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Optimized interaction of the brain with environment requires the four-dimensional representa-
tion of space-time in the neuronal circuits.  Information processing is an important part of this 
interaction, which is critically dependent on time-dimension. Information processing has played 
an important role in the evolution of mammals, and has reached a level of critical importance 
in the lives of primates, particularly the humans.
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The entanglement of time-dimension with information processing in the brain is not clearly 
understood at present. Time-dimension in physical world – the environment of an organism – 
can be represented by the interval of a pendulum swing (the cover page depicts temporal unit 
with the help of a swinging pendulum). Temporal units in neural processes are represented by 
regular activities of pacemaker neurons, tonic regular activities of proprioceptors and periodic 
fluctuations in the excitability of neurons underlying brain oscillations. Moreover, temporal 
units may be representationally associated with time-bins containing bits of information (see 
the Editorial), which may be studied to understand the entanglement of time-dimension with 
neural information processing. 

The optimized interaction of the brain with environment requires the calibration of neural 
temporal units. Neural temporal units are calibrated as a result of feedback processes occurring 
during the interaction of an organism with environment.

Understanding the role of time-dimension in the brain information processing requires a 
multidisciplinary approach, which would include psychophysics, single cell studies and brain 
recordings.  Although this Special Issue has helped us move forward on some fronts, including 
theoretical understanding of calibration of time-information in neural circuits, and the role of 
brain oscillations in timing functions and integration of asynchronous sensory information, 
further advancements are needed by developing correct computational tools to resolve the 
relationship between dynamic, hierarchical neural oscillatory structures that form during the 
brain’s interaction with environment.  

Citation: Gupta, D. S., Merchant, H., eds. (2017). Understanding the Role of Time-Dimension in 
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Editorial on the Research Topic

Understanding the Role of the Time Dimension in the Brain Information Processing

An accurate representation of time-dimension in the neuronal circuits is required for a successful
interaction of the brain with the four-dimensional physical world. Time-dimension, unlike other
three dimensions of our physical universe, is never perceived as a novelty, but only reported as the
flow of time. As there are no known neurological or psychiatric disorders that are associated with
the loss of the sense of flow of time, this suggests that the functions of the brain involve processing
of temporal information (Merchant et al., 2013). Moreover, psychological flow of time is likely the
result of the perception of the physical nature of the time-dimension.

The information about a stimulus coded by neural circuits can be understood in terms of
Shannon information, which is the arrangement of spikes (an absence or presence) in time-
bins of specific size along the time-dimension (Gupta and Chen, 2016a,b). Thus, Shannon
information inherently incoporates time-bin as the time-dimension in information processing.
Encoded stimulus characteristic, can be decoded or utilized in brain circuits by processing this
information, referred as the temporal processing of information. Thus, it is implicit that the
information processing, underlying various cognitive functions of the brain, is coupled with the
invariant time-dimension.

Several novel findings are reported in this Special Issue, which bring us closer to understanding
the role of the time-dimension in the brain information processing. These include the
representation of the physical time in neural circuits, temporal processing of information, the role
of prior information in the internal representation of rhythmic time, and neural oscillations in
timing behavior and perception.

BRAIN OSCILLATIONS IN TIMING BEHAVIOR AND PERCEPTION

Brain oscillations are a key element on information processing and play a crucial role in the
communication between and within different cortical and subcortical areas (Buzsáki, 2006). Neural
oscillations have been linked to different high cognitive functions of which timing and time
perception constitute one of the most studied (Treisman, 1963; Matell and Meck, 2004; Gupta,
2014; Kononowicz and van Rijn, 2014; Merchant et al., 2015a).

Kononowicz and van Wassenhove in this issue, review different oscillatory models that explain
how the brain may subserve interval timing in millisecond range, but they focus mainly on the
Striatal Beat Frequency (SBF) model and the new evidence that supports it. In contrast to other
models, the SBF is more biologically plausible and implies the existence of cortical oscillators of

5
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various frequencies. At the onset of a timed interval, cortical
oscillators are phase-reset and, at the offset of the interval, the
state of these cortical oscillators is read by the medium spiny
neurons of the striatum. Due to the fact that spiny neurons
are coincidence detectors of the cortical input, the output of
these striatal neurons could in principle tell time. Now, the
authors suggest that the cortical input on the spiny neurons
could be any stable neural pattern including neural avalanches
(Crowe et al., 2014; Merchant et al., 2015b) or population state
activity (Merchant et al., 2014; Mello et al., 2015). The authors
also emphasize the notion that oscillation modulation for the
SBF should be phase-reset at the beginning of a time interval,
and that the frequency of the oscillation should be modulated
by dopaminergic agents. None of these properties have been
properly tested yet. In addition, this opinion letter underlines
the fact that recent studies have shown that beta not only alpha
oscillations are deeply involved in prediction of events during
rhythmic tasks. Last, this paper suggests that the coherence
between cortical and striatal signals is a fundamental element for
generating a realistic model that includes both structures.

The paper by Chang et al. investigates the changes in beta
oscillations induced by unpredicted changes in pitch, during
an oddball EEG experiment where human subjects passively
listened to isochronous auditory sequences with occasional
unpredicted deviant pitches. These researchers tested the notion
that if the induced beta power only reflects predictive timing,
the occasional unpredicted pitch changes should not affect the
ongoing beta entrainment behavior, given that the pitch deviants
are presented at the predicted rhythmic time points. In contrast,
their experimental results indicate that induced (non-phase
locked) beta power was modulated by the unpredicted deviant
pitches, suggesting that beta power is associated with predictive
perceptual processing for the stimuli what (the pitch) and when
(the tempo of the isochronous beat). The authors interpret these
findings as the evidence that predictions for what and when
are dynamically processed through attentional networks, and
that beta oscillations in auditory cortex reflect the functional
significance of sensory prediction and prediction error processes.

Kumar et al. report findings from a study of the McGurk
effect, in which semantically-incongruent visual information
modulates auditory perception. Authors employed incongruent
audio-visual (AV) pair (audio/pa/ superimposed on the video of
the face articulating /ka/) to induce the cross-modal percept/ta/.
They find that for asynchronous AV (audio-visual) stimuli,
a broadband enhancement, in the global coherence at theta,
alpha, beta, and gamma bands, aids the cross-modal perception
(percept/ta/). Long-range oscillations (alpha and beta bands)
aid in the multidimensional processing of information of
asynchronous AV stimuli by providing temporal window of
integration, which is a specific phase of long-range oscillations
(Gupta and Chen, 2016a). Asynchronous AV stimuli can be
integrated in the same phase—temporal window of integration –
of a long-range oscillation, which is possible due to the difference
in the delays prior to their arrival at respective processing circuits
(Gupta and Chen, 2016a). This difference in delays helps to
eliminate the difference in the time of the initial presentation
of asynchronous AV stimuli. In contrast to asynchronous AV

stimuli, the processing of synchronous AV stimuli is temporally
coupled to same coordinates on the time-axis, and therefore,
it does not require the coupling to the same phase of a long-
range oscillation to achieve simultaneous processing. Consistent
with this argument, Kumar et al. observed desynchronization
at alpha and beta- bands for AV stimuli. However, long-range
oscillations may interfere with the integration of synchronous
AV stimuli. This study highlights the important differences in the
multisensory integration of synchronous and asynchronous AV
stimuli.

The next paper by Chen and Huang studied alpha and
beta modulations in a temporal version of n-back working
memory task. Their findings reveal that while posterior alpha
band reflects inhibition of task-irrelevant information, temporal
region-distributed beta band activity is important for the active
maintenance of temporal duration in the working memory.

Finally, Emmons et al. investigated the LFP oscillatory changes
in the medial prefrontal cortex and the striatum during an
interval timing task, where rats produced a 3 or 12 s interval. The
results showed significant changes in delta and/or theta bands in
the two areas during the following epochs of the task: after the cue
that signaled the beginning of the time interval, throughout the
interval, prior to the response that define the end of the interval,
and after reward delivery. These findings support the notion
that oscillatory activity between both areas of the motor cortico-
basal-ganglia-thalamo-cortical circuit (Merchant et al., 2015a) is
engaged in the temporal control of action in rodents.

MISMATCH NEGATIVITY (MMN):

REPRESENTS MECHANISMS FOR

EXTRACTING PHYSICAL TIME

INFORMATION

MMN is an event-related potential (ERP) wave, which reflects
neuronal processes underlying the brain’s automatic reaction to
novel or deviant as well as unattended sensory stimuli (Näätanen
et al., 2007). In a work submitted to this Research Topic, Wang
et al. extracted and correlated several different parameters—
temporal parameters (onset, offset, and peak latency) and
wave shape parameters (amplitude, average amplitude, upslope,
downslope)—characterizing the MMN waves produced by
deviant sound. Their results revealed only one important
correlation: a positive correlation between the MMN amplitude
and the slope of decaying phase, also called downslope (Wang
et al.). The authors argue that this represents an efficient feedback
process, which allows MMN to return to the baseline within a
predefined time-window. This also suggests a coupling between
the neuronal processes associated with deviant stimuli and
a representation of the physical time-axis in the brain. This
coupling may subserve the mechanism to input the physical
time information into brain circuits, which would calibrate
endogenous oscillators in a distributed modular clock model
(Gupta, 2014).

In another study Schirmer et al., using MMN paradigm,
deviant stimulus was created by subjecting one surprised and
one neutrally spoken “Ah” to a speech manipulation procedure
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creating a 378 ms (short) and a 600 ms (long) exemplar.
In both emotional conditions, short or long exemplars were
used as standard or deviant stimuli. When short exemplar
served as the standard, long exemplar was used as the deviant
stimulus, and the vice versa. Authors observed a MMN-like
negativity—climbing negativity that plateaued. Greater negativity
for deviants than standards emerged shortly after the deviant
onset, before the standard or deviant duration had lapsed.
This suggested that listeners implicitly tracked sound speed and
detected speed changes (Schirmer et al.). Continuous detection
of the changes in the speed of unattended sounds would play a
role in the calibration of endogenous oscillators in modular clock
mechanisms (Gupta, 2014), including those that play a role in
speech production.

SIMULTANEITY JUDGMENT OF

TEMPORAL EVENTS

The paper by Yarrow et al. tested different paradigms to optimally
determine the relative judgment of two or more simultaneous
events. Specifically, they argue that the dual presentation
simultaneity judgment (2 x SJ) task is the most desirable. In
this tasks subjects are asked to discriminate which of two pairs
of stimuli presented consecutively was the most synchronous.
They develop an appropriate signal detection theory model to
analyze the 2xSJ data, and finally, they compare the data from the
novel task with more conventional simultaneity tasks. Compared
to classical tasks such as the temporal order judgment task, the
2 x SJ provides more constrained estimates of sensory noise,
which indicates a more straightforward decision process. In
fact, the 2 x SJ requires explicitly to decide which alternative
timing relationship is most synchronous on any given trial,
rather than revealing what range of relationships are perceived
as synchronous. Consequently, 2 x SJ will serve as a crucial
complement to existing methods for investigating subjective
timing.

MONKEYS AND HUMANS SHARE THE

ABILITY TO INTERNALLY MAINTAIN A

TEMPORAL RHYTHM

García-Garibay et al. demonstrate the ability of the rhesus
monkeys and humans to perceive and maintain rhythms of
different pace in the absence of sensory cues or motor actions.
They use a visuospatial task in which subjects observe and
then internally track a visual stimulus that periodically changed
its location along a circular path. The proportion of trials in
which subjects correctly estimated the position of the stimulus,
along with other variables were determined in this study. Both
species showed variability, consistent with Weber Law, where
time independent variability increased as a function of timed
duration (Zarco et al., 2009). In a different version of this task
tested in humans, which reveals patterns of timing errors, shows
that subjects tend to lag in fast rhythms and to get ahead in
slow ones. The authors argue that a mean tempo might be
incorporated as prior information, helping to reduce the effect of

noise in time estimation and production tasks (García-Garibay
et al.).

ABNORMAL TEMPORAL PROCESSING OF

INFORMATION: IN SCHIZOPHRENIA AND

PSILOCYBIN-INDUCED STATES

A meta-analysis of functional MRI studies in schizophrenia,
comparing brain structures, activated or inactivated by time
perception task and increasing levels of cognitive difficulty,
revealed bilateral overlapping of cortical and subcortical regions,
particularly frontal areas (mainly right BA 6), as well as parietal
regions and the basal ganglia (Alústiza et al.). The overlapping
regions, which are primarily in the right hemisphere, showed
reduced rather than increased activity in schizophrenic patients
relative to control subjects, not only by time perception tasks
but also by an increase in the level of difficulty of non-
temporal tasks (Alústiza et al.). Reduced activity of various
brain structures is consistent with the prevailing view that
there is an impaired functional connectivity of brain regions
in schizophrenia (Hutchison et al., 2013). Thus, dysconnectivity
affects common networks in schizophrenia, which are engaged by
both the increasing task difficulty and time perception tasks.

In a commentary, Shebloski and Broadway discuss a paper
by Wittmann et al. (2007). The study by Wittmann et al.
(2007) showed a decreased ability to accurately produce intervals
longer than 3 s and synchronize finger-tapping to auditory beats
separated by more than 2 s under the influence of psilocybin
(Wittmann et al., 2007). The effects on timing performance
were accompanied by working-memory deficits and subjective
changes in conscious state. Shebloski and Broadway also noted
that schizophrenia, which is associated with similar changes in
subjective state, such as hallucinations, is also associated with
timing deficits in sub- and supra-second range. They further
point out that slowing of perceived time induced by psilocybin
and schizophrenia may share certain commonmechanisms, such
as 5-HT2A receptor activities. Thus, Shebloski and Broadway
propose that commonalities across pharmacological treatments
and psychiatric disorders should be explored within a common
experimental paradigm.

It should be also noted that in contrast to the effects
of psilocybin administration, which are pharmacological, the
pathophysiology underlying schizophrenia involves defects at
many levels, such as circuit, molecular and morphological levels.
Therefore, to interpret the results of experiments in terms of
underlying pathophysiology will involve many challenges.

STUDY OF MODULAR INTERACTIONS

BETWEEN BRAIN REGIONS USING

ARTIFICIAL SYSTEMS

Maniadakis and Trahanias test a model of artificial cognitive
system, which has the ability to sense when events have occurred
and how long they have lasted. Authors employ a set of neural
networks in their model, to synthesize modules, similar to the
modular parts of the human brain. Inspired by the striatal
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beat frequency model of interval timing (Matell and Meck,
2004; Meck et al., 2008), authors incorporated a module in
their artificial system, which transforms oscillatory inputs into a
composite time flow representation.

Authors used a coevolutionary scheme (Maniadakis and
Trahanias, 2008) to train the model, and improve the
collaboration between component neural networks, forming
modules. The coevolutionary procedure, after 500 generations,
produced a modular system that memorizes the duration and
time of occurrence of events. Such methods can be a useful
computational tool for the study of modular interactions in brain
networks.

Various papers in this special issue describe that modulations
of beta-range oscillations play an important role in the
timing behavior. Beta power increased as working memory
load increased in a temporal version of n-back working
memory task (Chen and Huang), which suggests that beta
oscillations play an important role in the functioning of

brain networks serving the levels of cognitive effort and time
perception that is likely affected in schizophrenia (Alustiza et al.)
Future studies should look more closely at the role of the
representation of the time-dimension in the temporal processing
of information in the brain, which may be affected in psychiatric
illnesses.
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INTERVAL TIMING, PACEMAKER(S), AND NEURAL
OSCILLATIONS

Neural oscillations are ubiquitous in the mammalian brain and they are typically classified
according to their specific frequency responses (Buzsáki, 2006). Neural oscillations are
hypothesized to organize communication within and between brain networks (e.g., Fries, 2015).
Neural oscillations have increasingly been associated with various cognitive functions such as
attention (Klimesch, 2012), working memory (Gulbinaite et al., 2014a; Haegens et al., 2014), and
cognitive control (Cavanagh et al., 2009; Gulbinaite et al., 2014b) but also temporal expectation
(Praamstra et al., 2006; Cravo et al., 2011; Rohenkohl andNobre, 2011) and timing (Treisman, 1963;
vanWassenhove, 2009; Kösem et al., 2014; Kononowicz and van Rijn, 2014). One quest in cognitive
neuroscience is to explain how neural oscillations can subserve complex cognitive processes. Here,
we mainly focus on the role of spontaneous rhythms in interval timing (also see van Wassenhove,
in press); however, some hypotheses are supported by the literature on rhythmic entrainment.

One of the possible cognitive abilities neural oscillations may support is interval timing
(Treisman et al., 1994), which is the ability to perceive, store, encode, and reproduce temporal
intervals ranging from few 100 milliseconds to minutes. Over decades, experimental psychologists
have proposed the existence of a cognitive mechanism akin to an internal clock. In search for the
neural bases of the internal clock(s), it may be tempting to draw an analogy between ticking clocks
and oscillating neuronal networks, as one of the reference papers in neurosciences states, “Clocks
tick, bridges, and skyscrapers vibrate, neuronal networks oscillate” (Buzsáki and Draguhn, 2004,
pp. 1926). Indeed, some interval timing theories have followed through this idea: Treisman (1963)
suggested, that the internal clock could consist of a pacemaker which at the beginning of the to-
be-timed interval would start sending pulses, that are then stored in the accumulator. The pulse
count could serve as a subjective estimate of time. Furthermore, to implement this model into
biologically plausible mechanisms, Treisman proposed that the pulse rate of the pacemaker would
be driven by neural oscillations in the alpha range (8–12Hz, see Figure 1A): faster alpha rhythms
would thus result in longer estimates of time than slower alpha rhythms considering, that more
pulses would accumulate during the same physical time interval (Treisman et al., 1994). As no
simple relationships have been found between the rate of visual flicker, neural oscillations, and the
subjective perception of duration when using oscillatory entrainment (Herbst et al., 2013, 2014;
although see Johnston et al., 2006), it remains plausible that spontaneous fluctuations of alpha
peaks could modulate perceived duration. For example, Haegens et al. (2014) have shown, that
alpha peak frequency changed as a function of cognitive load in a N-back working memory (WM)
task such that the larger the WM load, the higher the alpha peak frequency. These results indicate
that subjectively longer durations could be associated with larger alpha peak if WM is implicated in
the estimation of duration (Gu et al., 2015; van Wassenhove, in press).

Despite mechanistic attempts to link oscillatory processes with internal clock models, direct
implementations of internal clock models still lack solid neural foundations whereas, more
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FIGURE 1 | Illustration of the main interval timing theories of interval

timing that rely on the notion of neural oscillations. Panel (A) illustrates

the idea that faster alpha rhythms results in longer estimates of time as more

pulses could be accumulated in a given physical time interval (Treisman, 1963).

Panel (B) illustrates the SBF model. The gray sinusoids depict oscillators in an

example trial. The amplitude of each oscillator is represented by the size of

gray circle at t1 and t2 times, respectively. Panel (C) illustrates the main brain

regions engaged in interval timing (PFC, SMA, PPC) and their presumed

projections to the striatum as suggested by the SBF model.

biologically grounded frameworks have been more plausible
(Buhusi and Meck, 2005).

THE (STRIATAL) BEAT FREQUENCY
MODEL

The most prominent neurobiologically plausible model of
interval timing is the Striatal Beat Frequency (SBF) model (Matell
and Meck, 2000, 2004; Buhusi and Meck, 2005) developed
on the basis of the beat frequency model (Miall, 1989). One
major assumption of SBF (Figure 1B) is the existence of cortical
oscillators of various frequency responses most likely located in
the Pre-Frontal Cortex (PFC) which is part of the mesocortical
pathway. However, other cortical regions cannot be excluded
[e.g., Supplementary Motor Area (SMA), Posterior Parietal
Cortex (PPC), or sensory cortices, Figure 1C]. At the onset of
an interval to be timed, the model posits, that cortical oscillators
are phase-reset and, at the offset of the interval, the state of these
cortical oscillators is read out by medium spiny neurons located
in the striatum. Hence, the SBF model considers, that the phase
of cortical oscillators gives rise to a unique activation pattern over
time (Buhusi and Meck, 2005; Oprisan and Buhusi, 2011, 2014)
and, that spiny neurons are coincidence detectors reading out the

state of these cortical oscillators. Note that in SBF, the pattern
of activation is identical whether one reads the phase or the
amplitude of the oscillators. Although, cortical oscillators seem to
be a key element of the SBF model, only little evidence currently
supports the existence of a dedicated set of cortical oscillators
for interval timing (e.g., Matell, 2014). It is also unclear whether
cortical oscillators are really necessary for the SBF model, as any
stable pattern of neural activation (Crowe et al., 2014; Merchant
et al., 2014; Mello et al., 2015) within to-be-timed intervals but
variable across to-be-timed intervals would be sufficient as input
to insure reliable coincidence detection (also see Meck et al.,
2013).

QUANTIFYING THE ROLE OF CORTICAL
OSCILLATORS

When considering oscillatory processes in the context of the
SBF model, at least two important predictions regarding neural
oscillators have to be taken into account. The first prediction is,
that in order to provide a meaningful pattern, cortical oscillators
have to be phase-reset, such that they always start from the
same fixed state. For example, the results by Parker et al.
(2014) suggest, that more precise phase reset of ongoing theta
oscillations in the medial frontal cortex results in better timing
accuracy (Kononowicz, 2015), something that would be in line
with the SBF model. This hypothesis awaits future tests and more
compelling evidence have to be provided.

The second prediction is linked to the idea, that the speed
of internal clock can be modulated by the speed of cortical
oscillators (Oprisan and Buhusi, 2014), which are modulated
by tonic levels of dopamine (Oprisan and Buhusi, 2011). It is
very often assumed, that the clock speed could be represented
by the alpha band regime (Treisman et al., 1990, 1994) as it is
the most prevalent spontaneous rhythm in the mammalian brain
(Oprisan and Buhusi, 2014). However, as previously discussed,
the relationship between alpha peak power and fluctuations
in subjective timing has not been clearly established; direct
attempts to test this hypothesis have not succeeded (Treisman
et al., 1990, 1994). The power of alpha is a good marker
of temporal expectation (Praamstra et al., 2006; Cravo et al.,
2011; Rohenkohl and Nobre, 2011), which is in line with the
hypothesized role of alpha as a selective coordinator implicated
in the temporal prioritization of sensory events (Jensen et al.,
2014). Hence, one possible departure from the early proposals
could be that a single dominating frequency may not be
necessary to represent the clock speed as neural oscillations
outside of the alpha range have been implicated in interval
timing (Busch et al., 2004; Kaiser et al., 2007; Sperduti et al.,
2011), raising the possibility that other rhythms could serve as
“pacemakers.” For instance, recent studies suggest a signifant
role of beta oscillations in timing (Iversen et al., 2009; Fujioka
et al., 2012, 2015; Bartolo et al., 2014; Teki, 2014; Kononowicz
and van Rijn, 2014; Wiener and Kanai, 2016) and the phase
characteristics of low-frequency oscillators can predict subjective
timing (Cravo et al., 2011; Kösem et al., 2014), suggesting, that
different neural oscillations have the potentiality to track time.
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Therefore, instead of focusing on one single neural oscillation,
future studies should explore local trial-to-trial fluctuations
across frequency bands and how subdominant frequencies
vary as a function of subjectively perceived time intervals.
Complementary to this, addressing the implications of such
markers at different time scales and across sensory modalities
may be desirable.

Interestingly, a recent review by Gu et al. (2015) proposes to
unify interval timing and working memory models. Specifically,
these authors proposed, that working memory and interval
timing can originate from the same oscillatory processes such
as gamma and theta oscillations, and phase-amplitude coupling
between these frequency bands (Lisman, 2010). The proposed
model largely focuses on oscillatory processes that could be
shared between working memory and SBF. Nonetheless, the
empirical ways to assess the principles of SBF model are still
lacking. As the gist of the SBF lies in the notion of communication
between cortical areas and the striatum, here we discuss the
possibility of testing this hypothesis by investigating functional
connectivity between the striatum and PFC.

STRIATUM-PFC COUPLING AND THE SBF
MODEL

Striatal neurons are ideal candidates for coincidence detection
as they receive direct inputs from cortical neurons. Through
coincidence detection of spiking activity from two or more
cortical regions, the same striatal neuron will discharge within
a given time window. For instance, Matell et al. (2003) showed,
that neural activity in the striatum and the anterior cingulate
cortex varied before 10 and 40 s when the reinforcement was
presented at one of these two time points, suggesting, that
neuronal populations respond to to particular time intervals.
However, this pattern although predicted by SBF could largely
be confounded by motor activity of lever pressing. Nevertheless,
note, that Riehle et al. (1997) observed transient synchronization
of neurons in motor cortex when stimuli were expected, but
failed to appear. Although, this work is very important it only
shows pattern of activity that fits into the SBF model under
certain conditions. Given, that an important premise of the SBF
model is the communication between striatal neuronal ensembles
and cortical neurons, we propose, that investigating functional
connectivity between subcortical and cortical structures can
serve as an important step extending the results of Matell
et al. (2003) and giving further support to the SBF model. For
example, Antzoulatos and Miller (2014) found, that perceptual
(non-temporal) category learning was accompanied by increased
synchronization within beta band range (12–30Hz) between
the PFC and striatum, demonstrating the role of functional
connectivity in learning. Specifically, synchronization was larger
for correct trials. On the basis of the SBF model, a change of

cortical-striatal synaptic weights through learning is predicted to
reflect a memory mechanism such as the one implemented in
the Scalar Expectancy Theory (Gibbon, 1977). Taken together,
striatal neurons are predicted to become more sensitive to firing
as a function of specific PFC neurons, and these learning effects
should be visible during training of temporal discrimination as
a change in inter-areal synchronization. Moreover, according to
the SBF model and in line with the results of Antzoulatos and
Miller (2014), inter-areal synchronization should be enhanced
in “correct” trials (Kononowicz, 2015). Particularly, the striatal-
PFC synchrony enhancement should emerge at the time of a
standard interval, for example in the task where subjects compare
a comparison interval, that could vary in length to a fixed
standard interval. That is because striatal and PFC structures
should become transiently synchronous due to previous learning
enhancing sensitivity/tuning of striatum to the particular neural
pattern exhibited at the time of standard interval.

The synchronization of neural oscillations has been associated
with neuronal mechanisms such as coincidence detection, neural
plasticity though long term potentiation/depression mechanism,
and neuronal communication (Fell and Axmacher, 2011).
These processes seem like a plausible candidate to coordinate
striatum-PFC communication in recognition for specific patterns
considered by SBF model. Specifically, the simplest scenario
would predict an increase in coherence or spike-filed coherence
for accurately timed trials. Coherence was proposed to reflect
facilitated communication between brain regions (e.g., Fries,
2015). Effective communication should be linked to the
successful timing performance if indeed communication between
the striatum and PFC is a key component of timing system
as proposed in the SBF model. This cortico-striatal spike-
field coherence should be specifically enhanced at the time
of standard interval if striatal neurons recognize cortical
pattern (see Kononowicz and van Rijn, 2015). Furthermore, the
role of cortico-cortical coherence has been shown in passive
rhythmical stimulation paradigms, in which an increase in
coherence coincided with the next tone occurrence (Fujioka
et al., 2012). These results do support the hypothesis sketched in
this paper and also suggest cortico-cortical analysis. Moreover,
recent progress in neuroscientific methods allows to adress this
questions in animals and humans using MEG/EEG modeling
(David et al., 2011), but also deep brain recordings.
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Extracting temporal regularities in external stimuli in order to predict upcoming events
is an essential aspect of perception. Fluctuations in induced power of beta band
(15–25 Hz) oscillations in auditory cortex are involved in predictive timing during
rhythmic entrainment, but whether such fluctuations are affected by prediction in the
spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted
(i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity
by recording EEG while participants passively listened to isochronous auditory oddball
sequences with occasional unpredicted deviant pitches at two different presentation
rates. The results showed that the power in low-beta (15–20 Hz) was larger around
200–300 ms following deviant tones compared to standard tones, and this effect was
larger when the deviant tones were less predicted. Our results suggest that the induced
beta power activities in auditory cortex are consistent with a role in sensory prediction
of both “when” (timing) upcoming sounds will occur as well as the prediction precision
error of “what” (spectral content in this case). We suggest, further, that both timing
and content predictions may co-modulate beta oscillations via attention. These findings
extend earlier work on neural oscillations by investigating the functional significance
of beta oscillations for sensory prediction. The findings help elucidate the functional
significance of beta oscillations in perception.

Keywords: sensory prediction, beta band, EEG oscillations, rhythmic entrainment, pitch, attention, auditory
cortex, oddball

INTRODUCTION

Perceptual systems extract regularities from the stream of continuous sensory input, and form
internal representations for predicting future events. Predictive timing is the sensory prediction (or
expectation) of when an event will occur (Nobre et al., 2007; Schroeder and Lakatos, 2009). Such
predictions are hypothesized to be essential for many human behaviors, including understanding
speech and music (Ding et al., 2015; Doelling and Poeppel, 2015), and synchronizing movements
(Jenkinson and Brown, 2011; Fujioka et al., 2012, 2015; Kilavik et al., 2013). Predictive timing can
be studied at a basic level in that an isochronous stream of metronome clicks sets up a strong
prediction for when the next click will occur.

Entrainment is the process of internal neural oscillations becoming synchronized with temporal
regularities in an external auditory rhythmic input stream, and it provides a mechanism for
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predicting future events in time (Jones, 2010). Such entrainment
appears to be accomplished in the brain by neural oscillatory
activity, which has been shown to represent temporal regularities
in the sensory input, as well as the prediction of upcoming
sensory events (Friston, 2005; Jones, 2010; Arnal and Giraud,
2012; Fujioka et al., 2012, 2015; Henry and Herrmann,
2014; Morillon and Schroeder, 2015; Herrmann et al., 2016).
While time domain event-related potential (ERP) analyses
of electroencephalogram (EEG) waveforms in response to
unpredicted stimuli have revealed aspects of neural processes
underlying sensory prediction (e.g., Costa-Faidella et al., 2011;
Schwartze and Kotz, 2013; Schröger et al., 2015), recent
studies indicate that neural oscillatory activities obtained by
decomposing EEG signals into frequency-specific bands reveal
processes of communication between neural ensembles (Buzsaki,
2006) that are essential to sensory prediction (Arnal and Giraud,
2012).

Oscillatory activities in sensory cortices in both delta (1–3 Hz)
and beta (15–25 Hz) bands are associated with temporal
prediction (Henry and Herrmann, 2014). The phase of the
delta oscillation shows entrainment to rhythmic sequences
and it is reset by the onset of a stimulus and predicted
(imagined) onset of a future stimulus. On this basis, it has
been suggested that delta phase reflects an oscillatory time
frame for parsing a continuous sensory stream into meaningful
chunks for subsequent perceptual processing (Schroeder and
Lakatos, 2009; Calderone et al., 2014). Neural responses to
sensory inputs that occur at the time of the excitation phase
of delta oscillations are enhanced compared to those that
coincide with the inhibition phase (Schroeder and Lakatos,
2009). Local field potential recordings in primary visual and
auditory cortices of macaque monkeys show that the delta
phase entrains to the onsets of stimuli in rhythmic stimulus
streams (Lakatos et al., 2008, 2013), consistent with intracranial
electrocortical and surface EEG recordings in humans (Besle
et al., 2011; Gomez-Ramirez et al., 2011; Henry and Obleser, 2012;
Herrmann et al., 2016), and it can be endogenously directed by
selectively attending to one or the other of two simultaneous
stimulus streams (Lakatos et al., 2008, 2013; Calderone et al.,
2014).

The amplitude fluctuation dynamics of induced (non-phase-
locked) beta band power also entrain to the tempo of events in an
auditory input stream, as well as reflecting temporal prediction.
EEG and MEG recordings of isochronous auditory sequences
show that induced beta power decreases following each tone
onset, and increases again prior to the onset time of the next
tone, with the timing of the increase varying with tempo in a
predictive manner (Snyder and Large, 2005; Fujioka et al., 2009,
2012, 2015; Iversen et al., 2009; Cirelli et al., 2014; Figure 1).
Both delta phase angle and beta power in auditory and motor
areas in the pre-stimulus onset period predict the accuracy of
detecting a temporal delay in the stimulus (Arnal et al., 2015).
Furthermore, in primary motor cortex, beta power is modulated
by attention, and aligned with the delta phase, suggesting that
beta power might reflect attentional fluctuation in time and delta
phase an entrained internal clock that aids in the execution of a
motor task (Saleh et al., 2010).

Although delta phase and induced beta power are both
associated with temporal prediction, compared to the compelling
evidence for delta oscillations, the functional significance of
beta oscillations in perceptual processing remains less clear.
We hypothesized that the entrainment of induced beta power
in auditory cortex to an external stimulus might reflect more
than predictive timing. Specifically, given that auditory cortex
is sensitive to both spectral and temporal dimensions of the
input (Fritz et al., 2003; Griffiths and Warren, 2004; King and
Nelken, 2009), and auditory evoked ERP components can be
interactively modulated by predictions of both pitch and time
(Costa-Faidella et al., 2011), beta oscillations might also reflect
predictive coding for specific content, such as pitch. In order
to examine this hypothesis, we conducted two experiments in
which we presented isochronous auditory oddball sequences
containing occasional deviations in pitch at different presentation
rates. If the induced beta power only reflects predictive timing,
the occasional unpredicted pitch changes should not affect the
ongoing beta entrainment behavior, given that the pitch deviants
are presented at the predicted rhythmic time points. On the other
hand, if the induced beta power is affected by the unpredicted
deviant pitches, it would suggest that beta power is associated
with predictive perceptual processing for both what and when.
In the case that induced beta power is affected by unpredicted
deviant pitches, we examine further whether it is modulated by
response to novelty (rare events in the preceding local context) or
prediction error (the probability of encountering a deviant pitch
under the statistical conditions of the context).

MATERIALS AND METHODS

Stimuli
Two recorded piano tones, C4 (262 Hz) and B4 (494 Hz), from
the University of Iowa Musical Instrument Samples were used.
The amplitude envelopes of the piano tones were percussive with
10 ms rise times. Tones were truncated to be 200 ms in duration,
and a linear decay to zero was applied over the entire excerpt
to remove offset artifact. The DC shift was removed for each
tone. Sounds were converted into a monaural stream at 71 dB
(C weighted), measured through an artificial ear (type 4152, Brüel
& Kjær) with sound level meter (type 2270, Brüel & Kjær).

Procedure
The experiment was conducted in a sound-attenuated room.
Each participant was presented with a continuous sequence of
tones in two sessions, each lasting 30 min, while they watched
a silent movie on a computer screen. Participants took a 3-min
break between sessions. Sounds were delivered binaurally via ear
inserts (Etymotic Research ER-2). All stimulus sequences were
presented under the control of a digital signal processor (Tucker
Davis RP2.1).

The tones were presented in an oddball sequence. The C4 tone
was used as the standard and the B4 tone as the deviant. For
the first group of participants, the inter-onset interval (IOI) was
fixed at 500 ms. There were 3600 tones presented in each session,
and the deviance occurrence rate was 10% in one session and

Frontiers in Psychology | www.frontiersin.org March 2016 | Volume 7 | Article 327 | 15

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00327 March 7, 2016 Time: 16:6 # 3

Chang et al. Beta Oscillations Reflect What and When

FIGURE 1 | Schematic illustrations of power modulation in induced (non-phase-locked) beta (15–25 Hz) entraining to the tempo of the stimuli.
Specifically, power decreases following isochronous onsets and increases that predict the onset time of the next stimulus (e.g., Fujioka et al., 2012; Cirelli et al.,
2014). The dotted curve above the beta waveform envelope represents this power modulation.

20% in the other session, with an equal number of participants
completing the 10% or 20% session first. Within each session,
tone order was pseudorandomized with the constraint that two
deviant tones could not be presented sequentially, and each
session started with five consecutive standard tones. Participants
were instructed to sit comfortably and remain as still as possible
during the experiment while watching a silent movie. They were
not required to make any responses.

In order to replicate and to generalize the findings to a
different presentation rate, for a second group of participants,
we employed a longer IOI of 610 ms in an isochronous oddball
sequence with the 10% deviant tones condition. Otherwise, the
procedure for group two was the same as that for group one.

For convenience, we refer to the 500 ms IOI experimental
sessions (10% and 20% deviance occurrence rates) as the Fast
Experiment, and the 610 ms IOI experimental session (10%
deviance occurrence rate only) as the Slow Experiment.

Participants
Sixteen participants (17–22 years old, mean age 18.93 ± 1.39;
12 female) for the Fast Experiment and a different thirteen
participants (17–21 years old, mean age 18.62 ± 1.33, 10
female) for the Slow Experiment were recruited from the
McMaster University community. Participants were screened
by a self-report survey to ensure they had normal hearing,
were neurologically healthy and were right-handed. Signed
informed consent was obtained from each participant. The
McMaster University Research Ethics Board approved all
procedures. Participants received course credit or reimbursement
for completing the study.

Electroencephalographic Recording
The EEG was sampled at 2048 Hz (filtered DC to 417 Hz)
using a 128-channel Biosemi Active Two amplifier (Biosemi
B.V., Amsterdam). The electrode array was digitized for each
participant (Polhemus Fastrak) prior to recording. EEG data were
stored as continuous data files referenced to the vertex electrode.

Signal Processing of the EEG Data
Three stages of signal processing were conducted in order to
examine the behavior of auditory evoked and induced oscillations
in bilateral auditory cortices. In the first stage, we obtained
a dipole source model based on auditory evoked responses,
following Fujioka et al. (2012). The second stage segmented and
categorized the source waveform into epochs based on the relative
order of the presented auditory sequence. In the third stage,
epochs containing excessive artifacts were rejected.

Stage 1: Dipole Source Modeling
The continuous EEG data was band-pass filtered 0.3–100 Hz
for each participant for each session, and then segmented into
epochs covering the time period -100 to 300 ms, time locked to
stimulus onset. Epochs containing standard tones that preceded
and followed other standard tones with amplitudes exceeding
150 µV were rejected as artifacts. The surviving standard epochs
(89.6%± 5.1% for 10% session and 89.5%± 5.1% for 20% session
of Fast Experiment, and 88.4%± 5.5% of Slow Experiment) were
averaged into ERP waveforms and band pass filtered between
1 and 20 Hz (Figure 2). To confirm that our oddball context
was set up appropriately, a similar procedure was performed
on the deviant epochs, and the average of the standard epochs
subtracted from the average of the deviant epochs in order
to produce difference waves. As can be seen in Figure 2,
both mismatch negativity (MMN) and P3a responses can be
observed, consistent with the literature on ERP responses in
oddball contexts (Friedman et al., 2001). Paired t-tests, performed
on the average of channels in the mid-frontal area (F1, Fz,
F2, FC1, FCz, and FC2), confirmed the presence of an MMN
component between 100 and 120 ms; specifically, deviant trials
were significantly more negative than standard trials in this
time window in all sessions of both Fast and Slow Experiments
(ps < 0.001). There was also a P3a component between 200
and 220 ms: deviant trials were significantly more positive than
standard trials in this time window in all sessions of both Fast and
Slow Experiments (ps < 0.001). It is worth noting that although
the latencies of MMN and P3a observed in the current study were
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FIGURE 2 | Auditory evoked event-related potential (ERP) waveforms of mid-frontal electrodes from the (A) 10% session and (B) 20% session of the
Fast Experiment, and (C) Slow Experiment. Waveforms were collected using 128 EEG channels, and averaged across channels located at the mid-frontal area
(F1, Fz, F2, FC1, FCz, and FC2), with stimulus-onset at 0 ms (indicated by the vertical dashed line in each plot). The shaded areas indicate the SEMs of standard trial
(blue), deviant trial (red), and the difference waveform of deviant minus standard trial (black). The ERP waveforms of standard trials show a prominent P1 component
around 70–90 ms (indicated by the blue line above each waveform). P1 topography of each session (inset; red represents positive potential, blue negative) shows a
mid-frontal focus, consistent with generators in primary auditory cortex. The ERP difference waveforms show significant MMN (100–120 ms, indicated by the black
line below each waveform) and P3a (200–220 ms, indicated by the black line above each waveform) components. The topography of the MMN (inset) shows the
typical frontal negativity of the MMN. The P3a is larger in deviant than standard trials (inset), with typical topography showing a frontal positivity.

earlier than are sometimes reported (e.g., MMN: 150–250 ms,
P3a: 250–300 ms; Friedman et al., 2001; Näätänen et al., 2007;
Polich, 2007), our results are consistent with several previous
studies showing that the latencies of MMN and P3a are as short
as around 100 and 200 ms, respectively, when the stimuli are
presented in a rhythmic context with IOIs less than or equal to
700 ms (e.g., Regnault et al., 2001; Jongsma et al., 2004; Pablos
Martin et al., 2007; Matsuda et al., 2013).

We employed a dipole source model as a spatial filter for
increasing the signal-to-noise ratio of the EEG signal generated
from left and right auditory cortices for subsequent analyses.
A previous study showed that beta activities generated in both
auditory and motor cortices entrained to external auditory
rhythms when participants passively listened to isochronous
sequence of tones (Fujioka et al., 2012). In the present study,
we were primarily interested in responses from auditory areas,
so we analyzed the EEG signals in source space rather than
from surface channels, to extract the oscillatory signals generated
from auditory cortex while attenuating signals generated from
other brain regions. The source modeling was performed on each
participant’s mean standard ERP waveform using the multiple
source probe scan algorithm and the four-shell ellipsoid model
included in the Brain Electrical Source Analysis (BESA) software
package. Two auditory cortex sources were estimated for each
participant for the auditory evoked P1 (60–100 ms; Figure 2)
with the dipoles constrained to be symmetric across hemispheres
in location but not orientation. P1 was chosen because it is
the dominant peak at fast presentation rates (N1 peaks are
strongly reduced at fast rates; Näätänen and Picton, 1987), and is

generated primarily from primary auditory cortex (Godey et al.,
2001). The mean locations of fitted dipoles across participants
were at Talairach coordinates −45.0, −3.2, 16.2 with orientation
(0.2, 0.6, 0.8) and 45.0,−3.2, 16.2 with orientation (−0.1, 0.7, 0.7)
in the 10% session of the Fast Experiment; and at −45.4, −3.1,
17.2 with orientation (0.3, 0.7, 0.7) and 45.4, −3.1, 17.2 with
orientation (−0.1, 0.8, 0.6) in the 20% session of the Fast
Experiment; and −44.9, −4.7, 16.4 with orientation (0.1, 0.7,
0.7) and 44.9, −4.7, 16.4 with orientation (−0.2, 0.7, 0.7) in
the Slow Experiment, which are all closely located at bilateral
primary auditory cortices with orientations toward the mid-
frontal surface area (Figure 3). The residual variances of the
source fittings for each session for each participant were between
5% and 10%.

Stage 2: Epoching
Based on individual participant dipole model fits for each
session, the source activities of single trials in auditory cortices
were extracted for all epoch types using signal space projection
following Fujioka et al. (2012). Because we were interested in
the inter-stimulus neural responses, and to avoid edge effects in
subsequent time-frequency analysis, the unfiltered EEG data of
each session were segmented into relatively long -500 to 1000 ms
epochs, where 0 ms represents a stimulus onset. The epochs were
categorized based on the relative position of tones presented in
the experiment, including standard (standard tones between two
standard tones), deviant (deviant tones between two standard
tones) and SpreD (standard tones preceding a deviant tone and
following a standard tone). The individual source waveform
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FIGURE 3 | The mean locations and orientations of dipoles. Dipole
locations were symmetrically fitted for the auditory P1 ERP component across
participants for each (A) 10% session and (B) 20% session of the Fast
Experiment, and (C) Slow Experiment, presented in both sagittal and coronal
planes. The fitted dipoles are closely located at bilateral primary auditory
cortices with orientations toward frontal midline.

epochs as well as raw channel EEG data were exported from BESA
to MATLAB for further processing.

Stage 3: Artifact Rejection
Another artifact rejection procedure was applied to the raw 128-
channel data. Epochs identified to have artifacts were noted, and
the corresponding source waveform epochs were eliminated from
further analysis. Thus we made sure the source waveform epochs
entered into the time-frequency analysis in the next stage were
artifact-reduced and unfiltered, to maximize the signal-to-noise
ratio. Because we aimed to reject epochs containing EOG or
EMG responses, each raw channel EEG epoch was filtered by a
third-order Butterworth band pass filter (1–60 Hz). The filtered
EEG epochs that exceeded a threshold (40 µV, compared to
the baseline mean voltage of -100–0 ms) for more than 10% of
the epoch at any channel were excluded from further analysis.
An additional seven participants’ data were not included in the
current data set because more than 50% of their epochs did not

pass the criteria at this stage. For the remaining participants
66.18% ± 8.68% of the epochs in the Fast Experiment and
71.57% ± 10.54% in the Slow Experiment were accepted for
further analysis.

Time-Frequency Decompositions
Time-frequency decompositions were calculated for each
participant on each single-epoch source waveform in left and
right auditory cortices and for each stimulus condition using
a Morlet wavelet transform (Bertrand et al., 1994) for beta
frequency band.

In order to remove the evoked (phase-locked) responses from
the epoch and thereby obtain the induced (non-phase-locked)
responses for subsequent analyses on beta band, we averaged the
source waveform for each trial type (evoked response estimate),
and then subtracted it from each source waveform epoch (Kalcher
and Pfurtscheller, 1995; Fujioka et al., 2012).

The Morlet wavelet transformation was calculated for each
time point for each induced epoch with 32 logarithmically spaced
frequency bins between 15 and 25 Hz. The wavelet was designed
such that the half-maximum width was equal to 3.25 periods of
the lowest frequency while the width was equal to 3.56 periods
of the highest frequency, linearly interpolated for each frequency
bin in between. Subsequently, 300 ms at the beginning and ending
of the epoch were eliminated to avoid edge effects. The induced
oscillatory mean signal power was calculated by averaging the
magnitude of each time-frequency point of wavelet coefficients
across trials. Normalizing this to the mean value of the standard
epochs across the whole epoch for each frequency resulted in
relative signal power changes expressed as a percentage (Fujioka
et al., 2012), and all types of epochs within the same session were
compared to the same baseline (mean power in the averaged
standard epoch between 0 and 500 ms). The fluctuation in power
for each type of epoch at each frequency was visualized as a
function of time and frequency in color-coded maps of event-
related synchronization and desynchronization (Pfurtscheller
and Lopes da Silva, 1999).

Discrete Fourier Transform for Neural
Oscillation Entrainment
In order to examine whether the observed neural oscillation
activity entrained to the presented stimulus rate, we analyzed the
time series of each participant’s normalized mean induced beta
power (derived as above) via discrete Fourier transforms (DFT).
For each participant, we took the -200 to 700 ms epoch for the
averaged induced beta power from the wavelet transform, zero-
padded to 5 s in order to increase the frequency resolution of the
DFT to a bin size 0.2 Hz. For each of the beta power time series,
the power spectrums revealed by the DFTs were averaged across
participants at each of the left and right auditory cortices.

Data Analysis and Statistics
In order to examine whether the deviant tone affected the beta
band induced power (1) we compared the standard and deviant
trials for each individual participant for both the 10% and 20%
deviance sessions to identify deviant-elicited prediction error
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responses, and (2) we compared this difference of “standard -
deviant” between the 10% and 20% deviance rate sessions to
investigate the effect of prediction precision, as deviants in the
10% session are less predicted than those in the 20%. We analyzed
the window 0–500 ms for the Fast Experiment and 0–610 ms
for the Slow Experiment, time-locked to stimulus onset. The
standard and deviant trials of individual participants were then
used for random effects analysis.

To assess the statistical differences between the induced
beta band powers while controlling for multiple comparisons,
we performed cluster-based permutation analyses on the two-
dimensional time-frequency maps (Maris and Oostenveld, 2007).
First, we used a Wilcoxon signed-rank test, a non-parametric
paired difference test, to examine the mean power difference in
the beta band between each paired time-frequency sample from
0 to 500 ms for the Fast Experiment or 0–610 ms for the Slow
Experiment. Second, we grouped the time-frequency adjacent
samples reaching a threshold of p < 0.05 into single clusters.
Third, we summed the test statistics within each cluster into a
cluster-level statistic, which became the observed value. Fourth,
to build a permutation distribution, we randomly interchanged
the experimental conditions for each participant, repeated the
previous three steps 5000 times, and extracted the largest cluster-
level statistics for each repetition. The final p-value was calculated
by comparing the observed value of each cluster with the
permutation distribution.

RESULTS

We first tested whether the induced beta power entrainment
phenomenon reported by Fujioka et al. (2012) was replicated in
the standard trials. In the Fast Experiment, the induced power in
the beta band of the standard trials showed a clear entrainment
to the IOI rate (2.0 Hz). Specifically, the DFT analysis on induced
beta band power showed the strongest power at 2.0 Hz for both
the 10% and 20% sessions at both left and right auditory cortices
(Figures 4A–D). In the Slow Experiment, the induced power in
the beta band of the standard trials showed a clear entrainment to
the slower IOI rate (∼1.6 Hz) with the DFT analysis showing the
strongest power at 1.6 Hz at both left and right auditory cortices
(Figures 4E,F). These results replicate previous studies showing
that induced beta band power entrains to the IOI of isochronous
stimulus sequences (Fujioka et al., 2009, 2012, 2015; Cirelli et al.,
2014).

We then examined whether trial type (deviant vs. standard)
and session (deviant rate) modulate the induced beta power, in
additional to the entrainment activities. In the Fast Experiment,
the cluster-based permutation test identified one significant
cluster in the 10% session at right auditory cortex, in which the
mean induced power at 16–20 Hz, within the range of low-beta
band (15–20 Hz), around 200–300 ms after stimulus onset was
larger in the deviant trials than the standard trials (p = 0.044;
Figure 5A) with a large effect size (rank correlation = 0.67). We
did not identify any significant cluster at left auditory cortex.
We examined the same contrast for the 20% session. Although
we failed to identify any significant cluster at either left or

right auditory cortex, the power difference of “deviant–standard”
trials peaked around 200–300 ms in the low-beta band at right
auditory cortex (Figure 5B), which is consistent with the results
of the 10% session. We further compared the power difference of
“deviant–standard” trials between the 10% and 20% sessions at
the previously identified cluster. The Wilcoxon signed-rank test
showed that the power difference was significantly larger in the
10% session than in the 20% session (p= 0.026), with a large effect
size (rank correlation = 0.56). Taken together, this indicates that
the induced power in low-beta band around 200–300 ms after
stimulus onset was higher in deviant trials than in standard trials,
and that this effect was larger in the 10% session than in the 20%
session.

The results of the Slow Experiment replicated the results of
the Fast Experiment. A cluster-based permutation test showed
only one significant cluster around 200–300 ms after stimulus
onset at 15–19 Hz at right auditory cortex (p= 0.026; Figure 5C),
in which the mean induced power was larger in the deviant
trials than the standard trials with a large effect size (rank
correlation= 0.79).

To further distinguish whether the deviant-induced responses
in low-beta band are associated with prediction error or response
to novelty (rare events in the preceding local context), given that
both processes can be engaged by deviant stimuli in an oddball
context (Friedman et al., 2001), we performed an additional
analysis for standard tones occurring in different places in
the sequence. This was based on the idea that in an oddball
sequence, not only can the presentation of a deviant tone violate
a prediction for a standard tone, but also the presentation of a
standard tone that follows several standard tones in a row can
violate an expectation (prediction) for a deviant tone. Specifically,
the more standards that occur in a row, the more likely it is that
a deviant will occur next, given a fixed overall probability of a
deviant. On the other hand, a standard occurring after several
standards in a row would not elicit a novelty response, as there
is no change in the stimulus. If the beta band response that we
measured reflects prediction error and not response to novelty,
then the response to standard tones should depend on how many
standards occurred prior to the standard of interest (as each
successive standard builds prediction for an eventual deviant),
whereas if the response simply associates with novelty, there
should be a larger response to standards in the 20% than 10%
condition, but no effect of how many standards occur in a row.
Given that a deviant tone must occur eventually along the time
line (Luce, 1986; Nobre et al., 2007), the conditional likelihood
of encountering a standard tone decreases with the number of
repetitions of the standard tone in a row, and thus, on average,
the prediction of standard tones preceding a deviant tone will
be lower in the 10% than in the 20% session since there are on
average more standards in a row before each deviant in the 10%
condition.

We can compare responses to standards between 10% and
20% sessions that occur either immediately before a deviant
(SpreD) or between two other standards in the sequence (here
referred to as SbS). SbS trials occur earlier on average in the
sequence compared to SpreD trials. This allows a test of the two
alternative hypotheses. Specifically, if the induced low-beta power
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FIGURE 4 | Power fluctuations of induced beta (15–25 Hz) and associated discrete Fourier transformation (DFT) analyses. Fast Experiment: (A) shows
the induced beta power fluctuations in the standard trials of the 10% and 20% sessions in left auditory cortex, with shaded areas indicating SEM and vertical dashed
lines representing the onsets of tones at 0 and 500 ms. The induced beta power decreases after the onset of a standard tone, and increases (or “rebounds”) again
before the onset of the next tone. The DFT analyses (B) confirmed entrainment to the stimulus presentation rate (dashed lines) in each case, with maximum power at
2.0 Hz. The same results were replicated at the right auditory cortex (C,D) of the Fast Experiment. Slow Experiment: (E) shows the induced beta power fluctuations
in both left and right auditory cortex, with the vertical dashed lines representing the onsets of tones at 0 and 610 ms. The DFT analyses (F) confirmed that the power
entrained to the stimulus presentation rate (dotted lines), with maximum power at 1.6 Hz.

response at right auditory cortex results from prediction error, the
power difference between SpreD trials (20% session–10% session)
should be larger than the difference between SbS trials (20%
session–10% session), because the prediction error (mismatch
between standard and deviant tone) is modulated by conditional
likelihood (the position of standard tones in a stimulus sequence).

On the other hand, if the induced low-beta power response
is modulated by the novelty in the preceding context, the
power difference between SpreD trials (20% session–10% session)
should be equal to the difference between SbS trials (20% session–
10% session), because the conditional likelihood does not matter.
Indeed, if anything, the SbS trials would be predicted to show a
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FIGURE 5 | Time-frequency maps of induced power difference between deviant and standard trials in the beta frequency range (15–25 Hz) at right
auditory cortex of Fast and Slow Experiments. The shaded areas under each time-frequency map indicates SEM of the low-beta (15–20 Hz) power fluctuations.
In the Fast Experiment, standard/deviant tones begin at 0 ms, and the onset time of the next tone is 500 ms (dashed lines). The black contours represent the
significant time-frequency cluster. (A) The difference between time-frequency maps (deviant minus standard trials) shows that the deviant tone in the 10% sessions
induced stronger power compared to the standard at right auditory cortex, around 16–20 Hz and 200–300 ms. (B) The difference between time-frequency maps
(deviant minus standard trials) did not show any significant difference in the 20% session at right auditory cortex. (C) In the Slow Experiment, the standard/deviant
tones begin at 0 ms, and the onset time of the next tone is 610 ms (dashed lines). The difference between time-frequency maps (deviant minus standard trials)
shows that the deviant induced stronger low-beta (15–19 Hz) power compared to the standard at right auditory cortex, around 200–300 ms. (D) This shows the
subtraction of the two difference maps SpreD trials (20% minus 10%) minus SbS trials (20% minus 10%) of Fast Experiment. The result showed that the power
difference is larger between SpreD trials than between SbS trials across sessions, around 15–19 Hz and 50–250 ms.

larger induced low-beta power difference than the SpreD trials
because the SbS trials constitute a deviation from a more recently
presented deviant tone whereas SpreD trials follow a larger
number of standard trials. A cluster-based permutation test in
low-beta band at right auditory cortex showed that the SpreD
trials had a larger induced power difference than the SbS trials
(p = 0.045; Figure 5D) around 50–250 ms at 15–19 Hz with
a large effect size (rank correlation = 0.74). This suggests that
the increased induced low-beta power is elicited by prediction
error, modulated by conditional likelihood, rather than response
to novelty, modulated by rareness of a pitch in the preceding
context.

Another additional analysis was performed to investigate
whether the current results were associated with the mechanism
of auditory stimulus-specific adaptation (SSA) rather than
sensory prediction. Auditory SSA refers to the phenomenon that
the neural response to the same tone decreases as the number
of times it is repeated increases, and raises the possibility that
responses to rare tones in an oddball context reflect release from
adaptation rather that prediction or response to novelty (e.g.,

Butler, 1968; Näätänen et al., 1988; Lanting et al., 2013). In the
present study, it is possible that the magnitude of the low-beta
response to pitch deviants reflects a release from adaptation to
the repeated standard tones in our oddball context. Further, the
finding that the low-beta power response was stronger on deviant
trials in the 10% than 20% session might be due to the fact that
there were on average more repeated standard tones preceding a
deviant trial in the former case. In order to investigate whether
the low-beta response was modulated by a predictive process, we
compared conditions where the effect of SSA was constant, but
prediction differed. Specifically, to accomplish this, we compared
10% and 20% sessions of the Fast Experiment where the number
of standards since the previous deviant was held constant. Thus,
we averaged separately deviant effects where there were two
standards, three standards, four standards, five standards, or
six standards since the last deviant. In each case, we took the
low-beta power difference of deviant minus standard trials and
compared between the 10% and 20% sessions. The critical point
is that, for a given number of standard trials preceding a deviant,
the sensory prediction hypothesis indicates that deviants are
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more expected in the 20% than 10% session because there is a
generally higher probability of a deviant in the 20% condition.
Specifically, the conditional likelihoods of encountering a deviant
tone can be estimated by summing up the empirical occurrence
rates of a deviant tone in the all the locations in a sequence
following a deviant trial, until the current location (Figure 6A).
We performed a cluster-based permutation test on the low-beta
band at right auditory cortex. We did not find any cluster to
be significant, but there was a trend for the power difference
at the cluster at 200 to 300 ms to be larger in the 10% session
than in the 20% session (Figure 6B) as predicted by the sensory
prediction hypothesis. The fact that it did not reach conventional
significance levels is likely due to the small number of trials (in
the 10% session, 141.0 ± 19.0 deviant trials were included in
the current analysis, compared to the 244.6 ± 37.8 trials that
were included in previous analyses). We compared the maximum
deviant minus standard power difference of the averaged low-
beta frequency band between 10% and 20% sessions in the time
window 130–370 ms for each participant, time-locked to stimulus
onset (Figure 6C). The Wilcoxon signed-rank test showed that
the maximum low-beta power difference between deviant and
standard trials was significantly larger in the 10% session than in
the 20% session (2.96 ± 1.09 vs. 0.32 ± 0.45, p = 0.040) with
a medium effect size (rank correlation = 0.53). This suggests
that the increased induced low-beta power is associated with the
degree of prediction error when we controlled the effect of SSA to
be the same in both sessions.

In sum, we showed that the deviant tone induced an increase
in power in the low-beta band around 200–300 ms following
tone onset in right auditory cortex, regardless of the presentation
rate. Also, the effect was stronger when the deviance occurrence
rate was lower. Furthermore, two additional analyses suggest that
the induced low-beta power was higher for standard tones that
violated a stronger prediction for a deviant tone, confirming
that the low-beta response is more likely to reflect prediction
error than response to novelty. Also, the induced low-beta
power response was larger on deviant trials when they were less

predictable, even when the effects of SSA were controlled, again
suggesting that the low-beta response to deviant tones reflected
processes associate with prediction.

DISCUSSION

We sought to understand the roles of beta oscillations
in entrainment to rhythmically predictable sequences by
introducing occasional unpredictable pitch deviants. We
replicated previous findings related to timing entrainment in
induced beta power (Snyder and Large, 2005; Fujioka et al., 2009,
2012, 2015; Iversen et al., 2009; Cirelli et al., 2014), showing that
fluctuations in beta power entrained to the rate of presented
isochronous auditory stimulus sequences in both left and right
auditory cortices. In addition, we found that induced beta band
power at right auditory cortex increased around 200–300 ms
after the onsets of deviant tones compared to standard tones,
especially in the low-beta range (15–20 Hz). This effect was
larger when the deviant pitch was less likely to occur (10% vs.
20%), suggesting it is related to prediction processes. The right
lateralization of the beta response to pitch deviants is consistent
with the idea that the right auditory cortex is more sensitive for
processing spectral information than its left counterpart (e.g.,
Zatorre et al., 1992, 2002). To the best of our knowledge, this
is the first study to show that induced beta power in auditory
cortex is sensitive to an unpredicted pitch change, even when it is
presented at the predicted time. This suggests that induced beta
power plays a role in sensory prediction for both what will occur
as well as when it will occur.

The increased beta response with decreased likelihood of
deviance occurrence indicates that beta oscillations may associate
with precision-weighted prediction error. It has been suggested
that while prediction error signals do not necessarily involve
attention, high precision-weighted prediction errors act through
attention to increase the gain of neural responses, acting as
teaching signals for subsequent prediction updating (Friston,

FIGURE 6 | The cumulative conditional likelihoods of encountering a deviant tone, and the time-frequency maps of induced difference (deviant minus
standard) responses on matched trial locations in the beta frequency range (15–25 Hz) at right auditory cortex between the 10% and 20% sessions
of Fast Experiment. (A) The cumulative conditional likelihoods of encountering a deviant tone as a function of the nth location following a deviant trial in 10%
session (red) and 20% session (blue) with error bar indicating SEM. This was calculated by summing up the empirical occurrence rates of deviant tones at the
current location and all preceding locations in the experiment. The likelihood of a deviant tone being presented at the nth location is the accumulation of the
occurrence rate from the first to nth location following the previous deviant trial. (B) The subtraction of the two difference maps in the 10% session (deviant minus
standard) minus the 20% session (deviant minus standard) at the second to the sixth trial following a deviant tone. Although the cluster-based permutation test did
not find any cluster to be significantly different, the maximum of low-beta power difference (deviant minus standard) within the 130 to 370 ms window, time-locked to
stimulus onset, was significantly larger in the 10% session than in the 20% session. (C) The shaded areas indicate SEM of the averaged low-beta (15–20 Hz) power
difference (deviant minus standard) fluctuations of 10% session (red) and 20% session (blue).
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2009; den Ouden et al., 2012; Hohwy, 2012; Schröger et al.,
2015). According to predictive coding theory, prediction error
is defined as the sensory mismatch between the predicted and
perceived stimuli, and precision is the inverse of the input
variance of the context which determines whether or not to
deploy attention for updating future predictions (den Ouden
et al., 2012). For example, prediction precision is higher for
standard tones in the 10% than 20% session, because on
average there are fewer deviant tone are intermixed in the same
length of sequence in 10% than 20% sessions. Thus, larger
beta power responses to deviants in the 10% compared to
20% session might indicate that the process involved is one of
prediction precision. That beta oscillations are associated with
deploying attention for improving perceptual performance is
supported by attentional blink studies showing that enhanced
phase synchronization in low-beta band among frontal–parietal–
temporal regions involved in the attentional network is associated
with improved behavioral performance for targets with abrupt
onsets (Gross et al., 2004; Kranczioch et al., 2007). Further, it has
also been suggested that gamma oscillations (>30 Hz) reflect feed
forward prediction error signals (Herrmann et al., 2004) while
beta oscillations represent a subsequent feed back processing
stage for updating prediction (Arnal and Giraud, 2012), again
consistent with the idea presented here that low-beta is sensitive
to the precision of prediction, and associates with attention and
prediction updating.

The latency of the low-beta response also implies that it is
likely associated with attention and prediction updating. The
low-beta response to pitch deviants in our data was around
200–300 ms after tone onset, which was later than the well-
studied MMN prediction error response in the time waveform
ERP, which was around 100 to 120 ms (Figure 2), consistent
with other studies employing rhythmic sequences with relatively
fast IOIs (Näätänen et al., 2007; Pablos Martin et al., 2007;
Fujioka et al., 2008; Matsuda et al., 2013; Hove et al., 2014).
This suggests that the low-beta response reflects a processing
stage that is later than detecting prediction error. Interestingly,
the 200–300 ms timing of the beta band power response occurs
around the same time as P3a (Regnault et al., 2001; Jongsma
et al., 2004, see Figure 2 for P3a latency), which is known to
reflect exogenous attentional orienting and attentional updating
(Friedman et al., 2001; Polich, 2007). The P3a and induced
low-beta power likely reflect distinct neural responses because
the P3a is phase-locked to stimulus onset and originates in the
anterior cingulate cortex and related structures (Polich, 2007)
while, in contrast, the induced low-beta power response is not
phase locked to stimulus onset and is observed with a spatial filter
located in auditory regions. However, the overlapped response
latencies are consistent with the idea that attentional processing
in frontal areas, reflected by P3a, interacts with prediction
precision, and is associated with induced beta power in auditory
cortex.

To further evaluate the idea that beta is associated with
precision-weighted prediction error, it is important to consider
the alternative possibility that the beta band power increases
we observed following pitch deviants are simply a response to
novelty in the preceding local context rather than prediction

error. Indeed, a number of studies in humans and other
animals have shown effects of rare stimuli on both induced
and evoked beta oscillations (Haenschel et al., 2000; Kisley and
Cornwell, 2006; Hong et al., 2008; Fujioka et al., 2009; Pearce
et al., 2010; Kopell et al., 2011). Our results strongly favor
the idea that induced beta power associates with prediction
rather than a simple response to rareness for two reasons. First,
the induced power fluctuations of beta oscillation entrain to
external isochronous tone sequences in the absence of deviants
(Fujioka et al., 2012), which suggests that a primary function of
induced beta power concerns temporal prediction rather than
detecting rare events. Second, our analyses of standard tones
showed that induced low-beta power responses were stronger
after the onset of standard tones that were less likely to occur
(i.e., the last standard tone occurring after an uninterrupted
series of sequential standard tones, SpreD trials) than standard
tones that were more likely to occur (i.e., standards occurring
earlier in a sequence of standards, SbS trials). This confirms
that increased induced low-beta power after tone onset reflects
a process that is sensitive to the precision of prediction
error.

Our results also suggest that the low-beta response is
associated with precision-weighted prediction error while
controlling possible effects of SSA. Previous studies on adaptation
show that the neural response decreases to repeated tones, and
that an increased response to the presentation of a new (rare) tone
in an oddball context could reflect a release from this adaptation
(e.g., Butler, 1968; Näätänen et al., 1988; Lanting et al., 2013).
By selecting the deviant trials in the 10% and 20% sessions that
had a matched number of standard tones preceding them we
equated any effects of SSA between sessions. The results showed
that the low-beta response to a deviant tone was larger in the
10% session than in the 20% session even after SSA was equated.
Thus, the lower conditional likelihoods of encountering a deviant
tone in the 10% than 20% session associate with a larger low-beta
response on deviant trials. This analysis suggests that the low-
beta response associates with precision-weighted prediction error
although there may also have been a smaller effect of stimulus
adaptation. Further research is needed on this question (e.g., see
Herrmann et al., 2013, 2014, 2015).

A remaining question concerns the relation between
prediction of rhythmic timing (Fujioka et al., 2012, 2015) and
prediction precision for pitch, given that induced beta power
is interactively modulated by both factors. Here we propose
that timing and content (when and what) interact through
attentional processing. Dynamic attending theory proposes that
internal rhythmic entrainment to external temporal regularities
is accomplished by a combination of self-sustained neural
oscillation and the dynamic allocation of attention in the
temporal dimension (Jones and Boltz, 1989; Large and Jones,
1999; Jones, 2010). The self-sustained oscillation acts as a time
frame, and adapts its rate and phase to the external auditory
rhythm. Attention increases at important time points such as
the onset of beats, which is guided by the temporal prediction of
the oscillatory time frame, and reflects temporal prediction for
upcoming events during rhythmic entrainment. This attentional
rhythmic entrainment is characterized as exogenous orienting
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(Jones et al., 2006; Nobre et al., 2007; Coull and Nobre, 2008;
Jones, 2010), which is involuntary and automatic (Rohenkohl
et al., 2011; Triviño et al., 2011; Correa et al., 2014). Further, an
MEG study has shown that the mathematical model of dynamic
attending theory predicts delta power activities generated in
auditory cortex (Herrmann et al., 2016), suggesting that rhythmic
attending modulates oscillatory activities in auditory cortex. In
this way, it is possible that rhythmic beta power fluctuations
representing attention to events with temporal regularity increase
perceptual processing of the content of the input stream at
predictable time points, such as beat onsets. The idea that
beta oscillations reflect temporal attention is also consistent
with converging evidence that similar processes occur in the
motor system, where rhythmic temporal structure also plays a
critical role (e.g., Nobre et al., 2007; Coull and Nobre, 2008;
Morillon et al., 2015). This is particularly interesting given that
an auditory rhythm sets up beta power oscillations not only in
auditory cortex, but also in motor areas even though movement
is not involved. Thus, beta power oscillations in response to a
rhythmic auditory input have also been interpreted as reflecting
communication between auditory and motor system in the cortex
(Jenkinson and Brown, 2011; Fujioka et al., 2012, 2015; Kilavik
et al., 2013).

A lack of concurrent behavioral measurements to confirm
whether induced beta power modulates perceptual sensitivity
is a limitation of the current study. Further experiments are
needed to examine this directly. However, the evidence to
date shows that increased beta power before a stimulus onset
reflects enhanced predictive readiness and improves perceptual
performance. Studies using an auditory spatial temporal order
judgments task (Bernasconi et al., 2011), an auditory temporal
delay detection task (Arnal et al., 2015), intensity detection task
(Herrmann et al., 2016), pitch distortion detection task during
music listening (Doelling and Poeppel, 2015), or an audiovisual
temporal integration task (Geerligs and Akyürek, 2012), all
show that when the beta band power happened to be larger
in the pre-stimulus period, participants made more accurate
judgments or had enhanced audiovisual integration compared
to when beta power was smaller. Together, the results of these
studies are consistent with our speculation that beta oscillations
reflect attention (Wróbel, 2000; Buschman and Miller, 2007,
2009).

CONCLUSION

We presented isochronous auditory oddball sequences
containing occasional pitch deviants to show that induced
beta power is sensitive to the content of the input during
rhythmic entrainment. We replicated previous findings that
induced beta power entrains to externally presented rhythms.
More interestingly, we showed that unpredicted pitch deviants
modulate beta power 200–300 ms after deviant tone onsets,
and that the magnitude of the modulation reflects the deviant
occurrence likelihood (precision-weighted prediction error). Our
data show that induced beta power activities in auditory cortex
are consistent with a role in sensory prediction for both what
(pitch) will occur as well as when (rhythm) events will occur. The
timing and nature of the beta power response to pitch deviants
suggests that it reflects an attentional modulation. In conjunction
with other research, we propose that predictions for what and
when are dynamically processed through attentional networks,
and that beta oscillations in auditory cortex reflect the functional
significance of sensory prediction and prediction error processes.
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Observable lip movements of the speaker influence perception of auditory speech.

A classical example of this influence is reported by listeners who perceive an

illusory (cross-modal) speech sound (McGurk-effect) when presented with incongruent

audio-visual (AV) speech stimuli. Recent neuroimaging studies of AV speech perception

accentuate the role of frontal, parietal, and the integrative brain sites in the vicinity of the

superior temporal sulcus (STS) for multisensory speech perception. However, if and how

does the network across the whole brain participates during multisensory perception

processing remains an open question. We posit that a large-scale functional connectivity

among the neural population situated in distributed brain sites may provide valuable

insights involved in processing and fusing of AV speech. Varying the psychophysical

parameters in tandem with electroencephalogram (EEG) recordings, we exploited the

trial-by-trial perceptual variability of incongruent audio-visual (AV) speech stimuli to

identify the characteristics of the large-scale cortical network that facilitates multisensory

perception during synchronous and asynchronous AV speech. We evaluated the

spectral landscape of EEG signals during multisensory speech perception at varying

AV lags. Functional connectivity dynamics for all sensor pairs was computed using

the time-frequency global coherence, the vector sum of pairwise coherence changes

over time. During synchronous AV speech, we observed enhanced global gamma-band

coherence and decreased alpha and beta-band coherence underlying cross-modal

(illusory) perception compared to unisensory perception around a temporal window of

300–600ms following onset of stimuli. During asynchronous speech stimuli, a global

broadband coherence was observed during cross-modal perception at earlier times

along with pre-stimulus decreases of lower frequency power, e.g., alpha rhythms for

positive AV lags and theta rhythms for negative AV lags. Thus, our study indicates

that the temporal integration underlying multisensory speech perception requires to be

understood in the framework of large-scale functional brain network mechanisms in

addition to the established cortical loci of multisensory speech perception.

Keywords: EEG, AV,multisensory, perception, functional connectivity, coherence, temporal synchrony, integration
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INTRODUCTION

Perception of the external world involves the efficient integration
of information over multiple sensory systems (Wallace et al.,
1993). During speech perception, visual cues from the speaker’s
face enhances the intelligibility of auditory signal (Sumby, 1954;
Helfer, 1997; Bulkin and Groh, 2006). Also, the incidence of
specific semantically-incongruent visual information modulates
auditory perception, for example, an auditory speech sound
/ba/ superimposed with a speaker’s lip movement of /ga/,
gives rise to a perception of /da/ (McGurk and Macdonald,
1976). Similarly, an incongruent AV combination of /pa/-
/ka/ elicits an ‘illusory’ (cross-modal) percept /ta/(McGurk
and Macdonald, 1976; MacDonald and McGurk, 1978; van
Wassenhove et al., 2007). However, such multisensory-mediated
effects are influenced by the relative timing of the auditory and
visual inputs (Stein et al., 1989; Munhall et al., 1996; Sekuler et al.,
1997; van Atteveldt et al., 2007; van Wassenhove et al., 2007).
Consequently, the temporal processing of the incoming multiple
sensory (auditory and visual) information and their integration
to yield a crossmodal percept is pivotal for speech perception
(Deroy et al., 2014). Where and how the underlying information
processing takes place is subject of several research studies which
we review in the following paragraph. Cortical and sub-cortical
regions and functional brain networks with specific patterns of
connectivity becomes the prime target for these investigations.
In a nutshell, characterization of the multi-scale representational
space of temporal processing underlying multisensory stimuli is
an open question to the community.

As we discuss in the following paragraph, a dominant strategy
in multisensory research is the search for loci comprising of
brain areas that are responsible for triggering the multisensory
experience (Jones and Callan, 2003; Beauchamp, 2010; Nath
and Beauchamp, 2013). However, from the perspective of
functional integration (Bressler, 1995; Bressler andMenon, 2010)
understanding the large-scale network organization underlying
the temporal processes is a critical component of formulating
a comprehensive theory of multisensory speech perception.
Numerous neuroimaging and electrophysiological studies have
explored the neural mechanism that underpins audio-visual
integration employing McGurk effect (Wallace et al., 1993;
Jones and Callan, 2003; Sekiyama et al., 2003; Kaiser, 2004;
van Wassenhove et al., 2005; Hasson et al., 2007; Saint-Amour
et al., 2007; Skipper et al., 2007; Stevenson et al., 2010; Keil
et al., 2012; Nath and Beauchamp, 2013). A majority of these
studies accentuate the role of primary auditory and visual
cortices, multisensory areas such as posterior superior temporal
sulcus (pSTS) (Jones and Callan, 2003; Sekiyama et al., 2003;
Nath and Beauchamp, 2011, 2013) and other brain regions
including frontal and parietal areas (Callan et al., 2003; Skipper
et al., 2007) in the perception of the illusion. In particular,
the electrophysiological evidences primarily emphasizes the
significance of beta (Keil et al., 2012; Roa Romero et al.,
2015) and gamma band activity (Kaiser, 2004) toward illusory
(cross-modal) perceptual experience. Source-level functional
connectivity among brain areas employing phase synchrony
measures, reveal interactions among cortical regions of interest

(left Superior Temporal Gyrus) and the whole brain that
correlates with cross-modal perception (Keil et al., 2012). These
studies either reveal the activations in the cortical loci or
the functional connectedness to particular cortical regions of
interest that are elemental for the illusory percept. On the
other hand, the role of timing between auditory and visual
components in AV speech stimuli has been studied from the
perspective of the main modules in multisensory processing
(Jones and Callan, 2003). Recently, we have addressed this
issue using a dynamical systems model to study the interactive
effects between AV lags and underlying neural connectivity
onto perception (Thakur et al., 2016). Interestingly, how these
network are functionally connected in the context of behavioral
performance or perceptual experience are increasingly being
revealed (Nath and Beauchamp, 2011; Keil et al., 2012).
Nonetheless, the identification and systematic characterization of
these networks under cross-modal and unimodal perception is an
open question.

A traditional measure of large-scale functional connectivity
in EEG is the sensor-level global coherence (Cimenser et al.,
2011; Balazs et al., 2015; Fonseca et al., 2015; Alba et al., 2016;
Clarke et al., 2016). Global coherence can be described as either
the normalized vector sum of all pairwise coherences between
sensor combinations, the frequency domain representation of
cross-correlation between two time-series (Lachaux et al., 1999;
Cimenser et al., 2011) or the ratio of the largest eigenvalue of
the cross-spectral matrix to the sum of its eigenvalues (Mitra
and Bokil, 2008). An increased global coherence confirms the
presence of a spatially extended network that spans over several
EEG sensors, since local pairwise coherence would not survive
statistical threshold after averaging. To the best of our knowledge,
global coherence has not been used in the domain of audio-
visual (AV) speech perception to evaluate the presence of whole
brain networks. Furthermore, characterization of the differences
in whole brain network organization underlying cross-modal vs.
unimodal perceptual experience vis-à-vis the timing of sensory
signals will be critical to understanding the neurobiology of
multisensory perception.

In the current study, we used the incongruent McGurk pair
(audio /pa/ superimposed on the video of the face articulating
/ka/) to induce the illusory percept /ta/. Further, we generated
a temporal asynchrony in the onset of audio and visual events
of the McGurk pair to diminish the rate of cross-modal
responses. Subsequently, we exploited the inter-trial perceptual
variability to study integration both at behavioral levels by
accounting perceptual response and eye-tracking as well as
neural levels using EEG. We considered subjects’ /pa/ responses
as unimodal perception since it represents only one sensory
stream and /ta/ responses as cross-modal perception since it
represents an experience resulting from integrating features
from two modalities (Deroy et al., 2014). We studied the
spectral landscape of perceptual categorization as function of AV
timing and found patterns that matched with previous reports.
Finally, we evaluate the large-scale brain network organization
dynamics using time-frequency global coherence analysis for
studying perceptual categorization underlying different temporal
processing scenarios at various AV lags. In the process, we
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FIGURE 1 | Stimuli Each block represents a video. (A) The McGurk stimuli: Audio /pa/ superimposed on visual (lip movement) /ka/ was presented under different

audio-visual (AV) lag scenarios. The location of onset of audio is varied with respect to a person’s initiation of lip-movement /ka/ at −450, 0, and 450ms. (B) In

congruent /ta/ condition, audio /ta/ is presented synchronously with onset of lip movement /ta/.

reveal the complex spectro-temporal organization of networks
underlying multisensory perception.

MATERIALS AND METHODS

Participants
Nineteen [10 males and 9 females, ranging from 22–29, (mean
age 25; SD = 2)] healthy volunteers participated in the study.
No participant had neurological or audiological problems.
They all had normal or corrected-to-normal vision and were
right handed. The study was carried out following the ethical
guidelines and prior approval of Institutional Review Board of
National Brain Research Centre, India.

Stimuli and Trials
The experiment consisted of 360 trials overall in which we
showed the videos of a male actor pronouncing the syllables
/ta/ and /ka/ (Figure 1). One-fourth of the trials consisted of
congruent video (visual /ta/ auditory /ta/) and the remaining
trials comprised incongruent videos (visual /ka/ auditory /pa/)
presented in three audio-visual lags: −450ms (audio lead), 0ms
(synchronous),+450ms (audio lag), each comprising one-fourth
of the overall trials. The stimuli were rendered into a 800 ×

600 pixels movie with a digitization rate of 29.97 frames per
second. Stereo soundtracks were digitized at 48 kHz with 32 bit
resolution. The stimuli were presented via Presentation software
(Neurobehavioral System Inc.). The video was presented using a

17′′ LED monitor. Sounds were delivered at an overall intensity
of∼60 dB through sound tubes.

The experiment was carried out in three blocks each block
consisting of 120 trials. Inter-trial intervals were pseudo-
randomly varied between 1200 and 2800ms. Each block
comprised the four stimuli types (30 trials of each): Congruent
video and three incongruent videos with the AV lags. The subjects
were instructed to report what they heard while watching the
articulator using a set of three keys. The three choices were /pa/,
/ta/ and “anything else” (Other).

Post EEG scan, the participants further performed a
behavioral task. The task comprised of 60 trials, comprising 30
trials each of auditory syllables /pa/ and /ta/. Participants were
instructed to report their perception using a set of two keys while
listening to syllables. The choices were /pa/ and /ta/.

Data Acquisition and Analysis
EEG
EEG recordings were obtained using a Neuroscan system
(Compumedics NeuroScan, SynAmps2) with 64 Ag/AgCl
sintered electrodes mounted on an elastic cap of Neuroscan
in a 10–20 montage. Data were acquired continuously in AC
mode (sampling rate, 1 kHz). Reference electrodes were linked
mastoids, grounded to AFz. Channel impedances were kept at
< 5 k�. All subsequent analysis was performed in adherence to
guidelines set by Keil et al. (2014).
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Eye Tracking
Gaze fixations of participants on the computer screen were
recorded by EyeTribe eye tracking camera with resolution 30Hz
(https://theeyetribe.com/). The gaze data were analyzed using
customized MATLAB codes. The image frame of the speaker
video was divided into 3 parts, the head, the nose and the mouth
(Figure 2A). The gaze locations at these quadrants over the
duration of stimulus presentation were converted into percentage
measures for further statistical analysis.

Pre-processing of EEG Signals
The collected EEG data were subsequently filtered using a
bandpass of 0.2–45Hz. Epochs of 400 and 900ms before and
after the onset of first stimuli (sound or articulation) were
extracted and sorted based on the responses, /ta/, /pa/, and
“other” respectively. Epochs were baseline corrected by removing
the temporal mean of the EEG signal on an epoch-by-epoch
basis. Epochs with maximum signal amplitude above 100µV or
minimum below −100µV were removed from all the electrodes
to eliminate the response contamination from ocular andmuscle-
related activities. Approximately 70–75 % (∼250 trials) trials of
each subject were preserved after artifact rejection. In the final
data analysis, a mean of 24 (SD = 9), 18 (SD = 9), and 25 (SD =

13) incongruent trials at−450, 0,+450ms AV lags respectively in
which the participants responded /pa/ were included. Similarly,
a mean of 32 (SD = 15), 42 (SD = 13), and 32 (SD = 14)
incongruent trials at −450, 0, +450ms AV lags respectively in
which the participants responded /ta/ were included in the final
analyses. Approximately 2–6% of trials were excluded from each
of the aforementioned trial categories. The response category
with lowest number of occurrences was /pa/ at 0ms AV lag
with 270 hits from a total of 1350 trials across all volunteers
(15× 90). Subsequently, we randomly resampled 270 trials from
/ta/ responses at 0ms AV lag, and /pa/ and /ta/ responses at
other AV lags. Thus, for each AV lag condition, 270 trials chosen
randomly from the respective sorted response epochs (/pa/ or
/ta/) entered the final analyses.

Spectral Analysis
Power spectra of the preprocessed EEG signals at each
electrode were computed on a single trial basis. We computed
the spectral power at different frequencies using customized
MATLAB (www.mathworks.com) codes and the Chronux
toolbox (www.chronux.org). Time bandwidth product and
number of tapers were set at 3 and 5 respectively while using
the Chronux function mtspecgramc.m to compute the power
spectrum of the sorted time series in EEG data. Subsequently,
the differences in the power during /ta/ and /pa/ responses at
each AV lag were statistically compared by means of a cluster-
based permutation test (Maris and Oostenveld, 2007) using
the fieldtrip toolbox (www.fieldtriptoolbox.org). The fieldtrip
function ft_freqstatistics.m was used to perform the cluster
computation. During the statistical comparison, an observed
test statistic value below the threshold of 0.05 in at least 2 of
the neighborhood channels were set for being considered in
the cluster computation. Furthermore, 1000 iterations of trial
randomization were carried out for generating the permutation

distribution at a frequency band. Subsequently, a two tailed test
with a threshold of 0.025 was used for evaluating the sensors that
exhibit significant difference in power. Statistical analysis was
carried out separately for alpha (8–12Hz), beta (13–30Hz), and
gamma (30–45Hz) frequency ranges.

Large-Scale Network Analysis
For deciphering the coordinated oscillatory brain network
underlying the AV integration, we employed global coherence
analyses (Bressler et al., 1993; Lachaux et al., 1999; Maris et al.,
2007; Cimenser et al., 2011) on the perceptual categories (/ta/ and
/pa/). A higher value of this measure will indicate the presence
of strong large-scale functional networks. We computed the
global coherence by decomposing information from the cross-
spectral matrix employing the eigenvalue method (Mitra and
Bokil, 2008). The cross-spectrum value at a frequency f between
sensor pair i and j was computed as:

CX
ij (f ) =

1

K

K
∑

k= 1

Xk
i (f )X

k
j (f )

∗ (1)

where Xk
i and Xk

j are tapered Fourier transforms of the time

series from the sensors i and j respectively, at the frequency f.
A 62 × 62 matrix of cross spectra, that represents all pairwise
sensor combination, was computed in our case. Conversely,
to characterize the dynamics of coordinated activity over
time, we evaluated the time-frequency global coherogram. We
employed the Chronux function cohgramc.m to obtain the time-
frequency cross-spectral matrix for all the sensor combinations.
Subsequently, for each trial we obtained the global coherence at
each time point and frequency bin by computing the ratio of the
largest eigenvalue of the cross-spectral matrix to the sum of the
eigenvalues employing the following equation:

CGlobal(f ) =
SY1 (f )
n
∑

i= 1
SYi (f )

(2)

where CGlobal(f ) is the global coherence, SY1 (f ) is the largest
eigenvalue and the denominator

∑n
i=1 S

Y
i (f ) represents the sum

of eigenvalues of the cross-spectral matrix (Cimenser et al.,
2011). Time-frequency global coherogram computed for /ta/ and
/pa/ responses were further compared at each time point for
significant difference in different frequency bands (alpha, beta,
and gamma) by means of cluster-based permutation test (Maris
et al., 2007).

For every frequency bin at each time point, the coherence
difference between /ta/ and /pa/ was evaluated using the Fisher’s
Z transformation

Z(f ) =
tanh−1(C1(f ))− tanh−1(C2(f ))− ( 1

2m1−2 −
1

2m2−2 )
√

1
2m1−2 +

1
2m2−2

(3)
where 2m1, 2m2 = degrees of freedom; Z(f ) ≈ N(0, 1) a
unit normal distribution; and C1 and C2 are the coherences at
frequency f.

Frontiers in Psychology | www.frontiersin.org October 2016 | Volume 7 | Article 1558 | 30

https://theeyetribe.com/
http://www.mathworks.com
http://www.chronux.org
http://www.fieldtriptoolbox.org
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Kumar et al. Large-scale Networks Underlying Multisensory Perception

FIGURE 2 | Behavior (A) overall eye gaze fixation overlaid over a single frame of the stimuli (B) the bar graphs show the percentage of /ta/ and /pa/

responses for each subject at the AV lags:−450, 0, +450ms as indicated by the colors guide (C) shows the number of normalized group responses in

each of the three perceptual categories: “/pa/”, “/ta/”, and “other” for each AV lag. The error bars represent the 95% confidence interval (D) Mean gaze

fixation percentages at mouth for each perceptual category at the respective stimuli (incongruent AV lags −450, 0, +450ms, and congruent /ta/) across trials and

participants. The error bars represents 95% confidence interval. /pa/ perception for congruent /ta/ stimulus were less than <1%.

The coherence Z-statistic matrix obtained from the above
computation formed the observed Z-statistics. Subsequently,
from the distribution of observed Z-statistics, 5th and the 95th

quantile values were chosen as upper and lower threshold i.e.,
the values below and above the threshold values respectively
were considered in the cluster computation. Based on spectral
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adjacency (4–7Hz, theta; 8–12Hz, alpha; 13–30Hz, beta; 30–
45Hz, gamma), clusters were selected at each time point.
Consequently, cluster-level statistics were computed by taking
the sum of positive and negative values within a cluster
separately. Following the computation of the cluster-level
statistics of the observed Z-statistics, 1000 iterations of trial
randomization were carried out. For every iteration, cluster-level
statistic was computed on the randomized trials to generate the
permutation distribution. Subsequently, the values of observed
cluster-level statistics were compared with the 2.5th and the
97.5th quantile values of the respective permutation distribution.
The observed cluster-level statistics value that were below 2.5th
and above 97.5th quantile consequently for two time points
formed the negative and positive clusters respectively.

RESULTS

Behavior
Behavioral responses corresponding to McGurk stimuli with
the AV lags were converted to percentage measures for each
perceptual category (/pa/, /ta/, or “other”) from all subjects. We
set a minimum threshold of 60% of /ta/ response in any AV
lag, −450, 0, and +450ms to qualify a participant as an illusory
perceiver. 15 participants passed this threshold and 4 participants
failed to perceive above the set threshold (see Figure 2B). Data
from only 15 perceivers were used for further group level
analysis. We observed that maximum percentage of illusory (/ta/)
responses occurred at 0ms AV lag when the lip movement
of the speaker was synchronous with the onset of auditory
stimulus (Figure 2C). Also, the percentage of /pa/ responses was
minimum at 0ms AV lag. We ran one-way ANOVAs on the
percentage responses for /pa/, /ta/, and “other” with AV lags as
the variable. We observed that AV lags influenced the percentage
of /ta/ [F(2, 44) = 27.68, p < 0.0001] and /pa/ [F(2, 44) = 5.89,
p = 0.0056] responses. However, there was no influence of
AV lags on “other” responses [F(2, 44) = 0.36, p = 0.700].
We also performed paired Student’s t-test on the percentage of
responses (/ta/ and /pa/) at each AV lag. Insignificant differences
of 10.20–11.40% were observed between /ta/ and /pa/ responses
at −450ms AV lag [t(14) = 0.63, p = 0.27] and +450ms AV lag
[t(14) = 0.45, p = 0.67] respectively. However, at 0ms AV lag
we observed the percentage of /ta/ responses were significantly
higher by 36.58% than the percentage of /pa/ responses, t(14) =

10.20, p < 0.0001. Furthermore, the hit rate of /ta/ responses
during congruent /ta/ was observed to be 0.97. Also, the hit rate
of /ta/ and /pa/ during auditory alone conditions were observed
to be 0.96 and 0.98 respectively.

Gaze fixations at different locations on the speaker’s, head,
nose and mouth areas were converted into percentage measures
trial-by-trial for each subject and stimuli conditions. Figure 2A
indicates that most of the gaze fixations were around head,
nose, and mouth areas only. We ran a repeated measures 2-way
ANOVA onmean gaze fixation percentages across trials at mouth
areas with lags and perceived objects (/pa/ or /ta/) as variables. No
significant differences were found for gaze fixations across lags
[F(2, 89) = 0, p = 0.95] and perceptual categorization [F(1, 89) =
1.33, p = 0.27) as well as their interactions [F(2, 89) = 0.01, p =

0.85]. Number of /pa/ responses for congruent /ta/ stimulus was
negligible (<1%), to do meaningful statistical comparisons. We
also performed paired Student’s t-tests on the mean gaze fixation
percentages for /pa/ and /ta/ responses at each lag. Increases
in gaze fixation at mouth during /ta/ perception by 15.5 % at
−450ms AV lag [t(14) = 0.90, p = 0.38], 7.2 % at 0ms AV lag
[t(14) = 0.90, p = 0.38] and 28.54% at +450ms AV lag [t(14) =
−0.32, p = 0.74] (see Figure 2D for the mean values) were not
statistically significant.

Oscillatory Activity
Subsequent to replicating the perceptual (Munhall et al., 1996;
van Wassenhove et al., 2007) and the eye gaze behavior (Gurler
et al., 2015) results as reported earlier, the focus of interest
was what differentiates the two perceptual states (/ta/ and /pa/)
in terms of brain oscillations and large-scale functional brain
networks. Therefore, spectral power at different frequency bands
during /ta/ and /pa/ perception were compared at different
AV lags. Power spectra at each sensor computed in the time
window before (see Figure 3A) and after (see Figure 3B) the
onset of first stimuli showed distinct changes in power for
the two states. Cluster-based permutation tests employed for
comparing the spectral power between the perceptual states show
that /ta/ perception is associated with an overall suppression in
power for all AV lags (see Figure 4). The magenta “∗” on the
topoplots highlight the position of the negative clusters showing
a significant suppression at 95% confidence levels in power. The
blue areas on the scalp map highlight the regions that show
decrease in the spectral power and the orange and red regions
highlight the regions that show an increase in the spectral power.
During the pre-stimulus period, one significant negative cluster
[t(269) = −2.04, p = 0.02] over temporo-occipital sensors, two
over frontal and occipital sensors [t(269) = −3.57, p = 0.002 and
t(269) = −3.14, p = 0.0002] and one over occipital sensors [t(269)
= −2.18, p = 0.01] were observed for alpha, beta, and gamma
bands respectively in 0ms AV lag (see Figure 4A). Also, one
significant negative cluster over fronto-temporal and occipital
sensors [t(269) =−2.65, p = 0.004], one over frontal and occipital
sensors [t(269) = −2.31, p = 0.01] were observed at alpha and
beta bands respectively during +450ms AV lag (see Figure 4C).
However, no significant difference was found during −450ms
AV lag.

Furthermore, during post-stimulus onset period, the /ta/-/pa/
comparison revealed one significant negative cluster over all
sensors [t(269) = −1.93, p = 0.02], one over frontal, parietal,
and occipital sensors [t(269) = −2.70, p = 0.004] and one
over occipital sensors [t(269) = −2.54, p = 0.006] at alpha,
beta, and gamma bands respectively during −450ms AV lag
(see Figure 4C). During 0ms AV lag, one significant negative
cluster [t(269) = −2.22, p = 0.01] spanning over all sensors
and one over occipital sensors [t(269) = −2.10, p = 0.02] was
observed at alpha and beta bands respectively (see Figure 4D).
However, no significant difference in power between /ta/-/pa/
trials was observed during the post-stimulus period at +450ms
AV lag. Overall, significant spectral power was lower during /ta/
than /pa/ as reflected from cluster-based analysis during pre- and
post-stimulus periods.
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FIGURE 3 | Power Spectrum. Spectral-power at each condition and perceptual category during (A) Pre-stimulus onset. (B) Post-stimulus onset periods. The plots

adjacent to the scalp maps show the enlarged plots of the power spectrum at the sensors: Fz, Cz, and Oz.

Time-Frequency Global Coherogram
Eigenvalue based time-frequency global coherogram (Cimenser
et al., 2011) was computed for the epochs of 1.3 s duration
(0.4 s pre-stimulus, and 0.9 s post-stimulus segments). The time
locking was done to the first sensory component, audio or
visual, for −450 and +450ms AV lag and the onset of AV

stimulus for 0ms AV lag. The mean coherogram plots for the
perceptual categories /ta/ and /pa/ and their difference at AV
lags: −450ms (see Figures 5A–C), 0ms (see Figures 5D–F),
+450ms (see Figures 5G–I) showed relatively heightened global
coherence in the theta band (4–8Hz) throughout the entire
epoch duration. Cluster-based permutation tests employed to
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FIGURE 4 | Spectral Difference. The topoplots and the magenta “*” highlight the clusters that show significant difference between the perceptual categories

/ta/-/pa/ during the three stimulus conditions: −450ms AV lag at (A) pre-stimulus onset (B) post-stimulus onset, 0ms AV lag (C) pre-stimulus onset (D) post-stimulus

onset, +450ms AV lag (E) pre-stimulus onset (F) post-stimulus onset.

compare the mean coherogram for /ta/ and /pa/ at the respective
AV lags revealed both positive and negative clusters (see
Figures 5C,F,I). Positive clusters highlighted in black dashed
rectangles signify time-frequency islands of increased synchrony
and the negative clusters in red dashed boxes signify islands of
decreased synchrony in the global neuronal network.

In the pre-stimulus period, we observed two positive and one
negative cluster each during −450 and +450ms AV lag. The
first and second positive clusters during −450ms AV lag were
observed in the frequency bands beta (16–30Hz) (z97.5 = 0.29)
and gamma (>30Hz) (z97.5 = 0.78) respectively and the negative
cluster was found in theta band (4–7Hz) (z0.025 = −0.29). Here,
z97.5 and z0.025 represent the two-tailed thresholds at p = 0.05 set
by permutation tests to compute the significantly different cluster
(for details, see Methods section and Maris et al., 2007). Similarly
during+450ms AV lag the first and second positive clusters were
observed in the frequency bands beta (z97.5 = 0.26) and gamma
(z97.5 = 0.34) respectively and the negative cluster was found
in the alpha band (8–12Hz) (z0.025 = −0.78). However, during

0ms AV lag, only a significant positive cluster was observed in
the alpha frequency band (z97.5 = 0.58).

In the post-stimulus onset period, during−450ms AV lag (see
Figure 5C), three positive clusters were observed, (1) in alpha
band with temporal range between ∼200 and 560ms (z97.5 =

0.50), (2) in beta band with temporal range between ∼ −50 and
500ms (z97.5 = 0.29), and (3) in gamma band between ∼50
and 400ms (z97.5 = 0.78). Also, a negative cluster (z0.025 =

−1.02) was observed in the theta band between∼800 and 900ms.
During +450ms AV lag (see Figure 5I), two positive clusters
were observed, one in the theta band (z97.5 = 0.73) between ∼0
and 500ms and the other one in gamma band (z97.5 = 0.34)
between ∼ 0 and 200ms. A negative cluster was also observed
in the theta band (z0.025 = −0.68) between ∼700 and 850ms.
Interestingly, during 0ms AV lag (see Figure 5F) we observed
a positive cluster (z97.5 = 0.26) precisely in the gamma band
(∼300 and 700ms) and three negative clusters (p ≤ 0.05).
Two of the negative clusters (z0.025 = 0.31) were observed in
the theta band around 300 and 600ms and ∼700 and 900ms
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FIGURE 5 | Time-frequency representations of large-scale functional brain networks. Mean time frequency coherogram for different perceptual categories

time locked to the onset of the first sensory component (A or V) during the three conditions and the mean coherence difference between /ta/ and /pa/ responses at

different AV lags: for −450ms (A) /ta/ (B) /pa/ (C) /ta/-//pa/; for 0ms (D) /ta/ (E) /pa/ (F) /ta/-//pa/; for 450ms (G) /ta/ (H) /pa/ (I) /ta/-//pa/.

and the third negative cluster incorporated both alpha and beta
bands (9–21Hz) (z0.025 =−0.25) and appeared between 300 and
800ms.

DISCUSSION

Characterizing the dynamics of the whole brain network is
essential for understanding the neurophysiology of multisensory
speech perception. We have shown that the spatiotemporal

dynamics of the brain during speech perception can be
represented in terms of brain oscillations and large-scale
functional brain networks. We explicitly focused on investigating
the characteristics of the brain networks that facilitate perception
of the McGurk illusion. We exploited the perceptual variability
of McGurk stimuli by comparing the oscillatory responses and
network characteristics within identical trials. The main findings
of the study are: (1) heightened global coherence in the gamma
band along with decreased global coherence in the alpha and
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theta bands facilitates multisensory perception (2) a broadband
enhancement in the global coherence at theta, alpha, beta, and
gamma bands aids multisensory perception for asynchronous
AV stimuli, as brain engages more energy for multisensory
integration. We discuss the behavioral and neural-level findings
in following sub-sections.

Variability of Perceptual Experience
A vast body of literature has reported that under controlled
settings one can induce illusory perceptual experience in
human participants (McGurk and Macdonald, 1976; MacDonald
and McGurk, 1978; van Wassenhove et al., 2007; Nath and
Beauchamp, 2011; Keil et al., 2012). Here, we constructed
incongruent AV stimuli (auditory /pa/ superimposed onto video
of face articulating /ka/) using three different AV lags: −450ms
(audio precede articulatory movements), 0ms (synchronous
onsets of audio and articulatory movements), and +450ms
(articulatory movements precede audio) (see Figure 1). We
identified that a categorical perceptual difference appeared with
variation in AV lags. Synchronous AV stimuli resulted in higher
percentage response of crossmodal (/ta/) perception (Figure 2C)
whereas AV lags of −450 and +450ms resulted in lowering of
the percentage of crossmodal percept and higher occurrence of
the unimodal percept /pa/. Furthermore, we observed high hit
rate of /ta/ responses both during congruent /ta/ stimuli (>90%)
and during our post-hoc “auditory alone” behavioral experiment
(>95%). Behavioral studies by van Wassenhove et al. (2007)
demonstrate 200ms of asynchrony as the temporal window
of bimodal integration. However, electrophysiological studies
especially in the domain of preparatory processes demonstrate
the elicitation of ERP components up to 600–800ms in response
to a cue followed by a target stimulus (Simson et al., 1977).
Extending this line of reasoning to our experimental paradigm,
we believe an existence of temporal integration mechanisms
beyond 200ms does not allow the percentage of /pa/ perception
to reach the level for congruent multisensory or purely auditory
perception. In the current study we focused on the boundaries
of stable illusory perception but the temporal boundaries of
multisensory integration needs to be tested by future studies.

Interestingly percentage of gaze fixation at the mouth of the
speaker for crossmodal response trials did not vary significantly
at any AV lags based on t-test. Also, the interaction between lags
and perceptual categorization was not significant when analyzed
with 2-way ANOVA. Even though not statistically significant,
the mean gaze fixation percentages at mouth for crossmodal
perception were slightly higher than unimodal perception at all
AV lags. Therefore, we cannot completely rule out the findings
of an earlier study that show that frequent perceivers of McGurk
effect fixate more at the mouth of the speaker (Gurler et al.,
2015) as well as we were limited by the number of participants
to evaluate correlations between the behavioral results and the
percentage of gaze fixation at 0ms AV lag. On the other hand
the subjective behavioral response for perceptual categorization
clearly showed an interaction effect between AV lags and
perceived objects. It is important to note that the identical
multisensory stimuli generated varying responses for different
trials. All stimuli being multisensory, differential perception

served as an efficient handle to tap into the perceptual processing
underlying speech perception. Our behavioral response results
are consistent with previous studies onMcGurk stimuli (Munhall
et al., 1996; van Wassenhove et al., 2007) that demonstrate
the influence of AV lags on perceptual experience. Hence, we
expected to identify the neurophysiological processes underlying
different multisensory perceptual scenarios.

Spectral Landscape of the Cortical Activity
Non-parametric statistical comparison between the perceptual
categories (/ta/–/pa/) showed suppression of the spectral power
in alpha, beta, and gamma frequency bands (see Figure 4).
Suppression of alpha-band power has been associated with
attention and language comprehension processes by enabling
controlled access to knowledge (Bastiaansen and Hagoort, 2006;
Hanslmayr et al., 2011; Klimesch, 2012; Payne et al., 2013).
Accordingly, the suppression of alpha-band power observed
in our study can be attributed to the attention related
network aiding access to stored knowledge and filter redundant
information.

Beta-band power was observed to be suppressed at
frontoparietal to occipital sensors during −450ms AV lag
and at occipital scalp regions during 0ms AV lag but no such
suppression was observed during +450ms AV lag. Beta band
power has been linked with various cognitive facets including
top-down control of attention and cognitive processing (Engel
and Fries, 2010). Besides, in the domain of multisensory
integration and language processing, suppression of beta-band
power has been associated with the occurrence of unexpected
stimuli (Bastiaansen and Hagoort, 2006; Weiss and Mueller,
2012). Furthermore, recent studies also show suppression of
beta power during the perception of the McGurk illusion (Roa
Romero et al., 2015). Extending the line of reasoning from the
aforementioned studies, suppression of beta-band power might
be associated to the occurrence of an unexpected stimulus and
its processing. Visual-lead condition, wherein we observed
no significant difference in the beta power, is possibly the
most predictable situation and hence significant beta power
modulation was not detected. Behaviorally, Munhall et al. (1996),
report McGurk illusion is most dominant between an AV lag of
0–200ms and there is a slight asymmetry toward positive AV
lags (visual lead). In fact, our data from a different experiment
also replicated this result.

Gamma-band power was observed to be significantly
suppressed only during −450ms AV lag at the occipital scalp
regions. Also, in the pre-stimulus period significant reduction
in gamma band power was observed at occipital scalp regions
during 0ms AV lag. Existing studies have demonstrated the
role of gamma-band oscillations in cognitive functions like
visual perception, attention and in the processing of auditory
spatial and pattern information (Jochen Kaiser and Lutzenberger,
2005a,b). Also, gamma band activity over sensory areas has been
attributed to the detection of changes in AV speech (Kaiser et al.,
2006). However, we observed a suppression in gamma band
activity which may be linked with preparatory processes over
wider network that waits for the expected visual information to
arrive. Although, the brain oscillatory responses to multisensory
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perception have been extensively studied, a consensus on the
mechanisms associated with these oscillations remains elusive.
Our study contributes to this vast body of work in conveying
that multisensory speech perception requires complex signal
processing mechanisms that involves the participation of several
brain regions. Therefore, understanding the process requires
analyzing the whole brain operating as large scale neurocognitive
network. In the subsequent section we discuss the network
analysis results.

Neurocognitive-Network Level Processing
Underlying Illusory Perception
Global time-frequency coherogram (see Figure 5) computed for
the perceptual categories quantifies the extent of coordinated
neuronal activity over the whole brain. Global coherence
reflects the presence of neuro-cognitive networks in physiological
signals (Bressler, 1995). Previous studies posits that neuronal
coherence could provide a label that binds those neuronal
assemblies that represent same perceptual object (von der
Malsburg and Schneider, 1986; Engel, 1997; Engel et al.,
2001). Besides, going by the communication-through-coherence
(CTC) hypothesis, only coherently oscillating neuronal groups
communicate effectively as their communication window for
spike output and synaptic input are open at the same
time (Senkowski et al., 2008; Fries, 2015). Hence, coherent
transmission poses a flexible mechanism that facilitates the
integration of converging streams in time windows of varying
duration. In our analysis we observed a relatively heightened
theta-band coherence for both the perceptual categories at all
the AV lags (see Figures 5A,B,D,E,G,H). Theta band coherence
has been associated to cognitive control processes (Cooper et al.,
2015). Accordingly, the enhanced theta-band coherence might
reflect the control processes preparing for upcoming stimuli.

Non-parametric statistical analysis employed to test the
global coherence differences between /ta/ and /pa/ during
0ms AV lag, revealed a positive cluster, signifying enhanced
synchrony specifically at the gamma band (between ∼300ms
and 700ms). Also, we observed negative clusters (between
∼300 and 900ms) in the theta, alpha and beta bands that
signify decreased synchrony among the underlying brain regions.
Overall temporal congruence of AV stimuli results in a narrow-
band coherence whereas lagged AV stimuli seemed to engage a
broadband coherence (see Figure 5C,F,I). However, we had one
limitation because of the nature of our stimuli. A direct statistical
comparison across lagged conditions was not meaningful since
each lagged condition had a different temporal sequence of
audio-visual components.

Inter-areal coherence of oscillatory activity in the beta
frequency range (15–30Hz) has been associated with top-
down processing (Wang, 2010). Moreover, top-down processing
involves the modulation of the hierarchical sensory and motor
systems by pre-frontal and frontal brain areas (Mesulam, 1990).
The dense anatomical interconnectivity among these association
areas give rise to self-organized large scale neuronal assemblies
defined as neuro-cognitive networks (NCNs), with respect to the
cognitive demands (Bressler and Richter, 2014). In this context,
our finding of increased coherence in the beta band during−450

and +450ms AV lag is especially relevant as it enables us to
hypothesize that synchronization of the beta oscillations provides
long range inter-areal linkage of distributed cortical areas in
NCNs. Such networks can readily process the retrieval of well
learnt audio-visual associations suggested by Albright (2012).

Gamma band coherence are shown to be associated with
voluntary eye movements, saccades (Balazs et al., 2015).
Besides, stimulus selection by attention also induces local
gamma band synchronization (Hipp et al., 2011). Our results
show enhanced gamma coherence (positive cluster) at all
AV lags. Considering the increased gaze fixation at mouth
during /ta/ perception, heightened gamma coherence reflects
the recruitment of the visual attention areas. A recent review
proposes that gamma band (30–90Hz) coherence activates
postsynaptic neurons effectively by modulating the excitation
such that it escapes the following inhibition (Fries, 2015).
Besides rendering effective communication, gamma coherence
has also been proposed to render communication that are
precise and selective (Buzsáki and Schomburg, 2015; Fries,
2015). Importantly, gamma band coherence has also been
demonstrated to be implicated in associative learning (Miltner
et al., 1999). Thus, our observation of enhanced coherence
exclusively at gamma and desynchronization at alpha and beta-
bands during 0ms AV lag portrays an attention network working
in harmony with the NCNs most likely linked to associative
memory retrieval. This conjecture is also supported by the
secondary evidence in case of −450 and 450ms AV lags,
where an additional working memory process is competing
for processing and integration of the multisensory stimuli and
leading to a broadband enhancement in global coherence. A
more detailed delineation of working memory processing and
associative memory recall needs to be carried out with other
kinds of multisensory stimuli and will be a major focus of our
future endeavors.
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Temporal information can be retained and manipulated in working memory (WM).
Neural oscillatory changes in WM were examined by varying temporal WM load.
Electroencephalography was obtained from 18 subjects performing a temporal version
of the visual n-back WM task (n = 1 or 2). Electroencephalography revealed that
posterior alpha power decreased and temporal region-distributed beta power increased
as WM load increased. This result is consistent with previous findings that posterior
alpha band reflects inhibition of task-irrelevant information. Furthermore, findings from
this study suggest that temporal region-distributed beta band activity is engaged in the
active maintenance of temporal duration in WM.

Keywords: temporal information, duration, working memory, n-back task, neural oscillation

INTRODUCTION

Humans can memorize not only attributes of a presented visual stimulus but also its duration of
presentation. Working memory (WM) is the system responsible for short-term storage and online
manipulation of information, which is necessary for higher-order cognition, such as language,
reasoning, and problem-solving (Baddeley, 1992, 2010, 2012). WM constitutes a fundamental
aspect of temporal information processing, as encoded stimulus duration is temporally maintained
in WM and then transferred into long-term memory. A previously encoded stimulus duration can
be retrieved from long-term memory, and held in WM during a task (Gibbon, 1977; Gibbon et al.,
1984; Allan, 1998; Coull et al., 2008).

Previous studies have revealed neural substrates that underlie the maintenance of stimulus
duration in WM. Acetylcholine in the frontal cortex modulates the speed at which stimulus
duration is translated into temporal memory representations (Meck and Church, 1987; Meck,
1996). Both working and reference memory for temporal information are sensitive to choline
acetyltransferase inhibition in rats (Meck, 2006). In monkeys, stimulus duration in WM is
represented by neuronal activity in prefrontal cortex (Sakurai et al., 2004). Frontal distributed alpha
activity is involved in duration maintenance in WM (Chen et al., 2015). A neural network that
includes the frontal lobe (left inferior frontal gyrus, right anterior cingulate, pre-supplementary
motor area/supplementary motor area, right paracentral lobule, and left precentral gyrus), parietal
lobe (left post-central gyrus), temporal lobe (left superior temporal gyrus), limbic system (left
insula), and basal ganglia (right and left caudate and putamen) are correlated with maintenance
of temporal information (Harrington et al., 2010).

Much research has addressed the maintenance of temporal duration in WM; however, few
studies have investigated the manipulation of temporal duration in WM. Only one study has

Frontiers in Psychology | www.frontiersin.org January 2016 | Volume 6 | Article 2031 | 40

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.02031
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2015.02031
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2015.02031&domain=pdf&date_stamp=2016-01-08
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.02031/abstract
http://loop.frontiersin.org/people/214904/overview
http://loop.frontiersin.org/people/224727/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Chen and Huang Working Memory for Temporal Duration

reported neural substrates underlying the update of temporal
information in WM (Gruber et al., 2000). This study used
light-emitting diodes (LEDs) that flashed with either a constant
inter-stimulus interval (ISI) of 1 s or variable ISIs (0.3–1.7 s,
mean= 1 s). In task 1, subjects ignored ISI changes by attempting
to detect a hypothetical hidden feature of the LEDs. In task 2,
subjects were required to detect ISI changes. Task 1 served as
a baseline that controlled for perceptual aspects common to all
tasks. During task 2, subjects were required to continually update
memorized temporal information. Thus, this task was similar to
a one-back WM task including perceptual processing, temporal
encoding, memory updating, and comparison. More activation
of prefrontal and lateral premotor cortices was observed in task 2
compared with task 1, which may engage in temporal encoding,
memory updating, and comparison (Gruber et al., 2000). Typical
WM tasks should be adopted to explore the maintenance and
manipulation of temporal duration in WM.

The n-back task is a representative example of a WM task,
because it requires manipulation as well as maintenance of
information in WM (Cohen et al., 1997; Meegan et al., 2004;
Owen et al., 2005). The n-back task requires participants to decide
whether a currently presented stimulus matches the stimulus
presented n trials previously. The load factor n can be adjusted
to increase or decrease the difficulty level of the task, and to
identify the neural substrates underlying WM. Various types of
information can be maintained and manipulated in WM, such as
letters, words, numbers, shapes, fractals, faces, pictures, locations,
and auditory tones (Owen et al., 2005). Neural oscillations during
n-back tasks have been extensively investigated (Gevins et al.,
1997; McEvoy et al., 1998; Pesonen et al., 2007; Krause et al.,
2010; Palomaki et al., 2012; Imperatori et al., 2013). Frontal
midline theta rhythm (4–7 Hz) has been shown to increase in
magnitude as memory load increases (Gevins et al., 1997, 1998;
Lei and Roetting, 2011). Studies have shown that theta oscillations
play an important role in WM control mechanisms (Schmiedt
et al., 2005; Sauseng et al., 2009). In particular, theta oscillations
reflect the organization of sequentially ordered items in WM
(Hsieh et al., 2011; Roberts et al., 2013; Roux and Uhlhaas,
2014). In contrast, posterior alpha band power (7.5–12 Hz)
has been shown to decrease as memory load increases (Gevins
et al., 1997, 1998; Lei and Roetting, 2011). Alpha oscillations
tend to be attenuated by attention-demanding tasks, reflecting
the inhibition of cortical areas that represent task-irrelevant
information (Gevins and Smith, 2000; Jokisch and Jensen, 2007;
Klimesch et al., 2007; Tuladhar et al., 2007; Manza et al., 2014).
The role of the beta band (13–35 Hz) in WM remains under
debate. One study found that beta band frequency increases
over the parietal region as memory load increases (Deiber et al.,
2007). The authors of this study proposed that the beta band
is related to item retention and active maintenance for further
task requirements. In contrast, other studies have reported that
increased WM load is associated with beta desynchronization
(i.e., decrease in beta power; Bocková et al., 2007; Pesonen
et al., 2007; Krause et al., 2010). It has been proposed that beta
oscillations correlate with higher WM performance due to more
effective filtering of irrelevant information (Zanto and Gazzaley,
2009).

The present study applied an n-back task to investigate
neural oscillations that underlie manipulation and maintenance
of temporal duration in WM. Neural substrates that underlie an
increase in temporal WM load can be identified by parametric
changes in n. In a temporal version of the n-back task, the
participant is shown a series of items (e.g., red circles) and asked
to decide whether the duration of presentation of the current item
matches the duration of the item presented n trials back. The task
requires manipulation and maintenance of temporal information
inWM.As stated previously, theta and alpha bands reflect central
executive functions of WM (Sauseng et al., 2005). Specifically,
theta band oscillations reflect the organization of sequentially
ordered WM items (Schmiedt et al., 2005; Sauseng et al., 2009;
Hsieh et al., 2011; Roberts et al., 2013; Roux and Uhlhaas,
2014) and alpha oscillations reflect inhibition of task-irrelevant
information (Gevins and Smith, 2000; Jokisch and Jensen, 2007;
Klimesch et al., 2007; Tuladhar et al., 2007; Manza et al., 2014).
According to the “multiple-component model” by Baddeley and
Hitch, unique central executive control mechanisms, such as item
organization and inhibition of irrelevant information (Bledowski
et al., 2010), are activated for different types of information in
WM (Baddeley, 1992, 2010, 2012). We hypothesized that frontal
theta would increase and posterior alpha would decrease as
temporal WM load increased. As previously stated, the role of
the beta band in WM remains under debate. If beta oscillations
are related to the maintenance of item information (Deiber et al.,
2007), then we would expect beta band power to increase as
temporal WM load increases. In contrast, if beta oscillations
are like alpha oscillations, which have been associated with
inhibition of task-irrelevant information (Zanto and Gazzaley,
2009; Waldhauser et al., 2012), then we would expect to observe
a decrease in beta band power (beta desynchronization) as
temporal WM load increases.

MATERIALS AND METHODS

Participants
Eighteen right-handed undergraduate students (eight male
students, 19–24 years of age) were paid for their participation
in this experiment. Each participant had normal or corrected-
to-normal visual acuity. Participants were not taking any
medications and did not suffer from any central nervous system
abnormalities or injuries. The study was approved by the
local institutional review board. Written informed consent was
obtained from each participant. The experimental procedure was
conducted in accordance with the Declaration of Helsinki (World
Medical Association, 2013).

Experimental Material and Apparatus
Visual stimuli were displayed on a black background in the
center of a computer screen. A 3-cm red circle (2.29◦) and
a white 2-cm question mark (1.53◦) were used as visual
stimuli. Four presentation durations were chosen for the red
circle. Scalar variability, in which the standard deviation of
the estimated intervals increases linearly with their mean, is
a verified feature associated with temporal processing (Rakitin
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et al., 1998; Brannon et al., 2008). Thus, an exponential function
was adopted to select durations to match the difficulty of
discrimination between each pair of adjacent durations. The
four durations were: 100 (100 × 20), 200 (100 × 21), 400
(100 × 22), and 800 (100 × 23) ms. The refresh rate of the
computer monitor was 85 Hz, and the computer screen was
placed approximately 75 cm from the participant during the
task.

Procedure
The temporal version of the n-back task was used in this study.
A 1-back task was defined as low load (LL), and a 2-back task
was defined as high load (HL). The order of the twomemory load
conditions was counterbalanced across subjects. There were four
blocks for each memory load condition, and 25 trials for each
duration in each block.

The trial sequence was identical for the 1-back and 2-
back tasks (Figure 1). Temporal jitter between stimuli was
used (Luck, 2005) to reduce the distortion that results from
overlapping neural activity between previous and subsequent
stimuli. Randomized temporal jitter was controlled by E-prime
1.1 (Psychology Software Tools, Inc.). During each trial, a red
circle was presented for a randomly selected duration (100,
200, 400, or 800 ms). After a random delay of 400–800 ms,
a question mark was presented in the center of the screen
until a response was made, or for a maximum of 2000 ms.
Participants were informed that they had to respond within
2000 ms. Trials were presented with a random inter-trial interval
of 800–1600 ms.

Participants performed a duration comparison task in which
they were required to remember the presentation duration of
the red circle at two levels of difficulty (LL and HL). In the
LL condition, participants indicated whether the duration of
the current red circle was the same as that of the previous red
circle (Figure 1A). In the HL condition, participants indicated
whether the duration of the current red circle was the same
as that of the red circle presented two presentations previously
(Figure 1B). The percentages of matched and unmatched trials
were both 50% in both the 1-back and 2-back tasks. When
the question mark was presented, participants were instructed
to press “1” if the memorized durations of the two red circles
were the same and “2” if the memorized durations were
different. Half of the participants responded with their left hand
(pressing “1” with their middle finger and “2” with their index
finger), and the other half responded with their right hand
(pressing “1” with their index finger and “2” with their middle
finger).

Electrophysiological Recording
Continuous electroencephalography (EEG) was acquired
from Ag/AgCl electrodes mounted in an elastic cap
(Brain Products GmbH, Gilching, Germany). Sixty-four
electrodes were positioned according to the extended 10–20
system. Additional electrodes were placed on the mastoids.
Horizontal electrooculograms (EOGs) were acquired using
bipolar electrodes positioned at the external ocular canthi,
and vertical EOGs were recorded from electrodes placed

above and below the left eye. The EEG and EOG were
digitized at 500 Hz with an amplifier bandpass of 0.01–
100 Hz, including a 50-Hz notch filter, and stored for offline
analysis. All electrode impedances were maintained below
5 k�.

EEG Analysis
EEGLAB (Delorme and Makeig, 2004) and MATLAB (The
MathWorks, Natick, MA, USA) were used for offline EEG
data processing. Continuous EEG data were re-referenced
to the average of the right and left mastoids, and digitally
low-pass filtered at 40 Hz. EEG epochs were segmented
in 3-s time windows (pre-stimulus 1 s and post-stimulus
2 s, 0 was onset of stimulus) and baseline-subtracted in
the time domain from −1000 to 0 ms. Baseline correction
in the time domain effectively subtracts the direct current
with no impact on frequency components (Addante et al.,
2011). Trials with EOG artifacts (mean EOG voltage
exceeding ± 80 μV) and those contaminated with artifacts
due to amplifier clipping or peak-to-peak deflection exceeding
±80 μV were excluded. Remaining EOG artifacts were visually
identified and removed using independent component analysis
according to scalp maps and activity profiles; independent
components related to eye movements had a large EOG channel
contribution and a frontal scalp distribution (Jung et al.,
2000a,b).

Segmented and artifact-free data were used for power
spectral analysis. Time-frequency EEG power data were
obtained using Hanning-windowed sinusoidal wavelets
of three cycles at 3 Hz, rising linearly to approximately
20 cycles at 40 Hz (Gevins et al., 1997; Makeig et al.,
2004). The present study focused on ongoing EEG power
rather than event-related changes in the power spectrum
(Gevins et al., 1997, 1998; Gevins and Smith, 2000; Lei and
Roetting, 2011). Thus, the pre-stimulus baseline was not
subtracted from ongoing EEG power (Addante et al., 2011;
Figure 4).

Following previous studies (Hsieh et al., 2011; Chen et al.,
2015), electrodes were grouped into nine different clusters: left-
frontal (AF7, F7, F5), middle-frontal (F1, Fz, F2), right-frontal
(AF8, F8, F6), left-central (C3, C5, T7), middle-central (C1, Cz,
C2), right-central (C4, C6, T8), left-posterior (P5, P7, PO7),
middle-posterior (O1, O2, Oz), and right-posterior (P6, P8, PO8).

Theta band (4–7 Hz), alpha band (7.5–12 Hz), and beta band
(13–34 Hz) powers were analyzed separately. These oscillatory
bands were defined by the conventional International Federation
of Clinical Neurophysiology (IFCN) guidelines (Nuwer et al.,
1999). As shown in Figure 4, a posterior alpha decrease
and a temporal region-distributed beta increase were observed
with increasing WM load from −400 to 1400 ms. Three-
way repeated-measures analyses of variance (ANOVAs) were
conducted on mean theta, alpha, and beta power in the −400
to 1400 ms time intervals with factors memory load (LL and
HL), duration (100, 200, 400, and 800 ms) and region (nine
electrode clusters). A Greenhouse–Geisser correction was used to
correct for any violations of sphericity (Greenhouse and Geisser,
1959).
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FIGURE 1 | Trial sequences and the duration of each screen presentation. (A) Low load condition (LL, 1-back task) procedures. (B) High load condition (HL,
2-back task) procedures. P “1” indicates that pressing “1” is the correct response, and P “2” indicates that pressing “2” is the correct response.

RESULTS

Behavioral Data
Figure 2 displays the mean values and standard error of
accuracy and reaction time (RT) for 100-, 200-, 400-, and 800-
ms durations in the LL and HL conditions. A two-way repeated
measures ANOVA on RT with memory load and duration
as within-participant factors revealed significant main effects
of memory load [F(1,17) = 21.966, p < 0.001, η2p = 0.564]
and duration [F(3,51) = 7.086, p < 0.01, η2

p = 0.294], and a
memory load × duration interaction [F(1.971,33.511) = 9.567,
p < 0.01, η2

p = 0.360]. Simple effects analyses on the
memory load × duration interaction revealed that RT was
longer in the HL condition than the LL condition for all
durations [100 ms: F(1,17) = 31.570, p < 0.001, η2

p = 0.650;
200 ms: F(1,17) = 22.136, p < 0.001, η2

p = 0.566; 400 ms:
F(1,17)= 24.098, p < 0.001, η2

p = 0.586; 800 ms: F(1,17) = 4.466,
p = 0.05, η2

p = 0.208].
A repeated-measures ANOVA on accuracy revealed

significant main effects of memory load [F(1,17) = 51.169,

p < 0.001, η2
p = 0.751] and duration [F(3,51) = 33.503,

p< 0.001, η2
p = 0.663], and a significant memory load× duration

interaction [F(2.239,38.04) = 11.484, p < 0.001, η2
p = 0.403].

Simple effects analyses on the memory load × duration
interaction revealed that accuracy was lower in the HL condition
than the LL condition for all durations [100 ms: F(1,17)= 34.713,
p < 0.001, η2

p = 0.671; 200 ms: F(1,17) = 13.523, p < 0.01,
η2
p = 0.443; 400 ms: F(1,17) = 114.192, p < 0.001, η2

p = 0.870;
800 ms: F(1,17) = 18.280, p < 0.01, η2

p = 0.518].
Pairwise comparisons of duration accuracy are displayed in

Figure 3 to further understand how participants compare the
current duration with the duration stored in WM. Similar results
were observed on both the 1-back and 2-back tasks. Accuracy
was low when the current duration was adjacent to the compared
duration. For example, accuracy was low when a current duration
of 200 ms was compared to adjacent durations of 400 or 600 ms.
In contrast, accuracy was high when the current duration was
equal to or not adjacent to the compared duration. For example,
accuracy was high when a current duration of 200 ms was
compared to an equal duration of 200 ms or a non-adjacent

FIGURE 2 | Reaction time and accuracy in the LL (A, 1-back) and HL (B, 2-back) conditions.
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FIGURE 3 | Pairwise comparisons of duration accuracy in the LL (A, 1-back task) and HL (B, 2-back task) conditions.

duration of 800 ms. These results suggest that durations were
effectively maintained in WM in both the 1-back and 2-back
tasks.

EEG Data
Similar results were obtained from the 100-, 200-, 400-,
and 800-ms durations (Figure 4). Theta band oscillations
(4–7 Hz) were similar between the HL and LL conditions.

Alpha band power (7.5–12 Hz) over the posterior region
from −400 to 1400 ms was lower in the HL condition
than the LL condition. Beta band power (13–35 Hz) over
the temporal region from −400 to 1400 ms was higher
in the HL condition than the LL condition. These results
are consistent with the higher WM load that participants
are under in the 2-back task, even during the inter-trial
interval.

FIGURE 4 | Temporal dynamic activity of theta, alpha, and beta oscillations for 100-, 200-, 400-, and 800-ms duration conditions in the time interval
from −400 to 1400 ms. Red and blue lines indicate the mean spectral power of nine clusters. The topographies indicate the distributions of the HL minus LL power
difference during the time intervals of −400 to −100, 0 to 200, 200 to 400, 400 to 800, and 800 to 1200 ms.
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Electroencephalography spectral power was averaged
over the time interval from −400 to 1400 ms (Figure 5).
ANOVA conducted on theta band power (4–7 Hz) revealed
significant main effects of duration [F(2.506,42.608) = 20.262,
p > 0.001, η2

p = 0.544] and region [F(3.648,62.013) = 108.840,
p < 0.001, η2

p = 0.865]. Theta band amplitude was significantly
lower in the 800-ms condition compared with the 100, 200,
and 400-ms conditions (p-values < 0.001); the differences
between the 100, 200, and 400-ms conditions were not
significant (p-values > 0.05). Theta power was highest
over the middle-frontal cluster (51.056 ± 0.441 μV2/Hz).
Main effects of memory load and interactions of memory
load × duration, memory load × region, duration × region,
and memory load × duration × region were not significant
(p-values > 0.05).

Analysis of variance conducted on alpha band
power revealed significant effects of memory
load [F(1,17) = 12.945, p < 0.01, η2

p = 0.432], duration
[F(2.054,34.912) = 4.830, p < 0.05, η2

p = 0.221], region
[F(2.525,42.918) = 16.270, p < 0.001, η2

p = 0.489], and
duration × region interaction [F(6.773,115.145) = 3.045,
p < 0.001, η2

p = 0.152]. Alpha band power was higher in
the LL condition (45.247 ± 0.759 μV2/Hz) than the HL
condition (44.810 ± 0.704 μV2/Hz). Simple effects analyses
on the duration × region interaction revealed a significant
effect of duration over the left-frontal [F(3,15) = 3.644,
p < 0.05, η2

p = 0.422], middle-central [F(3,15) = 3.880,
p < 0.05, η2

p = 0.437], left-posterior [F(3,15) = 3.977, p < 0.05,
η2
p = 0.443], and middle-posterior [F(3,15) = 10.526, p < 0.01,

FIGURE 5 | Average EEG spectral power (−400 to 1400 ms) for the 100-, 200-, 400-, and 800-ms durations under the low (LL) and high (HL) memory
load conditions in the middle-frontal, right-central, and middle-posterior clusters.
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η2
p = 0.678] clusters such that the alpha power band amplitude

was significantly lower in the 800-ms condition than the 100, 200,
and 400-ms conditions. Interactions of memory load× duration,
memory load × region, and memory load × duration × region
were not significant (p-values > 0.05).

Analysis of variance conducted on beta band power
revealed significant effects of memory load [F(1,17) = 6.439,
p < 0.05, η2

p = 0.275], region [F(2.728,46.378) = 15.112,
p < 0.001, η2

p = 0.471], and memory load × region interaction
[F(3.586,60.969) = 3.064, p < 0.05, η2

p = 0.153]. Simple effects
analyses on the memory load × region interaction revealed that
beta band power was significantly lower in the LL condition
than the HL condition over the right-frontal [F(1,17) = 4.760,
p < 0.05, η2

p = 0.219], left-central [F(1,17) = 7.890, p < 0.05,
η2
p = 0.317], and right-central [F(1,17) = 13.262, p < 0.01,

η2
p = 0.438] clusters. The main effect of duration and

memory load × duration, duration × region, and memory
load × duration × region interactions were not significant (p-
values > 0.05).

Given that similar results were obtained across all four
duration conditions (Figures 4 and 5), the oscillation power
was averaged across durations to plot the topographies of the
oscillations. Theta band was highest over the frontal region, alpha
band was highest over the frontal, central, and parietal regions,
and beta band was highest over the frontal region in both the
LL and HL conditions. LL subtracted from HL revealed an alpha
decrease distributed over the posterior region and a beta increase
distributed over the temporal region (Figure 6).

DISCUSSION

Accuracy decreases and RT increases with increasing WM load
on spatial and verbal versions of the n-back task (Gevins et al.,
1997; McEvoy et al., 1998). The present study found that accuracy

FIGURE 6 | The topographies of theta, alpha, and beta activity in the
LL and HL conditions, and the HL minus LL power difference.

was decreased and RT was increased in the HL condition (2-
back task) compared with the LL condition (1-back task) for
the 100-, 200-, 400-, and 800-ms duration conditions (Figure 2),
which suggests that memory load was effectively manipulated.
We found a significant memory load × duration interaction on
RT. This significance was driven by a smaller difference in RT
between the 1-back and 2-back task in the 800-ms condition
[mean difference (MD): 61.06 ms] compared with the 100-
ms (MD: 147.54 ms), 200-ms (MD: 140.07 ms), and 400-ms
(MD: 133.85 ms) conditions. Similarly, a significant memory
load × duration interaction on accuracy is due to a larger
difference in accuracy between the 1-back and 2-back tasks in the
400-ms condition (MD: 16.0%) compared with the 100-ms (MD:
9.6%), 200-ms (MD: 6.2%), and 800-ms (MD: 9.6%) conditions.
These interactions did not influence the effective manipulation of
memory load, and therefore, they will not be further discussed.

Time-frequency analysis was conducted on EEG data to
identify the temporal dynamic activity of oscillations (Figure 4).
Decreases in alpha band and increases in beta band were
observed with increasing temporal WM load from −400 to
1400 ms. This result suggests that the WM load is higher in
the 2-back task than the 1-back task even during the inter-
trial interval. For this reason, the present study focused on
ongoing EEG power rather than event-related changes in the
power spectrum. If the pre-stimulus baseline is subtracted from
ongoing EEG power, then neural activity related to WM load
would be removed. Furthermore, alpha band decreases and
beta band increases emerged during the time interval from
−400 to 0 ms (Figure 4), a phase during which temporal
encoding (i.e., timing) does not exist. Thus, this result indicates
that alpha band decreases and beta band increases are due
to increased WM load rather than temporal encoding. In
addition, the present study found that theta and alpha band
amplitudes were lower in the 800-ms condition than the 100-,
200-, and 400-ms conditions. This result may represent neural
oscillatory correlates of temporal encoding, and will not be
further discussed.

Consistent with previous studies on WM (Gevins et al., 1997,
1998; Gevins and Smith, 2000; Jensen and Tesche, 2002; Onton
et al., 2005; Lei and Roetting, 2011), a pronounced theta power
was distributed over the frontal midline in both the LL and
HL conditions (Figure 6). This theta activity emanates from
the anterior cingulate cortex (Onton et al., 2005; Womelsdorf
et al., 2010). The present study found that theta power was not
modulated by increasing temporal memory load. To determine
whether this result was due to the time-frequency analysis
method, time-frequency EEG power data were obtained using
Hanning-windowed sinusoidal wavelets of three cycles at 3 Hz
(Makeig et al., 2004). This analysis method was previously
adopted to extract frontal midline theta during a Sternberg WM
task (Onton et al., 2005).We performed a supplementary analysis
in which each set of EEG data (5-s epoch) was subjected to
Fast-Fourier Transform (FFT) analysis (Chen et al., 2008). No
distinct difference in theta band power between the LL and HL
conditions was observed. This result suggests that the lack of an
effect of temporal WM load on theta band power is not due to the
time-frequency analysis method.
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Previous studies have shown that theta band reflects the
organization of sequentially ordered items in WM (Hsieh et al.,
2011; Roberts et al., 2013; Roux and Uhlhaas, 2014). The number
of temporal order relationships among items in WM increases
as WM load increases, which in turn increases the amplitude
of theta band power (Hsieh et al., 2011). This finding was not
confirmed in the present study. In previous studies, letters, digits,
locations, or visual objects were held in WM, and the visual
representation of each item was different (Roland and Gulyas,
1994). In the present study, one duration was stored in WM
for the 1-back task, and two durations were stored in WM for
the 2-back task. However, the same red circle was presented
in each trial, and thus the visual representation of each item
was identical in the LL and HL conditions. Our results suggest
that the amplitude of the theta band increases as a function of
the number of temporal order relationships only when different
visual representations are stored in WM. This hypothesis should
be tested further in future studies.

Consistent with previous n-back studies (Gevins et al., 1997,
1998; Gevins and Smith, 2000; Lei and Roetting, 2011), the
present study found that alpha power decreased with increased
memory load. This result is consistent with the finding that
increases in alpha oscillation amplitudes reflect increases in
cortical inhibition, and decreases in alpha band reflect task-
relevant cortical activity (Pfurtscheller, 2001; Klimesch et al.,
2007). Functional neuroimaging studies revealed that areas
involved in WM (prefrontal and parietal cortex) vary as a
function of memory load, with greater activation for higher load
levels (Cohen et al., 1997; Owen et al., 2005). Thus, decreases in
alpha band in posterior sites reflect increases in cortical activity
with increased memory load.

The present study supports the role of beta band oscillations
in maintenance rather than inhibition. Given that alpha and
beta oscillations are proposed to reflect inhibition of interfering
visual memories (Waldhauser et al., 2012), decreased beta band
would be expected to be observed with an increased WM load
(Zanto and Gazzaley, 2009). However, others have proposed
that beta oscillations are related to the maintenance of item
information, such that beta band power would increase with
increased temporal WM load (Deiber et al., 2007). The beta
band increase in the present study supports the maintenance
hypothesis. This result is consistent with previous studies that
beta increase is associated with maintaining an existing steady
state in motor control (Gilbertson et al., 2005; Pogosyan et al.,
2009). The present study found that the increased beta was
largest over temporal region, which is in agreement with a
neuroimaging study that cortico-striatal circuits and superior
temporal lobe engage in maintenance of duration in WM
(Harrington et al., 2010). Previous studies revealed that phase
synchrony in beta oscillations plays an important role for
connectivity and communication between/within cortico-striatal
circuits and auditory cortex (Fujioka et al., 2012), which may
explain how beta oscillations maintain information in neaural
networks.

Our research will inspire future studies on temporal
information processing. First, as the first step, we showed
that n-back task is suitable for studying maintenance and

manipulation of duration in WM, and revealed functions
of alpha and beta bands in maintenance and manipulation
of duration in WM. This experimental paradigm can be
used to identify several unsolved scientific problems about
representation of duration in WM. E.g., Whether auditory
and visual duration is represented differently in WM; whether
there is any difference in representations between short and
long durations. Second, comparing with previous studies, our
study revealed a specific neural activity pattern for duration
maintenance inWM.We found that temporal region-distributed
beta bands reflect maintenance of duration in WM. Deiber et al.
(2007) demonstrated the reactivity of the beta oscillations to the
verbal WM load, more pronounced in the right parietal region.
Differences in topographies of beta bands are consistent with
a previous meta-analysis study which revealed subregional and
lateralized differences in activation of a frontoparietal network in
response to contents of WM (such as locations, letters, sharps;
Owen et al., 2005). Our study indicates the specific neural activity
pattern for temporal WM load which can be further identified
using n-back task combining with magnetoencephalogram
(MEG) or functional magnetic resonance imaging (fMRI). Third,
our study proposed an open question. It is not clear why isn’t
theta power modulated by increasing temporal memory load.
It indicates that there are certain differences in organization of
durations and other types of information (such as locations,
letters). By solving this open question, it is helpful to understand
how temporal durations are organized in WM.

To summarize, the present study applied an n-back paradigm
to explore neural oscillatory correlates of maintenance and
manipulation of duration in WM.We found that frontal midline
theta activity was not modulated by increased duration memory
load, whereas alpha power was decreased over the posterior
region and beta power was increased over the temporal region
in the HL compared with the LL condition. The relationship
between theta band and the organization of duration in WM
needs to be further investigated. Our results are consistent with
previous studies in which posterior alpha band was shown to
reflect the inhibition of task-irrelevant information. This study
also revealed an important role of temporal region-distributed
beta in the active maintenance of duration in WM.
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Organizing movements in time is a critical and highly conserved feature of mammalian
behavior. Temporal control of action requires corticostriatal networks. We investigate
these networks in rodents using a two-interval timing task while recording LFPs in medial
frontal cortex (MFC) or dorsomedial striatum. Consistent with prior work, we found cue-
triggered delta (1–4 Hz) and theta activity (4–8 Hz) primarily in rodent MFC. We observed
delta activity across temporal intervals in MFC and dorsomedial striatum. Rewarded
responses were associated with increased delta activity in MFC. Activity in theta bands
in MFC and delta bands in the striatum was linked with the timing of responses. These
data suggest both delta and theta activity in frontostriatal networks are modulated during
interval timing and that activity in these bands may be involved in the temporal control
of action.

Keywords: prefrontal cortex, striatum, dorsomedial striatum, Parkinson’s disease, medial frontal cortex, local
field potential, temporal control, interval timing

INTRODUCTION

The cortex and striatum are critical for the temporal control of action in mammals (Buhusi and
Meck, 2005). These regions are dysfunctional in neuropsychiatric disorders such as schizophrenia
and PD, resulting in impaired temporal processing and other cognitive deficits (Malapani et al.,
1998; Matell et al., 2003; Ward et al., 2012; Parker et al., 2015). The underlying mechanisms of
temporal control by corticostriatal systems remain unclear. A better understanding of these circuits
could provide insight into both mammalian behavior and human disease.

Temporal control of action can be studied using an interval-timing task. This task requires
subjects to estimate an interval of several seconds by making a motor response. Interval timing
requires both working memory for temporal rules and attention to the passage of time. Goal-
directed timing behavior also shares resources with other executive processes (Brown et al.,
2013; Parker et al., 2013). In both humans and rodents, prefrontal areas and dorsal striatum are
required for temporal processing (Meck and Benson, 2002; Meck, 2006; Coull et al., 2011). In
rodents, inactivation of medial frontal cortex (MFC) impairs interval timing (Uylings et al., 2003;
Narayanan et al., 2012; Kim et al., 2013). MFC projects to dorsal and medial regions of the rodent

Abbreviations: ERP, event-related potential; LFP, local field potential; PD, Parkinson’s disease.
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striatum which are also required for temporal control of action,
unlike the ventral striatum (Matell and Meck, 2004; Meck, 2006;
Kurti and Matell, 2011).

In medial frontal regions of humans and rodents, low-
frequency activity is associated with cognitive control and
organizing goal-directed activity in time (Cavanagh et al.,
2012; Narayanan et al., 2013; Cavanagh and Frank, 2014).
Activity around 4 Hz coordinates task information in prefrontal,
midbrain, and hippocampal areas (Fujisawa and Buzsáki, 2011).
However, it is unclear if activity in this band extends to the
basal ganglia. Strikingly, cue-triggered activity in delta and theta
bands in MFC is highly conserved in humans and rodents during
timing tasks (Narayanan et al., 2013; Parker et al., 2015). In frontal
cortex, activity in these bands is coherent with neurons that
may encode the accumulation of temporal information (Parker
et al., 2014). In both humans and rodents, this cue-triggered
delta and theta activity depends on dopamine via medial frontal
D1 dopamine receptors (Parker et al., 2015). In the striatum,
the striatal beat frequency model proposes that oscillations in
the activity of individual neurons may act as a mechanism for
the representation of time (Matell and Meck, 2004; Oprisan and
Buhusi, 2011). These and many other findings suggest that low-
frequency activity may be an important component of temporal
processing (Gu et al., 2015).

To further explore the role of low-frequency activity in
temporal processing, we recorded LFPs from rodent MFC and the
dorsomedial striatum during performance of an interval-timing
task with two intervals in rodents. Because our prior work has
found delta (1–4 Hz) and theta (4–8 Hz) activity associated with
temporal processing, we restricted our analyses to these bands
in the present manuscript (Narayanan et al., 2013; Cavanagh
and Frank, 2014; Parker et al., 2014, 2015; Laubach et al., 2015).
We tested the hypothesis that delta/theta activity is related to
temporal processing in corticostriatal circuits. We found cue-
triggered activity in delta and theta bands in MFC. Delta activity
was found in MFC and striatum across temporal intervals, and
was observed around rewarded responses in MFC. Frontostriatal
delta/theta activity was related to when animals responded in
time during the interval. These data indicate that delta/theta
activity in corticostriatal circuits is involved in the temporal
control of action.

MATERIALS AND METHODS

Subjects
Eight Long-Evans rats (age 2 months; 200–225 g) were trained
to perform an interval-timing task using standard operant
procedures. Animals were motivated by regulated access to water,
while food was available ad libitum. Rats consumed 5–6 ml of
water/100 g body weight each day. 5–10 ml were consumed
during the behavioral session and any additional water needed
was provided 1–3 h after each behavioral session in the home
cage. Rats were singly housed and kept on a 12-h light/dark cycle;
all experiments took place during the light cycle. Rats were kept at
∼90% of their free-access body weight during these experiments,
and received 1 day of free access to water per week. All procedures

were approved by the Animal Care and Use Committee at the
University of Iowa.

Interval-Timing Task
Rats were trained on the interval-timing task with a standard
operant approach described in detail previously (Narayanan et al.,
2012; Parker et al., 2013). First, animals went through fixed-
ratio training to make operant lever presses to receive water
reward. Next, animals were trained in a 12 s fixed-interval
timing task where rewards were delivered for responses made
following a 12 s interval (Figure 1A). Rewarded presses were
signaled by a click and an ‘off ’ houselight. Each rewarded trial
was immediately followed by a 6, 8, 10, or 12 s pseudorandom
intertrial interval which concluded with an ‘on’ houselight
signaling the beginning of the next trial. Responses occurring
before 12 s were not reinforced. The houselight stayed on from
trial onset until the onset of the intertrial interval. Training
sessions were 60 min long. Importantly, rodents were allowed
to make multiple responses per trial. Average response times
were used to determine central tendency of response time per
trial. The timing of each response was used to generate time-
response histograms. To compare across animals, time-response
histograms were normalized to the highest response rate during
the interval. After animals learned the 12 s interval—indicated by
a peak in their time-response histograms around 12 s—a second
delay of 3 s was added. This 3 s interval was signaled with an
additional light on the right side of the lever. Operant chambers
(MedAssociates, St Albans, VT, USA) were equipped with a lever,
a drinking tube, and a speaker driven to produce an 8 kHz tone
at 72 dB. Behavioral arenas were housed in sound-attenuating
chambers (MedAssociates). Water rewards were delivered via a
pump (MedAssociates) connected to a standard metal drinking
tube (AnCare) via Tygon tubing.

Surgical and Perfusion Procedures
Rats trained in the interval-timing task were implanted with a
microwire array in MFC or dorsomedial striatum according to
procedures described previously (Narayanan and Laubach, 2006).
Briefly, animals were anesthetized using Ketamine (100 mg/kg)
and Xylazine (10 mg/kg). A surgical level of anesthesia was
maintained with hourly (or as needed) Ketamine supplements
(10 mg/kg). Under aseptic surgical conditions, the scalp was
retracted and the skull was leveled between bregma and
lambda. A craniotomy was drilled over the area above MFC or
dorsomedial striatum and four holes were drilled for skull screws.
A microelectrode array consisting of 50 µm stainless steel wires
(250 µm between wires and rows; impedance measured in vitro
at ∼400 k�; Plexon: Dallas, TX) configured in 4 × 4 (n = 4) or
2 × 8 (n = 4) was implanted in eight animals in either MFC
(coordinates from bregma: AP +3.2, ML ± 1.2, DV −3.6 @
12◦ in the lateral plane) or in dorsomedial striatum (coordinates
from bregma: AP +0.0, ML ± 4.2, DV −3.6 @ 12◦ in the lateral
plane). The electrode ground wire was wrapped around the skull
screws. Electrode arrays were inserted while recording neuronal
activity to verify implantation in layer II/III of MFC or in the
most dorsal portion of dorsomedial striatum. The craniotomy
was sealed with cyanoacrylate (‘SloZap’, Pacer Technologies,
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FIGURE 1 | Interval-timing task and histological validation. (A) Rats estimated a 3 or 12 s interval by pressing a lever. The first response after the end of the
interval was rewarded with water. Multiple responses per trial were permitted. (B) Average response-timing curves from all eight animals included in the study.
Responses were normalized within both 3 s (Int3) and 12 s (Int12) trials. (C) Representative photomicrograph of electrode tracts in the left hemisphere of medial
frontal cortex (MFC) and dorsomedial striatum (STR) from a coronal view. M, Medial, L, Lateral. (D) Horizontal image of histological reconstruction from the four
animals implanted with multielectrode arrays either in the MFC or STR. L, Left, R, Right. Red circles correspond to the locations of electrodes used in the study.

Rancho Cucamonga, CA, USA) accelerated by ‘ZipKicker’ (Pacer
Technologies) and methyl methacrylate (i.e., dental cement;
AM Systems, Port Angeles, WA, USA). Following implantation,
animals recovered for 1 week before being reacclimatized to
behavioral and recording procedures.

Following experiments, rats were anesthetized, sacrificed by
injections of 100 mg/kg sodium pentobarbital, and transcardially
perfused with 4% formalin. Brains were post-fixed in a solution
of 4% formalin and 20% sucrose before being sectioned
on a freezing microtome. Brain slices were mounted on
gelatin-subbed slides and stained for cell bodies using DAPI.
Histological reconstruction was completed using postmortem
analysis of electrode placements by confocal microscopy or
stereology microscopy in each animal. These data were used
to determine electrode location within MFC or dorsomedial
striatum (Figures 1C,D).

Neurophysiological Recordings
Neuronal ensemble recordings in MFC or dorsomedial striatum
were made using a multi-electrode recording system (Plexon,
Dallas, TX, USA). LFPs were recorded using wide-band
boards with bandpass filters between 0.07 and 8000 Hz.
Analysis of neuronal activity and quantitative analysis of basic
firing properties were carried out using NeuroExplorer (Nex
Technologies, Littleton, MA, USA) and with custom routines
for MATLAB. Microwire electrode arrays were comprised of 16

electrodes. In each animal, one electrode without single units was
reserved for local referencing and filtering out of noise, yielding
15 electrodes per rat. LFPs were recorded from four low-noise
electrodes in each rodent. We recorded LFPs using wide-band
boards with analog filters between 0.7 and 100 Hz.

Time-Frequency Analyses
In line with our previous work, all analyses were restricted to
delta and theta bands (Narayanan et al., 2013; Cavanagh and
Frank, 2014; Parker et al., 2014, 2015; Laubach et al., 2015). Time-
frequency calculations were computed using custom-written
MATLAB routines (Cavanagh et al., 2009). Time-frequency
measures were computed by taking the inverse FFT of the
convolution of a fast Fourier transformed (FFT) LFP power
spectrum and a set of complex Morlet wavelets (defined as

a Gaussian-windowed complex sine wave: ei2πtf e−
t2

2× σ2 where
t is time, f is frequency [increasing from 1 to 50 Hz in
50 logarithmically spaced steps], and σ is scaling, defined
as cycles/(2πf), with four cycle wavelets) (Narayanan et al.,
2013; Parker et al., 2014, 2015; Laubach et al., 2015). We
varied the number of cycles and other parameters to balance
time-frequency resolution for the bands we were interested
in here (delta/theta bands) and the time windows used for
analysis (∼1 s). Wavelet transformation results in estimates
of instantaneous power which were subsequently normalized
to a decibel (dB) scale (10∗log10[power(t)/power(baseline)]),
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allowing a direct comparison of effects across frequency bands.
Hypothesis-driven statistical significance was computed via a
paired t-test in the delta (1–4 Hz) or theta (4–8 Hz) frequency
bands by calculating the average power change in a period of
interest vs. baseline across all subjects. We defined the baseline
period as −500 to −300 ms prior to stimulus presentation.
For cue-evoked analyses, 0–500 ms post-stimulus onset was
compared to baseline. For whole-trial analyses, 0.5 (to exclude
the immediate post-stimulus period) to 3 s post-stimulus onset
was compared to baseline for 3 s trials (Int3 trials) and 0.5–
12 s post-stimulus onset was compared to baseline for 12 s trials
(Int12 trials). For response analyses, mean activity from −500
to 0 ms pre-response in Int3 and Int12 trials was compared to
the mean baseline. Rewarded presses were the first press after
interval end that resulted in reward (3 s after the cue for Int3;
12 s after the cue for Int12). Unrewarded presses occurred prior
to the end of the interval (0–2.9 s for Int3; 0–11.9 s for Int12).
To match variance with rewarded trials we randomly subsampled
the number of unrewarded presses so that comparisons between
rewarded and unrewarded trials had the same number of trials
in each category. Error bars were computed from variance across
subjects and represent the standard error of the mean.

Linear Models
To investigate the relationship between the timing of responses
and frontostriatal field potentials, we used linear regression
(fitlm.m in MATLAB) where delta or theta activity calculated
from −500–0 ms prior to the response was regressed against the
timing of the response. To reduce the role of cue-related activity,
this analysis was calculated from 500 ms to 3 s for Int3 trials
and 500 ms–12 s for Int12 trials. Delta and theta power were
derived according to methods above. Slope was calculated as the
change in delta/theta power (1dB) over the change in the timing
of responses (in seconds). Significant linear fits were derived from
analysis of variance.

RESULTS

Interval-Timing Behavior
The eight rats used in this study were trained on the 3 and
12 s interval-timing task described above (Int3 and Int12,
respectively; Figure 1A). The mean response time for Int3
was 4.8 ± 0.28 s and the mean response time for Int12 was
11.7± 0.43 s (Figure 1B). Mean response times were significantly
different on Int3 vs. Int12 trials [t(7) = 12.5, p < 0.001]. The
variability of interval-timing behavior was similar to that seen in
previous studies (Kim et al., 2013; Parker et al., 2014, 2015; Xu
et al., 2014).

Cue-Triggered Delta/Theta Activity in
Medial Frontal Cortex and Dorsomedial
Striatum
To test the idea that delta and theta bands are modulated
during interval timing, we recorded field potentials from MFC

or dorsomedial striatum of rats trained to perform an interval-
timing task (Figures 1C,D). In MFC, a large cue-triggered ERP
was found (Figure 2A). The average latency to the positive peak
on Int3 trials was 126 ± 6.4 ms, followed by a negative peak
at 208 ± 8.3 ms. On Int12 trials the average latency to the
positive peak was 122 ± 5.6 ms, followed by a negative peak
at 192 ± 8.4 ms. Time-frequency analysis demonstrated strong
delta and theta activity 0–0.5 s after cue onset (Figures 2B,C).
Direct comparison of MFC activity revealed significant cue-
related modulation of delta and theta bands relative to baseline
in both Int3 trials [delta: t(15) = 4.1, p < 0.01; theta: t(15) = 2.7,
p < 0.05] and Int12 [delta: t(15) = 5.2, p < 0.01; theta: t(15) = 3.1,
p < 0.01; Figure 2D]. Notably, cue-related activity was similar on
Int3 and Int12 trials (Figure 2D). These data indicate that delta
and theta modulations early in the trial are cue-triggered and do
not significantly differ based on interval length.

In dorsomedial striatum, a less distinct pattern was observed.
On Int3 trials, the average latency to the positive peak was
130 ± 4.6 ms, followed by a less prominent negative peak at
192 ± 9.8 ms. On Int12 trials, the average latency to the positive
peak was 130 ± 4.2 ms, followed by a less distinct negative
potential at 178± 10.9 ms. Low-frequency modulation by the cue
was visible on both trial types (Figures 2E–G). However, there
was only a significant increase from baseline in the striatal delta
band on Int3 trials [delta: t(15) = 4.7, p < 0.01; Figure 2H]. Taken
together, these data demonstrate that cue-related delta and theta
activity is primarily modulated in MFC.

Interval-Related Delta/Theta Activity in
Medial Frontal Cortex and Dorsomedial
Striatum
Next, we examined field potentials over the duration of the trial
in MFC and dorsomedial striatum. To compare Int3 and Int12
trials, we averaged activity in delta and theta bands across the
interval. In MFC, we found that average delta and theta activity
bands across the interval were significantly higher than baseline
for Int12 trials [0.5–12 s following cue; delta: t(15) = 2.4, p < 0.05;
theta: t(15) = 2.4, p < 0.05; Figures 3A–C]. No significant
difference from baseline was seen on Int3 trials. These data
indicate that medial frontal delta activity is engaged on longer
intervals.

In the dorsomedial striatum, only delta activity was
significantly higher than baseline for Int3 and Int12 conditions
[Int3—delta: t(15) = 3.2, p < 0.01; Int12—delta: t(15) = 2.5,
p < 0.05; Figures 3D–F]. These data suggest that delta activity is
modulated across temporal intervals in frontostriatal circuits.

Medial Frontal Delta Activity Is Related
to Rewarded Responses
Next, we analyzed field potentials around lever presses. Trials
on which the animal pressed the lever after the 12 s interval
were rewarded. We found marked press-related potentials in both
MFC and dorsomedial striatum (Figure 4A). The average latency
to the positive peak in MFC on rewarded trials was−8± 16.5 ms,
followed by a negative peak at 206± 11.6 ms. The average latency
to the positive peak on unrewarded responses was−82± 8.5 ms,
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FIGURE 2 | Cue-related low-frequency activity in MFC and dorsomedial striatum (STR). (A) LFPs recorded from MFC in four rats showed a cue-evoked ERP
following the Int3 cue (blue) and Int12 cue (green). (B) Time-frequency analysis of LFPs revealed a delta/theta (3–12 Hz) burst triggered by the Int3 stimulus when the
animal responded and was rewarded. (C) A delta/theta burst was visible after the Int12 stimulus on rewarded trials. (D) There was a significant increase in power in
Int3 (blue) and Int12 (green) trials over their respective baselines (black) in the delta (left) and theta (right) frequency bands. Error bars denote variance across
subjects. (E) LFPs recorded from STR in four rats showed a subtle ERP on Int3 reward trials (blue) and Int12 reward trials (green). Cue-related delta/theta activity in
STR on Int3 (F) and Int12 (G) trials. (H) There was a significant increase from baseline at the delta frequency band but not at the theta band on Int3 reward trials
(blue) and not at either frequency on Int12 reward trials (green). Error bars denote variance across subjects; Asterisk indicates p < 0.05.

followed by a negative peak at 6 ± 10.9 ms. In MFC, only
delta activity was significantly higher on rewarded responses both
compared to baseline [t(15) = 3.0, p < 0.05] and compared to
unrewarded presses [t(15) = 2.6, p < 0.05; Figures 4B–D].

A similar press-related potential was found in dorsomedial
striatum (Figure 4E). In dorsomedial striatum, the average
latency to the positive peak on rewarded responses was
4 ± 11.8 ms, followed by a negative peak at 190 ± 18.3 ms. The
average latency to the positive peak on unrewarded responses was
−44 ± 10.4 ms, followed by a negative peak at 172 ± 18.0 ms.
In contrast to MFC, striatal delta power was significantly higher
than baseline on both rewarded and unrewarded responses
[rewarded: t(15) = 4.3, p < 0.01; unrewarded: t(15) = 2.6,
p < 0.05; Figures 4B–H]. There was not a significant difference
between rewarded and unrewarded responses in either the delta
or theta bands. Thus, in MFC delta activity was associated with
rewarded presses, while in dorsomedial striatum delta activity
was associated with all lever presses. These data provide insight
into delta and theta activity throughout corticostriatal circuits
during interval timing.

Delta/Theta Activity and Temporal
Control of Responding
To examine how delta/theta activity in the MFC and striatum
predicted when animals responded, we used linear models

of frontostriatal field potential activity vs. response time. We
examined delta and theta activity −500–0 ms prior to lever
press. Significant linear fits are indicated in Table 1 as changes
in delta or theta power in dB per second of response time. In
MFC, theta activity immediately prior to lever press predicted
when animals responded for both Int3 and Int12 trials (Int3:
p < 0.03; Int12: p < 0.02). By contrast, in dorsomedial striatum
delta activity immediately prior to lever press predicted when
animals responded (Int3: p < 0.0001; Int12: p < 10−8). These data
indicate that response-related theta activity in MFC and delta
activity in the striatum depends on when animals press the lever
during the interval, and indicate that these bands are involved in
the temporal control of action in frontostriatal circuits.

DISCUSSION

Here we studied rodent frontostriatal circuits using LFPs during
an interval-timing task. Because our previous work implicates
low-frequency activity in delta and theta ranges in the temporal
control of action, we focused on these bands in this study.
We report four main findings. First, we observed cue-triggered
modulations in delta and theta activity primarily in MFC. Second,
we found delta activity in MFC and dorsomedial striatum
across the temporal interval. Thirdly, we observed increased
delta activity in MFC prior to rewarded responses, while striatal
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FIGURE 3 | Low-frequency activity power increased in trials with reward in MFC and dorsomedial striatum (STR) across the entire interval. (A) On Int3
trials, time-frequency analysis showed cue-related delta/theta activity and elevated delta activity throughout the interval. (B) Time-frequency analysis in MFC revealed
∼4-Hz activity over Int12 trials. (C) A significant increase in power over their respective baselines was visible in the delta and theta frequency bands on Int12 reward
trials. Error bars denote variance across subjects. (D) Delta/theta activity was visible in STR on Int3 and (E) Int12 trials. (F) Significantly greater power was visible on
Int3 and Int12 trials in the delta band in STR. Theta power was not significantly higher than baseline on either trial type. Error bars denote variance across subjects.
Asterisk indicates p < 0.05.

delta modulation was observed prior to all responses. Finally,
theta activity in MFC and delta activity in the striatum was
related to when animals responded during the interval. These
data contribute to an understanding of low-frequency activity
in corticostriatal circuits that is highly conserved across humans
and rodents (Cavanagh et al., 2012; Narayanan et al., 2013;
Parker et al., 2015). This similarity could help approach human
EEG as well as human intracortical recordings from patients
undergoing epilepsy or deep-brain stimulation surgeries (Brown
and Williams, 2005; Emeric et al., 2008; Kingyon et al., 2015).

The low-frequency activity observed in MFC after the
instructional cue is broadly consistent with past research. Frontal
theta and delta bands during elementary cognitive tasks are
similar between humans and rodents (Narayanan et al., 2013;
Parker et al., 2015; Warren et al., 2015). To our knowledge these
are the first field potential data from the dorsomedial striatum in

rodents during a timing task. Delta and theta bands have been
associated with errors, conflict, working memory, and attention
(Curtis and D’Esposito, 2003; Emeric et al., 2008; Liebe et al.,
2012; Totah et al., 2013; Cavanagh and Frank, 2014; Chen et al.,
2014; Parker et al., 2014; Laubach et al., 2015). Activity in this
range may provide a means of synchronizing frontal activity
with other brain regions (Fujisawa and Buzsáki, 2011). The
pronounced burst of low-frequency activity in MFC following the
cue is similar to that seen in our previous work (Parker et al.,
2014, 2015). This activity was not unique to either one of the
interval lengths—it is likely related to the salience of the cue
and communicates the need for cognitive control (Cavanagh and
Frank, 2014).

Low-frequency activity was observed throughout the duration
of interval-timing tasks in MFC and dorsomedial striatum.
Delta and theta activity was significantly increased in MFC on
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FIGURE 4 | Local field potential response-related activity in MFC and dorsomedial striatum (STR) during interval timing. (A) An ERP was visible in MFC
on rewarded (green) vs. unrewarded (red) responses. (B) Time-frequency analysis around press events showed an increase in delta/theta power around rewarded
press events. (C) Relatively low power was visible around unrewarded presses. (D) There was a significant increase in delta power prior to rewarded presses over
both baseline and delta power prior to unrewarded presses. Error bars denote variance across subjects. (E) ERPs in STR both with rewarded (green) and
unrewarded (red) presses. (F) An increase in delta power was visible prior to and especially after rewarded presses. (G) An increase in delta/theta power was also
visible around unrewarded presses. (H) There was a significant increase in delta power over baseline prior to both rewarded and unrewarded presses. Error bars
denote variance across subjects. Asterisk indicates p < 0.05.

longer-interval trials and was increased on both trial types in
dorsomedial striatum. This result suggests that sustained low-
frequency activity in the MFC is more engaged on intervals
of longer, more demanding duration. Moreover, low-frequency
activity in both areas was significantly related to when animals
made a response in time. That is, activity in these bands was
different if the animal pressed the lever early or late in the
interval, indicating that pre-response delta/theta activity can be
influenced by temporal preparation of responding (Table 1).

TABLE 1 | Relationship of response-related delta/theta power compared
to the timing of responses by interval length (Int3–3 s intervals; Int12–12 s
intervals): Output of the linear regression model calculated for the change
in power (1dB) over time (s).

DELTA THETA

Slope (1dB/s) p-value Slope (1dB/s) p-value

Int3 MFC 0.20 0.21 −0.38 0.03

STR 1.77 0.0001 −0.11 0.76

Int12 MFC 0.01 0.50 0.05 0.02

STR 0.36 10−8 0.17 10−6

Significant linear fits were found for theta activity in the medial frontal cortex (MFC)
and delta activity in the striatum (STR) in relation to the timing of response (1dB/s).

Strong reward-related delta activity was observed around
responses. Delta activity was increased in dorsomedial striatum
on all responses, regardless of reward. Delta activity has been
reported from rodent cortex and striatum, and has been
associated with motor action, reward processing, and temporal
expectation (Stefanics et al., 2010; Cavanagh et al., 2012; Laubach
et al., 2015). We observed different relationships between
delta activity and interval-timing behavior in the MFC and
dorsomedial striatum. One possibility is that medial frontal
delta activity reflects reward anticipation during interval timing
(Cavanagh et al., 2012; Narayanan et al., 2013; Parker et al., 2014,
2015).

Low frequencies in MFC may represent temporal processing
while field potentials in dorsomedial striatum may also reflect
the motor output of this processing. Many lines of evidence
suggest that the striatum is critical for interval timing (Matell
et al., 2003; Matell and Meck, 2004; Meck, 2006; Coull et al.,
2011; Merchant et al., 2013). Notably, spiking activity in striatal
ensembles robustly encodes temporal processing (Matell et al.,
2003; Mello et al., 2015). In contrast, LFP may reflect input to the
striatum from a variety of sources (Wall et al., 2013)—MFC being
but one of them—making temporal signals relatively difficult to
isolate at the level of field potentials. High-frequency gamma and
beta activity in the primate striatum have been linked to interval
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timing, particularly in terms of coherence and entrainment of
neural populations (Bartolo et al., 2014). It remains to be seen
how striatal field potentials couple with neuronal activity in other
brain areas such as MFC.

This study is limited by several factors. Rodent LFP recordings
are not a perfect analog to EEG in human subjects, though
progress has been made recently in comparing these two systems
(Narayanan et al., 2013; Parker et al., 2015; Warren et al.,
2015). Due to the scope of this study, we constrained our
analyses to delta and theta activity as we have found these
bands to be reliably modulated in prior human and rodent work
during timing tasks (Narayanan et al., 2013; Parker et al., 2014,
2015; Laubach et al., 2015). Although striatal delta power was
distinct on unrewarded vs. rewarded lever presses and correlated
with response time, rewarded presses generally occur when the
response rate is high and could be affected by movement. By
contrast, in MFC, theta power had a more complex relationship
with movement on Int3 and Int12 trials and could not be
directly accounted for by movement-related activity. Finally,
we did not examine sensory aspects of frontostriatal LFPs.
Future work will look at other frequency bands, neuronal spike
data, and at the interactions between spikes and LFPs. Because

recordings in MFC and dorsomedial striatum were done in
separate groups of animals, we are unable to make conclusions
about the simultaneous activity of corticostriatal ensembles. In
subsequent studies we hope to address these issues by more
directly comparing rodent and human data, exploring changes
in LFP activity during learning of temporal rules, and looking at
the simultaneous activity of neuronal ensembles in both of these
structures.
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Mismatch negativity (MMN) is a difference event-related potential (ERP) wave reflecting
the brain’s automatic reaction to deviant sensory stimuli, and it has been proven to
be a useful tool in research on cognitive functions or clinical disorders. In most MMN
studies, amplitude, peak latency, or the integral of the responses, in rare cases also the
slopes of the responses, have been employed as parameters of the ERP responses
for quantitative analyses. However, little is known about correlations between these
parameters. To better understand the relations between different ERP parameters,
we extracted and correlated several different parameters characterizing the MMN
waves. We found an unexpected correlation which gives new insight into the temporal
control of MMN: response amplitudes are positively correlated with downside slopes,
whereas barely correlated with upside slopes. This result suggests an efficient feedback
mechanism for the MMN to return to the baseline within a predefined time window,
contradicting an exponential decay function as one might expect. As a metaphor we
suggest a rubberband effect for the MMN responses, i.e., the larger the distance of the
response from neural equilibrium, the stronger the return force to equilibrium.

Keywords: event related potential, mismatch negativity, oddball paradigm, time window, correlation

INTRODUCTION

Mismatch negativity (MMN) is a negative event-related potential (ERP) component when
subtracting brain responses to standard stimuli from those to rare stimuli, usually peaking at
150 to 250 ms after deviant onset (Näätänen et al., 2007). MMN was discovered by Näätänen
et al. (1978) using an auditory oddball paradigm and equivalent responses have been observed
in other sensory modalities such as in vision (Pazo-Alvarez et al., 2003) or in olfaction (Krauel
et al., 1999). In a typical auditory oddball paradigm, an infrequent deviant sound is occasionally
presented within a sequence of frequent standard sounds, and the participants either actively detect
the deviant or ignore the entire sequence while focusing on signals of another modality. The
elicitation of MMN in the latter case indicates that it can be observed independent of attention,
and such independence is more pronounced in sleeping infants (Cheour et al., 2002; Martynova
et al., 2003). MMN apparently discloses a neural mechanism to detect novel stimuli, and it is even
elicited in complex situations when abstract rules are violated (Saarinen et al., 1992; Schröger et al.,
2007).

In research on MMN, the amplitude of the response, usually quantified by the most negative
value within the conventional MMN time window, has been proven to be a useful parameter
(Sinkkonen and Tervaniemi, 2000; Paavilainen, 2013). Typically, the MMN amplitude gets larger
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when the oddball stimuli become more different, i.e., when the
magnitude of oddball’s deviation from standard stimuli increases
(Näätänen, 1992; Jaramillo et al., 2000; Pakarinen et al., 2007; but
see Horváth et al., 2008). For example, Pakarinen et al. (2007)
varied the frequency distance between the standard and deviant
sounds and found that larger relative to smaller deviation (e.g.,
523 and 609 Hz relative to 523 and 546 Hz) led to higher MMN
amplitude measured at the Fz electrode. Similar relationships
between the magnitude of deviation and the MMN amplitude
can be demonstrated on other deviant dimensions as well, such
as stimulus intensity (Pakarinen et al., 2007), duration (Jaramillo
et al., 2000; Pakarinen et al., 2007), and perceived location
(Pakarinen et al., 2007). Moreover, when the number of standard
stimuli before a deviant increases, MMN amplitudes also get
enhanced (Haenschel et al., 2005).

Beside amplitude, peak latency measured by the time from
the deviant onset to the MMN peak is also widely used as an
indicator in MMN research (Sinkkonen and Tervaniemi, 2000;
Paavilainen, 2013). It has been observed that MMN peak latency
gets shorter when stimuli deviation increases (Amenedo and
Escera, 2000; Pakarinen et al., 2007). Both MMN amplitude and
peak latency are good predictors of behavioral performances.
While the accuracy of detecting deviants among series of
standards is paralleled by the MMN amplitude (Lang et al.,
1990, 1995; Jaramillo et al., 2000; Novitski et al., 2004; Pakarinen
et al., 2007), the MMN peak latency in some cases predicts
the speed of behavioral responses, i.e., the shorter the latency,
the faster the reaction (Novitski et al., 2004; Pakarinen et al.,
2007). Furthermore, both amplitude and latency have been
well established as biomarkers in clinical cases of psychiatric
disorders such as schizophrenia (Kargel et al., 2014) or autism
(Roberts et al., 2011). These observations indicate that the
MMN amplitude and latency are ecologically relevant indicators,
which may reflect the neural operations of sensory novelty
detection. Thus, an in-depth analysis of these indicators is
necessary.

In previous ERP studies, amplitude or averaged amplitude in
a short window are most frequently chosen for statistical analyses
(Näätänen et al., 1978). In some cases temporal parameters like
onset, offset or peak latency are also analyzed with the onset and
offset latency being estimated by the time at the most positive
value immediately before and after the MMN peak, respectively
(Baldeweg et al., 1999). Sometimes the slopes of the waves
indexed by the fluxion of the extrapolated line between the onset
and the peak of MMN or the integral of the half MMN wave area
are explored (Korostenskaja et al., 2003).

Although various parameters have been used in previous ERP
studies, it remains unclear in detail how the different parameters
are related to each other. Previous studies provide only limited
evidence which shows no clear relationship between the MMN
amplitude and different latencies (Lang et al., 1995). With respect
to other ERP components rather than MMN, Polich et al.
(1997) found negative correlations between the P3 amplitude
and its latency, i.e., the larger the P3 amplitude, the shorter
the latency, in a task requiring participants to discriminate an
infrequent target from frequent standards; this correlation was
somewhat biased to the right frontal electrodes, suggesting that

the generation of P3 may involve initially the attentional control
system of the right frontal cortex. In another study (Intriligator
and Polich, 1994) it was found that the EEG power in lower
frequency bands correlated positively with the P3 amplitude,
suggesting a possible mediating role of attention resources.
These observations indicate that exploring correlations between
different parameters is a useful method to look into the neural
mechanisms of ERP components.

The above-described research has examined mostly the
relationship between the amplitude and latencies; other
potentially indicative parameters such as upside and downside
slopes are largely ignored. As suggested in some previous studies
(Korostenskaja et al., 2003), the upside slope reflects the speed
of the rise of MMN wave and indexes the speed of neuronal
arousal processes associated with MMN responses. On this basis,
it is important to extend the ERP analysis from focusing only on
amplitude and latencies to more parameters such as upside and
downside slopes as well as other temporal parameters.

In the study presented here, we aimed to systematically
examine nine parameters in the MMN waveform, i.e., onset,
offset, peak amplitude, averaged peak amplitude (shortened as
“ampavg”), duration, area, peak latency, upside and downside
slopes (see Figure 1), trying to find out whether there exist
certain correlations between different parameters of MMN.
The data of this analysis were taken from a previous study
(Wang et al., 2015), in which MMN amplitudes elicited by
frequency deviants of sinusoidal tones in a passive oddball
paradigm were compared for four inter-stimulus interval (ISI)
conditions (1.5, 3, 4.5, and 6 s). The original results demonstrated
significantly larger MMNs over central-frontal scalp areas for
shorter ISIs up to 3 s as compared to longer ones, suggesting
that the temporal modulation of 3 s provides a basic process of
sequential segmentation which can be operated pre-attentively
or pre-semantically (Pöppel, 1997, 2009). This finding also
posed another question for the current analysis whether the
suspected correlations could be present in all or a subset of ISI
conditions. Considering MMN as a negative ERP component
being present at various ISIs, we focused our analysis on the
potential correlations between different MMN parameters, which
might capture the substantial underlying neural processes of
novelty detection. We anticipated that the suspected correlations
should be independent of ISIs since their generation is due
to generic operations of the neural system dealing with the
departure from the equilibrium.

Among all the parameters we examined, latency, amplitude
(including averaged amplitude) and slope (both upside slope
and downside slope) were of special interest. Since previous
study did not show any clear relationship between MMN
latency and amplitude (Lang et al., 1995), we anticipated no
correlation between MMN peak latency and amplitude or
averaged amplitude as well. Since MMN slopes are waveform-
related parameters while latency is a temporal one, we did
not anticipate any correlation between MMN peak latency and
slopes (both upside and downside slopes) as well. Regarding the
relationship between MMN amplitude and slopes, which was
of our major interest in the present study, we anticipated a
different picture. As suggested previously (Korostenskaja et al.,
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FIGURE 1 | Nine parameters characterizing the simplified mismatch negativity (MMN) wave.

2003), the upside slope indicates the speed of the rising MMN
wave. Thus, the faster the rising speed, the larger the MMN
amplitude. We hence hypothesized a positive correlation between
MMN amplitude and upside slope. However, once the MMN
wave reached its peak, neural attenuation processes were expected
independent of the peak amplitude reflecting an exponential
decay. Thus, we hypothesized no correlation between MMN
amplitude and downside slope.

Taken together, our present study took a new perspective to
gain better understanding of the neural processing underlying
auditory change detection. We investigated systematically the
relationships between different MMN parameters with certain
predictions on the relationships between major parameters of our
concern.

MATERIALS AND METHODS

Participants
Twenty four right-handed Peking University students
participated in this study; they received considerable financial
reward afterward according to local standards. All participants
passed an auditory test to guarantee normal hearing. They
reported no neurological or psychiatric problems and had
normal or corrected-to-normal vision. All the participants were
informed that their brain activities would be recorded during the
experiment, but they were naïve with respect to the real purpose
of the study. The study was approved by the departmental ethics
committee of Peking University, and all participants signed an
informed consent before the experiment. In the data analysis,
two participants were excluded from further analysis because of
severe EEG artifacts; thus, 22 participants (11 females) remained
for the final analyses. The mean age of the participants was
24.6 years (range 18–28 years).

Stimuli and Procedure
Data were taken from a previous study, thus, the materials and
methods, except the ERP data analysis, were identical to the study
of Wang et al. (2015). A passive auditory oddball paradigm was

employed in which a sinusoidal tone of 1000 Hz served as the
standard stimulus and another sinusoidal tone of 1500 Hz served
as the deviant stimulus. The occurrence probability of the deviant
was 20%. Tones were of 100 ms duration and had an intensity of
65–75 dB when measured by a decibel meter at the ear locations.
Video clips of a silent documentary movie about the Indian River
Ganges served as task relevant stimuli to which participants were
asked to pay attention during the experiment.

Auditory stimuli were presented with a constant ISI within
each of eight blocks. Altogether four different ISIs (1.5, 3, 4.5,
and 6 s) were used. They were assigned to the first four blocks
in a Latin square order and to the remaining four blocks in a
reversed order. Each block contained 150 auditory stimuli with
120 standard tones and 30 deviant tones. Deviant tones were
separated from each other at least by two standard tones to
avoid a potential decrease of the oddball effect. Furthermore, in
each block the first five stimuli were standard tones, in order
to set a baseline for the participants. During the experiment
each participant sat in a comfortable armchair in a dimly
lit and electrically shielded room. Participants were told to
continuously watch the video clips while ignoring the auditory
stimuli presented from a speaker 40 cm behind them. They were
asked to pay full attention to the subtitles and video images, and
were told that they would be tested during the breaks. About
every 15 min participants were encouraged to take a break and
they were quizzed by the experimenters on the movie contents.
All participants memorized the movie content remarkably well.
During the recordings, participants were asked to restrain from
frequent eye blinks and head movements to avoid EEG artifacts.
All experiments were done from 9 to 12 am to avoid potential
circadian fluctuations (Pöppel and Bao, 2014; Zhou et al., 2014;
Bao et al., 2015). On average, one recording lasted for about
90 min. After the experiment, participants were debriefed about
the purpose of the experiment.

Electrophysiological Recordings
Electroencephalographic (EEG) data were recorded with a 64-
channel NeuroScan 4.3 system. The electrodes positions were
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chosen according to the extended 10–20 system. The average
of the bilateral mastoids served as the online reference and
the forehead served as ground. Vertical eye movements were
monitored with bipolar electrodes above and below the left
eye; horizontal eye movements were monitored with electrodes
placed at the bilateral temples. The recording sampling rate was
500 Hz, high-pass filtered at 0.05 Hz and low-pass filtered at
100 Hz. In every recording, the impedance of each electrode was
below 5 k�.

EEG Data Preprocessing
Fieldtrip Toolbox (Oostenveld et al., 2011) was used for offline
pre-processing of EEG raw data. Raw data were first band-
pass filtered between 1 and 100 Hz and then an independent
component analysis (ICA, Belouchrani et al., 1993) was utilized
to remove eye and muscle artifacts. We defined each epoch
from 400 ms before to 800 ms after the onset of each
stimulus. The ICA-processed data were corrected to the baseline
of −200 ms to 0 ms and then low-pass filtered at 25 Hz.
Deviant and standard epochs for each condition were separately
averaged to obtain the waveforms. For each participant, standard
waves were subtracted from deviant waves to obtain the
MMN.

ERP Parameters Extraction
In a first step, altogether nine categories were extracted from the
MMN waves, i.e., amplitude, averaged amplitude, onset latency,
offset latency, duration, area, peak latency, upside slope, and
downside slope (named as upslope and downslope thereafter).
Descriptions of each parameter and their defining criteria are
listed in Table 1 and shown in Figure 1. It should be mentioned
that a threshold (Th) value was calculated in each MMN wave
by the formula Th = Ampbase-Stdbase, where Ampbase is the
mean amplitude of the baseline epoch (from −200 ms to
0 ms) and the Stdbase is the corresponding standard deviation.
MMN waves without any amplitude more negative than Th
were considered as “fake-MMNs” and discarded from further
analysis.

Correlation Analysis
Test of normality (Kolmogorov–Smirnov test) of parameters
showed that some of them violated the normal distribution
(ps > 0.05), and therefore Spearman Correlations (n = 22)

coefficients were computed between all pairs of parameters for
each of MMN waves, i.e., the waves for the four ISI conditions.
Combinations of two out of nine parameters altogether result
in C2

9 = 36 pairs. Consequently, we have 36 × 4 = 144
correlation coefficients and corresponding p-values at each
electrode. Thirteen electrodes were chosen for this correlation
analysis, namely FPZ, FZ, FCZ, CZ, CPZ, F1, F3, F2, F4, FT7,
FT8, T7, and T8, shown in Figure 2. These electrodes mainly
are located over centro-frontal and temporal areas, and are
often chosen as target electrodes for auditory MMN analysis
(for a review see Näätänen et al., 2007). To this end, we first
counted the number of significant and marginally significant
correlations across electrodes for each ISI condition and each
paired parameter. This approach does not simply test whether
or not there is significant correlation among parameters, rather
it calculates approximate indices for the relative reliability of the
relationship between parameters based on the statistical tests,
thus, reducing though not eliminating the potential impact of
Type I error in drawing conclusions. More generally speaking,
if one pair of parameters showed significant correlations at
most of selected electrodes while another pair barely showed
any, we would have decent confidence that the former (vs.
the latter) revealed a relatively reliable relationship between
the parameters. In this sense, although the temporal electrodes
are close to the mastoids and exhibited smaller MMNs, the
inclusion of them would not significantly alter the results
and conclusions described below. Furthermore, ERP signals
from adjacent electrodes might correlate with each other and
our simple counting approach might conflate the strength of
between-parameters relationship in some situations. Therefore,
we conducted a further region of interest (ROI) analysis to first
obtain averaged MMN waves within each of predefined regions
and then calculate the parameters from the averaged MMNs for
later correlation analysis. Altogether four regions were defined,
i.e., frontal (FZ, FPZ, F1, F2, F3, and F4), central (FCZ, CZ, and
CPZ), left temporal (T7 and FT7), and right temporal (T8 and
FT8) regions.

RESULTS

On the basis of our analytical procedure we obtained a large
number of correlation coefficients. To draw clear patterns from

TABLE 1 | Parameters and their measuring criteria.

Parameter Measuring criteria

Amplitude Amplitude (in microvolts) of the most negative deflection (peak) between 100 and 300 ms after onset; for correlation analysis, its absolute value is used

Ampavg Averaged value of ±20 ms around the peak; for correlation analysis, its absolute value is used

Onset Time at the first point the MMN wave crossed the threshold

Offset Time at the second point the MMN wave crossed the threshold

Peak latency Time at the peak amplitude

Area Accumulated area between onset and offset times

Duration Offset minus onset time

Upslope Largest derivative of the ascending side of the MMN wave; for correlation analysis, its absolute value is used

Downslope Largest derivative of the descending side of the MMN wave; for correlation analysis, its absolute value is used
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FIGURE 2 | Thirteen marked electrodes were used for the correlational analysis.

these correlations, we summed significant (p < 0.05; two-tailed
and thereafter) or marginally significant (0.05 ≤ p < 0.1)
correlations out of the 13 electrodes (Figure 2) for each
condition (Table 2). For example, if seven electrodes out
of 13 show significant or marginally significant correlations
between two parameters, the corresponding number in Table 2
would be 7. By counting the number of significant correlations
across electrodes, we could obtain a first impression of
the relative strength of the relationship between any two
parameters.

As shown in Table 2, large amounts of correlations were found
for several expected correlational pairs across electrodes. The first
group of these pairs is due to their similarity in nature, and the
typical example is the Ampavg-Amplitude which showed average
r > 0.9 at all 13 electrodes. The second group is due to their
mathematical relationship, examples including Amplitude-Area,
Ampavg-Area, Onset-Duration, Offset-Duration, Onset-Area,
and Offset-Area; within these pairs, the value of one parameter
is dependent on the other parameter. Third, the large amounts
of correlations for Amplitude-Duration, Ampavg-Duration, Peak

Latency-Onset, and Peak Latency-Offset are expected in a
commonsense way. For the other combinations, a clear trend
was that temporal parameters (onset, offset, peak latency) and
shape parameters (amplitude, ampavg, upslope and downslope)
were usually not correlated as judged from the numbers across
electrodes, consistent with the findings from Lang et al. (1995).

Surprisingly, we found an unexpected asymmetry
in correlational relationships between amplitude and
upslope/downslope, which contradict our hypotheses. While
rather high positive correlations in Amplitude-Downslope were
observed (on average in more than 8 among 13 electrodes),
the correlational relationships between Amplitude and
Upslope barely exist (on average less than 1). A similar
asymmetry was observed between Ampavg-Downslope (average
number of correlated electrodes > 6) and Ampavg-Upslope
(average number = 0). These correlations correspond to the
low correlations between upslope and downslope (average
number < 2). Furthermore, no systematic differences between
the four ISI conditions were suspected from the counts in Table 2.
To visually illustrate the results, in Figure 3 for all electrodes
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TABLE 2 | Counts of correlations across electrodes.

Pairs 1.5 s 3 s 4.5 s 6 s Pairs 1.5 s 3 s 4.5 s 6 s

Ampavg-Amplitude 13 (13) 13 (13) 13 (13) 13 (13) Upslope-Downslope 0 1 (1) 5 (2) 2 (2)

Ampavg-Upslope 1 (0) 1 (0) 0 1 (0) Upslope-Duration 1 (1) 0 1 (0) 0

Ampavg-Peak latency 0 1 (0) 2 (0) 0 Upslope-Area 0 2 (0) 0 0

Ampavg-Onset 12 (9) 7 (4) 4 (1) 5 (3) Peak latency-Onset 11 (10) 13 (13) 13 (13) 13 (13)

Ampavg-Offset 4 (2) 3 (2) 11 (7) 2 (2) Peak latency-Offset 13 (13) 13 (13) 13 (13) 13 (13)

Ampavg-Downslope 8 (7) 7 (5) 7 (5) 8 (8) Peak latency-Downslope 0 0 1 (0) 1 (0)

Ampavg-Duration 13 (13) 13 (13) 13 (13) 13 (12) Peak latency-Duration 0 1 (0) 1 (0) 0

Ampavg-Area 13 (13) 13 (13) 13 (13) 13 (13) Peak latency-Area 0 0 0 0

Amplitude-Upslope 0 1 (0) 1 (0) 0 Onset-Offset 5 (4) 10 (8) 9 (6) 13 (12)

Amplitude-Peak latency 0 0 0 0 Onset-Downslope 1 (1) 4 (2) 0 4 (1)

Amplitude-Onset 12 (10) 8 (5) 5 (3) 7 (5) Onset-Duration 13 (13) 8 (6) 8 (8) 4 (3)

Amplitude-Offset 3 (2) 4 (2) 6 (6) 3 (3) Onset-Area 13 (12) 8 (7) 7 (5) 6 (3)

Amplitude-Downslope 9 (9) 10 (9) 10 (7) 10 (10) Offset-Downslope 0 1 (0) 0 0

Amplitude-Duration 13 (13) 13 (13) 13 (13) 13 (13) Offset-Duration 9 (8) 11 (8) 12 (11) 11 (7)

Amplitude-Area 13 (13) 13 (13) 13 (13) 13 (13) Offset-Area 8 (6) 9 (5) 12 (12) 6 (5)

Upslope-Peak latency 1 (0) 1 (0) 2 (2) 1 (1) Downslope-Duration 1 (1) 0 2 (1) 3 (0)

Upslope-Onset 0 1 (0) 0 1 (1) Downslope-Area 5 (3) 6 (3) 7 (4) 8 (6)

Upslope-Offset 1 (1) 2 (0) 2 (1) 1 (0) Duration-Area 13 (13) 13 (13) 13 (13) 13 (13)

Unparenthesized values, p < 0.1; parenthesized values, p < 0.05.

and all ISIs the distribution of the two slopes (upslope and
downslope) and the corresponding amplitudes are presented; a
clear difference is seen between the Amplitude-Upslope and the
Amplitude-Downslope relations.

Considering that ERP signals at nearby electrodes might
correlate with each other, in a further step, we clustered the
selected electrodes into four relatively homogenous regions and
performed ROI analyses (see Materials and Methods). On the
basis of the results in Table 2, we focused our ROI analyses
on the correlations between amplitudes and slopes. The results
are shown in Table 3. Consistent with the results of the
counting analysis, Table 3 shows significant correlations between
Amplitude and Downslope but none between Amplitude and
Upslope; the correlations between Ampavg with Downslope
and Upslope showed equivalent results. Interestingly, the
asymmetrical effects between Downslope and Upslope were more
pronounced over the frontal and central scalp relative to the
bilateral temporal areas.

DISCUSSION

Our study explored the potential correlations between
parameters defining the time course and the shape of MMN
wave. The MMNs were elicited using a conventional auditory
oddball paradigm and responses in a group of 13 electrodes
were analyzed. Consistent with our prediction, the MMN
peak latency was not correlated with the amplitude (including
ampavg), and no correlation was found for peak latency
and MMN slope (upslope/downslope) either. In fact, our
results showed that most combinations between temporal
parameters (onset, offset, and peak latency) and wave shape
parameters (amplitude, ampavg, upslope and downslope) were
not correlated with each other, indicating that the MMN wave

shape characteristics are irrelevant with respect to when the
MMN is elicited.

Most importantly, we found an unexpected asymmetry
regarding the relationship between MMN amplitude and the two
types of slopes: the MMN downslope was positively correlated
with the MMN amplitude, while the upslope was not correlated
with the amplitude. This observation showed an opposite pattern
to our hypothetical expectation and revealed an important new
phenomenon: the downside decreasing speed of the MMN wave
increases with the amplitude. To the best of our knowledge,
it is the first time to observe such an asymmetric correlation
between MMN amplitude and upslope vs. downslope. The
observation that the MMN amplitude is positively correlated
with the downslope and not with the upslope is very surprising,
since an exponential decay as represented in many passively
decreasing biological processes would be expected, i.e., once
the MMN wave reaches its peak, the same neural attenuation
processes should occur independent of the peak amplitude. The
unexpected observation disproves our hypothesis and in our
view suggests a different type of neural attenuation. Once the
neural response reaches its peak, our brain uses a negative
feedback mechanism to actively draw the neural activity back
to the optimal operation level which can be referred to as
the baseline; the more the deviation from the baseline, the
stronger the return force to the baseline within a certain time
(see Figure 4). This implies that apparently our neural system
has a kind of “distance” information available (i.e., how far
it is away from the baseline) at the time when the peak
amplitude is reached, and can further use this information to
actively control the returning process; otherwise, one could
not explain that the returning speed is positively correlated
with the distance from the baseline. This further suggests an
anticipatory temporal control mechanism for the system to be
prepared as fast as possible for the next novelty detection.
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FIGURE 3 | Basic linear fitting of amplitudes and slopes. The Y-axis represents the downslope (left panels) or the upslope (right panels) for four ISI
conditions in absolute values. The X-axis represents the absolute values of peak amplitude. Each figure has the data points from all electrodes and participants.
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TABLE 3 | Correlations between amplitude and slopes across different regions.

Areas Correlation Pairs 1.5 s 3 s 4.5 s 6 s

Frontal Amplitude-Upslope 0.1553 0.3258 −0.0932 0.1218

Amplitude-Downslope 0.6318∗∗ 0.6533∗∗ 0.7064∗∗ 0.5504∗

Central Amplitude-Upslope 0.1273 0.2532 0.1485 0.1182

Amplitude-downslope 0.6805∗∗ 0.2519 0.5675∗∗ 0.6701∗∗

Left temporal Amplitude-Upslope 0.3209 0.4180 −0.0597 −0.0120

Amplitude-downslope 0.6017∗∗ 0.5129∗ 0.1779 0.0647

Right temporal Amplitude-Upslope −0.0536 0.0526 −0.3729 0.1818

Amplitude-downslope 0.2208 −0.0180 0.3383 0.1195

The table presents R-values of the correlations. ∗p < 0.05, ∗∗p < 0.01.

FIGURE 4 | A simplified sketch on a ‘time window’ for the MMNs to
return to the baselines, ensured by slopes (s1, s2, and s3) that are
correlated with amplitudes.

Since the decreasing speed of MMN component is dependent
on its deviation from the baseline, we suggest the name
‘rubberband effect’ as a metaphor to describe this mechanism.
It is important to point out, that the effects were clearly
observable in all ISIs which in a previous study (Wang et al.,
2015) showed different MMN amplitudes. Thus, it seems that
the association between the MMN amplitude and downslope
might reflect an intrinsic neural mechanism dealing with the
disequilibrium, which might be independent of the temporal
segmentation (Pöppel, 1997, 2009) that modulates the MMN
amplitude.

However, one has to be cautious about the generalization of
this independence of the temporal segmentation. The dominant
effect derived from the pattern of correlation coefficients (see
Table 3) is observed in frontal midline areas extending back
to central areas. Most importantly, however, we observed a
clear hemispheric asymmetry. The right hemisphere did not
show any involvement for a fast return to baseline; thus, there
was no rubberband effect. However, in the left hemisphere the
rubberband effect was observed for 1.5 and 3 s, but not for
the longer ISIs. This observation suggests that in addition to
the spatial distribution of the rubberband effect, there is also
a temporal modulation of the effect. We speculate that the left

hemisphere involvement of the effect and its temporal limitation
to approximately 3 s could be related to the 3 s platform
observed in verbal behavior; spontaneous speech is segmented
in successive 3 s time windows (Vollrath et al., 1992). Thus,
the brain is prepared for the next utterance within regular time
intervals.

Contrary to our hypothesis as well, the MMN upslope was
not correlated with the amplitude. This observation indicates
that the generating (up) and diminishing (down) processes of
MMN wave are implemented by different neural mechanisms.
As indicated by some investigators, the rising phase may
reflect the neuronal activation (Korostenskaja et al., 2003) or
summation process (Zhou et al., 2010) during the encoding
stage of information processing. The present study shows
that this activation or summation process seems to be an
integration process, which does not anticipate the position
of the MMN peak. In other words, the MMN peak can be
reached at any time during the summation process, thus resulting
in no correlation between the upslope and the amplitude.
The proposition that the MMN generating process does not
anticipate the position of the peak is further supported by the
observation of no correlation between the MMN amplitude
and the peak latency. Thus, different from the rubberband-like
active operation in the returning phase of the MMN, a passive
information accumulation in the MMN generating process is
indicated.

Besides our major surprising observation of an asymmetry
of neural processes before and after the peak of the amplitude,
we also observed that the MMN peak latency was not
correlated with the MMN amplitude and the slopes, which
is consistent with our hypotheses and also in line with
observations by Lang et al. (1995). However, it should
be noted that a previous study by Polich et al. (1997)
did observe correlational relationships between amplitude
and latency, but with the P3 ERP component. Since P3
is closely related to the operation of attention system
(Polich, 2007) and the MMN in our case is observed with
a passive oddball paradigm, our conclusion regarding the
relationship between amplitude and latency should be limited
to auditory frequency MMN in a passive oddball paradigm
only, since the involvement of attention or the change of the
oddball probability could possibly change the correlational
relationships.
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Finally, the current study also pointed out a simple yet effective
data analyzing method by using correlational relationship as
a way to explore psychological or neuronal mechanism in
ERP signals. In previous studies, there have been discussions
on advantages and disadvantages of single measurements
like peak amplitude, peak latency or mean amplitude (Luck,
2014). Sometimes it may be difficult which parameter to
use, as some might show hypothesized results while others
do not. The method we suggest enables us to explore all
parameters from a different perspective, and statistically the
correlational analysis has a higher tolerance with respect to
data variation, and it remains robust with different calculating
methods. These advantages might prove to be useful in future
studies.
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For dynamic sounds, such as vocal expressions, duration often varies alongside speed.
Compared to longer sounds, shorter sounds unfold more quickly. Here, we asked
whether listeners implicitly use this confound when representing temporal regularities
in their environment. In addition, we explored the role of emotions in this process. Using
a mismatch negativity (MMN) paradigm, we asked participants to watch a silent movie
while passively listening to a stream of task-irrelevant sounds. In Experiment 1, one
surprised and one neutral vocalization were compressed and stretched to create stimuli
of 378 and 600 ms duration. Stimuli were presented in four blocks, two of which used
surprised and two of which used neutral expressions. In one surprised and one neutral
block, short and long stimuli served as standards and deviants, respectively. In the other
two blocks, the assignment of standards and deviants was reversed. We observed a
climbing MMN-like negativity shortly after deviant onset, which suggests that listeners
implicitly track sound speed and detect speed changes. Additionally, this MMN-like
effect emerged earlier and was larger for long than short deviants, suggesting greater
sensitivity to duration increments or slowing down than to decrements or speeding
up. Last, deviance detection was facilitated in surprised relative to neutral blocks,
indicating that emotion enhances temporal processing. Experiment 2 was comparable
to Experiment 1 with the exception that sounds were spectrally rotated to remove vocal
emotional content. This abolished the emotional processing benefit, but preserved the
other effects. Together, these results provide insights into listener sensitivity to sound
speed and raise the possibility that speed biases duration judgements implicitly in a
feed-forward manner. Moreover, this bias may be amplified for duration increments
relative to decrements and within an emotional relative to a neutral stimulus context.

Keywords: auditory change detection, event-related potentials, vocal affect, sex differences, interval timing,
preattentive, prosody
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INTRODUCTION

The human temporal sense depends on the ability to represent
external events marking the passage of time. Research has
shown that individuals encode such events outside awareness and
automatically detect changes in event onset and duration (e.g.,
Näätänen et al., 1989; Tse and Penney, 2006). We asked whether
individuals likewise track the speed with which events unfold and
whether emotions benefit such tracking. Specifically, we explored
brain responses to unattended neutral and emotional sounds that
occasionally accelerated and decelerated, becoming shorter and
longer as a consequence.

Time Perception: On the Role of Stimulus
Properties and Context
Time perception, a sixth human sense, critically contributes to
meaningful interactions with the environment. Many mental
functions depend on time. For example, attention is thought
to be governed by temporal rhythms (Jones, 1976; Jones and
Boltz, 1989; Escoffier et al., 2015). Learning in the context of
classical and operant conditioning is shaped by the delay between
two stimuli or between a behavior and its consequence (Gallistel
and Gibbon, 2000). Language is temporally sensitive because the
comprehension of words and syntactic dependencies relies on
durational parameters such as voice-onset-time or intonation
(Schirmer, 2004). Additionally, in the context of non-verbal
communication, timing tells us how long to hold another’s gaze,
to laugh at another’s joke, and to wait for another’s response
before responding in turn.

Traditionally, the study of time perception has relied on simple
static stimuli such as tones or images for which participants
compared stimulus duration to a reference duration in memory.
More recently, researchers have explored time perception with
dynamic stimuli such as moving objects (Kaneko and Murakami,
2009; Matthews, 2011; Su and Jonikaitis, 2011; Linares and
Gorea, 2015), tones (Matthews, 2013), music (Firmino et al.,
2009; Droit-Volet et al., 2010; Cocenas-Silva et al., 2011;
Darlow et al., 2013), faces (Fayolle and Droit-Volet, 2014), and
vocalizations (Schirmer et al., in press). Although ecologically
more valid, this approach presents a methodological challenge.
With dynamic stimuli, duration always varies in conjunction
with one or two other factors: stimulus content and speed. For
example, compared to shorter vocalizations, longer vocalizations
may contain more ups and downs in pitch (i.e., content
varies), and/or the same pitch variation may play out more
slowly (i.e., speed varies). At present, our understanding of
how these two natural confounds impact time perception is
incomplete.

Apart from using more ecologically valid materials, recent
timing research has elucidated the role of contextual variables,
such as emotion. For example, when asked to time the duration
of a sound or image, temporal reproductions or duration
judgements are typically longer for emotional as compared to
neutral stimuli (e.g., Grommet et al., 2011; for reviews see Droit-
Volet and Meck, 2007; Schirmer, 2011). Emotion effects differ
depending on whether stimuli are static or dynamic and whether
duration manipulations affect stimulus content as opposed to

speed. Static timing stimuli tend to appear longer when they
are emotional as compared to neutral (e.g., Grommet et al.,
2011). The same is true for dynamic stimuli when duration
manipulations are confounded by stimulus content, that is longer
stimuli entail more events than do shorter stimuli (Angrilli
et al., 1997). However, opposite effects emerge for dynamic
stimuli that are confounded by speed, that is, longer stimuli play
out more slowly than shorter stimuli (Voyer and Reuangrith,
2015; Schirmer et al., in press). Here, emotionality increases the
probability of stimuli being perceived as short.

Although prior research has enhanced our understanding of
the human temporal sense in the context of both static and
dynamic events, this understanding is still incomplete. Moreover,
the focus has been on explicit duration judgements and the
representation of stimulus on- and offsets. Thus, we still know
little about implicit timing and how individuals represent the
temporal course of information between stimulus onset and
offset. Additionally, it is unclear how such timing and temporal
course representations are modulated by stimulus emotion.

Mismatch Negativity: An Implicit
Measure of Temporal and Emotional
Processing
To address the issues outlined here, we adopted a mismatch
negativity (MMN) paradigm. In this paradigm, participants
pursue a primary activity while an auditory stimulus stream plays
in the background. For example, they may watch a silent film
while passively listening to a sequence of 440 Hz tones that is
occasionally interrupted by a higher pitched deviant (Sams et al.,
1985). The electroencephalogram (EEG), recorded throughout
this procedure, reveals a negative event related potential (ERP)
component peaking around 200ms following stimulus onset with
a fronto-central topography. This component, called the MMN,
emerges when the average EEG response to standard stimuli is
subtracted from the average EEG response to deviant stimuli.
Over the mastoid electrodes, the MMN has positive polarity and
this is thought to index generators in primary auditory cortex (for
a recent review see Garrido et al., 2009).

The MMN has been used as a marker of implicit temporal
processing in several studies (for a review see Ng and Penney,
2014). Stimuli comprised sequences of tones, vowels, syllables or
music and stimuli within a sequence differed in duration only.
For example, Jacobsen and Schröger (2003) presented several
experimental blocks, one of which comprised frequent standard
tones of 150 ms and rare deviant tones of 100 ms. Similar to
others, these authors found that temporal deviants elicited an
MMN peaking around 250 ms following sound onset. In case
of shorter deviants, as was true for their block, temporal change
occurs at deviant offset. In case of longer deviants, temporal
change occurs during the deviant (i.e., at the value of the standard
duration). Notably, there is evidence that MMN amplitude differs
between these cases (but see Amenedo and Escera, 2000; Peter
et al., 2012), although some studies found that long deviants
produce a larger MMN than short deviants (e.g., Catts et al., 1995;
Jaramillo et al., 1999; Atkinson et al., 2012), whereas other studies
found the opposite (e.g., Jaramillo et al., 1999; Takegata et al.,

Frontiers in Psychology | www.frontiersin.org January 2016 | Volume 6 | Article 2055 | 70

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Schirmer et al. Detecting Temporal Change in Dynamic Sounds

2008; Colin et al., 2009). Why change direction matters and why
its influence varies are still open questions and will be considered
further in the discussion of this paper.

Apart from being sensitive to temporal change, the MMN
is also sensitive to emotional change. In a first study, Schirmer
et al. (2005) presented listeners with the pseudoword “dada”
spoken in a neutral and angry voice. In some blocks, neutral
sounds served as standards and angry sounds as deviants,
whereas in other blocks, angry sounds served as standards
and neutral sounds as deviants. A separate experiment used
neutral and happy voices. Both emotional sounds elicited an
earlier and larger MMN than the neutral sounds, indicating
that emotions facilitated change detection. Moreover, sex
differences in this effect indicated that women were more
sensitive than men to unattended emotional expressions.
Subsequent research replicated these results (Schirmer et al.,
2007; Schirmer and Escoffier, 2010; Thönnessen et al., 2010;
Fan et al., 2013) and pointed to sources in the temporal
lobe and insula (Schirmer et al., 2008; Thönnessen et al.,
2010).

The Present Study
Clearly, the MMN can be used to study implicit temporal
processing. However, existing MMN studies focused on duration
effects, that is whether a deviant expires before or after a
standard, rather than on dynamic time course effects that emerge
throughout a stimulus. Moreover, the role of emotion, which
is known to affect both timing and the MMN, remains to be
explored. Here, we sought to address these gaps. We created
MMN stimuli by subjecting one surprised and one neutrally
spoken “Ah” to a speech manipulation procedure creating a
378 ms and a 600 ms exemplar, of which the former had
a fast and the latter a slow speed. We then presented these
exemplars in four blocks, two of which comprised surprised
and two of which comprised neutral stimuli. Within each
emotion condition, one block used the short exemplar as the
standard and the long exemplar as the deviant, whereas the other
block had a reversed stimulus assignment. Participants passively
listened to the four blocks, while watching a silent subtitled
movie.

In line with previous research using static stimuli, we expected
a duration MMN peaking about 200 ms after deviant offset
(short deviant blocks) or the duration value of the standard
(long deviant blocks). Additionally, we expected ERP differences
between deviants and standards due to the dynamic nature
of our stimuli. Specifically, if listeners implicitly process the
slowing down and speeding up associated with long and short
deviants, respectively, the deviant ERP should become more
negative than the standard ERP prior to the stimulus duration
mismatch. Moreover, we anticipated an incremental mismatch
effect emerging shortly after stimulus onset as information about
temporal change continuously accumulated and the temporal
disparity between standard and deviant increased. Last, we
hypothesized that emotions would facilitate temporal change
detection resulting in an earlier and larger mismatch effect for
the surprised relative to the neutral blocks, especially for female
listeners.

EXPERIMENT 1

Methods
This research was approved by the Institutional Review Board of
the National University of Singapore.

Participants
We recruited 35 participants, most of whom were students,
through campus advertisements. The data from three
participants were discarded due to excessive movement
artifacts in the EEG. Half of the remaining participants were
male and the other half were female. The average age was 22.2
(SD = 2.4). Participants reported normal hearing and normal or
corrected to normal vision. They were reimbursed for their time
at a rate of S$10/hour.

Stimuli
The stimulus material consisted of the interjection “Ah” spoken
in a neutral and a surprised voice by a male speaker. The
recordings were taken from a larger pool of 231 interjections
produced by 33 speakers and including neutral, surprised, sad,
angry, happy, disgusted, and fearful expressions. These stimuli
were presented to 30 individuals (18 female and 12 male,
mean age = 22.1, SD = 2.2) who did not participate in the
main experiment and who indicated whether a given stimulus
expressed neutrality, surprise, sadness, anger, happiness, disgust,
fear or another self-determined emotion and rated stimulus
arousal on a 5-point scale ranging from 1 (very calm) to 5
(very excited). Recognition probability (i.e., number of raters who
correctly identified the emotion divided by the total number of
raters) and mean arousal were 0.97 and 2.4 (SD = 1.09) for the
selected neutral stimulus and 0.7 and 3.13 (SD = 0.78) for the
selected surprised stimulus. The neutral stimulus had a duration
of 501 ms, whereas the surprised stimulus had a duration of
502 ms.

The stimuli were selected based on their rating results and
their suitability for the compression/stretching manipulation
employed here. Specifically, interjections were manipulated
with Celemony Melodyne 2, a commercial sound manipulation
software that implements an algorithm for duration change.
According to the developer information, this algorithm was
designed to enable duration change without altering average pitch
and short-term spectral features. Looking at mean pitch and
pitch variation we could confirm this claim for a larger stimulus
set presented elsewhere (Schirmer et al., in press). However,
the algorithm appears to affect harmonics-to-noise ratio (HNR),
reducing it in the case of sound compression and increasing it
in the case of sound stretching. Nevertheless, we subjected the
stimuli described above to the algorithm resulting in a short
version of 378 ms and a long version of 600 ms (Figure 1).
The short and long versions differed in HNR by 2.5 dB only.
Sound amplitudes were normalized in MATLAB to the same
root-mean-square (RMS) value.

Paradigm
For an illustration of the paradigm please see Figure 2.
The sounds were presented in four blocks, each comprising
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FIGURE 1 | Oscillogram (top) and spectrogram (bottom) for the short and long exemplars of the surprised stimulus. Blue lines reflect the fundamental
frequency contour heard as pitch.

FIGURE 2 | Experimental paradigm. The four experimental blocks are illustrated in rows one to four, respectively. The deviant in each block is highlighted by the
gray box. Each participant completed all four blocks in counterbalanced order.

630 standards and 105 deviants. Two blocks used surprised
expressions and the other two blocks used neutral expressions.
One surprised and one neutral expression block used the short
stimulus as the standard and the long stimulus as the deviant.
The other two blocks used the long stimulus as the standard
and the short stimulus as the deviant. Deviants were presented
pseudorandomly such that they followed a sequence of 3–9
standards. Stimulus onset asynchrony was kept constant at 1.2 s.
Block order was counterbalanced across participants using a
Latin Square design.

The stimuli were played over ear-insert headphones at a
comfortable sound pressure level that was kept constant across
participants. While listening to the sounds, participants watched
a self-selected, silent, subtitled movie. They were offered nine
movies to chose from, which had an average duration of 109 min
(range 94–134) and were classified by the British Board of Film as
15, 12a or appropriate for universal audiences. The authors of this
research considered the movies to be only mildly arousing as they
excluded comedies, dramas, action or extremely violent movies.
The experiment lasted about an hour.

Electrophysiological Recording and Analysis
The EEG was recorded using a 24-channel ANT system at a
sampling rate of 256 Hz. Electrodes were placed according to the
modified 10–20 system. An online anti-aliasing filter was applied
with a cut-off frequency at 0.27 times the sampling rate.

The data were processed in EEGLAB. Continuous recordings
were epoched and baseline-corrected using a 200 ms window

prior to stimulus onset and an 800ms window following stimulus
onset. After low- (30 Hz cutoff, 6.75 Hz transition band) and
high-pass filtering (0.1 Hz cutoff, 0.2 Hz transition band), the data
were scanned visually for non-typical artifacts and subjected to
Infomax, an independent components algorithm. Components
reflecting eye-blinks and saccades were removed, and the back-
projected data scanned once more for residual artifacts.

For statistical analysis, we focused on nine frontal and central
channels where the MMN is typically observed (i.e., FP1, F3,
C3, Fpz, Fz, Cz, FP2, F4, C4). We included all deviant trials
as well as standards immediately preceding a deviant that had
survived artifact rejection. Visual inspection of the data failed to
reveal a sharpMMN component. Instead, we observed a ramping
negativity that developed throughout the stimulus epoch. To
adequately capture this negativity, we divided stimulus epochs
into eight 100 ms windows and subjected the mean voltages
from these windows to an ANOVA with Duration (short/long),
Emotion (neutral/surprised), Deviance (standard/deviant), and
Window (1–8) as repeated measures factors and Sex as a between
subjects factor. Due to our interest in temporal change detection,
we focus this report on main effects and interactions involving
Deviance.

Results
Visual inspection of the ERPs revealed a climbing negativity,
in some cases preceded by a positive dip, over fronto-central
electrodes with polarity inversion over the mastoids. The
negativity developed earlier and was larger for long relative to
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short deviants and within the surprised relative to the neutral
vocal stream (Figures 3 and 4). Effects seemed comparable for
female and male listeners.

Statistical analysis confirmed these visual impressions.
It revealed a significant interaction between Deviance
and Window [F(7,210) = 46.5, p < 0.0001] compatible
with a growing difference between standards and deviants
throughout the course of the stimulus. Additionally, the
Window × Deviance × Duration [F(7,210) = 6.9, p < 0.0001]
and the Window × Deviance × Emotion [F(7,210) = 3.35,
p < 0.01] interactions were significant. Hence, we pursued these
effects for each time bin separately (compare time bin maps
illustrated in Figure 4).

The Deviance × Duration interaction was significant for
Windows 1, 3, 4, 5, and 6 [Fs(1,30) > 7, ps < .013]. In the
first window, short deviants elicited a more positive ERP than
short standards [F(1,30) = 13.8, p < 0.001], but long deviants
and standards did not differ (p > 0.1). In the third and fourth
windows, long deviants elicited a more negative ERP than long
standards [Fs(1,30) > 7, ps < 0.013], but short deviants and
standards did not differ (ps > 0.1). In the fifth and sixth windows,
the ERPs for both long [Fs(1,30) > 41, ps < 0.0001] and short
duration stimuli [Fs(1,30) > 11, ps < 0.003] were more negative
for deviants than standards.

The Deviance × Emotion interaction was significant for
Windows 1, 2, and 3 [Fs(1,30) > 6.5, ps < 0.016]. In the first and
second windows, neutral deviants elicited a more positive ERP
than neutral standards [Fs(1,30) > 13.7, ps < 0.001], whereas
surprised deviants and standards did not differ (ps > 0.1). In
the third window, surprised deviants elicited a more negative
ERP than surprised standards [F(1,30) = 8.9, p < 0.01], whereas
neutral deviants and standards did not differ (p > 0.1).

In windows 7 and 8, only the Deviance main effect reached
significance [Fs(1,30) = 44, p < 0.0001]; irrespective of Duration
and Emotion, deviants elicited a more negative ERP than
standards.

Discussion
Experiment 1 explored whether listeners perceive changes in
the acoustic rate of unattended vocalizations and whether this
perception is facilitated within an emotional as compared to a
neutral auditory context. Our results support both propositions.
Although the typical MMN component was absent, we found
a climbing negativity for both long and short deviants with
MMN-like topography and polarity inversion over the mastoids.
Moreover, in the case of long deviants, this negativity emerged
at around 200 ms and thus 178 ms before the duration
value of short standards. This indicates that listeners were
sensitive to a slow-down in stimulus speed. There was also a
climbing negativity for short deviants. This negativity developed
around 400 ms, thus, roughly coinciding with deviant offset
and preceding the long standard offset time by 200 ms. Note
that a mismatch response driven entirely by duration should
manifest approximately 200 ms after deviant offset. So, although
later and smaller than the effect for long deviants, the short
deviant effect suggests that listeners perceive an unattended
speed-up.

Emotions modulated the emergence of temporal deviant
effects in the ERP. The climbing negativity appeared about 100ms
earlier in the surprised relative to the neutral stimulus stream,
regardless of deviant duration. Notably, this effect showed
irrespective of listener sex suggesting that men and women were
equally sensitive to the vocal emotional context.

In the following section, we report a second experiment
aimed at pursuing these results further. Specifically, by presenting
spectrally rotated versions of the sounds used in Experiment 1,
we intended to remove obviously human vocal features from
the stimuli, while preserving temporal and spectral stimulus
complexity (Blesser, 1972; Scott et al., 2000; Warren et al., 2006;
Christmann et al., 2014). The sounds were created by flipping the
frequency spectrum around a central frequency resulting in an
“alien” sound quality. Thus, we hoped to answer two questions.
First, we were interested in determining whether the time course
of temporal change detection depends on the presentation of
socially relevant vocal expressions as compared with non-vocal
sounds. In other words, are differences in sensitivity to a slow-
down and speed-up in acoustic rate modulated by whether the
sound has human qualities? Second, we wished to determine
whether emotion effects in Experiment 1 were due to affective
or acoustic stimulus characteristics. Perhaps sound idiosyncrasies
rather than their emotional meaning affected the time course of
temporal change detection.

EXPERIMENT 2

Methods
This research was approved by the Institutional Review Board of
the National University of Singapore.

Participants
We recruited 33 participants. The data from one participant
were discarded due to excessive artifacts in the EEG. Half of the
remaining participants were male and the other half were female.
Their average age was 22.5 (SD = 2.3). Participants reported
normal hearing and normal or corrected to normal vision. They
were reimbursed for their time at a rate of S$10/hour.

Stimuli
The interjections from Experiment 1 were low-pass filtered
(3.8 kHz) and subjected to a spectral rotation around 2 kHz
(Blesser, 1972; Scott et al., 2000). Sound amplitudes were
normalized in MATLAB to the same RMS value. The sounds are
illustrated in Figure 5.

Paradigm
The paradigm was the same as in Experiment 1.

Electrophysiological Recording and Analysis
Data recording and processing were the same as in Experiment 1.

Results
Visual inspection of the ERP suggested similarities with and
differences from Experiment 1. There was again a climbing
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FIGURE 3 | Event related potential (ERP) results from Experiment 1. Illustrated on the left are condition traces for two frontal channels of the left (F3) and right
(F4) hemisphere and for the two mastoid channels. Illustrated on the right are differences waves computed by subtracting short standards from short deviants and
long standards from long deviants.

FIGURE 4 | Event related potential topographical maps for Experiment 1. Maps present the mean potential differences between standards and deviants for
the eight 100 ms analysis windows.

fronto-central negativity with polarity inversion over the
mastoids for deviants relative to standards. Again, in some
cases, this negativity was preceded by a positive dip. Moreover,
long deviants produced an earlier and larger negativity than
short deviants. However, differences between surprised and
neutral vocalizations appeared reversed relative to Experiment 1
(Figures 6 and 7).

To probe these visual impressions, we subjected mean
voltages from eight 100 ms windows to an ANOVA with

Duration, Emotion, Deviance, and Window as repeated
measures factors and Sex as a between subjects factor.
This analysis revealed a significant Deviance × Window
interaction [F(7,210) = 35.4, p < 0.0001] compatible
with a growing difference between standards and deviants
throughout the course of the stimulus. Additionally, the
Window×Deviance×Duration [F(7,210)= 9.4, p< 0.0001], the
Window×Deviance× Emotion [F(7,210)= 5.3, p< 0.0001], and
theWindow × Deviance × Duration × Emotion [F(7,210) = 2.1,
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FIGURE 5 | Oscillogram (top) and spectrogram (bottom) for the short and long exemplars of the spectrally rotated surprised stimulus. Blue lines reflect
the fundamental frequency contour heard as pitch.

FIGURE 6 | Event related potential results from Experiment 2. Condition traces for two frontal channels of the left (F3) and right (F4) hemisphere and the two
mastoid channels are illustrated on the left. Differences waves computed by subtracting short standards from short deviants and long standards from long deviants
are illustrated on the right.

p < 0.05] interactions were significant. Hence, we pursued these
effects for each time bin separately (compare maps presented in
Figure 7).

The Deviance × Duration × Emotion interaction was
significant in the first analysis window only [F(1,30) = 4.5,
p < 0.05; other ps > 0.1]. A follow-up analysis for long
durations revealed an effect of Deviance only [F(1,30) = 13.5,
p < 0.001]. Long deviants elicited a more negative ERP than
long standards. A follow-up analysis for short durations revealed
a Deviance × Emotion interaction [F(1,30) = 5.6, p < 0.05]
indicating that the Deviance effect was significant for surprised
[F(1,30) = 29.9, p < 0.0001], but not neutral expressions
(p > 0.1). Over the first 100 ms following stimulus onset,
surprised deviants elicited a more positive ERP than surprised
standards.

The Deviance × Duration interaction was significant in
windows 2, 3, 4, 5, 6, and 7 [Fs(1,30) > 6.7, ps < 0.05]. In
windows 2, 3, and 4, the ERP was more positive for short
deviants than for short standards [Fs(1,30) = 36, 24, ps < 0.0001;
F(1,30)= 3.4, p = 0.07] and more negative for long deviants than
for long standards [Fs(1,30) > 25, ps < 0.0001]. Subsequently,
both short [Fs(1,30) > 9, ps < 0.01] and long [Fs(1,30) > 42,
ps < 0.0001] deviants elicited more negative potentials than
standards. However, the effect for long durations was greater.

The Deviance × Emotion interaction was significant in
windows 4 and 7 [Fs(1,30) > 10, ps < 0.01]. In window 4,
the deviant ERP was more negative than the standard ERP in
the neutral [F(1,30) = 30.7, p < 0.0001], but not the surprised
condition (p > 0.1). In window 7, the deviant ERP was more
negative than the standard ERP in both conditions, but this
difference was larger for the neutral [F(1,30) = 49.2, p < 0.0001]
than the surprised [F(1,30) = 10.5, p < 0.01] condition.

In window 8, only the Deviance main effect reached
significance [F(1,30)= 45.5, p< 0.0001]. Irrespective ofDuration
and Emotion, deviants elicited a more negative ERP than
standards.

GENERAL DISCUSSION

The present study explored the implicit processing of temporal
change within emotional and neutral streams of dynamic
stimuli. Using an MMN paradigm, we found evidence that
listeners mentally represent task-irrelevant increments and
decrements in stimulus speed and that their representations
differ as a function of emotion. In the following, we
highlight the contributions of these results to the literature
on (1) dynamic timing, (2) the asymmetry of temporal
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FIGURE 7 | Event related potential topographical maps for Experiment 2. Maps present the mean potential differences between standards and deviants for
the eight 100 ms analysis windows.

change effects, as well as (3) the role of emotions for time
perception.

Temporal Processing of Dynamic Events
To our knowledge, this is the first demonstration that listeners
mentally represent, not only duration, but also the speed with
which task-irrelevant events unfold. More negative ERPs for
deviants than standards emerged shortly after deviant onset and,
thus, before the standard or deviant duration had lapsed. This
points to an immediate sensitivity to the rate at which auditory
neurons are excited. Furthermore, it suggests that an increasing
disparity between standard and deviant time course contributes
incrementally to an emerging representation of temporal change.
We speculate that this representation then automatically biases
an individual’s perception of stimulus duration.

Explicit timing research accords with this speculation.
Participants asked to judge the duration of dynamic stimuli
demonstrate temporal distortions pointing to an influence of
stimulus content or speed (Eagleman, 2008; Matthews, 2011;
Liverence and Scholl, 2012; Linares and Gorea, 2015). For
example, a greater frequency of loops (i.e., change in content)
made by a luminance blob was associated with a lengthening
of subjective duration (Linares and Gorea, 2015). Furthermore,
faster changes in vocal pitch (i.e., change in speed) were
associated with a shortening of subjective duration (Schirmer
et al., in press). Our results add to this literature by addressing
implicit timing and by showing that representations of stimulus
speed emerge incrementally throughout a stimulus and could,

hence, contribute to duration perception in a feed-forward
manner.

The present auditory change effect differed somewhat from
the auditory change effect seen in previous MMN studies (for
reviews see Näätänen et al., 2005; Garrido et al., 2009). Previous
reports described a negative component with a fronto-central
topography, that inverts polarity over the mastoids and peaks
about 200 ms following deviant onset. Our effects match these
properties with the exception that there was no clearly defined
component peak. Instead, we observed a climbing negativity
that plateaued later in the epoch. Nevertheless, we suspect this
negativity to be anMMN and to index auditory change detection.
Differences in time course or amplitude contour probably arise
from the nature of our manipulation, which produced an
incremental rather than a sudden difference between standards
and deviants.

Notably, the MMN effect observed here resembles a negative
ERP deflection often reported in the timing literature. This
deflection, called the contingent negative variation (CNV), is
maximal over fronto-central leads and was shown by some to
increase in amplitude with increasing stimulus duration (Macar
and Vitton, 1980). As such it was thought to reflect temporal
encoding (Macar and Vidal, 2003). More recently, however, the
CNV is deemed more likely to be an indicator of response
preparation or temporal decision-making (Kononowicz and van
Rijn, 2011; Ng et al., 2011; Van Rijn et al., 2011). Given the
resemblance of CNV and the present temporal change effect
one may wonder whether these are distinct or overlapping
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phenomena. We suggest that they are distinct based on effect
topography and eliciting conditions. The present climbing
negativity, but not the CNV (Ng and Penney, 2014), has sources
in the primary auditory cortex as indicated by ERP inversion over
mastoid electrodes. Additionally, one would expect a CNV like
effect in anMMNparadigm for both standards and deviants with
amplitude differences emerging only after the point of duration
mismatch. The effects observed here, however, were present
before this point.

Asymmetry in the Sensitivity to Temporal
Change
Existing research indicates that listeners differ in their sensitivity
to duration decrements and increments (but see Amenedo and
Escera, 2000; Peter et al., 2012). Some studies have found a
larger MMN to short than to long deviants (Jaramillo et al.,
1999; Colin et al., 2009), whereas others (Catts et al., 1995;
Takegata et al., 2008; Atkinson et al., 2012), including the present
study, have found the opposite. Three factors were cited to
explain this variation. First, asymmetry in the sensitivity to
temporal change may depend on stimulus properties (Jaramillo
et al., 1999; Takegata et al., 2008). For example, Jaramillo et al.
(1999) found a larger MMN to short than to long vowels,
but a smaller MMN to short than to long tones pointing to
processing differences between vocal and non-vocal sounds.
Notably, the present study conflicts with this result. The MMN
to both interjections (Experiment 1) and their spectrally rotated
counterparts (Experiment 2) was greater in the long relative to
the short condition.

A second explanation of the asymmetry in temporal change
detection invokes a role of absolute stimulus duration. For stimuli
that are less than 200ms long, an increase in duration is perceived
as an increase in sound intensity (Takegata et al., 2008). Thus,
a 150 ms deviant may be perceived as louder than a preceding
100 ms standard, whereas a 100 ms deviant may be perceived as
softer than a preceding 150ms standard. At these durations, then,
differences in MMN magnitude may result from an asymmetry
in the perception of sound intensity rather than duration (Peter
et al., 2010). For stimuli that exceed 200 ms, perceived sound
intensity does not differ as a function of duration. In the present
study, stimuli were 378 and 600 ms long, so an intensity illusion
is unlikely to account for the observed MMN effects.

Last, asymmetry in temporal change detection has been linked
to the method by which an MMN is generated. Traditionally,
researchers subtracted standards from deviants in the same
block. More recently, however, approaches controlling for the
physical difference between standards and deviants have become
popular (Jacobsen and Schröger, 2003). One approach involves
an additional experimental block in which deviants are presented
in an equiprobable manner together with other stimuli. Another
approach involves an additional experimental block in which
the role of standards and deviants is reversed. In either case, an
MMN is generated by subtracting the physically identical control
stimulus from the deviant. A comparison of the traditional with
the physical control approach indicated that MMN asymmetries
for duration deviants are present in the former, but not the latter

(Peter et al., 2010). Again, this explanation does not account
for our results as we used the physical control approach, but
nevertheless observed differences in the MMN to short and long
deviants.

Together, the literature on MMN asymmetry is inconclusive.
Although asymmetry is frequently observed, it seems to depend
on a number of stimulus parameters. Moreover, these parameters
may include two methodological novelties implemented in the
present study. Our stimulus durations were fairly long and we
manipulated duration alongside speed. Both of these factors may
explain why our results are similar to some studies, but differ
from others.

Although we are unable to explain variation in MMN
asymmetry, we can offer an explanation for why the MMN
was larger for increments here. Specifically, behavioral research
on timing suggests that repeated or expected stimuli become
subjectively shorter than non-repeated or unexpected stimuli,
respectively (Pariyadath and Eagleman, 2007; Matthews et al.,
2014; for a possible dissociation between repetition and
expectation see Matthews, 2015). Moreover, because temporal
lengthening and shortening are typically associated with a speed
increase and decrease in a dynamic context, these illusions may
extend to the perception of speed. Repeated and/or expected
events may appear faster than unrepeated and/or unexpected
events. Thus, in the present MMN paradigm, long and short
deviants might have appeared more and less different from their
standard, respectively, and this asymmetry probably emerged as
speed discrepancies accumulated.

Before closing the discussion of MMN asymmetry, we would
like to add a caveat that complicates the interpretation of
duration effects. Likely, here and elsewhere, duration deviants
not only violated the expectation for a particular stimulus
duration, but also distorted an overall rhythmic structure
established by standards (Jones, 1976; Escoffier et al., 2010).
Blocks, although comparable in stimulus onset timing, differed
in standard duration and speed possibly creating different
emphases or metric points that then modulated stimulus
processing. As illustrated in Figure 2, the longer standards
may have been metrically more important than the short
standards, thus, producing a stronger entrainment and more
readily accommodating temporal deviants. Such a modulation
would be revealed by an interaction between stimulus deviance
(standard/deviant) and duration (short/long), whereby the
deviance effect would be reversed for the short and long duration
conditions. In other words, there would be a block effect whereby
short standards and long deviants presented together in one block
would differ in comparable ways from long standards and short
deviants presented together in another block.

Statistical analysis of the present data revealed patterns
suggesting such block effects. In Experiment 1 (vocal), initially,
short deviants elicited a more positive potential than short
standards, whereas the deviance effect for long stimuli was
non-significant. In Experiment 2 (non-vocal), initially, short
deviants elicited a more positive potential, while long deviants
elicited a more negative potential relative to their respective
standards. Thus, rhythmic processing likely occurred alongside
duration processing and affected the ERP. The present as well
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as previous studies cannot dissociate the two. To achieve this,
future research could compare temporally regular with irregular
stimulus presentations (McAuley and Fromboluti, 2014).

Emotions and Temporal Change
Detection
A final objective of this study was to determine whether and
how emotions influence temporal change detection. As expected,
we found an earlier change effect for surprised relative to
neutral vocalizations. This latency difference reversed when
vocalizations were spectrally rotated and human expressiveness
was removed (Warren et al., 2006). Moreover, while the
time course of ERP effects was comparable for neutral
original and rotated sounds, that of surprised original and
rotated sounds differed. Additionally, the amplitude of the
MMN-like effect in neutral and surprised conditions was
comparable for original vocalizations, whereas the same effect
was larger for the neutral than the surprised condition for
spectrally rotated sounds. Together, these observations suggest
that vocal emotions overwrote the processing differences that
were due to non-emotional stimulus properties (e.g., stimulus
complexity) and facilitated the neural representation of temporal
change.

The present emotion effect concurs with prior research
demonstrating emotion effects on the MMN and on performance
in temporal judgment tasks. As reviewed in the introduction,
emotional deviants following neutral standards elicit an earlier
and larger MMN than neutral deviants following emotional
standards (e.g., Schirmer et al., 2005). Additionally, stimuli with
emotional valence are perceived as longer than same-duration
stimuli with neutral valence (e.g., Grommet et al., 2011). Together
these and the present results suggest that emotions enhance
the salience of a stimulus stream ensuring sufficient processing
resources despite being task-irrelevant.

This proposition is in line with recent evidence for a
role of attention in the link between emotions and time.
Rather than asking participants to time emotional and neutral
stimuli, Lui et al. (2011) manipulated the emotionality of
distractors presented while participants timed simple visual
shapes. Specifically, an initial circle (S1) was followed by
a distractor and then a second circle (S2) and participants
decided whether S2 was shorter or longer than S1. Participants
were more likely to judge S2 to be shorter than S1 if
the distractor was emotional as compared to neutral. This
suggests that S2 indeed seemed shorter in the emotional
as compared to neutral context. Moreover, it implies that
emotional stimuli capture and bind processing resources at
the cost of other neutral stimuli (for similar approaches and
results see Halbertsma and Van Rijn, in press; Lake et al., in
press).

Change detection research accords with this. Apart from the
present study, there is one previous attempt at comparing the
MMN in an emotional and neutral context. Lv et al. (2011) asked
participants to indicate whether two faces presented side-by-side
were identical. In different blocks, faces had a sad or neutral
expression. In the background, participants heard a sequence of

tones that contained rare deviants. Unlike in the present study,
the MMN was comparable in the emotional and neutral blocks.
However, face discrimination was facilitated by sad relative to
neutral expressions. Thus, emotions effectively held attention
to the visual material thereby benefiting visual categorization
performance rather than the processing of an unrelated stream
of neutral sounds.

Although in agreement with existing work, the present study
failed to identify sex differences in the emotion effect. Temporal
change detection was enhanced for surprised relative to neutral
vocal streams in both men and women. Given earlier work
(Fan et al., 2013; Schirmer et al., 2005, in press), this result
was somewhat unexpected. We suspect that the absence of
sex effects here relates to the fact that emotions varied in a
blocked rather than an event-related manner. There is some
indication that sex differences in vocal emotion sensitivity are
a matter of processing time and attention. In an implicit
emotional priming paradigm, only women showed priming at
a short (200 ms) prime-target interval, whereas both sexes
showed priming at a longer (750 ms) prime-target interval
(Schirmer et al., 2002). Moreover, when emotions were made
task-relevant by asking participants to categorize stimuli based
on emotion, sex differences likewise disappeared (Schirmer et al.,
2006, 2013). Thus, we speculate that the repetition of vocal
expressions within blocks enabled participants to “tune into” a
particular emotion condition putting male and female processing
on par.

CONCLUSION

For complex environmental stimuli, stimulus duration is
necessarily confounded by content and/or speed. Here, we
made a first attempt at assessing combined duration and
speed perception without highlighting temporal processing to
our participants. In the context of an MMN paradigm, we
observed a climbing MMN-like negativity emerging shortly after
deviant onset. Thus, we conclude that stimulus speed is tracked
continuously and suggest that it biases duration perception
well before stimulus offset in a feed-forward manner. In the
present study, like some others, mismatch effects showed earlier
and were larger to duration increments relative to decrements.
Although the factors underpinning this are still unclear, we
suspect a role of stimulus predictability. Contrasting repeated
standards with singular deviants can be expected to augment
and diminish perceived temporal change for long and short
deviants, respectively. As was demonstrated before, emotions
influenced temporal processing. Change was detected earlier
within a stream of surprised relative to neutral vocalizations
suggesting that the former recruit more processing resources than
the latter.
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The most popular tasks with which to investigate the perception of subjective synchrony

are the temporal order judgment (TOJ) and the simultaneity judgment (SJ). Here, we

discuss a complementary approach—a dual-presentation (2x) SJ task—and focus on

appropriate analysis methods for a theoretically desirable “roving” design. Two stimulus

pairs are presented on each trial and the observer must select the most synchronous.

To demonstrate this approach, in Experiment 1 we tested the 2xSJ task alongside TOJ,

SJ, and simple reaction-time (RT) tasks using audiovisual stimuli. We interpret responses

from each task using detection-theoretic models, which assume variable arrival times for

sensory signals at critical brain structures for timing perception. All tasks provide similar

estimates of the point of subjective simultaneity (PSS) on average, and PSS estimates

from some tasks were correlated on an individual basis. The 2xSJ task produced lower

and more stable estimates of model-based (and thus comparable) sensory/decision

noise than the TOJ. In Experiment 2 we obtained similar results using RT, TOJ, ternary,

and 2xSJ tasks for all combinations of auditory, visual, and tactile stimuli. In Experiment

3 we investigated attentional prior entry, using both TOJs and 2xSJs. We found that

estimates of prior-entry magnitude correlated across these tasks. Overall, our study

establishes the practicality of the roving dual-presentation SJ task, but also illustrates

the additional complexity of the procedure. We consider ways in which this task might

complement more traditional procedures, particularly when it is important to estimate

both PSS and sensory/decisional noise.

Keywords: multisensory perception, timing and time perception, temporal order, 2AFC, simultaneity judgment

INTRODUCTION

Introspection suggests conscious experiences proceed successively. This is part of what we mean
when we say that we have a sensation of the passage of time. Determining the relative timing
at which two or more events occur would thus appear to be an important perceptual operation,
and one that might underscore various higher-level inferences, such as the causal relationship
between events, or the degree to which two events should be grouped perceptually. However, the
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processes by which the brain determines relative timing
require clarification. The problem appears particularly acute for
multisensory events, where relevant neural signals might be
dispersed widely in space and time. However, even within a single
sense, the way in which temporal succession and overlap are
determined is not yet established.

One of the most fundamental questions one can ask
about relative timing is with what objective asynchrony the
observer considers two events to be maximally synchronous. We
usually investigate this issue by attempting to estimate a point
of subjective simultaneity (PSS) from different experimental
conditions. Hence, to make progress, we need good experimental
procedures to lay bare our temporal qualia. In this paper we
consider a complementary task for this purpose: The dual-
presentation simultaneity judgment (2xSJ). This type of task
has been used fairly infrequently in relative timing experiments
(e.g., Allan and Kristofferson, 1974; Van de Par and Kohlrausch,
2000; Powers et al., 2009; Roseboom et al., 2011; Stevenson and
Wallace, 2013). Here we will first argue that a roving-standard
design is theoretically desirable, second describe an appropriate
observer model for fitting and summarizing the data this task
generates, and third attempt to benchmark data from this task
against more common approaches in order to assess its strengths
and limitations.

TEMPORAL JUDGMENT TASKS

For explicit temporal judgments, two tasks are particularly
popular: The temporal order judgment task (TOJ; e.g., Sternberg
and Knoll, 1973) and the synchrony judgment task (SJ; e.g.,
Schneider and Bavelier, 2003). The former task asks of a
participant “which came first” (or some variant) whereas the
latter asks “were they simultaneous?” Another somewhat less
utilized variant, the ternary order or SJ3 task (e.g., Ulrich,
1987), offers three response categories: “first,” “simultaneous,”
and “second.” In all cases trial-by-trial data can be summarized
via meaningful model parameters when an appropriate observer
model is fitted. These tasks (and two further tasks which
will be discussed shortly) are schematized in Figure 1. The
most commonly derived parameter, the point of subjective
simultaneity (or PSS), captures any bias to report one stimulus
as having come earlier than the other.

For the temporal order judgment task, under typical observer
models (e.g., Gibbon and Rutschmann, 1969) the PSS estimate
can be inferred to represent a combination of, first, a difference in
sensory delays for the two signals and, second, any decision-level
bias in interpreting relative arrival times. Distinguishing these
contributions is not generally possible, which raises interpretative
issues, particularly if decision-level biases might reasonably be
expected to change across experimental conditions. For example,
“prior entry” (Titchener, 1908) describes an experimental finding
wherein attended events are thought to be perceivedmore rapidly
than unattended ones (see Spence and Parise, 2010, for review).
Prior entry has often been assessed using TOJs, with two stimuli
originating from different positions and/or sensory modalities,
and attention directed preferentially toward one of the two

events. The demand characteristic, to attend preferentially to
one of the two stimulus origins, has the potential to place that
particular answer firmly in mind, which might bias responses at
the decision level (Shore et al., 2001; Spence et al., 2001).

The simultaneity judgment and ternary order judgment tasks
can also be used to recover a PSS, and in some cases, such as
the prior entry effect, these tasks might be more appropriate in
order to make the question less leading.1 However, rather than a
PSS, these tasks most naturally recover two boundaries around
subjective simultaneity, reflecting points where judgments
change from “A precedes B” to “simultaneous,” and from
“simultaneous” to “A follows B” (Yarrow et al., 2011). Hence
it is quite common to observe a plateau in the psychometric
function, with simultaneity reported ubiquitously across several
SOAs (for some examples, see García-Pérez andAlcalá-Quintana,
2012a, Figures 6–8; Yarrow et al., 2015, Figure 4). Inferring a
single PSS from such data requires additional assumptions (e.g.,
whether the threshold for perceiving/judging simultaneity is the
same when A follows B as when B follows A) which may be
problematic, as there is no current consensus regarding the
correct observer model for data in this form (e.g., Ulrich, 1987;
Schneider and Bavelier, 2003; Yarrow et al., 2011; García-Pérez
and Alcalá-Quintana, 2012a,b). In a sense, SJ and SJ3 tasks
provide a temporal windowwithin which the PSS lies, rather than
a single point estimate.

OBSERVER MODELS FOR
CHARACTERIZING TEMPORAL
JUDGEMENTS

So far we have made reference to observer models without
specifying exactly what this means. In this paper we will
use observer models derived from signal detection theory
(SDT; Green and Swets, 1966; Macmillan and Creelman, 2005).
Detection-theoretic approaches to temporal judgments are well-
established (e.g., Baron, 1969; Gibbon and Rutschmann, 1969;
Sternberg and Knoll, 1973; Allan, 1975; Ulrich, 1987; Schneider
and Bavelier, 2003; Yarrow et al., 2011, 2013; García-Pérez and
Alcalá-Quintana, 2012a,b). Models of this type generally assume
that observers are accessing a (noisy) encoding of the difference
in arrival times (1t) between two signals (somewhere in the
brain) and using this quantity to make a decision. The key source
of noise in these decisions is variability in terms of the latency
with which signals arrive at a decisional mechanism, with each

1This assertion clearly needs to be examined case by case. For example, consider

the literature on temporal recalibration (Fujisaki et al., 2004; Vroomen et al., 2004).

This effect, presumed to be a form of adaptation, is revealed when participants

are repeatedly exposed (i.e., adapted) to a non-zero asynchrony between different

kinds of event (e.g., beeps that consistently lag after flashes). It this situation

their PSS has been shown to change; participants now respond as though the

relationship to which they have been adapted appears more synchronous than it

seemed prior to the adaptation. However, If we repeatedly expose our participants

to a particular asynchrony, it is not difficult to imagine that they might come to

form a belief that this relationship is important, biasing their interpretation of

any subsequently presented/judged asynchronies when forced to categorize them

as simultaneous or not. Note, however, that some recent evidence suggests that

temporal recalibration is not entirely the result of a decision-level bias (Roseboom

et al., 2015).
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FIGURE 1 | Schematic of the five tasks used in Experiments 1–3, incorporating the stimulus timeline and predicted psychometric functions (or

response histograms). TOJ, temporal order judgment; SJ, simultaneity judgment; 2xSJ, dual-presentation SJ; RT, simple reaction time.

signal contributing its (additive) variability to the distribution of
encoded differences in arrival times across trials. This kind of
model has been referred to as a general independent-channels
model (Sternberg and Knoll, 1973) or a general-threshold model
(Ulrich, 1987).

Specific variants of this general model vary mostly in terms
of how many additional layers of complexity are included. For
example, the simplest way to conceive of a temporal order
judgment (TOJ) is that there is a single criterion used to divide
the observed 1t into two possible order responses (Gibbon
and Rutschmann, 1969). If the difference in arrival times falls
below this criterion, event A is judged as having happened first;
otherwise it is judged second. If, during an experiment, two
stimuli are presented repeatedly but at varying physical stimulus
onset asynchronies (SOAs), themodel predicts a smooth function
relating the SOA to the proportion of times one of the two orders
is selected. The shape of this function reflects the form of latency
noise, being, for example, a cumulative Gaussian if Gaussian
latency noise is assumed (Baron, 1969).

Variants of these models can make predictions about other
common temporal judgments in addition to the TOJ, such as
the SJ3 task (before/same/after), considered in detail by Allan
(1975) and Ulrich (1987), and the SJ task, considered for example
by Schneider and Bavelier (2003) and by Yarrow et al. (2011,
2013). In these tasks the internal response 1t must be divided
into three regions, rather than two (in order to demarcate “same”
from “before” and “after”). This means there are two decision
criteria, not one. In a variant of this kind of model, some
authors (e.g., Venables, 1960; García-Pérez and Alcalá-Quintana,
2012a,b) consider that there might also be a zone near zero
where no differentiation of timing is possible and observers must

guess. This inclusion, of a “guessing zone,” is a departure from
classic SDT, which avoids the notion of a hard threshold. Instead,
classic SDT presumes that encoded values are always recoverable.
Another feature that can vary between models is the form of
assumed latency noise (for example, exponential rather than
Gaussian arrival time distributions can be assumed; García-Pérez
and Alcalá-Quintana, 2012a,b).

A ROVING DUAL-PRESENTATION SJ TASK

In this paper we consider a variant of the popular SJ task, which
we refer to as a (roving) 2xSJ task. This task has a close structural
similarity to some recent approaches in visual psychophysics
(Morgan et al., 2013, 2015; Jogan and Stocker, 2014; García-Pérez
and Peli, 2014). Although roving 2xSJ designs have occasionally
been used in the literature on relative timing, their results have
not been interpreted using formal observer models, something
which we undertake here.

A note on our terminology seems appropriate at this point.
The task we discuss here might reasonably be described as a
two-alternative forced choice SJ task. However, taken literally,
many tasks can be considered “two-alternative forced choice,”
and indeed this description is sometimes applied to SJs and
TOJs. Strictly speaking, in the tradition of signal detection
theory, 2AFC has additional connotations. Specifically, it implies
the presentation of two different exemplars on each trial,
between which an observer must discriminate. Hence, in the
context of temporal perception, a 2AFC simultaneity judgment
would typically involve the presentation of one simultaneous
pair of stimuli, and one non-simultaneous pair, in a random
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sequential order (sometimes referred to as a 2IFC; two interval
forced choice) with the requirement to select the synchronous
(or, alternatively, the asynchronous) pair. However, the 2AFC
designation is inherently ambiguous (regarding whether there
are two presentations, or two possible choices) and has not
always been used in a manner consistent with the SDT tradition.
For this reason, we adopt the clearer “dual-presentation”
terminology here.

What observer model might apply to this task? Under the
simplest account (c.f. Baron, 1969) each presentation of a pair of
stimuli offset by a fixed physical temporal extent would generate
a subjective difference in arrival times, and these subjective
differences would be variable across successive trials, generating a
noisy Gaussian distribution of subjective arrival times, 1t. With
two such pairs forming a trial, the observer’s task is to compare
the absolute subjective differences associated with each pair,
to determine which is most simultaneous. Hence the decision
variable is the difference in (unsigned) differences in subjective
arrival time. To this value a criterion is applied (zero for an
unbiased observer) and the observer concludes that the first or
second pair is most simultaneous, depending on whether the
decision variable falls above or below this criterion. This model
and decision process is a special case of one described by García-
Pérez and Peli (2014), but is applied here to the temporal rather
than the spatial domain. If one pair is always simultaneous (the
standard) and the other is varied in SOA (the test), and order
is randomized, the psychometric function (plotting proportion
of trials wherein the standard is judged as most synchronous, or
equivalently where the test is judged more asynchronous, against
the test SOA) is U shaped, with a minimum at the point of
subjective simultaneity (see Figure 2A).

In the course of generating data via the 2xSJ described to this
point, the experimenter must present a synchronous target on
every trial. Unfortunately this seems perfectly designed to train
the observer to recognize what a truly synchronous relationship
feels like, which is not helpful when we are seeking their
natural (potentially non-zero) PSS, or assessing whether this
varies with some experimental manipulation. Fortunately a fairly
straightforward solution to this problem exists: As experimenters,
we should not exclusively use synchronous standards. If neither
pair is guaranteed to be synchronous, it becomes difficult for a
participant to learn what synchrony is, independent from the
perception of synchrony.

At first glance this procedure seems wasteful, as trials without
a synchronous standard do not contribute to the psychometric
function shown in Figure 2A. Must they be discarded? The
answer is no. The observer model also makes predictions
about how often a −20ms SOA standard should appear more
synchronous than a 60ms SOA test, or any other combination.
The only complication is that we must now move from a
single SOA vs. proportion correct function to a set of functions,
one for each standard (see Figures 2A–F). However, just as
with a synchronous standard, each predicted function retains
a minimum at the PSS (because a test presented exactly at the
PSS will always be more likely than any other test value to
be judged as most synchronous, regardless of what value it is
being compared to). When the standard is zero, the slopes of

the psychometric function are determined largely by sensory
noise. This too remains the case for functions predicted for non-
zero standards (note the parallel slopes in Figure 2E). In fact,
an observer model with just three parameters (one for PSS, one
for sensory noise, and one capturing any preference to favor the
first pair over the second or vice versa when reporting greater
synchrony; see Figure 3 for further explanation of this interval
bias) predicts an entire family of psychometric functions. These
functions vary in a yoked manner as the model’s parameters are
adjusted, so best-fitting parameters can be obtained by fitting data
from all standards/tests at once.

In the wider literature, “roving” dual-presentation designs
like this are sometimes presented as a means to minimize
the influence of non-sensory biases, while still measuring a
perceptual quality (e.g., Morgan et al., 2013). In brief, these tasks
allow the experimenter to apply a contextual manipulation in
both presentations of a trial, making it less plausible that the
manipulation will directly bias the judgment (for example, by
nudging a decision criterion in one or other direction). Revisiting
the prior-entry example, if an observer must attend the same
modality on both presentations, no simple rule such as “pick
the stimulus I am attending to” presents itself. However, it is
generally possible to conceive of more complex biasing strategies.
For reasons of concision, we do not make bias minimization a
major focus of our discussion here.

THE PRESENT EXPERIMENTS

Our goal here is to demonstrate the use of the roving 2xSJ task
as a measure of the PSS. We initially present data from two
observers who engaged in a substantial number of audiovisual
trials using this task. We use their data to illustrate the
fitting procedure (Figures 2, 3), and to evaluate whether simple
observer models are plausible. We then present two sets of
data each collected from 24 participants, with a much smaller
number of trials per participant (which is more representative
of typical timing experiments). We additionally collect data
in several other tasks, to test whether PSS estimates from
different procedures are comparable, and assess correlations
across subjects for derived parameters representing both bias
(e.g., PSS) and (inverse) precision (i.e., the standard deviation of
inferred latency distributions). In Experiment 2, we extend these
analyses to judgments involving different combinations of visual,
auditory and tactile stimuli. Finally, in Experiment 3, we attempt
to replicate a classic effect in the relative-timing literature—
endogenous prior entry, using both 2xSJ and TOJ tasks.

EXPERIMENTS 1A, 1B, AND 1C

Methods
Participants
Participants were recruited (and provided informed consent)
according to procedures approved by the City University London
Department of Psychology Ethics Committee.

There were two participants in Experiment 1a, one male
author (KY) and one female author (SM), initially aged 38
and 24 respectively. Observer KY was highly experienced with
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FIGURE 2 | Illustrative results for one experienced psychophysical observer who completed 15 blocks (2280 trials) of an audio-visual 2xSJ task. One

SOA was selected from a wide range using the method of constant stimuli, the second from a range centered closer to synchrony, using an adaptive method for

stimulus selection (providing the roving element; see methods for full details). In order to aid visualization, trials were extracted sequentially in sets associated with a

particular standard. In this figure, data and model predictions are averaged for the two possible presentation orders, so the uninformative data points where standard

and test are identical have been removed. (A–D,F) Observer model fit alongside several data subsets consisting of trials associated with standards ranging from −40

to +40ms. Error bars show 95% Wilson score binomial confidence intervals, and provide an indication of the number of trials at each stimulus level. (E) All data

displayed together with the overall model fit. Size of data points correlates with the number of contributing trials.

relative timing tasks, while observer SM had relatively limited
psychophysical experience.

An opportunity sample of 27 naive participants was tested in
Experiment 1b. Of these, three were excluded from analysis (see
Data Analysis, below) to yield a sample size of 24 (mean age =
24.3, range 18–51, six male). Another opportunity sample of 24
naïve participants was tested in Experiment 1c (mean age= 29.8,
range 19–52, 11 male).

Apparatus and Stimuli
A PC connected to a 20-inch CRT monitor was interfaced with
one or more National Instruments A/D cards (DAQCard-6715;
DAQPad-6015; X-series PCIe-6323) via a bespoke visual c++

program in order to generate signals and (for the RT task)
record responses. Signals (beeps and flashes) were generated at
44100Hz, and were 10ms long, with onset and offset slightly

smoothed using a Hanning window across the first and last
millisecond of the stimulus. The red visual LED signal was
otherwise continuous (∼60 mcd point source) while the sound
was a 1000Hz sine wave. The LED was placed immediately in
front of the center of the monitor, at a distance of ∼57 cm
from the eyes, so the light subtended a visual angle of ∼0.5◦.
Beeps were presented from a speaker located immediately to
the left of the monitor (∼30◦ from the LED) at a comfortable
suprathreshold intensity. Responses were recorded via keyboard
(for the temporal judgment tasks) or a digital button (for the RT
task). Participants fixated the LED during stimulus presentation.

Design and Procedure
In Experiment 1a both participants completed a 2xSJ task,
followed by a TOJ task, followed by a combined SJ and 2xSJ
task, with each task typically completed across several days. There
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FIGURE 3 | Illustrative results for one novice psychophysical observer who completed 15 blocks (2280 trials) of an audio-visual 2xSJ task. Observer

model fits are shown alongside several data subsets, consisting of trials associated with standards ranging from −20 to +20ms. Data are plotted separately based on

the order of stimulus presentation (and also in averaged format) across the columns of the figure, to show how an interval bias is captured by the model. For example,

imagine that the participant is biased so that, given the question “which was most simultaneous,” they will only pick interval 1 if its duration is at least 30ms less than

that of interval 2 (whereas an unbiased observer would pick interval 1 if its duration was shorter by any margin). If the standard is in interval 1, the chance of picking

the standard as more simultaneous is decreased relative to an unbiased observer. By contrast, if the standard is in interval 2, the chance of picking the standard as

more simultaneous is increased relative to the unbiased observer. Averaging data from the two possible interval orders simplifies presentation, but the underlying

model that is fit to data should ideally still include a parameter to capture any interval bias, because assuming no bias in the presence of an actual bias will lead to an

overestimate of sensory noise (although the PSS will still be recovered adequately).

was a substantial separation between completing the tasks. In
Experiment 1b participants completed three tasks (2xSJ, TOJ, and
simple RT) in a single session, with task order counterbalanced
across participants. In Experiment 1c participants completed
a combined SJ and 2xSJ task. Participants completed 15–20
practice trials before each task, but received no feedback about
the correctness of their responses at any time to avoid biasing
subjective timing judgments.

In the 2xSJ task, participants in Experiment 1a each completed
15 blocks of 152 trials (i.e., 2280 trials in total), while those in
Experiment 1b and 1c completed a single block of 152 trials.
There were two flash-beep pairs, and thus two SOA values on
each trial. One of the two pairs was selected at random via the
method of constant stimuli from the following 19 SOAs (where
positive = beep follows flash): −300, −260, −220, −180, −140,
−100, −60, −40, −20, 0, 20, 40, 60, 100, 140, 180, 220, 260,
300ms. Each SOA was selected and presented four times in the
first interval, and four times in the second, for a total of 152 trials.
The SOA for the other flash-beep pair was selected at random
using an adaptive method, such that it would generally be near

the PSS, but not always zero (so participants could not infer/learn
true synchrony across the experiment). To achieve this, the SOA
was drawn from a discrete probability distribution with steps of
20ms. The initial shape of the distributionwas uniform, spanning
−60 to +60ms. However, the distribution had the potential to
include values from −300 to +300ms, and it was updated after
each trial based on which of the two presented asynchronies had
been selected as more simultaneous. Specifically, the distribution
was adjusted so that selection likelihood was increased for all
asynchronies ± 40ms from the asynchrony selected as most
simultaneous on that trial. This approach is loosely based on
the generalized Pólya urn model (Rosenberger and Grill, 1997)
proposed for efficient sampling for temporal order judgments.

In summary—the 2xSJ task involved participants being
presented with two flash-beep pairs, with neither SOA being
predictable. The pairs were separated by a uniform random 1000–
2000ms interval and participants were required to respond to the
question “Which pair was more simultaneous?” using arrow keys
on the keyboard. This triggered the next stimulus presentation
after 1000–2000ms. Participants were also given the option to
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cancel a trial due to inattention, in which case it was repeated
at the end of the block.

In the combined 2xSJ and SJ task, stimulus selection
and presentation was identical to the 2xSJ task with the
following exceptions. Participants were required to make a
simultaneity judgment after each stimulus pair, followed by a
most simultaneous judgment after every two stimulus pairs. In
Experiment 1a, observers completed eight blocks (1216 2xSJ
judgments and 2432 SJ judgments). In Experiment 1c, they
completed a single block (152 2xSJs and 304 SJs). Each response
triggered the next stimulus presentation after 1000–1400ms,
except for the second SJ response, which was followed by the 2xSJ
question after 500ms.

In the TOJ task, for Experiment 1a participants completed 23
blocks of 100 trials each (2300 trials in total). SOA values were
selected at random on each trial from an adaptive probability
distribution. This distribution was uniform at the start of
each block, containing SOAs from −225 to +225ms in 5ms
increments, but was updated after each accepted trial according
to the generalized Pólya urn model (Rosenberger and Grill, 1997;
k = 32) which attempts to generate test values that sample the
full psychometric function efficiently. Distributions could expand
to include SOAs from −450 to +450ms. For Experiment 1b
participants completed a single block of 100 trials. In this case
the adaptive distribution initially contained SOAs from −140
to +140ms in 20ms increments, and could expand to include
values from −300 to +300ms via the generalized Pólya urn
method (k = 8). In both experiments, after each presentation,
participants responded to the question “Which came first (beep
or flash)?” using arrow keys on the keyboard. They also had an
option to cancel and repeat the trial later. The midpoint of the
next flash-beep pair came 1000–2000ms after each response.

In the RT task (Experiment 1b only) each trial consisted of
either a flash or beep, with 50 trials of each type intermixed in
random order within a block of 100 trials. Participants responded
to each stimulus as quickly as possible using a digital button,
following a 1000–2000ms uniform random response-stimulus
interval.

Data Analysis
For all temporal judgment tasks (2xSJ, SJ, and TOJ) Matlab
(The MathWorks Inc.) was used to find maximum-likelihood
fits to data (assuming binomially distributed data) with both a
null (guessing) model and also a simple independent-channels
observer model. The Nelder-Mead simplex algorithm was used
to find the best fit. To avoid problems with local maxima, simplex
searches were initiated from the factorial combination of several
positions per parameter (i.e., a grid search seeded a set of simplex
searches). Observer models incorporated a fixed 1% keyboard
error/lapse rate, to model occasional errors without increasing
parametric complexity (and also simplify the calculation of log
likelihood).

Trial-by-trial data for the 2xSJ task consisted of pairs of SOAs,
plus a judgment about which pair was most simultaneous. For
all trials, the SOA nearest 0 was defined as the standard, as this
designation will facilitate a compact presentation of data. All
trials where the standard was 0 (i.e., simultaneous) were extracted

first, divided according to whether the standard was in the first
or the second interval. Remaining trials were then examined,
extracting all cases where the standard had an SOA of −20. This
was repeated, looking for standards of+20, then−40, then+40,
and so on until all trials with at least one SOA of less than ±

200ms had been extracted. For each standard SOA occurring in
each interval, data were plotted to show the proportion of times
that the standard was judged as more simultaneous than the test
(see Figure 2 for examples following averaging across the two
presentation intervals, and Figure 3 for examples separated by
presentation interval). These functions would be expected to have
a minimum near the point of subjective simultaneity.

The tested observer model assumes each stimulus is
accompanied by Gaussian noise that will affect its central arrival
latency, and that the two stimuli comprising an AV pair may be
delayed by neural processing to different extents (generating a
non-zero PSS). For each stimulus pair in the 2xSJ, the noisy and
delayed signals therefore arrive centrally with latency differences
(1t) that form a Normal distribution of internal responses for
any physical SOA:

△tstandard ∼ N
(

SOAstandard + µ, σ
2
)

(1)

△ttest ∼ N
(

SOAtest + µ, σ
2
)

(2)

Where SOAstandard is the standard SOA (i.e., the stimulus pair
that is closest to synchrony), SOAtest is the test SOA (i.e., the
other stimulus pair), µ captures any asynchrony specific to the
observer (i.e., the PSS) and σ 2 is the variance contributed by each
1t distribution.

For the subsequent decision, the model assumes that 1t in
each pair is converted to an absolute score and that the larger
absolute score is judged as less simultaneous. The probability of
selecting the standard is therefore:

Pr
(

“Standard” | SOAstandard, SOAtest

)

= Pr (|△tstandard| < |△ttest|) (3)

Which, can be written:

Pr
(

“Standard” | SOAstandard, SOAtest

)

= Pr

(

△t2
standard

△t2test
< 1

)

(4)

Note that
△t2

standard

△t2test
is a random variable with a doubly non-

central F-distribution. Its numerator’s non-centrality parameter
is (µ + SOAt)

2/σ 2, its denominator’s non-centrality parameter
is (µ + SOAn)

2/σ 2, and both numerator and denominator have
one degree of freedom (Morgan et al., 2015). In our Matlab
code (available at http://www.hexicon.co.uk/Kielan/) we made
use of a saddle-point approximation to the doubly non-central
F cumulative distribution function (Butler and Paolella, 2002;
Paolella, 2007).

So far, the model simulates an unbiased observer, in the sense
of having no preference for the first interval over the second or
vice versa. However, Equation (4) can be modified to incorporate
an interval bias. Let < SOAstandard, SOAtest > denote that the
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standard was presented first and let < SOAtest, SOAstandard >

denote that the test was presented first. Then:

Pr
(

“Standard” | < SOAstandard, SOAtest >
)

= Pr

(

△t2
standard

△t2test
< β

)

(5)

Pr
(

“Standard” | < SOAtest, SOAstandard >
)

= Pr

(

△t2
standard

△t2test
<

1

β

)

(6)

Under this scheme, the interval bias is proportional, capturing a
decision rule in which the observer selects interval 1 (I1) when |

I1| < c| I2|, and c equals β1/2. In words, the biased observer is
selecting interval 1 when its duration is less than, e.g., one and a
half times the duration of interval 2. This bias can be contrasted
with the constant bias modeled by García-Pérez and Peli (2014)
and presented in their Equations (5), (A5), and (A6) (pages 1676
and 1692). Under this scheme, the observer selects interval 1
when | I1| − | I2| < c. In words, the biased observer is selecting
interval 1 when its duration exceeds that of interval 2 by less than,
e.g., 50ms. As we had no a priori reason to favor one form of
interval bias over the other, we implemented fits using both, and
retained the best fit using either model for each participant in
our results.

Recent work by Patten and Clifford (2015) allowed us to derive
a closed-form expression for the constant-bias model.2 Although
our fits were obtained using the (slower to evaluate) derivations
described above, we include the new derivation here for
completeness, as it is now the default option in our Matlab code:

Pr
(

“Standard” | < SOAstandard, SOAtest >
)

= (7)
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2− erf
(
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2σ
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 , if c > 0

Where erf denotes the error function:

erf (x) =
2

√
π

∫ x

0
e−t2dt (8)

For our null model, we assumed participants might simply guess,
but be biased to choose one or the other interval more often (a
one-parameter model). This would lead to deviations from a 0.5
prediction at all test stimulus levels, depending on the interval in
which the standard was presented.

To test participant compliance (for exclusion purposes) and
the appropriateness of our observer model, we considered two
metrics based on deviance of model fit (defined here as −2 ×

2Thanks to Kai Schreiber for help with the derivation.

the shortfall in log-likelihood relative to a saturated model).
We first assessed whether the more complex (i.e., higher-
parameter) observer model provided a significantly better fit
than the guessing model. Asymptotically, for nested models the
improvement in deviance expected by chance approximates a
chi-squared distribution with d.f. equalling the difference in
model parameters.We used this result to assess whether the more
complex model provided a significantly better fit than its less
complex counterpart (at one-tailed p < 0.05). If not, there was
little evidence that the participant was not simply guessing. No
participants in Experiment 1 needed to be replaced on this basis.

For Experiment 1a, we also considered whether our observer
model represented a reasonable approximation of the complete
psychophysical process. For this purpose we turned to Monte-
Carlo simulation. We fed the stimulus values each participant
received across the entire experiment into the best-fitting
observer model to generate a simulated set of responses. These
were then maximum-likelihood fitted with the model, in order
to establish a deviance score for the best-fitting model when that
model had in fact generated the data. We repeated this operation
1000 times to create a distribution of expected deviances if the
model were correct. Finally, we compared the deviance of the
model when fitted to real data against the simulated distribution
of expected deviances, to assess whether the model could be
rejected as a full characterization of what observers were doing
(two-tailed p < 0.05; c.f. Wichmann and Hill, 2001).

For the TOJ task, the same basic observer model assumptions
(i.e., Gaussian latency noise) along with the simplest conceivable
decision rule (i.e., select order A when 1t is below a decision
criterion, otherwise select order B)3 predict a cumulative
Gaussian psychometric function, where µ is the PSS and σ is

the standard deviation of the 1t distribution. The corresponding
guessing model has only a single free parameter (a bias for one
order over the other, predicting a horizontal line crossing the
y axis somewhere between 0 and 1) and is nested relative to
the observer model. Hence we assessed whether the observer
model provided a significantly better fit than the guessing
model (at one-tailed p < 0.05) by comparing the change
in deviance to a chi-squared distribution with one degree of
freedom. In Experiment 1b, three participants were rejected
because their performance did not provide evidence to reject the
guessing model (i.e., performance was not significantly different
from chance). For Experiment 1a we also assessed whether the

3Described as a “deterministic” decision rule by Sternberg and Knoll (1973).
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observer model represented a reasonable approximation of the
complete psychophysical process, using the resampling method
described above for the 2xSJ task.

For the SJ task, the observer must partition the decision space
in a slightly more complex manner than for the TOJ, using two
decision criteria in order to report simultaneity only when 1t
falls between them. This decision rule predicts a psychometric
function that is the difference of two cumulative Gaussians, with
their means at the positions of the two decision criteria and their
(shared) standard deviation being that of the 1t distribution
(Schneider and Bavelier, 2003). To derive a single PSS, a further
assumption of some kind is required (for example that the
decision boundaries are placed equidistant from subjective zero).
Hence we generally prefer to report the two criteria themselves
(Experiment 1a) but adopt the equidistance assumption for
the purpose of generating a PSS value for correlation analyses
(Experiment 1c).

This three-parameter SJ model produces a symmetric
psychometric function, but asymmetries are sometimes observed
in SJ data (e.g., Yarrow et al., 2011; García-Pérez and Alcalá-
Quintana, 2012a,b). If we retain the assumption of Gaussian
latency noise, one way to model such an asymmetry is to assume
that the two decision criteriamight also contribute (independent)
noise to the decision (Ulrich, 1987). If the positions of the
two decision criteria are considered Gaussian random variables,
the resulting psychometric function is the difference of two
cumulative Gaussians, but with separate σ parameters (hence
a four parameter model; Yarrow et al., 2011).4 In our analyses,
we fitted both three and four-parameter variants of SJ models.
We first asked whether the three-parameter model provided a
significantly better fit than a two parameter cumulative Gaussian
[deviance improvement, χ

2
(1)

< 0.05]. We chose this model in

place of a simpler guessing model as it can capture both guessing,
and cases where the range of stimuli is sufficient to capture
the decision boundary on one, but not both, sides of zero. In
Experiment 1c, no participants were excluded on this basis. We
then asked whether the four-parameter SJ model provided a
significantly better fit than the three-parameter version. If so, we
used parameters from the four-parameter fit, taking the lower of
the two σ parameters as our measure of precision (as, under this
model, it represents an upper bound on the standard deviation of
the 1t distribution). This model was used for 7/24 participants.

For simple RT data from Experiment 1b, we first excluded
trials with RTs < 100ms or > mean+ (2.5× SD) ms. The “PSS”
was then calculated as the difference between the trimmed mean
RT to light and the trimmed mean RT to sound. This gives a
measure of the head start sound seems to have relative to light,
which can then be compared with the PSS in temporal judgment
tasks (Gibbon and Rutschmann, 1969). The starting points for a
comparable measure of sensory noise were variances of response
times for flashes and beeps in trimmed trials. To generate a
measure equivalent to the one obtained in the temporal judgment

4This model occasionally breaks, because differential levels of criterion noise and

tight decision criteria imply that the two component cumulative Gaussians overlap.

This can be resolved by turning to simulation and requiring that the decision

boundaries never take an illogical order, but here we instead simply assigned zero

likelihood to fits generating impossible probabilities.

tasks (i.e., the standard deviation of the1t distribution) variances
for sound RTs and light RTs were summed then square rooted.

For a subset of temporal judgments, we derived bootstrap
confidence intervals on best-fitting model parameters. Bootstrap
procedures were non-parametric and based on 1999 resamples,
using the bias-corrected and accelerated (BCa) method (Efron
and Tibshirani, 1994). When considering inferential statistics at
the group level, we observed numerous violations of parametric
assumptions (e.g., non-normality in difference distributions,
Shapiro-Wilks p > 0.05). We therefore generally used paired-
sample permutation t-tests when assessing differences (based
on 10,000 permutations) with a tmax correction for multiple
comparisons when three or more conditions were compared. To
assess associations, we used the Pearson correlation coefficient,
but when there was evidence of non-normality in either of the
contributing distributions (Shapiro-Wilks p < 0.05) we assessed
significance via bootstrap confidence intervals. Unless otherwise
noted, we used an alpha value of 0.05 and two-tailed tests.

Results
Figure 4 shows raw data for the TOJ and SJ tasks and a subset
of the raw data (specifically that with a zero-SOA standard) for
the 2xSJ tasks, alongside best-fitting model predictions for both
observers in Experiment 1a. By eye, the fits look fairly good.
For observer SM, the 2xSJ task simulation suggested that our
simple observer model could plausibly be the generating model
for the data when the task was performed alongside the SJ, but
not when performed alone, as the deviance of the best-fitting
model differed significantly from its expected value in the latter
case (p = 0.048). The observer model described data well for
the TOJ task (p > 0.05) but not for the SJ task (p = 0.03). For
observer KY, for the 2xSJ task deviance of the best-fitting model
was significantly greater than predicted if our simple observer
model were a complete generating model, both when the task was
performed alone and alongside the SJ (ps < 0.001). However,
for the TOJ and SJ tasks, the observer model was plausible (p >

0.05).
Parameters derived from these fits are presented in Table 1.

PSS values were close to zero for both observers, while latency
noise was considerably lower for experienced participant KY than
for the more novice participant SM. For SM, noise was much
lower in the 2xSJ task than in the TOJ task, despite the model-
based equivalence of the two measures (which both correspond
to the standard deviation of the difference in arrival times for
auditory and visual signals, σ ). Confidence intervals indicate this
is unlikely to be a chance result. However, noise was very similar
between SJ and 2xSJ tasks. It seems SM exhibited a learning
effect, as noise was lower for her second run on the 2xSJ task
despite the additional requirements of the concurrent SJ task.
PSS, however, was similar on both runs. The PSS from the 2xSJ
was somewhat higher than that derived from the TOJ, and also
than the mid-point of the two boundaries in the SJ (which
was 3ms).

For experienced observer KY, noise estimates were very
similar in all tasks. As for SM, the PSS from the 2xSJ was
somewhat higher than that derived from the TOJ task, and also
than the mid-point of the two boundaries obtained in the SJ
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FIGURE 4 | Fits to temporal judgment data for the two observers in

Experiment 1a. All data are shown for the TOJ and SJ tasks (second and

final rows) but just a subset of data (those trials in which one of the two

audiovisual stimulus pairs was synchronous, averaged across the two possible

presentation orders) is shown for the 2xSJ task (top and third rows). Error bars

show 95% Wilson score binomial confidence intervals.

(which was −16ms). For both observers, confidence intervals
were non-overlapping for PSS estimates from the TOJ and 2xSJ
tasks, with a more positive PSS in the 2xSJ task. The pattern
was similar but slightly less clear cut for the PSS implied by the
midpoint of the two decision boundaries in the SJ task. Widths of
confidence intervals imply that the PSSs (and boundary estimates
for the SJ) were similarly well-estimated by all tasks, whereas
the 2xSJ and SJ tasks provided greater confidence regarding true
values of latency noise than the TOJ, but specifically for observer
SM. Finally, interval bias parameters in the 2xSJ task suggest that
both observers showed a bias to favor the second interval.

Moving to the group results from Experiment 1b, Figure 5
shows mean parameters derived from individual fits to data for
the 24 participants who successfully completed the experiment.
Average PSS estimates were similar for both temporal judgment
tasks (TOJ and 2xSJ) and for simple RTs (all pairwise comparison
ps > 0.05) and in all cases were near zero but slightly positive
(i.e., auditory RT < visual RT and simultaneity perceived when

audition trails vision), a fairly common finding in audiovisual
timing (van Eijk et al., 2008). By contrast, average estimates of
latency noise differed significantly across the three tasks [RT vs.
TOJ, t(23) = 6.35, p < 0.001; RT vs. 2xSJ, t(23) = 3.49, p = 0.005;
2xSJ vs. TOJ, t(23) = 4.79, p < 0.001]. Noise was highest in
the TOJ task, lower in the 2xSJ task, and lowest in the RT task.
For the 2xSJ task, 13/24 participants showed a bias to favor the
second interval.

We also looked at the mean width of the 95% confidence
intervals around estimates derived from the 2xSJ and TOJ tasks.
Given that the 2xSJ task included more trials than the TOJ task
in Experiment 1b, and would therefore be expected to provide
tighter confidence intervals, for this comparison we looked at fits
based only on the first 100 trials of the 2xSJ (which still gave mean
estimates very similar to those shown in Figure 5, which were
based on all 152 trials). For the PSS, confidence limits around
estimates were similar for the two tasks [mean widths of 106ms
for 2xSJ vs. 132ms for TOJ, t(23) = 0.94, p > 0.05], while
for latency noise confidence regions were significantly tighter
regarding the lower estimates produced by the 2xSJ task (106ms
for 2xSJ vs. 380ms for TOJ, t(23) = 2.39, p < 0.001).

Importantly, Experiment 1b also provided the opportunity
to see whether tasks agreed regarding individual differences in
bias (PSS) and precision. Figure 6 shows correlations across
participants between equivalent measures obtained with each
task. There was a significant correlation between the PSS
values estimated from the 2xSJ task and those estimated from
the TOJ task (bootstrap p < 0.05), but neither correlated
significantly with simple RT estimates. For measures of latency
noise, correlations between RT and TOJ tasks and between TOJ
and 2xSJ tasks were marginally significant (one-tailed bootstrap
p < 0.05).

The results of Experiment 1c, where a group of participants
made SJs and 2xSJs concurrently, are shown in Figure 7. This
illustrates correlations between the two tasks on both PSS and
latency noise. Three participants, shown in gray, were clearly
outliers in terms of their (in)ability to perform the two tasks,
with very high estimates of sensory latency noise. Probably
as a consequence of this, their PSS values are also extreme
and outlying, suggesting that they have been poorly estimated
(note the different axis scales for PSS in Figure 7 compared to
Figure 6). We therefore performed correlations both with and
without (denoted in gray and black respectively) these outlying
participants included. Correlations were significant between
tasks on both measures (bootstrap p < 0.05) with the exception
of the PSS when outlying values were retained.

Concurrent performance of the SJ and 2xSJ tasks yieldedmean
parameter estimates which did not differ across tasks regardless
of whether outlying participants were included in the analysis
or not [with outliers: mean SJ PSS = 31ms, mean 2xSJ PSS =

43ms, t(23) = 0.59, p > 0.05; mean SJ latency noise = 97ms,
mean 2xSJ latency noise = 108ms, t(23) = 0.91, p > 0.05;
without outliers: mean SJ PSS = 24ms, mean 2xSJ PSS = 18ms,
t(20) = 1.18, p > 0.05; mean SJ latency noise = 76ms, mean
2xSJ latency noise = 69ms, t(20) = 1.37, p > 0.05]. For the 2xSJ
task, 20/24 participants showed a bias to favor the second interval
(binomial p < 0.05).
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TABLE 1 | Results of TOJ, 2xSJ, and SJ tasks from Experiment 1a, showing estimated model parameters such as point of subjective simultaneity (PSS)

and Precision (latency noise; σ ) with accompanying 95% confidence intervals (CI) for each observer.

Observer Task Parameters

PSS (ms) Precision (ms) Interval Bias

Low CI PSS High CI Low CI σ High CI Low CI Bias High CI

SM 2xSJ (alone) 20 30 39 68 78 86 56 64a 78

KY −8 −5 −2 21 24 27 1.57 1.79b 2.05

SM TOJ −23 −8 9 273 307 360

KY −37 −35 −33 17 19 22

SM 2xSJ (with SJ) 9 22 22 41 55 55 2 14a 14

KY −15 −12 −9 19 22 26 1.51 1.85b 2.27

Lower boundary (ms) Precision (ms) Upper boundary (ms)

Low CI BLow High CI Low CI σ High CI Low CI BHigh High CI

SM SJ −48 −42 −37 50 54 58 44 49 55

KY −37 −34 −32 20 21 24 1 3 6

aBest fitting interval bias is constant.
bBest fitting interval bias is proportional.

FIGURE 5 | Mean parameter estimates for PSS and σ for the 24 participants in Experiment 1b. (A) Mean PSS estimates. (B) Mean latency noise estimates.

Error bars denote standard error of the mean. Asterisks (*) denote statistically significant differences (p < 0.05).

We noticed that, compared to our previous experiences
recording SJs on their own, participants appeared to be
applying more conservative decision criteria in the SJ task from
Experiment 1c. We wondered if the presence of the additional
(2xSJ) question was prompting them to be more conservative.
As an informal test of this hypothesis, we retrieved a recent data
set from 22 participants who completed a baseline SJ task very
similar to that used here (but prior to several rather different
conditions involving temporal adaptation; Yarrow et al., 2015).
Stimuli were virtually identical to those employed here except
that the LED flash was green, rather than red. To assess the liberal
vs. conservative use of the simultaneous response, we calculated
the distance between low and high decision criteria (based on the
same four-parameter model fit in both data sets). Data met the
assumptions of an independent-samples t-test, which revealed
that participants placed their decision criteria closer together in
the current data set incorporating a concurrent 2xSJ question
than in our previous data set with only an SJ question [mean

distance with SJ task alone = 440ms, mean distance with SJ and
2xSJ= 260ms, t(44) = 4.47, p < 0.001].

Discussion
We fitted around 2300 trials from each of two motivated
observers and 100–300 trials from each of two sets of 24 typical
psychology participants, using simple but plausible models
of the TOJ, SJ, and roving 2xSJ tasks. We also recorded
simple RTs for one of these groups. Our latency models
described the data fairly well for the two observers, but the
models were demonstrably incomplete as data were significantly
overdispersed. For individual observers, PSS values were more
positive when estimated from 2xSJ data than from TOJ and SJ
data, but at the group level we found no significant differences
between PSS values estimated using our tasks. Group-level
estimates of differential latency noise were significantly higher
for the 2xSJ task than for the simple RT task, and for the TOJ
task than for the 2xSJ task, with the latter result mirrored for
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FIGURE 6 | Scatter plots for correlations in parameter estimates across the 24 participants in Experiment 1b, along with lines of best fit. Asterisks (*)

denote significance (p < 0.05; PSS, top) or marginal significance (one-tailed p < 0.05; σ, bottom).

FIGURE 7 | Scatter plots for correlations in parameter estimates across the 24 participants in Experiment 1c, along with lines of best fit. Data for

outlying participants (and corrlelations/fits for data incorporating those participants) are shown in gray. Data, correlations and fits with outliers excluded are shown in

black. Asterisks (*) denote significance (p < 0.05).

our naive observer, but not for our highly experienced observer.
Estimates of latency noise were very similar for 2xSJ and SJ tasks
when completed concurrently. At the group level, PSS estimates
correlated for the TOJ and 2xSJ tasks and for the SJ and 2xSJ tasks,
at least when extreme PSS estimates were removed.

The similar and correlated estimates of PSS provided by 2xSJ
and TOJ tasks, and by the 2xSJ and SJ tasks, all of which have
good face-validity as measures of temporal perception, provide
some degree of cross validation for our 2xSJ procedures, and
suggest that these tasks are accessing broadly similar cognitive
processes. However, the differences in noise parameter estimates,
all of which theoretically measure the same quantity (σ ), suggest
latency variability is not the only source of noise in these tasks, as
our modeling naively assumed. The lowest estimate was provided
by the simple-RT task, but realistically this must already be an

overestimate because the RT task inherits some variability from
the motor system that we did not consider formally.5 The simple
RT task might also rely on sensory pathways somewhat distinct
from those used in other timing tasks, but assuming substantial
overlap, lower RT noise suggests that the 2xSJ task might gain
substantial noise at the decision level, or perhaps as a result of
higher memory demands. We can however rule out an interval
bias as a possible cause: Although we observed an interval
preference, and such biases can have the effect of increasing
noise estimates in 2AFC tasks, we explicitly modeled the interval
bias for the 2xSJ and thus our estimates are uncontaminated in
this respect.

5It is, however, possible that we underestimated noise slightly in the RT task, as we

relied on data trimming to exclude outliers.
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The increase in estimated noise from the 2xSJ to the TOJ
task was even more striking than the increase for 2xSJ over
the RT task. One possible explanation is that keying errors
were more frequent in the TOJ task. It is possible to fit
models with additional parameters to describe such errors
(Wichmann and Hill, 2001; García-Pérez and Alcalá-Quintana,
2012a,b). However, to do so effectively it is necessary to sample
extensively at extreme SOAs where performance asymptotes;
for example, fitting SM’s data (Figure 4 second panel down
on the right) with the lapse rate free to vary actually yielded
the same estimate (1%) that had been fixed/assumed in our
original fit, and hence also the same estimate of noise. In
any case, it is not clear how much explanatory value this
kind of account really has, even if it can provide a more
appropriate measure of sensory noise, as it still begs the question
of why participants are so prone to keying errors in the
TOJ task.

The increased noise in the TOJ task might reflect additional
processing steps for TOJ over and above those for SJs involving,
for example, the binding of event content with event timings
(Fujisaki and Nishida, 2005). Another possibility is that values
of 1t (i.e., the subjective SOA) near zero cannot be recovered
by observers, forcing them to guess in this region (García-Pérez
and Alcalá-Quintana, 2012a,b). In this case a lower estimate
of sensory noise might be obtained by fitting a TOJ model
that explicitly models this low threshold. However, it is worth
noting that such operations appear to have had only a limited
impact for our more highly experienced observer. For novice
participants these operations seem to provide a significantly
greater challenge than the extra decision processes inherent in
the 2xSJ (which requires that individual SOAs be remembered
and compared). The fact that the 2xSJ returns lower estimates of
noise is not trivial from a practical perspective, as these values are
also better estimated (i.e., sit within tighter confidence intervals)
relative to the TOJ. This may make the 2xSJ procedure a more
useful task when assessing changes in noise across conditions,
although the SJ also appears strong in this regard, and explicit
modeling of additional processes might improve estimates for
the TOJ.

While there may be some value in employing the 2xSJ in
place of the TOJ, the SJ provided similarly low estimates of
noise and is clearly a simpler and quicker task to implement.
However, we have illustrated how 2xSJ data might be collected
at the same time, and our preliminary comparison with previous
SJ data (collected without a concurrent 2xSJ task) suggests
the additional 2xSJ task encourages participants to use more
constrained decision criteria for their SJs. This is potentially
valuable, as when participants use very liberal criteria in the
SJ, so that many SOAs are judged synchronous almost 100%
of the time, any derived PSS value becomes more contentious.
Specifically, it will depend to a greater extent on modeling
assumptions, for example that participants place their decision
criteria at equal distances from subjective time zero. However,
our (informal) result would benefit from a more rigorous
test, as our data sets differed in respects other than the
presence or absence of the concurrent 2xSJ question. Although
the set up was broadly similar, LED color, number of trials,

and SOA sampling scheme all differed between the data sets
we compared.

Having obtained preliminary evidence that the 2xSJ task
provides estimates of PSS and latency noise that are broadly
compatible with those found using more established tasks, we
next determined whether similar correlations could be obtained
using stimuli from different modalities (i.e., all combinations
of visual, tactile and auditory stimuli) and also with another
common temporal judgment task closely related to the TOJ and
the SJ, the ternary (SJ3) judgment task.

EXPERIMENT 2

Methods
Methods in Experiment 2 were identical to those in Experiments
1b with the following exceptions.

Participants
An opportunity sample of 6 participants was tested, including
two authors (mean age= 27.7, range 20–37, three male).

Apparatus and Stimuli
Tactile stimuli were vibrotactile sine waves, identical to auditory
stimuli except that their frequency was 200Hz. Vibrotactile
stimuli were delivered via a small (∼1 cm diameter) ceramic
piezoelectric disk coated in plastic. The disk was driven from
a custom-built amplifier, and did not produce audible noises
with the stimuli we used. It was gripped comfortably between
index finger and thumb of the left (non-responding) hand, which
rested on participants’ laps, around 30 cm from the visual and
auditory stimuli.

Design and Procedure
A 4 × 3 factorial repeated-measures design manipulated both
the temporal task (RT, TOJ, 2xSJ, and ternary) and the modality
pairing that participants were judging (AV, audiovisual; AT,
audiotactile; VT, visuotactile). The four tasks were presented
in separate blocks within a single session, always in the same
order (ternary, then TOJ, then RT, then 2xSJ). The three
modality pairings were completed in separate sessions, with
order counterbalanced across participants. For the ternary task,
stimulus selection was as per the TOJ task, but in addition to
the two order response options, participants could now opt to
respond “simultaneous.” If they did so, they were subsequently
prompted to take a guess about order (used to update the
adaptive distribution from which SOAs were being selected, and
discourage excessive use of the simultaneous response option)
but these responses were not analyzed.

Data Analysis
Data in the ternary task were fitted with the same model
described previously for simultaneity judgments, except that
model predictions were expressed for the three possible
response categories, and maximum-likelihood fitting assumed a
multinomial data model. To check for sensible responding,
goodness of fit was compared against a two-parameter
guessing model incorporating guess rates for two out of
three response options.
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Results
Figure 8 provides an overview of the results from Experiment
2. Group average PSS and latency noise values are presented in
Figures 8A,B respectively. PSS values were once again slightly
positive for AV conditions, a trend that was exacerbated for
AT conditions but reversed for VT conditions. Different tasks
gave quite similar PSS estimates on average (with the possible
exception of RT in the AT condition). Estimates of latency noise
were similar between modality pairings, but appeared lower in
RT and 2xSJ tasks compared to TOJ and ternary tasks. However,
no differences between tasks reached statistical significance for
either PSS or latency noise (perhaps reflecting the small sample
size in this experiment).

In order to increase power to detect correlations, we combined
data from all six observers and three modality pairings into 18
points. Differences between pairings might lead to a clustering
of data into three sets. Hence any correlation would be driven
in part by the common effect of a particular modality pairing
on measures from two or more tasks. Although we consider

this essentially legitimate (i.e., if a change of modality pairings
affects the PSS from two tasks in the same way, this is
reasonable evidence that the two tasks are indexing similar
mental operations) we also performed correlations after first
normalizing data within each modality pairing. We did this by
subtracting the mean for that pairing, so that only differences
relative to the mean remained to be correlated between tasks.

Correlations are shown if Figures 8C–F. Figures 8C,D

summarize correlations between all four tasks for both PSS and
latency noise. Broadly, correlations between equivalent measures
of latency noise are positive for all task pairs, whereas correlations
between measures of PSS are generally low and slightly negative
between the RT task and the other tasks, but high and positive
between the three temporal judgment tasks. Focussing on
the critical correlations between the 2xSJ task and the other
tasks (and omitting marginal and non-significant results), with
normalization there was a significant PSS correlation between
the 2xSJ task and the ternary task (r = 0.575, p = 0.013), and
a significant latency noise correlation between the 2xSJ task and

FIGURE 8 | Results of Experiment 2. (A,B) Mean parameter estimates (PSS and σ ) for the six participants in each of four (task) × three (modality pairing)

conditions. AV, Audiovisual; AT, audiotactile; VT, visuotactile. Error bars denote standard error of the mean. (C,D) Between-task correlations for PSS values (upper

right) and σ values (lower left). Data were pooled across all modality pairings, but in (C) they were first normalized to the mean value within each modality pairing to

remove variance associated with this manipulation. Asterisks (*) denote statistically significant differences (p < 0.05). (E,F) Scatter plots for one illustrative correlation

(for the PSS, between 2xSJ and ternary tasks). Data are the same in both plots, but have been normalized (as for C, above) in (E).
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both the ternary task (r = 0.881, bootstrap p < 0.05) and the TOJ
task (r = 0.707, p = 0.001). Without normalization, correlations
were generally slightly higher. Here, there were significant PSS
correlations between the 2xSJ task and both the ternary task
(r = 0.623, p = 0.003) and the TOJ task (r = 0.527, p = 0.025).
Similarly, for latency noise there were significant correlations
between the 2xSJ task and both the ternary task (r = 0.877,
bootstrap p < 0.05) and the TOJ task (r = 0.708, p = 0.001).
The scatter plot for the correlation between the ternary and 2xSJ
tasks is shown in Figure 8 parts E and F (for normalized and
non-normalized, data respectively).

Discussion
In Experiment 2, we had observers make temporal judgments
and rapid button presses in response to audiovisual, audiotactile,
and visuotactile stimuli. The overall pattern of mean PSS values
we recovered using four different tasks was similar across
tasks. A simple reading would be that the auditory pathway
is somewhat shorter than both the visual and tactile pathways,
with the difference being greatest between auditory and tactile
pathways. However, this result is likely to be stimulus specific and
other interpretations are possible. For our purposes, the more
important result is that the 2xSJ task provided results comparable
to other temporal judgments tasks, and correlated with them for
both PSS and latency noise measures (although as in experiment
1b, correlations with RT were lower for latency noise and absent
for PSS). In particular, the new correlation between PSSs obtained
using 2xSJ and ternary judgment tasks (based on several modality
pairings) corroborates those previously obtained in Experiment
1b and 1c using TOJ and SJ tasks (with only AV stimuli).

Having found further evidence for the utility of the 2xSJ
task when assessing a baseline PSS, we wanted to determine
if it can also provide sensible estimates of changes in PSS
across experimental conditions. For this purpose we attempted to
recreate a classic experimental effect from the literature—cross-
modal prior entry—tested with both 2xSJ and TOJ tasks.

EXPERIMENT 3

Methods
Methods in Experiment 3 were identical to those in Experiments
1a–c with the following exceptions.

Participants
An opportunity sample of 11 naive participants was tested, with
three excluded from further analysis as one or both of the
observer models failed to fit their data better than the relevant
chance model in one or more conditions. This yielded a sample
size of 8 (mean age= 33.5, range 18–52, two male).

Apparatus and Stimuli
Auditory stimuli were delivered through headphones
(Sennheiser PX360). In order to manipulate the allocation
of attention, a subset of stimuli were modified to become targets
in a (secondary) detection task. In contrast to the usual stimulus
duration of 10ms, these stimuli had durations of 17ms (for
auditory targets) or 25ms (visual targets).

Design and Procedure
A 2× 2 factorial repeated-measures design manipulated both the
temporal task (TOJ vs. 2xSJ) and the modality that participants
had to monitor for targets in an additional detection task
(auditory vs. visual). The four conditions were presented in
separate blocks, with order counterbalanced across participants
in a nested fashion (i.e., four possible orders, where each task
could be completed first or second, and nested within that
ordering each modality could be attended first or second). In
addition to the two response options for temporal judgments
(outlined in Experiments 1a and 1b), participants now received
a third alternative—to indicate that a target had been present
(in which case they were told not to worry about the temporal
judgment). Accurate feedback was provided regarding the
secondary detection task, flagging hits and misses on target-
present trials and false alarms on temporal-judgment trials.

Blocks contained 190 trials, with 80% non-target (i.e.,
temporal-judgment) trials and 20% target trials. Targets were
presented only in the monitored modality. The extra dual-task
requirement made the temporal tasks more difficult. To counter
this, for the 2xSJ task SOAs ranged more widely. One stimulus
was drawn from the following 19 SOAs: −375, −325, −275,
−225, −175, −125, −75, −50, −25, 0, 25, 50, 75, 125, 175, 225,
275, 325, 375ms (with each SOA occurring five times in each
interval across a block of trials). The second SOAwas drawn from
a discrete probability distribution with steps of 25ms, initially
uniform, spanning −75 to +75ms, but potentially expanding
to ±375ms in an adaptive manner. For the TOJ task, SOA
values from −450 to +450ms were used (in 30ms steps). This
distribution was initially uniform across this entire range except
for the two most extreme values, which were nine times more
likely to occur than each of the 29 other SOAs (prior to adaptive
updating).

Results
In the secondary task, participants tended to detect targets
successfully, but performance was imperfect. Hits and false
alarms were converted to d-prime (d′) values (Green and Swets,
1966), with average d′ for the group ranging from 2.22 for
visual-target TOJ trials (79.3% hits, 6.3% false alarms) to 4.44
for auditory-target 2xSJ trials (96.1% hits, 0.3% false alarms).
Hence there was an incentive to attend the modality containing
detection targets.

We expected to see the PSS become more positive when
participants attended audition relative to when they attended
vision (as the auditory signal should be sped in the brain, and
thus require a physical delay to seem synchronous). However, as
shown in Figure 9A, on average the target modality (and thus
the presumed allocation of attention) had no effect on PSS values
estimated via either the TOJ task [t(11) = 0.66, p > 0.05] or the
2xSJ task [t(11) = 0.35, p > 0.05]. Furthermore, there was no
evidence for a different magnitude of prior-entry effect between
TOJ and 2xSJ blocks [with effect magnitude being the difference
in PSS between auditory and visual-target conditions; t(11) =

1.24, p > 0.05]. However, when we examined the prior-entry
effect on a participant-by-participant basis, comparing the effect’s
magnitude derived using the TOJ task with that obtained using
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FIGURE 9 | Results of Experiment 3. (A) Mean PSS when a secondary task

promoted attending to audition or vision, estimated using TOJ and 2xSJ tasks.

Error bars denote standard error of the mean. (B) Scatter plot of correlation in

prior-entry effect magnitudes (PSS when attending to audition minus PSS

when attending to vision) alongside line of best fit. The asterisk (*) denotes a

significant correlation (p < 0.05).

the 2xSJ task, a significant correlation emerged (r = 0.71, p <

0.05; see Figure 9B).

Discussion
In Experiment 3 we manipulated attention, directing it toward
either the visual or auditory modality via a strategic incentive
(to maximize performance on a concurrent detection task), while
measuring changes in PSS via both a TOJ task and a roving 2xSJ
task. We failed to obtain a prior-entry effect on average across
participants, but did obtain a significant correlation between
attentional influences on our two timing tasks.

It is not uncommon to fail to find cross-modal prior entry,
particularly with manipulations of endogenous attention (e.g.,
Cairney, 1975). We used a 100% predictive instruction (i.e.,
targets always came only in the attended modality) so cannot
offer any independent evidence that attention was allocated
as we envisaged, but we think it likely on strategic grounds.
Our manipulation of attention could be considered to be either
between modalities or between spatial locations or, most likely,
between both of these (as target stimuli came from either a
fixated LED or via headphones). However, this manipulation
had no significant effect on the PSS for our sample. Perhaps
there really is no consistent effect to find, or perhaps the average
effect is very small (e.g., associated latency changes in ERP
components are tiny; Vibell et al., 2007) and we lacked power to
demonstrate it.

We did, however, find evidence for a correlation in the
(non-uniform) effects of attention on PSS estimates across
participants. This correlation is interesting for two reasons. First,
it demonstrates that while the experimental manipulation did
not have a consistent effect on all participants, it influenced each
participant’s PSS in an individually reliable fashion (as revealed
by the matched effects obtained using two different temporal
judgment tasks in separate blocks of trials). Second, it provides
further evidence that TOJ and 2xSJ tasks tap similar temporal
processes.

GENERAL DISCUSSION

In this paper, we (1) considered the merit of a roving 2xSJ task
for estimating the bias and precision of temporal judgments;
(2) provided predictions for a simple but theoretically-derived
observer model, and; (3) benchmarked the task against more
established TOJ, SJ, and ternary tasks when estimating both
baseline PSS and (for the TOJ) changes in PSS. We found that
the 2xSJ task was manageable for typical psychology participants;
that the observer model was a somewhat useful approximation
(albeit a simplification) of the full psychological process of
temporal judgment; and that the 2xSJ task provides estimates
of the PSS that are comparable to those obtained using other
temporal judgments. The 2xSJ task is, however, likely to provide
lower and less variable estimates of sensory noise than the TOJ,
at least when the TOJ is modeled without additional cognitive
operations such as guessing. On this basis we believe that the
2xSJ task has validity as a supplementary measure of temporal
experience. From a practical perspective, we would recommend
that researchers primarily consider using it in concert with
the classic SJ (i.e., as an additional question) when one of the
following two conditions apply:

(1) When an estimate of the PSS is desirable between two quite
different (e.g., bimodal) stimuli and there are reasons to
believe that the SJ task will give rise to “synchronous” reports
over a fairly broad range of SOAs (e.g., when stimuli are
naturalistic/noisy or participants are not practiced). In this
case, the 2xSJ should encourage the use of more conservative
criteria regarding simultaneity (benefitting the fitting and
interpretation of the SJ data) and provide an additional and
less theoretically dependent point estimate of the PSS.

(2) When a single-presentation task such as the TOJ or SJ seems
likely to encourage decision biases, for example when the
experimental manipulation could be seen to suggest one of
the two possible answers when the observer is uncertain (e.g.,
a directive to preferentially attend one of two events).

In these situations, the 2xSJ should result in low and fairly
stable estimates of sensory noise alongside a PSS that is less
dependent upon the placement of decision criteria. However,
such benefits must be weighed against the increased experimental
time necessary to complete each trial.

We have considered five tasks here, but our main focus was
the 2xSJ task. We obtained a significant correlation between PSS
estimates from this task and other temporal judgment tasks,
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and also between changes in PSS estimates across conditions for
the 2xSJ and TOJ. Several previous studies have attempted to
find correlations between PSS values estimated via more than
one task. For example, both van Eijk et al. (2008) and Love
et al. (2013) failed to find any correlation between the PSS
estimated from a temporal order judgment and that estimated
from a synchrony judgment, while Freeman et al. (2013) found
a surprising negative correlation between PSS for audiovisual
speech (estimated via TOJ) and the maxima of the function
describing the probability of McGurk integration across different
SOAs. We suggest previous failures to obtain correlations
between TOJ and SJ tasks might reflect the different decision
processes in these two tasks. In particular, the SJ is fundamentally
a method for obtaining a region of subjective simultaneity,
rather than a point of subjective simultaneity. To infer a PSS,
it is necessary to make some assumption about how the two
criteria for demarcating synchrony from asynchrony are selected
(e.g., that they are placed symmetrically about a subjective
1t value of zero). However, participant strategies might vary,
with a concomitant effect on the inferred PSS. Such strategic
variability might make correlations difficult to detect. Our 2xSJ
task, although still based on a judgment of simultaneity, forces
observers to decide which SOA seems most synchronous, which
might be more comparable to the SOA at which their impression
of order switches in TOJs6.

Many studies have also reported differences between PSS
estimates obtained using TOJ and SJ tasks. For example, Linares
and Holcombe (2014) found that for four of seven participants,
confidence intervals around the PSS did not overlap for TOJ
and SJs. We obtained a similar result for two observers in
Experiment 1a when comparing TOJ and 2xSJ parameters,
although this difference was not apparent in the group data
from Experiment 1b. Interestingly, Linares and Holcombe (2014)
also found differences between PSS estimates obtained using
a TOJ task and those obtained using a AV-VA (or VA-AV)
duration comparison task, which shares a broad structural
similarity with our 2xSJ task, but uses just a few rather longer
durations. Differences in PSS values obtained using these kinds
of tasks might reflect a common decision-level bias in the TOJ
(e.g., observers tend toward one response when uncertain).
Alternatively (or additionally) there might be an asymmetry
in the transducer function that relates objective to subjective
time for AV intervals relative to VA intervals (e.g., if AV time
accrues more quickly than VA time at a subjective level, perhaps
due to differences in arousal or attention). This could bias
PSS estimates derived using both 2xSJ and interval-comparison
tasks.

We did not obtain correlations between PSS estimates from
our temporal judgment tasks and that estimated from simple RT,
although there was some evidence for a correlation in estimates of
noise involving RTs and other tasks. There is a previous literature
examining the extent to which simple RT and TOJ tasks rely on
the same sensory representations, with the main focus being the
tendency for PSS estimated from TOJs to dissociate from that
estimated using simple RT following experimental manipulations

6Of course the TOJ faces its own issues as a measure of maximal synchrony

perception, not least the fact that it doesn’t actually ask about synchrony directly,

only about perceived order.

such as changes in stimulus intensity (see e.g., Jaskowski, 1999,
for a review of the early work). Here too dissociations may be
explicable in terms of different decision strategies being applied
to different tasks (Miller and Schwarz, 2006; Cardoso-Leite et al.,
2007) rather than implying a complete mechanistic separation.
Our mean PSS estimates actually matched fairly well between
RT and temporal judgments, and the absence of a correlation
is perhaps explicable in terms of fairly low experimental power
combined with differences between these tasks from the decision
level onwards.

Estimates of latency noise were often correlated between
our various tasks. While this finding is consistent with a
common sensory stage accessed by different tasks, as implied by
independent-channels models, it might also have resulted from
quite general cognitive factors, such as the ability to maintain
focussed attention during a long, boring task. Stevenson and
Wallace (2013) have previously reported correlations between
measures of a construct known as the temporal binding window,
derived using several of the tasks we assess here. They constructed
this measure by fitting one or more sigmoids in a piecewise
manner to their data, and calculating the difference between
threshold values. It is rather difficult to map this kind of measure,
which is likely to conflate latency noise and decision criteria (to
different extents depending on the exact task) onto the model-
based measures we derive here, but our findings are broadly
consistent with theirs.

Fitting observer models to data is generally preferable to
fitting arbitrary functions, as derived parameters will have
clearly defined meanings. However, this is only true to the
extent that the models are accurate. The observer models
we develop and use here are very simple (too simple in
several cases) but seem a reasonable starting point. There
are many more complex variants that might be considered,
and indeed some such variants have been shown to perform
well for TOJ, SJ, and ternary tasks (García-Pérez and Alcalá-
Quintana, 2012a,b, 2015). One example of the additional
complexity we have omitted is the well-known scalar property
(the variant of Weber’s law that applies to time) as we have
assumed constant noise alongside an affine transformation
from objective to subjective SOAs. It remains to be seen
whether more complex models that incorporate such features
will provide a significantly better fit to temporal judgment
data when their additional parametric flexibility is taken into
consideration.

CONCLUSIONS

We have outlined methods and analysis procedures for
implementing a roving 2xSJ task, useful for determining both
a point of subjective simultaneity and associated judgment
precision estimates for subjective timing. This task returns PSS
estimates that seem largely consistent with those returned by
more traditional tasks, but in some cases provides lower and
more constrained estimates of sensory noise, perhaps indicative
of a more straightforward decision process. It does so while
explicitly requiring participants to decide which alternative
timing relationship is most synchronous on any given trial
(rather than revealing what range of relationships are sometimes
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described as synchronous). It can also easily be combined
with judgments about each stimulus. It therefore provides
a useful complement to existing methods for investigating
subjective timing.
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Timing is a fundamental variable for behavior. However, the mechanisms allowing human

and non-human primates to synchronize their actions with periodic events are not yet

completely understood. Here we characterize the ability of rhesus monkeys and humans

to perceive and maintain rhythms of different paces in the absence of sensory cues or

motor actions. In our rhythm task subjects had to observe and then internally follow a

visual stimulus that periodically changed its location along a circular perimeter. Crucially,

they had to maintain this visuospatial tempo in the absence of movements. Our results

show that the probability of remaining in synchrony with the rhythm decreased, and the

variability in the timing estimates increased, as a function of elapsed time, and these

trends were well described by the generalized law of Weber. Additionally, the pattern of

errors shows that human subjects tended to lag behind fast rhythms and to get ahead

of slow ones, suggesting that a mean tempo might be incorporated as prior information.

Overall, our results demonstrate that rhythm perception and maintenance are cognitive

abilities that we share with rhesus monkeys, and these abilities do not depend on overt

motor commands.

Keywords: rhythm, timing, rhesus, Weber fraction, model of time perception

INTRODUCTION

The ability to estimate time intervals is fundamental to behavior. Motor actions performed outside
their intended temporal window often have reduced effectiveness or a complete loss of purpose.
However, the mechanisms allowing the brain to time future sensory and motor events are not
yet completely understood (Merchant and de Lafuente, 2014). Human, and to a certain extent,
monkey subjects can repeatedly tap in synchrony with sensory stimuli (synchronization), and they
can continue tapping in the absence of external stimuli (continuation) (Wing and Kristofferson,
1973; Ivry and Hazeltine, 1995; Zarco et al., 2009; Repp and Su, 2013). The increase in variability of
the tapping responses that define time intervals is well described by the generalized Weber’s law:

σ
2
= k · T2

+ σ
2
indep (1)

in which T is elapsed time, k approaches the square root of theWeber fraction at long elapsed times,
and the term σ

2
indep

represents a basal variance that does not increase with time (Getty, 1975; Killeen

andWeiss, 1987; Gibbon et al., 1997; Bizo et al., 2006; Merchant et al., 2008; Zarco et al., 2009; Laje
et al., 2011).

However, the capacity of human and non-human primates to maintain a rhythm in
the absence of sensory cues, or a motor action such as tapping, has been less studied
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(Grahn, 2009; Patel et al., 2009; Fitch, 2013; Repp and Su, 2013).
A particularly important question that remains unanswered is
whether monkeys are able to perceive and maintain a rhythm
in the absence of overt motor actions (Bispham, 2006; Merchant
and Honing, 2014). Here we characterize the behavior of human
and rhesus subjects in a task in which they have to estimate the
tempo of a periodic sensory event and then maintain that rhythm
in the absence of movements. We hypothesize that human and
monkey subjects share the ability to maintain a temporal rhythm
in working memory, and that this is not dependent on overt
motor actions. This will support the notion that rhythmic interval
timing is a higher cognitive function not tied to particular motor
actions, which is shared among primates.

We developed a rhythm task in which subjects had to
observe a visual stimulus that periodically changed its location
along a circular perimeter. After this presentation period, the
stimulus disappeared and subjects had to internally follow
its location as a function of elapsed time. Importantly, at a
random time during this continuation phase, subjects were
asked to indicate the estimated position of the stimulus (Go-
time). Thus, this task generated a visuospatial rhythm defined
by the time interval between location changes (Doherty et al.,
2005), much like the rhythm defined by the motion of a
discretely moving second hand in a clock. To correctly estimate
the stimulus position subjects must first adjust their internal
chronometers to the pace of the visual stimulus and then
use that internal rhythm to predict the position during the
continuation phase. Since we know that the variability of the
timing estimates increases with elapsed time we expect the
probability of correct responses to decline as a function of
time.

Whether subjects time single intervals independently or they
estimate total elapsed time is an important open question that we
address in human subjects by analyzing the pattern of errors and
also by fitting continuous time and a reset timemodels.

An important question in timing research is whether intervals
of different lengths are timed by a single mechanism or whether
different intervals use distinct chronometers. There is evidence
that the standard Weber fraction is not constant for intervals
larger than approximately 1.2 s (Hinton and Rao, 2004; Bizo
et al., 2006; Lewis and Miall, 2009; Grondin, 2012, 2014; Allman
et al., 2014), and this could be a sign that different clocks
or timing processes are used to time intervals of different
durations (Bangert et al., 2011; Rammsayer and Troche, 2014).
We approach this issue by calculating the traditional Weber
fraction for intervals of different duration, and also by fitting
a model of the generalized Weber fraction (Equation 1). The
results show that the Weber fraction diminishes as a function
not only of total elapsed time, but also as a function of the
interval length subdividing that total time (Grondin et al., 1999).
Our results demonstrate that the generalizedWeber law provides
a satisfactory description of behavioral patterns such as the
proportion of correct responses, the increase in variability as a
function of time, and the systematic pattern of timing errors.
The evidence suggests that short (0.5 s), medium (0.75 s), and
long intervals (1.0 s) seem to be timed by mechanisms with
increasingly large time-independent variance.

METHODS

Behavioral Tasks
In our visuospatial rhythm task the human subjects were
asked to maintain their eyes in a fixed position (fixation)
and to keep a mouse cursor at the center of a computer
monitor while attending a peripheral disk that periodically
changed location (Figure 1). After the presentation of 3 filled
intervals (presentation phase), the disk disappeared and subjects
had to covertly predict its position as a function of elapsed
time (continuation phase). After 1–6 continuation intervals
(uniform distribution, pseudo-randomly selected) the fixation
point disappeared (Go-time), instructing the subjects to move the
cursor and click over estimated position of the disk at the Go-
time. It is important to note that the rhythm stops at Go-time and
subjects can calmly click over the estimated position. In other
words, it is not an interception task in which reaction time and
handmovement should be taken into account when executing the
behavioral response. The interval duration was chosen pseudo-
randomly on each trial (0.50, 0.75, or 1 s for monkey and 8-choice
datasets; 0.50 or 1 s for the rest of the datasets). Instead of using
a mouse, monkeys were trained to maintain their right hand at
the center of a touchscreen and at the Go-time, to perform a
reachmovement to touch the estimated location of the disk. They
were rewarded with a drop of water on correct responses. An
infrared camera (200 Hz, Applied Science Laboratories) was used
to monitor eye position within 1.5◦ around the fixation point
(Figure 1).

Monkeys were first trained in a 6-choice version of the task
but then we decided to simplify it to a 2-choice task that is more
suitable for the acquisition of neurophysiological data that we
plan to carry after the behavioral tests presented in this report.
(Figure 1). In addition to the 2-choice task, human subjects
performed a 6-choice, an 8-choice, and also a continuous version
of the task. The 6-choice and 8-choice versions of the task were
included in the human experiments to accurately estimate how
the variance of the behavioral responses changes as function of
elapsed time. The use of 6 or 8 targets make it possible to measure
whether responses are ahead of or behind the true stimulus
position. This is not possible in the 2-choice task because there
is only one correct and only one incorrect target.

In the continuous version of the task, the disk moved smoothly

along a gray path. The disk moved at the same speeds as those in

the 6-choice task. A response was defined as correct if the mouse

click was within 30◦ of the correct position (this divides the gray

circular path into six regions, analogous to the 6-choice task). We

developed the continuous task as a control experiment in which

timing is required to estimate the position of an invisible target

(O’Reilly et al., 2008), but it does not depend on the rhythm
imposed by the repetition of isochronous intervals.

To correctly predict the stimulus position subjects must rely
on an internal chronometer whose variability increases with
elapsed time, as described by the generalized Weber’s law. Thus,
the Go-time is a key experimental variable determining how well
the subjects can estimate the disk location. Short Go-times will
likely result in correct responses, while at long Go-times subjects
are more likely to miss the correct disk location (they can get

Frontiers in Psychology | www.frontiersin.org December 2016 | Volume 7 | Article 1971 | 101

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


García-Garibay et al. Temporal Rhythm in Humans and Monkeys

FIGURE 1 | The visuospatial rhythm task. (A) In the 2-choice task a visual

stimulus (colored disk) alternates left and right of a central fixation point. After

three visible intervals (presentation phase) the disk disappears and subjects

must internally track its location as a function of elapsed time (continuation

phase). The fixation point can disappear at the midpoint of any

pseudo-randomly selected continuation interval (Go-time), instructing the

subjects to indicate the estimated disk location (left or right). (B) In the

6-choice task the disk moves sequentially to six marked locations along a

circular path. Taking into account the direction of rotation, this version of the

task allows estimating whether the subjects’ responses are ahead of or behind

the correct target location. (C) In the continuous version the disk moves

smoothly along a gray path at a velocity that matches the position of the disk

on the 6-choice task. Angle units were transformed to time units for the

analyses described in the text.

ahead or behind the true location). Note that the spatial location
of the stimulus (angle) and the spatial location of the behavioral
responses (angle) were expressed in time units (seconds).

We describe behavioral performance with four variables,
and we plot these as a function of Go-time (Figure 4): (1)
The probability of a correct response p(correct), indicating the
proportion of trials in which subjects correctly estimated the
position of the disk; (2) the standard deviation (Std) of the
responses, expressed in time units; (3) the traditional Weber
fraction, defined as the standard deviation (Std) divided by the
mean generated time (mean spatial location of the behavioral
responses, converted to time units); and (4) the constant error, or
bias, defined as the difference between the true and the estimated
position of the disk, expressed in time units. It must be noted that
the constant error can only be estimated in the 6-choice, 8-choice,

and the continuous versions of the task. The 2-choice version of
the task allows recording correct and incorrect responses, but
precludes determining whether an incorrect response was ahead
of or behind the true stimulus position. The columns of Figure 4
show these four behavioral parameters for each dataset, grouped
by interval duration, and plotted as a function of Go-time. The
Go-cue (disappearance of the eye fixation point in humans or
disappearance of hand fixation point in monkeys) occurred at the
middle of 1–6 continuation intervals (pseudo-randomly selected;
1–4 continuation intervals in monkeys). Thus,Go-timeswere 0.5,
1.5, 2.5, 3.5, 4.5, 5.5, for the 1 s interval and 0.25, 0.75, 1.25, 1.75,
2.25, 2.75 for the 0.5 s interval. Formonkeys, the first four of those
Go-times were used, and an additional interval of 0.75 s was also
tested (Go-times 0.38, 1.13, 1.88, 2.63 s).

Participants, Apparatus, and Training
Thirteen human subjects were tested in this study and were
paid for their participation (8 females, median age 25, Std 4.1).
They were right-handed, had normal or corrected-to-normal
vision, and were naive about the purpose of the experiment.
All subjects reported no systematic musical training for more
than a year. Each subject volunteered and gave informed
consent for this study, which complied with the Declaration
of Helsinki and was approved by the National University of
Mexico Institutional Review Board. In addition to a minimum
monetary compensation, human subjects were also compensated
for every correct trial (feedback was provided on each trial by
flashing the correct target position). Two male monkeys (Macaca
mulatta, 5–7 kg, ages 5, and 6) were used. Animal experimental
procedures were approved by the National University of Mexico
Institutional Animal Care and Use Committee and conformed
to the principles outlined in the Guide for Care and Use of
Laboratory Animals (NIH, publication number 85-23, revised
1985). Human subjects were seated comfortably on a chair
facing a computer monitor (LCD screen, 60 Hz refresh rate,
model S27C350H) in a quiet room. Stimuli were generated and
data were collected with custom software written in Matlab
and the Psychophysics Toolbox (Brainard, 1997). Subjects came
to the lab on separate days to perform each task type (2-
choice, 6-choice, 8-choice, continuous). The order of the task
type was counterbalanced between subjects. In each session
subjects performed 48 training trails followed by a 15 min
rest period, and then 288 test trials (6 Go-times, 2 interval
durations, 24 repetitions) with 15 min rest periods every 98
trials. Monkeys spent ∼4 months progressively learning the
task structure, and another ∼6 months for their performance
to reach asymptotic levels. To make sure monkeys learned to
estimate a rhythm (presentation phase) and then being able to
use that rhythm to predict the stimulus position as a function
of the elapsed time (continuation phase), we first trained them
in a version of the 6-choice task in which interval length was
chosen from a continuous distribution (300–1200 ms, uniform
distribution) and the number of presentation intervals was
variable (1–4, uniform distribution). This variation in initial
conditions minimized the possibility of monkeys learning a
simple association between elapsed time and a fixed stimulus
position on the screen. We then moved to the 2-choice task that
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we present here and that will be used in physiological recordings
in the future. The 2-choice version of the task is better suited for
the acquisition and analysis of neuronal data because it has fewer
conditions and variables. For example, it has only two possible
starting and end locations of the stimulus. The behavioral
decision is thus binary, allowing us to record many repetitions
of the same type of trials and the underlying neurophysiological
data. On each training day monkeys performed 3–6 runs with
approximately 130 trials per run. The data analyzed here was
obtained from 358 sessions in a ∼4 month period following
training (109 sessions monkey I; 249 sessions monkey M; 47,235
total trials).

Fitting the Generalized Weber Law
To test the extent to which behavioral performance conformed to
the scalar property of timing, we adapted the generalized Weber
law to the discrete time intervals that define our rhythm task
(Figures 2A,B). We generated a model in which the probability
of a correct response p(correct) was defined as the area under a
Gaussian distribution that is comprised within the limits of the
time interval corresponding to a given Go-time (this distribution
represents the variability of the internal time estimates). For
example, Figure 2A shows that the area comprised within the
first continuation interval (Go-time = 0.5 s) is close to 1,
whereas the area comprised within the sixth memory interval
approximates 0.5 (Go-time = 5.5 s). In this manner, as described
by the generalized Weber law (Equation 1), the time-dependent
increase in variability results in a reduced proportion of correct
responses as a function of Go-time, and the steepness of this
decrease is modulated by the k parameter of Equation 1.

In its traditional form, the Weber fraction determines the
slope with which the standard deviation of time estimates grows
as a function of elapsed time: σ = k·T; where k is the Weber
fraction, σ stands for standard deviation and T is elapsed
time. However, it has been found that the addition of a time-
independent noise constant better describes how σ grows as a
function of time: σ = k·T + σindep; in which σindep represents
this time-independent source of variability. The addition of this
constant results in the traditional Weber fraction (σ /mean) not
being constant as a function of elapsed time: it is higher at
short times and it decreases as time elapses. This is because at
short times (T is small) the total variability is dominated by
σindep, and as time elapses the total variability is mainly due to
the k·T product. Thus, at longer elapsed times the term k in
Equation 1 approximates the traditional Weber fraction in which
the variability is accounted by k·T. When variability is expressed
as variance and time is also squared, the resulting equation for
the generalized Weber fraction is Equation (1).

In addition to fitting p(correct), our model also fit the standard
deviation (Std) of the behavioral responses. However, it is not
possible to directly fit Equation 1 to our data because of the
discrete nature of the behavioral responses (2-, 6-, 8-choice),
i. e., Equation (1) varies continuously whereas the subjects’
responses vary within a finite number of options. Thus, the
model calculates Std from the expected proportion of responses
distributed across the discrete time intervals. In the case of the
2-choice task, for example, the discrete nature of the responses

FIGURE 2 | To model behavioral performance we adapted the

generalized Weber law to the rhythm task. (A) The Gaussian distributions

illustrate the time-dependent increase in variability of the timing estimates. The

probability of a correct response was calculated as the area of the Gaussian

curve comprised within the interval defined by a given Go-time. The probability

of a correct response for Go-times 0.5 and 5.5 s is illustrated in green. (B) In

the 4-parameter equation, produced time is modified by multiplicative and

additive factors. This allows the model to capture systematic errors like

shortening or lengthening of elapsed time. The figure illustrates the distributions

resulting from a positive displacement and a shortening of time estimates.

causes the standard deviation to saturate at long elapsed times,
when behavior is at random chance and the behavioral responses
are distributed equally between the two choices (Figure 4, second
column). Thus, the 0.5 s saturating value is the expected standard
deviation of a random variable taking the values 0 and 1 s (as in
the behavioral responses corresponding to correct and incorrect
responses in the 1 s time interval trials).

The generalized Weber law describes how variance changes
as a function of time. However, it cannot account for systematic
trends in the constant error that is, it cannot capture whether a
subject’s estimate of time is ahead of or behind true elapsed time.
For our model to capture systematic differences between real and
estimated time (constant error, Figure 4, rightmost column) we
made use of two additional parameters (m, b):

σ
2
= k · T2

produced + σ
2
indep

Tproduced = Telapsed ·m+ b (2)

These parameters allowed our model to take into account biases
such as a constant time displacement (b), and the shortening
or lengthening of produced time (m) (Figure 2B). Equation 2
was used for the fits shown in Figures 4C,D. However, when
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FIGURE 3 | (A) The probability of a correct response (left panel) and the

standard deviation (right panel) are plotted as a function of Go-time, separately

for the short and long intervals (0.5 and 1 s, human data on the 6-choice task).

Solid and broken lines depict model fittings of a continuous (Equation 1) and a

reset (Equation 3) model of timing. Both models provided similarly good fits.

(B) Reaction times as a function of Go-time. Humans had significantly higher

reaction times which tended to decrease with Go-time. (C) Single subject data

for monkeys (n = 2) and humans (n = 10) in the 2-choice task. The probability

of correct responses p(correct) is plotted as a function of Go-time. Light colors

are used for humans and dark ones for monkeys. Broken dark lines as used

for monkey 2 data.

comparing parameters k and σ
2
indep

across tasks we used the two-

parameter generalizedWeber’s model (Equation 1, this is because
the 2-choice tasks do not allow to calculate the constant error).

As was done by Buonomano and colleagues (Laje et al., 2011),
we tested a reset version of the generalized Weber law in which,
instead of variance increasing in proportion with total time
squared (term k·T2, Equation 1), it increased with the sum of the
squares of each interval duration:

σ
2
= k ·

(

T2
1 + T2

2 + ...+ T2
Go-time

)

+ σ
2
indep (3)

Thus, in the reset version of the model, variance increases
linearly rather than quadratically with time. By plotting Std
as a function of Go-time, this trend can be observed as a
saturating effect at large Go-times (Figure 3A, right panel).
Whether subjects time individual intervals separately, or they
time total elapsed time is an important question in timing
research (Hinton and Rao, 2004; Hinton et al., 2004; Laje et al.,
2011; Narkiewicz et al., 2015). We found that the continuous
(Equation 1) and reset (Equation 3) models provided statistically
similar fits to our data (p = 0.13, paired t-test on the Fisher-
transformed correlation coefficients between behavioral data and
model estimates, t(24) = −1.6; Laje et al., 2011; Figure 3A). For
simplicity, our model used Equations 1, 2 to fit the behavioral
data.

Fitting was performed with the function fmincon in Matlab
R2014b by minimizing the error between estimates from the
model and the behavioral results, simultaneously for parameters
p(correct), Std, and constant error (one fit for each interval
duration). Because of the difference in scale and measurement
units [probability in p(correct), seconds in Std, and constant
error], these quantities were standardized to values between 0 and
1 before calculating the total fitting error.

RESULTS

Humans and monkeys learned to perform the timing tasks,
and their behavior showed consistent patterns. We show single
subject data for the 2-choice task in Figure 3C and mean
data for the different datasets in Figure 4. The proportion
of correct responses (Figure 4, first column) decreased as a
function of Go-time, a trend well captured by our model
of the generalized Weber law (continuous lines). Monkeys’
performance (Figure 4A) was better than that of humans
(Figure 4B) as can be readily appreciated by the larger proportion
of correct responses, the lower variability (Std), and the lower
Weber fraction. In humans, the proportion of correct responses
approached random performance around the 5–6th intervals, and
the standard deviation saturated at 0.5 and 0.25, the maximum
possible values for the 1 and 0.5 s intervals on the 2-choice task
(Figure 4B, see Section Methods).

In addition to a better performance, monkeys also showed
significantly faster reaction times to the Go-cue (Figure 3B, p <

0.01, two-sample t-test on the pooled data for humans against
the pooled data for monkeys, i.e., all Go-times, correct and
incorrect responses; t(38) = −17.9). It is likely that increased
performance and faster reaction times are a consequence of the
longer training the monkeys received (Methods and Discussion).
Human subjects showed a trend of diminishing reaction times
as a function of Go-time (linear regression, slope = −20 ms/s, p
< 0.05), which could reflect the anticipation of trial termination
(increasing hazard rate).

Compared to the 6-choice task, the proportion of correct
responses in the continuous task was significantly lower
(Figures 4C,D, to formalize this observation we performed a
paired t-test comparing each p(correct) across tasks for each Go-
time and each interval length t-test, t(11) = 11.2, p = 2.4e-07.).
As described in Section Methods the region defining a correct
response in the continuous task was a window of ±30◦ around
the correct location, comprising a 6th of the circle, just as in the
6-choice task. However, it is likely that the larger variability and
the resulting lower proportion of correct responses observed in
the continuous task is explained by the absence of six defined
choices. With six defined choices, there is less uncertainty about
the correct target position.

As can be observed on the panels of the first column of
Figure 4, the decreased proportion of correct responses is more
pronounced for the short interval (0.5 s, red dots and lines),
and this is observed in all versions of the task (2-, 6-choice,
and continuous). To formalize the observation that p(correct)
decreases more rapidly for short intervals (0.5 s) than for long

Frontiers in Psychology | www.frontiersin.org December 2016 | Volume 7 | Article 1971 | 104

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


García-Garibay et al. Temporal Rhythm in Humans and Monkeys

FIGURE 4 | Behavioral performance of humans and monkeys in the 2-choice, 6-choice and continuous tasks. (A) Monkeys’ performance on the 2-choice

task. Note that they performed up to four continuation intervals. (B) Human performance on the 2-choice task. (C) Human performance on the 6-choice task. (D)

Human performance on the continuous task. The columns from left to right show the probability of a correct response p(correct), standard deviation Std, Weber

fraction, and constant error (note that constant error cannot be calculated in the 2-choice tasks, see Section Methods). Continuous lines show model fits (Equation 1)

to the different interval lengths (red 0.5 s, black.0.75 s, blue 1.0 s). The insets in the fourth column show the constant error in an 8-choice task and in a continuous

task that included a 0.75 s interval. All panels share the axes notation of (D).

ones (1.0 s) we compared p(correct) at similar intermediate Go-
times for each dataset (one p(correct) for each interval, i.e.,
comparison of two proportions for each dataset). We set p <

0.01 and then we corrected for multiple comparisons (Bonferroni

correction, new significant p < 0.0025). That p(correct) decreases
more rapidly for fast intervals is an expected trend because the
temporal window for a correct response is narrower for short
intervals. That is, even if timing variability at a given elapsed time
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is equal for short and long intervals, a reduction in the probability
of correct response is expected for narrower time intervals.

We observed, as had other studies before, that the Weber
fraction is not constant but declines exponentially as a function
of time (Figure 4, third column; Laje et al., 2011). This trend
is explained by the presence of time-independent variability (y-
intercept on the Std graphs, term σ

2
indep

of the model). This

basal variability has a large influence at short elapsed times.
At longer elapsed times the y-intercept has less impact on the
ratio Std/mean that defines Weber fraction. The fact that the
generalized Weber law satisfactorily fits the behavioral data is
strong evidence supporting the presence of time-independent
variance in the timing mechanism (Figure 4, third column).

Constant Errors and its Relation to Timing
Strategy
In addition to the proportion of correct responses p(correct),
variability (Std), andWeber fraction, the 6-choice and continuous
tasks allowed us to estimate the constant error, i.e., the difference
between estimated and true elapsed time. This is easily computed
by taking into account the direction of disk rotation (clockwise
or counterclockwise) and then calculating the difference between
the true disk position and the subject’s estimated disk position.
This angle difference is then expressed in time units.We observed
a marked difference in the pattern of errors between the 6-choice
and the continuous versions of the task, and this difference can be
useful to determine whether subjects are timing each individual
interval or total elapsed time.

When the target jumps fast across the six choices (0.5 s
interval, red dots, Figure 4C), the pattern of negative errors
indicates that subjects increasingly lag behind the real target
position, thus signifying that the subject’s internal chronometer
was running slower than the intended pace (Figure 4C, last
column, red line and dots). Showing the opposite trend, subjects
tended to get ahead of a slowly jumping target (1 s interval, blue
dots, Figure 4C), indicating that their internal chronometer was
running faster than the intended 1 s intervals. As can be observed
in the insert, the same pattern of errors was observed in an 8-
choice task in which three interval durations were tested (0.5,
0.75, and 1 s). Importantly, the insert shows that the behavioral
responses for the middle interval duration (0.75 s) were unbiased,
suggesting that the subjects’ internal chronometer tends to pace at
the rate that is the mean of the distribution of interval durations
(Jazayeri and Shadlen, 2010, 2015). We performed a one-way
analysis of covariance (ANCOVA) on the mean constant errors
and found that slopes are significantly affected by the “interval
duration” factor. This analysis also revealed that the slope for the
1 s interval is significantly positive, (p < 0.01, t = 7.7, d.f. = 3;
inset on Figure 4C, blue dots), the slope of the 0.75 s interval is
not significantly different from zero [p = 0.61, t(3) = 0.6] and
finally, that the slope of the 0.5 interval is significantly negative [p
< 0.01, t(3) =−6].

Compared to 6-choice, the continuous task shows a different
pattern of errors as can be readily appreciated in the last column
of Figure 4D. Instead of a bias that progressively accumulates
with a positive slope for long intervals and a negative slope

for short ones, what it is observed is that all interval durations
generate constant errors with negative slopes. Moreover, for
all interval durations, short elapsed times (Go-time) generate
positive errors while long elapsed times result in negative errors.
The same trend can be observed in the insert depicting a
continuous experiment in which three disk speeds were used
(matching the position of the disk in the 6-choice task at the 0.5
and 1.0 s intervals, with an additional interval of 0.75 s).

Constant errors are plotted as a function of interval length
in Figure 5A, separately for the discrete and continuous tasks.
It can be seen that the constant errors in the discrete tasks
(pooled 6- and 8-choice; averaged across Go-times) change with
a positive slope as interval length increases, whereas in the
continuous tasks they span both positive and negative values
for all interval durations. We conducted a linear regression on
each dataset (continuous and discrete) and found that constant
errors on the discrete task have a significantly positive slope (0.74,
[0.47 1.0] 95% C.I., d.f. = 19), and a significantly negative y-
intercept (0.4958, [0.7039–0.2877] 95% C.I., d.f. = 19), i.e., they
go from negative to positive values as interval duration increases.
Conversely, the regression on the continuous task shows that the
slope and intercept are not statistically different from zero, i. e.,
they are scattered around zero for the three interval durations
(slope = −0.02, [−0.74 0.71] 95% C.I., d.f. = 19; intercept =
−0.12, [−0.68, 0.45] 95% C.I., d.f.= 19).

The error patterns differ between the continuous and discrete
tasks, suggesting that in the discrete 8-choice, and 6-choice tasks
subjects are timing individual intervals and that their estimates
are biased toward a mean interval. Conversely, in the continuous
task the pattern of errors indicates that subjects were timing the
total duration of the continuation phase, and their time estimates
are biased toward the mean total duration (Jazayeri and Shadlen,
2010; Acerbi et al., 2012). Our finding that the continuous and
discrete tasks exhibit different error patterns is important because
it allows us to determine whether subjects are timing individual
intervals or total elapsed time (see Section Discussion).

Time Dependent and Time-Independent
Variance
The brain might use a single chronometer to time a range of
durations or, conversely, make use of different chronometers for
different behaviorally relevant intervals. This question can be
approached by comparing the classical Weber fraction in long-
and short-interval trials, as illustrated in Figure 4 (third column),
and also by comparing the coefficients k and σ

2
indep

(Equation 2)

resulting from fitting the model to the behavioral data, separately
for each time interval. If a single chronometer underlies timing of
short and long intervals, we would expect similarWeber fractions
and similar k and σ

2
indep

values for the different interval durations.

Significant differences in these parameters would lend support
to the notion that multiple chronometers could be used to time
different intervals.

As described by Weber’s law, the standard deviation of the
timing estimates linearly increases with elapsed time. The human
data on the 6-choice and continuous tasks indicate that this
increase in variability has different slope and intercept values

Frontiers in Psychology | www.frontiersin.org December 2016 | Volume 7 | Article 1971 | 106

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


García-Garibay et al. Temporal Rhythm in Humans and Monkeys

FIGURE 5 | Constant error and fitted parameters. (A) The constant error

(difference between produced and true elapsed time) is plotted for the different

time intervals (0.5, 0.75, and 1.0 s), separately for the discrete (6 and 8-choice)

and continuous versions of the task. (B) The fitted parameter k (Equation 1) as

a function of interval duration (boxplots human data, n = 6; blue lines monkey

data, n = 2) (2-choice, 6-choice, 8-choice (insert in Figure 4C), continuous

with three interval durations (insert in Figure 4D), and also from a dataset of

the continuous task that is not show in results). (C) Parameter σ
2
indep

(Equation

1) as a function of interval duration.

for long- and short-interval trials (Figures 4C,D, Std graphs).
Short-interval trials (0.5 s) have smaller variability but a larger
slope, while long-interval trials (1 s) show a larger variability
that grows at a lower rate (variability patterns on the 2-choice
version of the task are no informative because they have an upper
limit at long elapsed times, and this limit is different for long
and short intervals, see Section Methods). We found that, the
traditional Weber fraction decreases as a function of elapsed time
(Laje et al., 2011), and additionally, that short-interval trials show
lower Weber fractions for elapsed times up to 3 s.

To quantitavely assess whether variability differs across
interval durations (0.5, 0.75, and 1 s) we fit our datasets with
the two parameter model (Equation 1) to estimate the k and
σ
2
indep

parameters. Figures 5B,C plot the fitted parameters as a

function of interval duration. In humans, we observed a tendency
of k to be larger for the short interval (Figure 5B). However, this
tendency was not present in the monkey data, indicating either a
difference between species or possibly an effect of training on the
k parameter. We speculate that human subjects showed a larger k
parameter because they performed fewer trials of the timing task
(as presented next, this is also the case for the σ

2
indep

parameter,

an observation also made by Laje et al., 2011).
Our results show a positive correlation between the σ

2
indep

parameter and interval duration (Figure 5C). Longer time
intervals show larger σ

2
indep

, and this trend is observed in humans

as well as in monkeys. Monkeys, however, have lower σ
2
indep

values, probably due to an effect of additional training and the
total number of trials they performed (see Section Methods). We
tested this correlation by a linear regression and found that for
panel 5B the slopes for monkeys and humans are not statistically
different from zero, meaning that there is no influence of the
interval length on the k parameter slope for human data: −0.07,
[−0.17 0.02] 95% C.I., d.f. = 13; slope for monkey data: 0.02,
[−0.20 0.25], 95% C.I., d.f. = 1. For Figure 5C we found that
both linear regressions have statistically significant positive slopes
(slope for human data: 0.4, [0.23 0.57] 95% C.I., d.f. = 13; slope
for monkey data: 0.28, [0.12 0.44], 95% C.I., d.f. = 1), meaning
that the basal standard deviation (parameter σ

2
indep

) increases as

a function of interval duration.

DISCUSSION

In summary, the main novel observations of the present study
are that (1) monkeys were as capable as humans to follow visuo-
spatial rhythms with different tempos, and they were able to
internally maintain those rhythms without overt movements;
(2) both species showed an increase in temporal variability that
followed the generalizedWeber law, where the time-independent
variability changed as a function of the tempo (interval length);
and (3) the pattern of constant errors across tempos indicated
that human subjects were resetting their clock each interval
instead of measuring continuous elapsed time.

Monkeys and Humans Can Internally
Maintain a Temporal Rhythm
Our experiments show that monkeys and humans are able to
perceive visuo-spatial rhythms of different paces, and they can
internally maintain those rhythms without overt movements.
This important finding indicates that rhythm perception and
maintenance is a higher cognitive function that we share with
other primates and that it does not depend on the execution of
motor commands.

The pattern of constant errors (Figures 4C,D, last column)
calculated from the human data suggests that subjects were
timing individual intervals in the discrete task, but total duration
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in the continuous task. Additionally, timing errors in the 6-
and 8-choice tasks show that subjects were lagging behind fast
rhythms and getting ahead of slow ones (although the errors
in 1s interval of the 6-choice task do not increase linearly they
are all positive. The increasing trend is better appreciated in the
insert of Figure 4C). The fact that a rhythm of intermediate pace
generated no bias supports the notion that the timingmechanism
calibrates itself to the distribution of interval durations it has
to measure, as has been shown by previous research (Jones and
McAuley, 2005; Jazayeri and Shadlen, 2010, 2015; Acerbi et al.,
2012). Conversely, timing total elapsed time generates a pattern
of errors that are positive for short elapsed times and negative
for long elapsed times. This suggests that subjects’ time estimates
were biased toward the mean total duration. We propose that the
different patterns of constant errors are a reliable signature that
could help to distinguish whether subjects are timing individual
intervals or total elapsed time.

The tendency to produce intervals that are closer to the
mean is a well-established observation often named the “central-
tendency” effect or Vierordt’s law (Roy and Christenfeld, 2008;
Bangert et al., 2011; Shi et al., 2013). Our results show that in
keeping rhythms of different paces the central tendency effect is
observed as a bias toward the mean frequency of the rhythms
instead of toward the mean total duration. Incorporating prior
information such as the mean value of a range of intervals
is a mechanism that helps to reduce the effect of noise in
time estimation and production, and in our case, rhythm
maintenance.

We did not test our monkeys on the continuous task so
whether they show the same pattern of errors as human remains
an open question. However, it is important to consider that
monkeys and humans showed the same patterns of behavioral
responses in the 2-choice task, and also the same model
satisfactorily accounted for the behavior of human and monkeys.

The question whether subjects time individual intervals or
total duration has been addressed before in humans (Hinton and
Rao, 2004; Hinton et al., 2004; Laje et al., 2011; Narkiewicz et al.,
2015). Buonomano and colleagues used a spatiotemporal task in
which subjects had to perform a series of button presses with
an elaborated spatial and temporal structure. They found that,
although subjects were generating a series of individual intervals,
a continuous time model was a better fit to their behavioral
results. On the contrary, our data from the 6-choice task suggest
that subjects were resetting their clocks after each individual
time interval. We believe these seemingly contradictory results
arise from the different experimental designs. In our rhythm
task, subjects could be asked to indicate the position of the
target at any given interval (Go-time), so they were prepared
to generate a behavioral response for each interval. If the Go
cue didn’t arrive by the middle of an interval they had to start
timing the next interval and so on. In contrast, on the rhythm
task of Buonomano and colleagues subjects had to perform
a complete series of intervals for each trial, and this might
have compelled them to time total elapsed time. We think that
variable Go-times, that is, the possibility of terminating the trial
at any interval, prompted the subjects to time each interval
independently.

It might seem contradictory that the pattern seen in the
constant errors suggests that subjects were timing individual
intervals whereas the model we fit was based on variance growing
with total elapsed time (Equations 1, 2, human data). However,
we must note that the difference between a reset and a continuous
model, from the point of view of how variability grows, is a
difference in the shape of the curve of Std vs. time (Figure 3A).
The reset model predicts that Std grows sub-linearly while the
continuousmodel predicts a linear increase. We found that, with
our current data, these two models could not be distinguished.
Our results showed, however, that continuous and a reset mode
of timing could be discerned from the pattern of constant errors
(Figures 4C,D, last column).

Basal Variance Depends on Interval Length
Monkeys and humans showed performance parameters well
captured by the generalized Weber law. Monkeys, however,
showed less timing variability and a higher proportion of correct
responses. We speculate that this superior performance is due
to the longer training the monkeys received (the monkey
dataset was collected after 4–6 months of training). It is
likely that increased performance and faster reaction times are
a consequence of the longer training the monkeys received.
However, it is also possible that differences in reward value and
motor planning also contribute to these differences (humans used
a mouse cursor while monkeys directly touched the screen to
communicate their choices). Previous studies in humans have
shown that the Weber fraction quickly decreases after just a few
practice sessions (Laje et al., 2011). We speculate that due to their
extensive training theWeber fraction of our monkey subjects was
at its asymptotic value, but this might not have been the case of
our human subjects who performed only one practice session.
We expect that with enough training, human subjects could
have performed the rhythm task as accurately as the monkey
subjects. Our model fittings revealed that humans and monkeys
had similar k-values (Equations 1, 2, Figure 5B), and that the
lower variability of the monkeys’ time estimates was due mainly
to a lower time-independent variance (Figure 5C, blue line).

The term σ
2
indep

showed a tendency to increase as a function

of interval duration in both species, indicating that different
time intervals have different amounts of time-independent noise.
This observation suggests that different chronometers or time
mechanisms could time different interval durations. We favor
the view that training in timing tasks induces the formation of
multiple time templates that match the range and distribution
shape of the behaviorally relevant time intervals. Indeed, previous
psychophysical and physiological studies support the notion of
neural circuits tuned to different interval durations (Nagarajan
et al., 1998; Meegan et al., 2000; Bartolo and Merchant, 2009;
Merchant et al., 2013; Bartolo et al., 2014). It is also known that
timing different types of movement, biological vs. non-biological
for example, is performed by different brain structures that can
be selectively manipulated (Avanzino et al., 2015), and this is also
consistent with the idea that there is no central general-purpose
chronometer.

Our data shows that Weber fraction decreases exponentially
as a function of elapsed time and that this is due to the σ

2
indep
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term, that is, to the presence of a basal variability (y-intercept
on the Std vs. Go-time graphs, Figure 4). As can be observed in
the graphs, the effect of this basal variability reduces at longer
elapsed times. However, a recent study in which Grondin and
colleagues asked subjects to count at different speeds showed that
Weber fraction increased in proportion to the interval length
used to subdivide a large total time and that this effect persisted
for elapsed times of up to 24 s (Grondin et al., 2015). Their
results also showed that mean produced time was always shorter
than real elapsed time. Contrary to Grondin’s findings, our data
predicts that no differences should be observed for long and short
subdividing intervals when total elapsed times are larger than
∼3 s and that errors should not be all negative but instead should
be positive for long subdividing intervals and negative for short
intervals. We suggest that these differences could be explained
by differences in the experimental design. We used interleaved
trials in which total elapsed time (Go-time) and interval length
were pseudo-randomly selected while Grondin and colleagues
used a blocked design in which subjects performed the trials of
different subdividing intervals in separate sessions. We believe
this is an important difference because it has been demonstrated
that subjects adjust their internal chronometer according to the
distribution of timing intervals they must estimate (Jazayeri and
Shadlen, 2010). As was the case in Buonomano’s task, subjects in
Grondin’s experiments had to count up to a predetermined total
number of intervals, prompting them to measure total elapsed
time.

It is well known that subdividing a long interval into smaller
ones decreases the total variance of the estimated elapsed
time. Although our task was not designed to explore this
phenomenon our results show that subdividing total elapsed time
into 0.5 s intervals reduces the timing variability as compared to
subdividing with 1 s intervals. This can be observed in Figure 4C

by comparing the variability of the red and blue lines. We note
however, that the beneficial effect of subdividing elapsed time into
0.5 s intervals is limited to total elapsed time of 3–4 s.

It is known that macaque monkeys do not easily entrain to
temporal rhythms and that training them in rhythmic tapping
tasks might take up to a year (Zarco et al., 2009; Merchant and
Honing, 2014; Patel and Iversen, 2014). We speculate that the
spatial component of our visuospatial task was an important
sensory element that helped the monkeys better perceive and
maintain rhythms of different paces. There is evidence that
macaques rely more on visual than on auditory cues to control
their timing behavior (Zarco et al., 2009; Merchant and Honing,
2014). Nevertheless, the timing behavior of monkeys followed
the same pattern of temporal variability and constant errors than
humans in a synchronization-continuation tapping task (Zarco
et al., 2009).

A possible alternative explanation is that monkeys did not
engage the visuo-spatial rhythm but relied instead only on an
association between elapsed time and target position. However,
we consider this possibility unlikely. The association betweenGo-
times and target position was not fixed. In the 2-choice task, for
example, the stimulus randomly initiates on the left or the right.
In the 6-choice task the stimulus randomly initiates in any of the
6 positions and can rotate either clock wise or counterclockwise.

This variation in initial conditions (remember that interval
length and Go-times are also selected pseudo-randomly) makes it
highly unlikely that subjects were mapping a given Go-time with
a fixed target position. We would like to mention that, although
we only report the behavior in the 2-choice task, monkeys were
initially trained in a version of the 6-choice task in which the
interval length was chosen from a continuous distribution (300–
1200ms, uniform distribution). During this phase of training, the
number of presentation intervals was also variable (1–4, uniform
distribution). Thus, the stimulus position at any given elapsed
time was dependent on (1) the position of the first presentation
interval, (2) the direction of stimulus rotation, (3) the number of
presentation intervals, (4) the interval length (chosen randomly
from a continuous distribution), and finally (5) theGo-time itself.
This variation in initial conditions makes it practically impossible
for the monkeys to learn all possible Go-time and stimulus
position combinations and instead encourages them to use the
rhythmic motion of the stimulus to predict its future position
once it is no longer visible (Coull and Nobre, 2008; Coull, 2009).

The neuronal mechanisms underlying our perception of time
and our ability to predict periodic sensory events are not yet
completely understood (Roux et al., 2003; Ivry and Spencer,
2004; Eagleman et al., 2005; Coslett et al., 2009; Coull et al.,
2011; Wittmann, 2013). It is only recently that the physiological
correlates of timing have begun to be systematically investigated
in primates (Ghose and Maunsell, 2002; Leon and Shadlen, 2003;
Janssen and Shadlen, 2005; Genovesio et al., 2006; Fiorillo et al.,
2008; Lebedev et al., 2008; Mita et al., 2009; Machens et al., 2010).
It is known that neuronal correlates of timing can be found in
parietal, motor, and pre-motor cortices of the primate cerebral
cortex (Roux et al., 2003; Merchant et al., 2011; Jazayeri and
Shadlen, 2015). These studies revealed distinct groups of neurons
whose activity dynamics correlate either with elapsed time from
the last motor or sensory event, or with the time remaining to the
next motor command.

It is our goal to contribute to the understanding of the neural
mechanisms of time estimation and time reproduction. We
developed the visuospatial timing task in non-human primates
to use it as an experimental model for studying the neuronal
correlates of timing. This rhythm task is an ideal experimental
setting because it lacks any movement during the continuation
phase and it will let us study the neuronal correlates of timing
without interference by movement or sensory-related activity.
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Timing and other cognitive processes demanding cognitive control become interlinked

when there is an increase in the level of difficulty or effort required. Both functions are

interrelated and share neuroanatomical bases. A previous meta-analysis of neuroimaging

studies found that people with schizophrenia had significantly lower activation, relative

to normal controls, of most right hemisphere regions of the time circuit. This finding

suggests that a pattern of disconnectivity of this circuit, particularly in the supplementary

motor area, is a trait of this mental disease. We hypothesize that a dysfunctional

temporal/cognitive control network underlies both cognitive and psychiatric symptoms of

schizophrenia and that timing dysfunction is at the root of the cognitive deficits observed.

The goal of our study was to look, in schizophrenia patients, for brain structures activated

both by execution of cognitive tasks requiring increased effort and by performance of time

perception tasks. We conducted a signed differential mapping (SDM) meta-analysis of

functional neuroimaging studies in schizophrenia patients assessing the brain response

to increasing levels of cognitive difficulty. Then, we performed a multimodal meta-analysis

to identify common brain regions in the findings of that SDM meta-analysis and our

previously-published activation likelihood estimate (ALE) meta-analysis of neuroimaging

of time perception in schizophrenia patients. The current study supports the hypothesis

that there exists an overlap between neural structures engaged by both timing tasks and

non-temporal cognitive tasks of escalating difficulty in schizophrenia. The implication is

that a deficit in timing can be considered as a trait marker of the schizophrenia cognitive

profile.

Keywords: timing, cognition, neuroimaging studies, cognitive control, schizophrenia, SDM-meta-analysis
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INTRODUCTION

Temporal processing is central to many aspects of human
cognition. Accurate judgment of elapsed time is associated with
a broad range of activities from relatively basic tasks, such as
planning or sequencing, to the higher order processes involved
in driving a car, doing sport, playing music etc. According to
Navon (1978), time occupies the highest level of the hierarchy of
dimensions that forms our perception of the world. In view of the
primacy of timing in human cognition, it has been suggested that
timing dysfunction lies at the root of deficits (such as planning
and aspects of decision making) observed in schizophrenia (Volz
et al., 2001; Macar and Vidal, 2009).

That a temporal processing deficit exists in schizophrenia
is increasingly recognized on the basis of phenomenological,
clinical, and neurobiological observations. Although this deficit
was described at the beginning of the last century, it continues to
be of interest in current research.

Over the last decade, study of timing in schizophrenia has
been fostered by two main factors. First, different models
of schizophrenia pathogenesis implicate time perception. For
example, Andreasen’s theory of cognitive dysmetria (1999)
conceptualizes schizophrenia as “a misconnection in the fluid
and coordinated sequences of thought and action stemming
from a dysfunction of the cortico-cerebellar-thalamic-cortical
circuit.” Thus, this theory proposes that a disturbance in
temporal coordination of information processing may underlie
many symptoms of this mental disease (Davalos et al.,
2011). Alternatively, Franck et al. (2005) maintained that
schizophrenia is related to an excessive temporal integration
of events, which leads to classic symptoms. To the degree
that psychopathological dimensions of delusions, hallucinations
and disorganized speech and behavior can be conceptualized
as expressions of dysfunctional neural timing, findings related
to such psychopathological dimension are relevant to our
understanding of the pathophysiology of schizophrenia. From
a phenomenological perspective, schizophrenia can be regarded
as a structural breakdown of time consciousness (Vogeley and
Kupke, 2007).

The second big reason for research into timing in
schizophrenia stems from the idea that the real-life functional
difficulties experienced by patients are better accounted for by
timing impairment than by dysfunctions in executive control
(Volz et al., 2001; Davalos et al., 2003). The potential impact of
timing disturbance on cognition and daily behavior is great, and
so knowledge of the etiology of timing deficits in schizophrenia
may provide important insights into disease pathology.

Controversy remains, however, regarding the existence of
a genuine timing disorder in schizophrenia. It is unclear
whether disruptions in timing are due to primary disturbances
in central temporal processes (perceptual or biological) or to
secondary well-known disease-related cognitive impairments
that include attention, declarative and working memory or
executive functions. Regarding secondary disruptions, deficits
associated with a cognitively controlled timing mechanism (for
measuring duration in the order of seconds) would be expected
to be different from deficits in an automatic mechanism (for

measuring duration at the sub second scale). In fact, performance
is found to be equally impaired for both duration ranges, and
this suggests that the timing deficit in schizophrenia is essential
and primary. The deficit seems to be independent of the length
of duration that needs to be timed and also independent of more
generalized cognitive impairments (Ciullo et al., 2015).

On the other hand, recent meta-analyses indicate that
temporal processing is mediated by a cognitive task requirement
(Radua et al., 2014a). Task requirements have an effect on the
timing process engaged and on the neural substrate involved, not
only in schizophrenia patients but also in normal human timing
(Wiener et al., 2010).

Since temporal cognition is a fundamental “basic unit of
ability” on which other cognitive and behavioral processes are
based (Allman and Meck, 2012), complex cognitive functioning
depends on underlying temporal constraints (von Steinbüchel
and Pöppel, 1993). Accordingly, temporal processing plays a role
in determining a wide range of cognitive processes.

According to the Scalar Expectancy Theory (SET), time
processing involves multiple cognitive processes: an internal
clock, short- and long- term memory, and decisional processes
(Gibbon et al., 1984). In this sense, cognitive processes comprise
allocation of attentional resources to the perception and encoding
of incoming temporal information, storage and retrieval of
the temporal percept in long-term memory, and comparison
with other percepts in working memory (Piras et al., 2014).
Alterations in any stage or aspect of the system are expected
to result in individual and pathophysiological differences.
Neuroimaging studies have focused on microanalysis of specific
and independent brain networks related to each of the three SET
subcomponents (Allman and Meck, 2012).

To the degree that timing is related to other cognitive
domains such as attention and working memory, how timing
is carried out and the neural networks responsible are relevant
to our understanding of healthy cognition (Buhusi and Meck,
2005). The relationship has been proposed to stem from the
involvement in timing not only of cortical structures such as
the dorsolateral prefrontal cortex but also of other regions, such
as the supplementary and pre-supplementary motor areas. The
cortical structures are known to play a role in normal cognitive
functions, and the motor areas have been identified as crucial for
linking cognition to action (Basso et al., 2003). In view of the
relationship, there has been increased interest from researchers
of schizophrenia in the study of timing.

Timing and other cognitive processes are known to share
brain networks (Gómez et al., 2014); some of the cognitive
processes involved are attention, automatic or controlled
behavior change, working memory, and the degree of
concentration required depending on the level of difficulty
of the task.

Functional magnetic resonance imaging (fMRI) is well
suited to further investigate the nature of timing deficits in
schizophrenia since it provides information about the task-
related responses across the whole brain. To date there are
only a few fMRI studies that examine timing in schizophrenia
(Volz et al., 2001; Davalos et al., 2011), but findings suggest that
timing deficits in schizophrenia might be due to a combined

Frontiers in Psychology | www.frontiersin.org February 2016 | Volume 7 | Article 192 | 113

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Alústiza et al. Meta-Analysis of Timing in Schizophrenia

impairment of timing mechanisms in the basal ganglia or
thalamus and impaired attentional or mnemonic resources
organized in prefrontal cortices (Davalos et al., 2011).

Examination of timing in schizophrenia patients, who exhibit
cognitive dysfunctions, can be regarded as a valid heuristic
approach to explain the essence of the relationship between
timing and cognition (i.e., whether the interrelation results from
specific co-variation of common temporal processes or from
coincidental co-variation in the cognitive components shared by
the two functions; Piras et al., 2014).

Cognitive effort is an aspect of every cognitive process and
refers to the level of difficulty of the cognitive task and to the
consequentmental effort that individuals need to apply to achieve
the cognitive aim (Radua et al., 2014a).

Daily tasks demand different levels of cognitive control, and
therefore, continuous modulation of the level of effort is needed.
Changes in cognitive load require the participation of common
cerebral networks.

The neural mechanisms of timing are related to other
cognitive functions; cognitive control and accurate executive
functioning require the participation of functional and
neuroanatomical components of time perception (Radua
et al., 2014a). In the context of schizophrenia, neurobiological
dysfunctions, or cognitive impairments have been demonstrated
to interfere with certain levels of temporal processing, for
example, in interval discrimination tasks (Roy et al., 2012).

Given the interrelation between timing and
neuropsychological processes, and assuming that
pathophysiological distortions in time can depend on and reflect
neuropsychological deficits characteristic of neuropsychiatric
disorders, the study of timing can be a way to research cognitive
dysfunction. Impaired timing has been reported in diseases
associated primarily with dopaminergic and fronto-striatal
dysfunctions such as in schizophrenia. It has been suggested
that the study of timing in schizophrenia can reveal important
information on the core cognitive disturbances of this disorder
(Matell and Meck, 2004; Wiener et al., 2011).

The study of timing is relevant to our understanding of
neurobiological and cognitive abnormalities in schizophrenia.
Brain lesion and neuroimaging studies have shown that
the cortico-cerebellar-thalamic circuit engaged in temporal
processing is involved, in terms of impaired activity
coordination among the different brain regions, in the
disease’s pathophysiology (Andreasen et al., 1999). The
cortico-cerebellar-thalamic network involves the bilateral
pre-supplementary and supplementary motor area (SMA), the
right middle frontal region, the right inferior parietal region,
the insula, the left putamen, the right posterior cerebellum,
the superior temporal gyrus, the right thalamus, the right
middle frontal gyrus, and the left superior temporal gyrus
(Volz et al., 2001; Ivry and Spencer, 2004; Ortuño et al.,
2011). Hypothetically, cognitive deficits, which in turn lead
to impaired timing, can be interpreted as being the result
of a disturbance in the functioning of the cortico-striatal
pathways; and this same disturbance contributes to a variety
of other symptoms associated with schizophrenia (Ward et al.,
2011).

We hypothesize that an impaired temporal/cognitive control
network underlies the dysfunctional cognition of higher
processes in schizophrenia. Our emerging hypothesis is that
timing structures are activated either by increased demand on
working memory; by the need to shift attention from lower,
automatic, levels to higher, controlled, levels; or by certain
complex mental operation tasks. Thus, a dysfunctional time
estimation network may be linked with other critically impaired
functions in schizophrenia.

In the current study, we seek to determine whether
schizophrenia patients present a dysfunctional activity pattern in
a cognitive control circuit and whether such a pattern matches
the pattern involved in timing. To these two ends, we conducted
a SDM meta-analysis of published neuroimaging data and then
performed a multimodal analysis to identify common brain
regions in the findings of that SDM meta-analysis and our
previously published activation likelihood estimate (ALE) meta-
analysis of neuroimaging of time perception in schizophrenia
patients.

MATERIALS AND METHODS

Meta-Analysis of Cognitive Difficulty
Two electronic bibliographic databases were searched (PubMed
and Web of Science) to identify fMRI studies reporting
brain activation patterns associated with changes in cognitive
control and effort. This search was limited to literature
published between January 2012 and December 2014. Based
on preliminary searches, this timeframe was deemed to yield
a sufficient number of studies for testing the hypothesis of
the present work (please note that we did not intend to
conduct an exhaustive meta-analysis). We compare the findings
of our SDM meta-analysis to those obtained through our
previously published ALE meta-analysis. The previous meta-
analysis comprised only three studies, and so inclusion of a
disparately large number of studies in the new meta-analysis
was not a priority. Keywords were (fMRI) AND (attention
OR working memory OR executive functions OR controlled
processes) AND (schizophrenia).

Inclusion criteria were: (1) use of a standardized or
experimental designed cognitive task; (2) samples composed
of healthy volunteers and/or patients with schizophrenia; (3)
availability of peak coordinates or statistical parametric maps,
either in the published article or after contacting the authors; (4)
use of whole brain analyses; (5) use of a constant threshold in the
different regions of the brain.

Exclusion criteria were (1) studies from which peak
coordinates or statistical parametric maps could not be retrieved
from the published article or after contacting the authors; (2)
studies whose analyses were limited to specific regions of interest;
(3) studies in which different thresholds were used in different
regions of the brain; (4) functional neuroimaging studies with
techniques other than fMRI (e.g., PET, SPECT); (5) studies that
did not specify at least two levels of difficulty of cognitive task
or did not use levels with a clear difference in difficulty; (6)
studies that considered a resting state or baseline as the lower
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level of difficulty; (7) studies based on Independent Component
Analysis (ICA); (8) case reports, qualitative studies, reviews, and
meta-analyses.

No language restrictions were imposed.
Two reviewers independently assessed the studies against the

inclusion/exclusion criteria in a standardized manner. Keywords
were initially screened in the title and abstract. Afterwards,
the full text of eligible studies was analyzed. Any conflicts in
reviewers’ decisions about inclusion vs. exclusion were resolved
through discussion between the two reviewers.

For each selected study, the following information was
extracted: number of participants (patients and controls),
cognitive tasks and contrasts (Table 1), and peak coordinates
(MNI or Tailarach) and their effect size (t statistic, z score,
p-value).

Data were spatially summarized with anisotropic effect-size
signed differential mapping software (ES-SDM, http://www.
sdmproject.com; Radua and Mataix-Cols, 2009; Radua et al.,
2011, 2014b), a novel quantitative voxel-based meta-analytic
method. First, peak coordinates and their t-values were used
to recreate an effect-size map of the BOLD response for each
contrast. These maps included both activations (easy > difficult)
and deactivations (difficult > easy; Radua and Mataix-Cols,
2010).

We appliedmulti-source pre-processing of the data in order to
obtain more accurate and thorough recreations of the statistical
tridimensional maps of the comparisons between patients and
controls for the difficult vs. easy contrast. For each study, we
used signed differential mapping (SDM) and the reported peak
coordinates and t-values to separately recreate:

1. the map of the difficult-easy contrast in patients (we will
refer to this map as the patients-only map), where values were
positive for activations (difficult > easy) and negative for
deactivations (difficult < easy);

2. the map of the same contrast in healthy controls (we will refer
to this map as the controls-only map); and

3. the map of the comparison between patients and controls in
this contrast (we will refer to this map as the combined map),
where values were positive for hyperactivations (patients >

controls in difficult > easy) or for failures of deactivation
(patients < controls in difficult < easy), and negative for
hypoactivations (patients < controls in difficult > easy) or
hyperdeactivations (patients > controls in difficult < easy).

Results of the pre-processing were inspected to ensure that
the recreated maps coincided reasonably well with the results
reported in the studies. When two or more contrasts involved
overlapping samples, they were combined into a single average
map with decreased variance (Rubia et al., 2014; Alegria et al.,
Submitted).

Next, controls-only maps were subtracted from patients-only
maps to obtain subtraction maps. This calculation took into
account that the maps were not means but t-values:

tPatients−Controls =

√

nControls

N
· tPatients −

√

nPatients

N
· tControls

Note that the recreation of tridimensional maps from peak
information requires that the combined maps contain more
accurate information in voxels close to the peaks of the
differences between groups. Conversely, the subtraction maps
have accurate information in voxels close to peaks of activation
or deactivation in one or both groups. Thus, a more accurate map
can be obtained by merging combined maps with subtraction
maps. Such merging consisted in averaging the maps, weighting
by the accuracy of each of them:

tFinal = wBetween−groups · tBetween−groups

+wPatients−Controls · tPatients−Controls

The weight of a combined map ranged from 1 at peaks to 0 in
voxels far from any peak. Similarly, the weight of a subtraction
map ranged from 1 at peaks found in both patient and control
maps to 0 in voxels far from any patient or control map peak.
More specifically, weights were calculated as follows: (a) SDM
pre-processing was carried out with all peaks set to 1 to derive
the degree of accuracy of each map, (b) averaging of patient and
control maps of accuracy was carried out to derive subtraction
accuracy maps, and (c) scaling of the combined and subtraction
accuracy maps was carried out in order that they sum to unity.

Finally, the effect-size and the effect-size variance maps of
all studies were introduced into a meta-analytical random-
effects model, which takes intra-study variability, sample-size,
and between-study heterogeneity into account. Assessment
of statistical significance was based on a distribution-free
permutation test (Radua et al., 2011).

Multimodal Meta-analysis of Cognitive
Difficulty and Time Perception
We performed a multimodal meta-analysis to combine the
findings from the above-described SDM meta-analysis of studies
comparing two levels of cognitive difficulty with those from
an ALE meta-analysis on three neuroimaging studies exploring
time perception in schizophrenia (see Supplementary Material,
Table 1). This latter was previously published by our team
(Ortuño et al., 2011).

The aim of this multimodal analysis was to detect brain
regions that are activated or deactivated by both cognitive
difficulty and time perception tasks. We, therefore, overlapped
the map of the BOLD response to cognitive difficulty with
the map of the BOLD response to time perception. This was
conducted using a modification of the probability of the union
of the maps (Radua et al., 2013), rather than a simple overlap of
them, as the former has been shown to deal with the presence
of error in the p-values of the individual meta-analysis. The
combination of the ALE and the SDM meta-analysis was then
computed as the union of their probabilities (Radua and Mataix-
Cols, 2012). Final results were thresholded with voxel p < 0.01,
peak p < 0.001, and cluster extent >10 voxels.

RESULTS

The search strategy identified 1134 citations. Duplicated papers
were removed. From the remaining studies 1091 were excluded
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TABLE 1 | Studies of cognitive control included in our SDM meta-analysis.

Authors Sample Task Included contrast

1. Anticevic et al., 2012 28 SZ24 HC Simple perceptual decision task Negative vs. Neutral distraction

2. Avsar et al., 2013 14 SZ14 HC Delay-discounting task Delay-discounting vs. Sensorimotor control; Hard vs. Easy trial

difficulty

3. Bender et al., 2013 14 SZ13 HC Volitional and visually guided saccades task Simple volitional vs. Visually guided saccade

4. Bjorkquist and Herbener, 2013 14 SZ14 HC Social perception task Social vs. Nonsocial images

5. Bleich-Cohen et al., 2014 16 SZ20 HC N-back WM task 2-back vs. 0-back

6. Das et al., 2012 20 SZ19 HC ToM task ToM animation vs. Random animation

7. de la Fuente-Sandoval et al., 2012 12 SZ13 HC An experimental pain tolerance task Painful vs. Non-painful thermal stimuli

8. Dowd and Barch, 2012 25 SZ20 HC Pavlovian reward prediction task Money cue vs. No money cue

9. Eich et al., 2014 18 SZ18 HC An item-recognition task Pre cue vs. Post cue; Lure vs. Control

10. Esslinger et al., 2012 27 SZ27 HC Monetary reward & face-matching tasks Monetary vs. Control; Famous vs. Non-famous stimuli

11. Gradin et al., 2013 15 SZ20 HC Pavlovian reward learning task Reward vs. No reward

12. Grillon et al., 2013 15 SZ15 HC Refresh task Refresh vs. Read

13. Harvey and Lepage, 2014 28 SZ26 HC A social and nonsocial picture recognition

memory task

Old social pictures vs. New social pictures; Old nonsocial vs. New

nonsocial pictures

14. Hashimoto et al., 2014 17 SZ17 HC One-back visual task Biological motion (BM) vs. Static state (ST); Scrambled motion (SM)

vs. ST; BM vs. SM

15. Li et al., 2012 12 SZ12 HC Facial emotion processing task Happy vs. Neutral; Fearful vs. Neutral

16. Kauppi et al., 2014 63 SZ118 HC WM N-back task 2-back vs. 0-back

17. Lakis and Mendrek, 2013 37 SZ37 HC An emotion processing task Negative vs. Neutral; Positive vs. Neutral

18. Lee J. et al. (2014) 20 SZ26 HC A 4-Dot object substitution masking task Stimulus-onset asynchrony (SOA)1 vs. SOA234

19. Lee J. S. et al., 2014 2014 15 SZ16 HC Facial expression task Emotional vs. Meaningless

20. Lesh et al., 2013 43 SZ54 HC Stroop and AX-CPT I vs. C; B vs. A

21. Lindner et al., 2014 36 SZ40 HC Facial processing task Masked disgust vs. Neutral; Unmasked disgust vs. Neutral

22. Linnman et al., 2013 15 SZ13 HC A classical conditioning paradigm Conditioned stimulus (CS)+end vs. CS-end; Unconditioned

stimulus (US) vs. CS-end

23. Liu et al., 2014 15 SZ15 HC Referential task Self vs. Other

24. Mashal et al., 2013 14 SZ14 HC Metaphor comprension task Novel metaphors vs. Meaningless word pairs; Novel metaphors vs.

Conventional metaphors; Novel metaphors vs. Literal expressions

25. Matsumoto et al., 2013 6 SZ6 HC Rorshach inkblots speech Between clause vs. Within clause pauses

26. Matsuo et al., 2013 46 SZ46 HC Sternberg verbal WM task High load vs. Low load

27. Natsubori et al., 2014 20 SZ20 HC Visual lexical decision task Non-words vs. Words

28. Niendam et al., 2014 35 SZ35 HC Cue phase of AX-CPT Cue B vs. Cue A

29. Pauly et al., 2013 13 SZ13 HC Self evaluation task Other vs. Lexical; Self vs. Lexical; Self vs. Other

30. Pedersen et al., 2012 15 SZ14 HC “Moving shapes” paradigm ToM vs. non ToM

31. Ragland et al., 2012 20 SZ19 HC WM task Relational (reorder trials) processing vs. Item-specific (rehearse

trials) processing

32. Sapara et al., 2014 18 SZ20 HC N-back WM task 1-back vs. 0-back; 2-back vs. 0-back; 2-back vs. 1-back

33. Shad et al., 2012 17 SZ15 HC Self-awareness task Self-directed sentence-stimuli vs. Other-directed sentence-stimuli

within the self-referential (SR) cue epoch; Self-directed

sentence-stimuli vs. Other-directed sentence-stimuli within the

other-referential cue epoch

34. Smieskova et al., 2012 21 SZ20 HC N-back WM task 2-back vs. 0-back

35. Straube et al., 2013 16 SZ16 HC Gesture processing task Metaphoric vs. Iconic

36. Subramaniam et al., 2014 30 SZ15 HC N-back WM task 2-back vs. 0-back

37. Tully et al., 2014 23 SZ24 HC Multi-source interference task Negative vs. Neutral; Neutral interferente vs. Neutral control;

Negative interferente vs. Negative control

38. van der Meer et al., 2013 20 SZ20 HC An emotion regulation task Reappraise vs. Attend negative

39. van der Meer et al., 2014 47 SZ21 HC A self-reflection task Self vs. Semantic; Other vs. Semantic

40. Vercammen et al., 2012 20 SZ23 HC Verbal emotional go/ no-go task Inhibit negative vs. Neutral; Inhibit positive vs. Neutral

41. Vercammen et al., 2013 18 SZ22 HC An emotional go/no-go task Inhibit negative vs. Inhibit neutral

42. Villalta-Gil et al., 2013 22 SZ31 HC Facial emotion processing task Emotions at 50% intensity vs. Neutral emotions; Fearful faces vs.

Neutral emotions; Match emotion vs. match gender (neutral faces)

43. Villarreal et al., 2014 14 SZ14 HC Social functioning tasks Theory of mind task-eyes (EToM) vs. Test of Adaptive Behavior in

Schizophrenia (TABS)

SZ, schizophrenic patients; HC, healthy controls; WM, working memory, ToM, Theory of Mind; CPT, Continuous Performance Task.
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because they did not meet the eligibility criteria. A total of 43
studies were included in the meta-analysis. Of these, 14 involve a
standardized cognitive task such as N-back, Sternberg, Stroop, or
Continuous Performance Test. Basic cognition (such as executive
functions, working memory, attention or verbal fluency) is
examined in 24 papers; social cognition, in 11; and controlled
processes, in the remaining eight studies. Sample size for the
included studies ranges from a minimum of six participants for
each group to a maximum of 118, with a total participation of 954
schizophrenia patients and 999 healthy volunteers (Table 1).

Patients showed hypoactivation in bilateral inferior frontal
and superior occipital gyri, right supplementary motor area,
left inferior parietal gyri, left cuneus, and red nucleus. Patients
also exhibited hyperactivation or failure of deactivation in right
postcentral and fusiform gyri (Figure 1, Table 2).

Jacknife analysis showed that differences between groups in
bilateral inferior frontal gyri, right superior occipital gyrus, the
right supplementary motor area, and the red nucleus were found
in all combinations of studies, indicating a high replicability.
Between-group differences in the right postcentral gyrus, the
right fusiform gyrus, the left inferior parietal gyrus, the left
cuneus, and the left superior occipital gyrus failed to appear in
some combinations of studies.

Visual inspection of peak funnel plots did not reveal potential
publication bias or other gross abnormalities. The Egger test was
only marginally significant in the peak of the red nucleus (4, -26,
-6; see Supplementary Material).

Findings are consistent with our team’s previously published
ALE meta-analysis on neuroimaging of time perception in
schizophrenia. This previous work concluded that schizophrenic
patients showed, in comparison to healthy controls, significantly
lower activation of the right precentral gyrus [Brodmann Area
(BA) 6], the superior (BA 9), and middle (BA 8 and 10) frontal
gyrus, the left anterior cingulate (BA 32), the right parietal cortex
(BA 39), the right putamen and the thalamus (see Supplementary
Material; Figure 1, Table 2).

The results of the multimodal meta-analysis (Figure 2B)
suggest bilateral overlapping of cortical and subcortical regions:
particularly frontal areas (mainly right BA 6), as well as parietal
regions and the basal ganglia. The participation of these regions,
primarily in the right hemisphere, was reduced in schizophrenic
patients relative to control subjects, not only by time perception
tasks but also by an increase in the difficulty of non-temporal
tasks.

Note that overlapping was only found in those brain regions
that were deactivated or hypoactivated by cognitive difficulty.
However, the brain regions, which were activated by cognitive
difficulty, did not overlap with the map of the BOLD response
to time perception.

Together with the overlapping cortical and subcortical regions
during both task types, statistically significant activation was
found to occur in a group of non-overlapping brain regions
(Figure 2A): the right thalamus and the left anterior cingulate
were specifically activated only in time perception tasks whereas,
the bilateral superior occipital gyrus and the right fusiform gyrus
were only activated during tasks requiring cognitive effort.

DISCUSSION

Overall, our findings support the hypothesis that timing
structures are activated by an increase in the difficulty of non-
temporal cognitive tasks in schizophrenia. The findings are
in broad agreement with a recent meta-analysis of functional
neuroimaging studies in healthy volunteers (Radua et al., 2014a).
Both meta-analyses suggest a partial overlap of cortical and
subcortical brain regions engaged in time perception tasks with
regions engaged in tasks requiring increased cognitive effort.
Specifically, we found a pattern of fronto-parietal and basal
ganglia activation common to timing and increased cognitive
effort. In schizophrenia patients, the involvement of most of
these overlapping cortical and subcortical areas, primarily in the
right hemisphere, was reduced in comparison to that in healthy
controls.

The involvement in common of some regions by both timing
and non-temporal cognitive tasks can be interpreted to indicate
that these two functions require similar cognitive abilities.
During cognitive tasks with various levels of effort or control,
some temporal processing is engaged. Thus, we hypothesize that
certain brain regions (such as the insula) traditionally associated

with timing are engaged during non-temporal cognitive tasks
in response to increases in the level of difficulty. Furthermore,
since timing tasks involve different cognitive processes (such
as sustained attention, working memory, decision making, or
preparation of motor responses), specific brain regions usually
associated with these domains (such as the prefrontal cortex and
fronto-parietal regions) are hypothesized to be engaged during
these tasks.

Another recent meta-analytic study (Niendam et al., 2012)
found evidence of a superordinate cognitive control network
subserving diverse executive functions. This network involves
dorsolateral prefrontal, anterior cingulate, and parietal cortices.

The results of our study support the idea that the aforementioned
network exists, but they also suggest that the network responds
to changes in task demands. With regard to the regions involved,

the current meta-analysis coincided in large measure with other
studies but indicated that the medial frontal (SMA), temporal
insula, and basal ganglia should be included as part of what we
propose functions as a temporal-cognitive control network.

To date there are only a few published neuroimaging studies
of timing in schizophrenia (e.g., Volz et al., 2001; Ojeda
et al., 2002; Ortuño et al., 2005; Davalos et al., 2011). We
hypothesize, in line with previous theory laid out by Andreasen
(1999) and in line with the findings discussed below, that
the observed timing impairment displayed in schizophrenia
is mediated by a specific fronto-thalamo-striatal dysfunction.
A recent functional neuroimaging study (Davalos et al.,
2011) that examined the effects of task-difficulty in temporal
processing in schizophrenia patients compared to healthy
controls found, as we do here, that neuroanatomical regions
known to be engaged in timing (SMA, the insula/operculum
and striatum) showed signs of dysfunctionality in schizophrenia
patients. The higher the level of task difficulty, the greater
were found to be the differences in engagement of these
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FIGURE 1 | (A) Brain regions engaged during tasks requiring cognitive control: differences between healthy controls and schizophrenia patients. (B) Brain regions

engaged during tasks requiring cognitive control: differences between healthy controls and schizophrenia patients. Multislice.

regions between patients and controls. These findings, however,
are not inconsistent with those of a fMRI study of an
exclusively healthy population (Tregellas et al., 2006): the authors
concluded that activation of certain regions (including SMA,
insula/operculum and the striatum) during timing tasks is load-
dependent.

What role does the SMA play in dysfunctional temporal
processing in schizophrenia? The SMA has been proposed as
a key structure during timing (Rao et al., 2001; Macar et al.,
2002; Ferrandez et al., 2003; Tregellas et al., 2006) in the “pulse

accumulation” process (Macar et al., 2004), and in attending to an
internal timeline against which timing comparisons can be made
(Coull et al., 2004). Whilst the role of the SMA is traditionally
seen to be purely motor-oriented, a recent review considers
that it may be activated by demand for implementation of
several cognitive tasks: mental arithmetic, spatial and non-spatial
working memory, attention control, silent work production, and
conceptual reasoning (Hanakawa et al., 2008). The implication
of a dysfunctional SMA is consistent with the idea proposed
by Rao et al. (2001) of an early cortical failure related to
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TABLE 2 | Brain regions engaged during tasks requiring cognitive control: differences between healthy controls and schizophrenia patients.

Location Peak Cluster

MNI Z P Voxels Breakdown

Right postcentral gyrus, BA 3 60, −18, 42 1.251 0.000029802 279 Right postcentral gyrus (200), mostly BA 3

Right supramarginal gyrus (71), mostly BA 3/1

Right fusiform gyrus, BA 19 26, −66, −8 1.005 0.000230074 127 Right inferior network, inferior longitudinal fasciculus (52)

Right fusiform gyrus (44), mostly BA 19

Right lingual gyrus (26), mostly BA 18

Left inferior frontal gyrus, opercular part −46, 10, 26 −2.041 0.000001013 927 Left inferior frontal gyrus, opercular part (365), mostly BA 44

Left inferior frontal gyrus, triangular part (318), mostly BA 48

Left precentral gyrus (109), mostly BA 44

Left middle frontal gyrus (61), mostly BA 44

Left frontal aslant tract (35)

Left frontal inferior longitudinal fasciculus (16)

Corpus callosum (12)

Left superior longitudinal fasciculus III (10)

Right inferior frontal gyrus, triangular part,

BA 44

48, 26, 28 −1.955 0.000001729 642 Right inferior frontal gyrus, triangular part (331), mostly BA 45

Right middle frontal gyrus (215), mostly BA 45

Right inferior frontal gyrus, opercular part (68), mostly BA 44

Right frontal inferior longitudinal fasciculus (25)

Right superior occipital gyrus, BA 7 28, −68, 44 −1.536 0.000065565 474 Right superior occipital gyrus (192), mostly BA 7

Right angular gyrus (99), mostly BA 7

Right superior parietal gyrus (98), mostly BA 7

Corpus callosum (47)

Right superior longitudinal fasciculus II (12)

Right supplementary motor area, BA 6 4, 14, 58 −1.710 0.000013709 462 Right supplementary motor area (259), mostly BA 6

Left supplementary motor area (196), mostly BA 6

Left inferior parietal (excluding supramarginal

and angular) gyri, BA 40

−50, −42, 46 −1.392 0.000229657 351 Left inferior parietal (excluding supramarginal and angular) gyri

(333), mostly BA 40

Left postcentral gyrus (11), mostly BA 2

Left cuneus cortex, BA 18 −4, −76, 24 −1.210 0.000986218 277 Left cuneus cortex (153), mostly BA 18

Left precuneus (39), mostly BA 7

Left calcarine fissure/surrounding cortex (37), mostly BA 18

Corpus callosum (18)

Left median network, cingulum (15)

Basal ganglia 4, −26, −6 −1.078 0.002775669 57

Left superior occipital gyrus, BA 19 −20, −76, 42 −1.179 0.001261711 53 Left superior parietal gyrus (31), mostly BA 7

Left superior occipital gyrus (22), mostly BA 19

Threshold: voxel P < 0.00500, peak SDM-Z > 1.000, cluster extent size ≥10 voxels. Breakdown regions with <10 voxels are not reported.

attention disturbances leading to temporal processing deficits in
schizophrenia.

In agreement with the Radua et al. meta-analysis (Radua
et al., 2014a), the current meta-analysis found the occipital cortex
(BA 19) to be a region engaged by tasks requiring cognitive
effort. This suggests that this region together with the claustrum
is engaged not only in time perception but also in executive
functioning.

Since the participation of most of the cortical and subcortical
regions primarily in the right hemisphere is reduced relative
to healthy subjects, this finding suggests that a pattern of
disconnectivity of the timing circuit is a characteristic of the
schizophrenia condition (Ortuño et al., 2011).

Owing to the wide overlapping between neural networks
involved in high-level cognitive functions and temporal
processing, timing performance could be a sensitive measure
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FIGURE 2 | (A) Overlap and lack of overlap between brain regions engaged during time perception tasks and during tasks requiring cognitive control. Axial slices in

neurological convention showing regions with statistically signification activation only during time perception tasks (SDM meta-analysis, green) and regions with

statistically signification activation during tasks requiring cognitive control (SDM meta-analysis, blue, and red). Red for hyperactivations (patients > controls in difficult

> easy) or for failures of deactivation (patients < controls in difficult < easy), and blue for hypoactivations (patients < controls in difficult > easy) or hyperdeactivations

(patients > controls in difficult < easy). (B) Overlap and lack of overlap between brain regions engaged during time perception tasks and during tasks requiring

cognitive control. Axial slices in neurological convention showing regions with statistically signification activation both during time perception tasks and during tasks

requiring cognitive control (blue).

of cognitive functioning and a reliable indicator of impairment
to the underlying neural substrate (Piras et al., 2014). In
fact, temporal processing has been suggested as a “cognitive
primitive,” a fundamental neuropsychological process that has a
broad influence on cognition (Fuster et al., 2013).

The common networks that support modulation of effort
during non-temporal cognitive tasks also support timing tasks.
This finding somewhat belatedly provides backing to Aristotle’s
philosophical concepts that timing is related to the perception of
change and that time is ubiquitous. As time is omnipresent in the
processes of nature, so must time be dealt with by all the higher
human cognitive functions (Ortuño and Alústiza, 2014).

It should be noted that the studies we selected for our
meta-analysis compared neural activation between two levels of
difficulty of their respective experimental tasks. These studies,
therefore, reflect how the brain responds to an increase in
cognitive load, an increase in the effort required, or an increase
in the intensity of what is demanded while the underlying nature
of the cognitive function of the task remains essentially the
same. The fact that all the studies involve this kind of change in
cognitive effort is fundamental to the design of the study and, we
believe, critical to the interpretation of our results.

Impaired performance in tests sensitive to different functions
(involving the frontal, temporal, hippocampal, parietal, striatal,
and cerebellar areas) delineates schizophrenia. In this disease,
therefore, there is evidence of a generalized cognitive deficit
affecting general neurobiological mechanisms (Gómez et al.,
2014). While neuroscience studies indicate that timing-related
symptoms are only primary to cognitive impairments and
secondary to thought disorders, psychopathological and
phenomenological studies strongly imply that disturbance in
time perception is the core symptom in schizophrenia.

Difficulty in controlling the involvement of other cognitive
domains in temporal processing execution contributes to the
continued debate over the specificity of timing dysfunction.

The question is whether the dysfunction is associated with
a disturbance in central temporal processes or whether it is
attributable to a cognitive or biological dysfunction (Bonnot
et al., 2011). It should be noted that the involvement of cognitive
brain areas in the discrimination of short (50–500ms) durations
and with automated (pre-conscious) processes is less than that in
the discrimination of longer durations and conscious processes.

Three conclusions can be drawn from this study. First, in
schizophrenia, there is a widespread network of brain regions
(frontal, parietal, and basal ganglia) engaged both in timing
tasks and in tasks involving an increase in the cognitive effort
demanded for execution of non time-related mental processes.
Second, these cerebral circuits, which might be called a temporal-
cognitive control network, sustain and are common to all mental
processes and operations that involve increases (and possibly
also decreases) in cognitive load. Lastly, response deficits in
this network are highly load-dependent, which suggests that
generalized timing deficits in schizophrenia may involve a broad
network dysfunction. An important implication of our findings is
that the link between a dysfunctional timing network and other
impaired cognitive functions only becomes evident when there
is comparison of a task performed at different levels of cognitive
effort.

A focus on the processing of temporal information offers a
way to understand the cognitive deficits of schizophrenia and
how these deficits might contribute to a variety of psychiatric
symptoms and have an adverse effect on the everyday activities
of patients. In this sense, we suggest that a deficit in timing
be tentatively considered as a trait marker of the schizophrenia
cognitive profile.

Inferences about the dysfunctional overlap observed in the
present study are limited by the lack of a way tomake an objective
assessment of the supposed internal clock. This difficulty has led
to dependence in our study on tasks involving both a temporal
component and other non time-specific cognitive domains.
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It should be noted that the network overlap might be due to
a task difficulty effect on neural activation in the time perception
studies included.

A methodological note: as far as we know, this study is the
first to use the technique of multi-source pre-processing. It is
through this technique that the main value of the meta-analysis
is established. The main implication thus derived is that, in
schizophrenia, the link between a dysfunctional timing network
and other impaired functions becomes evident with an increase
in the demand for cognitive effort.

It would be interesting to examine whether temporal-cognitive
control network regions can be attributed to specific cognitive
domains accessed by different tasks. Additionally, future research
could address the questions of whether timing distortions are a
manifestation of, or a mechanism for, cognitive and behavioral
symptoms, and whether the relationship applies not only in
schizophrenia but also in psychosis in general.
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A commentary on

Effects of psilocybin on time perception and temporal control of behavior in humans

by Wittmann, M., Carter, O., Hasler, F., Cahn, B. R., Grimberg, U., Spring, P., et al. (2007).
J. Psychopharmacol. 21, 50–64. doi: 10.1177/0269881106065859

INTRODUCTION

WediscussWittmann et al. (2007) “Effects of Psilocybin on Time Perception and Temporal Control
of Behavior in Humans,” proposing that altered states of consciousness induced by pharmacological
treatments and neurological disorders can reveal much about the circuitry underlying time
perception in normal states of consciousness. Further research is needed to integrate these separate
research domains.

The brain integrates partial sensory input with internal representations to construct the
elaborate story we know as time (Hammond, 2012). Our ordinary experiences reveal the
complicated game the mind can play with perceived time: the day drags when we are bored,
yet slips through our fingers when distracted or amused. Despite varying phenomenological
experiences of time, the appropriate integration of physical time with functional behavior requires a
sufficiently accurate perception structured by the conceptual framework of past, present, and future
(Eagleman et al., 2005). Working memory, attention, and executive control support this integrated
construction (Fuchs, 2007; Marchetti, 2014). Effects on human time perception are observed when
these cognitive systems are modulated by pharmacological treatments or psychiatric disorders
(González-Maeso and Sealfon, 2009), suggesting the presence of a neurophysiological process that
is intrinsic to temporal information processing (Rammsayer, 2008).

PSILOCYBIN AND TEMPORAL PROCESSING IN NORMAL

SUBJECTS

Serotonergic hallucinogens generally slow the perceived flow of time (Shanon, 2003).
Pharmacological manipulations using psilocybin have shed light on mechanisms responsible for
this distorted time experience. Wittmann et al. (2007) investigated time estimation under the
influence of psilocybin. The study addressed the functional role of serotoninergic 5-HT2A receptors
in internal clock models (ICMs) in duration discrimination and temporal control of motor
performance. The study revealed a decreased ability to accurately produce intervals longer than
3 s and synchronize finger-tapping to auditory beats separated by more than 2 s. This suggests that
effects of psilocybin on temporal processing are specific to relatively long durations, attributable to
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memory, and decision-making components of the ICM
(Gibbon et al., 1984; Block and Zakay, 1996; Rammsayer,
2008; Allman and Meck, 2012), rather than to more basic
pacemaker/accumulator mechanisms (Wittmann et al., 2007).

Comparable results are observed inWackermann et al. (2008),
assessing psilocybin duration reproductions of intervals between
1.5 and 5 s. The analyses rely on the “dual klepsydra” model
(DKM), a contemporary alternative to the ICM. In the study,
the DKM model is applied to Wittmann et al. (2007) data as well
as new data. Results indicate temporal processing influenced by
psilocybin are dose-dependent (Wackermann et al., 2008).

Temporal processing of longer durations is impaired in people
with schizophrenia (Fuchs, 2005; Bonnot et al., 2011). However,
recent meta-analyses suggest that timing deficits in schizophrenia
generalize across sub- and supra-second intervals, as well as
across perceptual and motor tasks; and are independent from
more generalized cognitive impairments (Alústiza et al., 2016;
Ciullo et al., 2016). The employment of psychoactive substances
may be a useful approach to understanding temporal processing
in both the ordinary brain and that which is affected by
psychiatric disorders.

5-HT2A RECEPTORS AND TEMPORAL

PROCESSING IN SCHIZOPHRENIA

Psychopharmacological research suggests that drugs such as
psilocybin may serve as useful tools for understanding temporal
serotonergic signaling mechanisms underlying psychosis, due
to their capacity to cause distorted perception in normal
subjects (Rammsayer, 2008; González-Maeso and Sealfon, 2009).
Modulated 5-HT2A receptor agonists may induce clinical
symptoms of schizophrenia such as hallucinations, delusion,
psychomotor poverty, and distorted perception (Teixeira et al.,
2013), including distorted time perception (Allman and Meck,
2012). Pharmaceutical alterations of 5-HT2AR activation have
shown to assist NMDAR-dependent memory mechanisms
(Zhang and Stackman, 2015), and demonstrate that altered time
perception is a defining characteristic in schizophrenia due to
cognitive changes from NMDA receptor antagonists (Ciullo
et al., 2016). Additionally, dopamine-release manipulations cause
motor and cognitive defects seen in schizophrenia (Raote et al.,
2007), and impair duration discrimination in healthy subjects
(Wittmann, 2009). Likewise, schizophrenia is associated with
poor accumulation of signal durations derived from impairments
in sensory integration (Allman and Meck, 2012; Teixeira et al.,
2013). Sysoeva et al. (2010) found that genotypes characterized
by higher 5-HT transmission exemplify a higher “loss rate” of
duration representation, which may correlate to the very high
5-HT2A R occupancy in the prefrontal cortex of schizophrenic
patients (Zhang and Stackman, 2015).

Impairments in working memory, selective attention, and
executive control, as seen in schizophrenia, lead to distorted
sequencing and integration of past, present, and future into a
personal narrative. Carter et al. (2005) demonstrate a reduction in
attentional tracking abilities affected by psilocybin, and implicate

5-HT receptors in these processes through pretreatment of the
5-HT2A receptor antagonist ketanserin.

PROPOSAL FOR INTEGRATIVE RESEARCH

5-HT2A receptor activity is associated with time distortion
in both psychiatric disorders and hallucinogenic experiences.
Manipulating antagonists/agonists provides an approach
to utilizing psychoactive drugs as tools in research for
understanding time perception in the ordinary brain. It would
be fruitful to compare healthy subjects under the influence
of psilocybin with patients with acute schizophrenia, utilizing
a common paradigm as in Wittmann et al. (2007). However,
Wittmann et al. (2007) excludes significant moderating factors of
time estimation: attention and emotion (Droit-Volet and Meck,
2007). An fMRI test of acute treatment with psilocybin in healthy
volunteers found decreased amygdala reactivity during emotion
processing (Kraehenmann et al., 2015). Negative pictures led
to an overestimation of duration, indicating greater attention
allotted to emotional valence (Wittmann, 2009).

Neuroimaging techniques combined with psychophysical
tests of time perception (for a review see Grondin, 2010),
including manipulations to assess attentional and emotional
factors, will illuminate neural activity responsible for temporal
processing in schizophrenia and psychedelic perceptions.
Comparing performance and brain activities in these altered
states with those of untreated healthy subjects under the same
experimental conditions will elucidate mechanisms underlying
time perception.

CONCLUSION

Slowing of perceived time is induced by psilocybin and
schizophrenia; having a common basis in 5-HT2A receptor
activities. Commonalities across pharmacological treatments and
neurological disorders should be explored within a common
experimental paradigm to better understand neurochemical
processes mediating temporal processing in ordinary states.
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The representation of the environment assumes the encoding of four basic dimensions

in the brain, that is the 3D space and time. The vital role of time for cognition is

a topic that recently attracted increasing research interest. Surprisingly, the scientific

community investigating mind-time interactions has mainly focused on interval timing,

paying less attention on the encoding and processing of distant moments. The present

work highlights two basic capacities that are necessary for developing temporal cognition

in artificial systems. In particular, the seamless integration of agents in the environment

assumes they are able to consider when events have occurred and how-long they have

lasted. This information, although rather standard in humans, is largely missing from

artificial cognitive systems. In this work we consider how a time perception model that

is based on neural networks and the Striatal Beat Frequency (SBF) theory is extended

in a way that besides the duration of events, facilitates the encoding of the time of

occurrence in memory. The extended model is capable to support skills assumed in

temporal cognition and answer time-related questions about the unfolded events.

Keywords: time perception and timing, temporal distance, past perception model, when, how long, computational

modeling, temporal cognition

INTRODUCTION

Our sense of time exhibits unique characteristics that distinguishes it from the typical group of
human senses (sight, hearing, touch, smell, and taste). A crucial difference is that the sense of time
is not associated with a specific sensory system in the brain. As it is noted in Bruss and Ruschendorf
(2010), the perception of time seems different in nature from what we usually understand as
perception. It seems to have its own ways and own laws. Since we cannot stop time, we cannot
experience a moment twice. In the contrary, we can hear a sound, view a light, taste a food as many
times as we want.

In an attempt to understand the unique characteristics of time perception, the recent
years, a significant amount of research studies have been devoted on understanding the brain
mechanisms that enable experiencing and processing time, with controversial theories attempting
to explain experimental observations. Broadly speaking, there are two main approaches to
describe how our brain represents duration (Ivry and Schlerf, 2008; Bueti, 2011). The first
is the dedicated approach (also known as extrinsic, or centralized) that assumes an explicit
metric of time. This is the oldest and most influential explanation on interval timing. The
models included in this category employ mechanisms that are designed specifically to represent
duration. Traditionally such models follow an information processing perspective in which pulses
that are emitted regularly by a pacemaker are temporally stored in an accumulator, similar to
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a clock (Gibbon et al., 1984; Droit-Volet et al., 2007). This
has inspired the subsequent pacemaker approach that uses
oscillations to represent clock ticks (Miall, 1989; Large, 2008).
Following a broader consideration, the Striatal Beat Frequency
(SBF) model assumes timing to be the results of the coincidental
activation of basal ganglia neurons by cortical neural oscillators
(Matell and Meck, 2004; Meck et al., 2008). Other dedicated
models assume monotonous increasing or decreasing processes
to encode elapsed time (Staddon and Higa, 1999; Simen et al.,
2011). The second approach includes intrinsic explanations (also
known as distributed) that describe time as a general and inherent
property of neural dynamics (Dragoi et al., 2003; Karmarkar
and Buonomano, 2007). According to this approach, time is
intrinsically encoded in the activity of general purpose networks
of neurons. Thus, rather than using a time-dedicated neural
circuit, time coexists with the representation and processing of
other external stimuli. Recent models combine intrinsic and
dedicated representations into active oscillations that do not only
produce “ticks” but additionally adjust their characteristics to
perceive, measure, and process time in order to facilitate the
accomplishment of a variety of temporal tasks (Maniadakis and
Trahanias, 2015). Similarly, models assuming oscillations with
adaptive pulse rates extent the classic pacemaker-accumulator
model to accomplish timescale invariance in interval timing
(Simen et al., 2013).

The aforementioned models focus on estimating the duration
of events (i.e., how-long), without typically paying much
attention on the time of occurrence of events (i.e., when), as an
important temporal information. The combined consideration
of these two temporal aspects is vital for understanding the
evolved phenomena in the environment in a rich and meaningful
way. While interval timing is typically related to short-term
time perception, considering when events have occurred is
mostly related to the perception of mid and distant past. It
is now believed in the timing community that the short-term
duration perception mechanisms in the brain are different than
those involved in the long-term, past perception (Aschoff, 1985;
Rammsayer, 1999; Lewis and Miall, 2003).

However, given that the present is included in the entire
timeline linking the past and the future, it is reasonable to
assume a connection between the short- and long-term time
perception. Along this line, the present work investigates the
possibility that a universal time source may support both
aspects of time perception. This is the focus of the present
study which explores possible means for combining when and
how-long in a single cognitive system. This does not aim
to argue that the two mechanisms coincide or overlap. The
subsystems of short- and long-term time perception are kept
separate but it is possible that they share common timing
inputs and in that sense we are interested to explore their
possible bridging. It is noted that in order to explore the long-
and short-term aspects of time perception, the implemented
models must consider both the moments experienced during the
occurrence of events and the moments passing without being
associated to the given event. These two time periods exhibit
very different characteristics as we will discuss in the following
sections.

The present work adopts a memory encoding perspective
to explore the possible mechanisms supporting how-long and
when temporal cognition. Interestingly, besides providing an
explanation on how the two times related cognitive capacities
may be linked, the present work accomplishes a crucial milestone
for introducing time perception in artificial systems enabling the
later to consider the inherent temporal dimension of human-
machine symbiotic interaction.

The composite model is developed following an incremental
procedure. We start by implementing a neural network model
that is capable to estimate and memorize the duration of
simple tone-events. The model is implemented using a “black
box” artificial coevolutionary procedure that tunes system
components and enforces their cooperation. Subsequently, we
consider the possibility of extending the model with the ability
of keeping track the time of occurrence of the underlying events.
We explore whether the previously implemented mechanism
of time flow perception that is used for interval timing can
be also employed for encoding when events have occurred.
Moreover, we explore the option that past perception may
use temporal distance measures as indicators of past times.
Our experiments show that a single time source can facilitate
encoding of both the duration and the time of occurrence
of events.

ARTIFICIAL EVOLUTION OF INTERVAL
TIMING MODEL

To develop a brain inspired duration perception system, we
borrow ideas from the Striatal Beat Frequency (SBF) model
(Matell and Meck, 2004; Meck et al., 2008) that is one of the
most widely referenced paradigm explaining interval timing
in the brain. The model assumes that durations are coded
by the coincidental activation of a large number of cortical
neurons projecting onto spiny neurons in the striatum that
respond to timing patterns. The present work explores a
very simple version of the SBF model using only a small
number of input oscillatory signals. The goal of this simplified
model is not to compete against the original SBF model, but
rather to suggest a new direction for using interval timing
models.

Modeling
We employ the coevolutionary neural network framework that
has been described in detail in (Maniadakis and Trahanias, 2008,
2009) to develop a modular neural network system for interval
timing. In the past, we have used the same technology to develop
cognitive models for artificial agents, which have been capable of
time-informed behavior switching (Maniadakis et al., 2009) and
multi-context duration processing (Maniadakis and Trahanias,
2015).

The structure of the neural network model is shown
in Figure 1. In short Continuous Time Recurrent Neural
Networks (CTRNNs) are used as modules to develop a
composite cognitive system. CTRNNs represent knowledge in
terms of internal neurodynamic attractors and it is therefore
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particularly appropriate for implementing cognitive capacity
that is inherently continuous, similar to time perception. The
neurons implementing CTRNN components are governed by the
standard leaky integrator equation:

dγ i

dt
=

1

τ

(

−γ i +

R
∑

k= 1

ws
ikIk +

N
∑

m= 1

w
p
imAm

)

(1)

where γi is the state (cell potential) of the i-th neuron. All neurons
in a network share the same time constant τ = 0.25 in order
to avoid explicit differentiation in the functionality of CTRNN
parts. The state of each neuron is updated according to external
sensory input I weighted by ws, and the activity of presynaptic
neurons A weighted by wp. After estimating the state of neurons
based on the above equation, the activation of the i-th neuron is
calculated by the non-linear sigmoid function according to:

Ai =
1

1+ e−(γ i−θi)
(2)

where θi is the activation bias applied on the i-th neuron. The
model considered in the present study assumes 16 neurons
for the building blocks tSen1, tSen2, and 2 neurons for the
blocks implementing t-Duration1, ..., t-Duration6. A hierarchical
coevolutionary procedure is used as a mechanism for tuning
CTRNNmodules, specifying synaptic weights and activation bias
of neurons.

Following the assumption of fusing cortical neural oscillators
for implementing sense of time, we use four oscillatory signals
at different frequencies as inputs to the model. The use of
such a small number of oscillatory inputs keeps manageable
the complexity of the model providing at the same time the
opportunity to obtain insight in the dynamics self-organized
internally in the CTRNN. The oscillatory signals used in the
current study are as follows:

Inp1 = sin(4t+ k1)+ u(−0.05, 0.05)

Inp2 = sin(t+ k2)+ u(−0.05, 0.05)

Inp3 = sin(0.25t+ k3)+ u(−0.05, 0.05)

Inp4 = sin(0.1t+ k4)+ u(−0.05, 0.05) (3)

Parameters k1, k2, k3, k4 ǫ [0,π], implement random time shifts
initialized at the beginning of every experimental session (i.e.,
different values are assumed for each evolutionary run, see
below). Additive noise implemented as a uniform distribution
in the range [–0.05, 0.05] aims to improve generalization of
the internal representation of time and thus enable robust and
accurate duration estimation.

Each temporal moment processed by the model is associated
to one simulation step. Interestingly, assuming that one
simulation step corresponds to 5–10 ms, the input signals
described in Equation (3) can be associated to the known
frequencies of cortical neural oscillations, from the 1–4Hz of the
delta band, up to the 30–70Hz for the gamma band. It is noted
that, for years, it is has been hard to identify a single frequency
band dominating temporal processing, (Treisman, 1984; Wiener

and Kanai, 2016). However, modern approaches assume that the
combination of bands might be the key for explaining sense of
time (for a discussion, see Kononowicz and van Wassenhove,
2016 in the present Research Topic). Such an assumption
provides added value to our model, which combines oscillations
at very different frequencies to develop sense of time. However,
the input signals considered in the present study were not
originally designed with cortical oscillation bands in mind, and
thus we would like to avoid building further on this assumption.
Besides targeting interval timing in the range of a few seconds,
the model does not assume an explicit correspondence between
simulation steps and the known metrics of physical time (e.g.,
ms, or sec). The main goal of the present work has been the
development of a brain-inspired time perception system for
robotic agents engaged in long-term symbiotic interaction with
humans.

Turning back to Figure 1, oscillatory inputs project into
a composite TimeSense module consisting of two recurrently
connected sub-modules. The TimeSense module aims at
gradually transforming oscillatory inputs to a composite time
flow representation that is adequate for interval timing. To
facilitate the applicability of the model in robotic applications,
we use working memory to store the temporal properties of
a small number of recently experienced events. In the current
implementation we explore scenarios assuming the random
occurrence of six events (the capacity of working memory) in a
session of 1000 simulation steps. We employ 6 different duration
estimation modules each one devoted to the perception of one
tone-event. The duration estimation modules receive a binary
tone input that represents the occurrence of events. Tones have
randomly specified lengths that represent the duration of events.
A binary signal representing the unique ID of the event enables
differentiating the measured interval lengths. The actual duration
of events is randomly specified every time a NN model is loaded
and tested. We enforce a minimum distance of 100 moments
between consecutive events.

Parametric Tuning
The training of the model is achieved using Hierarchical
Cooperative CoEvolution as described in (Maniadakis and
Trahanias, 2008, 2009). By using this “black box” coevolutionary
scheme we are able to consider the specialized characteristics
of each component in the model and additionally enforce
their synergetic functionality to accomplish the desired overall
performance for the composite system.

We assume a brain-like encoding of interval timing. More
specifically, a ramp-like encoding of time has been identified in
the brain of monkeys (Leon and Shadlen, 2003; Maimon and
Assad, 2006; Mita et al., 2009) for durations up to a few hundreds
of milliseconds. The proposed model abstracts these findings
by implementing a similar ramping mechanism for short-term
interval timing, aiming mainly to support robotic applications.

Error-based functions are used to evaluate the performance
of each event-specific module tDur1,..., tDur6. In particular, the
desired output of the module associated to the i-th event starting
at time sti and finishing at time ei, having a maximum duration
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FIGURE 1 | The structure of the first model of interval timing. A recurrent TimeSense module blends oscillatory signals to develop the filling of flowing time,

properly formulated to enable interval timing in the modules t-Duration1 ... t-Duration6 that are also fed by the external tone signal and the id of the perceived event.

M (i.e., ei − sti < M ) equals to:

Di (t) =







0, t < sti
(t − sti) /M, sti ≤ t < ei
(ei − sti) /M, ei ≤ t

(4)

In the current study we investigate events with maximum
duration M = 50 moments. The function that measures the
success of the i-th temporal duration module is:

EDuri =
∑

t

(

outi(t)− Di(t)
)2

(5)

This is the key component of the fitness function f fi that
drives the evolution of the corresponding module accomplishing
parameter tuning:

f fi =
1000

EDuri
(6)

Higher values of f fi indicate better performance of the i-th
duration module.

To accomplish parametric tuning for the neural network
modules representing the components t-Sen1 and t-Sen2, which
have a supportive role for all duration estimation modules, we
employ a mixture of the afore mentioned fitness functions,
described by:

ff =

∏

i

f fi (7)

The hierarchical cooperative coevolutionary procedure
(Maniadakis and Trahanias, 2008, 2009) accomplishes
parametric tuning and optimization of component modules,
enforcing their collaborative performance toward a successful
composite model. We use one population of 1000 artificial
chromosomes for each CTRNN module considered in the
model. Each chromosome, encodes a different configuration

of the module. We combine candidate module configurations
to develop full configurations of the complete system, which
are tested on the duration estimation task described above. The
20% of the best performing chromosomes in each population
are selected for reproduction following single point crossover.
Mutation is applied on new chromosomes with a probability
2% for each encoded parameter. Mutation is implemented as
additive noise in the range [–10%, 10%] relative to the previous
value of the parameter.

Results
We have evolved the above described coevolutionary scheme
for 500 generations, producing a successfully tuned CTRNN
model for interval timing. An indicative set of results for six
randomly specified tone events is shown in Figure 2. The fact
that numerous event durations can be simultaneously preserved
in the system is a valuable addition to interval timing models
that enables further processing of the memorized durations.
In particular, it has been straight forward to use a Multi-layer
Perceptrons (MLPs) to develop decision making systems capable
of comparing any two of the memorized durations to accomplish
duration comparison tasks similar to those studied in (Droit-
Volet et al., 2010).

Besides extensively testing the model with randomly specified
interval times up to M simulation steps, we explore whether the
output of the model exhibits the scalar characteristics that are
typical observed in biological timing mechanisms (Lejeune and
Wearden, 2006). Scalar timing implies that (i) measurements
should vary linearly and near-accurately as time increases and (ii)
the variance of perceptual mechanism increases as the duration of
time also increases. To get an estimate of the scalar characteristics
of the model, we have studied its ability to correctly estimate
durations of 20, 25, 30, 35, 40, and 45 moments (without
this limiting the model to perform successfully for in-between
durations). For each one of the six durations considered here, we
perform 50 statistically independent runs, feeding themodel with
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FIGURE 2 | The outputs of the six t-Duration modules which are

responsible for measuring duration of six different tone events with

randomly specified durations. Blue lines represent desired outputs, while

red lines show actual system output.

randomly initialized oscillatory inputs. The mean and standard
deviation for each one of the durations considered are shown in
Table 1. Clearly, the average of the estimated intervals remains
close to the true time in all cases, satisfying mean accuracy.
The variance increases as the model experiences longer intervals,
however, in a rate that is slower to the increase of the mean.
The scalar property assumes a constant coefficient of variation
(the ratio of the standard deviation to the mean), which is not
true for our model. This is depicted more clearly in Figure 3,
where relevant output distributions are scaled by the expected
duration value. Even if the model is not fully compatible with
the scalar property, Table 1 shows that the output of the model
is sufficiently accurate for making the model usable in robotic
systems. Nevertheless, it is worth emphasizing that, currently,
the two main characteristics of the scalar property have been
self-organized without any explicit instructions by the modeler.
Therefore, it seems valid to assume that our model can be easily
rendered fully compatible to the scalar property, by introducing
a constraint for a constant coefficient of variation in the fitness
function of the evolutionary design procedure.

The notably small variations in time estimations shown in
Table 1 (we remind it summarizes the results of 50 randomly
initialized runs of the model) indicate that the implemented
model is particularly tolerant to the noise added in the oscillatory
input. To further assess model robustness, we have explored the
performance of the model against different levels of input noise.
Results are summarized in Table 2. The model shows to perform
satisfactorily for input noise up to the range [–0.07, 0.07]. More
noise than that significantly affects the estimation of durations
for specific events. In particular, noise in the range [–0.09, 0.09]
often results into a single mismeasured event, noise in the range
[–0.11, 0.11] results into more than two mismeasured events (on
average 2.3), and noise in the range [–0.13, 0.13] results, into
nearly random duration measurements. Practically, the increase
of noise affects the performance of the TimeSense modules which

FIGURE 3 | A graphical illustration of the time estimation distributions

shown in Table 1, scaled by the expected duration means. The more the

distributions are identical the more the model is compatible with the scalar

property. For our model, estimated means are slightly shifted against the

expected values, and standard deviation increases slower than expected by

the Weber law.

in turn introduces disturbances (i.e., occasional picks) in the
corresponding ramping activities therefore destroying accurate
interval timing.

Interestingly, in the case that the noise is added to the input
signal for a relative short time (e.g., <10 simulation steps) the
performance of the model remains largely unaffected, even for
noise in the range [–0.13, 0.13]. This is explained by the use
of leaky integrator neurons which smooth out the strong but
temporally-short noise, enabling the model to quickly recover
into the normal mode of operation.

While previous SBF models have been particularly sensitive
to sensory noise (Matell and Meck, 2004; Gu et al., 2015),
the model implemented in the current work exhibits more
robust performance, therefore enabling interval timing in noisy
environments. This is a particularly desirable feature that is
developed for free in the model due to the noise included in
the oscillatory sensory inputs and the randomness introduced
in the experimental setup. This is mainly because we do not
artificially describe coincidental activation of oscillatory inputs,
but we let the neural network self-organize the fusion of inputs.
Fitness assignment favors themore robust neural networks which
filter out noise and estimate durations that are closer to the
target. Therefore, the evolutionary procedure produces solutions
that are gradually more tolerant to noise. However, it is worth
emphasizing that sensory noise has been shown to facilitate time
scale invariance in the case of a large number of input neural
oscillators (Oprisan and Buhusi, 2014).

EXTEND THE MODEL TO ADDRESS
“WHEN”

The model described above has been able to accomplish accurate
interval timing in a series of randomly initialized binary events.
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TABLE 1 | Studying the scalar properties of the model.

Actual time 20 25 30 35 40 45

Estimated time—Mean 19.66 24.81 30.23 35.39 40.81 46.19

Estimated time—STD 0.87 0.93 1.04 1.09 1.17 1.21

The model does not assume a direct relationship between simulation time and physical time. The number of simulation steps is used as indicator of the elapsed time.

TABLE 2 | Model performance against different levels of input noise.

Noise range [−0.03, 0.03] [−0.05,0.05] [−0.07,0.07] [−0.09,0.09] [−0.11,0.11] [−0.13,0.13]

Estimated time average error 0.47 0.53 0.72 6.38 10.13 18.67

With this timing mechanism at hand it is particularly interesting
to explore, whether we can achieve other temporal cognition
skills beyond interval timing. In the current study we explore if it
is possible to use the previously developed timing mechanism as
a base for encoding information related to the time of occurrence
of events, that is to represent time moments in the distant past.
While estimating the duration of an event requires the active
percepton of the external stimulus, keeping track of when that
event occurred assumes perceiving time that is not anymore
related to the underlying event, filtering also out any other
external input that may appear in the meanwhile. This is an
important qualitative difference that distinguishes when and
how-long perception.

There are two alternative options for encoding when an
event has occurred in the past. The first assumes a coordinate
system centered on “now,” e.g., “John was here one hour ago.”
Following this approach the center of the coordinate system is
non-static but it is moved together with the flow of time, causing
a continuous increase in the time elapsed from the occurrence
of the event until now (i.e., in a while, the above statement will
change to “John was here two hours ago” and so on). The other
alternative assumes a timeline centered on a predefined moment
that is assumed to represent the zero-point and all time moments
are perceived relative to that particular zero-point. For example,
most western cultures assume as zero-point the birth of Jesus
Christ and thus dates are typically measured as distances from
this point, e.g., “I met John on February 10, 2015”.

Human adults can equally perceive both alternative options.
However, it seems more likely that the development of the past
perception for young children starts centered on “now”. This is
because even if infants are capable to perceive time very early
in their life (Droit-Volet, 2011), the conceptual development of
an objective zero point develops not earlier than the middle
childhood (Friedman, 2005). The now-centered perception of
time is further supported by developmental studies showing a
decline in the accuracy of children responses with increasing
distances to the past (Friedman, 1998) and the fact that children
have autobiographical memories before they learn how to use
clocks and calendars (Campbell, 1997). Finally, from a numerical
point of view, young children seem to slowly develop the concept
of ordinal relationship between small values which gradually
develops to the understanding of the broader number line

(Gallistel and Gelman, 1992; Rouder and Geary, 2014). The above
suggest that a first, basic approach for representing when events
have occurred should be implemented relative to “now” rather
than relative to a fixed point in time. The latter option may be
developed at a following stage as a higher level capacity that
processes encoded events.

Interestingly, the now-centered representation of the timeline
suggests that the duration perceptionmechanismsmay have a key
role in the representation of past times. To elaborate further on
this assumption, we borrow from the past perception literature
(Arzy et al., 2009; Wyer et al., 2010) the term “temporal distance,”
which describes the temporal properties of past events in relation
to the present. We implement the computational analogous of
temporal distance in our model, and we investigate the possibility
of using this measure as a representation of when events have
occurred in the past.

In particular, we extend the model discussed in Section
Artificial Evolution of Interval Timing Model to additionally
incorporate the capacity of memorizing the times of events’
occurrence based on the assumption of encoding temporal
distances to the present. In that sense, the composite model will
work in two different time scales (i) up to 50 simulation steps for
the how-long mode and (ii) up to 1000 simulation steps for the
when mode. The revised model will be capable of using a single
sense of time to derive both the duration of events and their time
of occurrence.

Interestingly the coevolutionary framework used in the
current work is particularly appropriate for the incremental
modification and enhancement of modular neural network
models (Maniadakis and Trahanias, 2009). To incorporate
distant time perception, a set of neural network components is
integrated into the model as shown in Figure 4. Two central
components aim to transform general purpose sense of time to
a form that is appropriate for measuring duration (t-Duration
module) and temporal distance (t-Distance module). Similar to
the earlier version, we use dedicated modules t-Duration1, t-
Duration2 ... t-Duration6 to memorize durations and modules
t-Distance1, t-Distance2 ... t-Distance6 to memorize temporal
distances for the six tone-events considered in the current
experimental setup. The CTRNN-based implementation of the
modules assumes 16 neurons for the building blocks tSen1,
tSen2, t-Duration, t-Distance, and 2 neurons for the blocks
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FIGURE 4 | The structure of the enhanced model that aims to address both interval timing and past time perception.

implementing t-Duration1, ..., t-Duration6, and t-Distance1, ...,
t-Distance6.

A key issue for implementing temporal distances regards
the representation of time in the long-term. There is classical
debate on psychophysics asking whether the humans perceive
the time-line in a linear or a logarithmic basis. Without any
restriction1 the present work adopts the assumption of a
logarithmic representation of distant time which is supported
by recent experimental data (Arzy et al., 2009; Glicksohn and
Leshem, 2011) and is in line with modern numerical cognition
theories (Nieder and Miller, 2003). Cognitive models assuming
logarithmic and other non-linear forms of time perception have
also appeared in the literature (Staddon and Higa, 1999; van Rijn
et al., 2014).

Following the logarithmic representation, the temporal-
distance TD between current time t and the time sti that the i-th
event started, is encoded as:

TDi (t) =

{

0, t ≤ sti
log( t

sti
), sti < t

(8)

We use TDi (t) as the target of the i-th t-Distance module.
Therefore, to evaluate the performance of the module encoding
temporal distance of the i-th event we use an error-basedmeasure
that is:

EDisti =
∑

t

(

outi(t)− TDi(t)
)2

(9)

1We have followed both modeling assumptions in our work and we have

successfully implemented distant time models assuming either a linear or a

logarithmic representation of time. The current paper demonstrates only the

logarithmic approach but it is straightforward to adapt the evolutionary procedure

with the assumption of a linear time.

This is used to define the fitness function that drives the evolution
of the corresponding i-th t-Distance module. In particular, the
modules t-Distance1, t-Distance2, ... t-Distance6 and all relevant
incoming links are evolved according to the fitness function:

ffdist,i = (1000/EDisti) (10)

Similar to the early setup of the coevolutionary procedure
the modules t-Duration1, t-Duration2 ... t-Duration6, and all
incoming links are evolved according to the fitness function:

ffdur,i = (1000/EDuri) (11)

The module specific fitness functions are properly mixed to
develop composite fitness functions that drive the evolution of
the supportive modules. More specifically, the fitness function
of the module t-Distance considers the performance of all six
t-Distanceimodules:

ffdist =
∏

i
ffdist,i (12)

Similarly, the fitness function of the t-Durationmodule considers
the performance of all six t-Durationimodules:

ffdur =
∏

i
ffdur,i (13)

Finally the root components of the system t-Sen1 and t-Sen2 that
implement time sense are evolved according to both the temporal
distance and the temporal duration criteria, resulting into the
fitness function:

ffglobal = ffdur ∗ ffdist (14)

The hierarchical coevolutionary procedure accomplishes
parametrical tuning of all system components taking into
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FIGURE 5 | System outputs after the perception of six random tone events. Panel (A) shows the estimated duration of events. Panel (B) shows perceived

temporal distance to the present as a means of representing when events have occurred.

account their special features as well as the successful
functionality of the composite time processing system. The
hierarchical and synthetic structure of the fitness functions
enforces the coevolutionary scheme to improve collaboration
between the component neural networks. As a result, the
coevolutionary procedure can successfully converge to partial
solutions that synthesize a composite system capable of
memorizing the duration and the time of occurrence of events.

Results
Following the coevolutionary procedure described above, the
cognitive system described in Section Artificial Evolution of
Interval Timing Model is advanced to address both the when and
the how-long aspects of events. The configurations of previously
existing CTRNN modules have been reloaded and evolved
further, together with the configurations of the newly introduced
components. The extended cognitive system has been evolved
for 300 epochs producing a composite cognitive system that
can successfully process temporal information. Sample results of
the system outputs when memorizing 6 randomly initiated tone
events are shown in Figures 5A,B. The plots show in blue the
desired output and in red the actual output of the system. For
example the two plots shown in the first column, second line
of Figures 5A,B encode the fact that a tone event of duration
42 (note: 42/50 = 0.84) has occurred at a past time that is 557
moments back from the present (note: log(1000/443)=0.353).

The development of temporal processing internally in the
model is shown in Figures 6A–D. The four plots show neural
activity in the t-Sen1, t-Sen2, t-Duration, and T-Distance
modules for the whole period of perceiving the 6 events. In
the first stage of processing (Figure 6A), neural activity is
mainly directed by the input oscillatory signals. Subsequently
(Figure 6B) oscillations are mixed to produce a complex
temporally structured neural activity. The first event occurs
approximately at the moment 150. It seems that this event
triggers a more structured oscillation fusion in t-Sen2 resulting in
neural activity that looks like oscillation multiplexing. While the
present model was not implemented on the basis of integrating
oscillations that correspond to the known brain rhythms (delta

band to gamma band), our results show that the combination of
input signals at different frequencies may significantly contribute
in the sense of time as suggested also in (Kononowicz and van
Wassenhove, 2016).

At the third stage, processing separates to interval timing
and temporal distance to the past. Neural activation in the t-
Duration module is presented in Figure 6C. As it is shown in
the plot, the length of the events appearing (approximately) at
times 340, 440, 510, 650, and 860 is correlated to the width of
the peak disturbances (marked with arrows), as shown in the
respective plot. The final stage of processing is the one shown in
Figure 5A, demonstrating the correct estimate of interval timing.
Interestingly, longer durations correspond to flat peaks that take
longer to smooth out, while shorter durations have no time to
develop flat activities

Neural activation in the t-Distance module is shown in
Figure 6D. The plot shows a gradual increase in the amplitude of
activation disturbances as more andmore events gradually occur.
The dotted lines drawn on top of the neural activities shown
in yellow and cyan reveal two non-linear measures to be kept
internally in the model. The mixture of these two self-organized
measures is adequate for measuring temporal distances to the
present as it appears by the relevant outputs of the model in
Figure 5B.

DISCUSSION

We have presented a neural network model that is capable of
measuring short time intervals assuming linear ramp activity and
keep track of past times based on the logarithmic representation
of temporal distances. The model is implemented following a
semi-automated procedure that assumes parameterized CTRNN
modules attuned with the help of coevolutionary optimization.
The tuning of model parameters is accomplished in an
offline mode, similar to the supervised learning approach
followed in other timing neural network models (Laje and
Buonomano, 2013). Interestingly, evolutionary methods can be
nicely combined with on-line adaptation procedures to facilitate
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FIGURE 6 | A summary of the internal dynamics (neural activations)

developed in the model over time. Panel (A) shows neural activation in

tSen1, the first receiving component of the recurrent TimeSense module.

Panel (B) shows neural activation in tSen2, the second output component of

the TimeSense module. Panel (C) shows neural activation in the t-Duration

module which supports interval timing. Arrows indicate the times of event

experiencing. The width of peaks is analogous to the duration of events,

therefore enabling accurate duration estimation as shown in Figure 5A. Panel

(D) shows neural activation in the t-Distance module which supports past

perception. Neural activities shown in yellow and cyan implement internal time

keeping of the elapsed time as illustrated by the log-shaped dotted black lines

following their peaks.

life-long learning (Maniadakis and Trahanias, 2008) and thus
enable modifying the range of processed durations.

The neuro-evolutionary framework considered in the
present study provides increased flexibility in designing the
internal mechanisms of the model, accomplishing to easily
bridge oscillatory input and ramping activity in a single
model. While the two mechanisms have been frequently

considered contradictory in the literature, the use of oscillations
with gradually adapted characteristics provides the basis for
implementing effective interval timing mechanisms (Simen et al.,
2013) and has been used for accomplishing multiple interval
timing tasks (Maniadakis and Trahanias, 2015).

In contrast to previous works proposing timing models that
have been rather minimally integrated with other cognitive
functions (Gibbon et al., 1984; Staddon and Higa, 1999; Dragoi
et al., 2003; Droit-Volet et al., 2007), the incremental NN
modeling approach greatly facilitates the implementation of
complex time-aware cognitive systems that will enable robotic
systems to further exploit temporal cognition. The present work
considers the strong coupling of time perception and short-
term memory as suggested in (Gu et al., 2015). Other relevant
works have considered spatiotemporal patterns related to motor
behaviors (Laje and Buonomano, 2013). The use of spiking
recurrent neural networks for timing has been shown to be
particularly sensitive to noise (Banerjee et al., 2008). Relevant
computational models shown that, especially for SBF, different
types of noise may differentially affect the encoding and recall of
timing intervals (Oprisan and Buhusi, 2014). Despite enforcing
noise tolerance through learning (Laje and Buonomano, 2013),
our study shows that the use of rate coding neurons may
significantly facilitate model robustness.

The main contribution of the present study in comparison to
the state of the art regards the use of past distance measures as a
means of encoding the time of occurrence of experienced events.
Our results show that a single timing source can be used as a basis
for implementing cognitive systems capable of encoding when
events occurred and how-long they have lasted. The proposed
model suggests it is possible to bridge both short- and long-
time keeping mechanisms that in the literature have been so
far considered largely independent (Aschoff, 1985; Rammsayer,
1999; Lewis and Miall, 2003).

We note that the SBF-like characteristics assumed in the
current implementation are not restrictive for bridging when
and how long. Apart from the specific timing mechanism
assumed by SBF, the proposedmodeling approach could be nicely
combined with other representations of time, such as (Miall,
1989; Staddon and Higa, 1999; Karmarkar and Buonomano,
2007; Large, 2008; Simen et al., 2011). However, even if nearly
all timing models could equally support interval timing and
past-distance measuring, using a single timing mechanism for
both when and how-long can hardly comply with the brain
studies explicitly distinguishing the two systems. Along this line,
the current model assumes separate subsystems dedicated to
the estimation of short-term durations and long-term temporal
distances, providing the means to sufficiently address qualitative
differences between them. This is accomplished by assuming
different forms of temporal information to be readout by
TimeSense neurons, which are subsequently processed assuming
different mechanisms and processes.

The encoding of estimated times in memory highlights two
very interesting problems that a time-aware cognitive system
must concern in order to be functional in naturalistic conditions.
The first problem regards how how-long and when should be
represented in memory. In the former case the duration is
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necessary to gradually increase as long as the event is experienced
by the agent and stop at a specific value that will be encoded in
memory, representing the static (never changing again) duration
of the event. The latter case assumes a counting mechanism
that increases together with the evolution of the event but
continues increasing after the end of the event, resulting into
a dynamic (non-static) representation of past times relative to
the present. The distinction between static and dynamic time
representations gets even more complicated by considering the
second problem, which regards how a cognitive system links
specific events with specific temporal characteristics successfully
keeping track of their values while other events may also occur.
In our implementation, the use of a dedicated Event-id module
(see Figure 4) enables the correct association between events and
times, filtering out irrelevant external stimuli.

Overall, the following points summarize the differences
between the how-long andwhenmodes of operation in themodel:

• How-long and when assume respectively a linear and a
logarithmic representation of time, therefore accomplishing to
measure durations of different scales (up to 50 simulation steps
for how-long vs. up to 1000 simulation steps for when).

• The how-long mechanism aims at counting the time filled with
the occurrence of an event, while the whenmechanism counts
time that is not any more in direct link to the given event.

• How-long results into the final encoding of a static duration
value in memory, while when assumes an ever-changing,
dynamic representation of past times relative to the moving
present.

Currently, the model exhibits two limitations which, at the same
time, offer two important strands for future work. The first
regards the representation of far distant times which ordinary
models address by assuming processes that can increase without
limit (Miall, 1989; Matell and Meck, 2004; Large, 2008; Simen
et al., 2011). Despite the fact that such unbounded processes
can hardly provide a realistic explanation of time perception
(Staddon and Higa, 1999), they do not address multiscale time
perception that is innate for humans. Interestingly, the newly
introduced DDM (Simen et al., 2013) model which uses adapting
pulse rates to measure time intervals could provide a means
for implementing multi-scale time perception, assuming the
future implementation of a time abstraction mechanism (i.e.,
I am only aware that I moved to a new city 6 months ago,
but I do not know how many seconds or minutes have passed
since then). In the present work, the use of sigmoid activation
functions in the output neurons of the model does not fully
comply with the representation of far distant times. Sigmoid
functions produce outputs in the range [0, 1], therefore they
are not appropriate for approximating logarithmic times greater
than one. To compensate this limitation we plan to implement
multi-scale time perception in the cognitive system, similar to
(Staddon and Higa, 1999). Each time scale will be implemented
as a logarithmic function with a basis of a second, a minute, an
hour and so on (i.e., logsec, logmin, loghour, etc.). An event that
approximates the maximum sigmoid value of one in a given scale
will “jump” to the next scale, starting from a relatively low value

which will gradually increase to one being ready for a new “jump”
and so on.

The second direction for advancing the model regards
the perception of not only past, but also future times. This
important addition will pave the way for investigating long-
term planning, self-projection to the future, imagination and
other high level cognitive skills which are currently unattainable
in artificial systems. Similar to past perception, we plan to
implement future time perception following the assumption
of logarithmic multi-scale times. Future perception will look
like past perception, horizontally flipped with respect to zero-
time that represents “now”. The composite model will be
able to perceive future (expected) events approaching the
present, be part of reality (occur) and then moved to the past
(memorized).

The embodiment of the model into a robotic system and its
practical application in real life has revealed some particularly
challenging issues for artificial temporal cognition. So far we
assume that experienced events are assigned ids in a periodic
manner, i.e., in the form 1,2,3,4,5,6,1,2,3,4... and so on, and
thus their temporal characteristics are circularly encoded in the
relevant output modules in short term memory. As new events
are experienced by the agent, previous events should be either
deleted or transferred to long-term memory. The details of this
mechanism remains an open research issue, however by mixing
elapsed time and the attention devoted to the event we have
been able to implement rough criteria that facilitate decision
making with respect to the handling of past events. Currently
we use a simple Data Base system to encode past events in
LTM, but we are also investigating neural representations that
will enable abstracting and encoding events in the form of
episodes.

CONCLUSIONS

Our perception and consideration of time, is key in determining
how we behave and in the decisions we make. Besides the
increasing research interest that is recently devoted on temporal
cognition there not much studies linking the how-long and when
aspects of perceived events. Both of these aspects are fundamental
for the rich and meaningful perception of the environment. The
present work considers a memory representation perspective
to link short- and long-term time perception, accomplished by
using a single timing source to perceive both event-specific and
event-irrelevant times.

The broader vision of our research aims at time-aware
artificial autonomous systems. The particularly promising results
of the current work suggest that the proposed timing model can
be the basis for implementing artificial systems that successfully
interact with humans for the collaborative accomplishment of
short- and mid-term goals.
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