
Edited by  

Nico Sollmann, Dahua Yu and Kai-Hsiang Chuang

Published in  

Frontiers in Neuroscience 

Frontiers in Neuroimaging

New challenges and 
future perspectives in 
brain imaging methods, 
2nd edition

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/33825/new-challenges-and-future-perspectives-in-brain-imaging-methods
https://www.frontiersin.org/research-topics/33825/new-challenges-and-future-perspectives-in-brain-imaging-methods
https://www.frontiersin.org/research-topics/33825/new-challenges-and-future-perspectives-in-brain-imaging-methods
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org/research-topics/33825/new-challenges-and-future-perspectives-in-brain-imaging-methods


October 2024

Frontiers in Neuroscience frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-5560-6 
DOI 10.3389/978-2-8325-5560-6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


October 2024

Frontiers in Neuroscience 2 frontiersin.org

New challenges and future 
perspectives in brain imaging 
methods, 2nd edition

Topic editors

Nico Sollmann — University of California, San Francisco, United States

Dahua Yu — Inner Mongolia University of Science and Technology, China

Kai-Hsiang Chuang — The University of Queensland, Australia

Citation

Sollmann, N., Yu, D., Chuang, K.-H., eds. (2024). New challenges and future 

perspectives in brain imaging methods, 2nd edition. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-5560-6

Publisher’s note: This is a 2nd edition due to an article retraction.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-5560-6


October 2024

Frontiers in Neuroscience frontiersin.org3

05 Editorial: New challenges and future perspectives in brain 
imaging methods
Dahua Yu, Kai-Hsiang Chuang and Nico Sollmann

09 The impact of harmonization on radiomic features in 
Parkinson’s disease and healthy controls: A multicenter study
Benedetta Tafuri, Angela Lombardi, Salvatore Nigro, Daniele Urso, 
Alfonso Monaco, Ester Pantaleo, Domenico Diacono, 
Roberto De Blasi, Roberto Bellotti, Sabina Tangaro and 
Giancarlo Logroscino

19 New insights in addressing cerebral small vessel 
disease: Associated with extracellular fluid in white matter
Haiyuan Lan, Xinjun Lei, Zhihua Xu, Songkuan Chen, Wanfeng Gong 
and Yunqi Cai

26 A pilot study of contrast-enhanced electrical impedance 
tomography for real-time imaging of cerebral perfusion
Yuyan Zhang, Jian’an Ye, Yang Jiao, Weirui Zhang, Tao Zhang, 
Xiang Tian, Xuetao Shi, Feng Fu, Liang Wang and Canhua Xu

37 Spatial and temporal frequency band changes during infarct 
induction, infarct progression, and spreading depolarizations 
in the gyrencephalic brain
Modar Kentar, Roberto Díaz-Peregrino, Carlos Trenado, 
Renán Sánchez-Porras, Daniel San-Juan, 
F. Leonardo Ramírez-Cuapio, Niklas Holzwarth, 
Lena Maier-Hein, Johannes Woitzik and Edgar Santos

49 Case report: A quantitative and qualitative diffusion tensor 
imaging (DTI) study in varicella zoster-related brachial 
plexopathy
Manfredi Alberti, Federica Ginanneschi, Alessandro Rossi and 
Lucia Monti

56 A 1-Tesla MRI system for dedicated brain imaging in the 
neonatal intensive care unit
Elisa R. Berson, Ali Mozayan, Steven Peterec, Sarah N. Taylor, 
Nigel S. Bamford, Laura R. Ment, Erin Rowe, Sean Lisse, 
Lauren Ehrlich, Cicero T. Silva, T. Rob Goodman and 
Seyedmehdi Payabvash

67 Hotspots and trends in fNIRS disease research: A bibliometric 
analysis
Xiangyin Ye, Li Peng, Ning Sun, Lian He, Xiuqiong Yang, 
Yuanfang Zhou, Jian Xiong, Yuquan Shen, Ruirui Sun and 
Fanrong Liang

78 Functional mapping of sensorimotor activation in the human 
thalamus at 9.4 Tesla
Edyta Charyasz, Rahel Heule, Francesko Molla, Michael Erb, 
Vinod Jangir Kumar, Wolfgang Grodd, Klaus Scheffler and 
Jonas Bause

Table of
contents

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


October 2024

Frontiers in Neuroscience 4 frontiersin.org

91 Brain motion networks predict head motion during rest- and 
task-fMRI
Dardo Tomasi and Nora D. Volkow

105 Identifying reproducible resting state networks and 
functional connectivity alterations following chronic restraint 
stress in anaesthetized rats
Twain Dai, Bhedita J. Seewoo, Lauren A. Hennessy, Samuel J. Bolland, 
Tim Rosenow and Jennifer Rodger

121 First application of dynamic oxygen-17 magnetic resonance 
imaging at 7 Tesla in a patient with early subacute stroke
Louise Ebersberger, Fabian J. Kratzer, Arne Potreck, 
Sebastian C. Niesporek, Myriam Keymling, Armin M. Nagel, 
Martin Bendszus, Wolfgang Wick, Mark E. Ladd, 
Heinz-Peter Schlemmer, Angelika Hoffmann, Tanja Platt and 
Daniel Paech

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


TYPE Editorial

PUBLISHED 01 November 2023

DOI 10.3389/fnins.2023.1265054

OPEN ACCESS

EDITED AND REVIEWED BY

Vince D. Calhoun,

Georgia State University, United States

*CORRESPONDENCE

Nico Sollmann

nico.sollmann@tum.de

RECEIVED 21 July 2023

ACCEPTED 09 October 2023

PUBLISHED 01 November 2023

CITATION

Yu D, Chuang K-H and Sollmann N (2023)

Editorial: New challenges and future

perspectives in brain imaging methods.

Front. Neurosci. 17:1265054.

doi: 10.3389/fnins.2023.1265054

COPYRIGHT

© 2023 Yu, Chuang and Sollmann. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: New challenges and
future perspectives in brain
imaging methods

Dahua Yu1, Kai-Hsiang Chuang2 and Nico Sollmann3,4,5*

1Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of

Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China,
2Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia, 3Department of

Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany, 4Department of

Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical

University of Munich, Munich, Germany, 5TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical

University of Munich, Munich, Germany

KEYWORDS

brain imaging methods, multi-modal imaging, magnetic resonance imaging, functional

near-infrared spectroscopy (fNIRS), resting-state

Editorial on the Research Topic

New challenges and future perspectives in brain imaging methods

Brain imaging has seen considerable advances over the recent years. Both developments

and validation of advanced image acquisition techniques as well as post-processing and

analyses pipelines have contributed to contemporary imaging, including parallel imaging,

(semi-)automated segmentation, generation of synthetic images, and application of machine

learning and radiomics. Multi-modal approaches using structural, metabolic, and functional

imaging methods are emerging to build a framework for a better understanding of

anatomical features and physiological processes of the brain. This Research Topic entitled

“New challenges and future perspectives in brain imaging methods” included 12 articles

(nine original research articles, one review article, one case report, and one brief research

report) covering a broad spectrum of developments and applications in the field of

advanced neuroimaging.

The majority of research articles published in this Research Topic covered advances

in magnetic resonance imaging (MRI) (Tafuri et al.; Lan et al.; Alberti et al.; Tomasi and

Volkow; Dai et al.; He et al.; Berson et al.; Ebersberger et al.; Charyasz et al.). In amulti-center

study, Tafuri et al. evaluated harmonization of radiomics features to limit site-dependent

effects, given that radiomics features commonly demonstrate considerable variability related

to variations between sites and imaging protocols. To overcome this issue that is limiting

the reproducibility and generalizability of radiomics, T1-weighted (T1w) sequences from

different sites and derived from healthy subjects and patients with Parkinson’s disease (PD)

were analyzed, and the authors found that data from healthy subjects may be corrected

with a ComBat-based harmonization approach (Tafuri et al.). Further, an area under the

curve (AUC) of 0.77 (harmonized radiomics features) vs. an AUC of 0.71 (raw radiomics

measures) was revealed to distinguish patients with PD from healthy subjects, emphasizing

the considerable impact of site-related effects that need to be addressed by harmonization

approaches also in future multi-centric studies (Tafuri et al.). A study by Lan et al. aimed

to investigate the role of extracellular fluid in the context of cerebral small vessel disease

(CSVD), considering a multi-sequence MRI protocol that has been composed of T1w

and T2-weighted (T2w) imaging including fluid-attenuated inversion recovery (FLAIR)
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sequences, as well as diffusion tensor imaging (DTI) and

susceptibility-weighted imaging (SWI). White matter (WM)

hyperintensities were identified on T2w images (using Fazekas

scoring), cerebral microbleeds were assessed on SWI, perivascular

spaces (using 4-point scoring) were screened on T2w images,

and lacunar infarction was detected on T2w and T1w images,

in order to generate a CSVD MR marker score (Lan et al.).

Furthermore, mean free water (FW) and fractional anisotropy

(FA) were calculated based on DTI data for each patient’s WM

mask (Lan et al.). The authors found that mean FW of WM was

significantly associated with some of the CSVD MR markers, and

age, hypertension, diabetes mellitus, and FW were significantly

associated with the derived CSVD MR marker score, while FW

of WM matter was significantly inversely associated with FA (Lan

et al.). Hence, an MRI-derived scoring system may be helpful to

systematically assess CSVD burden, and extracellular fluid of WM

may relate to CSVD severity and decline in WM integrity (Lan

et al.). The DTI technique with extraction of FA has also been

used by Alberti et al. to investigate varicella zoster-related brachial

plexopathy in a case report of a 72-year-old woman, who presented

with unilateral segmental paresis of the upper limb and painful

dermatomal vesicular eruption. The authors observed a decrease in

FA and an increase in mean, axial, and radial diffusivity for C6 and

C7 roots of the affected compared to the unaffected side, indicative

of microstructural fiber damage, which could be quantified by the

presented approach and then considered during initial assessment

and follow-up investigations in patients with plexopathy (Alberti

et al.).

Using functional MRI (fMRI), Tomasi and Volkow evaluated

the impact of head motion during image acquisition on functional

connectivity (FC) by applying connectome-based predictive

modeling to fMRI data with low frame-to-frame motion. Leave-

one-out was used for internal cross-validation of head motion

prediction in half of the dataset, and two-fold cross-validation

was used in the other half (defined as the independent sample)

(Tomasi and Volkow). Both parametric testing and connectome-

based predictive modeling permutations for null hypothesis testing

demonstrated strong linear associations between observed and

predicted head motion (Tomasi and Volkow). Of note, prediction

accuracy for head motion was higher for task-based fMRI as

compared to rest-fMRI (whereas, however, prediction accuracy

was lower for individuals with low motion than for those with

moderate motion), and denoising attenuated the predictability of

head motion, while stricter framewise displacement thresholds for

motion censoring did not alter the accuracy of the predictions

obtained with lenient censoring (Tomasi and Volkow). In a

study by Dai et al., resting-state fMRI was used to define

reproducible resting-state networks (RSNs) in healthy rats,

followed by investigations of FC changes within and between

RSNs following a chronic restraint stress model, given that no

consensus has been made available for reproducible RSNs in

rodents. In the anesthetized animals, default mode network-

like, spatial attention-limbic, corpus striatum, and autonomic

network patterns were identified (Dai et al.). The chronic restraint

stress model decreased the anti-correlation between default mode

network-like and autonomic networks and the correlation between

amygdala and the nucleus accumbens and ventral pallidum within

the corpus striatum network, while high individual variability

in FC prior and subsequent to the stress model within RSNs

became evident (Dai et al.). This high variability in FC may

imply that rats may demonstrate different neural phenotypes,

which should be classified further in the future to improve the

sensitivity and translational impact of rodent models (Dai et al.).

Furthermore, one study applied perfusion imaging by means of

dynamic susceptibility contrast (DSC)-MRI in patients who had

suffered ischemic stroke within the internal carotid artery territory,

had related neurological deficits for at least one week after the

insult, and did not receive intravenous thrombolysis or mechanical

thrombectomy (He et al.). The patients underwent perfusion MRI

at four time points (few weeks to 7 months after ischemic stroke),

together with assessments of the National Institutes of Health

Stroke Scale (NIHSS) and the modified Rankin Scale (mRS) (He

et al.). Following the analysis of perfusion MRI with a whole-lesion

approach and voxel-based parametric response mapping at each

time point, voxels with decreased time-to-maximum values, and

voxels with decreased or increased relative cerebral blood volume

values derived from assessments about 3 months after ischemic

stroke were superior to the mean values of the corresponding maps

when predicting long-term clinical outcome at 7-months follow-

up investigations (He et al.). Further, correlations were identified

between the clinical prognosis and DSC-MRI parameters, thus

potentially emphasizing the superiority of parametric response

mapping over the whole-lesion approach for predicting long-term

clinical outcome, which could be accompanied by information on

heterogeneity of stroke lesions that can be derived from parametric

response mapping (He et al.).

Regarding MRI with non-standard field strength, studies

on both low- and high-field imaging have been published in

the Research Topic (Berson et al.; Ebersberger et al.; Charyasz

et al.). Specifically, Berson et al. used a point-of-care 1-Tesla

MRI system to image intracranial pathologies within neonatal

intensive care units (average gestational age at scan time:

38.5 ± 2.3 weeks) by acquiring T1w, T2w, and diffusion-

weighted sequences. Transcranial ultrasound, 3-Tesla MRI, or

both were available for comparison among the majority of the

examined subjects, with the most common indications for 1-

Tesla MRI being term-corrected age scans for extremely preterm

neonates, intra-ventricular hemorrhage follow-up examinations,

and suspected hypoxic injury (Berson et al.). The 1-Tesla MRI

scan enabled identification of ischemic lesions in two infants

with suspected hypoxic injury, confirmed by follow-up 3-Tesla

MRI, while two lesions were identified on 3-Tesla MRI that

were missed on 1-Tesla MRI (punctate parenchymal injury

vs. microhemorrhage and small intra-ventricular hemorrhage)

(Berson et al.). On the other hand, 1-Tesla MRI enabled

the detection of parenchymal microhemorrhages that were not

captured by ultrasound, emphasizing the potential of a point-

of-care 1-Tesla MRI system on a neonatal intensive care unit

(Berson et al.). Using a 7-Tesla MRI system in a proof-of-

concept study, Ebersberger et al. investigated a 55-year-old male

patient with early subacute stroke by dynamic oxygen-17 imaging

in the context of a three-phase inhalation experiment, thus

enabling direct and non-invasive assessment of cerebral oxygen

metabolism. However, the analysis of relative oxygen-17 water
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signal for the stroke region compared to the healthy contralateral

side revealed no significant difference; nevertheless, the technical

feasibility of oxygen-17 imaging has been demonstrated in this

study, which could in the future help to distinguish between

viable and non-viable tissue in neurovascular diseases (Ebersberger

et al.). Furthermore, in a study by Charyasz et al., a 9.4-

Tesla MRI system was used for dedicated functional mapping

of sensorimotor activation in the human thalamus within the

scope of a task-based fMRI experiment with assessment of subject-

specific sensorimotor blood oxygenation level dependent (BOLD)

responses from a combined passive sensory (tactile finger) and

active motor (finger tapping) paradigm. Both applied tasks related

to an increase in the BOLD signal response in the lateral nuclei

and pulvinar nuclei group, with the finger tapping paradigm

resulting in a stronger BOLD response compared to the tactile

finger paradigm and also engaging the intralaminar nuclei group

(Charyasz et al.). This study with high-field imaging may give

detailed insight into functions of individual thalamic nuclei

regarding processing of input signals from the sensorimotor

domain (Charyasz et al.).

Besides MRI, studies on other techniques such as

electrocorticography (ECoG), contrast-enhanced electrical

impedance tomography (C-EIT), and functional near-infrared

spectroscopy (fNIRS) have been considered in the Research

Topic (Kentar et al.; Zhang et al.; Ye et al.). In this regard, ECoG

was used by Kentar et al. to study spatial and temporal signal

changes following ischemia due to clipping of the middle cerebral

artery (for 8–12min) in a pig model. During the experiments,

five-contact ECoG stripes were placed bilaterally over the fronto-

parietal cortices, thus corresponding to the irrigation territory

of the middle as well as anterior cerebral artery, with ECoG

recordings obtained before and after the occlusion (Kentar et al.).

The electrodes close to the occlusion showed instant decay in

all frequency bands and spreading depolarization onset during

the first 5 h, whereas electrodes far from the occlusion showed

immediate loss of fast frequencies and progressive decline of

slow frequencies with an increased spreading depolarization

incidence between 6 and 14 h (Kentar et al.). After 8 h, the

electrode capturing the anterior cerebral artery territory showed

secondary reductions of all frequency bands except gamma

and high spreading depolarization incidence within 12 to 17 h

(Kentar et al.). Furthermore, all electrodes showed a decline in

all frequency bands during spreading depolarization, while after

spreading depolarization passage the frequency band recovery was

impaired only in electrodes for the middle cerebral artery; thus,

ECoG may allow to capture and characterize infarct progression

and secondary brain injury (Kentar et al.). In a pilot study using

a rabbit model, Zhang et al. aimed to assess the feasibility of

monitoring perfusion with the C-EIT technique. The animals

were allocated to a group without and with unilateral internal

carotid artery occlusion due to clipping (for 30min), following

injection of glucose as an electrical impedance-enhanced contrast

agent through the right internal carotid artery (Zhang et al.). In

the non-occlusion group, impedance values of the left cerebral

hemisphere did not change significantly, whereas the impedance

value of the right cerebral hemisphere gradually increased (Zhang

et al.). In the occlusion group, the impedance values of both

cerebral hemispheres increased gradually and then began to

decrease after reaching the peak value, with significant differences

in the remodeling impedance values between the left and right

hemispheres in both groups, respectively, while also a significant

difference for the left hemispheres between groups was revealed

(Zhang et al.). Hence, C-EIT may determine brain perfusion,

offering broad application perspectives from disease progression

monitoring or collateral circulation judgment to detections of

malignancy-related lesions (Zhang et al.). Finally, a review article

by Ye et al. set the focus on recent hotspots and trends in fNIRS

research, highlighting that major topics of interest included

activation, prefrontal cortex, working memory, cortex, and fMRI,

while particularly research on gait function has received much

attention. According to the review, fNIRS seems to play an

increasingly important role as a non-invasive brain functional

imaging technique for the detection of function-related activity (Ye

et al.).

To conclude, this Research Topic covered a large spectrum

of advanced imaging technology, with a focus of the published

articles on applications of MRI. Both human and animal studies

have been considered, contributing to an improved understanding

of brain (patho)physiology, image acquisition and processing

strategies, and disease characteristics. However, also techniques

that are not widely available or are emerging have been

covered, which could provide either unique or complementary

information when related to MRI investigations. Finally, more

research is necessary regarding tailoring existing procedures to

clinical needs for methods that have already been made available

for the in-vivo study of the human brain, or to accelerate

the transition of findings from animal studies to potential

human applications.
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(CNR-NANOTEC), Lecce, Italy, 6Department of Neurosciences, King’s College London, Institute
of Psychiatry, Psychology and Neuroscience, London, United Kingdom, 7Dipartimento di
Radiologia, Pia Fondazione Cardinale G. Panico, Lecce, Italy, 8Dipartimento di Scienze del Suolo,
Della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy

Radiomics is a challenging development area in imaging field that is

greatly capturing interest of radiologists and neuroscientists. However,

radiomics features show a strong non-biological variability determined by

different facilities and imaging protocols, limiting the reproducibility and

generalizability of analysis frameworks. Our study aimed to investigate the

usefulness of harmonization to reduce site-effects on radiomics features over

specific brain regions. We selected T1-weighted magnetic resonance imaging

(MRI) by using the MRI dataset Parkinson’s Progression Markers Initiative

(PPMI) from different sites with healthy controls (HC) and Parkinson’s disease

(PD) patients. First, the investigation of radiomics measure discrepancies

were assessed on healthy brain regions-of-interest (ROIs) via a classification

pipeline based on LASSO feature selection and support vector machine

(SVM) model. Then, a ComBat-based harmonization approach was applied

to correct site-effects. Finally, a validation step on PD subjects evaluated

diagnostic accuracy before and after harmonization of radiomics data.

Results on healthy subjects demonstrated a dependence from site-effects

that could be corrected with ComBat harmonization. LASSO regressor after

harmonization was unable to select any feature to distinguish controls by

site. Moreover, harmonized radiomics features achieved an area under the

receiving operating characteristic curve (AUC) of 0.77 (compared to AUC

of 0.71 for raw radiomics measures) in distinguish Parkinson’s patients from
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HC. We found a not-negligible site-effect studying radiomics of HC pre-

and post-harmonization of features. Our validation study on PD patients

demonstrated a significant influence of non-biological noise source in

diagnostic performances. Finally, harmonization of multicenter radiomic data

represent a necessary step to make analysis pipelines reliable and replicable

for multisite neuroimaging studies.

KEYWORDS

radiomics analysis, ComBat, multi-site harmonization, structural MRI, Parkinson’s
disease

Introduction

Radiomics is a challenging development area in imaging
field that is greatly capturing interest of radiologists and
neuroscientists (Kumar et al., 2012; Gillies et al., 2016;
Salvatore et al., 2019; Guiot et al., 2022). Allowing quantitative
radiographic phenotyping over several types of magnetic
resonance imaging (MRI) acquisition, radiomic analysis has
been proposed as a primary task to improve knowledge about
diagnosis, prognosis and predictions of pharmaceutical
response in oncology and neurodegenerative diseases
(Mayerhoefer et al., 2020). Moreover, thanks to its capability
to extract engineered measures from specific regions of
interest (ROIs), radiomics has shown to be a useful approach
for characterizing and classifying patients with pathological
conditions (Gillies et al., 2016; Feng and Ding, 2020). Indeed,
many oncological applications have demonstrated the radiomics
ability to capture intra-tumoral heterogeneity in a non-invasive
way. Concerning neurodegenerative diseases, instead, recent
studies on Alzheimer’s (AD) and Parkinson’s diseases (PD) have
highlighted the potentiality of radiomics to detect abnormalities
beyond standard morphological imaging markers. In particular,
radiomics approach had achieved interesting results in
distinguishing patients with PD from controls (Cao et al., 2020;
Liu et al., 2020) and from atypical parkinsonian syndromes
(Tupe-Waghmare et al., 2021). Moreover, associations between
radiomics measures and clinical variables have been described
in both cross-sectional and longitudinal studies (Feng et al.,
2018; Salmanpour et al., 2022).

Despite the outstanding results, radiomics features have
showed a strong dependence from different research facilities
or different acquisition protocols, limiting the reproducibility
and generalizability of the proposed frameworks especially for
application on multi-site dataset (Nieuwenhuis et al., 2017).
Recent studies have addressed this issue using an intensity
normalization step before the feature extraction (Nyul et al.,
2000; Shinohara et al., 2014; Reinhold et al., 2018; Dewey et al.,
2019). However, the elimination of non-biological variability
caused by site-effects represents a not-trivial problem that

makes sometimes the normalization approach ineffective for
application on multi-scanner datasets (Eshaghzadeh Torbati
et al., 2021; Li et al., 2021). Therefore, latest applications in the
field of oncology have proposed an additional step of feature
harmonization based on ComBat method (Crombé et al., 2020;
Da-Ano et al., 2020; Li et al., 2021; Mali et al., 2021), originally
implemented as batch-effect correction method for microarray
expression data (Johnson et al., 2007). This approach has
been also applied to classical morphometric properties such as
cortical thickness, cortical surface area and subcortical volumes
in brain MRI removing scan effect and increasing the power
and statistical significance of the results (Fortin et al., 2018;
Pomponio et al., 2020; Radua et al., 2020; Eshaghzadeh Torbati
et al., 2021).

In the current study, we investigated the effectiveness of
normalization and harmonization approaches to reduce site-
effects on radiomics features from healthy brain ROIs. At first,
we extracted radiomics features on T1-weighted MRI images of
healthy subjects collected from different acquisition sites in the
context of the Parkinson’s ProgressionMarkers Initiative (PPMI),
sponsored by the Michael J. Fox Foundation, evaluating the
sensitivity to site-related effects. In a second step, normalization
and harmonization models defined on healthy subjects were
applied on patients with PD to evaluate the classification
performance pre- and post- site-effect correction.

Materials and methods

Participants

Data used in the preparation of this study were obtained
from the PPMI database.1 For up-to-date information on the
study, visit ppmi-info.org. The T1-weighted MR images selected
for this study were acquired using a 1.5–3 Tesla scanner

1 www.ppmi-info.org/access-data-specimens/download-data
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from different manufactures (Philips, GE, Siemens). Acquisition
protocols from each site are reported in Supplementary Table 1.

Magnetic resonance imaging
pre-processing

Structural MR images were segmented using the recon-
all script included in Freesurfer v6.0.2 After removal of non-
brain tissue and bias of each structural brain image, we used
the non-uniform intensity corrected image (nu.mgz) in the
Freesurfer space to compute radiomics features. An additional
step of intensity normalization was performed using the Z-Score
method by centering each pre-processed T1w volume at the
mean with standard deviation. To identify and characterize the
site effect on radiomic features, we extracted the ROIs using the
Desikan–Killiany atlas cortical parcelation from the individual
subcortical segmentation image (aparc + aseg.mgz) (Desikan
et al., 2006). Then, we thresholded each brain parcelation using
FSL (Smith et al., 2004) tools to extract the binary masks for the
next radiomics analysis.

Radiomics features extraction and
harmonization

Data used for our analysis was collected from three ROIs,
namely Caudate, Putamen and Thalamus, for both hemispheres,
as a set of subcortical brain regions pertinent to PD (Shimohama
et al., 2003; Halliday, 2009). For each ROI, we defined a set of 88
radiomic features, including 18 first-order features to describe
voxel intensity distribution within image mask, and 70 second-
level textural measures to highlight spatial distribution of voxels
through four different matrices: 24 features from Gray Level Co-
occurrence Matrices (GLCM), 16 from Gray Level Run Length
Matrices (GLRLM), 14 measures from Gray Level Dependence
Matrices (GLDM) and 16 features from Gray Level Size
Zone Matrices (GLSZM) (detailed information about extracted
features are reported in Supplementary Table 2; Zwanenburg
et al., 2020). The extraction procedure was implemented using
Pyradiomics, an open-source Python package (Van Griethuysen
et al., 2017).

The multicenter harmonization was performed using
ComBat algorithm (Johnson et al., 2007) for location (mean)
and scale (variance) adjustments of data due to the site
differences between subjects. Particularly, this approach
assume that the batch effects can be modeled out by
standardizing means and variances across batches. We
applied the generalized additive model (GAM) of ComBat, also
called NeuroHarmonize, that considered sex and non-linear

2 https://surfer.nmr.mgh.harvard.edu/

age effects as covariates in the input data (Pomponio et al.,
2020). More in details, this method combines the ComBat
harmonization pipeline (Fortin et al., 2017, 2018), with the
GAM (Hastie and Tibshirani, 1986). The former aims to remove
unwanted sources of variability due to site differences, while
preserving the variability due to other biological significant
covariates; the latter introduces a penalized non-linear term
to better take into account the age effects and capture also
non-linearities in age-related differences in radiomic feature. In
contrast to a general linear model approach that includes site
as a fixed effect covariate, the GAM of ComBat considers only
age and sex as covariates to control for during harmonization.
This approach assumes that for a given site, the effects
across features derive from a common distribution, and
thus borrows information across features to shrink estimates
toward a common mean. In addition to removing additive
site effects, ComBat also corrects multiplicative site effects
by removing heteroscedasticity of model errors across site.
In our framework, NeuroHarmonize was implemented using
Empirical Bayes framework, which is useful for harmonizing
multiple features, such as brain regional measures. The
estimation of the site hyperparameters (γ as an additive batch
effect affecting the measurement, δ as a multiplicative batch
effect) of the prior distribution for site-effect correction was
conducted considering only healthy controls (HC). Of note,
to ensure unbiased results, the harmonization parameters
was calculated over control subjects in the training set of each
cross-validation fold and then applied on the remaining subjects
in train and test folds to correct the site-effect. The Python
implementation of harmonization framework was found at
https://github.com/rpomponio/neuroHarmonize (Pomponio
et al., 2020).

Radiomics modeling

To characterize site effects on radiomics features, a “site
vs. site” classification model was built in Leave-One-Out
cross validation (LOOCV) considering only HC. To this end,
classification performances were first evaluated using raw data.
Next, we evaluated the impact of image normalization and
ComBat harmonization on the classification performances. For
each classification model, at each inner loop of LOOCV, we
firstly reduced the burden of high dimensionality of radiomics
set of features using least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996; Friedman et al., 2010).
Therefore, the optimal penalty parameter of LASSO was
defined via minimization of “Binomial Deviance” and features
with non-zero regression coefficients were retained. Then, for
classification purpose, we trained a radial basis Support Vector
Machines (SVM) model (Cortes and Vapnik, 1995; Chang and
Lin, 2011) for each binary site-classifier on previously selected
radiomics features.
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As second step of our framework, we implemented the same
pipeline for PD detection. This procedure was implemented in
a ten-times repeated 10-fold cross validation setting. At each of
100 bootstraps, nine folds was used to define a LASSO regression
model to select optimal radiomics features. The selected features
were saved in a vector to further analysis (Lombardi et al., 2020).
These features were also used to train a radial basis SVM. At
each iteration, we tested the predictive power of the model by
using the excluded fold. The whole pipeline is illustrated in
Figure 1.

Statistical analysis

Demographic and clinical information of the dataset were
provided with descriptive statistics (mean ± SD). Group
differences in age, sex, MoCA (Montreal Cognitive Assessment),
UPDRS-III (Unified Parkinson’s Disease Rating Scale) scales
and H&Y (Hoehn and Yahr) stage were investigated through
Chi-square test, one-way analysis of variance (ANOVA) and
Kruskal–Wallis ANOVA followed by post-hoc comparisons. For
all analyses, the corrected significance threshold was set at
p < 0.05 after Bonferroni’s correction for multiple comparisons.
Statistical analysis was performed by using R software (Version
3.6.3: R Foundation for Statistical Computing, Vienna, Austria).

The Area Under the receiving operating characteristic
Curves (AUCs) were used as evaluation metric for our “site vs.
site” models. Classification performances for HC vs. PD models

were evaluated by accuracy, sensitivity and specificity, mediated
over the 100 bootstraps of classification. Finally, the diagnostic
capabilities of the radiomics signatures were evaluated with
Receiver Operating Characteristic (ROC) curve analysis.

To assess the stability of radiomics features selected by
LASSO regression over HC vs. PD model, we used a frequency-
based criterion. For each round of the bootstraps, we stored as
relevant features only those corresponding to non-zero weights
assigned by LASSO. Subsequently, we selected as most stable
radiomics features those that occurred in at least 95◦ percentile
of the frequency vector.

Results

Demographic and clinical data

We selected MR images from seven sites of the PPMI
database according with the number of enrolled HC. Table 1
reports all demographic and clinical details for each clinical
site included in our study. No statistical difference was found
between HC from clinical sites in age, sex, H&Y score and
MoCA scales.

For each site, we also selected a set of age- and sex-
matched PD. Data is reported in Table 2. As expected, we found
significant differences in H&Y score, UPDRS-III and MoCA
scales (p-values < 0.001) between HC and PD patients.

FIGURE 1

Processing pipeline.
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TABLE 1 Demographic and clinical details of healthy controls for each site.

Site 12 Site 19 Site 20 Site 21 Site 22 Site 27 Site 52 P-value

n 10 12 12 11 11 10 11

Age [mean (SD)] 58.56 (13.68) 52.73 (13.81) 58.08 (10.37) 60.47 (8.75) 63.16 (11.86) 58.98 (7.63) 64.25 (6.55) –

Female (%) 5 (50.0) 4 (33.3) 6 (50.0) 4 (36.4) 2 (18.2) 2 (20.0) 7 (63.6) –

Hoehn and Yahr stage = 0 (%) 10 (100.0) 12 (100.0) 12 (100.0) 11 (100.0) 11 (100.0) 10 (100.0) 11 (100.0) –

MoCA [mean (SD)] 28.30 (0.82) 28.92 (1.16) 28.25 (0.97) 27.82 (0.87) 28.55 (1.13) 28.60 (1.17) 27.82 (0.98) –

Characterization and correction of the
“Site Effects” on healthy controls

As first step, we studied the variability of radiomics
features from healthy ROIs in different acquisition sites.
Figure 2 presents, respectively, bivariate scatter plots of
the first two principal components (dim) from a principal
component analysis (PCA) (Figure 2A) and a histogram-based
representation on one textural feature (i.e., GLCM-Correlation)
(Figure 2B) for no pre-processed/normalized/harmonized
approaches. As expected, a large proportion of the variation
by site was corrected by harmonization of data. In Figure 3,
we also report AUCs results from each binary comparison
across HC from different sites. Classification performance of
raw radiomics features (Figure 3, left panel) showed optimal
discriminative power for all comparisons, except for Site 19
vs. Site 52. Similar results were obtained using radiomics
features calculated from normalized MRI (Figure 3, right panel).
To evaluate pairwise differences between the models, we also
performed a Wilcoxon signed rank test obtaining a p-value of
0.035.

After harmonization of radiomics features, LASSO
regressions were unable to select any features for
prediction of the outcomes. Indeed, LOOCV plots for
each pairwise site comparison resulted in a penalty
factor that shrinked all regression coefficients to zero (see
Supplementary Figure 1).

TABLE 2 Demographic and clinical details of patients with
Parkinson’s disease and healthy controls.

PD HC P-value

N 78 78

Age [mean (SD)] 58.85 (9.68) 59.37 (10.93) –

Female (%) 28 (36.4) 30 (39.0) –

Hoehn and Yahr stage (%) –

0 0 (0.0) 77 (100.0)

1 41 (53.2) 0 (0.0)

2 36 (46.8) 0 (0.0)

UPDRS-III [mean (SD)] 20.01 (9.06) 1.10 (1.95) <0.001

MoCA [mean (SD)] 27.16 (2.42) 28.32 (1.06) <0.001

Parkinson’s disease classification

As second step of our analysis, we evaluated goodness
of classification of PD from HC in our three different
radiomics approaches, namely without any pre-processing
prior to radiomics features calculation, with normalization of
image before radiomics computations and with harmonization
from site-effect of radiomics features. We report results
of each model in Table 3. Figure 4 also shows the
corresponding ROCs for trained SVM. Respect to raw and
normalized radiomics implementations, harmonization of
features determined an increased classification power of the
radiomics model.

As shown in Figure 5, we found five features over 95th
percentile as most stable, with a predominance of radiomics
measures in the right thalamus, involving energy features as
measure of the magnitude of voxel values in an image, and “Gray
Level Non-Uniformity Normalized” measure, quantifying the
variability of gray-level intensity values in the image. Moreover,
we found features in putamen, bilaterally, as most frequent
predictors.

Discussion

This study demonstrated the sensitivity of radiomic
features to site-effects in multicenter neuroimaging study.
We firstly investigated the problem of data variability due
to non-biological effects on healthy brain regions. Then,
implementing a ComBat-based harmonization procedure of
radiomics features, we modelized site-related noise source
reducing differences across healthy subjects. Lastly, as validation
task, we evaluated the effectiveness of our harmonization
approach for classification of PD patients.

The small sample size made necessary some methodological
choices. First of all, it was mandatory to use a feature selection
method to avoid a course of dimensionality problem due to the
imbalance between the number of radiomic features and the
sample size (Koutroumbas and Theodoridis, 2008; Zollanvari
et al., 2020). On the other hand, a feature selection method
such as LASSO was preferred over other feature reduction
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FIGURE 2

(A) Plots of the first 2 principal components (dim) from principal component analysis (PCA), colored by site; (B) histograms of example radiomic
feature for raw, normalized, and harmonized processing.

FIGURE 3

Area under the receiving operating characteristic curves (AUCs) for “site vs. site” classification on healthy controls. Left panel reports
performances for not pre-processed radiomics features; right panel reports results using radiomics features from normalized MRI.

TABLE 3 Performances of PD classification model from different pre-processed radiomics features.

Accuracy
(mean + st .dev)

Sensitivity
(mean + st. dev)

Specificity
(mean + st.dev)

AUC
(mean + st.dev)

No pre-processing 0.700 + 0.120 0.730 + 0.140 0.669 + 0.182 0.709 + 0.247

Normalization 0.713 + 0.078 0.811 + 0.115 0.662 + 0.134 0.715 + 0.212

NeuroHarmonize 0.710 + 0.122 0.754 + 0.173 0.685 + 0.161 0.766 + 0.110
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FIGURE 4

Receiver operating characteristic (ROC) curves for three different radiomics features processing.

FIGURE 5

Frequency of radiomics features for PD vs. HC classification. Red line defines 95th percentile beyond which we choose the most stable
measures.

methods (PCA, LDA, etc.) in order to achieve a more explainable
model (Lombardi et al., 2021). Indeed, the cross-validated
optimization of penalty factor for LASSO feature selection
allowed to define the most important predictors over the
radiomics features, also guaranteeing the interpretability of
the model in the clinical/radiological field (Lombardi et al.,
2022). Overall, the implementation of a leave-one-out cross-
validation procedure for site-vs.-site classification (compared
to k-fold cross-validation as a bias-variance tradeoff) was used
to guarantee approximately unbiased results over our small
sample size. Concerning site-effects on radiomic features, PCA
and histogram-based representation of radiomics measures
highlighted the need of correcting for site effects before
performing further analyses. Indeed, this allowed to distinguish

HC from each site with high accuracy. Similar results were
observed for normalized images. By contrast, after application
of NeuroHarmonize algorithm, no subset of features could
be identified to differentiate HCs each other. On note, only
comparison between subjects of Site 19 and Site 52 reported an
AUC close to random choice without using the harmonization
approach, probably due to common scanner and protocol
parameters used in MRI acquisition.

These findings demonstrated an effective dependency of
radiomics features from scanner and acquisition protocol that
could not be eliminated with normalization of image intensity
but only using a ComBat-based algorithm. Our results were in
line with previous findings in radiomics, over both oncology and
neuroimaging, that have demonstrated a better standardization
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capabilities of ComBat-based models compared with different
intensity normalization techniques, such as normalization (Z-
Score), WhiteStripe and Ravel (Nyul et al., 2000; Shinohara et al.,
2014; Reinhold et al., 2018; Dewey et al., 2019; Eshaghzadeh
Torbati et al., 2021; Li et al., 2021).

As further result, harmonization pipeline applied to
PD patients allowed to improve prediction performance
with respect to raw data, suggesting that site noise factor
might affect classification performance in multicenter
study using radiomic features. Moreover, classification
performance obtained in the current study using thalamus,
caudate and putamen overcame results reported in previous
radiomics studies using similar region-based approach for
PD classification (Liu et al., 2020; Tupe-Waghmare et al.,
2021). Specifically, Tupe-Waghmare et al. (2021) achieved
0.72 of AUC highlighting the T1 radiomics of substantia
nigra as most predictive features. On the other hand, Liu
et al. (2020) studied radiomics of putamen and caudate
separately on T2w MRI with a 0.77 of AUC of caudate model.
Our study further confirmed the impact of right thalamus,
besides the involvement of more classical neostriatal regions
(caudate + putamen) (Sikiö et al., 2015), in PD pathophysiology,
highlighting at the same time its usefulness as diagnostic marker
for PD.

Our work has some limitations. Firstly, the limited
sample size for each site could produce unstable LASSO
regression results, as well as a possible overfitting in
SVM training, that we have tried to overcome with a
bootstrapped 10-fold CV. Overall, cohorts of subjects from
other international neuroimaging studies can be added to
solve these issues guarantying greater generalizability of the
results. Second, we applied only one type of normalization
and harmonization techniques limiting other possible
comparisons and further optimizations of performances.
Future works can consider more complex intensity
normalization methods, such as RAVEL or WhiteStripe,
and recently developed alternative versions of ComBat with
improved flexibility (M-ComBat) and robustness (B-ComBat)
(Da-Ano et al., 2020).

The harmonization of MRI data represents a crucial
problem in several medical imaging applications due to
non-biological effects determined by different acquisition
sites, scanners and multiparametric sequences. Our
study aimed to assess the variability of radiomics
features extracted on T1w MR images collected in a
multicentric context. We found a not-negligible site-effect
comparing radiomics features of HC pre- and post-
harmonization pipeline. Moreover, our study demonstrated
a significant influence of scan noise in distinguishing
controls from PD patients. Overall, harmonization of

radiomic features represents a necessary requirement
for reliable and replicable analysis frameworks in
multicenter study.
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Objective: To explore the role of extracellular fluid, assessed by diffusion

tensor imaging (DTI) metrics of free water (FW), in the white matter of patients

with cerebral small vessel disease (CSVD).

Materials and methods: The baseline clinical and imaging data of 129

patients with CSVD were collected and reviewed. CSVD MR markers, including

periventricular white matter hyperintensity (PWMH), deep white matter

hyperintensity (DWMH), cerebral microbleed (CMB), enlarged perivascular

space (PVS), and lacunar infarction (LI), were identified, and CSVD burden was

calculated. According to total CSVD MR marker score, cases were classified as

mild, moderate, or severe. The mean FW and fractional anisotropy (FA) values

were calculated using DTI images.

Results: The mean white matter FW was associated with the CSVD MR

markers, including PWMH, DWMH, LI and PVS (P < 0.05). Moreover, age,

hypertension, diabetes mellitus, and FW value were associated with total CSVD

MR marker score (P < 0.05). Ordinal logistic regression analysis revealed that

FW and age were independently associated with CSVD burden (P < 0.05).

Finally, FW in white matter was associated with FA (r = –0.334, P < 0.001).

Conclusion: Extracellular fluid changes, assessed by DTI metrics of FW in

white matter, were associated with CSVD markers and burden. An increased

extracellular fluid volume in the white matter was associated with lower FA.

KEYWORDS

cerebral small vessel disease, diffusion tensor imaging, extracellular fluid, white
matter, free water, age
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Introduction

Cerebral small vessel disease (CSVD) is an aging-related
disease that affects the small vessels of the brain. It is a
leading cause of stroke, cognitive decline, and dementia (Chen
et al., 2019). However, the underlying pathophysiology of CSVD
remains unclear.

In recent years, alteration of extracellular fluid in white
matter, assessed by diffusion tensor imaging (DTI) metrics
of free water (FW), has been indicated as a novel imaging
marker for Alzheimer’s disease (AD) (Ji et al., 2017; Dumont
et al., 2019). Like AD, CSVD is associated with certain changes,
such as lower cerebral flood (Lu et al., 2022), increased
permeability of blood brain barrier (Thrippleton et al., 2019),
and neuroinflammation (Evans et al., 2021). All these factors
may lead to increased extracellular fluid volume. Moreover,
some studies have indicated that deep medullary vein disruption
and venous hypertension are associated with the presence and
burden of CSVD (Xu et al., 2020; Ao et al., 2021). Venous
hypertension and draining obstruction may lead to interstitial
edema and increased extracellular fluid volume. Therefore, we
hypothesized that extracellular fluid content is associated with
the presence and severity of CSVD.

Furthermore, DTI can identify microstructural changes of
white matter in vivo. CSVD-associated cognitive decline may
be due to demyelination of white matter tracts, destroying the
nerve network and ultimately leading to impaired transmission
of information within the brain. Microenvironmental changes
often cause microstructural changes. In this study, we aimed to
explore the relationship between microenvironmental changes
in extracellular fluid in white matter and CSVD markers,
burden, and microstructural changes in patients with CSVD
using multimodal magnetic resonance imaging (MRI).

Materials and methods

Patients

The protocol for this study was approved by the Institutional
Review Board of our hospital. Each patient or patient proxy
provided written informed consent prior to participation in this
study. The clinical and imaging data of patients with CSVD
gathered from January 2022 to July 2022 were reviewed. The
inclusion criteria were as follows: (a) age > 40 years; (b)
MR imaging meeting the Standards for Reporting Vascular
changes on Neuroimaging (STRIVE) for CSVD (Wardlaw et al.,
2013); and (c) presence of at least one vascular risk factor,
such as current smoking, diabetes mellitus, hypertension, and
hyperlipidemia. The exclusion criteria were as follows: (a)
diagnosis of other demyelinating diseases, such as metabolic,
hereditary, and inflammatory diseases; (b) severe stenosis or
occlusion of an internal carotid artery or large intracranial

artery; (c) presence of other brain abnormalities, such as
cerebral infarction except lacunar infarction, trauma, tumor,
and vascular malformation; and (d) heart, lung, and kidney
insufficiency.

Clinical information

The baseline information of the enrolled patients, including
sex, age, and vascular risk factors of hypertension, current
smoking, diabetes mellitus, and hyperlipidemia, were
collected.

Magnetic resonance imaging protocol

All patients underwent multimodal MRI, including 3D
T1WI, T2WI, T2 Flair, and DTI sequences, on a 1.5 Tesla
scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens
Healthcare, Erlangen, Germany) equipped with an eight-
channel phased-array head coil. The parameters of the DTI were
as follows: repetition time = 3,600 ms, echo time = 95 ms,
slice thickness = 3 mm, field of view = 23 cm × 23 cm,
matrix = 128 × 128, diffusion directions = 30, b value = 0, 1,000,
and 2,000 s/mm2.

Imaging analysis

Cerebral small vessel disease MR markers
All images were reviewed separately by two

neuroradiologists. Disagreements were resolved by consensus.
Using the STRIVE guidelines, we identified white matter
hyperintensities (WMH), cerebral microbleed (CMB),
perivascular space (PVS), and lacunar infarction (LI). WMH
was defined as abnormal hyperintensity of periventricular
white matter or deep white matter on T2 FLAIR images. The
extent of WMH was assessed and scored using the Fazekas
scoring system, and high-grade (H) WMH was defined by
a Fazekas score of ≥ 2 in the periventricular white matter
(PWMH) and/or ≥ 2 in the deep white matter (DWMH). CMBs
were defined as homogeneous hypointensities with an average
diameter of 3–5 mm on SWI after excluding calcification,
vascular cross section, and abnormal iron deposits. PVS
enlargement was defined by the presence of small dot-like or
linear fluid signals and small blood vessels on MR images. To
evaluate the extent of PVS, a scoring system was used according
to the number of PVSs at the level of the maximum number
of PVSs in the unilateral vasal ganglia: 0, none-PVS; 1, < 10;
2, < 20; 3, 20–40; 4, > 40. High-grade (H) PVS indicated that
the number of enlarged PVSs was > 10. LI was defined as
round or ovoid lesions measuring 3–15 mm in diameter, which
manifested as hyperintense lesions on T2WI and as hypointense
lesions on T1WI.
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Cerebral small vessel disease burden

Cerebral small vessel disease (CSVD) burden was calculated
based on the total CSVD MR score, an ordinal scale
ranging from 0 to 4, depending on the absence or presence
(0 or 1) of each of the four CSVD features (HWMH,
CMB, HPVS, and LI). Based on the total CSVD MR
score, patients were divided into three groups: mild (total
CSVD MR score = 0 or 1), moderate (total CSVD MR
score = 2), and severe (total CSVD MR score = 3 or 4).
For example, a patient with CMB, HWMH, HPVS, and
LI and a total CSVD MR score of 4 was classified into
the severe group.

Extracellular fluid of white matter and
fractional anisotropy

First, the DTI images underwent preprocessing steps,
including denoising, Gibbs artifact removal, EPI distortion
correction, and eddy current correction using MRtrix3.1

Thereafter, extracellular fluid was analyzed with the free water
elimination two-compartmental model (Hoy et al., 2014), a
way to correct partial volume effects of the cerebral spinal
fluid and measure the volume of extracellular fluid [free water
(FW)] and tissue compartment [fractional anisotropy (FA)]
removed the signal of FW, for preprocessed DTI images using
the DIPY software.2 FW and FA maps were generated. The
3D T1WI images were co-registered as b = 0 (b0) images.
Finally, mean white matter FW and FA were calculated with
each patient’s white matter mask, including CSVD lesions,
segmented by FSL fast3 using co-registered 3D T1WI images.
The values of FW and FA ranged from 0 to 1. The value of
FW reflected the volume of the extracellular fluid. An FW value
closer to 1 indicated a markedly increased extracellular fluid
volume.

Statistical analysis

Categorical variables are reported as frequencies and
percentages; normally distributed continuous data are reported
as means and standard deviations (SD); and non-parametric
data are reported as medians and interquartile ranges (IQRs).
Associations between FW and CSVD markers were analyzed
using Spearman correlation coefficient, and then multivariate
linear regression analysis to determine who contribute to FW.
associations between FW and total CSVD MR score (mild,

1 https://www.mrtrix.org/

2 https://dipy.org/

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST

moderate, and severe group), age, sex, and vascular risk factors
were analyzed using Kruskal-Wallis test or one-way ANOVA
test. The relationship between FW and FA was analyzed using
the Pearson correlation coefficient. Ordinal regression analysis
was performed to identify independent factors associated with
total CSVD MR score (mild, moderate, and severe group).
A P-value < 0.05 was considered statistically significant. All
data analyses were performed using the Statistical Package
for Social Sciences for Windows, Version 20 (IBM Corp.,
Armonk, NY, USA). Figures 1–3 were made using “ggplot2”
in R 4.2. To avoid overlapping data points and affect the
observation, we also used the "jitter" function when making
Figures 1, 2.

Results

The study enrolled 129 patients, including 60 men. Their
mean age was 60 ± 11 years. The number of patients with
HWMH, CMB, HPVS, and LI, were 47 (36.43%), 29 (22.48%),
19 (14.72%), and 49 (37.98%) patients, respectively. The median
(IQR) total CSVD MR score was 1 (0, 2).

Extracellular fluid in white matter and
cerebral small vessel disease MR
markers

White matter FW values were associated with the CSVD
MR markers, including PWMH, DWMH, CMB, PVS, and
LI (P < 0.05, see Figures 1A–E). White matter FW values
were higher in patients with HWMH than in patients without
HWMH. Similarly, patients with CMB, HPVS, and LI had
higher FW values. After multivariate linear regression analysis,
PVS, DWMH, PWMH, and number of LI were independently
associated with FW (P < 0.05, see Table 1); number of CMB
was not independently correlated with FW (P > 0.05).

Extracellular fluid in white matter and
cerebral small vessel disease burden

The clinical and imaging characteristics and comparisons
among study participants according to CSVD burden are shown
in Table 2. The number of patients with mild, moderate and
severe CSVD were 86 (66.67%), 19 (14.73%), and 24 (18.60%)
patients, respectively. The mean FW of mild group (0.24 ± 0.01)
significantly differed from moderate (0.25 ± 0.01) and sever
(0.26 ± 0.01) group (P < 0.05, see Figure 2).

Age, hypertension, diabetes mellitus, and FW had
associations with CSVD burden (P < 0.05). After ordinal
logistic regression analysis, FW and age were independently
associated with CSVD burden (P < 0.05) (Table 3).
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FIGURE 1

Comparison of extracellular fluid volume of white matter among study participants according to cerebral small vessel disease markers. White
matter FW values were associated with the CSVD MR markers of LI (A), CMB (B), PWMH (C), DWMH (D), and PVS (E) (P < 0.05). FW, free water;
LI, lacunar infarction; CMB, cerebral microbleed; DWMH, deep white matter hyperintensity; PWMH, periventricular white matter hyperintensity;
HWMH, high-grade white matter hyperintensity; HPVS, high-grade perivascular space.

Extracellular fluid of white matter and
fractional anisotropy

Using Pearson correlation coefficient, the extracellular fluid
in white matter was associated with FA (r = –0.334, P < 0.001).
A higher volume of extracellular fluid of white matter often had
a lower FA (see Figure 3).

Discussion

CSVD is an aging-related disease. Consistent with findings
from other studies, our findings showed that CSVD burden
was associated with age. Additionally, changes in extracellular
fluid volume, assessed using DTI metrics of white matter FW,
was associated with CSVD MR markers (PWMH, DWMH, PVS
and LI) and CSVD burden. Moreover, an increased extracellular
fluid volume in the white matter was associated with lower FA.
Therefore, extracellular fluid volume in the white matter was

considered to play an important role in CSVD severity, and
increased extracellular fluid was associated with loss of white
matter integrity.

Based on the definitions of the CSVD MR markers, the
mean white matter FW value can be understood to be higher
in patients with higher Fazekas score of PWMH or DWMH.
Similarly, patients with higher score of PVS and a greater
number of LI had higher mean white matter FW values.
Enlarged PVS and LI were filled with fluid, which typically
manifested as hyperintense lesions on T2WI and hypointense
lesions on T1WI. Although the petrophysical mechanism of
WMH remains unclear, a hyperintensity on T2 Flair image,
WMH, often indicated an increased water volume, according to
the principle of MRI. This finding corroborates similar findings
from previous studies (Rau et al., 2021). However, all CSVD
MR markers were only lesions in white matter. Several studies
(Zhong and Lou, 2016; Khan et al., 2021; Mayer et al., 2022) have
shown that microenvironmental and microstructural changes
were present in white matter without lesions. Therefore, the
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FIGURE 2

Comparison of extracellular fluid volume of white matter among
participants according to cerebral small vessel disease burden.
FW, free water.

FIGURE 3

Relationship between extracellular fluid of white matter and
fraction anisotropy. FW, free water; FA, fractional anisotropy.

global white matter was selected as the region of interest in
this study because global white matter extracellular fluid and
integrity could reflect pathological changes in CSVD.

CSVD is a clinical syndrome that affects small vessels. It has
different clinical presentations and radiomic features (Dey et al.,
2019; Wang et al., 2021), which may be due to differences in
its pathogenesis and severity. In patients with CSVD, cerebral
blood flow is often low (Zhang et al., 2022) and brain tissues

TABLE 1 Multivariate linear regression analysis for free water in white
matter in patients with cerebral small vessel disease.

β (95% CI) P-value

DWMH 0.158 (0.002, 0.332) 0.046

PWMH 0.341 (0.157, 0.525) <0.001

Number of LI 0.297 (0.109, 0.486) 0.002

Number of CMB −0.102 (−0.294, 0.089) 0.292

PVS 0.154 (0.001, 0.309) 0.045

DWMH, deep white matter hyperintensity; PWMH, periventricular white
matter hyperintensity; LI, lacunar infarction; CMB, cerebral microbleed; PVS,
perivascular space.

are often ischemic, resulting in increased extracellular fluid
volume. With respect to the venous system, multiple studies
(Chen et al., 2020; Xu et al., 2020; Ao et al., 2021) have
shown that deep medullary vein disruption, lumen stenosis,
and venous hypertension may lead to interstitial edema and
promote CSVD. Moreover, Zhang et al. (2021) indicated that
the glymphatic system may play an important role in CSVD.
When the glymphatic system was weakened or dysfunctional,
cerebrospinal fluid-interstitial fluid exchange and drainage were
obstructed and interstitial fluid volume increased. On the other
hand, due to blood-brain barrier leakage and glymphatic system
dysfunction, brain metabolite (including toxins and αβ proteins)
accumulation cannot be effectively cleared in a timely manner,
leading to neuroinflammatory reactions and further increase
in interstitial fluid volume of the brain tissues (Thrippleton
et al., 2019; Zhang et al., 2021). The different pathological
mechanisms underlying the development of CSVD result in
increased extracellular fluid volume. Therefore, change in
cerebral extracellular fluid volume is probably a comprehensive
response to CSVD.

Moreover, the increased extracellular fluid volume in the
white matter was associated with lower FA. Previously, several
studies (Liu et al., 2019, 2020; Kerkhofs et al., 2021) found
that microstructural changes were associated with cognitive
impairment in patients with CSVD. Therefore, we sought
to understand the association between the risk factors and
microstructural changes. According to our study, the increased
extracellular fluid volume could cause an accumulation of
harmful substances, such as plasma proteins, which are toxic
to surrounding white matter microstructures, including myelin
and axons. Increased extracellular fluid volume possibly occurs
first, followed by demyelination and axonal damage within
the white matter. Therefore, microstructural changes may be
mediated by accumulation of extracellular fluid in patients
with CSVD. To corroborate these findings, further studies are
needed.

This study had some limitations. First, the sample size was
relatively small and did not include patients with CSVD and
associated cognitive decline or dementia. Second, participants
were not followed up to study the relationship between CSVD
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TABLE 2 Clinical and imaging features and comparison among participants according to burden of cerebral small vessel disease.

Burden of cerebral small vessel disease P-value

Mild (n = 86) Moderate (n = 19) Severe (n = 24)

Male 36 (41.9%) 10 (52.6%) 14 (58.3%) 0.304

Age, years 55.69 ± 10.34 67.95 ± 9.93 68.79 ± 8.65 <0.001

Hypertension, yes 37 (43.0) 16 (84.2) 17 (70.8) 0.001

Diabetes mellitus, yes 12 (14.0) 7 (36.8) 3 (12.5) 0.045

Current smoking, yes 20 (23.3) 3 (15.8) 6 (25.0) 0.739

Hyperlipidemia, yes 22 (25.6) 4 (21.1) 6 (25.0) 0.918

FW 0.24 ± 0.01 0.25 ± 0.01 0.26 ± 0.01 <0.001

FA 0.45 ± 0.02 0.44 ± 0.02 0.43 ± 0.02 0.001

FW, free water; FA, fractional anisotropy.

TABLE 3 Multivariate analysis for burden of cerebral
small vessel disease.

β P-value

Age, years 0.861 0.002

Hypertension, yes −0.526 0.284

Diabetes mellitus, yes 0.151 0.782

FW 1.152 <0.001

FW, free water.

progression and changes in extracellular fluid volume and FA
in the white matter. Although FW in global white matter may
provide more potential pathological changes to reflect CSVD
burden, FW and FA in normal appearing white matter may
be more informative to explore CSVD progression. Further
multi-center studies with large sample sizes are needed to
address these limitations.

Conclusion

Changes in cerebral extracellular fluid volume, assessed
using DTI metrics of white matter FW, may be a comprehensive
response to CSVD. Additionally, an increased extracellular fluid
volume was associated with lower FA.
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Background: Real-time detection of cerebral blood perfusion can prevent

adverse reactions, such as cerebral infarction and neuronal apoptosis. Our

previous clinical trial have shown that the infusion of therapeutic fluid

can significantly change the impedance distribution in the brain. However,

whether this alteration implicates the cerebral blood perfusion remains

unclear. To explore the feasibility of monitoring cerebral blood perfusion, the

present pilot study established a novel cerebral contrast-enhanced electrical

impedance tomography (C-EIT) technique.

Materials and methods: Rabbits were randomly divided into two groups:

the internal carotid artery non-occlusion (ICAN) and internal carotid artery

occlusion (ICAO) groups. Both of groups were injected with glucose, an

electrical impedance-enhanced contrast agent, through the right internal

carotid artery under EIT monitoring. The C-EIT reconstruction images of the

rabbits brain were analyzed according to the collected raw data. The paired

and independent t-tests were used to analyze the remodeled impedance

values of the left and right cerebral hemispheres within and between studied

groups, respectively. Moreover, pathological examinations of brain were

performed immediately after C-EIT monitoring.

Results: According to the reconstructed images, the impedance value of

the left cerebral hemisphere in the ICAN group did not change significantly,

whereas the impedance value of the right cerebral hemisphere gradually

increased, reaching a peak at approximately 10 s followed by gradually

decreased. In the ICAO group, the impedance values of both cerebral

hemispheres increased gradually and then began to decrease after reaching

the peak value. According to the paired t-test, there was a significant

difference (P < 0.001) in the remodeling impedance values between the left

and right hemispheres in the ICAN group, and there was also a significant
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difference (P< 0.001) in the ICAO group. According to the independent t-test,

there was a significant difference (P < 0.001) of the left hemispheres between

the ICAN and ICAO groups.

Conclusion: The cerebral C-EIT proposed in this pilot study can reflect

cerebral blood perfusion. This method has potential in various applications

in the brain in the future, including disease progression monitoring, collateral

circulation judgment, tumor-specific detection, and brain function research.
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Introduction

Cerebral perfusion plays a particularly important role as
it reflects the blood supply provided by cerebral blood vessels
(Leng et al., 2016). Good cerebral perfusion is conducive to
maintaining the normal function of the brain, and stenosis
or occlusion of blood vessels supplying the brain will lead to
insufficient cerebral perfusion (Clayton et al., 2008; Ginsberg,
2018). When cerebral ischemia is severe and compensatory
blood flow is insufficient, a series of reactions that are especially
injurious to neurons are triggered (Pivonkova et al., 2010;
Ofengeim et al., 2011). Furthermore, studies have shown that
neurons die in ischemic conditions in approximately half the
time as non-neural cells, indicating ischemia and subsequent
hypoxia are extremely damaging to neural tissue (Song and
Yu, 2014; Roh and Kim, 2016). Therefore, it is particularly
important to monitor cerebral blood perfusion in real time
during surgery and other procedures to prevent adverse events,
such as neuronal apoptosis or brain tissue infarction.

Cerebral perfusion imaging evaluates regional
microvascular hemodynamics in the living brain, allowing
for in-vivo measurement of a variety of hemodynamic
parameters. Clinical perfusion imaging techniques typically rely
on X-ray computed tomography (CT) or magnetic resonance
imaging (MRI), which is called CT perfusion (CTP) and MR
perfusion (MRP), respectively (Copen et al., 2016). CTP and
MRP have been used as a routine examination and clinical
standard of care for stroke (Vagal et al., 2019). In addition, PET
scan, regarded as the “gold standard” for the blood perfusion
imaging, can provide information of cerebral blood flow due
to its capability of evaluating the uptake of nutrients in the
blood flow (Heurling et al., 2017). However, these technologies
all have their own shortcomings, such as bulky equipment,
high price, scarce resources, difficulty in usage in local or
rural hospitals. Therefore, there is an urgent need for a novel,
lightweight, convenient, and low-cost cerebral blood perfusion
imaging technology that can be used as a powerful assistant to
the existing imaging technology.

Electrical impedance tomography (EIT) is a portable,
economical, safe, and constant real-time imaging technology,
which applies a safe excitation current to the human body
through contact electrodes, and the resulting changes in
impedance distribution allow reconstructed image analysis
using algorithms (Holder, 2005; Adler and Boyle, 2017; Pan
et al., 2020). Due to its advantages, such as small time interval for
data collection, sensitivity to changes in electrical conductivity
of different tissues, and that it requires no use of radiation,
EIT has been widely applied in many fields, for instance,
lung respiratory function imaging (Aguiar Santos et al., 2018;
Tomicic and Cornejo, 2019), prostate cancer detection function
imaging (Tan and Rossa, 2021), and abdominal organ function
imaging (Shuai et al., 2009).

In recent years, EIT has become a research hotspot in
the field of functional brain imaging. Sana et al. characterized
and imaged certain impedance distribution changes during
seizures in neocortex and hippocampus using the rat model.
The results suggest that EIT can be used as an ancillary imaging
method for conventional electroencephalogram to improve the
localization of epileptogenic regions in patients with refractory
epilepsy who undergo surgery to control seizures (Hannan
et al., 2021). Using an intraoperative EIT system to monitor
the brain impedance of patients, Li et al. (2018) found that
brain impedance was negatively correlated with cerebral blood
perfusion, and the slow rise in brain resistivity might reflect
changes in brain tissue caused by ischemia. The results showed
that changes in regional cerebral impedance could be detected
by EIT, and these changes were larger with lower blood
perfusion, suggesting that EIT is expected to reflect quantitative
information about cerebral blood perfusion in certain regions
(Li et al., 2018). However, the accuracy of traditional electrical
impedance functional imaging is insufficient to reflect the
impedance changes caused by heartbeats. Based on previous
clinical experiments by our research group, the infusion of
a therapeutic liquid can significantly change the impedance
distribution of the brain. Therefore, we propose a new method
of brain contrast-enhanced electrical impedance tomography
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(C-EIT), which fully utilizes the advantages of differential
subtraction imaging to reflect cerebral blood perfusion.

In the study, we established a rabbit model of unilateral
internal carotid artery occlusion (ICAO) and normal cerebral
blood perfusion and further explored the one-dimensional
impedance and reconstructed images of the left and right
hemispheres after electrical impedance contrast perfusion to
reflect cerebral blood perfusion. This study aimed to establish
an animal model of internal carotid artery occlusion in rabbits
to explore the feasibility of brain electrical impedance-enhanced
contrast perfusion imaging to reflect cerebral blood perfusion.

Materials and methods

Animal preparation

All animals in this study were purchased from the
Experimental Animal Center of Fourth Military Medical
University. The experimental protocols and procedures were
approved by the Animal Ethics Committee of the Fourth
Military Medical University (Shaanxi, P. R. China) and complied
with the “Guide for the Care and Use of Laboratory Animals”
published by the National Institutes of Health (National
Academy Press, Washington, DC, revised 1996). Twenty
New Zealand white rabbits (male and female) weighing 2.5–
3.0 kg were randomly divided into two groups: the internal
carotid artery non-occlusion (ICAN) group (n = 10) and the
ICAO group (n = 10). In the ICAO group, unilateral internal
carotid artery clipping was controlled for 30 min to ensure
adequate changes in cerebral perfusion.

Before the experiment, an electric heating plate was used
to maintain the animal’s body temperature to prevent death
due to the loss of temperature caused by deep anesthesia.
The animals were anesthetized with isoflurane gas (3% for
induction and 2% for maintenance). The skin of the cranium
was cut longitudinally with a sterile scalpel, the periosteum was
removed, coronal and sagittal sutures were positioned, and a
4.0 × 2.5 cm area was exposed. Four sterile copper electrodes
0.12 cm in length were implanted 1.2 cm from the sagittal
suture and 1.0 cm from the coronal suture. The remaining 12
copper electrodes were symmetrically and evenly spaced, and 16
copper electrodes formed an elliptical ring (Figure 1). None of
the copper electrodes penetrated the intracranial dura mater in
the skull. This operation ensured that the copper electrode was
separated from the surrounding periosteum and skin to prevent
the impedance value from being affected by skin contact.

The internal carotid artery was isolated after the electrodes
were successfully implanted into the skull. The animal was
supine and fixed to the dissection table; the skin and
subcutaneous fascia of the middle of the neck were cut and
the muscle was bluntly separated near the trachea. The bilateral
common carotid arteries were exposed sequentially, and the

dissection was continued upward to the position of the mastoid
bone to expose the bifurcation of the internal carotid artery and
the external carotid artery.

Contrast-enhanced electrical
impedance tomography monitoring

In this study, the in-house FMMU-EIT-5 system was used
to collect the injection and metabolism signals of the internal
carotid artery contrast agent. The frequency range of the
system was 1–190 Hz, and the output current range was 10–
1250 µ Ap-p (Cao et al., 2020). Studies have shown that a small
interference of 0.35% volume (cross-sectional area of 1.99%)
and 17% resistivity can be detected in human brain models (Shi
et al., 2018). A special electrode wire wrapped with insulating
material was connected to the copper electrode through the
end hook to transmit the excitation current. A 500 µ Ap-
p current stimulus was administered between two polar pairs
of electrodes, and the voltage difference was measured on the
remaining adjacent electrode pairs at a rate of one frame/sec (Xu
et al., 2007).

After the cranial electrodes were successfully placed and
connected to the FMMU-EIT-5 system, electrical impedance-
enhanced contrast perfusion imaging was performed (Figure 2).
The contrast medium uses 5% glucose injection, which is a
common clinical isotonic agent, and its electrical conductivity
(0.02 S/m) was measured by a four-electrode box and the
Solartron 1260 + 1294 impedance analyzer (Schlumberger
Company, Hampshire, UK) (Liu et al., 2019). This value
is about 30 times different from the blood conductivity
(0.67 S/m). For the ICAN group, after the right external
carotid artery was ligated, a 26G needle was used to puncture
near the branch of the right common carotid artery, and
glucose was injected, while the left internal carotid artery
was left intact (Figure 3A). The contrast agent glucose
perfusion dose was 1.0 ml/kg, and the perfusion rate was
0.25 ml/s. For the ICAO group, the left common carotid
artery was ligated using a surgical silk suture. The right
external carotid artery was ligated near the branch of the
right common carotid artery. A 26G puncture needle was
then used to puncture the right common carotid artery at a
distance of 0.5 cm from the branch, and glucose was injected
(Figure 3B).

The data acquisition of brain electrical impedance was
divided into two parts: (1) After the electrical impedance system
was connected to the animal through the electrode line, a blank
measurement was performed for 10 min to determine whether
the electrode connection was good by observing the size of the
one-dimensional impedance value and the sinusoidal waveform
of the original data (Xu et al., 2010). (2) After confirming that
the electrodes were in good contact and that the connection was
stable, carotid perfusion was performed and the start and end

Frontiers in Neuroscience 03 frontiersin.org

28

https://doi.org/10.3389/fnins.2022.1027948
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1027948 November 18, 2022 Time: 14:44 # 4

Zhang et al. 10.3389/fnins.2022.1027948

FIGURE 1

Schematic diagram of electrode positions. (A) Shows the 16 copper electrode positions on the skull; (B) Shows the relative position of the
copper electrodes in the brain parenchyma; (C) Shows the electrode wire with a hook-shaped tool at the end connected to the copper
electrode.

FIGURE 2

(A) The electrical impedance tomography (EIT) imaging experiment. (B) The FMMU-EIT5 monitoring system, where ROIleft refers to the region
of interest in the left hemisphere, and ROIright refers to the region of interest in the right hemisphere.

frames of angiography perfusion were recorded to observe the
changes in brain impedance.

Data analysis

To further analyze and explore the ability of electrical
impedance-enhanced angiographic perfusion to detect
intracranial impedance of the normal or occluded unilateral

internal carotid artery, we performed a statistical analysis of
the reconstructed impedance values from the collected raw
voltages. When an animal was given an excitation current with
a fixed amplitude, the system collected the original voltage. The
data collected by the software were exported, and the forward
problem was calculated using an elliptical finite element model
that conforms to the actual electrode distribution position, and
then the inverse problem was calculated with a damped least
squares algorithm and a reconstructed image was obtained., as
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FIGURE 3

Schematic diagram of injection. (A) Indicates injection to the ICA with a normal CCA. (B) Represents injection to the ICA with occlusion of the
CCA. (CCA, common carotid artery; ECA, external carotid artery; ICA, internal carotid artery).

in Equation 1 (Xu C. et al., 2011).

4ρ = (JT J+λR)
−1

JT4V (1)

where4ρ is the change in resistivity distribution at two different
time points, J is the Jacobian matrix, λ is the regularization
parameter (set to five here), R is the regularization matrix, and
4V is the boundary voltage variation vector.

According to anatomical and physiological knowledge, the
left and right brains of animals are two relatively independent
regions and the unilateral middle cerebral artery is mainly
supplied by the ipsilateral internal carotid artery. Therefore, for
C-EIT reconstructed images, the left hemisphere is defined as an
independent ROIleft and the right hemisphere as an independent
ROIright . From the contrast agent perfusion monitoring process,
we selected a time point every 2 s for a total of eight times
(T0 = 0 s, T1 = 2 s, T2 = 4 s, T3 = 6 s, T4 = 8 s, T5 = 10 s, T6 = 12 s,
T7 = 14 s) to reconstruct the image. In addition, the average
resistivity variation index (ARVI) was calculated for ROIleft and
ROIright of the whole process using Equation 2 (Sadleir et al.,
2008; Dai et al., 2018), expressed as ARVIleft and ARVIright .

ARVI =

( N∑
i = 1

4ρi

)
/N (2)

where 4ρi is the reconstructed impedance change for each
surface element in the finite element network and N is the
number of surface elements in the finite element network.
A paired-sample t-test was used on the impedance change peaks
of ROIleft and ROIright in the two groups. In addition, a paired
t-test was performed to statistically analyze the remodeled
impedance values of the left and right cerebral hemispheres
in the two groups, and an independent t-test was performed
to analyze the remodeled impedance values of the left and
right cerebral hemispheres between the two groups. Statistical
significance was considered P < 0.05. The above analyses were
from SPSS24 software (IBM Corporation, Armonk, NY, USA).

Pathological validation

The animals were euthanized in accordance with
experimental animal ethics after surgery, and the brains
were cut into four coronal slices of 2 mm each. The slices
were soaked in 2% 2,3,5-triphenyltetrazolium chloride (TTC)
staining solution in a emperature box at 30–37◦ for 15–30 min.
After dyeing, the slices were washed with a phosphate buffer
solution and immediately observed and photographed.

In addition, we performed hematoxylin-eosin staining
(HE) on the brain tissue of two rabbits in the ICAN
and ICAO groups to further microscopically examine
the neuronal micromorphology and structure of the left
middle cerebral artery. The abdominal aorta was occluded,
the left ventricle was impaled, and phosphate buffered
saline (150 ml) was continuously perfused, followed by 4%
paraformaldehyde (250 ml). The brains were harvested, fixed
in 4% paraformaldehyde for 72 h, and wrapped in paraffin.
Coronal sections (4 µ m) were prepared, and the morphology
of the neurons was observed under a microscope after staining.

Results

Pathological results

Figure 4 indicates the TTC results for the ICAN and ICAO
groups. Figure 4A indicates the normal brain tissue in the ICAN
group (red). Figure 4B shows the brain tissue of the ICAO
group, which is also red, indicating that there is no cerebral
infarction area. The results of HE staining of the hippocampus
of the two groups are shown in Figure 5, with light microscopy
at 40 × magnification. After the operation, the rabbit brain
tissue in the ICAN group was evenly stained, as shown in
Figure 5A, and the ICAO group was also uniformly stained,
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resembling that of the ICAN group, as shown in Figure 5B. The
nuclei and cytoplasm of the left and right cerebral hemispheres
were clear in the ICAN group, as shown in Figure 5C. The
boundary between the nucleus and cytoplasm of the left cerebral
hemisphere in the ICAO group was clear, and most of the cells
had intact structures without pyknosis and rupture, as shown in
Figure 5D, which was similar to the normal brain tissue in the
ICAN group.

Contrast-enhanced electrical
impedance tomography reconstructed
image results

The C-EIT monitoring data of five rabbits in the ICAN and
ICAO groups were randomly selected and the reconstructed
images are shown in Figure 6. Figure 6A shows the C-EIT
reconstruction images of the ICAN group at each 2 s time
point (T1–T8). With the injection of the contrast agent, a blue
electrical impedance-enhancing area appeared in ROIright , and
the electrical impedance-enhancing area continued to expand
and gradually fill. Figure 6B shows C-EIT reconstruction images
of the clamped (ICAO) group at T1–T8. With the injection
of the contrast medium, blue areas of electrical impedance
enhancement appeared in both ROIleft and ROIright . These
results indicated that the ICAO group successfully changed
the original cerebral blood perfusion pathway. Because of the
occlusion of the left common carotid artery, the blood supply
to the left side of the rabbit brain was insufficient, and the right
side of the rabbit brain provided a compensatory blood supply to
the left side of the rabbit brain through the blood supply artery.
Among them, the area of electrical impedance enhancement of
R8 and R9 at T8 = 14 s was smaller than that at T7 = 12 s,

considering that which may be caused by the absorption and
dilution of the contrast agent with systemic blood circulation.

Electrical impedance analysis results

To quantitatively analyze ARVIleft and ARVIright of ROIleft
and ROIright of rabbits after contrast agent perfusion, the
experimental data were calculated by intercepting 15 frames
from the beginning of the contrast agent injection. Figure 7A
shows that the ARVIright of the ROIright in the ICAN group
increased with the perfusion process and gradually decreased to
a plateau after reaching the peak at 10 frames, and it remained
at the baseline level despite fluctuations of the ROIleft . There
was a small increase in ARVIleft of ROIleft . Considering the
small size of the rabbit brain, the measurement data could
not be accurately controlled. In the future, animal models
with larger brain volumes, such as piglets, should be explored.
Figure 7B shows that the ARVI of both ROIleft and ROIright
in the ICAO group increased with the perfusion process, and
gradually decreased to a plateau after reaching the peak at 10
frames, and the ARVIright of ROIright was higher than ARVIleft of
ROIleft . This is due to the fact that blood in the left hemisphere
is compensated by the right hemisphere through the circle of
Willis, so the contrast medium perfusion in the left hemisphere
is lower than that in the right hemisphere.

Figure 8A shows the results of the electrical impedance
changes in the ROIleft and ROIright in the two groups, and
the electrical impedance changes in the ICAN group were
statistically significant (ICAN-Left: 0.0188 ± 0.0104; ICAN-
Right: 0.0885 ± 0.0116; P < 0.001). The electrical impedance
changes of ROIleft and ROIright in the ICAO group were also
statistically significant (ICAO-Left: 0.0637 ± 0.0112; ICAO-
Right: 0.0899 ± 0.0069; P < 0.001). This is because the left

FIGURE 4

2,3,5-triphenyltetrazolium chloride (TTC)-stained samples from the two groups. (A) Indicates the brain tissue in the ICAN group. (B) Indicates
the brain tissue in the ICAO group. Each slice is 2 mm thick and the slices are arranged from the pineal gland to the olfactory bulb along the
sagittal suture. The image orientation is shown in the top-right diagram, where A, L, P, and R represent the anterior, left, posterior, and right parts
of the brain, respectively.
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FIGURE 5

Microstructure of rabbit whole brain tissue under a light microscope at 40 ×magnification. (A,B) Represent the coronal microstructure of the
rabbit brain in the two groups. (C) Represents the normal tissue of the left and right cerebral hemispheres of the internal carotid artery
non-occlusion (ICAN) group, and (D) Represents the brain tissues of the left and right cerebral hemispheres of the internal carotid artery
occlusion (ICAO) group, which were the same as the normal brain tissues of the ICAN group.

cerebral hemisphere was supplied with blood from the right
cerebral hemisphere after the left common carotid artery was
occluded in the ICAO group. Owing to the limited blood supply,
the electrical impedance of the right cerebral hemisphere was
higher than that of the left cerebral hemisphere. Figure 8B
shows the results of the electrical impedance changes in the
ipsilateral cerebral hemisphere for the two groups. The electrical
impedance changes in ROIleft of the ICAN group and ROIleft
of the ICAO group were statistically significant (ICAN-Left:
0.0188 ± 0.0104; ICAO-Left: 0.0637 ± 0.0112; P < 0.001), and
there was no statistically significant difference in the electrical
impedance changes in the ROIright between the ICAN and
ICAO groups (ICAN-Right: 0.0885 ± 0.0116; ICAO-Right:
0.0899± 0.0069; P > 0.05).

The 30 s reconstructed impedance value detected
before D5W infusion was used as EIT control (ICAN-Left:
0.0084 ± 0.0025; ICAN-Right: 0.0082 ± 0.0028; ICAO-Left:
0.0096 ± 0.0020; ICAO-Right: 0.0084 ± 0.0038). Compared
to the EIT without the contrast agent, injection of 5%
glucoses significantly changed the electrical impedance: the
ARVIright of the ROIright (P < 0.001) and the ARVIleft of
ROIleft (P < 0.05) in the ICAN group; the ARVIright of the
ROIright (P < 0.001) and the ARVIleft of ROIleft (P < 0.001)
in the ICAO group.

Discussion

In the study, the feasibility of C-EIT in reflecting cerebral
blood perfusion was investigated by monitoring a rabbit
model of internal carotid artery embolism. In this experiment,
the unilateral internal carotid artery occlusion model was
successfully established in ten rabbits, the ICAO group, while
the other 10 rabbits with normal internal carotid arteries (ICA)
group were monitored by electrical impedance tomography
after the model was successfully established. A glucose contrast
agent with high blood conductivity was injected into the
body through the other internal carotid artery, the collected
one-dimensional impedance data were analyzed, and the
reconstructed image was reconstructed by the algorithm. The
results showed that the impedance value of the left cerebral
hemisphere in the ICAN group remained unchanged, while the
impedance value of the right hemisphere gradually increased,
reached the peak value, and then decreased. According to
statistical analysis, there was a statistically significant (P< 0.001)
difference between the impedance values of the left and right
hemispheres. This reflects the cerebral blood flow perfusion
in the right cerebral hemisphere. In the ICAO group, the
impedance values of both cerebral hemispheres were gradually
enhanced, and then began to decrease after reaching the
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FIGURE 6

Reconstructed images of rabbits whole brain at eight time
points under contrast-enhanced electrical impedance
tomography (C-EIT). (A) Indicates five rabbits (R1–R5) in the
internal carotid artery non-occlusion (ICAN) group.
(B) Represents five rabbits (R6–R10) in the internal carotid artery
occlusion (ICAO) group. The image orientation is shown in the
upper right image, A, L, P, R represent the anterior, left, posterior,
and right parts of the brain, respectively. The color bar
represents the range of possible colors, from increasing
electrical resistivity value (blue) to normal baseline intensity
(green) and decreasing electrical resistivity value (red).

peak value. According to the statistical analysis, there was
a significant difference (P < 0.001) between the left brain
remodeling impedance and that of the right brain. This reflects
the compensatory cerebral blood perfusion after diverting some
of the original blood supply through the cerebral collateral
circulation. Therefore, the C-EIT method proposed in this study
is feasible and reflects the state of blood perfusion.

This pilot study was only a qualitative study that explored
the feasibility of contrast-enhanced perfusion imaging using
cerebral electrical impedance tomography. There has been no
comparative study with other existing imaging methods, and it is
uncertain whether the cerebral blood perfusion results obtained
by C-EIT are accurate. In future research, our research group
will not only increase the number of experimental cases but also
carry out quantitative research and design other existing means
to carry out simultaneous measurements to further verify the
effectiveness of this method.

One of the important causes of cerebral ischemia is the
occlusion of the ICA, which is a common site of vascular disease
(Chen et al., 2021; Hoving et al., 2021). Therefore, a rabbit

internal carotid artery occlusion model was selected to replicate
clinical internal carotid artery occlusion. When the internal
carotid artery, the main blood supply vessel of the cerebral
artery, is narrowed or even occluded, collateral circulation of
the brain is triggered to ensure an adequate blood supply to
the brain tissue, and the blood supply pathway of the cerebral
hemisphere on the infarcted side changes (Cuccione et al., 2016).
Therefore, internal carotid occlusion can be used as an animal
model to analyze cerebral blood perfusion. Sun et al. (2007)
established a rat model of subarachnoid hemorrhage to study the
effect of G. biloba extract on cerebral blood perfusion. Chen et al.
(2021) studied the effects of exogenous endothelial progenitor
cells on cerebral blood perfusion and microvessels in the injured
areas of a rat traumatic brain injury model (Xiao et al., 2013).
In the future, our group will explore more cerebral blood
perfusion models to better reflect the actual state of cerebral
blood perfusion.

Because glucose injection has the advantages of non-
conductivity, high contrast with blood conductivity, and a
strong reconstructed image signal, glucose injection was selected
as the electrical impedance enhancement contrast agent in
this study. On the premise of obtaining the patient’s informed
consent and not interfering with the normal clinical treatment
process, Dai et al. in our research group conducted a clinical
dural hematoma drainage test using 5% glucose injection and
used EIT to monitor the inflow and discharge process of the
glucose solution (Dai et al., 2013). The experimental results
indicated that the impedance of the injection area increased
significantly with the injection of the glucose solution, indicating
that EIT is highly sensitive to intracranial glucose infusion.
Therefore, in this study, 5% glucose injection was selected as the
contrast agent for brain electrical impedance-enhanced contrast
perfusion imaging. In a follow-up study, our team will explore
more types of contrast agents, such as normal saline, to achieve
better imaging results.

In previous EIT studies, our research group has explored
the placement methods of electrodes in various experimental
animals and clinical trials. In clinic, the method is non-invasive,
in which the patch electrode is directly attached to the scalp
(Xu S. et al., 2011; Dai et al., 2013; Li et al., 2018). For large
experimental animals, such as piglets, the electrodes were placed
on the piglet’s head, and then the hooked copper electrodes
were fixed on the piglet’s skull (Dai et al., 2010); For small
experimental animals, such as rabbits, electrode placement
involves cutting the skin of the cranial dome, followed by
exposing the skull and implanting sterile copper electrodes into
the skull (Yang et al., 2014, 2017; Dai et al., 2018). Reasons
for implantable electrodes in rabbits are as follow: firstly,
the skin bleeding may interfere the electrode data collection,
resulting in inaccurate measurements of impedance. Secondly,
the anatomical size of rabbits’ head is too small to have enough
space to fix the sixteen patch electrodes, which could cause
unstable measurements and affect the signal quality. Finally,
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FIGURE 7

ARVIleft and ARVIright of ROIleft and ROIright during contrast-enhanced electrical impedance tomography (C-EIT) monitoring. (A) Indicates that
the ARVIright of ROIright in the internal carotid artery non-occlusion (ICAN) group was significantly increased after the injection of the contrast
agent, and the ARVIleft of the ROIleft did not change significantly. (B) Indicates that the average resistivity variation index (ARVI) of both ROIleft
and ROIright in the internal carotid artery occlusion (ICAO) group was significantly increased after injection of the contrast agent.

FIGURE 8

(A) Shows the statistical analysis of the reconstructed impedance values of ROIleft and ROIright in the two groups using a paired t-test.
(B) Analysis of the reconstructed impedance values between ROIleft and ROIright of the two groups using an independent t-test.
(∗∗∗means p < 0.001).

an invasive implantable electrode inside the rabbits’ head can
secure the position of the electrode, which can avoid the impact
of skin contact on the impedance value. In the future research,
we will change the animal model to explore a safer and more
reliable electrode placement method for better application.

In this study, arteriography was used as the contrast medium
injection method, considering its advantages of stronger
enhanced signals and fewer circulatory factors. According
to the implementation approach of the existing contrast
agent, optional contrast agent injection methods include the
internal carotid artery, common carotid artery, cubital vein,
and femoral vein. Regardless of whether a vein or artery is
selected for contrast medium perfusion, the existing contrast
medium can eventually reach the brain through the blood
circulation to achieve contrast-enhanced imaging. However,
considering that the arteriography perfusion method has the

disadvantages of large trauma and inconvenient operation, and
we adopted the method of puncturing the internal carotid
artery. Hence, this may change the original blood perfusion
condition. Therefore, in follow-up research, we will gradually
carry out venography exploration experiments with less trauma
and a simple operation in combination with different types of
contrast agents.

In conclusion, the new cerebral contrast-enhanced electrical
impedance tomography method proposed in this study can
reflect cerebral blood perfusion through the reconstructed
image of the contrast agent, which provides a platform
for exploratory research for the detection of cerebral blood
perfusion-related diseases. Furthermore, because this method
can reflect the distribution of the contrast agent in real time,
C-EIT is expected to be used in thrombolytic effect detection,
vascular stenosis judgment, collateral circulation evaluation,
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tumor localization detection, brain function research, and other
important applications. Especially in the detection of tumor
localization, research on contrast agents that can specifically
bind to tumor targets can be further explored. In addition,
many other electromagnetic imaging techniques can be adapted
to incorporate the principle of differential imaging. In the
future, magnetic and magneto-acoustic contrast agents can
also be studied, and other electromagnetic and magneto-
acoustic imaging technologies can be used for enhanced
contrast imaging.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

This animal study was reviewed and approved
by Experimental Animal Center of Fourth Military
Medical University.

Author contributions

YZ, JY, TZ, WZ, and CX helped design, collect, and analyze
data. All authors contributed to this research and subsequent

manuscript from conception to final preparation of the article
and approved the submitted version.

Funding

This work was supported by the Technology Field
Foundation on Basic Strengthen Project under Grant
(2019-JCJQ-JJ-096), the National Key R&D Program of
China (2021YFC1200104), and the National Natural Science
Foundation of China under Grant (31771073).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Adler, A., and Boyle, A. (2017). Electrical impedance tomography: Tissue
properties to image measures. IEEE Trans. Biomed. Eng. 64, 2494–2504.

Aguiar Santos, S., Czaplik, M., Orschulik, J., Hochhausen, N., and Leonhardt,
S. (2018). Lung pathologies analyzed with multi-frequency electrical impedance
tomography: Pilot animal study. Respir. Physiol. Neurobiol. 254, 1–9. doi: 10.1016/
j.resp.2018.03.016

Cao, L., Li, H., Fu, D., Liu, X., Ma, H., Xu, C., et al. (2020). Real-time imaging
of infarction deterioration after ischemic stroke in rats using electrical impedance
tomography. Physiol. Meas. 41:015004. doi: 10.1088/1361-6579/ab69ba

Chen, T. Y., Chang, W. L., Chen, P. Y., Hsiao, C. L., and Lin, S. K. (2021). Acute
and chronic bilateral internal carotid artery occlusion. Acta Neurol. Taiwan. 30,
128–140.

Clayton, J. A., Chalothorn, D., and Faber, J. E. (2008). Vascular endothelial
growth factor-a specifies formation of native collaterals and regulates collateral
growth in Ischemia. Circ. Res. 103, 1027–1036. doi: 10.1161/CIRCRESAHA.108.
181115

Copen, W. A., Lev, M. H., and Rapalino, O. (2016). “Brain perfusion: Computed
tomography and magnetic resonance techniques,” in Handbook of clinical
neurology, Vol. 135, eds C. Joseph, R. Masdeu, and G. Gilberto (Amsterdam:
Elsevier), 117.

Cuccione, E., Padovano, G., Versace, A., Ferrarese, C., and Beretta, S. (2016).
Cerebral collateral circulation in experimental ischemic stroke. Exp. Transl. Stroke
Med. 8:2.

Dai, M., Li, B., Hu, S., Xu, C., Yang, B., Li, J., et al. (2013). In vivo imaging of
twist drill drainage for subdural hematoma: A clinical feasibility study on electrical

impedance tomography for measuring intracranial bleeding in humans. PLoS One
8:e55020. doi: 10.1371/journal.pone.0055020

Dai, M., Liu, X., Li, H., Xu, C., Yang, B., Wang, H., et al. (2018). EIT
imaging of intracranial hemorrhage in rabbit models is influenced by the
intactness of cranium. Biomed Res. Int. 2018:1321862. doi: 10.1155/2018/13
21862

Dai, M., Wang, L., Xu, C., Li, L., Gao, G., and Dong, X. (2010). Real-
time imaging of subarachnoid hemorrhage in piglets with electrical impedance
tomography. Physiol. Meas. 31, 1229–1239. doi: 10.1088/0967-3334/31/9/
012

Ginsberg, M. D. (2018). The cerebral collateral circulation: Relevance to
pathophysiology and treatment of stroke. Neuropharmacology 134 (Pt. B), 280–
292.

Hannan, S., Aristovich, K., Faulkner, M., Avery, J., Walker, M. C., and
Holder, D. S. (2021). Imaging slow brain activity during neocortical and
hippocampal epileptiform events with electrical impedance tomography. Physiol.
Meas. 42:014001. doi: 10.1088/1361-6579/abd67a

Heurling, K., Leuzy, A., Jonasson, M., Frick, A., Zimmer, E., Nordberg, A., et al.
(2017). Quantitative positron emission tomography in brain research. Brain Res.
1670, 220–234.

Holder, D. (2005). Electrical impedance tomography : Methods, history and
applications. London: Institute of Physics.

Hoving, J. W., Kappelhof, M., Schembri, M., Emmer, B. J., Berkhemer,
O. A., Groot, A. E. D., et al. (2021). Thrombectomy for acute ischemic stroke
patients with isolated distal internal carotid artery occlusion: A retrospective

Frontiers in Neuroscience 10 frontiersin.org

35

https://doi.org/10.3389/fnins.2022.1027948
https://doi.org/10.1016/j.resp.2018.03.016
https://doi.org/10.1016/j.resp.2018.03.016
https://doi.org/10.1088/1361-6579/ab69ba
https://doi.org/10.1161/CIRCRESAHA.108.181115
https://doi.org/10.1161/CIRCRESAHA.108.181115
https://doi.org/10.1371/journal.pone.0055020
https://doi.org/10.1155/2018/1321862
https://doi.org/10.1155/2018/1321862
https://doi.org/10.1088/0967-3334/31/9/012
https://doi.org/10.1088/0967-3334/31/9/012
https://doi.org/10.1088/1361-6579/abd67a
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1027948 November 18, 2022 Time: 14:44 # 11

Zhang et al. 10.3389/fnins.2022.1027948

observational study. Neuroradiology 63, 777–786. doi: 10.1007/s00234-020-0
2550-5

Leng, X., Lan, L., Liu, L., Leung, T. W., and Wong, K. S. (2016). Good collateral
circulation predicts favorable outcomes in intravenous thrombolysis: A systematic
review and meta-analysis. Eur. J. Neurol. 23, 1738–1749. doi: 10.1111/ene.13111

Li, Y., Zhang, D., Liu, B., Jin, Z., Duan, W., Dong, X., et al. (2018). Noninvasive
cerebral imaging and monitoring using electrical impedance tomography during
total aortic arch replacement. J. Cardiothorac. Vasc. Anesth. 32, 2469–2476.

Liu, X., Li, H., Ma, H., Xu, C., Yang, B., Dai, M., et al. (2019). An iterative
damped least-squares algorithm for simultaneously monitoring the development
of hemorrhagic and secondary ischemic lesions in brain injuries. Med. Biol. Eng.
Comput. 57, 1917–1931. doi: 10.1007/s11517-019-02003-z

Ofengeim, D., Miyawaki, T., and Zukin, R. (2011). Molecular and cellular
mechanisms of ischemia-induced neuronal death. Amsterdam: Elsevier Inc, 75–106.

Pan, W., Zhuang, W., Chong, Y., Qin, M., Li, Y., Xiao, J., et al. (2020).
Noninvasive real-time detection of cerebral blood perfusion in hemorrhagic shock
rabbits based on whole-brain magnetic induction phase shift: An experimental
study. Physiol. Meas. 41:095004. doi: 10.1088/1361-6579/abad12

Pivonkova, H., Benesova, J., Butenko, O., Chvatal, A., and Anderova, M. (2010).
Impact of global cerebral ischemia on K+ channel expression and membrane
properties of glial cells in the rat Hippocampus. Neurochem. Int. 57, 783–794.
doi: 10.1016/j.neuint.2010.08.016

Roh, E., and Kim, M. (2016). Brain regulation of energy metabolism. Endocrinol.
Metab. 31, 519–524.

Sadleir, R. J., Zhang, S. U., Tucker, A. S., and Oh, S. (2008). Imaging and
quantification of anomaly volume using an eight-electrode ‘hemiarray’ EIT
reconstruction method. Physiol. Meas. 29, 913–927. doi: 10.1088/0967-3334/29/
8/005

Shi, X., Li, W., You, F., Huo, X., Xu, C., Ji, Z., et al. (2018). High-Precision
electrical impedance tomography data acquisition system for brain imaging. IEEE
Sens. J. 18, 5974–5984. doi: 10.1109/IEMBS.2008.4649375

Shuai, W., You, F., Zhang, H., Zhang, W., Fu, F., Shi, X., et al. (2009).
Application of Electrical impedance tomography for continuous monitoring of
retroperitoneal bleeding after blunt trauma. Ann. Biomed. Eng. 37, 2373–2379.
doi: 10.1007/s10439-009-9778-y

Song, M., and Yu, S. P. (2014). Ionic regulation of cell volume changes and cell
death after Ischemic stroke. Transl. Stroke Res. 5, 17–27. doi: 10.1007/s12975-013-
0314-x

Sun, B., Yuan, H., Yang, M., Xia, Z., Zhang, S., and Wang, L. (2007). Effects of
extract of Ginkgo biloba on intracranial pressure, cerebral perfusion pressure, and
cerebral blood flow in a rat model of subarachnoid haemorrhage. Int. J. Neurosci.
117, 655–665. doi: 10.1080/00207450600773871

Tan, H., and Rossa, C. (2021). Electrical impedance tomography for robot-aided
internal radiation therapy. Front. Bioeng. Biotechnol. 9:698038. doi: 10.3389/fbioe.
2021.698038

Tomicic, V., and Cornejo, R. (2019). Lung monitoring with electrical impedance
tomography: Technical considerations and clinical applications. J. Thorac. Dis. 11,
3122–3135. doi: 10.21037/jtd.2019.06.27

Vagal, A., Wintermark, M., Nael, K., Bivard, A., Parsons, M., Grossman,
A., et al. (2019). Automated CT perfusion imaging for acute ischemic stroke:
Pearls and pitfalls for real-world use. Neurology 93, 888–898. doi: 10.1212/WNL.
0000000000008481

Xiao, C., Yin, J., Wu, X., Li, R., Fang, J., Chen, R., et al. (2013). Effects of
magnetically labeled exogenous endothelial progenitor cells on cerebral blood
perfusion and microvasculature alterations after traumatic brain injury in rat
model. Acta Radiol. 54, 313–323. doi: 10.1258/ar.2012.120605

Xu, C., Dai, M., You, F., Shi, X., Fu, F., Liu, R., et al. (2011). An optimized
strategy for real-time hemorrhage monitoring with electrical impedance
tomography. Physiol. Meas. 32, 585–598.

Xu, C., Dong, X., Fu, F., Shuai, W., Liu, X., and Zhang, C. (2007). “A
novel image monitoring software system of electrical impedance tomography for
internal hemorrhage,” in Proceedings of the world congress on medical physics and
biomedical engineering 2006. IFMBE, (Berlin: Springer), 3882–3885.

Xu, C., Wang, L., Shi, X., You, F., Fu, F., Liu, R., et al. (2010). Real-time imaging
and detection of intracranial haemorrhage by electrical impedance tomography in
a piglet model. J. Int. Med. Res. 38, 1596–1604. doi: 10.1177/147323001003800504

Xu, S., Dai, M., Xu, C., Chen, C., Tang, M., Shi, X., et al. (2011). Performance
evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance
tomography. Ann. Biomed. Eng. 39, 2059–2067. doi: 10.1007/s10439-011-0302-9

Yang, B., Shi, X., Dai, M., Xu, C., You, F., Fu, F., et al. (2014). Real-time imaging
of cerebral infarction in rabbits using electrical impedance tomography. J. Int.
Med. Res. 42, 173–183. doi: 10.1177/0300060513499100

Yang, L., Liu, W., Chen, R., Zhang, G., Li, W., Fu, F., et al. (2017). In
Vivo bioimpedance spectroscopy characterization of healthy, hemorrhagic and
ischemic rabbit brain within 10 Hz–1 MHz. Sensors 17:791. doi: 10.3390/
s17040791

Frontiers in Neuroscience 11 frontiersin.org

36

https://doi.org/10.3389/fnins.2022.1027948
https://doi.org/10.1007/s00234-020-02550-5
https://doi.org/10.1007/s00234-020-02550-5
https://doi.org/10.1111/ene.13111
https://doi.org/10.1007/s11517-019-02003-z
https://doi.org/10.1088/1361-6579/abad12
https://doi.org/10.1016/j.neuint.2010.08.016
https://doi.org/10.1088/0967-3334/29/8/005
https://doi.org/10.1088/0967-3334/29/8/005
https://doi.org/10.1109/IEMBS.2008.4649375
https://doi.org/10.1007/s10439-009-9778-y
https://doi.org/10.1007/s12975-013-0314-x
https://doi.org/10.1007/s12975-013-0314-x
https://doi.org/10.1080/00207450600773871
https://doi.org/10.3389/fbioe.2021.698038
https://doi.org/10.3389/fbioe.2021.698038
https://doi.org/10.21037/jtd.2019.06.27
https://doi.org/10.1212/WNL.0000000000008481
https://doi.org/10.1212/WNL.0000000000008481
https://doi.org/10.1258/ar.2012.120605
https://doi.org/10.1177/147323001003800504
https://doi.org/10.1007/s10439-011-0302-9
https://doi.org/10.1177/0300060513499100
https://doi.org/10.3390/s17040791
https://doi.org/10.3390/s17040791
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1025967 December 7, 2022 Time: 11:48 # 1

TYPE Original Research
PUBLISHED 05 December 2022
DOI 10.3389/fnins.2022.1025967

OPEN ACCESS

EDITED BY

Nico Sollmann,
University of California, San Francisco,
United States

REVIEWED BY

Jialing Liu,
University of California, San Francisco,
United States
David Chung,
Massachusetts General Hospital
and Harvard Medical School,
United States

*CORRESPONDENCE

Edgar Santos
edgar.santos@uni-heidelberg.de

SPECIALTY SECTION

This article was submitted to
Brain Imaging Methods,
a section of the journal
Frontiers in Neuroscience

RECEIVED 16 September 2022
ACCEPTED 18 November 2022
PUBLISHED 05 December 2022

CITATION

Kentar M, Díaz-Peregrino R,
Trenado C, Sánchez-Porras R,
San-Juan D, Ramírez-Cuapio FL,
Holzwarth N, Maier-Hein L, Woitzik J
and Santos E (2022) Spatial
and temporal frequency band
changes during infarct induction,
infarct progression, and spreading
depolarizations in the gyrencephalic
brain.
Front. Neurosci. 16:1025967.
doi: 10.3389/fnins.2022.1025967

COPYRIGHT

© 2022 Kentar, Díaz-Peregrino,
Trenado, Sánchez-Porras, San-Juan,
Ramírez-Cuapio, Holzwarth,
Maier-Hein, Woitzik and Santos. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Spatial and temporal frequency
band changes during infarct
induction, infarct progression,
and spreading depolarizations in
the gyrencephalic brain
Modar Kentar1, Roberto Díaz-Peregrino1, Carlos Trenado2,
Renán Sánchez-Porras3, Daniel San-Juan4,
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Aim: To describe the spatial and temporal electrocorticographic (ECoG)

changes after middle cerebral artery occlusion (MCAo), including those

caused by spreading depolarization (SD) in the pig brain.

Methods: The left middle cerebral arteries (MCAs) were clipped in six pigs.

The clipping procedure lasted between 8 and 12 min, achieving a permanent

occlusion (MCAo). Five-contact ECoG stripes were placed bilaterally over

the frontoparietal cortices corresponding to the irrigation territory of the

MCA and anterior cerebral artery (ACA). ECoG recordings were performed

around 24 h: 1 h before and 23 h after the MCAo, and SDs were quantified.

Five-minute ECoG signal segments were sampled before, 5 min, and 4,

8, and 12 h after cerebral artery occlusion and before, during, and after

the negative direct current shift of the SDs. The power spectrum of

the signals was decomposed into delta, theta, alpha, beta, and gamma

bands. Descriptive statistics, Wilcoxon matched-pairs signed-rank tests, and

Friedman tests were performed.

Results: Electrodes close to the MCAo showed instant decay in all frequency

bands and SD onset during the first 5 h. Electrodes far from the MCAo

exhibited immediate loss of fast frequencies and progressive decline of slow

frequencies with an increased SD incidence between 6 and 14 h. After 8 h, the

ACA electrode reported a secondary reduction of all frequency bands except

gamma and high SD incidence within 12–17 h. During the SD, all electrodes

showed a decline in all frequency bands. After SD passage, frequency band

recovery was impaired only in MCA electrodes.
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Conclusion: ECoG can identify infarct progression and secondary brain injury.

Severe disturbances in all the frequency bands are generated in the cortices

where the SDs are passing by.

KEYWORDS

spreading depolarization, stroke progression, ECoG recording, power spectrum of
signal decomposition, frequency bands

Introduction

Spreading depolarization (SD) is recognized as a negative
direct current (DC) shift in the brain frequency range of
<0.05 Hz, which propagates sequentially at adjacent recording
sites. It is induced by severe neurological disorders, such
as stroke, aneurysmal subarachnoid hemorrhage, intracerebral
hemorrhage, traumatic brain injury, or epilepsy. SD produces
a decrease in amplitudes of spontaneous activity, also known as
spreading depression, in electrically active brain tissue (Hartings
et al., 2011; Dreier et al., 2017). SDs have heterogeneous
propagation patterns (Santos et al., 2017), making it difficult
to detect SD using electroencephalography (EEG). The SDs
contribute to the worsening of the penumbra and the infarct
progression after an ischemic stroke (Ayata and Lauritzen,
2015). However, the specific anatomical and temporal frequency
band disturbances produced by SDs are not well known.

During artery occlusion in the brain, there is a decrease in
the spectral power of the frequency bands referred to as the non-
spreading depression of activity (Figure 1; Dreier et al., 2017).
How it occurs and behaves over time in humans is difficult to
document because of the lack of electrocorticography (ECoG)
monitoring during acute ischemic stroke. Moreover, dynamic
pathophysiological changes in several brain areas after the
spreading depression of spontaneous electrical activity should
be investigated.

Similarly, scientists have studied infarct progression after
stroke in humans using EEG and magnetoencephalography. The
most consistent findings were the reduction of fast frequency
bands and the predominance of delta and theta frequencies,
which predict an unfavorable prognosis (Cillessen et al., 1994;
Tecchio et al., 2005, 2007; Burghaus et al., 2007; Diedler et al.,
2009; Moeller et al., 2011).

Due to the great complexity and variation in brain
ischemia-induced pathophysiology, a consensus regarding the
modifications of frequency bands after stroke is difficult to
reach, except that brain activity appears to correlate with
cerebral blood flow, oxygen, and glucose levels (Rabiller et al.,
2015). Power declines in alpha, beta, and gamma frequencies
are observed when the cerebral oxygen metabolism is critically
reduced (Nagata et al., 1989). In addition, delta and theta
rhythms seem to be reliable parameters correlating with cerebral
blood flow and metabolic changes during focal ischemia in the

cortex (Rabiller et al., 2015). Additionally, a lesion in the white
matter induces irregular delta activity in the cortex overlying the
infarct (Gloor et al., 1977; Rabiller et al., 2015).

The study of frequency band dynamics will help identify the
presumed penumbra and infarct progression over time. Analysis
of the initially unaffected areas facilitated the identification of
the gradual changes produced by ischemia. Furthermore, the
brain frequency bands will elucidate how harmful the SDs are
and how they cause secondary damage to the penumbra and
healthy structures.

Therefore, the primary aims of this study were to
characterize the temporal and spatial changes in frequency
bands 5 min and 4, 8, and 12 h after middle cerebral artery
occlusion (MCAo) and during SD development.

Materials and methods

Experimental set-up

The Institutional Animal Care and Use Committee in
Karlsruhe, Baden-Württemberg, Germany authorized the
experimental protocol (Protocol No. G-13/15, G-148-15,
G-69/16). The experiments were conducted in compliance
with the University of Heidelberg Animal Ethics Policy
of the Interfacultary Biomedical Faculty (IBF 347). The
Animal Research: Reporting In Vivo Experiments (ARRIVE)
guidelines were followed.

Ten female Landrace pigs (3–4 months old and 28–32 kg)
were kept under general anesthesia using midazolam (2–
10 mg/mL), propofol (1 mL/20 mg), and isoflurane (1–1.5%).
Four animals were used to establish models and settings. Six
animals were used for this study. The sample rate of all ECoG
recordings was ≥200 Hz. Two subdural five-contact, platinum
wall strip electrodes were used (Ad-tech, Racine, Wisconsin,
USA). A ground electrode was placed in the zygomatic bone.
The recording was performed using a Powerlab 16/SP analog-
to-digital converter (ADInstruments, Sydney, Australia), which
has 16 independent single-ended analog inputs with the signal
referenced to the ground. The alternating current (AC) recorder
had a 0.1-Hz filter. A notch filter (50 Hz) was applied to
eliminate line disturbances. Registration and analysis of ECoG
were performed using LabChart v7 (ADInstruments). After

Frontiers in Neuroscience 02 frontiersin.org

38

https://doi.org/10.3389/fnins.2022.1025967
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1025967 December 7, 2022 Time: 11:48 # 3

Kentar et al. 10.3389/fnins.2022.1025967

FIGURE 1

Detection of SDs using ECoG with different filters. (A) Raw data, (B) low-pass filtered, and (C) powered signal. With the low-pass filter, it is
possible to observe the shape of the near-DC shift typic of the SDs. The non-spreading depression occurring after the MCAo is highlighted in
the last two electrodes (E4L-E5L) at the raw and powered signal filters, which correspond to the site close to the MCAo. SD, spreading
depolarization; ECoG, electrocorticography; DC, direct current; MCAo, middle cerebral artery occlusion.

the experiment, animals were euthanized with intravenous
potassium chloride under general anesthesia.

Study design

A transorbital approach was used to present the left middle
cerebral arteries (MCAs), as described previously (Schöll et al.,
2017; Kentar et al., 2020). Up to four MCAs were found and
occluded with aneurysm clips. For ECoG recording, extensive
craniectomy and dura mater excision were performed over the
temporal line of the swine to expose parts of the frontal and
parietal lobes of both hemispheres. Five-contact ECoG strips
were placed bilaterally on the cortex surface, corresponding
to the MCA and anterior cerebral artery (ACA) territories.
The distance between electrodes was 10 mm. ECoG signals

from 10 electrodes were obtained: five electrodes (E1R–E5R)
from the healthy right hemisphere and five electrodes from the
insulted left hemisphere (E1L–E5L). E1 was located rostrally
in the frontal hemisphere corresponding to the ACA territory,
whereas E5 was caudal and coincided with the MCA territory.
The location of the electrodes was verified by identifying the
non-spreading depression of electrical activity in the caudal
electrodes E4L and E5L (Figure 1). The durations of the ECoG
recordings were planned to be 24 h; 1 h before MCAo, and 23 h
after MCAo.

Frequency analysis

To study infarct progression, 5-min ECoG signal segments
were obtained 5 min before MCAo, as well as 5 min and 4, 8,
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and 12 after MCAo (Figure 2A). SD is presented as a negative
near DC-shift (NDCS) and as a decrease in power in the ECoG
bands in adjacent electrodes using an AC recorder (Dreier et al.,
2017). For SD examination, 5-min signal segments before and
after the NDCS of the SDs were analyzed. Moreover, the NDCS
of the SDs were studied, presenting a mean duration of 51.3 s
(σ = ±14.1 s). For reliable SD evaluation, the SDs included in the
analysis had signal segments of 5 min before and after the NDCS
free of artifacts and other SDs. The ECoG recording segments
before, during, and after the NDCS were referred to as “preSD,”
“SD,” and “postSD” (Figure 2B).

For signal decomposition, the discrete 512-point Fourier
transform (Hanning window) was computed for each data
segment and, subsequently, the power spectrum (Al-Fahoum
and Al-Fraihat, 2014; Delimayanti et al., 2020). For each
segment, we estimated the mean power spectrum corresponding
to each frequency band: delta (0.1–4 Hz), theta (4–7 Hz), alpha
(8–12 Hz), beta (13–31 Hz), and gamma (32–45 Hz). The
power calculation was performed using customized MATLAB
programs (MathWorks, Natick, MA) (Figure 2C). To determine
infarct progression, the spectral power of the frequency bands
was calculated every 4 h starting from the MCAo, with four
timepoints plus the baseline obtained 5 min before the MCAo.
For each pig (n = 6), the power spectrum of each frequency
band was calculated for each timepoint to obtain a dataset of six
elements for each timepoint. Similarly, the SDs were collected
and analyzed in periods of 3 h per electrode, with eight time
lapses in total. The power spectrum of each frequency band was
computed for each SD phase (preSD, SD, and postSD), resulting

in a dataset of eight elements for each phase. To observe
the results in the right hemisphere, please see Supplementary
Figure 1.

Statistical analysis

SPSS v25 (IBM, Armonk, NY) was used for statistical
analysis and plots were created using GraphPad Prism 8.0.1
(GraphPad Software, San Diego, CA). Data were subjected to
Shapiro–Wilk analysis to determine their distribution. The data
had a non-normal distribution. Therefore, non-parametric tests
were conducted, as follows:

(A) Spectral power of the frequency bands after MCAo: The
Wilcoxon matched-pairs signed-rank test was applied to
determine the variations over time between the spectral
powers of the frequency bands. For comparison, the
frequency bands gathered before MCAo were used as
a reference to compare the power alterations of the
frequency bands 5 min immediately after artery occlusion
(0 h) and at 4, 8, and 12 h.

(B) Spectral power of the frequency bands during and after
SDs: The five frequency bands within 5 min of the
preSD period were used as the baseline to evaluate the
power changes at SD and postSD, respectively. For the
comparison between preSD and SD and between preSD
and postSD, the Wilcoxon matched-pairs signed-rank test
was executed.

FIGURE 2

Signal analysis. (A) Effects of MCAo on the brain electrical activity. Five-minute epochs were obtained before, 5 min, and 4, 8, and 12 h after the
left MCAo to analyze the modifications in the spectral power of each frequency band over time. (B) Effects of SD on the brain electrical activity.
The SD signal was studied 5 min before (preSD), during (SD), and 5 min after the near DC-shift (postSD) to observe the alterations caused by the
development and passage of the SDs. (C) Signal decomposition: the signal segments were decomposed to delta, theta, alpha, beta, and gamma
bands. MCAo, middle cerebral artery occlusion; SD, spreading depolarization; DC, direct current.
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FIGURE 3

Frequency bands in the left electrodes after MCAo. (A) The 5-min signal segment before MCAo was used as the baseline to compare the
changes in the spectral power at 0 h (5 min immediately after), 4, 8, and 12 h after MCAo. For each timepoint, 5 min of the ECoG recording were
used for the analysis. (B) The electrodes were placed parallel over the primary frontoparietal cortex. Electrodes E1L-E5L acquired information
from the left ischemic hemisphere. It is speculated that E5 was set over the cerebral cortex near the MCAo, and E1 over the ACA territory.
(C) The significant drop in the spectral power of the frequency bands is represented as * (≤0.05). MCAo, middle cerebral artery occlusion;
ECoG, electrocorticography; ACA, anterior cerebral artery; pV2, squared picovolts.
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Results

Four experiments lasted 24 h, one 18 h, and one 13 h;
the latter experiments were shorter due to technical problems
during the ECoG recording. After MCAo, the following findings
were elucidated: (1) the electrode over the frontal cortex
supplied by the ACA (E1L) did not undergo changes in the
frequency bands during the first 8 h, while electrodes over the
parietal cortex close to the MCAo (E5L and E4L) showed a
decrease in spectral power in all frequency bands immediately
after MCAo, which was sustained for the rest of the recording
(Figure 3); (2) specific anatomical and temporal patterns
of power reduction were observed at different frequencies
according to the location of the electrodes (Figure 3); (3) the
peak of the highest incidence of SDs differed depending on the
anatomic location of the electrodes (Figure 4); (4) during the SD
period, all frequency bands were suppressed in both the ACA
(E1L) and MCA (E2L and E3L) (Figure 5); (5) E2L and E3L
showed impaired recovery in postSD in all the frequency bands
when the penumbra was suspected, whereas the E1L preserved
recovery of all frequency bands in the same period, which might
be classified as an unaffected zone (Figure 5); and (6) the right
healthy hemisphere showed no significant ECoG changes over
the whole experiment (Supplementary Figure 1).

Spectral power of the frequency bands
after middle cerebral artery occlusion

Spectral power analysis was performed for only 12 h to
maximize the reliability of the results because two animals did
not complete the 24 h for technical problems (mainly artifacts
that altered the ECoG signal).

E1L, corresponding to the ACA territory, did not show
any modifications in the spectral power of the frequency bands
during the first 8 h of blood restriction. However, 8 h later,

the power of the delta, theta, alpha, and beta frequencies
diminished significantly, maintaining intact gamma power over
time, showing a pattern of delayed damage.

E2L suffered soon after MCAo, with an alpha power drop
and a temporary reduction in beta power. The theta power
frequency decreased after 8 h. Delta and gamma frequencies
were preserved in the electrode during the experiment. E3L,
the power of all brain frequencies except delta, decreased
immediately after the MCAo. Second, the delta band suffered
a delayed drop after 8 h of blood flow constraints.

E4L reported a spectral power decline in all frequency bands;
nevertheless, the beta band recovered 4 h later. E5L registered
an initial decrease in all frequencies without recovery over time
(Supplementary Table 2 and Figure 3).

Incidence of spreading depolarizations
after middle cerebral artery occlusion

In the left ischemic hemisphere, the SDs showed a peak
incidence at the electrodes over the cortex supplied by the MCA
and ACA. E1L, located over the ACA territory, recorded 99 SDs,
with the highest incidence between 12 and 17 h after MCAo.
Similarly, E2L displayed the highest SD incidence, recording 163
SDs and exhibiting a peak between 12 and14 h. E3L detected
120 SDs and showed a crest at 6–8 h. E4L recorded 12 SDs,
registering an incidence peak at 3–8 h, whereas E5L showed
26 SDs with a peak at 3–5 h, and later signs of brain electrical
depression (Figure 4).

Spectral power of the frequency bands
during and after the spreading
depolarization

To facilitate the decomposition and analysis of the SDs, only
SDs with signal segments of 5 min before and after the DC shift,

FIGURE 4

Spreading depolarization incidence after MCAo in each electrode. SDs were quantified in each electrode of the affected hemisphere after the
MCAo. SD, spreading depolarization; MCAo, middle cerebral artery occlusion.
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without electrographic artifacts and other SDs, were studied.
There were 35, 43, and 48 SDs included in the E1L, E2L, and E3L
groups, respectively. No SDs from E4L and E5L were included
because of the low or null brain activity found early in the ECoG
recording after MCAo (Figure 1).

The SD and postSD periods were compared to the preSD
segment. E1L, E2L, and E3L showed a significant spectral
power drop in all frequency bands during SD. Furthermore, the
spectral power of all the frequency bands remained reduced in
postSD only in E2L and E3L. No differences were found in the
frequency bands at postSD in E1L (Supplementary Table 3 and
Figure 5). Thus, the brain cortex underlying E1L recovered its
spectral power to basal levels shown in the preSD, but the gray
matter at both E2L and E3L withheld the damage caused by SD
passage.

Discussion

ECoG recordings were helpful in detecting and
characterizing modifications in frequency bands caused by
MCAo and SDs during the onset and evolution of cerebral
infarction in gyrencephalic brains. We could discern which
zones were affected by ischemia and SDs, which frequency
bands were disrupted, by how much, and how they evolved
over time. Thus, ECoG might be implemented as a bedside
device to guide treatment approaches, such as decompressive
craniectomy or neuroprotective measurements, to counter the
deleterious effects of brain ischemia and avoid secondary injury.

Variations in the spectral power of frequency bands are
difficult to document in patients with acute ischemic stroke
because they occur seconds to minutes after occlusion, where
non-invasive and invasive EEG recordings are usually not
available and are not routinely used for diagnosis or treatment.
Experiments in pigs overcome limitations in small laboratory
animals such as rodents, as pigs allow for more space to
set the electrodes, more precision in locating the anatomic
sources, and their brains are more similar to the human brain
(gyrencephalic), thus allowing the use of the same measurement
instruments as in humans.

In contrast, the main limitations of EEG are related to the
tissue barrier of the scalp, which prevents the detection of low-
energy brain activity, such as frequencies higher than 100 Hz
and those lower than 0.1 Hz (Rabiller et al., 2015) and low
spatial resolution when detecting cerebral ischemia (Faught,
1993). In these experiments, it was possible to monitor the exact
moment of infarction and its evolution across the brain cortex,
recognizing the pathophysiological phases that influence the
outcome of patients.

The anesthetic effect on brain activity in humans and pigs
should be considered during the evaluation of the frequency
bands in cerebral ischemic scenarios. The anesthetic agents had
a dynamic effect on cerebral activity during the different phases
of induction, maintenance, and emergence. The anesthetic drugs

have specific anatomic regions of action and the frontoparietal
cortex is one of their targets, the same place the electrodes
were set. It was expected that the anesthetic agents such as
midazolam, propofol, and isoflurane induce an unconscious
state by modulating the brain activity of swine when attenuating
the fast frequencies and increasing the slower ones (Akeson
et al., 1993; Mäkiranta et al., 2002; Bojak et al., 2015; Mirra
et al., 2022). Furthermore, isoflurane is capable to suppress SD
development. Thus, the SD accounts might be decreased in all
the experiments (Takagaki et al., 2014; Klass et al., 2018).

It was observed that the electrodes in the right hemisphere
reported a lowering in the spectral power in all the frequency
bands compared to the left electrodes but accentuated in
beta and gamma bands (Supplementary Figure 1 and
Supplementary Table 1). Nonetheless, the baseline power
spectrum of the frequency bands at the right hemisphere
remained stable over time, even when the left side suffered an
ischemic insult.

Three conditions might influence the basal spectral power
of the frequency bands since the beginning of the experiment:
(I) The anatomical differences among the hemispheres; (II) The
asymmetric activity of the brain activity; (III) The heterogeneous
effect of the anesthesia in the cortex.

Anatomical variations are found in the frontoparietal
cortices, being the right side more extensive than the left one.
As a result, the location of the electrodes is not completely
symmetric between hemispheres, and the gathered signals and
frequency bands might slightly vary (Toga and Thompson,
2003; Goldberg et al., 2013). Additionally, the physiological
interhemispheric asymmetry in brain activity is exemplified in
the left hemisphere, which exhibits a high dominance of fast
frequencies in the resting state than the right one (Mahjoory
et al., 2020; Mason et al., 2022). Regarding anesthesia, it has
a heterogeneous and dynamic effect across the brain cortex,
provoking deep alterations in the cerebral metabolic rate, the
brain blood oxygenation, and the cerebral blood flow in some
specific brain areas. In our experiments, the right hemisphere
may be the most affected by the anesthetic agents (Ciobanu et al.,
2012; Hudetz, 2012; Bojak et al., 2015; Halder et al., 2021).

Spectral power of the frequency bands
after clipping the middle cerebral
artery

Immediately after artery clipping, a spectral power
weakening of the frequency bands at various scales was observed
in some electrodes. This change is defined as a non-spreading
depression of electrical activity according to nomenclature
standards (Dreier et al., 2017), which we previously reported
(Sánchez-Porras et al., 2022). When cerebral blood flow reaches
12 mL/100 g/min or less, infarction becomes evident because
of the progressive loss of transmembrane potential gradients of
neurons (Rabiller et al., 2015). In E4L and E5L over the parietal
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FIGURE 5

Frequency bands in the left electrodes during and after SDs. (A) The 5-min signal segment before the SD (preSD) was used as the baseline to
compare the variations in the spectral power during (SD) and after the SD (postSD) segments. Five minutes of the ECoG recording were used to
analyze postSD. Meanwhile, the mean recording time of the near DC-shift of the SD was 51.3 s (σ = ±14.1s). (B) E1L was in the ACA territory and
E5L was closer to the MCA territory. (C) Statistical analysis of SD segments: preSD was used as the baseline to compare the variations in the
spectral power at SD and postSD segments, respectively. ∗Statistically significant difference among SD segments (p ≤ 0.05). E4L and E5L
recorded isoelectric SDs with few or null electrical activities not relevant for the spectral power analysis of the frequency bands. SD, spreading
depolarization; ECoG, electrocorticography; DC, direct current; ACA, anterior cerebral artery; MCA, middle cerebral artery; pV2, squared
picovolts.
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cortex, the cerebral blood flow values surpassed this infarct
threshold, showing a non-spreading depression of spontaneous
brain activity in all frequency bands that lasted the whole
experiment (Figure 1).

If cerebral blood flow is below the ischemic threshold
but maintained above the infarction threshold, the effect on
metabolism or cell survival is still reversible, with visible
electrical activity in the delta frequency, as seen in E2L and E3L
in the first 4 h after stroke. Delta band is well-recognized as
prognostic markers in stroke patients (Schaul et al., 1986) and
are predictive of a malignant course (Burghaus et al., 2007). Even
at later stages (from 4 to 10 days), it has a negative prognostic
prediction (Assenza et al., 2013). Speculative cerebral blood flow
at E2L–E3L may reach levels of 20–30 mL/100 g/min, where the
abnormal release of glutamate occurs (Sharbrough et al., 1973;
Hossmann, 1994; Guyot et al., 2001; Gallinat et al., 2006; Rabiller
et al., 2015).

Additionally, the maintenance of fast frequencies, mainly
the gamma band, was present in the electrodes distant to the
MCAo (E1L and E2L) and absent in those located close to vessel
clipping (E4L and E5L), indicating that the presence of this
frequency band might a biomarker of the integrity of the neural
network. It is not clear whether beta recovery occurred in E2L
and E4L. Nonetheless, we expected to find a steady decay of the
beta band mainly close to the MCAo at the E4L as a resemblance
to neural circuitry dysfunction found in the adjacent electrodes
E1L, E3L, and E5L and other studies (Cillessen et al., 1994;
Tecchio et al., 2005, 2007; Burghaus et al., 2007; Diedler et al.,
2009; Moeller et al., 2011; Hertle et al., 2016). The heterogeneous
infarct evolution might have an influence on the preservation of
the beta band at E2L and E4L.

After the characterization of the frequency bands in
each electrode, it can be inferred that E1L represents the
initial normal cortex with secondary injury, E2L and E3L
represent the transitional cortex or penumbra, and E4L and
E5L represent the ischemic core (Figure 3). Further imaging
and neurophysiological studies are needed to corroborate these
neurophysiological findings.

Incidence of spreading depolarization

It is important to note that infarct progression is related to
SD incidence. The infarct core zone was recorded by E4L and
E5L, having fewer SDs, displaying the early appearance of SDs
after MCAo but a premature cessation of SD development. The
arrest of SD development indicates a lack of excitability in the
neural network due to irreversible neuronal damage. For E1L,
E2L, and E3L, the incidence of SDs was higher, with a steep peak
in SD incidence at the late stages of the ECoG recording. Normal
and salvageable tissue, which was recorded by E1L–E3L, would
be the target for onset due to their preserved neural network
and excitability. As a result, it is possible to differentiate between

normal and damaged tissues based on their SD incidence. The
benefit of recognizing these zones is the implementation of
approaches to block SD development and test new strategies for
neuroprotection.

One advantage of the swine model is that the periodicity
of SD is more regular and the inter-event intervals are
more prolonged in comparison to the lyssencephalic
brain models, allowing a profound study of the SDs
underpinning mechanisms.

Spectral power of the frequency bands
during and after spreading
depolarization

All frequency bands suffered significant depression during
SD passage in the analyzed electrodes (E1L, E2L, and E3L).
A similar phenomenon was observed in electrodes located in the
tissue with the most restrictive blood supply after MCAo (E4L
and E5L), confirming the ischemic effect of SD in the penumbra
and normal cortical zones (Sharbrough et al., 1973; Strong et al.,
2006; Dreier et al., 2009; Ayata and Lauritzen, 2015; Østergaard
et al., 2015). Thus, SDs reach sites far from their origin, causing
distant ischemic effects (Santos et al., 2016). Using laser speckle
analysis, it has been documented that SDs can move to the ACA
territory, producing secondary cerebral blood flow arrest in a
matter of minutes (Kentar et al., 2020; Sánchez-Porras et al.,
2022).

However, we identified three differences between E1L and
both E2L and E3L. First, E1L was not affected by MCAo in the
early stages of the ECoG recording. Second, E1L registered fewer
SDs than E2 or E3L in the whole experiment (Figure 4). Finally,
there was a full recovery of the spectral power of all frequency
bands at E1L, while all the frequency bands remained depressed
at E2 and E3L during postSD (Figure 5). These three statements
support the SD characterization according to the anatomical
regions, confirming the location of the recorded zones: E2L
and E3L were located in the penumbra and E1L in normal
tissue. The disrupted recovery of all frequency bands in the
E2L and E3L would result in prolonged depression of electrical
activity. SDs might not be compensated by tissue because of
neuronal death and net malfunction in these areas caused by
infarction progression and SDs. These findings coincide with the
results presented in the DISCHARGE-1 study, which showed
that the total SD-induced depression duration of a recording
better predicts delayed infarction than other variables (Dreier
et al., 2022). In our work, the high SD and prolonged depression
time of the frequency bands forecast the delayed evolution of the
infarction.

SDs were also detected in E4L and E5L as isoelectric SDs
(Figure 1), where low or no electrical activity was present.
Thus, spectral power analysis would not provide any additional
information to the two electrodes. As expected, clusters of
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agglomerated SDs were detected in the electrodes. A re-entrance
phenomenon would probably help explain the high incidence
of SDs in early ECoG recordings (Santos et al., 2014). Once the
energy in this region is exhausted, few or no SDs appear in the
ischemic core. Subsequently, a higher incidence occurred in the
penumbra (E2L and E3L), reaching normal tissue in E1L.

Effect of middle cerebral artery
occlusion and spreading
depolarizations in further cortical
zones

During the study, no modifications in the spectral power
of the frequency bands were observed in the right hemisphere,
either during MCAo or during SD development or passage.
Nevertheless, it is impossible to discard the possibility that some
of the changes seen close to the ACA territory could be observed
in other brain areas.

In previous studies, researchers reported alterations in
frequency bands on the contralateral side. Interestingly, the
distant cortices displayed the same brain signal pattern observed
in the primary cortical injury: the suppression of fast frequencies
and the maintenance and magnification of slower ones (Tecchio
et al., 2005, 2007; Assenza et al., 2013).

Study limitations

Our speculations about the core-penumbra map should be
corroborated by studying the modifications in the cerebral blood
flow and oxygen metabolism timewise with direct methods, such
as single-photon emission computed tomography (SPECT),
positron emission tomography (PET), magnetic resonance with
contrast agents, and indirect technics like transcranial Doppler
ultrasound imaging, phase-contrast MRI, and near-infrared
spectroscopy (NIRS). The cytoarchitectonic changes must be
assessed by histological analysis to determine the final infarct
volume and verify the disposition of the core, penumbra, and
healthy tissue. Finally, it is relevant to record remote brain areas
to identify any distant injury caused by MCAo and SDs.
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Case report: A quantitative and
qualitative di�usion tensor
imaging (DTI) study in varicella
zoster-related brachial
plexopathy
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Alessandro Rossi1,2 and Lucia Monti3*
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Siena, Italy, 3Diagnostic and Functional Neuroimaging Unit, Department of Neurology and Human
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Di�usion tensor imaging (DTI) is considered feasible for the nerve plexuses’

imaging and quantitative evaluation but its value in the clinical practice

is still virtually unexplored. We present the DTI profile of a case of

acute varicella-zoster virus (VZV)-related brachial plexopathy. A 72-year-old

woman presented with left upper-limb segmental paresis involving the spinal

metamers C6–C7, preceded by a painful dermatomal vesicular eruption in

C5-T1 dermatomes. Clinical and electrophysiological findings and magnetic

resonance imaging indicated a plexus involvement. DTI analysis showed

decreased fractional anisotropy (FA) and an increase of all the other di�usivity

indexes, i.e., mean, axial, and radial di�usivity. The mechanisms underlying DTI

parameter di�erences between healthy and pathologic brachial plexus sides

could be related to microstructural fiber damage. Water di�usion is a�ected

within the nerve roots by increasing the di�usion distance, leading to increased

di�usion perpendicular to the largest eigenvalue and therefore to decreased FA

values The role of DTI in clinical practice has not been defined yet. Additional

quantitative and qualitative DTI information could improve the assessment and

follow-up of brachial plexopathy.

KEYWORDS

di�usion tensor imaging (DTI), varicella-zoster virus (VZV), brachial plexus,

electromyography, fractional anisotropy (FA)

Introduction

Although diffusion tensor imaging (DTI) has been widely applied to the study of the

brain microstructure, its usefulness for peripheral nervous system pathology is a more

recent acquisition (Hodel et al., 2011, 2022; Chhabra et al., 2013; Wade et al., 2020a,b).

DTI is based on the principle that water molecules tend to diffuse more freely along the

direction of axonal fascicles rather than across them. Such directional dependence of

diffusivity is termed anisotropy.
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DTI metrics, including fractional anisotropy (FA) and

estimates of diffusivity, are sensitive to the microstructure of

peripheral nerves and may provide a quantitative evaluation.

In addition, DTI may offer qualitative features displayed as

3D tractography (Tagliafico et al., 2011; Chhabra et al., 2013;

Gasparotti et al., 2013; Wade et al., 2020a, 2021; Fajar et al.,

2022). The parameters derived from DTI are an expression of

water diffusion characteristics through biological barriers and

are referred to as FA, mean diffusivity (MD), axial diffusivity

(AD), and radial diffusivity (RD) (Lope-Piedrafita, 2018; Fajar

et al., 2022; Ranzenberger and Snyder, 2022). FA measures the

degree of anisotropy of water molecules. FA depends upon

the diffusion of the water molecules along a single axis (i.e.,

bidirectional diffusion along the length of the nerve).

AD refers to the magnitude of diffusion parallel to fiber

tracts; it depends on the first eigenvalue (l1) and thus describes

diffusion along the principal movement direction (Fajar et al.,

2022; Ranzenberger and Snyder, 2022). AD is influenced by

axonal count, caliber, and direction continuity, whereas it

is not influenced by myelin integrity. Axial diffusivity is a

quantification of the axonal integrity, and lower AD may reflect

axonal injury, reduced axonal caliber, or less coherent axonal

orientation (Ranzenberger and Snyder, 2022).

RD refers to the magnitude of diffusion perpendicular to

fiber tracts and may be sensitive to myelin damage. Higher

RD may reflect myelin loss or glial cell damage, reduced

axonal integrity, and/or packing density. RD is the apparent

water diffusion coefficient in the direction perpendicular to

the axonal fibers. An increase in RD is correlated with an

increased perpendicular diffusion of water molecules. This is

not only correlated to tract demyelination but also to decreased

axonal count and nerve degeneration due to the fact that

damage to physical barriers favors an isotropic movement of the

extracellular fluids (Ranzenberger and Snyder, 2022).

MD describes the average motion of water molecules,

obtained from the average of the three eigenvectors (l1, l2,

l3). In pathological conditions, MD should increase due to

the damage of biological barriers such as myelin and cell

membranes. MD is a sensitive marker of reduced white matter

microstructural integrity due to either axonal or myelin damage

occurring in neurological conditions such as developmental and

degenerative disorders.

In the last decade, anatomical studies (Wade et al., 2020a)

showed that DTI has been dedicated to pathological conditions

such as traumatic, neoplastic, or inflammatory events. It

has been shown that DTI may demonstrate normal tracts,

tract displacement, deformation, infiltration, disruption, and

disorganization of fibers due to lesions localized within or along

the brachial plexus (Heckel et al., 2015; Vavasour et al., 2019;

Wade et al., 2020b).

The brachial plexus has a very complex geometry which

requires a 3D tractography to be analyzed. Furthermore, to

differentiate brachial plexus pathologies, a 3D tractography with

different angular and anisotropy thresholds for each cervical

root needs to be studied (Wade et al., 2020b, 2021).

We describe the DTI profile of a case of acute varicella-zoster

virus (VZV)-related brachial plexopathy.

Case description

We report the case of a 72-year-old woman who presented

with pain along the whole left upper limb. Two days later, a

typical group of herpetiform vesicles on an erythematous base

appeared at the level of C6 and C7 dermatomes. Within the

first week, a segmental paresis of the left arm with hyperalgesia,

allodynia, edema, and both color and skin-temperature changes

in the left hand developed. The paresis involved the muscles

innervated by C6 and C7 roots. In these muscles, there was no

increase in the duration or amplitude of motor unit potentials.

The lack of reinnervation of the motor units suggests that the

brachial plexopathy (namely, the neurogenic muscle damage)

was unequivocally recent. Anti-VZV IgM and IgG antibodies

were found in the serum.

Electromyography (EMG) revealed positive sharp

waves/fibrillation potentials with markedly reduced motor

unit recruitment in the left extensor muscles of the wrist and the

fingers, the brachioradialis, the triceps brachii, and the flexor

carpi radialis. Acute denervation was absent in the muscles

corresponding to the spinal metamers C5 and T1.

Based on clinical and laboratory data, a diagnosis of

monoparesis of the left arm due to VZV-related brachial

plexopathy was made.

Diagnostic assessment

Imaging acquisition

The diffusion images were acquired on a Siemens Aera 1.5T

MRI scanner using a 2D echo-planar imaging (EPI) diffusion

sequence of [ep2d_diff_tensor_64_gap0], an echo time of (TE)

= 81ms, and a repetition time of (TR) = 7,100ms. A DTI

diffusion protocol was used, and a total of 64 diffusion sampling

directions were acquired. The b-value was 1,000 s/mm². The

in-plane resolution was 2.45mm and the slice thickness was

2.5mm. The restricted diffusion was quantified using restricted

diffusion imaging (Yeh et al., 2017). Diffusion data were

reconstructed using generalized q-sampling imaging (Yeh et al.,

2010) with a diffusion sampling length ratio of 1.25. The tensor

metrics were calculated using DWI with a b-value lower than

1,750 s/mm². A deterministic fiber tracking algorithm (Yeh et al.,

2013) was used. The STIR sequence was acquired in the coronal

plane (TR = 3,530ms; TE = 56ms; inversion time [IT] =

170ms; flip angle = 150 degrees; slice thickness = 3mm). MR

examination was performed without intravenous administration
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of a contrast medium in view of the lack of sufficient information

on the kidney function of the patient.

Data sampling

An intraindividual study was performed, and the

comparison was made between the healthy (right) and the

pathological (left) side. The healthy side was considered as

the reference standard for morphological and quantitative

comparative study. The right and left sides were studied

and measured with the same methodology using ROI size,

symmetric (left, right) ROI position, FA range, and angular

thresholds. Several FA, AD, RD, and MD measures were

obtained for each ROI positioned on the nerve roots, as

described in the following paragraphs.

DTI quantitative and qualitative analyses

Quantitative and qualitative analyses were performed by

using DSI studio (https://dsi-studio.labsolver.org/) on both sides

(left and right) of the pathological levels, C6 and C7 roots.

To improve the diagnostic accuracy of the FA, MD, AD, and

RD values, multiple measures were acquired on each involved

root. Qualitative and quantitative analyses were performed using

4 different steps: (a) placing bilateral and symmetrical ROI in

the proximal, medium, and distal tracts of nerve roots visualized

on axial and coronal STIR images; (b) setting FA threshold

values for tractogram reconstruction; c) 3D-DTI tractograms of

C6 and C7 roots were obtained with different threshold values,

and d) collecting the acquired diffusion parameters. Anisotropy

thresholds, angular thresholds, and the minimum lengths of

selected fibers were measured by considering the following

values and criteria: 0.077, 0.088, 0.099, and 0.11 as anisotropy

thresholds; 50, 60, and 70◦ as angular thresholds; and fiber tracts

with lengths shorter than 15, 25, 35, and 40mm. FA, MD, RD,

and AD values were obtained along 36 different 3D-tractograms.

Statistical analysis

The results of scaled variables are represented by the mean

± SE or SD and compared using independent samples. After

verifying that the datasets fit a “not normal” distribution

(Agostino-Pearson’s test), DTI differences between the healthy

and pathological sides were evaluated by the non-parametric

Mann-Whitney’s U-test (MWUt). Significance was set at the

5% level. The dataset was calculated on the basis of tract length

series (minimum length discard criteria of 35mm) for each

anisotropy and angular threshold, respectively, 0.077, 0.088,

0.099, and 0.11 and 50, 60, and 70◦. Therefore, with three

series based on tract length, anisotropy, and angular thresholds,

36 measures were obtained on each nerve root for a total of

144 measurements.

Results

We report on the quantitative analysis performed on both

sides (left and right) of the pathological levels (C6 and C7 roots)

Comparing the DTI values (FA, MD, AD, RD) of the C6 and

C7 roots between the left and right brachial plexus, significant

differences were demonstrated for FA (p-value< 0.0001, MWUt

= 792), RD (p-value < 0.0001, MWUt = 1,286), AD (p-value <

0.0033, MWUt = 1,861), and MD (MWUt = 1,563 p < 0.0001)

(Figure 1). Because RD and AD showed no normal distribution,

a non-parametric two-tailed test was used.

Comparing the DTI values between the right and left sides

for each nerve root, significant differences were demonstrated

for the C6 root FA (p-value < 0.0001), C7 root FA (p-value <

0.0001), C6 rootMD (p-value= 0.0161), C7 rootMD (p-value<

0.0001), C6 root AD (p-value= 0.0423), C7 root AD (p-value <

0.0001), C6 root RD (p-value= 0.0161), and C7 root RD (p-value

< 0.0001).

No statistically significant difference was demonstrated

when assessing AD values between C6 and C7 roots of the same

side. By contrast, C6 and C7 roots showed significant differences

for the other DTI parameters such as FA, MD, and RD (p-value

< 0.0001).

Qualitative results are the 3D-DTI tractograms of the C6 and

C7 roots. The C6 and C7 roots are shown with a different color

score corresponding to different FA values obtaining parametric

images in Figure 2. A complete background suppression

was obtained.

Discussion

In the current study, we presented the DTI characterization

of a case of VZV-related brachial plexopathy, complicated by

segmental paresis involving spinal metamers C6–C7.

In recent times, DTI has gained attention due to its

unmatched ability to generate maps of neural pathways

(qualitative approach) and provide objective proxy measures

of nerve integrity (quantitative approach) (Righini et al., 2005;

Wade et al., 2020a). DTI can differentiate healthy from acute and

chronic neuropathy, but the complex geometry of the brachial

plexus may be assessed only by considering anatomical notions

such as fiber orientation within each emerging nerve, as well

as data acquisition and pre- and post-processing approaches

(Herweh et al., 2007; Hodel et al., 2011, 2022; Crim and Ingalls,

2017; Wade et al., 2020b; van Rosmalen et al., 2021). Indeed,

the principal eigenvector of the tensor might not represent the

actual fiber orientation(s) and therefore it might generate both

qualitative and quantitative errors anywhere along the fiber path

(Chung et al., 2013; van Rosmalen et al., 2021).
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FIGURE 1

Di�erences between di�usion parameters in the left and right C6–C7 roots. By using the Mann Whitney U-test (MWUt), significant statistical

di�erences were demonstrated in FA (p-value < 0.0001, MWUt = 792), RD (p-value < 0.0001, MWUt = 1,286), AD (p-value < 0.0033, MWUt =

1,861), and MD (p < 0.0001, MWUt = 1,563). The p-value lower for AD than RD suggests a minor axonal damage in comparison with

dysmyelination process. **, ****indicate p-values significant.

FIGURE 2

Di�usion tensor imaging tractography of the cervical cord and C6 and C7 brachial roots in three-dimensional view and parametric color maps

(A–D). (A) The color of the tract is determined by the local FA, where red denotes a high FA (0.32), scaled to yellow, green, and blue denote low

FA (for rater 0.25). (B) The color of the tract is determined by the local MD, where red denotes a high MD (1.30), scaled to yellow, green, and blue

denote low MD (for rater 1.05). (C) The color of the tract is determined by the local AD, where red denotes a high AD (1.78), scaled to yellow,

green, and blue denote low AD (for rater 1.48). (D) The color of the tract is determined by the local RD, where red denotes a high RD (1.2), scaled

to yellow, green, and blue denote low RD (for rater 0.9). Geometric distribution of water di�usion parameters suggests myelin damage of left C7

root, demonstrated by reduction of FA, increase of MD, AD, and RD. Left C6 root shows reduced FA values and increased MD, AD, and RD values

in distal root section, suggesting a partial compromission of the nervous tissues.

Quantitative approach

For both central and peripheral nervous system conditions,

demyelination and/or axonal injury may determine an FA

decrease. For example, in chronic inflammatory demyelinating

polyradiculoneuropathy and in brachial plexus injuries (Wade

et al., 2020b, 2021; Su et al., 2021), the bundles of plexus

nerve fibers and their branches showed lower FA. In the
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present case report about acute VZV-related plexopathy, a

significant decrease in the FA of the brachial plexus trunks with

a concomitant increase of MD, AD, and RD was demonstrated

(Herweh et al., 2007; Xie et al., 2010; Meng et al., 2021;

Su et al., 2021). FA decrease may be explained through

knowledge of the pathophysiology of the VZV infection.

In brachial VZV plexitis, virus particles infect sensory and

sympathetic ganglion neurons, and considering the relationship

between the ranges of impaired motor functions and the

distribution of skin lesions related to this herpes virus, it is

a predominant opinion that the development of segmental

paresis is caused by the direct or indirect spread of VZV from

the dorsal root ganglion to the spinal anterior horn cells, the

anterior root, and the spinal nerves, which consequently

induce motor nerve damage and functional changes

(Meng et al., 2021).

Previous reports showed that patients with VZV infections

have extensive lymphocytic and plasma cell infiltration in both

the nerves and the ganglia (Guldberg-Moller et al., 1959; Esiri

and Tomlinson, 1972). This cellular invasion is presumably

prevalent in motor roots and the dorsal root ganglion, where the

blood-nerve barrier is anatomically less efficient and circulating

cellular and humoral immune components have easy access to

these structures (Hodel et al., 2011). As a result, during the acute

phase of the infection, a significant increase in edema and initial

cellularity infiltration among the nerve fibers would determine

an obstacle to the molecular motion, causing an anisotropy

decrease (Kimura-Ohba et al., 2016). In line with this hypothesis,

we observed a reduction of FA and an increase in all the other

indexes ofmolecular displacement by diffusion. In particular, the

reduced FA and the increased MD, RD, and AD values suggest

the presence of fiber demyelination and axonal damage, caused

by extensive axonal swelling, and an altered nerve-blood barrier

due to a marked inflammatory process (Xie et al., 2010; Kimura-

Ohba et al., 2016; Wade et al., 2020b, 2021; van Rosmalen et al.,

2021).

The quantitative analysis performed by evaluating different

FA thresholds, nerve tract lengths, and degrees of fiber direction

supported the corresponding microstructural damage.

Indeed, all obtained DTI values were significantly different

between healthy and pathological sides and this was consistent

with clinical and electrophysiological findings. In particular, the

left C7 dermatome was clinically more involved than the left C6

and these findings corresponded to DTI values, independent of

post-processing thresholds. When the left C6 root (pathological

side) was compared with the right C6 root (healthy side),

statistical significance for the AD values was lower (p∗) than that

for the MD, RD, and FA values (p∗∗∗∗) (Song et al., 2002; Wade

et al., 2020b, 2021; van Rosmalen et al., 2021). ADmay be related

to axonal integrity. Detailed analysis of directional diffusivities

(i.e., RD vs. AD) may suggest the presence of specific and

prevalent pathological patterns such as demyelination and/or

axonal damage. It is possible to assume that there is a smaller

axonal involvement in the left C6 root than in the other

pathologic root (i.e., left C7). Our findings indicate that DTI

analysis has the potential to represent a pathological process in

that timeframe and to detect what type of damage is prevalent.

The methodological choice to analyze different FA and

degree thresholds and a selected length of fiber is crucial to

reduce the errors in the quantitative approach.

In addition, our DTI analysis seems to discriminate

anisotropy changes between the C6 and C7 roots on the

healthy side. Indeed, FA, MD, and RD showed a significant

difference when the values of the C6 and C7 roots on the

right side were compared. FA, MD, and RD values of the

right C7 root were higher than the right C6 root, and this

could be explained by a different myelination process, although

there are not exhaustive literature data in support of this

hypothesis. Some authors reported that “the roots of the

brachial plexus have a variable axon density, specifically 6,750

per mm2 in C5, 8,448 per mm2 in C6, 8,665 per mm2 in

C7, 5,708 per mm2 in C8, and ∼10,000 per mm2 in T1”

FIGURE 3

(A–C) Coronal STIR images of the brachial plexus. Di�erent size and signal intensity are shown between the right and the left side of C6 (arrow

head) and C7 (arrow) roots in proximal (A, B) and distal (C) tracts.
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(Won et al., 2012; Gesslbauer et al., 2017; Wade et al.,

2020a, 2021; van Rosmalen et al., 2021) and these data

can explain the absence of a statistical significance of the

AD values between the right C6 root and the C7 root.

The difference (8,448 per mm2 in C6 vs. 8,665 per mm2

in C7) is not so high as that for the other roots of the

brachial plexus.

Some studies (Wade et al., 2020a, 2021) demonstrated that

there are physiological differences in DTI parameters between

the right and left plexus in healthy subjects, when all brachial

plexus roots in all subjects, are considered. By contrast, in the

single subject, no differences were demonstrated between C6 and

C7 roots on both sides.

Qualitative approach

There is a need for a 3D structure generating technique

to display the anatomical characteristics of the brachial plexus.

Indeed, the brachial plexus cannot be adequately represented

on 2D images and standard structural MRI acquisitions are

spoiled by other anatomical structures such as vascular trunks.

DTI demonstrates the true geometry of the roots through 3D

tractography of the brachial plexus without vascular signal

contamination. The 3D-DTI tractography is the result of a

multistep process, is a time-consuming procedure, and could be

invalidated by the choice of type of acquisition, pre- and post-

processing, due to the complexity and variants of the brachial

plexus anatomy (Aung et al., 2013; Chung et al., 2013; Yeh et al.,

2013; Kimura-Ohba et al., 2016; Wade et al., 2020b). Moreover,

the fiber pathway reconstruction may be impaired by crossing,

diverging/converging, twisting, or kinked fibers and this is a

common DTI limitation for both brain and brachial plexus

structural reconstruction. However, with the optimization and

standardization of DTI acquisition, pre- and post-processing

experts can obtain 3D modeling of the brachial plexus complex

course and represent the true geometry of the roots (Figure 2).

DTI has been mostly used in experimental settings, with few

indications for clinical practice. Our study may contribute to

identifying brachial plexopathy through DTI.

Evaluation of brachial plexus abnormalities represents

a diagnostic challenge due to anatomical complexity and

due to the overlapping presentation of different pathologies.

Peripheral nerves and adjacent structures, for example, vessels

or muscles, display similar MRI signal characteristics on

STIR images (Figure 3), and differentiationbetween them may

be difficult (Crim and Ingalls, 2017). Using DTI, the no-

anisotropic background structures are suppressed, further

improving the detection of subtle nerve abnormalities. An

added value of DTI is its improved detection of morphological

abnormalities of the brachial plexus (3D reconstruction) and

procurement of quantitative additional information regarding

the microstructure of nerve fibers, thus being a potential

alternative to the use of gadolinium.

It is important to acknowledge the limitations of DTI.

Motion artifacts and geometrical distortions, long acquisition

time and complex post-processing procedures, the robustness of

the algorithms used, and complexity of brachial plexus anatomy

limit the use of DTI in clinical practice. On the other hand,

DTI can be used to quantify nerve microstructural integrity,

non-invasively reconstruct nerve fibers in vivo, and can offer

valuable complementary information without vascular signal

intensity artifacts and is the only advanced technology to show

a 3D view of the brachial plexus. In particular, in our study,

the main limitation was the complex and time-consuming

post-processing procedures, while the main advantage was the

quantification of the nerve damage (C6 vs. C7 roots) and its

correlation with the clinical and EMG findings.
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A 1-Tesla MRI system for dedicated
brain imaging in the neonatal
intensive care unit
Elisa R. Berson1, Ali Mozayan1, Steven Peterec2, Sarah N. Taylor2,
Nigel S. Bamford2,3, Laura R. Ment2,3, Erin Rowe1, Sean Lisse1,
Lauren Ehrlich1, Cicero T. Silva1, T. Rob Goodman1 and
Seyedmehdi Payabvash1*
1Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,
2Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States, 3Department of
Neurology, Yale School of Medicine, New Haven, CT, United States

Objective: To assess the feasibility of a point-of-care 1-Tesla MRI for identification of

intracranial pathologies within neonatal intensive care units (NICUs).

Methods: Clinical findings and point-of-care 1-Tesla MRI imaging findings of NICU

patients (1/2021 to 6/2022) were evaluated and compared with other imaging

modalities when available.

Results: A total of 60 infants had point-of-care 1-Tesla MRI; one scan was

incompletely terminated due to motion. The average gestational age at scan time

was 38.5 ± 2.3 weeks. Transcranial ultrasound (n = 46), 3-Tesla MRI (n = 3), or

both (n = 4) were available for comparison in 53 (88%) infants. The most common

indications for point-of-care 1-Tesla MRI were term corrected age scan for extremely

preterm neonates (born at greater than 28 weeks gestation age, 42%), intraventricular

hemorrhage (IVH) follow-up (33%), and suspected hypoxic injury (18%). The point-

of-care 1-Tesla scan could identify ischemic lesions in two infants with suspected

hypoxic injury, confirmed by follow-up 3-Tesla MRI. Using 3-Tesla MRI, two lesions

were identified that were not visualized on point-of-care 1-Tesla scan: (1) punctate

parenchymal injury versus microhemorrhage; and (2) small layering IVH in an

incomplete point-of-care 1-Tesla MRI with only DWI/ADC series, but detectable on

the follow-up 3-Tesla ADC series. However, point-of-care 1-Tesla MRI could identify

parenchymal microhemorrhages, which were not visualized on ultrasound.

Conclusion: Although limited by field strength, pulse sequences, and patient

weight (4.5 kg)/head circumference (38 cm) restrictions, the Embrace
R©

point-of-

care 1-Tesla MRI can identify clinically relevant intracranial pathologies in infants

within a NICU setting.

KEYWORDS

Embrace
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, point-of-care MRI, neonatal intensive care unit, brain imaging, 1-Tesla,
hemorrhage
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1. Introduction

Transcranial ultrasound is the most commonly used modality
for evaluating brain structures and intracranial pathologies within
the neonatal intensive care unit (NICU) setting (Pollatou et al.,
2022). Over the past two decades, MRI has been increasingly used
in neonates and infants to elucidate patterns of brain development
(Damaraju et al., 2014; Kline et al., 2021; Zhang et al., 2021)
and to quickly and accurately diagnose suspected intraparenchymal
pathologies, such as ischemia and hemorrhage (Reddy, 2022).
While transcranial ultrasound can reliably identify intraventricular
hemorrhage (IVH) and ventriculomegaly, brain MRI is considered
more sensitive in detecting white matter (WM) disease, especially
acute ischemic injury (Nowell et al., 1988; Doria et al., 2014; Simonsen
et al., 2015). According to 2020 “Routine Neuroimaging of the
Preterm Brain” guidance from the American Academy of Pediatrics,
brain “MRI for infants born at less than 30 weeks of gestational age is
not indicated as a routine procedure” (Hand et al., 2020; Inder et al.,
2021). However, there is an increasing demand for readily accessible
and safe brain MRI neuroimaging in this vulnerable population.

MRI in very preterm infants (VPIs), defined as being born before
32 weeks gestation, is enabled by specialized protocols that reduce
noise, minimize transport burden, and utilize smaller head coils
(Dalal et al., 2006; Rona et al., 2010; Flick et al., 2011; Wang et al.,
2014; Ghotra et al., 2021). A novel MRI technology that received
Food and Drug Administration (FDA) approval in 2017 is the 1-Tesla
Embrace

R©

for point-of-care brain MRI in the NICU (Voelker, 2017).
Traditionally, MRI has been chiefly performed in term-equivalent
infants stable enough for transport to the MRI suite. However,
point-of-care 1-Tesla MRI enables safe imaging of a neonate’s brain
in the NICU without the need to transfer. This technology with
a permanent magnet, 150 mT/m peak gradient, and temperature-
controlled bassinet can potentially allow for earlier confirmation and
prognostication of IVH, ischemic injury, and periventricular WM
changes among neonates who were traditionally only suitable for
transcranial ultrasound (Goeral et al., 2021).

To date, in-NICU point-of-care 1-Tesla brain MRI scanners are
only available in a few centers in the United States, with limited
reports on comparisons of the point-of-care 1-Tesla brain MRI with
transcranial ultrasound and conventional 3-Tesla MRI (Thiim et al.,
2022). In our present study, we report the results from neonatal brain
MRIs performed using a point-of-care 1-Tesla MRI system during
our NICU’s first year of use. We compared intracranial findings
on point-of-care MRI scans with conventional 3-Tesla MRI and
transcranial ultrasound of neonates, whenever available.

2. Materials and methods

2.1. Patient characteristics

We retrospectively reviewed and evaluated the clinical and
imaging information of all neonates who underwent a point-of-
care 1-Tesla brain MRI from January 2021 through June 2022. The
scanner can accommodate infants weighing up to 4.5 kg or with a
head circumference of up to 38 cm. During this time, all clinically
indicated non-contrast brain MRIs of neonates who fulfilled the
above-mentioned physical criteria were performed in the point-
of-care 1-Tesla brain MRI scanner, except for dedicated epilepsy

protocol and neonates requiring contrast-enhanced MRI, who
were referred for conventional 3-Tesla scanner given the imaging
limitations for those indications with Embrace

R©

. The institutional
review board approved the research protocol for this study and
waived the need for informed consent, given the retrospective nature
of our analysis.

2.2. Brain MRI protocol

The infants were scanned within the NICU using a dedicated
point-of-care 1-Tesla Embrace

R©

MRI scanner (Aspect Imaging,
Shoham, Israel). The MRI protocols on this unit are limited but
include T1-weighted spin echo [slice thickness: 4 mm; repetition time
(TR): 600 ms; echo time (TE): 11–12.5 ms; flip angle: 90◦; field of
view: 14 cm × 14 cm; and matrix: 200 × 200] in the axial and
sagittal planes; T2-weighted fast spin echo (slice thickness: 4 mm;
TR: 9,900–12,000 ms; TR: 130–155 ms; flip angle: 90◦; field of view:
14 cm × 14 cm; and matrix 200 × 200) in axial, coronal, and
sagittal planes; diffusion weighted imaging (DWI) fast spin echo (slice
thickness: 4 mm; TR: 14,000–15,500 ms; TE: 127–133 ms; b = 0 and

TABLE 1 Demographic characteristics of infants who had 1-Tesla brain MRI.

Infants’ characteristics N = 60

Gestational age at birth (weeks, mean ± SD, range) 30.4 ± 5.4 (22–40)

≤32 weeks 41 (68%)

32–36 weeks 6 days 7 (12%)

≥37 weeks 12 (20%)

Method of delivery

Vaginal delivery 25 (42%)

Cesarean section 35 (58%)

Birth weight (grams, mean ± SD) 1,575 ± 1,040

Apgar score [median, interquartile range]

1 min 5 [3–7]

5 min 8 [6–9]

10 min (only recorded for 22 patients) 7.5 [7–9]

Cord pH (only measured in 25 patients) 7.26 ± 0.14

Required respiratory support 35 (58%)

Seizures 4 (7%)

Initial blood glucose at birth (mg/dl) 72.8 ± 36.3

Initial hematocrit at birth 40.6 ± 9.7

Gestational age at time of 1-Tesla scan (weeks,
mean ± SD, range)

38.5 ± 2.3 (29.9–43.6)

Days of life first 1-Tesla performed (mean ± SD) 56.3 ± 39.1

Days from 1-Tesla to nearest MRI or ultrasound
(mean ± SD)

44.9 ± 33.2

Primary indication for neonatal brain MRI

Routine pre-discharge scan in extremely preterm
neonates

25 (42%)

Intraventricular hemorrhage 20 (33%)

Hypoxic injury 11 (18%)

Other 4 (7%)
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1,000 s/mm2; flip angle: 90◦; field of view: 11 cm × 14 cm; and
matrix 92 × 43) in the axial plane; and a 3D T1 gradient echo (slice
thickness: 1 mm; TR: 20 ms; TE: 3.4 ms; flip angle: 15◦; field of view:
14 cm × 14 cm; and matrix 140 × 140) acquired in the sagittal
plane and reconstructed in axial and coronal planes. Additional
apparent diffusion coefficient (ADC) and exponential DWI maps
were generated from DWI acquisition. The total scan time for this
protocol is approximately 45 min.

2.3. Comparison transcranial ultrasound
and 3-T brain MRI

Most infants undergoing point-of-care 1-Tesla brain MRI also
underwent additional imaging in the form of transcranial ultrasound
or conventional 3-Tesla brain MRI. The transcranial ultrasounds
were performed using 5–12 MHz phased array transducer (Phillips,
USA) via anterior fontanel (coronal, sagittal planes) and mastoid
(coronal plane) windows. The 3-Tesla brain MRIs were performed
on a Skyra scanner (Siemens, Germany) in the radiology department.

2.4. Assessment of study findings and
concordance

In addition to the official clinical report, all scans were re-
reviewed by a neuroradiologist with over six years of experience
in pediatric neuroimaging. To facilitate the presentation
of findings, we summarized the exam indication into four
main categories: evaluation of potential ischemic injury,
intraventricular/intraparenchymal hemorrhage, term age scan
in extremely preterm infants (<28 weeks gestational age), and other
indications. The findings from each scan were corroborated with the

official clinical report. Concordance was determined in comparison
with the 3-Tesla brain MRI or transcranial ultrasound performed at
the closest interval to the target point-of-care 1-Tesla MRI scan.

2.5. Statistics

The data are expressed as mean ± SD, frequency (percentage),
median (interquartile), or ratios, wherever appropriate.

3. Results

3.1. Patient demographics

A total of 60 neonates were scanned using the point-of-
care 1-Tesla MRI scanner. One MRI was prematurely terminated
due to motion but was still included in our evaluation. Neonate
demographics and clinical information are summarized in Table 1.
Of these, 3 (5%) had 3-Tesla MRI, 46 (76%) had transcranial
ultrasound, and 4 (7%) had both ultrasound and 3-Tesla MRI in
addition to 1-Tesla scan. However, 7 (12%) patients had no other
brain imaging available for comparison with the 1-Tesla scan.

3.2. Suspected ischemic injury

A total of 11 (18%) infants underwent point-of-care 1-Tesla
MRI for suspected ischemic injury; of whom, two had evidence of
ischemic injury, one had evidence of IVH, and one had a subdural
hematoma. Below is a summary of imaging findings from two of these
seven patients. Two additional patients are listed in Table 2 under
the subcategory of “Suspected ischemic injury.” In the remaining

TABLE 2 Descriptors of infants who underwent 1-Tesla brain MRI imaging.

Age after birth
of 1-Tesla MRI

Indication for
1-Tesla MRI imaging

1-Tesla MRI
figures

1-Tesla MRI findings Other imaging
figures

Other imaging
findings

Suspected ischemic injury

7 days Decreased fetal movement
and profound anemia
(hemoglobin 3.6 g/dl)

Figures 7A, B Possible punctate focus of
microhemorrhage in the
right caudothalamic groove

Figure 7C Transcranial ultrasound
performed on the first day
after birth confirmed the
possible microhemorrhage

11 days Fever, neonatal sepsis, and
oxygen desaturations due to
decreased respiratory drive

Figures 8A–F No evidence of ischemic
changes but demonstrated a
0.7 cm subdural hematoma

N/A N/A

Other indications

9 days Evaluation for brainstem
abnormality given decreased
vocal cord mobility on
laryngoscopic exam and
obstructive apnea

N/A No structural or signal
abnormality in the brain

N/A N/A

5 days Evaluation after subgaleal
hematoma was found on
transcranial ultrasound

N/A Redemonstrated subgaleal
hematoma with no
intracranial abnormalities

N/A 3-Tesla MRI redemonstrated
subgaleal hematoma with no
intracranial abnormalities

3 days Prenatal diagnosis of
ventriculomegaly and
Trisomy 21

Mild dilation of the lateral
ventricles to 11 mm at the
level of the atrium

Transcranial ultrasounds
performed before and after
the MRI confirmed the
ventricular dilation
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FIGURE 1

In a 4-day-old term neonate with challenging home birth, followed by transfer to hospital, resuscitation, and therapeutic hypothermia, the point-of-care
1-Tesla DWI (A) and ADC (B) showed reduced diffusion in the left basal ganglia. The next day (5 days old) follow-up 3-Tesla DWI (C) and ADC (D) showed
ischemic changes and reduced diffusion in bilateral basal ganglia. Transcranial ultrasound was normal on the first day after birth (E,F).

three subjects, the point-of-care 1-Tesla MRI scans were normal and
concordant with findings of other imaging modalities (transcranial
ultrasound in two and follow-up 3-Tesla MRIs in one).

A 4-day-old infant, 40 weeks 5 days postmenstrual age (PMA),
was born via home birth with subsequent difficulty breathing and
probable seizure. The infant was resuscitated and treated with
therapeutic hypothermia. The point-of-care 1-Tesla MRI showed
reduced diffusion in the left basal ganglia (Figures 1A, B). The next
day follow-up 3-Tesla MRI (5 days old) showed ischemic changes and

reduced diffusion in bilateral basal ganglia (Figures 1C, D). Notably,
the transcranial ultrasound on the first day after birth was normal
(Figures 1E, F).

A 5-day-old infant (34 weeks and 2 days PMA) born to a
COVID-positive mother with poorly controlled diabetes had delivery
complicated by shoulder dystocia requiring respiratory support
and chest compressions. The point-of-care 1-Tesla MRI showed a
4 mm focus of ischemic injury adjacent to the right caudate body
(Figures 2A–K), which was confirmed on the follow-up 3-Tesla
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FIGURE 2

In a 5-day-old infant with a history of delivery complicated by shoulder dystocia requiring respiratory support and chest compressions, the point-of-care
1-Tesla DWI (A) and ADC (B) showed a punctate focus of reduced diffusion with associated T1 hyperintensity (C,D). Two days later, follow-up 3-Tesla MRI
showed diffusion restriction (E,F), T1 hyperintensity (G), and T2 hypointensity (H) of the same lesion. There were four additional punctate foci of
parenchymal injury with intrinsic T1 hyperintensity on 3-Tesla MRI (I–K), which could not be visualized on preceding day 1-Tesla scan. No transcranial
ultrasound was obtained.

MRI on the seventh day after birth. Notably, four additional foci
of punctate T1 hyperintensity were noted on the follow-up 3-Tesla
MRI without corresponding signal abnormality on the initial point-
of-care 1-Tesla scan (Figures 2I–K). The infant had no transcranial
ultrasound for comparison.

3.3. Intraventricular/intraparenchymal
hemorrhage

A total of twenty infants were scanned at term age equivalent
(36–40 weeks gestational age) or before discharge for follow-up of
their IVH. In 17 out of 20 infants, IVH was found on point-of-
care 1-Tesla MRI scan, corroborating the findings of the most recent
preceding transcranial ultrasound. Images from four of these patients
appear in Figures 3A–L. IVH findings were also confirmed in one
infant on the follow-up 3-Tesla MRI (Figures 3J–L). In three infants
with history of grade 1 or 2 IVH, there was no evidence of IVH on
the point-of-care 1-Tesla MRI. This was concordant with the most
recent preceding transcranial ultrasound for each patient performed
prior to the MRI, all of which reported complete interval resolution
of IVH. One infant who was born at 37 weeks and 3 days, with
delivery complicated by shoulder dystocia and brachial plexus injury,

hypoglycemia, and seizures shortly after birth, was found to have
a left temporal lobe intraparenchymal hemorrhage on transcranial
ultrasound performed at 1 day old (Figures 4A, B). Follow-up
conventional 3-Tesla MRI performed on day four of life as part of an
epilepsy protocol (Figures 4C, D), and a point-of-care 1-Tesla MRI
(when 35 days old) delineated the extent of parenchymal hemorrhage
(Figures 4E, F).

3.4. Routine pre-discharge scan in preterm
infants

A total of 22 infants with preterm birth had pre-discharge point-
of-care 1-Tesla scans to exclude potential parenchymal injury. The
postmenstrual gestational age at birth for this sub-cohort ranged
from 22 weeks and 1 day to 34 weeks and 3 days. In a 63-day-
old infant (36 weeks and 4 days PMA), the point-of-care 1-Tesla
MRI scanner showed a punctate focus of microbleed in the deep
WM next to the left frontal horn (Figures 5A, B), which was not
identified on a preceding transcranial ultrasound performed 5 weeks
earlier (Figure 5C). In a 4-month-old neonate (43 weeks and 4 days
PMA), with no transcranial ultrasound, the pre-discharge point-
of-care 1-Tesla MRI was terminated after obtaining DWI series
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FIGURE 3

Neonates scanned on point-of-care 1-Tesla MRI for intraventricular hemorrhage (IVH) follow-up. An 80-day-old infant with T1 hyperintense (A) and T2
hypointense (B) grade II left germinal matrix hemorrhage on point-of-care 1-Tesla MRI performed 70 days after transcranial ultrasound (C). A 52-day-old
infant with T1 hyperintense (D) and T2 hypointense (E) right-sided grade I germinal matrix hemorrhage on point-of-care 1-Tesla MRI performed 34 days
after transcranial ultrasound (F). A 28-day-old infant with T1 hyperintense (G) and T2 hypointense (H) left-sided grade I germinal matrix hemorrhage on
point-of-care 1-Tesla MRI performed 15 days after transcranial ultrasound (I). An 85-day-old infant with layering T2 hypointense IVH (J) on point-of-care
1-Tesla MRI, which was also visualized on follow-up 3-Tesla MRI 38 days later (K) and was sequela of grade 2 IVH seen on transcranial ultrasound
performed 74 days earlier (L).

due to infant movement (Figure 6A). However, a follow-up 3-
Tesla MRI under sedation performed 5 days later showed layering
IVH (Figure 6B), which was conspicuous on ADC series. This was
not visualized on the ADC map from the point-of-care 1-Tesla
MRI. In the remaining twenty infants, the point-of-care 1-Tesla

brain MRI showed no structural or signal abnormality, concordant
with transcranial ultrasound findings performed in 17 of these
infants. In three infants, point-of-care 1-Tesla MRI was the only
modality of brain imaging performed during the NICU admission at
our institution.
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FIGURE 4

An infant born at 37 weeks and 3 days, with delivery complicated by shoulder dystocia and brachial plexus injury, was found to have hypoglycemia and
seizures after birth. A left temporal lobe intraparenchymal hemorrhage was found in transcranial ultrasound (1 day old, A,B). This was further delineated
on conventional 3-Tesla MRI (4 days old, C,D) and followed on point-of-care 1-Tesla MRI (35 days old, E,F).

3.5. Other indications

There were several other indications for the use of 1-Tesla MRI,
including the assessment of brainstem abnormality, the evaluation
of subgaleal hematoma, and a diagnosis of ventriculomegaly, which
are detailed in Table 2 under the subheading of “Other indications.”
Below are detailed examples of the evaluation performed for two
infants with congenital fetal abnormalities. One infant was delivered
via late preterm C-section due to a known omphalocele and was
discovered to have a patent ductus arteriosus and patent foramen
ovale. After surgical correction, the patient was intubated and placed

on fentanyl and dexmedetomidine (Precedex) drips for 5 days. Term-
equivalent MRI was performed on the 18th day after birth using the
1T MRI. The MRI excluded post-hypoxic sequelae or intracranial
hemorrhage, concordant with an earlier transcranial ultrasound on
the first day after birth.

Another infant with syndactyly of the bilateral second, third,
and fourth digits in all extremities and two small appendages of
the midline sacrum was scanned at term with 1T MRI. There was
no evidence of any intrathecal abnormality on spinal ultrasound,
and Embrace

R©

MRI performed on the third day after birth found
no abnormalities.
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FIGURE 5

In a routine pre-discharge point-of-care 1-Tesla MRI of a preterm infant, there was a punctate focus of T1 hyperintense (A) and T2 hypointense (B)
microbleed in the left anterior periventricular white matter which was not visualized on preceding transcranial ultrasound performed 5 weeks earlier (C).

FIGURE 6

The point-of-care 1-Tesla routine pre-discharge MRI in a 4-month-old neonate was terminated after obtaining DWI/ADC due to infant movement (A).
Follow-up 3-Tesla MRI 5 days later showed layering IVH in occipital horns, which could be appreciated even on the ADC series (B). No transcranial
ultrasound was obtained.

4. Discussion

Our findings confirm the feasibility of the Embrace
R©

point-of-
care 1-Tesla scanner for imaging in the NICU setting. Using this
point-of-care 1-Tesla scanner, we could identify cerebral ischemic
lesions in two of seven neonates with suspected hypoxic injury,
which 3-Tesla MRI confirmed. Among infants scanned by the
point-of-care 1-Tesla scanner, the only potentially missed lesions
were punctate foci of parenchymal injury versus microhemorrhage
(Figures 2I–K) in an infant with identified ischemic injury and
small layering IVH in an incomplete study that only included
DWI/ADC series (Figure 6). The point-of-care 1-Tesla MRI was
more sensitive than transcranial ultrasound in detecting small
parenchymal hemorrhage (Figure 5). This is especially important
when considering small, difficult-to-detect lesions of the deep gray
matter and brainstem. Of note, the implementation of Embrace

R©

point-of-care 1-Tesla scanner lacks a susceptivity-weighted imaging
(SWI) sequence, although it is available in research protocols from
outside the United States. In all infants with a history of IVH and

intraparenchymal hemorrhage, point-of-care 1-Tesla MRI findings
were concordant with the most recent transcranial ultrasound or
follow-up MRI. Overall, the point-of-care 1-Tesla MRI could identify
or exclude intracranial pathologies.

Reliable detection of ischemic injury in an infant’s brain is
especially valuable given transcranial ultrasound’s limitations in
detecting early ischemic changes in cerebral parenchyma (Guan et al.,
2017; Hwang et al., 2017; Salas et al., 2018). Among infants with
point-of-care 1-Tesla MRI for suspected hypoxic-ischemic injury,
we could identify parenchymal lesions in two infants, which were
confirmed on follow-up 3-Tesla scans. In the remaining five infants,
the point-of-care 1-Tesla could potentially identify microhemorrhage
(not visualized on transcranial ultrasound, Figure 7) and subdural
hematoma (Figure 8), while excluding ischemic parenchymal injury.
However, the point-of-care 1-Tesla scan may be limited in detecting
punctate foci of parenchymal injury (Figures 2I–K). In addition, the
point-of-care 1-Tesla cannot currently obtain MRI angiography or
venography series.

While transcranial ultrasound provides a readily available and
sensitive tool for the evaluation of IVH and hydrocephalus in the
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FIGURE 7

The point of care 1-Tesla MRI in a 6-day-old infant with emergency cesarean section delivery due to decreased fetal movement and variable
decelerations showed a possible punctate focus of hemorrhage versus vessel in the right caudothalamic groove with T2 hypointensity (A) and T1
hyperintensity (B) but no evidence of ischemic injury. This was not seen on transcranial ultrasound on the first day after birth (C).

FIGURE 8

In an 11-day-old term neonate with a history of decreased respiratory drive, the 1-Tesla point-of-care MRI showed a subdural collection overlying the
right temporo-occipital junction with reduced diffusion on DWI (A) and ADC (B), which appeared isointense on T1 (C,F) and T2 (D,E). No other brain
imaging was performed.

NICU setting, MRI has the potential to increase the detection
of intraparenchymal injuries, periventricular leukomalacia, and
subdural hematomas (Inder et al., 1999; Williams and Hogg, 2000; Sie
et al., 2005; Ahya and Suryawanshi, 2018; Arnold et al., 2023). A study
by Rooks et al. (2008) found that transcranial ultrasound detected
only 55% of infratentorial hematomas and no supratentorial subdural
hematomas. In our series, the point-of-care 1-Tesla MRI could
identify IVH in all neonates with such findings in their most recent

transcranial ultrasound (Figure 3). It could also characterize subdural
hematoma (Figure 8) and intraparenchymal hemorrhage (Figure 4).
In two infants (Figures 5, 7), the point-of-care 1-Tesla MRI identified
foci of intraparenchymal microbleeds that could not be detected on
comparison transcranial ultrasounds. Of note, by adding an SWI
sequence to Embrace

R©

scanners, the sensitivity of 1-Tesla MRI for
detecting intraparenchymal hemorrhage is expected to increase in
the future. In addition to a role in demonstrating intraparenchymal
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hemorrhage, neonatal MRI offers the opportunity to examine the
effects of early anesthesia and more prolonged sedation on the brain
of very young infants and to exclude associated central nervous
system abnormalities in neonates presenting with axial or extra-
axial deformities. Further studies with the 1-Tesla MRI can help to
determine the potential clinical implications of the technology.

There is emerging evidence of clinical and research capabilities of
point-of-care 1-Tesla brain MRI. Our results are in agreement with
a recent report from Brigham and Women’s Hospital, which showed
that Embrace

R©

1-Tesla scanner could detect clinically relevant brain
abnormalities in 207 scans of infants within the NICU setting
(Thiim et al., 2022). In their series, 32 (15%) infants had a 3-
Tesla MRI for comparison, and 80 (39%) had pathologies on their
scans (Thiim et al., 2022), compared to our series, where 7 (12%)
infants had a 3-Tesla scan comparison, and 33 (55%) had intracranial
pathologies. A study from the Shaare Zedek Medical Center using the
Embrace

R©

1-Tesla scanner found that image quality was comparable
to conventional 1.5 T MRI (Nun et al., 2022). Furthermore, using the
Embrace

R©

1-Tesla scanner, the institution demonstrated a positive
association between increased T1 and T2 signal intensity in the basal
ganglia and elevated serum bilirubin levels (Kasirer et al., 2021).

Aside from infants’ weight and head circumference restrictions,
there are technical limitations in brain imaging with the Embrace

R©

1-Tesla scanner. Many conventional MRI sequences are not
currently available on the Embrace

R©

1-Tesla scanner, most notably
SWI, MRI angiography, or venography. The DWI sequence
is also acquired using fast-spin echo instead of echo-planar
imaging, which leads to a slightly longer acquisition time.
Moreover, the magnetic field inhomogeneity is associated with
distortion of images at the brain periphery and limits the
reliability of evaluating calvarial, orbital, facial, or neck pathologies.
There are also frequent DWI hyperintensity artifacts in the
posterior aspect of the brain, which can be clinically resolved by
examining exponential diffusion images. Finally, although acquiring
post-contrast images on the point-of-care 1-Tesla scanner is
possible, infants requiring post-contrast images were referred for 3-
Tesla MRI.

Our study also has methodological design limitations to consider.
It is retrospective, and not all infants with point-of-care 1-Tesla
scans had a comparison 3-Tesla MRI or transcranial ultrasound.
In addition, the comparison scans were at least 1 day apart from
the target point-of-care 1-Tesla MRI, which is suboptimal given
the dynamic nature of intracranial pathologies. Additionally, several
imaging series in the point-of-care 1-Tesla scan were partially
degraded by motion, despite using the specialized head coil and
bassinet to restrict neonate movements. Lastly, this is a very early
experience with evolving technology, and standardized indications
and protocols at the study institution are continuing to develop. As a
result, the potential of point-of-care 1-Tesla MRI in the NICU setting
to contribute to the study of early brain development in healthy
preterm infants or used as an adjunct in surveying for intracranial
abnormalities in infants with other musculoskeletal, cardiac, or
gastrointestinal abnormalities requires further exploration.

5. Conclusion

In a year-long experience at a single institution, we scanned
50 infants with Embrace

R©

point-of-care 1-Tesla MRI in the NICU

setting and report this scanner’s feasibility in detecting clinically
relevant intracranial pathologies. In comparing the point-of-care
1-Tesla MRI with other imaging modalities available in 45 (90%)
infants, we demonstrated the advantages of point-of-care 1-Tesla
brain MRI over ultrasound in detecting small early ischemic changes
and parenchymal microhemorrhage. However, compared to the
3-Tesla scanner, tiny foci of parenchymal injury or IVH may
not be conspicuous on point-of-care 1-Tesla MRI. Nevertheless,
implementing a dedicated point-of-care 1-Tesla scanner in the NICU
setting can make brain MRI accessible to very preterm and ill
newborns at earlier ages while reducing risks of transportation
and sedation. Early detection of clinically relevant intracranial
pathologies, especially acute ischemic changes that are challenging
to identify by transcranial ultrasound, has the potential to
improve clinical treatment and facilitate early prognostication in
the NICU setting.
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Objective: To summarize the general information and hotspots of functional

near-infrared spectroscopy (fNIRS)-based clinical disease research over the past

10 years and provide some references for future research.

Methods: The related literature published between 1 January 2011 and 31

January 2022 was retrieved from the Web of Science core database (WoS).

Bibliometric visualization analysis of countries/regions, institutions, authors,

journals, keywords and references were conducted by using CiteSpace 6.1.R3.

Results: A total of 467 articles were included, and the annual number of

articles published over nearly a decade showed an upward trend year-by-year.

These articles mainly come from 39 countries/regions and 280 institutions.

The representative country and institution were the USA and the University of

Tubingen. We identified 266 authors, among which Andreas J Fallgatter and

Ann-Christine Ehlis were the influential authors. Neuroimage was the most co-

cited journal. The major topics in fNIRS disease research included activation,

prefrontal cortex, working memory, cortex, and functional magnetic resonance

imaging (fMRI). In recent years, the Frontier topics were executive function,

functional connectivity, performance, diagnosis, Alzheimer’s disease, children,

and adolescents. Based on the burst of co-cited references, gait research has

received much attention.

Conclusion: This study conducted a comprehensive, objective, and visual analysis

of publications, and revealed the status of relevant studies, hot topics, and trends

concerning fNIRS disease research from 2011 to 2022. It is hoped that this work

would help researchers to identify new perspectives on potential collaborators,

important topics, and research Frontiers.
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functional near-infrared spectroscopy (fNIRS), CiteSpace, diseases, Frontiers,
bibliometrics

Frontiers in Neuroscience 01 frontiersin.org67

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1097002
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1097002&domain=pdf&date_stamp=2023-03-02
https://doi.org/10.3389/fnins.2023.1097002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1097002/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1097002 February 24, 2023 Time: 15:5 # 2

Ye et al. 10.3389/fnins.2023.1097002

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is an
optical neuroimaging technique used to quantify oxy- and
deoxyhemoglobin content for functional brain imaging (Irani
et al., 2007). As an emerging technology, fNIRS has played
an increasingly important role in functional neuroimaging
over the past 10 years (Ferrari and Quaresima, 2012; Rahman
et al., 2020). In addition to its non-invasiveness, radiation-
free nature, wearability and portability, and insensitivity to
motion artifacts, fNIRS also provides higher temporal/spatial
resolution than functional magnetic resonance imaging (fMRI)
and electroencephalography (EEG). These advantages make fNIRS
eminently suitable for application in special cohorts such as infants
(Doi and Shinohara, 2017; McDonald and Perdue, 2018), patients
with motor impairments (Gramigna et al., 2017; Ranchet et al.,
2020), and patients with neurological conditions (Koike et al.,
2013; Kumar et al., 2017).

Functional near-infrared spectroscopy has recently developed
rapidly in conjunction with advancements in near-infrared
spectroscopy (NIRS) hardware, applications, and data analysis
methods (Pinti et al., 2020; Eastmond et al., 2022). It has been
widely used for brain function assessments under various
neuropsychiatric conditions, including, but not limited to,
attention-deficit/hyperactivity disorder (ADHD), affective
disorders, neuropathic pain, and cognitive impairment (Ehlis et al.,
2014; Kumar et al., 2017; Yeung and Chan, 2020). Meanwhile,
multimodal neuroimaging studies that include fNIRS are ideally
suited to examine brain function. For example, EEG-fNIRS
examinations can be used to identify more features correlated with
brain activation and connectivity (Muthalib et al., 2013).

With the increase in fNIRS research, several scholars have
summarized the research on the application of fNIRS to a specific
disease or disease system (Koike et al., 2013; Doi and Shinohara,
2017; Kumar et al., 2017; McDonald and Perdue, 2018; Pinti et al.,
2020). However, the overall application of fNIRS technology in
assessing the brain imaging characteristics of disease activity has
not been summarized. Determination of the global research trends
and hotspots of fNIRS research on clinical diseases is important to
provide references for future studies.

Therefore, in this study, CiteSpace was used to conduct a
thorough bibliometric analysis of research related to the use of
fNIRS for clinical diseases from 2011 to 2022. The purpose of our
study was to provide scholars who have recently entered the field
and others who will soon follow with new perspectives on the status
of relevant studies, important topics, and trends concerning fNIRS
in clinical disease research from a global perspective.

2. Materials and methods

2.1. Source and retrieval

In this study, Web of Science (WoS) was selected as the data
source, and the “advanced search” method was adopted. The search
formula was “TS = (fNIRS or functional near-infrared spectrum
or near-infrared spectrum).” Literature published from 1 January
2011 to 31 January 2022 was searched, and only English language
documents were eligible for subsequent analyses.

2.2. Inclusion and exclusion criteria

We limited this analysis to studies involving patients (adult
patients or children). The types of studies included clinical trials
and efficacy observation studies with more than two cases. Non-
medical research papers, papers with animals/healthy individuals
as research objects, technical exploration papers, degree papers, and
case reports, etc., were excluded.

2.3. Screening method

Two reviewers independently screened the articles by
evaluating the titles and abstracts on the basis of the inclusion
criteria described above. The full text of the articles was reviewed if
necessary. Disagreements were discussed and resolved by the two
reviewers, and further disputes were arbitrated by a third reviewer.

A total of 5,612 related studies were retrieved from the WoS
core database. After screening the literature in accordance with
the criteria described above, 467 studies were finally included. The
specific process is shown in Figure 1.

2.4. Data acquisition and analytical tools

This study used CiteSpace 6.1.R3 for analysis by combining
the literature metrology method, visual analysis method, and
data mining algorithm. The relevant documents were manually
screened and exported in the pure text format with the name
“download_xx.txt.” Duplicate records were removed in CiteSpace
and stored in the data folder. The exported information included
data regarding the author, title, keywords, abstract, source
publication, document type, citation frequency, highly cited papers,
research direction, and page number.

In the visual diagram, each node represents an element, and
the size of the node represents the frequency of occurrence.
The connection line represents the cooperation or connection
between the elements. Nodes showing high betweenness centrality
(> 0.1) are usually considered to be key points in the field.
CiteSpace highlights nodes with high betweenness centrality
using purple trims. Highly cited elements are often considered
to be research hotspots in that particular field. Three special
indicators–latent semantic indexing (LSI), log-likelihood test
(LLR), and mutual information test (MI)–were used in the
cluster analysis, and we mainly observed the outcomes of LLR,
which provided the best result in terms of themes associated
with a cluster. The CiteSpace parameters were as follows: time-
slicing, from January 2011 to January 2022 (1 year per slice);
term source, all selection; node type, choose one at a time; and
pruning, pathfinder.

3. Results

3.1. Annual publication trends

A total of 467 publications were included. From 1 January 2011
to 31 January 2022, the total number of studies involving fNIRS
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FIGURE 1

Flow chart of functional near-infrared spectroscopy (fNIRS) studies inclusion.

FIGURE 2

Annual publication outputs and the model fitting curve of time trend of relevant publications.

for disease research gradually increased and reached the highest
value in 2019. Although the included literature from 2022 did not
represent the complete year, the overall trend was still upward
(Figure 2), and since 2018, the total number of articles published
each year has exceeded 50.

3.2. Analysis by country/region

The maps drawn in the national visual analysis included 39
countries and 82 connection lines. The top three countries in terms
of the number of articles published were the USA, China, and
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Japan (Figure 3). The number of articles published by authors from
these countries was 134, 83, and 70, respectively. Notably, only
China (ranked 2nd) entered the top 10 as a developing country,
while the remaining nations are all developed countries. Purple
rings indicated countries with high centrality (≥ 0.1). The top
five countries in terms of centrality were USA (0.74), Germany
(0.39), China (0.34), England (0.32), and Canada (0.27). These five
countries were influential in the field of fNIRS research.

3.3. Analysis by institution

As shown in the institutional visualization map, 280 institutions
contributed to the literature on fNIRS in disease research. Among
these, six institutions had contributed more than 10 studies
(frequency in brackets): University of Tubingen (26), Drexel
University (15), Jichi Medical University (11), Ankara University
(11), Beijing Normal University (10), and Peking University (10),
as shown in Figure 4. Most of the contributing institutions were
universities.

3.4. Analysis by authors

The number of nodes in the author visualization map was
266, and the number of connections was 854. The following eight
authors had published more than 10 papers, and they represented
the major researchers and teams conducting in-depth research
with fNIRS from 2011 to 2022 (frequency in brackets): Andreas
J Fallgatter (28) and Ann-Christine Ehlis (22) from University of
Tubingen, Meltem Izzetoglu (14) from Drexel University, Yuduo
Wang (11) from Beijing Information Science and Technology
University, Xiaoli Li (11) from Beijing Normal University, Ippeita
Dan (11) from Chuo University, Bora Baskak (10) from Ankara
University, and Jun Li (10) from South China Normal University
(Figure 5).

3.5. Analysis of the journals and cited
journals

A total of 175 journals published papers on the application
of fNIRS in disease, Table 1 shows the top 10 academic journals
that published related papers, with the average impact factor
(IF) 4.251 (median 4.37; range 3.333–4.997). The journals with
more than 20 publications are Scientific Reports and Frontiers
in Human Neuroscience. In this study, a map of 432 nodes and
1,868 connecting lines was formed after visual analysis of the cited
journals (Figure 6). For the top 10 cited journals shown in Table 2,
the average IF was 7.439 (median 6.054; range 3.054–15.255). The
top five cited journals were Neuroimage, PLoS One, Human Brain
Mapping, Frontiers in Human Neuroscience, and Brain. Except for
PLoS One, the other four journals were brain imaging journals.

3.6. Analysis of keywords

The keyword co-occurrence map included 343 nodes and 1,209
connecting lines (Figure 7). Nine keywords occurred more than 50

FIGURE 3

Map of active country in functional near-infrared spectroscopy
(fNIRS) research on diseases.

FIGURE 4

Map of active institution in functional near-infrared spectroscopy
(fNIRS) research on diseases.

FIGURE 5

Map of active authors in functional near-infrared spectroscopy
(fNIRS) research on diseases.

times. Excluding the words related to the retrieval strategy, the top
seven keywords were activation, prefrontal cortex (PFC), working
memory, cortex, fMRI, performance, and brain. Keywords with
high centrality were brain (0.18), cortex (0.15), abnormality (0.12),
and PFC (0.1).

Fifty-four cluster labels were obtained by using LLR algorithm.
The mean silhouette was 0.9578, with good homogeneity and
reliable results. The top 10 clusters were #0 verbal fluency
task, #1 graph theory, #2 concussion, #3 gait, #4 optical
topography, #5 stimulus-specific adaptation, #6 primary motor
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TABLE 1 The top 10 journals for functional near-infrared spectroscopy (fNIRS) research on diseases.

Rank Journal Frequency Country IF (2021)* CiteScore

1 Scientific Reports 24 England 4.997 6.9

2 Frontiers in Human Neuroscience 23 Switzerland 3.473 4.6

3 Neuroimage-clinical 18 Netherlands 4.891 8.2

4 Neurophotonics 17 USA 4.212 8.3

5 Neurorehabilitation and Neural Repair 14 USA 4.895 6.1

6 PLoS One 13 USA 3.752 5.6

7 Brain Sciences 12 Switzerland 3.333 3.1

8 IEEE Transactions on Neural Systems and
Rehabilitation Engineering

11 USA 4.528 8.1

9 Schizophrenia Research 9 Netherlands 4.662 8

10 Biomedical Optics Express 9 USA 3.562 6.7

*IF, impact factor; IF in category according to journal citation reports (2021).

FIGURE 6

Map of cited journals in functional near-infrared spectroscopy (fNIRS) research on diseases.

cortex, #7 motor control, #8 cue reactivity, and #9 multimodal
neuroimaging. The main clusters and their keywords are shown
in Table 3.

The keyword burst analysis indicated 14 outbreak
points, as shown in Table 4. The points with high outbreak
intensity were as follows: Executive function (2017–2021),
optical topography (2012–2015), and functional connectivity
(2017–2021). These points represent important aspects in
the field of disease research with fNIRS. Research burst
is considered to be continuous. Topics such as executive
function, functional connectivity, performance, diagnosis,
Alzheimer’s disease, children, and adolescents have the potential
to continue to become research hotspots in the near future,
and represent research content and topics worthy of special
attention.

3.7. Analysis of references

Visual analysis of co-cited references was performed in
CiteSpace, and a map with 4,072 nodes and 14,308 connections
was generated. The top five co-cited references are listed in
Table 5, which are five reviews that introduce the instruments
and methods in near-infrared spectral imaging technology (Ehlis
et al., 2014), the history of development and application fields
of fNIRS (Ferrari and Quaresima, 2012), the applications of fNIRS
in psychiatry (Scholkmann et al., 2014), the functional research
progress of fNIRS in the last 20 years (Boas et al., 2014), and
evidence-based suggestions for fNIRS walking research design and
signal analysis technology (Vitorio et al., 2017).
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TABLE 2 The top 10 co-cited journals for functional near-infrared spectroscopy (fNIRS) research on diseases.

Rank Journal Frequency Country IF (2021) CiteScore

1 Neuroimage 402 USA 7.400 11.2

2 PLoS One 235 USA 3.752 5.6

3 Human Brain Mapping 210 USA 5.399 8.3

4 Frontiers in Human Neuroscience 194 Switzerland 3.473 4.6

5 Brain 172 England 15.255 19.7

6 Biological Psychiatry 150 USA 12.810 21.5

7 Neuropsychologia 150 England 3.054 5.8

8 Proceedings of the National Academy of
Sciences

149 USA 12.778 18.1

9 Journal of Neuroscience 138 USA 6.709 10.2

10 Journal of Biomedical Optics 135 USA 3.758 6.6

The burst citations of references indicate numerous citations
of the manuscript over a certain period of time. Table 6 shows
the 11 studies with the strongest reference bursts from 2011 to
2021. The strongest reference burst was recorded for a review of
the development history and application fields of fNIRS in humans
published by Ferrari and Quaresima (2012). A more recent study
with a reference burst was a paper published by Nieuwhof et al.
(2016).

4. Discussion

As a non-invasive brain functional imaging technique, fNIRS
plays an increasingly important role in the detection of function-
related activity. The current study applied a visualization-based
bibliometric method to analyze the profiles, research hotspots, and
research trends in relation to the use of fNIRS technology in disease
research. fNIRS is gradually becoming an important technique for
the studying related diseases in the field of neuroimaging.

FIGURE 7

Map of active keywords in functional near-infrared spectroscopy
(fNIRS) research on diseases.

4.1. General information regarding fNIRS
research on diseases

In terms of the country-wise distribution of the published
literature on this topic, the USA ranks first in the number and
centrality of literature, indicating its leading position in this
research field. The brain program implemented by the National
Institutes of Health (NIH) in the USA since 2013 has provided huge
financial support and driven advancements in clinical research
in neuroimaging. The major institutions contributing to the
research output in this topic were University of Tubingen in
Germany, Drexel University in USA, and Jichi Medical University
in Japan, which was consistent with the analysis results of
national distribution. Among the most prolific authors, Andreas
J Fallgatter and Ann-Christine Ehlis published as many as 16
manuscripts, mainly focusing on ADHD and depression (Ehlis
et al., 2007; Zeller et al., 2010; Marx et al., 2014; Metzger et al.,
2016a,b). However, the findings indicate that institutional and
author cooperations are lacking and need to be strengthened.
In addition to the emphasis on neuroimaging, the research
direction of journals indicates that most of the publications involve
neuroscience, psychiatry, and multidisciplinary sciences. Further
collaboration should be implemented in the future to obtain more
significant evidence.

4.2. Research hotspots and trends in
fNIRS research on diseases

Disease research using fNIRS was more focused on the
activation of brain regions of patients in the task state, with
an emphasis on the PFC. The typical activation of fNIRS in
observed in the cerebral cortex area, that is, the increase in
oxygenated hemoglobin (HbO) and the relative decrease in
deoxygenated hemoglobin (HHb) reflect the increase in local
cerebral blood capacity caused by increased local arterial vascular
relaxation. The PFC is closely related to cognitive functions such as
working memory, stimulus selection, rule switching, and decision-
making (Ott and Nieder, 2019), and its dysfunction is associated
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TABLE 3 The list of main keyword clusters.

Cluster ID Size Silhouette Mean
(year)

Top terms (LSI)* Top terms (LLR)* Terms (MI)*

0 76 0.909 2015 Prefrontal cortex Verbal fluency task Percussion

1 74 0.906 2016 Functional near-infrared
spectroscopy

Graph theory Discrimination

2 74 0.963 2014 Activation Concussion Motor inhibition

3 71 0.905 2015 Prefrontal cortex Gait Cerebral oxygenation

4 64 0.951 2015 Optical topography Optical topography Inhibitory task-evoked
activation

5 59 0.975 2016 Functional near-infrared
spectroscopy

Stimulus-specific adaptation Stimulus-specific adaptation

6 55 0.952 2016 Functional near-infrared
spectroscopy

Primary motor cortex Upper limb reduction

7 55 0.984 2015 Motor control Motor control Brain map

8 51 0.978 2016 Optical topography Cue reactivity Cue exposure

9 51 0.947 2017 Functional near-infrared
spectroscopy

Multimodal neuroimaging Brain computer interface

*LSI, latent semantic indexing; LLR, log-likelihood test; MI, mutual information test.

TABLE 4 Top 12 keywords with the strongest citation bursts.

Keywords Year Strength Begin End 2011–2021

Optical topography 2011 3.94 2012 2015

Near-infrared spectroscopy 2011 3.55 2012 2013

Blood flow 2011 3 2013 2014

fMRI 2011 2.99 2014 2015

Plasticity 2011 3.07 2017 2018

Executive function 2011 5.09 2019 2021

Functional connectivity 2011 3.92 2019 2021

Performance 2011 3.67 2019 2021

Diagnosis 2011 3 2019 2021

Alzheimer’s disease 2011 2.99 2019 2021

Children 2011 2.99 2019 2021

Adolescent 2011 2.77 2019 2021

TABLE 5 Top five cited references related to functional near-infrared spectroscopy (fNIRS) research on diseases.

Ranking Co-cited counts Co-cited reference References

1 29 Application of functional near-infrared spectroscopy in psychiatry. Ehlis et al., 2014

2 29 A brief review on the history of human functional near-infrared
spectroscopy (fNIRS) development and fields of application.

Ferrari and Quaresima, 2012

3 29 A review on continuous wave functional near-infrared spectroscopy and
imaging instrumentation and methodology.

Scholkmann et al., 2014

4 26 Twenty years of functional near-infrared spectroscopy: introduction for the
special issue.

Boas et al., 2014

5 18 fNIRS response during walking—artifact or cortical activity? A systematic
review.

Vitorio et al., 2017

with social deficits, affective disturbances and memory loss in

brain disorders including autism, schizophrenia, depression, and

Alzheimer’s disease (AD) (Yan and Rein, 2022). For example,

Krishnamurthy et al. found that children with autism had

altered PFC function, manifested by PFC hyperactivation and

decreased right frontal connectivity (Krishnamurthy et al., 2020).
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TABLE 6 Top 11 co-cited references with the strongest citation bursts.

References Year Strength Begin End 2011–2021

Schecklmann et al., 2008 2008 5.9 2011 2013

Schecklmann et al., 2010 2010 3.27 2011 2013

Negoro et al., 2010 2010 3.17 2012 2014

Rubia et al., 2009 2009 2.54 2012 2014

Ferrari and Quaresima, 2012 2012 9.23 2013 2017

Cui et al., 2011 2011 4.68 2013 2016

Holtzer et al., 2011 2011 3.27 2013 2016

Haeussinger et al., 2011 2011 4.93 2014 2016

Sasai et al., 2011 2011 3.45 2014 2016

Kirilina et al., 2012 2012 2.73 2014 2017

Nieuwhof et al., 2016 2016 2.9 2018 2021

Xiang et al. found that the activation of the extensive PFC was
significantly reduced in patients with schizophrenia and major
depressive disorder (MDD), especially in certain channels of the
dorsolateral PFC (DLPFC) (Xiang et al., 2021). Tang and Chan
found that the functional connectivity of PFC in patients with
AD generally decreased, the laterality became insignificant, and
the clustering coefficient decreased significantly (Tang and Chan,
2018). Working memory is a memory system that temporarily
processes and stores information and is an important basis for
complex cognitive tasks (Baddeley, 1992). The PFC is thought
to play a key role in encoding, updating, and maintaining
internal representations of task situations in working memory
(D’Ardenne et al., 2012). fNIRS can quantify the workload of
PFC during experimental conditions (Herff et al., 2013), which
is helpful for the neuropsychological assessment of working
memory under n-back tasks (León-Domínguez et al., 2015). The
“Verbal Fluency Task (VFT),” which showed the largest cluster in
keyword clustering, is a neuropsychological task involving multiple
cognitive domains, which can reflect the fluency of individuals
in using language to transmit information (Liu et al., 2022).
The combined monitoring of fNIRS and VFT provides neural
evidence of executive function in patients and is widely used
in the diagnosis and differential diagnosis of depression, bipolar
disorder, and schizophrenia (Koike et al., 2013; Downey et al.,
2019; Feng et al., 2021; Xiang et al., 2021; Gao et al., 2022).
The primary motor cortex (M1) is involved in the control of
advanced gait movements (McCrimmon et al., 2018). When the
function of the motor cortex changes due to brain injury, stroke,
Parkinson’s disease and other diseases, it may lead to abnormal
gait. Clinically, regulating the activity of M1 may be an effective
treatment to improve the motor function of patients (Underwood
and Parr-Brownlie, 2021). In addition, motor control, defined as
the ability to regulate or manage the mechanisms necessary for
movement (Levin and Piscitelli, 2022), is an effective rehabilitation
strategy for abnormal gait after stroke and is an important theory
in clinical rehabilitation at present (Beyaert et al., 2015). fMRI
is the gold standard for functional imaging of the brain, but it
suffers from some shortcomings in terms of temporal resolution.
The sampling rate of fNIRS can reach 0.1 s, and at the same
time, there is a strong correlation between the hemoglobin signal

of fNIRS and the BOLD signal of fMRI (Strangman et al., 2002).
Multimodal neuroimaging can complement each other and provide
more information.

Keyword bursts indicate emerging trends and potentially
valuable research directions to a certain extent. In this study,
executive function, functional connectivity, performance,
diagnosis, AD, children, and adolescent were the most recent burst
keywords. The relevance of these keywords can be summarized
as follows: (1) Executive function, including working memory,
cognitive flexibility and inhibition, is closely related to PFC
function (Jones and Graff-Radford, 2021). Executive dysfunction
is extremely common in neurological diseases (Rabinovici et al.,
2015). fNIRS studies of ADHD showed hypoactivity in the right
PFC in multiple executive function tasks, which was essentially
consistent with the results of fMRI (Gossé et al., 2022). (2)
Functional connectivity refers to the information flow between
brain networks to explore the interactions between different brain
functional areas, which is an important area of disease research,
especially for diseases considered to be related to connectivity.
In this regard, narrowband resting-state functional connectivity
based on fNIRS measurements can be used for prediction of
autism spectrum disorder (Sun et al., 2021). (3) By tracking the
progression of working memory tasks, fNIRS revealed a link
between brain activity and task performance (Meidenbauer et al.,
2021). During cooperative tasks, better task performance was
associated with interpersonal brain synchronization (Zhou et al.,
2022). Patients with schizophrenia (SZ) performed worse on the
VFT than patients with MDD and healthy controls, and patients
performed worse on the Tower of London task than healthy
controls (Xiang et al., 2021). (4) In terms of disease diagnosis
and identification, Zhu et al. studied the brain function of autistic
patients during related tasks through fNIRS (Zhu et al., 2015;
Li and Yu, 2016; Vo et al., 2021); Li et al. found that the HbO
concentration in the region of interest changed sharply as the
disease severity progressed from mild cognitive impairment to
moderate/severe dementia (Li et al., 2018; Nakamura et al., 2021);
Stuart et al. measured the activity of the PFC during a task by
using fNIRS to distinguish patients with Parkinson’s disease
and healthy individuals (Stuart et al., 2019); and Chou et al.
used fNIRS to measure the correlation between the activation of
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specific brain regions in patients with schizophrenia and their
clinical symptoms and functional results (Chou et al., 2020),
facilitating clinical differentiation of schizophrenia, depression
and bipolar disorder (Kumar et al., 2017). (5) fNIRS is also of
great significance in the early diagnosis of AD (Perpetuini et al.,
2019), since it can distinguish AD from normal aging based on
functional connectivity (Tang and Chan, 2018), and can be used
for AD screening with the help of refined PFC working memory-
related networks (Kim et al., 2021). fNIRS revealed different
patterns of activation in the frontoparietal cortex between AD
and behavioral-subtype frontotemporal dementia (Metzger et al.,
2016b), and showed more severe disruption of connectivity and
frontal oxygenation changes in AD patients than in patients with
mild cognitive impairment patients (Yeung and Chan, 2020),
which can facilitate AD diagnosis and identification of disease
progression. (6) Because of its high ecological efficiency, fNIRS
can be used to conduct functional neuroimaging research in a
participant-friendly environment (Chou et al., 2020). Moreover,
fNIRS also shows a high tolerance for the influence of patients’ head
movements. Thus, it is particularly useful in research on infants and
adolescents, and is widely used in the studies of ADHD, Parkinson’s
disease, epilepsy, etc.

Our analysis of the cited references shows that continuous
advancements and improvements in fNIRS instruments and
technical methods will provide strong conditions for expanding the
field of disease research on the basis of existing experience. The
recent burst reference reflects research on testing the effectiveness
and development prospects of fNIRS by measuring the PFC activity
in Parkinson’s disease patients during dual-task walking, which was
published by Nieuwhof et al. (2016).

4.3. Limitations

Although we performed a comprehensive, objective, and visual
analysis of publications related to the use of fNIRS in clinical disease
research and the relevant developing trends, this study still had
some limitations. First, the topic search was only conducted in
WoS and did not include other databases, such as China National
Knowledge Infrastructure (CNKI). Second, bibliometric software
cannot distinguish the abbreviation of the terms with different
names, potentially causing deviations in the statistical results.

5. Conclusion

In conclusion, this study revealed the status of relevant
studies, important topics, and trends related to the use of

fNIRS in clinical disease research from 2011 to 2022. Over
the past decade, the number of relevant articles has grown
significantly. In addition, scholars can use fNIRS technology
to conduct more relevant neuroscience research in children
and adolescents. Notably, AD is another hot topic in this
field. As a relatively new neurological imaging technique,
fNIRS has developed rapidly in the field of disease diagnosis.
Simultaneously, using the advantages of fNIRS, researchers
can strengthen the combination of fNIRS with traditional
imaging technology.
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Although the thalamus is perceived as a passive relay station for almost all sensory

signals, the function of individual thalamic nuclei remains unresolved. In the

present study, we aimed to identify the sensorimotor nuclei of the thalamus

in humans using task-based fMRI at a field strength of 9.4T by assessing the

individual subject-specific sensorimotor BOLD response during a combined

active motor (finger-tapping) and passive sensory (tactile-finger) stimulation. We

demonstrate that both tasks increase BOLD signal response in the lateral nuclei

group (VPL, VA, VLa, and VLp), and in the pulvinar nuclei group (PuA, PuM,

and PuL). Finger-tapping stimuli evokes a stronger BOLD response compared

to the tactile stimuli, and additionally engages the intralaminar nuclei group

(CM and Pf). In addition, our results demonstrate reproducible thalamic nuclei

activation during motor and tactile stimuli. This work provides important insight

into understanding the function of individual thalamic nuclei in processing various

input signals and corroborates the benefits of using ultra-high-field MR scanners

for functional imaging of fine-scale deeply located brain structures.

KEYWORDS

fMRI, thalamus, ultra-high field fMRI, high-resolution imaging, thalamic nuclei,
sensorimotor, tactile, motor

Abbreviations: AC, anterior commissure; AV, anteroventral; BOLD, blood-oxygen-level-dependent;
CeM, central medial; CM, centromedian; DBS, deep brain stimulation; EPI, echo planar imaging; EEG,
electroencephalography; FA, flip angle; fMRI, functional magnetic resonance imaging; FOV, field of view;
FWHM, full width at half maximum; GLM, general linear model; HRF, hemodynamic response function;
LD, lateral dorsal; LGN, lateral geniculate; LP, lateral posterior; MDl, lateral subdivision of mediodorsal
thalamus; MDm, medial subdivision of mediodorsal thalamus; MEG, magnetoencephalography; MGN,
medial geniculate; MPRAGE, magnetization-prepared rapid acquisition gradient echo; PET, position
emission tomography; PC, posterior commissure; PCA, principal component analysis; Pf, parafascicular;
PuA, anterior pulvinar; PuI, inferior pulvinar; PuL, later pulvinar; PuM, medial pulvinar; R GRAPPA,
acceleration factor; SNR, signal to noise ratio; TE, echo time; TR, repetition time; VA, ventral anterior;
VAmc, ventral anterior, magnocellular division; VL, ventral lateral; VLa, ventral lateral anterior; VLp, ventral
lateral posterior; VM, ventral medial; VP, ventral posterior; VPL, ventral posterior lateral; VPM, ventral
posterior medial.
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Introduction

Sensorimotor processing engages cortical and subcortical areas.
The extensive sensorimotor investigations implicate the motor
cortex of the frontal lobe, the sensory cortex of the parietal lobe, and
the cerebellum (Grodd et al., 2001; Hermes et al., 2012; Siero et al.,
2014; Filippi et al., 2016). The sensorimotor pathway also engages
the thalamus (Mo and Sherman, 2019).

The thalamus has been shown to be involved in sensorimotor
processing in monkeys (Benevento et al., 1977; Darian-Smith et al.,
1990), mice (Wang et al., 2021), and rats (Petersen, 2019). So
far, sensorimotor functional mapping in the thalamus is under-
investigated in the human brain. The thalamus encompasses small
motor and sensory nuclei, and therefore requires high-resolution
investigations. In this study, we aim at utilizing the power of ultra-
high field fMRI to investigate the individual thalamus’s functional
response during sensorimotor task at the single-subject level.
Such high-resolution sensorimotor mapping within the thalamus
may help better strategize the potential therapeutic planning
and understanding of sensorimotor dysfunctions. Assessing the
individual subject-specific fMRI responses allows perceiving the
overall sensorimotor experience of the participating subjects to the
employed stimuli and analyzing the intersubject variability, which
may arise due to anatomical or functional differences across the
investigated population.

The thalamus is a paramedian symmetrical mass of gray
matter within the vertebrate brain that arises during embryonic
development as the main constituent of the diencephalon and
attaches to the upper part of the brainstem through the
telencephalon. Anatomically, the thalamus is divided in four major
groups (the anterior, medial, lateral, and the posterior group),
which can further be functionally distinguished into first-order
and higher-order nuclei based on the origin of their driving
inputs (Haber and McFarland, 2001; Sherman and Guillery, 2002;
Theyel et al., 2010; Lambert et al., 2017). First-order nuclei
receive driver signals from peripheral sources and project to the
cerebral cortex. For example, thalamic motor nuclei such as the
ventral anterior (VA) and ventral lateral (VL) receive primary
afferents from the basal ganglia as well as the cerebellum and
send efferents to the premotor as well as primary motor cortices
(Guillery and Sherman, 2002; Bosch-Bouju et al., 2013; Gaidica
et al., 2018). Higher-order nuclei, such as the pulvinar (Pu) and
the mediodorsal (MD), receive their driving input from layer
5 of the cortex and participate in cortico-thalamo-cortical (or
transthalamic) circuits in projecting them back to the cortex
(Wurtz et al., 2005; Saalmann, 2014). While the sensorimotor
involvement of the cortical areas and the cerebellum has been
extensively studied for decades in humans as well as in primates
(Logothetis et al., 2001; Kishore et al., 2014; Wang et al.,
2018; Edwards et al., 2019) using functional magnetic resonance
imaging (fMRI) (Rao et al., 1995; Lotze et al., 2000; Rosazza
et al., 2014; Landelle et al., 2021), electroencephalography (EEG)
(Muthukumaraswamy and Johnson, 2004; Morash et al., 2008;
Zhao et al., 2019), magnetoencephalography (MEG) (Sebastiani
et al., 2014), and electrophysiology (Arce-McShane et al., 2016;
Ranieri et al., 2022), the human thalamus has widely remained
inaccessible. Due to its central location within the brain, its
small size, and the lack of sufficient contrast in various imaging

modalities, the delineation of thalamic nuclei using fMRI remains
challenging. Ongoing progress in the development of accelerated
MR acquisition techniques, such as parallel imaging or multi-
band radiofrequency (RF) pulses combined with adapted RF coil
designs to maximize the achievable signal-to-noise-ratio (SNR),
yields increased spatial resolution while maintaining high temporal
resolution. Nevertheless, a reliable localization of thalamic nuclei
and their functional activation is yet limited by insufficient SNR and
consequently spatial resolution constraints at conventional clinical
field strengths (≤ 3 Tesla).

Consequently, in humans, the involvement of the thalamus in
sensory and motor processing has only been vaguely characterized
regarding the precise anatomical location and functional
contribution of the various thalamic nuclei. To obtain the
specific functional activation of the thalamic nuclei involved in
sensorimotor and other functional processing in a robust and
reproducible manner, the use of ultra-high field MR scanners may
prove beneficial due to their increased SNR, enhancing spatial and
temporal resolution as well as image contrast (Pohmann et al.,
2011, 2016).

Thus, functional MRI at ultra-high field strength may provide
an opportunity to investigate the blood oxygen level-dependent
(BOLD) activations of specifically involved thalamic nuclei in
sensorimotor processing. In this study, the functional involvement
of thalamic nuclei during finger movement and tactile finger
stimulation in humans was examined for the first time using
an ultra-high field strength of 9.4 Tesla. Due to the challenges
of accurately identifying and segmenting the individual fine-
scale thalamic nuclei in each subject, this proof-of-principle study
focused on a single-subject rather than a group analysis, which
enabled to preserve spatial specificity. The results of this study
may contribute to depict a more comprehensive view of the
differential role of the thalamus in the context of motor and
sensory processing as well as to enhance our understanding of the
functional architecture of the thalamus. In addition, ultra-high field
fMRI may allow a refined investigation of the role of the thalamus
in neurological motor disorders like Parkinson’s disease, dystonia,
and essential tremor.

Materials and methods

Subjects

Ten healthy right-handed adults with normal or corrected to
normal vision and a mean age of 27 years (range 21–34 years; five
females) participated in the study. The study was approved by the
local research ethics committee and all participants gave written
informed consent prior to participation.

Experimental design and setup

All participants performed two fMRI block design tasks with
the right hand: tactile-finger task and finger-tapping task during
a single session. The left hand was not engaged during any
experiments of this study.
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For both task, the output of a trigger pulse prior to the
acquisition of each volume repetition time (TR) was implemented
into the MR sequence to synchronize the fMRI paradigm with the
MR acquisition. The tasks were projected onto a translucent screen
using a projector. The participants viewed the stimuli via a mirror
attached to the head coil. Before the main experiment, participants
performed one complete training run outside the scanner.

The tactile stimulation system used a pneumatically controlled
setup to deliver precise and controlled air pressure pulses to
the participant’s fingertip. The custom-built electronic control
circuit, connected to the air compressor and plastic tubes,
was interfaced with a stimulus computer through the digital
controller (mbed, LPC1768). The tubes conveyed air pressure (2.5
bar) to the pneumatic stimulus finger clips (MEG International
Services Ltd., Coquitlam, Canada). The timing of the tactile
stimuli was controlled using Matlab 2019b (The MathWorks, Inc.,
Natick, MA, USA) and the PSYCHTOOLBOX (Brainard, 1997;
Pelli, 1997). The presentation and timing of the finger-tapping
stimuli was controlled by Presentation R© software (Version 18.0,
Neurobehavioral Systems, Inc., Berkeley, CA)1.

Tactile-finger task
The tactile stimulation was delivered concomitantly to the

fingertips of the thumb (D1), index finger (D2), middle finger
(D3), and ring finger (D4) in the form of air pulses through
an inflatable finger clip. Each single air pulse caused deviation
of the pneumatic membrane (approximately 40 mm2) toward
the skin surface by a pulse of pressed air at 2.5 bar for a
duration of 250 ms. Stimulation pulses (ON-phase) were delivered
every second (1 Hz) in blocks of 20 s to all four fingers, as
specified above, followed by a rest period (OFF-phase) of 20 s.
Data were acquired during seven runs of 12 cycles each. The
stimulation was carefully timed to begin at the acquisition of
the first volume of each block, following the initial trigger. To
focus the subjects’ attention on the stimulation and to prevent
habituation, a random number of stimulation pulses (between
zero and four per stimulation block) were skipped, resulting in
an average of 210–240 air pulses per fingertip. The particular
number of the pulses and the time at which these pulses were
skipped was chosen randomly for each block. Subjects had to
report to the experimenter the total number of blocks with
missing pulses in the break between stimulation sessions. In
addition, participants were instructed to focus on a fixation cross
presented on the screen during the experiment. Two of the ten
subjects (S9 and S10) could not perform the tactile task properly
due to technical issues and were excluded from the subsequent
analysis of those data.

Finger-tapping task
The task paradigm consisted of 12 visually cued cycles (each

with a total duration of 41 s) divided into alternating finger tapping
blocks (20 s) and rest blocks (20 s). Before each movement block,
a 1 s interval was used to allow subjects to get ready for the task.
Participants were instructed to tap their right fingers in an ordered
fashion [index finger (D2), middle finger (D3), ring finger (D4),

1 www.neurobs.com

and little finger (D5), respectively] against the thumb (D1). The
tapping rate was paced with a visual cue (blinking arrow). The
tapping frequency was approximately 2.5 Hz. Images were collected
during one run. All subjects were able to successfully complete the
finger-tapping task.

MR data acquisition

MRI data were acquired on a 9.4T whole-body MRI scanner
(Siemens Healthineers, Erlangen, Germany), using an in-house-
built head-coil with 16 transmit and 31 receive channels (Shajan
et al., 2014).

Structural imaging: A high-resolution T1-weighted scan
was acquired with a magnetization-prepared rapid acquisition
gradient echo (MPRAGE) sequence [inversion TR = 3.8 s;
TE = 2.50 ms; FA = 6◦; FOV = 192 mm; 288 sagittal slices;
voxel size = 0.6 × 0.6 × 0.6 mm3; GRAPPA acceleration factor
(R) = 2 × 2; partial Fourier = 6/8] covering the whole brain
for anatomical reference. In addition, whole brain structural
scans for cortical and thalamic segmentation were collected on a
Siemens Healthineers Prisma Fit 3T whole-body MRI scanner. For
each subject, high-resolution T1-weighted MPRAGE [inversion
TR = 2.4 s; TE = 2.22 s; FA = 8◦; FOV = 256 mm; 208
sagittal slices; voxel size = 0.8 × 0.8 × 0.8 mm3; GRAPPA
acceleration factor (R) = 2] and T2-weighted 3D fast spin echo
[TR = 3.2 s; TE = 5.63 s; FOV = 256 mm; 208 sagittal slices; voxel
size = 0.8 × 0.8 × 0.8 mm3; GRAPPA acceleration factor (R) = 2]
data sets were acquired.

Task-based fMRI: Blood oxygenation level dependent (BOLD)
data were collected using a 2D gradient-echo multi-band (MB)
echo-planar imaging (EPI) sequence with 86 interleaved slices
per volume providing full brain coverage and acquired parallel
to the AC - PC line (TR = 2 s; TE = 22 ms; FA = 50◦;
FOV = 198; voxel size = 1.25 × 1.25 × 1.25 mm3, R = 4,
MB factor = 2, bandwidth = 1666 Hz/Px, and anteroposterior
phase encoding). For the purpose of distortion correction, MB-
EPI scans with reversed phase encoding direction (posterior-
anterior) were performed with otherwise identical parameters as
the main experiment.

Functional imaging sessions consisted of seven tactile-finger
runs (255 volumes each, acquisition time of 8.5 min), one finger-
tapping run (265 volumes, acquisition time of about 9 min) and
one run with reversed phase encoding direction for distortion
correction (10 volumes) at the end of the session.

Physiological parameters (cardiac pulsation and respiration
rate) were recorded during the functional scans using MR
compatible devices (Acknowledge, Biopac Systems, Inc.,
Goleta, CA, USA). Synchronization with the MR sequence
was achieved by parallel recording of the sequence trigger
signal. However, due to unstable recording by the BIOPAC
system during the experiments, complete physiological data
could not be collected for three subjects (S3, S4, and S6),
and four subjects (S3, S6, S7, and S8) for the motor and
tactile task, respectively. Therefore, the successfully recorded
physiological data for the remaining individuals were not used in
the subsequent analysis.
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MRI data analysis

Data preprocessing
The fMRI data preprocessing and analysis of both tasks was

conducted by using the SPM12 software (R77712) implemented
in MATLAB R2017b (The MathWorks, Inc., Natick, MA, USA).
Before analysis, the first five volumes of the functional data of each
run were discarded to mitigate T1 saturation effects.

All functional images were first corrected for the acquisition
time delay between slices, then spatially realigned to the first
image to correct for rigid body motion, and subsequently corrected
for thermal noise fluctuations and distortions. Image distortions
were corrected by the TopUp tool (Andersson et al., 2003) of
the FSL (Smith et al., 2004) library. NORDIC (Moeller et al.,
2021) denoising, using PCA to correct for non-Gaussian noise
distributions, was applied to the magnitude images in order to
reduce thermal noise. The effect of NORDIC denoising is shown in
the Supplementary Figure 1. The functional distortion-corrected
data sets were co-registered to the anatomical data and finally
spatially smoothed using a Gaussian kernel with a full width at half
maximum (FWHM) of 2.5 mm.

FreeSurfer software3 (version 6.1) (Fischl et al., 1999),
incorporating a probabilistic thalamic segmentation algorithm
(Iglesias et al., 2018), was used for thalamic segmentations. Our
previous findings of unreliability in the application of FreeSurfer to
the structural data acquired at 9.4T (0.6 mm isotropic resolution)
as a result of the altered image contrast at ultra-high field prompted
the use of 3T anatomical data for the purpose of segmentation
despite the lower resolution (0.8 mm isotropic). Regions-of-interest
(ROIs), for example, whole thalamus, or individual parcellated
thalamic nuclei, were extracted as masks from the segmentation,
and co-registered to each subject’s anatomical images (cf. Figure 1).
All subsequent analyses were carried out in native space. An
example of the co-registration of 3T T1-weighted and T2-weighted
images to 9.4T T1-weighted data is shown in the Supplementary
Figure 2.

GLM analysis
For each subject, the general linear model (GLM) approach was

used to analyze task-evoked BOLD responses, separately for the
tactile and finger-tapping conditions.

For the tactile task consisting of seven runs, these runs were
combined into a single GLM analysis. A separate GLM analysis
was performed for the finger-tapping task, composed of one run.
Task-based statistical parametric t-maps were calculated at the
individual subject level using block-style boxcars convolved with
a hemodynamic response function (HRF). A temporal high-pass
filter with a cut-off of 128 s was applied to correct for low
frequency drifts. All six motion parameters (three rotations and
three translations) for each run were included as regressors of no
interest to correct for residual motion-related variance.

Involvement of single thalamic nuclei was investigated based
on the BOLD response to the tactile and motor tasks by using
individual whole thalamus masks as explicit masks (at first
level statistics).

2 http://www.fil.ion.ucl.ac.uk/spm

3 http://surfer.nmr.mgh.harvard.edu

For each of the functional tasks, an MR signal change compared
to the rest condition was tested. Individual t-maps were obtained
with the statistically significant activation threshold set to an
uncorrected p-value < 0.001 with a minimum cluster size of five
voxels, and overlaid onto the individual anatomical image. The
minimum cluster size was determined through a consideration of
variations in individual thalamus size. To this end, an evaluation
of scaling the five voxel threshold was performed by dividing the
individual mask size by the mean mask size and then multiplying
by 5, resulting in values between 4.6 and 5.6 voxels. Despite this
small variability, a minimum cluster size of five voxels was chosen
to balance the control of false positive errors and the accurate
detection of true effects in the analysis. Thalamic activated clusters
were anatomically labeled by overlaying the thresholded activation
maps onto the individual thalamic nuclei segmented in FreeSurfer.
For the quantification of activation within each thalamic nuclei
for the motor and tactile tasks, the number of activated voxels
was calculated using the subject–specific thalamic nuclei masks
obtained from the thalamic segmentation in FreeSurfer. To
preserve the spatial specificity of the individual results and allow
the assessment of intersubject functional variability, a group
analysis in standard space was not conducted. Additionally, we
compared the number of voxels in each thalamic nuclei mask across
individual subjects to assess anatomical variability. The count of
activated voxels was converted into percentages relative to the
total number of voxels in each subject–specific thalamic nuclei
mask to normalize for differences in individual thalamic nuclei
volumes across subjects. Figure 2 illustrates the relative deviation of
individual thalamic nuclei volumes from the mean mask size (mean
mask size: pooled over all subjects).

Furthermore, a supplementary whole-brain GLM analysis was
performed in a similar manner without utilizing an explicit
mask in the first-level statistics. The whole-brain T-statistic maps
are presented for four representative subjects in Supplementary
Figure 3, with a specific focus on highlighting activation in the
cerebral cortex and cerebellum. These results are included in
the Supplementary material due to their exploratory nature and
secondary role in the study.

BOLD response time course
To assess the temporal dynamics of the BOLD signal changes

in the thalamic nuclei in response to both tasks and across subjects,
time course data from all the activated voxels within each individual
thalamic nucleus were extracted for each run (one motor, seven
tactile). The percentage change in the BOLD signal was then
calculated relative to each run’s rest periods, and the resulting time
courses were averaged across activated voxels. Those time courses
were subsequently divided into 40 s windows, corresponding to the
length of one ON/OFF block, and averaged across runs and twelve
blocks for each task type.

Results

In order to obtain a complete depiction of all thalamic regions
activated during the motor and tactile tasks, the activations of the
left and the right thalamic nuclei are presented separately. Task-
related activations were identified in all subjects who entered the
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FIGURE 1

Structural segmentation of the thalamus: illustration of the probabilistically segmented left thalamic nuclei using FreeSurfer in one exemplary
subject. The selected sagittal and axial view visualize only 15 nuclei, however, a complete nuclei segmentation of the thalamus was performed.

study. As will be presented below, both active and passive tasks
evoked consistent activations among subjects. However, tactile-
related activations tended to be reduced compared to motor-
related activations.

Motor task

The percentage of activated voxels during the motor task-based
fMRI experiment for the different thalamic nuclei in each subject is
summarized in Figure 3 for the left and the right thalamic nuclei.

The finger-tapping task evoked a significant BOLD signal in
ten and nine subjects within the left and the right thalamus,
respectively, with a clear dominance of the left side. The largest
and consistent fraction of activated voxels was found in the left
VPL and the intralaminar nucleus CM followed by VLa and VLp
of the lateral nuclei group. In addition, we found very consistent
activations in the left pulvinar nuclei group (PuA, PuM, and PuL).
All subjects showed activations in the left VPL and CM thalamic
nuclei. Nine subjects showed activations in the left VLa, and VLp;
seven subjects in the left MDm, and four subjects in the left MDl
and Pf. Six subjects demonstrated contralateral activations within
VLa, VPL, and PuM. Eight and seven subjects showed detectable
clusters in the right CM and VLp, respectively. In one subject, S3,
the bilateral anterior part of the thalamus (AV and LD nuclei) and
the LP nuclei was activated.

The first-level GLM analysis results of the finger-tapping task
are visualized in Figure 4 for four representative subjects (S1, S3,
S5, and S6). All single-subject maps were thresholded at p < 0.001

(uncorrected) level and superimposed on their structural images.
In summary, the fMRI maps showed dominant activation in the
left VPL, CM, and VLp in all representative subjects, with strong
activation in the left VLa and the bilateral VA in S3. Bilateral
activation was found in MDm and MDl in subject S6.

Tactile task

Figure 5 depicts the percentage of activated voxels during
the tactile task-based fMRI experiment within the left and right
thalamic nuclei across all subjects, respectively. All subjects except
and S7 showed bilateral activation in the thalamus. Consistent
activations across all eight remaining subjects were found in the
left VPL. By using a threshold of p < 0.001 (uncorrected), three
and four subjects showed detectable clusters in the left MDm and
MDl, respectively. Activation of the left VLa and left VLp nuclei
was observed in five out of eight subjects. Bilateral activation was
found in CM in four subjects. Like the motor-related activations,
the left thalamic nuclei pulvinar region, including PuA, PuM, PuL,
and PuI, were activated. No significant activity was found in the
bilateral LD, LP and in the left Pf nuclei. Tactile stimulation-
evoked BOLD activity in the various thalamic nuclei is shown in
Figure 6 representatively for subjects S1, S3, S5, and S6. The single-
subject maps (uncorrected p < 0.0001) showed consistent bilateral
activation of VPL in S3 and ipsilateral activation in VPL, VLp, and
CM in S6. Activation of the right AV was found in three subjects
(S3, S5, and S8) amongst all measured subjects.
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FIGURE 2

Relative deviation in percentage (%) from the mean mask sizes of the performed segmentations across all individual thalamic nuclei in all subjects for
the left (A) and the right (B) thalamus. The absolute mean mask size pooled over all subjects given as number (#) of voxels along with the respective
standard deviation is displayed within the bar on top across all nuclei for both left and right thalamus. Blue and red shades refer to negative and
positive relative deviations, i.e., smaller and larger mask sizes as compared to the mean mask size, respectively.

To summarize, at the subject level, we found robust bilateral
activation for both stimuli conditions (motor and tactile) in
different thalamic nuclei. An individual GLM analysis (p < 0.001
uncorrected) comparing the motor task versus the tactile
conditions showed that the motor task produced much stronger
bilateral activation in the thalamic nuclei, for example, in the

CM, VA, VLp, VLa, and PuL, even though just a single run was
performed while seven runs were conducted for the tactile stimulus
(cf. Supplementary Figure 4).

To further evaluate the difference in response of activated
voxels to both tasks, a comparison of the average BOLD signal
change time courses from the activated voxels within the thalamic
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FIGURE 3

Motor task: Number of activated voxels expressed in percentage (%) relative to the subject-specific mask size during the motor task-based fMRI
experiment for the left (A) and right (B) thalamic nuclei across all subjects and nuclei. These results are obtained by thresholding at an uncorrected
p-value of < 0.001 and at a minimal cluster size of five voxels within the investigated ROIs.

nuclei was performed. The mean relative signal change over 12
block repetitions from the most frequently detected nuclei (left
VLa, VLp, VPL, and CM) for four representative subjects are
depicted in Figure 7. For the motor task, the averaged BOLD
responses measured in the left thalamic nuclei yielded maximum
signal changes of 1.7% to 2%. The highest increase in the BOLD
signal was observed in the left VPL and CM nuclei, while the
lowest increase was seen in the left VLa nucleus across all subjects.
The tactile task resulted in a peak of the signal change in the
same regions, with maximal values in the range of 0.5 to 0.8%.
The observed maximum percent signal changes are notably lower
for the tactile task as compared to the motor task, suggesting
distinct patterns of neural activation in response to the two tasks.
For both tasks, the shape of time courses indicates that, although

the temporal patterns of the BOLD responses generally remained
consistent within each individual subject across different thalamic
nuclei, there is a notable inter-subject variability in the shape of
these responses. These results emphasize the agreement between
the time course analysis and the GLM analysis in demonstrating
stronger activation in the thalamic nuclei in response to the motor
task.

Discussion

In the present study, we investigated the localizability and
incidence of activation in the thalamic nuclei, associated with
finger-tapping movement and tactile stimulus, at an individual
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FIGURE 4

Motor task: (A) Results of GLM analysis in the thalamus of four representative subjects (S1, S3, S5, and S6) during the motor task-based fMRI
experiment. For each subject, the t-contrast maps (p < 0.001 uncorrected, and 5-voxel minimum cluster size) are shown, with the individual
T1-weighted MPRAGE image (3T) as anatomical underlay. The most representative axial (top) and coronal (bottom) slices oriented in neurological
convention (the left side of the image corresponds to the left side of the brain) are depicted for each subject, emphasizing the prominent activation
of the thalamic nuclei. (B) The contours of the segmented thalamic nuclei are shown for one subject (S6) with the same color-coding as in Figure 1,
mapped to the anatomical MPRAGE image.

subject level using fMRI at 9.4T. The power of fMRI lies in its ability
to resolve fine spatial structures and to detect changes in individual
subjects with high spatial specificity, making it superior to other
brain imaging modalities (e.g., MEG, EEG, and PET). The accurate
delineation of the thalamic nuclei is extremely challenging due to
their small sizes, necessitating imaging at ultra-high fields, which
are able to provide increased SNR and resolution, in combination
with sophisticated segmentation techniques, as well as favoring a
single-subject analysis in native space over a group analysis in MNI
space to preserve spatial specificity in individual subjects. A subject-
specific assessment also avoids the issue of averaging over non-
responders and responders in the individual small-sized thalamic
nuclei. Therefore, to fully benefit from ultra-high field fMRI and
to understand the intersubject variability as a result of potential
anatomical and functional differences, we felt that a single-subject
analysis is more appropriate for this first in-human study of the
functional involvement of the thalamic nuclei in sensorimotor
tasks. Furthermore, investigating intersubject variability in healthy
volunteers may provide essential insights with respect to future
studies in patients with sensory abnormalities and/or motor
disabilities (e.g., sensory ataxia, Parkinson’s disease).

Benefiting from the increased SNR at ultra-high field strength,
we achieved a spatial resolution (1.25 mm isotropic), which is
higher than the one previously reported for fMRI studies in

the thalamus (Fischer and Whitney, 2012; Wang et al., 2012;
Woodward et al., 2012). In accordance with prior literature
pointing to the advantages of small voxel sizes for cortical specificity
in BOLD fMRI (Hyde et al., 2001), we successfully detected task-
specific activity in individual thalamic nuclei at the employed
resolution.

During finger-tapping stimuli, the VA, VLa, VLp, VPL, and CM
nuclei showed strong BOLD response. Our findings are consistent
with previous findings (Ilinsky and Kultas-Ilinsky, 1987; Fang et al.,
2006; Kumar et al., 2015) suggesting that the VA, VLa, and VLp
nuclei are the main sources of projections to the motor cortical
areas, while also additional motor-related intralaminar und medial
nuclei (CM, Pf, and MD) were observed to send inputs to the
primary motor areas and premotor areas. Interestingly, the motor
nuclei presented in this study are also shown to be associated with
the hand movement motor task (Kumar et al., 2022). Tactile stimuli
evoked strong BOLD response in the VPL nucleus. Strong tactile
activation was also detected in the VLp and CM nuclei. In line
with a recent fMRI study in rats (Sanganahalli et al., 2022), our
results indicate that the VPL nucleus plays an important role in
the sensorimotor processing in humans, even during passive tactile
stimulation.

In previous animal studies, the CM/PF thalamic complex
was reported to be associated with attentional processing
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FIGURE 5

Sensory Task: Activated voxels counts (in percentage) relative to the subject-specific mask size during the tactile task-based fMRI experiment for the
left (A) and the right (B) thalamic nuclei across all subjects and nuclei. Similar to Figure 3, the results are obtained by thresholding at p < 0.001,
uncorrected, and at a minimal cluster size of five voxels within the investigated ROIs.

(Kinomura et al., 1996) and motor adjustment (Van der Werf et al.,
2002). As a result of a neuroanatomical tracing analysis (Van der
Werf et al., 2002), a distinction between Pf and CM functions
was proposed, which assigned the CM nucleus with a specific
involvement during sensorimotor functions and the Pf nucleus
with a specific role during associative-limbic motor functions.
This distinction in humans using fMRI studies is, however, not
possible with our study setup. Nevertheless, our results also suggest
the involvement of the CM nucleus in general attentional and
sensorimotor processes.

The results of this work coincide with previous studies that
have demonstrated an association between the pulvinar nuclei
and attention/visual stimulus (Petersen et al., 1987; Fischer and
Whitney, 2012; Zhou et al., 2016). Compared to the tactile task
during which participants were asked to focus on a fixation cross, a
higher pulvinar nuclei activation was found for the finger-tapping
task, during which the participants viewed a blinking arrow along
with the word “fingers” indicating the task. This may be further
evidence of the association between the pulvinar nuclei and visual
stimulus. However, in this case, the left pulvinar nuclei showed
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FIGURE 6

Sensory task: (A) Single subject thalamic t-statistic maps (uncorrected p < 0.001) obtained for the tactile task-based fMRI experiment. The activation
maps (5-voxel minimum cluster size) for subjects S1, S3, S5, and S6 are overlaid on representative axial (top) and coronal (bottom) sections of the 3T
T1-weighted MPRAGE image, accentuating the prominent activation of the thalamic nuclei. (B) The contours of the nuclei of the thalamus are
shown for subject S6 and mapped to the anatomical MPRAGE image.

stronger activation, which may be related to a higher attention on
the right hand performing the task.

Limitations and future directions

Due to the complex and laborious experimental set-up along
with scan time constraints, we applied the active and passive stimuli
only to the fingers of the right hand in right-handed subjects.
However, we expect that active and passive fMRI tasks can evoke
the same activation pattern in the contralateral side (Nakamura
et al., 2020). Therefore, it appears interesting to explore in future
work whether stimulating the left hand in right handed subjects
would yield comparable thalamic activation features in the right
hemisphere. Despite the small number of participants, our study
allowed us to identify the main thalamic nuclei involved in a
sensorimotor task with visual as well as focusing elements, with
the findings consistent over all participants. However, because
only healthy subjects participated, there is no direct clinical-
radiological correlation yet. A comparison with pre-surgical data
from Parkinson’s disease patients eligible for deep brain stimulation
(DBS) could be a potential follow-up step to establish whether
functional MR image guidance may prove helpful to enable more
accurate electrode placement.

Despite imaging at ultra-high field strength benefits from
an enhancement of the SNR, which can be translated into an

increased spatial resolution, precise anatomical segmentation based
on structural ultra-high field data yet constitutes a major challenge.
An increased spatial resolution may reveal more fine-grained
structural details, such as small sulci and gyri, however, accurately
detecting these nuances using currently available segmentation
software such as FreeSurfer remains difficult. The altered contrast
at ultra-high field strength, caused by differences in relaxation
times as well as increased static and transmit field inhomogeneities
compared to lower magnetic field strengths, results in more
complex tissue contrast patterns, which cannot be handled properly
by contemporary segmentation tools as those are optimized for
image contrasts at lower fields. A segmentation based on structural
9.4T data would lead to inaccurate results and a cascade of errors
in downstream analysis. Therefore, to segment individual thalamic
nuclei, we used structural data acquired at 3T with an isotropic
resolution of 0.8 mm, which was sufficiently high to resolve the
anatomical structures in our 1.25 mm isotropic functional data
acquired at 9.4T. The 3T segmentation results were deemed more
accurate on visual inspection and successfully minimized any
cascading effects.

In this study, we focused primarily on the functional
localization of thalamic nuclei involved in sensorimotor processes.
However, the imaging protocol was designed to cover the
entire brain since in future work, we intend to investigate the
functional connectivity between the individual thalamic nuclei and
different cortical areas as well as basal ganglia. Furthermore, an
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FIGURE 7

Mean relative BOLD signal change (%) time course from the activated voxels in the left VLa (yellow), VLp (rot), VPL (blue), and CM (green) nuclei in
response to motor (left column) and tactile (right column) tasks for four representative subjects (S1, S3, S5, and S6). Error bars represent standard
error of the mean.

improvement in future studies may involve the implementation of
passive motor tasks in addition to active motor tasks as employed
here. This might not only provide an interesting comparison of
voluntary and non-voluntary movements, but could also avoid the
strong relayed inputs from the cortex and basal ganglia. However,
this requires a more complex setup to apply passive movements in
an automatized manner.

To our knowledge, the present study is the first to identify the
sensorimotor thalamic nuclei in humans using task-based fMRI
at a field strength of 9.4T. Our data provide new insight into
the functional localization of the individual thalamic nuclei, as
well as further evidence for the important role of the thalamus in
processing a variety of inputs. The ability to consistently reproduce

such results in order to localize the individual thalamic nuclei is
crucial to assess the feasibility of fMRI for pre-surgical mapping.
By addressing the challenges arising from the highly variable size
and shape of the thalamus across individuals and taking into
account the inconsistency between common atlases, ultra-high field
fMRI may have the potential to enable pre-surgical localization of
thalamic nuclei in a more accurate manner tailored to each patient.
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SUPPLEMENTARY FIGURE 1

(A) Representative temporal SNR maps for GE EPI performed using an
1.25 mm isotropic resolution and a multiband factor of 2 (MB2) at 9.4T
without (left) and with (right) NORDIC correction. (B) Thalamic activation
(motor stimulus) obtained in a single subject (S5). T-maps (uncorrected
p < 0.001) without (left) and with (right) NORDIC correction.

SUPPLEMENTARY FIGURE 2

Anatomical image quality and SPM co-registration results for one subject
(S2). First, the 3T T2-weighted (T2w) image was co-registered to the 3T
T1-weighted (T1w) image, which were then both co-registered to the 9.4T
T1w image. A: Coronal (top row) and axial (bottom row) views of the 9.4T
T1w (left), 3T T1w (middle), and 3T T2w (right) whole-brain images. B:
Illustration of the zoomed area marked with a blue box in A. The green and
red lines indicate the image contours of the 3T T1w and 3T T2w images
calculated by the CheckReg tool in SPM, respectively. Left column:
contours of the co-registered 3T T1w (green) and T2w (red) images on the
9.4T T1w image. Middle column: contours of the co-registered 3T T2w
image on the 3T T1w image. Right column: contours of the co-registered
3T T1w image on the 3T T2w image.

SUPPLEMENTARY FIGURE 3

Whole-brain single-subject GLM results. Panel (A) illustrates the
task-evoked neural activity in the cerebral cortex for the motor (top row)
and tactile (bottom row) task-based fMRI experiments in four representative
subjects (S1, S3, S5, and S6). Similarly, panel (B) depicts the neural activity in
the right cerebellum in response to the same tasks in the same four
subjects. For each subject, the t-statistic maps (p < 0.05 FWE with a
minimum cluster size of 20 voxels) are superimposed on the most
representative axial (A) and sagittal (B) slices of a 3T T1-weighted MPRAGE
image in neurological convention.

SUPPLEMENTARY FIGURE 4

Difference between motor and tactile task-based activation, calculated by
subtracting the relative number of activated voxels (p < 0.001, uncorrected)
in percentage of the tactile task (cf. Figure 5) from the respective value of
the motor task (cf. Figure 3) within left (A) and right (B) thalamic nuclei.
Please note that only the eight subjects, who participated in both tasks,
are included here.
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Brain motion networks predict 
head motion during rest- and 
task-fMRI
Dardo Tomasi 1* and Nora D. Volkow 1,2

1 National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States, 2 National Institute 
on Drug Abuse, Bethesda, MD, United States

Introduction: The capacity to stay still during scanning, which is necessary to 
avoid motion confounds while imaging, varies markedly between people.

Methods: Here we  investigated the effect of head motion on functional 
connectivity using connectome-based predictive modeling (CPM) and publicly 
available brain functional magnetic resonance imaging (fMRI) data from 414 
individuals with low frame-to-frame motion (Δd < 0.18 mm). Leave-one-out was 
used for internal cross-validation of head motion prediction in 207 participants, 
and twofold cross-validation was used in an independent sample (n = 207).

Results and Discussion: Parametric testing, as well as CPM-based permutations 
for null hypothesis testing, revealed strong linear associations between observed 
and predicted values of head motion. Motion prediction accuracy was higher for 
task- than for rest-fMRI, and for absolute head motion (d) than for Δd. Denoising 
attenuated the predictability of head motion, but stricter framewise displacement 
threshold (FD = 0.2 mm) for motion censoring did not alter the accuracy of the 
predictions obtained with lenient censoring (FD = 0.5 mm). For rest-fMRI, prediction 
accuracy was lower for individuals with low motion (mean Δd < 0.02 mm; n = 200) 
than for those with moderate motion (Δd < 0.04 mm; n = 414). The cerebellum and 
default-mode network (DMN) regions that forecasted individual differences in d and 
Δd during six different tasks- and two rest-fMRI sessions were consistently prone to 
the deleterious effect of head motion. However, these findings generalized to a novel 
group of 1,422 individuals but not to simulated datasets without neurobiological 
contributions, suggesting that cerebellar and DMN connectivity could partially 
reflect functional signals pertaining to inhibitory motor control during fMRI.

KEYWORDS

head motion, fMRI, proprioception, self-motion perception, hyperactivity, impulsivity, 
machine learning

Introduction

Head motion causes artifacts during magnetic resonance imaging (MRI; Friston et al., 1996; 
Rohde et al., 2004) and other neuroimaging modalities (Cooper et al., 1992; Nehmeh and Erdi, 
2008; Catana et al., 2011), which is why patients are instructed not to move their heads during 
scanning. However, the capacity to lie still during scanning varies markedly between people, 
being dependent among other factors on brain maturation and hence much worse in children 
than adults (Poldrack et  al., 2002). It is also impaired in some neurodevelopmental and 
neurodegenerative disorders such as attention deficit hyperactivity disorder (ADHD), autism, 
and dementias (Maknojia et al., 2019).
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Head motion is particularly concerning for MRI studies of brain 
functional connectivity (Birn et  al., 2006; Power et  al., 2012; 
Satterthwaite et al., 2012; Van Dijk et al., 2012) because it can cause 
systematic group differences in connectivity (Andrews-Hanna et al., 
2007; Fair et  al., 2007; Damoiseaux et  al., 2008; Fair et  al., 2008; 
Greicius, 2008; Dosenbach et  al., 2010) and can even mimic trait 
correlates of behavior (Siegel et  al., 2017). While functional MRI 
(fMRI) studies treat motion-related signals as artifacts, removing 
imaging data with excessive motion (Power et al., 2012; Satterthwaite 
et al., 2012; Van Dijk et al., 2012; Fassbender et al., 2017; Hong et al., 
2019; Maknojia et al., 2019), most studies have not investigated if 
group differences in head movement explain the reported connectivity 
differences between patients and controls (Buckner et al., 2013). Also, 
the time frames that drive whole-brain functional connectivity are 
almost never among those censored for excessive in-scanner motion 
(Betzel et al., 2022).

Nonetheless the previously reported association between default 
mode network (DMN) connectivity and in-scanner head motion 
during resting-state fMRI could reflect greater self-referential mental 
activity, which could facilitate the person’s ability to stay still during 
scanning. Specifically, higher functional connectivity between distant 
default-mode network (DMN) regions was reported in subjects with 
low head motion compared to those with high motion (Zeng et al., 
2014). However, this study did not find within-subject differences in 
connectivity between fMRI sessions with low and high motion (Zeng 
et  al., 2014), suggesting that between subjects differences in head 
motion reflect a neurobiological trait (Pujol et al., 2014). However, no 
study to our knowledge has evaluated whether functional connectivity 
can predict an individual’s head motion behavior, nor what regions or 
networks predominantly contribute to in-scanner head movement or 
might be more sensitive to motion artifacts.

Here we  tested the hypothesis that individual differences in 
functional connectivity can be  used to predict in-scanner head 
motion. For this purpose, we analyzed brain imaging data of 414 
healthy adults who underwent six different task-fMRI and two rest-
fMRI sessions from the Human Connectome Project (HCP). 
We investigated the reproducibility of head motion prediction in two 
independent HCP samples, each with 207 healthy individuals, and two 
novel groups from the Brain Genomics Superstruct Project (GSP), 
each with 711 healthy young adults.

Materials and methods

HCP datasets

The datasets used in this study were extracted from the HCP 1,200 
Subjects data release.1 HCP participants provided written informed 
consent as approved by the Institutional Review Board (IRB) at 
Washington University. To avoid phase encoding bias, the analyses 
were restricted to participants for whom both phase-encoding scans 
(left–right, LR; right–left, RL) for the two rest-fMRI sessions (R1 and 
R2; collected on two different days) and all six task-fMRI sessions 
(emotion, relational, motor, working memory, language, and 

1 http://www.humanconnectome.org/

gambling; Barch et al., 2013) were complete and available. Individuals 
were excluded from the study due to incomplete image datasets, image 
artifacts (identified with the aid of principal component analysis), or 
excessive head motion (frame-to-frame displacement, Δd > 0.18 mm). 
We chose this motion threshold to ensure sufficient sensitivity to head 
motion taking into account that the magnitude of motion-related 
fMRI signal changes scales with the magnitude of head motion 
(Satterthwaite et  al., 2013b) and that micromotion > 0.2 mm can 
systematically bias estimates of resting-state functional connectivity 
(Van Dijk et al., 2012). The 414 participants were half-split into the 
Training sample for the optimization of prediction models, and the 
Test sample for the twofold cross-validation of the prediction models 
in an independent set of subjects. The samples were matched so there 
was no significant age or sex differences between the Training and Test 
samples (Table 1). Only one family member was kept in the study.

GSP datasets

In addition, we  used imaging data from 1,422 healthy young 
adults (21.5 ± 2.9 years old; 800 females) from the Brain Genomics 
Superstruct Project2 to cross-validate the prediction in an independent 
dataset. GSP individuals provided written informed consent approved 
by the Partners Health Care IRB and the Harvard University 
Committee on the Use of Human Subjects in Research and agreed to 
data sharing.

fMRI tasks

We aimed to test linear associations of head motion with 
functional connectivity strength during the resting state, and during 
the performance of cognitive, emotional, and motor fMRI tasks. Thus, 
in the HCP dataset we selected eight fMRI sessions, including those 
collected during the resting state (R1 and R2) and during the 
performance of 6 different tasks, which are described in detail 
elsewhere and target the following domains (Barch et  al., 2013): 
Emotion, EMO (Hariri et al., 2002); Relational processing, REL (Smith 
et al., 2007); Motor, MOT (Buckner et al., 2011; Yeo et al., 2011); 
N-back working memory, WM (Barch et al., 2013); Language, LAN 
(Binder et al., 2011); and Gambling, GAM (Delgado et al., 2000).

MRI acquisition and image analyses

HCP datasets
Functional images with high spatiotemporal resolution were 

acquired in a 3.0 T Siemens Skyra scanner (Siemens Healthcare, 
Erlangen, Germany) with a 32-channel coil using a gradient echo-
planar imaging (EPI) sequence (multiband factor 8, repetition time, 
TR = 720 ms, echo time, TE = 33.1 ms, flip angle 52°, 104 × 90 matrix 
size, 72 slices, and 2 mm isotropic voxels) with whole brain coverage 
(including the cerebellum) and automated alignment of slice 
positioning (e.g., “AutoAlign” mode; Smith et al., 2013; Uğurbil et al., 

2 https://www.neuroinfo.org/gsp
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2013). Scans were repeated twice using left–right (LR) and right–left 
(RL) phase encoding directions. For the resting-state scans, the 
scanner room was darkened, and subjects were asked to lie with eyes 
open and not to fall asleep while fixating on a white cross (on a dark 
background) think of nothing, relax, and to remain still during 
scanning. The T1-weighted 3D magnetization-prepared gradient-echo 
image (Mugler and Brookeman, 1990; MP-RAGE; TR/
TE = 2,400/2.14 ms, TI = 1 s, FA = 8°) and variable flip angle turbo spin-
echo (Mugler et al., 2000; Siemens SPACE; TR/TE = 3,200/565 ms) 
pulse sequences were used to acquire high-resolution anatomical 
brain images with 0.7 mm isotropic voxels and field-of-view 
(FOV) = 224 mm × 224 mm. We used the “minimal preprocessing” 
datasets released by the HCP, which include gradient distortion 
correction, rigid-body realignment, field-map processing, and spatial 
normalization to the stereotactic space of the Montreal Neurological 
Institute (MNI; Glasser et al., 2013).

GSP datasets
Imaging data were collected on matched 3 T Tim Trio scanners 

(Siemens Healthcare, Erlangen, Germany) at Harvard University and 
Massachusetts General Hospital using a 12-channel phased-array 
head coil. Gradient-echo EPI (TR = 3 s; TE = 30 ms; flip angle = 85°, 47 
slices, 3 mm isotropic resolution; 124 measurements) with whole-
brain coverage, including the entire cerebellum, was used to acquire 
functional images with blood oxygenation level-dependent (BOLD) 
contrast. Participants were instructed to remain still, stay awake, and 
keep their eyes open during fMRI. Multi-echo T1-weighted 
magnetization-prepared gradient-echo (MP-RAGE; van der Kouwe 
et al., 2008) imaging (TR = 2.2 s; TE = 1.5/3.4/5.2/7.0 ms; flip angle = 7°; 
TI = 1.1 s; 144 slices, 1.2 mm isotropic resolution) was used to acquire 
anatomical images. The FreeSurfer (version 5.3.0) package3 (Fischl 
et al., 2002) was used to automatically segment anatomical MRI scans 
into cortical and subcortical gray matter structures. Functional images 

3 http://surfer.nmr.mgh.harvard.edu

were screened for artifacts and excessive motion. The first four image 
volumes were discarded for signal stabilization purposes. The 
University of Oxford’s Center for Functional Magnetic Resonance 
Imaging of the Brain (FMRIB) Software Library (FSL version 5.0)4 was 
used for image realignment (to correct for head motion with 
MCFLIRT, Motion Correction using FMRIB’s Linear Image 
Registration Tool), and for spatial normalization to the MNI152 
template using 3 mm isotropic voxels (with FLIRT, the FMRIB’s Linear 
Image Registration Tool; Jenkinson et al., 2002; Smith et al., 2004).

In addition, displacement timeseries reflecting how much a given 
voxel moved as a function of time were simulated by applying the 
affine transformations from image realignment to the first volume 
(Satterthwaite et  al., 2013a). These simulated time series were 
realigned and spatially normalized to the MNI space.

Head motion
The Euclidian norms of head displacement and frame-to-frame 

velocity, di  and ∆ id , were calculated from image realignment 
parameters (translations along x, y, and z with respect to the first 
volume) for each timepoint, i:

 
d x y z d x x y y z zi i i i i i i i i i i= + + = − + − + −− − −( ) ( ) ( )2 2 2

1

2

1

2

1

2
; ∆

 
(1)

and the average root-mean-square (RMS) values of di  and ∆ id , 
across LR and RL scans and timepoints, were used as summary 
metrics of absolute (d; measured from t = 0) and relative (frame-to-
frame; Δd) head motion, respectively, in mm.

Framewise displacements (FD) were computed for every time 
point from head translations and rotations:

 

FD x x y y z z mmi i i i i i i

i i i i i i
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− + − + −( )
− − −

− − −

1 1 1

1 1 1

50

α α β β γ γ
 

[2]

4 http://www.fmrib.ox.ac.uk/fsl

TABLE 1 Demographics and residual time-averaged root-mean-square (RMS) estimates of absolute (d) and relative (Δd) motion for the first 150 frames 
that survived scrubbing with framewise displacement threshold of 0.2 mm for Training and Test HCP samples.

HCP Training Test P # Frames 
removed

Age [years] 29(4) 29(4) ns

Sex (M/F) 84/123 87/120 ns

d [mm] mean (SD) Δd [mm] mean (SD) d [mm] mean (SD) Δd [mm] mean (SD) (d) (Δd) mean (SD)

WM 0.14(0.12) 0.029(0.014) 0.12(0.08) 0.028(0.011) 0.03 ns 1.1(3.3)

LAN 0.16(0.14) 0.038(0.017) 0.14(0.15) 0.035(0.014) ns ns 0.9(2.4)

REL 0.23(0.16) 0.052(0.024) 0.21(0.11) 0.048(0.019) ns ns 1.8(2.8)

MOT 0.19(0.10) 0.043(0.018) 0.17(0.10) 0.041(0.016) ns ns 1.8(3.9)

GAM 0.17(0.09) 0.046(0.021) 0.16(0.08) 0.042(0.016) ns ns 0.7(1.8)

EMO 0.30(0.22) 0.065(0.030) 0.24(0.11) 0.060(0.024) 0.001 ns 0.7(1.8)

R1 0.04(0.02) 0.010(0.004) 0.04(0.02) 0.009(0.003) 0.05 ns 0.6(1.7)

R2 0.04(0.02) 0.010(0.005) 0.04(0.02) 0.009(0.004) ns ns 0.7(1.6)

EMO, emotion; LAN, language; REL, relational; GAM, gambling; MOT, motor; and WM, working memory; R1, rest1; and R2, rest2. #Frames: Average number of frames removed by 
scrubbing in 0 < t < 2 min.

93

https://doi.org/10.3389/fnins.2023.1096232
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://surfer.nmr.mgh.harvard.edu
http://www.fmrib.ox.ac.uk/fsl


Tomasi and Volkow 10.3389/fnins.2023.1096232

Frontiers in Neuroscience 04 frontiersin.org

where rotational angles, α, β, and γ (in radians) were converted to 
displacements on the surface of a sphere of radius 50 mm as in 
previous work (Power et al., 2012). Time points were excluded if the 
RMS change in BOLD signals frame-to-frame was larger than 0.5%, 
and exceeded the censoring threshold FDi > 0.5 mm (or FDi > 0.2 mm; 
Power et al., 2015). Global signal regression (GSR) was used in all 
evaluated data to remove non-neuronal sources that contribute to the 
global signal (Power et  al., 2014). Low-pass filtering (0.10 Hz 
frequency cutoff) was used to attenuate physiologic noise of high-
frequency components.

Effect of pipeline choices for noise suppression
To assess the effect of motion on functional connectivity 

we studied fMRI datasets with and without removal of motion-related 
signals using linear regression with the time-varying realignment 
parameters (Tomasi and Volkow, 2010) and independent component 
analysis (ICA)-based X-noiseifier, an ICA-based automatic noise 
detection algorithm that can minimize various types of noise sources 
including head motion (Salimi-Khorshidi et al., 2014).

Functional connectome
Connectivity matrices, M, were constructed for each fMRI dataset 

and subject, using the corresponding preprocessed 4D time series. To 
assess the functional connectivity between regions-of-interest (ROIs) 
we used the Interactive Data Language (IDL, L3Harris Geospatial, 
Broomfield, CO). Three different brain atlases were used to provide 
ROIs: 1) Automated Anatomical Labeling (AAL)—Tzourio-Mazoyer 
et  al. (2002) and 2) Shen et  al. (2013), both of which include the 
cerebellum and subcortical regions and 3) Gordon et al. (2016), which 
does not include the cerebellum and subcortical regions, to assess the 
effect of brain parcellation on the accuracy of the behavioral prediction 
model. In addition, we combined the cortical partitions of the Gordon 
atlas with the 26 subcortical (including the brainstem) and 41 
cerebellar partitions of the Shen atlas in a new whole-brain atlas with 
400 partitions (Gordon400). Pearson correlation coefficients between 
pairs of ROI time courses were calculated independently for LR and 
RL scans and normalized to z-scores using the Fisher transformation. 
This resulted in 116 × 116 (AAL), 268 × 268 (Shen), 333 × 333 
(Gordon), and 400 × 400 (Gordon400) symmetric connectivity 
matrices for each fMRI session and participant. The LR and RL 
correlation matrices corresponding to the same functional session 
were averaged to increase signal-to-noise. To allow for comparisons 
between task- and rest-fMRI results that were not biased by unequal 
data sampling, only the first 150 frames (to correspond with the short 
duration of the Emotion task-fMRI; ~2 min; 176 time points) of the 
time series that survived scrubbing were used to compute the 
corresponding M.

Head motion prediction model

The optimization of the prediction models was carried out using 
connectome-based predictive modeling (CPM; Shen et  al., 2017) 
using leave-one-out cross-validation. Specifically, at each of n 
iterations, one of the n individuals was excluded and the four CPM 
steps, feature selection, feature summarization, model building, and 
assessment of prediction significance were carried sequentially n times 
in an iterative fashion as follows. Feature selection: Pearson correlation 

was used to assess associations between head motion scores and each 
element of the connectivity matrices (Mij) in the Training sample. 
Matrix elements that had significant positive or negative correlations 
with the observed head motion scores (RMS values of d and Δd) were 
identified as edges of the positive or negative adjacency matrices and 
included in the model. Two thresholds were tested (p < 0.01 or 0.05) 
for feature selection to ascertain that results did not depend on 
arbitrary threshold selection. Feature summarization: Edges with 
positive (negative) correlation with motion scores were added to 
compute the positive (negative) network strength, X (Y). Model 
building: a bilinear model was fitted to the data across the 
n-1 individuals.

 Ψ = + +a b cX Y  (3)

Here a, b, and c are model parameters, Ψ is the observed head 
motion score, and X and Y are the positive and negative network 
strengths derived from the connectivity matrices. We also assessed 
linear models purely driven by positive or negative features by setting 
c = 0 or b = 0. Assessment of prediction significance: The model was then 
used to predict the head motion score of the remaining individual 
from his/her corresponding positive and negative network strengths.

In addition, we used a twofold cross-validation approach to assess 
how the CPM results generalize to an independent data set. 
Specifically, the CPM model and features derived from the Training 
sample were used to predict head motion in the independent Test 
sample. Finally, the Training and Test samples were swapped (e.g., the 
CPM model and features derived from the Test sample were used to 
predict head motion in the independent Training sample) to complete 
the cross-validation.

Statistical analyses

The Shapiro–Wilk normality test (Shapiro and Wilk, 1965) was 
used to confirm the normal distribution of the functional connectivity 
strength. Thus, Pearson correlation was used to assess prediction 
accuracy, unless otherwise specified. Since Training and Test were 
independent samples, we  used parametric statistics to assess the 
statistical significance of group differences in correlation between 
observed and predicted motion scores. To test for differences between 
two dependent correlations sharing one variable we  used the 
Williams’s test (Williams, 1959), and for correlations with different 
variables we  used the Steiger’s test (Steiger, 1980). The cortical 
networks were labeled using the Yale network definitions (Noble and 
Scheinost, 2020). Statistically significant correlations for a sample size 
n = 207 were set at p < 3.213E-03, corresponding to R = 0.204, using 
Bonferroni corrections for 16 comparisons (8 fMRI sessions × 2 
motion measures). The Bonferroni method was also used to correct 
for multiple comparisons the results from within- and between-
network predictions with the Gordon400 parcellation atlas (14 
networks). Specifically, Bonferroni corrections were carried with 14 
(within-network; R > 0.2) or 91 (between-network; R > 0.23) 
comparisons. A permutation framework was used for null hypothesis 
significance testing. Specifically, 1,000 random permutations of head 
motion scores were used to assess the distribution of prediction 
accuracy under possible rearrangements of motion scores.
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Results

The realignment estimates of motion (d; i.e., “absolute motion”) 
were significantly lower for rest (d = 0.04 mm ± 0.02 mm) than for task 
sessions (d = 0.19 mm ± 0.14 mm; p < 2E-16; Figure 1). Similarly, the 
frame-to-frame motion estimates (Δd; i.e., “relative motion”) were 
significantly lower for rest (Δd = 0.010 ± 0.004 mm) than for task 
sessions (Δd = 0.044 mm ± 0.022 mm; Figure 1). There were no sex 
differences, but older age was associated to lower d and Δd (p < 0.004, 
F = 11.3, df = 3,302, ANOVA).

Prediction of head motion from fMRI data

We found a strong linear association between observed and 
predicted values of d using Spearman correlation (ρ > 0.59; p < 2.2E-16; 
Figure 2A). Prediction models based on positive and negative network 
strength performed similarly across fMRI sessions in the Training 
sample (Figure 2B), in agreement with prior studies (Finn et al., 2015), 
supporting the notion that the negative and positive networks contain 
redundant information (Rosenberg et  al., 2016). The correlation 
between observed and predicted absolute motion scores across 
subjects (“R,” a benchmark of prediction accuracy) did not differ 
between task- or rest-fMRI sessions across all parcellations (p > 0.3, 
2-sided t-test). Across linear and bilinear models, prediction accuracy 
was higher for Gordon than Shen and AAL and for Shen than AAL 
parcellations (p < 1E-03, 2-sided paired t-test; Figure 2C). The linear 

associations between observed and predicted measures of Δd were 
like those of d (Figure 3). Across fMRI sessions and models, motion 
prediction accuracy was lower for Δd than d, independently for the 
Training and Test sessions (p < 0.01, 2-sided paired t-test, 
Figures 2D, 3D).

Validation in an independent sample

We confirmed the generalizability of the linear association 
between head motion and functional connectivity in the Test sample 
(e.g., using twofold cross-validation). Specifically, for each participant 
in the independent Test sample (n = 207) we predicted head motion 
from the positive and negative features and the model parameters 
derived from the Training sample (Figure 2E). In the Test sample, 
prediction accuracy was lower for Gordon than Shen and AAL 
parcellation (p < 0.01, 2-sided paired t-test). In the Test sample, we also 
found that all prediction models performed similarly across fMRI 
sessions. Δd-prediction accuracy was lower for the Test sample than 
for the Training sample (p < 5E-07, 2-sided paired t-test, df = 23; 
Figure 3F).

Sensitivity to motion

Functional connectivity studies frequently address motion 
concerns by minimizing BOLD signals associated with head motion. 

A B C

D E F

FIGURE 1

Residual head motion. Density plots showing across-subjects’ distributions of residual time-averaged root-mean-square (RMS) estimates of absolute 
(d) and relative (Δd) motion, and the number of frames removed with framewise displacement (FD) thresholds of 0.5 mm (A–C) and 0.2 mm (D–F) for 6 
task-fMRI sessions: (EMO: emotion; LAN: language; REL: relational; GAM: gambling; MOT: motor; and WM: working memory) and 2 rest-fMRI session 
(R1: rest1; and R2: rest2). Sample size: 414 healthy young adults.
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Popular approaches for this are based on (1) linear regression of rigid-
body realignment parameters (Satterthwaite et  al., 2013a) and 
ICA-based denoising algorithms that can minimize various types of 
noise sources, including head motion (Behzadi et al., 2007; Salimi-
Khorshidi et al., 2014; Pruim et al., 2015); and (2) the removal of 

subjects with excessive micro-motion (Van Dijk et al., 2012). Here 
we used these approaches to assess the sensitivity of the head motion 
prediction model to the amount of motion in the data. The removal of 
214 individuals from the original cohort of 414 individuals (“moderate 
motion”) who had micro motion 0.18 mm > Δd > 0.08 mm in at least 

A

B

C D

E F

FIGURE 2

Prediction of absolute head motion. (A) Observed absolute head motion during fMRI sessions was predicted from positive and negative network 
strengths in “left out” individuals of the Training sample (n = 207), using leave-one-out cross-validation for working memory (WM). (B) Correlation 
factor (R) between observed and predicted absolute motion excursions (d) did not differ across models purely based on positive, negative network 
strength, or both. Prediction accuracy (R) across brain parcellations (C) and for absolute and relative motion (Δd; D) in the training sample. 
(E) Functional connectivity predicted absolute head motion in an independent set of individuals (“Test sample”; n = 207) using optimal models and 
features derived from the Training sample for the bilinear model for WM. (F) Prediction accuracy for absolute motion in Test and Training samples. 
---p < 0.05, Bonferroni corrected for 16 comparisons. Shen parcellation atlas. EMO, emotion; LAN, language; REL, relational; GAM, gambling; MOT, 
motor; and WM, working memory; R1, rest1; and R2, rest2. Sample size: 414 healthy young adults. Censoring threshold 0.5 mm.
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one of the fMRI sessions resulted in a subsample of 200 individuals 
with “low motion” (Δd < 0.08 mm). The low-motion subsample was 
split into 2 groups of 100 individuals for CPM training and 
testing purposes.

Compared to datasets with moderate motion, datasets with 
ICA-based denoising (i.e., “noise suppression”) demonstrated slightly 
attenuated head motion prediction, independently for d and Δd 
(p < 0.05, ANOVA; Figures 4A,B) and those with low motion did not 

A

B

C D

E F

FIGURE 3

Prediction of relative head motion. (A) Observed relative head motion during fMRI sessions was predicted from positive and negative network strengths 
in “left out” individuals of the Training sample (n = 207), using leave-one-out cross-validation. (B) Correlation factor (R) between observed and 
predicted relative motion excursions (Δd), as a function of fMRI session and model. Prediction accuracy (R) across brain parcellations in the training 
sample (C) and for absolute and relative motion (Δd; D) in the test sample. (E) Functional connectivity predicted relative head motion in an 
independent set of individuals (“Test sample”; n = 207) using optimal models and features derived from the Training sample for the bilinear model for 
WM. (F) Prediction accuracy for relative motion in test and training samples. ---p < 0.05, Bonferroni corrected for 16 comparisons. Shen parcellation 
atlas. EMO, emotion; LAN, language; REL, relational; GAM, gambling; MOT, motor; and WM, working memory; R1, rest1; and R2, rest2. Sample size, 414 
healthy young adults. Censoring threshold 0.5 mm.
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predict d or Δd in the Test sample (Figure 4C), consistent with the 
removal of signals correlated with rigid body motion.

We also confirmed the significance of the findings, against the null 
hypothesis that functional connectivity would not predict head 
motion, using a permutation test in which head motion (d or Δd) did 
not correspond to functional connectivity datasets across individuals. 
Under the null hypothesis, prediction accuracy had a bell-shaped 
distribution of σ = 0.09 (Figure 4D).

Scrubbing (censoring) is also a popular approach to control for 
head motion artifacts in functional connectivity (Power et al., 2012, 
2014, 2015). Both for d and Δd, prediction accuracy did not differ 
when computed from datasets with different censoring threshold 
(FDi < 0.2 mm, Figure  5 vs. FDi < 0.5 mm, Figures  2F, 3F; 
p > 0.15, ANOVA).

Within- and between-network predictions

Next, we  assessed prediction accuracy for specific network 
connections by restricting the features to either within-network or 
between-network edges. We used the 14 resting-state networks in the 
Gordon400 parcellation and R1 datasets with extremely low motion 
[d = 0.04(0.02) mm; Δd = 0.010(0.004) mm]. d- and Δd-prediction 
accuracies were statistically significant across within- or between-
network edges and were higher for Training than Test samples 
(p < 2.2e-16; Figure 6). In the Test sample, prediction accuracy varied 
significantly across networks when using within-network edges 
(>54%; Figure  6) but less so when using between-network edges 
(<27%). In the Test sample, within-network prediction accuracy was 
significant only for the visual and ventral attention networks, 
subcortical regions, and the cerebellum but was significant for most 

between-network edges, independently for d and Δd (p  < 0.05, 
corrected). Similar results emerged from task-fMRI datasets 
(not shown).

Predictions from simulations

To rule out potential neuronal contributions to motion prediction 
we assessed head motion prediction accuracy in simulated datasets in 
which the time-varying signals reflected only the real translations and 
rotations of GSP datasets, but not BOLD signal changes. Compared to 
the significant and reproducible d- and Δd-predictions obtained with 
the real GPS data, prediction accuracy in simulated data was very 
weak for Δd and did not reach significance for d, both for GSP1 and 
GSP2 (Figure 7).

Common motion-sensitive network

Hypothesizing that a unique subset of positive and negative 
network edges can be used to predict head motion for any of the 
fMRI sessions and using the moderate motion subsamples 
we  identified edges that overlapped 25% or more across fMRI 
sessions, independently for positive and negative networks. Using 
Shen atlas partitions, the overlapping networks that predicted d 
had 100 positive edges and 52 negative edges, which predominantly 
emanated from bilateral hubs in the cerebellum Crus II (Figure 8A; 
Table  2) as well as medial DMN (anterior cingulum, superior 
medial frontal, and inferior temporal cortices) and salience 
network (SN; insula) regions, and the calcarine cortex (Figure 8A; 
Table 2). Positive edges predominantly reflected connections to 

A B

C D

A B

C D

FIGURE 4

Sensitivity to motion signals: Predictability of relative (right panel) and absolute (left panel) head motion from functional connectivity datasets (R1: rest1; 
R2: rest2) in the Training (n = 207) and Test (n = 207) samples with “moderate motion” (Δd < 0.04 mm), without (A) and with (B) ICA-denoising (i.e., “noise 
suppression”), and in a “low motion” subsample of 200 (Training: 100; Test = 100) individuals (Δd < 0.02 mm); (C) Density plots showing distributions of 
prediction accuracy obtained from 1,000 random permutations of d or Δd across individuals in the moderate motion sample for each fMRI session (D). 
---p < 0.05, Bonferroni corrected for 2 comparisons. Shen parcellation atlas. Bilinear model. Censoring threshold 0.5 mm.
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A B

FIGURE 5

Sensitivity to head motion with censoring threshold 0.2 mm: Absolute (d; A) and relative (Δd; B) motion prediction accuracies from functional 
connectivity datasets. Training (n = 207) and Test (n = 207) samples. ---p < 0.05, Bonferroni corrected for 16 comparisons. Shen parcellation atlas. 
Bilinear model.

A B

C D

FIGURE 6

Within- and between-network predictions. Absolute (d; A,B) and relative (Δd; C,D) motion prediction accuracies that emerged from 
within-network (A,C) and between-network (B,D; the threshold R > 0.23 corresponds to p < 0.05, Bonferroni corrected for 91 comparisons) 
edges of the functional connectivity matrix from R1. Training (n = 207) and Test (n = 207) samples. ---p < 0.05, Bonferroni corrected for 14 
comparisons. Gordon400 parcellation atlas. AN, auditory; CO, cingulum-operculum; CP, cingulum-parietal; DAN, dorsal-attention; DMN, 
default-mode; FPN, frontoparietal; RT, retrosplenial-temporal; SMh, sensorimotor-hand; SMm, sensorimotor-mouth; VAN, ventral attention; 
and VN, visual networks; CER, cerebellum; and SC, subcortical regions.
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contralateral regions (left–right cerebellum, left–right prefrontal 
cortex, PFC) and negative edges reflected ipsilateral and 
contralateral anterior-to-posterior connections (cerebellar-PFC). 
The overlapping networks that predicted Δd were more restricted 
than those that predicted d, and had 14 positive and 44 negative 
edges that predominantly emanated from lateral (inferior and 
middle temporal gyri) and medial (superior medial frontal gyrus 
and precuneus) DMN, and FPN (left temporal pole) networks 
(Figure 8B; Table 3).

Next, we tested the prediction power of these overlapping features 
in the Training and Test subsamples. Specifically, we  computed 
network strength from positive and negative edges of the overlapping 
networks, which we refer to as ‘motion-sensitive networks’ and found 
that these features predicted head motion in all fMRI sessions with 
similar accuracy in the Training and Test subsamples, both for d and 
Δd (Figure 8C, left and middle panels).

Further support for the involvement of these motion-sensitive 
networks in head motion prediction emerged from an independent 
validation study in 1,422 healthy young adults who underwent resting-
state fMRI with standard spatiotemporal resolution (3 mm-isotropic; 
3 s TR) under the GSP study (Holmes et  al., 2015). Specifically, 
we found that motion-sensitive network strengths, computed using 
the positive and negative edges defined in the HCP absolute motion-
sensitive network and the corresponding parameters of the bilinear 
model (Figure 8A), predicted d (0.13 mm ± 0.08 mm; mean ± sd) in 
two age- and gender-matched samples of 711 individuals: GSP1 
(21.5 ± 2.9 years; 394 females) and GSP2 (21.5 ± 2.9 years; 406 females), 
with similar accuracy to that in the HCP subsamples (R ~ 0.3; 
Figure 8C). However, the predictability of Δd (0.04 mm ± 0.02 mm/
TR; mean ± sd) in the GSP datasets, based on the Δd-motion-sensitive 
network and the parameters of the bilinear model (Figure 8B), was not 
consistent across GSP1 and GSP2 (Figure 8C). In simulated data, the 
parameters of the bilinear model and positive and negative edges of 
the d- and Δd-motion-sensitive networks (Figures 7B, 8A) predicted 
Δd in GSP1 and d in GSP2, with significantly lower accuracy than in 
real data (Figure 8C).

Discussion

Here we identify two motion-sensitive networks that predicted 
individual differences in head motion across six different task-fMRI 
and two rest-fMRI sessions. Reproducible predictions emerged from 
a Training sample of 207 individuals, using internal validation, and 
from an independent sample of 207 novel individuals, using twofold 
cross-validation. Head motion prediction was robust to changes in 
motion metric (d or Δd), task-rest condition, brain parcellation, and 
model, demonstrating that results were stable and reproducible. 
We  further validated our head motion prediction model in two 
independent datasets of 711 individuals, but similar validations failed 
in simulated datasets without neurobiological contributions. The 
predictability of head motion despite the relatively small frame-to-
frame translations in this work (Δd ~ 0.04 mm), compared to the 
stringent 0.2 mm micro motion threshold (Van Dijk et  al., 2012), 
suggests that even extremely low amounts of head motion can 
influence functional connectivity.

The predictability of d is both surprising and interesting because 
“absolute motion” is a summary measure of slow motion rather than 
one of velocity. Here we show for the first time that the cerebellum 
(Crus II) reliably contributed to the prediction of d, whereas lateral 
DMN components (temporal cortex) contributed to the prediction of 
Δd. The specificity of the cerebellum to d-prediction accuracy suggests 
that Crus II is particularly sensitive to slow head motion. The 
specificity of the lateral temporal DMN areas to Δd-prediction 
accuracy suggests that this DMN subsystem is particularly sensitive to 
rapid head motion. However, the highly reproducible predictions of 
motion from within- and between-network edges (Figure  6) is 
consistent with the notion that all the networks are associated with 
head movement (Satterthwaite et al., 2013a), and not only the Crus II 
and temporal DMN regions.

A frequent approach to control for motion in functional 
connectivity studies is to exclude data with large Δd (Power et al., 
2012; Satterthwaite et  al., 2012; Van Dijk et  al., 2012) while little 
attention is given to d. However, our data shows that excluding data 
based on Δd may not be sufficient to warrant the absence of motion 
effects on functional connectivity. Indeed, we  show that motion 
prediction was higher for d than Δd. Furthermore, functional 
connectivity data predicted both d and Δd despite the use of current 
methods to attenuate the influence of head motion on fMRI. Prior 
studies showed that scrubbing with FD > 0.2 mm attenuated negative 
(but not positive) correlations between head motion (i.e., the average 
residual FD) and fMRI signals suggesting that negative relationships 
are likely to originate from motion artifacts (Yan et  al., 2013). 
However, prediction accuracy from datasets with low motion 
(Δd ~ 0.04 mm) did not differ when computed from positive or 
negative edges or when using stringent (FD > 0.2 mm) or lenient 
(FD > 0.5 mm) scrubbing thresholds.

Task-based fMRI studies, which frequently restrict head 
movement to minimize task-correlated motion artifacts, have 
demonstrated that older adults and patient populations move more 
during scanning than healthy controls (Seto et al., 2001; Yuan et al., 
2009; Haller et  al., 2014). Moreover, some have suggested that 
in-scanner head motion could be heritable (Engelhardt et al., 2017). 
Head motion is particularly problematic for resting state fMRI studies 
in pediatric populations, where an inverse relationship exists between 
head motion and age (Frew et  al., 2022). Note that children have 

FIGURE 7

Prediction accuracy in real and simulated data. Absolute (d) and 
relative (Δd) motion prediction accuracies from real and simulated 
functional connectivity datasets from the Brain Genomics 
Superstruct Project (GSP1, as the training sample, and GSP2, as the 
test sample; n = 711, each). Brain parcellation: Shen; Model: bilinear. 
---p < 0.05, Bonferroni corrected.

100

https://doi.org/10.3389/fnins.2023.1096232
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tomasi and Volkow 10.3389/fnins.2023.1096232

Frontiers in Neuroscience 11 frontiersin.org

greater difficulty in staying still during scanning than adults, due in 
part to the incomplete maturation of prefrontal cortical regions 
necessary for self-regulation, and also their propensity to boredom 
and anxiety (Morel et al., 2019). However, anxiety concerns are also 
relevant to adults, many of whom report some level of anxiety when 
undergoing MRI scans (Dziuda et al., 2019).

Pathological conditions or demographic parameters such as age 
can influence in-scanner head motion (Saccà et al., 2021). Thus, our 
findings on young healthy subjects could differ from those in older or 
pathological populations. Future studies are needed to investigate the 
extent to which this could be disentangled into contributions from the 
different components of the displacement (i.e., translational, 
rotational) and the effect of respiratory artifacts (Fair et al., 2020). It is 

challenging to explore all possible alterations in image preprocessing 
choices that might potentially interact with head motion. The use of 
different MRI acquisition protocols and preprocessing pipelines could 
reduce the reproducibility across HCP and GSP datasets. Nevertheless, 
the use of a different image acquisition protocol and preprocessing 
pipeline in the GSP and HCP datasets, allowed us to generalize our 
findings on motion prediction to different image acquisition protocols 
and preprocessing pipelines.

Since deleterious effects of head motion on fMRI data are well-
documented (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk 
et al., 2012) and considering that true brain-behavior associations 
have small effects (Marek et al., 2022) the predictions of head motion 
in this work likely reflect correlations of time-varying artifacts among 

A

B

C

FIGURE 8

Motion-sensitive networks. Motion-network reflecting the 50% overlap of positive (─) or negative (─) networks that predicted absolute (A) and relative 
(B) head motion across 8 fMRI sessions and Training and Test subsamples, each of 207 individuals with moderate motion, and a glass brain plot where 
each node is represented as a sphere of size proportional to the number of edges of the node (right). The BioImage Suite Web (https://
bioimagesuiteweb.github.io) was used to create these figures. (C) The motion-networks predicted absolute and relative head motion for both HCP 
samples and for real sessions from the Brain Genomics Superstruct Project (GSP1 and GSP2; n = 711, each). Brain parcellation: Shen; Model: bilinear. 
---p < 0.05, Bonferroni corrected. Bilinear model parameters: a = 0.016; b = 0.005; c = −0.010.
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brain regions that are highly sensitive to motion. However, the poor 
prediction accuracy obtained with simulated fMRI data reflecting 
rigid-body motion contrasts with the successful validation of the 
prediction model in real data (Figure 8C), does not allow us to rule 
out the potential contributions of neurobiological origins in the 
prediction of d.

Together, our findings show that functional connectivity is a 
reproducible predictor of head motion and identify cerebellar and 
DMN subsystems that are highly sensitive to absolute and 
relative micromotion.
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TABLE 2 Degree and coordinates of the 9 major hubs of the absolute ‘motion-sensitive network’ in the stereotactic space of the Montreal Neurological 
Institute (MNI).

Node Region BA/nucleus Degree MNI coord [mm] Region

x y z

100 Cerebellum Crus II 20 32 −78 −40 CB

242 Cerebellum Crus II 15 −30 −80 −40 CB

155 Insula 47 9 −33 22 6 SN

215 Calcarine 17 5 −6 −81 12 VN

185 Inferior Temporal 21 5 −38 3 −38 DMN

148 Sup medial frontal 8 5 −11 34 51 DMN

140 Ant Cingulum 32 4 −6 48 12 DMN

141 Sup medial frontal 10 4 −12 65 4 DMN

CB, cerebellum. Networks: SN, salience; DMN, default-mode; VN, visual. Node numbers correspond to the Shen atlas.

TABLE 3 Degree and coordinates of the five major hubs of the relative “motion-sensitive network” in the stereotactic space of the Montreal 
Neurological Institute (MNI).

Node Region BA/nucleus Degree MNI coord [mm] Region

x y z

57 Inferior temporal 21 4 47 4 −40 DMN

44 Precuneus 7 4 8 −57 62 DMN

191 Middle temporal 22 3 −59 −30 4 DMN

187 Temporal pole 21 3 −50 11 −31 FPN

148 Sup medial frontal 8 3 −11 34 51 DMN

Networks: DAN, dorsal attention; DMN, default-mode; VN, visual; FPN, frontoparietal. Node numbers correspond to the Shen atlas.
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Background: Resting-state functional MRI (rs-fMRI) in rodent models have 
the potential to bridge invasive experiments and observational human studies, 
increasing our understanding of functional alterations in the brains of patients 
with depression. A major limitation in current rodent rs-fMRI studies is that there 
has been no consensus on healthy baseline resting-state networks (RSNs) that 
are reproducible in rodents. Therefore, the present study aimed to construct 
reproducible RSNs in a large dataset of healthy rats and then evaluate functional 
connectivity changes within and between these RSNs following a chronic restraint 
stress (CRS) model within the same animals.

Methods: A combined MRI dataset of 109 Sprague Dawley rats at baseline and 
after two weeks of CRS, collected during four separate experiments conducted 
by our lab in 2019 and 2020, was re-analysed. The mICA and gRAICAR toolbox 
were first applied to detect optimal and reproducible ICA components and then a 
hierarchical clustering algorithm (FSLNets) was applied to construct reproducible 
RSNs. Ridge-regularized partial correlation (FSLNets) was used to evaluate the 
changes in the direct connection between and within identified networks in the 
same animals following CRS.

Results: Four large-scale networks in anesthetised rats were identified: the DMN-
like, spatial attention-limbic, corpus striatum, and autonomic network, which are 
homologous across species. CRS decreased the anticorrelation between DMN-
like and autonomic network. CRS decreased the correlation between amygdala 
and a functional complex (nucleus accumbens and ventral pallidum) in the right 
hemisphere within the corpus striatum network. However, a high individual variability 
in the functional connectivity before and after CRS within RSNs was observed.

Conclusion: The functional connectivity changes detected in rodents following 
CRS differ from reported functional connectivity alterations in patients with 
depression. A simple interpretation of this difference is that the rodent response 
to CRS does not reflect the complexity of depression as it is experienced by 
humans. Nonetheless, the high inter-subject variability of functional connectivity 
within networks suggests that rats demonstrate different neural phenotypes, like 
humans. Therefore, future efforts in classifying neural phenotypes in rodents 
might improve the sensitivity and translational impact of models used to address 
aetiology and treatment of psychiatric conditions including depression.
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1. Introduction

Depression is a leading cause of global disability and a highly 
heterogenous disorder, characterized by affective and cognitive 
symptoms. Accumulating studies have suggested that these core 
symptoms of depression are associated with disrupted affective and 
cognitive brain networks, revealed by magnetic resonance imaging 
(MRI) and computational approaches that can map the brain 
connectome non-invasively (Fornito et  al., 2015). Resting-state 
functional MRI (rs-fMRI) is a non-invasive and powerful MRI 
modality commonly applied to investigate resting-state functional 
organization in the brain at the macroscale level (Xu et al., 2022) 
through detecting the spontaneous fluctuations of the blood oxygen 
level dependent (BOLD) signal (Ogawa et al., 1990). The resting-state 
functional organization is generally referred to as resting-state 
network (RSN), such as the default mode network (DMN), central 
executive network (CEN), and salience network (Paulus and Stein, 
2010; Williams, 2017). Several consistent functional connectivity 
changes within and between RSNs have been observed in rs-fMRI 
studies of depression in humans (Mulders et al., 2015). For instance, 
increased connectivity is presented within the anterior DMN, as well 
as between the anterior DMN and salience network. In contrast, 
decreased connectivity is shown between the posterior DMN 
and CEN.

RSNs are not unique to humans, some homologous RSNs have 
also been observed in healthy rodents using rs-fMRI (Xu et al., 2022; 
Grandjean et  al., 2023). For example, the core brain structures of 
DMN in humans, such as the cingulate, retrosplenial, and prefrontal 
cortex, are identified to form DMN-like functional organization in 
rats and mice (Lu et al., 2012; Hsu et al., 2016; Mandino et al., 2022). 
Animal models have traditionally been a useful tool in the study of 
aetiology and treatment of depression due to the ethical and practical 
limitations associated with controlling the natural development of a 
disease and dissecting the neurobiological mechanism in humans 
(Herzog et al., 2018; Pais-Roldan et al., 2021). The relevance of animal 
depression models is often controversial because no single rat model 
can perfectly replicate all aspects of clinical features of depression, 
such as depressed mood and suicidal thoughts (Harro, 2019). 
However, a perfect rat model of depression that exhibits all the clinical 
features of depression-relevant behaviors is arguably unnecessary 
because even patients usually do not manifest every aspect of 
diagnostic criteria of depression (Krishnan and Nestler, 2008). 
Therefore, it would still be beneficial to investigate and compare the 
functional connectivity between and within RSNs in health and 
subsequent depression models within the same animals.

To date, limited rs-fMRI studies in animal models of depression 
have investigated functional alterations within and between RSNs in 
response to interventions that induce stress and anxiety (Henckens 
et al., 2015; Grandjean et al., 2016; Nephew et al., 2018; Seewoo et al., 
2020; Hennessy et al., 2022). Majority of these rodent studies have 
applied chronic restraint stress (CRS), which is a popular, simple, and 

validated depression model. It has been shown to induce changes in 
behaviors, gene expression, and protein, which are similar to those in 
patients with depression (Becker et al., 2021). Each of these animal 
studies has identified different aspects of dysfunctional RSNs that are 
claimed to be comparable to humans with depression. However, there 
is no consistent findings within these rodent rs-fMRI studies. Several 
reasons may explain the discrepant results, including limited sample 
sizes, different methodologies applied to construct and analyse RSNs, 
and different protocols used to induce depression-like behaviors and 
neurological alterations.

A major limitation in current rodent rs-fMRI studies is that there 
has been no consensus on healthy baseline RSNs that are reproducible 
in rodents (Becerra et al., 2011) regardless growing efforts has been 
devoted to studying RSNs in healthy animals. Identifying reproducible 
RSNs at baseline or in healthy condition is crucial for investigating 
alterations of functional connectivity following interventions used to 
model depression in animals. To date, limited studies have attempted 
to construct reproducible RSNs in rodents and they also suffer from a 
major pitfall of limited sample sizes (Becerra et al., 2011). Moreover, 
no study has examined the effects of depression models on the 
alterations of functional connectivity following a construction of 
reproducible RSNs. Therefore, the present study first aims to construct 
reproducible RSNs in a large dataset of 109 healthy rats and then 
evaluate functional connectivity changes within and between these 
RSNs following a depression model in the same animals.

2. Materials and methods

2.1. Ethics statement

All experimental procedures adhered to the ethics guideline of the 
University of Western Australia Animal Ethics Committee 
(RA/3/100/1640) and the National Health and Medical Research 
Council’s Australian code for the care and use of animals for scientific 
purposes. All investigators had obtained the Permission to Work with 
Animals and were trained by the UWA Program in Animal Welfare, 
Ethics, and Science.

2.2. Rodent MRI data

2.2.1. Animals
The MRI data analysed in the present study was a combined 

dataset of rodent cohorts from previous experiments conducted by 
our lab in 2019 and 2020. Briefly, 109 male Sprague—Dawley rats 
(aged 6–7 weeks and weighing 150–250 g on arrival; N = 12 from 
Seewoo et al. (2020), N = 56 from Hennessy et al. (2022) and N = 41 
unpublished) were sourced from the Animal Resources Centre 
(Canning Vale, WA). All rats were housed in pairs under a standard 
12-h light–dark cycle with ad libitum food and water, in a 
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temperature-controlled and spacious laboratory room located at 
UWA’s Animal Care Unit, M block building (Nedlands, WA). All 
animals were habituated to the new environment for one week after 
their arrival and prior to experiments.

96 rats underwent CRS for 2.5 h per day for 13 consecutive days. 
These animals’ MRI scans were conducted at baseline (one or two days 
before the first CRS procedure) and post-CRS (two or three days after 
the final CRS procedure). The remaining animals (N = 13), served as 
controls: they did not undergo CRS but received MRI imaging twice 
at the same interval applied to the intervention group.

2.2.2. Chronic restraint stress protocols
CRS was performed on a bench situated in one corner of the 

laboratory room, with rats placed in a transparent plastic tube facing 
the wall to mitigate visual distractions. Each session started between 
12:30 and 13:00 pm, lasting for 2.5 h daily to reduce the influence of 
circadian rhythm. Restraint tubes with adjustable tail gates used to 
restrict the free movement of animals were adjusted to match their 
body mass and size throughout 13 days of CRS (Seewoo et al., 2020). 
During CRS sessions, rats in the control group stayed in their home 
cages. Following CRS, rats in the intervention group were returned to 
their home cages.

2.2.3. MRI anaesthetic protocol
Animals were transferred to the National Imaging Facility located 

in the Harry Perkins Institute of Medical Research (Nedlands, WA) 
for MRI scan on the assigned day. The rat was weighed and then 
pre-anaesthetised in an induction box with 4% isoflurane in medical 
air (2 L/min). Once fully anaesthetised, the animal was transferred to 
a heated imaging bed and anaesthesia was initially administered 
through a nose cone with 4% isoflurane in medical air (1 L/min). The 
animal’s vital status was monitored using a PC-SAM Small Animal 
Monitor (SA Instruments Inc., 1,030 system). Once the respiratory 
rate dropped to 55–60 breaths/min, isoflurane concentration was 
adjusted to 2% in medical air (1 L/min). After the animal was stabilized 
on 2% isoflurane for at least 2 min, medetomidine was delivered 
subcutaneously, with an initial 0.05–0.1 mg/kg bolus injection and 
continuous 0.15 mg/kg/h infusion. Meanwhile, the isoflurane 
concentration was gradually reduced to 0.5–0.75% based on the 
animal’s respiratory rate (Seewoo et al., 2020). The combined use of 
isoflurane and medetomidine can induce similar functional 
connectivity within RSNs, compared to animals in an awaken 
condition (Paasonen et al., 2018). Moreover, this anaesthetic protocol 
can maintain strong cortical–cortical and cortical–subcortical 
connectivity in animals (Grandjean et al., 2014; Bukhari et al., 2017). 
To evaluate the potential influence of time elapsed following the 
induction of medetomidine on RSNs, 14 imaging sessions were 
randomly selected, in which the time elapsed was plotted against 
network metrics (see methods 2.3.5). No correlation (data not shown; 
r < 0.001) was identified and the average time elapsed was 32 min 
(SD = 4). After the imaging session, animals were administered a 
0.15 mg/kg injection of atipamezole to antagonize medetomidine. 
Periodical monitoring for adverse events after MRI scan was 
performed in the following 24 h.

2.2.4. MRI acquisition
Rats were scanned using a 9.4 T Bruker Biospec 94/30 pre-clinical 

MRI scanner (Bruker BioSpin GmbH, Germany) with a BGA-12SHP 

imaging gradient system, a 72 mm or 86 mm volume resonator 
transmit coil (depending on hardware availability), a rat brain surface 
quadrature receive coil, and Avance III console. ParaVision 6.0.1 
software of the Bruker controlled scanning sequences and operation 
for structural MRI and rs-fMRI acquisition (Seewoo et al., 2018; Han 
et al., 2019). High-resolution T2-weighted anatomical images with 21 
coronal slices were acquired using an accelerated multi-slice 2D rapid 
acquisition with relaxation enhancement (RARE) sequence. A single-
shot gradient-echo echo planar imaging (EPI) sequence was applied 
to acquire resting-state functional images with 21 coronal slices. MRI 
scanning parameters were summarized in Table 1. Both raw images 
for each scan session were compiled in one Para Vision 6.0.1 package 
in the format of PvDatasets. A total of 218 MRI packages were 
acquired at two time points (baseline and post-CRS) and included in 
the following data processing and analysis workflow.

2.3. MRI data processing and analysis

The workflow was remotely operated on the MASSIVE’s super-
computing desktop (Goscinski et al., 2014) and mostly consisted of 
common processing steps (Moher Alsady et al., 2016; Bajic et al., 2017; 
Seewoo et al., 2021). Detailed scripts for executing the series of steps 
can be found in Supplementary material S1. Most of the processing 
and analysis steps were performed with the Functional MRI of the 
Brain (FMRIB) Software Library 6.0.3 (FSL 6.0.3; Jenkinson et al., 
2012), unless otherwise specified.

2.3.1. Common image pre-processing
The pre-processing for each data package was batch processed as 

follows: (1). Extract DICOM (Bidgood et al., 1997) of both raw images 
from PVDatasets packages; (2). Convert DICOM into NifTi using 

TABLE 1 MRI scanning protocols for structural MRI and rs-fMRI 
acquisition.

Parameters
Structural MRI 

(RARE)
rs-fMRI (EPI)

Repetition time 2.5 s 1.5 s

Echo time 33 ms 11 ms

Scan time 2 min 55 s 7 min 30 s

Matrix size 280 × 280 94 × 70

Field of view (FOV) 28 × 28 mm2 28.2 × 21 mm2

Spatial resolution 0.1 mm × 0.1 mm 0.3 mm × 0.3 mm

Slice thickness 1 mm 1 mm

Slice gap 0.05 mm 0.05 mm

Slice 21 21

Repetition 1 300

Receiver bandwidth 34722 Hz 300000 Hz

Acceleration factor 8 –

Order automatic ghost 

correction
– 1

Fat suppression Yes Yes

B0 shimming No Yes

Read orientation Left to right Left to right
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dcm2niix converter (version: 6-October-2021 for Linux system; Li 
et  al., 2016); (3). Reorient images in the radiological view (left-
anterior-superior axes); (4). Correct bias field signals for anatomical 
images using 3D Slicer (version: 4.8.1; Fedorov et al., 2012); (5). Strip 
the skull for anatomical images and create an individualized brain 
mask for the next step; (6). Extract the brain for functional images 
using the brain mask; (7). Upscale the voxel size of functional images 
by a factor of 10 (Bajic et  al., 2017). Additionally, the quality of 
reorientation and brain extraction were visually inspected using FSL/
slices. Only one anatomical and one functional package failed to 
reorient within the batch processing and were re-processed separately 
to correct their orientation.

2.3.2. Further functional image pre-processing
Upscaled functional brain images were further pre-processed on 

the FSL/MELODIC interface with registration, pre-statistic processing, 
and single-session ICA. To elaborate, upscaled functional brain 
images were first registered to their corresponding upscaled 
anatomical brain images and normalized to a Sprague–Dawley rat 
brain atlas, which was down sampled by a factor of eight from the 
Waxholm Space atlas (RRID:SCR_017124; Papp et al., 2014). The 
down-sampled atlas (voxel size: 3.125 × 3.125 × 3.125 mm3) was used 
to better match the voxel size of functional data and all subsequent 
processing was performed in this atlas space. Following registration, 
pre-statistics processing was applied with motion correction 
(Jenkinson et al., 2002), a temporal high pass filter cut-off of 100 s. No 
spatial smoothing was applied at this stage (Moher Alsady et al., 2016; 
Bajic et  al., 2017). Single-session ICA was conducted using 
Probabilistic ICA (Beckmann and Smith, 2004). Finally, outputs of 
single-session ICA in native space were further de-noised applying 
FMRIB’s ICA-based Xnoiseifier (FIX; version: 1.068; Griffanti et al., 
2014; Salimi-Khorshidi et al., 2014) with a trained network (trained-
weights file) that can distinguish noise and signals, at a threshold of 
20. The trained network was generated with FIX using 50 sets of hand-
labelled single-session ICA components, based on each component’s 
spatial maps, frequency, and time-course (Salimi-Khorshidi et al., 
2014; Seewoo et al., 2021). Global signal regression was not used to 
denoise in the present study due to its potential pitfall of introducing 
spurious anti-correlations (Murphy et al., 2009). Finally, de-noised 
functional brain images were registered to the down-sampled atlas to 
construct de-noised and registered functional images.

2.3.3. Group-level ICA
Instead of whole brain, the multi-subject temporal concatenation 

group-ICA was applied on a large region of interest (ROI) comprising 
cerebral cortex, hippocampus, amygdala, thalamus, basil ganglia, 
claustrum, and hypothalamus and colliculi. Most of these structures 
are considered components of RSNs in humans and animals, while the 
colliculi and piriform cortex are typically found in rodents as 
additional components (Jonckers et al., 2011; Seitzman et al., 2019; 
Smith et al., 2019).

2.3.3.1. Atlas mask generation for the ROI
The ROI atlas mask was generated as follows: (1). Extract high-

resolution masks for substructures of the ROI based on their label ID 
from the Waxholm Space atlas (RRID:SCR_017124; Papp et al., 2014) 
using ITK-SNAP/Convert3D (version: 1.0.0; Yushkevich et al., 2006); 
(2). Resample high-resolution masks of each substructure to the 

down-sampled atlas (see section 2.3.2) to create low-resolution masks 
and combine these low-resolution masks to form the final ROI mask 
(See Supplementary material 1 3.1 for detailed scripts, 
Supplementary material 2 for ROI and substructure masks, and 
Supplementary material 3 for the volume of each substructure).

2.3.3.2. Spatial smoothing effect on optimal group-ICA 
dimensionality

An optimal group-ICA dimensionality was estimated using the 
mICA toolbox, which estimates correlation values using random split-
half sampling or test–retest analyses for a range of dimensionalities 
(Moher Alsady et al., 2016). Briefly, all de-noised and normalized 
functional images (see section 2.3.2) acquired at baseline (N = 109) 
and the ROI atlas mask were imported to the toolbox. The rationale 
for excluding rs-MRI data acquired at post-CRS is to avoid 
CRS-related resting-state alteration in identifying ICA template and 
to increase the sensitivity of further data processing in detecting group 
differences following CRS (Seewoo et al., 2021). Random split-half 
sampling with 50 repetitions were performed at 20 different levels of 
dimensionality ranging from 10 to 200 components with an interval 
of 10. For each repetition, MELODIC group-ICA was carried out on 
both split-half groups (N = 54 samples/group) and a cross-correlation 
matrix between components’ spatial maps was calculated using 
Pearson’s correlation. Hungarian sorting algorithm (Kuhn, 2005) was 
applied to match intergroup components and maximize the summed 
correlation of all component pairs. Mean correlation and 95% 
confidence interval (CI) over 50 repetitions were calculated and used 
to estimate the optimal dimensionality. Whether group-ICA in each 
dimensionality failed to converge components was also monitored. 
This analysis was repeated for four different Gaussian kernels of full-
width half maximum (FWHM) at 6.25, 9.375, 12.5, and 15.625 mm 
(corresponding to twice, threefold, fourfold, fivefold the atlas voxel 
size; Mikl et  al., 2008; Chen and Calhoun, 2018). The optimal 
group-ICA dimensionality under four Gaussian kernels was 
determined based on the global maximum of correlation outputs 
(Moher Alsady et  al., 2016). Resultant correlation outputs of 80 
combinations (20 levels of ICA dimensionality with four Gaussian 
kernels) were presented in a curve plot. A combination with the 
maximum value, corresponding to the global maximum of correlation 
value presented in the curve plot, was considered as an optimal 
dimensionality. Group-ICA outputs of all split-half sampling groups 
(N = 100) at the resultant dimensionality and Gaussian kernel were 
ready for the following processing.

2.3.3.3. Ranking and averaging independent component 
analysis by reproducibility

Ranking and averaging independent component analysis by 
reproducibility (RAICAR) ranks and selects components based on the 
reproducibility over repeated ICA realizations, in which a cross-
realization correlation matrix is constructed to align components 
(Yang et al., 2008). Each aligned component over multiple realizations 
is averaged to generate the final spatial maps of that component. 
RAICAR is a promising tool to identify robust reproducible 
components to construct reproducible RSNs following an estimation 
of optimal decomposition dimensionality for ICA approaches. Rather 
than performing one run of group-ICA at the optimal dimensionality 
and Gaussian kernel on all baseline data, the present study applied the 
100 group-ICA maps from the previous step (see section 2.3.3.2) to 
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gRAICAR toolbox (Yang et al., 2012) in MATLAB (version: r2019b). 
As running group-ICA on the same dataset several times does not 
produce the same spatial map and there is between-subject variability 
(run-to-run variability) in ICA results, conducting a RAICAR based 
on multiple group-ICA maps would expect to generate ICA 
components that are fair representatives of RSNs and being 
reproducible across multiple runs and subjects (Becerra et al., 2011; 
Pendse et al., 2011). Therefore, although gRAICAR was originally 
performed on individual subjects’ ICA maps or functional images, this 
study implemented the toolbox to align and rank components over 
the 100 group-ICA maps. An averaged spatial map and intergroup 
variability (similarity and confidence of contribution) for each aligned 
and ranked component/node was generated. Nodes were labelled 
based on intergroup variability in an ascending manner, with node 
one having the lowest variability. The mean inter-group similarity and 
ratio of significant groups contributing to each node were reported 
with column plots. The significant of a group was set as more than 0.05 
confidence of the group load [detailed explanation see Yang et al. 
(2012)]. Additionally, results of group load index and confidence of 
group load for each component were plotted and compiled in 
Supplementary material 4.

Spatial maps of all resultant nodes were then merged using FSL/
fslmerge command and parcellated using mixture modelling approach 
based on the thresholded z-transformed results of each node 
(Woolrich et al., 2005; Moher Alsady et al., 2016). A numerical label 
is assigned to each voxel based on the node with the highest Z-value 
at that voxel. As a result, each resultant node’s spatial boundary was 
determined. All the nodes were merged to generate a group-ICA 
template for a network analysis.

2.3.4. Network modelling
The group-ICA template for the ROI was mapped onto baseline 

data (N = 109; de-noised and normalized functional images, spatially 
smoothed at resultant Gaussian kernel in section 2.3.3.2) to derive 
subject-specific time series for all nodes using FSL/dual regression 
(Nickerson et al., 2017). Images of nodes were created using FSL/slices 
summary. These time series and images of nodes were then fed into 
FSLNets (v0.6) in MATLAB (version: r2019b) to perform network 
modelling. A group average network hierarchy of these nodes was 
generated based on full correlation using Ward’s method. Clusters of 
highly correlated nodes were merged into large-scale functional 
networks. For each template network, brain structures were then 
identified and reported. Absolute volume of each structure with its 
average Z-score (representing levels of resting-state activity) were 
extracted using FSL/fslstats and percentage volume against its 
anatomical total (representing the relative size or spatial extent of 
resting-state activity) was then calculated (Supplementary material 3). 
These metrics or spatial characteristics were used to classify networks 
(Becerra et  al., 2011). Additionally, the volumes with its average 
Z-score of brain structure covered by each node within each network 
were extracted and summarized in Supplementary material 5.

2.3.5. Comparison of CRS and control groups to 
baseline

To compare the differences in network connectivity for the CRS 
group between baseline and post-CRS, as well as for the control group 
between baseline and the second scan session, statistical analysis was 
conducted in parallel. Due to the difference in the sample size (13 in 

control, 96 in CRS group), the CRS group was not compared directly 
with the control group. However, by analysing control and CRS group 
in parallel, this longitudinal (repeated measures) approach increases 
the statistical power as each animal was compared to itself, meaning 
participant/animal variables are controlled at both time points. It also 
adds biological relevance because it allows investigation of individual 
susceptibility and response, information which is relevant to future 
precision medicine approaches (see discussion). In an exploratory 
statistical analysis, the control (N = 13) and CRS (N = 96) groups were 
compared to each other directly at the second time point. But the very 
different sample size (along with uncontrolled animal variables) 
resulted in low effect sizes and thus direct comparison approach was 
not deemed suitable (data not shown).

2.3.5.1. Identification of differences between networks
For the intervention group, the classified networks were merged 

using FSL/fslmerge and then mapped onto all data acquired at baseline 
and post-CRS (N = 192; de-noised and normalized functional images, 
spatially smoothed at resultant Gaussian kernel in section 2.3.3.2) to 
derive subject-specific time series for all networks using FSL/dual 
regression (Nickerson et al., 2017). These time series were then fed 
into FSLNets (v0.6) in MATLAB (version: r2019b) to determine if 
there were differences in the direct connection between networks 
following CRS. Fisher’s r-to-Z transformation (Smith et al., 2011) and 
ridge-regularized partial correlation was applied to improve the 
mathematical robustness and achieve better estimation (Smith et al., 
2013). The edge [direct connection; definition see Menon and 
Krishnamurthy (2019)] strength between each pair of networks were 
compared at baseline and post-CRS using paired permutation t-test 
with randomize (5,000 permutations, familywise error rate corrected 
for multiple comparisons across all edges). Raw values of significant 
edges (p < 0.05) were extracted from MATLAB and imported to 
RStudio (version: 2021.09.2 + 382) to estimate the effect size using 
‘dabestr’ (Ho et al., 2019). For the control group, the same methods 
described above were applied to all data (N = 26; de-noised and 
normalized functional images, spatially smoothed at resultant 
Gaussian kernel in section 2.3.3.2). Results showing significant 
differences (p < 0.05) were reported with network images, estimation 
plots, mean ± SD, permutation p values, and Cohen’s d with 95% 
CI. Raw values of significant edges between networks can be found in 
Supplementary material 6.

2.3.5.2. Identification of differences within each network
For the intervention and control group, the same methods 

described in section 2.3.5.1 were applied to each resultant network 
template from section 2.3.4 to detect if there were differences in the 
direct connection between nodes within each network at baseline and 
post-CRS, respectively. Results showing significant differences 
(p < 0.05) within each network were reported with node images, 
estimation plots, mean ± SD, permutation p values, Cohen’s d with 
95% CI for the intervention group, and Hedges’ g with 95% CI for the 
control group. Raw values of significant edges within each network 
can be found in Supplementary material 6.

2.3.5.3. Inter-subject variability of edge strength in the 
intervention group

Raw values (edge value of individual animals) of abovementioned 
significant edges between and within networks were grouped into 
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three categories at baseline and post-CRS: positive (above 0.2), none 
(between −0.2 and 0.2), negative (below −0.2) partial correlation 
(Hevey, 2018). Changes in the edge strength following CRS were 
classified into 11 categories, including positive to more positive, 
positive to less positive, positive to none, positive to negative, negative 
to more negative, negative to less negative, negative to none, negative 
to positive, none to none, none to positive, none to negative. The 
distribution of edge changes of individual animals falling within these 
categories were used to indicate if there was high individual variability 
in terms of these edges showing significance at group level identified 
in sections 2.3.5.1 and 2.3.5.2. A summary of animal counts of edges 
showing positive, negative, and no partial correlation for each 
significant edge at both time points, and changes in the edge strength 
following CRS can be found in Supplementary material 6.

3. Results

3.1. Spatial smoothing effect on optimal 
group-ICA dimensionality

There was no failure of convergence in the group-ICA across all 
dimensionality levels under four different Gaussian kernels. As shown 
in Figure 1, an increase in the spatial smoothing resulted in an increase 
in the correlation of group-ICA spatial maps at each dimensionality 
ranging from 20 to 200. But there were similarly strong correlations 
(ranging from 0.70 to 0.77) at a dimensionality of 10 regardless of 
spatial smoothing. Under Gaussian kernels of FWHM 6.25 and 
9.375 mm, the correlation value plummeted at first and increased 
gradually from the dimensionality of 50. In contrast, correlation 
values stabilised above 0.7, demonstrating strong or very strong 
associations across all dimensionality levels under Gaussian kernels of 
FWHM 12.5 and 15.625 mm. The correlation value (mean: 0.84, 95% 
CI: 0.03) at the dimensionality of 50 and Gaussian kernels of FWHM 
15.625 mm was highest amongst all and considered the optimal 
dimensionality for further analysis.

3.2. RAICAR

The resultant 50 components (optimal dimensionality) were 
aligned and ranked over 100 group-ICA spatial outputs with 
gRAICAR. Node 1 had the highest similarity and node 50 had the 
lowest similarity (Figure 2A). The gRAICAR also revealed that 47 
nodes presented very strong inter-group consistency with a ratio of 
significant groups over 0.95 (Figure 2B). The last three components 
also had a ratio around 0.75 demonstrating strong inter-group 
consistency. Among these 50 reproducible components, seven were 
bilateral nodes, including node 4, 19, 23, 31, 37, 39, and 50 
(substructures comprising these nodes see Supplementary material 5).

3.3. Networks

Network modelling based on hierarchical clustering detected four 
common patterns of functional connectivity in the rat brain. The data-
driven approach merged the 50 nodes into four major clusters 
(Figure 3). Major structures covered by each network template are 
visualized in Figure 4 and volumes of structures with their average 
Z-score are summarized in Supplementary material 3. These networks 
are described below and listed in the left-to-right order of the 
hierarchical tree, including DMN-like network, spatial attention-
limbic network, corpus striatum network, and autonomic network. 
Spatial symmetry was observed in some homologous brain regions 
within these networks.

3.3.1. Network 1 – DMN-like network (14 nodes)
The network was predominantly cortical. Most of the DMN 

components (cingulate, anterior retrosplenial, prelimbic, orbital, 
infralimbic, and frontal association cortex) demonstrated bilateral 
symmetry in the resting-state activity. The spatial extent of resting-state 
activity in the cornu ammonis/CA, parietal association and visual cortex 
was larger in the left hemisphere, whereas the resting-state activity of 
temporal association, auditory, and perirhinal cortex was completely 
absent in the right hemisphere. Moreover, the resting-state activity of 
sensorimotor structures were mostly symmetrical in the network.

3.3.2. Network 2 – spatial attention-limbic 
network (14 nodes)

The homologous brain regions presenting symmetrical resting-state 
activity were identified as follows: inferior colliculi, superior colliculi, 
posterior retrosplenial cortex, dorsal hippocampus, and thalamus. The 
spatial extent of resting-state activity of the visual, auditory, temporal 
association, postrhinal, and medial entorhinal cortex was larger in the 
right than left hemisphere, whilst parietal association, perirhinal, and 
primary somatosensory (trunk representation) cortex only had unilateral 
resting-state activity in the right hemisphere.

3.3.3. Network 3 – corpus striatum network (15 
nodes)

Brain substructures demonstrating bilateral symmetry in the 
resting-state activity included corpus striatum (nucleus accumbens, 
globus pallidus, ventral pallidum, and caudate putamen), claustrum, 
insular, orbital, motor, secondary somatosensory cortex. The spatial 
extent of resting-state activity of the endopiriform nucleus, perirhinal, 
piriform cortex was larger in the right than left hemisphere, whereas 

FIGURE 1

Spatial smoothing effects on determining the optimal group-ICA 
dimensionality. The dimensionality-reproducibility curves under four 
different Gaussian kernels showed that an increase in the spatial 
smoothing resulted in an overall increase in the correlation of group-
ICA spatial maps. The number of components used in the further 
group-ICA decomposition was derived from the curves, where 50 
independent components (ICs; arrow) was the global maximum. The 
Curves were plotted with mean ± 95% CI.
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the resting-state activity of amygdala, CA, lateral entorhinal cortex 
was totally absent in the left hemisphere.

3.3.4. Network 4 – autonomic network (7 nodes)
The network was predominantly subcortical. Bilateral symmetry 

in the resting-state activity was observed in the following subcortical 

structures: hypothalamus, ventral hippocampus, and substantia nigra. 
The spatial extent of resting-state activity of amygdala and adjacent 
cortical regions (lateral and medial entorhinal cortex) was larger in the 
left than right hemisphere, but the endopiriform nucleus and piriform 
cortex only demonstrated unilateral resting-state activity in the 
left hemisphere.

FIGURE 2

Column charts showing intergroup variability at the dimensionality of 50 following RAICAR over 100 group-ICA spatial maps. (A) Displaying the 
mean similarity of aligned 50 components. A higher value indicates the aligned component is more consistently found in different groups. 
(B) Displaying the proportion of groups contributed to the given aligned component. The first 47 components have a ratio of more than 0.95 (95/100 
groups), indicating very strong intergroup consistency.

FIGURE 3

Hierarchical network of 50 components. Each node is denoted by one column. The coloured matrix demonstrates the full correlation (below and 
above the diagonal) of the time series between pairs of components. Darker red indicates a higher positive correlation, light green indicates no 
correlation, and darker blue represents higher negative correlation. The hierarchical analysis defined four major clusters (black box). Based on the 
spatial characteristics of each cluster, they were categorized into DMN-like network (14 nodes), spatial attention-limbic network (14 nodes), corpus 
striatum network (15 nodes), and autonomic network (7 nodes).
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3.4. Changes in the functional connectivity 
between networks following CRS

As shown in Figure  5A, the edge/direct connection strength 
between the DMN-like network (network 1) and corpus striatum 

network (network 3) showed a decrease, but with weak effect size 
following CRS (baseline: 4.34 ± 3.02; post-CRS: 3.45 ± 2.56; p value: 
0.044; Cohen’s d: −0.32; 95% CI: −0.54 ~ −0.07). In contrast, the 
connection strength between the DMN-like network (network 1) and 
autonomic network (network 4) increased significantly with a medium 

FIGURE 4

Resting state networks in anaesthetised rats. All the networks presented a marked bilateral organisation. These spatial maps were overlayed on the 
down-sampled atlas and labelled based on the Waxholm Space atlas (RRID: SCR_017124; Papp et al., 2014). Numbers denote: 1: Retrosplenial cortex; 
2: Cg1; 3: Cg2; 4: Prelimbic cortex; 5: Secondary motor cortex; 6: Frontal association cortex; 7: Medial orbital cortex; 8: Infralimbic cortex; 9: Primary 
motor cortex; 10: Primary somatosensory area hindlimb representation; 11: Primary somatosensory area forelimb representation; 12: Primary 
somatosensory area dysgranular zone; 13: Primary somatosensory area barrel field; 14: Primary somatosensory area trunk representation; 15: Parietal 
association cortex; 16: Secondary auditory cortex; 17: Secondary visual cortex; 18: Inferior colliculus; 19: Superior colliculus; 20: Thalamus; 21: Dentate 
gyrus; 22: CA1; 23: CA3; 24: Primary visual cortex; 25: Primary auditory cortex; 26: Temporal association cortex; 27: Subiculum; 28: Presubiculum; 29: 
Caudate Putamen; 30: Amygdala; 31: Endopiriform nucleus; 32: Claustrum; 33: Piriform cortex; 34: Agranular insular cortex; 35: Dysgranular insular 
cortex; 36: Granular insular cortex; 37: Primary somatosensory area face representation; 38: Frontal association area 3; 39: Secondary somatosensory 
area; 40: Nucleus accumbens; 41: Lateral orbital cortex; 42: Dorsolateral orbital cortex; 43: Medial entorhinal cortex; 44: Hypothalamus; 45: Perirhinal 
cortex; 46: Lateral entorhinal cortex. A: Anterior; R: Right; S: Superior.
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effect size following CRS (Figure 5B; baseline: −2.15 ± 1.84; post-CRS: 
−1.12 ± 2.06; p value: 0.0006; Cohen’s d: 0.53; 95% CI: 0.26 ~ 0.78). In 
other words, the anticorrelation between DMN-like network and 
autonomic network decreased significantly following CRS.

3.5. Changes in the functional connectivity 
within each network following CRS

Within the DMN-like network (network 1), a pair of nodes 
(Figure  6A) showed a significant decrease in the edge/direct 
connection strength with medium effect size following CRS (baseline: 
−0.62 ± 0.91; post-CRS: −1.08 ± 0.93; p value: 0.040; Cohen’s d: −0.49; 
95% CI: −0.79 ~ −0.20). Node 37 mainly consisted of bilateral cingulate 
cortex (posterior part) and node 46 mainly comprised frontal 
association, orbital, and secondary motor cortex in the left hemisphere. 
Moreover, the edge strength between node 4 and 6 (Figure  6B) 
increased significantly with medium effect size following CRS 
(baseline: −0.22 ± 0.88; post-CRS: 0.25 ± 1.07; p value: 0.029; Cohen’s 

d: 0.48; 95% CI: 0.21 ~ 0.76). Node 4 was a bilateral functional complex 
comprising infralimbic, prelimbic, and orbital cortex. Node 6 was a 
unilateral functional complex in the left hemisphere, mainly including 
auditory, temporal association, and perirhinal cortex.

Within the spatial attention-limbic network (network 2), another 
pair of nodes (Figure 7) demonstrated a significant decrease in edge 
strength with medium effect size following CRS (baseline: 0.11 ± 0.99; 
post-CRS: −0.52 ± 1.02; p value: 0.0028; Cohen’s d: -0.62; 95% CI: 
−0.92 ~ −0.31). Node 11 was a functional complex in the left 
hemisphere, mainly including postrhinal, visual, auditory, temporal 
association, and medial entorhinal cortex. Node 42 consisted of 
thalamus with adjacent dentate gyrus and CA3 in the right hemisphere.

Similarly, within the corpus striatum network (network 3), 
another pair of nodes (Figure 8) presented a significant decrease in the 
direct connection strength with medium effect size following CRS 
(baseline: 1.11 ± 0.97; post-CRS: 0.50 ± 0.99; p value: 0.0028; Cohen’s 
d: −0.62; 95% CI: −0.93 ~ −0.32). Node 21 mainly consisted of right 
amygdala with adjacent piriform cortex. Node 26 mostly comprised 
nucleus accumbens and ventral pallidum, with their adjacent piriform 

FIGURE 5

Significant edge difference following CRS between networks. (A) The connection strength between the DMN-like network (network 1) and corpus 
striatum network (network 3) displayed on the left showed a decrease following CRS. On the right, Gardner-Altman estimation plot showing a weak 
effect size (Cohen’s d: −0.32) in the edge strength between these two networks (* denotes p < 0.05). The raw data is plotted on the left axis as a 
slopegraph, with paired Cohen’s d plotted as a bootstrap sampling distribution on the right axis. Each paired set of observations is connected by a line. 
(B) The anticorrelation between the DMN-like network (network 1) and autonomic network (network 4) decreased significantly following CRS. The 
images of networks are displayed on the left. On the right, Gardner-Altman estimation plot showing a weak effect size (Cohen’s d: 0.53) in the edge 
strength between these two networks (*** denotes p < 0.001). The coloured bar joining each pair of networks indicates the overall group-average 
connection strength. Longer suggests a stronger connection, red indicates positive, and blue means negative or anticorrelated. R: Right.
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cortex in the right hemisphere. In other words, the correlation 
between amygdala and a functional complex (nucleus accumbens and 
ventral pallidum) in the right hemisphere decreased significantly 
following CRS.

For the control group (N = 13), no changes were detected between 
baseline and the second scan session (equivalent period to the 
post-CRS timepoint in the CRS group), except that a pair of nodes 
(node 5 and 26) presented a significant increase in the direct 
connection strength at the second scan session (baseline: −0.93 ± 0.78; 
second scan: 0.15 ± 0.61; p value: 0.0444) with strong effect size 
(Hedges’ g: 1.5; 95% CI: 0.575 ~ 2.14; data not shown). Node 5 mainly 
consisted of right insular cortex with adjacent perirhinal and 
secondary somatosensory cortex.

3.6. High individual variability in the edge 
strength within networks before and after 
CRS

There was a high inter-subject variability in the changes of edge 
strength within the DMN-like network (network 1) and spatial 
attention-limbic network (network 2). As shown in 
Supplementary Material 6, for node 4 and 6, the distribution of 
changes in the edge strength spanned across all the 11 categories, with 
26% (25/96) of the animals demonstrating a change from negative to 

positive correlation, followed by 11% (11/96) animals changing from 
negative to less negative correlation. A similar lack of clear direction 
for the changes in the edge strength was also observed in the pair of 
nodes 37 and 46, as well as nodes 11 and 42. In contrast, for nodes 21 
and 26 within the corpus striatum network (network 3), the majority 
of changes following CRS demonstrated a decrease from positive 
correlation, in 64% (61/96) of animals. Additionally, a diversity of edge 
strength was identified in the pair of nodes 4 and 6 at baseline, with 
50% (48/96) of animals presenting negative partial correlation and 
32% (31/96) showing positive. A similar diversity was also observed 
in this pair of nodes at post-CRS, as well as other pairs of 
abovementioned nodes within the DMN-like and spatial attention-
limbic network at both time points.

4. Discussion

The main aims of the present study were to use a large dataset to 
first identify reproducible RSNs in healthy Sprague Dawley rats and 
then evaluate CRS effects on the functional connectivity in these RSNs 
within the same animals. The key findings revealed four large-scale 
networks in the anesthetised rats, including a DMN-like network, a 
spatial attention-limbic network, a corpus striatum network, and an 
autonomic network. At a group level, CRS decreased the 
anticorrelation between the DMN-like network and the autonomic 

FIGURE 6

Significant edge difference following CRS within network 1 (DMN-like network). (A) Images of the pair of nodes are displayed on the left. Node 37 
mainly consisted of bilateral cingulate cortex (posterior part) and node 46 mainly comprised frontal association, orbital, and secondary motor cortex in 
the left hemisphere. On the right, Gardner-Altman estimation plot showing a significant decrease with medium effect size in the edge strength 
between node 37 and 46 at post-CRS (* denotes p < 0.05). The group-averaged strength was −0.62 and − 1.08 at baseline and post-CRS, respectively. 
However, there was a high inter-subject variability in the strength changes following CRS. (B) Images of another pair of nodes are displayed on the left. 
Node 4 was a bilateral functional complex comprising infralimbic, prelimbic, and orbital cortex. Node 6 was a unilateral functional complex in the left 
hemisphere, mainly including auditory, temporal association, and perirhinal cortex. On the right, Gardner-Altman estimation plot showing a significant 
decrease with medium effect size in the edge strength between node 4 and 6 at post-CRS (* denotes p < 0.05). The group-averaged strength was −0.22 
and 0.25 at baseline and post-CRS, respectively. However, there was a high inter-subject variability in the strength changes following CRS. The 
coloured bar joining each pair of nodes indicates the overall group-average connection strength. Longer suggests a stronger connection, red indicates 
positive, and blue means negative or anti-correlated. A: Anterior; R: Right; S: Superior.
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network. In addition, CRS decreased the correlation between the 
amygdala and a functional complex (nucleus accumbens and ventral 
pallidum) in the right hemisphere within the corpus striatum network. 
However, high individual variability in the functional connectivity 
before and after CRS within RSNs were observed.

4.1. Spatial smoothing and RAICAR

The overall increase in the correlation of group-ICA spatial maps 
along with the increase in the spatial smoothing observed in the 
present study, is supported by the literature (Fornito et  al., 2013; 
Triana et al., 2020) demonstrating that increasing the magnitude of 
smoothness can reduce the dissimilarity between voxel time courses. 
The primary goal of spatial smoothing is to supress spatial noise and 
improve signal-to-noise ratio. Recent investigations also show that 
spatial smoothing enhances the functional connection strength at 
both individual and group level, with a stronger influence at the 
individual level (Alakorkko et al., 2017; Chen and Calhoun, 2018). 
Interestingly, the similarly strong correlation (0.77 > r > 0.70) at a 
dimensionality of 10 under four Gaussian kernels may indicate that 
the cross-correlation analysis by mICA toolbox (Moher Alsady et al., 

2016) cannot differentiate the influence of spatial smoothing at a low 
ICA decomposition dimensionality. This can be  explained by the 
possibility that ICA components at a lower dimensionality (e.g., 10) 
may be more similar between matched pairs among multiple runs of 
group-ICA than that components at a higher dimensionality (e.g., 
over 20) regardless of spatial smoothing.

The present study employs the mICA toolbox (Moher Alsady 
et al., 2016) to estimate an optimal ICA dimensionality as group-ICA 
approaches are generally unable to determine the number of 
components, which is usually achieved empirically. Performing 
group-ICA with a suboptimal dimensionality can lead to under-fitting 
or over-fitting of the rs-fMRI data and in turn significantly influence 
the interpretation of results. Therefore, determining an objective and 
optimal dimensionality before performing ICA is beneficial. The 
optimal group-ICA decomposition dimensionality (50 components 
under Gaussian kernels of FWHM 15.625 mm) chosen for further 
analysis is simply based on the global maximum recommended by 
Moher Alsady et al. (2016). However, it would be beneficial to conduct 
a systematic comparison to evaluate the differences between Gaussian 
kernels of FWHM 12.5 and 15.625 mm as there were strong 
correlations (> 0.70) of group-ICA spatial maps across different levels 
of dimensionality over multiple runs of ICA.

FIGURE 7

Significant edge difference following CRS within network 2 (spatial attention-limbic network). Images of a pair of nodes are displayed on the left. 
Node 11 was a functional complex in the left hemisphere, mainly including postrhinal, visual, auditory, temporal association, and medial entorhinal 
cortex. Node 42 consisted of thalamus with adjacent dentate gyrus and CA3 in the right hemisphere. On the right, Gardner-Altman estimation plot 
showing a significant decrease with medium effect size in the edge strength between node 11 and 42 at post-CRS (** denotes p < 0.01). The group-
averaged strength was 0.11 and − 0.52 at baseline and post-CRS, respectively. However, there was a high inter-subject variability in the strength changes 
following CRS. The coloured bar joining each pair of networks indicates the overall group-average connection strength. Longer suggests a stronger 
connection, red indicates positive, and blue means negative or anti-correlated. A: Anterior; R: Right; S: Superior.
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The results from the RAICAR analysis are supported by Pendse et al. 
(2011) stating that reliable ICA components will be present in almost all 
ICA runs and in turn will generate tight clusters well distinguishable from 
the rest. Applying multiple group-ICA runs to groups of subjects with 
enough diversity is expected to account for the run-to-run variability in 
ICA approaches both because of the non-convex objective function and 
inter-subject variability. However, more studies are warranted to ensure 
reproducible results as only one human study (Pendse et al., 2011) and 
another rodent study in awake rats (Becerra et al., 2011) have investigated 
the reproducible RSNs using multiple ICA runs on groups of randomly 
sampled subjects from a dataset.

4.2. Networks

The four large-scale networks classified in the present study show 
good similarity to the networks observed in healthy humans and 
rodents in the literature (Becerra et al., 2011; Smith et al., 2013; Zerbi 
et al., 2015; Bajic et al., 2017; Coletta et al., 2020; Xu et al., 2022).

4.2.1. Network 1 – DMN-like network
The core DMN structures (cingulate, retrosplenial, prelimbic, 

orbital, and infralimbic cortex) identified here based on the 
hierarchical analysis are consistent with previously published rodent 
studies using seed-based approaches or group ICA analysis with a low 
dimensionality from 10 to 30 (Lu et al., 2012; Stafford et al., 2014; 
Liska et al., 2015; Sierakowiak et al., 2015; Zerbi et al., 2015; Huang 

et al., 2016; Grandjean et al., 2020; Whitesell et al., 2021). Hippocampal 
region (CA) has been suggested as a part of the DMN in some studies 
(Lu et al., 2012; Zerbi et al., 2015; Huang et al., 2016), but not others 
(Stafford et al., 2014; Sierakowiak et al., 2015; Grandjean et al., 2020). 
Although somatosensory structures were shown relatively 
independent from the DMN in a rodent cohort based on a hierarchical 
analysis in Zerbi et al. (2015), but not in the present and other rodent 
studies (Liska et al., 2015; Huang et al., 2016; Whitesell et al., 2021). 
These inconsistencies may reflect the methodological differences in 
detecting the DMN. DMN is implicated in cognitive functions, 
including rumination, self-referential processing at rest, and retrieval 
of episodic memory in humans (Williams, 2017). DMN has shown the 
highest activation when individuals are at rest, and it is deactivated 
when performing goal-directed tasks.

4.2.2. Network 2 – spatial attention-limbic 
network

The components of this network are similar to what has been 
observed in awake rodents from other studies (Zhang et al., 2010; 
Becerra et al., 2011). The colliculi have been well-known to be involved 
in spatial attention and retrosplenial cortex is considered playing a key 
function in several cognitive functions, including spatial memory. The 
asymmetrical resting-state activity of the visual, auditory, and medial 
entorhinal cortex is consistent with the right-hemispheric 
lateralization for spatial attention in humans (Agcaoglu et al., 2015; 
O’Regan and Serrien, 2018).

4.2.3. Network 3 – corpus striatum network
The network is one of the basal ganglia networks observed in 

previous rodent and human studies (Becerra et al., 2011; Smith et al., 
2013; Zerbi et  al., 2015). The striatum, insula, orbital cortex, and 
amygdala forming the cortico–amygdala–striatal circuit mediate 
emotion processing through collectively processing information in 
terms of salient stimuli and attentional states in both rodents and 
primates (Cho et al., 2013; Heilbronner et al., 2016). The asymmetrical 
resting-state activity of amygdala, CA, and lateral entorhinal cortex in 
the network agrees with the literature demonstrating a rightwards 
lateralization of affective processing in humans and primates (Decety 
and Moriguchi, 2007).

4.2.4. Network 4 – autonomic network
The networks are commonly observed in awake and anesthetized 

rodents as an ICA component (Hutchison et al., 2010; Liang et al., 
2011). The key component of autonomic network – the hypothalamus 
plays an important role in numerous homeostatic behaviors. The 
involvement of the hippocampus in the network is considered to 
be associated with defensive/stress behaviors (Becerra et al., 2011).

4.3. Functional connectivity alterations 
following CRS

The decreased anticorrelation between the whole DMN-like 
network and subcortical autonomic network in the present study has 
not previously been reported. Although the mechanism underlying the 
anticorrelation between the DMN-like and autonomic network is 
unknown, a meta-analysis study has suggested that these two networks 
are both associated with autonomic regulation in humans (Beissner 

FIGURE 8

Significant edge difference following CRS within network 3 (corpus 
striatum network). Images of a pair of nodes are displayed on the 
left. Node 21 mainly consisted of right amygdala with adjacent 
piriform cortex. Node 26 mostly comprised nucleus accumbens and 
ventral pallidum, with their adjacent piriform cortex in the right 
hemisphere. On the right, Gardner-Altman estimation plot showing a 
significant decrease with medium effect size in the edge strength 
between node 21 and 26 at post-CRS (** denotes p < 0.01). The 
coloured bar joining each pair of networks indicates the overall 
group-average connection strength. Longer suggests a stronger 
connection, red indicates positive, and blue means negative or anti-
correlated. A: Anterior.
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et al., 2013). Moreover, studies have reported that the activation of some 
core structures of the DMN has a downstream inhibitory effect on the 
activity of hypothalamus and amygdala regarding stress response and 
negative emotions of anxiety (Etkin et al., 2011; Herman et al., 2016). 
Disinhibition in the top-down cortical–subcortical circuits may result 
in excessive stress responses and over-processing of negative emotions, 
which are associated with anxiety-related disorders (Fridman et al., 
2021). The decreased anticorrelation following CRS in the present study 
can be  explained by the top-down disinhibition theory, meaning 
chronic stress may induce disinhibition from DMN to subcortical 
autonomic network that regulates stress and anxiety.

This is also the first time that a decreased correlation between the 
amygdala and a functional complex (nucleus accumbens and ventral 
pallidum) in the right hemisphere within the corpus striatum network 
is reported in an animal model. These structures are parts of the 
reward system, the nucleus accumbens receives glutamatergic inputs 
from the basolateral amygdala and project GABAergic signals to the 
ventral pallidum (Hirter et  al., 2021). The nucleus accumbens is 
considered to play a role in one of the core symptoms of depression 
– anhedonia (Heshmati and Russo, 2015; Liu et  al., 2021). For 
example, the nucleus accumbens has a lower resting-state functional 
connectivity with some cortical regions in patients with depression. 
However, the neuroimaging study (Liu et al., 2021) did not analyse the 
connectivity between amygdala, nucleus accumbens and ventral 
pallidum. Future studies in investigating the correspondence of 
functional connectivity between these three subcortical structures in 
rodent models and patients with depression are necessary.

In contrast with the present results, some human neuroimaging 
studies have reported that depression is commonly associated with 
hyperconnectivity within the DMN, as well as aberrant cross-network 
interaction among DMN, central executive and salience networks 
(Hamilton et al., 2013; Brakowski et al., 2017). A simple interpretation 
of the divergent functional connectivity between rodents and humans 
is that the rodent response to CRS does not reflect the complexity of 
depression as it is experienced by humans. The limitations of animal 
models of depression and anxiety-like behavior are beyond the scope 
of the present article and have been extensively discussed elsewhere 
(Becker et al., 2021). However, even in humans, findings regarding the 
direction of functional connectivity alteration within and between 
human brain networks are still inconclusive because depression is 
highly heterogenous with various neurobiological substrates (Drysdale 
et al., 2017). The present study also reveals that there is high inter-
subject variability of functional connectivity at baseline and post-CRS 
in rats as well, suggesting that it may be possible to classify rodent 
neural phenotypes to refine the connectivity analysis. Future studies 
should investigate rodent phenotypes using not only brain 
connectivity but also behavioural measures, potentially providing 
opportunity to model tailored approaches to prevention and treatment 
of neuropsychiatric conditions including depression.

4.4. Limitations and future direction

Additional limitations are worth mentioning. First, only male late 
adolescent/young adult Sprague–Dawley rats were used in the analysis 
due to data availability. This means that the brains of these animals 
were still developing during the CRS intervention and may have 
confounded interpretation of the network changes (Hennessy et al., 

2022). However, this age range is relevant to studying mood disorders 
in young people. It is expected that the present approach of using large 
datasets will lead to a better understanding of how the developing 
brain is impacted by environmental stressors, and how this may lead 
to long-term changes in mood regulation. Future studies including 
female rats, aged rats, other inbred and outbred strains will 
be necessary to assess the generalizability of present results.

Moreover, the level of anaesthesia is a key consideration in MRI 
studies and the present study applied combined use of isoflurane and 
medetomidine at doses, which have been found to provide stable 
anaesthesia with the least impact on brain activity (Grandjean et al., 
2014; Bukhari et al., 2017; Paasonen et al., 2018; Grandjean et al., 
2023). At the time the experiments in this study were carried out, a 
standard time for the change of anaesthesia before rs-fMRI scanning 
was not established. Rather, individual animals’ breathing rate was 
employed as an indicator because individual animals have been found 
to vary in their response to isoflurane and medetomidine (Seewoo 
et al., 2020). Recently, a standard 45-min period in mice has been 
recommended after switching from isoflurane alone to the combined 
regimen of isoflurane and medetomidine (ISO/MED; Pradier et al., 
2021). However, considering the experimental design, it is not clear 
whether differences in brain activity between isoflurane alone (at 1%) 
and three combined regimes (ISO-0.6%/MED-25 min, ISO-0.2%/
MED-45 min, ISO-0.2%/MED-100 min) resulted from the reduction 
in the isoflurane concentration or waiting period following the 
induction of medetomidine. While additional study on time-
dependency of anaesthetic on brain activity is needed, the consistent 
timing (32 min ± 4) of the combined anaesthetic protocol employed in 
the present study allows confident interpretation of results.

In terms of analysis, the parcellation approach to define the spatial 
boundary of functional nodes may be too simple and can be improved 
with more sophisticated approaches (e.g., advanced clustering 
methods) to address the uncertainty resulting from regions where 
multiple nodes overlap and Z-scores are low. Finally, only hierarchical 
clustering analysis was applied to classify the networks. Future efforts 
in systematically comparing the differences on the RSN classification 
with other algorithms, such as the fuzzy-c-means clustering algorithm 
(Lee et  al., 2012) and deep learning algorithms like Siamese ICA 
(Chou et al., 2022), are necessary.

5. Conclusion

The present study is the first to construct reproducible RSNs in 
anaesthetized rats through identifying optimal and reproducible 
functional components, and in turn evaluate functional connectivity 
changes in the RSNs following a CRS model within the same animals. 
The key findings revealed four large-scale networks that are 
homologous across species, decreased anticorrelation between 
DMN-like and autonomic network, decreased correlation between 
amygdala and a functional complex (nucleus accumbens and ventral 
pallidum) in the right hemisphere within the corpus striatum network. 
Moreover, high inter-subject variability of functional connectivity is 
observed within networks, indicating rats may demonstrate different 
neural phenotypes as humans. Therefore, future efforts in classifying 
neural phenotypes in rodents might improve the sensitivity and 
translational impact of models used to address aetiology and treatment 
of psychiatric conditions including depression.
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Dynamic oxygen-17 (17O) magnetic resonance imaging (MRI) is an imaging 
method that enables a direct and non-invasive assessment of cerebral oxygen 
metabolism and thus potentially the distinction between viable and non-viable 
tissue employing a three-phase inhalation experiment. The purpose of this 
investigation was the first application of dynamic 17O MRI at 7 Tesla (T) in a 
patient with stroke. In this proof-of-concept experiment, dynamic 17O MRI was 
applied during 17O inhalation in a patient with early subacute stroke. The analysis 
of the relative 17O water (H2

17O) signal for the affected stroke region compared 
to the healthy contralateral side revealed no significant difference. However, the 
technical feasibility of 17O MRI has been demonstrated paving the way for future 
investigations in neurovascular diseases.

KEYWORDS

oxygen-17 MRI, stroke, metabolic imaging, ultra-high field, 7 Tesla, oxygen metabolism

1. Introduction

According to the World Health Organization, stroke is a common cause of disability and 
currently the second leading cause of death world-wide (The top 10 causes of death, 2020). This 
disease is not only deadly, but is a common cause of disability as it often entails permanent 
neurological deficits with enormous impact on the patient’s quality of life (Hong, 2011). Despite 
the improvement of patient outcome with mechanical recanalization, patients still benefit from 
the therapy to a variable degree. Neuroimaging before, but also after recanalization may support 
outcome prediction by, e.g., distinguishing viable tissue from unviable tissue.

Oxygen extraction fraction magnetic resonance imaging (MRI) is a promising 
technique for identification of at-risk tissue in stroke (Fan et al., 2020). However, this 
imaging technique only provides indirect information on tissue oxygenation, unlike 
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oxygen-15 (15O) positron emission tomography (PET). Even 
though 15O PET is considered the gold standard for oxygen 
imaging, having detected ischemic penumbra in vivo for the first 
time (Zaro-Weber et al., 2019), clinical routine imaging with this 
method is challenging due to its complexity and long measurement 
duration as well as the use of the radioactive 15O isotope with very 
short half-life (~ 123 s) (Fox and Raichle, 1986; Delapaz and 
Gupte, 2011).

Oxygen-17 (17O) imaging makes use of the MR properties of 
the non-radioactive oxygen isotope 17O, which can be  applied 
during the MR experiment either by administration of 17O-labeled 
water or by inhalation of 17O gas (17O2). The first in vivo 17O 
experiments were performed three decades ago with indirect 
(Hopkins and Barr, 1987) and direct (Arai et al., 1990, 1991; Pekar 
et al., 1991) detection of physiological properties. The indirect 17O 
MR approaches are based on the detection of changes in T2- or 
T1ρ -weighted proton NMR signals caused by 17O-1H scalar 
coupling and chemical exchange (Zhu et  al., 2005), while the 
direct 17O MR approach measures 17O water (H2

17O) itself. In 
preclinical studies, 17O MRI has been used to study various species 
including mouse, rat, cat and swine at field strengths between 3 
Tesla (T) and 16.4 T (Zhu and Chen, 2017). A 17O MRI approach 
for studying the cerebral oxygen metabolism was developed for 
rats about two decades ago (Zhu et al., 2002). Since then, several 
pathologies have been studied in mice using 17O MRI, such as 
amyloidosis (Baligand et al., 2021) and Huntington’s disease (Lou 
et al., 2016). The safe and feasible application of indirect (Harada 
et al., 2022) and direct 17O MRI (Fiat et al., 1993, 2004), and 17O 
MR spectroscopy (Zhu et  al., 2005) to humans has been 
demonstrated. The metabolic model presented by Atkinson and 
Thulborn (2010) paved the way for the three-phase 17O2 inhalation 
experiments used in dynamic 17O MRI. This methodical setup 
measures the metabolized H2

17O that accumulates during cellular 
respiration, while the 17O2 gas does not contribute to the 
measured signal.

Hence, dynamic 17O MRI enables the direct and non-invasive 
assessment of cerebral oxygen metabolism (Atkinson and Thulborn, 
2010), and could thus directly measure oxygen consumption of 
hypoperfused ischemic tissue. In clinical research, dynamic 17O MRI 
has primarily been used for brain tumor imaging, confirming the 
Warburg theorem of lower oxygen metabolism in cancer (Hoffmann 
et al., 2014; Paech et al., 2020). Dynamic 17O MRI is a tool that can 
reflect the aerobic oxygen metabolism, hence the potential for clinical 
stroke imaging has been hypothesized on several occasions. As early 
as 2011, the application of dynamic 17O MRI to cerebral ischemia in 
humans has been proposed by Delapaz and Gupte (2011). Two years 
later a preclinical study by Zhu et  al. (2013) demonstrated the 
successful application of 17O MRI for stroke imaging in a mouse 
model and suggested the possibility of extending the method to stroke 
patients. In 2020, Rapalino highlighted the prospect of this modality 
for investigating cerebral ischemia (Rapalino, 2020). Although 17O 
MRI has been postulated to be a promising research tool for stroke 
imaging, cerebral ischemia has not yet been studied in humans with 
this method.

The scope of this study was to evaluate the feasibility of dynamic 
17O MRI for application in stroke. In this proof-of-concept study, 
we  included one patient with early subacute stroke caused by 
vasculitis, employing dynamic 17O MRI at 7 T.

2. Patient and methods

2.1. Patient

One patient (male, age 55) was included for this proof-of-concept 
study. The patient had a known history of vasculitis and had been 
diagnosed with acute stroke in the left middle cerebral artery territory, 
affecting the basal ganglia and a small region of the parietal-occipital 
cortex, see Figure 1. Computer tomography and standard clinical MR 
images at 3 T for anatomical and diffusion imaging had been 
performed immediately upon admission to the University Hospital 
Heidelberg, Germany. The dynamic 17O MRI at 7 T was performed in 
the early subacute state, 5 days later. At the time of the oxygen imaging 
the patient was not experiencing any severe neurological deficits 
(National Institutes of Health Stroke Scale (NIHSS): 1). Prior to the 
examination, written informed consent was obtained in accordance 
with the institutional guidelines and the study was approved by the 
ethics committee of the Medical Faculty Heidelberg, Germany 
(S-154/2014).

2.2. Materials and methods

2.2.1. MRI protocol and dynamic 17O experiment
The clinical magnetic resonance (MR) data were acquired at 3 T  

employing a whole-body system (Prisma; Siemens Healthcare, 
Erlangen, Germany) and included the standard protocol for stroke 
imaging at the local department for neuroradiology, including 
T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), T2 
turbo spin echo (TSE), susceptibility-weighted imaging (SWI), time-
of-flight (TOF), diffusion-weighted imaging (DWI), and T1-weighted 
magnetization prepared rapid gradient echo (MPRAGE) pre and post 
contrast administration.

The oxygen data were obtained on a 7 T whole-body MR system 
(Magnetom 7 T; Siemens Healthcare, Erlangen, Germany) using a 
home-built 17O birdcage head coil with an additional proton (1H) 
channel (Hoffmann et al., 2014; Niesporek et al., 2018). At 7 T, the total 
duration of the patient measurement amounted to approximately 
40 min, including 30 min (shortened patient protocol) (Paech et al., 
2020) of dynamic 17O imaging (TE/TR = 0.56 ms/20 ms, flip angle: 60°, 
tpulse = 1 ms, readout duration = 5.5 ms, nominal resolution: (7.5 mm)3, 
number of projections: 90000) applying a density-adapted radial pulse 
sequence (Nagel et al., 2009) and 10 min acquisition of a gradient echo 
(GRE) image (TE/TR = 3.25 ms/7.5 ms, flip angle: 10°, matrix size: 
256x256x176, nominal resolution: (1 mm)3) for registration. To 
estimate the effective resolution of the oxygen images, the point spread 
function (PSF) was simulated considering the readout trajectory, T1 
and T2* relaxation [T1 = 5 ms, WM: T2* = 2.8 ms, GM: T2* = 2.5 ms, 
CSF: T2* = 5 ms (Niesporek et al., 2018)] and the reconstruction filter 
(Hamming). T2* bias for the different tissues was estimated by 
calculating the signal at the echo time TE = 0.56 ms: e

TE
T

−
∗

2

.
The 17O imaging for the healthy volunteers was 40 min (number 

of projections: 120000, see Supplementary material). A sliding window 
reconstruction was applied to the 17O data sets (per image: 3000 
projections, acquisitions time: 1 min; patient: 30 images, volunteers: 
40 images).

The 17O measurement is a dynamic experiment with three 
inhalation phases: during the first phase, the patient breathes regular 
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room air through an MR-compatible breathing mask (baseline phase, 
5 min). Subsequently, the inhalation system is switched to a reservoir 
containing approximately 4 L of 70% 17O2-enriched oxygen gas, 
starting the second phase (inhalation phase, approximately 6 min). 
Then, a second switch back to room air initiates the last phase, which 
lasts until 30 min of continuous MR data are acquired. The details 
concerning the experimental set up have been described in previous 
studies (Niesporek et al., 2018; Paech et al., 2020).

2.2.2. Image registration and segmentation
For the 7 T data, the GRE images were registered to the 17O images 

automatically using the FLIRT algorithm of FSL (FMRIB Software 
Library) (Jenkinson and Smith, 2001; Jenkinson et al., 2002). The 
co-registration of the clinical 3 T images to the 7 T GRE images was 
conducted by manual pre-registration followed by an automatic 
registration, again using the FLIRT algorithm. Masks for cerebral gray 
matter (GM), cerebral white matter (WM) and cerebral spinal fluid 
(CSF) were obtained by applying the FAST segmentation tool for an 
automatic segmentation to the MPRAGE data set (Zhang et al., 2001). 
Further regions-of-interest (ROIs) included the stroke area (striatal 
and cortical stroke together), the mirrored control area and the 
ventricles, which were segmented manually in the Medical Imaging 
Interaction Toolkit (MITK) (Wolf et al., 2005; Nolden et al., 2013) 
according to the B1000 diffusion images, see Figure  1F. These 
segmentations were performed by two readers in consensus, reader 1 
(L.E.) with 2 years and reader 2 (D.P.) with 10 years of experience in 
neuroimaging and were applied for further investigations. To check 

for inter-reading variability, a second reading has been performed by 
reader 1, blinded to the original segmentation (see 
Supplementary material).

2.2.3. Data analysis
A binary mask based partial volume correction (PVC) was 

performed on the oxygen data set, as proposed by Niesporek et al. 
(2015, 2018), which applies the geometric transfer matrix (GTM) PVC 
method. This algorithm takes into account anatomical information 
using the tissue masks for GM, WM, and CSF and for the stroke area 
as well as the simulated tissue-specific PSF. This approach provides a 
region-specific PV-corrected signal value within each mask and for 
each time point.

Additionally, the relative H2
17O signal evolution was investigated 

without PVC within different ROIs: ventricles, stroke area, mirrored 
control and the remaining healthy brain tissue (whole brain minus 
ROIs of stroke area, mirrored control and ventricles). Since the stroke 
area lies in proximity to the ventricles, the influence of partial volume 
effects on the stroke area was minimized for this analysis without PVC 
by dilating the ventricle ROI twice using the segmentation utilities 
tool in MITK and subtracting the overlap from the stroke and 
mirrored control ROIs, resulting in a smaller stroke ROI.

To obtain the relative curves, all data points were normalized to 
the mean of the baseline (5 min). The relative H2

17O signal evolutions 
of the patient were compared to those of three healthy volunteers (all 
male, ages 28, 37 and 65), each measured twice with 17O MRI at 7 T in 
the past (Niesporek et al., 2018). The data analysis and the testing 

FIGURE 1

Clinical data of the patient depicting the stroke region, (A) contrast-enhanced T1-weighted magnetization prepared rapid gradient echo (MPRAGE) 
data, (B) T2-weighted fluid-attenuated inversion recovery (T2 FLAIR), (C) apparent diffusion coefficient (ADC) map calculated from diffusion-weighted 
imaging (DWI), (D) time-of-flight angiography (TOF), (E) B1000 DWI, and (F) B1000 DWI overlaid with the different regions of interest (ROI) used for 
data analysis in oxygen-17 (17O) MR data: the red contour outlines the stroke region, and cerebral spinal fluid (CSF) is delineated in blue. The yellow 
contour shows the mirrored stroke ROI, comprising healthy brain tissue. The white arrows indicate the location of the stroke.
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procedure for the healthy volunteers can be  found in the 
Supplementary material. For all measurements, five data points 
around the second switch from 17O2 inhalation back to room air, thus 
the point of longest 17O2 inhalation, were averaged and compared. 
Additionally, the standard deviation was calculated for the first five 
data points of the baseline.

Furthermore, the relative 17O signal increase is obtained by 
subtracting a baseline image during breathing of room air from a 17O 
image at the end of 17O2 inhalation (maximum signal); then dividing 
the result by the baseline image (Paech et al., 2020). Data of the two 
images were acquired in 3 min each. For smoothing of these relative 
17O images and for obtaining a refined image resolution, a Hamming 
filter was applied, as well as eightfold zero-filling.

3. Results

3.1. Effective resolution of oxygen images 
and T2* influences

The simulated full width half maximum (FWHM) of the PSF is 
approximately 2.3 voxels, which results in an effective resolution of the 
oxygen images of circa ((17–17.5)mm)3 for WM and GM. For CSF, the 
FWHM is approximately 2.2 voxels and the effective resolution 
(16 mm)3. Due to the T2* decay the signal at TE for the different tissues 
was estimated to be: CSF: 100%, WM: 92%, GM: 89%.

3.2. Data analysis

The relative PV-corrected time evolution in the stroke ROI is 
depicted in Supplementary Figure S2 in the Supplementary material 
in comparison to the time evaluation without PVC. The PV-corrected 
data shows a high noise level. Relative H2

17O signal evolutions without 
PVC for healthy brain tissue, CSF, stroke ROI and mirrored control 
are depicted in Figure 2. The evaluation of the relative H2

17O signal 
evolution revealed no significant difference between the stroke area 
and the mirrored control area.

The relative signal after the inhalation phase was analyzed by 
averaging five data points (5 min) around the time of the second 
switch. Here, the healthy brain tissue, encompassing the complete 
brain tissue minus the ventricles, stroke and mirrored control ROI, 
showed a relative mean signal (5 data points around the second 
switching time, evenly spaced 60 s apart, corresponding to 5 min in 
total) of 1.181 (Figure  2A). The evaluation for CSF resulted in a 
relative mean H2

17O signal of 1.135 (Figure 2B). Due to the smaller 
ROI size, the stroke and the mirrored control region, Figures 2C,D 
show larger signal fluctuations compared to the relative curves of 
healthy brain tissue and CSF (Figures 2A,B). The evaluation of the 
relative H2

17O signal in the stroke ROI yielded a relative mean signal 
(5 data points around the second switching time) of 1.158, while the 
mirrored control exhibited a relative mean H2

17O signal of 1.168.
For better comparability, the relative oxygen signal evolution for 

stroke (Figure 2D), and its mirrored control (Figure 2C), were overlaid 
in Figure 2E. Averaging five data points around the time of the second 
switch, the signal increase in the stroke area is about 0.9% less than in 
the mirrored control. The analysis of six data sets obtained from three 
healthy volunteers showed differences between −1.9 and + 0.3% 

between the left ROI (equivalent to stroke) and right ROI (equivalent 
to mirrored control). Furthermore, the standard deviation in the 
baseline (relative to the mean) in the healthy subjects is 2.2% (left) and 
2.3% (right), respectively. The detailed analysis is shown in 
Supplementary Tables S1, S2 and Supplementary Figure S3 in the 
Supplementary material.

In the relative 17O images, the lateral ventricles containing CSF 
show a low 17O signal increase, indicating a region with low 
metabolic activity. The stroke area exhibits a similarly low 17O 
signal increase, indicated by a white arrow in Figure 3. However, 
also the mirrored control area shows a low 17O signal increase. The 
outer cortex regions show a rather homogenous relative signal 
distribution. The cerebellum exhibits a high 17O signal increase, 
indicating high metabolic activity.

4. Discussion

4.1. Data interpretation

In this proof-of-concept study, dynamic 17O MRI was applied for 
the first time during 17O inhalation in a patient with early 
subacute stroke.

Firstly, the PV-corrected relative H2
17O signal evolution of the 

stroke area, corresponding to a very small ROI, showed high signal 
fluctuations. The noise level impeded the reliable interpretation of 
changes in the oxygen signal evolution, as they cannot be confidently 
attributed to regionally altered metabolic activity. Further 
investigations with PVC might be possible in patients with larger 
stroke areas. However, the patient’s condition will likely be worse and 
might not allow for dynamic 17O MRI.

Secondly, the evaluation of the relative H2
17O signal evolution in 

the patient revealed no significant difference between the stroke area 
and the mirrored control area. The deviation between stroke and 
mirrored control in the patient was in the same order of magnitude as 
in the healthy volunteers, and in the same order of magnitude as the 
calculated standard deviation in the volunteer data sets during the 
baseline (breathing room air).

The relative 17O images showed visual differences between the 
cortex regions, the cerebellum and the CSF, as shown in the literature. 
The CSF exhibited a low 17O signal, since it does not contain cells, but 
instead drains the metabolized H2

17O water from the surrounding 
brain tissue (Paech et al., 2020). The relative images showed lower 
signal increase in the stroke area but also in the mirrored control 
areas, suggesting a lower metabolic activity within this region, yet this 
might be due to spillover effects from the adjacent ventricles. This spill 
over is a result of the FWHM of the PSF of circa 2.2–2.3 voxels. 
Additionally, if signal contributions from CSF and brain tissues are 
measured in the same voxel, the quantification can be slightly biased 
towards the CSF value due to its longer T2* of 5 ms (GM/WM: 89/92% 
of CSF signal).

The influence of the segmentation variability of the stroke area on 
these results has been considered. However, the high dice coefficient 
of 86.3% for the two readings performed for the stroke ROI, together 
with the relatively low resolution of the oxygen images of [(17–
17.5)  mm]3, lead to the conclusion that slight changes of the 
segmentations on the high-resolution proton images do not markedly 
affect the evaluation of the 17O data.
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These findings demonstrated the general feasibility of employing 
dynamic 17O MRI in a patient with stroke, but did not show a 
significant quantitative difference between the stroke region and the 
mirrored control in this particular patient.

This motivates future investigations in patients with larger 
strokes that are not located in vicinity to the ventricles. A 15O PET 
study in patients with acute stroke showed that the investigation 
of a stroke in the basal ganglia near the CSF afforded less 
prominent results in comparison to larger strokes located in the 
cortex (Zaro-Weber et al., 2019). Thus, dynamic 17O MRI remains 
a promising imaging technique for detection of changes in oxygen 
metabolism that are possibly associated with neuronal impairment 
or death.

The direct comparison to other metabolic imaging techniques, 
first and foremost 15O PET, would be especially interesting as well as 
the investigation of acute stroke with dynamic 17O MRI. In clinical 

routine MRI is more feasible than PET and less complex for stroke 
imaging (Zaro-Weber et al., 2019). However, the overestimation of 
both penumbra and ischemic core poses a problem when using 
mismatch imaging (Delapaz and Gupte, 2011), so that further 
development of novel imaging methods remains crucial for the 
improvement of stroke diagnostics.

In this study, we were able to conduct the first 7 T dynamic 17O 
experiment in a study participant with early subacute stroke. The 
results of this study did not show a significant difference between 
the stroke region and the mirrored healthy contralateral side, 
motivating the investigation of patients with a larger stroke area, 
preferably with location in the cortex. Technical advances 
including even higher magnetic field strengths and improvement 
of hardware equipment could boost the resolution of dynamic 17O 
MRI and might pave the way for clinical application in stroke in 
the future (Platt et al., 2021).

FIGURE 2

Relative 17O water (H2
17O) signal evolution in various tissue types, (A) healthy brain tissue, (B) CSF, (C) the mirrored control, (D) the stroke region, and 

(E) direct comparison of the relative H2
17O signal in the stroke ROI (blue) and the mirrored contralateral healthy ROI (orange). Blue dashed lines indicate 

the switching times from room air to 17O-enriched gas and back to room air.

FIGURE 3
17O MRI at 7 Tesla in a patient with stroke, (A) B1000 DWI of the patient only and (B) overlaid with relative 17O images, showing the stroke region in an 
axial view, (C) sagittal view, and (D) coronal view. The white arrows indicate the location of the stroke.
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4.2. Limitations

This study demonstrated the feasibility of employing 17O MRI in a 
patient with early subacute stroke. For better assessment, further 
examinations in patients with stroke would be beneficial. The investigated 
cerebral ischemia in the basal ganglia was relatively small and in 
proximity to the lateral ventricles. Since the CSF itself does not exhibit 
metabolic activity, this is an area of low metabolic turnover. Due to 
partial volume effects, the adjacent CSF might bias the metabolic signal 
within the stroke ROI. However, prior extraction of the CSF region with 
a security margin and the use of a mirrored control region on the 
contralateral side reduced this bias. The measurement of a larger cerebral 
infarction would probably yield more distinct results, but these patients 
would be rather instable for this complex examination. Furthermore, the 
measurement at 7 T was conducted in the early subacute stroke time 
frame. The investigation of (hyper-)acute stroke within less than 48 h 
after symptom onset might provide more information concerning the 
viability of the hypo- or hyperperfused tissue, but would be even more 
challenging in the clinical setting. However, continuous monitoring of 
the patient in the stroke unit is recommended for the first 48 h, which 
impedes research studies in this time frame.

As for the comparison of the clinical data to the three data sets of 
healthy participants, the demographics are quite similar which allows 
for fair comparability between the data sets. All investigated subjects 
are male and the patient’s age (55 years) lies between the age of 
volunteer 1 (age 65) and 2 (age 37).
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