(reader 1, Y.G.) and 7 years (reader 2, X.W.) of diagnostic
abdominal imaging experience. If there was disagreement, two
radiologists needed to reach a consensus. Without knowledge of
the clinicopathologic data, the two readers interpreted the
following CT characteristics together: the maximum diameter
of the tumour on axial CT images; shape (round or not round);
location (left or right); boundary (clear or blurred boundary);
calcification (present or not, “calcification was considered as high
density seen during pre-enhancement CT”); necrosis (present or
not, “necrosis was considered as the non-enhanced liquid area of
tumour accounting for more than 50% of the tumour”); renal
vein invasion (present or not, “renal vein invasion was
considered as the tumour tissue in the renal vein and inferior
vena cava was observed on the imaging”); lymph node metastasis
(present or not, “lymph node metastasis was considered as the
short-axis diameter of the perirenal and retroperitoneal lymph
nodes were greater than 10mm”) (9, 19).

To standardize the measurement of tumour enhancement, it
is generally necessary to select the appropriate region of interests
(ROIs) within the tumour and characterize the tumour
enhancement according to the changes in CT values of the
ROIs on different scan phases. Since the tumour had been
enhanced to some extent on the CMP images and the various
heterogenous components of the tumour could be better
displayed at the stage, all ROIs in this study were selected
based on the CMP images. To accurately assess the extent of
tumour enhancement, the ROIs avoided components such as
necrosis, calcification, and vascularity that are clearly visible on
the images and include only the substantial components of the
tumour. The reader 1 select 2 non-overlapping ROIs, made
separate measurements and averaged the two numbers to
Frontiers in Oncology | www.frontiersin.org 330
obtain the final measurement. Due to individual patient factors
and factors that are difficult to control when performing CT
scanning operations, the iodine contrast load during the scan was
not identical in each case, and this variation could constitute a
systematic error in the measurement of tumour enhancement. In
this study, the cortical area of the kidney on the side of the
tumour was selected as the reference area for iodine contrast
loading normalization during the scan to correct for such
systematic errors. Figure 1 shows an example of this approach.

The ROIs selected in CMP were copied and pasted into the
non-enhanced and NP images to obtain the average tumour
attenuation value (TAV) in each scan phase. The average CT
value of the reference area in each corresponding scan phase was
used as the cortex attenuation value (CAV). The tumour
enhancement value (TEV) and the cortex enhancement value
(CEV) were calculated by subtracting the values of the same ROI
in the non-enhanced phase: TEVx = TAVx – TAV0 and CEVx =
CAVx - CAV0, where x represents the phase (0, non-enhanced; 1,
CMP; 2, NP). The relative enhancement value (REV) was defined
as the ratio of TEV to CEV: REVx = TEVx/CEVx, representing
the degree of enhancement within the tumour relative to the
renal cortex (20).

Construction of the Clinical Factors Model
Univariate analysis was used to compare the differences in
clinical factors (including clinical data and CT characteristcs)
between the type 1 and type 2 tumours. The significant variables
acquired in the univariate analysis were used as inputs, and a
multivariate logistic regression analysis was applied to establish a
clinical factors model. Odds ratios (OR) was calculated for each
independent factor as a relative risk estimate with a 95%
confidence interval (CI).

Three-Dimensional Segmentation
of Tumour Images and Radiomics
Feature Extraction
The basic steps of a radiomics model for renal tumours are
detailed in Figure 2. Three-dimensional (3-D) segmentation of
FIGURE 1 | Selection of region of interests (ROIs) and reference region. (A–C) correspond to the non-enhanced, corticomedullary phase (CMP) and nephrographic
phase (NP). The green circle is one of two tumour ROIs, selected from the parenchymal portion of the tumour where enhancement is evident. The green oval is the
reference region located in the cortical portion of the kidney. The zones of ROIs and reference region are in the same position in each scan phase.
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tumours was performed using the ITK-SNAP software (version
3.8, www.itksnap.org). Contouring was drawn using the ROIs
within the tumour borders on CMP and NP images, 1-2mm
from the tumour boundary. An example of the use of manual
segmentation in a renal tumour is shown in Figure 3.

Features extraction was executed using the PHIgo
Workstation (General Electric Company). As the images were
derived from three CT scanners with different parameters,
normalization and image resampling had to be performed
before features could be extracted from the ROIs of the CMP
and NP images. The image data is normalized using a z-score in
the following form:

z =
x − m
s

,

Where m is the mean of the whole data, s is the standard
deviation of the whole data. In addition, all CT images were
resampled to 1.0×1.0×1.0 mm3 voxels to standardize the slice
thickness use B-spline interpolation sampling technology. 1316
radiomics features were extracted from the ROIs of the CMP and
NP images, respectively.

Inter-observer reliability and intra-observer repeatability of
radiomics feature extraction were usually assessed using inter-
and intra- class correlation coefficients (ICC). We randomly
chose 20 cases of CT images (8 pRCC type 1 and 12 pRCC type
2); ROI segmentation was performed by reader 1 and reader 2.
After two weeks, reader 1 repeated the same steps to evaluate the
degree of matching of feature extraction. When the ICC value is
more than 0.75, it indicates that the extracted features have a
good consistency. Then the remaining image segmentation will
be carried out by reader 1 alone.

Construction of the Radiomics Signature
To prevent overfitting of the radiomics features, features were
further selected before the construction of the radiomics
signature. First, features with ICC >0.75 within the training set
Frontiers in Oncology | www.frontiersin.org 431
were retained. Second, statistically significant features were
screened out using the univariate logistic analysis. Third, the
most valuable features were selected using Gradient Boosting
Decision Tree and multivariate logistic analysis. Finally, a
radiomics score (Rad-score) was calculated by using a formula
based on the radiomics features.

Rad – score was used to establish aradiomics signature
multivariate logistic regression.

Construction of Radiomics
Nomogram and Performance
Evaluation of Different Models
A radiomics nomogram was constructed by combining the
significant variables of clinical factors and the Rad-score.
Calibration curves were used to evaluate the calibration of the
nomogram. The Hosmer-Lemeshow test was conducted to assess
the goodness-of-fit of the nomogram. The diagnostic
performance of the clinical factors model, the radiomics
signature model and the radiomics nomogram for
differentiating pRCC type 1 from pRCC type 2 was evaluated
based on the area under the receiver operator characteristic
(ROC) curve (AUC) in both the training and testing sets. To
evaluate the clinical effectiveness of the radiomics nomogram, a
decision curve analysis (DCA) was performed by calculating the
net benefit of a threshold probability range across the training
and testing sets.

Statistical Analysis
Statistical tests were performed using SPSS (version 25.0, IBM)
and IPM statistical (version 2.4.0, General Electric Company).
Univariate analysis was used to compare the differences in
clinical factors between type 1 and type 2 tumours. Chi-square
test or Fisher exact test was used for categorical variables, and
Mann-Whitney U test was used for continuous variables. A two-
side p < 0.05 was considered significant.
FIGURE 2 | Papillary renal cell carcinoma (pRCC) study radiomics flow chart.
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RESULTS

Clinical Factors of the Patients and
Construction of the Clinical Factor Model
A total of 131 patients were finally enrolled in this study
according to the inclusion and exclusion criteria, including 60
type 1 patients (51 men and 9 women; mean age, 57.17 ± 12.17
years old) and 71 type 2 patients (55 men and 16 women; mean
age, 58.56 ± 13.09 years old). The entire cohort of patients
conforming to the inclusion criteria was divided randomly into
the training set (n=91) and testing set (n=40) in a ratio of 7:3.
The clinical factor data in the training and testing sets are shown
in Table 2. Maximum diameter, shape, boundary, calcification,
necrosis, renal vein invasion, lymph node metastasis and REV2
were statistically significant in differentiating pRCC type 1 and
type 2 tumours after univariate analysis in the training set (both
p<0.05). Multivariate logistic regression analyses were performed
on the eight statistically significant clinical factors listed above.
Frontiers in Oncology | www.frontiersin.org 532
The p-value were 0.111, 0.770, 0.026, 0.342, 0.945, 1.000, 0.999
and 0.971 respectively. If the tumour boundary is blurred (OR,
2.352; 95%CI, 1.743-3.174), it is more likely to be a pRCC type
2 tumour.

Feature Extraction, Selection, and
Radiomics Signature Construction
A total of 2632 radiomics features were extracted from the CMP
and NP CT images, of which 1876 features had an ICCs greater
than 0.75, indicating good inter-and intra- observer agreement
for these features. By univariate correlation analysis, 282
radiomics features showed significant differences between type
1 and type 2 tumours. These features were sequentially imported
into Gradient Boosting Decision Tree (21) and multivariate
logistic analyses to obtain the most valuable features, resulting
in three useful features (Figure 4). Finally, the radiomics
signature was established by using three features. The AUC
were 0.845 (95%CI 0.775-0.913) in the training set and 0.821
FIGURE 3 | Manual segmentation of the tumour on the center axial slice of the pRCC type 2. (A, B) is the corticomedullary phase (CMP); (C, D) is the nephrographic phase (NP).
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(95%CI 0.702-0.922) in the testing set. The Rad-score was
calculated using the following formula:

Rad − score = −0:2964 – 1:1110 � CMP − wavelet−

LHH_ glszm _ SmallAreaHighGrayLevelEmpha + 

1:1637� CMP − original _ shape _ Sphericity + 0:9529�
NP − wavelet −HLL _ firstorder _Median

The distribution of the Rad-score in the training and testing
sets is shown in Figure 5.

Establishment of Radiomics Nomogram
and Evaluation of Performance Between
Different Models
Using the data in the training set, a radiomics nomogram was
established by combining important clinical factors which was
the boundary information and Rad-score (Figure 6), and the
radiomics nomogram score (Nomo-score) was calculated based
on multivariate logistic regression analysis. The formula for
calculating the Nomo-score for this study is shown below:
Nomo-score = -2.1459 + B×2.3959 + R×0.8423 (B = Boundary;
R = Rad-score). The calibration curves of the radiomics
nomogram in Figure 7 showed good calibration in both the
Frontiers in Oncology | www.frontiersin.org 633
training and testing cohorts. The discriminatory efficacies of the
three diagnostic models (clinical factors model, radiomics
signature and radiomics nomogram) are shown in Table 3.
Figure 8 plots the clinical factors model, radiomics signature
and radiomics nomogram ROC curves based on the training
cohort and testing cohort comparing the accuracies of these three
models in identifying pRCC type 1 and type 2 tumours. The
decision curves showed that in most training cohorts within
reasonable threshold probabilities, the radiomics nomogram
added greater overall net benefit in differentiating between
pRCC type 1 and type 2 tumours compared to the clinical
factors and radiomics signature. The DCA value for the three
models in the training cohort are shown in Figure 9.
DISCUSSION

PRCC is the second most common subtype of RCC, second only
to ccRCC. PRCC can be divided into two different subtypes, type
1 and type 2 (2). The systematic review and meta-analysis by
Xiong et al. collected a total of 4494 pRCC patients from 22
studies and showed that overall survival and cancer specific
survival was worse in type 2 pRCC patients than in type 1
pRCC patients (22). Because the two tumours have many
TABLE 2 | Clinical factors.

Clinical factors Training cohort (n=91) p Testing cohort (n=40) p

Type1 (n=42) Type2 (n=49) Type1 (n=18) Type2 (n=22)

Gender 0.121 0.579
Male 35 (83%) 34 (69%) 16 (89%) 21 (95%)
Female 7 (17%) 15 (31%) 2 (11%) 1 (5%)

Age (years) 57.4 ± 12.2 58.8 ± 12.6 0.571 56.7 ± 12.4 58.1 ± 14.3 0.693
Maximum diameter (cm) 3.5 ± 2.0 6.0 ± 3.5 <0.001 3.6 ± 2.2 6.6 ± 2.7 0.001
Shape 0.001 <0.001
Round 38 (90%) 29 (59%) 17 (94%) 9 (41%)
Not round 4(10%) 20 (41%) 1 (6%) 13 (59%)

Location 0.174 0.356
Left 18 (43%) 28 (57%) 8 (44%) 13 (59%)
Right 24 (57%) 21 (43%) 10 (56%) 9 (41%)

Boundary <0.001 0.004
Clear 41 (98%) 28 (57%) 16 (89%) 10 (45%)
Blurred 1 (2%) 21 (43%) 2 (11%) 12 (55%)

Calcification 0.004 0.427
Present 4 (10%) 17 (35%) 2 (11%) 5 (23%)
Absent 38 (90%) 32 (65%) 16 (89%) 17 (77%)

Necrosis <0.001 <0.001
Present 6 (14%) 26 (53%) 2 (11%) 16 (73%)
Absent 36 (86%) 23 (47%) 16 (89%) 6 (27%)

Renal vein invasion 0.003 0.011
Present 0 (0) 9 (18%) 0 (0) 7 (32%)
Absent 42 (100%) 40 (82%) 18 (100%) 15 (68%)

Lymph node metastasis 0.001 0.005
Present 0 (0) 12 (24%) 0 (0) 8 (36%)
Absent 42 (100%) 37 (76%) 18 (100%) 14 (64%)

TEV1 (HU) 18.5 ± 17.4 27.4 ± 32.5 0.063 13.4 ± 7.3 29.8 ± 31.5 0.121
TEV2 (HU) 32.0 ± 21.3 38.6 ± 23.3 0.068 28.2 ± 11.4 43.1 ± 30.1 0.178
REV1 0.19 ± 0.16 0.28 ± 0.24 0.058 0.19 ± 0.20 0.30 ± 0.28 0.103
REV2 0.28 ± 0.28 0.33 ± 0.17 0.014 0.23 ± 0.12 0.42 ± 0.49 0.092
June 2022 | Volume 12 | Article
TEV, tumour enhancement value; REV, relative enhancement value; 1, corticomedullary phase; 2, nephrographic phase.
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differences in biology, treatment options and prognosis, it is
clinically important to distinguish accurately between type 1 and
type 2 tumours preoperatively. In the present study, the
radiomics nomogram was constructed by combining clinical
factors with Rad-score and was found to be highly accurate in
distinguishing pRCC subtypes, with an AUC value of 0.855 in the
training cohort.

Previous studies have shown that clinical and conventional
CT and MRI images can help distinguish between pRCC type 1
and type 2 tumours (2, 8, 9, 23). Fourteen clinical factors were
used for analysis in our study, mainly including gender, age,
maximum diameter, shape, location, boundary, calcification,
necrosis, renal vein invasion, lymph node metastasis, tumour
enhancement value (TEV1 and TEV2) and relative enhancement
value (REV1 and REV2). After multivariate logistic regression
analysis, blurred tumour boundaries could be used as an
Frontiers in Oncology | www.frontiersin.org 734
independent predictor of type 2 tumours, which is in line with
the results of previous studies (8–10). We believe that the most
likely reason for this result is that type 2 tumours are highly
malignant and aggressive, more likely to invade the fatty layer
surrounding the kidney, resulting in poorly defined borders on
CT images. In this study, type 2 tumours were significantly larger
in diameter than type 1 tumours, and the difference was
statistically significant (p<0.001), which is consistent with the
findings of Egbert et al. (8) and Yamada et al. (9). In contrast,
some of the findings showed that the difference in diameter
between type 2 and type 1 tumours was not statistically
significant (24–26). We found that type 2 tumours had more
necrosis and calcification compared to type 1 tumours and that
this difference was statistically significant, which is consistent
with previous findings (8, 18, 27). Mydlo et al. (28) found that
type 1 tumours were less enhanced than type 2 tumours on CT-
FIGURE 4 | The correlation diagram of the three effective features screened out.
June 2022 | Volume 12 | Article 854979
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enhanced scans, and we found no statistically significant
difference between TEV1, REV1 in CMP and TEV2 in NP,
while REV2 in NP type 2 tumours were significantly greater
than type 1 tumours and the difference was statistically
significant (p=0.014). We believe the reason for this outcome is
the higher malignancy of type 2 tumours and the abundance of
tumour neovascularization.

Radiomics is a newly emerging research method that has been
widely used in the diagnosis and differential diagnosis of kidney
Frontiers in Oncology | www.frontiersin.org 835
tumours (17, 29–31). It aids clinical decision-making by
extracting high-throughput quantitative data from images, thus
enabling non-invasion analysis of tumour heterogeneity.
Previous findings show that CT and MRI-based radiomics can
be used to differentiate between pRCC type 1 and type 2
tumours. Wang et al. (32) collected 77 patients with RCC,
including 32 ccRCC, 23 pRCC and 22 cRCC. The patients all
underwent routine MRI (T2WI, EN-T1WI CMP, EN-T1WI NP)
preoperatively, and a total of 39 radiomics features were
A B

FIGURE 5 | The radiomics score (Rad-score) for each patient in the training (A) and testing (B) sets.
FIGURE 6 | A radiomics nomogram distinguishing between type 1 and type 2 tumours. The nomogram was constructed by combining boundary and radiomics
score (Rad-score) on the basis of a training cohort. The corresponding points are estimated from the boundary and Rad-score values, and these are added together
to obtain total points. The likelihood of type 2 pRCC was estimated from the total points, the greater the total points, the greater the probability of type 2 pRCC.
June 2022 | Volume 12 | Article 854979
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extracted from the three sequences mentioned above. The final
ROC curves were constructed and showed AUC values of 0.631-
0.951 for differentiating ccRCC and cRCC; AUC values of 0.688-
0.955 for differentiating pRCC and cRCC, and AUC values of
0.747-0.890 for differentiating ccRCC and pRCC. Yap et al. (33)
Frontiers in Oncology | www.frontiersin.org 936
extracted a total of 33 shape and 760 texture features from
preoperative CT images of 735 renal masses (539 malignant and
196 benign) and used these features to build a radiomics model
based on multiple machine learning classifiers for identifying
benign and malignant renal masses. The AUC values were 0.64-
0.68 for the shape features, 0.67-0.75 for the texture features, and
0.68-0.75 for the combination of shape and texture features. Nie
et al. (30) collected a total of 99 patients who underwent
preoperative CT examination and divided into a training set
(n=80) and testing set (n=19) in order to construct a radiomics
nomogram that could distinguish AML.wolf from hm-ccRCC
preoperatively. A total of 14 valid features were selected from
CMP and NP to build radiomics nomogram, which showed good
discriminatory efficacy in both the training set (AUC, 0.896; 95%
CI, 0.810-0.983) and the testing set (AUC, 0.949; 95%CI, 0.856-
1.000). Its discriminatory power was higher than that of the
clinical factors model and the radiomics signature. Doshi et al.
(10) assessed whether qualitative features (signal intensity,
heterogeneity, and margin) and quantitative textural features
(ADC, HASTE, and contrast-enhanced entropy) from
preoperative MRI images of 21 pRCC type 1 tumours and 17
type 2 tumours could be for preoperative differentiation between
type 1 and type 2 tumours. The results showed that the AUC
values were 0.822 for the qualitative feature model, 0.682-0.716
for the quantitative feature model, and 0.859 for the combined
qualitative and quantitative feature model. Duan et al. (17)
extracted textures features based on 62 preoperative three-
phase enhanced CT images of pRCC (30 type 1 tumours and
32 type 2 tumours) and built a model based on an SVM classifier.
The AUC values were 0.772-0.753 for the CMP-based model,
0.832-0.841 for the NP-based model, 0.849-0.858 for the EP-
based model, and 0.922 for the combined three-phase model.
The results showed that CT-based texture analysis could be used
to preoperatively differentiate between type 1 and type
2 tumours.

The nomogram is a practical and straightforward statistical
prediction tool that has been widely used to combine multiple
risk factors to predict medical prognosis and outcomes (34).
Huang et al. (35) combined clinical factors with radiomics
signature to construct a nomogram for predicting disease-free
survival in non-small lung cancer. The nomogram’s diagnostic
efficacy was higher than clinical factors alone. Our study builds a
nomogram based on boundary and Rad-score to predict the
probability of type 1 tumours with AUC values of 0.855, 0.831 in
the training and testing sets, respectively. The AUC values for the
model constructed on clinical factors alone were 0.702,0.717 in
A

B

FIGURE 7 | Radiomics nomogram calibration curves for the training (A) and
testing (B) sets. The calibration curves show a good fit of the nomogram. The
45° straight lines indicate a perfect match between the true (Y-axis) and
predicted (X-axis) probabilities. The closer the distance between the two
curves, the better the accuracy.
TABLE 3 | Diagnostic performance of the clinical factors model, the radiomics signature and the radiomics nomogram.

Model Training cohort Testing cohort

AUC (95%CI) Accuracy % AUC (95%CI) Accuracy %

Clinical factors model 0.702 (0.643,0.764) 53.8 0.717 (0.611,0.826) 55.0
Radiomics signature 0.845 (0.775,0.913) 78.0 0.821 (0.702,0.922) 75.0
Radiomics nomogram 0.855 (0.787,0.918) 78.0 0.831 (0.716,0.930) 75.0
June 2022 | Volume 12 | A
AUC, area under the curve.
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the training and testing sets, respectively. The high diagnostic
efficacy of the nomogram over clinical factors alone suggests that
the Rad-score is of high value in differentiating between type 1
and type 2 tumours.

Compared to the above radiomics studies, our study had
some differences and provided some improvements: First, our
study focused on distinguishing between type 1 pRCC and type 2
pRCC, mainly because type 1 and type 2 tumours often have
many overlapping imaging presentations in CT images. Second,
Frontiers in Oncology | www.frontiersin.org 1037
a total of three radiomics features were extracted from the CMP
and NP images, two of which were derived from the CMP
images, indicating that the CMP images have higher diagnostic
efficacy in differentiating type 1 and type 2 tumours. Third, this
study combined clinical factors with radiomics features for the
construction of the model, enabling a more comprehensive
assessment of tumour characteristics and allowing more
reliable results to be obtained. Fourth, most previous studies
tend to base their texture analysis on one dimension of the
tumour, whereas we mainly used all dimensions of the tumour to
analyse the tumour and obtain more features. While previous
studies mainly extracted a few dozen features, we extracted over
1000 features. Finally, although pRCC is a relatively rare type of
RCC, a total of 131 cases of pRCC were collected in our study. To
our knowledge, this is the largest sample size to date to study a
radiomics-based subtype of pRCC, and our sample was derived
from multiple centres.

There are several limitations to our current study. First, this
study was a retrospective study, which may introduce bias in the
selection of the sample and overestimation of diagnostic
accuracy, so external validation may be included in subsequent
studies. Second, our study only extracted radiomics features from
the CMP and NP images for tumour analysis, and in the future
more features may be extracted from the four-phase images of
CT to obtain more radiomics information of the tumour. Third,
in this study, we used a variety of CT scanners from different
suppliers, and although we have normalized the images before
extracting the features, there is still the potential for error in the
experiment. Fourth, manual segmentation of 3D ROI is both
time-consuming and complicated, especially for tumours with
unclear borders. Further research should focus on developing an
automatic segmentation method for renal tumours with better
reliability and reproducibility. Final, the primary target of this
study was pRCC and did not include other types of renal
tumours. In subsequent studies, we will collect more cases to
A B

FIGURE 8 | The receiver operating characteristic (ROC) curves of the clinical factors model, the radiomics signature and the radiomics nomogram for training (A)
and testing (B) sets.
FIGURE 9 | Decision curve analysis (DCA) for three models. The y-axis
indicates the net benefit; x-axis indicates probability thresholds. The blue line,
yellow line and green line represent net benefit of the clinical factors model,
the radiomics signature and the radiomics nomogram, respectively. Both the
radiomics nomogram and the radiomics signature showed a higher overall net
benefit in differentiating type 1 from type 2 than the clinical factors model.
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build a complete model for differentiating subtypes of
renal tumours.

In conclusion, our study demonstrates the importance of
combining clinical factors with radiomics features to construct a
CT-based radiomics nomogram of CMP and NP images. Our
radiomics nomogram can distinguish between pRCC type 1 and
type 2 tumours preoperatively and has good diagnostic
performance. As a new non-invasion, quantitative diagnostic
method, the use of radiomics nomogram needs further validation
before it can be used in the clinic.
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Prediction of clinically
significant prostate cancer
with a multimodal MRI-
based radiomics nomogram
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Jianping Lu1* and Fu Shen1*
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China, 3Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University
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Objective: To develop and validate a multimodal MRI-based radiomics

nomogram for predicting clinically significant prostate cancer (CS-PCa).

Methods: Patients who underwent radical prostatectomy with pre-biopsy

prostate MRI in three different centers were assessed retrospectively. Totally

141 and 60 cases were included in the training and test sets in cohort 1,

respectively. Then, 66 and 122 cases were enrolled in cohorts 2 and 3, as

external validation sets 1 and 2, respectively. Two different manual

segmentation methods were established, including lesion segmentation and

whole prostate segmentation on T2WI and DWI scans, respectively. Radiomics

features were obtained from the different segmentation methods and selected to

construct a radiomics signature. The final nomogramwas employed for assessing

CS-PCa, combining radiomics signature and PI-RADS. Diagnostic performance

was determined by receiver operating characteristic (ROC) curve analysis, net

reclassification improvement (NRI) and decision curve analysis (DCA).

Results: Ten features associated with CS-PCa were selected from the model

integrating whole prostate (T2WI) + lesion (DWI) for radiomics signature

development. The nomogram that combined the radiomics signature with

PI-RADS outperformed the subjective evaluation alone according to ROC

analysis in all datasets (all p<0.05). NRI and DCA confirmed that the

developed nomogram had an improved performance in predicting CS-PCa.

Conclusions: The established nomogram combining a biparametric MRI-

based radiomics signature and PI-RADS could be utilized for noninvasive and

accurate prediction of CS-PCa.

KEYWORDS

magnetic resonance imaging, nomogram, radiomics, prostate cancer,
clinically significant
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Introduction

Prostate cancer (PCa) was the second commonest male

malignancy in 2020 around the world, causing great harm to

the male genitourinary system (1, 2). The descriptive phrase

“clinically significant” is broadly utilized for differentiating PCa

that might result in morbidity and/or death from harmless PCa

subtypes. Such differentiation is critical because “insignificant”

PCa not causing harm is commonly encountered (2, 3).

Overtreatment of insignificant PCa is considered an important

limitation of prostate-specific antigen (PSA) testing.

The European Association of Urology (EAU)-European

Association of Nuclear Medicine (EANM)-European Society

for Radiotherapy and Oncology (ESTRO)-European Society of

Urogenital Radiology (ESUR)-International Society of Geriatric

Oncology (SIOG) guidelines (2020 version) for PCa summarized

the newest data and advised active surveillance (AS) or watchful

waiting (WW) in PCa cases showing a Gleason score (GS) < 7,

while clinically significant prostate cancer (CS-PCa) patients

with GS ≥ 7 should undergo timely treatment and intervention

because of increased risk of progression and short overall

survival in clinical practice (2). Therefore, accurately

evaluating CS-PCa preoperatively is critical for predicting

long-term prognosis and selecting therapeutic options, which

would result in more personalized and effective treatments.

However, clearly defining CS-PCa is difficult.

The currently applied standard practice of MRI-targeted and

template biopsy shows low diagnostic inaccuracy (4, 5). The

IP1-PROSTAGRAM trial showed higher detection of CS-PCa

with MRI Prostate Imaging–Reporting and Data System (PI-

RADS) > 2 in comparison with transrectal ultrasound-guided

prostate (TRUS) biopsy (6). However, cancer detection rates

(CDRs) are only 6% and 9% for PI-RADS 1 and PI-RADS 2,

respectively (4); high-grade cancer may still be missed especially

with previous MRI showing suspicious lesions. Patients and

clinicians should recognize the considerable uncertainty about

prediction (2).

Currently early individualized detection attracts increasing

attention. With recent progress in high-throughput analytical

tools, radiomics models integrating clinical parameters show

overt advantages in generating critical data regarding tissue

properties otherwise not detectable by the naked eye (7–13).

Indeed, increasing evidence suggests that radiomics could be

superior in GS prediction in PCa over routine imaging strategies

(14–17). However, which sequence and segmentation method

could yield higher clinical benefit have not been evaluated. Thus,

a comparison of the predictive capacity of combinations of

sequences and various segmentation approaches is urgently

required to establish the best radiomics methodology.

Therefore, this study aimed to develop a radiomics model

considering multimodal MRI and evaluate its predictive

potential in CS-PCa with external validation.
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Materials and methods

Participants

The current retrospective trial had approval from the local

Institutional Review Board (Committee on Ethics of

Biomedicine, Changhai Hospital; Committee on Ethics of

Biomedicine, Ruijin Hospital Luwan Branch; Committee on

Ethics of Biomedicine, 989th Hospital of the joint logistic

support force of the Chinese People’s Liberation Army).

Individuals who underwent radical prostatectomy with pre-

biopsy prostate MRI were searched in the hospitals’ databases.

Exclusion criteria were: (1) no histological confirmation of PCa

with baseline MRI in our institutions (2) no PSA test within 8

weeks prior to baseline MRI; (3) a history of previous therapy for

prostate cancer; (4) poor quality of MR images (such as

susceptibility artifact); (4) time from baseline MRI to surgical

procedure exceeding 12 weeks.

Eventually, 201 cases were identified and enrolled in

Changhai hospital from January 2016 to December 2019 as

cohort 1. The primary cohort was randomized into the training

set (n = 141) and test set (n = 60) at a ratio of 7:3. Next, 66 and

122 cases were enrolled from January 2019 to December 2021 in

Ruijin Hospital Luwan Branch and 989th Hospital of the joint

logistic support force of the Chinese People’s Liberation Army,

respectively, as cohorts 2 and 3 (external validation sets),

respectively. The study flowchart is shown in Figure 1A.
Clinicopathologic data

Clinicopathology factors, including age, BMI, PSA levels,

location of each tumor and GS post-prostatectomy, were retrieved

from patient records. Radical prostatectomy samples underwent

sectioning from apex to base at 3- to 5-mm intervals, and the PCa

borders were delineated. All pathological GSs obtained from

surgical samples were categorized as follows: GS < 7

[International Society of Urological Pathology (ISUP)] grade 1

PCa considered clinically insignificant; GS ≥ 7 (ISUP grade 2 and

above) defined as clinically significant PCa (2, 3).
Imaging and image analysis

Prostate MRI was carried out on a 3.0T MR scanner with an

abdominal phase array coil without endorectal coil, following a

4-h fasting period and enema treatment with glycerin (20 ml).

Routine sequences, including sagittal T2WI, axial high-

resolution T2WI, axial DWI, axial T1WI and gadolinium

contrast-enhanced T1WI, were applied. Supplementary

Table 1 shows axial T2WI and DWI parameters utilized for

PI-RADS and radiomics model development.
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The PI-RADS (version 2.1) score for each case was assessed

by three radiologists, including ZH.L., GD.J. and PY.X. with 8, 9

and 12 years of experience in MRI diagnosis, respectively,

blinded to pathological data with the exception of tumor

location. Any discrepancy among the three observers was

resolved by discussion until at least two of them agreed.
Image segmentation

The T2WI and DWI DICOM data acquired pre-biopsy were

imported into the Radcloud radiomics platform (Huiying

Medical Technology, China. http://radcloud.cn/). Since the

original images were obtained from distinct cohorts, their

normalization was critical to minimize signal variations for

subsequent radiomics analysis (PyRadiomics package, class

radiomics.imageoperations.normalizeImage; using the

following formula: f(x)=s(x−mx)/sx, where f(x) indicates the

normalized intensity; x indicates the original intensity; m refers

to the mean value; s indicates the variance; s is an optional

scaling, by default, it is set to 1. While reserving the diagnostic

intensity discrepancy, the signal discrepancy in MR parameters

was decreased). In addition, the resampling used (the

radiomics.imageoperations.resampleImage function (the

default interpolator is Bspline).

Two different segmentation methods were employed: (i)

lesion segmentation, which only delineates the border that best

fits the lesion area; (ii) whole prostate segmentation, which

delineates the whole prostate region. Regions of interest

(ROIs) were obtained by manual delineation in individual

slices for each MR image (T2WI and DWI with b = 1500 s/

mm2) by the above two segmentation methods in all specimens.
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The first radiologist (GD.J.), who was blinded to clinical

data, independently carried out the segmentation process for

every case on the platform, comprising lesion segmentation and

whole prostate segmentation, respectively. Then, ROIs were

utilized to obtain volumes of interest (VOIs) in all cohorts.

Next, two radiologists (ZH.L. and GD.J.) repeated

segmentations for 30 random cases one week later for

observer’s agreement analysis. Additionally, segmentations

were performed under the supervision of a senior radiologist

(F.S.), with 14 years of related work experience, for avoiding

overt lesion misidentification.
Radiomics feature extraction and
reduction

Based on the derived VOIs, four groups of features were

obtained: (1) first-order features, quantifying voxel intensity

distribution on MR scans; (2) shape features, reflecting the 3D

features of VOIs; (3) texture features, quantification of region

heterogeneity differences, including gray-level co-occurrence,

run length, size zone and neighborhood gray-tone difference

matrices; (4) higher-order features, encompassing transformed

first-order statistics and texture features, including logarithm,

exponential, gradient, square, square root, local binary pattern

[LBP] and wavelet transformations. In all, 1409 radiomics

features were respectively obtained with the above platform

from each VOI, based on the Python software package

“pyradiomics” (version 6.1). Features complied with the image

biomarker standardisation initiative (IBSI) standard (18).

For each cohort, inter- and intra-observer correlation

coefficients (ICCs) were determined to assess feature robustness.
A

B

FIGURE 1

Study flowchart and nomogram workflow. (A) Study flowchart. Cohort 1, Changhai Hospital; Cohort 2, Ruijin Hospital Luwan Branch; Cohort 3,
989th Hospital of the joint logistic support force of the Chinese People’s Liberation Army. (B) Workflow for nomogram analysis.
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Features with ICCs above 0.9 were subsequently utilized for model

building, with excellent feature reproducibility.

Based on the two different segmentation methods, ten types

of models were obtained: Model 1, DWI (lesion + whole

prostate); Model 2, DWI (lesion); Model 3, DWI (whole

prostate); Model 4, T2WI (lesion + whole prostate); Model 5,

T2WI (lesion); Model 6, T2WI (whole prostate); Model 7, lesion

(DWI + T2WI); Model 8, whole prostate (DWI + T2WI); Model

9, whole prostate (DWI) + lesion (T2WI); Model 10, whole

prostate (T2WI) + lesion (DWI). For selecting optimal features

related to CS-PCa in each model, the variance threshold

algorithm, Select-K-best and the least absolute shrinkage and

selection operator (LASSO) algorithm were employed.
Radiomics signature building

The selected features (non-zero coefficients in the LASSO

algorithm) were employed to develop a radiomics signature for

scoring patients in the 10 models, respectively. The predictive

value of the radiomics signature was assessed by determining the

area under the receiver operator characteristic (ROC) curve

(AUC) and Delong test in the training set.
Nomogram model establishment

The predictive abilities of clinical variables and the radiomics

signature were assessed by univariate logistic regression analysis.

Parameters with p<0.05 were subsequently combined to build

the nomogram model by multivariable logistic regression

analysis (p<0.05). Next, the nomogram was examined for

performance in each cohort. Figure 1B shows the

nomogram’s workflow.
Statistical analysis

The distribution of continuous data was evaluated by the

Kolmogorov-Smirnov test, and the t-test or Wilcoxon test was

utilized for comparing these data. The Chi-square or Fisher’s

exact test was performed for qualitative data analysis. In the

variance threshold approach, a threshold of 0.8 was applied, so

that the eigenvalues of the variance smaller than 0.8 were

removed. The select-K-best approach, which belongs to a

single variable feature selection method, retained all features

showing p<0.05. In the LASSO model, the L1 regularizer

constituted the cost function, applying 5 as the cross-

validation error and 1000 iterations at most (11–13).

Sensitivity, specificity, accuracy, positive predictive value

(PPV), negative predictive value (NPV), positive likelihood

ratio (PLR) and negative likelihood ratio (NLR) were
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determined. The goodness of fit for the monogram was

assessed by the Hosmer-Lemeshow test. AUC calculation, NRI,

and the DeLong test were carried out for comparing the

nomogram and PI-RADS V2.1. DCA was carried out for

determining the nomogram’s clinical usefulness by assessing

net benefits at distinct threshold probabilities. The nomogram

was examined with R 3.6.3. The remaining data were assessed

with SPSS (version 22.0, Inc., Chicago, IL, USA) and MedCalc

v19.6.1. P<0.05 was deemed statistically significant.
Results

Patient features

Table 1 lists the features of all patients. Clinicopathological

parameters were similar in the three cohorts (p>0.05). According

to pathological GS based on final surgical specimens, 139/201

(69.2%), 45/66 (68.2%) and 86/122 (70.5%) cases were defined as

CS-PCa (GS ≥7) in the three cohorts, respectively.
Radiomics features

Feature repeatability based on ICCs in distinct cohorts is shown

in Supplementary Figure 1. After inter/intraobserver agreement

analysis, 1239/1409 T2WI (lesion) (87.9%), 1243/1409 T2WI

(whole) (88.2%), 1096/1409 DWI (lesion) (77.8%) and 1199/1409

DWI (whole) (85.1%) features had excellent robustness and were

subsequently utilized in radiomics analysis (inter- and intra-

observer ICCs ≥0.9). There was excellent reproducibility for VOI

size of lesion segmentation (ICC of T2WI, 0.931; ICC of DWI,

0.910) and whole prostate segmentation (ICC of T2WI, 0.942; ICC

of DWI, 0.913). Eventually, optimal features were obtained with the

LASSO algorithm for each model and presented in

Supplementary Table 2.
ROC analyses of the radiomics signature

The selected features were utilized for the radiomics

signature (RS) in each model, respectively. The detailed ROC

curve analyses for the 10 models, PSA and PI-RADS are listed in

Table 2. ROC curves and their comparisons (Delong test) are

shown in Supplementary Figure 2. Among the 10 models, PSA

and PI-RADS, whole prostate (T2WI) + lesion (DWI) was

determined to have the best performance by ROC curve

analysis in the training set (AUC=0.967, specificity=90.9%,

sensitivity=92.8% and accuracy=92.2%). The ten optimal

features of whole prostate (T2WI) + lesion (DWI) are shown

in Figure 2. The correlation analysis of selected features is shown

in Supplementary Figure 3.
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Logistic regression analysis and
nomogram model establishment

Univariate analysis showed the RS, PSA and PI-RADS had

significant associations with CS-PCa. Then, predictive model

development employed multivariate logistic regression analysis of

the selected risk factors (PI-RADS, OR=7.688, p=0.011; RS,

OR=7.650×105, p=0.002) in the training set (Table 3). The

radiomics signature also showed a high predictive value for CS-

PCa in the test and validation sets (Table 4). The regression formula

was as follows: prediction probability=−10.943+9.527*RS+1.742*PI-

RADS. Figure 3 shows the monogram.

AUCs for the nomogram were 0.967, 0.964, 0.945 and 0.942

in the training set, test set, validation set 1 and validation set 2,

respectively. The Hosmer-Lemeshow test revealed the

nomogram model had favorable calibration in all cohorts

(p>0.05); details are listed in Supplementary Table 3. In all

data sets, the nomogram showed elevated AUCs in comparison

with the PI-RADS utilized alone. The DeLong test demonstrated

significant differences (all p<0.05). NRIs were 0.326 to 0.372,

showing the nomogram had an improved clinical utility

compared with the PI-RADS for CS-PCa (Table 5 and

Figure 4). DCA of validation cohorts confirmed the

nomogram’s superiority over the PI-RADS at large probability

thresholds (Figure 5).
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Discussion

This work showed that whole prostate (T2WI) + lesion

(DWI) was the best segmentation for radiomics model

building. According to the AUC, NRI, and DCA results, a

radiomics nomogram was developed, which seems to have

higher predictive ability than the PI-RADS for CS-PCa in

three hospital databases. Clinicians can use this model to more

accurately screen patients with CS-PCa before surgery and

conduct individuated treatments.

The European Association of Urology’ Guidelines on

Prostate Cancer recommend active surveillance and follow-up

observation for PCa patients with a Gleason score (GS) < 7,

whereas clinically significant prostate cancer (CS-PCa) patients

with GS ≥ 7 should undergo timely treatment and intervention

because of increased risk of disease progression and short overall

survival (2). Therefore, accurate clinical assessment is vital for

patients to choose the best treatment.

In recent years, multiparametric MRI has been increasingly

utilized for PCa’s qualitative evaluation (19, 20). The Prostate

Imaging Reporting and Data System (PI-RADS) was proposed

for better standardization of prostate MRI performance and

image interpretation. PI-RADS guidelines v2.1 in 2019

introduced the concept of biparametric magnetic resonance

imaging (including T2WI and DWI only) to simplify prostate
TABLE 1 Clinical characteristics of patients with prostate cancer in all cohorts.

Characteristic Cohort 1 Cohort 2 Cohort 3 P value
(n=201) (n = 66) (n = 122)

Age (year, mean ± SD) 58.547 ± 10.351 59.167 ± 10.181 58.492 ± 10.811 0.902

BMI (kg/m2, mean ± SD) 23.977 ± 2.706 23.664 ± 2.734 24.442 ± 2.971 0.153

Tumor location (%) Peripheral zone 99 (49.3) 30 (45.5) 61 (50.0) 0.975

Transitional zone 63 (31.3) 23 (34.8) 39 (32.0)

Peripheral + Transitional zone 39 (19.4) 13 (19.7) 22 (18.0)

PI-RADS (%) 1 0 (0) 0 (0) 0 (0) 0.957

2 60 (29.9) 16 (24.2) 36 (29.5)

3 34 (16.9) 14 (21.2) 24 (19.7)

4 75 (37.3) 24 (36.4) 42 (34.4)

5 32 (15.9) 12 (18.2) 20 (16.4)

Gleason score (%) <7 62 (30.8) 21 (31.8) 36 (29.5) 0.826

7 (3 + 4) 48 (23.9) 15 (22.7) 24 (19.7)

7 (4 + 3) 42 (20.9) 12 (18.2) 25 (20.5)

8 (4 + 4 or 3 + 5 or 5 + 3) 38 (18.9) 11 (16.7) 24 (19.7)

9, 10 11 (5.5) 7 (10.6) 13 (10.6)

Pathological T stage # T2 136 (67.7) 36 (54.5) 66 (54.1) 0.070

T3a 34 (16.9) 17 (25.8) 35 (28.7)

T3b 31 (15.4) 13 (19.7) 21 (17.2)

PSA (ng/ml, median IQR) * 12.600 (7.782, 23.280) 12.525 (7.730, 20.578) 13.485 (9.479, 26.995) 0.493
front
Cohort 1: Training and test sets; Cohort 2: Validation set 1; Cohort 3: Validation set 2.
BMI: Body mass index; PI-RADS: Prostate imaging reporting and data system; PSA: Prostate-specific antigen; IQR: interquartile range.
#The current Union for International Cancer Control (UICC) no longer recognizes pT2 substages.
*Postoperative blood samples.
iersin.org
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MRI (21). Prostate MRI categorizes suspected PCa into low- and

high risk types, considering risk scores from 1 to 5. PI-RADS

grades of 3-5 are recommended to undergo MRI-directed biopsy

(22), which could decrease the amounts of avoidable biopsies.

However, such approach may miss a small portion of CS-PCas

(23), due to low cancer detection rates, i.e., only 6% (0-20%) and

9% (5-13%) for PI-RADS 1 and PI-RADS 2, respectively, in

patient level analysis (4). In addition, the commonly used clinical

application of the PSA shows limitations, including
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overdiagnosis and resulting overtreatment (24, 25). Therefore,

novel methods for timely and accurate PCa risk stratification are

urgently required for improving patient prognosis.

Radiomics is a novel approach that converts traditional

medical imaging findings into data mining and high-

throughput quantitative analysis. The analysis approach of

radiomics provides a non-invasive tool for evaluating the

biological characteristics and heterogeneity of prostate cancer

more comprehensively and quantitatively than morphological
FIGURE 2

Selected radiomics features with associated coefficients in the LASSO model. DWI-l: lesion segmentation of DWI; T2WI-w: whole prostate
segmentation of T2WI. GLSZM: Gray level size zone matrix; GLDM: Gray Level dependence; GLRLM: Gray level run length matrix; NGTDM:
Neighborhood gray tone difference matrix; Wavelet: The wavelet transform decomposes the tumor area image into low-frequency components
(L) or high-frequency components (H) in the x, y, and z axes.
TABLE 2 ROC curve analysis in the training set.

AUC 95% CI Specificity Sensitivity Accuracy PLR NLR PPV NPV

Model 10 0.967 0.939-0.995 0.909 0.928 0.922 10.206 0.079 0.957 0.851

Model 6 0.929 0.883-0.976 0.841 0.948 0.915 5.962 0.061 0.929 0.881

Model 8 0.920 0.876-0.963 1.000 0.845 0.894 infinity 0.155 1.000 0.746

Model 4 0.911 0.862-0.960 0.704 1.000 0.908 3.385 0.000 0.882 1.000

Model 3 0.909 0.864-0.954 1.000 0.742 0.823 infinity 0.258 1.000 0.638

Model 7 0.903 0.854-0.952 1.000 0.722 0.808 infinity 0.278 1.000 0.620

Model 9 0.899 0.822-0.976 0.864 1.000 0.957 7.333 0.000 0.942 1.000

Model 2 0.888 0.836-0.941 0.886 0.784 0.816 6.895 0.244 0.938 0.650

Model 1 0.837 0.750-0.923 0.727 0.928 0.865 3.402 0.099 0.882 0.820

PI-RADS 0.835 0.766-0.904 0.545 0.969 0.837 2.132 0.057 0.825 0.889

Model 5 0.800 0.707-0.892 0.704 0.866 0.816 2.931 0.190 0.866 0.704

PSA 0.776 0.702-0.851 1.000 0.557 0.695 infinity 0.443 1.000 0.506
frontiers
Model 1: DWI (lesion + whole prostate).
Model 2: DWI (lesion).
Model 3: DWI (whole prostate).
Model 4: T2WI (lesion + whole prostate).
Model 5: T2WI (lesion).
Model 6: T2WI (whole prostate).
Model 7: lesion (DWI + T2WI).
Model 8: whole prostate (DWI + T2WI).
Model 9: whole prostate (DWI) + lesion (T2WI).
Model 10: whole prostate (T2WI) + lesion (DWI).
AUC, area under the curve; PLR, positive likelihood ratio; NLR, negative likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.
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visual representation. Several studies have demonstrated that the

current MRI-related radiomics application could be widely used

for GS assessment in PCa (14–17). Although they found that

multiparametric radiomics models show great potential in

predicting GS, there is currently no comparative assessment of

different combinations of sequences and patterns of
Frontiers in Oncology 07
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segmentation for model building, which can yield higher

clinical benefit for CS-PCa with external validation.

The most valuable aspect of the present study is the multi-

pattern approach that enhances MRI-based radiomics by mining

complementary information provided by multi-pattern MRI and

considering the heterogeneity of tumors for predicting differential
TABLE 4 Multivariate logistic regression analysis in the test and validation sets.

Test set (n=60) Validation set 1 (n=66) Validation set 2 (n=122)

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

PSA 1.155 (0.904, 1.475) 0.250 1.185 (0.941, 1.492) 0.150 1.001 (0.996, 1.007) 0.627

PI-RADS 14.204 (1.150, 175.495) 0.039 4.751 (0.916, 24.655) 0.064 4.065 (1.833, 9.017) 0.001

Radiomics signature 9.420×106 (1.206, 7.351×1013) 0.047 11624.241 (6.780, 1.993×107) 0.014 1.021 (1.011, 1.031) <0.001
fron
OR, odds ratio.
Bold values mean p<0.05.
TABLE 3 Univariate and multivariate logistic regression analyses in the training set.

Univariable analyses Multivariable analyses

OR (95% CI) P value OR (95% CI) P value

Age (year) 0.967 (0.933, 1.003) 0.068 / /

BMI (kg/m2) 0.891 (0.778, 1.021) 0.097 / /

PSA 1.172 (1.080, 1.271) <0.001 1.391 (0.991, 1.952) 0.056

Location 1.616 (0.950, 2.751) 0.077 / /

PI-RADS 7.120 (3.569, 14.202) <0.001 7.688 (1.594, 37.085) 0.011

Radiomics signature 4.517×104 (899.309, 2268910.875) <0.001 7.650×105 (128.450, 4.560×109) 0.002
t

OR, odds ratio.
Bold values mean p<0.05.
FIGURE 3

The nomogram developed using the training set for predicting CS-PCa, based on the radiomics signature and PI-RADS.
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features involved in CS-PCa (26). Among the factors that affecting

radiomics assessment, segmentation represents the first critical step

of imaging processing. Manual ROI drawing represents the most

conventionally utilized segmentation method nowadays (27). Most

prior studies assessed lesion-derived radiomics models with AUCs

from 0.648 to 0.910 (14–16). Gong et al. (17) investigated the

potential of prostate gland radiomic features in identifying GS, with

an AUC of 0.794 in the validation cohort. However, the various
Frontiers in Oncology 08
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patterns of segmentation for model building have been less

discussed and requires further quantitative assessment. Therefore,

in this study, we established multi-pattern segmentations, including

prostate lesions (T2WI or DWI), whole prostate (T2WI or DWI),

and the combination of different methods, which were applied for

radiomics analysis to detect clinically significant prostate cancer.

Following feature selection, 10 optimal features based on the whole

prostate (T2WI) + lesion (DWI) model were selected to develop a
TABLE 5 ROC curve analysis and comparison of prediction models in all data sets.

AUC 95% CI Specificity Sensitivity Accuracy P value NRI

Training set (n=141) PI-RADS 0.835 0.766-0.904 0.545 0.969 0.837 <0.001 0.372

Nomogram 0.967 0.930-1.000 0.886 1.000 0.964

Test set (n=60) PI-RADS 0.843 0.737-0.948 0.556 0.976 0.850 0.01 0.365

Nomogram 0.964 0.904-1.000 0.944 0.952 0.950

Validation set 1 (n=66) PI-RADS 0.824 0.719-0.929 0.524 0.978 0.833 0.01 0.333

Nomogram 0.945 0.869-1.000 0.857 0.978 0.939

Validation set 2 (n=122) PI-RADS 0.796 0.710-0.882 0.942 0.500 0.812 <0.001 0.326

Nomogram 0.942 0.896-0.987 0.907 0.861 0.893
frontiers
AUC, area under the curve; NRI, net reclassification index.
A B

DC

FIGURE 4

ROC curve analysis of the nomogram and PI-RADS for CS-PCa prediction. (A) In the training set. (B) In the test set. (C) In validation set 1. (D) In
validation set 2.
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radiomics signature for preoperative prediction of CS-PCa, with

favorable discriminatory potential (Table 2). A possible explanation

is that the whole prostate (T2WI) model contained phenotypic

features for the entire prostate, while the lesion (DWI) model

involved heterogeneous data describing microcirculation for the

focal lesion.

Since the PI-RADS v2.1 introduced the biparametric

prostate MRI, which was widely recognized by radiologists and

urologists, several prior studies extracted radiomic features from

T2W and DWI (14, 16, 28, 29). Thus, combining biparametric

MRI and deep mining of correlations among distinct radiomics

features could allow a comprehensive assessment of tumor

heterogeneity, which might increase the predictive efficiency

and potentially guide in distinguishing cases requiring

individualized treatments (30–32).

The second noteworthy aspect of the current study is that the

radiomics signature and PI-RADS were combined to develop a

radiomics nomogram with improved discriminatory ability,

which constitutes a visualization tool to predict CS-PCa.

Zhang et al. reported a radiomics nomogram model, which

did not incorporate the PI-RADS v2 score, showed an AUC of

0.910 (15). Montoya et al. reported that the use of radiomics

model failed to outperform PI-RADS v2.1 scales and their

combination did not lead to further performance gains

(AUC=0.830, p>0.05) (28). However, our results showed that

the nomogram model incorporated subjective evaluation

exhibited a higher AUC compared with the PI-RADS alone

(p<0.05) in all cohorts. NRI analysis determined the predictive

value was improved by using the nomogram in lieu of the

traditional PI-RADS v2.1, and good clinical usefulness was

demonstrated by DCA. These data suggest the developed

nomogram could be utilized to guide clinical practice.

The third vital aspect of this study is that we had two actual

external validation datasets, adding value to our previous
Frontiers in Oncology 09
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reports. Using external cohorts is very helpful for overcoming

the weakness that the developed model has no exposure to a

validation cohort in the training phase.

However, the current study still had some limitations.

First, an important drawback of the current retrospective

trial was its relatively small sample size. This implies

selection bias and low generalizability of the obtained

results, although external validation cohorts were analyzed.

Therefore, larger multicenter studies are warranted for

reducing the effects of selection bias on model accuracy.

Secondly, the imaging segmentation approach was manual

rather than semi-automatic/automatic delineation, favoring

subjective errors, with no suitability for large data

processing (33). Thirdly, the current work failed to develop

and validate deep learning tools for the prediction of CS-

PCa, which may show more advantages and deserve further

investigation (34).
Conclusion

Overall, based on preoperative biparametric MRI [whole

prostate (T2WI) + lesion (DWI)], a quantitative radiomics

signature was built. The nomogram model combined with the

radiomics signature and PI-RADS had improved clinical benefit

in comparison with the subjective evaluation only in predicting

clinically significant prostate cancer.
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Purpose: To accurately assess disease progression after Stereotactic Ablative

Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a

combined predictive model based on pre-treatment CT radiomics features and

clinical factors was established.

Methods: This study retrospectively analyzed the data of 96 patients with early-

stage NSCLC treated with SABR. Clinical factors included general information

(e.g. gender, age, KPS, Charlson score, lung function, smoking status), pre-

treatment lesion status (e.g. diameter, location, pathological type, T stage),

radiation parameters (biological effective dose, BED), the type of peritumoral
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radiation-induced lung injury (RILI). Independent risk factors were screened by

logistic regression analysis. Radiomics features were extracted from pre-

treatment CT. The minimum Redundancy Maximum Relevance (mRMR) and

the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for

the dimensionality reduction and feature selection. According to the weight

coefficient of the features, the Radscore was calculated, and the radiomics

model was constructed. Multiple logistic regression analysis was applied to

establish the combined model based on radiomics features and clinical factors.

Receiver Operating Characteristic (ROC) curve, DeLong test, Hosmer-

Lemeshow test, and Decision Curve Analysis (DCA) were used to evaluate

the model’s diagnostic efficiency and clinical practicability.

Results: With the median follow-up of 59.1 months, 29 patients developed

progression and 67 remained good controlled within two years. Among the

clinical factors, the type of peritumoral RILI was the only independent risk

factor for progression (P< 0.05). Eleven features were selected from 1781

features to construct a radiomics model. For predicting disease progression

after SABR, the Area Under the Curve (AUC) of training and validation cohorts in

the radiomics model was 0.88 (95%CI 0.80-0.96) and 0.80 (95%CI 0.62-0.98),

and AUC of training and validation cohorts in the combined model were 0.88

(95%CI 0.81-0.96) and 0.81 (95%CI 0.62-0.99). Both the radiomics and the

combinedmodels have good prediction efficiency in the training and validation

cohorts. Still, DeLong test shows that there is no difference between them.

Conclusions: Compared with the clinical model, the radiomics model and the

combined model can better predict the disease progression of early-stage

NSCLC after SABR, which might contribute to individualized follow-up plans

and treatment strategies.
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Introduction

Lung cancer is the second incidence of diagnosed tumor and

is the primary leading cause of cancer-related deaths worldwide

(1). Non-small cell lung cancer (NSCLC) accounts for 80-85% of

lung cancer. Currently, surgery remains the standard of care for

NSCLC (2). For patients who are medically inoperable due to

their existing severe chronic disease or their rejection of surgery,

the treatment of stereotactic ablative radiotherapy (SABR) has

been established as the standard alternative therapy (3–5).

SABR is a non-invasive external beam radiation modality

which could facilitate the delivery of ablative doses to the tumor,

sparing the surrounding normal tissues over a limited number of

fractions. Previous studies had shown that the local control rate

could reach 85%~98%, and the 3-year overall survival (OS) can

get 48%~65% after SABR in early-stage NSCLC (6–8). However,
02
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the patients still had the risk of locoregional recurrence (4%

~14%) and distant metastasis (13%~23%) after SABR (9, 10),

which is a great challenge for clinicians. Chemotherapy is not

ideal because most patients who receive SABR cannot take the

risk of surgery due to poor cardiopulmonary function and aged

physical condition. In the era of immunotherapy, Immune

Checkpoint Inhibitors (ICI) have represented a revolution in

treating various stages of NSCLC. The addition of ICI to SABR

seems promising, and several multicenter, prospective,

randomized controlled clinical trials are underway. A

systematic literature review indicated that the ICI-SABR

combination has a good safety profile and achieves high rates

of local control and greater chances of obtaining abscopal

responses than SABR alone, with a relevant impact on

progression-free survival (PFS) (11). However, most patients

with early-stage NSCLC could be cured after SABR alone, and
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they shall be waived from the suffering of the harm of systematic

therapy. For this reason, finding out those patients will have a

high risk of disease progression is becoming essential. Therefore,

establishing an effective predictive model to assess the risk of

progression and survival probability of early-stage NSCLC

patients is of great significance for treatment plan selection or

the individual design of follow-up.

Resulting from the heterogeneity of tumors, the growth rate,

invasive ability, drug sensitivity, and prognosis of tumors can be

different, and the divergence can limit the usefulness of molecular

testing-based tissue biopsies (12). Radiomics extracts quantitative

features from Computed Tomography (CT), Magnetic Resonance

Imaging (MRI), Positron Emission Tomography (PET), and other

medical images with high throughput by utilizing computer

software (13). Through statistical or computer learning

methods, the characteristics most related to clinical results are

selected to establish models, which can provide valuable predictive

information for the diagnosis and treatment of diseases, and can

provide information on tumor cells more comprehensively,

systematically, and deeply (12–17). In this study, the radiomics

method was used to deeply mine the pre-treatment CT radiomics

features, combined with clinical factors, to construct and validate a

predictive model for the disease progression of early-stage NSCLC

after SABR, providing a feasible and practical reference for clinical

guidance of individualized treatment of patients.
Materials and methods

This retrospective study was approved by the ethics

committees of Cancer Hospital of the University of Chinese

Academy of Sciences (Zhejiang Cancer Hospital). The

requirement for informed consent was waived.
Patient data

The clinical and imaging data of patients with early-stage

NSCLC treated with SABR in the Department of Thoracic

Radiation Oncology, Cancer Hospital of the University of

Chinese Academy of Sciences from 2012 to 2018 were

collected. General information (e.g. gender, age, KPS, Charlson

score, lung function, smoking status), pre-treatment lesion status

(e.g. diameter, location, pathological type, T stage), radiation

parameters (biological effective dose, BED), and the type of

peritumoral radiation-induced lung injury (RILI) was classified.

Inclusion criteria: 1) Pathologically confirmed primary

NSCLC by bronchoscopy or percutaneous CT-guided biopsy;

2) The TNM clinical stage I~II according to the American Joint

Committee on Cancer (AJCC) (8th edition); 3) Have not

received other prior antitumor therapy; 4) Thorax CT

examination performed before treatment and every 3-6

months follow-up after SABR. Exclusion criteria: 1) coexisting
Frontiers in Oncology 03
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with other primary malignant tumors; 2) incomplete clinical and

imaging data; 3) lesions cannot be accurately segmented (e.g. the

lesion and peripheral atelectasis cannot be accurately

segmented.); 4) lost to follow-up.
SABR treatment

All patients performed four-dimensional CT simulations

with free breathing. The Internal Gross Target Volume

(IGTV) was derived from the Maximum Intensity Projection

(MIP) of 4DCT and the Planning Target Volume (PTV) was

expanded by a 5-mm margin in all directions around the IGTV.

The total radiation dose and fraction dose were determined by

the radiation oncologists based on the lesion location, volume,

and peripheral organs at risk. Target delineation, conformity,

and dose limitations in normal tissues were referred to the

American Radiation Therapy Oncology Group (RTOG) 0236

study (18). The prescription dose was 5-15Gy per fraction, once

a day, with a total dose of 40-70Gy. The BED was calculated

using the formula, BEDa/b = nd (1+ d/a/b), where n=number of

fractions, d=dose per fraction, and a/b=10 Gy for the

lung cancer.
Follow-up

All patients underwent enhanced thorax CT examination

one month after the end of treatment and every three months

thereafter, and every six months after two years. If progression is

suspected, PET-CT or pathological biopsy is performed.

Enhanced thorax CT was performed with GE 64-slice CT or

Siemens 64-slice CT, tube current 100~300mAs, tube voltage

120 kV, pitch 5.0 mm, slice thickness 5.0 mm. The contrast agent

was selected from Opitiray (Ioversol) or Ultravist (Iopromide),

and the high-pressure syringe was injected rapidly through the

dorsal vein of the hand, the injection rate was 2.5ml/s, and the

dose was 80-95ml. Enhanced thorax CT examination was

performed 38s after contrast agent injection. Disease

progression within two years of follow-up was defined as a

high-risk group, and progression or no progression for more

than two years was defined as a low-risk group.
Radiomic analysis

The workflow of the study was shown in Figure 1.

Medical imaging segmentation
The lung-window CT images (window width of 1600

Hounsfield units (HU) and window level of -450 HU; DICM

format) of early-stage NSCLC patients before SABR treatment

were imported into ITK-SNAP software (Version 3.4.0,
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http://www.itksnap.org/). A region of interest (ROI) was

manually delineated layer by layer by an attending radiologist

(who had 10 years of experience with thorax CT images), and a

Volume of Interest (VOI) was synthesized. Adjacent aorta, ribs,

and pulmonary bullae were excluded. At the same time, a senior

radiologist (who had 15 years of experience with thorax CT

images) randomly selected 30 patients and repeated the

delineation process. The Intraclass Correlation Coefficient

(ICC) was used to evaluate consistency between observers.

Feature extraction and selection
Image preprocessing and radiomics feature extraction were

performed using python pyradiomics (version 3.0.1), which

complies with IBSI (19). Image preprocessing includes

resampling, denoising, and intensity standardization. Feature

parameters include morphological features, first-order features,

texture features, and transformation-based features. Before

feature selection, radiomics features of different dimensions

were normalized using a Z-score, which was used to remove

the mean and variance normalization. The minimum

Redundancy Maximum Relevance (mRMR) and the Least

Absolute Shrinkage and Selection Operator (LASSO) were

used for dimensionality reduction and feature selection.

Model construction and evaluation
Univariate logistic regression analysis was used to screen

independent clinical risk factors. According to the ratio of 7: 3,

the patients were randomly divided into the training cohort and

the validation cohort. The data of the training cohort were used to

construct the model, and the data of the validation cohort were

used to test. According to the radiomics labels and their weight

coefficients, the radiomics score (Radscore) of every patient was

calculated, and a radiomics model was established. Multivariate

logistic regression analysis was used to establish a combined
Frontiers in Oncology 04
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model based on radiomics features and clinical factors, and a

nomogram was constructed. The area under curve (AUC) was

calculated by receiver operating characteristic (ROC) curve

analysis, and the performance of the training cohort and the

validation cohort models was evaluated. The accuracy, sensitivity,

specificity, Positive Predictive Value (PPV), and Negative

Predictive Value (NPV) of the models were obtained. Delong

test, Hosmer-Lemeshow test, and Decision Curve Analysis (DCA)

were used to evaluate the diagnostic efficiency and clinical utility

of the model.
Statistical analysis

All data analysis was performed by using IBM SPSS version

24.0 (IBM Corp., Armonk, NY, USA). The continuous variables

that conformed to be normally distributed were analyzed by the

independent samples t-test. Otherwise, the continuous variables

were analyzed by the Wilcoxon Rank-Sum test. The categorical

variables were used the chi-square test or Fisher’s exact test. P<

0.05 was considered statistically significant.
Results

Patient characteristics

A total of 96 patients were included in this study. With the

median follow-up of 59.1 months, 29 patients developed

progression and 67 remained good controlled within two

years. All patients were randomly assigned to the training

cohort (n=68) and the validation cohort (n=28). There were

no statistically significant differences in clinical factors between

the training and validation cohorts (P > 0.05). Statistical
A CB D

E GF H

FIGURE 1

|The framework for the radiomics workflow. (A, B) Medical imaging segmentation; (C, D) Feature extraction and selection; (E, F) The ROC curves
and nomogram; (G, H) Hosmer-Lemeshow Test and the decision curve.
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characteristics were summarized in Table 1. Univariate logistic

regression analysis showed that the type of peritumoral RILI was

significantly different between the high-risk group and the low-

risk group for disease progression (OR, 0.48; 95% CI: 0.25-0.90;

P=0.022). Thus, a clinical model is established through this

independent risk factor.
Frontiers in Oncology 05
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Analysis based on CT radiomics features

Feature selection and model construction
A tota l o f 1781 radiomics fea tures ( inc luding

morphological features, first-order features, texture features,

and transformation-based features) were extracted from the
TABLE 1 Characteristics of patients in the training and validation cohorts.

Training Cohort Validation Cohort

High-risk (n=21) Low-risk (n=47) p High-risk (n=8) Low-risk (n=20) p

Gender (%)

Female 4 (19.0) 12 (25.5) 2 (25.0) 9 (45.0)

Male 17 (81.0) 35 (74.5) 0.7849 6 (75.0) 11 (55.0) 0.58188

Age, years (mean ± SD) 74.5 (6.7) 73.6 (7.9) 0.6588 72.5 (6.6) 72 (9.2) 0.88141

KPS 88.8 (8.6) 89.8 (6.4) 0.6034 90 (7.6) 89.5 (7.6) 0.87475

Charlson 0.9 (1.2) 0.7 (1) 0.5613 1.6 (1.5) 0.6 (0.9) 0.02219*

Diameter, cm (mean ± SD) 2.3 (0.8) 2.5 (0.8) 0.2269 2.1 (0.7) 2.4 (0.9) 0.47013

Histology

Adenocarcinoma 9 (42.9) 25 (53.2) 2 (25.0) 11 (55.0)

Squamous cell carcinoma 10 (47.6) 13 (27.7) 3 (37.5) 4 (20.0)

Not otherwise Specified 2 (9.5) 9 (19.1) 0.2404 3 (37.5) 5 (25.0) 0.34642

T stage

1 16 (76.2) 34 (72.3) 4 (50.0) 17 (85.0)

2 5 (23.8) 12 (25.5) 4 (50.0) 3 (15.0)

3 0 (0.0) 1 (2.1) 0.7814 0 (0.0) 0 (0.0) NA

Tumor location

Central 2 (9.5) 3 (6.4) 1 (12.5) 0 (0.0)

Peripheral 19 (90.5) 44 (93.6) 1.0000 7 (87.5) 20 (100.0) 0.62906

Involved lobe

RLL/RML 8 (38.1) 15 (31.9) 2 (25.0) 8 (40.0)

LLL 8 (38.1) 11 (23.4) 3 (37.5) 2 (10.0)

LUL 2 (9.5) 7 (14.9) 2 (25.0) 4 (20.0)

RUL 3 (14.3) 14 (29.8) 0.3922 1 (12.5) 6 (30.0) 0.31476

Pulmonary function

Normal 3 (14.3) 4 (8.5) 1 (12.5) 1 (5.0)

Mild 1 (4.8) 8 (17.0) 1 (12.5) 4 (20.0)

Moderate 11 (52.4) 18 (38.3) 3 (37.5) 5 (25.0)

Severe 6 (28.6) 17 (36.2) 0.3853 3 (37.5) 10 (50.0) 0.76868

Smoker

No 6 (28.6) 21 (44.7) 4 (50.0) 10 (50.0)

Yes 15 (71.4) 26 (55.3) 0.3241 4 (50.0) 10 (50.0) 1.00000

BED 98.1 (14.5) 98.5 (12.5) 0.9062 86.4 (14.8) 93.7 (19.3) 0.33499

BED≥100

No 7 (33.3) 18 (38.3) 4 (50.0) 10 (50.0)

Yes 14 (66.7) 29 (61.7) 0.9044 4 (50.0) 10 (50.0) 1.00000

Type

1 10 (47.6) 34 (72.3) 5 (62.5) 14 (70.0)

2 3 (14.3) 7 (14.9) 2 (25.0) 3 (15.0)

3 8 (38.1) 6 (12.8) 0.0524 1 (12.5) 3 (15.0) 0.82186
frontie
KPS, karnofsky performance status; RLL, right lower lobe; RML, right middle lobe; LLL, left lower lobe; LUL, left upper lobe; RUL, right upper lobe; BED, biologically effective dose; Type,
the type of peritumoral radiation-induced lung injury. *p< 0.05, expressive significance.
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pre-treatment CT images of early-stage NSCLC treated with

SABR by using the python pyradiomics (version 3.0.1),

ICC=0.82>0.75, indicating good inter-group consistency.

After dimensionality reduction and feature selection by

mRMR and LASSO, the 11 most valuable features and their

corresponding coefficients were retained, as shown in Figure 2.

The values of 11 features were input into the formula to obtain

Radscore, and the radiomics model reflecting the disease

progression was established. The box plot showed the

Radscore distribution of high- and low-risk group for disease

progression in training and validation cohorts, as shown in

Figure 3. The resulting formula was as follows:
Frontiers in Oncology 06
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Combined with the Radscore and the type of peritumoral

RILI, a combined model was constructed, and a visual

nomogram was formed, as shown in Figure 4.

Model performance evaluation
Figure 4 showed that the AUCwith its 95% confidence interval

(CI) of the radiomics model, clinical model, and combined model

was 0.88 (95%CI 0.80-0.96), 0.64 (95%CI 0.51-0.78), and 0.88 (95%

CI 0.81-0.96) in the training cohort and 0.80 (95%CI 0.62-

0.98),0.53 (95%CI 0.32-0.73) and 0.81 (95%CI 0.62-0.99) in the

validation cohort, respectively. Table 2 showed that the accuracy

values of the radiomics model, clinical model, and combined
Radscore = −0:12*lbp − 2D_ firstorder _Median + 0:879*wavelet − LLH _glrlm _LongRunEm

phasis + −0:237*lbp − 3D − k_ngtdm_Busyness + 0:254*logarithm_glcm_ClusterShade + −0:

266*square_glcm_ClusterShade + −0:852*wavelet-HLL_firstorder_Skewness + −0:635*

wavelet-HHL_glcm_Imc1 + −0:442*lbp-3D-k_glcm_ClusterTendency + 0:3*exponential

l_glszm_ZoneVariance + 0:297*wavelet-LLH_firstorder_90Percentile + 0:059*lbp-2D_

firstorder_90Percentile + 1:212
A C

B

FIGURE 2

Textural feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) binary logistic regression. (A) Tuning parameters(l)
for the LASSO model were selected by 10-fold cross-validation using the minimum criteria. Partial likelihood deviance was plotted against log
(l). The dotted vertical lines correspond to the optimal values according to the minimum criteria and 1-SE criterion. The 11 features with the
smallest binomial deviance were selected. (B) A feature coefficient convergence graph for filtering features using 10-fold cross-validation in the
LASSO regression model. (C) LASSO coefficient profiles of texture features. Vertical lines correspond to the values selected by 10-fold cross-
validation of the log(l) sequence; the 11 nonzero coefficients are indicated.
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model were 82.3%, 72.1%, and 79.4% in the training cohort, and

71.4%, 64.3%, and 85.6% in the validation cohort, respectively. The

results showed that both the radiomics model and the combined

model have good prediction efficiency in the training cohort and

the validation cohort.

According to the DeLong test, the performance of the

radiomics model and combined model in the training and

validation cohort was significantly better than that of the clinical

model (P<0.05), but there was no statistically significant difference

between the radiomics model and combined model (P > 0.05), as

shown in Table 3. Hosmer-Lemeshow Test of the nomograms of

the training and validation cohorts were shown in Figure 5, in
Frontiers in Oncology 07
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which the results showed that the prediction of disease progression

in the training cohort was well-calibrated (P>0.05). DCA results for

the three discrimination models were shown in Figure 6. The

results showed that the radiomics and combined models have high

clinical benefits.

Discussion

Radiomics can extract many disease features that cannot be

observed with the naked eye from medical images and non-

invasively capture information inside tumors that may be related

to tumor recurrence, thereby realizing the goal of personalized
A

C

B

D

FIGURE 3

Box plot showing the Radscore distribution of high and low risk group for disease progression on training and validation cohorts. p-value from
Wilcoxon Rank-Sum test (A, B). Receiver Operator Characteristic (ROC) curves (training and validation cohorts) (C, D). The prediction
performance of the ROC curves for radiomics signature for training and validation cohorts.
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TABLE 2 Predictive performance of three prediction models for training and validation cohort.

Training cohort AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Clinical model 0.64 0.51-0.78 0.872 0.381 0.721 0.759 0.571

Radiomics model 0.88 0.80-0.96 0.830 0.810 0.824 0.907 0.680

Combined model 0.88 0.81-0.96 0.971 0.606 0.794 0.723 0.952

Validation cohort AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Clinical model 0.53 0.32-0.73 0.850 0.125 0.643 0.708 0.250

Radiomics model 0.80 0.62-0.98 0.750 0.625 0.714 0.833 0.500

Combined model 0.81 0.62-0.99 0.864 0.833 0.857 0.950 0.625
Frontiers in Oncology
 08
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frontiers
AUC, the area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
A

C

B

FIGURE 4

Receiver Operating Characteristic (ROC) curves of the clinical, radiomics, and combined model used to discriminate between the high and low
risk of disease progression of lung cancer treated with SABR in the training and validation cohorts (A, B). Radiomics nomogram (C) was used to
discriminate the high and low risk of disease progression in lung cancer patients treated with SABR. The nomogram was based on the training
cohort; the Radscore was shown. Initially, vertical lines were drawn at the Radscore values to determine the values of the points. The final point
value was the sum of those of the two points. Finally, a vertical line was drawn at the total point value to determine the risk of disease
progression of lung cancer treated with SABR.
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medicine. In our study, a combined model based on pre-

treatment thorax CT radiomics features and clinical factors

was developed and validated to predict the likelihood of

disease progression after SABR in early-stage NSCLC.

Distant metastasis was one of the main reasons for SABR

treated in early-stage NSCLC. The RTOG 0236 study showed

that the 5-year distant metastasis rate was 31% (18). In addition,

the metastasis usually develops soon after the treatment of the

primary lesion, and the survival time is significantly reduced

once it occurs. For these patients with a high risk of early distant

metastasis, systemic therapy combined with SABR may reduce

the risk of metastasis and improve the OS. Therefore, it is of

great significance to establish an accurate and effective predictive

model to assess the risk of disease progression in patients of

early-stage NSCLC.

Several studies have focused on the relationship between

SABR prognosis and clinicopathological factors. Onishi et al.

showed that BED ≥100Gy had significantly better local control

rates and OS than those receiving BED< 100Gy (20). The

predictive survival model showed that BED10< 113Gy was an

independent risk factor for OS and PFS and was significantly

associated with both local and distant progression (21). The

prescription of BED ≥ 100Gy was currently recommended by

international guidelines, including the National Comprehensive
Frontiers in Oncology 09
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Cancer Network (NCCN) and the European Society of Medical

Oncology (ESMO) guidelines. Kang et al. constructed a survival

prediction model for stage I NSCLC treated with SABR, showing

that tumor diameter >2.45 cm was an independent predictor of

OS and PFS, which had a significant correlation with both local

and distant progression (21). It is unclear whether there is any

difference in the prognosis of different pathological types after

SABR. Abel et al. analyzed 15,110 patients with early-stage (I ~

IIA) NSCLC who received SABR, and the 5-year OS of patients

with adenocarcinoma and squamous cell carcinoma were 36%

and 24% (P<0.0001), respectively. Squamous cell carcinoma was

an independent poor prognostic factor (22). In our study, BED,

tumor diameter, and pathological type did not correlate with

disease progression, which may be related to the relatively

concentrated BED dose (95% concentrated between 93.4Gy-

99.4Gy), relatively uniform clinical factors, and a small number

of cases and so on. Therefore, it is difficult to construct predictive

models solely on the clinicopathological characteristics.

The type of peritumoral RILI was the only independent risk

factor for tumor progression among clinical factors (P< 0.05).

The pattern of changes in lung parenchyma on CT post-SABR

can generally be categorized as acute (within six months,

corresponding to pneumonitis) or late (after six months,

corresponding to fibrosis) (23). Several papers have classified
A B

FIGURE 5

Hosmer-Lemeshow Test of the nomogram of the training (A) and validation (B) cohorts. The diagonal dotted lines represent the ideal
predictions; the solid lines represent nomogram performance. A closer fit to the diagonal line indicates that the model matches better.
TABLE 3 Comparison of ROC curves with DeLong test in the training and validation cohort.

Clinical vs Radiomics Clinical vs Combined Radiomics vs Combined

Z P Z P Z P

Training Cohort 2.87 0.004* 3.48 <0.001* 0.093 0.926

Validation Cohort 2.08 0.038* 2.35 0.019* 0.24 0.812
f

*p< 0.05, expressive significance.
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acute changes into one of five general patterns: diffuse

consolidation, patchy consolidation, diffuse ground-glass

opacities (GGO), patchy GGO, and no change (24–26). In the

past, the vast majority of literature discussed the identification of

RILI and tumor recurrence (27–29), and there were few studies

on the correlation between them. Based on the above

considerations, we redefined the peritumoral RILI and divided

them into three types (Figure 7). Type I is diffuse consolidation

around the tumor, also called severe RILI. Type II is diffuse GGO

around the tumor, which is distributed over 180 degrees around

the tumor; we also call it moderate RILI. Type III is patchy GGO

within a range of fewer than 180 degrees around the tumor, or

there is no change; we call it mild RILI.

In this study, a total of 1781 radiomics features were extracted.

After screening of radiomics features by mRMR and LASSO, 11

features were finally retained, including four first-order features

and seven texture features, all based on transformation. First-

order features describe the gray value distribution of tumor image

ROIs. In this study, Skewness reflects the asymmetry of gray value

distribution relative to the mean. The more low-signal gray

distribution in the lesion is, the higher the tumor heterogeneity.

In the texture feature, the Gray Level Co-occurrence Matrix

(GLCM) studies the spatial correlation characteristics between

the gray levels of two points in a certain distance and direction in

the image so as to reflect the texture information of the image in

direction, interval, change amplitude and speed. In this study,

Informational Measure of Correlation (IMC) 1 assesses the

correlation between the probability distributions of i and j

(quantifying the complexity of the texture); Cluster Tendency
Frontiers in Oncology 10
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is a measure of groupings of voxels with similar gray-level values;

Cluster Shade is a measure of the skewness and uniformity of the

GLCM, a higher cluster shade implies more significant

asymmetry about the mean. The Gray Level Run Length

Matrix (GLRLM) mainly reflects texture roughness and

directionality. It is used to describe the length of the same

pixel gray level that appears continuously in a specified

direction. In this study, Long Run Emphasis (LRE) measures

the distribution of long-run lengths, with a more excellent value

indicative of long run lengths and more coarse structural

textures. The Gray Level Size Zone Matrix (GLSZM) provides

information about the spatial distribution of corresponding

adjacent pixels or voxels at the same gray level. In this study,

Zone Variance (ZV) measures the variance in zone size volumes

for the zones, and the more significant the value, the greater the

heterogeneity. The Neighbouring Gray Tone Difference Matrix

(NGTDM) represents the difference between the gray value of a

point and the average gray value in the neighborhood at a certain

distance, thereby capturing the spatial rate of gray intensity

changes. In this study, busyness is a measure of the shift from a

pixel to its neighbor; a high value for busyness indicates a ‘busy’

image, with rapid changes of intensity between pixels and their

neighborhood. The gray information of these images can

quantitatively analyze tumor heterogeneity so as to conduct

quantitative studies at the microscopic level, which can

effectively predict the disease progression of patients (30, 31).

The features selected in this study were all processed by filters,

which may be because filters can extract and reconstruct the parts

of the original images, thus mining deeper image information.
FIGURE 6

Decision Curve Analysis (DCA) results for the three discrimination models. The Y-axis represents the net benefit, calculated by summing the
benefits (true positives) and subtracting the weighted harm (i.e., deleting false positives). The optimal method for feature selection is that with
the highest net benefit.
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In this study, the AUC of the radiomics model and

combined model in the training and validation cohorts were

all above 0.80, and the accuracy rates were above 0.7. The model

we developed showed a good predictive efficiency of disease

progression after SABR, which provided important information

for subsequent clinical therapy and follow-up. Rainer et al. also

had similar findings. This study predicted tumor progression six

months after Stereotactic Body Radiation Therapy (SBRT) for

early-stage lung cancer, enrolled 399 patients from 13 different

units, and finally retained seven radiomics features to establish a

Support Vector Machine (SVM) model, using 10-fold cross-

validation and AUC to evaluate the performance of the classifier.

The results showed that the AUC was 0.789, sensitivity was

67.0%, and specificity was 78.7%, which was a good prediction

(32). Lafata et al. also proposed the potential relationship
Frontiers in Oncology 11
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between radiomics features extracted from pre-treatment CT

images and clinical outcomes following SBRT for NSCLC; the

results showed that two features demonstrated a statistically

significant association with local failure: Homogeneity2

(p=0.022) and Long-Run-High-Gray-Level-Emphasis

(p=0.048) multivariable logistic regression models produced

AUC values of 0.83 (33).

In the DeLong test, we found no statistically significant

difference between the radiomics model based solely on the

CT images and the combined model, which indirectly confirmed

the dominant role of CT images in the prediction model. Even

so, compared with the ROC, the AUC value of the combined

model is higher than that of the pure CT radiomics model.

Therefore, clinical variables (the type of peritumoral RILI) still

have a specific positive effect on the comprehensive judgment of
FIGURE 7

The type of peritumoral radiation-induced lung injury. Type I, female, 51 years, adenocarcinoma in the right lung, DT40GY/5F; (A) pre-
treatment: a nodule with blurred boundary and spicule sign; (B) one month after treatment: the tumor shrunk and there was a surrounding
ground-glass opacity; (C) three months after treatment: the tumor area showed diffuse consolidation and was indistinguishable from the tumor;
(D) six months after treatment: the imaging findings were similar to (C). Type II, female, 79 years, adenocarcinoma in right lung, DT55GY/5F;
(E) pre-treatment: a nodule with a clear boundary and shallow lobed; (F)one month after treatment: the tumor has shrunk a little, no ground
glass opacity surrounding it; (G) four months after treatment: there was no significant change; (H) six months after treatment: the tumor was
surrounded by ground-glass opacity, more than 1/2. Type III, male,70 years, adenocarcinoma in left lung, DT50GY/5F; (I) pre-treatment: a
nodule with a clear boundary and shallow lobed; (J) two months after treatment: there was no significant change; (K) four months after
treatment: there was no significant change; (L) six months after treatment: the tumor was surrounded by ground-glass opacity, less than 1/2.
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the model. Luo et al. and Li et al. also proposed that clinical

variables were significantly correlated with the clinical outcomes

of patients receiving SBRT for lung cancer and proved that the

combined model based on clinical factors and radiomics features

could effectively improve model prediction efficiency (34, 35).

Limitations of this study: Firstly, this study was a retrospective

study, which can only be analyzed based on existing data, and

prospective studies can be carried out in the future to incorporate

some new variables. Secondly, the number of cases in this study

was limited, and the sample size needed to be further expanded to

improve the stability of the model. Thirdly, the data in this study

came from the same hospital, and only internal validation was

performed. Data from other hospitals should be added for external

validation to improve model repeatability.
Conclusions

In conclusion, the radiomics model established based on

pre-treatment thorax CT images of early-stage NSCLC can

predict the disease progression after SABR treatment. At the

same time, the nomogram we developed has a better predictive

ability for the disease progression and provides a feasible and

practical reference value for clinical guidance of individualized

treatment, follow-up, and evaluation strategies for patients

undergoing SABR.
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Objective: To explore the feasibility of predicting distant metastasis (DM) of

nasopharyngeal carcinoma (NPC) patients based on MRI radiomics model.

Methods: A total of 146 patients with NPC pathologically confirmed, who did

not exhibit DM before treatment, were retrospectively reviewed and followed

up for at least one year to analyze the DM risk of the disease. The MRI images of

these patients including T2WI and CE-T1WI sequences were extracted. The

cases were randomly divided into training group (n=116) and validation group

(n=30). The images were filtered before radiomics feature extraction. The least

absolute shrinkage and selection operator (LASSO) regression was used to

develop the dimension of texture parameters and the logistic regression was

used to construct the prediction model. The ROC curve and calibration curve

were used to evaluate the predictive performance of the model, and the area

under curve (AUC), accuracy, sensitivity, and specificity were calculated.

Results: 72 patients had DM and 74 patients had no DM. The AUC, accuracy,

sensitivity and specificity of the model were 0. 80 (95% CI: 0.72~0. 88), 75.0%,

76.8%, 73.3%. and0.70 (95% CI: 0.51~0.90), 66.7%, 72.7%, 63.2% in training

group and validation group, respectively.

Conclusion: The radiomics model based on logistic regression algorithm has

application potential for evaluating the DM risk of patients with NPC.

KEYWORDS

nasopharyngeal carcinoma, distant metastasis, radiomics, predictionmodel, magnetic
resonance imaging
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1 Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common

head and neck cancers with a high incidence in South China,

Southeast Asia, and North Africa (1). According to the latest data

from the International Agency for Research on Cancer, the

number of NPC patients from China in 2020 was 62444, of

which 34,810 patients were died for the disease (2). More than

75% of patients were diagnosed with Locally advanced NPC

(TNM stage III or IVA) at the first visit (3). Notably, due to

highly sensitivity to radiotherapy, the prognosis of NPC has been

greatly improved with advancements in radiotherapy and

optimizations in chemotherapy regimens (4). At present, distant

metastasis is still the major cause of treatment failure in NPC (5).

As such, early diagnosis and accurate identification of DM is

indispensable for timely implementation of reasonable treatment.

Currently, the anatomical tumor-node-metastasis (TNM)

staging system is the main indicator for prognostic prediction,

but this system has limitations in predicting DM and

stratification for treatment decisions (6). Recent studies have

shown that although patients within the same TNM stage

received equivalent standard treatments, more than 20% of

patients eventually developing DM showed poor efficacy and

prognosis (7). The possible explanation is that TNM staging is

mainly based on the anatomical information and cannot reflect

the presence of heterogeneity in tumors. Hence, exploring an

effective strategy to accurately identify patients at a high risk of

DM is essential.

Radiomics, an emerging field of medical research, involves

the transformation of traditional medical images into analyzable

quantitative imaging features for model construction, and has

shown great advantages in early diagnosis, efficacy evaluation,

and prognosis prediction of tumors (8). This study aims to

explore the feasibility of predicting distant metastasis risk (DM)

of nasopharyngeal carcinoma (NPC) based on MRI

radiomics model.
2 Materials and methods

2.1 Patients and datasets

In this retrospective study, the medical records and imaging

data of NPC patients were obtained at Zhejiang Cancer Hospital

from January 2010 to December 2016. The clinical features

including gender, age, T stage, and histological types were

collected. Inclusion criteria were: (1) two sequences (axial T2-

weighted [T2WI] and T1-weighted contrast [CE-T1WI]) of

head and neck MRI were all collected; (2) all patients were

diagnosed with NPC by pathology and did not exhibit DM

before treatment; (3) all patients were followed up for more than

one year, with a maximum of 6 years; (4) no prior malignancy.
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Exclusion criteria were: (1) received antitumor therapy before

MRI examination; (2) artifacts in MRI images; (3) the tumor is

too small (there is volume effect when sketching the target ROI).

Finally, a total of 146 NPC patients were included, all patients

were randomly divided into training group (n = 116) and

validation group (n = 30) as a ratio of 4:1 by computer. This

study was approved by the Ethics Committees of Zhejiang

Cancer Hospital.
2.2 Image acquisition

MRI was performed with Siemens 3.0T MR scan equipment

and a 16-channel head and neck joint coil. Scanning sequence

and parameters: (1) axial T1-weighted imaging (T1WI): TR:

498ms, TE: 8ms, slice thickness: 5mm, FOV: 260×260mm,

matrix size: 288×229. (2) axial T2-weighted imaging (T2WI):

TR: 3020ms, TE: 100ms, slice thickness: 4mm, FOV:

260×260mm, matrix size: 372×363. The contrast medium was

Gd-DTPA, dose 15mL (0.1mmol/kg), injection rate 2.0mL/s.

Contrast enhanced T1WI (CE-T1WI scan was performed after

1min after intravenous injection of the elbow.
2.3 Research methods of radiomics

Tumor segmentation: T2WI and CE-T1WI images were

introduced into ITK-SNAP software (version 3.8.0, http://

www.itksnap.org/) for tumor segmentation. Two doctors (with

more than 8 years of experience in neck diagnosis, respectively)

manually sketched the target ROI layer by layer, and selected

axial images of each sequence to avoid enlarged lymph nodes in

parapharyngeal space as far as possible.

Radiomics feature extraction and radiomics model building:

all the segmented ROI data were imported into the Darwin

research platform for feature extraction. The definition and

calculation formula of features are in line with the

PyRadiomics standard (9). In order to avoid reducing the

speed of calculation, the extracted features were standardized

by the minimum and maximum scaling algorithm. The optimal

feature selection was used for removing the low performance

features, the K was set to 15% and the f calssif function was

selected which refers to the first 15% features sorted by F value

were selected by the analysis variance of F test statistics. The

minimum absolute contraction and selection operator (LASSO)

regression was used to further reduce the dimension of the

feature parameters. Finally, 15 combinatorial features were

obtained. Logistic regression algorithm was used to establish a

model includes above selected feature parameters. The

diagnostic efficacy evaluation of the training group and

validation group model were obtained from the receiver

operating characteristic (ROC) and area under curve (AUC),
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accuracy, sensitivity, and specificity. The workflow of the

radiomics procession is presented in Figure 1.
2.4 Statistical analysis

The general characteristics of patients were statistically

analyzed by SPSS 26.0. The classified data was compared by

chi-square test or Fisher’s exact test. The independent sample t-

test was applied in the analysis of the quantitative data which

according to normal distribution were expressed as mean ±

standard deviation (). The Mann-Whitney U test was used for

the comparison of quantitative data which did accord to normal

distribution. P< 0.05 indicates that the difference is

statistically significant.
3 Results

3.1 Clinical characteristics of the patients

A total of 146 patients with NPC were collected and followed

up for at least one year, of which 72 patients had DM, and other 74

patients had no DM. Histological subtypes were divided into three

types: type I differentiated keratinizing carcinoma (n=15), type II

differentiated nonkeratinizing carcinoma (n=69), and type III

undifferentiated nonkeratinizing carcinoma (n=62). There was a

significant difference in T-stage between the two groups (P<

0.001). The T stage in DM group was higher as a whole. There

was no significant difference in sex, age and histological types

between the two groups (P> 0.05), as shown in Table 1.
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3.2 Radiomics feature selection results

1781 radiomics features were extracted from magnetic

resonance images: (1) first-order features, (2) shape features,

(3) texture features: gray level co-occurrence matrix (GLCM),

gray level run length matrix (GLRLM), gray level size zone

matrix (GLSZM), gray level dependence matrix (GLDM),

neighbouring gray tone difference matrix (NGTDM). There

were 15 most valuable imaging features after dimensionality

reduction with LASSO, including first-order features (n=4) and

texture features (n=11). The first-order features including: inter

quartile range, skewness (n=2), kurtosis. GLCM features include:

cluster tendency, difference average (DA), sum squares (SS),

correlation, cluster shade (CS), informational measure of

correlation (Imc1). GLRLM features include: run variance

(RV), long run low gray level emphasis (LRLGLE) (n=2).

GLSZM features including: small area low gray level emphasis

(SALGLE); NGTDM features including: strength. TheWorkflow

of radiomics model was shown in Figure 2.
3.3 Prediction model results

In the training group, AUC was 0.80 (95% CI: 0.72- 0.88),

the sensitivity was 76.8%, the specificity was 73.3% and the

accuracy was 75.0%. In the validation group, the AUC value of

the model was 0.70 (95% CI: 0.51- 0. 90), the sensitivity was

72.7%, the specificity was 63.2% and the accuracy was 66.7%.

The corresponding characteristic coefficients and the

comparison of characteristic parameters between the two

groups were shown in Table 2, Figures 3, 4.
FIGURE 1

Workflow showing the establishment of a radiomics model based on MRI for predicting DM of NPC. The steps include (A) MR image acquisition,
(B) tumor segmentation, (C) radiomics features selection, and (D) model evaluation.
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4 Discussion

MRI is one of the most commonly used in the early diagnosis

and evaluation of NPC, and its sensitivity and resolution of

lesions are better than CT images. Although radiotherapy and

simultaneous radiotherapy and chemotherapy significantly

reduced the local recurrence rate of NPC, the treatment

response of patients with DM was poor, and the 5-year

survival rate was less than 5%, which was the main cause of

treatment failure (10). Therefore, it is necessary to evaluate the

risk of metastasis in patients with NPC before treatment in order

to adopt more aggressive therapy strategies for high-risk

patients. MRI only simply reflected the anatomical structure of

tumor invasion, but ignored the heterogeneity of tumor. It was

difficult to monitor and evaluate the risk of tumor patients with

DM during treatment, which has many limitations. By extracting

and analyzing medical images and obtaining quantitative feature

data that cannot be recognized by the naked eye, the imaging

model can more comprehensively and carefully show the
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microscopic characteristics and heterogeneity of the tumor. Up

to now, few studies have used imaging analysis to predict the

occurrence of DM in NPC (11, 12). Most of them used imaging

models to predict tumor stage, recurrence, curative effect

evaluation and prognosis evaluation (13–18). Zhang (12)

reported that combined MRI imaging features with clinical

features to evaluate DM risk in patients with NPC before the

first treatment, and found that the combined model had good

diagnostic efficacy in both training group and validation group.

Peng (11) found that the combination of sequence floating

forward selection (SFFS) and support vector machine (SVM)

classifier can further improve the accuracy of imaging prediction

model by analyzing the characteristics of preprocessed PET/CT

images for prediction the recurrence and DM in patients with

locally advanced NPC.

In this study, we extracted the imaging features of T2WI and

CE-T1WI sequences in MR images and constructed a radiomics

model based on logistic regression to predict the risk of DM in

NPC patients before initiating treatment. The model has higher
FIGURE 2

The Gini Coefficient importance analysis of radiomics features. The three radiomics features with the highest contribution are the inter quartile
range of the first-order feature, the skewness of the first-order feature after logarithm, and the skewness of the first-order feature filtered by
high-low- high wavelet filters in XYZ direction,.
TABLE 1 Comparison of general characteristics of patients with NPC.

DM group (n=72) Non-DM group (n=74) Statistical value P

Gender (male/female) 58/16 54/20 0.744 0.388b

age 47.9 ± 12.5 48.6 ± 12.9 0.362 0.718a

Tumor stage 5.943 <0.001c

T1 3 15

T2 13 35

T3 25 18

T4 31 6

Histological type 0.658 0.510c

I type 6 9

II type 34 35

III type 32 30
frontier
a: t value; b: x2 value; c: Z value.
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AUC value, sensitivity, specificity, and accuracy in the training

group and validation group, suggesting that it has a good

diagnostic performance. Similarly, previous studies have found

that the ability of image group feature prediction based on T2WI

and CE-T1WI image extraction was better than that of

independently T2WI sequence or independently CE-T1WI

sequence image extraction (19). T2WI images mainly provide

anatomical information, and CE-T1WI images mainly evaluate

the blood supply of tumor. The combination of two sequence

images is a key factor in judging the prognosis of NPC.

In this study, 1781 radiomics features were extracted. After

dimensionality reduction with LASSO, 15 radiomics features

were remained, including first-order features (n=4) and second-

order GLCM (n=6), GLRLM (n=3), GLSZM (n=1) and NGTDM

(n=1). The first-order feature mainly describes the distribution

of voxel gray values in ROI. The second-order histogram feature

or texture feature is a feature describing the spatial distribution

intensity level of voxels. GLCM describes the joint distribution of

two gray pixels with a certain spatial position relationship, in

which the correlation is the feature extracted from the T2WI

image, which reflects the consistency of the image texture. The

greater the value difference, the higher the heterogeneity in the

tumor. Cluster Tendency is a measure of groupings of voxels

with similar gray-level values. DA refers to the relationship

between similar intensity values and different intensity values.

SS quantifies the distribution of neighbouring intensity level
Frontiers in Oncology 05
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pairs about the mean intensity level. Correlation represents the

linear dependency of gray level values to their respective voxels.

CS is a measure of the skewness and uniformity of the GLCM: a

higher CS implies greater asymmetry about the mean. GLRLM is

a quantitative index of the smoothness of image texture, in

which the larger the LRLGLE value, the higher the gray value

and the smoother of the texture in image. RV is a measure of the

variance in runs for the run lengths. Similar to GLRLM, GLSZM,

mainly describes the quantitative index of image texture

uniformity: SALGLE refers to the proportion in the image of

the joint distribution of smaller size zones with lower gray-level

values, and this feature is positively correlated with tumor

heterogeneity. NGTDM refers to the sum of the difference

between a gray value and the average gray value of its

neighbours: texture intensity is related to contrast and

coarseness, with small values for coarseness textures and high

values for busyness or fine textures. Strength is a measure of the

primitives in an image. Its value is high when the primitives are

easily defined and visible. These features are objective and

quantitative information that cannot be observed by the

human eye, and usually reflect the pathophysiological

information inside the tumor. The results of this study showed

that the differences in the characteristic parameter values

between the DM group and the non-DM group were in line

with the above rules, and the overall texture distribution of the

tumors in the DM group was uneven, that is, the inherent
FIGURE 3

Comparison of feature model cross-validation performance between training group and validation group.
TABLE 2 Predictive effectiveness of radiomics model in the training group and validation group.

training group (n=116) validation group(n=30)

AUC (95% CI) 0. 80(0.72~0. 88) 0.70(0.51~0. 90)

sensitivity 76.8% 72.7%

specificity 73.3% 63.2%

accuracy 75.0% 66.7%
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heterogeneity of tumor may provide additional information

about pathophysiological features.

There were several limitations in the present study: (1) this

study is a retrospective analysis of single-center with a small

sample size, which needs to be verified by multicenter, prospective

studies with a large sample size, (2) the thick slice thickness

(5mm) of the images used in this study may have effects on ROI

segmentation, (3) different types of MRI equipment are used for

inspection, the scanning parameters are not unified.
5 Conclusions

Radiomics analysis can objectively quantify the

morphological and internal heterogeneity changes of NPC,

and the radiomics model can effectively evaluate the risk of

DM in patients with NPC, which may assist physicians in

screening patients with DM and accordingly formulating

individualized treatment plans for patients.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by Ethics Committees of Zhejiang Cancer Hospital.

Written informed consent for participation was not required for

this study in accordance with the national legislation and the

institutional requirements.
Frontiers in Oncology 06
69
Author contributions

TJ had full access to all of the data in the study and took

responsibility for the integrity of the data and the accuracy of the

data analysis. Collection and assembly of data: TJ, YT, SN, WC,

FW, TL, FL. Resources and data curation: TL, WQ, FJ. Data

analysis and interpretation: TJ, YW, HJ, FW. Writing-original

draft preparation: TJ. Statistical analysis: TJ, YW, HJ. Study

concept , supervis ion, funding acquis i t ion, project

administration, writing-review: HJ and FJ. All authors

contributed to the article and approved the submitted version.
Funding

This study was supported by grants from Medical and Health

Research Project of Zhejiang Province (Grant Number: 2020KY486),

and Natural Science Foundation of Zhejiang Province (2022C03072).
Conflict of interest

Author YW was employed by General Electric (GE) Healthcare.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may bemade by its

manufacturer, is not guaranteed or endorsed by the publisher.
A B

FIGURE 4

The ROC of DM in NPC patients based on MRI radiomics model. (A): the AUC of training group (n = 116) is 0.80. (B): the AUC of validation
group (n = 30) is 0.70.
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Malignancy risk of
gastrointestinal stromal tumors
evaluated with noninvasive
radiomics: A multi-center study

Yun Wang1†, Yurui Wang2†, Jialiang Ren3, Linyi Jia4,
Luyao Ma1, Xiaoping Yin1*, Fei Yang5* and Bu-Lang Gao1

1Affiliated Hospital of Hebei University/Hebei University (Clinical Medical College), Baoding, China,
2Tangshan Gongren Hospital, Tangshan, China, 3General Electric Pharmaceutical Co., Ltd,
Shanghai, China, 4Xingtai People’s Hospital, Xingtai, China, 5Medical Imaging Department, The First
Affiliated Hospital of Hebei North University, Zhangjiakou, China
Purpose: This study was to investigate the diagnostic efficacy of radiomics

models based on the enhanced CT images in differentiating the malignant risk

of gastrointestinal stromal tumors (GIST) in comparison with the clinical

indicators model and traditional CT diagnostic criteria.

Materials and methods: A total of 342 patients with GISTs confirmed

histopathologically were enrolled from five medical centers. Data of patients

wrom two centers comprised the training group (n=196), and data from the

remaining three centers constituted the validation group (n=146). After CT

image segmentation and feature extraction and selection, the arterial phase

model and venous phase model were established. The maximum diameter of

the tumor and internal necrosis were used to establish a clinical indicators

model. The traditional CT diagnostic criteria were established for the

classification of malignant potential of tumor. The performance of the four

models was assessed using the receiver operating characteristics curve.

Reuslts: In the training group, the area under the curves(AUCs) of the arterial

phase model, venous phase model, clinical indicators model, and traditional CT

diagnostic criteria were 0.930 [95% confidence interval (CI): 0.895-0.965),

0.933 (95%CI 0.898-0.967), 0.917 (95%CI 0.872-0.961) and 0.782 (95%CI

0.717-0.848), respectively. In the validation group, the AUCs of the models

were 0.960 (95%CI 0.930-0.990), 0.961 (95% CI 0.930-0.992), 0.922 (95%CI

0.884-0.960) and 0.768 (95%CI 0.692-0.844), respectively. No significant

difference was detected in the AUC between the arterial phase model,

venous phase model, and clinical indicators model by the DeLong test,

whereas a significant difference was observed between the traditional CT

diagnostic criteria and the other three models.
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Conclusion: The radiomics model using the morphological features of GISTs

play a significant role in tumor risk stratification and can provide a reference for

clinical diagnosis and treatment plan.
KEYWORDS

gastrointestinal stromal tumors, traditional CT diagnosis, enhance different periods,
radiomics, multiple centers
Introduction

Gastrointestinal stromal tumors (GISTs) are the most

common mesenchymal tumors in the gastrointestinal tract of

middle-aged and elderly (60-70 years old) patients. The

common sites of GIST are stomach (50%-60%), small intestine

(20%-30%), colorectal (5%-10%), and esophagus (< 5%) (1, 2).

GISTs exhibit a specific malignant potential as well as early liver

and abdominal metastasis. According to the National Institute of

Health (NIH) 2008 standard (3), the risk of GIST can be divided

into very low risk, low risk, medium risk, and high risk.

Typically, GISTs with a very low or low risk are classified as

potential malignant, whereas those with a medium or high risk

are classified as malignant. Because of the heterogeneity,

different individuals considered different malignant potentials

with varied treatment approaches in the same GIST lesion.

Clinically, the potentially malignant GISTs are treated as a

benign tumor, whereas malignant GISTs are treated with

imatinib mesylate and other drugs before or after the

operation to prevent recurrence or metastasis (4). The gold

standard for malignant diagnosis of GIST is based on the

pathological results, including tumor size, mitotic count and

tumor site (Table 1) (3, 5). In order to obtain pathological

samples of tumor for risk grading and evaluation of the tumor, a

puncture biopsy is essential. However, this is an invasive method

and might lead to tumor cell metastasis and tumor bleeding.

Therefore, risk classification of the tumor should be obtained at

the earliest time possible for selection of an appropriate clinical

treatment plan. Although computed tomography (CT) is of a

great value in detecting GISTs (6), it is still difficult to judge the

malignant potential of tumors due to lack of understanding of

the images or unclear tumor signs.

In recent years, rapid development in medical imaging

analysis and imaging pattern recognition tools has promoted

the development of a high-throughput quantitative feature

extraction process, the radiomics, which converts images into

exploitable data for analysis (7). This technique can be used to

diagnose noninvasively the nature of lesions and ultimately assist

the radiologist in making an accurate diagnosis. In the

evaluation of the malignancy of GISTs, radiomics has been
02
72
applied using data of ultrasound, magnetic resonance imaging,

and CT (8–13). However, no studies have been performed wtih

CT data in the arterial and venous phase to extract the radiomics

features for evaluation of the malignancy of GISTs. The present

study aimed to explore the radiomics diagnostic models of GIST

with different degrees of risk based on the CT image data in the

arterial phase and venous phase from five medical centers, with

four models being estalibshed, including the arterial phase

model, venous phase model, clinical indicators model, and

traditional CT diagnostic criteria. The data in two centers were

set up as the training group to reduce the sampling bias and to

establish a more ubiquitous radiomics model than those in one

center only, with the slice thickness of images as 5 mm (14). The

diagnostic efficiency was also evaluated to find the best model to

guide the correct clinical decision-making process.
Materials and methods

Patients

This retrospective study was approved by the Institutional

Review Board of the Affiliated Hospital of Hebei University, and

all patients had given their signed informed consent to
TABLE 1 NIH 2008 criteria for risk stratification of GIST recurrence
after surgery.

Risk category Tumor size
(cm)

Mitotic index
(per 50 HPF)

Location

Very low risk ≤ 2.0 ≤ 5.0 Any

Low risk 2.1-5.0 ≤ 5.0 Any

Intermediate risk ≤ 5.0 6-10 Gastric

5.1-10.0 ≤ 5.0 Gastric

High risk >10.0 Any Any

Any >10 Any

>5.0 >5 Any

≤ 5.0 >5 Non-gastric

5.1-10.0 ≤ 5 Non-gastric
fron
GIST, gastrointestinal stromal tumor; HPF, high-power field.
tiersin.org

https://doi.org/10.3389/fonc.2022.966743
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.966743
participate. All methods were performed in accordance with the

relevant guidelines and regulations. The data of CT images of

342 patients were collected from five medical centers from

January 2015 to August 2021. Two centers were randomly

selected and assigned to the training group, and the data of

the other three centers were set up as the validation group.

The inclusion criteria were patients with GISTs confirmed

by pathology, complete clinical and pathological data (lesion

size, origin location, and risk classification), and standard

dynamic enhanced CT scan at least 15 days before the

operation. The exclusion criteria were patients with a previous
Frontiers in Oncology 03
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history of other coexisting malignant tumors, neoadjuvant

chemoradiotherapy before CT scan, and poor image quality

precluding quantitative analyses. The selection process of patient

cohorts is shown in Figure 1.
CT scanning instruments and methods

The Discovery CT750 HD scanner (GE Medical Systems,

Milwaukee, WI, USA), Toshiba Aquilion 64-slice spiral CT

scanner (Tokyo harbor area, Japan), Philips 256-slice ICT scanner
FIGURE 1

A flowchart shows selection of study population and exclusion criteria.
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(Amsterdam, The Netherlands), and Philips brilliance 64-slice CT

scanner (Amsterdam, The Netherlands) were used for CT scanning.

After fasting for 6-8 h, the patient had warm water (500-1000 mL)

10 min before the examination with plain and enhanced abdominal

scanning in the supine position. The scanning parameters were as

follows: slice thickness 5 mm, pitch 0.9-1.0, scanning field 350

mm×350 mm, matrix 512×512, tube voltage 100–120 kV, tube

current 160–300 mA, and X-ray tube rotation time 0.5–0.8 s. The

contrast agent was injected through the elbow vein at a flow rate of

3.0–3.5 mL/s and a dose of 1.0–1.2 mL/kg body weight. The

scanning time of the arterial phase, venous phase, and delayed

phase was 30-35 s, 50-60 s, and 180 s, respectively, after injection of

contrast agent. The CT images at the arterial and venous phase were

selected for imaging analysis.
Clinical data

The clinical data including age, gender of patients, and tumor

location were collected based on pathological results. The imaging

data including tumor maximal diameter and necrosis within the

tumor lesion were collected based on CT imaging. In the malignant

potential classification using the traditional CT diagnosis method,

the CT images were assessed by five radiologists (with 19, 15, 10, 8

and 4 years of working experience, respectively) who were blinded

to the pathological diagnoses in all cases. The tumor is divided into

potentially malignant and malignant according to the CT image
Frontiers in Oncology 04
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characteristics, including tumor size, location, shape, boundary,

enhancement mode and degree, infiltration of peripheral organs,

and lymph node enlargement (15–17). In disagreement, a

consensus was reached after discussion.
CT image segmentation

Two radiologists (physicians 1 and 2) with 10 years of

experience in the abdominal imaging diagnosis applied the ITK-

SNAP software (version 3.8.0, https://www.itksnap.org) to delineate

the CT-enhanced images at the arterial and venous phases. The

delineated areas included the tumor lesion as much as possible

without inclusion of the surrounding normal tissues or other tissues

in order to generate a two-dimensional (2D) region of interest

(ROI) (Figure 2). The 2D ROI was then recombined to generate a

3D volume of interest (VOI) for subsequent image feature

extraction and analysis.
Radiomic feature extraction
and selection

CT images with different scanning parameters were

preprocessed. The linear interpolation method was used to

resample the image to 1×1×1 mm3, attempting to alleviate the

influence of different layer thicknesses. The image gray was
FIGURE 2

Imaging segmentation of gastrointestinal stromal tumors (GIST) on computed tomography (CT) imaging. (A) Two-dimensional (2D) CT arterial
phase image of potential malignant GIST. The tumor is quasicircular and uniformly enhanced. The red outline is the boundary drawn by
radiologists to show the tumor. (B) 2D segmentation of the tumor. (C) 3D segmentation of the tumor lesion. (D) 2D CT arterial phase image of
malignant GIST with irregular shape and uneven internal enhancement of the tumor. The red outline is the boundary drawn by radiologists to
show the tumor lesion. (E) 2D segmentation of the tumor. (F) 3D segmentation of the tumor.
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discretized, the bin width was set to 25, and the image filtering

process was used to highlight different bandwidth signals and

prevent the noise in ROI from interfering with texture

information. Parameters s 3 and 5 of Laplace of Gaussian (LOG)

filter and wavelet were used. After wavelet decomposition, eight

categories of information of the filtered features were obtained from

the original set of feature information. The preprocessed image and

the outlined ROI files were imported into the platform of

“pyradiomics” for radiomics feature extraction, and two sets of

image filtering were utilized. A total of 1037 features were generated

from the histogram (18 features), morphological feature (14

features), texture feature of gray level co-occurrence matrix

(GLCM, 24 features), gray-level run-length matrix (GLRLM, 16

features), gray-level size zone matrix (GLSZM, 16 features), gray-

level dependence matrix (GLDM, 14 features), and neighborhood

gray-tone difference matrix (NGTDM, 5 features).

In order to prevent overfitting risk, it was necessary to

reduce the dimension of data features and select those with

the best efficiency and most research significance. A total of 20

important features were selected using the minimum

redundancy maximum relevance feature selection (mRMR)

based on relevant references in the literature to prevent

distortion of model (18–20). Subsequently, the least absolute

contraction selection operator (LASSO) was used to further

eliminate collinear features, and 5 features in the arterial phase

and 11 features in the venous phase were kept.
Radiomics models building

The arterial phase model and venous phase model of

radiomics: After feature selection, 5 features of arterial phase

and 11 features of venous phase were used to retain the

minimum Akaike information criterion (AIC) feature set by

the multifactor stepwise regression.

Clinical indicators model of radiomics: The clinical

indicators of the tumor diameter (>5 cm) and internal

necrosis were used as clinical features. The model was

established by multiple regression analysis with the maximal

diameter of the tumor and presence of necrosis as the feature of

the model and benign or malignant nature as the goal.

Traditional CT diagnostic criteria of radiommics: According to

the consolidated GIST CT diagnosis results of the five evaluating

radiologists, the traditional CT diagnostic criteria were used for

classification of the malignant potential of the tumors.
Sample size estimation

In the training group, 196 consecutive patients were enrolled

in two centers between January 2016 and December 2019. The

training cohort contained 58 low-risk GIST patients and 138

high-risk patients. There were in total 2 predictors in our model
Frontiers in Oncology 05
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(internal tumor necrosis and tumor diameter), making an event-

per-predictor ratio of large than 10, which fell in the range of 5-9

in the rule of thumb for event-per-predictor in logistic regression

models (21). In the validation group, the validation sample size

was determined according to the method of sample size

estimation for clinical research by Chow and colleagues (22),

with the sample size being calculated to test whether the means

of two groups were significantly different. Based on this method,

the mimimal number of validation sameples were 14 (low-risk)

and 36 (high-risk) in the group with the desired two-sided

significance level of a=0.05 and power of 1-b=95%.
Statistical analysis

All statistical analyses were performed using the R software

(version 4.1.0, www.rporject.org). Measurement data were

presented as median [Q1-Q3] if in non-normal distribution

and tested with the Mann-Whitney U test, and enumeration

data were expressed as numbers of cases (n) or percentage (%)

and tested with the Chi square test. The non-normal distribution

data of measurement were presented as median and interquartile

range and tested with the Chi square test. Interclass and

intraclass correlation coefficients (ICC) were used to evaluate

the consistency of imaging features within and between

observers. A total of 30 cases of CT images were randomly

selected for ROI segmentation by physicians 1 and 2. One week

later, physician 1 repeated the same steps, with an ICC >0.75

indicating good consistency in feature extraction. The

segmentation of the remaining image was also completed by

physician 1. The receiver operator characteristic (ROC) curve

was used to evaluate the predictive efficacy of the malignant

potential of GISTs in the models. The larger the area under the

ROC curve (AUC), the higher the diagnostic efficiency. The

AUC, accuracy, sensitivity, and specificity were calculated, and

the ROC curves were assessed by the Delong test. All indexes

were evaluated separately in the training and validation groups.

Two-side P<0.05 was set as statistic significant.
Results

Clinical characteristics

According to the inclusion and exclusion criteria, data from

342subjects with GISTs, including 156 (45.6%) males and 186

(54.4%) females with an age range 33-82 (62.00 [54.00-69.00])

years, were collected. The GIST lesion was in the stomach in 226

(66.1%) cases and of a non-stomach location in 106 (33.9%),

including 104 (30.4%) cases with potential malignancy (26 cases

with an extremely low risk and 78 cases with a low risk) and 238

(69.6%) cases with malignancy (86 cases with a moderate risk

and 152 cases with a high risk). According to the traditional CT
frontiersin.org
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diagnosis criteria for GISTs, 130 (38.0%) cases exhibited

potential malignancy, whereas 212 (62.0%) cases were

malignant. The diameter of the tumors was 1-24 (mean 6.9 ±

4.1) cm, with the tumor maximal diameter ≥5 cm in 214 (62.6%)

cases and <5 cm in 128 (37.4%). Internal necrosis was presented

in 176 (51.5%) cases. In the radiomics model, the patients were

divided into the training (n=196) and validation (n=146) group

(Table 2), with no significant (P>0.05) difference in the age,

gender, malignancy potential, CT diagnostic grade, tumor

maximal diameter >5 cm, and internal necrosis between the

training and validation groups.
Frontiers in Oncology 06
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Univariable and multivariable analysis

In univariate analysis of GIST parameters, the tumor maximal

diameter and internal necrosis were statistically significant

(P<0.001) between potentially malignant and malignant GISTs

(Table 3). Using the significant variables from the univariate

analysis as inputs, multivariate logistic regression analysis

showed that lesion diameter ≥ 5cm (coeficient 3.264, OR 26.17

(7.832-109.083), P<0.001) and lesion internal necrosis (coefficient

2.014, OR 7.491 (1.969-31.461), P=0.003) were independent

factors for predicting malignant GIST.
ICC of radiomic features

A total of 1037 radiomics features with good consistency

(mena ICC 0.95, range 0.75-1.0) were selected, whereas 95

features with bad consistency (ICC <0.75) were removed.
Predictive performance of
radiomics models

After feature selection, the radiomics features of the arterial

and venous phases only preserved the morphological features.

ROC curve analyses were performed for the arterial and venous

phase models, clinical indicators model, and traditional CT

diagnostic criteria (Figure 3), with a good calibration

demonstrated in the arterial and venous phase models

(Figure 4). The Radscore distribution of the arterial and

venous phase models in the training and validation group

were shown in Figure 5.

In the ROC curve analyses for the training group, the AUC,

accuracy, sensitivity, and specificity for grading tumor

malignancy were 0.930 (95%CI: 0.895-0.965), 0.888, 0.928, and
TABLE 2 Clinical data of the training and validation groups.

Variables Training
(n=196)

Validation
(n=146)

P

Gender 0.1811

Female 112 74

Male 84 72

Age [median, Q1-Q3] 62.000
[56.000-69.000]

63.000
[52.000-69.000]

0.5082

Real malignant potential 0.7931

Potential malignancy 58(29.6%) 46(31.5%)

Malignant 138(70.4%) 100(68.5%)

Traditional CT
classification

0.9901

Potential malignancy 64 48

Malignant 132 98

Maximal diameter
≥5 cm

0.8471

No 72 56

Yes 124 90

Internal necrosis 0.0061

No 82 84

Yes 114 62
Q1,First quarter; Q3, Three quarter; 1 Chi square test; 2Mann-Whitney U test.
TABLE 3 Univariable analysis of potentially malignant and malignant GISTs.

Variables Training group Validation group

Potentially
malignant (n=104)

Malignant (n=238) P Potentially
malignant (n=104)

Malignant (n=238) P

Sex 0.9101 0.3161

Female 34(58.621%) 78(56.522%) 20(43.478%) 54(54.000%)

Male 24(41.379%) 60(43.478%) 26(56.522%) 46(46.000%)

Age[meadian, Q1-Q3] 61.000 [58.000-68.000] 63.000 [55.000-69.000] 0.6832 64.000 [54.250-71.500] 62.500 [51.000-68.000] 0.1722

Diameter ≥5 cm <0.0011 <0.0011

No 54(93.103%) 18(13.043%) 42(91.304%) 14(14.000%)

Yes 4(6.897%) 120(86.957%) 4(8.696%) 86(86.000%)

Internal necrosis <0.0011 <0.0011

No 54(93.103%) 28(20.290%) 46(100.000%) 38(38.000%)

Yes 4(6.897%) 110(79.710%) 0(0.000%) 62(62.000%)
frontier
GIST, gastrointestinal stromal tumors; Q1, First quarter; Q3, Three quarter; 1 Chi square test; 2 Mann-Whitney U test.
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0.793, respectively, for the arterial phase model; 0.933 (95%CI:

0.898-0.967), 0.857, 0.855, and 0.862, respectively, for the venous

phase model; 0.917 (95%CI: 0.872-0.961), 0.918, 0.913, and

0.931, respectively, for the clinical indicators model;, and 0.782

(95%CI: 0.717-0.848), 0.806, 0.841, and 0.724, respectively, for

the traditional CT diagnostic criteria. In the validation group,

the AUC, accuracy, sensitivity, and specificity were 0.960(95%

CI: 0.930-0.990), 0.932, 0.920, and 0.957, respectively, for the

arterial phase model; 0.961 (95%CI: 0.930-0.992), 0.932, 0.920,

and 0.957, respectively, for the venous phase model; 0.922 (95%

CI: 0.884-0.960), 0.890, 0.880, and 0.913, respectively, for the

clinical indicators model; and 0.768 (95%CI: 0.692-0.844), 0.795,

0.840 and 0.696, respectively, for the traditional CT diagnostic

criteria (Table 4).

Comparison of the AUC values in grading tumor malignancy

between different models using the Delong test was performed

(Table 5). No significant (P>0.05) difference was detected in the

AUC between the arterial and venous phase models, and clinical

indicators model, whereas significant (P<0.01) differences were

detected between the traditional CT diagnostic criteria (CT) and any

of the other three models. The AUC value was significantly (P<0.01)

better in the arterial phase model, venous phase model, and clinical

indicators model than that in the traditional CT diagnostic criteria.
Discussion

This study investigated the value of radiomics models in

grading tumor malignancy of GISTs using enhanced CT imaging

data from five medical centers, and four radiomics models were

established based on the morphological features of the arterial

and venous phase, clinical indicators, and traditional CT

diagnostic criteria for GISTs. The models of the arterial phase,
Frontiers in Oncology 07
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venous phase, and clinical indicators were significantly better

than the traditional CT diagnostic criteria in grading the tumor

malignancy of GISTs.

After studying CT venous phase images and radiomics

features of GISTs in 222 cases including one training group

(n=130) and one validation group (n=92) in the raiomics, Chen
BA

FIGURE 3

Receiver operating characteristics (ROC) curve analysis for different models in the training group (A) and validation group (B).
FIGURE 4

Calibration curve for the arterial phase model, venous phase
model, clinical indicators model and the traditional CT diagnostic
criteria. The calibration of the four models was depicted by the
calibration curve in terms of the agrement between the
predicted risks of gastrointestinal stromal tumors (GISTs) and the
actual results based on the modified criteria. The grey line
represents an ideal prediction, and the other lines represent the
predictive performance of the models. The closer the fit of the
purpole line to the ideal line, the better the prediction.
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et al. (9) found that the radiomics features combined with

clinical indicators and traditional CT characteristics were more

effective in judging the malignant potential of GISTs as

compared to the clinical indicators or traditional CT

characteristic models. Through investigating 339 cases of

GISTs from four centers including the training group (n=148),

internal verification group (n=41), and external validation group
Frontiers in Oncology 08
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(n=150), Zhang et al. (23) found that the radiomics features of

enhanced CT were significantly correlated with the expression of

Ki-67 in GISTs and that the tumor size had the highest

prediction accuracy of Ki-67 expression. Wang et al. (24)

established a radiomics model to predict the malignant

potential and mitotic count of GISTs by analyzing the portal

venous-phase images of 333 GIST cases, and it was also found
B

C D

A

FIGURE 5

The distribution of arterial and venous phase model radscore between patients suffered from malignant and potiential malignant tumors in the
training group (A, B) and the validation group (C, D).
TABLE 4 Effectiveness of radiomics models in the grading of GIST malignancy.

Model Training group(n=196) Validation group(n=146)

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

A 0.930 0.888 0.928 0.793 0.960 0.932 0.920 0.957

V 0.933 0.857 0.855 0.862 0.961 0.932 0.920 0.957

Clinical 0.917 0.918 0.913 0.931 0.922 0.890 0.880 0.913

CT 0.782 0.806 0.841 0.724 0.768 0.795 0.840 0.696
fro
GIST, gastrointestinal stromal tumor; AUC, area under the receiver operator characteristic curve; A, arterial phase model; V, venous phase model; Clinical, clinical indicators model; CT,
traditional CT diagnostic criteria.
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that the combination of radiomics features, subjective CT

examination results, and clinical indicators could be used to

realize individualized risk prediction and improve the diagnostic

level. However, these studies only selected the venous phase of

GIST images with enhanced scanning as the research object, and

no studies have investigated the difference in the radiomics

characteristics of GISTs between the arterial phase and venous

phase. Moreover, the data of the training group were from one

single center, lacking multicenter data and consequently

efficiency for generalization.

The texture performance of enhanced CT images at different

periods varies, and to set up an appropriate radiomics model, it is

crucial to select the texture features at different enhancement phases

such as those of the arterial phase and venous phase. Several

investigators have studied the CT enhancement degree of GIST,

albeit different in the conclusions (1, 25–30). With the increase of

GIST risk stratification, some researchers had found a declining

trend in the CT value at each phase of enhanced scanning (28),

whereas others had revealed that the degree of GIST enhancement

was not related to risk classification (16). In addition, some

investigators (17) had demonstrated that the GIST of the small

intestine was highly malignant, with the tumor enhancement degree

equal to that of adjacent intestinal wall. In case of an unclear

correlation between tumor risk and CT enhancement degree, the

radiomics features of CT images at different enhancement periods

were used to stratify the GIST risk. Liu et al. (1) evaluated 78

patients with GISTs and found significant differences in the CT

texture parameters with different GIST risks between the arterial

phase and venous phase. Feng et al. (25) found that the entropy

value at the venous phase was more accurate in distinguishing low-

risk small bowel GIST from medium- and high-risk small bowel

GIST as compared to that at the arterial phase. Also, some studies

established radiomics models based on the CT arterial phase images

(30) or venous phase images (29) so as to provide a noninvasive

detection method for prediction of potential malignancy and

malignancy of the GIST. Our study was based on GIST data

from multicenters, and after extracting and selecting the radiomic

features of the arterial and venous phases, only one morphological

feature remained: the maximal diameter of the tumor. With only
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one morpholigcal feature left, good consistency could be easily

obtained in the tumor delineation process, with similar efficiency in

the arterial phase and venous phase features. The fact that there

were no other radiomics features left could be attributed to the GIST

data from multiple centers. Strikingly, the imaging parameter

settings and scanning parameters of different CT scanners

manufactured by different companies varied greatly, which may

cause inconsistency in the data of radiomics model. When the

image was analyzed and extracted in the digital form, the differences

between extracted texture features might lead to some potential

changes in the acquired images (26), which need further

investigation for confirmation.

Although the AUC of the clinical indicators model was lower

than that of the arterial and venous phase models, its specificity was

improved as compared to the latter twomodels. Tumors with a large

volume or a large diameter was more likely to have internal necrosis

than those with a small volume. The internal necrosis of tumors

exhibited uneven enhancement on enhanced CT imaging. In one

study (27) investigating tumor location, size, shape, tumor growth,

imaging enhancement mode and degree, tumor necrosis percentage,

and distant metastasis on CT imaging in 42 patients with GISTs, it

was found that the malignant degree of GIST can be predicted from

the location, size, and necrosis rate of the tumor. Another study (31)

evaluating 1303 patients with GISTs showed that tumor size >5 cm

was significantly correlated with the increased rate of tumor

recurrence. Tumor size had also been found to be of important

diagnostic value in the risk classification of GISTs, irrespective of the

NIH standard, AFIP standard, or AJCC staging system (32). It can

be seen that themaximal diameter and internal necrosis of GISTs are

significant in clinical diagnosis of potential malignancy and

malignant tumors, as our study had confirmed the significant role

of tumor morphology at the arterial and venous phase.

The traditional CT diagnostic criteria of radiommics showed

low efficiency in the diagnosis of GISTs, with a significantly low

AUC value compared with the other three models. Accurate

diagnosis of the GIST tumor is closely related to the experience

of the radiologists and appropriate understanding of tumor

signs, especially atypical CT signs which may make differential

diagnosis even more difficult.

Currently, some radiomics studies on grading the GIST

malignant degree have been performed using ultrasound and

magnetic resonance imaging besides CT imaging data (12, 33–

39). Liu et al. (35) applied multicenter endoscopic ultrasound

imaging data of 914 patients to set up a triple normalization-

based deep learning framework with ultrasound-specific pretraining

and meta attention (TN-USMA model) to automatically grading

high- and low-risk GISTs. In comparing the diagnostic

performance of one radiomics-based method and two state-of-

the-art deep learning approaches, the TN-USMAmodel which was

composed of intensity normalization, size normalization, and

spatial resolution normalization achieved an overall accuracy of

0.834 (95%CI 0.772-0.885), an AUC of 0.881 (95%CI 0.825, 0.924),

a sensitivity of 0.844, and a specificity of 0.832. Although the AUC
TABLE 5 Comparison of AUC results among models by the Delong
test.

Model Training group Validation group
P P

A-V 0.879 0.897

A-Clinical 0.590 0.013

V-Clinical 0.439 0.013

A-CT <0.001 <0.001

V-CT <0.001 <0.001

Clinical-CT <0.001 <0.001
AUC, area under the receiver operator characteristic curve; A, arterial phase model;
V, venous phase model; Clinical, clinical indicators model; CT, traditional CT
diagnostic criteria.
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of the TN-USMA model significantly outperformed the other two

deep learning approaches (P < 0.05), it was less superior to our

models of radiomics. Yang et al. (12) employed the magnetic

resonance diffusion-weighted imaging (DWI) data of 91 patients

with pathologically-confirmed GIST for radiomic model

establishment and risk stratification, and the nomogram

incorporating the texture signature features, maximal tumor

diameter and location demonstrated a good discriminating effect

of GISTmalignancy with an AUC of 0.878 in the training and 0.903

in the validation group, suggesting that the texture-based model

could be used to predict the mitotic index and risk potential of

GISTs before surgery. Other radiomics models based on magnetic

resonance imaging data of T1WI, T2WI, and ADC (apparent

diffusion coefficient) had also be investigated in grading the

malignant risk of GISTs (36), although with good effects in

differentiating high-, intermediate- and low-risk GISTs, the AUC

value was below 0.85 for T1WI, T2WI, and ADC. In radiomics

models based on CT imaging data without the use of internal tumor

necrosis and tumor size for evaluating the malignant risk of GISTs

(33, 34, 37–39), good effects had been achieved on distinguishing

high- and low-risk malignancy, but the AUC values were all below

0.90. In our study, the radiomics models using the internal tumor

necrosis and tumor diameter imgaging data at the arterial and

venous phases achieved anAUC value over 0.93 in both the training

and validation group, suggesting a greater value of these radiomics

models in differentiating the malignant risk of GISTs.

Some limitations existed in our study including the retrospective

nature, Chinese patients enrolled only, a small cohort of patients at

each center, and differences in the CT scanners and scanning

parameters. All these issues may affect the publication bias, and

the results should be explained in caution. Future studies will have to

resolve these issues for better performances.

In conclusion, the morphological radiomic features of GISTs

play a significant role in tumor risk stratification and can provide

a reference for clinical diagnosis and treatment plan.
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Predictive value of baseline
metabolic tumor volume for
non-small-cell lung cancer
patients treated with immune
checkpoint inhibitors:
A meta-analysis

Ke Zhu1,2, Danqian Su1,2, Jianing Wang1,2, Zhouen Cheng1,2,
Yiqiao Chin1,2, Luyin Chen1,2, Chingtin Chan1,2,
Rongcai Zhang1,2, Tianyu Gao1,
Xiaosong Ben3* and Chunxia Jing1,4*

1Department of Public Health and Preventive Medicine, School of Medicine, Jinan University,
Guangzhou, China, 2International School, Jinan University, Guangzhou, China, 3Department of
Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical
Sciences, Guangzhou, China, 4Guangdong Key Laboratory of Environmental Pollution and Health,
Jinan University, Guangzhou, China
Background: Immune checkpoint inhibitors (ICIs) have emerged as a

promising treatment option for advanced non-small-cell lung cancer

(NSCLC) patients, highlighting the need for biomarkers to identify responders

and predict the outcome of ICIs. The purpose of this study was to evaluate the

predictive value of baseline standardized uptake value (SUV), metabolic tumor

volume (MTV) and total lesion glycolysis (TLG) derived from 18F-FDG-PET/CT

in advanced NSCLC patients receiving ICIs.

Methods: PubMed and Web of Science databases were searched from January

1st, 2011 to July 18th, 2022, utilizing the search terms “non-small-cell lung

cancer”, “PET/CT”, “standardized uptake value”, “metabolic tumor volume”, “

total lesion glycolysis”, and “immune checkpoint inhibitors”. Studies that

analyzed the association between PET/CT parameters and objective

response, immune-related adverse events (irAEs) and prognosis of NSCLC

patients treated with ICIs were included. We extracted the hazard ratio (HR)

with a 95% confidence interval (CI) for progression-free survival (PFS) and

overall survival (OS). We performed a meta-analysis of HR using Review

Manager v.5.4.1.

Results: Sixteen studies were included for review and thirteen formeta-analysis

covering 770 patients. As for objective response and irAEs after ICIs, more

studies with consistent assessment methods are needed to determine their

relationship with MTV. In themeta-analysis, low SUVmax corresponded to poor

PFS with a pooled HR of 0.74 (95% CI, 0.57-0.96, P=0.02). And a high level of

baseline MTV level was related to shorter PFS (HR=1.45, 95% CI, 1.11-1.89,
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P<0.01) and OS (HR, 2.72; 95% CI, 1.97-3.73, P<0.01) especially when the cut-

off value was set between 50-100 cm3. SUVmean and TLG were not associated

with the prognosis of NSCLC patients receiving ICIs.

Conclusions: High level of baseline MTV corresponded to shorter PFS and OS,

especially when the cut-off value was set between 50-100 cm3. MTV is a

potential predictive value for the outcome of ICIs in NSCLC patients.
KEYWORDS

PET/CT (18)F-FDG, standardized uptake value, metabolic tumor volume, non-small-
cell lung cancer, immune checkpoint inhibitor
1 Introduction

Lung cancer is the most common cause of cancer-related

deaths worldwide in 2020, accounting for 1.80 million deaths

(1). Non-small-cell lung cancer (NSCLC), compromising 80-

85% of the lung cancer cases (2), has raised significant public

health concerns. NSCLC is mainly composed of squamous cell

carcinoma and adenocarcinoma (3), and the 5-year survival rate

is 25% (4).Clinically, more than 60% of NSCLC patients had

locally progressed or metastatic diseases (stage III or IV) at the

time of diagnosis, when the tumor can not be effectively treated

by surgical treatment alone (5), and the median overall survival

varies between 7.0 and 12.2 months (6).

For the treatment of advanced NSCLC, chemotherapy

remains the primary conventional therapy. But the response

rate of NSCLC patients to chemotherapy was only about 20%

(7), and the adverse events such as vomiting and diarrhea had a

significant impact on patients’ daily lives. The advent of immune

checkpoint inhibitors (ICIs) targeting programmed cell death 1

(PD-1) or its ligand (PD-L1) has brought about a promising

treatment option for the management of advanced NSCLC (8).

A meta-analysis of 13 randomized controlled trials (RCTs) has

proved that ICIs show better efficacy and result in fewer adverse

events than chemotherapy as the treatment for advanced

NSCLC (9). However, the benefits of ICIs remain limited to

only 20% of advanced NSCLC patients (10). Thus it’s necessary

to identify potential biomarkers to identify NSCLC patients who

would benefit from ICIs treatment.
18F-fluorodeoxyglucose positron emission tomography/

computed tomography (18F-FDG PET/CT) monitors the uptake

of 18F-FDG of tumor cells. It is a convenient imaging modality for

the staging, treatment guidance, and response predicting in NSCLC

patients and is more practical and noninvasive than abdominal

ultrasound and mediastinoscopy (11).
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As metabolic parameters on PET/CT, SUV is associated with

18F-FDG uptake of the tumor; MTV combines the information

of 18F-FDG uptake and tumor volume; TLG is the product of

MTV and SUVmean, and is related to both tumor volume and

tumor glycolytic activity. They reflect both tumor burden and

aggressiveness (12). Takada et al. found that the accumulation of
18F-FDG as SUVmax and SUVmean in tumor cells was

significantly associated with PD-L1 expression in NSCLC

patients (13). In addition, MTV and TLG have been potential

prognostic factors in NSCLC patients treated with surgery (14)

and chemotherapy (15). Thus SUV, MTV and TLG are expected

to evaluate the efficacy of ICIs in advanced NSCLC patients.

However, relevant studies showed inconclusive results. Monaco

et al. have demonstrated that NSCLC patients with MTV and

TLG values lower than the median values had improved

outcomes of ICIs compared to those with higher values (16).

No significant relationship was found between MTV, TLG, and

ICIs response in studies conducted by Yamaguchi et al. (17) and

Castello et al. (18).

Thus, we conducted this meta-analysis to assess the

predictive value of SUV, MTV and TLG for advanced NSCLC

patients receiving ICIs.
2 Material and methods

2.1 Data search and study selection

From January 1st, 2011, to July 18th, 2022, We searched

comprehensively English language publications from PubMed

and Web of Science using the terms “non-small-cell lung

cancer”, “PET/CT”, “Standardized uptake value”, “metabolic

tumor volume”, “ total lesion glycolysis”, and “immune

checkpoint inhibitors”. We extracted data from the full-text
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articles that met the following inclusion criteria: studies limited

to NSCLC; ICIs administered alone for the patients; 18F-FDG

PET/CT completed before ICIs initiation; studies reported

objective response, immune-related adverse events (irAEs),

survival data, including progression-free survival (PFS) or

overall survival (OS); hazard ratio (HR) with 95% CI was

provided for PFS or OS. Reviews, meeting abstracts, and

editorial material were excluded. Two authors conducted the

searches and screening independently. A consensus resolved

any discrepancies.
2.2 Data extraction

Data were extracted from the publications independently by

two reviewers (YC and CC), and the following information was

recorded: first author’s name, year of the paper published,

country, types of ICIs, median follow-up, number of patients,

median age of patients, median values of MTV and TLG, HR

and p-value for PFS and OS. The data were collected and

organized in a standardized data extraction table for analysis.

We also formed a table including median values of MTV or

numbers of patients in different objective response groups and

the related p-value to demonstrate the relationship between

MTV and objective response. When there was uncertainty in

the inclusion of data, a third researcher assisted with confirming

the data.
2.3 Quality assessment

We used ROBINS-I (Risk Of Bias In Non-randomised

Studies - of Interventions) to assess the quality of included

articles from seven bias domains, including confounding bias,

selection bias, bias due to classification of interventions, bias

from intended interventions, bias due to missing data, bias in

outcomes measure, and bias due to selection reporting result.

We classified each article as low, moderate, or high risk

according to detailed guidance from ROBINS-I (19).
2.4 Statistics analysis

We performed all statistical analyses using Review Manager

v.5.4.1 and pooled the hazard ratio (HR) and its 95% confidence

index (CI) of PFS and OS using the inverse variance method. An

HR greater than 1 indicated worse survival for patients with high

SUV, MTV or TLG, while an HR less than 1 indicated a better

survival for patients with a high SUV, MTV or TLG. Chi-square

test and I2 statistics were used to detect heterogeneity between

studies. I2 values of more than 50% were considered high

heterogeneity. If high heterogeneity was found between

primary studies, a random effect model would be used for
Frontiers in Oncology 03
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meta-analysis. Otherwise, a fixed effect model would be

appl ied . P values less than 0.05 were considered

statistically significant.
3 Results

3.1 Literature search

Eight hundred and sixteen studies were retrieved from the

systematic search of PubMed and Web of Science from January

1st, 2011, to July 18th, 2022. We excluded 134 duplicate studies

and further screened the remaining 682 using titles and

abstracts. 641 studies did not meet the inclusion criteria and

thus were excluded. The full texts of the 41 potentially eligible

studies were evaluated. Then 25 studies were excluded for the

following reasons: not single ICIs as treatment (n=3), no

available data (n = 19), and overlapped data (n=3). Ultimately,

sixteen studies were included for review and thirteen studies

assessing the predictive value of SUV, MTV and TLG in NSCLC

patients receiving ICIs were included in this meta-analysis.

Figure 1 shows the flowchart diagram.
3.2 Characteristics of included studies

The thirteen articles, including 770 patients, were analyzed

in this meta-analysis. Characteristics of the included studies are

summarized in Table 1. Four studies were conducted in France

(20, 22, 26, 27), followed by three in Italy (16, 18, 21) and three in

Japan (16, 18, 21). We also identified a single study in the United

States (19), Israel (24) and Belgium (28). Two studies were of a

prospective design (18, 20). SUV, MTV and TLG were measured

in four studies (18, 20, 25, 28) and MTV alone was measured in

five studies (17, 19, 21, 22, 24).

Regarding types of ICIs, nine studies (17, 20–25, 27, 28)

reported using PD-1 inhibitors, while three used PD-1 and PD-

L1 inhibitors (16, 18, 26). Patients were divided into high or low

SUV/MTV/TLG groups in each study based on the cut-off

values, and their PFS/OS were analyzed. And eleven of the

thirteen studies used median MTV/TLG as cut-off values (16,

18–22, 24–28). The left two used log-rank test (23) and receiver

operating characteristic (ROC) curve analysis (17) to determine

cut-off values, respectively.
3.3 Quality assessment

We used the Cochrane collaboration tool to assess the risk of

bias in included studies. The risks of the selected studies are

shown in Figure 2. As shown, the overall risk of bias was

relatively low, and the overall quality met the requirements of

the meta-analysis.
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TABLE 1 Characteristics and results of included studies.

Studies Year Country Study
design

Types of ICIs Median
follow-
up

No. of
patients

Median
Age

Median
values as
cut-offs

Outcome

HR (95%
CI) for
PFS

p
value

HR (95%
CI) for
OS

p
value

Andraos
et al. (19)

2022 USA R – 17.0
months

124 67 MTV: 87.8
(cut-offs: 88.0)

1.36 (0.91-
2.01)

0.131 2.23 (1.35-
3.69)

0.002

Castello
et al. (18)

2021 Italy P Nivolumab/
pembrolizumab/
atezolizumab

12.4
months

50 73 SUVmax: 13.6 0.9 (0.5-1.8) 0.75 0.9 (0.4-2.0) 0.75

SUVmean: 5.9 0.9 (1.0-1.7) 0.75 0.8 (0.4-1.9) 0.71

MTV: 63.7 2.5 (1.2-4.8) 0.01 2.3 (1.0-5.3) 0.04

TLG: 330.1 1.8 (0.9-3.6) 0.08 1.5 (0.7-3.6) 0.27

Chardin
et al. (20)

2020 France P Nivolumab/
pembrolizumab

12.3
months

79 64 SUVmax: 13.4 – – 1.31 (0.63-
2.75)

0.5

SUVpeak: 9.7 – – 1.15 (0.55-
2.40)

0.7

MTV:36.5 – – 5.37 (2.17-
13.3)

<0.0001

TLG: 267.0 – – 5.05 (2.05-
12.5)

0.0001

Dall’Olio
et al. (21)

2021 Italy R Pembrolizumab 20.3
months

34 66.6 MTV: 75.0 – – 5.37 (1.72-
16.77)

0.004

Eude et al.
(22)

2022 France R Pembrolizumab – 65 64.1 MTV: 188.3 – – 1.314 0.012

Hashimoto
et al. (23)

2020 Japan R Nivolumab/
pembrolizumab

– 85 – MTV: 17.8
(cut-offs: 5.0)

1.28 (0.97-
1.73)

0.07 1.59 (1.09-
2.45)

0.001

TLG: 75.4
(cut-offs: 20.0)

1.21 (0.92-
1.63)

0.16 1.47 (1.03-
2.21)

0.03

Icht et al.
(24)

2020 Israel R Nivolumab/
pembrolizumab

– 58 65 MTV:12.95 1.1 (0.87-
1.4)

0.4 1.2 (0.86-
1.73)

0.26

Kitajima
et al. (25)

2021 Japan R Nivolumab/
pembrolizumab

36.8
months

40 69.1 SUVmax: 8.57 1.04 (0.49-
2.18)

0.92 1.56 (0.67-
3.69)

0.3

MTV: 15.5 2.15 (1.03-
4.73)

0.042 2.15 (1.03-
4.73)

0.042

TLG: 87.7 1.15 (0.55-
2.42)

0.7 1.35 (0.59-
3.13)

0.47

Monaco
et al. (16)

2021 Italy R Nivolumab/
pembrolizumab/
atezolizumab

– 92 70 SUVmean: 4.9 0.365 (0.150-
0.890)

0.027 0.261
(0.084-
0.808)

0.02

MTV: 94.9 1.139 (0.989-
1.311)

0.07 1.221
(1.063-
1.402)

0.005

Seban et al.
(26)

2019 France R Nivolumab/
pembrolizumab/
atezolizumab

11.6
months

80 61.9 SUVmax: 12.8 0.8 (0.5-1.3) 0.35 0.9 (0.5-1.5) –

MTV: 75.0 1.0 (0.9-1.1) 0.25 3.1 (1.7-5.7) 0.0001

Seban et al.
(27)

2020 France R Pembrolizumab 13.4
months

63 65 SUVmax: 18 0.6 (0.3-1.1) 0.11 0.6 (0.2-1.6) 0.31

SUVmean:
10.1

0.5 (0.3-1.1) 0.04 0.8 (0.3-1.9) 0.56

MTV: 84.0 2.1 (1.1-4.3) 0.02 3.1 (1.1-8.3) 0.03

Vekens
et al. (28)

2021 Belgium R Pembrolizumab 20 months 30 67 SUVmax: 15.7 0.62 (0.39-
0.98)

0.04 0.54 (0.29-
1.01)

0.06

(Continued)
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3.4 Outcomes of included studies

3.4.1 PET/CT parameters and response
assessment

Eight studies discussed whether PET/CT parameters

including MTV, TLG, SUVmax, SUVmean, and SUVpeak,

can predict the response of ICIs in different patients. All of

them classified responses to ICIs as complete remission

(CR), partial response (PR), stable disease (SD), and
Frontiers in Oncology 05
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progression of disease (PD) based on the Response

Evaluation Criteria In Solid Tumors (RECIST) 1.1. Four

articles demonstrated that none of the PET/CT parameters

significantly correlated with ICIs response (17, 23, 28, 29).

However, the other four studies showed that NSCLC

patients who achieved CR, PR, or SD after ICIs treatment

had significantly lower median MTV values than those with

PD (16, 26, 27, 30). The detailed data were shown in Table 2.

In addition, Seban et al. found that SUVmean was
TABLE 1 Continued

Studies Year Country Study
design

Types of ICIs Median
follow-
up

No. of
patients

Median
Age

Median
values as
cut-offs

Outcome

HR (95%
CI) for
PFS

p
value

HR (95%
CI) for
OS

p
value

SUVpeak: 10.2 1.43 (0.97-
2.11)

0.07 1.71 (0.97-
3.03)

0.06

SUVmean:
6.06

1.76 (0.54-
5.79)

0.35 1.51 (0.46-
4.93)

0.5

MTV: 123.9 1.01 (0.99-
1.03)

0.25 1.01 (0.99-
1.02)

0.29

TLG: 802.6 0.99 (0.99-
1.00)

0.29 0.99 (0.99-
1.00)

0.42

Yamaguchi
et al. (17)

2020 Japan R Pembrolizumab 346 days 48 69 MTV: 112.0
(cut-offs:
268.0)

1.49 (0.77-
3.24)

0.32 1.57 (0.98-
2.41)

0.04
frontie
FIGURE 1

Flowchart diagram for the literature search.
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significantly higher in patients who achieved long-term

benefit (LTB, defined as CR, PR or SD maintained ±12

months) compared to those without LTB (27), while Polveri

et al. concluded that TLG was significantly associated with

progressive vs non-progressive disease status (30).
Frontiers in Oncology 06
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3.4.2 PET/CT parameters and immune-related
adverse events (irAEs)

Two studies discussed the relationship between PET/CT

parameters and irAEs. In the analysis of Mu et al. (31),

SUVmax and MTV were not correlated with irAEs, with the
FIGURE 2

Results of quality assessment.
TABLE 2 MTV values and objective response (RECIST 1.1).

Authors Published year CR+PR+SD group PD group P value

value Number of patients value Number of patients

Median value of MTV

Ferrari et al. (29) 2021 203.0 15 – 13 0.387

Monaco et al. (16) 2021 77 61 160.2 31 0.039

Polvari et al. (30) 2020 57.4 27 124.4 30 0.028

Seban et al. (26) 2019 55.4 32 83.4 48 0.04

Seban et al. (27) 2020 59.4 17 90.5 46 0.05

Vekens et al. (28) 2021 192.8 23 119.8 7 0.17

Number of patients in high/low MTV group

Hashimoto et al. (23) 2020 High MTV: 36
Low MTV: 17

High MTV: 18
Low MTV: 9

>0.99

Yamaguchi et al. (17) 2020 High MTV: 3
Low MTV: 20

High MTV: 7
Low MTV: 15

0.16
front
CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; MTV, metabolic tumor volume; Bold means statistically significant.
iersin.org
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odds ratio of 0.95 (95%CI, 0.87-1.05, P=0.34) and 0.99 (95%CI,

0.98-1.00, P=0.27), respectively. However, Hashimoto et al. (23)

reported that the frequency of irAE was significantly higher in

patients with low values of SUVmax, MTV, and TLG than in

those with high values, inconsistent with the result of Mu et al.

3.4.3 PET/CT parameters and NSCLC survival
3.4.3.1 SUVmax and NSCLC survival

Six studies (18, 20, 25–28) analyzed the relationship between

SUVmax and PFS/OS, as shown in Figure 3. The cut-off values of

SUVmax ranged from 8.57 to 18 cm3. Five studies analyzing PFS

showed a pooled HR of 0.74 (95% CI, 0.57-0.96, P=0.02).

However, SUVmax was not significantly associated with OS

(HR, 0.89; 95% CI, 0.64-1.23, P=0.48). There was no significant

heterogeneity between studies in both PFS (I2 = 0%, P=0.72) and

OS group (I2 = 13%, P=0.33).

3.4.3.2 SUVmean and NSCLC survival

We performed SUVmean and survival analysis based on

four studies (16, 18, 27, 28) with cut-off values between 4.9 and

10.1cm3 (Figure 4). SUVmean was not associated with either

PFS (HR, 0.67; 95% CI, 0.39-1.16, P=0.15) or OS (HR, 1.11; 95%

CI, 0.65-1.19, P=0.69). The heterogeneity test didn’t show

significant heterogeneity in PFS (I2 = 53%, P=0.1) and OS

group (I2 = 19%, P=0.29).

3.4.3.3 MTV and NSCLC survival

Thirteen studies (16–28) analyzed the relationship between

MTV and PFS/OS, as shown in Figure 5. The cut-off values of

MTV ranged from 5.0 to 268.0cm3, so we performed a subgroup
Frontiers in Oncology 07
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analysis based on the cut-off values, dividing them into three groups:

MTV < 50cm3, MTV between 50-100cm3, and MTV >100cm3.

In eleven studies analyzing PFS, a pooled HR of 1.21 (95% CI,

1.06-1.36, P<0.01) was shown. There was statistically significant

heterogeneity between studies, with an I2 of 79.4% (P<0.01). It is

also demonstrated that patients with higher MTV would have

shorter PFS (HR=1.45, 95% CI, 1.11-1.89, P<0.01) when the cut-off

values was set at 50-100cm3. There was no evidence of a significant

association between MTV and PFS in the other two subgroups.

OS was analyzed in thirteen MTV studies. The pooled HR was

1.67 (95% CI, 1.36-2.06, P<0.01) with statistically significant

heterogeneity between studies (I2 = 84%, P<0.01). High MTV was

significantly associated with poor OS, with an HR of 1.90 (95% CI,

1.15-3.15, P=0.01) and 2.35 (95% CI, 1.43-3.87, P<0.01) when the

cut-off value was set below 50cm3 and 50-100cm3, respectively. The

left subgroup showed no evidence of significant association.

3.4.3.4 TLG and NSCLC survival

TLG and survival analysis was performed based on five studies

(18, 20, 23, 25, 28) with cut-off values between 20 and 802.6

(Figure 6). TLG was not associated with either PFS (HR, 1.10;

95% CI, 0.91-1.33, P=0.34) or OS (HR, 1.52; 95% CI, 0.98-2.34,

P=0.06). The heterogeneity test showed high heterogeneity in OS (I2

= 79%, P<0.01) and no significant results in PFS (I2 = 41%, P=0.17).
4 Discussion

This study evaluated the predictive values of PET/CT

parameters including SUVmax, SUVmean, MTV and TLG in
A

B

FIGURE 3

Forest plots of hazard ratios comparing progression free survival (A) or overall survival (B) of patients with high level versus low level max
standardized uptake value treating with immune checkpoint inhibitors.
frontiersin.org

https://doi.org/10.3389/fonc.2022.951557
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.951557
NSCLC patients receiving ICIs. The cut-off values categorized

patients into high or low-level parameter groups in the

included studies.

Firstly, we analyzed the relationship between PET/CT

parameters and the objective response of ICIs. Eight studies

assessed the objective response based on RECIST 1.1. Four

studies showed NSCLC patients who achieved CR, PR, or SD

after ICIs treatment had significantly lower median MTV values

than those with PD (16, 26, 27, 30), while four demonstrated no

significant correlation (17, 23, 28, 29). More studies with

consistent response assessments are needed to determine

whether MTV is associated with the objective response of ICIs.

SUVmean (27) and TLG (30) were also said to have a significant

relationship with disease status in a single study, respectively.

ICIs may alter the physiological homeostasis of the immune

response, thus leading to the development of irAEs. Two studies

discussed the relationship between PET/CT parameters and

irAEs (23, 31). However, no consistent results could be

yet concluded.

We also discussed whether PET/CT parameters could

predict NSCLC survival by PFS and OS after ICIs. We found

that lower SUVmax corresponded to shorter PFS. Lopci et al.

found a positive association between SUVmax and CD8-tumor

infiltrating lymphocytes and PD-1 expression (32). SUVmax

were also independent predictors of PD-L1 positivity by Takada

et al. (13). However, the predictive role of baseline SUVmax is

still under discussion since only one of the five included studies

about SUVmax showed significant results.

In terms of MTV, we found that a high baseline MTV level

was significantly associated with shorter PFS and OS than a low

MTV level for patients treated with ICIs.
Frontiers in Oncology 08
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MTV refers to the metabolically active volume of

tumors segmented using FDG PET (33), reflecting tumor

burden and the metabolic status. Regarding tumor burden,

Kim et al. concluded that larger-size tumors are more

immunosuppressive than smaller-size tumors, which

negatively affects the immune responses induced by

immunotherapy (34).The experiments in mice also verified

that PD-L1 blocker is less effective in mice bearing larger lung

squamous cell tumors (35). On the cell level, Wang et al.

analyzed one hundred twenty-two NSCLC tumor specimens

by immunohistochemistry and found a significantly positive

correlation between MTV and CD163-TAM, Foxp3-Tregs

(36). CD163-TAMs were tumor-promoting M2 macrophages

(37), and Foxp3-Tregs were a kind of immune regulatory cells

(35), both of which are immunosuppressive cells. Therefore, we

hypothesize that patients with a higher MTV would have a

worse prognosis when treated with ICIs than those with a lower

MTV, since a higher MTV would result in a more

immunosuppressive tumor microenvironment.

In respective of tumor glycolysis, a higher MTV indicates a

larger metabolically active volume of glucose uptake by the

tumor (38). Different from normal cells, tumor cells can

uptake a large amount of glucose at a rapid rate, consuming

most of nutrients from the surrounding environment, and

metabolizing glucose into lactic acid (Warburg effect) (39).

Tumors with higher MTV would have worse response to ICIs

by affecting T cells responsiveness by the following

possible ways.

Firstly, in tumor microenvironment (TME), tumor cells and

T cells compete for glucose as their primary energy source (40).

Tumors with higher MTV would consume more glucose and
A

B

FIGURE 4

Forest plots of hazard ratios comparing progression free survival (A) or overall survival (B) of patients with high level versus low level mean
standardized uptake value treating with immune checkpoint inhibitors.
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lead to glucose deprivation of T cells, decreasing T cells’ ability to

produce effector cytokines like interferon gamma (IFN-g), which
has impact on the function of tumor infiltrating CD8+ T

cells (41).

In contrast, Harley et al. found that melanoma tumors with

less glycolysis would provide more glucose for infiltrating T cells

and are associated with increased antigen presentation and
Frontiers in Oncology 09
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better response to anti-PD-1 ICIs (42). Secondly, the

accumulation of lactate in the TME will inhibit CD8+T cell

proliferation and activation by preventing lactic acid export

from CD8+T cell (43) or inhibiting CD25 expression, a T cells

activation marker (44). More studies are still needed to explain

why MTV could predict the outcome of immunotherapy in

patients with NSCLC.
A

B

FIGURE 5

Forest plots of hazard ratios comparing progression free survival (A) or overall survival (B) of patients with high level versus low level metabolic
tumor volume treating with immune checkpoint inhibitors.
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Since the cut-off values of MTV ranged from 5.0 to 268.0

cm3 in different studies, we also did a subgroup analysis to

determine the impact of cut-off values on outcome assessment.

Our result showed that a high baseline MTV level was

significantly associated with shorter PFS when setting the cut-

off values of MTV below 50cm3 and shorter OS in the groups

with cut-off values lower than 50 cm3 or between 50cm3 and

100 cm3.

The baseline MTV level didn’t show any predictive value

when the cut-off values were more than 100 cm3. Thus further

studies with a larger sample size should focus on cut-off

values of MTV between 50 and 100 cm3 and try to figure

out a more precise cut-off value to improve the efficacy of

MTV prediction on response assessment to ICIs in

NSCLC patients.

Although SUVmean and TLG were potential prognostic

markers of NSCLC (45), our pooled results showed that they

were not significantly associated with PFS and OS in NSCLC

patients receiving ICIs.

In addition to NSCLC, PET/CT parameters also played

potential predictive roles in other cancers treated with ICIs,

supporting our findings. Zhang et al. reported that total

SUVmax ≥12.5 was associated with worse PFS in head and

neck squamous cell carcinoma (46). And according to a

systematic review and meta-analysis of metastatic melenoma

(47), MTV and TLG were promising predictors of OS for

metastatic melanoma patients who received ICIs.
18F-FDG PET/CT is a convenient and noninvasive imaging

modality, and SUVmax and MTV are easily obtained. Since our

study proved that SUVmax and MTV have the potential
Frontiers in Oncology 10
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predictive value for ICIs in NSCLC patients, further studies

are needed to define the role of SUVmax and MTV in providing

individualized treatments for advanced NSCLC patients. Early

identification of NSCLC patients for ICIs can improve the

efficacy of ICIs in responders and avoid the side effects and

high costs of ICIs in non-responders, allowing them to initiate

other treatments timely.

Our study also has several limitations. Firstly, majority of the

included studies are retrospective studies. Potential selection bias

may exist and impact the reliability of this meta-analysis.

Secondly, the methods of PET/CT were not consistent between

different studies. A golden method should be defined to ensure

the homogeneity of studies. Thirdly, cut-off values of SUV, MTV

and TLG ranged widely and were determined by different

methods, including median values, log-rank test and ROC

curve analysis. Thus the pooled results may show some risk

of bias.

In conclusion, our study showed that high baseline MTV

levels correspond to shorter PFS and OS compared with low

baseline MTV levels especially when the cut-off value was set

between 50-100 cm3. MTV is a potential predictor of ICI

outcomes in NSCLC patients.
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Clinical-radiomics nomogram
for identifying HER2 status in
patients with breast cancer: A
multicenter study

Caiyun Fang1,2, Juntao Zhang3, Jizhen Li4, Hui Shang1,2,
Kejian Li1,2, Tianyu Jiao1,2, Di Yin1, Fuyan Li5, Yi Cui6

and Qingshi Zeng1*

1Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated
Hospital of Shandong First Medical University, Jinan, China, 2Postgraduate Department, Shandong
First Medical University and Shandong Academy of Medical Sciences, Jinan, China, 3GE Healthcare
Precision Health Institution, Shanghai, China, 4Department of Radiology, Shandong Mental Health
Center, Jinan, China, 5Department of Radiology, Shandong Provincial Hospital Affiliated to
Shandong First Medical University, Jinan, China, 6Department of Radiology, Qilu Hospital of Shandong
University, Jinan, China
Purpose: To develop and validate a clinical-radiomics nomogram based on

radiomics features and clinical risk factors for identification of human

epidermal growth factor receptor 2 (HER2) status in patients with breast

cancer (BC).

Methods: Two hundred and thirty-five female patients with BC were enrolled

from July 2018 to February 2022 and divided into a training group (from center

I, 115 patients), internal validation group (from center I, 49 patients), and

external validation group (from centers II and III, 71 patients). The

preoperative MRI of all patients was obtained, and radiomics features were

extracted by a free open-source software called 3D Slicer. The Least Absolute

Shrinkage and Selection Operator regression model was used to identify the

most useful features. The radiomics score (Rad-score) was calculated by using

the radiomics signature-based formula. A clinical-radiomics nomogram

combining clinical factors and Rad-score was developed through

multivariate logistic regression analysis. The performance of the nomogram

was evaluated using receiver operating characteristic (ROC) curve and decision

curve analysis (DCA).

Results: A total of 2,553 radiomics features were extracted, and 21 radiomics

features were selected as the most useful radiomics features. Multivariate

logistic regression analysis indicated that Rad-score, progesterone receptor

(PR), and Ki-67 were independent parameters to distinguish HER2 status. The

clinical-radiomics nomogram, which comprised Rad-score, PR, and Ki-67,

showed a favorable classification capability, with AUC of 0.87 [95%

confidence internal (CI), 0.80 to 0.93] in the training group, 0.81 (95% CI,

0.69 to 0.94) in the internal validation group, and 0.84 (95% CI, 0.75 to 0.93) in
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the external validation group. DCA illustrated that the nomogram was useful in

clinical practice.

Conclusions: The nomogram combined with Rad-score, PR, and Ki-67 can

identify the HER2 status of BC.
KEYWORDS

breast cancer, human epidermal growth factor receptor 2, radiomics, nomogram,
magnetic resonance imaging
Introduction
Breast cancer (BC) is the most common malignancy

worldwide and the main cause of cancer-related death in women

(1, 2). The prognosis of BC has improved since the appearance of

targeted therapies, especially for patients with a human epidermal

growth factor receptor 2 (HER2)-positive subtype (3). HER2-

positive BC is characterized by high invasiveness, high degree of

malignancy, recurrence, and metastasis, and poor prognosis (4, 5).

Therefore, accurate assessment of the HER2 status is very

important for the prognosis prediction and treatment decision-

making for BC patients.

At present, the HER2 status is mainly detected by

immunohistochemistry (IHC) or fluorescence in situ

hybridization (FLSH), both of which are invasive methods

involving tissue samples (6). However, the consistency of the

HER2 status between core needle biopsy and subsequent resection

biopsy of the same BC is 81%–96% (7, 8). Therefore, the

development of a non-invasive and reliable method is essential

for the assessment of the HER2 status in BC patients. Magnetic

resonance imaging (MRI), an essential tool in breast imaging, is

considered to be one of the most sensitive imaging methods for

detecting BC and monitoring neoadjuvant chemotherapy (9, 10).

T2WI can be used to detect bleeding, edema, and cyst in breast

lesions (11). Diffusion-weighted imaging (DWI), a common

method to evaluate the micro-architecture of the tumors based

on the measurement of the Brownian motion of water molecules,

improves the accuracy of breast tumor diagnosis (12). Dynamic

contrast-enhancedMRI (DCE-MRI), another commonmethod to

evaluate BC, can provide information on blood perfusion and

microvessel distribution (13). The so-called imaging features, such

as blurred boundary, irregular shape, and lobulated or burr mass,

are useful for the diagnosis of BC, whereas the features have

limited performance in predicting the HER2 status (14).

Radiomics is a new machine learning method that aims to

extract a large number of quantitative features from medical

images using data characterization algorithms (15). These

quantitative features have been applied to identify benign and
02
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malignant breast lesions and predict neoadjuvant chemotherapy

response and lymph node metastasis (16–18).

In the present study, to identify the HER2 status of BC

patients, we hypothesized that the combination of radiomics

signatures and clinical factors could evaluate the HER2 status in

BC patients. To verify the feasibility of our hypothesis, radiomics

features were selected using the Least Absolute Shrinkage and

Selection Operator (LASSO) logistic model based on the

radiomics features extracted from fat suppression T2WI (FS-

T2WI), DWI, and DCE-MRI. A clinical-radiomics nomogram

model integrating radiomics signatures and clinical risk factors

was constructed by multivariate logistic regression analysis and

verified by the multicenter dataset.
Materials and methods

Patients

The retrospective study was approved by the local

institutional review board, and the requirement for informed

consent was waived. From July 2018 to February 2022, the MR

images and pathological data of BC patients were collected from

three clinical centers (center I, the First Affiliated Hospital of

Shandong First Medical University; center II, Provincial

Hospital Affiliated to Shandong First Medical University; and

center III, Qilu Hospital of Shandong University). The inclusion

criteria were as follows: (1) postoperative pathology confirmed

that BC was an invasive ductal carcinoma of no special type; (2)

breast MRI was performed within 2 weeks before surgery; (3) no

preoperative radiotherapy or neoadjuvant chemotherapy. The

exclusion criteria were as follows: (1) incomplete clinical data or

insufficient MRI quality; (2) the HER2 status was not tested by

IHC or FLSH after surgery, or the IHC intensity score of patient

specimens was 2 +, and FLSH was not further tested. The

flowchart is shown in Figure 1.

In addition, the following clinical information was

obtained through the patient’s electronic medical record
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system: age, tumor diameter, tumor grade, estrogen receptor

(ER), progesterone receptor (PR), Ki-67 proliferation index,

HER2, and pathological axillary lymph node (ALN)

metastasis status.
Postoperative pathological assessment

The status of HER2 was detected by IHC or FLSH after

operation. According to the guidelines of the American Society

of Clinical Oncology/College of American Pathologists

(ASCO/CAP) (6), if the IHC result was 0 or 1+, HER2 was

defined as negative; if the result was 3+, it is positive; for

tumors with an IHC result of 2+, further FLSH detection was

required. If gene amplification occurred, it was defined as

positive. For the ER/PR test, the nuclear staining of ≥1% of

tumors was defined as ER/PR positive. The critical threshold of

Ki-67 to 14% was set, and tumors ≥14% were defined as

high expression.
MRI acquisition and image segmentation

Breast MRI examinations were performed using a 3.0-TMRI

scanner, equipped with a special breast phased-array surface coil.

Patients were placed in the prone position, and the bilateral

mammary glands naturally hung in the coil to fully extend the

mammary glands. FS-T2WI, DWI, and DCE-MRI were

sequentially obtained, and the detailed parameters of MRI

acquisition are summarized in Supplementary Table 1.

A free open-source software called 3D Slicer (www.slicer.

org) was used to perform image segmentation. On FS-T2WI,

DWI, and DCE-MRI (the peak enhancement phase of

multiphase-enhanced MRI selected according to the time

intensity curve), the region of interest (ROI) of each tumor

was manually outlined layer by layer along the tumor contour by
Frontiers in Oncology 03
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excluding the areas of necrosis and calcification. Figure 2 shows

an example of manual ROI drawing.
Radiomics feature extraction
and selection

Due to the difference between MRI scanning parameters and

devices, we preprocessed the images before the extraction of

radiomics features. We resampled the voxels of all images to

1 mm × 1 mm × 1 mm using three-line interpolation and

standardized its intensity range to 0 to 255. The 3D Slicer

software was also used for feature exaction according to

guidelines defined by the image biomarker standardization

initiative (19). Four groups of features were extracted from the

FS-T2WI, DWI, DCE-MRI, and their combination (FS-

T2WI+DWI+DCE-MRI).

To evaluate the intra- and interobserver agreement of feature

exaction, the MR images of 30 patients were randomly selected.

Two experienced radiologists (reader 1 and reader 2) blinded to

clinical information completed the process manually and

independently with the same criteria. Reader 1 repeated the

process after 3 weeks to assess intraobserver reproducibility. The

reliability of measurements was assessed by intra- and interclass

correlation coefficients (ICCs). ICC values above 0.75 were

considered to have good consistency, and the remaining MRI

feature exaction was completed by reader 1.

Two feature selection methods, minimum-redundancy

maximum-relevance (mRMR) and LASSO, were used to

obtain the most significant characteristics for evaluation of the

HER2 status. At first, mRMR was carried out to narrow the

range of redundant and irrelevant features; 30 features were

retained. Then, the retained features were filtered with LASSO to

obtain the best features, and 10-fold cross validations were

utilized to determine the optimal values of l. The radiomics

score (Rad-score) of each patient was calculated by selecting the
FIGURE 1

Patient recruitment routes in center I and external centers II-III. n I, number of patients in center I; n II-III, total number of patients in external
centers II-III.
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linear combination of features and the product of their

respective coefficients
Model construction and validation

The seven clinical parameters (age, tumor diameter, tumor

grade, ER, PR, Ki-67, and ALN metastasis status) were first

analyzed by univariate logistic regression to screen out the

clinical features of P < 0.05. To obtain the clinical risk factors

identifying the HER2 status and building the clinical model, the

significant variables in univariate analysis were input for

stepwise multivariate logistic regression analysis. Moreover, we

used multivariate logistic regression analysis to develop a

clinical-radiomics model based on Rad-score and clinical risk

factors, which is displayed by a nomogram.

Therefore, a total of three models were constructed to

identify the HER2 status of BC: clinical model, radiomics

model, and clinical-radiomics model. The area under the

receiver operating characteristic (ROC) curve (AUC) was used

to evaluate the discrimination performance of the three models

in the training and validation cohorts. Finally, to explore the
Frontiers in Oncology 04
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clinical utility of nomogram, decision curve analysis (DCA) was

carried out based on three models to determine the utility of

nomogram in a series of threshold probabilities.
Statistical analysis

R programming language (version 4.1.0, www.programmingr.

com) was applied for statistical analysis and data processing. The

differences of continuous variables (age, tumor diameter) between

the HER2-negative group and HER2-positive group were

compared by the independent sample t-test or Mann–Whitney

U-test and described as mean ± standard deviation (SD). The

differences of categorical variables (ER, PR, Ki-67, ALNmetastasis

status, and tumor grade) between the two groups were compared

using chi-square test or Fisher’s exact test and expressed as

absolute numbers (n) and proportions (%). Univariate and

multivariate logistic regression analyses were used to evaluate

the relationship between HER2 overexpression status and clinical

risk factors. All statistical tests were two-sided, and P-values of

<0.05 were regarded as significant.
A B

D E F

C

FIGURE 2

(A-F): An example of manual segmentation in breast cancer. (A, B): tumor area (green in fat suppression T2WI image); (C, D): tumor area
(orange in DWI image, b = 1,000 s/mm2); (E, F): tumor area (red in DCE-MR image).
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Results

Clinical characteristics

A total of 235 breast cancer patients was consecutively enrolled

(met the inclusion criteria, but not the exclusion criteria). All the

patients were women with the mean age of 50.76 ± 10.82 years

(range: 26-83 years). The patients were divided into three

independent groups: a training group (from center I, 115

patients), internal validation group (from center I, 49 patients),

and external validation group (from centers II and III, 71 patients).

The clinical characteristics of the three groups were

compared as shown in Table 1. The HER2-positive

proportions in the training, internal validation, and external

validation sets were 27.1%, 26.5%, and 32.4%, respectively.
Intraobserver and interobserver
agreement for radiomics
features extraction

The intraobserver ICC was 0.761 to 0.990, and the

interobserver ICC ranged from 0.759 to 0.989 for evaluation of

the radiomics features extraction. The results showed good

consistency of feature extraction within and between observers.
Frontiers in Oncology 05
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Feature selection and development of
the radiomics model

A total of 851 quantitative radiomics features were extracted

from each sequence, which could be summarized into the

following four groups: 14 volume and shape features (2D and

3D), 18 first-order features, 75 texture features, and 744 ([18 +

75] * 8) wavelet transform features.

By mRMR and LASSO, 6, 10, and 3 optimal radiomics features

were selected from FS-T2WI, DWI, and DCE-MRI, respectively.

Then, combining these three sequences, two radiomics features

(one from DWI and one from DCE-MRI) were selected and

executed from 2,553 (851×3) features to construct a radiomics

model (Figure 3). The Rad-score of each patient was calculated

using the formula presented in Supplementary Materials 2.
Development of the clinical and clinical-
radiomics models

Based on the univariate and stepwise multivariate logistic

regression analyses, two clinical risk factors (PR and Ki-67) were

obtained for identification of the HER2 status and were used for

construction of the clinical model. In addition, logistic
TABLE 1 Patient characteristics in the training and validation cohorts (mean ± standard deviation).

Clinicopathological features Training group
(N = 115)

P Internal validation group
(N = 49)

P External validation group
(N = 71)

P

HER2-
(n = 84)

HER2+
(n = 31)

HER2-
(n = 36)

HER2+
(n = 13)

HER2-
(n = 48)

HER2+
(n = 23)

Age (years, mean± SD) 49.5 ± 10.5 52.5 ± 8.9 0.163 52.6 ± 11.4 50.3 ± 7.5 0.494 49.8 ± 12.4 52.4 ± 11.3 0.396

Diameter (cm, mean± SD) 2.1 ± 0.9 2.2 ± 0.7 0.658 1.8 ± 0.7 2.8 ± 1.1 0.000 1.9 ± 0.8 2.4 ± 0.8 0.034

ER 0.003 1.000 0.034

Positive 72 (85.7%) 18 (58.1%) 34 (94.4%) 12 (92.3%) 37 (77.1%) 12 (52.2%)

Negative 12 (14.3%) 13 (41.9%) 2 (5.6%) 1 (7.7%) 11 (22.9%) 11 (47.8%)

PR 0.001 0.352 0.000

Positive 68 (81.0%) 15 (48.4%) 31 (86.1%) 9 (69.2%) 38 (79.2%) 8 (34.8%)

Negative 16 (19.0%) 16 (51.6%) 5 (13.9%) 4 (30.8%) 10 (20.8%) 15 (65.2%)

Ki-67 0.001 0.040 0.038

≥14% 48 (57.1%) 28 (90.3%) 20 (55.6%) 12 (92.3%) 40 (83.3%) 23 (100%)

<14% 36 (42.9%) 3 (9.7%) 16 (44.4%) 1 (7.7%) 8 (16.7%) 0

Pathological ALN metastasis 0.751 0.176 0.399

Positive 28 (33.3%) 12 (38.7%) 10 (27.8%) 7 (53.8%) 22 (45.8%) 13 (56.5%)

Negative 56 (66.7%) 19 (61.3%) 26 (72.2%) 6 (46.2%) 26 (54.2%) 10 (43.5%)

Histological grade 0.210 0.289 0.017

I 17 (20.2%) 2 (6.5%) 9 (25.0%) 0 2 (4.2%) 0

II 51 (60.7%) 22 (71.0%) 22 (61.1%) 8 (61.5%) 38 (79.2%) 12 (52.2%)

III 16 (19.0%) 7 (22.6%) 5 (13.9%) 5 (38.5%) 8 (16.7%) 11 (47.8%)

Rad-score(median) -1.3[-0.9, -0.1] -0.7[-0.9, -0.1] <1e-04 -1.1[-1.7, -0.8] -0.6[-0.9, -0.3] 0.002 -1.1[-1.7, -0.8] -0.9[-1.2, -0.8] 0.010
frontiersi
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regression analysis showed that the Rad-score was an

independent variable to identify HER2 status (Table 2).

Therefore, a clinical-radiomics model was constructed by

combining Rad-score and clinical risk factors.
Comparison of models
and establishment of
clinical-radiomics nomogram

To compare the performance of the clinical-radiomics model,

the radiomics model, and the clinical model in identifying the

HER2 status, we plotted the ROC curves of the three models

(Figure 4). In the training cohort, the clinical-radiomics model

showed the highest discrimination between HER2-negative and

positive cases, with an AUC of 0.87 (95% CI, 0.80 to 0.93). The

AUC value of the clinical-radiomics model was significantly

higher than that of the radiomics model (AUC = 0.84, 95% CI,

0.76 to 0.92) and clinical model (AUC = 0.73, 95% CI, 0.64 to

0.82). In the internal validation and external validation cohorts,

the AUC of the clinical-radiomics model was 0.81 (95% CI, 0.69 to

0.94) and 0.84 (95% CI, 0.75 to 0.93), respectively, which was

superior to the single radiomics model and clinical model. The

clinical-radiomics model showed the best ability to identify the
Frontiers in Oncology 06
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HER2 status. Therefore, a clinical-radiomics nomogram was

developed based on the clinical-radiomics model (Figure 5).
Clinical application

Figure 6 shows the DCA curves of the clinical-radiomics

model, the radiomics model, and the clinical model. According

to the DCA, the clinical-radiomics nomogram showed good

clinical practicability in all threshold probabilities and obtained

the greatest benefit. It indicated that the nomogram was a

reliable clinical tool and could be used to identify the HER2

status of BC.
Discussion

BC is one of the most common death causes of cancer

among women in the world. However, the way of BC treatment

has changed drastically since HER2 is a target of the monoclonal

antibody trastuzumab as well as of other anti-HER2 compounds.

In this study, to identify the HER2 status in BC patients, we

developed and validated a clinical-radiomics nomogram based

on radiomics features and clinical risk factors. It successfully
A B

FIGURE 3

(A, B): Texture feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. (A): Optimal tuning parameters
(l) in the LASSO model binomial deviation diagram. (B): LASSO coefficient profile of the features.
TABLE 2 Univariate and multivariate analyses of risk factors for HER2.

Variable Univariate logistic analysis Multivariate logistic analysis

OR (95% CI) P OR (95% CI) P

ER 0.23 [0.09, 0.59] 0.002 NA NA

PR 0.22 [0.09, 0.53] 0.000 0.37 [0.13, 1.07] 0.067

Ki-67 7.00 [1.97, 24.84] 0.002 4.12 [0.98, 17.37] 0.053

Rad-score 11.85 [4.25, 33.02] <1e-04 9.88 [3.43, 28.43] <1e-04
fro
OR, odds ratio; CI, confidence interval; NA, not available; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
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stratified BC patients according to HER2 status and performed

well in the training, internal, and external validation groups.

In the present study, PR and Ki-67 were identified as

clinical risk factors for distinguishing the HER2 status by

multivariate logistic regression analysis. PR promotes cell

growth through nuclear pathways and non-nuclear

pathways. There is a negative correlation between HER2

overexpression and PR expression, which is due to the loss

of the PR protein caused by HER2 overexpression through

the PI3K/Akt signaling pathway (20). A previous study has

shown that the expression level of PR in BC with

overexpression or high amplification level of HER2 is

lower than that of low-level tumor (21). Ki-67 is a nuclear

protein, which is usually used to detect and quantify tumor-

proliferating cells. Its increased expression is related to cell

growth (22). The Ki-67 index is positively correlated with
Frontiers in Oncology 07
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HER2 status, which indicates that HER2 overexpression

may upregulate the expression of Ki-67 (23). This was

consistent with our results. Based on these clinical risk

factors, we further obtained the clinical model to identify

the HER2 status through multivariable logistic regression

analysis. The AUC in the training, internal, and external

validation groups were 0.73, 0.72, and 0.75 respectively,

indicating that the discrimination efficiency of the model

is good.

Radiomics, a research hotspot in the field of medical

imaging analysis recently, is gaining importance in the

evaluation of cancer by improving tumor diagnostic,

prognostic, and predictive accuracy. The advantage of

radiomics is the application of a large number of automatic

data feature extraction algorithms to transform image data

into quantitative features. In the present study, a radiomics
frontiersin.org
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FIGURE 4

(A-C): The receiver operating characteristic curves of nomogram, radiomic signatures, and clinical risk factors for identifying the HER2 status of
breast cancer were presented in the training group (A), the internal validation group (B) and the external validation group (C), respectively. The
nomogram obtained the highest area under the curve (AUC).
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model for identification of the HER2 status of BC patients was

constructed on the basis of the extracted features (one from

DWI and one from DCE-MRI). The AUC of the constructed

radiomics model was 0.79 (internal validation group), which

was similar to the previous studies (24, 25). Zhou et al. (24)

reported a development of radiomic features based on

mammography, including mediolateral oblique and cranial

caudal views, to evaluate the BC HER2 status. The best

combination of the two views was achieved, and the AUC

of the test set was 0.787. In another study, the features

extracted from T2WI in combination with DCE-MRI

showed that the ability of predicting the HER2 status of BC

patients was better than that of single-parameter MRI, and

the AUC of the validation set was 0.81 (25).

Accurate identification of the HER2 status plays an

essential role in the evaluation of treatment options for BC

patients. The use of HER2 expression as a predictive

biomarker of target drug response to trastuzumab is
Frontiers in Oncology 08
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becoming a standard recommendation for the treatment of

invasive breast cancer (26). To accurately identify the HER2

status of BC patients, we further established the clinical-

radiomics nomogram based on radiomics features and

clinical risk factors. The performance of the nomogram in

identifying HER2 status was further improved, with AUC of

0.87 in the training group and 0.81 in the internal validation

group. In the present study, we used the external validation

set to verify the clinical-radiomics nomogram. The results

showed that it had good prediction efficiency (AUC = 0.84),

and its identification ability was significantly superior than

that of single radiomics features and clinical features. Our

multicenter data provided additional radiomics evidence for

predicting the HER2 status of BC. It can be used as a non-

invasive identification tool for the HER2 status. Doctors can

add the scores of each prediction index to get the total score

according to the individual differences of patients, so as to

make a more accurate prediction, help clinical decision-
FIGURE 6

Decision curve analysis of clinical application evaluation of the nomogram. The vertical axis displays standardized net benefit. The two
horizontal axes show the corresponding relationship between risk threshold and cost-benefit ratio. Compared with the radiomics signature
(gray line) and clinical characteristics (yellow line), the nomogram (blue line) achieved the highest net benefit.
FIGURE 5

A clinical-radiomics nomogram. The nomogram was composed of Rad-score, PR, and Ki-67. PR: 0 = negative, 1 = positive; Ki-67: 0 = low
expression, 1 = high expression.
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making more intuitively, and make personalized treatment

plans. In addition, this study uses DCA to evaluate the clinical

application of the nomogram. The DCA results show that the

net benefit of the nomogram is higher than that of the

radiomics model and clinical model, which increases the

reliability of the model.

However, this study still has some limitations. Firstly, we only

included the invasive ductal carcinoma of no special type in this

study, because this pathological type accounts for 80% of all BC.

This choice can avoid confounding factors associated with

pathological types. Secondly, in DCE-MR images, we only

selected the most obvious enhancing phase according to the time

intensity curve and did not analyze the pre-contrasts and other

enhanced images. Finally, this study is retrospective, and the sample

size is relatively small, so some bias is inevitable. In future studies,

large sample size prospective randomized studies are needed to

verify the results of this study.
Conclusions

In conclusion, combined with radiomics features and clinical

risk factors, a clinical-radiomics nomogram was constructed to

evaluate the HER2 status of BC patients. It can be used for

identifying the HER2 status in BC patients, helping clinical

decision-making, and providing supplementary information

for precise medical treatment.
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Preoperative radiomics model
using gadobenate dimeglumine-
enhanced magnetic resonance
imaging for predicting b-catenin
mutation in patients with
hepatocellular carcinoma: A
retrospective study

Fengxia Zeng1†, Hui Dai2,3†, Xu Li4, Le Guo1, Ningyang Jia5,
Jun Yang1, Danping Huang1, Hui Zeng1, Weiguo Chen1,
Ling Zhang1* and Genggeng Qin1,6*

1Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China,
2Hospital Office, Ganzhou People’s Hospital, Ganzhou, China, 3Hospital Office, Ganzhou Hospital-
Nanfang Hospital, Southern Medical University, Ganzhou, China, 4School of Biomedical
Engineering, Southern Medical University, Guangzhou, China, 5Department of Radiology, Eastern
Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China, 6Department of
Radiology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
Objective: To compare and evaluate radiomics models to preoperatively

predict b-catenin mutation in patients with hepatocellular carcinoma (HCC).

Methods: Ninety-eight patients who underwent preoperative gadobenate

dimeglumine (Gd-BOPTA)-enhanced MRI were retrospectively included.

Volumes of interest were manually delineated on arterial phase, portal

venous phase, delay phase, and hepatobiliary phase (HBP) images. Radiomics

features extracted from different combinations of imaging phases were

analyzed and validated. A linear support vector classifier was applied to

develop different models.

Results: Among all 15 types of radiomics models, the model with the best

performance was seen in the RHBP radiomics model. The area under the

receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity

of the RHBP radiomics model in the training and validation cohorts were 0.86

(95% confidence interval [CI], 0.75–0.93), 0.75, 1.0, and 0.65 and 0.82 (95% CI,

0.63–0.93), 0.73, 0.67, and 0.76, respectively. The combined model integrated

radiomics features in the RHBP radiomics model, and signatures in the clinical

model did not improve further compared to the single HBP radiomics model

with AUCs of 0.86 and 0.76. Good calibration for the best RHBP radiomics

model was displayed in both cohorts; the decision curve showed that the net

benefit could achieve 0.15. The most important radiomics features were low
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and high gray-level zone emphases based on gray-level size zone matrix with

the same Shapley additive explanation values of 0.424.

Conclusion: The RHBP radiomics model may be used as an effective model

indicative of HCCs with b-catenin mutation preoperatively and thus could

guide personalized medicine.
KEYWORDS

hepatocellular carcinoma, b-catenin mutation, magnetic resonance imaging, Gd-
BOPTA, radiomics
Highlights
1. b-catenin can be preoperatively estimated using

radiomics model based on Gd-BOPTA-enhanced MRI.

2. Among all 15 types of radiomics models, the model with

the best performance was seen in the RHBP radiomics

model.

3. The RHBP radiomics model may assist in the selection of

appropriate decision-making for personalized medicine

in patients with hepatocellular carcinoma.
Introduction

Hepatocellular carcinoma (HCC) has become the third most

common cause of cancer-related deaths globally in 2020, making

it a health problem worldwide (1). Although there has been

recent progress in the treatment of HCC, the 5-year tumor

recurrence occurs in approximately 35% of cases after liver

transplantation, and 70% after hepatectomy indicates an

unsatisfactory overall survival for patients with HCC (2–4).

Additionally, patients with advanced HCC are not eligible for

curative therapies. Thus, immunotherapy plays a critical role in

HCC (5, 6).

Recently, programmed cell death 1 (PD-1) immune

checkpoint inhibitors have shown efficacy in patients with

HCC at advanced stages (7, 8). Anti-PD-1 therapy has

revealed unprecedented response and disease control rates in

clinical trials and has become the second-line therapy for HCC

treatment granted by the Food and Drug Administration (9–11).

Unfortunately, some patients failed to respond effectively, and

not all patients showed positive results on prognosis, although

excellent antitumor responses were observed with anti-PD-1

therapy (12, 13). Hence, selecting the subgroup that would
02
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receive the best benefit from anti-PD-1 antibody is important

in the management of patients with HCC (13).

b-catenin activation can induce immune escape and resistance

to anti-PD-1 therapy in HCC cases (14–17). Morita et al. (16) also

showed that b-catenin without mutation was significantly

correlated with longer survival in both progression-free survival

and overall survival with anti-PD-1 therapy. The b-catenin
mutation, which contributes to the activation of the Wnt/b-
catenin signaling pathway, can be observed in approximately

30%–40% of patients with HCC (18). b-catenin, which is an

intracellular signal transducer in the WNT signaling pathway, is

encoded by CTNNB1 and closely related to the occurrence and

development of liver tumors. Most liver tumors have mutations in

genes encoding key components of the WNT/b-catenin signaling

pathway (14, 18, 19). Studies have reported that the Wnt/b-
catenin pathway is correlated with carcinogenesis, especially in

hepatocellular adenoma (20, 21). However, in patients with HCC,

presence of the b-catenin mutation may suggest better cell

differentiation and a more favorable prognosis (22, 23).

Currently, the diagnosis of b-catenin mutation depends on

polymerase chain reaction or immunohistochemical analysis.

Nuclear expression of b-catenin in immunohistochemical

analysis can hint at the b-catenin mutation and activation of the

b-catenin pathway. However, the sensitivity and specificity of

nuclear b-catenin expression are limited. Its transcriptional

product, glutamine synthetase (GS) expression, is a reliable

biomarker of the b-catenin mutation, while GS expression in

human HCC is not always associated with b-catenin mutation

(24–26). Therefore, the diagnosis of b-catenin mutation should be

confirmed by the expression of b-catenin and GS by

immunohistochemical analysis.

No stable serological or genomic biomarkers of the b-catenin
mutation have been found to date due to the high heterogeneity

of HCC. Moreover, the diagnosis of HCC depends not only on

postoperative histologic examination, but also on imaging

methods (3, 27). Thus, an accurate and noninvasive b-catenin
mutation before surgery plays an important role in the
frontiersin.org
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prognostic assessment and selection of patients for anti-PD-

1 therapy.

Signal intensity in liver-specific contrast-enhanced magnetic

resonance imaging (MRI) is correlated with genetic alterations

and molecular expression of HCC (28–32). Kitao et al. (30)

suggested that the b-catenin mutation in HCC might show

distinctive imaging findings in hepatobiliary phase (HBP)

images. Nevertheless, these immunohistochemical predictors

are difficult to detect using preoperative imaging methods.

Radiomics is a rapidly growing methodology that permits

digital decoding of medical images into multidimensional

radiological features for noninvasive profiling of tumors.

Several studies on HCC have demonstrated that unviewable

radiomic features are closely associated with histopathologic

features, especially in hepatobiliary-specific contrast-enhanced

MRI. Feng et al. (33) constructed a radiomic feature-based

nomogram using gadoxetic acid-enhanced MRI to achieve

satisfactory preoperative prediction of microvascular invasion

in patients with HCC. Wang et al. (34) showed that preoperative

arterial and HBP imaging radiomic features could be a reliable

biomarker to evaluate the CK19 status of HCC.

To our knowledge, no study has investigated the radiomics

model of b-catenin mutation prediction. In this study, we aimed

to determine the performance of a radiomic feature-based model

using gadobenate dimeglumine (Gd-BOPTA)-enhanced MRI to

predict b-catenin mutation and assist in the selection of optimal

therapeutic strategies for patients with HCC.
Materials and methods

Ethics statements

Our study was approved by the Ethics Review Board of

Eastern Hepatobiliary Surgery Hospital. The requirement for

informed consent was waived because no protected health

information was needed.
Study design and patient cohort

Between September 2016 and June 2017, 463 patients who

underwent preoperative MRI at the Eastern Hepatobiliary

Surgery Hospital were retrospectively enrolled and analyzed.

Inclusion and exclusion criteria are shown in Figure 1.
Magnetic resonance imaging

Gd-BOPTA-enhanced MRI was performed using GE

Optima MR360 1.5 T. After injecting Gd-BOPTA (0.1 mmoL/

kg; MultiHance, Braccom) into patients’ cubital veins at a flow

rate of 2.0 mL/s, enhanced scanning of the arterial phase (AP,
Frontiers in Oncology 03
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22–25 seconds), portal venous phases (PVP, 50–60 seconds),

and delayed phases (DP, 90–120 seconds) was performed,

respectively. The scanning of HBP imaging was completed 60

minutes after injecting patients with normal liver function and

120 minutes after injecting patients with impaired function. The

diagnosis of impaired liver function was made by clinical

physicians. The scanning parameters are presented in Table 1.
Pathological examination

All tumor sections were reviewed by two experienced

pathologists with 5–10 years of experience in HCC. Each

tumor sample was first sectioned and then stained with

hematoxylin-eosin. To determine the b-catenin mutation, the

expressions of b-catenin and GS were examined by

immunohistochemical analysis. In our study, the positive

expressions of b-catenin and GS were attributed to the

activation of b-catenin. However, no expression of b-catenin
or GS was considered as HCC without a b-catenin mutation.

HCC with a b-catenin mutation was shown in Supplementary

Figure 1 and without a b-catenin mutation was shown in

Supplementary Figure 2.
Magnetic resonance imaging signatures
and clinical factor acquisition

Clinical factors (CFs), which included sex, age, alpha-

fetoprotein, hepatitis B surface antigen (HBsAg), hepatitis B e

antigen, and cirrhosis, were collected from patients’ electronic

medical records. Based on the Liver Imaging Reporting and Data

System (2017) (LI-RADS-2017), two abdominal radiologists

with >10 years of experience assessed the radiological features

and worked in consensus. MRI signatures included the tumor

size, tumor morphology, capsule, margins, rim, and peritumoral

enhancement in the AP, hypointensity, and peritumoral

hypointensity in the HBP.
Region of interest segmentation and
feature extraction

Region of interest (ROI) segmentation was performed by a

radiologist with 5 years of work experience and validated by a

radiologist with >10 years of work experience using ITK-SNAP

software (www.itk-snap.org). ROIs in AP, PVP, DP, and HBP

images were delineated on each slice of the lesions and three-

dimensional ROIs were generated accordingly (Figure 2).

Overall, 1674 radiomic features were extracted from each MRI

phase, which included 324 first-order features, 432 gray-level co-

occurrence matrix features, 288 gray-level size zone matrix

(GLSZM) features, 288 gray-level run length matrix features,
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TABLE 1 Sequences and parameters of Gd-BOPTA dynamic-enhanced MRI.

Sequences TR/TE (msec) FOV (mm) Thickness (mm) Flip angle Matrix

T1WI 190/4.3 (2) 420×420 6 80 256×160

T2WI 6667/85 420×420 6 160 320×224

DCE 3.7/1.7 420×420 2.5 15 256×192

HBP 3.7/1.7 420×420 2.5 15 256×192
FIGURE 1

Flow chart of the study population. HCC, hepatocellular carcinoma; RAF, radiofrequency ablation; TACE, transcatheter arterial
chemoembolization.
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90 neighboring gray-tone difference matrix features, and 252

gray-level dependence matrix features. All radiomic features

were extracted using the open-source software Pyradiomics

(https://pyradiomics.readthedocs.io/en/latest/index.html).

Features in each of the MRI sequences were combined and

categorized into different groups.
Feature selection and
model construction

Patients were randomly allocated into a training/validation set

(n=68) and a validation set (n=30) at a ratio of 7:3. The corresponding

features were combined and categorized into four groups:
Fron
1. group 1 (n=4): features from one phase, named RAP,

RPVP, RDP, and RHBP (1674 features for each type);

2. group 2 (n=6): features from any two phases, named

RAP+PVP, RAP+DP, RAP+HBP, RPVP+DP, RPVP+HBP, and

RDP+HBP (3348 features for each type);

3. group 3 (n=4): features from any three phases, named

RAP+PVP+DP, RAP+PVP+HBP, and RPVP+DP+HBP,and RAP

+DP+HBP (5022 features for each type); and

4. group 4 (n=1): features from any four phases, named

RAP+PVP+DP+HBP (6696 features for this type).
All the features in different groups were first analyzed using the

F-test. The top 30 features in each phase and ROI were selected

based on the results of the F-test. For the clinical model, all 14 CF

and MRI signatures were analyzed by the F-test, and the top five

features were chosen. Next, features in 15 types of combinations

and clinical models were selected by linear support vector classifier

(LSVC), and were then cross-validated by a 10-fold cross-validation

using the training set to obtain the optimal parameter.

We chose the LSVC as the only classifier in all radiomic and

clinical models. The predictive power of these models was
tiers in Oncology 05
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evaluated by the area under the receiver operating characteristic

curve (AUC), accuracy, sensitivity, and specificity. The best

radiomics model for predicting b-catenin mutation was

determined using the validation dataset by comparing the AUC

values. A combined model that integrated the radiomic signature

and clinical characteristics was also developed using the LSVC.

Calibration curves were applied to analyze the performance of the

best model, and a decision curve analysis was used to determine

the clinical usefulness. Additionally, a local interpretability

technique called Shapley additive explanation (SHAP) was used

to break down predictions and show the impact of each feature.

This assessment was based on SHAP values (Shap0.32.1), which

were equal to the prediction from the original forecasted value

minus the deletion of the feature. Positive results signified that the

feature supported the prediction, whereas negative values signified

that the prediction was not supported.
Statistical analysis

For baseline characteristics, continuous variables were

analyzed using the t-test, and categorical variables were analyzed

using the chi-square test or Fisher exact test. The AUC was

compared using the DeLong test. Statistical analysis was

performed using SPSS (version 22.0; IBM Corp.) and MedCalc

(version 19.4.1). Statistical significance was set at p<0.05.
Results

Patient characteristics

The final cohort included 98 patients, who were randomly

divided into training and validation datasets at a ratio of 7:3

(Figure 1). The longest interval between the MRI examination and
FIGURE 2

The workflow of the study.
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surgery was approximately 2 weeks. The clinical characteristics

and MRI features of all patients are shown in Table 2. There were

no significant differences between the training and validation

cohorts. In both datasets, most of the patients with HCC were
Frontiers in Oncology 06
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male (85.3% and 83.3%, respectively), and the median ages were

55.63 and 54.13 years, respectively. The positive incidences of a b-
catenin mutation were similar in the training and validation

datasets (27.9% and 30%, respectively).
TABLE 2 Baseline clinical characteristics of the training and validation cohort.

Characteristic Training dataset (N=68) Validation dataset (N=30) P value

Sex, N (%) 0.770*

Female 10 (14.7%) 5 (16.7%)

Male 58 (85.3%) 25 (83.3%)

Age, median ± SD (years) 55.63 ± 10.77 54.13 ± 11.90 0.540

Maximum diameter of tumor, median ± SD (mm) 41.60 ± 20.26 42.27 ± 18.76 0.879

Alpha fetoprotein, N (%) 0.816*

<20ng/ml 34 (50%) 17 (56.7%)

20ng/ml-400ng/ml 27 (39.7%) 10 (33.3%)

>400ng/ml 7 (10.3%) 3 (10%)

HBsAg, N (%) 0.770*

Negative 10 (14.7%) 5 (16.7%)

Positive 58 (85.3%) 25 (83.3%)

HBeAg, N (%) 0.590

Negative 49 (72.1%) 20 (66.7%)

Positive 19 (27.9%) 10 (33.3%)

Cirrhosis, N (%) 0.743

Negative 18 (26.5%) 7 (23.3%)

Positive 50 (73.5%) 23 (76.7%)

Capsule, N (%) 0.506

Negative 54 (79.4%) 22 (73.3%)

Positive 14 (20.6%) 8 (26.7%)

Arterial rim enhancement, N (%) 0.219

Negative 43 (63.2%) 15 (50%)

Positive 25 (36.8%) 15 (50%)

Arterial peritumoral enhancement, N (%) 0.697*

Negative 63 (92.6%) 27 (90%)

Positive 5 (7.4%) 3 (10%)

Tumor margin, N (%) 0.810

Smooth 21 (30.9%) 10 (33.3%)

Nonsmooth 47 (69.1%) 20 (66.7%)

Tumor hypointensity on HBP, N (%) \

Yes 68 (100%) 30 (100%)

No 0 0

Peritumoral hypointensity on HBP, N (%) 1.00*

Absent 59 (86.8%) 26 (86.7%)

Present 9 (13.2%) 4 (13.3%)

Shape, N (%) 0.095*

Round 15 (22.1%) 14 (46.7%)

Oval 11 (16.2%) 4 (13.3%)

Lobular 32 (47.1%) 8 (26.7%)

Irregular 10 (14.7%) 4 (13.3%)

b-catenin mutation, N (%) 0.835

Absent 49 (72.1%) 21 (70%)

Present 19 (27.9%) 9 (30%)
front
* Calculated by Fisher’s exact test.
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Performance of the clinical model

In total, 14 clinical characteristics and MRI features were

used to construct the clinical model. After feature selection, four

features including sex, HBsAg, age, and peritumoral

hypointensity in the HBP were included in the clinical model.

The AUCs of the clinical model were 0.63 (95% confidence

interval [CI]: 0.50–0.74) in the training dataset and 0.63 (95% CI:

0.54–0.80) in the validation dataset.
Radiomics signature calculation

We performed LSVC modeling on AP, PVP, DP, and HBP

features to explore the value of b-catenin mutation

discrimination. For group 1, 12, four, four, and 11 features

were selected for RAP, RPVP, RDP, and RHBP model construction,

respectively. For the biphasic and triphasic MRI images, the

number of features selected as putatively effective features ranged

from 2 to 16. Twelve features were selected for group 4. The

details are shown in Table 3.
Performance of the proposed models

All 15 types of radiomics models were compared to

determine the best phases or combinations. The AUCs for all

combinations of radiomics models are displayed in Table 4. The

model with the best performance of was seen in the RHBP

radiomics model in the validation datasets, with AUCs of 0.82
Frontiers in Oncology 07
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among the RAP (AUC=0.55), RPVP (AUC=0.56), and RDP

radiomics models (AUC=0.68). For the biphasic MRI image,

RAP+HBP, RPVP+HBP, and RAP+PVP achieved excellent

performance in the training datasets, but only the RAP+HBP

and RPVP+HBP radiomics models retained a moderate AUC

(AUC=0.75 and 0.71, respectively) in the validation datasets.

Additionally, the radiomics models did not perform better in the

tri-phasic or quad-phasic MRI images in the validation

datasets (Figure 3).

After combining clinical characteristics in the clinical model

with radiomics features in the RHBP radiomics model, the

combined model did not perform better than the single HBP

radiomics model in the differentiation of the b-catenin mutation,

with AUCs of 0.86 in the training dataset and 0.76 in the

validation dataset. Comparisons were made between the best-

performing RHBP radiomics model and the clinical model. The

Delong test resulted in a p-value of 0.0043 in the training dataset

(AUC: 0.86 versus [vs.] 0.63). Although there was no significant

difference in the validation dataset (p=0.151), there was a trend

in that the single HBP radiomics model showed better

performance than the clinical model with a higher AUC in the

validation dataset (Table 4 and Figure 4).

Calibration curves for the RHBP radiomics model showed

no significant difference between the predicted probabilities of

the model and the ideal b-catenin mutation estimates in the

training and validation datasets (p=0.081 and 0.454,

respectively). The decision curve for the RHBP radiomics

model is shown in Figure 5. In our study, the net benefit

could achieve 0.15, and the corresponding threshold

probability of the curve was 0.18.
TABLE 3 Selected radiomics features of the proposed models.

Different model Firstorder GLCM GLDM GLRLM GLSZM NGTDM Total

RAP 1 7 0 2 2 0 12

RPVP 0 0 0 1 3 0 4

RDP 3 0 0 0 1 0 4

RHBP 2 1 0 0 8 0 11

RAP+PVP 2 2 1 1 6 0 12

RAP+DP 2 0 0 1 2 0 5

RAP+HBP 1 2 0 2 10 0 15

RPVP+DP 2 0 0 3 4 0 9

RPVP+HBP 1 1 0 0 10 0 12

RDP+HBP 1 1 0 1 5 0 8

RAP+PVP+DP 1 0 0 2 4 0 7

RAP+PVP+HBP 2 2 0 3 9 0 16

RAP+DP+HBP 1 0 0 0 1 0 2

RPVP+DP+HBP 0 0 0 4 5 0 9

RAP+PVP+DP+HBP 1 0 0 4 6 0 11
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Importance of the features in the RHBP

radiomics model

We further explored the interpretability of the RHBP

radiomics model. The SHAP values for the features were

obtained to explore their contributions to the model

(Figure 6). The most important radiomics features were

LGLZE and HGLZE based on GLSZM with the same SHAP

values of 0.424. However, the difference between LGLZE and

HGLZE was that the former supported the absence of the b-
catenin mutation, whereas the latter supported the presence of

the b-catenin mutation.
Discussion

To our knowledge, this is the first study to develop and

validate Gd-BOPTA-enhanced MRI radiomics models for

predicting the b-catenin mutation in HCC. Among the single-

phase radiomics models in our study, the RHBP radiomics model

outperformed the other models in both the training and validation

datasets. Some models, including bi-phase radiomics or others,

could achieve better performance in the training dataset, but gain

reverse results in the validation dataset. Furthermore, we

established a combined model including radiomics from the
Frontiers in Oncology 08
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best RHBP radiomics model and features from a clinical model.

However, the results showed that the combined model had the

same performance as the single HBP radiomics model in the

training datasets, but much worse performance in the validation

datasets. This implies that radiomics based only on RHBP images

may aid in determining the activation of the b-catenin pathway

effectively. The Hosmer-Lemeshow test of the training and

validation datasets showed that the predicted curve was aligned

with the ideal curve. Decision curve analysis in our study showed

that the therapy strategy based on the RHBP radiomics model was

clinically useful.

We developed a clinical model combining clinical baseline

factors and Gd-BOPTA-enhanced MRI features that

demonstrated poor performance for preoperative prediction of

the b-catenin mutation. Thus, it is difficult to distinguish the

status of b-catenin by the macroscopical MRI features. Some

scholars (30, 31, 35) have analyzed imaging findings, including a

high enhancement ratio on RHBP images, and a high apparent

diffusion coefficient on diffusion-weighted imaging may be

useful for identifying HCCs with the b-catenin mutation.

While, these semi-quantitative parameter features cannot

accurately assess the properties of the whole tumor. Radiomics

can provide quantitative analysis of tumors. In our study, all the

patients enrolled were showed hypointensity on RHBP images,

including patients with b-catenin mutation. However, the RHBP
TABLE 4 Predictive performance of the proposed models.

Different model Training dataset Validation dataset

AUC (95%CI) ACC SEN SPE AUC(95%CI) ACC SEN SPE

RAP 0.74 (0.62-0.84) 0.69 0.68 0.69 0.55 (0.35-0.73) 0.70 0.44 0.81

RPVP 0.82 (0.71-0.91) 0.71 0.95 0.61 0.56 (0.36-0.74) 0.46 0.33 0.52

RDP 0.79 (0.67-0.88) 0.69 0.79 0.65 0.68 (0.48-0.83) 0.36 0.44 0.33

RHBP 0.86 (0.75-0.93) 0.75 1 0.65 0.82 (0.63-0.93) 0.73 0.67 0.76

RAP+PVP 0.90 (0.80-0.96) 0.80 0.89 0.76 0.52 (0.48-0.73) 0.60 0.33 0.71

RAP+DP 0.86 (0.75-0.93) 0.69 0.95 0.59 0.59 (0.60-0.82) 0.40 0.66 0.28

RAP+HBP 0.87 (0.77-0.94) 0.76 0.89 0.71 0.75 (0.61-0.86) 0.63 0.67 0.62

RPVP+DP 0.47 (0.43-0.68) 0.75 0.84 0.71 0.55 (0.40-0.65) 0.60 0.33 0.71

RPVP+HBP 0.93 (0.84-0.97) 0.81 0.95 0.76 0.71 (0.52-0.84) 0.60 0.56 0.61

RDP+HBP 0.85 (0.75-0.92) 0.69 0.84 0.63 0.62 (0.56-0.79) 0.57 0.67 0.52

RAP+PVP+DP 0.87 (0.77-0.94) 0.82 0.89 0.79 0.55 (0.52-0.76) 0.70 0.44 0.81

RAP+PVP+HBP 0.94 (0.85-0.98) 0.81 0.89 0.78 0.62 (0.54-0.78) 0.60 0.44 0.67

RAP+DP+HBP 0.85 (0.74-0.92) 0.76 0.89 0.71 0.52 (0.47-0.72) 0.50 0.67 0.43

RPVP+DP+HBP 0.89 (0.79-0.95) 0.83 0.74 0.88 0.63 (0.57-0.81) 0.66 0.44 0.76

RAP+PVP+DP+HBP 0.90 (0.81-0.96) 0.85 0.79 0.88 0.60 (0.51-0.82) 0.63 0.33 0.76

CF 0.63 (0.50-0.74) 0.57 0.89 0.45 0.63 (0.54-0.80) 0.3 0.44 0.24

Combined 0.86 (0.75-0.93) 0.69 0.89 0.61 0.76 (0.57-0.89) 0.63 0.56 0.67
frontiersi
CF, clinical factor; AP, arterial phase; PVP, portal venous phase; DP, delay phase; HBP, hepatobiliary phase; AUC, area under the curve; 95%CI, 95% confidence index; ACC, accuracy; SEN,
sensitivity; SPE, specificity.
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radiomics model has achieved the best performance among all

15 types of radiomics models. We believe that more information

related to the existence of the b- catenin mutation has been

contained in the RHBP images. Moreover, compared with visual

and subjective imaging characteristics, radiomics can deeply

excavate the information and provide a better prediction of

the b-catenin mutation.

Many previous studies (31, 32) have demonstrated an

intense correlation between signal intensity on the HBP

images after liver-specific MR contrast administration and the
Frontiers in Oncology 09
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expression of membranous uptake transporter organic anion-

transporting polypeptide (OATP) 1B3. Additionally, the

expression of OATP1B3 is due to the activation of b-catenin
and/or hepatocyte nuclear factor 4a (36). Kitao et al. (30)

reported a positive correlation between the expression of b-
catenin and OATP1B3. Their results also showed that HCCs

with the b-catenin mutation showed significantly higher

enhancement ratios on HBP images than HCCs without.

Reizine et al.’s study (35) of hepatocellular adenoma reported

that liver-specific contrast uptake was strongly associated with
A

B

FIGURE 3

The comparison between RHBP radiomics model in predicting b-catenin mutation and the other models by means of Delong test in the training
(A) and validation (B) datasets.
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A B

FIGURE 4

ROC curves for b-catenin mutation prediction of the clinical model, RHBP radiomics model and combined model in the training (A) and
validation (B) dataset.
A B

C

FIGURE 5

Calibration curves of the RHBP radiomics model in predicting b-catenin mutation on the training (A) and validation (B) dataset, which
demonstrated good agreement with the ideal curve. Decision curve analysis for the RHBP radiomics model in the validation dataset (C).
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activation of the b-catenin pathway. These findings were

consistent with our results. Our results showed that the RHBP

radiomics model can achieve better performance than other

single-phase and combined-phase radiomics models in the test

datasets. By assigning a corresponding SHAP value to each

feature in the best RHBP radiomics model, we found that the

most important features were LGLZE and HGLZE with the same

SHAP value. LGLZE and HGLZE belong to GLSZM features,

which describe the darkness and brightness of a lesion. LGLZE

measures the distribution of lower gray-level zones, with a

higher value indicating a greater proportion of lower gray-level

values and size zones in the image, and HGLZE measures the

distribution of the higher gray-level values, with a higher value

indicating a greater proportion of higher gray-level values and

size zones in the image. A larger value of LGLZE indicates a

darker lesion on HBP images, which represents a low probability
Frontiers in Oncology 11
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of HCC with the b-catenin mutation. Similarly, a larger value of

HGLZE indicates a higher probability for the activation of the b-
catenin pathway.

The current study has several advantages. First, unlike

previous studies, we systematically evaluated and compared

different MRI phases and their combinations. Additionally, we

found an easy-to-use model that included only the proposed

RHBP radiomics signature to simplify prediction of the b-catenin
mutation. Finally, the similar performance in the training and

validation datasets made our RHBP radiomics model more

objective than others.

Our study also has limitations. First, since numerous potential

participants did not undergo immunohistochemical analysis or

preoperative liver-specific contrast-enhanced MRI, they were

excluded, which may have created a selection bias and limited

the validity of our results. Larger datasets should be used to
A

B

FIGURE 6

Summary plot (A) and bar plot (B) for the SHAP value of radiomics features on RHBP radiomics model. LGLZE, low gray level zone emphasis;
HGLZE, high gray level zone emphasis.
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validate the performance of our model in future studies. Second,

the diagnosis of b-catenin activation was based on

immunohistochemical analysis. The b-catenin mutation is

supposed to be confirmed by polymerase chain reaction, but

this was difficult to perform because of the retrospective nature

of this study. However, previous studies (15, 16, 30) have shown

that the expression of b-catenin and GS could represent the

activation of b-catenin. We believe that the data in our study

were sufficient to conclude that radiomics on HBP images was

useful in preoperative individual prediction of HCCs with the b-
catenin mutation. Our validation and training datasets were from

the same center. Data from multiple centers should be used to

assess the stability and generalizability of our findings.

In conclusion, the RHBP radiomics model showed an excellent

AUC with moderate sensitivity and specificity in both the training

and validation cohorts. It can be used as an effective model to

predicts HCCs with the b-catenin mutation preoperatively and

thus may assist in the selection of appropriate decision-making for

personalized medicine in patients with HCC.

Methodology
Fron
• retrospective

• diagnostic or prognostic study

• performed at one institution
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SUPPLEMENTARY FIGURE 1

Photomicrographs show pathologic findings of HCCs with b-catenin
mutation. (A) Hematoxylineosin staining (magnification, ×100) shows

HCC with polygonal cells and round nucleus. At immunohistochemical
analysis (magnification, ×200), tumor shows intense expression of, (B)
nuclear b-catenin, (C) cytoplasmic GS.

SUPPLEMENTARY FIGURE 2

Photomicrographs show pathologic findings of HCCs without b-catenin
mutation. (A) Hematoxylineosin staining (magnification, ×100) shows

HCC with polygonal cells and round nucleus. At immunohistochemical
analysis (magnification, ×200), tumor shows no definite expression of, (B)
nuclear b-catenin, (C) cytoplasmic GS.
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Radiomics-based nomogram
as predictive model for
prognosis of hepatocellular
carcinoma with portal
vein tumor thrombosis
receiving radiotherapy

Yu-Ming Huang1,2,3, Tsang-En Wang2,4,5, Ming-Jen Chen2,4,5,
Ching-Chung Lin2,4,5, Ching-Wei Chang2,4,5, Hung-Chi Tai3,6,
Shih-Ming Hsu3* and Yu-Jen Chen2,5,6,7,8*
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Taipei City, Taiwan, 2Department of Medicine, MacKay Medical College,
New Taipei City, Taiwan, 3Department of Biomedical Imaging and Radiological Sciences,
National Yang Ming Chiao Tung University, Taipei, Taiwan, 4Division of Gastroenterology,
Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, 5Department of
Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing,
and Management, New Taipei City, Taiwan, 6Department of Radiation Oncology, MacKay
Memorial Hospital, Taipei, Taiwan, 7Department of Medical Research, MacKay Memorial
Hospital, Taipei, Taiwan, 8Department of Medical Research, China Medical University Hospital,
Taichung, Taiwan
Background: This study aims to establish and validate a predictive model based

on radiomics features, clinical features, and radiation therapy (RT) dosimetric

parameters for overall survival (OS) in hepatocellular carcinoma (HCC) patients

treated with RT for portal vein tumor thrombosis (PVTT).

Methods: We retrospectively reviewed 131 patients. Patients were randomly

divided into the training (n = 105) and validation (n = 26) cohorts. The clinical

target volume was contoured on pre-RT computed tomography images and

48 textural features were extracted. The least absolute shrinkage and selection

operator regression was used to determine the radiomics score (rad-score). A

nomogram based on rad-score, clinical features, and dosimetric parameters

was developed using the results of multivariate regression analysis. The

predictive nomogram was evaluated using Harrell’s concordance index

(C-index), area under the curve (AUC), and calibration curve.

Results: Two radiomics features were extracted to calculate the rad-score for

the prediction of OS. The radiomics-based nomogram had better performance

than the clinical nomogram for the prediction of OS, with a C-index of 0.73

(95% CI, 0.67–0.79) and an AUC of 0.71 (95% CI, 0.62–0.79). The predictive

accuracy was assessed by a calibration curve.
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Conclusion: The radiomics-based predictive model significantly improved OS

prediction in HCC patients treated with RT for PVTT.
KEYWORDS

hepatocellular carcinoma, portal vein tumor thrombosis, radiation therapy, radiomics,
predictive model
Introduction

Hepatocellular carcinoma (HCC) is the sixth most common

cancer and the third leading cause of cancer death worldwide.

The prognosis of HCC is poor, with a 5-year survival rate of

5%–18% (1–4). Approximately 70% of newly diagnosed HCC

patients are not suitable for curative local treatment (5). The

major cause is macrovascular invasion, in which tumor cells

invade the portal vein, hepatic vein, or the inferior vena cava in

the liver (6). Portal vein tumor thrombosis (PVTT) is a common

complication of HCC and is related to poor prognosis and poor

response to local treatment. The incidence of PVTT in HCC

ranges from 44% to 62% (7). PVTT can interfere with the portal

blood supply in the normal liver and deteriorate liver function. It

may contribute to intrahepatic or extrahepatic metastasis (8).

This locally advanced and mostly unresectable disease is

associated with rapid cancer progression and deterioration of

liver function. Patients with PVTT have a median survival rate of

only 3 months without treatment (9). Current treatments for

HCC with PVTT include targeted therapy with sorafenib and

lenvatinib and locoregional treatments such as operation (OP),

radiation therapy (RT), transarterial chemoembolization

(TACE), and transarterial radioembolization (TARE) (10–13).

However, there is no consensus on the best forms of treatment

for HCC patients with PVTT. Several clinical studies have

reported that RT alone or combined with TACE is an effective

treatment for HCC with PVTT (14–17). The clinical target

volume (CTV) of RT for PVTT usually encompasses the area

of PVTT and/or visible tumor with a 5–10–mm margin to cover

the involved portal vein region (18). The advantages of RT for

HCC with PVTT are local tumor control, portal vein patency,

and survival benefit (19). No universal marker or method of

clinical utility that can predict the survival of HCC patients

treated with RT for PVTT is known. An effective predictive

model that may guide precision medicine for these patients with

generally poor survival is required.

HCC can be diagnosed on contrast-enhanced computed

tomography (CT) or magnetic resonance imaging (MRI) (20).

Therefore, HCC is frequently diagnosed on images alone,
02
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precluding the requirement for tissue proof. Currently, CT is

routinely used by physicians for diagnosis, staging, and RT

planning for HCC. Radiomics is an emerging and promising

methodology for medical image analysis that converts medical

images into high-dimensional quantitative features using

machine learning algorithms and statistical analysis software.

Thus, it may facilitate the detection of lesions (21, 22), improve

diagnostic accuracy (23–25), predict disease risk and prognosis

(26–32), evaluate the risk of treatment and treatment-related

toxicities (33–37), and guide treatment strategies (38, 39) in

different types of diseases, especially malignancies. Several

studies have been published on the use of radiomics in HCC

(40–43). Wang et al. analyzed the prognostic value of MRI

textural features in HCC in 201 patients who underwent OP

(44). Meng et al. integrated intratumoral and peritumoral CT

radiomics features and clinical features to develop and validate a

radiomics-based predictive nomogram to predict overall survival

(OS) in HCC patients undergoing TACE (45). Cozzi et al.

appraised the ability of a radiomics-based analysis to predict

local response and OS in HCC patients who were eligible for

curative or palliative RT (46). To the best of our knowledge,

relatively limited data and few studies focused on prognosis

estimation in HCC patients treated with RT for PVTT with

radiomics analysis are available. This study uses radiomics

features of CTV, which are derived from the pre-RT CT of

HCC patients with PVTT, in combination with clinical features

and RT dosimetric parameters to develop a predictive model for

HCC with PVTT.
Material and methods

Patients

We retrospectively reviewed HCC patients newly diagnosed

with PVTT between December 2007 and December 2019 in one

institution. A contrast-enhanced CT or MRI was performed for

diagnosis and staging. According to the 7th edition American

Joint Committee on Cancer/American Joint Committee on
frontiersin.org
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Cancer staging system, all patients were staged IIIB (patients

with a single tumor or multiple tumors of any size involving a

major branch of the portal vein or hepatic vein, Vp4 in Liver

Cancer Study Group of Japan classification). All patients had an

Eastern Cooperative Oncology Group (ECOG) performance

status of 0 to 2. In this study, patients were either inoperable

or not eligible for TACE or TARE. The primary treatments were

RT and/or targeted therapy. Patients with a history of OP, RT,

TACE, or TARE were excluded. A total of 131 patients were

enrolled and randomly divided into the training cohort (n = 105)

and validation cohort (n = 26), with a ratio of 4:1.
RT protocol

Patients underwent CT simulation in the supine position and

were immobilized with an alpha cradle. Planning CT images with a

slice thickness of 3 mm were acquired through the entire upper

abdomen. Contrast-enhanced CT was used to localize the PVTT

along with the primary tumor and to assess the enhancement

patterns of lesions. The gross tumor volume (GTV) was delineated

using the diagnostic and simulation images of the PVTT with or

without the primary liver tumor. The CTV was determined by

expanding the GTV margin by 5–10 mm to consider areas at

significant risk of microscopic disease. The planning target volume

(PTV) was generated by adding a 5–10–mmmargin to the CTV in

all directions for a setup error. RT was delivered using either three-

dimensional conformal radiotherapy or intensity-modulated

radiation therapy (IMRT) based on physician preference. The

treatment plans were designed using 6- or 10-MV photons. All

patients were treated with linear accelerators. Dosimetric

parameters such as the dose of the CTV and normal organs were

extracted from RT planning systems (Eclipse Treatment Planning

System; Varian Medical Systems Inc., Palo Alto, CA, USA). The

prescribed dose was 45, 50, or 60 Gy delivered in 1.8–2 Gy per

fraction (BED10: 53.1–72.0 Gy). The goals were to deliver the

prescribed dose to ≥95% of the PTV and 95% of the prescribed dose

to ≥99% of the PTV. The dosimetric parameters were recorded for

evaluation. After RT, abdominal CT or MRI was performed for

response assessment. Most patients underwent abdominal CT or

MRI 1 month after RT. The patency status of the portal vein area

was evaluated by experienced radiologists.
Acquisition of CT images

Contrast-enhanced CT was performed using Philips MRC

800 (Philips Medical Systems, Amsterdam, Netherlands) with a

peak tube voltage of 120 kVp, tube current of 325 mA, rotation

time of 0.75 s, matrix of 512 × 512, field of view of 50 cm, and

slice thickness of 3 mm for RT planning and radiomics analysis.
Frontiers in Oncology 03
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Texture analysis

The CTV, the region of interest (ROI), was contoured by

experienced radiation oncologists on all axial CT images.

Segmentation was performed using the Eclipse system.

Three-dimension ROI was visualized using Local Image

Features Extraction (LIFEx) version 5.10 (http://www.lifexsoft.

org; Orsay, France) (47). The LIFEx software was used to extract

the textural features of the ROI. A total of 48 textural features of

the images were extracted, including features of a histogram-

based matrix, gray-level co-occurrence matrix (GLCM), gray-

level run length matrix (GLRLM), neighborhood gray-level

dependence matrix (NGLDM), and gray-level zone length

matrix (GLZLM) (Figure 1).
Extraction of radiomics features

The study population was divided into the training and

validation cohorts in a ratio of 4:1 using the sample function of R

(version 3.6.1) software (https://www.r-project.org; Vienna,

Austria) to make randomization. The least absolute shrinkage

and selection operator (LASSO) Cox regression was performed

to determine the radiomics features that can predict OS in the

training cohort. We performed the 10-fold cross-validation 20

times. The final value of lambda (penalized parameter) was

determined with the minimized mean deviance and the

corresponding subset of covariates with non-zero coefficients.

Features were selected by the total times of non-zero coefficient

in 20 randomized 10-fold cross-validations. The Cox

proportional-hazard model was fitted with the selected

features, and the radiomics score (rad-score) predicting OS

could be calculated linearly.
Clinical feature extraction

The following 17 clinical features were selected: age, gender,

etiology of viral hepatitis, drinking history, ECOG performance

status, Child-Pugh class, tumor size, anemia status, serum levels

of alpha-fetoprotein (AFP), white blood cell, platelet, albumin,

alanine aminotransferase, aspartate aminotransferase (AST),

total bilirubin, creatinine, and prothrombin time.
RT dosimetric parameters

The prescribed RT doses, RT fields as involved PVTT with

or without primary liver tumors, CTV, normal liver volume

(NLV), and mean liver doses (MLDs) of all patients were

recorded (Figure 2).
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FIGURE 2

Radiation therapy plan for a patient. The prescribed dose to treat portal vein tumor thrombosis only is 50 Gy. The clinical target volume as the
region of interest is contoured in red, and the volume is 280.7 cm3. The normal liver volume is 1,769.0 cm3, and the mean liver dose is 2,189.4 cGy.
FIGURE 1

Study workflow. The region of interest (ROI) was segmented on all transverse contrast-enhanced computed tomography images by
experienced radiation oncologists using the Eclipse system. After a three-dimensional reconstruction of the ROI, 48 textural features, including
conventional features, histogram features, gray-level co-occurrence matrix, gray-level run-length matrix, neighborhood gray-level dependence
matrix, and gray-level zone length matrix, were extracted. The extracted features were selected by least absolute shrinkage and selection
operator regression. Based on the selected radiomics features, clinical features, and radiation therapy dosimetric parameters, a nomogram
model was established to predict overall survival. The performance of the predictive model was evaluated with concordance index, area under
the curve of the receiver operating characteristic curve, and calibration curve.
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Statistical analysis

Statistical analysis was performed using R (version 3.6.1) and

SPSS version 24.0 (IBM Corporation, Armonk, NY, USA).

Numerical data are presented as mean ± standard deviation.

LASSO regression analysis was performed using the “glmnet”

package to select the radiomics features for rad-score to predict

OS. The optimal cutoff value of the rad-score was determined

using X-tile software (Yale University, New Haven, CT, USA).

The survival curves were plotted using the Kaplan–Meier method

and assessed using the log-rank test. The Chi-square test was used

to assess categorical variables, and the Mann–Whitney U test was

used to assess continuous variables. Univariate Cox regression

analysis was performed to determine the predictors of OS from

rad-score, clinical features, and RT dosimetric parameters.

Thereafter, multivariate Cox regression analysis was used to

select prognostic factors for the establishment of predictive

nomogram models. The “survival” and “rms” packages were

used for survival analysis, nomogram model construction,

Harrell’s concordance index (C-index) calculation, and

calibration curve. The C-index was a measure of goodness-of-fit

for outcomes in a regression model, ranging from 0.5 to 1. A

C-index value of 0.5 indicated that the predictive ability of the

model was no better than a random chance, whereas C-index

values of >0.7 and >0.8 indicated that the model was good and

strong, respectively. A value of 1 implied that the model perfectly

predicted the outcome. The “survivalROC” package was used for

calculation and comparison of the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve for evaluation of

the nomogram. The AUC ranged from 0.5 to 1. The

discrimination potent of the model based on the value of AUC

was as follows: 0.5, no discrimination potent; 0.7–0.8, acceptable;

0.8–0.9, excellent; and >0.9, outstanding. Differences were

considered significant at p < 0.05.
Establishment of predictive models

Based on the results of multivariate Cox regression analysis,

the nomogram models with significant clinical features, RT

dosimetric parameters, and/or rad-score were constructed to

predict OS in HCC patients treated with RT for PVTT. The

confirmation of nomograms was subjected to a 1,000 resampling

bootstrap analysis for validation. The predictive models were

evaluated with C-indexes, AUC of ROC curves, and calibration

curves (Figure 1).
Ethical statement

This study was approved by the Institutional Review Board

of our institution (IRB number: 20MMHIS215e).
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Results

Patient characteristics

A summary of the baseline characteristics of the 131 patients

is presented in Table 1. The median age at diagnosis was 61 years

(range: 36–87 years), and 108 (82.4%) of the patients were men.

A total of 110 (84.0%) patients had hepatitis B/C virus infection,

and 93 (71.0%) patients had a drinking history. In this study, 83,

44, and 4 patients had Child–Pugh classes A, B, and C,

respectively. The pre-RT tumor size was 9.5 ± 5.2 cm. Before

RT, 59 (45.0%) patients had anemia, and the median serum AFP
TABLE 1 Baseline characteristics of all patients.

Characteristics N = 131

Age (median (range), year) 61 (36–87)

Gender (N (%))

Male 108 (82.4)

Female 23 (17.6)

Hepatitis (B/C) (N (%))

Yes 110 (84.0)

No 21 (16.0)

Drinking history (N (%))

Yes 93 (71.0)

No 38 (29.0)

ECOG (N (%))

0 36 (27.5)

1 71 (54.2)

2 24 (18.3)

Child–Pugh class (N (%))

A 83 (63.4)

B 44 (33.6)

C 4 (3.0)

Tumor size (mean (SD), cm) 9.5 (5.2)

Anemia (N (%))

Yes 59 (45.0)

No 72 (55.0)

AFP (median (range), ng/ml) 149.3 (1.2–515,800.0)

WBC (mean (SD), 103/µl) 6.3 (2.5)

PLT (mean (SD), 103/µl) 172.3 (105.5)

ALB (mean (SD), g/dl) 3.5 (0.6)

ALT (mean (SD), IU/L) 53.2 (42.1)

AST (mean (SD), IU/L) 86.0 (80.8)

TBIL (mean (SD), mg/dl) 1.5 (0.9)

Cr (mean (SD), mg/dl) 0.9 (0.3)

PT (mean (SD), s) 11.8 (1.0)
ECOG, Eastern Cooperative Oncology Group; SD, standard deviation; AFP,
alpha-fetoprotein; WBC, white blood cell; PLT, platelet; ALB, albumin; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; Cr, creatinine;
PT, prothrombin time.
The performance status was graded with the ECOG score, in which grade 0 indicated fully
active, grade 1 indicated able to perform light work, and grade 2 indicated capable of all
self-care but unable to perform any work activities.
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level was 149.3 ng/ml (range: 1.2–515,800.0 ng/ml). The baseline

characteristics of the training and validation cohorts are

summarized in Table 2. No significant differences were found

in the baseline characteristics of the two cohorts.
RT dosimetric parameters

The RT dosimetric parameters for 131 patients are presented

in Table 3. A total of 25, 101, and 5 patients were treated with an

RT dose of 45, 50, and 60 Gy, respectively. The RT field in 88

(67.2%) patients involved PVTT only and that in 43 (32.8%)

patients involved PVTT and primary liver tumors. The median
Frontiers in Oncology 06
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CTV was 164.6 cm3 (range: 19.5–2,189.0 cm3). The NLV was

1,140.7 ± 480.8 cm3, and the MLD was 1891.3 ± 651.5 cGy. The

RT dosimetric parameters for the training and validation cohorts

are summarized in Table 4. No significant differences were found

between the two cohorts for RT dosimetric parameters.
Treatment outcome

The treatment outcomes of the patients are presented in

Table 5. The median follow-up time was 9.8 months (range,

1.6–57.9 months), and 101 (77.1%) patients underwent

abdominal CT or MRI images for response assessment. Three
TABLE 2 Baseline characteristics of the training and validation cohorts.

Characteristics Training cohort (N = 105) Validation cohort (N = 26) p

Age (median (range), year) 61 (36–87) 62 (45–84) 0.36

Gender (N (%))

Male 88 (83.8) 20 (76.9) 0.41

Female 17 (16.2) 6 (23.1)

Etiology of viral hepatitis (N (%))

Hepatitis B 64 (60.9) 12 (46.2) 0.11

Hepatitis C 23 (21.9) 4 (15.4)

Hepatitis B + C 5 (4.8) 2 (7.7)

None 13 (12.4) 8 (30.7)

Drinking history (N (%))

Yes 76 (72.4) 17 (65.4) 0.48

No 29 (27.6) 9 (34.6)

ECOG (N (%))

0 28 (26.7) 8 (30.7) 0.92

1 59 (56.2) 12 (46.2)

2 18 (17.1) 6 (23.1)

Child–Pugh class (N (%))

A 68 (64.8) 15 (57.7) 0.79

B 34 (32.4) 10 (38.5)

C 3 (2.8) 1 (3.8)

Tumor size (mean (SD), cm) 9.5 (5.1) 9.4 (5.2) 0.93

Anemia (N (%))

Yes 46 (43.8) 13 (50.0) 0.57

No 59 (56.2) 13 (50.0)

AFP (median (range), ng/ml) 149.3 (1.2–515,800.0) 136.9 (2.0–121,480.0) 0.59

WBC (mean (SD), 103/µl) 6.3 (2.4) 6.2 (2.7) 0.84

PLT (mean (SD), 103/µl) 177.4 (108.7) 151.5 (89.9) 0.28

ALB (mean (SD), g/dl) 3.5 (0.6) 3.6 (0.6) 0.29

ALT (mean (SD), IU/L) 54.0 (43.9) 50.0 (33.8) 0.51

AST (mean (SD), IU/L) 87.1 (81.2) 81.5 (63.7) 0.64

TBIL (mean (SD), mg/dl) 1.5 (0.9) 1.5 (0.9) 0.85

Cr (mean (SD), mg/dl) 0.9 (0.3) 0.9 (0.2) 0.83

PT (mean (SD), s) 11.7 (1.0) 12.1 (1.2) 0.15
frontiersin
ECOG, Eastern Cooperative Oncology Group; SD, standard deviation; AFP, alpha-fetoprotein; WBC, white blood cell; PLT, platelet; ALB, albumin; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; TBIL, total bilirubin; Cr, creatinine; PT, prothrombin time.
The performance status was graded with the ECOG score. A two-sided p-value of < 0.05 was considered statistically significant.
.org

https://doi.org/10.3389/fonc.2022.906498
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2022.906498
(2.3%) patients were alive at the time of the current analysis.

Sixteen (15.8%) patients had patent portal veins after RT. The

median OS was 9.8 months (95% CI, 8.0–11.6 months), and the

median progression-free survival (PFS) was 5.6 months (95% CI,

4.8–6.4 months). Distant metastases were found in 22 (16.8%)

patients. The treatment outcomes of the training and validation

cohorts are summarized in Table 6. No significant differences in

treatment outcomes were found between the two cohorts.
Radiomics feature extraction and
development of the rad-score

A total of 48 radiomics features were extracted from the

imaging data of all patients. Two features were selected by

LASSO Cox regression analysis to predict the OS in the training
Frontiers in Oncology 07
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cohort (Figure 3). The rad-score formula was GLRLM_HGRE

× −2.973897e−05 + GLRLM_SRHGE × −2.504878e−05.
Rad-score and correlation with OS

The optimal cutoff value of the rad-score, as determined by

X-tile software, was −0.6. The patients were divided into the

high- (≧−0.6) and low-risk (<−0.6) groups based on the cutoff

value of the rad-score. The median OS rates in the high- and

low-risk groups were 7.4 months (95% CI, 6.5–10.7) and 12.4

months (95% CI, 10.0–16.8), respectively (p = 0.007).

Considering the training cohort, the median OS rates in the

high- and low-risk groups were 7.5 months (95% CI, 6.5–11.2)

and 11.8 months (95% CI, 9.6–16.8), respectively (p = 0.038). In

the validation cohort, the median OS rates in the high- and low-

risk groups were 6.8 months (95% CI, 4.3–NA) and 12.6 months
(95% CI, 10.7–NA), respectively (p = 0.033). The median OS

rates were significantly lower in the high-risk groups than in the

low-risk groups in both the training and validation

cohorts (Figure 4).
Extraction of significant features

Univariate and multivariate Cox regression analyses were

performed to determine the predictors of OS from rad-score,

clinical features, and RT dosimetric parameters. Univariate

analysis revealed seven predictors, namely gender, Child–Pugh

class, anemia status, rad-score, MLD, tumor size, and AST, for

OS prediction. Gender, Child–Pugh class, anemia status, rad-

score, and MLD were found to be independent predictors in

multivariate analysis (Table 7).
TABLE 3 RT dosimetric parameters of all patients.

Parameters N = 131

RT dose (N (%))

45 Gy 25 (19.1)

50 Gy 101 (77.1)

60 Gy 5 (3.8)

RT field (N (%))

Involved PVTT 88 (67.2)

Involved PVTT + liver tumors 43 (32.8)

CTV (median (range), cm3) 164.6 (19.5–2,189.0)

NLV (mean (SD), cm3) 1,140.7 (480.8)

MLD (mean (SD), cGy) 1,891.3 (651.5)
RT, radiation therapy; PVTT, portal vein tumor thrombosis; CTV, clinical target volume;
NLV, normal liver volume; SD, standard deviation; MLD, mean liver dose.
TABLE 4 RT dosimetric parameters of the training and validation cohorts.

Parameters Training cohort (N = 105) Validation cohort (N = 26) p

RT dose (N (%))

45 Gy 21 (20.0) 4 (15.4) 0.87

50 Gy 80 (76.2) 21 (80.8)

60 Gy 4 (3.8) 1 (3.8)

RT field (N (%))

Involved PVTT 72 (68.6) 16 (61.5) 0.49

PVTT + liver tumors 33 (31.4) 10 (38.5)

CTV (median (range), cm3) 175.6 (27.3–2,189.0) 154.2 (19.5–1,958.0) 0.63

NLV (mean (SD), cm3) 1137.4 (498.2) 1,154.0 (411.2) 0.88

MLD (mean (SD), cGy) 1,895.5 (661.5) 1,874.5 (621.5) 0.88
frontiersin
RT, radiation therapy; PVTT, portal vein tumor thrombosis; CTV, clinical target volume; NLV, normal liver volume; SD, standard deviation; MLD, mean liver dose.
A two-sided p-value of < 0.05 was considered statistically significant.
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Establishment of the predictive model

Based on the result of multivariate Cox regression analysis, a

radiomics-based nomogram with significant clinical features, RT

dosimetric parameters, and rad-score was developed to predict OS.
Frontiers in Oncology 08
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A clinical nomogram with selected clinical features and RT

dosimetric parameters was developed for OS prediction (Figure 5).
Performances of different predictive
nomograms and significant features

C-indexes were used to evaluate the discrimination power of

significant features, clinical nomogram, and radiomics-based

nomogram. The C-index profiles are presented in Table 8. In

this study, the radiomics-based nomogram showed the best

discrimination power, which was examined by internal

validation. ROC analyses for 9-month survival, the AUCs for
the radiomics-based nomogram and clinical nomogram were 0.71

(95% CI, 0.63–0.79) and 0.61 (95% CI, 0.51–0.71), respectively

(Figure 6). The calibration curves of the radiomics-based

nomogram and clinical nomogram are presented in Figure 7.

The radiomics-based nomogram exhibited better predictive
TABLE 5 Treatment outcomes of all patients.

Outcomes N = 131

Patency (N (%))

Yes 16 (15.8)

No 85 (84.2)

OS (median (95% CI), m) 9.8 (8.0–11.6)

PFS (median (95% CI), m) 5.6 (4.8–6.4)

DM (N (%))

Yes 22 (16.8)

No 109 (83.2)
OS, overall survival; CI, confidence interval; PFS, progression-free survival; DM, distant
metastasis.
TABLE 6 Treatment outcomes of the training and validation cohorts.

Outcomes Training cohort (N = 105) Validation cohort (N = 26) p

Patency (N (%))

Yes 13 (15.5) 3 (17.6) 0.82

No 71 (84.5) 14 (82.4)

OS (median (95% CI), m) 9.8 (7.9–11.7) 10.1 (6.7–13.7) 0.87

PFS (median (95% CI), m) 5.2 (4.4–6.1) 5.9 (4.1–7.7) 0.47

DM (N (%))

Yes 19 (18.1) 3 (11.5) 0.64

No 86 (81.9) 23 (88.5)
frontiersin
OS, overall survival; CI, confidence interval; PFS, progression-free survival; DM, distant metastasis.
A two-sided p-value of <0.05 was considered statistically significant.
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FIGURE 3

Least absolute shrinkage and selection operator (LASSO) regression analysis for the selection of significant radiomics features from the 48
textural features. (A) Coefficient profile of the LASSO model. (B) Optimal tuning parameter (lambda) selection using 10-fold cross-validation with
minimum criteria. Two significant radiomics features were extracted.
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FIGURE 4

Survival curves of the high- and low-risk groups based on the radiomics score (rad-score) classification. The rad-scores in the high- and low-
risk groups were more than −0.6 and less than −0.6, respectively. (A) Considering all patients, the median overall survival (OS) rates in the high-
and low-risk groups were 7.4 months (95% CI, 6.5–10.7) and 12.4 months (95% CI, 10.0–16.8), respectively (p = 0.007). (B) Considering the
training cohort, the median OS rates in the high- and low-risk groups were 7.5 months (95% CI, 6.5–11.2) and 11.8 months (95% CI, 9.6–16.8),
respectively (p = 0.038). (C) Considering the validation cohort, the median OS rates in the high- and low-risk groups were 6.8 months (95% CI,
4.3–NA) and 12.6 months (95% CI, 10.7–NA), respectively (p = 0.033).
TABLE 7 Univariate and multivariate analyses for predictors of OS.

Predictors Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Gender

Male 1 1

Female 1.704 1.062–2.735 0.025 1.886 1.013–3.512 0.045

Child–Pugh class

A 1 1

B and C 1.515 1.042–2.201 0.028 1.672 1.053–2.655 0.029

Anemia

No 1 1

Yes 1.617 1.123–2.328 0.009 1.690 1.043–2.739 0.033

Rad-score

<−0.6 1 1

≧−0.6 1.635 1.137–2.351 0.008 1.540 1.007–2.355 0.047

MLD (cGy) 1.000 1.000–1.001 0.050 1.001 1.000–1.001 0.002

Tumor size (cm) 1.054 1.016–1.093 0.005 1.040 0.990–1.092 0.119

AST (U/L) 1.003 1.001–1.004 0.001 1.002 0.998–1.006 0.292
Frontiers in Oncology
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OS, overall survival; HR, hazard ratio; CI, confidence interval; rad-score, radiomics score; MLD, mean liver dose; AST, aspartate aminotransferase.
A two-sided p-value of <0.05 was considered statistically significant.
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accuracy than the clinical nomogram for the prediction of 9-

month survival.
Discussion

In this study, we intended to develop a radiomics-based

nomogram using pre-RT CT data. Univariate and multivariate

analyses revealed that the rad-score significantly influenced OS.

The performance of the radiomics-based nomogram was better

than the clinical nomogram, and the predictive accuracy of each

significant feature in the C-index and ROC analysis was

examined by the calibration curve.

This study was conducted in the Department of Radiation

Oncology in a medical center. All HCC patients were treated
Frontiers in Oncology 10
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with the same RT protocol to ensure the standardization of the

treatment and CT quality. CT was performed according to the

American Association of Physicists in Medicine (AAPM) and

American College of Radiology (ACR) guidelines (AAPM report

#74 and #96 and ACR CT QC manual) and standard quality

assurance measures.

Few studies have reported the application of radiomics and

clinical features to predict treatment outcomes and prognosis in

different types of cancers treated with RT. Hou et al. established

an integrated model that combined posttreatment CT radiomics

features and clinical features for response and OS prediction in

esophageal cancer patients undergoing neoadjuvant

chemoradiotherapy (48). Wu et al. developed a nomogram

using radiomics and clinical features to predict OS in HCC

patients treated with stereotactic body radiotherapy (SBRT) for
B

C D

A

FIGURE 5

Nomograms for the prediction of overall survival. Nomograms with radiomics score, significant clinical features, and radiation therapy (RT)
dosimetric parameters for the prediction of (A) median survival time and (B) 6-, 9-, and 12-month survival rates. Nomograms with selected
clinical features and RT dosimetric parameters for the prediction of (C) median survival time and (D) 6-, 9-, and 12-month survival rates.
TABLE 8 C-indexes of significant features, clinical nomogram, and radiomics-based nomogram.

Variables Training cohort Validation cohort All patients

C-index 95% CI C-index 95% CI C-index 95% CI

Gender 0.54 0.50–0.58 0.53 0.41–0.65 0.54 0.50–0.58

Child–Pugh class 0.54 0.48–0.60 0.65 0.54–0.76 0.56 0.51–0.61

Anemia 0.56 0.50–0.62 0.58 0.46–0.70 0.56 0.51–0.61

MLD 0.51 0.44–0.58 0.59 0.46–0.72 0.53 0.47–0.59

Rad-score 0.57 0.52–0.62 0.64 0.53–0.75 0.58 0.53–0.63

Clinical nomogram 0.60 0.53–0.67 0.72 0.58–0.86 0.61 0.55–0.67

Radiomics-based nomogram 0.72 0.65–0.79 0.82 0.69–0.95 0.73 0.67–0.79
front
C-index, concordance index; CI, confidence interval; MLD, mean liver dose; rad-score, radiomics score.
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PVTT (49). Parr et al. indicated that a radiomics-based

predictive model combined with clinical features is better than

an analysis of clinical features alone for predicting OS in

pancreatic cancer patients treated with SBRT (50). Thus,

radiomics combined with clinical features may have a better

performance than analysis with clinical features alone for

treatment response and OS prediction.

This study has several limitations. First, MRI is the preferred

imaging modality for the evaluation of liver lesions. The technique

of MRI-guided RT with MRI simulation and planning is rapidly

developing (51). However, contrast-enhanced CT is still the main

imaging methodology for diagnosis, staging, and RT planning for

HCC, with acceptable sensitivity and high specificity. It is

noninvasive, well-developed in current clinical practice, and not

time-consuming or labor-consuming. Second, sorafenib has been

used as the standard systemic treatment of advanced HCC during

the investigation period of our study population. Currently,

different agents such as lenvatinib, checkpoint inhibitors, and

antivascular endothelial growth factor receptor antibodies have

demonstrated efficacy in the treatment of advanced HCC. The
Frontiers in Oncology 11
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effects of different systemic treatments should be examined in the

future. Third, this study included 30 patients without CT or MRI

follow-up data. Fourth, the small number of patients from a single

institute could not draw a firm conclusion for application in other

hospitals. In this retrospective review study, the standardization of

CT simulation protocol, RT dose to PTV, and follow-up schedule

lasted for 12 years, which might provide an informative database for

analyzing radiomics and clinical outcomes. The current results may

provide proof-of-concept information and practical procedures for

other hospitals trying to apply radiomics in each institute. A

prospective large-scale and multicenter study is required. Finally,

the data in this study are derived from one hospital. Although

internal validation was conducted for verification, further

multicenter analysis is required for external validation.
Conclusion

Radiomics features combined with clinical features and

dosimetric parameters have better performance than each
BA

FIGURE 6

Receiver operating characteristic curves of different predictive nomograms for 9-month survival. (A) The area under the curve (AUC) was 0.71
(95% CI, 0.62–0.79) in the radiomics-based nomogram. (B) The AUC was 0.61 (95% CI, 0.51–0.71) in the clinical nomogram.
BA

FIGURE 7

Calibration curves of (A) the radiomics-based nomogram and (B) clinical nomogram for the prediction of 9-month survival.
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significant feature and clinical nomogram. This study

recommends the development of a predictive model with

significant clinical features, radiomics features, and dosimetric

parameters. The multicenter analysis is warranted after the

standardization of treatment protocol, radiology imaging, and

radiomics data in all hospitals for external validation to ensure

the accuracy of the universal predictive model.
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Purpose: To investigate the diagnostic performance of feature selection via a

multi-task learning model in distinguishing primary glioblastoma from solitary

brain metastases.

Method: The study involved 187 patients diagnosed at Xiangya Hospital,

Yunnan Provincial Cancer Hospital, and Southern Cancer Hospital between

January 2010 and December 2018. Radiomic features were extracted from

conventional magnetic resonance imaging including T1-weighted, T2-

weighted, and contrast-enhanced T1-weighted sequences. We proposed a

new multi-task learning model using these three sequences as three tasks.

Multi-series fusion was performed to complement the information from

different dimensions in order to enhance model robustness. Logical loss was

used in the model as the data-fitting item, and the feature weights were

expressed in the logical loss space as the sum of shared weights and private

weights to select the common features of each task and the characteristics

having an essential impact on a single task. A diagnostic model was constructed

as a feature selection method as well as a classification method. We calculated

accuracy, recall, precision, and area under the curve (AUC) and compared

the performance of our new multi-task model with traditional diagnostic

model performance.

Results: A diagnostic model combining the support vector machine algorithm

as a classification algorithm and our model as a feature selection method had

an average AUC of 0.993 in the training set, with AUC, accuracy, precision, and

recall rates respectively of 0.992, 0.920, 0.969, and 0.871 in the test set. The

diagnostic model built on our multi-task model alone, in the training set, had an

average AUC of 0.987, and in the test set, the AUC, accuracy, precision, and

recall rates were 0.984, 0.895, 0.954, and 0.838.
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Conclusion: It is feasible to implement the multi-task learning model

developed in our study using logistic regression to differentiate between

glioblastoma and solitary brain metastases.
KEYWORDS

solitary brain metastases, glioblastoma, multi-task learning, feature selection,
classification, logistic regression
1 Introduction

Brain tumors, also known as intracranial tumors, are a

growth or mass of abnormal cells or tissue in the brain (1).

Brain tumors are generally subdivided into two main types:

primary or secondary (metastatic) (2). Glioblastoma (GBM) is a

typical malignant primary brain tumor that affects an average of

3 out of 100,000 people (3). Solitary brain metastases (SBM) are

secondary malignant brain tumors, which are more common

than GBM. The incidence rate of SBM is approximately 7 to 14

per 100,000 people (3, 4). As the standard treatment course for

GBM is aggressive trimodality therapy compared to surgery or

radiosurgery for SBM, it is of great clinical importance to

accurately and rapidly distinguish between these two types of

brain malignancies as rapidly as possible. As the main diagnostic

tool for brain tumors (5), magnetic resonance imaging (MRI)

methods create clear and detailed three-dimensional images of

brain and tumor anatomy. However, for patients with SBM and

GBM, their MR images both show ring enhancement, intra-

tumor necrosis, and per femoral T2 high signal (6, 7), which

poses a challenge for the accurate differentiation between GBM

and SBM.

Radiomics (8–12), the application of advanced image feature

analysis algorithms, can be used to capture intra-tumoral

heterogeneity in a non-invasive manner. Numerous studies

have applied radiomics to tumor classification. Austin et al.

used a filtered histogram texture analysis-based imaging historic

approach to identify high-grade and low-grade gliomas (13),

where the AUC on the test set reached 0.90. However, the data of

their study were highly unbalance in the number of high-grade

and low-grade gliomas. Among the three feature selection

methods, packing, filtering, and embedding, the embedding

method can obtain a higher computational efficiency and

classification performance than the filtering (14, 15) and

packing (16) methods (17). Therefore, the embedding method

has received increasing attention recently. Qian et al. used the

feature selection method of least absolute shrinkage and

selection operator (Lasso) combined with a support vector

machine(SVM) classifier, to obtain an AUC of 0.90 in their

test set (18). Cho et al. used a machine learning approach to

classify gliomas based on radiomics (19), which ultimately
02
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selected five significant features with an average AUC of 0.903

on their test set. Artzi et al. found that the SVM approach had

the best results for classifying between GBM and SBM subtypes

(20), with an AUC of 0.96.

Liu et al. combined handcrafted radiomics and deep

learning-based radiomics and used a random forest algorithm

for feature selection and classification (21), the AUC reached

0.97 for single contrast-enhanced T1-weighted(T1C) MRI

sequence. Because tumor sites behave differently under

different sequences of MRI, patients usually have multiple

series of imaging data acquired to accurately determine the

tumor location, size, and additional information during the

treatment. Different sequences provide different information,

and multiple sequence fusion can complement information from

different dimensions, thus enhancing the robustness of a model.

As such, we introduced a multi-task learning model (22, 23) to

fuse T1, T1C, and T2 sequence information to develop a robust

prediction model to aid in clinical diagnosis.

Nowadays, most studies on multi-task-based feature

selection focus on different canonical terms. The features are

selected by constraints of different paradigms, such as the

commonly used ℓ1,1 (24), ℓ2,1 (25) paradigms, etc. (17, 26). In

the present report, we have improved the data-fitting term in the

multi-task learning model so that the model can be used not only

for feature selection but also for classification functions to

ultimately achieve a higher accuracy than traditional

diagnostic models.

The present work proposes a new feature selection and

classification model based on the multi-task learning model,

which treats the 1106 features extracted from each sample in

each sequence (T1, T2, T1C) as a task. It uses the logical loss

function as a data-fitting term to ensure the feasibility of

classifying GBM and SBM. Taking ℓ1,1, ℓ1 as regular terms to

ensure the sparseness of feature selection. At the same time,

private weights are introduced based on a common weight to

make full use of the relevant similarities and differences

between each task. The result is a 3-task feature selection

classification model. In this study, we mainly utilized the

alternating iterative method and the fast-iterative shrinkage

threshold algorithm based on the backtracking method to

solve equations. The experimental results demonstrate that
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our model, whether as a feature selection model combined

with SVM classification methods to form a diagnostic model

or as a standalone diagnostic model, successfully integrated

multiple sequence information to provide a robust predictive

model for clinical diagnosis while also the diagnostic model

consisting of one model improves the efficiency of our

tumor classification.
2 Materials and methods

2.1 Data acquisition

The data used in this study were obtained from 120 patients

with SBM and 67 patients with GBM admitted to the Xiangya

Hospital, Yunnan Cancer Hospital and Southern Cancer

Hospital between January 1, 2010 and December 31, 2018. All

patients were histologically diagnosed according to the tumor

grading guidelines published by the World Health Organization

in 2021. This retrospective analysis of data from MR images was

approved by the institutional review board, and the requirement

of informed consent was waived.

MRI on all patients was performed by the hospital radiology

department using 3.0-T systems. Each patient had T1, T2, and

T1C MR image series performed. High-quality MR images were

obtained using the following protocols:
Fron
• Axial T1: layer thickness =5 mm, layer spacing =1.5 mm,

matrix =320×256, and field of view (FOV)=24×24 cm.

• Axial T2: layer thickness =5 mm, layer spacing =1.5 mm,

matrix =384×384, and FOV =24×24 cm.

• Axial T1C: layer thickness =5 mm, layer spacing =1.5

mm, matrix =320×256, and FOV =24×24 cm.
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MR image data of the patient for the present study can be

found in the reference (21).
2.2 Data preprocessing

The overall workflow of the current study is shown in

Figure 1 with a description of each involved step.

2.2.1 Delineation of the region of interest (ROI)
We preprocessed each image by noise reduction, offset field

correction, and strict intra-target alignment using the public

software package FSL v6.0.4. All images were evaluated

independently by two neuroradiologists who have between 5-

10 years of experience. ROIs of the entire tumor on T1, T2, and

T1C images were created manually using the ITK-SNAP

software layer by layer around the enhanced tumor layer (27);

areas of macroscopic necrosis, cystic degeneration, and edema

were avoided. A third senior neuroradiologist with 15 years of

experience reexamined the images and made a final diagnosis

when there was a conflict between the two original

neuroradiologists (21).

2.2.2 Data normalization
Differences in instrumentation and imaging parameters,

tumor sites of patients, and other factors can lead to

significant differences in MR images. These differences will

result in significant issues for imaging histology analysis.

Therefore, we performed MIL(modality mismatch, intensity

distribution variance, and layer-spacing differences)

normalization for all MR images (28). First, we used B-sample

interpolation for body mode matching for all patient MR images

to obtain a total of 120 SBM samples and 67 GBM samples,
FIGURE 1

A generic framework for creating classification models using radiological features. Steps include ROI(region of interest) delineation, feature
extraction, feature selection, and modeling.
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Second, we set the interlayer gap of all MR images to 1 mm.

Third, we applied MIL data normalization to make the intensity

of MR image distribution consistent.

2.2.3 Feature extraction
We used the platform PyRadiomics (http://www.radiomics.

io/pyradiomics.html) to perform feature extraction on all MIL

normalized data. 1106 features were extracted from each MRI

series. With each patient undergoing three different sequences of

MRI, we extracted a total of 3318 features per patient. The

extracted features are shown in Table 1.

To account for the large difference in the number of samples

between the two tumor groups, we used the Synthetic Minority

Over-sampling Technique (SMOTE) (29) to oversample the

GBM group in order to generate the same number of samples

as the SBM group. In total, we obtained 120 SBM samples and

120 GBM samples. Finally, we randomly selected 24 SBM

samples and 24 GBM samples as the test set, and the

remaining 96 SBM samples and 96 GBM samples as the

training set.
2.3 Feature selection and classification

2.3.1 Proposed model
We introduce the logical loss function into the multi-task

learning model to obtain the data fitting term as

L(X, y,W) = o
M

m=1
o
N

j=1
( − ymi X

m
i w

m + ln  (1 + exp  (Xm
i w

m)) (1)

where the number of samples for each task is N and ymj ∈
f+1, −1g denotes the class of samples. When y = −1, the patient

has GBM.y = +1 means the patient has SBM.

To obtain the characteristics unique to a single task, we

introduced a personal value of b based on the expected weight of

s and finally derived our new model
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min
s,B

 o
M

m=1
o
N

i=1

1
N

−yiX
m
i s + bmð Þ + ln   1 + exp   Xm

i s + bmð Þð Þð Þð Þ

+ ls ║ s║1 +lb ║B║1,1

(2)

Where yi is the label of the i
th sample. M is the number of

tasks where M=3 as described in the text. We assume that the

number of samples for all tasks is N.Xm
i ∈ R1�(d+1) is the ith

sample of the  mth task, i.e., the ith row of the matrix Xm.

Depending on the nature of logistic regression, we populate the

last column of Xm with an N-dimensional 1 vector. B =

½b1, b2,⋯, bM� ∈ R(d+1)�M , then bmis the mth column of matrix

B,jjsjj 1 = od+1

i=1
jsij and jjBjj 1,1 = o(d+1)

i oM

m
jbmi j are the

regularization terms where s and bmare are the shared and

private weights, respectively.ls; lb are the two regularization

parameters, and let ls < Mlb.

2.3.2 Model solving
We rewrote (2) in the following form

min
s,B o

M

m=1
o
N

i=1

1
N
( − yiX

m
i (s + bm) + ln  (1 + exp  (Xm

i (s + bm))))

+ lso
p+1

i
sij j + lbo

d+1

i
o
M

m
bmij j (3)

We considered the matrix B as a constant matrix, with a

minimization of the variable s

min
s
 o

M

m=1
o
N

i=1

1
N
( − yiX

m
i (s + bm) + ln  (1 + exp  (Xm

i (s

+ bm)))) + lso
p+1

i
sij j (4)

Similarly, fixing the vector s and considering it as a constant

vector, then minimizing B is equivalent to minimizing the

following problem for any m

min
bm

 o
N

i=1

1
N
( − yiX

m
i (s + bm) + ln  (1 + exp  (Xm

i (s + bm))))

+ lbo
d+1

i
bmij j (5)

It is further shown that the computation of bm is only

relevant for a single task.

To select the final feature, equation (4) and (5) must be

solved. Because of the non-differentiation of the ℓ1 norm, we

used a fast-iterative shrinkage threshold algorithm to solve the

above two subproblems in the course of our study (30). Both

equations were solved in a similar manner, but the calculation in

the model (5) involved only the mth task, independent of the

other tasks, while solving model (4) required the participation of

all tasks.
TABLE 1 Extract the specific content of radiomics features.

Original image Derived image

feature number name number

Shape-based 14 LoG 273

First Order 18 Wavelet 364

Gray Level Co-occurrence Matrix 22 Square 91

Gray Level Run Length Matrix 16 Square
Root

91

Gray Level Size Zone Matrix 16 Logarithmic 91

Gray Level Dependence Matrix 14 Exponential 91

Neighboring Gray Tone Difference
Matrix

5 – –
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2.3.3 Model analysis
We represent the weights solved by the model in the form of

a sum of shared weights s and private weights bm. For the

computation of s, all tasks need to be involved, and when si ≠ 0,

it is assumed that all tasks pick the ith feature. However, the

computation of bm requires data from only the mth task, and

bm ≠ 0 indicates the ith feature is important for the mth task but

may not be important for other tasks. Finally, we denoted the

features selected by the mth task by (s + bm). The ‘1and ‘1,1
regularization forced both weights to be sparse, thus satisfying

the “feature selection” requirement. The feature selection

methods with ‘1,1 norm as the regular term or ‘2,1 norm as the

regular term are two classical methods in the sparse embedding

method (31). The multi-task Lasso model based on ‘1,1
regularization had an entirely separable form. Each task can

separately compute its own weight without being influenced by

other tasks, so the sparse multi-task Lasso model is equivalent

to the single-task Lasso model. The single difference is that all

tasks of the sparse multi-task Lasso method use the same

regularization parameter. In contrast, the regularization

parameter of the single-task Lasso model can be determined

by each task individually. The multi-task Lasso model based on

the ‘2,1regularization makes the features selected by different

tasks almost the same, which reasonably exploits the
Frontiers in Oncology 05
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correlation between different tasks but loses the specificity

between different tasks. In contrast, our model not only

makes full use of the correlation between different tasks but

also highlights the specificity between different tasks and fuses

the information of multiple sequences, thus providing a more

robust prediction model for clinical diagnosis. Their

differences are given visually in Figure 2.

Accurate preoperative diagnosis can be effective in

formulating accurate and personalized treatment for patients,

especially when MR images of SBM and GBM are extremely

similar. In the current study, the proposed multi-task learning

based on the logistic loss function can be used not only for

feature selection but also for tumor classification tasks.

In contrast, the Lasso model based on mean square loss can

only be used as a feature selection algorithm and cannot perform

the subsequent classification task independently. In contrast, our

model can use probabilities to account for the classification, for

example, for any sample Xm
i ∈ R1�(d+1), the probability that the

sample is classified as label 1 is

p(yi = 1jXm
i ) =

1

1 + e−X
m
i (s+b

m)
(6)

Next, the model can perform the tumor classification task

independently by simply picking the appropriate threshold
A

B C

FIGURE 2

The difference between LASSO1,1 Model, LASSO2,1 Model, and Our Proposed Model. The left panel represents the input datasets; the right panel
represents the learned weight matrix. (A) Schematic of our method for feature selection. (B) Schematic diagram of feature selection based on
multi-task Lasso model under ℓ1,1 regularization. (C) Schematic diagram of feature selection based on multi-task Lasso model under ℓ2,1
regularization.
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value. Its calculation process will be described in the section of

experimental procedure.

2.3.4 Experimental procedure
This experiment was performed using MATLAB 9.11. The

features of each sample and the labels are used as input, and the

optimal penalty parameters ls and lb are obtained on the

training set using 5-fold cross-validation. The ratio ls
lb

of the

two penalty parameters is always kept as the following six values:

1.25, 1.5, 1.75, 2, 2.25, 2.5. Moreover, the mean AUC values

under the optimal penalty parameters are recorded. Then, the

data were computed and trained using the alternating

miniaturization algorithm and the fast-iterative shrinkage

threshold algorithm. Note that during the fast-iterative

shrinkage threshold algorithm solution, our parameters L0 =

1,h = 1:1. To ensure the confidence of the results, we repeatedly

performed 5-fold cross-validation 10 times. Finally, the model"s

performance was evaluated by average accuracy, average recall,

average precision, and average AUC(The flow chart of our

model solution is given in Figure 3).
3 Results

Additional analyses were conducted to compare our model

with four diagnostic models based on single-task and multi-

task learning. The single-task-based models are the diagnostic

model with Lasso model for feature selection and SVM for
Frontiers in Oncology 06
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classification (Lasso+SVM); the diagnostic model with Lasso

model for feature selection and logistic regression (LR)

algorithm for classification (Lasso+LR); the logistic regression

as loss function and ‘1 norm constraint of “LR1” model for

feature selection and SVM for classification (LR1+SVM); and a

diagnostic model with LR1 model for feature selection and

classification (LR1).

The models based on multi-task learning are the diagnostic

model with the Lasso multi-task model with ‘1,1norm as the

regular term for feature selection and the SVM method for

classification(Lasso1,1+SVM); the diagnostic model using the

Lasso1,1 multi-task model for feature selection and logistic

regression(LR) for classification(Lasso1,1+LR); diagnostic

model with feature selection using the Lasso multi-task model

with ‘2,1 norm as the regular term and classification by SVM

method(Lasso2,1+SVM); diagnostic model with feature selection

using Lasso2,1 multi-task model and classification by LR method

(Lasso2,1+LR); our model as a diagnostic model with feature

selection method and SVM method for classification

(Ours+SVM) and our model as a diagnostic model(Ours).

Table 2 shows the confusion matrices of 4 single-task models

based on T1, T1C, and T2 sequences and 6 diagnostic models

based on multi-task learning. The values in the table are taken as

an average of the results of the 5-fold cross-validation 10 times.

In the table, TP (True Positive) represents the number of GBM

predicted as GBM, FN (False Negative) means the number of

GBM predicted as SBM, FP (False Positive) means the number

of SBM predicted as GBM, and TN (True Negative) represents
FIGURE 3

Experimental flowchart.
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the number of SBM predicted as SBM. From the experimental

results, it can be seen that the value of TP or TN is significantly

higher than the value of FN or FP. This shows that our model is

meaningful and feasible.

To further verify the feasibility of our model, the ROC

(receiver operating characteristics) curves of our model are

compared with those of four other multi-task models, and the

values of the AUC and the standard deviation are also given.

Usually, the closer to a value of 1 the AUC is, the better the model

performance is; the smaller the standard deviation is, the more

stable the model is. For the test dataset, our model combined with

SVM classification, multi-task: Ours+SVM, had the most

significant AUC of 0.992, however, our multi-task model alone

had the second highest AUC of 0.984, with an AUC difference of

0.008 from the optimal model. The standard deviation (std) of the

multi-task: Ours+SVM model is also the smallest among the six

models, at 0.008, indicating that the model is the most stable. The

std of our multi-task model alone was second only to the multi-

task: Ours+SVM model. The results are shown in Figure 4.
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Feature selection can effectively reduce the dimensionality of

the data, thereby reducing the amount of computation and

improving the efficiency of problem-solving. Figure 5 shows

the distribution of features when selecting 20 features for six

multitasking models. Our method not only selected the same

features for the three sequences of T1, T1C, and T2, but also

selected the characteristics that are unique to each sequence,

which may have a large impact on only one of the sequences and

not very much on the other sequences.

In brain tumor classification experiments, we compared the

classification performance of the single-task-based and multi-

task learning-based diagnostic models. In the single-task model

experiments, we used four single-task feature selection models to

classify the data of T1, T1C, and T2 sequences. Finally, we used

5-fold cross-validation method 10 times to obtain the average

AUC on the training set and the average AUC, accuracy,

precision, and recall on the test set. In the classification

experiment based on multi-task learning, we treated the three

sequences of T1, T1C, and T2 as 3 tasks, trained and tested them
A B C

D E F

FIGURE 4

ROC curves of multi-task model in six. The horizontal coordinate indicates the false positive rate and the vertical coordinate indicates the true
positive rate. (A) ROC curves for the Lasso1,1+SVM model, the blue solid line indicates the average ROC curve and the black dashed line
indicates the mean ± std. (B) ROC curves for the Lasso1,1+LR model, the blue solid line indicates the average ROC curve and the black dashed
line indicates the mean ± std. (C) ROC curves for the Lasso2,1+SVM model, the blue solid line indicates the average ROC curve and the black
dashed line indicates the mean ± std. (D) ROC curves for the Lasso2,1+LR model, the blue solid line indicates the average ROC curve and the
black dashed line indicates the mean ± std. (E) ROC curves for the Ours+SVM model, the blue solid line indicates the average ROC curve and
the black dashed line indicates the mean ± std. (F) ROC curves for the Ours model, the blue solid line indicates the average ROC curve and the
black dashed line indicates the mean ± std.
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through 6 multi-task models, and obtained the above 4

evaluation indicators. The results were shown in Table 3.

In the single-task experiment, the LR1+ SVM model based

on the T2 sequence achieved the highest average AUC of 0.973

on the training set, and the average AUC also reached the

highest 0.969 on the test set, and accuracy and recall also

reached the highest in the single-task model, accuracy = 0.876,

recall = 0.886. In all single-task experiments, the maximum value

of precision is 0.922.

The multi-task learning model was introduced into the

classification of brain tumors, and the classification performance

of each model was significantly improved. As can be seen from the

data in the table, the values of the indicators of the multi-task

model are significantly better than those of the corresponding

single-task model. Using our model, the multi-task: Ours+SVM

model, its average AUC, accuracy, and precision are all at their

highest, and the AUC on the test set reaches 0.992. Our model is

not only used as a feature selection method, but also as a

classification method. Although its metrics are not optimal, it

outperforms the traditional diagnostic models (Lasso1,1+SVM,

Lasso1,1+LR, Lasso2,1+SVM, Lasso2,1+LR), and we use only one

model, thus improving the efficiency of diagnosis.
4 Discussion

Accurate classification of GBM and SBM is a challenging

clinical problem. Different sequences of MRI provide unique
Frontiers in Oncology 08
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information, and the rational fusion of multiple sequences can

complement information from different dimensions (32). Thus,

we proposed a new multi-task learning model to enable an

accurate and fast diagnosis method for clinical usage.

This study introduced T1, T1C, and T2 sequences into the

multi-task learning model. The feature weights were represented

as the sum of shared and private weights. In turn, when filtering

radiomic features, we can fully use the correlation between MR

images of different sequences while still retaining the differences

between the sequences and selecting features that have an

essential impact on a specific task. Based on the above multi-

task model, we also replaced the data matching term with a

logistic regression function, which resulted in efficient model

feature selection and classification of brain tumors.

We used an alternating minimization algorithm and a fast-

iterative shrinkage threshold algorithm to train the data in

model solving. We used the 5-fold cross-validation method to

select optimal parameters for the selection of parameters. To

ensure the accuracy and credibility of the data results, we

conducted a 5-fold cross-validation 10 times in training and

testing, and the final metrics were selected as the average value.

The optimum model with an average AUC of 0.992 on the test

set was found when our model performed feature selection and

the SVM method performed classification. As a feature selection

and classification method, our method alone reached the second

highest average AUC of 0.984 on the test set. Multi-task learning

enhances the robustness of our model, thus providing a stable

predictive model for clinical diagnosis while ensuring accuracy
TABLE 2 The mean of the confusion matrix of each model after 5-fold cross-validation 10 times.

Test

Group Model T P F N FP TN

T1 Lasso+SVM 19.94 4.06 3.98 20.02

Lasso+LR 19.78 4.22 4.54 19.46

LR1+SVM 20.60 3.40 3.56 20.44

LR1 20.58 3.42 3.86 20.14

T1C Lasso+SVM 20.36 3.64 2.58 21.42

Lasso+LR 19.64 4.32 3.40 20.60

LR1+SVM 19.40 4.60 1.90 22.10

LR1 19.18 4.82 1.98 22.02

T2 Lasso+SVM 20.50 3.50 3.38 20.62

Lasso+LR 19.86 4.14 5.30 18.70

LR1+SVM 20.60 3.40 2.56 21.44

LR1 20.24 3.76 2.96 21.94

Multi-task Lasso1,1+SVM 21.44 2.56 2.22 21.78

Lasso1,1+LR 20.48 3.52 2.70 21.30

Lasso2,1+SVM 20.16 3.84 1.64 22.36

Lasso2,1+LR 20.32 3.68 2.64 21.36

Ours+SVM 20.90 3.10 0.76 23.24

Ours 20.12 3.88 1.16 22.84
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and making diagnoses possible with just one model, improving

the efficiency of diagnostics.

Our model still has a comparative advantage over a single

sequence classification task. For example, in a previous study (21),

we used the same dataset with the random forest method as the

feature selection method. Then six machine learning models were

used for classification. The final result is that the random forest did

the best classification job, obtaining an AUC of 0.97 on the test set
Frontiers in Oncology 09
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but was limited to the T1C sequences. The single-task model, which

does not consider the relationship between different sequences, does

not take advantage of complementarity of information, which leads

to the final classification effect being relatively not very good. On the

other hand, the model proposed in this paper can make full use of

the complementary information between different sequences and

improve the accuracy and robustness of the prediction model. Our

model is comparable with the classical multi-task model based on
A B C

D E F

FIGURE 5

Learned weight matrix. The color bar in the right side indicates the values of matrix.The horizontal coordinates indicate the different tasks T1,
T1C, and T2. The vertical coordinates indicate the number of features screened.
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‘2,1 regularization (24), but it can extract not only the same features

for each sequence but also features that are important for a specific

task. Moreover, compared with the general feature selection model,

our model also integrates feature selection and classification to

improve efficiency and convenience for diagnosis.

The present study does have some limitations. First, this study

used a manual method to segment ROI, which is time consuming.

Additionally, although two to three researchers have been involved

in the segmentation process, it is very challenging to eliminate all

bias in the results. Second, the data sample is small and cannot be

extrapolated from this particular population to the general

population. Third, the multitask learning model proposed in the

present study requires the same features among tasks and does not

apply to all multitask problems. Lastly, in the medical imaging part,

ROI segmentation requires two neurologists with 5 to 10 years of

experience. In our future study, we plan to use deep learning

algorithms or image segmentation methods to automatically

delineate the ROI to improve the efficiency of our work.
5 Conclusion

In this work, we proposed a feature selection model based on

the multi-task learning model for SBM and GBM classification.

The feature selection model uses a logistic regression function as

a loss function, which makes the classification function of the

model possible. Most of the current brain tumor classification
Frontiers in Oncology 10
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studies have been performed using single-task models, which do

not take advantage of the correlation between different

sequences of MR images and therefore, the performance is not

optimized to utilize all available information. Furthermore, the

traditional multi-task Lasso model does not fully consider the

correlation between different tasks. In contrast, our model makes

full use of the correlation between MR images of different

sequences while selecting the features that have an essential

impact on a specific task. It is possible to select different

combinations of features for different tasks, thus improving the

classification performance of the model to some extent. In

conclusion, our model generally outperforms the traditional

multi-task Lasso model.

Our model as a feature selection method and paired with an

SVM classification method has a great advantage over other

methods of the same type. Our proposed model is also a good

choice as a classification method. Although it has inferior

performance to that of using our method with other

classification algorithms, it improves the convenience of tumor

classification. Thus, our model is advantageous in classifying

SBM and GBM using MR images with multiple sequences.
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TABLE 3 The values of various metrics for each method on the training and test sets.

Train Test

Group Model AUC AUC Accuracy Precision Recall

T1 Lasso+SVM 0.936 0.933 0.832 0.851 0.830

Lasso+LR 0.940 0.935 0.817 0.840 0.824

LR1+SVM 0.952 0.951 0.855 0.869 0.858

LR1 0.951 0.947 0.848 0.861 0.857

T1C Lasso+SVM 0.955 0.953 0.870 0.901 0.848

Lasso+LR 0.950 0.947 0.838 0.886 0.818

LR1+SVM 0.961 0.959 0.864 0.922 0.818

LR1 0.958 0.954 0.858 0.919 0.799

T2 Lasso+SVM 0.954 0.953 0.856 0.873 0.854

Lasso+LR 0.947 0.942 0.803 0.828 0.854

LR1+SVM 0.973 0.969 0.876 0.828 0.858

LR1 0.968 0.967 0.860 0.892 0.843

Multi-task Lasso1,1+SVM 0.984 0.981 0.900 0.918 0.893

Lasso1,1+LR 0.893 0.981 0.870 0.903 0.853

Lasso2,1+SVM 0.981 0.980 0.886 0.941 0.840

Lasso2,1+LR 0.975 0.973 0.868 0.913 0.847

Ours+SVM 0.993 0.992 0.920 0.969 0.847

Ours 0.987 0.984 0.895 0.954 0.838
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University, Fuzhou, China, 5Clinical Research Center for Radiology and Radiotherapy of Fujian
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Background: The aim of this study is to explore the most effective

inflammation, magnetic resonance imaging (MRI), and nutrition markers for

survival and pathology complete response (pCR) in patients with locally

advanced rectal cancer (LARC).

Methods: A total of 278 patients with LARC undergoing neoadjuvant

chemoradiotherapy (NCRT) and radical surgery from 2016 to 2019 were

included. The X-tile method was used to select the optimal cutoff points for

the mesorectal package area (MPA), advanced lung cancer inflammation index

(ALI), prognostic nutritional index (PNI), systemic immune-inflammation index

(SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR),

and monocyte-to-lymphocyte ratio (MLR) scores. Cox regression analysis was

used to identify risk factors of disease-free survival (DFS). To discover pCR risk

factors, logistic regression analysis was employed. A predictive nomogram for

DFS was constructed.

Results: According to the least absolute shrinkage and selection operator

analysis, the MPA was the only significant predictor for the DFS in patients

with LARC. Kaplan-Meier (K-M) analysis demonstrated that groups with higher

MPA, PNI, SII, NLR, MLR, and ALI score had improved DFS (all P < 0.05). Receiver

operating characteristic (ROC) analysis revealed that the MPA and PNI could

accurately predict the pCR in patients with LARC after NCRT. The MPA score

and NLR score were found to be independent predictors of DFS after NCRT

using Cox regression analysis. Logistical regression analysis demonstrated that

the MPA score, PNI score, and pre-NCRT cN stage were all independent

predictors of pCR in patients with LARC after NCRT. Recursive partitioning
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analysis and time-independent ROC curve analysis demonstrated that MPA

score was the most important predictor of pCR and prognosis in patients with

LARC after NCRT.

Conclusions: MPA was identified as the most effective marker for MRI, and the

prognostic value was further confirmed by time–ROC analysis. More intense

adjuvant treatment could be considered for lower–MPA score patients with

LARC after NCRT. Obesity in the pelvis encourages the understanding of the

prognosis prediction of patients with LARC after NCRT.
KEYWORDS

locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy, inflammation
biomarkers, mesorectal package area, prognosis, pathology complete response
Introduction

The neoadjuvant chemoradiotherapy (NCRT) has been the

standard treatment for locally advanced rectal cancer (LARC).

The NCRT benefited from a higher likelihood of tumor

shrinking and downstaging, enhanced tumor resectability, and

better local tumor control (1–3). NCRT could contribute to

pathological complete response (pCR) in 15%–27% of patients

with LARC and 20%–30% near pCR in patients with LARC (4).

Patients with pCR or near pCR could adopt the “watch and wait”

strategy or local excision to reduce surgery-related morbidity

and increase organ preservation when compared to the total

mesorectal excision (TME) surgery (5–7). However, more than

30% of patients with LARC were resistant to NCRT and

experiencing NCRT adverse effects (8, 9). Currently, it is still

challenging to reliably estimate treatment outcomes for patients

with LARC after NCRT.

The rates of obesity have risen in the recent years, and

obesity contributes to a variety of chronic morbidities (10).

Numerous studies have shown that obesity is associated with

the occurrence and progression of colorectal cancer (11–13).

However, the influence of obesity on NCRT response of LARC

remains controversial (14–17). Body mass index (BMI) is the

most common tool for assessing obesity, although Asians

typically have normal BMI levels and abdominal obesity,

which could lead to an inaccuracy evaluation. Instead of the

BMI, the NCRT response may be related to the pelvic fat.

Investigating pelvic fat may provide an answer to the question

of whether obesity affects the NCRT responsiveness. High-

resolution pelvic or rectal magnetic resonance imaging (MRI)

may accurately quantify the fat in the pelvis and rectal

mesorectal thickness to predict the NCRT response. Several

studies found that obesity was contributing to the

inflammatory response, which influenced tumor development,

prognosis, and therapy response (18–20). The inflammatory
02
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indexes in the peripheral blood, NLR, MLR, PLR, and SII have

been used as markers of predicting efficacy and toxicity of NCRT

in patients with LARC in our previous study (21). To explore the

relationship among the obesity, inflammatory response and

NCRT response were important.

To address the gap in the literature, the present study aimed

to explore the most effective marker of MRI measurements,

systematic inflammatory, and nutrition in patients with LARC in

terms of survival outcome and NCRT response.
Patients and treatment methods

Patients

In this study, we retrospectively analyzed 278 patients with

LARC after NCRT who underwent pelvic MRI before NCRT in

our hospital and radical resection between 2016 and 2019. The

patient inclusion criteria and exclusion criteria were reported in

our previous study (8, 22). The evaluation of the tumor staging

was according to the American Joint Committee on Cancer

(AJCC) (23). The TME was following the NCRT regimen, which

has been described in our previous study. According to the

National Comprehensive Cancer Network (NCCN) guidelines,

the patients received postoperative adjuvant chemotherapy for 6

months about 1 month after surgery (24). All laboratory results

and pelvic MRI images were collected within 1 week before

NCRT. The last cutoff date for follow-up was 31 December 2021.
Neoadjuvant chemoradiotherapy

Two chemotherapeutic regimens with dosages were given as

follows: (1) Capox: oxaliplatin at 130 mg/m2 intravenously

guttae, day 1; capecitabine at 825 mg/m2 twice daily oral, days
frontiersin.org
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1–14; every 3 weeks, for two cycles during concurrent

radiotherapy; another two cycles were performed during the

interval from the end of radiation to surgery; (2) capecitabine

alone: capecitabine at 825 mg/m2 twice daily oral, during the

whole period of radiotherapy; another one cycle increased

dosages to 1,250 mg/m2 was performed in 2 weeks during the

waiting period.

The gross tumor volume (GTV) was calculated on the basis of

clinical information, including digital rectal examination,

endoscopy ultrasound, and abdominopelvic MRI. The clinical

target volume (CTV) included all mesorectum, presacral soft

tissue, obturator, and internal iliac lymphatic drainage regions.

The planning target volume (PTV) was defined as the GTV or

CTV with uniform margins of 10 mm. The neoadjuvant

radiotherapy regimens consisted of three-dimensional conformal

radiotherapy (3D-CRT) and intensity-modulated radiation

therapy (IMRT). A dose of 50.4 Gy was delivered to PTV-GTV

with 3D-CRT in 28 fractions, whereas 50 Gy was delivered with

IMRT in 25 fractions. In addition, 45 Gy was delivered to PTV-

CTV in 25 fractions for both types of regimens (24).
Definitions

The pathological tumor regression grade (TRG) (23) was

used as the evaluation criterion of tumor response to NCRT. No
Frontiers in Oncology 03
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residual tumor cells in the resected specimen, including the

primary site and lymph nodes, were regarded as pathological

complete response (pCR). Venous blood samples were obtained

within 1 week before NCRT. The following formulae were

employed to determine the systematic inflammatory markers:

The systemic immune-inflammation index (SII) = platelet

count × neutrophil count/lymphocyte count, neutrophil-to-

lymphocyte ratio (NLR) = neutrophil count/lymphocyte count,

platelet-to-lymphocyte ratio (PLR) = platelet count/lymphocyte

count and monocyte-to-lymphocyte ratio (MLR) = monocyte

count/lymphocyte count. Advanced lung cancer inflammation

index (ALI) = BMI (kg/m2) × albumin (g/L)/NLR, prognostic

nutritional index (PNI) = serum albumin (g/L) + 5 × lymphocyte

count (109/L).
Pelvic MRI measurements

MRI was performed using either a 1.5-T General Electric

(450 W, software version 25) or a 3-T Phillips (Achieva, software

version 3.2.3.5) system. Large field-of-view FT2-weighted axial

images with a slice thickness of 5 mm were downloaded from the

PACS system and analyzed with publicly available software (3D

Slicer©, Version 4.11; Bethesda, MD) (25) that was supported by

National Institutes of Health. The measuring procedure is shown

in Figure 1, as described by McKechnie et al. (26).
FIGURE 1

Schematic plot of the pelvic MRI measurements. MRI, magnetic resonance imaging; IS, interspinous distance; AP-BP, anterior–posterior bony
pelvis span; L-MR, lateral mesorectal span; AP-MR, anterior–posterior mesorectal span; AT, anterior mesorectal thickness; PT, posterior
mesorectal thickness; MPA, mesorectalpackage area; RA, rectal area; BPA, bony pelvis area.
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Statistical analysis

The Statistic Package for Social Science (SPSS, version 23.0)

and R software packages version 4.0.1 were used to perform the

statistical analyses. The X-tile program (http://www.tissuearray.

org/rimmlab/) was used to calculate and determine the best

cutoff points for the SII, NLR, PLR, MLR, ALI, and PNI counts

(27). The Kaplan–Meier method and log-rank test were

performed to evaluate the survival outcomes. The risk factors

for overall survival (OS) and disease-free survival (DFS) were

calculated by the Cox proportional hazards model. On the basis

of the Cox regression model analysis, a nomogram was

developed by using the R project. Time-dependent receiver

operating characteristic (ROC) curves were used to evaluate

the performance of the biomarkers. Least absolute shrinkage and

selection operator (LASSO) Cox regression model was applied to

determine the ideal coefficient for each prognostic feature and

estimate the likelihood deviance (28, 29). Recursive partitioning

analysis (RPA) was used to construct a decision tree that divides

patients into different homogeneous risk groups by using the R

project (30). Statistical significance was defined as P < 0.05.
Frontiers in Oncology 04
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Result

Patient characteristics

A total of 278 patients with LARC after NCRT were eligible

for this analysis. There were 181 (181 of 278, 65.1%) male

patients, with a mean age of 53.97 ± 10.11 years. Tables 1, 2

list the baseline clinicopathological characteristics of

the patients.
The LASSO analysis

LASSO analysis was used to explore significant predictors in

MRI measurement markers for DFS in the patients with LARC

after NCRT. The result demonstrated that the mesorectal

package area (MPA) was the only factor that mattered

(Figures 2A, B). Furthermore, the X-tile plot was employed to

select the optimal cutoff point for the MPA, with the outcome

revealing the cutoff values of 23 for MPA (Supplementary

Figure 1). In addition, the best optimal cut-off point for the
TABLE 1 Baseline characteristics in patients with LARC after NCRT stratified by MAP.

Characteristics MAP < 23 (n = 31) MAP ≥ 23 (n = 247) P-value

Sex (%) 1.000

Male 20 (64.5) 161 (65.2)

Female 11 (35.5) 86 (34.8)

Age (years) 54.35 ± 11.13 53.92 ± 10.68 0.831

ASA score (%) 0.161

1 24 (77.4) 210 (85.0.)

2 6 (19.4) 36 (14.6)

3 1 (3.2) 1 (0.4)

Distance from the anal verge (cm) 6.57 ± 2.17 6.16 ± 2.36 0.357

Interval time between NCRT and surgery (weeks) 9.78 ± 1.98 9.77 ± 3.69 0.987

Pre-NCRT cT stage (%) 0.858

T2 0 (0.0) 4 (1.6)

T3 12 (38.7) 83 (33.6)

T4 19 (61.3) 160 (64.8)

Pre-NCRT cN stage (%) 0.513

N0 1 (3.2) 19 (7.7)

N+ 30 (96.8) 228 (92.3)

Pre-NCRT CEA (%) 0.443

<5.0 ng/ml 15 (48.4) 141 (57.1)

≥5.0 ng/ml 16 (51.6) 106 (42.9)

Pre-NCRT CA19-9 (%) 0.340

<37.0 U/ml 23 (74.2) 201 (81.4)

≥37.0 U/ml 8 (25.8) 46 (18.6)

Anemia (%) 6 (19.4) 38 (15.4) 0.601

Hypoproteinemia (%) 1 (3.2) 14 (5.7) 1.000
front
NLR, neutrophil-to-lymphocyte ratio; LARC, locally advanced rectal cancer; NCRT, neoadjuvant chemoradiotherapy; ASA, American Society of Anesthesiologists; CEA, carcinoembryonic
antigen; CA19-9, carbohydrate antigen 19-9.
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TABLE 2 Operative and postoperative outcomes in patients with LARC after NCRT stratified by MPA.

Characteristics MPA < 23 (n = 31) MPA ≥ 23 (n = 247) P-value

Operative time (min) 215.32 ± 50.51 225.15 ± 66.67 0.429

Estimated blood loss (ml) 60.48 ± 29.84 80.12 ± 108.45 0.317

Surgery approach (%) 0.157

Laparoscopic 28 (90.3) 195 (78.9)

Open 3 (9.7) 52 (21.1)

Tumor differentiation (%) 0.014

Well to moderately differentiated 21 (67.7) 214(86.6)

Poorly differentiated and others 10 (32.3) 33 (13.4)

Postoperative hospital stay (days) 9.03 ± 5.26 8.26 ± 4.55 0.379

Postoperative complications (%) 6(19.4) 42 (17.0) 0.801

BMI 0.034

<18 1(3.7) 10 (4.0)

18~24 26 (83.9) 149 (60.3)

>24 4 (12.9) 88 (35.6)

Organ preservation (%) 30 (96.8) 230 (93.1) 0.703

Tumor size (cm) 2.53 ± 1.01 2.61 ± 1.26 0.767

Pathological T stage (%) 0.001

T0 1 (3.2) 70 (28.3)

T1 0 (0.0) 16 (6.5)

T2 11 (35.5) 60 (24.3)

T3 16 (51.6) 97 (39.3)

T4 3 (9.7) 4 (1.6)

Pathological N stage (%) 0.122

N0 19 (61.3) 185 (74.9)

N1 8 (25.8) 50 (20.2)

N2 4 (12.9) 12 (4.9)

Pathological M stage (%) 0.011

M0 27 (87.1) 242 (98.0)

M1 4 (12.9) 5 (2.0)

TRG (%) 0.022

0 1 (3.2) 67 (27.1)

1 11 (35.5) 80 (32.4)

2 17 (54.8) 85 (34.4)

3 2 (6.5) 15 (6.1)

pCR rates (%) 1 (3.2) 67 (27.1) 0.002

Nerval invasion (%) 5 (16.1) 18 (7.3) 0.155

Vascular invasion (%) 2 (6.5) 10 (4.0) 0.630

NLR score 4.71 ± 7.87 2.65 ± 2.10 0.001

SII score 1276.87 ± 2761.05 691.51 ± 693.10 0.007

MLR score 0.34 ± 0.21 0.27± 0.15 0.022

PLR score 161.34 ± 82.56 149.79 ± 97.47 0.528

PNI score 48.41 ± 4.20 49.75 ± 5.13 0.164

ALI score 42.97 ± 34.38 49.51 ± 26.42 0.212
Frontiers in Oncology
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LARC, locally advanced rectal cancer; NCRT, neoadjuvant chemoradiotherapy; NLR, neutrophil-to-lymphocyte ratio; TRG, tumor regression grade; pCR, pathological complete respons;
SII, systemic immune-inflammation index; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio. P<0.05 was statistically significant in bold.
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MPA was enrolled in the next analysis. The result demonstrated

that a high value of the MPA had better prognosis in the patients

with LARC (DFS, P < 0.01, Figure 3G; OS, P = 0.05, Figure 4G).
Association of inflammation and nutrition
biomarkers with survival

On the basis of the DFS, the X-tile plots were constructed

and identified 540, 4.9, 0.268, 165, 46.8, and 31.8 as the cutoff

values for SII, NLR, MLR, PLR, PNI, and ALI, respectively.

Then, we divided the entire cohort into low and high subgroups.
Frontiers in Oncology 06
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As shown in Figure 3, higher PNI and ALI scores were associated

with better DFS in patients with LARC. DFS rates were

significantly greater in the high PNI and ALI score group at 3

years, at 85.9% and 85.9%, respectively, than in the low PNI and

ALI score group, at 67.7% and 54.5%, respectively (all P = 0.01;

Figures 3E, F). Moreover, a high score of the SII, NLR, PLR, and

MLR was correlated with worse DFS in patients with LARC

compared with the low SII, NLR, PLR, and MLR score group, as

shown in Figures 3A–D. The DFS rates at 3 years for the high SII,

NLR, PLR, and MLR group were 73.2%, 53.8%, 76.3%, and

74.5%, respectively, significantly lower than 88.8%, 77.6%,

85.1%, and 87.1% in the low SII, NLR, PLR, and MLR groups,
BA

FIGURE 2

The least absolute shrinkage and selection operator (LASSO) analysis and risk score system were constructed. (A) The area under the ROC curve
(AUC) was estimated with a cross-validation technique, and the largest lambda value was chosen when the cross-validation error was within
one standard error of the minimum. (B) LASSO coefficient profiles of the eight factors.
B C D

E F G H

A

FIGURE 3

Kaplan–Meier analysis of the NLR, SII, PLR, MLR, PNI, ALI, MPA, and BMI level. The disease-free survival for the optimal cutoff point of the SII (A),
NLR (B), MLR (C), PLR (D), PNI (E), ALI (F), MPA (G), and BMI level (H).
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respectively (P < 0.01, P < 0.01, P = 0.13, and P < 0.01,

respectively). Noticeably, the high PNI and ALI score groups

had better OS compared with the low score group, as shown in

Figures 4E, F (all P < 0.01). In addition, low SII and PLR score

group had significantly better OS than the high score group (SII:

P = 0.03, Figure 4A; PLR: P = 0.02, Figure 4D). There was no

statistical difference between the low NLR and MLR score

groups and the high NLR and MLR score groups (NLR: P =

0.07, Figure 4B; MLR: P = 0.73, Figure 4C). Moreover, the BMI

level was not associated with the DFS and OS in the patients with

LARC (DFS: P = 0.31, Figure 3H; OS: P = 0.99, Figure 4H).
Frontiers in Oncology 07
148
Association of biomarkers with pCR

The correlations between pathological complete response

(pCR) and MRI, inflammatory and nutritional biomarkers were

further explored. The ROC analysis was performed to verify the

predicting ability of the biomarkers. The MPA and PNI scores had

powerful ability to predict the pCR in the patients with LARC [PNI:

area under the ROC curve (AUC) = 0.62, P < 0.01, Figure 5E; MPA:

AUC = 0.70, P < 0.01, Figure 5G]. However, the other biomarkers

could not predict the pCR in the patients with LARC after NCRT

(NLR: AUC = 0.53, P = 0.51, Figure 5A; MLR: AUC = 0.57, P =
B C D

E F G H

A

FIGURE 4

Kaplan–Meier analysis of the NLR, SII, PLR, MLR, PNI, ALI, MPA, and BMI level. The overall survival for the optimal cutoff point of the SII (A), NLR
(B). MLR (C), PLR (D), PNI (E), ALI (F), MPA (G), BMI (H).
B C D

E F G H

A

FIGURE 5

Receiver operating characteristic (ROC) analysis to evaluate the predictive efficiency of the NLR, SII, PLR, MLR, PNI, ALI, MPA, and BMI level in
patients with LARC for NCRT response. The ROC analysis for NLR (A), MLR (B), PLR (C), SII (D), PNI (E), ALI (F), MPA (G), and BMI level (H).
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0.10, Figure 5B; PLR: AUC = 0.56, P = 0.12, Figure 5C; SII: AUC =

0.53, P = 0.45, Figure 5D; ALI: AUC = 0.54, P = 0.32, Figure 5F;

BMI: AUC = 0.50, P = 0.94, Figure 5H).
Association of MPA with
clinicopathological characteristics

On the basis of the optimal cutoff value, these patients were

dichotomized into the low-MPA group (n = 31, 11.1%) and the

high-ALI group (n = 247, 88.9%). No significant differences were

found between the groups regarding baseline characteristics,

such as sex, age, American Society of Anaesthesiologists (ASA)

score, preoperative carcinoembryonic antigen (CEA) level,

preoperative CA19-9 level, distance from the anal verge,

interval time between NCRT and surgery, pre-NCRT cT stage,

pre-NCRT cN stage, hypoproteinemia, estimated blood loss,

operative time, postoperative hospital stay, organ preservation,

tumor size, BMI level, and anemia (all P > 0.05, Tables 1, 2). As

expected, a lower MAP level was associated with poorly tumor

differentiation, higher pathology TNM stage, higher AJCC TRG

stage, higher NLR score, higher MLR score, and higher SII score

(all P < 0.05).
Prognostic value of the biomarkers

To explore the prognostic impact of the biomarkers on DFS

in patients with LARC, we performed a Cox regression model

analysis. On univariate analysis, pathological T stage (P < 0.001),

pathological N stage (P < 0.001), AJCC TRG grade (P = 0.001),

pre-NCRT CEA level (P = 0.017), MPA score (P < 0.001), NLR

score (P < 0.001), MLR score (P < 0.001), PNI score (P = 0.005),

ALI score (P = 0.001), nerval invasion (P = 0.006), and tumor

differentiation (P = 0.002) were independently associated with

DFS in patients with LARC after NCRT and TME (Table 3).

Results from the multivariate Cox regression model

demonstrated that MPA score [hazard ratio (HR) = 0.954;

95% confidence interval (CI), 0.921–0.988; P = 0.009] and

NLR level (HR = 1.058; 95% CI, 1.004–1.115; P = 0.034) were

independent predictors of DFS after NCRT (Table 3).
Univariate and multivariate
analysis of pCR

The score of the biomarkers in the pCR group and non-pCR

group was compared by the T-test, as shown in Figure 6A. The

result demonstrated that the MPA and PNI scores were

significantly higher in the pCR group compared with that in

the non-pCR group (MPA: pCR, 37.98 ± 9.02, vs. non-pCR,

31.86 ± 8.62, P < 0.01; PNI: pCR, 51.31 ± 5.33, vs. non-pCR,
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49.05 ± 4.84, P < 0.01). However, another biomarkers score was

no significant association with the pCR or non-pCR group

(NLR: pCR, 2.89 ± 2.94, vs. non-pCR, 2.88 ± 3.45, P = 0.94;

SII: pCR, 783.12 ± 1,090.10, vs. non-pCR, 748.26 ± 1,150.48, P =

0.81; PLR: pCR, 141.4 ± 98.22, vs. non-pCR, 154.22 ± 95.11, P =

0.35; MLR: pCR, 0.25 ± 0.12, vs. non-pCR, 0.29 ± 0.17, P = 0.07;

ALI: pCR, 52.46 ± 30.4, vs. non-pCR, 47.59 ± 26.36, P = 0.30). To

explore the impact of the biomarkers on pCR in patients with

LARC, we performed a logistical regression model analysis. On

univariate analysis, pre-NCRT cT stage (P = 0.023), MPA score

(P < 0.001), pre-NCRT cN stage (P = 0.006), and PNI score (P =

0.002) were independently associated with pCR in patients with

LARC (Table 4). The multivariate logistical regression model

demonstrated that MPA score (OR = 0.926; 95% CI, 0.895–

0.958; P < 0.001), PNI score (OR = 0.925; 95% CI, 0.871–0.983;

P = 0.011), and pre-NCRT cN stage (OR = 1.634; 95% CI, 1.177–

2.269; P = 0.034) were independent predictors of pCR after

NCRT (Table 4).
Predictive models for DFS

The time-dependent ROC curves of the biomarkers showed

that all the AUCs were relatively stable after surgery during the

observation period. However, the AUC of the MPA tended to be

higher than the other biomarkers at all times tested (Figure 6B).

Based on the above important factors of logistics regression, a

nomogram was constructed to predict DFS in LARC patients

(Figure 6C). The 3-year DFS predictive probabilities were

obtained by drawing a straight line after summing up the

score of each variable (Figures 6D). Patients with a higher

total score tended to have lower DFS rate.
RPA to identify high-risk and low-risk
groups of pCR

On the basis of the results of the multivariate logistical

regression analysis, RPA was performed, and patients with LARC

after NCRT were divided into different pCR rate groups (Figure 7).

The independent risk factors included in the RPA were MPA score,

PNI score, and pre-NCRT CEA level. On the basis of the above

three factors, the patients were divided into four groups. The model

showed that the MPA score was the most important factor affecting

pCR. When the MPA score is under 33, the pCR rate remains at

14.8%. In contrast, the MPA score of more than 33, the pCR rate

was 37.7%.Moreover, we found the similar result that the PNI score

is more than 46, resulting in the pCR rates of 42.7%. In addition, on

the basis of the pre-NCRT CEA level, the patients with LARC were

divided into two groups. Finally, the pCR rates in the low-risk group

patients were 51.7%, whereas the pCR rates in the high-risk group

patients were 17.7%, and the difference was significant (p < 0.001).
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Discussion

The occurrence rate of obesity is increasing in the worldwide

especially in China (31, 32). Recently, many studies reported that

obesity contributed to developing multiple cancers and a worse

prognosis (18, 33). Controversially, several studies revealed that

patients with obesity had greater NCRT response when they had

rectal cancer (34, 35). To assess obesity, a number of

measurements are available, including BMI, waistline, and

visceral adipose tissue. The above measurements are aimed to

determining body fat. However, the NCRT range of irradiation

for patients with LARC was limited to the pelvic and rectal.
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Thus, whether the body fat can instead of the pelvic and rectal fat

is yet uncertain. The current study aims to evaluate the pelvic

and rectal fat to predict NCRT response and prognosis in

patients with LARC.

There was not standard for correctly assessing pelvic and

rectal fat until now. McKechnie et al. (26) reported a better way

to evaluate pelvic and rectal fat using MRI to measure the area of

the fat in the pelvic. Moreover, radiomics shows multiple

advantages in evaluating NCRT response in LARC (36–38).

According to the NCCN and ESMO guidelines, high-

resolution pelvic or rectal MRI could be an efficient routine

imaging tool for evaluating clinical tumor stage and NCRT
TABLE 3 Cox regression analysis of predictive factors for disease-free survival in patients with LARC after NCRT (n = 278).

Variables Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Sex, male/female 1.049 0.622–1.769 0.858

Age 0.986 0.964–1.009 0.232

ASA 0.978 0.508–1.883 0.948

Postoperative hospital stay 1.002 0.949–1.057 0.947

Distance from the anal verge 0.999 0.898–1.112 0.989

Tumor size 0.843 0.679–1.048 0.125

Pathological T stage 1.734 1.332–2.258 <0.001 1.380 0.945–2.015 0.095

Pathological N stage 2.023 1.426–2.870 <0.001 1.153 0.751–1.771 0.515

AJCC TRG grade 1.675 1.246–2.253 0.001 1.020 0.633–1.645 0.935

Interval time between NCRT and surgery 0.908 0.778–1.061 0.224

Pre-NCRT cT stage 1.180 0.722–1.931 0.509

Pre-NCRT cN stage 0.869 0.668–1.131 0.295

Operative time 1.003 0.999–1.007 0.113

Estimated blood loss 0.999 0.996–1.002 0.553

Pre-NCRT CEA level 1.860 1.119–3.089 0.017 1.506 0.883–2.569 0.133

Pre-NCRT CA19-9 level 1.458 0.814–2.612 0.205

Anemia 1.369 0.728–2.574 0.329

Hypoproteinemia 1.660 0.665–4.144 0.278

MPA score 0.926 0.896–0.957 <0.001 0.954 0.921–0.988 0.009

BMI 0.928 0.852–1.010 0.082

NLR score 1.090 1.053–1.128 <0.001 1.058 1.004–1.115 0.034

SII score 1.000 1.000–1.001 0.078

MLR score 9.954 3.015–32.856 <0.001 1.157 0.222–6.029 0.862

PLR score 1.001 1.000–1.003 0.099

PNI score 0.930 0.884–0.979 0.005 0.990 0.975–1.004 0.156

ALI score 0.980 0.969–0.992 0.001 1.013 0.949–1.080 0.707

Organ preservation 1.353 0.424–4.319 0.609

Postoperative complications 1.661 0.972–2.975 0.088

Nerval invasion 2.594 1.316–5.113 0.006 1.616 0.778–3.358 0.198

Vascular invasion 1.692 0.614–4.663 0.310

Tumor differentiation 2.374 1.356–4.157 0.002 1.550 0.860–2.791 0.145
front
LARC, locally advanced rectal cancer; NCRT, neoadjuvant chemoradiotherapy; HR, hazard ratio; CI, confidential interval; ASA, American Society of Anesthesiologists; AJCC, American
Joint Committee on Cancer; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-inflammation index; MLR,
monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio. P<0.05 was statistically significant in bold.
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response. In the present study, we analyzed the pelvic

parameters combined with radiomics, and on the basis of the

LASSO analysis, the MPA was selected as the effective biomarker

to predict the prognosis.

MPA includes the mesorectal and rectal thicknesses, and the

rectal thickness is usually steady, so the mesorectal thickness

determined the MPA score. Posterior mesorectal thickness is an

important factor influencing operative complexity in rectal

surgery (26, 39). Patients with the hypertrophy mesorectal

might obscure anatomic dissection planes or limit access to

the pelvis, potentially increasing the technical challenge of rectal

surgery particularly for the patients with LARC after NCRT (40).

The MPA score is connected with the BMI level and may

represent pelvic obesity in the current study. Investigating the

impact of the MPA score in patients with LARC may shed light
Frontiers in Oncology 10
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on the involvement of obesity in the pelvis. On the basis of the

MPA high- and low score groups, we found that the high MPA

score group was associated with a low pathology TNM stage and

high rates of the pCR. However, the BMI level could not

distinguish the above results well. The result revealed that,

rather than BMI, the pelvic obesity may contribute to the

NCRT response. Moreover, the Cox regression and logistical

regression also identified that the MPA score was crucial in

predicting NCRT response and prognosis in patients

with LARC.

Several studies found that nutrition and inflammation are

related to tumor development and progression (41, 42). Obesity

and albumin have been recognized as essential parameters for

evaluating the nutritional status of patients with cancer (43). At

present, obesity is associated with inflammatory response and
B

C D

A

FIGURE 6

Analysis the biomarkers in the patients with LARC and construction a nomogram model for the disease-free survival. (A) The biomarkers value in
the pCR group and non-pCR group (MPA: pCR, 37.98 ± 9.02, vs. non-pCR, 31.86 ± 8.62, P < 0.01; NLR: pCR, 2.89 ± 2.94, vs. non-pCR, 2.88 ±
3.45, P = 0.94; SII: pCR, 783.12 ± 1,090.10, vs. non-pCR, 748.26 ± 1,150.48, P = 0.81; PLR: pCR, 141.4 ± 98.22, vs. non-pCR, 154.22 ± 95.11, P =
0.35; MLR: pCR, 0.25 ± 0.12, vs. non-pCR, 0.29 ± 0.17, P = 0.07; PNI: pCR, 51.31 ± 5.33, vs. non-pCR, 49.05 ± 4.84, P < 0.01; ALI: pCR, 52.46 ±
30.4, vs. non-pCR, 47.59 ± 26.36, P = 0.30). (B) Time-dependent AUC curves of the NLR, SII, PLR, MLR, PNI, ALI, and MPA, for the prediction of
disease-free survival. (C) Nomogram developed for prediction of disease-free survival. (D) Calibration curves for 1-, 3-, and 5-year DFS for the
nomogram in patients with LARC after NCRT.
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affects the efficiency and toxicity of chemotherapy and

radiotherapy in patients with cancer (44–46). The

inflammatory indexes in the peripheral blood, NLR, MLR,

PLR, and SII have been used as markers of predicting efficacy

and toxicity of NCRT in patients with LARC in our previous

study (21). Furthermore, mounting evidence suggested that

obesity was contributing to the inflammatory response, which

influenced tumor development, prognosis, and therapy response

(18–20). As a result, we hypothesize that the pelvic fat increases

the inflammatory response to affect the NCRT response. To

further explore the relationship between the pelvic obesity and

inflammatory response, we analyze the relationship between the

MPA score and NLR, PLR, MLR, SII, PNI, and ALI. The result

showed that the MPA score was associated with the NLR, PLR,

and MLR score. There were more pieces of evidence that pelvic

fat was related with the inflammatory response. PNI is a novel

index to reflect the nutritional and inflammatory status of

patients, and its clinical efficacy as a predictive factor in

different malignancies has been established (47, 48). In the

present study, we found that both the PNI and MPA scores

were effective at predicting NCRT response in patients with

LARC. However, only MPA was associated with NCRT response
Frontiers in Oncology 11
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in logistic regression analysis. This could imply that pelvic fat

modulates inflammatory response to elicit NCRT response.

To predict the pCR rates of the patients with LARC after

NCRT, the RPA was performed to classify patients with LARC

into different risk groups. RPA was a useful statistical method for

predicting patient risk in a number of cancers, including

colorectal cancer, nasopharyngeal cancer, cervical cancer, and

breast cancer, which could assist clinicians to determine the best

medication regimen (30, 47–49). However, few studies used the

RPA to forecast the NCRT response in patients with LARC. In

the present study, the MPA score, PNI score, and pre-NCRT

CEA level play an important role in dividing the patients into the

different risk groups. Among the affecting criteria, the MPA

score has the most significant influence. On the basis of the MPA

score, we distinguished over half of the patients with LARC in

the first step and then selected 20% of patients as the low-risk

patients, who may accept a greater pCR rates than the high-risk

group, based on the PNI score and pre-NCRT CEA level. The

results mentioned provide fresh treatment options for patients

with LARC after NCRT.

Several limitations warrant discussion. First, the present

study was subjected to potential selection bias due to the
TABLE 4 Logistic regression analysis of predictive factors for pCR in patients with LARC after NCRT (n = 278).

Variables Univariate analysis Multivariate analysis

OR 95% CI P-value OR 95% CI P-value

Sex, male/female 0687 0.393–0.198 0.186

Age 0.991 0.966–1.017 0.508

ASA 0.950 0.478–1.886 0.883

Distance from the anal verge 0.976 0.870–1.096 0.682

Tumor size 0.964 0.775–1.199 0.741

MPA score 0.926 0.897–0.956 <0.001 0.926 0.895–0.958 <0.001

BMI 1.001 0.917–1.093 0.978

Interval time between NCRT and surgery 0.996 0.925–1.073 0.924

Pre-NCRT cT stage 1.777 1.082–2.919 0.023 1.587 0.920–2.735 0.097

Pre-NCRT cN stage 1.524 1.129–2.057 0.006 1.634 1.177–2.269 0.003

Postoperative hospital stay 0.995 0.939–1.054 0.856

Pre-NCRT CEA level 1.856 1.052–3.276 0.033 1.550 0.835–2.878 0.165

Pre-NCRT CA19-9 level 1.398 0.676–2.889 0.366

Anemia 1.622 0.715–3.680 0.247

Hypoproteinemia 1.367 0.374–4.993 0.636

NLR score 0.997 0.920–1.080 0.943

SII score 1.000 1.000–1.001 0.809

MLR score 6.905 0.844–56.527 0.072

PLR score 1.002 0.998–1.005 0.354

PNI score 0.913 0.863–0.967 0.002 0.925 0.871–0.983 0.011

ALI score 0.995 0.985–1.005 0.301

Tumor differentiation 2.308 0.930–5.729 0.071
front
CI, confidential interval; ASA, American Society of Anesthesiologists; AJCC, American Joint Committee on Cancer; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; NLR,
neutrophil-to-lymphocyte ratio; SII, systemic immune-inflammation index; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio. P<0.05 was statistically significant in bold.
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retrospective design. In addition, limitations in statistical

methods resulted in imbalanced grouping of the groups.

Second, peripheral blood cell analysis results might be affected

by factors, such as blood circulation capacity, infection, and

nutritional status. Third, the impact of gene profiling and tumor

microenvironment inflammation was not assessed, owing to the

lack of complete medical records. Despite these limitations, we

believe that this study adds to the understanding of the impact of

pelvic obesity on the oncological outcomes in patients with

LARC after NCRT.

In conclusion, a higher MPA score was associated with

poorer DFS and OS in patients with LARC after NCRT. In

addition, MPA score was identified to be the most reliable

marker, and the prognostic value was further confirmed by

time–ROC analysis. Finally, an RPA was constructed to

predict the DFS outcomes. Patients in the high-risk group who

have LARC after NCRT may benefit from more intensive

adjuvant therapy. Larger-scale prospective clinical trials are

warranted to support the above findings.
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CT-based radiomics in
predicting pathological
response in non-small cell
lung cancer patients receiving
neoadjuvant immunotherapy

Qian Lin †, Hai Jun Wu*, Qi Shi Song † and Yu Kai Tang †

Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
Objectives: In radiomics, high-throughput algorithms extract objective

quantitative features from medical images. In this study, we evaluated CT-

based radiomics features, clinical features, in-depth learning features, and a

combination of features for predicting a good pathological response (GPR) in

non-small cell lung cancer (NSCLC) patients receiving immunotherapy-based

neoadjuvant therapy (NAT).

Materials and methods: We reviewed 62 patients with NSCLC who received

surgery after immunotherapy-based NAT and collected clinicopathological

data and CT images before and after immunotherapy-based NAT. A series of

image preprocessing was carried out on CT scanning images: tumor

segmentation, conventional radiomics feature extraction, deep learning

feature extraction, and normalization. Spearman correlation coefficient,

principal component analysis (PCA), and least absolute shrinkage and

selection operator (LASSO) were used to screen features. The pretreatment

traditional radiomics combined with clinical characteristics (before_rad_cil)

model and pretreatment deep learning characteristics (before_dl) model were

constructed according to the data collected before treatment. The data

collected after NAT created the after_rad_cil model and after_dl model. The

entire model was jointly constructed by all clinical features, conventional

radiomics features, and deep learning features before and after neoadjuvant

treatment. Finally, according to the data obtained before and after treatment,

the before_nomogram and after_nomogram were constructed.

Results: In the before_rad_cil model, four traditional radiomics features

(“original_shape_flatness,” “wavelet hhl_firer_skewness,” “wavelet

hlh_firer_skewness,” and “wavelet lll_glcm_correlation”) and two clinical features

(“gender” and “N stage”) were screened out to predict a GPR. The average

prediction accuracy (ACC) after modeling with k-nearest neighbor (KNN) was

0.707. In the after_rad_cil model, nine features predictive of GPR were obtained

after feature screening, among which seven were traditional radiomics features:

“exponential_firer_skewness,” “exponential_glrlm_runentropy,” “log- sigma-5-0-

mm-3d_firer_kurtosis,” “logarithm_skewness,” “original_shape_elongation,”
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“original_shape_brilliance,” and “wavelet llh_glcm_clustershade”; twowere clinical

features: “after_CRP” and “after lymphocyte percentage.” The ACC after modeling

with support vector machine (SVM) was 0.682. The before_dl model and after_dl

model were modeled by SVM, and the ACC was 0.629 and 0.603, respectively.

After feature screening, the entiremodel was constructed bymultilayer perceptron

(MLP), and the ACC of the GPR was the highest, 0.805. The calibration curve

showed that the predictions of the GPR by the before_nomogram and

after_nomogram were in consensus with the actual GPR.

Conclusion: CT-based radiomics has a good predictive ability for a GPR in

NSCLC patients receiving immunotherapy-based NAT. Among the radiomics

features combined with the clinicopathological information model, deep

learning feature model, and the entire model, the entire model had the

highest prediction accuracy.
KEYWORDS

radiomics, pathological response, NSCLC, biomarkers, lung cancer, immunotherapy,
neoadjuvant therapy
Introduction
Lung cancer is a heterogeneous malignant disease arising

from the bronchial epithelium or alveolar tissue, usually caused

by smoking, varying environmental exposures, and underlying

genetic susceptibility (1). According to the 2020 global burden of

cancer statistics provided by the International Agency for

Research on Cancer (IARC), lung cancer ranks second in

global incidence and first in mortality. In China, lung cancer is

the most common cancer with the highest incidence and

mortality rate. The most common subtype is non-small cell

lung cancer (NSCLC) with an incidence rate of about 85%, while

the 5-year survival rate is only 10%–20% (2, 3).

Currently, surgical treatment remains the mainstay of

treatment for early-stage and locally advanced (stages I and II

and some with stages IIIA and IIIB) NSCLC(NCCN) (4, 5).

However, patients experience high rates of local and distant

recurrence postoperatively, suggesting that systemic therapy is

necessary to improve cure rates. Neoadjuvant therapy (NAT) is a

form of cancer treatment and refers to systemic therapy given

before surgery, including neoadjuvant chemotherapy,

chemoradiotherapy, targeted therapy, and immunotherapy.

However, the technical definition of NAT usually refers

exclusively to neoadjuvant chemotherapy and is distinguished

from adjuvant chemotherapy after surgery. NAT (6) reduces the

rate of distant disease recurrence by taking advantage of the

damaged lymphatics and vasculature resulting from surgery,

thereby increasing local drug concentration. Effective antitumor

therapy can shrink the primary lesion and downstage the tumor
02
157
stage, reducing the need for extensive surgery leading to organ

preservation and improved quality of life. Moreover, patients are

generally in a better situation and less likely to experience acute

toxicity before surgery, and currently, receiving systemic therapy

is more well-tolerated. By observing the radiological and

pathological responses following NAT, tumor sensitivity to

chemotherapeutic drugs can be understood, which provides a

reference for the choice of the postoperative treatment regimen.

Effective NAT can minimize the proliferative capacity of tumors

at the time of surgery and reduce the risk of intraoperative

dissemination of cancer cells, and even a small proportion of

patients can experience major pathological response (MPR) and

complete pathological response (CPR) (7).

Lately, with the wide use of immune checkpoint inhibitors

(ICIs) such as anti-programmed death-ligand-1 (PD-L1) and

anti-programmed death-1 (PD-1) antibodies in advanced

NSCLC, patients have had significantly improved quality of

life and good prognosis, making immunotherapy (8–10) a new

option for the treatment of resectable and potentially resectable

NSCLC. In previous clinical studies, either single-agent ICI or

immune doublet combination NAT significantly led to higher

MPR and CPR rates and lower complication rates than

neoadjuvant chemotherapy (11, 12).

In an exciting phase II study of ICI with chemotherapy, the

MPR and CPR rates were 83% and 63%, respectively, with 90%

of patients who underwent resection achieving clinical stage

(13). Although the large-scale phase III study is still ongoing

from the results of the abovementioned phase II studies, patients

treated with neoadjuvant ICI and then surgery had a similar

adverse event as compared to chemotherapy combination but
frontiersin.org
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with better pathological remission (residual tumor cells in tumor

bed ≤10%) and improved quality of life (14).

In general, the higher the MPR/CPR rate, the better efficacy

of NAT (15, 16). If the pathological response information can be

evaluated before surgical resection, it will guide the type of

surgery. Therefore, developing noninvasive assessment response

models can help identify patients with good responses who may

benefit from local excision. Those who achieve CPR may benefit

from the watch-and-wait or nonsurgical strategies.

Imaging modalities such as computed tomography (CT),

magnetic resonance imaging (MRI), and positron emission

tomography (PET) have become routine in the clinical

management of patients with tumors such as lung cancer.

Lesions detected through these imaging modalities are

described and analyzed only based on simple qualitative (e.g.,

shape, location, spiculated lesion, and lobulation) and

quantitative (e.g., size, volume, density, signal, and

standardized uptake values) features. The radiological

diagnostic accuracy is closely related to the radiologists’

experience, with marked subjective differences. In 2012, Dutch

investigators (17) first proposed the concept of radiomics,

hypothesizing that the cellular and molecular heterogeneity of

tumor cells can be reflected by quantitative imaging

microheterogeneity. They also concluded that when extracted

with radiomics, these features can transform image data of

interest regions from medical imaging into quantitative data

through high-throughput algorithms. The general procedure of

radiomics is as follows: 1) Acquisition of medical imaging data;

2) Region of interest (ROI) segmentation and feature extraction;

3) Feature selection, model building, and validation; 4) Statistical

data analysis. Since then, the concept of radiomics has been

widely studied in the differentiation of benign and malignant

lesions (18), in the preoperative prediction of lymph node

metastasis in lung cancer (19), and in the assessment of the

mutational status of genes such as Epidermal Growth Factor

Receptor (EGFR) (20) and anaplastic lymphoma kinase (ALK)

(21). More radiomics studies include the prediction of treatment

effects and prognosis in cancer (22, 23) and even in non-

neoplastic diseases such as the early diagnosis of Alzheimer’s

disease (24) and the rapid radiological diagnosis of coronavirus

disease 2019 (COVID-19) pneumonia (25, 26).

With the development of computer software, computational

power has significantly improved, and in recent years, artificial

intelligence (AI) technology based on deep learning (DL)

algorithms has been vigorously developed and has gradually

begun to be applied in medical research. Currently, it is mainly

based on medical images using computer vision technology to

solve clinical tasks such as lesion segmentation and disease

classification (27–29). In the processing of medical images, the

most widely used DL network is the convolutional neural

network (CNN). A CNN is a computational method for

learning relevant features from image signal intensities
Frontiers in Oncology 03
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proposed based on the working principle of the human

nervous system. The ability to directly utilize high-dimensional

numerical information in images from a large enough number of

training data and identify image features with a high degree of

representativeness creates and selects a large amount of abstract

information at the hidden layer, which is defined as DL. DL

features can be used more comprehensively to accomplish

segmentation, classification, and other targeted tasks (30).

Building entirely new DL models requires large amounts of

annotated data to be used as training data; however, the sample

size of most radiological data is often limited. The method of

using a trained DL model on other data sets for a target data set

and for extracting the features of the target data set is called

transfer learning. Transfer learning offers the possibility of DL

for small samples of medical data. Many studies have confirmed

that this is an effective and superior way to conventional

machine learning (27, 31).

This study aims to extract radiomics features and DL

features from CT images of patients with NSCLC before NAT

with ICIs and after NAT with chemotherapy, then combine the

features with clinicopathological information of patients.

Combining clinicopathological feature signature and DL

feature signature that could predict pathological remission after

NAT with ICIs in NSCLC patients was done through feature

screening. Also, binary logistic regression analysis constructed a

prediction model integrating traditional radiomics feature labels,

DL feature labels, and clinicopathological information.

Finally, a nomogram was constructed to visualize the model,

achieving a precise assessment of pathological remission after

NAT with ICIs in NSCLC, thereby providing an adjuvant tool

for developing individualized treatment regimens for patients.
Materials and methods

Study participants

Clinicopathological information was retrospectively

collected from 83 patients with pathologically confirmed

NSCLC and treated with immunotherapy-based NAT between

1 March 2020 and 1 January 2022.

Inclusion criteria include patients with pathologically

diagnosed NSCLC through either image-guided biopsy or

bronchoscopy-directed biopsy; potentially operable stage Ib–III

NSCLC as per the 2017 Union for International Cancer Control

(UICC)/American Joint Committee on Cancer (AJCC) Eighth

Edition; no history of other tumors or other antitumor therapy;

patients who received immunotherapy-based NAT with planned

surgery; patients with at least 2 chest CT results available

performed within 2 weeks (up to a maximum of 1 month)

before immunotherapy-based NAT and 1 week (up to a

maximum of half a month) before surgery.
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Exclusion criteria include CT scans not done in our hospital

or outside the study timeline (n = 11); Surgical cases done

outside our hospital (n = 10).

Finally, the data of 62 patients were included in the study.

They then were randomly divided into the training group (for

the establishment of the radiomics label and model) and a

validation group (for the verification of the radiomics label

and model) at a ratio of 7:3 or 8:2.
Pathology

Preoperative pathological information
The preoperative pathology was mainly determined by lung

biopsy or bronchoscopy biopsy, and cases biopsied outside our

hospital were all reconfirmed by our pathologists.

Preoperative pathologic information included common

immunohistochemistry, genetic testing, and PD-L1 testing,

Ki67 (percentage), chromogranin A (CgA) (negative/positive),

Syn (negative/positive), p63 (strong/moderate/weak), cancer

embroyonic antigen (CEA) (negative/positive), thyroid

transcription factor 1 (TTF-1) (negative/positive), P40

(negative/positive), p53 (negative/positive), napsin-a (negative/

positive), cytokeratin 5/6 (CK5/6) (negative/positive),

cytokeratin 7 (CK7) (negative/positive), pan-cytokeratin (CK-

Pan) (strong/moderate/weak), ALK control X3/echinoderm

microtubule-associated protein-like 4 (EML4-ALK) (Ventana)

(negative/positive), gene mutation (negative/positive), PD-L1

(22c3)-Ventana (total positive score) (negative/positive).

Postoperative pathological information
The postoperative pathology was confirmed from surgical

resection samples after NAT immunotherapy, and the efficacy of

NAT in NSCLC was evaluated by the pathologists of our hospital

depending on tumor bed, lymph node tumor remission, and

residual disease according to an expert consensus issued by the

expert committee on lung cancer quality control at the National

Cancer Quality Control Center (NCQCC) with the following

criteria: MPR as viable tumor cell residual ≤10% from the

tumor bed, CPR as no viable tumor cells remaining in the

tumor bed and lymph nodes, and partial pathological response

(PPR) as >10% viable tumor cells remaining in the tumor

bed (14).

Collected postoperative pathology information, including

PPR, MPR, and CPR, was defined as a good and poor

pathological response (CPR, MPR) and poor pathological

response (PPR).
Patient clinical data

Clinical information was derived from the electronic medical

record and was cross-checked by two independent investigators.
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General clinical information collected includes age (years),

gender (men/women), smoking status (yes/no), tumor

differentiation grade (low/intermediate/well-differentiated),

tumor type (squamous/adenocarcinoma), T stage (stage I/II/

III/IV), N stage (stage I/II), clinical Tumor, Node, and

Metastasis (TNM) stage (stage Ib–III), smoking history (yes/

no), family history of tumor (yes/no), history of chronic

comorbities (yes/no), height (m), number of immunotherapy

cycles (two cycles/three cycles/four cycles), and immunodrugs

(domestic/imported).

Clinical information before and after treatment was also

collected, including body weight (kg), body mass index (kg/m2),

lactate dehydrogenase (high/low), albumin (g/L), C-reactive

protein (mg/L), white blood cells (109/L), percentage of

lymphocytes (%), tumor markers (normal/abnormal), thyroid

function (normal/abnormal), T helper/induced T cells (%), and

inhibitory T cells/cytotoxic T cells (%).
Processing of missing data

The filling method for missing data is called data

interpolation, which can be divided into the single filling and

multiple filling methods. The single imputation method only

yields one set of imputation results for an incomplete data set

and greatly impacts the data distribution; for example, the mean

filling method is to fill in missing values using the mean of all

available data. The multiple imputation method uses the existing

data of the incomplete data set to fill the missing value at any

time to generate multiple complete data sets.

Random forest-based chained equations with multiple

imputations (MICEforest, multiple imputations based on

forest by chained equations) enable the generation of multiple

groups of data with mean and variance that are all like the

original data set according to the method of random forest, with

imputation completed by comparing a selected group of data

with the smallest difference from the original data set.

Technically, any predictive model can be used for MICEforest.

This study deleted categories with missing values greater

than 25%, and MICEforest multiple interpolation methods were

used to fill the missing values. Category “thyroid function” was

also removed because of the large difference between the data

after filling and the original value.
Processing of clinicopathological
information

After deleting items with a lot of missing data and multiple

imputing items with a small amount of missing data, the final

remaining clinicopathological data used in this study were used

to compare the distribution of variables in the two groups of

good pathological response (GPR) vs. bad pathological response
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(BPR) using the R language program. The chi-square test was

used for categorical variables, the Wilcoxon rank and t-test were

used for continuous variables, and a p-value <0.05 was

considered statistically significant.
CT scan protocol

Patients were instructed to hold their breath after deep

inspiration and complete the scan with one breath-hold using

one of three CT scanners: Toshiba Aquilion ONE (Toshiba

Medical System Corporation, Japan), Siemens SOMATOM

Drive (Siemens Medical System Co., Ltd., Germany), and GE

Revolution (General Electric Medical System Co., Ltd., America)

with the scan ranging from at least the thoracic inlet to the level

of the costophrenic angle, including the whole lung. Scanning

parameters of different CT scanners are shown in Table 1.
Tumor segmentation

From the picture archiving and communication system

(PACS), the CT images of each patient containing at least a

lung window and mediastinal window were exported, and the

enhanced CT was also exported synchronously if it existed. All

cases were performed with the open-source software ITK‐SNAP

(version 3.8.0, http://www.itk-snap.org) in high-resolution lung

windows (window width 1,500–2,000 Hu, window position −450

to −600 Hu). In all CT images containing tumor lesions, the ROI

was manually outlined along the contour of the lesion layer by

layer to try to keep the ROI containing only the entire tumor and

does not contain other distinguishable tissues, such as air and

obvious blood vessels. If there is a simultaneously enhanced CT
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or PET, it will be compared layer by layer to make it as accurate

as possible. The final ROI is shown in Figure 1.
Radiomics conventional feature
extraction and model construction

The manually drawn ROI was used to extract the traditional

quantitative features of each patient using the Pyradiomics

package (version 3.0.1, https://pyradiomics.readthedocs.io) in

the Python program (version 3.6.13, https://www.python.org).

The extracted radiomics traditional features included first-order

features, two-dimensional (2D) shape features, 3D shape

features, gray-level size zone matrix (GLSZM) features, gray-

level co-occurrence matrix (GLCM) features, gray-level

dependence matrix (GLDM) features, gray-level run-length

matrix (GLRLM) features, and wavelet transform features. The

extracted traditional features of radiomics and the

clinicopathological information after deletion and imputation

according to whether they were acquired before neoadjuvant

immunotherapy or acquired after NAT were used to construct

models separately. CT images acquired before NAT were

extracted for radiomics; traditional quantitative features

named before_rad_data, together with clinicopathological

information that was available immediately before NAT, were

used to construct the model, which is referred to as

before_rad_cil. After 2–4 cycles of NAT, CT images obtained

before surgery were used to extract radiomics quantitative

features named after_rad_ data. Combined with the clinical

information after NAT, a model named after_ rad_cil

was constructed.

Before modeling, the data are transformed into structured

data with 0 mean 1 variance by standardization for subsequent

processing to eliminate the differences of different eigenvalues on
TABLE 1 Scanning parameters of the different CT scanners.

Toshiba Aquilion ONE Siemens SOMATOM Drive GE Revolution

tube current automatic tube current 80-350mA automatic tube current 80-350mA automatic tube current

tube voltage 120 kV 120 kV 120 kV

FOV 320.3 307 \

construction
algorithm

standard algorithm, lung algorithm and soft
tissue algorithm

standard algorithm, lung algorithm and soft
tissue algorithm

standard algorithm, lung algorithm and soft
tissue algorithm

slice thickness 1mm 1mm 1mm

slice separation 0.8mm 1mm 1mm

matrix 512×512 512×512 512×512

construction slice
separation

1mm 1mm 1

Construction slice
thickness

1mm 1mm 1

revolution speed \ \ 158.75mm/s

detector width \ \ 80mm
FOV, field of view.
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the scale. After data normalization, features were screened by the

Spearman correlation coefficient, and only one feature was

retained in features with a high correlation (correlation

coefficient >0.9).

For the filtered features, the least absolute shrinkage and

selection operator (LASSO) was used to select features to

construct the LASSO equation and calculate the feature weights,

respectively. These features with a feature coefficient >0 were

randomly divided into training and test sets in a ratio of 7:3 and

then modeled with one of eight machine learning algorithms:

support vector machine (SVM), k-nearest neighbor (KNN),

decision tree (DecisionTree), random forest (RandomForest),

extreme gradient boosting (XGBoost), multilayer perceptron

(MLP), extremely randomized trees (ExtraTrees), and light

gradient boosting machine (LightGBM), And to compare the

predictive accuracy of each model. The accuracy, area under the

curve (AUC), sensitivity, and specificity of 5-fold cross-validation

after random grouping were used as evaluation indexes. Finally,

the model results with the best prediction efficiency after 100

random groupings were selected to construct the pretreatment

radiomics features combined with the clinicopathological feature

label (before_rad_cil_signature) and the posttreatment radiomics

features combined with the clinicopathological feature label

(after_rad_cil_signature). The flow of the ROI delineation,

conventional feature extraction, data analysis, model building,

and comparison is shown in Figure 2.

Tools used in combined clinicopathological feature and

radiomics feature screening and model building were as
Frontiers in Oncology 06
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follows: Python program (version 3.6.13, https://www.python.

org/) and the packages of scikit-learn (version 1.0, https://scikit-

learn.org) and pandas (version 1.1.5, https://pandas.pydata.org).
Radiomics deep learning feature
extraction and model construction

Usually, training a DL model requires large amounts of

annotated data and an excellent performance hardware

platform. Due to this study’s limited sample size and hardware

platform, transfer learning and fine-tuning are used to overcome

this limitation. Transfer learning can transfer knowledge learned

from previous tasks to new tasks and avoid retraining new tasks

to improve the learning efficiency of new tasks. Fine-tuning is

usually used with transfer learning.

The pretrained model constructed by previous tasks is used

to learn the task data to avoid the large amounts of human,

computational, material, and financial resources required to

retrain the model while ensuring its effectiveness. The

pretrained model used in our study was resnet50, and the

model network was pretrained on Imagenet to determine all

network parameters through parameter adjustment

and optimization.

The CT images for fine-tuning and DL feature extraction in

this study were obtained by intercepting the tumor area at the

layer of the maximum ROI on the cross section. The steps of DL

feature extraction are shown in Figure 3: 1) Manually outline the
FIGURE 1

The final ROI. (A) Segmentation results of the cross section. (B) Segmentation results of the sagittal plane. (C) Three-dimensional (3D)
visualization effect of the tumor area. (D) Segmentation results of the coronal plane. ROI, region of interest.
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ROI layer by layer using ITK-SNAP software. 2) The CT 3D

image containing the ROI was automatically read using software

written by ourselves, identifying the level at which the largest

ROI was located in the cross section and clipping out the CT
Frontiers in Oncology 07
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image at which the tumor was located with a rectangular box. 3)

The cropped CT pictures were randomly split into training and

validation groups in an 8:2 ratio, fine-tuned using the pretrained

model resnet50. 4) Select the most accurate grouping model for
A B DC

FIGURE 2

Flowchart of radiomics analysis. (A) The ROI was manually segmented on CT images before and after neoadjuvant therapy. (B) Quantitative
features in the ROI were calculated, including features such as shape, texture, and wavelet filtering. (C) Combined clinicopathological features,
standardized processing of data, feature filtering, and model building. (D) To evaluate the predictive model efficacy, the evaluation indexes of
each model were compared to select the better performing model to construct the before_rad_cil_signature and after_rad_cil_signature.
*multiply.
FIGURE 3

Flowchart of deep learning feature extraction.
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DL feature extraction. 5) The output of DL features from the last

layer before the full connection layer is usually the most concise.

It is also the general DL feature selection layer in the industry.

Therefore, our study selected the data of the last layer before the

full connection layer, avgpool, as the DL features for subsequent

studies, with a total of 2,048 features. 6) Like the above steps, the

CT images obtained before and after NAT were separately

subjected to DL feature extraction.

According to the CT images obtained before NAT, the

extracted DL feature is named before_dl_data. According to

the CT images obtained before surgery after 2–4 cycles of NAT,

the DL feature is named after_dl_data.

Before modeling, the above data are converted into

structured data with 0 mean 1 variance by standardization for

subsequent processing. The data dimension is reduced to 62

dimensions by principal component analysis (PCA) after data

standardization. The data set after dimension reduction was

randomly divided into a training set and a test set in an 8:2 ratio.

Then, this was modeled with one of eight machine learning

algorithms: SVM, KNN, DecisionTree, RandomForest,

XGBoost, MLP, ExtraTrees, and LightGBM, And to compare

the predictive accuracy of each model. The accuracy, AUC,

sensitivity, and specificity of 5-fold cross-validation after

random grouping were used as evaluation indexes. Finally, the

model results with the best prediction efficiency after 100

random groupings were selected to construct the pretreatment

DL label (before_dl_signature) and the posttreatment DL

label (after_dl_signature).

Tools used in DL feature extraction and model building were

as follows: ITK‐SNAP (version 3.8.0, http://www.itk-snap.org),

Python program (version 3.6.13, https://www.python.org), and

packages: Pytorch (version 1.9.0, https://pytorch.org), scikit-

learn (version 1.0, https://scikit-learn.org), and pandas (version

1.1.5, https://pandas.pydata.org).
Combined model construction

After deletion and missing value processing, all previously

extracted radiomics traditional quantitative features, radiomics

DL features, and clinicopathological features were combined

into a 7,421-dimensional joint data set. Before modeling, the

joint data were transformed into structured data with 0 mean 1

variance by standardization to eliminate the scale difference of

different eigenvalues. After data normalization, features were

screened by the Spearman correlation coefficient, and only one

was retained in features with a high correlation (correlation

coefficient >0.9). LASSO further screens the selected features,

and the LASSO equation is constructed for the features with

feature coefficient >0, and the feature weights are calculated.

These features with feature coefficient >0 were randomly divided
Frontiers in Oncology 08
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into training and test sets in a ratio of 7:3. Then, these were

modeled with one of eight machine learning algorithms: SVM,

KNN, DecisionTree, RandomForest, XGBoost, MLP,

ExtraTrees, LightGBM, And to compare the predictive

accuracy of each model. The accuracy, AUC, sensitivity, and

specificity of 5-fold cross-validation after random grouping were

used as evaluation indexes. Finally, the model results with the

best prediction efficiency after 100 random groupings were

selected to construct the entire feature label (entire_signature).

Tools used in the entire feature screening and model

building were as follows: Python program (version 3.6.13,

https://www.python.org) and packages: scikit-learn (version

1.0, https://scikit-learn.org) and pandas (version 1.1.5, https://

pandas.pydata.org).
Nomogram construction

The nomogram provides a simple graphical presentation of a

clinical prediction model, allowing calculation of the probability of

a certain target event based on individualized information for the

patient. Its simple graphical interface promotes the wide

application of nomograms. Our study used previously

constructed before_rad_clinic_signature, before_dl_signature,

and clinical features screened by LASSO to construct a pre-

NAT nomogram (before_nomogram); before_rad_clinic_

signature, before_dl_signature, after_rad_clinic_signature,

after_dl_signature, and entire_signature were used to jointly

construct a posttreatment nomogram. The procedure of

nomogram construction is shown in Figure 4. Both nomograms

were based on logistic regression models by plotting calibration

curves to compare predicted vs. actual outcome events.

Tools used in nomogram construction were as follows: the R

program (version 3.6.1, https://www.r-project.org) based on the

RMS package (version 5.1-3.1).
Results

Clinicopathological information
of patients

The categories , totals , and missing numbers of

clinicopathological information collected are shown in Tables 2

and 3. The categories with missing values greater than 30% were

CK, Caudal-related homeobox transcription factor-2 (CDX-2),

CEA, p53, CD56, CgA, Syn, p63, CK-Pan, Ki67, CK7, PD-L1

expression, Driving genemutation, p40, Napsin-A, CK5/6, TTF-1,

after_assisted/induced T, after_inhibited/cytotoxic T,

before_inhibited/cytotoxic T, and before_assisted/induced T.

These categories were deleted.
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Missing data processing

After deleting the categories with missing values greater than

25%, the items and missing ratios that needed MICEforest for

multiple interpolations are before_CRP, 24.19%; before_thyroid

function, 19.35%; after_thyroid function, 11.29%; after_CRP,

6.45%; differentiation, 6.45%; after tumor markers, 4.84%; and

before_LDH, 4.84%. Because the difference between the thyroid
Frontiers in Oncology 09
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function data using multiple interpolations and the original data

is more than 10%, they were deleted. The items and proportions

of missing data that were ultimately included in the study and

subjected to multiple imputations using the MICEforest method

are shown in Figure 5. After multiple imputations, the mean

difference between imputed and raw data was between 0.01%

and 3%. Figure 5 shows the fit of the imputed data to the

original data.
TABLE 2 Categories with missing values, numbers missing, and proportions of missingness in the clinicopathological data collected.

Category Numbers missing Proportions of missingness Category Numbers missing Proportions of
missingness

CK 60 0.968 Napsin-A 36 0.581

CDX-2 60 0.968 CK5/6 36 0.581

CEA 59 0.952 TTF-1 31 0.5

P53 57 0.919 after _ assisted / induced T 30 0.484

CD56 50 0.806 after _ inhibited / cytotoxic T 30 0.484

CgA 50 0.806 before _ inhibited / cytotoxic
T

28 0.452

Syn 49 0.79 before _ assisted / induced T 28 0.452

P63 48 0.774 before_CRP 15 0.242

CK-Pan 45 0.726 before_ thyroid function 12 0.194

Ki67 43 0.694 after_ thyroid function 7 0.113

CK7 43 0.694 after_CRP 4 0.065

PD-L1 expression 40 0.645 differentiation 4 0.065

Driving gene
mutation

39 0.629 after tumor markers 3 0.048

P40 36 0.581 before_LDH 3 0.048
FIGURE 4

Nomogram construction flowchart.
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General information on
clinical pathology

The distribution of clinicopathological information used for

data analysis in this study was not statistically significant

between GPR and BPR except for gender, as shown in Table 4.
Radiomics conventional features and
model building

Before_rad_data extraction and before_rad_cil
model construction

Python Pyradiomics package extracted radiomics

Conventional quantitative features from CT images, extracting
Frontiers in Oncology 10
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1,648 features per patient. Features extracted from all CT images

before NAT were constructed as the before_rad_data. There

were 197 first-order features (First order), 13 2D shape features,

231 3D shape features, 242 GLCM features, 84 GLDM features,

96 GLRLM features, 96 GLSZM features, and 688 wavelet

transform features in the before_rad_data.

Clinicopathological characteristics before neoadjuvant

treatment are shown in Table 5, used with the before_rad_data,

and jointly constructed into a 2D array with a feature number of

1,667. After screening by the Spearman correlation coefficient, 238

features related to the efficacy of neoadjuvant immunotherapy were

obtained. The screened features were randomly divided into

training and test groups in a 7:3 ratio and further screened by the

LASSO regressionmodel. At Lamba = 0.1048 (Figure 6), six features

highly correlated with the efficacy of neoadjuvant immunotherapy
BA

FIGURE 5

(A) Categories of missing values and ratios that need interpolation. (B) The fit of the imputed data to the original data.
TABLE 3 Categories with no missing values in the collected clinicopathological data.

Category Numbers
missing

Proportions of
missingness Category

Numbers
missing

Proportions of
missingness

before tumor markers 0 0 before_ albumin 0 0

after_L% 0 0 before_BMI 0 0

after_WBC 0 0 before_ weight 0 0

after_ albumin 0 0 height 0 0

after_LDH 0 0 chronic history 0 0

after_ weight 0 0 gender 0 0

after_BMI 0 0 smoking status 0 0

number of immunotherapy
cycles

0 0 Evaluation of
postoperative

0 0

clinical TNM stage 0 0

family history of tumor 0 0 N stage 0 0

before_L% 0 0 T stage 0 0

before_WBC 0 0 tumor type 0 0

Classification of immunodrugs 0 0 age 0 0
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TABLE 4 General information of clinicopathological information.

Category Sub-classification Total number BPR GPR p-value Test methods

62 23 39

gender Women 11 (17.7%) 8 ( 34.8%) 3 ( 7.7%) 0.019 chi-square test

Men 51 (82.3%) 15 ( 65.2%) 36 ( 92.3%)

age(year) 58.5 (54.2-64.0) 58.0 (53.0-62.0) 59.0 (56.0-64.5) 0.321 Wilcoxon signed rank test

Type of tumor adenocarcinoma 18 (29.0%) 10 ( 43.5%) 8 ( 20.5%) 0.102 chi-square test

squamous 44 (71.0%) 13 ( 56.5%) 31 ( 79.5%)

differentiation intermediate 24 (38.7%) 12 ( 52.2%) 12 ( 30.8%) 0.226 chi-square test

low 16 (25.8%) 4 ( 17.4%) 12 ( 30.8%)

well 22 (35.5%) 7 ( 30.4%) 15 ( 38.5%)

T stage III stage 16 (25.8%) 5 ( 21.7%) 11 ( 28.2%) 0.847 chi-square test

II stage 26 (41.9%) 10 ( 43.5%) 16 ( 41.0%)

IV stage 16 (25.8%) 7 ( 30.4%) 9 ( 23.1%)

I stage 4 ( 6.5%) 1 ( 4.3%) 3 ( 7.7%)

N stage 0 stage 16 (25.8%) 7 ( 30.4%) 9 ( 23.1%) 0.615 chi-square test

II stage 32 (51.6%) 10 ( 43.5%) 22 ( 56.4%)

I stage 14 (22.6%) 6 ( 26.1%) 8 ( 20.5%)

clinical stages I/II stage 14 (22.6%) 6 ( 26.1%) 8 ( 20.5%) 0.721 chi-square test

IIIA stage 34 (54.8%) 13 ( 56.5%) 21 ( 53.8%)

IIIB stage 14 (22.6%) 4 ( 17.4%) 10 ( 25.6%)

smoking history No 17 (27.4%) 9 ( 39.1%) 8 ( 20.5%) 0.196 chi-square test

Yes 45 (72.6%) 14 ( 60.9%) 31 ( 79.5%)

chronic history No 48 (77.4%) 16 ( 69.6%) 32 ( 82.1%) 0.411 chi-square test

Yes 14 (22.6%) 7 ( 30.4%) 7 ( 17.9%)

height (m) 1.7 (1.6-1.7) 1.6 (1.6-1.7) 1.7 (1.6-1.7) 0.088 Wilcoxon signed rank test

before weight(kg) 61.2 (56.0-69.6) 60.0 (53.5-65.8) 64.0 (57.0-70.5) 0.117 Wilcoxon signed rank test

before_BMI(kg/m2) 22.6 (21.1-24.2) 22.6 (20.8-23.7) 22.7 (21.1-24.5) 0.6 Wilcoxon signed rank test

before_LDH(U/L) 175.1 (150.8-191.4) 178.5 (165.9-189.0) 175.0 (150.0-192.8) 0.925 Wilcoxon signed rank test

Before_albumin(g/L) 39.3 (37.2-41.6) 38.9 (36.9-41.5) 39.5 (37.3-41.5) 0.62 Wilcoxon signed rank test

before_CRP(mg/L) 9.5 (2.3-21.9) 7.0 (2.0-16.4) 10.4 (3.1-24.0) 0.166 Wilcoxon signed rank test

before_WBC(10^9/L) 6.7 (5.1-7.7) 5.7 (4.7-6.8) 7.0 (5.4-7.8) 0.022 Wilcoxon signed rank test

Before_lymphocyte percentage(%) 0.2 (0.2-0.3) 0.3 (0.2-0.3) 0.2 (0.2-0.3) 0.16 Wilcoxon signed rank test

Before_tumor markers abnormal 34 (54.8%) 14 ( 60.9%) 20 ( 51.3%) 0.639 chi-square test

normal 28 (45.2%) 9 ( 39.1%) 19 ( 48.7%)

after_BMI(kg/m2) 23.2 (21.7-24.9) 22.8 (21.1-24.7) 23.6 (21.8-25.2) 0.336 Wilcoxon signed rank test

After_weight(kg) 64.0 (57.2-70.0) 60.0 (55.8-66.5) 65.5 (58.5-71.2) 0.085 Wilcoxon signed rank test

after_LDH(U/L) 199.2 (170.0-224.3) 204.0 (176.2-221.2) 193.0 (166.7-223.8) 0.359 Wilcoxon signed rank test

After_albumin(g/L) 40.0 (38.9-42.5) 41.4 (39.0-42.7) 40.0 (38.8-42.1) 0.517 Wilcoxon signed rank test

after_CRP(mg/L) 3.1 (2.2-5.7) 4.2 (2.1-6.6) 2.9 (2.3-5.2) 0.503 Wilcoxon signed rank test

after_WBC(109/L) 4.7 (3.9-5.6) 4.7 (4.0-5.3) 4.6 (4.0-5.8) 0.793 Wilcoxon signed rank test

after_lymphocyte percentage(%) 0.3 (0.2-0.4) 0.3 (0.2-0.4) 0.3 (0.3-0.4) 0.431 Wilcoxon signed rank test

after_tumor markers abnormal 13 (21.0%) 7 ( 30.4%) 6 ( 15.4%) 0.279 chi-square test

normal 49 (79.0%) 16 ( 69.6%) 33 ( 84.6%)

number of immunotherapy cycles two cycles 5 ( 8.1%) 2 ( 8.7%) 3 ( 7.7%) 0.982 chi-square test

three cycles 54 (87.1%) 20 ( 87.0%) 34 ( 87.2%)

four cycles 3 ( 4.8%) 1 ( 4.3%) 2 ( 5.1%)

Classification of immunodrugs domestic 28 (45.2%) 11 ( 47.8%) 17 ( 43.6%) 0.952 chi-square test

imported 34 (54.8%) 12 ( 52.2%) 22 ( 56.4%)

history of tumor no 60 (96.8%) 23 (100.0%) 37 ( 94.9%) 0.719 chi-square test

yes 2 ( 3.2%) 0 ( 0.0%) 2 ( 5.1%)
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(four radiomics traditional features and two clinical features) were

obtained, and the selected six features were combined into one label

using a generalized linear model, and the label score was calculated

for each patient. The label score is calculated as follows: label score =

0.633104796735994 - 0.014906 * original_shape_Flatness +

0.004334 * wavelet-HHL_firstorder_Skewness - 0.037030 *

wavelet-HLH_firstorder_Skewness + 0.052433 * wavelet-

LLL_glcm_Correlation - 0.017086 * gender + 0.014231 * N_stage.

The six features screened by LASSO regression are randomly

divided into a training group and a test group according to the

7:3 ratio. Then, eight common machine learning algorithms are

used to model. The accuracy of the model obtained by 100

random grouping modeling is shown in Figure 7 and Table 6.

Three of the eight models (SVM, KNN, ExtraTrees) had a

maximum accuracy of 1. The mean accuracy of all models was

0.708–0.599.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 7 and Table 7. The

best model was Extratrees. The accuracy, AUC, sensitivity, and

specificity in both training and test sets were 1. So, Extratrees

model data were selected to build the before_rad_cil_signature

for subsequent research.
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After_rad_data extraction and after_rad_cil
model construction

The extraction method for the after_rad_data was consistent

with the before_rad_data, and the data for extracting

quantitative features were derived from CT images of all

patients after NAT. Finally, the resulting quantitative feature

categories and numbers are consistent with the before_rad_data.

Clinicopathological characteristics after neoadjuvant

treatment are shown in Table 8, fused with the after_rad_data

and jointly constructed into a 2D array with a feature number of

1,658. After screening by the Spearman correlation coefficient, 237

features related to the efficacy of neoadjuvant immunotherapy

were obtained. The screened features were randomly divided into

training and testing groups in a 7:3 ratio, further screened by the

LASSO regression model. At Lamba = 0.06866 (Figure 8), nine

features highly correlated with the efficacy of neoadjuvant

immunotherapy (seven radiomics traditional features and two

clinical features) were obtained. The selected nine features were

combined into one label using a generalized linear model, and the

label score was calculated for each patient. The label score is

calculated as follows: Label score = 0.6110867308836403 +

0.012900 * exponential_firstorder_Skewness - 0.150077 *
TABLE 5 Clinicopathological information converged with the before_rad_data.

Gender (men/women) Age (years) Tumor type (squamous /
adenocarcinoma)

Differentiation grade (low/intermediate/well
differentiated)

smoking history (yes / no) history of tumor (yes / no) chronic history (yes / no) beforeweight(kg)

before_LDH(U/L) before albumin(g/L) before_CRP(mg/L) before_WBC(10^9/L)

T stage(I/II/III/IVstage) N stage(I/II stage) Clinical TNM stage(IB-III stage) before tumor markers (normal / abnormal)

before_BMI(kg/m2) before_ percentage of lymphocytes
(%)

height(m)
B CA

FIGURE 6

Regression feature screening. (A) Feature selection plot for the LASSO regression, which was adjusted by a super parameter (Lamba), to achieve
the purpose of screening the optimal features. The vertical dashed line indicates that the corresponding optimal Lamba value when obtaining
the minimum deviation value is Lamba = 0.1048. (B) The convergence graph of characteristic coefficients for feature selection by cross-
validation. Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of six best features
selected. (C) Features and weights of LASSO regression screening. The six features screened by LASSO were “original_shape_Flatness,”
“wavelet-HHL_firstorder_Skewness,” “wavelet-HLH_firstorder_Skewness,” “wavelet-LLL_glcm_Correlation,” “gender,” and “N_stage”.
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exponential_glrlm_RunEntropy + 0.015404 * log-sigma-5-0-mm-

3D_fi r s t o rd e r_Kur t o s i s + 0 . 033240 * l o ga r i t hm

_firstorder_Skewness - 0.003723 * original_shape_Elongation -

0.027763 * original_shape_Flatness - 0.006209 * wavelet-

LLH_glcm_ClusterShade - 0.025090 * after_CRP + 0.022022 *

after_percentage of lymphocytes.

The nine features screened by LASSO regression were

randomly divided into a training group and a testing group

according to the ratio of 7:3. Then, eight common machine

learning algorithms are used to model. The accuracy of the

model obtained by 100 random grouping modeling is shown in
Frontiers in Oncology 13
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Figure 9 and Table 9. One of the eight models (MLP) had a

maximum accuracy of 1. The maximum accuracy of the other

models ranged from 0.846 to 0.923. The mean accuracy of all

models was 0.602–0.682.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 9 and Table 10. The

best model was XGBoost. The accuracy, AUC, sensitivity, and

specificity in the training set were 1 and in the testing set were

0.923, 0.9, 0.7, and 1, respectively. So, XGBoost model data were

se l ec ted to bu i ld the a f t e r_rad_c i l_s igna ture for

subsequent research.
TABLE 6 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.668 0.708 0.599 0.631 0.667 0.621 0.664 0.686

25 % quantile accuracy 0.615 0.615 0.538 0.538 0.615 0.538 0.615 0.615

50% quantile accuracy 0.692 0.692 0.615 0.615 0.692 0.615 0.692 0.692

75% quantile accuracy 0.769 0.769 0.692 0.692 0.769 0.692 0.769 0.769

Maximum accuracy 1 1 0.846 0.923 1 0.846 0.923 0.923
frontiers
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FIGURE 7

(A) Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of
the accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test
set in the Extratrees model. (D) Confusion matrix for the Extratrees model.
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TABLE 8 Clinicopathological information converged with the before_rad_data.

After_BMI(Kg/m2) After_weight
(kg)

After_LDH(U/L) After_albumin(g/L)

after_CRP(mg/L) after_WBC(10^9/L) After_ percentage of lymphocytes
(%)

After_ tumor markers (normal /
abnormal)

number of immunotherapy cycles (two cycles / three cycles / four
cycles)

Classification of immunodrugs (domestic / imported)
Frontiers in Oncology
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FIGURE 8

Regression feature screening. (A) Feature selection plot for the LASSO regression, which was adjusted by a super parameter (Lamba), to achieve the
purpose of screening the optimal features. The vertical dashed line indicates that the corresponding optimal Lamba value when obtaining the
minimum deviation value is Lamba = 0.06866. (B) The convergence graph of characteristic coefficients for feature selection by cross-validation.
Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of nine best features selected. (C)
Twelve features and weights of LASSO regression screening. The nine features screened were “exponential_firstorder_Skewness,”
“exponential_glrlm_RunEntropy,” “log-sigma-5-0-mm-3D_firstorder_Kurtosis,” “logarithm_firstorder_Skewness,” “original_shape_Elongation,”
“original_shape_Flatness,” “wavelet-LLH_glcm_ClusterShade,” “after_CRP,” and “after_percentage of lymphocytes”.
TABLE 7 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.878 0.962 0.897 0.95 train

SVM 0.923 1 1 1 test

KNN 0.776 0.863 0.828 0.7 train

KNN 0.923 0.95 0.9 1 test

DecisionTree 1 1 1 1 train

DecisionTree 0.846 0.9 0.8 1 test

RandomForest 0.980 0.997 0.966 1 train

RandomForest 0.846 0.883 0.8 1 test

ExtraTrees 1 1 1 1 train

ExtraTrees 1 1 1 1 test

XGBoost 1 1 1 1 train

XGBoost 0.692 0.9 0.7 1 test

LightGBM 0.776 0.803 0.862 0.7 train

LightGBM 0.692 0.833 1 0.667 test

MLP 0.755 0.916 0.931 0.75 train

MLP 0.923 0.833 1 0.667 test
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Radiomics deep learning model building

Before_dl model building
The resnet50 DL model after fine-tuning was used to extract

features, obtaining 2,048-dimensional DL features from all CT

images obtained before NAT by intercepting the lung window

images at the maximum level of the tumor in the cross section.

The 62-dimensional data set was obtained by PCA

dimensionality reduction and randomly divided into training

and testing groups according to the ratio of 8:2. Then, eight

common machine learning algorithms were used to model. The
Frontiers in Oncology 15
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accuracy of the model obtained by 100 random grouping

modeling is shown in Figure 10 and Table 11. One of the eight

models (DecisionTree) had a maximum accuracy of 0.923. The

mean accuracy of all models was 0.469–0.629.

In the 100 random groupings, the performances of the best

grouping in each model were shown in Figure 10 and Table 12.

The best model was DecisionTree. The accuracy, AUC,

sensitivity, and specificity in the training set were 1 and in the

testing set were 0.923, 0.9, 1, and 1. So, DecisionTree model data

were selected to build the before_dl_signature for

subsequent research.
B
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FIGURE 9

(A) Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of
the accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test
set in the XGBoost model. (D) Confusion matrix for the XGBoost model.
TABLE 9 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

Model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.682 0.602 0.611 0.627 0.637 0.645 0.675 0.68

25 % quantile accuracy 0.616 0.538 0.538 0.538 0.538 0.538 0.615 0.615

50% quantile accuracy 0.692 0.615 0.615 0.615 0.615 0.615 0.692 0.692

75% quantile accuracy 0.769 0.692 0.692 0.692 0.692 0.712 0.769 0.769

Maximum accuracy 0.923 0.923 0.846 0.923 0.923 0.923 0.923 1
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TABLE 10 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.796 0.928 0.828 0.9 train

SVM 0.923 0.967 0.9 1 test

KNN 0.776 0.8 0.793 0.75 train

KNN 0.923 0.967 0.8 1 test

DecisionTree 1 1 1 1 train

DecisionTree 0.846 0.783 0.9 1 test

RandomForest 0.980 0.999 0.966 1 train

RandomForest 0.769 0.833 0.5 1 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.692 0.8 0.5 1 test

XGBoost 1 1 1 1 train

XGBoost 0.923 0.9 0.7 1 test

LightGBM 0.816 0.872 0.862 0.85 train

LightGBM 0.846 0.833 1 0.667 test

MLP 0.714 0.910 0.862 0.9 train

MLP 0.769 1 1 1 test
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FIGURE 10

(A) Each model’s accuracy distribution was randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of the
accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test set in
the DecisionTree model. (D) Confusion matrix for the DecisionTree model.
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After_dl model building
The resnet50 DL model after fine-tuning was used to extract

features, obtaining 2,048-dimensional DL features from all CT

images obtained after NAT by intercepting the lung window

images at the maximum level of the tumor in the cross section.

The 62-dimensional data set was obtained by PCA dimensionality

reduction and randomly divided into training and testing groups

according to the ratio of 8:2. Then, eight common machine

learning algorithms were used to model. The accuracy of the

model obtained by 100 random grouping modeling is shown in

Figure 11 and Table 13. Three of the eight models (DecisionTree,

XGBoost, and LightGBM) had a maximum accuracy of 0.923. The

mean accuracy of all models was 0.509–0.603.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 11 and Table 14. The

best model was DecisionTree. The accuracy, AUC, sensitivity, and

specificity in the training set were 1 and in the testing set were

0.923, 0.833, 1, and 1. So, DecisionTree model data were selected

to build the after_dl_signature for subsequent research.
Frontiers in Oncology 17
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Entire model

All previously extracted radiomics traditional quantitative

features, radiomics DL features, and clinicopathological

features after deletion and missing value processing were

combined into a 7,421-dimensional joint data set. The

combined data set obtained 4,266 characteristics related to

the efficacy of immune NAT after standardization and

Spearman correlation coefficient screening. The screened

features were randomly divided into training and test groups

in a 7:3 ratio, which was further screened by the LASSO

regression model. At Lamba = 0.0596 (Figure 12), 20 features

highly correlated with the efficacy of immune NAT (six radiomics

traditional features, 11 DL features, and three clinical features) were

obtained, and the selected 20 features were combined into one label

using generalized linear model, and the label score was calculated

for each patient. The label score is calculated as follows: Label score

= 0.6143861851029497 + 0.003364 * exponential_gldm

_DependenceEntropy_before - 0.045913 * wavelet-
TABLE 11 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.629 0.492 0.599 0.489 0.469 0.511 0.515 0.472

25 % quantile accuracy 0.538 0.462 0.462 0.385 0.385 0.462 0.462 0.385

50% quantile accuracy 0.615 0.462 0.615 0.462 0.462 0.538 0.538 0.462

75% quantile accuracy 0.692 0.538 0.692 0.615 0.538 0.615 0.615 0.538

Maximum accuracy 0.846 0.769 0.923 0.846 0.692 0.692 0.692 0.769
frontiers
TABLE 12 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.673 0.113 0.968 0.059 train

SVM 0.615 0.375 0.5 0.75 test

KNN 0.694 0.659 0.871 0.5 train

KNN 0.385 0.263 1 0 test

DecisionTree 1 1 1 1 train

DecisionTree 0.923 0.9 1 1 test

RandomForest 1 1 1 1 train

RandomForest 0.385 0.425 0.5 0.75 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.231 0.063 1 0 test

XGBoost 1 1 1 1 train

XGBoost 0.308 0.35 0.5 0.75 test

LightGBM 1 1 1 1 train

LightGBM 0.615 0.2 1 0 test

MLP 0.939 0.996 0.968 1 train

MLP 0.462 0.325 0.125 1 test
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HLH_firstorder_Skewness_before - 0.008996 * wavelet-

HLH_glcm_Correlation_before + 0.058934 * wavelet-

LLL_glcm_Correlation_before + 0.028862 * square_

glszm_SmallAreaLowGrayLevelEmphasis_after - 0.001464 *

wavelet-LHL_glcm_ClusterShade_after - 0.051536 * gender +

0.002784 * age + 0.011369 * N_stage + 0.021636 * 642_before +

0.009017 * 61_after + 0.122782 * 80_after - 0.138473 *

199_after +0.021755 * 284_after + 0.036575 * 802_after -

0.008443 * 965_after + 0.038793 * 1508_after +0.034689 *

1538_after + 0.045343 * 1553_after + 0.000306 * 2030_after.
Frontiers in Oncology 18
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Note: “_before” represents the radiomics features

before treatment, and “_after” represents the radiomics

features after treatment. Naming is like “exponential_gldm_

dependenceenterprise_before” for radiomics traditional

features, and the naming is like “80_after” for DL features.

The 20 features screened by LASSO regression are randomly

divided into a training group and a testing group according to

the ratio of 7:3. Then, eight common machine learning

algorithms are used to model. The accuracy of the model

obtained by 100 random grouping modeling is shown in
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FIGURE 11

(A) Each model’s accuracy distribution was randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of the
accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test set in
the DecisionTree model. (D) Confusion matrix for the DecisionTree model.
TABLE 13 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.603 0.545 0.548 0.547 0.545 0.567 0.568 0.509

25 % quantile accuracy 0.538 0.462 0.462 0.462 0.462 0.462 0.462 0.462

50% quantile accuracy 0.615 0.538 0.538 0.538 0.538 0.538 0.538 0.538

75% quantile accuracy 0.692 0.615 0.615 0.615 0.615 0.635 0.635 0.615

Maximum accuracy 0.846 0.846 0.923 0.846 0.846 0.923 0.923 0.769
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Figure 13 and Table 15. Four of the eight models (SVM,

XGBoost, LightGBM, and MLP) had a maximum accuracy of

1. The mean accuracy of all models was 0.628–0.805.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 13 and Table 16.

The best model was SVM and XGBoost. The accuracy, AUC,

sensitivity, and specificity in both training and test sets were 1.

However, the average accuracy of model SVM in 100 random

grouping tests is higher. So, SVM model data were selected to

build the entire_signature for further research.
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Nomogram

Drawing and calibration of the
before_nomogram

To provide a simple graphical presentation of a clinical

prediction model, our study used previously constructed

before_rad_clinic_signature, before_dl_signature, and clinical

features screened by LASSO to construct a pre-NAT

nomogram (before_nomogram) . According to the

characteristics in Figure 14A, a patient’s corresponding
TABLE 14 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.837 0.017 1 0 train

SVM 0.769 0.733 0.6 1 test

KNN 0.735 0.769 0.793 0.65 train

KNN 0.385 0.25 1 NaN test

DecisionTree 1 1 1 1 train

DecisionTree 0.923 0.833 1 1 test

RandomForest 0.980 0.999 0.966 1 train

RandomForest 0.462 0.45 0.5 0.667 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.615 0.367 1 0 test

XGBoost 1 1 1 1 train

XGBoost 0.462 0.433 0.4 1 test

LightGBM 0.959 0.984 0.966 1 train

LightGBM 0.462 0.433 0.4 1 test

MLP 1 1 1 1 train

MLP 0.308 0.033 1 0 test
frontiersi
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FIGURE 12

Regression feature screening. (A) Feature selection plot for the LASSO regression, which was adjusted by a super parameter (Lamba) to achieve
the purpose of screening the optimal features. The vertical dashed line indicates that the corresponding optimal Lamba value when obtaining
the minimum deviation value is Lamba = 0.0596. (B) The convergence graph of characteristic coefficients for feature selection by cross-
validation. Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of 20 best
features selected.
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probability of GPR after treatment can be calculated. Table 17

shows the features in the before_nomogram and the

corresponding scores. Table 18 shows the GPR probability

c o r r e s pond i n g t o d i ff e r e n t t o t a l s c o r e s i n t h e

before_nomogram. Figure 14B shows that the probability of

GPR predicted by the nomogram after 1,000 repeated samplings

and the actual GPR is consistent.
Frontiers in Oncology 20
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Drawing and calibration of the
after_nomogram

In our s tudy , we used prev ious ly constructed

be fore_rad_c l in i c_s igna ture , be fore_d l_s igna ture ,

af ter_rad_cl inic_signature, af ter_dl_signature , and

entire_signature to jointly construct a posttreatment

nomogram (after_nomogram). According to the characteristics
B
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FIGURE 13

(A) Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of
the accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test
set in the SVM model. (D) Confusion matrix for the SVM model.
TABLE 15 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.801 0.732 0.628 0.714 0.714 0.723 0.702 0.805

25 % quantile accuracy 0.769 0.692 0.538 0.615 0.615 0.673 0.615 0.769

50% quantile accuracy 0.846 0.769 0.615 0.692 0.692 0.692 0.692 0.846

75% quantile accuracy 0.846 0.846 0.692 0.769 0.769 0.769 0.769 0.923

Maximum accuracy 1 0.923 0.923 0.923 0.923 1 1 1
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in Figure 15A, a patient’s corresponding probability of GPR after

treatment can be calculated. Table 19 shows the features in the

after_nomogram corresponding scores. Table 20 shows the GPR

probability to different total scores in the after_nomogram.

Figure 15B shows that the probability of GPR predicted by the

nomogram after 1,000 repeated samplings and the actual GPR

is consistent.
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Discussion

Lung cancer is still the leading cancer in the world and in China,

where NSCLC is the most common, with an incidence rate of about

85% (2, 3). Surgery is still the main treatment for early and locally

advanced NSCLC (I, II and IIIA, IIIB)(NCCN) (4, 5). However,

great progress has been made in recent years with the application of
BA

FIGURE 14

(A) before_nomogram.Locate on the before_rad_clinic_signature, before_dl_signature, gender, and N stage coordinate axis. Draw a straight line
perpendicular to the first points, calculate and sum the scores corresponding to each straight line, locate on the total points coordinate axis,
and draw a straight line perpendicular to the horizontal axis of the probability of GPR. The corresponding value is the probability of pathological
response to GPR in patients with non-small cell lung cancer after neoadjuvant immunotherapy. (B) Calibration curve corresponding to the
before_nomogram. The consistency between the probability of GPR predicted by the nomogram after 1,000 repeated samplings and the actual
GPR. The 45° red line represents the ideal prediction performance. The black dotted line and the solid green line represent the prediction
performance of the nomogram and the correction of the deviation of the nomogram, respectively. The closer the black dotted line is to the 45°
ideal red line, the higher the model’s prediction accuracy.
TABLE 16 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 1 1 1 1 train

SVM 1 1 1 1 test

KNN 0.816 0.872 0.821 0.810 train

KNN 0.846 0.977 0.909 1 test

DecisionTree 1 1 1 1 train

DecisionTree 0.846 0.705 0.909 1 test

RandomForest 1 1 1 1 train

RandomForest 0.923 1 1 1 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.923 0.932 0.909 1 test

XGBoost 1 1 1 1 train

XGBoost 1 1 1 1 test

LightGBM 0.898 0.927 0.929 0.857 train

LightGBM 1 1 1 1 test

MLP 0.918 0.986 0.929 0.952 train

MLP 1 1 1 1 test
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ICIs as NAT approach. Immunotherapy-based NAT (nivolumab

360 mg and platinum-containing chemotherapy, once every 3

weeks, for three cycles) has been included in the latest NCCN

guidelines(NCCN) (4, 5). Although PD-L1 and tumor mutation

burden (TMB) can indicate the effect of immunotherapy to some
Frontiers in Oncology 22
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extent (32), different types of immune cells in the tumor

microenvironment, such as CD8+ T-cell infiltration, usually

indicate that immunotherapy confers a good response and

prognosis (33).

The combination of different immune cells, such as CD3/CD8/

CD45RO combined with immune score (34), has a certain

suggestive effect on the efficacy of immunotherapy. However,

there is currently no reliable indicator to predict the exact

efficacy of immunotherapy-based NAT. The common endpoints

of clinical trials are progression-free survival (PFS) and overall

survival (OS). Although the pathological response can evaluate the

treatment benefit earlier than the traditional clinical trial

endpoints, the histopathological evaluation can only be

determined after the pathological results of surgical resection. CT

chest is a common diagnostic imaging modality of lung cancer.
TABLE 17 The features in the nomogram and the corresponding scores.

Before_rad_clinic_signature Points Before_dl_signature Points

0 0 0 0

0.2 20 1 38

0.3 30 gender Points

0.5 50 women 0

0.6 60 men 19

0.7 70 N stage Points

0.8 80 0 8

0.9 90 1 4

1 100 2 0
frontie
TABLE 18 GPR probability corresponding to different total scores in
the before_nomogram.

Total Points Probability of GPR

79 0.1

84 0.3

92 0.7

97 0.9
BA

FIGURE 15

(A) After_nomogram.Locate on the before_rad_clinic_signature, before_dl_signature, after_rad_clinic_signature, after_dl_signature, and
entire_signature coordinate axis. Draw a straight line perpendicular to the first points, calculate and sum the scores corresponding to each
straight line, locate on the total points coordinate axis, and draw a straight line perpendicular to the horizontal axis of the probability of GPR.
The corresponding value is the probability of pathological response to GPR in patients with non-small cell lung cancer after neoadjuvant
immunotherapy. (B) Calibration curve corresponding to after_nomogram. The consistency between the probability of GPR predicted by the
nomogram after 1,000 repeated samplings and the actual GPR. The 45° red line represents the ideal prediction performance. The black dotted
line and the solid green line represent the prediction performance of the nomogram and the correction of the deviation of the nomogram,
respectively. The closer the black dotted line is to the 45° ideal red line, the higher the model’s prediction accuracy.
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In contrast, another common efficacy evaluation standard is

RECIST 1.1, which is mainly based on the 2D evaluation of the

number and size of tumors shown on CT (35). From a

quantitative point of view, this method is basic and ignores a

large amount of information in medical images. Based on saving

diagnostic financial costs, radiomics uses high-throughput

technology to extract the conventional features and/or DL

features of medical images together with molecular biological

information such as genes, proteins, and tumor metabolism,

which is then transformed into quantitative features. Combined

with machine learning or/and DL, it can be used for disease

diagnosis, therapeutic efficacy prediction, and prognosis analysis

(22, 23, 25, 26).

Accurate prediction of treatment response is of great

significance for the stratification and selection of patients
Frontiers in Oncology 23
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benefiting from immunotherapy. Yang et al. (36) selected 88

radiomics features from the CT images of 92 patients with lung

cancer before immunotherapy and constructed a random forest

model. Combined with clinicopathological information, they

successfully predicted the patients who would benefit from ICI

treatment (the AUCs of the training and validation groups were

0.848 and 0.795, respectively). Similarly, Barabino et al. (37)

extracted the radiomics features of lung lesions from CT scans at

baseline and the first evaluation and calculated their changes by

absolute difference and relative reduction (Delta, D). After
feature screening and model construction, 27 delta features

were identified, which were able to distinguish the response to

NSCLC immunotherapy with statistically significant accuracy.

Moreover, it was found that the changes in the other nine

features were significantly correlated with false progression.

Another report by Shen et al. (38) predicted the effect of

immunotherapy in NSCLC patients through texture feature

extraction and texture analysis of lung enhanced CT before

treatment. The highest prediction efficiency was 88.2%

(sensitivity), 76.3% (specificity), and 81.9% accuracy. These

studies suggest that radiomics can help predict and select the

right NSCLC patient population for immunotherapy. Before

immunotherapy was widely used in the clinic, there have been

studies using radiomics to predict the pathological response after

concurrent neoadjuvant chemoradiotherapy. A study by
TABLE 19 The features in the nomogram and the corresponding scores.

Before_rad_clinic_signature Points After_rad_clinic_signature Points

0 0 0 0

0.2 19 0.1 7

0.3 28 0.2 13

0.5 47 0.3 20

0.6 56 0.4 27

0.7 66 0.5 33

0.8 75 0.6 40

0.9 85 0.7 47

1 94 0.8 53

0.9 60

1 67

after_dl_signature Points total_signature Points

0 0 0 0

1 59 0.1 10

before_dl_signature Points 0.2 20

0 0 0.3 30

1 53 0.4 40

0.5 50

0.6 60

0.7 70

0.8 80

0.9 90

1 100
frontie
TABLE 20 GPR probability corresponding to different total scores in
the after_nomogram.

Total Points Probability of GPR

160 0.1

180 0.3

205 0.7

225 0.9
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Coroller et al. (39) showed that both radiomics features of

primary tumors and lymph node phenotypic information

could predict pathological responses. Also, in another study

(40), they found that seven features could predict pathological

gross residual lesions (AUC >0.6, p < 0.05), in which one

indicator could predict pathological complete response (AUC

= 0.63, p = 0.01), and tumors with poor response to neoadjuvant

chemoradiotherapy were more likely to show well-

circumscribed (spherical nonproportional, AUC = 0.63, p =

0.009) and spiculated lesions (LoG 5 mm 3D-GLCM entropy,

AUC = 0.61, p = 0.03). At present, there is no relevant research

on radiomics that predicts the efficacy of neoadjuvant

immunotherapy. To explore the role of radiomics in

predicting the pathological remission of NSCLC after

neoadjuvant immunotherapy, this study extracted the

conventional radiological features and DL features from the

CT images of NSCLC patients before and after neoadjuvant

immunotherapy combined with clinicopathological information

to construct models that can predict the pathological remission

of NSCLC patients after immunotherapy-based NAT.

The before_rad_cil model was constructed after feature

screening. Four radiomics traditional features (“original_

shape_Flatness, ” “wavelet-HHL_firstorder_Skewness, ”

“wavelet-HLH_firstorder_Skewness, ” and “wavelet-

LLL_glcm_Correlation”) and two clinical features (“sex” and

“N stage”) were obtained. Eight common machine learning

algorithms model the selected features: SVM, KNN,

DecisionTree, RandomForest , ExtraTrees, XGBoost,

LightGBM, and MLP. After 100 random groupings of 5-fold

cross-validation, the average prediction accuracy of the

KNN model was the highest, 0.708. Conventional radiomics

features were extracted from the CT images of NSCLC

patients after immunotherapy-based NAT and combined with

the cl inicopathological information obtained after

immunotherapy-based NAT. The after_rad_cil model was

constructed. After feature screening, seven radiomics

traditional features (“exponential_firstorder_Skewness,”

“exponential_glrlm_RunEntropy,” “log-sigma-5-0-mm-

3D_firstorder_Kurtosis,” “logarithm_firstorder_Skewness,”

“original_shape_Elongation,” “original_shape_Flatness,” and

“wavelet-LLH_glcm_ClusterShade”) and two clinical features

(“after_CRP” and “after_percentage of lymphocytes”)

were obtained.

After the selected features were modeled and cross-verified

by eight common machine learning algorithms, the average

prediction accuracy of the SVM model was the highest (0.682).

After fine-tuning resnet50, the before_dl model extracted DL

features from the CT images of NSCLC patients before

immunotherapy-based NAT. The DL features only reflected

the relationship between features and outcomes without exact

physical meaning. Eight common machine learning algorithms
Frontiers in Oncology 24
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then modeled the features after dimensionality reduction by

PCA: SVM, KNN, DecisionTree, RandomForest, ExtraTrees,

XGBoost, LightGBM, and MLP. After 100 random groupings

of 5-fold cross-validation, the average prediction accuracy of the

SVM model was the highest, 0.629.

In the after_dl model constructed by the DL features

ex t rac t ed f rom the CT images o f pa t i en t s a f t e r

immunotherapy-based NAT like the before_dl model, the

average prediction accuracy of SVM was the highest (0.603).

The entire model was a prediction model constructed by

combining the conventional features of radiomics, DL features,

and clinicopathological features before and after NAT. After

being modeled by eight common machine learning algorithms

and 100 random groupings of 5-fold cross-validation, the

average prediction accuracy of the MLP model was the

highest, which was 0.805.

Nomograms can graphically describe biological information,

characteristics, and clinical variables as a statistical prediction

model and estimate the individualized risk according to the

characteristics of patients and diseases. It is a simple, easy-to-

understand, and user-friendly clinical decision-making tool (41)

and was widely used in individualized prognostic evaluation of

breast cancer (42), rectal cancer (43), prostate cancer (44),

glioma (45), and lung adenocarcinoma (46).

We combined prognostic variables obtained in the

before_rad_clinic model, gender, N stage, before_ rad_ clinic_

signature, and before_dl_signature, to construct the

before_nomogram, while the before_rad_clinic_signature,

b e f o r e_d l _ s i gna tu r e , a f t e r _ r ad_ c l i n i c _ s i gna tu r e ,

after_dl_signature, and entire_signature were used to construct

the after_nomogram. The calibration curve showed that the

nomogram before and after treatment had a good predictive

effect on the GPR.

Our results suggest that radiomics can predict the

pathological remission of NSCLC after immunotherapy-based

NAT. Similar to previous studies (19, 47–49), the prediction

efficiency of the entire model is higher than that of the single DL

model and the radiomics traditional features combined clinical

features model. CT images and clinicopathological information

obtained before NAT were constructed as the before_rad_cil

model. After classification using the KNN algorithm, the average

prediction accuracy was 0.708. Combining GPR-related clinical

variables was done to construct the before_nomogram. It shows

that clinicians can judge the probability of achieving GPR before

treatment in each patient who intends to receive

immunotherapy-based NAT.

The entire model had the highest predictive efficacy after

classification using the MLP algorithm with an average

pred ic t ive accuracy of 0 .805 , combined with the

be fore_rad_c l in i c_s igna ture , be fore_d l_s igna ture ,

after_rad_clinic_signature, and after_dl_signature to construct
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the after_nomogram, which can predict the probability that

patients are obtaining GPR after immunotherapy-based NAT

ahead of surgery. If the follow-up data show that patients who

achieved GPR after immunotherapy-based NAT have significant

survival benefits after surgery or not, reducing the scope of

surgery or avoiding surgical treatment altogether may have the

same survival benefits as patients with total resection or

extended resection.

Although the results are satisfactory, our study also has some

limitations. First, the sample size of this retrospective study is

limited, and the consistency test between observers was not

carried out. Although we used various methods for feature

selection and compared the prediction results of various

machine learning methods to select the best model, the limited

data set may lead to insufficient generalization of the model.

Therefore, in future research, we will strive to conduct a

multicenter study and aim to construct large samples with

diversified data sets to evaluate the proposed model and verify

the robustness and effectiveness of our model through

prospective studies.

Secondly, previous studies (50) have shown that

adenocarcinoma (ADC) and squamous cell carcinoma (SCC)

have different imaging phenotypes on CT scans: peripheral hair

glass shadows are more common in ADC, and SCC is more

likely to show necrosis. Different imaging phenotypes may lead

to different prediction performances. Due to the limited number

of cases in this study, the data sets of different histopathological

types (ADC and SCC) cannot be hierarchically modeled

and verified.

The model constructed by merging the two tumors may lead

to a decline in prediction efficiency. Therefore, larger data sets

should be used in future research, and the two histological

subtypes should be hierarchically modeled and verified. This

study only analyzed the predict ive effect of some

clinicopathological features, conventional radiomics features,

and DL features extracted from CT images before and after

immunotherapy-based NAT for NSCLC. Studies have shown

that the pathological characteristics (51) of patients, genes (52),

and protein expression (53) can also affect the prognosis. In

future studies, if we combine pathology, genomics, proteomics,

and comprehensive clinical information, it is expected to further

improve the prediction efficiency of the model. Finally, another

limitation of this study is manually sketching the ROI, in which

the operator may have different sketching regions, which is time-

consuming and laborious. Some studies (54, 55) have begun to

attempt to automatically sketch ROIs and automatically extract

conventional radiomics features and DL features to construct

end-to-end models (56) to complete the research objectives. In

case the constructed model has stable performance and accurate

efficacy, it may give patients a relatively accurate prediction

within a few minutes after obtaining patient-related information,

which is convenient for clinical application and makes precise

individualized treatment possible.
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Conclusion

CT-based radiomics has a good predictive ability for GPR in

NSCLC patients receiving immunotherapy-based NAT. Among

the radiomics features combined with the clinicopathological

information model, DL feature model, and the entire model, the

entire model had the highest prediction accuracy.
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Artificial intelligence
assists precision medicine
in cancer treatment
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Pengfei Rong1,2*, Wei Wang1,2*, Wei Li1,2* and Li Zhou1,2,3*

1Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha,
Hunan, China, 2Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital,
Central South University, Changsha, Hunan, China, 3Department of Pathology, The Xiangya Hospital
of Central South University, Changsha, Hunan, China
Cancer is a major medical problem worldwide. Due to its high heterogeneity,

the use of the same drugs or surgical methods in patients with the same tumor

may have different curative effects, leading to the need for more accurate

treatment methods for tumors and personalized treatments for patients. The

precise treatment of tumors is essential, which renders obtaining an in-depth

understanding of the changes that tumors undergo urgent, including changes

in their genes, proteins and cancer cell phenotypes, in order to develop

targeted treatment strategies for patients. Artificial intelligence (AI) based on

big data can extract the hidden patterns, important information, and

corresponding knowledge behind the enormous amount of data. For

example, the ML and deep learning of subsets of AI can be used to mine the

deep-level information in genomics, transcriptomics, proteomics, radiomics,

digital pathological images, and other data, which can make clinicians

synthetically and comprehensively understand tumors. In addition, AI can

find new biomarkers from data to assist tumor screening, detection,

diagnosis, treatment and prognosis prediction, so as to providing the best

treatment for individual patients and improving their clinical outcomes.

KEYWORDS

artificial intelligence, precision medicine, omics, cancer, medical imaging
Abbreviations: AI, artificial intelligence; ML, machine learning; DL, deep learning; PM, precision

medicine; DSS, decision support system; NGS, next-generation sequencing; WSI, whole slide imaging;

CADs, computer-aided diagnosis system; CT, computed tomography; MRI, magnetic resonance imaging;

CNN, convolutional neural networks; US, ultrasound; PET/CT, positron emission tomography/computed

tomography; DLR, deep learning radiomics; CGHub, Cancer Genomics Hub; TCGA, The Cancer Genome

Atlas; CCLE, Cancer Cell Line Encyclopedia; ICGC, International Cancer Genome Consortium; EGA,

European Genome-phenome Archive; COSMIC, Catalogue Of Somatic Mutations In Cancer; SomamiR,

Somatic mutations altering microRNA-ceRNA interactions; CTRP, Cancer Therapeutics Response Portal;

gCSI, The Genentech Cell Line Screening Initiative; GDSC, Genomics of Drug Sensitivity in Cancer; NCI,

National Cancer Institute; DepMap, Dependency Map; TCIA, The Cancer Immunome Database.
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GRAPHICAL ABSTRACT
Introduction

Cancer is a severe threat to human health with a high

mortality and a rising incidence rate (1). Several types of

cancer can be cured if they are diagnosed and treated early.

However, the treatment of cancer is not ideal at present. Cancer

mortality rates remain high and continue to rise, including for

prostate, colorectal, and cervical cancer (2). These tumors lack

effective screening and treatment methods, resulting in patients

not getting timely and effective treatment. Secondly, the

heterogeneity of tumors is high, which can create great

challenges in their treatment (3). Therefore, new diagnostic

and treatment methods that are tailored to individual patients

are needed. Precision medicine (PM) is a promising approach

that takes individual genetics, environment and lifestyle into

account and concentrates on clarifying, diagnosing and treating

diseases to create a customized treatment plan for patients

through obtaining multi-omics or multi-mode information

from individuals (4). Furthermore, artificial intelligence (AI)

uses computers or machines to carry out tasks by mimicking or

emulating human intelligence, which mainly includes machine

learning (ML) and deep learning (DL) (5). AI can process an

enormous amount of information to promote the brand-new
Frontiers in Oncology 02
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discovery of PM. AI has shown extraordinary potential in

processing, mining and analyzing data and can use the data to

develop different models to help achieve PM.

Tumors are generally caught sight of in the following two

situations: one is the screening of high-risk groups (6). The other

one is the discovery of tumors with clinical manifestations. After

the cancer is detected, patients will receive further examinations,

such as physical examination, imaging, pathology, and serum

tumor markers (6). Based on these results, tumors will be

accurately diagnosed, staged, and classified to help the patients

benefit from precision treatment. AI can play a part in tumor

prevention, screening, diagnosis, treatment, and prognosis

prediction (7–10). After AI is injected into the clinical process,

it will improve the detection rate of lesions and make the

screening method more effective. Secondly, AI can promote the

level of diagnosis by helping doctors distinguish between true and

false disease progression (7). Finally, AI can calculate the

advantages and disadvantages of each treatment scheme and

provide the best treatment for patients. In addition, a

framework diagram (Figure 1) is added to this article, which

shows a series of processes from the discovery of tumor patients to

the end of their diagnosis, treatment, and the changes that AI

can bring.
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With the development of next-generation sequencing (NGS)

technology, omics data, such as genomics, proteomics and

transcriptomics, have been accumulated (11). Meanwhile, the

massive growth and wide availability of patients’ clinical data

such as electronic medical records, clinical trial data, and

medical images have led to the era of “big data” (12). The best

analysis method is data analysis based on AI, since ML and DL

can extract the hidden patterns, important information, and

corresponding knowledge behind the data. Based on extracted

data, information about the disease is obtained to help clinical

analysis. For example, ML and DL can be used to analyze omics

data to establish models, generate biomarkers related to

diagnosis, classification, and prognosis, provide molecular

changes such as DNA, RNA and protein, predict drug efficacy

and therapeutic response, and develop targeted drugs (13).

Furthermore, as compared with single-omics, multi-omics

provides an opportunity to understand the information flow

behind a disease (14). Multi-omics integration is crucial to the

comprehensive understanding of complex biological processes.

Combined with the new longitudinal experimental design,

multi-omics can clarify the dynamic relationship between all

layers of omics, distinguish the key roles or interactions in

system exploitation or complicated phenotypes, clarify the

causal relationship and functional mechanisms of complicated

diseases, and promote the discovery of PM (15, 16). Quantitative

image analysis is a suitable candidate for PM and can assist PM

for cancer. ML and DL have been used for quantitatively

extracting image features to establish models for diagnosis,

monitoring, and predicting recurrence and metastasis,

biomarkers and prognosis (17–21). AI can integrate the above

data for comprehensive analysis of tumors for the development
Frontiers in Oncology 03
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of a clinical decision support system (DSS) (22). With the

continuous improvement of AI algorithms and the

improvement of computer software and hardware, AI will

mature and will be used more extensively in the medical field

(Figure 2) in the future. Therefore, PM for tumors will

great evolve.

In the present review, we first introduced the application of

AI in omics, and then in pathology and medical imaging, and

expanded on how these applications assist PM. Finally, we

described the challenges and future directions of AI assisted

PM for tumors.
AI-based big data assists PM
for cancer

Big data technology mainly includes data analysis, mining,

and sharing. It may play a revolutionary role in cancer diagnosis,

treatment, prevention, and prognosis, but transforming data into

available information to benefit patients is almost at a standstill

(23, 24). A major reason for this is that data analysis significantly

lags behind data generation (24). The reforms caused by “big

data” have affected nearly all aspects of tumor research. For

example, the technology can analyze data generated by NGS to

discover commonly mutated genes, abnormal gene expression,

and biomarkers in tumors for accurate diagnosis and prognosis

prediction or to determine the cause of disease and develop

targeted drugs for treatment (23, 24). The technology can

analyze features that humans can and cannot see in medical

images, and mine and filter these features to determine

information related to diagnosis, treatment, and prognosis (25,
FIGURE 1

Possible changes caused by AI injection into clinical practice.
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26). In addition, the technology can analyze patients’

demographic and clinical data, as well as outcome information

to predict the factors affecting the prognosis of cancer patients

(27). In addition, AI is used to analyze, mine and process tumor-

related data, build a health care provider platform based on a

significant quantity of tumor-related data, efficiently solve the

problem of difficult medical treatment for patients and reduce

the waste of unnecessary medical resources (28). Big data

reanalysis has been not been sufficiently taken advantage of so

far, but we cannot ignore its potential. It can analyze the data in

an existing database and provide new insights. For example,

Borziak et al. discovered the dedifferentiation markers of liver

cancer by using data from existing databases (29). The current

big data technology is mainly used in certain fields, such as

omics, pathological imaging and medical imaging. However, it

does not combine data from multiple fields for data analysis,

mining, and sharing, which leads to data not being

comprehensively utilized and not meeting clinicians’ and

patients’ needs. The challenges in the diagnosis, treatment and

monitoring of cancer can be overcome by integrating omics and

non-omics data. AI can play an important role in analyzing

high-dimensional data-sets with complexity and heterogeneity,

especially in multi-omics, intergroup methods and data

integration, thus setting forth the cancer molecular
Frontiers in Oncology 04
186
mechanism, and identifying new dynamic diagnostic and

prognostic biomarkers to provide accurate cancer care (30).

There are certain problems with the current data, such as

poor data quality, unstructured databases, inadequate analytics,

and lack of delivery (23, 31). Therefore, there is a need for a more

authoritative and reliable prospective database. In addition, a

longitudinal database is also needed to understand the cancer

dynamics of patients in the whole study care continuum (23).

Establishing a patient-centered collection of various data-sets

will be crucial in the future (32). On this basis, AI-based big data

analysis may automatically generate patient diagnosis,

personalized treatment plans, and key information for

prognostic prediction, thereby helping clinicians provide the

best treatment for their patients.
AI assists tumor PM in omics

A large amount of data resources (Table 1) generated by

NGS can provide key information about tumors. Combining the

information with AI will help clarify the etiology and

pathogenesis of tumors, and assist the accurate diagnosis, risk

stratification, and disease subtype analysis (30, 33). Moreover, AI

can identify new therapeutic targets, evaluate the sensitivity and
FIGURE 2

Application prospect of AI in tumor.
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resistance of anticancer drugs, develop new targeted drugs,

improve cancer immunotherapy, monitor the recurrence and

evolution of the tumor, discover new biomarkers, and predict

the prognosis and survival analysis of tumor patients (Figure 3)

(34–40). In a few words, AI enables PM for cancer patients,

bridging the distance between omics and the clinic. Since NGS

produces high-dimensional and complex data, NGS methods for

cancer diagnosis usually need higher-dimensional and deeper-

seated data coverage to enhance the possibility of detecting a
Frontiers in Oncology 05
187
small number of tumor cell mutations and improve the

sensitivity and accuracy of AI algorithms (41).
AI assists tumor PM in genomics

In recent years, genomics, which relies on nucleotide

sequences for data analysis, has become more closely

combined with clinical practice (30). The significant
FIGURE 3

The role of artificial intelligence based on omics database in tumor precision medicine.
TABLE 1 Comprehensive omics database resources for building AI models.

Name Main features Web link

CGHub Overall data repository; enormous data https://cghub.ucsc.edu/

TCGA Comprehensive database; enormous data https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga

CCLE Comprehensive database; enormous data https://sites.broadinstitute.org/ccle

EGA Overall data repository; enormous data https://ega-archive.org/

ICGC Comprehensive genomics data https://dcc.icgc.org/

DepMap High data quality; visualization https://depmap.org/portal/

SomamiR Correlation between cancer somatic mutation and miRNA https://compbio.uthsc.edu/SomamiR/

COSMIC largest and most comprehensive somatic mutation database; regularly-updated https://cancer.sanger.ac.uk/cosmic

MethyCancer integrated data of DNA methylation, cancer-related gene, mutation and cancer
information

http://methycancer.psych.ac.cn/

CTRP connecting sensitivity to cancer feature https://portals.broadinstitute.org/ctrp/

gCSI Large amount of transcriptomics data https://pharmacodb.pmgenomics.ca/datasets/4

GDSC Drug response data; genomics markers of drug sensitivity; update irregularly https://www.cancerrxgene.org/

NCI60 Large amount of drug data and genomics data https://discover.nci.nih.gov/cellminer/loadDownload.do
https://dtp.cancer.gov/databases_tools/bulk_data.htm

canSAR Comprehensive database; discovery drug https://cansarblack.icr.ac.uk/

cBioPortal Large amount of available data https://www.cbioportal.org/datasets

UCSC Synthetical genomics information https://genome.ucsc.edu/

dbNSFP Predictive data http://bib.oxfordjournals.org/

NONCODE database dedicated to non-coding RNAs http://www.noncode.org/

CSD The positive and negative training sets http://bib.oxfordjournals.org/

TCIA A great quantity of medical related image data sets https://www.tcia.at/home

MSKCC Cancer mutation databases http://www.cbioportal.org/

ARCHS4 comprehensive processed mRNA expression data https://maayanlab.cloud/archs4/
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accumulation of data has improved the understanding of cancer

vulnerability and has enabled us to increasingly anticipate

noticeable treatment effects for tumor patients (42). The use of

spatial and single-cell genomics may reconstruct the process of

tumorigenesis to facilitate a more comprehensive understanding

of tumor, decipher the unclear pathogenesis of human beings

and develop targeted drugs based on this mechanism (43–47).

The combination of ML and genomics data can assist the

diagnosis of cancer subtypes, discovering new markers and

drug targets, and understanding cancer-driving genes better,

which contributes to providing customized treatment for

patients (48). For example, Wang et al. developed a

compounded deep network model that can diagnose lung

cancer subtypes by mixing image-genomics data and can help

biomedical professionals determine the potential therapeutic

targets by the attention weights of the model (49). In addition,

Vanderbilt et al. developed and validated a brand-new approach

to identify DNA viruses from corresponding normal or tumor

NGS specimens and inquire about virus-tumor type relevance

without carrying out extra sequencing. Data on these viruses can

provide information for the diagnosis and care of tumor

patients. Their study illustrated the function of DNA viruses

in the tumor (50). Sudhakar et al. used cancer genomics data and

built a pan-cancer model to forecast and identify new driver

genes (51). The identification of driving genes can help

understand the carcinogenic mechanism and the design of

treatment strategies, which has an important biological and

clinical significance (52).
AI assists PM for tumors in
transcriptomics

Transcriptomics is a powerful means to evaluate all transcripts

produced during metabolism (30). Transcriptomics have expanded

our knowledge of cancer occurrence and development, tumor

microenvironment, and immune-oncology, and can directly

determine gene expression levels and analyze the activation of

related molecular pathways (53, 54). Transcriptomics is a bridge

between genomics and proteomics, mainly involving quantitative

reverse-transcription-polymerase chain reaction, microarrays and

NGS (RNA-sequencing) (55). Since RNA-sequencing has a higher

accuracy in measuring gene expression, it is considered the gold

standard for high-throughput gene expression screening (55, 56).

Through data mining or more complex mathematical approaches

using ML or DL, the features are extracted to facilitate tumor

screening and early diagnosis, discover new or previously unknown

cancer biomarkers and potential therapeutic targets, as well as drug

prioritization, and predict cancer drug sensitivity and prognosis

(53–55, 57–62). For example, Warnat-Herresthal et al. found that

ML-based transcriptomics can assist in the diagnosis of acute

myeloid leukemia (63). Moreover, Ben Azzouz et al. used an ML
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approach based on transcriptomics data to calculate triple-negative

breast cancer subtypes, in order to overcome the barrier of

heterogeneity in the treatment of the disease (64). Finally, some

ML-based transcriptomics have also been used in the development

of prognostic biomarkers for prostate cancer (65), the diagnosis of

colorectal cancer (66), and the prediction of immune response (67).
AI assists tumor PM in proteomics

Proteomics can provide comprehensive and quantitative

information about proteins in tissues, blood and cell samples

(68). Protein expression profiles generated by proteomics and

ML-based profile analysis can identify more specific and

sensitive protein biomarkers than other single-omics. These

biomarkers can diagnose cancer, predict prognosis (69), reveal

critical signaling pathways behind disease mechanisms (70, 71),

determine new therapeutic targets, evaluate drug therapy efficacy

and toxicity (72), and predict therapeutic responses, recurrence,

and metastasis (73, 74). Recently, Henry et al. proposed a

method of drug ranking using ML to predict drug response

using proteomics data, and prioritize drugs in order to identify

the most suitable drug for each patient (75). In addition,

Federica et al. built a clearer and more transparent DSS to

assist in diagnosing high-grade serous ovarian cancer (76).

Therefore, AI-based proteomics may play an important role in

the accurate diagnosis and treatment of tumors in the future.

Besides the widely used omics data mentioned above, other

omics data (metabolomics, immunomics and microbiome data)

are also used (77). For instance, disposing of metabolomics data

by AI can assist the diagnosis (78, 79), the of treatment response

evaluation (80–82), discovery of new biomarkers (83, 84), and

determination of patient tolerance (85) and cancer status

(invasive or non-invasive) (86). Moreover, the AI model based

on immunomics data can forecast the emergency immune

characteristics of tumor patients (87).
AI assists tumor PM in multi-omics

Although the current single-omics data can be used for

diagnosis, treatment and prediction, they cannot thoroughly and

systematically reflect the molecular changes of a tumor (88).

Therefore, it is necessary to integrate multi-omics data to

comprehensively understand the tumor information and its

dynamic development process to screen and accurately diagnose

patients, develop tailored treatment strategies, predict prognosis,

and monitor recurrence and metastasis (89–92). Some approaches

and algorithms of using AI to analyze multi-omics data

comprehensively include clustering, factorization, feature

transformation, networks-based means and feature extraction

(89). These approaches can be used for stratifying medicine,
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discovering biomarkers (93), pathway analysis, and drug reuse or

discovery (89, 94) (Table 2). For example, Ma et al. introduced a

new approach that can analyze multi-omics information and

related knowledge to reveal the complex relationship between

molecular features and clinical characteristics (114). In addition,

Wang et al. developed a molecular algorithm for early cancer

detection, which is used to confirm malignant cellular tumors

according to the spectrum of changes in single-cell copy numbers

based on doubtful cells in humoral, resulting in a well-defined

cancer diagnosis (115). Furthermore, Olivier B et al. have developed

an integrated framework of DL andML, which can use multi-omics

data to accurately predict survival and prognosis (95). Furthermore,

except for the above commonly used omics, studies have also

focused on linking radiomics with genomics and transcriptomics

for accurate diagnosis (116). A multi-task DL framework called

OmiEmbed, which can analyze and process several kinds of omics

data and simultaneously handle multiple tasks has recently

emerged. This disruptive technological breakthrough will

significantly promote the development of PM (117). The

application of AI to integrate multi-omics data is shown in Table 2.
AI in pathology assists the accurate
diagnosis of tumors

Pathological analysis is considered the gold standard of the

clinical diagnosis of tumors (118). However, the current shortage

of clinical pathologists and their reliance on subjective

consciousness for diagnosis leads to low repeatability and

unequal diagnostic levels of clinical pathologists, which is not

helpful for clinicians’ decision-making with regards to treatment

(119). Computational pathology has seen significant

developments from the use of improved AI algorithms and

computing power. With the use of image analysis of digital

pathology, ML and DL, AI has been used to evaluate whole slide

imaging (WSI) and produce computer-aided diagnosis systems

(CADs), as well as aid cancer prognosis prediction (120–124). At

present, the diagnostic ability of the AI-based diagnostic model

can be comparable to or even surpass that of experts (125). In

combination with human experts, the precision of diagnosis can

be even better. It also has the advantages of being less time-

consuming, and having a high efficiency and repeatability.

Therefore, an increasing number of AI models are being

developed to assist clinical pathologists and reduce their

workload (120). For example, Ho et al. proposed incorporating

AI models into the pathological workflow as the first reader, the

second reader, triage, and pre-screening (120, 126, 127).

Aiding diagnosis through ML and DL mainly includes three

steps: The first step includes data preprocessing, such as image

sharpening, masking and smoothing, image graying and color

normalization, data standardization, and data annotation. The

second step includes the division of nucleus/tissue. During the
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third step, models are established for training and verification,

diagnosis and prediction (128, 129). For example, the computer-

aided diagnosis and prognosis prediction model of WSI based on

hematoxylin and eosin staining, can screen, classify and grade

tumors (130), and identify micro-metastasis in lymph nodes

(25), and microsatellite instability (128). It can also predict the

changes at the molecular level (131), the risk of metastasis and

recurrence after surgical resection (132) and disease-specific

survival (133). Moreover, Armin et al. used a DL model based

on digital images of immunohistochemistry to calculate the risk

of mortality (134). The role of AI in the digital pathological

image is summarized in Figure 4.

Traditional ML methods analyze pathological tissue by

manually extracting mainly morphological, textural (135) and

spatial features (118). It is easier to understand and explain than

DL, and its training sample size is small, especially suitable for

the analysis of rare tumor subtypes with a limited sample size.

However, manually extracted features have the following

limitations (118): They are extracted in an unsupervised way

and have nothing to do with the subsequent WSI analysis tasks

(136). Only the surface features of the input image can be

learned, which is not enough to show the complex features of

WSI. It is exceptionally arduous to process multiple WSI images

at the same time and the processing speed is slow (137).

Compared with ML, DL can automatically extract the features

in the image for analysis and can also efficiently process a

considerable amount of data (129). The DL model has good

scalability (138), but it is easy to overfit, resulting in the low

generalization ability of the model. Furthermore, it is

characterized by low interpretability and cannot be trusted by

clinical pathologists (139). Recently, diagnostic models

combining various methods of traditional ML, DL have been

developed to integrate their advantages for accurate diagnosis

and prediction (129). For example, Sengupta et al. have proposed

a novel deep hybrid learning model based on nuclear

morphology for accurately diagnosing ovarian cancer (129). It

can be safely assumed that in the near future more high-

performance prediction models will be developed and enter

the clinic to assist clinical pathologists in accurate diagnosis

and prognosis prediction, consequently providing accurate and

personalized medical care for patients.
AI assists PM for tumors in medical
imaging

Imaging is one of the indispensable tools for screening,

diagnosis, treatment and follow-ups for several types of

tumors. At present, the performance of imaging examination

equipment such as thin-layer computed tomography (CT) and

multi-parameter magnetic resonance imaging (MRI), is

continuously improved, detecting more subtle lesions and
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TABLE 2 Application of AI in the Integration of Multi-omics.

Clinical application Data Model/Algorithm Performance References

cancer prognosis and survival
prediction

RNA-Seq, Methylation, and miRNA semi-supervised flexible hybrid machine-
learning framework

Not applicable Poirion, O.B.,
et al. (95)

breast cancer subtype
identification

mRNA expression, miRNA expression and DNA
methylation

deep learning fusion clustering framework 0.664 Shuangshuang,
L., et al. (91)

cancer susceptibility prediction copy number variations, miRNA expression, and
gene expression

multimodal convolutional autoencoder
model

0.9625 Karim, M.R.,
et al. (96)

identifying Neuroblastoma
subtypes

gene expression, copy number alterations,
Sequencing Quality Control project

deep learning 0.74 Zhang, L., et al.
(97)

predict the survival of patients
with lung cancer

TCGA unsupervised learning 0.99 Takahashi, S.,
et al. (90)

survival stratification of gastric
cancer

transcriptomics and epigenomics bidirectional deep neural networks 0.76 Xu, J.M., et al.
(98)

pan-cancer metastasis prediction RNA-Seq, microRNA sequencing, and DNA
methylation

deep learning 0.8885 Albaradei, S.,
et al. (92)

ovarian cancer subtypes
identification

mRNA-seq, miRNA-seq, copy number variation,
and the clinical information

deep learning 0.583 Guo, L. Y.,
et al. (99)

drug repurposing copy number alteration, DNA methylation, gene
expression, pharmacological characteristics for
cancer cell lines

deep learning 0.84 Wang, Y., et al.
(94)

predicting lung adenocarcinoma
prognostication

mRNA, miRNA, DNA methylation and copy
number variations

deep learning 0.65 Lee, T.-Y.,
et al. (100)

Diagnostic Classification of Lung
Cancer

mRNA expression, miRNA-seq data, and DNA
methylation data

deep transfer Learning 0.824 Zhu, R., et al.
(101)

predicting effective therapeutic
agents for breast cancer

copy number variations, miRNA, mutation,
RNA, protein expression and methylation

deep learning 0.94 Khan, D. and
S. Shedole
(102)

predicting survival prognosis for
glioma patients

transcription profile, miRNA expression,
somatic mutations, copy number variation,
DNA methylation, and protein expression

deep learning 0.990 Pan, X., et al.
(103)

Diagnostic classification of cancers mRNA expression, miRNA-seq, DNA
methylation data and clinical information

XGBoost 0.595-0.872 Ma, B., et al.
(104)

identify tumor molecular subtypes copy number, mRNA, miRNA, DNA
methylation and other omics data

consensus clustering and the Gaussian
Mixture model

Not applicable Yang, H., et al.
(105)

predicting outcome for patients
with hepatocellular carcinoma

DNA methylation and mRNA expression data unsupervised machine-learning Not applicable Huang, G. J.,
et al. (106)

predicting the Gleason score levels
of prostate cancer and the tumor
stage in breast cancer

gene expression, DNA methylation, and copy
number alteration

gene similarity network based on uniform
manifold approximation and projection and
convolutional neural networks

0.99 ElKarami, B.,
et al. (107)

patient classification, tumor grade
classification, cancer subtype
classification

mRNA expression, DNA methylation, and
microRNA expression data

Multi-Omics Graph cOnvolutional
NETworks

Not applicable Wang, T. X.,
et al. (108)

cancer prognosis prediction mRNA, miRNA, DNA methylation, and copy
number variation

denoising Autoencoder Not applicable Chai, H., et al.
(109)

cancer subtype classification gene expression, miRNA expression and DNA
methylation data

hierarchical integration deep flexible neural
forest framework

0.885 Xu, J., et al.
(110)

Prediction of prognosis of cancer single nucleotide polymorphism, copy number
variant, gene expression, and DNA methylation
data

deep learning 0.67-0.88 Park, C., et al.
(111)

tumor Stratification deoxyribonucleic acid methylation, messenger
ribonucleic acid expression data, and protein–
protein interactions

Network Embedding; supervised learning;
unsupervised clustering algorithm

0.91 Li, F., et al.
(112)

discovery of cancer subtypes mRNA expression, miRNA expression, DNA
methylation, and copy number alterations

end-to-end variational deep learning-based
clustering method; Variational Bayes

Not applicable Rong, Z., et al.
(113)
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producing increasingly complex data. However, this requires

more time and effort from radiologists to make a diagnosis,

increasing their workload. AI-based data analysis can effectively

process huge amounts of data, with the CADs model based on

medical images exhibiting high precision and standard (140–

142). Introducing AI into clinical practice will help radiologists

make diagnostic decisions quickly, accurately, and efficiently,

will help focus their energy on advanced decision-making, and

promoting accurate medical treatment and personalized

treatment for tumors (141, 143). The role of AI in medical

imaging is summarized in Figure 4.
AI assists radiologists in accurately
diagnosing tumors

AI has three main tasks in tumor imaging: Detecting,

characterizing and monitoring tumors (144). Detection refers

to the location of the region of interest in the image.

Characterization includes tumor diagnosis, and staging.

Monitoring refers to the monitoring of the changes in tumors

with time (144). The process of ML-assisted tumor detection and

diagnosis is as follows: Image data acquisition, image

preprocessing, segmentation of regions of interest, feature

selection, establishing the model and carrying out training,

verification and testing (145). Among them, feature selection is

the most important step, since it is most related to the model’s

performance (145). Moreover, DL can automatically extract the

feature from the image. Therefore, recent research has

increasingly focused on the DL to build “fusion” models for

the diagnosis of tumor lesions, including classification, grading

and staging, which have been proven to be effective (146–148).

For example, Chougrad et al. have built CADs based on deep

convolutional neural networks (CNN) to aid radiologists in

categorizing breast X-ray masses (149). Moreover, Misra et al.

have developed a highly robust DL model for categorizing

benign and malignant neoplastic lesions of the breast. The

model can improve the accuracy of breast cancer classification
Frontiers in Oncology 09
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by correcting patients whose traditional methods are

misclassified (150). Overall, these models can make

radiologists more effective in detecting and diagnosing tumors

faster, and will likely be popularized and applied to clinical

medical treatment soon.
AI assists PM for tumors diagnosed
via medical imaging

The choice of treatment depends on the outcome of the

diagnosis. For example, if the detected lesion is benign, it can

reduce unnecessary surgical resection and other treatments, and

provide more targeted medical management for patients. In

addition, the use of radiation imaging, a non-invasive diagnostic

method, can protect patients from the discomfort caused by

biopsy and avoid the risk of implant metastasis in pathological

biopsy (151). Moreover, preoperative evaluation of tumor

grading prediction using radiology can help select more

appropriate treatment options for patients and avoid

unnecessary surgery, thereby reducing the patient’s medical

burden and avoiding excessive medical treatment (152, 153).

In addition to assisting in accurate diagnosis, AI can also

play a significant role in prognosis prediction and treatment of

patients. It can predict patient viability based on imaging

features and determine the level of treatment needed to

achieve optimal survival. The prediction of recurrence,

metastasis, surgical margins and therapeutic responses can be

used to formulate an optimal therapeutic strategy for individual

patients (21, 26).

Accurately identifying and evaluating lesion before an

operation can help create appropriate treatment plans for

patients and avoid unnecessary treatment measures such as

surgery, postoperative radiotherapy, and chemotherapy, which

is beneficial to both patients and doctors. For instance, Zhao

et al. built a neoplasm grade forecast model of pre-operative G1/

2 assessment of nonfunctional pancreatic neuroendocrine

tumors by using radiomics to analyze the multi-slice helical
FIGURE 4

The role of artificial intelligence based on medical images (digital pathological image and medical imaging) in tumor precision medicine.
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CT images (152). In addition, Xie et al. used a CT-based

radiomics ML method to distinguish pancreatic mucinous

cystic neoplasm from atypical serous cystadenomas prior to

surgery (154). The classification and types of tumors are

different, and their treatment methods are inconsistent. For

example, according to the model established by Zhao and Xie,

if the preoperative prediction result is a high-risk or high-grade

tumor, it is necessary to strengthen the follow-up treatment,

such as postoperative neoadjuvant chemotherapy or

radiotherapy (152, 154). Depending on whether the lymph

node is metastatic or not, clinicians will choose different

treatment options for patients. Therefore, the detection of

lymph node metastasis is extremely important. For example,

Song et al. established and verified a radiomics nomogram based

on dynamic contrast-enhanced MRI, which can predict

metastasis of axillary lymph nodes in mastocarcinoma (155).

Similarly, Eresen et al. used the radiomics-derived model

established by ML to detect metastatic lymph nodes in

colorectal cancer patients (156). Predicting preoperative tumor

markers and imaging biomarkers can lead to better clinical

decision-making and help provide the best treatment for

patients. For example, Guo et al. developed LR and LR-

SVMSMOTE models based on CT radiomics to predict

thyroid cartilage invasion in certain cancers types, such as

hypopharyngeal squamous cell carcinoma and laryngeal

carcinoma (157). Similarly, Akbari et al. combined the

advanced mode analysis and ML method of multi-parameter

MRI to provide the prediction space map of tumor invasion and

early recurrence possibility to provide more targeted surgical

and radiotherapy strategies for tumor patients, aiming to

maximize the treatment effect while maintaining neurological

function (158).

The DL model based on one of the subsets of AI can assist

radiotherapy or oncology doctors in accurately outlining tumor

targets, reducing the time doctors take to manually segment

images as well as reducing the variation between observers (159–

163). The model can predict and verify the therapeutic dose, and

allows for the dose prescription to be changed in time to reduce

the impact on the surrounding normal tissue, prevent

unnecessary radiation, and reduce the occurrence of adverse

reactions (164, 165). The model can evaluate the efficacy of

radiotherapy and chemotherapy, as well as the therapeutic

response, so as to achieve better-personalized prescriptions for

patients (166–168). For example, Ermis ̧ et al. have used DL to

depict fully automatic brain resection cavity delineation in

patients with glioblastoma (169). Likewise, Zhou et al. have

developed and tested a three-dimensional DL model capable of

predicting the dosage distribution of three-dimensional volume

units to carry out intensity-modulated radiation therapy (170).

Establishing a dose distribution model prior to treatment helps

adjust the dose distribution in advance and reduce the

probability of complications from radiotherapy. ML and DL

can also assist in post-radiotherapy management, such as
Frontiers in Oncology 10
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distinguishing between the true and false progression of the

tumor, radiation necrosis and tumor recurrence, and promoting

clinical medical decision-making, thus improving PM (171–

174). In addition, the image-based AI model can also assist

radiologists in treatment evaluation, including predicting the

response of individual cancer patients to chemotherapy or

immunotherapy, and monitoring recurrence and metastasis

(175–177). Several radiomics-based ML and DL models can

predict patient prognosis, such as recrudesce-free and

progression-free survival, survival rate, mortality, surgical

results, postoperative metastasis and recurrence. According to

the prediction results of the model, the corresponding

processing is carried out to create a customized treatment

scheme for patients and improve the treatment effect and later

quality of life. For example, patients with lower overall survival

prediction need more intensive treatment. Patients with poor

surgical results may want to consider changing the surgical

method or choosing non-surgical treatment. Patients with a

higher risk of tumor recurrence and metastasis should continue

to receive neoadjuvant radiotherapy and chemotherapy (21, 26,

178–180).
Current challenges and future
prospects

Although AI is expected to help improve a series of clinical

applications against cancer, it does have some challenges

and limitations.

One limitation is the lack of standards and imbalance in the

data used to build the model (181, 182). These disordered data

will lead to the low robustness of the model and be unfit for

constructing a DL model with high generalization and precision

(129). For example, medical imaging data is generated under

different parameters for different devices (5). Digital pathological

images are produced by staining with different dyes. The non-

standard operation of pathological specimen collection will also

affect the quality of pathological images (122). Irregularities in

data collection lead to bias. Omics data are also noisy and

heterogeneous (183). These data sets, which are generated by

different technologies and standards limit the promotion and

generalization of AI models, thus limiting their application in

clinical practice. In addition, the sample size of training samples

and verification samples used to establish the AI model is small,

which can easily cause the overfitting of the model (120). Finally,

integrating various types of data, such as genomics,

transcriptomics, proteomics, metabolomics, immunomics,

electronic health records, clinical medical records, pathology

and medical images, wil l help evaluate the tumor

comprehensively and develop the best treatment plan for

patients (77, 184, 185). Therefore, it is necessary to establish

an extensive comprehensive standardized database. However,
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many types of data have a multi-scale nature, which makes the

mechanical connection between data elusive. The biological

knowledge of connecting all these variables in a single model

is limited, so many data variables will be omitted from the model

development process (186). Recently, some studies have

combined dynamic modeling and ML to promote the

integration of mathematics and clinical oncology. This method

can integrate multiple types of data for personalized prediction

to assist PM (187). More in-depth research to promote the

combination of mechanical modeling and ML approaches is

required in the future, so that mathematical oncology can be

introduced into clinics. Building deep fusion models such as

multi-modality DL is the primary method to develop AI models

that can effectively integrate multimodal data information.

However , the current method mainly focuses on

representation fusion (feature- and decision-level fusion). The

main challenge of this method is that the data is highly

dimensional, noisy, heterogeneous, and has a small sample

size, and there will be data loss during processing (91, 96, 188,

189). Here are some methods to address these barriers: T-

distributed stochastic neighborhood embedding, autoencoder,

random forest deep feature selection, a stacked autoencoder,

gradient descent method, multi-view factorization autoencoder,

co-expression network analysis, and regulation techniques (88,

91, 114, 190–193).

In addition, data from patients are governed by privacy laws

(194). The lack of supervision of these data may lead to

breaching patient privacy rules; therefore, appropriate

intervention and the improvement of laws and regulations are

required. Certainly, studies have focused on solving the privacy

problem with regards to patient data. Under the same

performance, the privacy vulnerability is reduced by

vocabulary selection means (194). At the same time, fusing

these data should comply with the principles of medical ethics.

Another limitation is that AI algorithms have been regarded

as “black boxes” (139), since the process of their output results is

unknown and unexplained, which makes clinicians have low

trust in AI and a low willingness to introduce it into the clinical

workflow (181). Developing a knowledge-embedded DL model

for multi-dimensional data fusion is a hopeful means for this

problem (195). An increasing number of studies on AI

interpretability and transparency are being conducted. The

research aims to make AI transparent and interpretable so that

its results can be convincing and easy to introduce into the

clinical (128). Traditional ML and DL have their advantages and

disadvantages, prompting more research on hybrid learning

methods. The current research results show that the hybrid

learning model exhibits a better performance, better

interpretability, higher transparency and more accurate

prediction (129, 148). Although AI has shown the ability to

surpass people, since it cannot produce 100% correct results,

doctors’ participation is still required for the final diagnosis and

treatment decisions (183). Future research will focus on
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improving the interpretability and performance of AI, because

it is an important step for AI to realize clinical application (31).

AI model may be necessary to carry out clinical experiments

similar to clinical drug trials because when AI models are

initially applied to clinical practice, unexpected clinical

conditions will inevitably occur. Only through continuous

practice can we better find problems and solve them to

improve AI models. However, as AI differs from drugs, its

clinical trial plan should also be distinguished from drug

clinical trials.

AI can be deployed before, during, and after diagnosis, which

respectively stands for cancer prevention, screening, diagnosis, and

treatment. For example, before diagnosis, AI can be combined with

gene detection, endoscopic examination, and other technology to

predict the risk of disease occurrence earlier and carry out risk

management for patients to reduce the possibility of disease

occurrence (196). Augmented or virtual reality can simulate

experiences to improve patient compliance (165). During

diagnosis, AI can roughly ask patients for relevant information

and process it. Secondly, AI can analyze medical image, blood

biochemistry, and other clinical overall data to automatically

generate a diagnosis report and a variety of feasible as well as

optimal treatment methods. Furthermore, after diagnosis, AI can

assist clinicians cut down the damage and maximizing the benefits

for patients in surgery, radiotherapy, and chemotherapy. The

deployment of AI in clinical practice will improve the efficiency

of clinicians, reduce the possibility of clinical errors, improve the

medical status in areas with low medical levels, and reduce

unnecessary procedures, interventions, and medical costs. In a

word, patients and doctors will benefit from AI to achieve a win-

win situation.

Most people believe that AI cannot replace doctors (7). AI is an

assistant in clinical practice, so the final decision must be made by

doctors; the responsibility should also be borne by doctors.

However, the clinician cannot control AI because it can make

self-development and its development process illegible. Therefore,

doctors should not be fully responsible for AI errors. Despite that,

when using AI, clinicians should not lose their ability to doubt AI to

make accurate diagnoses and treatments and develops the doctor-

patient relationship in a sound direction.
Conclusion

AI has shown promising results in certain fields of oncology,

including tumor screening, detection, diagnosis, treatment, and

prognosis prediction. With the progress of AI, the improvement

of computer performance, and the explosive growth of various

data, new learning methods, such as the hybrid learning method,

will continue to emerge, further improving the overall

performance of the model, such as efficient data analysis and

accurate prediction. The recent model generated by the ML and

DL that can analyze various data sets will also improve the
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prospects of PM. In conclusion, AI-assisted PM can help detect,

diagnose and treat cancer early, as well as assist in the selection

of the best treatment scheme, consequently improving the

prognosis of patients and improving their treatment results.
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between focal-type autoimmune
pancreatitis and pancreatic
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Objectives: The purpose of this study was to develop and validate an CT-based

radiomics nomogram for the preoperative differentiation of focal-type

autoimmune pancreatitis from pancreatic ductal adenocarcinoma.

Methods: 96 patients with focal-type autoimmune pancreatitis and pancreatic

ductal adenocarcinoma have been enrolled in the study (32 and 64 cases

respectively). All cases have been confirmed by imaging, clinical follow-up

and/or pathology. The imaging data were considered as: 70% training cohort

and 30% test cohort. Pancreatic lesions have been manually delineated by two

radiologists and image segmentation was performed to extract radiomic features

from the CT images. Independent-sample T tests and LASSO regression were

used for feature selection. The training cohort was classified using a variety of

machine learning-based classifiers, and 5-fold cross-validation has been

performed. The classification performance was evaluated using the test

cohort. Multivariate logistic regression analysis was then used to develop a

radiomics nomogram model, containing the CT findings and Rad-Score.

Calibration curves have been plotted showing the agreement between the

predicted and actual probabilities of the radiomics nomogram model. Different

patients have been selected to test and evaluate the model prediction process.

Finally, receiver operating characteristic curves and decision curves were plotted,

and the radiomics nomogram model was compared with a single model to

visually assess its diagnostic ability.

Results: A total of 158 radiomics features were extracted from each image. 7

features were selected to construct the radiomics model, then a variety of

classifiers were used for classification and multinomial logistic regression (MLR)

was selected to be the optimal classifier. Combining CT findings with radiomics

model, a prediction model based on CT findings and radiomics was finally

obtained. The nomogram model showed a good sensitivity and specificity with

AUCs of 0.87 and 0.83 in training and test cohorts, respectively. The areas under

the curve and decision curve analysis showed that the radiomics nomogram

model may provide better diagnostic performance than the single model and
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achieve greater clinical net benefits than the CT finding model and radiomics

signature model individually.

Conclusions: The CT image-based radiomics nomogram model can accurately

distinguish between focal-type autoimmune pancreatitis and pancreatic ductal

adenocarcinoma patients and provide additional clinical benefits.
KEYWORDS

radiomics, focal-type autoimmune pancreatitis, pancreatic ductal adenocarcinoma,
differential, machine learning
1 Introduction

The concept of autoimmune pancreatitis (AIP) was first

proposed by Yoshida et al. in 1995 (1). As a rare chronic disease,

AIP usually presents as recurrent acute pancreatitis with abundant

pathological lymphoplasmacytic infiltration (2, 3). The current

study classifies AIP into two types: diffuse pancreatitis and focal

pancreatitis (4). Focal-type autoimmune pancreatitis (fAIP)

presents with segmental involvement of the pancreatic

parenchyma, accounting for approximately 28-41% of AIP cases

(5, 6). The imaging and clinical features of fAIP and pancreatic

ductal adenocarcinoma (PDAC) are very similar, including focal or

mass-like enlargement of the pancreas and obstructive jaundice,

making their differential diagnosis very difficult. In addition, the

treatment and prognosis of the two diseases vary widely. AIP is a

benign fibro-inflammatory disease that responds to steroid therapy

within one month in 90% of cases (7), whereas PDAC requires

surgical resection to cure. Studies have shown that nearly 16% of

cases of AIP are misdiagnosed as PDAC and undergo unnecessary

pancreatectomy, with approximately 5-21% of cases undergoing

pancreatectomy being ultimately confirmed as AIP. Currently, the

only reference standard for the differential diagnosis of fAIP from

PDAC is post-operative histology. The imaging examination is

lacking clear reference standards for definitive diagnosis (7).

Therefore, it is crucial to develop a non-invasive and effective

methods to distinguish fAIP from PDAC preoperatively, enabling

clinicians in the selection of appropriate treatment strategies.

As an emerging technology in the field of medical imaging,

radiomics has provided a large amount of quantitative high-

throughput information on radiographic images, helping to

describe the tumor heterogeneity and the corresponding

microenvironment (8). In this way, more predictive information

can be obtained from medical imaging data than just the traditional

visual interpretation (9), and provides a new way of approaching

clinical diagnosis. In the field of abdominal radiology, radiomics

techniques have been extensively studied, aiming to predict the

tumor grade, survival and response to treatment, and to distinguish

benign from malignant lesions. Therefore, it has the potential to be

a non-invasive diagnostic method with performance close to biopsy.
02200
Some studies have applied this technique to pancreatic diseases (10–

17), with a few studies reporting that the radiomic features extracted

from enhanced CT images have certain value in the identification of

AIP and PDAC. However, a more accurate integrative analysis of

radiomics nomogram models to discriminate between fAIP and

PDAC has not been fully developed.

Therefore, this study aims to develop and validate a non-

invasive, reproducible and personalized radiomics-based

nomogram method for preoperative identification of fAIP and

PDAC based on contrast-enhanced CT images.
2 Materials and methods

2.1 Patients

The patients with fAIP between January 2011 and January 2021

in our hospital have been considered for this study. These patients

were included according to the 2011 International Consensus

Diagnostic Criteria (ICDC). The exclusion criteria were as follows

(1): Contrast CT was not performed prior to steroid therapy or

surgery; (2) The mass involving the pancreas is greater than 1/2 the

length of the pancreas; (3) Significant autoimmune processes

outside the pancreas, including sclerosing cholangitis, renal

involvement, and retroperitoneal fibrosis, which may suggest

fAIP; (4) CT images have severe artifacts. Finally, 32 patients with

fAIP were included in our study (23 males, 9 females; mean ± SD:

60 ± 12.1 years; range: 43–82 years). Other patients from our

hospital with PDAC pathologically confirmed between January

2017 and January 2022 were also considered. The exclusion

criteria were as follows: (1) Received any type of treatment

(radiation, chemotherapy, or chemoradiation) prior to the

imaging study; (2) Enhanced CT scan was not performed within

1 month before surgery; (3) History of other malignancies; (4) CT

images have severe artifacts. Finally, 64 patients with PDAC were

included in our study (47 males, 17 females; mean ± SD: 60.1 ± 9.8

years; range: 40–88 years). Then, all patients were randomly divided

into training cohort and test cohort at ratio of 7:3 (Figure 1). The

clinical data were derived from medical records.
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2.2 CT image acquisition

All patients were scanned with a 64-slice multidetector CT

(SOMATOM, Definition AS+, Siemens, Forchheim, Germany). The

parameters involved were as follows: 120 kVp; effective 180 mA;

rotation time, 0.5 s; detector collimation, 32 × 1.2 mm; field of view,

350 × 350 mm; matrix, 512 × 512; section thickness, 5 mm; and

reconstruction section thickness, 1.5 mm. All patients were required

to fast for at least 6 hours and drink 500 to 800 mL water before the

examination. Contrast-enhanced CT images were obtained after

intravenous administration of nonionic contrast medium (Ultravist

300 mg I/mL; Bayer Schering Pharma AG, Berlin, Germany) at an

injection rate of 2.5-3.0 mL/s using a power injector (1.5 mL/kg).

The arterial phase images were scanned at 7 seconds after the

attenuation value of abdominal aorta reached 100 Hounsfield units.

The portal venous phase images were scanned at 40 seconds after

the completion of the arterial phase scanning.
Frontiers in Oncology 03201
2.3 CT findings evaluation

The pancreas lesions CT images for each patient were

independently evaluated and recorded in a blinded manner by

two experienced abdominal radiologists (10 and 20 years of

experience in the interpretation of abdominal radiology). If

there was a discrepancy between the two radiologists for some

cases, they would reach a consensus after reviewing the images

again and consulting. CT quantitative parameters were based on

the mean values recorded by two radiologists. Due to the different

size of the lesions, the slices of patients are also different, each

lesion is segmented into approximately 30 slices, each slice

1mm thick.

The CT images were analyzed, considering: (1) Location of

lesions (head-neck and body-tail of the pancreas); (2) The size of the

lesion (the largest diameter of the tumor in cross section) (3)

Capsule-like rim; (4) Pancreatic atrophy (5) Biliary wall

thickening(thickness≥3 mm); (6) Peripancreatic vascular

involvement (invasion of the common hepatic artery, splenic

artery and vein, gastroduodenal artery, superior mesenteric artery

and vein, portal vein; the standard is vascular occlusion, stenosis, or

more than half of the circumference is in contact with the tumor);

(7) Regional lymph node swelling (Lymph node short diameter≥1

cm); (8) Abrupt bile duct cut-off; (9) Pancreatic ductal cut-off; (10)

MPD dilatation upstream (Upstream PD expansion ≥ 5 mm).
2.4 Segmentation and feature extraction

The construction process of the radiomics nomogram model is

shown in Figure 2. The whole process includes: (A) Data acquisition

and segmentation; (B) Feature extraction; (C) Feature screening and

(D) Radiomics nomogram construction and evaluation.

2.4.1 Image segmentation, feature extraction,
and data preprocessing

We used the open-source software LIFEx (https://

www.lifexsoft.org/index.php) to manually draw the three-

dimensional volume of interest (VOI) of CT venous phase lesions.
A B DC

FIGURE 2

The research process including: (A) Data acquisition and segmentation; (B) Feature extraction; (C) Feature screening and (D) Radiomics nomogram
construction and evaluation.
FIGURE 1

Patient Screening Flowchart.
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Particular care was taken to avoid the common bile duct and blood

vessels while drawing the VOI. The segmentation process was

performed by two experienced radiologists (10 and 20 years of

experience in abdominal imaging), both of whom were blinded to

the clinicopathological information of the patients, except the tumor

location. The segmentation was finally completed with the consensus

of the two radiologists.

LIFEx software is an open infrastructure software platform that

flexibly supports common radiomics workflow tasks and is widely

used in radiomics analysis. In our study, some parameters of LIFEx

are as follows: In intensity discretization, nb of grep levels=400.0
Frontiers in Oncology 04202
and size of bins=10.0. In intensity Rescaling, min bound=-1000.0,

max bound=3000.0 (18). We used LIFEx to extract 158 quantitative

radiomics features. For each image, these features included six

categories: morphological features, intensity features, grey-level

cooccurrence matrix features (GLCM), grey-level distance zone-

based features (GLDM), grey-level run-length matrix features

(GLRLM), gray-level size zone matrix features (GLSZM),

neighborhood grey tone difference-based features (NGTDM). The

list of specific features we extracted is shown in Table 1. During data

collection and image screening, we performed a normalization to

ensure the reproducibility of our results.
TABLE 1 The extracted features using LIFEx toolbox.

Feature type Feature name

MORPHOLOGICAL MORPHOLOGICAL_Volume(IBSI : RNU0)

MORPHOLOGICAL_ApproximateVolume(IBSI : YEKZ)

MORPHOLOGICAL_voxelsCounting(IBSI : No)

MORPHOLOGICAL_Compactness1(IBSI : SKGS)

MORPHOLOGICAL_Compactness2(IBSI : BQWJ)

MORPHOLOGICAL_SphericalDisproportion(IBSI : KRCK)

MORPHOLOGICAL_Sphericity(IBSI : QCFX)

MORPHOLOGICAL_Asphericity(IBSI:25C7)

MORPHOLOGICAL_MaxValueCoordinates(IBSI : No)

MORPHOLOGICAL_CenterOfMass(IBSI : No)

MORPHOLOGICAL_WeightedCenterOfMass(IBSI : No)

MORPHOLOGICAL_Hoc(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusRoi(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusSphere(IBSI : No)

MORPHOLOGICAL_CentreOfMassShift(IBSI : KLMA)

MORPHOLOGICAL_NormalizedHocRadiusRoi(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusSphere(IBSI : No)

MORPHOLOGICAL_CentreOfMassShift(IBSI : KLMA)

MORPHOLOGICAL_NormalizedHocRadiusRoi(IBSI : No)

MORPHOLOGICAL_NormalizedHocRadiusSphere(IBSI : No)

INTENSITY INTENSITY-BASED_Mean(HU)IBSI:Q4LE

INTENSITY-BASED_Variance(HU)IBSI : ECT3

INTENSITY-BASED_Skewness(HU)IBSI : KE2A

INTENSITY-BASED_Kurtosis(HU)IBSI : IPH6

INTENSITY-BASED_Median(HU)IBSI:Y12H

INTENSITY-BASED_MinimumGreyLevel(HU)IBSI:1GSF

INTENSITY-BASED_10thPercentile(HU)IBSI : QG58

INTENSITY-BASED_25thPercentile(HU)IBSI : No

INTENSITY-BASED_50thPercentile(HU)IBSI:Y12H

INTENSITY-BASED_75thPercentile(HU)IBSI : No

(Continued)
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TABLE 1 Continued

Feature type Feature name

INTENSITY-BASED_90thPercentile(HU)IBSI:8DWT

INTENSITY-BASED_StandardDeviation(HU)IBSI : No

INTENSITY-BASED_MaximumGreyLevel(HU)IBSI:84IY

INTENSITY-BASED_InterquartileRange(HU)IBSI : SALO

INTENSITY-BASED_Range(HU)IBSI:2OJQ

INTENSITY-BASED_MeanAbsoluteDeviation(HU)IBSI:4FUA

INTENSITY-BASED_RobustMeanAbsoluteDeviation(HU)IBSI:1128

INTENSITY-BASED_MedianAbsoluteDeviation(HU)IBSI:N72L

INTENSITY-BASED_CoefficientOfVariation(HU)IBSI:7TET

INTENSITY-BASED_QuartileCoefficientOfDispersion(HU)IBSI:9S40

INTENSITY-BASED_AreaUnderCurveCsh(HU)IBSI : No

INTENSITY-BASED_Energy(HU)IBSI:N8CA

INTENSITY-BASED_RootMeanSquare(HU)IBSI:5ZWQ

INTENSITY-BASED_TotalLesionGlycolysis(HU)IBSI : No

INTENSITY-BASED_TotalCalciumScoreIBSI : No

LOCAL_INTENSITY_BASED_IntensityPeakDiscretizedVolumeSought(0.5mL)(mL)IBSI : No

LOCAL_INTENSITY_BASED_GlobalIntensityPeak(0.5mL)(HU)IBSI : No

LOCAL_INTENSITY_BASED_IntensityPeakDiscretizedVolumeSought(1mL)(mL)IBSI : No

LOCAL_INTENSITY_BASED_GlobalIntensityPeak(1mL)(HU)IBSI:0F91

LOCAL_INTENSITY_BASED_LocalIntensityPeak(HU)IBSI : VJGA

INTENSITY-BASED-RIM_Min(HU)IBSI : No

INTENSITY-BASED-RIM_Mean(HU)IBSI : No

INTENSITY-BASED-RIM_Stdev(HU)IBSI : No

INTENSITY-BASED-RIM_Max(HU)IBSI : No

INTENSITY-BASED-RIM_CountingVoxels(#vx)IBSI : No

INTENSITY-BASED-RIM_ApproximateVolume(mL)IBSI : No

INTENSITY-BASED-RIM_Sum(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogramMean(HU)IBSI:X6K6

INTENSITY-HISTOGRAM_IntensityHistogramVariance(HU)IBSI : CH89

INTENSITY-HISTOGRAM_IntensityHistogramSkewness(HU)IBSI:88K1

INTENSITY-HISTOGRAM_IntensityHistogramKurtosis(HU)IBSI:C3I7

INTENSITY-HISTOGRAM_IntensityHistogramMedian(HU)IBSI : WIFQ

INTENSITY-HISTOGRAM_IntensityHistogramMinimumGreyLevel(HU)IBSI:1PR8

INTENSITY-HISTOGRAM_IntensityHistogram10thPercentile(HU)IBSI : GPMT

INTENSITY-HISTOGRAM_IntensityHistogram25thPercentile(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogram50thPercentile(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogram75thPercentile(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogram90thPercentile(HU)IBSI : OZ0C

INTENSITY-HISTOGRAM_IntensityHistogramStandardDeviation(HU)IBSI : No

(Continued)
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TABLE 1 Continued

Feature type Feature name

INTENSITY-HISTOGRAM_IntensityHistogramMaximumGreyLevel(HU)IBSI:3NCY

INTENSITY-HISTOGRAM_IntensityHistogramMode(HU)IBSI : AMMC

INTENSITY-HISTOGRAM_IntensityHistogramInterquartileRange(HU)IBSI : WR0O

INTENSITY-HISTOGRAM_IntensityHistogramRange(HU)IBSI:5Z3W

INTENSITY-HISTOGRAM_IntensityHistogramMeanAbsoluteDeviation(HU)IBSI:D2ZX

INTENSITY-HISTOGRAM_IntensityHistogramRobustMeanAbsoluteDeviation(HU)IBSI : WRZB

INTENSITY-HISTOGRAM_IntensityHistogramMedianAbsoluteDeviation(HU)IBSI:4RNL

INTENSITY-HISTOGRAM_IntensityHistogramCoefficientOfVariation(HU)IBSI : CWYJ

INTENSITY-HISTOGRAM_IntensityHistogramQuartileCoefficientOfDispersion(HU)IBSI : SLWD

INTENSITY-HISTOGRAM_IntensityHistogramEntropyLog10(HU)IBSI : No

INTENSITY-HISTOGRAM_IntensityHistogramEntropyLog2(HU)IBSI : TLU2

INTENSITY-HISTOGRAM_AreaUnderCurveCsh(HU)IBSI : No

INTENSITY-HISTOGRAM_MaximumHistogramGradient(HU)IBSI:12CE

INTENSITY-HISTOGRAM_MaximumHistogramGradientGreyLevel(HU)IBSI:8E6O

INTENSITY-HISTOGRAM_MinimumHistogramGradient(HU)IBSI : VQB3

INTENSITY-HISTOGRAM_MinimumHistogramGradientGreyLevel(HU)IBSI : RHQZ

LOCAL_INTENSITY_HISTOGRAM_IntensityPeakDiscretizedVolumeSought(0.5mL)(mL)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_GlobalIntensityPeak(0.5mL)(HU)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_IntensityPeakDiscretizedVolumeSought(1mL)(mL)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_GlobalIntensityPeak(1mL)(HU)IBSI : No

LOCAL_INTENSITY_HISTOGRAM_LocalIntensityPeak(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Min(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Mean(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Stdev(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_Max(HU)IBSI : No

INTENSITY-HISTOGRAM-RIM_CountingVoxels(#vx)IBSI : No

INTENSITY-HISTOGRAM-RIM_ApproximateVolume(mL)IBSI : No

INTENSITY-HISTOGRAM-RIM_Sum(HU)IBSI : No

GLCM GLCM_JointMaximum(IBSI : GYBY)

GLCM_JointAverage(IBSI:60VM)

GLCM_JointVariance(IBSI : UR99)

GLCM_JointEntropyLog2(IBSI : TU9B)

GLCM_JointEntropyLog10(IBSI : No)

GLCM_DifferenceAverage(IBSI : TF7R)

GLCM_DifferenceVariance(IBSI:D3YU)

GLCM_DifferenceEntropy(IBSI : NTRS)

GLCM_SumAverage(IBSI : ZGXS)

GLCM_SumVariance(IBSI : OEEB)

GLCM_SumEntropy(IBSI:P6QZ)
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TABLE 1 Continued

Feature type Feature name

GLCM_AngularSecondMoment(IBSI:8ZQL)

GLCM_Contrast(IBSI : ACUI)

GLCM_Dissimilarity(IBSI:8S9J)

GLCM_InverseDifference(IBSI : IB1Z)

GLCM_NormalisedInverseDifference(IBSI : NDRX)

GLCM_InverseDifferenceMoment(IBSI : WF0Z)

GLCM_NormalisedInverseDifferenceMoment(IBSI:1QCO)

GLCM_InverseVariance(IBSI:E8JP)

GLCM_Correlation(IBSI : NI2N)

GLCM_Autocorrelation(IBSI : QWB0)

GLCM_ClusterTendency(IBSI : DG8W)

GLCM_ClusterShade(IBSI:7NFM)

GLCM_ClusterProminence(IBSI : AE86)

GLRLM GLRLM_ShortRunsEmphasis(IBSI:22OV)

GLRLM_LongRunsEmphasis(IBSI:W4KF)

GLRLM_LowGreyLevelRunEmphasis(IBSI:V3SW)

GLRLM_HighGreyLevelRunEmphasis(IBSI:G3QZ)

GLRLM_ShortRunLowGreyLevelEmphasis(IBSI : HTZT)

GLRLM_ShortRunHighGreyLevelEmphasis(IBSI : GD3A)

GLRLM_LongRunLowGreyLevelEmphasis(IBSI : IVPO)

GLRLM_LongRunHighGreyLevelEmphasis(IBSI:3KUM)

GLRLM_GreyLevelNonUniformity(IBSI:R5YN)

GLRLM_RunLengthNonUniformity(IBSI:W92Y)

GLRLM_RunPercentage(IBSI:9ZK5)

NGTDM NGTDM_Coarseness(IBSI : QCDE)

NGTDM_Contrast(IBSI:65HE)

NGTDM_Busyness(IBSI : NQ30)

NGTDM_Complexity(IBSI : HDEZ)

NGTDM_Strength(IBSI:1X9X)

GLSZM GLSZM_SmallZoneEmphasis(IBSI:5QRC)

GLSZM_LargeZoneEmphasis(IBSI:48P8)

GLSZM_LowGrayLevelZoneEmphasis(IBSI : XMSY)

GLSZM_HighGrayLevelZoneEmphasis(IBSI:5GN9)

GLSZM_SmallZoneLowGreyLevelEmphasis(IBSI:5RAI)

GLSZM_SmallZoneHighGreyLevelEmphasis(IBSI : HW1V)

GLSZM_LargeZoneLowGreyLevelEmphasis(IBSI : YH51)

GLSZM_LargeZoneHighGreyLevelEmphasis(IBSI:J17V)

GLSZM_GreyLevelNonUniformity(IBSI : JNSA)

GLSZM_NormalisedGreyLevelNonUniformity(IBSI:Y1RO)

(Continued)
F
rontiers in Oncology
 frontiersin.org07205

https://doi.org/10.3389/fonc.2023.979437
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.979437
2.4.2 Intra- and inter-observer reliability
To assess inter-observer reliability, blinded two radiologists

performed VOI segmentation. For intra-observer reliability,

features were extracted twice by the first observer at a one-month

interval. Reliability was calculated using the intraclass correlation

coefficient (ICC). Radiomics signatures with both intra- and inter-

observer ICC values greater than 0.75 (indicating excellent stability)

were selected for follow-up investigations.
2.4.3 Dimensionality reduction and feature
selection

Feature selection consists of two steps: independent samples t-

test and least absolute shrinkage and selection operator (LASSO)

logistic regression algorithm. Regarding the selection of

hyperparameters of the LASSO algorithm, after repeated training,

we selected alphas=[0.001, 0.05, 50], and the final optimal alpha

value was 0.04832; we selected cv=5, which was determined

according to the amount of data, in order to ensure that the

number of each sample set divided is more than 15 samples,

thereby ensuring the stability of the model; max_iter=100000 is

selected, to ensure that there are enough iterations for the model to

complete the training. The other parameters and their values have

been added to the additional file. Finally, each patient’s radiomics

score (Rad-Score) was calculated using a linear combination of

selected features weighted by the respective coefficients.
2.4.4 Machine learning classifier selection
We analyzed the classification performance of the following

four most used classifiers: Multivariate Logistic Regression (MLR),

Random Forest (RF), Support Vector Machine (SVM), and

Decision Tree (DT). These four classifiers were used to train the

feature data in the training cohort. The 5-fold cross-validation

method was used to ensure the stability and reliability of the

training results, the classification performance was evaluated

using the test cohort, and the hyperparameters of the four

classifiers can be found in the additional file. To ensure that the

number of samples in each data set divided is more than 15, and to

ensure the training effect of the classifier, k = 5 has been empirically

determined through the trial-and-error method (k range: 5–15, step

size of 5) (19). To obtain the same percentage of patient status in

both training and test datasets, in each training process, although

the sample size of training is determined by the total amount of

data, the sample size of the two types of data is equal.
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2.5 Radiomics nomogram construction
and evaluation

We developed combinatorial models combining CT findings and

radiomic features. A radiomics nomogram was then generated from

the above features by MLR, providing clinicians with the appropriate

tool to differentiate between fAIP and PDAC in each patient.We then

plotted a calibration curve for the nomogram, graphically showing

the agreement between the predicted and actual probabilities of the

radiomics nomogram, and presented the prediction process and

results with two randomly selected patients and assessment. To

further measure the predictive performance of the combined

model, we used the receiver operating characteristic (ROC) area

under the curve (AUC) to quantify the radiomics nomogram with

95% confidence interval (95% CI) and compared it to the single

model. In order to ensure the consistency of the classifiers and then

correctly evaluate the predictive ability of each model, we used the

MLR classifier on both the CT findings model and the radiomics

model for classification, depending on previous studies (20). Finally,

the decision curves for the three models were plotted to assess the

overall net benefit performance of the radiomics nomogram model.
2.6 Statistical analysis

All the statistical analyses were performed using R software

(version 3.6.0, https://www.r-project.org) and Python (version

3.7.0, https://www.python.org). Continuous variables were

expressed as mean ± standard deviation and compared by

independent t-test with normal distribution or Mann-Whitney U

test with abnormal distribution. Differences in categorical variables

were analyzed by chi-square test or Fisher’s exact test. Multivariate

logistic regression analysis was used to select independent

predictors in the subjective CT findings model. Values with two-

sided P < 0.05 were considered statistically significant.

3 Results

3.1 Clinical characteristics and CT
findings model

The clinical characteristics of the patients with fAIP and PDAC

are listed in Table 2, and the CT findings of patients are shown in

Table 3. All clinical characteristics showed no significant difference
TABLE 1 Continued

Feature type Feature name

GLSZM_ZoneSizeNonUniformity(IBSI:4JP3)

GLSZM_NormalisedZoneSizeNonUniformity(IBSI : VB3A)

GLSZM_ZonePercentage(IBSI:P30P)

GLSZM_GreyLevelVariance(IBSI : BYLV)

GLSZM_ZoneSizeVariance(IBSI:3NSA)

GLSZM_ZoneSizeEntropy(IBSI : GU8N)
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between the fAIPs group and the PADCs group (P=0.325~0.873).

CT images, including capsule-like rim, pancreatic atrophy, biliary

wall thickening and vascular invasion, differed significantly between

the two groups (P<0.05), indicating these features have a certain

role in the diagnosis of fAIP and PDAC. There is no significant

difference between groups in other characteristics (P>0.05).
3.2 Radiomic signature construction
and evaluation

The radiomics feature selection process was performed

separately at various stages. Based on venous phase CT images,

38 features were initially extracted by independent samples t-test.

After removing redundant features, 7 potential features were

selected by the LASSO algorithm. Then, a multiparametric

radiomics signature based on venous phase images was

established (Figure 3), the final filter gets the feature name and its

weight performance (Figure 4).

According to the feature data screened by the LASSO algorithm,

different classifiers based on machine learning to classify the feature

data were used, and 5-fold cross-validation was performed to ensure

the stability of the classification results. The test cohort was then
Frontiers in Oncology 09207
used to verify the performance of different classifiers, and obtain the

classification results as shown in Table 4.

Specifically, the favorable radiomics signature can be expressed

by Rad-score:

Rad − Score = 16:1747 − (0:009034*MORPHOLOGICAL _ SurfaceToVolumeRatio)

+ (0:093138*MORPHOLOGICAL _ Spehericity) − (0:019595*INTENSITY

− HISTOGRAM _ IntensityHistogram90thPercentile) − (0:161556*INTENSITY

− HISTOGRAM _MaximumHistogramGradientGreyLevel) − (0:036626*GLCM

_DifferenceVariance) + (0:103065*GLCM _Correlation) − (0:148918*GLSZM

_ ZonePercentage)

After the Rad-score calculation for the fAIPs group (median:

-0.81; range: -2.50~-0.09) was significantly lower than that of the

PDACs group (median: -0.34; range: -0.63~0.62). We tested both

sets of data using an independent samples t-test and found p-values

< 0.001 for both sets of data.
3.3 Radiomics nomogram construction
and validation

Five characteristics including the capsule-like rim, pancreatic

atrophy, biliary wall thickening, vascular invasion and Rad-Score
TABLE 3 CT findings of the patients.

Characteristics
fAIPs PDACs

P value
(n=32) (n=64)

Capsule-like rim 20 3 <0.001*

Regional lymph node swelling 7 25 0.094

Abrupt bile duct cut-off 2 12 0.104

Pancreatic atrophy 7 35 0.002*

Pancreatic ductal cut-off 4 19 0.064

Biliary wall thickening 17 4 <0.001*

Vascular invasion 2 51 <0.001*

MPD dilatation upstream(>5mm) 13 33 0.317
fron
fAIPs, focal-type autoimmune pancreatitis; PDACs, pancreatic ductal adenocarcinoma; *P<0.05.
TABLE 2 Clinical characteristics of patients.

Characteristics
fAIPs PDACs

P value
(n=32) (n=64)

Age (year), mean ± SD 60 ± 12.1 60.1 ± 9.8 0.635

Gender 0.873

Male 23 47

Female 9 17

Location 0.645

Head and neck 21 45

Body and tail 11 19

Maximum section diameter, mean ± SD 44.8 ± 16.7 41.6 ± 13.8 0.325
fAIPs, focal-type autoimmune pancreatitis; PDACs, pancreatic ductal adenocarcinoma; SD, standard deviation.
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were included in the multivariate logistic regression analysis, and a

combined model of radiomics nomogramwas constructed (Figure 5).

Figure 6 shows that the nomogram calibration curve with good

agreement between predictions and observations in both cohorts. In

addition, we randomly selected two patients and used the radiomics

nomogram model for prediction. The prediction process and results

are shown in Figures 7A, B.
3.4 Comparison between different models

The ROC curves (Figure 8) analyzed the diagnostic ability of

three different models in the training and test cohort. Radiomics

nomogram showed the best diagnostic performance in both

training (AUC = 0.87) and test cohort (AUC = 0.83), followed by

radiomics signature (training cohort, AUC = 0.73; test cohort, AUC

= 0.76). Both models outperformed the model based on CT findings

in both the training (AUC = 0.67) (P < 0.05) and test cohorts (AUC

= 0.66) (P < 0.05).
Frontiers in Oncology 10208
The Figure 9 presents the DCA curves. We observed that the

patients would benefit more from the radiomics nomograms than

either the treat-no-patient schemes or the treat-all-patients

regimens. Furthermore, the DCA curve showed that the

radiomics nomogram had a higher net benefit than the

curvilinear CT discovery model and the radiomics model in

identifying patients with PDAC.
4 Discussion

In the present study, we developed and validated a diagnostic

radiomics nomogram model combining subjective CT findings and

radiomic features as a novel and effective complementary method

for preoperative identification of fAIP and PDAC. The calibration

curve, ROC curve and decision curve were used to verify the

discriminating efficacy of our model. All evaluation metrics show

that the nomogram model outperforms the single model in

distinguishing fAIP and PDAC, and the nomogram model
A B

FIGURE 3

Radiomics feature screening by LASSO regression algorithm. (A) Plot of polynomial deviation versus l. The red dots represented the mean deviation
value for each model with a given l, the vertical line was plotted at the best value by using the minimum criterion, where 7 features had non-zero
coefficients. (B) Distribution of LASSO coefficients for radiological features. Each colored line represents the coefficient of each feature.
FIGURE 4

Filtered feature names and its weight performance.
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enables model visualization. The nomogram model has potential as

a decision tool for the need for surgical resection.

Some previous studies (21) found that some imaging features

were more correlated with fAIP in contrast-enhanced CT than in

PDAC. These included capsule-like rim with low attenuation (5,

22–26), without atrophic changes in uninvolved pancreatic tissue

(23, 27), without MPD dilatation upstream (> 5 mm) (28), and our

study showed similar results. Furthermore, we also found that the

biliary wall thickening is helpful in differentiating the two diseases.

This may be due to the fact that AIP is a systemic fibro-

inflammatory disease, most commonly involving the bile ducts,

resulting in sclerosing cholangitis (SC), biliary wall thickening and

bile duct stricture (29); In PDAC however, there is only external

compression, with rare cases of bile wall thickening. However, the

diagnostic accuracy of imaging studies depends on the presence or

absence of characteristic symptoms and the overall experience of

the radiologist.

In recent years, radiomics techniques have rapidly developed,

with the radiomics analysis aiming to provide a quantitative

measure of intralesional heterogeneity. This is helpful in assessing

tumor aggressiveness, treatment response and prognosis, and

distinguishing benign from malignant lesions (29). The radiomics

value in distinguishing between AIP and PDAC has been previously

reported (21, 30–34). By extracting the radiomics features of the

venous phase, Park et al (31) could distinguish AIP from PDAC

with 89.7% sensitivity, 100% specificity, and 95.2% overall accuracy.

The classification effect is better than that of the arterial phase, so in
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our study, the imaging data of the venous phase was used for the

diagnosis of the two diseases. However, the previous study did not

focus on fAIP patients, but included both diffuse AIP and fAIP

patients. Furthermore, Zhang Y et al (30) and Liu Z et al (33)

noninvasively classified PDAC and AIP lesions using PET/CT

images using a radiomics-based predictive model. (Mean AUC:

0.9668, Accuracy: 89.91%, Sensitivity: 85.31%, Specificity: 96.04%).

The above results show that establishing a radiomics signature

model significantly improves the diagnostic efficiency.

To obtain an appropriate model able to distinguish between

fAIP and PDAC, we developed and validated three models, and

found that the combined nomogram performed better than the

radiomics model and the CT findings model (training cohort AUC

were 0.87, 0.73 and 0.67, and the test cohort AUCs were 0.83, 0.76,

and 0.66). The calibration curves showed good agreement between

the predicted values and the actual results. The decision curves

showed that the radiomics nomogram model had a higher net

benefit than the individual CT findings model and radiomics model

respectively. By acquiring high-throughput quantitative features

from CT images, radiomics signatures allow the assessment of

tumor heterogeneity and the spatial distribution of biologically

relevant voxels (9).

In our study, a two-step feature selection process screened 7 best

features from 158 radiomic features, suggesting that these 7 features

play a relatively important role in identifying fAIP and PDAC. For

example, “LoG” (Laplace Gaussian) and “GLCM” (Gray Level Co-

occurrence Matrix) are features that have proven useful in
FIGURE 5

Nomogram for differentiating focal-type autoimmune pancreatitis (fAIPs) and pancreatic ductal adenocarcinoma (PDACs). The Capsule-like rim,
Pancreatic atrophy, Biliary wall thickening, Vascular invasion and Rad-score were used for building the radiomics nomogram. Plotted the first scale
“points” to identify points for each predictor. When the total points were calculated by adding the scores of these five predictors, the corresponding
prediction probability was obtained at the last scale.
TABLE 4 Classification performance of different classifiers.

Classifier
Training cohort (n=67) Test cohort (n=29)

ACC AUC Sensitivity Specificity ACC AUC Sensitivity Specificity

MLR 0.72 0.73 0.95 0.97 0.71 0.76 0.89 0.93

RF 0.92 0.95 1.0 1.0 0.56 0.60 1.0 0.17

SVM 0.89 0.93 1.0 0.92 0.61 0.69 0.93 0.48

DT 0.69 0.71 0.95 0.90 0.65 0.70 0.87 0.72
MLR, Multivariate Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; DT, Decision Tree; ACC, Accuracy; AUC, Area Under the Curve.
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predicting the pathological features of certain tumor types (12, 35–

37). We classified the filtered features using a variety of machine

learning-based classifiers, and we chose these methods mainly

because they were popular and performed well in previous studies

(38). The performance of MLR classification is not the best on the

training cohort, but it performed best on the test cohort. The

performance of some classifiers in the training cohort and the test

cohort is quite different. The preliminary judgment is that due to

the problem of data volume and classifiers, RF and SVM were

seriously overfitted. The radiomics features composed of the above

7 selected features are then represented by Rad-Score. When a

patient has a high Rad-Score through CT image-based radiomic

analysis, PDAC can be initially determined after comprehensive

consideration. In addition, serum markers such as CA19-9 or IgG4

levels can be further detected, thereby establishing a personalized

and convenient diagnostic system.

Histopathology obtained by endoscopic ultrasonography (EUS)

guided fine-needle aspiration biopsy (EUS-FNA/B) is the gold

standard for the AIP diagnosis. However, a recent multicenter

study reported that the diagnosis rate for type I AIP using EUS-

FNA/B was only 58.2% (39). EUS-FNB/B may not achieve definitive

diagnosis even in the presence of large tissue volumes (40). The

nomogram established in our study, combined with CT findings
Frontiers in Oncology 12210
and radiomics features, is a non-invasive predictive tool that can

analyze the overall characteristics of the lesion regardless of the

location and size of the lesion. This may improve the accuracy of

diagnosis, and reduce patient trauma with optimal compliance at

the same time.

However, our study still has some limitations. First, CT images of

fAIP patients were acquired over 11 years (2011 to 2021), whereas CT

images of PDAC patients were acquired in the last 6 years (2017 to

2022). This may affect CT findings and features extracted. Second,

due to the low incidence of fAIP, cases over nearly a decade have been

included in our study, but there are still not enough cases to validate

the proposed radiomics model, and selection bias is inevitable due to

matched sampling. In order to verify the performance of our study on

multi-center data, we initially selected CT image data of two patients

from other hospital, and used the nomogram model to make

predictions. The prediction results have been added to Figures 7C,

D. It can be preliminarily seen from the prediction results that the

nomogram model has good generalization ability and can be applied

to new patient and multi-center data. However, the above-mentioned

external verification data is seriously insufficient and has certain

contingency. In follow-up study, we will continue to collect data and

add more external validation data to enrich our study. And to

overcome small and unbalanced sample size problems, the method
frontiersin.or
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FIGURE 6

Calibration curves of the radiomics nomogram in training cohort (A) and test cohort (B).
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maybe the future directions of our study which was used by Stefano

Barone et al (41). Third, the contours of VOIs of pancreatic lesions

may have some influence on the performance of our prediction

model. In the current study, two radiologists manually delineated the
Frontiers in Oncology 13211
contours of the lesions, and it is a time-consuming process.

Therefore, methods requiring less manual intervention should be

considered, and the establishment of automated pancreas

segmentation software may help improve this situation. Automated
A B

DC

FIGURE 7

Schematic diagram of prediction flow of radiomics nomogram model. (A) after VOI delineating, image preprocessing, the value of total points was
74.5, which was calculated by the CT findings and Rad-Score. The result corresponded to <10% probability of a firm consistency. Thus, the patient’s
disease was predicted to be fAIP, which was confirmed by ICDC. (B)The total points was 172.5, which corresponding to >90% probability of a firm
consistency. Thus, the patient’s disease was predicted to be PDAC, which was confirmed in surgery. (C) The external validation data, the total points
was 90.5. Thus, the patient’s disease was predicted to be fAIP, which was confirmed by ICDC. (D) The external validation data, the total points was
166.2. Thus, the patient’s disease was predicted to be PDAC, which was confirmed in surgery.
A B

FIGURE 8

The ROC curves of the three models: (A) The training cohort; (B) The test cohort. The AUC values of the radiomics nomogram model were higher
than that of the CT appearance model and the radiomics model in both training cohort and test cohort.
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segmentation is the development trend of lesion segmentation in

radiomics (18, 42). But automated segmentation also has its

disadvantages. Automated segmentation often requires a large

amount of data for training, usually the methods used are based on

deep learning, and in the current research status, automated

segmentation can only identify disease with evident lesion areas.

But for the identification of two types of diseases with complex lesion

areas, the results of automated segmentation are often not

appropriate. In our study, fAIP is a relatively rare disease, the

amount of data is not enough to support the training of automated

segmentation software, and the similarity between fAIP and PDAC is

high, so some key features may be lost using automated

segmentation. Therefore, we chose to use manual segmentation as

the method of lesion segmentation. At the same time, to ensure the

reproducibility of VOI, we selected two experienced abdominal

radiologists to jointly segment VOI. But automated segmentation is

still an important direction for our future studies, and we are

continuing to collect relevant data to prepare for the construction

of automated segmentation software. In theory, the only texture

features that resulted to be reliable (ICC>0.75), could lead to the

elimination of fundamental features for building the predictive

model. This is indeed a limitation of our study, but it is already

one of the best methods, and in our actual study, the reproducibility

and quality of feature extraction are guaranteed due to the extensive

experience of the physicians responsible for VOI segmentation.

In summary, we have developed a preoperative CT imaging-

based radiomics nomogram for distinguishing between fAIP and

PDAC with high accuracy and clear diagnostic value. Quantitative

and noninvasive radiomics analysis may be a useful application to

help clinicians develop personalized treatment plans.
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