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In this paper we voice concerns about the uncritical manner in which the mean is
often used as a summary statistic in psychological research. We identify a number of
implicit assumptions underlying the use of the mean and argue that the fragility of these
assumptions should be more carefully considered. We examine some of the ways in which
the potential violation of these assumptions can lead us into significant theoretical and
methodological error. Illustrations of alternative models of research already extant within
Psychology are used to explore methods of research less mean-dependent and suggest
that a critical assessment of the assumptions underlying its use in research play a more
explicit role in the process of study design and review.

Keywords: mean, average, variability, noise, distributional analyses, cognition

INTRODUCTION
Psychology prides itself on its empirical basis. All undergraduate
psychology courses focus on training students in methods for col-
lecting and analyzing data about human behavior. To this end, a
common introductory lesson in psychology involves measuring
a group of humans on some variable and calculating the mean
of the values. This mean value is then discussed as representing
the average performance of the group, as if this value provides a
representative substitute for the group’s data. It is our view that
rationalizing a set of data into one value is a theoretically loaded
practice that can be misleading and possibly erroneous. While the
mathematical tool itself is theory neutral, its use within the com-
munity of scientific practice within psychology is not. In this paper
we argue that the mean, used without care, can cause illusions of
stability and reliability in behavioral data, which in turn leads
to inappropriate conclusions regarding the underlying nature of
the psychological system. Our principal intent in what follows is
to make the assumptions inherent in typical scientific practices
more explicit, to expose them for critique. Our examination of
the mean is therefore less a statistical one than a theoretical one.
Having articulated these concerns we explore a number of related
alternative theoretical perspectives that are less reliant on those
explicated assumptions. We argue that, at the very least, we should
take more care in our use of the mean in analyzing data. Better
yet would be the adoption of methods and theoretical frameworks
that cope better with the complexity and variability of behavior
and cognition.

THE MEAN AND ITS USAGE
The most common form of the mean that is used in psychology is
the arithmetic mean. This represents the sum of all of the values
in a set divided by the number of values in the set. Although other
forms of the mean are used in psychology (e.g., geometric, har-
monic), our arguments are mainly confined here to the arithmetic
mean. Our concerns, though, are mainly with the use of measures
of central tendency, so our arguments apply in the general sense
to all forms of the mean.

Textbooks used in introductory psychology courses on statistics
and research methods typically refer to the mean as a measure
of central tendency and often contrast it to other measures of
central tendency such as the mode and the median. All such mea-
sures are used in situations where data sets contain some variation
(i.e., not every score has the same value). The aim in calculat-
ing one of these measures, then, is to generate a value that sits
somewhere in the middle of the distribution of scores. On the
relatively rare occasions that the particular importance of mea-
sures of central tendency is mentioned it is as an indicator of the
typical or most likely scores within the distribution (e.g., Haslam
and McGarty, 2003, p. 135; Dancey and Reidy, 2008, p. 44; Howitt
and Cramer, 2011, p. 25). These “typical” scores are “summary”
or “descriptive” statistics, providing at least some insight into the
basic characteristics of the distribution in question.

However, while all of the data in a distribution are involved in
calculation of the arithmetic mean, it remains a matter of judicious
use as to how well the mean represents those data. Summaries are
vital to good communication but used too frequently and uncrit-
ically they provide an impression of reliability or consistency that
distorts the normal state of affairs. It is this sometimes careless
overuse of the mean and its too frequent use without other statis-
tics as a summary of distributions with which we are concerned
here. In particular, the over-reliance on the mean (despite the
fact that we all, of course, know better) expresses a way of thinking
about distributions and variability that we believe poses potentially
grave problems for our science. Introductory textbooks typically
indicate that most measures of anything related to humans, and
indeed any biological system, produce a distribution of scores.
These distributions are commonly normal in shape (although see
Micceri, 1989). That is, they have a shape that corresponds to
the Gaussian distribution, which has a symmetrical shape, with
most scores clustered around the middle of the distribution, fewer
scores at the tails, and a smooth transition from the middle to
the tails (see Figure 1). The mean, therefore, sits perfectly in the
middle of the normal distribution (as does the median and the
mode).
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FIGURE 1 |The Gaussian, or “normal,” distribution. X represents the
measured variable, and Y represents the probability of occurrence of
particular values of X.

The Gaussian distribution is also referred to as the “normal law
of error” (Boring, 1920), suggesting that scores on either side of
the mean represent some error of measurement. Adolph Quetelet,
the first to apply this law to social and biological data, suggested
that the mean of a distribution of human measurements, such as
of a set of heights, represented nature’s ideal value and that values
on either side of the mean were deviations from nature’s ideal
(Howell, 2002)1.

Relying on the mean of a set of scores to represent the set
appears to carry with it the assumption that the variation in val-
ues observed around the mean is somehow erroneous. Whether it
be that our methods of measurement are faulty, or that individ-
ual humans represent “deviations around nature’s ideal,” or both,
values around a mean are often considered noise, and the only
way to eliminate this noise is to average it away. What we are left
with, then, is an approximation to the “true” value for that human
dimension. It is this assumption regarding the interpretation of
noise, and the truth value of the mean, that we think requires
questioning. This assumption has several subsidiary assumptions
(see Table 1) that we tackle below. In the sections that follow we
review each of these assumptions and conclude that they are dif-
ficult to justify. So too are some of the implications of using the
mean to infer features of the human cognitive system.

The uncritical or unreflective use of the mean in much psy-
chological research makes us problematically blind to variation
and distribution amongst the data we collect. In focusing nar-
rowly on the mean we make ourselves blind to potential variation
and complexity in our data and in the cognition and behavior
those data represent. The assumptions we identify as underlying

1Other distributions are also observed with respect to measurements of human
characteristics, but these often reflect something peculiar to the characteristic under
scrutiny. For example, log-normal distributions are predominant in situations
involving some degree of competition or interaction between the elements being
measured (e.g., Halloy, 1998). Reaction time distributions (seen as ex-Gaussian
distributions) are invariably positively skewed, and this has inspired much model
development and testing (e.g., Ratcliff and McKoon, 2008; Holden et al., 2009;
Heathcote and Love, 2012).

Table 1 | Assumptions underlying the use of the mean in psychology

research.

1.There is a true value that we are trying to approximate when we measure

humans on some dimension.

2. Averaging helps us to eliminate the noise in our measures to see the

true value.

3. Any inability to use the mean as a reliable measure of a stable

characteristic is a product of weaknesses in methodology or calculation

(i.e., it does not represent a failure in the initial assumption that a true

value exists).

4. The noise in our measurements represents the effects of variables

unrelated to the one being measured.

the uncritical use of the mean are, effectively, assumptions about
certain characteristics of the psychological system, characteristics
that tell us more about the theoretical goggles we are wearing
than about the behavior we are observing. In later sections of the
paper we consider alternative approaches that help us shake these
assumptions, and suggest how these may provide fruitful means
of conducting research in psychology.

ASSUMPTION 1: THERE IS A TRUE VALUE THAT WE ARE
TRYING TO APPROXIMATE WHEN WE MEASURE HUMANS
ON SOME DIMENSION
What is it about human behavior we are trying to eliminate by
averaging? In our own field of cognitive psychology it would seem
we assume that in each head there is a mechanism that is common
to all/most people, but which is obscured by our noisy measures
and/or our noisy heads. That is, in our experiments, we expose
a group of people to the same conditions. Everyone is assumed
to respond similarly to these conditions because their cognitive
mechanisms are similar. Unfortunately the data we collect from
these people are not identical, and we assume this is because
our measurements are not perfect and that there are a myriad
of tiny and random effects that conspire to create noise in the
data. Still, if we test a sufficiently large sample size, averaging
should enable us to observe the characteristics of each cognitive
mechanism unobscured by the noise.

The main question that occurs to us when we consider this
scenario is why do we assume that everyone has the same cog-
nitive mechanism? Just as we would not readily accept that each
person’s height is some deviation from an ideal height, it is odd
that we would accept that each person’s brain works in exactly the
same manner. Certainly this is the assumption that our research
methods in cognitive psychology rest upon, and yet there does not
appear to be any attempt to justify it2.

One means of justifying this assumption could be to point to
other systems in the human body and note that they all tend to

2This is the strong version of the assumption. The weak version is that we assume
that people have pretty much the same cognitive mechanism. This, however, is
not a version that helps. If we accept that people have slightly varying cognitive
mechanisms, using the mean to draw inferences about these mechanisms – that is,
to get a picture of some average mechanism – we end up with a mechanism that
may not exist in anyone’s head. More on this later.
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work in similar ways in each individual. For example, the heart
operates in the same manner in each person and although some
viable deviations from the standard exist (e.g., atrial septal defect,
dextrocardia), the vast majority of people have similar cardio-
vascular systems. Most of the other major systems in the body
also have the same uniformity across the human species, from the
cellular to musculo-skeletal levels. In response to this justification,
however, we would point to the fact that the brain has one major
difference to the other systems in the body – it changes its mode of
operation as a function of experience3. We consider this response
further below, but for now we suggest that the assumption of
common cognitive mechanisms is one that can be challenged, and
probably should not be the starting point in explaining human
behavior.

ASSUMPTION 2: AVERAGING HELPS US TO ELIMINATE THE
NOISE IN OUR MEASURES TO SEE THE TRUE VALUE
We have no issue with the common statistical notion of sampling
error. This is the notion that, when sampling from a population
of scores, each sample will have a mean that is likely to vary from
the mean of the population with a fairly predictable probability.
That is, there are likely to be many samples with means that fall
fairly close to the population mean, and a much smaller number
that have means further away from the population mean. The
chances of obtaining a sample mean close to the population mean
are increased by taking a larger sample.

The problem we have with sampling is more in the interpreta-
tion of sampling error. Just as we have a difficulty with the concept
of the mean reflecting a true value on some variable, we also find
it challenging to accept that sample values on either side of the
mean reflect noise in the data. This interpretation suggests that
these values are not psychologically meaningful. Instead they are a
nuisance factor that requires elimination. Indeed, if this noise did
not exist, if we could measure “true” values directly, we would have
no need for inferential statistics such as the analysis of variance
(ANOVA).

Despite there being something of a tradition within psychol-
ogy pointing out the difficulty in this assumption (see particularly
recent consideration by Doherty et al., 2013, and more classi-
cally, Meehl, 1978), standard practice would appear to hold tight
to this assumption. Just as there are no obvious justifications
for the argument that the mean reflects some true value, we
have discovered no explicit attempts to justify the elimination
of variance as a “cleaning-up” activity. It just appears to be the
done thing.

A crucial mathematical (as opposed to psychologi-
cal/theoretical) assumption regarding the use of the average to
eliminate noise is the shape of the distribution in question. For the
assumed Gaussian curve averaging provides us with a clear repre-
sentation of the center of the distribution, the“noise” to either side
being averaged away. In a sobering and landmark paper, Micceri
(1989) noted that normal curves are very rare in real psychological

3Other systems in the body do this also (e.g., the cardio-vascular system responds
to regular exercise by becoming more efficient), but this is usually in a quantitative
manner, whereas the brain alters its functioning in not only a quantitative, but also
a qualitative manner (Patel et al., 2013).

data. To calculate the mean in the hope of eliminating noise or get-
ting some glimpse of a “true” or even a typical value hidden in the
variation is simply to overlook reality in favor of a comfortingly
elegant mathematical ideal.

ASSUMPTION 3: ANY INABILITY TO USE THE MEAN AS A
RELIABLE MEASURE OF A STABLE CHARACTERISTIC IS A
PRODUCT OF WEAKNESSES IN METHODOLOGY OR
CALCULATION (i.e., IT DOES NOT REPRESENT A FAILURE IN
THE INITIAL ASSUMPTION THAT A TRUE VALUE EXISTS)
One of the assumptions underlying averaging is that our method-
ologies are inherently faulty in that they cannot be expected to
provide perfect measures of the variables of interest. To some
extent, this assumption is indisputable, considering that even mea-
surements of physical properties (e.g., length, temperature) carry
with them conventional measurement error values. In psychology,
however, we take this assumption further than in the physical sci-
ences. Although we accept that there are features of the physical
environment that will affect the accuracy of any measurements we
take, we are also concerned with the validity and the reliability
of the measures. Validity reflects whether we are measuring what
we think we are measuring. Most often psychological variables are
not directly observable so we need to construct measures that are
directly observable and argue that these reflect the operation of the
unobservable mechanisms we are interested in. Even if we assume
that our measures are valid in this sense, the reliability of these
measures concerns psychology greatly. Indeed, Psychological Test
Theory makes explicit this notion by indicating that each score on
a particular test reflects the true value for that person on the test,
plus error (Novick, 1966). In cognitive psychology, we do not seem
to believe that our measures are capable of producing an accurate
reflection of the state of a person’s cognitive system at some point
in time. Indeed, if we exposed a person to the same stimuli, under
the same conditions, on several occasions, and recorded their reac-
tion times in responding to those stimuli, we would likely average
the individual reaction times, on the assumption that each RT
could not reflect the “true” RT for that person in that condition.

There is little doubt that there would be variance amongst the
RT values recorded in this situation but what is the justification
for assuming that each RT is a deviant of the true value? Instead of
assuming that each RT is the true value plus some error created by
seemingly random processes, could it not be possible that each RT
reflects the state of the cognitive system as it is at that point in time?
By this we mean, behavior in response to the experimental condi-
tions reflects not only the external conditions, but also the state of
the cognitive system as the behavior is occurring. The system will
be in a different state to the one it was in on the previous occasion
when an RT was recorded, and to the state when the next RT is
recorded, if for no other reason than the fact that the system has
experienced a repetition of the experimental conditions and made
the same responses. The assumption then that taking the average
of measures from repeated trials will provide a reflection of some
stable element of the cognitive system seems fanciful given that the
system could not be stable if we keep giving it experiences. This is a
psychological reflection of the Heisenberg Uncertainty Principle –
by measuring a system, we are influencing the system and hence
affecting the very thing we are trying to measure. Unfortunately,
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averaging several scores will not result in a value that reflects some
stable feature of the cognitive system. Instead, this stable feature
may not even exist.

ASSUMPTION 4: THE NOISE IN OUR MEASUREMENTS
REPRESENTS THE EFFECTS OF VARIABLES UNRELATED TO
THE ONE BEING MEASURED
Part of the justification for averaging scores appears to be the
assumption that scores on either side of the mean reflect error.
This error can be error of measurement, as considered above, but it
can also reflect the operation of many factors that influence behav-
ior. There is recognition in psychology that humans are sensitive
to a vast range of variables, and any measurement of one variable
is going to show the effects of many of these other variables too
(hence the widespread usage in psychology of statistical methods
such as Factor Analysis and Structural Equation Modeling). How-
ever, we assume that these effects have several characteristics. One
is that they are random, and the other is that they operate inde-
pendently of the variable we are interested in (i.e., the one we are
currently measuring). Essentially, then, this error is assumed to
be analogous to white noise in a radio signal. As such, calculating
the mean is assumed to be just like fine tuning a radio signal – in
both situations, noise is eliminated to enable a clearer perception
of the signal. Again, though, we wonder what justification there is
for such an assumption. Below we consider whether it is appro-
priate to assume that the variance in a set of scores is a reflection
of variables that are random and independent of the variable we
have measured.

INTERPRETIVE CONSEQUENCES OF USING THE MEAN
The mean is often used as if it is a good representation of a group
of scores. Clearly it is only used when there is variation amongst
scores – if there is no variation, then the scores can be characterized
easily as so many scores of the same value. When there is variation
amongst the scores, some measure that reflects the middle of the
distribution of scores is considered to be a good reflection of the
type of score that is observed in that set. As this variation in the
set increases, however, the confidence one has in the mean being a
good reflection of the group decreases.

This raises an issue with respect to the testing of differences
between groups in an experimental design. Standard inferential
statistics compare the variation between groups with the variation
within groups in order to determine whether the scores in one
group are significantly different to those in the other group. In
spite of its name, then, ANOVA is rarely used to determine whether
differences exist between the variances of two or more samples.
Although there is explicit recognition that it is variance we are
considering, ultimately the conclusions that are drawn in such
situations concern whether the mean of one group is different to
the mean of the other group. So, even though the statistical test
explicitly considers the degree of overlap between the distributions
of scores in the groups, the final conclusion is phrased in terms of
whether one mean is significantly larger than the other.

The extent to which such a conclusion is a fair reflection of
the state of the distributions is of course affected by the size of
the difference between the means but it is also influenced by the
amount of variation in the distributions, and the number of scores

in each distribution. Thus it is not uncommon to see significant
differences between means reported where the differences are very
small. This will happen when the variation within groups of scores
is small, and/or the number of scores is large (Cumming, 2012,
chapter 12).

In the end, though, a conclusion that the mean of one group
is different to the mean of another group can end up being trans-
lated as one condition improved performance more than another
condition, or similar. But is this an accurate summation of the
outcome of the statistical test, and for what purposes are such
conclusions used? When one concludes that one condition led
to better performance than another condition, at best the implicit
conclusion is that, on average, or generally, this condition improves
performance. But, as is clear from the above characterization of
inferential statistics, there may well be significant overlap in the
scores between the two conditions. For instance, if Condition A led
to better overall performance than Condition B, there could well
be scores in Condition B that were better than scores in Condition
A. In other words, the final conclusion may represent an accu-
rate description of the state of affairs for a subset of scores, but
not necessarily for the whole set. Many undergraduate statistical
courses and textbooks include such caveats in the discussion of the
outcome of statistical tests, but the practices of scientists and stan-
dards of review and publication in journals involve few checks or
balances against this kind of concern (see Marmolejo-Ramos and
Matsunaga, 2009 for examples and explorations of good practice
in this regard).

Inferential statistical tests generally do not provide information
regarding the number of cases that do or do not match the pattern
of results represented by the difference in means4. It is, of course, a
trivial matter to generate such information. Doing so can provide
illuminating results.

For example, one of us teaches a unit in Cognition in which
one laboratory exercise involves replicating the Word Superior-
ity Effect. This is where detection of a letter is found to be more
accurate when the letter is presented in the context of a word
than when presented in isolation (Reicher, 1969; Wheeler, 1970).
Data has been collected in this laboratory exercise for over 5 years.
Although the standard word superiority result is found with these
data and supported by a statistically significant superiority in the
word condition, when individual scores are considered, almost
half of the over 500 people in the experiment provided results that
either showed no difference between the conditions (i.e., identical
accuracy scores in each condition), or showed results that were the
opposite of the effect. Although there may well be methodolog-
ical differences between our experiment and the classic versions
published by Reicher and Wheeler, this observation does raise
a serious question over the validity of using inferential statistics
to assess differences between means. If we just examine the dif-
ferences between means and focus only on whether or not this
difference is statistically significant, we can end up with a conclu-
sion that describes the effect of the manipulation as if it has had
the effect on all or most of the individual scores in the data set.
In other words, the mean difference can ultimately represent all

4See Cohen (1977) for a measure (U3) that estimates such group differences post
hoc.
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Table 2 | Number (%) of empirical articles in Memory & Cognition

(2012) and Journal of Experimental Psychology: Learning, Memory,

and Cognition (2012) classified according to main analysis type.

Journal X̄ /NHST Ind. Diffs Other Total

M&C 88 (82.2%) 17 (15.9%) 2 (1.9%) 107

JEP: LMC 79 (81.44%) 6 (6.19%) 12 (12.37%) 97

X̄ /NHST, summary statistics (e.g., mean, frequencies) and null hypothesis signif-
icance testing; Ind. Diffs, analysis explored individual differences in responses;
Other, analysis could not be classified into one of the other two categories (e.g.,
structural equation modeling, chi-squared, Bayesian analyses of various kinds,
regression or mediational analyses).

of the differences, whereas in many situations this may well be
inaccurate. To the credit of Reicher and Wheeler, in addition to
reporting inferential statistics related to the differences between
means, they did also examine the number of people that showed
the effect compared to those that did not. Indeed, in their exper-
iments, the proportion was far higher than in ours. The point
remains, however, that without investigating the data beyond the
means, one’s confidence that the means reflect the overall results
should be low (e.g., Balota and Yap, 2011).

One heavy-handed solution to this problem would be to con-
fine our theorizing to situations where the differences between
conditions are so clear that there is no need for inferential statis-
tics to determine whether or not differences are significant. An
example of such a clear difference between conditions would be
where 80% of participants in one condition show results that are
higher/larger/better/faster than 80% of participants in another
group. This would be a difference in performance that would be
obvious, has a good chance of being replicated, and everyone
would believe. Confining ourselves to effects that are this obvious
would limit the number of phenomena that require explanation,
and may reduce the current preponderance of seemingly unrelated
phenomena and theories5. Although the shortcomings of inferen-
tial statistics have been discussed at great length elsewhere, and for
some time now (Cohen, 1990, 1994; Hammond, 1996), it would
appear that the message is not getting through. Indeed, when we
asked some of our colleagues to read early drafts of this paper, a
common response was along the lines “everyone knows this stuff.”
And yet we see little evidence of a change in behavior. An illustra-
tive survey of the analysis methods used in research reported in
2012 in two prominent cognitive psychology journals is presented
in Table 2. Perhaps the “everyone knows this stuff” response is a
form of the hindsight bias (Hawkins and Hastie, 1990).

An illustration of how problematic averaged data can be comes
from Heathcote et al. (2000). The target of their investigation was

5Other solutions have been proposed before. One is to report effect sizes along with
the results of significance testing (Cohen, 1994). This does not, however, address
the issues we have identified because effect sizes are mostly used in comparisons
of means. In this context the effect size is just a way of characterizing how large
the difference is between the means, in relation to the variance observed. Another
solution is to report confidence intervals with means (Cumming and Finch, 2005).
Again this does not entirely solve the problem because a confidence interval is
just a measure of average variance, and so glosses over details of a distribution of
scores. Balota and Yap (2011) demonstrate that several parameters describing RT
distributions can be psychologically meaningful.

FIGURE 2 | Mean RT data from practice on an arithmetic task.

Participants (N = 40) solved an equation [(x2 − y )/2 = A) with eight
repeating (x,y ) pairs, determining whether A was “odd” or “even” for each
pair, for 40 blocks of eight trials.

the Power Law of Learning. This refers to the observation that
improvement in the speed of performing a task with practice has
a characteristic pattern: performance improves by large amounts
early in practice but these increments in performance get smaller
as practice proceeds. The smooth trend in these learning curves
can more often than not be described well by a power function (see
Figure 2). Such curves have been observed in fields as disparate
as cigar rolling (Crossman, 1959), reading mirror-reversed text
(Kolers,1976) and implicit memory (Kirsner and Speelman,1996),
and are similar to retention and forgetting curves in memory
(Ebbinghaus, 1885). So ubiquitous is this observation that it has
been said to comprise one of the few laws in psychology (Newell
and Rosenbloom, 1981), and the one fact that requires explanation
by any credible theory of skill acquisition (Anderson, 1982; Logan,
1988). Heathcote et al. (2000) however, called into question the
lawfulness of this relationship between performance speed and
practice. They demonstrated that power functions result from
averaging any group data with a downward trend. The impor-
tant point here is that power functions can appear in averaged
data, even when they do not occur in individual data. Certainly
if individual data is inspected, smooth learning curves are rarely
observed. Although performance usually gets faster with practice
on a task, performance from trial to trial almost never follows a
smooth downward trend (see Figure 3).

So, why should theories attempt to explain power function
learning if it does not actually exist in individual performance?
The assumption of many cognitive theorists appears to be that
individual performance does not reflect the real behavior they
wish to explain, and that averaging is required over many trials
and many people to remove the noise from the data in order for
the real pattern to emerge. In the case of the Power Law of Learn-
ing, it appears that skill acquisition theorists assume that learning
is smooth, and follows a power function, and therefore their
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FIGURE 3 | An individual’s RT as a function of practice for specific

items in the arithmetic task of Figure 2.

theories must posit a learning mechanism that produces power
function learning curves. It is possible, though, that this assump-
tion is misguided. Rather than assuming that learning must follow
a smooth trajectory, and so average data must be used to observe
this smoothness, why not accept that the noise in data is an accu-
rate reflection of the cognitive processes underlying performance?
One theory of skill acquisition (Speelman and Kirsner, 2005) does
take this position and considers noise in the data as the outcome of
competition between cognitive processes striving to control per-
formance. The lesson for all theories of cognitive processes, then,
is that proposing mechanisms to explain mean performance may
provide explanations of behavior that does not exist.

ILLUSTRATING THE PROBLEM IN BRAIN IMAGING RESEARCH
Psychology has recently faced a number of controversies that have
caused us to take stock of our assumptions and practices as a
discipline (e.g., Ritchie et al., 2012 and Roediger, 2012 on repli-
cation; Simonsohn, 2012 and Vogel, 2011 on data fraud). Little
about the implications of these controversies is really new (Bakan,
1966; Meehl, 1978; Rosenthal, 1979; Cohen, 1994; Kirk, 1996;
Rosenthal, 1966) though because of the relatively recent develop-
ment and excitement of brain imaging research scrutiny in that
domain is a particularly burgeoning field (Uttal, 2001; Vul et al.,
2009; Carp, 2012), where sources of apparent stability or reliabil-
ity in a behavior, effect or cognitive process are being increasingly
questioned. While there are a number of different statistical and
methodological bases for the various concerns raised by critics,
the assumption of stability of function and consistency of opera-
tion across individuals that averages suggest so strongly is one that
has not been carefully considered in much of the localization of
function neuroscience literature.

Brain imaging research tends to produce colorful pictures of
the brain with specific areas highlighted by bright colors to signify
areas of high neural activity, typically associated with cognitive
functioning of a particular type. Such pictures, however, are only

generated through a process of combining activity patterns across
many trials and many people. Data collected from an MRI machine
are very noisy. Or at least, that is one interpretation. Another inter-
pretation is that MRI machines produce an incredible amount of
data. At any one moment in time the activity of neurons across
the whole brain is inferred from the measurement of blood flow.
If someone looking at a picture of the activity pattern hopes to
see something easily interpretable, it is not surprising that the ini-
tial impression is that of a noisy and possibly random assortment
of activations of varying degrees. However, if one assumes that
hidden amongst the noise are areas of high activation where spe-
cific forms of cognitive processing are occurring, then one might
consider looking for such areas by trying to eliminate the noise.
Much of the noise comes from systematic sources such as the MRI
machine and participant movement and so can be easily compen-
sated for. Other noise, however, is seemingly random neural noise.
Despite the impression provided by functional magnetic reso-
nance imaging (fMRI) pictures, when areas of the brain are highly
active, the other areas of the brain are not quiet. Determining
the signal from the noise, then, becomes an important considera-
tion when analyzing the activation patterns. Several methods are
used to “clean up” the signal. One involves exposing individuals
to many trials involving the same stimuli and requiring the same
responses. The activation patterns from similar trials are then com-
bined through averaging. This method assumes that the activation
associated with particular stimuli and responses is similar each
time. Another clean up method involves combining the average
activation patterns from several individuals. One of the problems
associated with this averaging step is that there are considerable
individual differences in skull proportion. To combine patterns
from different heads requires mathematically correcting each skull
so that it matches the dimensions of a standard skull. This then
ensures that activation patterns are combined from corresponding
brain areas.

All of the averaging and correction involved in the analysis of
fMRI activation patterns is concerning given our arguments about
the mean. In particular we are concerned that fMRI researchers
have designed their analytical tools to match their assumptions
regarding what they will find in the data. Unfortunately, insuf-
ficient critical attention to these assumptions could mean that
alternate hypotheses are ignored. For instance, when researchers
combine fMRI activation patterns from many people, they assume
that brain structures are similar across people, and they are respon-
sible for similar functions in all people. Although we have no
argument with the proposition that human brains share the same
gross anatomy, we wonder about the assumption that specific
localized areas within the cortex are responsible for specific cog-
nitive functions. Some areas of the cortex have undeniable links
with certain functions (e.g., the occipital lobe plays a major role
in vision), but within certain areas, researchers often try to make
the distinctions between an area that could be responsible for cog-
nitive function X, whereas function Y is controlled by a different
area (examples abound, see Gläscher et al., 2012 for a recent one).
Further, we will get a stronger demonstration of this if we combine
the activation patterns of many people, the more the better for the
sake of statistical power. The problem with this strategy is that
alternative hypotheses – that function is not localized, or that it is,
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but is localized differently for each person – are ruled out by the
methodology. The activation patterns that result from averaging
over many trials and many people may not actually reflect what
goes on in any one person’s head. It may only be a reflection of
what we would see if we undertake a lot of averaging. In other
words, the activation pattern may not really exist except as some
epiphenomenon of the methodology. This then raises a further
problem – how can we make sense of group data when consider-
ing the case of an individual. Are we able to generalize a picture that
has been derived from many data points to one data point? There
are clear practical implications in cases involving brain damage
and surgery.

Brain imaging research has over the past decade begun to move
away from simple localization research, and significant develop-
ments have occurred in areas such as single-trial analyses (for a
useful and brief map of that literature see Pernet et al., 2011).
Indeed a recent study (Dinstein et al., 2012) that compared brain
images from autistic adults and control subjects demonstrates how
averaging brain images across trials and individuals can reveal a
story quite different to the one that emerges from a focus on indi-
vidual trial data. Others (Zilles and Amunts, 2013) have explicitly
suggested that variability between subjects is not noise but impor-
tant information. Reviewing neuroimaging work by Mueller et al.
(2013) Zilles and Amunts examine a range of ways in which
group-based analyses of neuronal structure can lead us to overlook
information about individual differences in neuronal structure
and change in structure over time that offers crucial clues to the
processes underlying brain development. In particular, the use
of group means allows different levels of individual variability
to affect the sensitivity of methods used to find differences in
brain regions (low variable regions will show small effects more
noticeably).

While the logic of averaging is clearly problematic in the case
of brain imaging research, and is under current active scrutiny,
this issue nevertheless remains problematic for other areas of
psychology too.

DOES THE MEAN UNCOVER OR IMPOSE UNIVERSALITY?
REFLECTING FINDINGS IN PSYCHOLOGY UPON OUR OWN
PRACTICES
The mean, like any piece of technology, is a tool. In itself it is
impassive. Any use of a tool, however, is conducted on the basis of
standards within a community of practice. While the mean itself
is not laden with any particular theoretical assumptions our use of
the mean is, and these assumptions are not without consequence.

Our purpose in the present paper is to encourage researchers
to more frequently reflect on the fact that in focusing on the
mean, in following a tendency to collapse things and encapsu-
late things into averages, we filter out individual differences and
impose universality rather than finding it.

Molden and Dweck (2006) explore some of the ways in which
a person’s understanding or interpretation of a situation or phe-
nomenon can have a dramatic effect on their behavior. Whether
a person takes intelligence as a fixed capacity (what they term
an “entity view”), for instance, or as something that can change
or develop over time (an “incremental view”) impacts on how a
person performs in learning situations and how they respond to

challenges or feedback. It would appear that individual differences
in the meaningfulness of the situation can, sometimes dramat-
ically, influence what a person does or what they are capable
of, undermining any easy predictions based on what we might
understand to be the “typical” cognitive system underlying such
performance.

Summarizing several strands of such work, Molden and Dweck
(2006) argue that while it is important for psychology to search for
universals in behavior and cognition, these universals should be
carefully described at the right level of abstraction. Our descrip-
tions of the human psyche, when done in general or universal
terms, potentially obscures the ways in which cognition, attitudes,
values and behavior vary between people and between contexts.

This potentially limits our science in two important ways6.
Firstly, by obscuring variation it biases our perceptions of the
phenomena we study, making them appear more stable and deter-
minate than may well be the case. Ironically, research in social
psychology has warned us of such biases in human perception for
decades. It is termed the fundamental attribution error (Jones and
Harris, 1967; Ross, 1977), or correspondence bias, and is a noto-
riously difficult habit to break. Put simply, when we see another
person act in a particular way we tend to see the behavior as dis-
positionally driven, rather than context-dependent. We are more
likely to view the behavior as a stable characteristic of the indi-
vidual rather than as a response to the specific vagaries of the
circumstances in which the behavior occurs. To criticize much
psychological research as falling prey to the fundamental attribu-
tion error would of course be glib and inaccurate but as a notion
that is both provocative and evocative it is a useful tool with which
to illustrate the problems of overlooking or downplaying varia-
tion in people’s behavior or cognitive activity and summarizing
outcomes with means alone. We rightly take pride in our use of
objective tools in the conduct of our research and analysis but our
exuberance for method can lead us to overlook the embedding of
these tools in less objective assumptions and standards of practice
that need periodic review. It is easy for us to make claims such as
“the data show. . .” when the data can of course be used to support
a number of different possible stories, once we have tamed it with
data-cleaning techniques and stabilized the outcome with a single
summary figure – the average.

The second way in which our science is limited by an over-
dependence on the mean as summary is in the generalization
of results. The frequent use of the average as the sole descrip-
tion of a group’s performance on a task, or measurement on a
trait, characteristic or outcome, greatly limits our understanding
of individual cases. It is well known that we cannot predict the
individual case from statistics but where our discussions of mea-
surements are presented almost exclusively in terms of averages
we constrain ourselves to describing and discussing groups alone.
It may be argued, reasonably, that decades of measurements have

6Molden and Dweck and other’s research noted here uses mean group differences
in precisely the way we are criticizing. The point is not that such research is not to
be done, or is somehow valueless (far from it) but it must be interpreted and used
judiciously, and we should look to what is possible given such conclusions rather
than what is somehow essential. In the present case, we should be conservative
about our use of certain statistical tools precisely because it is quite possible that it
will negatively affect our science, as discussed further in the text.
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shown that human beings are so variable in their responses as to
make confident predictions of individual’s actions to be foolhardy.
There are so many variables, often interacting in non-linear ways,
that generalization to the individual simply cannot be a reasonable
aim of the discipline.

It is certainly the case that researchers routinely report variabil-
ity measures (e.g., standard deviations, standard errors, confidence
intervals) along with means. Despite this widespread reporting,
however, one can question whether researchers are utilizing this
information to temper their conclusions that are based upon the
means. These measures generally provide information about the
size of an underlying distribution but little information about
its shape. Given the overwhelming focus upon mean scores, we
wonder if the reporting of variability measures is merely an
afterthought, or just fulfilling an expectation of journal reviewers
and editors. More obviously, the reporting of sample variability
measures completely overlooks the variability inherent in individ-
ual participants’ responses – information regarding this variability
is eliminated by using subject means to reflect each person’s
performance.

Nonetheless, examining ranges of scores and variability as phe-
nomena of interest in and of themselves would provide us with a
context within which to frame individual observations, the bet-
ter to understand what the possibilities are such that we can
then make a more informed decision about what the probabili-
ties might be in the individual case. Rather than seeing outliers as
unclean, aberrations or errors that should be excised before the
real work begins, they provide us with information on what is
possible. Rather than trying to prophecy single specific outcomes,
which would likely be unsuccessful, a describing of the landscape
of possibilities would provide useful insight in many behavioral
contexts.

Context effects are ubiquitous in all areas of psychological
research. Our habit of describing things in terms of means rather
than ranges and distributions tends to reduce analysis of this fact
into a list of independent observations, a shopping list of possibil-
ities with little to relate the differences in cognitive function from
one situation to the next. The very term “context” is frustratingly
difficult to define, and varies in use from experiment to experi-
ment, researcher to researcher, a lack of discipline that isolates the
work of different individuals and thus obscures what relationships
exist between the various independent observations, making it
difficult if not impossible to overcome the “shopping list” state of
our current understanding. (It is left as an exercise for the reader
to review what the “context effects” are in their own domain of
interest and to examine just what is being considered as “context,”
and the criteria on which that decision is based.)

We would argue that the unguarded use of the mean to
summarize outcomes from different experiments suppresses the
perception of both variability and continuity between results,
tempting us to see the differences as more stable and certain than
they really are, and leading to the balkanisation of research that
limits our insights into psychological functioning. In this, we sug-
gest that the mode of analysis and description inherent in the
use of the mean as principal summary statistic is very similar to
that of the cognitive linguistic phenomenon of nominalization as
described by Barsalou et al. (2010), p. 350,

...it is possible to conceptualize nouns in decontextualized ways, and
these decontextualizations play important roles. We err, however, when
we mistakenly believe that these decontextualized mechanisms refer to
meaningful entities in isolation, and forget that they operate intrinsically
in contexts and depend on contexts for their realization. The mechanism
indexed by a noun integrates a large system of situated patterns, with this
system usually producing an emergent form well-suited to the current
situation.

Similarly, the behavior or cognitive activity indexed by a mean
of measured performance is a collection of context-sensitive pro-
cesses that likely include much more than the specific independent
variable with which that mean is explicitly associated in a given
study. Though it is inherent in psychological training that we be
critical and circumspect in our assessment of reported results, we
are not immune to the biases that we report in our participants’
behavior.

In no sense do we suggest that the mean is somehow wrong.
The problem is rather that it is so satisfying. Decades of research
on attribution biases and Barsalou et al.’s (2010) work on nomi-
nalization suggests that the kind of encapsulated and stable idea of
performance that the mean suggests is an enticing, seductive view
(at least for the Western majority involved in high “impact” psy-
chological research). The basic aims of research, insofar as it entails
a search for the general and the universal fill our perceptions and
interpretations of data and settle standards of practice that lean
heavily toward the stable, reliable and consistent. We thus suggest
that the problematically uncritical use of the mean is an expres-
sion of an unreflectively held view of the psychological system.
Re-consideration of our statistical tools will also involve some re-
consideration of our theoretical standpoint and the standard ways
in which we formulate research questions.

Though there are certainly domains and approaches within
psychology that emphasize contextualized performance and situ-
ational variability (see for instance Barrett et al., 2010 for a survey
of recent cognitive work; see also the much discussed situational
view of personality by Mischel and Shoda, 1995; Mischel, 2004),
the search for general capacities and universal functions is by far
the more common.

SUPPRESSING THE ASSUMPTION OF STABILITY
There are alternatives to thinking about psychological mecha-
nisms as shared and stable characteristics of the human species
that do not lead us into despair or pessimism about the pos-
sibility of a unified and systematic theory of psychology. The
development, over the past two decades, of modes of thinking
that place great emphasis on individual developmental dynamics,
the (often messy) details of a cognitive agent’s actual, real, bodily
interaction with its environment, provide us with an approach that
allows for more nuanced, dynamic perspectives on psychology and
psychological processes.

There are a number of these different ways of thinking. They
are not necessarily commensurable with one another and as yet do
not offer a single coherent vision of psychology that might be rec-
ognizable as a “paradigm” in the Kuhnian sense, to which we could
leap in some revolutionary fervor. However, what these different
approaches make clear, having been developing around the fringes
of the discipline for decades and gradually encroaching further
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into mainstream research, is that valuable, fruitful research can be
done in which the emphasis is placed on the dynamics of change in
psychological processes over time, and in which the complexity of
interactions between the individual characteristics of both the per-
son and the environment in which they are acting can be accounted
for and incorporated into scientific psychological theory. Such
approaches do not suppress variation in the behaviors of people
but rather see it as a rich resource for understanding how psychol-
ogy interacts with context. Similarly, while these approaches use a
variety of statistical tools other than the standard significance test-
ing that remains the mainstream, the arithmetic mean is still used,
but its use does not require the assumptions of underlying “true”
values clothed in noise with which we take issue in this paper.

The developmental dynamics of Thelen and Smith (1994) are
a perfect example of this focus on processes and change over
rigid structure. Thelen and Smith examine development as a
contextualized process of interplay between the child and their
environment, providing evidence for the growth of motor skills
not as the blossoming of standard, universal cognitive capacities
(true values to be approximated with averaged observations) but
as the coping of the individual child with the demands of their
idiosyncratic histories. The differences between children in their
development has at least as much to tell us about how development
occurs than the similarities.

The idea that the cognitive system is not rigidly specified, but is
in fact supple and responsive (over a number of timescales) to the
quirks, specifics and details of the environment in which it operates
is summed up by Clark’s (1997) description of the “soft assembly”
of cognitive function. Rigidly or “hard assembled” systems have a
fixed structure and mode of operation. There is a “right” way to
describe how the different components of the system relate to one
another, an ideal of the system that is, in some fundamental way,
correct. Not so for soft assembled systems.

Soft assembled systems tend to have loosely inter-connected
components, less fixed positions within a structure so much as a
pool of potential resources that can be organized within various
constraints in response to situations and task demands. There is
no ideal of how such a system should be organized, no schematic
that can be drawn that captures the correct way in which the
components might relate to one another, as these things will
vary continuously depending on contexts, individual histories and
immediate requirements. Soft assembled systems tend not to use
central controllers but rather they self-organize, with task-specific
activity emerging from the dynamic interaction between compo-
nents and environment. This can happen either over quite brief
timescales, or more slowly over longer periods.

The net result, if cognitive activity is assembled in such a man-
ner, is that similar behavior might in fact be the result of quite
differently organized psychological processes. There is no“correct”
mapping of the psychological system, no signal about cognitive
structure being hidden by the noise of individual variation. Such
a theoretical standpoint eschews assumptions of single true values
to be sought in the noise of individual variation and measure-
ment error. What must be understood is the dynamics of response
to situations over time, with an appreciation that different indi-
vidual histories will often result in quite differently arranged but
similarly performing psychological systems. What is more, it may

be the case that even within a single individual over particular
timescales (those associated with learning in its many forms) we
might see the structure and functioning of the cognitive system
changing dramatically.

UNDERSTANDING SIMILARITY AND STABILITY IN
BEHAVIORAL PERFORMANCE
The idea of a stable and shared set of basic cognitive processes
underlying some of our use of the mean is not entirely an assump-
tion. It is rooted in the success of our everyday interactions, the
ease with which we can coordinate with one another, share experi-
ences and activities. A critical reader would no doubt at this point
be arguing that the statistical tests we typically use in data anal-
ysis invariably take the variance or deviations within the sample
into account, while also emphasizing the plain fact that while it
might be true that everyone is unique, it is plainly true that we
share a great deal. People vary, sure, but looking around, they do
not vary nearly as much as they could in most cases, and most of
what differences do exist seem to be quite subtle – certainly noth-
ing requiring any fundamental re-think of our use of statistics or
theoretical perspective.

Amongst these new approaches to psychological research, how
is this simple truth about the similarity of human beings to be
captured and explained?

There are certainly some things that human beings generally
share (though there are very few that are genuinely universal).
Our basic body plan, our nutritional requirements, the range of
physical stimuli to which we are sensitive and with which we can
interact, these tend to vary within fairly narrow ranges. These
shared constraints on our behavior will provide particular chan-
nels for developmental change, channels that will be structured
further by the cultural provision of particular developmental tasks
and demands. Each human being follows a unique developmen-
tal trajectory but there are constraints on that trajectory. A key
observation here, however, is that this more developmental mode
of explanation suggests that the reason for people’s similarities is
not the inexorable unfolding of a pre-specified and consistently
presenting cognitive system, but the shared constraints on devel-
opment, which may specify the ends (consistency in behavior), but
will typically underspecify the means.

The developmental work of Thelen and Smith (1994) once
again offers us some examples. Their much cited work exam-
ining the development of reaching and grasping in two infants,
Hannah and Gabriel, describes how features of the children’s bod-
ies, their intrinsic dynamics, idiosyncrasies of energetics or even
simply mass, mean that each child has a different developmental
task in order to achieve the same outcome. Whereas the excitable
Gabriel must learn to draw energy out of the whole reaching sys-
tem and slow his movements down if he is to manage to get his
hand successfully to a target object, the more placid Hannah must
learn to put more oomph and effort in to achieve the same result.
Karmiloff-Smith (2000) describes similar differences, this time
not in order to explain individual differences but rather to explain
the response to different developmental constraints in the perfor-
mance of the “standard” function of face recognition for people
with or without Williams syndrome (WS). She argues that sim-
ilarly proficient behavior of people with or without WS in the
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overall task of face recognition is underpinned by quite variant
collections of more basic cognitive skills (e.g., recognizing facial
identity, facial emotion, eye-gaze direction, or lip-reading). That
is, the same behavioral outcome can be the result of quite differ-
ent forms of underlying process. This is a clear case where one
researcher’s noise is another researcher’s signal.

Typically as researchers it is precisely those choices and manipu-
lations of the environment that will ensure the highest probability
of similar performance are those most highly valued in exper-
imental settings. In most of our research we take great pains
to limit the range of participants’ behaviors in order to make
consistency and similarity the most likely outcome. Gross vari-
ability, or indeed any variability not directly attributable to the
chosen independent variable is considered a sign of a poorly
designed study – other potential sources of change and difference
are suppressed. There are certainly times when this is desirable.
We suggest, however, that such practices have been adopted as
standard and implemented by many researchers without due con-
sideration of their valid range of application. Recently developing
theoretical perspectives within the dynamical family of view-
points push explicit reflection on these questions to the fore
once again. We consider this a very positive development, one
which will not suppress the use of the mean in our research, but
will hopefully suppress its use in an uncritical, or overly focused
manner.

CONCLUSION
Our point in raising these issues is not to suggest that psychology
wean itself off use of the mean, or to go cold turkey on aver-
ages. Such inane recommendations would deserve the disdain with
which they would inevitably be met. However, we do argue for a
more careful, critical and explicit use of averages in the discus-
sion of measurements and the reporting of results. Specifically, we
argue that the mean must not be used without reflection on the
theoretical assumptions and frameworks that are underlying its
use and we suggest that in the typical case a theoretical perspec-
tive closer to that of dynamical systems will be more appropriate,
providing more context and a fuller picture of the behavior in
question from the data observed.

The average provides us with important and useful information
but we see its use in summarizing and analyzing groups to sup-
press important individual differences in behavioral and cognitive
performance as having become unbalanced. The range and vari-
ance of scores in distributions should be reported as frequently
and clearly as averages and should temper our easy acceptance
of the mean as representative of the numerous individual peo-
ple whose behavior or characteristics are being recorded. Tukey
(1977) pioneered graphical techniques for presenting such infor-
mation. An excellent recent example is provided by Doherty et al.
(2013), whose Figure 4 presents the means from a one-way ANOVA
design, along with all of the data that featured in the analysis.
This figure not only depicts the relationship between the inde-
pendent variable and means on the dependent variable, but it
also reveals the extent to which the relationship exists amongst
the individual observations, and represents the overlap between
conditions more completely than a group of error bars or con-
fidence intervals. Other examples already mentioned are those

of Marmolejo-Ramos and Matsunaga’s (2009) work on graphi-
cal techniques in exploratory data analysis and Balota and Yap’s
(2011) suggestions about “moving beyond the mean” in analysis
of reaction time curves. Readers are also pointed toward Landau’s
(2002) introduction to survival curves, which allow for the map-
ping of relationships between variables and outcomes over time in
a simple but clear manner.

Rather than focusing purely on the question of whether a dif-
ference exists, our aim should be to use statistics to illustrate and
characterize the range of measurements recorded as fully as pos-
sible. By using the range of quantitative options available more
fully (range, median, variance, and others) we can provide a better
qualitative appreciation of the behaviors we observe, a richer and
more nuanced picture of the phenomena that we are interested
in describing, explaining and predicting. This will also allow our
predictions to become much more interesting – not just whether
one group will be bigger or faster or more but what the range or
distribution of outcomes are likely to be depending on the size of
the sample or its composition. Further, we could examine whether
there are differences on a range of variables (e.g., working mem-
ory capacity, IQ, reading speed) between people who do and do
not show the average target effect. This will provide us with a
richer data source that may reveal more about why some people
exhibit the effect and others do not, and this would expose more
information about the mechanism under scrutiny.

We would also do well to expand the set of tools available to us.
The history of psychology is rich in alternate methods of analyzing
behavior that do not rely on averaging group data. Research in
psychophysics regularly analyses data from individual subjects;
neuropsychology has a long history of single case studies; Piaget’s
theories were developed on the basis of analyses of the behavior of
a few subjects. In cognitive psychology, however, although there
are many researchers who fit mathematical models to individual
data (Lewandowsky and Farrell, 2011), the modal behavior is to
focus on grouped data and average performance (see Table 2).
Lewandowsky and Farrell, 2011 (p. 106) suggest

that it may be advisable to fit one’s models to both individual data and
aggregate data; if both yield the same result, one can have increased
confidence in the outcome. If they diverge, one ought to rely on the fit to
individuals rather than the aggregate.

With such data, dynamical and complex systems thinking offers
rich possibilities for alternate modes of investigation, as does
Bayesian analysis. Of course, these new instruments would not
exempt us from our role as sensitive, judicious and critical tool
users any more than would our more widely practiced and familiar
analytical techniques.

The mean’s many roles should be clear in our minds as we
design and conduct our experiments, as we take measurements,
and carry out analyses. Interpretations of the results should be
limited accordingly. Such critical consideration of the mean may
prompt us to broaden our methodological horizons, balancing a
sensitivity to the potentially universal and broadly shared with the
unique, the variable and the idiosyncratic. Ultimately, we should
be mindful of the purposes for which we are using the mean and
more importantly, the things we are trying to reflect by using the
mean. We should consider the degree to which we can assume
that the people from whom we take measurements and calculate
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average scores all possess a similar cognitive mechanism that
underlies the performance we have measured. If we think there
is likely to be a high degree of similarity in mechanisms, then
reflecting that performance with a mean is justified. Otherwise,
the mean will severely obscure variations in performance and
hence the variety of cognitive mechanisms possessed by people.

Finally, as researchers, we should deliberate over whether we are
making the assumptions about the mean that have been high-
lighted here. If these assumptions are implicit in our methodology,
then we should consider whether each is justifiable in our particu-
lar research context. If they are not justifiable, then alternate tools
may be necessary.
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The Editorial on the Research Topic

Challenges to Mean-Based Analysis in Psychology: The Contrast Between Individual People

and General Science

In a recent paper we (Speelman and McGann) argued that psychology’s reliance on data analysis
methods that are based on group averages has resulted in a science of group phenomena that may
be misleading about the nature of and reasons for individual behavior. The paper highlighted a
tension between a science in search of general laws on the one hand, and the individual, variable,
and diverse nature of human behavior on the other. Two central traditions in psychology are
challenged by this tension: (1) data is collected from a large number of people and distilled into
a handful of parameters that reflect the middle of a distribution of scores and the average variation
around that mid-point, and (2) theories are developed to explain the average performance of
the group. The disjunction between group-based measurements and the actual psychology of
individual people raises specific concerns in both research and applied professional domains of
psychology. For instance, a clinician who reads in a report that Therapy A leads to a significantly
greater improvement in depression than Therapy B might be tempted to adopt Therapy A in her
practice. But what are the odds that Therapy A will be the best option for the next depressed client
to walk in her door? What does an observation that, on average, people find it easier to identify
letters presented on a screen when they are presented at the end of a word than when presented
in isolation actually tell us about the specific cognitive processes occurring in specific people’s
activities? Are we justified in interpreting this result as reflecting something about the way every
person’s mind processes letters and words? To what extent should we explore the prevalence of this
pattern of responding before we start making claims about cognitive mechanisms that are general
to all humans?

We argued that more explicit and careful justifications are required for the common practice
in psychology of extrapolating from average data to general laws, but also from general laws to
explanations of individual behavior. Given the ability of humans to adapt to their environments, it
would seem unlikely that everyone would develop identical cognitive processes for any given task.
As a result, developing general theories about any given task, and using those theories to develop
methods for clinical interventions or educational purposes would seem a risky endeavor.

This Research Topic explored this concern about the pitfalls of using the mean for the basis
of psychological science. The problem is universal in its applicability to psychology, and opinion
papers, reviews, and original empirical research from all areas of the discipline were invited.

A total of 16 authors contributed 9 articles to the Topic. The range of issues that the authors
viewed through the lens provided is impressive. These articles follow two principal themes. The
first concerns the relationship between theory and different statistical techniques, and how a more
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comprehensive understanding of psychology demands a more
varied (and perhaps more precise) set of investigative techniques.
The second theme concerns more fine-grained technicalities,
and the papers here illustrate the practical significance of
understanding the relationship between measures of central
tendency and other characteristics of the data sets that give rise
to them.

Papers in the first theme explore ways in which we can
discipline our data collection to avoid the traps of logic associated
with careless use of averages. Campitelli, for instance, argues
that psychology typically produces imprecise theories and so
tends to fit its research questions to the available statistical
tools. He advocates for the development of more precise theories
and describes four analytical methods that he has used to
answer precise research questions and which do not require the
calculation of themean. Grice also recommends the development
of theoretical models that are person-centered, rather than
group based, and so do not require aggregate statistics, such
as the mean, to evaluate. Such an approach is perhaps more
akin to a detective gathering clues to solve a mystery, enabling
investigators to gather information and test specific models based
on patterns of collected evidence, rather than on the success or
failure of individual observations.

McAuliffe and McGann explore one particular way to gather
information about the context of behavioral measurements
that may highlight variability, and enable an exploration of
that variability within standard laboratory tasks. They suggest
adapting Hurlburt’s descriptive experience sampling method for
the laboratory in order to enable interrogation of behavioral
performance in terms of the details and variety of individual
experiences reported by participants during a given task.

Finally in this group, Kirsner’s article describes the long and
convoluted process involved in predicting the locations of two
related shipwrecks. He shows how aggregating many disparate
pieces of information pointed to the most accurate locations for
these wrecks, a process he likens to the calculation of the mean
or population parameter, and so highlights a situation where
multiple perspectives provide a kind of parallax that can be used
to bring a single target into focus, rather than depending on
multiple measurements of the same variable to average out noise.

Complementary to these explorations of alternative
methodological or analytic approaches are papers that illustrate
and explicate more specific technical problems with various uses
of the mean. In each of these papers the relationship between
the mean and other aspects of the data in question can have a
substantial impact on the validity of our inferential techniques,
and the kinds of conclusions we might draw.

Speelman andMuller Townsend examined the extent to which
average group performance can mask the heterogeneity that
exists between the members of a group. They demonstrated
that a substantial proportion of participants do not demonstrate
a transition from controlled to automatic performance in a
standard training experiment, despite the fact that the group
results suggested such a transition occurred.

Looking at linear mixed-effects models as a set of analytical
methods for overcoming problems associated with the mean,
Lo and Andrews examine their ability to satisfy normality
assumptions without the need to resort to transformation

allowing investigators to work much more closely to the raw data
themselves.

Hamaker and Grasman demonstrate how decisions about
the centering methods used in cluster analysis can affect the
ultimate solution, and that this affects levels of a multi-level
autoregressive model differently. Their work emphasizes once
again the importance of careful, deliberate use of our analytical
tools, and that effective statistics rely on clearly set out, and
explicit theorizing. Schuurman et al. work complements this
somewhat examining the effect of including multiple sources
of variation into a model, specifically focusing on noise in
data. Mostly associated with measurement error, they show that
noise can have a substantial effect on parameter estimation in
autoregressive modeling. On the basis of their simulation study,
they conclude that incorporating this noise into an analysis
results in more accurate estimation.

Finally, Trafimow discusses how the meaning that can be
attributed to the value of a sample’s standard deviation can
depend on the value of the sample mean, and vice-versa.
Using a newly defined “coefficient of centrality” (the reciprocal
of the coefficient of variation) as a means of relating the
mean and standard deviation, he recommends that researchers
routinely consider standard deviations when interpreting means.
While other papers perhaps illustrate more dramatic departures
from currently widely used practices in psychological statistics,
Trafimow’s work shows how relatively modest changes in our
approach can provide quite striking improvements in our
understanding.

Psychology as a discipline has been facing challenges that are
not simply statistically significant, but practically, and perhaps
fundamentally so. In our 2013 paper we noted that much in our
argument was not particularly novel to psychologists, but despite
a background or low-level awareness of possible problems, as
a profession we have rather stubbornly pushed on with an
uncritical or unthinking use of averages in our descriptions of
groups, and a suppression of variation in our interpretation
of results. The papers in this collection include a range of
perspectives that provide concrete examples of how to approach
research design, data collection, and analysis differently. No
one contribution will provide a solution to our multifarious
challenges, but nor should it. Our subject matter is complex
and subtle, our investigations andmethodological techniques will
need to be equally so.
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In an important theoretical article Speelman and McGann (2013) indicated that psychological
researchers tend to use statistical procedures that involve calculating the mean of a variable in an
uncritical manner. A typical procedure in psychological research consists of calculating the mean of
some dependent variable in two or more samples and to present those means as summaries of the
samples. The next step is to use some statistical technique (e.g., t-test, ANOVA) in order to be able to
determine the probability of finding the observed differences betweenmeans in those samples given
that the difference between the means of the populations from which the samples were extracted
is zero. If this probability is very low (i.e., <0.05) the psychological researcher decides that the
difference between the means of the populations of interest is not zero.

This procedure—the null hypothesis statistical significance testing (NHST) procedure–has
received a huge number of criticisms, which are beyond the scope of this article. However, I would
like to present the anecdote told by Cohen (1994), not only to criticize the NHST procedure itself
but also the uncritical manner in which the procedure is used. Cohen tells us that a colleague
hypothesized that a rare disease did not exist in a population; he then collected a sample of 30
individuals and found that one of them had the disease. He then wondered what type of significance
test should be used in this situation. Obviously, the existence of one case with the disease is enough
evidence to refute the hypothesis, but the uncritical search for a hypothesis testing procedure
precluded the researcher from seeing the obvious.

This anecdote nicely dovetails with Speelman and McGann’s (2013) assertion that psychological
researchers tend to use procedures that involve calculating means in an uncritical manner. The
goal of this article is to emphasize that there are procedures that do not involve calculating means,
which are perfectly sound to answer research questions. In the following sections I will present the
endeavor that other colleagues in the field of psychology of expertise and I embarked on with the
purpose of testing hypotheses of the deliberate practice framework (Ericsson et al., 1993). I will
present four measures that did not involve calculating the mean (i.e., variability, a value, a case, and
distributions) I have used in my research to answer research questions. Before that I briefly explain
the deliberate practice framework.

Deliberate Practice Framework

Ericsson et al. (1993) presented the deliberate practice framework of expert performance. The
framework provides recommendations of how to conduct research in the field of expertise, it
defines what deliberate practice is and it states that abundant deliberate practice constitutes a
necessary and a sufficient condition to achieve high levels of expertise (see Campitelli and Gobet,
2011; Ericsson, 2014; Hambrick et al., 2014a,b for a discussion about the hypotheses of the
deliberate practice framework).

Ericsson et al. (1993) defined deliberate practice as engaging in highly structured domain-
specific activities deliberately developed to correct technical mistakes and to improve
performance, which are conducted with high concentration levels and are followed by
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immediate feedback (e.g., given by a coach). They indicated that
these activities are not typically enjoyable and they distinguished
deliberate practice from other activities such as work and
play. The deliberate practice framework includes the strong
statement that genetic differences among individuals do not
explain differences in expert performance (except for the case
of height in some sports such as basketball), and that genetic
differences may only contribute to expert performance indirectly
through deliberate practice (i.e., there may be genetic differences
in the willingness to engage in long periods of deliberate
practice).

As indicated by Campitelli and Gobet (2011) and Hambrick
et al. (2014a) the deliberate practice framework claims that
abundant deliberate practice is both a necessary and a sufficient
condition to achieve high levels of expert performance in sports,
games, arts, and science.

Answering Research Questions with

Measures of Variability

In a study conducted with 104 chess players (see Gobet and
Campitelli, 2007; Campitelli and Gobet, 2008 for details), among
other questions, Campitelli and Gobet requested participants to
indicate the number of hours of individual and group practice
they had engaged in since they started playing chess. The
procedure was similar to the one used by previous researchers
who mostly favor the deliberate practice framework (e.g.,
Charness et al., 1996, 2005).

In order to test the research question “Is abundant deliberate
practice a sufficient condition to achieve high levels of expert
performance in chess?” Campitelli and Gobet (2011) reviewed
previous literature on chess expertise and utilized three
procedures. In this section I focus on one of them: calculating the
variability of the number of hours to achieve the master level—a
level of expertise 3.5 standard deviations higher than the mean1.
If the variability is small, this would give support to the deliberate
practice framework whereas a large variability would provide
evidence against that framework. This procedure was based on
Gobet and Campitelli’s (2007) dataset. Gobet and Campitelli had
access to archival data that allowed them to determine the exact
year in which the players achieved the master level. They used
these data in combination with the number of hours of practice
that each player accumulated until they achieved the master level.
They then calculated the variability on the number of hours
required to achieve that level. They found a range from 730 to
16,000 h of individual practice to achieve the master level. Thus,
the deliberate practice framework’s hypothesis that abundant
deliberate practice is a sufficient condition to achieve high levels
of expertise was not supported by the data.

1The chess international rating system uses the Elo (1978) scoring system, which

follows a normal distribution with a theoretical mean of 1500 and standard

deviation of 200, in which the current world champion possesses a score of

2876. The psychology of chess literature typically uses the following hierarchy

to categorize chess players: >2600 = grandmaster, >2400 = international

master, >2200 = Master, >2000 = Expert or candidate master, >1800 = Class

A player, >1600= Class B player, >1400= Class C player.

Answering Research Questions with One

Value

As indicated by Campitelli and Gobet (2011) another way of
testing the above hypothesis is to find one individual who
engaged in abundant deliberate practice and failed to attain
the master level. This would rule out abundant deliberate
practice as a sufficient condition to achieve high levels of expert
performance. Campitelli and Gobet reported that there were
several players dedicating more than 20,000 h to chess who
did not achieve the master level; therefore, the hypothesis that
deliberate practice is a sufficient condition was not supported by
the data.

Answering Research Questions with One

Case

Ericsson et al. (1993) hypothesized that 10 years of intense
dedication to a field are necessary to achieve high levels of expert
performance. This claim was slightly changed and popularized
to the general public by the writer Malcom Gladwell in his
bestseller “Outliers” (Gladwell, 2008). Appealing meritocratic
values Gladwell captured the public imagination by coining the
“10,000 h rule”: 10,000 h of intense dedication are necessary to
achieve high levels of expert performance.

In order to test this hypothesis is not even necessary to collect
data because archival data are available. Finding one case in
which a high level of expert performance in chess is achieved in
less than 10 years—in other words, finding a Mozart of chess–
would refute the hypothesis. Indeed, Gobet and Campitelli (2007)
identified more than one case: Ukranian Ruslan Ponomariov and
Hungarian Peter Leko attained the grandmaster level (i.e., 2 levels
[or 2 standard deviations] up the master level) at the age of 14,
and in interviews they both reported having started playing chess
at the age of 7. More impressively, Ukranian-born Russian Sergei
Karjakin obtained the grandmaster level at the age of 12 and the
international master level at the age of 11. At the age of 11 he
was hired by Ponomariov to assist him in the preparation for
the 2002 Chess World Championship match. More recently, the
current world champion, Norwegian Magnus Carlsen obtained
the grandmaster level at the age of 13 and reported that he played
his first chess tournament at the age of 8 (see Gobet and Ereku,
2014, for more details on the case ofMagnus Carlsen). Nowadays,
there are 23 players who achieved the grandmaster level before
the age of 15. These data suggest that 10 years or 10,000 h of
intense dedication are not necessary to achieve high levels of
expert performance.

Answering Research Questions with

Distributions

Hambrick et al. (2014a) re-analyzed Gobet and Campitelli’s
(2007) data and presented a figure (see Figure 2, p. 39) with a
distribution of hours of deliberate practice in three groups of
chess players: master players, expert players and intermediate
players (i.e., players with less than 2000 points ranging a number
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of categories). Although the mean hours of deliberate practice
between groups differ [masterM = 10,530 h (SD = 7414), expert
M = 5673 h (SD = 4654), and intermediate M = 3179 h (SD =

4615)], as suggested by the large standard deviations, the overlap
among the three distributions is evident by just visual inspection.
For example, as expected, more than 60% of the intermediate
players practiced between 0 and 2500 h. If abundant practice were
a necessary condition to achieve high levels of expertise it is not
expected to have players of the other groups in this interval of low
practice. However, more than 25% of the expert players andmore
than 10% of the master players are in this interval. Moreover,
the mode of the master and the expert groups is located in the
same interval (i.e., between 5000 and 7500 h of practice), with
more than 30% of experts, almost 25% of masters and almost
10% of intermediate players located in this interval. Furthermore,
as expected, about 25% of the masters accumulated more than
17,500 h of deliberate practice; but, unexpectedly, about 2% of the
experts and about 3% of the intermediates also accumulatedmore
than 17,500 h of deliberate practice.

Conclusion

As indicated by Speelman and McGann (2013), calculating
a mean of some dependent variable as a first step of other
statistical procedures is only one of a range of procedures
available for the psychological researcher. There are two main
reasons why psychological researchers tend to overlook the
type of analyses presented above. First, psychological researchers

are trained in application of statistical procedures that are
typically useful for most types of research. Based on my
experience with colleagues of other disciplines, this training
is of high quality, thus psychological researchers have reasons
to be proud of their analytic skills. However, the training
focuses on the application, not the understanding, of those
procedures. Indeed, research has shown that psychological
researchers have difficulties in understanding p values (e.g.,
Badenes-Ribera et al., 2015). Second, psychology has a shortage
of formal (i.e., mathematical, computational) theories that allow
researchers to make precise numerical predictions of values (or
a range of values) in experiments. This leads to relying on
qualitative predictions (i.e., a group will have a higher average
than another group) in which procedures involving calculating
group means are the most appropriate. In this respect, Ericsson
and colleagues should be credited for providing numerical
predictions (i.e., 10 years (or 10,000 h) of deliberate practice
are necessary to achieve high levels of expert performance),
which can be tested with the analytic procedures explained
above.

This article builds upon Speelman and McGann’s (2013) call
for critical use of statistical procedures, and illustrates four
sound procedures to answer research questions, which do not
involve calculating the mean. It is to be hoped that this article
contributes toward the development of formal theories and
ingenious procedures to answer research questions, as opposed
to fitting research questions to the requirements of extant popular
statistical procedures.
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From means and variances to
persons and patterns
James W. Grice*

Department of Psychology, Oklahoma State University, Stillwater, OK, USA

A novel approach for conceptualizing and analyzing data from psychological studies is
presented and discussed. This approach is centered on model building in an effort to
explicate the structures and processes believed to generate a set of observations. These
models therefore go beyond the variable-based, path models in use today which are
limiting with regard to the types of inferences psychologists can draw from their research.
In terms of analysis, the newer approach replaces traditional aggregate statistics such as
means, variances, and covariances with methods of pattern detection and analysis. While
these methods are person-centered and do not require parametric assumptions, they
are both demanding and rigorous. They also provide psychologists with the information
needed to draw the primary inference they often wish tomake from their research; namely,
the inference to best explanation.

Keywords: observation oriented modeling, integrated model, inference to best explanation, mean, variable-based
modeling

Introduction

In his erudite and now classic book Constructing the Subject, Danziger (1990) describes how
psychology came to be dominated by an approach toward data conceptualizing and analysis he
dubbed the “triumph of the aggregate.” Charting the meteoric rise of tables of means, variances,
correlations, and other aggregate statistics reported in psychology journals from the early to mid-
1900s, Danziger (1990) lamented the corresponding demise of the individual subject, or person,
in psychology. Aggregate statistics were moreover shown to rise in prominence despite cautionary
claims regarding their hegemony (Sidman, 1952; Bakan, 1954), including a critical appraisal offered
by none other than Skinner (1956) himself. Modern scholars point out the issues raised over
50 years ago have not gone away and that, in fact, psychology’s over-reliance on aggregate statistics
is likely thwarting scientific progress by hindering the development of theories which can explain
the behavior of individual persons (Valsiner, 1986; Valsiner et al., 2014). Lamiell (1997, 2003,
2013) has gone to great lengths to remind personality psychologists, in particular, that between-
person differences or effects discovered through aggregate statistical analysis do not necessarily
exist at the level of the individual (see also, Carlson, 1971). The Big Five personality factors, for
example, can readily be found in aggregated data, but the factors do not regularly emerge from
the analysis of individual responses (Grice et al., 2006; see also, Molenaar and Campbell, 2009).
The Power Law of Learning is another example phenomenon that can be seen in the aggregate
but not at the level of the individual, thus raising the question of whether or not it is truly a
law (see Heathcote et al., 2000, as reported by Speelman and McGann, 2013). There is a genuine
and potentially hazardous disconnect, then, between conclusions drawn from between-person,
aggregate statistics and statements or theoriesmeant to offer insight into the psychology of individual
persons.
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In this paper we present a framework for conceptualizing and
analyzing data that does not rely on traditional aggregate statistics
such as the mean, median, variance, covariation, etc. Instead, this
approach—like Exploratory Data Analysis (EDA; Tukey, 1977;
Behrens andYu, 2003)—relies primarily upon techniques of visual
examination to detect and explain dominant patterns within a
set of observations. Going beyond EDA, however, this approach
can incorporate patterns that are generated a priori on the basis
of theory, thus promoting model building and development. It
also synchronizes visual examination of the data with transparent
analyses that (1) identify those individuals whose observations are
consistent with the predicted or identified pattern, and (2) provide
an index of a given pattern’s robustness within a sample. This
approach is generally referred to as observation oriented modeling
(OOM; Grice, 2011, 2014), and we will compare and contrast
its guiding principles and techniques with those of traditional
statistics using a study and accompanying data that are contrived
but nonetheless based on genuine psychological research. We will
also draw, in part, upon Haig’s (2005; 2014) abductive theory of
method (ATOM) to argue that this approach provides the types
of inferences psychologists normally seek from their data but are
unable to make on the basis of traditional statistical analyses.
The overall goal is to show that by departing from the modal
research practice of modern psychology (Lebel and Peters, 2011),
a novel and more rigorous path that does not confuse aggregates
for persons may be paved for future researchers.

An Example Study in Rejection

Pick up almost any research paper on human psychology,
and there you will find written in the Introduction statements
about persons. You will not likely find statements about
means, variances, or even covariances; although you might
find descriptions of relationships between different attributes or
qualities. Even these relationships, however, will be discussed
in the context of living persons rather than aggregate statistics.
Writing about rejection and interpersonal coping, for example,
Ayduk et al. (2003) claim “. . .research suggests that people
who fear and expect rejection employ to a greater degree
both overt (i.e., verbal aggression) and covert (i.e., withdrawal,
avoidance) negative coping strategies that ultimately undermine
their significant relationships and their mental health” (p. 435).
Here rejection and interpersonal coping are foremost recognized
as universal features of human experience. It is indeed difficult
to imagine any adult who could not recall an instance of being
rejected by another person or recount a situation in life that
was coped with in a negative, unfruitful manner. The authors
moreover infer from previous research—naturally based on a
limited number of individuals—that rejection and coping are
causally connected. The inference is therefore from samples of
persons to persons in general, as is clear with the authors’ use
of the word “people.” Concomitant with this inference is the
conclusion that rejection and coping are causally connected, not at
the aggregate or even group level, but at the level of the person. For
any given individual, then, the chronic expectation of rejection
(likely developed fromahistory of being rejected by others) plays a
causal role in the generation of negative coping strategies. Howdid

the authors draw such inferences, and are these types of inferences
truly warranted when made on the basis of results obtained from
traditional, aggregate statistics? The answer to the second question
is “no,” and to understand how psychologists typically draw such
conclusions from their analyses, we must work patiently and
carefully through an example study.

Continuing with the topic at hand, rejection can be produced
and studied in the laboratory by psychologists (e.g., Downey and
Feldman, 1996; Ayduk et al., 2003). Consider, for instance, a
male college student (viz., “the participant”) who walks into a
laboratory and is informed that he will be interacting, via the
Internet, with another male student seated at another computer
across campus. The participant is asked to provide a short
biography to share and is then given a corresponding biography
from his counterpart on the other side of campus. The biography
presents a person who is kind and inquisitive and likely a pleasure
to interact with in an informal social setting. After the participant
reads the biography and prepares for the online interaction, the
experimenter receives a phone call and informs the participant
that his counterpart has now chosen not to participate in the
online discussion and is instead withdrawing from the study.
What is the participant to make of this unexpected decision?
The experimenter’s hope is that the student will in fact interpret
the counterpart’s decision as a rejection of the participant based
on his shared biography. The experimenter moreover expects
the participant to subsequently experience negative emotions,
make negative self-attributions, and to form a negative inclination
toward his rejecting counterpart.With the phone call and rejection
completed, the experimenter then asks the participant to judge
the counterpart on qualities such as intelligence, popularity,
and friendliness using a 6-point rating scale. These ratings
essentially provide the student with an opportunity to express his
displeasure with the rejecting partner. After making his ratings,
the participant is finally debriefed and informed of the deception;
viz., no other student was involved in the study, and the biography
and ostensible rejection were therefore not genuine.

Now imagine over the course of a semester eighty individual
students walking into the psychologist’s laboratory and being
guided through these same procedures. With each and every
student the experimenter’s expectations will be the same, because
within her mind is a model. Perhaps it is a model that is only
crudely elaborated, but it is a model nonetheless that is meant to
explain the thoughts, feelings, and behaviors of each individual
student (person) in the study. What might this model look like?
The most rigorous way to express the model is via a picture like
that shown in Figure 1. Such pictures are referred to as iconic
or integrated models because they provide a visual snapshot of
the structures and processes, or causes and effects, at work in
the laboratory (i.e., at work in the participant, experimenter, and
setting) during the study. As can be seen on the left side of
Figure 1, the model depicts two conditions in the study. The top
part of the model, demarcated by the bold line, represents what
takes place in the study as described in detail above. The bottom
part of the model will be described later.

The model also demarcates three important points of
interaction between the experimenter and participant. The
purpose of the first interaction, from the perspective of the
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FIGURE 1 | Integrated model for rejection study.

experimenter, is to create within the mind of the participant an
expectation of an online interaction with another student across
campus. The pentagon enclosing the image of the participant and
counterpart joined by a “+” sign represents a simple or complex
judgment. In this instance, the participant judges that he will
be interacting with the other student, and that the interaction
will be positive (given the biography and the experimenter’s
instructions). The circle enclosing the image of the counterpart
represents certain predicates (predicative adjectives, predicative
nouns) based on the biography. For example, the biography
describes the counterpart as “a student,” “a psychology major,”
“outgoing,” etc. The counterpart student is thus known through
the neutral and positive descriptive nouns and adjectives given in
the biography.

The purpose of the second interaction (focusing on rejecting
the condition) is to inform the participant that the other student
has chosen not to participate in the discussion after having
read the participant’s biographical statement. It is not perfectly
clear or stated plainly, however, if the counterpart is rejecting
the participant, but it is the experimenter’s expectation that the
participant will interpret this decision as a personal rejection
based on his own biographical statement. The phone call is
therefore considered to be an efficient cause; that is, a cause
that proceeds its effect in time leading to its production or
change (denoted by an arrow labeled “Ef ” in the model; see
Grice, 2014). The resulting judgment of the counterpart rejecting
the participant is represented by the pentagon in the second
interaction of the study. It is also accompanied by a second effect

of the phone call; specifically, the simple judgment that the two
will not communicate via the Internet after all.

The judged rejection then operates as an efficient cause
of negative self-predications (negative self-attributions) by the
participant. These negative self-predications are represented by
the circle derogatorily labeled “Loser” enclosing the participant
in the second interaction of the study. Hurt feelings, represented
by a diamond labeled “Hurt” enclosing the participant, also result
from the judged rejection. Finally, these experiences occurring
simultaneously within the participant cause him (as an efficient
cause) to adopt a negative disposition toward the counterpart.
This negative disposition may occur consciously, for instance, if
the participant were to think disparaging thoughts such as “well,
that guy’s a jerk forwastingmy time” or “I always knewpsychology
majors were unstable.”

Finally, the purpose of the third interaction is to provide the
participant with an opportunity to make explicit judgments about
his rejecting counterpart. As can be seen on the right side of
Figure 1, the participant rates his counterpart using a 6-point
scale anchored by “I don’t agree at all” and “I agree strongly.”
The participant is asked to use the scale for nine adjectives
that may describe the counterpart (intelligent, popular, friendly,
etc.). Use of the scale is considered to be a complex judgment
task as indicated by its enclosure in a pentagon. What value,
or potential range of values, should the participant choose? At
this point, the model is not sufficiently developed to specify
exactly which values will be chosen, but it does explicate the most
proximate cause behind the selection. Specifically, the participant
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will choose a value that will result in positive feelings and positive
self-attributions, as indicated by the diamond labeled “Positive”
and the circle labeled “Winner” in the figure. He is therefore
attempting to reach a goal through his rating, and goals operate
as final causes in human behavior (see Rychlak, 1988; Grice,
2014). The arrow therefore points from the positive feelings and
positive self-attributions and is labeled “Fi” for “final cause.”
Here the participant is essentially trying to make himself feel
better through the rating judgment by discounting the source
of his negative feelings and negative self-attributions (viz., the
counterpart). It is therefore reasonable to posit that the participant
will choose one of the low values on the scale (1, 2, 3), which
would ostensibly indicate negative judgments of unintelligent,
unpopular, unfriendly, etc.

At the end of themodel (bottom right-hand corner of Figure 1)
is the only “output” the experimenter observes; namely, the circled
ratings for each adjective. No other attempts are made in the
study to observe the predications, judgments, or feelings of the
participant. Nonetheless, the figure spells out very clearly, for
everyone to see, the structures and processes thought to be at work
by the experimenter when the participant is ostensibly rejected.
Finally, the model also shows a second condition of the study in
which the participant is told that, due to a computer malfunction,
the counterpart will not be able to take part in the discussion.
The participant is still asked to rate his counterpart, but as can be
seen in the model, all of the important predications, judgments,
feelings, and causes are no longer present. His rating is driven by
the biographical sketch, as an efficient cause, remembered from
the beginning of the study. In this case, it would be reasonable to
posit that the participant will choose one of the high values on
the scale (4, 5, 6) due to the positive content of the sketch. Again,
for both the rejecting and non-rejecting conditions, however,
predictions for the scale values are not explicitly provided by the
model.

Three Important Inferences
The integrated (iconic) model in Figure 1 facilitates three
inferences the psychologist wishes to make through her
research efforts—even if she is not consciously aware of these
inferences—and they are the types of inferences described at
the beginning of this paper. The first is known as an abductive
inference (or simply abduction) which has its roots in Aristotelian
philosophy and was developed and popularized by the American
philosopher Charles S. Peirce (Haig, 2005; Flórez, 2014). In
order to understand this inference, let us suppose that all of the
participants in the rejecting condition selected “I don’t agree at
all” for each and every adjective as applied to the counterpart.
The data obtained from the study are recorded as whole numbers
valued 1 through 6, and here all of the observed values for the
rejected participants are 1’s. Why do the numbers show this
striking pattern? The experimenter’s answer to this question, that
is her conclusion or inference, is that the data are patterned in
this manner because of the structures and processes detailed in
the model. The specific form of this abductive inference can be
represented as follows:

1’s have been observed for the rejected participants.

If the structured processes in Figure 1 took place, 1’s would
have been observed.

Therefore, the structured processes in Figure 1 took place.

A key feature of the inference is that, unlike induction, it appeals
to explanation (viz., the structures and processes diagrammed
in Figure 1). The conclusion is also uncertain or provisional,
unlike conclusions reached through strict deductive reasoning.
This uncertainty rests partly upon the iconicmodel itself as it is not
sufficiently developed to predict that only 1’s will be selected by
the participants. Moreover, it is not clear if 1’s should be selected
for all nine adjectives, or if 2’s and 3’s are also expected since
they lie below the mid-point of the scale, ostensibly conveying
a negative judgment. Indeed, it is not clear why a 6-point rating
scale is being used rather than, for instance, a 5-point scale or
a binary judgment task. These uncertainties are part and parcel
of the inference being sought and they should not be viewed
as reasons for abandoning the explanatory model. Instead, these
insufficiencies should be viewed as a call to make improvements
to the model in Figure 1 through refinement and extension.

The model can be refined by changing its existing components;
for example, the exact emotions felt by the participant can be
elaborated, or the 6-point scale can be justified and predictions
included about how the participant should behave with regard
to the scale. The model can be extended by adding additional
components; for example, perhaps not every participant
will construe the counterpart’s actions as rejection, and the
determining factors for making such an interpretation can be
added to the model. Of course the entire model itself can be tested
against and perhaps superseded by a competing model (such as
a Freudian view of hostility). In this regard, in particular, the
experimenter is seeking an inference to best explanation, which is
a type of scientifically useful abduction with the general form,

D is a collection of data

H (an hypothesis) would, if true, explain D

No other hypothesis can explain D as well as H does

Therefore, H is probably true

The conclusion is again uncertain, but the continual striving
to thoroughly evaluate, improve upon, or replace a given model
seems to capture the investigative spirit of modern science, at least
as it is idealized. In any case it is easy to see why Haig (2014),
in his ATOM, regards inference to best explanation as central to
developing a proper understanding of science.

The third inference sought by the experimenter is an attempt
to draw a conclusion about persons, in general, from her
specific sample of individuals in her particular study. The
model in Figure 1 is clearly tied to the study designed by the
experimenter and is therefore applicable, she hopes, to each and
every participant in her study. Beyond these persons, however,
the components of the model provide a potential explanation
for how persons, in general, might react to being rejected. The
second interaction between the experimenter and participant,
for instance, shows a causal link between the judgment of being
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rejected by another person and the negative self-attributions and
feelings experienced by the participant. The third interaction
moreover shows that the proximate cause of a negative, explicit
judgment toward a rejecting person is a final cause resulting in
positive feelings and self-attributions. Presuming the observations
do in fact support the model in her study, the experimenter can
then argue that these components of the model may offer valid
explanations of howpersons react to rejection in situations outside
the laboratory. In doing so, the psychologist will be reasoning
inductively, moving from the specific to the general, and it is in
this way that psychologists typically seek to generalize beyond
their samples of participants and particular laboratories.

The three types of inference sought by the experimenter in
this example are therefore (1) abduction, (2) inference to best
explanation, and (3) inductive generalization. All three inferences
are facilitated by the integrated, iconic model in Figure 1; indeed,
it could be argued that such models are indispensable for making
these inferences. In any case the inferences are clearly important,
and as noted at the beginning of this paper, they are the types
of inferences encountered in the Introduction and Discussion
sections of journal articles published throughout psychology. It
is also important to point out that none of these inferences is
tied explicitly to a mean, median, mode, variance, or any other
aggregate statistic that can be computed froma sample of data. The
integrated model was designed without any statistical procedure
in mind and without the restriction of only including features that
can be understood quantitatively. All 10 of Aristotle’s categories
of being, and all four of his causes can be incorporated into
an integrated model (see Grice et al., 2012; Grice, 2014). The
theoretical horse, so-to-speak, is therefore in front of the data
analytic cart, as it should be. In more sophisticated language, we
are not letting our methods determine our metaphysics (Rychlak,
1988).

One Underwhelming Inference
When psychologists argue they are using statistics to generalize
beyond their samples, it is important to realize most believe
they are generalizing in the manner described above; namely,
making an abductive inference to best explanation or making
an inductive inference about persons in general. Unfortunately,
in the overwhelming majority of cases, nothing could be further
from the truth. By using traditional statistical methods that rely
on null hypothesis significance testing (NHST; viz., traditional p-
values), psychologists are instead routinely making an inference
to a population parameter, which is far less informative and far
less useful for building scientific theories than the three inferences
drawn from integrated models described above.

To demonstrate this ubiquitous type of inference, let us now
consider the condition in which the participant is told that his
counterpart cannot participate in the online discussion because
of a computer malfunction. With this comparison group in place,
and following modal research practice (Lebel and Peters, 2011),
the experimenter now thinks about the study using the variable-
based model in Figure 2. As can be seen, this model is comprised
of an independent variable (viz., group) and dependent variable
(viz., popularity rating) connected with a line that represents
their relationship or correlation. The negative sign above the

FIGURE 2 | Variable-based model for rejection study.

line indicates that those in the rejecting condition are expected
to, on average, provide lower ratings than those in the non-
rejecting condition. In order to keep everything simple, we will
henceforth only consider the rating for “popular” in the analyses.
Given the dichotomous group membership variable and rating
scale with values ranging from 1 to 6, the experimenter follows
standard protocol and analyzes the data with an independent
samples t-test.Her results, obtained from160 participants, reveal a
statistically significant difference between the rejecting (M= 4.20,
SD = 0.40) and non-rejecting (M = 4.50, SD = 1.21) groups,
t(96.23) = −2.10, p < 0.04, d = 0.33, CI0.95: −0.58, −0.02.
The difference is also consistent with expectation, with the
rejecting group yielding a lower mean than the non-rejecting
group.

What inference can she draw from these results, assuming
she has met or properly adjusted for all of the assumptions
of the statistical test? Having used NHST, the experimenter
posited two populations from which she drew her samples: a
population of persons experiencing rejection in the study, and a
population of persons not experiencing rejection in the study. The
populations in this example, as in most studies in psychology, are
entirely imaginary (Berk and Freedman, 2003); but nonetheless
a mean rating value is presumed to exist for each, designated
as µ1 and µ2. The null hypothesis is that the two population
means are equal (H0: µ1 = µ2) and by declaring her results
as “statistically significant” she has rejected this hypothesis and
concluded (inferred) that the two populationmeans are not equal.
She can consider the difference between the population means as
a parameter to be estimated as well (viz., µdiff = µ1 − µ2) and
then provide a point estimate for what she thinks the difference
might be (viz., 4.20 − 4.50 = −0.30). She can also provide an
interval with an assigned level of confidence for possible values
of the difference (viz., CI0.95: −0.58, −0.02).

With the point and interval estimates in hand, it is clear the
psychologist is attempting to make an inference to a population
parameter (µdiff), which is presumably fixed at some value. This
inference is the only one she can rationally make; and the term
“rationally” should be used loosely here because the low observed
p-value (p < 0.04) does not provide the probability of the null
hypothesis being true, and therefore worthy of rejection. The
p-value instead indicates the two-tailed probability of obtaining
a t-value of at least 2.10, assuming the hull hypothesis is true
(see Cohen, 1994). Regardless, she cannot make an abductive
inference due to the simplicity and nature of the variable-based
model. The model is not explanatory as it does not present the
structures and processes underlying the observations. It simply
conveys the mean difference between two variables for arbitrarily
defined populations. According to Haig’s ATOM such a model
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TABLE 1 | Statistics and independent samples t-test results for three studies.

Condition

Rejecting Non-rejecting

Sample M SD M SD Mdiff d t p CI0.95

1 4.20 0.40 4.50 1.21 −0.30 0.33 −2.10 0.037 −0.58, −0.02
2 4.20 2.24 4.80 1.34 −0.60 0.33 −2.06 0.042 −1.18, −0.023
3 4.20 0.89 4.50 0.93 −0.30 0.33 −2.10 0.038 −0.58, −0.02

The t-values and p-values for Samples 1 and 2 were adjusted for violations of the homogeneity of population variances assumption. All sample sizes were equal to 80.

with the accompanying parameter estimation may contribute
to phenomena detection, which can play an important role in
science, but the psychologistmust be clear that the only conclusion
she can draw from her analysis is that, provided the assumptions
for the independent samples t-test have been met or adjusted for
appropriately, the mean population difference is not 0, consistent
with expectation, and is instead estimated with 95% confidence to
be encompassed by values ranging from -0.02 to -0.58. That is all.

The experimenter also cannot make an inductive inference to
people in general as her hypotheses and analysis are constrained
to means. She cannot, therefore, write statements such as
“people who are rejected will rate the rejecting person as less
popular than those who are not rejected” or “rejected persons,
compared to non-rejected persons, considered the counterpart to
be unpopular.” In order to be true to her model and analyses, she
must restrict her inferential statements to population means or
the difference between them. Moreover, she must be careful to
avoid the following erroneous conclusions from her statistically
significant finding:

• Because my result was statistically significant, it will likely
replicate across independent samples of participants.

• My result is not likely due to chance given the low p-value.
• The null hypothesis is probably false; that is, the probability the

null hypothesis is true is less than five percent.
• My research hypothesis is probably true.

Lambdin (2011) reports a more complete list of twelve
such errors commonly made by researchers in psychology,
education, sociology, medicine, and other disciplines who rely
on null hypothesis significance testing (i.e., common p-values) to
determine the scientific value of their results.

Getting Beyond Aggregate Statistics and
NHST

A side-by-side comparison of the models in Figures 1 and 2
shows clearly the integrated model is much more informative
and rigorous than the variable-based model. The arguments
above have also shown that the integrated model provides a
gateway for the experimenter to make the types of inferences she
truly wishes to make, whereas the variable-based model permits
only a restricted, low information inference to a population
parameter. In order to drive home the point that the latter
inference is low in information, let us consider two additional

FIGURE 3 | Means and standard errors for rejecting and non-rejecting
groups for each of the three samples.

samples of participants collected by the same experimenter using
the exact same experimental protocol with a rejecting and non-
rejecting condition. The descriptive statistics, t-values, p-values,
and confidence intervals for all three samples are reported in
Table 1, and the means and standard errors are displayed in bar
graphs in Figure 3. As can be seen in the table, using these metrics
shemay conclude that the initial results have been replicated in the
two new studies. The effect sizes, in particular, are equal (d= 0.33)
when reported with two decimals of precision.

What do we really know about these data based on Table 1 and
Figure 3? Simple bubble plots surprisingly indicate that important
information has been overlooked by focusing only on the tabled
statistics. The bubble-plot in Figure 4 for the first and original
data set shows radical differences between the two groups with
respect to the variability and distributions of their scores. While
an overwhelming majority of participants in the rejecting group
chose 4’s, participants in the non-rejecting condition chose values
ranging from 2 to 6. The second bubble-plot indicates a radical
divide in the distribution for the rejecting group, with participants
choosing only 1’s, 2’s, or 6’s; whereas the distribution for the
non-rejecting group shows skew toward the lower values on the
scale. Finally, the third bubble-plot indicates the observed values
are distributed similarly across the 6-point scale, with a slight
tendency for participants in the rejecting group to select 3’s and
a slight tendency for participants in the non-rejecting group to
select 6’s.

The results from the three studies clearly show different
patterns of responses that are simply not detectable in the
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FIGURE 4 | Bubble plots for three samples of participants. Larger bubbles indicate greater numbers of cases.

aggregate statistics or bar charts. What is the experimenter to
do? She could switch to a non-parametric procedure, but there
are clear incentives for not doing so, including the potential
loss of statistical power and the unwarranted perception that
such a switch would indicate weakness in her methods and
results. A median test in fact yields statistical significance for
only the first two data sets. She could switch to a Bayesian
analysis which would permit her to compare means while
also assessing parameters relevant to the distributions of the
samples. For all three data sets the Bayesian analysis in fact
indicates “credible differences” between the group means,
as the Highest Density Interval excluded 0 in each case.
Fundamentally, though, none of these options represents
a departure from the variable-based model in Figure 2
and the goal of estimating parameters. In other words, like
the independent samples t-test, effect size, and confidence
interval these approaches would not require nor encourage the
experimenter to explicate the structures and processes at work in
or outside of her laboratory regarding the human experience of
rejection.

The first step toward a more rigorous analysis of the data that
is also consistent with the types of inferences sought through the
model in Figure 1 is to consider the detection and explanation of
patterns as more generally important than parameter estimation
(see Thorngate, 1986; Manicas, 2006). The experimenter has two
key observations for each participant: (1) whether or not the
participant was rejected, and (2) the participant’s ratings using
the 6-point scale. Here, as above, we will only consider the rating

for popularity, and the two observations together create a simple
two-dimensional array:

Given the experimenter’s choices, then, this array presents
boundaries on the ways she thinks data can be structured, and
it is within this limiting structure she must identify or search for
meaningful and robust patterns of observations.

Deductive, a priori, Pattern Evaluation
If the model in Figure 1 were sufficiently developed, the
experimenter would approach her data in a way most similar to
deductive reasoning. In the parlance of modern research design
and statistical analysis, she would conduct a priori tests of the
model’s accuracy which would require specific predictions about
the observations. Figure 5 shows two example predicted patterns
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FIGURE 5 | Predicted patterns of observations for rejection study. Gray
cells indicate predicted joint observations for group membership and
popularity rating.

using the two-dimensional array above that might be consistent
with the integrated model. The first pattern shows that the
experimenter expects participants in the rejecting group to select
1’s (“I don’t agree at all”) on the 6-point scale and participants
in the non-rejecting group to select 6’s (“I agree strongly”). The
second pattern shows that the rejected participants are expected
to choose values 1, 2, or 3, while the non-rejected participants are
expected to choose values 4, 5, or 6. These patterns are consistent
with the model insofar as rejecting participants are expected to
discount the counterpart, and lower values are interpreted as
indicating negative judgments of low popularity.

Of course other patterns could be put forth as examples, but
the point here is that if the experimenter is to work deductively
and conduct a priori tests, she must develop the integrated model
beyond what is shown in Figure 1. If she continues to employ
a 6-point scale, she must be able to make predictions about
which specific values will be selected by all—or at least a majority
of—her participants. Such predictions will no doubt be difficult
and will require extensive research into how individuals interpret
and respond to the rating scale, but this is the demanding and
often tedious scientific work required for accomplishing a better
understanding of the scale values. By comparison, the variable-
based model and independent samples t-test made few demands
on the experimenter with regard to the meaning of the scale
values, and they moreover required her to assume interval scale
measurement and to assume that popularity itself is structured
as a continuous quantity. No scientific evidence exists for either
of these assumptions, and by thinking of her task as pattern
identification the experimenter can avoid these assumptionswhile
also pushing herself to thinkmore deeply about what her numbers
(i.e., the observations) actually mean.

For the sake of demonstration, let us assume that the second
pattern in Figure 5 is predicted by the integrated model. The
actual observations from the three data sets can then be evaluated
using the OOM software (Grice, 2011). The experimenter first
sets up the two-dimensional array and defines the pattern. The
frequencies are then computed and overlaid in the array, as shown
in Figure 6. These are the primary results to be evaluated by the
experimenter, and it can readily be seen that the observations

FIGURE 6 | Predicted pattern and actual observations for three
samples from the rejection study. Gray cells indicate predicted joint
observations for group membership and popularity rating.

from the first sample do not fit the pattern very well at all.
None of the eighty participants in the rejected condition selected
the 1, 2, or 3 values on the scale; and 16 participants in the
non-rejecting condition selected these values, against expectation.
Almost all of the 160 participants (90%) chose values of 4, 5, or
6. If these numerically high values are interpreted to represent
the participant judging the counterpart as popular, and thus
delivering a positive evaluation, then every person in the rejecting
condition held a favorable attitude toward the counterpart.

Tallying all of the persons who were consistent with the
predicted pattern yields what is known as the percent correct
classification (PCC) index in the OOM software. The PCC index
for the first sample was only 40%, as only 64 of the 160 joint
group/rating observations matched expectation. The PCC index
can range from 0 to 100 and is easily interpretable in light of
Figure 6. A distribution-free randomization test can be conducted
as an aid for interpreting the PCC index, the results of which
are reported as a probability statistic known as the c-value (or
chance-value). Relatively low values indicate the magnitude of the
observed PCC index was not easily equaled or exceeded when
computed from randomized pairings (1000 trials) of the group
and popularity ratings for the 160 participants. For the first sample
the c-value was 1.0 (possible range: 0–1), thus indicating that in
every instance, the PCC index from randomized versions of the
same data equaled or exceeded 40%. The observed PCC index was
therefore not only low, but values at least that high were entirely
ordinary as well.

Frontiers in Psychology | www.frontiersin.org July 2015 | Volume 6 | Article 1007 | 28

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Grice Means to persons

The results in Figure 6 for the first sample are in direct
contradiction to any reasonable expectation based on the
integratedmodel. Yet, recall fromTable 1 above the outcome from
the t-test was statistically significant and interpreted as offering
support for the variable-based model because the average rating
for the rejecting group was lower than the average for the non-
rejecting group. The place on the scale this difference occurred
did not matter: the difference between 1 and 2 has the same
meaning as a difference between 3 and 4 in the t-test analysis.With
the OOM analyses, by contrast, the scale values had to be taken
seriously when defining the expected pattern and interpreting the
results.

The second data set also reveals striking results that were
masked by the traditional statistics; specifically, as can be seen
in Figure 6, 48 individuals (60%) in the rejecting condition
rated the counterpart as a six on the 6-point scale. Again,
these observations make no sense in light of the integrated
model. The data for the rejecting condition are moreover split
between the ends of the scale as the remaining 32 individuals
selected 1’s or 2’s. Given this odd pattern the PCC index,
which equals 60% and was unusual compared to randomized
versions of the observations (c-value = 0.003, 1000 trials), is to
be interpreted cautiously or even ignored. More specific analyses
must also be conducted in this case, treating the two groups
separately. The PCC index for the rejecting participants, treated
separately, was only 40% (c-value = 0.98), while the PCC index
for the non-rejected participants was impressively high (80%, c-
value < 0.001). Expectations were therefore largely met for the
non-rejected participants but not for the rejected participants.

Figure 6 shows the results for the third data set to be entirely
unimpressive, even though the t-test was again statistically
significant. As can be seen, a majority of the participants in the
rejecting condition again chose 4, 5, or 6 from the rating scale.
Equal numbers of participants in the non-rejecting condition
chose 4’s and 5’s, and not a single individual from either group
chose 1 or 2. The differences between the groups occurred only
for values of 3 and 6, with more participants in the rejecting
condition choosing 3’s and more participants in the non-rejecting
condition choosing 6’s. The PCC index (55%) indicated that
barely over half of the students were classified correctly which was
even less impressive than the value obtained for the second data
set, even though it was also unusual based on the randomization
test (c-value = 0.06). Again, the results shown in Figure 6 are
primary, and as a general rule in OOM PCC indices and c-values
should never be presentedwithout clear visual displays of the data.
Opposite of NHST, as well, the probability statistic (viz., the c-
value) is the least important bit of information in the analysis,
and in this particular set of analyses it may even be considered
superfluous.

Abductive, post hoc, Pattern Evaluation
The model in Figure 1 does not explicitly predict which values on
the 6-point scale will be chosen by individuals in the two groups.
Without such specificity in the model, the experimenter must
approach the three data sets in amanner consistent with inductive
and abductive reasoning. In the parlance of modern research
design and statistical analysis, she must examine the data post hoc

for robust and meaningful patterns. She can do so using the OOM
software and what is known as binary Procrustes rotation, which
is a procedure that seeks to rotate one set of observations into
conformity with a second set of observations (Grice, 2011).

Results for the three data sets, displayed as multigrams,
are shown in Figure 7. As can be seen for the first sample,
the multigram is comprised of two aligned histograms for the
rejecting and non-rejecting groups. The bars in the multigram
are shaded or filled on the basis of the Procrustes rotation.
A shaded bar indicates those observations that are considered
correctly classified by the algorithm, while a bar filled with
diagonal lines indicates those observations incorrectly classified.
It is important to keep in mind that the analysis is entirely post
hoc. The observations are classified as correct or incorrect by the
rotation algorithm on the basis of the patterns of frequencies
considered both between groups and across the six scale values.
The experimenter in no way determines how the observations
are expected to be patterned or considered as accurately or
inaccurately classified. She must instead examine the pattern in
the multigram and attempt to draw an inductive generalization
and an abductive explanation.

The multigram for the first sample shows a convincing
pattern with regard to the PCC index (80%). As can be seen
in Figure 7, the largest bars in the multigram are shaded to
indicate the correctly classified observations. The c-value from the
randomization test is also impressively low. Not one time in 1000
trials did randomized versions of the actual observations yield a
PCC index of 80% or more. The pattern is thus unusual, leading
the experimenter to inductively reason that some phenomenon
has potentially been detected. At the same time, the experimenter
is confronted with the pattern in Figure 7 and must work
abductively to explain it. As can be seen, rejected participants
were classified correctly only if they chose 4 on the 6-point scale.
Non-rejected participants were classified correctly if they chose
2, 3, 5, and 6. How does the model in Figure 1 comport with
such a pattern? It is difficult to reconcile this observed pattern
with the structures and processes in the integrated model, but
the experimenter must try to do so. Alternatively, she can seek
to modify the integrated model to explain the pattern. In either
case, she is reasoning abductively as she ultimately seeks to make
an inference to best explanation of the phenomenon she’s detected
through her study.

If the experimenter has all three data sets to work with,
however, it is clear that a single pattern has not emerged. The
multigram for the second sample in Figure 7 shows that, contrary
to the first sample, no participants in the rejecting group selected
4 from the scale; they selected only 1’s, 2’s, or 6’s, with a majority
choosing 6’s. Amajority of participants in the rejected group of the
third sample chose 4’s, but an equal number of participants chose
3’s, 5’s, or 6’s. The distributions of observations across the six scale
points for the non-rejected participants were, by comparison,
more similar across all three samples, although the modes were
different for each. The PCC index for the second sample was high
(75%) and unusual (c-value < 0.001), whereas the PCC index for
the third sample was low (20%) and easily equaled or exceeded by
randomized versions of the data (c-value = 0.98). The pattern for
the third sample also shows ambiguous classifications, indicating
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FIGURE 7 | Multigrams for three samples from the rejection study.

that the algorithm could not clearly distinguish between values of
4 and 5 for the rejected and non-rejected participants. Given the
low PCC index and high c-value for this sample, the experimenter
would interpret these results as not supporting the integrated
model, and the data offer no clear pattern from which to
generalize or alter the model. The relatively impressive individual
results for the second sample would warrant further abductive

attention. Considering all three sets of results together with their
remarkably different patterns, however, may instead decide to
conclude that no phenomenon has been reliably detected.

Discussion

Speelman and McGann (2013) report a number of assumptions
about the mean held by modern psychologists. In light of
the history, models, methodology and data analytic techniques
examined in this paper, perhaps the most troubling assumption
is that “any inability to use the mean as a reliable measure of
a stable characteristic is a product of weakness in methodology
or calculation” (p. 3). This assumption is disturbing for two
reasons. First, how is it possible that one, simple statistic can be
given so much power in the vast domain of scientific inquiry?
Surely the spectacular advances in the fields of biology, chemistry,
physics, and medicine, with all of their methodological rigor, have
not depended on the lowly mean. The curious elevation of the
mean in psychology as an indicator of rigor or as some type of
“error free value”—or worse, “ideal person”—is the epitome of
what Lamiell (2013) termed “statisticism.” Philosophically, it is
the error of placing methods before metaphysics; in other words,
allowing methods of data collection and analysis to determine
how one builds a model of nature. The practical result of such a
limiting attitude is a guaranteed restriction in the advancement of
psychological science.

Second, the idolatry of the mean is disturbing because it
reveals that psychologists are operating under a quantitative
imperative (Michell, 1999, 2008). What is popularity? What is
rejection? What is the emotion of anger? Under the quantitative
imperative the answer to each of these questions must in some
way invoke the notion of continuous quantity. In other words,
each of these qualities of human experience are presumed to
exist in such a way as to be measurable as continuous quantities.
In the parlance of Steven’s (1946) four scales of measurement,
popularity, rejection, and emotion must be measured as interval
or ratio scales, for it is only with these types of scales that the
computation of a mean is appropriate. Unfortunately, there is no
evidence to date that qualities such as intelligence, depression,
and personality traits (let alone popularity, rejection, or anger)
are structured as continuous quantities, and therefore measurable
as such. As stated by Michell (2011), “There is no evidence that
the attributes that psychometricians aspire to measure (such as
abilities, attitudes and personality traits) are quantitative” (p. 245).
This is again an instance of puttingmethods ahead ofmetaphysics;
that is, of presuming psychological qualities to be measurable
as continuities without substantiating this claim and seriously
considering the possibility that such qualities may be structured
differently.

One need only examine the periodic table of the elements or
the biochemical pathways of a eukaryotic cell to understand that
the scientific study of nature is not restricted to interval and ratio
scaled measurement and parametric statistics. The arguments,
models, and methods, presented in this paper hopefully elucidate
why psychologists should feel confident in venturing beyond
the world of means, variances, and covariances without fearing
a loss of scientific rigor. Placing the integrated model in
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Figure 1 side-by-side with the variable-based model in Figure 2
should be sufficient to convince the reader that theoretical rigor
is in no way tied to an aggregate statistic of any kind. Many of the
components in Figure 1 (e.g., all of the acts of predication and
most acts of judgment) are not even quantitative in nature, thus
precluding the computation of amean and variance. An integrated
model like the one in this paper clearly requires a great deal
more thought and effort to construct, validate, and defend than
a variable-based model (see also Grice, 2011, 2014; Grice et al.,
2012). Indeed, the reader is invited to sketch an integrated model
for his or her most recent study, posited psychological process, or
favorite theory. The task will no doubt prove challenging, but it
will finally heed Meehl’s (1978) call for more serious theorizing
and bolder predictions in psychology. Not by coincidence, in
the same paper Meehl argued that the over-reliance on null
hypothesis significance testing was preventing scientific progress
in psychology,

“I believe that the almost universal reliance on merely
refuting the null hypothesis as the standard method for
corroborating substantive theories in the soft areas is
a terrible mistake, is basically unsound, poor scientific
strategy, and one of the worst things that ever happened in
the history of psychology” (p. 817).

The shift to iconic modeling is also a step toward the
types of inferences psychologists truly wish to make from their
research: abductive inference, inference to best explanation, and
inductive generalization. Variable-based models are meant to
show associations between variables and are poor tools for
explaining the complex structures and processes of nature. The
mean does not provide information about “people in general”
and in fact likely describes no one in particular (Lamiell,
2013). Variable-based models and their accompanying aggregate-
based analyses are therefore not up to the task of delivering
these inferences. When psychologists employ such methods and
tie them to null hypothesis significance testing (traditional p-
values), they are limited to drawing inferences about population
parameters. . .regardless of whether or not they are cognizant of
this fact. Using Haig’s (2005) ATOM, these inferences may be
of value insofar as they are seen as equivalent to phenomenon
detection. The Flynn Effect, for instance, is the phenomenon of
increased scores on intelligence tests over the past 30 years or so
“detected” using aggregate statistics (Haig, 2014). The explanation
of this phenomenon, however, will require a great deal more
work and the construction of an integrated model that details the
structures and processes underlying the Flynn Effect.

Going beyond the world of variable-based modeling and the
computation of means, variances, and other parametric statistics
is not necessarily a leap into the world of Bayesian statistics or
non-parametric analyses; rather, the move is from estimating
parameters in the context of sampling variability (as with an

independent samples t-test) to the analysis of patterns in the
context of explanatory models. Thorngate (1986) wrote plainly,
“The essence of science is the detection and explanation of
patterns” (p. 71), and he wrote this statement in a chapter for
a book titled The Individual Subject and Scientific Psychology
(Valsiner, 1986). Countless students have entered psychology
expecting to study the lives of individuals only to learn that
their task is instead to study variables, aggregates and some non-
existent “average person.” When collecting and analyzing data
they learn that the odd person is a statistical nuisance or outlier
whomust be sacrificed to themean or some statistical assumption
(e.g., homogeneity). After all, the primary goal is to estimate
population parameters, and one cannot let an influential case
or two unduly influence the estimates. In contrast, the methods
shown in this paper represent a return to the person or persons
in psychology. Because these methods are primarily visual in
nature and do not rely on the computation of parametric statistics,
outliers or assumptions of normality, homogeneity, etc., are never
a concern. The Percent Correct Classification index is a simple
frequency, and therefore an aggregate statistic, but it is always
interpreted in light of a pattern (e.g., the a priori pattern or a
multigram) and the complete set of observations. The simple “eye
test” or more severe “interocular traumatic test” (Edwards et al.,
1963) is taken seriously in OOM as there simply is no substitute
for examining the data, particularly in light of an integrated
model.

The final move, then, is from variable-basedmodels to persons.
The example study above employed a between-group design, and
only two pertinent observations were made for each participant.
A more intensive study of the individual is possible, however,
using similar methods to conceptualize and analyze multiple
observations made for each person. Cohn et al. (2014) for
example, collected daily diary ratings from 54 women who had
been raped. Ratings of post-traumatic stress disorder (PTSD)
symptoms, drinking behavior, emotional states, and many other
attributes, attitudes or behaviors were collected for 14 consecutive
days. Using the OOM software in a novel analysis of the data,
Grice et al. (in press) were able to examine a mediation model
(PTSD→Negative Affect→Alcohol Consumption) at the level of
the individual women. Unlike the aggregate results obtained from
a variable-based Hierarchical Linear Model, the OOM analyses
identified the individual women whose observations revealed a
causal connection for each link in the model. In the world of
clinical intervention where individuals—not means—are treated,
such techniques are tantamount (Mumma, 2004; Haynes et al.,
2009). Additional examples of person-centered studies using
OOM have been published (e.g., Brown and Grice, 2012; Craig
et al., 2012; Abramson et al., 2015), and methods of data analysis
which permit a dynamic study of individuals have also been
developed (e.g., see Valsiner et al., 2014). The time is therefore ripe
for psychologists to return to a study of the person as an integrated,
individual whole.
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Speelman and McGann’s (2013) examination of the uncritical way in which the mean
is often used in psychological research raises questions both about the average’s
reliability and its validity. In the present paper, we argue that interrogating the validity
of the mean involves, amongst other things, a better understanding of the person’s
experiences, the meaning of their actions, at the time that the behavior of interest is
carried out. Recently emerging approaches within Psychology and Cognitive Science
have argued strongly that experience should play a more central role in our examination
of behavioral data, but the relationship between experience and behavior remains very
poorly understood. We outline some of the history of the science on this fraught
relationship, as well as arguing that contemporary methods for studying experience fall
into one of two categories. “Wide” approaches tend to incorporate naturalistic behavior
settings, but sacrifice accuracy and reliability in behavioral measurement. “Narrow”
approaches maintain controlled measurement of behavior, but involve too specific a
sampling of experience, which obscures crucial temporal characteristics. We therefore
argue for a novel, mid-range sampling technique, that extends Hurlburt’s descriptive
experience sampling, and adapts it for the controlled setting of the laboratory. This
controlled descriptive experience sampling may be an appropriate tool to help calibrate
both the mean and the meaning of an experimental situation with one another.

Keywords: averages, qualitative methods, mixed-methods, phenomenology, validity

INTRODUCTION: TWO COMPLEMENTARY CHALLENGES

It is something of a trite observation amongst psychologists that not everything that matters can
be measured. While a truism, any good psychologist also takes this as a challenge. We are aware,
sometimes painfully so, of the limitations of our methods, and the complexity of our subject matter.
But good science uses a range of techniques that complement one another and allows us to piece
together a multiplex but increasingly coherent understanding of the mind and behavior. While
some things cannot be measured, they can be observed and analyzed in rigorous and systematic
ways that acknowledge and work within the boundaries of valuable data collection.

Our statistics are part of this toolbox of various methods that we use to build an understanding
of psychology. Speelman and McGann (2013) reviewed a number of limitations of the mean as
a representation of varied measurements, and the kinds of research designs built around their
analysis. Their aim in doing so was not to be pessimistic about the possibility of accurate or valid
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measurement in psychological science, but to prompt a
discussion on the ways in which means or averages have been
used uncritically and how their use might be improved as part
of a wider effort to sharpen research practices in the discipline.

Speelman and McGann (2013) suggest no single means of
improving care or practice with regards to the mean. Rather, a
critical attitude that keeps theoretical assumptions in sight and
reinforces an awareness of the derived nature of the mean (as
opposed to it being assumed a measurement of an underlying
parameter) is suggested. Mathematical and methodological
techniques help refine the reliability of averages, helping to
improve our confidence that an average indicates something
important and stable about the data that have been collected. But
we must also use varied methodological techniques to critically
examine the validity of those data.

Speelman and McGann (2013) identify a number of
assumptions in play in common use of the mean to summarize
performance by an individual or group on a given task. The
mean is typically used as an estimate of a “true” value being
measured, with variability around that mean being a result of
noise or other independent variables unrelated to those addressed
in the experiment at hand. There are surely many cases where
these assumptions hold true, but Speelman and McGann (2013)
note that we should also be prepared to test these assumptions as
a matter of common good practice.

We should be sensitive to the possibility that variability around
the mean may have something important to tell us about the
value of that statistic, and we are in need of techniques that allow
us to interrogate such variations. Paying attention to variation
in task performance could potentially enable us to validate our
measurements, reinforce our interpretations, while also giving
us a chance to spot new relevant variables, or other forms of
confound.

Part of these efforts after validity involves the use of varied data
gathering techniques, making a range of observations that might
allow new information to come to the fore, and providing insights
into patterns of behavior that might otherwise go unnoticed.

Each variable noticed can potentially be isolated, measured,
and its contribution to a given set of performances teased
apart through experimental or statistical control – in essence
refining the mean being measured, distilling out the particular
variable of interest from a complex mixture. There are some
variables that have proven very difficult to quantify, isolate,
and control, despite there being clear evidence that they play a
role in how a person reacts to the task, materials, or situation
of our laboratory experiments. In particular, the experience of
the situation for participants, what the task or actions involved
mean for them as they carry out the task, is something that
tends to see little systematic analysis in experimental research,
but has been increasingly recognized in recent years (Barrett
et al., 2010, 2011). In the rest of the current paper we outline
some prima facie reasons why a participant’s experience of the
laboratory and the apparent meaning of the task for them
should be taken seriously. We then review some of the reasons,
both historical and scientific, why the systematic collection
of data concerning participants’ experience remains relatively
rare.

We thus outline two challenges that we suggest are somewhat
complementary. On the one hand, the use of the mean in
empirical studies demands a set of practices that police its
validity. On the other, understanding the meaning of a situation
requires the collection of remarkably difficult data – experiential
reports – that are quintessentially un-averageable. If we are
to test and refine the validity of our data, we will need to
be able to find some way of examining variation in measured
performance that might fit or diverge from variation in observed
experiences. We review a number of different techniques for
collecting experiential data and argue that, while useful in their
current form, could yet be refined to provide us a more effective
means of validating and calibrating measurements in laboratory
behavioral experiments. While mixed methods approaches are
becoming increasingly prevalent (Tashakkori and Teddlie, 2010),
and have been deployed in a wide range of settings (REFS), we
suggest that there remains a need for a new form of research
method that more closely allies standard laboratory experiments
with the collection of reports of participants’ specific experiences
of those experiments.

VALIDITY, EXPERIENCE, AND
EXPERIMENTAL CONTROL

Assessing the validity of our measures is made difficult by the
fact that it cannot be achieved via a single method. Though
we might have a perfectly reliable measure, certainty regarding
what it is that we are actually measuring comes not from the
consistency of its numbers, but from our understanding of
the tool and the ways in which it is used. The understanding
that is vital to validity comes from approaching the same
phenomenon from other angles, using other methods. No
measurement is pure and no experiment perfect, but over time
and through the convergence of multiple points of view we
gradually develop a picture of our subject matter in increasingly
fine resolution. Where validity of the mean, in particular, is
concerned, we will need several complementary studies of a
behavioral phenomenon that make it clear it is reliable, and
insofar as the meaning or experience of the situation is one
of the things that cause it to vary, that we sample those as
appropriate.

Decades of research in Psychology have taught us that in
the experiments where we make our measurements, meaning
matters a great deal. Meaning has been on the agenda in
some form or another since the “New Look” studies of Bruner
and colleagues, which played a substantial role in the rise of
cognitive psychology. Bruner and Goodman (1947) reported
that coins were perceived or remembered as having different
sizes depending on the economic status of the person doing the
perceiving, while Bruner and Postman (1949) showed error and
expectancy effects due to prior experience and understanding
of decks of playing cards. Bruner (1990) has since distanced
himself from the computationalist understanding of the mind
that developed in part from this line of work on perception, but
maintains that understanding the role of meaning in psychology
is vital if we are to advance the science, advancing a theory of
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meaning as culturally enacted but still constitutive of cognitive
activity.

The classic work of Treisman (1960), still cited in introductory
texts to cognitive psychology, illustrated how people’s attention
often moves fluidly with the meaning of the stimuli they are being
exposed to, rather than the particular sensory channel on which
they were supposed to be focusing. While such research as the
New Look and experiments on attention made it clear that the
meaning of the stimuli matter for so-called “lower level” aspects
of cognition, decades of research were triggered when Wason
(1971) showed that it affects reasoning too. People reason to
different inferences depending on whether the material they were
working with were meaningful to them – whether the materials
fit a person’s general experience of the world – or whether they
were abstract and contrived.

Perhaps more pointedly, research on participants’ experience
of psychological research itself highlights the potency of
a situation’s apparent meaning for people’s behavior. Since
Orne’s (1962) exploration of demand characteristics, we have
been sensitive to the fact that participants who interpret the
experiment as testing a particular hypothesis tend to skew their
behavior (either deliberately or unconsciously) to support or
undermine the perceived hypothesis. Orne (1973) argued that
people respond to the “total experimental situation” and that a
range of steps should be taken to cope with the rather holistic
nature of the setting influencing people. Orne’s work itself
developed within a context of increasing disciplinary recognition
that the stimulus materials were only part of the picture in
understanding behavior in psychology experiments.

Rosenberg (1969) reported three conditions of a study
in which participants were asked how much they liked or
disliked various pictured persons. Both groups were informed
that past research indicated that liking–disliking reactions to
strangers correlated with maturity. One group were told that
psychologically mature and healthy individuals show greater
liking for strangers than immature people and were given
fabricated journal article citations. The other experimental group
were told the opposite – that research indicated that immaturity
was associated with greater liking of strangers, with fabricated
journal articles cited. Both groups, however, were informed
that they were not going to take part in a study of liking–
disliking images of strangers, but rate pictures of strangers to
create a standardized list of photographs. Participants believed
that these photographs were then going to be used in a liking–
disliking task in future research. It isn’t surprising that there
were significant differences between the groups, but the obvious
manipulation here is not the full story. Rosenberg’s work is a
clear illustration of evaluation apprehension, which can be made
to affect experimental responding. However, Rosenberg also
included a control group with no information about maturity and
liking. The results indicated that male participants in this neutral
context condition rated male pictures much lower than both
experimental groups. They even rated the images substantially
lower than the group that were informed that lower ratings was
associated with maturity.

Expectancy, social desirability, and demand effects within
psychological research are all indications that what participants

are doing is not naively fixed by the explicit instructions
presented to them, but richly enmeshed with the meaning of
the context as a whole. The average response to a given task or
stimulus is a product not of a single fix instruction set, but a varied
participant-lab situation.

More subtly, work by Gallagher and Marcel (1999) with
patients with dyspraxia indicates how their performance on a
given task varies substantially with its meaningfulness. Very
similar bodily movements that are difficult or impossible for
a patient in clinical assessment might be performed relatively
smoothly and effectively in situations where the context is more
meaningful for them. Lifting a cylindrical object from a table
might be a challenge, but taking a drink of water from a tumbler
straightforward. Touching their nose on demand can be difficult,
but pushing their glasses back into position is done without pause
for thought.

More recently we have seen a renewed surge in interest in
context, and how it is defined not just by the stipulations of the
experimenter but by the total situation involving the thoughts,
feelings and behaviors of a particular person, at a particular time
(Barrett et al., 2010, 2011; Schwarz, 2010). The experience of the
participant and the meaning of the situation for them is once
again being acknowledged and given a central role in how we
consider their behavior. If we are to adequately understand what
a person does, so the understanding goes, we cannot just examine
the “input”, the stimuli used, the wording of instructions, or the
logical details of the task in which the person was engaged. The
validity of our measures is derived from the whole situation and
should be examined within the context of that whole situation –
including their own experience of it. Though there is no claim
that this is all that matters, this is one facet of the complexity
of a laboratory situation affecting the value and variability of
measurements made in that situation, and which should be
included as a consideration when policing the validity of those
measurements across replications.

Several related threads of theoretical and empirical work
share this concern with experience. They tend to vary, however,
in terms of their descriptions of the relationships between
experience and behavior (Thompson, 2007; Di Paolo, 2009;
Shapiro, 2010; Wilson and Golonka, 2013) though most
commonly the specifics of that relationship remain ill-defined.

There are thus long threads of research through the history
of experimental psychology, including many that have become
increasingly influential in recent years, that make a strong case
for including some account of the participants’ experience of
the experiment in our analyses and interpretation of the data
(or at least some aspects of the data). Swinging against this
trend, however, is one with an even longer history within the
discipline pointing to the weaknesses and unreliability of people’s
description of their own thoughts and behavior.

Good Reasons to Distrust Experiential
Reports
While it is clear that people’s experience matters to their behavior,
more than a century of research has shown us that it is difficult
to understand just how it matters. Scientific psychology had
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the examination of consciousness at its core during the period
when all of its major institutions were founded. However, several
decades of the analysis of experience ground to a halt in the
face of difficulties with introspection. The difficulties of shared
analysis, the challenges of independent testing, and the existence
of unfalsifiable claims, all made consciousness a problematic
notion for a burgeoning science (Watson, 1913; Fancher, 1996;
Richards, 2002).

Experience was marginalized by most forms of behavioristic
psychology that dominated research through the middle half of
the twentieth century. When interest arose again in latter decades,
much of the research showed that what effects the meaning of a
situation might have for participants’ behavior, can occur without
them being consciously aware of it. As such, people are poor
describers of their own behavior, or the reasons for it. Perhaps
most famously, Nisbett and Wilson’s (1977) review supporting
the idea that people have little to no insight into the causes and
influences on their own behavior drove home just how poor a
source of data individual’s self-report is when we are interested in
understanding their actions. Not only does it seem that we do not
accurately experience the causes of our actions, but we are happy
to invent reasons or explanations that bear little relation to what
those real influences are.

Johansson et al.’s (2005) instant classic work on “choice
blindness” more recently illustrated just how quickly we can
produce such confabulations. Participants, when asked to choose
the more attractive between two photographs, and then asked
to explain their decision after being handed the wrong photo
still offered reasons, some mentioning unique aspects of the
new (unchosen) picture. Later work showed these confabulated
justifications for events to be insensitive to what actually
happened (Johansson et al., 2006).

Relatedly, Marcel’s (1993) work on multiple modes of response
indicates that we can simultaneously be conscious of a stimulus
in one response modality but not in another. That is, if asked
to speak a response or press a button, the same stimulus might
be simultaneously in a person’s experience and not. Experience,
whatever it might be, cannot be understood as a single, simple
stream of thought tightly bound to our behavior (Dennett, 1991).

Work in the neuroscience of vision seems to compound
this distinction between experience and action through the
identification of two apparently quite separate streams of visual
processing in the brain (Milner and Goodale, 1995; Goodale
and Milner, 2005). One, the dorsal stream, seems specialized
for the coordination of visuo-motor action, enabling a person
to engage effectively with objects through visual cues. The
other, ventral stream, appears to process the visual awareness
of objects, dealing with object recognition and naming. Various
forms of so-called “blindsight” illustrate the dissociation between
these two streams, where a person’s experience can partially
or dramatically disrupted while their actions remain effective
(Milner and Goodale, 1995).

The consistent trend throughout research on consciousness
and behavior is that the linkage between these two aspects
of psychology is not straightforward. Understanding that
relationship will not come from any casual introspection or
direct insight from people reporting what they think. In the

existing research the tendency is to explore people’s awareness
of their own actions, the reasons for those actions, or in the
case of the likes of Marcel’s work, their responses to minimally
relevant stimuli – that is images or sounds that only matter
to the participant within the constraints of the research task.
To that extent the research has tended to focus either on a
person’s already conceptualized, considered experience – their
metacognitive awareness of their thought and actions – or on tasks
that are stripped of meaningful context for people and therefore
do not fit easily within their normal range of behavior or their
normal experiences.

The recent rise in interest concerning context, experience and
meaning noted above (see e.g., Varela et al., 1991; Lutz, 2007;
Barrett et al., 2010; Mesquita, 2010; Schwarz, 2010; Froese et al.,
2011a,b) has criticized such pre-interpreted data. While we must
clearly be wary of the claims about their experience and their
behavior that we elicit from our participants, there might still be
important information we should collect from them about the
experience itself. These recent trends lean toward including the
analysis of some form of “raw” experience in the interpretation
of behavioral data, and perhaps the interrogation of variability
within those data. The existing research makes it clear that there
is a strong relationship between the participant’s experience, what
the situation means to them, and their behavior. It is equally clear
that this relationship, however, strong, is complicated. There is
no tight coupling between how a person experiences a situation
or stimulus, and the fine-grained details of their behaviors in
response.

That the existing research leaves us in such a state of confusion
suggests that the manner in which we have been collecting data
concerning experience is limited, and that other methods are
required. We must be careful and nuanced in our gathering and
interpreting of experiential reports. While people may provide
poor explanations for their actions, their reports of just what
they experienced may nevertheless hold valuable information for
psychological researchers. Over the past two decades a number
of different research methods have developed that may improve
matters. We argue that while these methods certainly advance the
science of the relationship between experience and action, and
can therefore help explore some of the issues regarding variability
in behavior on the basis of the meaning of the laboratory situation
for the participant, there remains room for refinement.

NEWER TECHNIQUES FOR THE STUDY
OF EXPERIENCE: WIDE AND NARROW
APPROACHES

Different approaches to studying experience come with different
commitments to levels of analysis, timescales of measurement,
and quality of information regarding the person’s activity at the
time of the experience being examined. Some methods, which
we will here term ‘wide’ approaches to experience, gather reports
or observations in a manner that involves less structure or
deliberation with regards to the activity in which the person is
engaged at the time, but tends to maximize the range of possible
responses and is often captured in ecologically relevant activities.

Frontiers in Psychology | www.frontiersin.org May 2016 | Volume 7 | Article 674 | 36

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00674 May 5, 2016 Time: 16:44 # 5

McAuliffe and McGann Meaning and the Mean

Examples of such wide approaches are most standard
qualitative research methods in psychology, such as interviewing
or focus groups (Banister, 2011), the bottom-up explorations
of interpretative phenomenological analysis (Reid et al., 2005;
Palmer et al., 2010), and descriptive experience sampling (DES;
Hurlburt and Heavey, 2002; Hurlburt et al., 2002; Hurlburt and
Akhter, 2006), with its randomized triggering of introspective
episodes.

Wide approaches gather less constrained information, and
in doing so enable a broader exploration of possible research
questions. While it is possible to explore the relationship between
experience and actions with these methods, this tends to produce
a high level, low-resolution picture. These kinds of analyses are
useful in pointing us in the direction of more specific research
questions, and identifying broader patterns that are difficult if not
impossible to see using more narrowly focused methods.

Interviewing and focus groups, for instance, allow us to
explore people’s concepts of what they are doing, or how
they understand the situation in which they find themselves
(Banister, 2011). When participants’ understanding is our key
point of interest, this is valid. However, where our interest is in
understanding the specifics of the relationship between actions
and behavior, things break down, as the classic work on this issue
in experimental studies has shown.

Intepretative phenomenological analysis (IPA) is modest in its
aims in that it eschews claims to produce facts or unbiased data,
but notes that most people are not naive in their experiences –
they are experts, or at least familiar with the kinds of situations
in which they typically find themselves (Reid et al., 2005).
In partnership with a researcher people can reflect upon and
interpret their experience using all of the richness of history and
context that they bring to the situation, enabling the exploration
of certain kinds of relationships unavailable to many more
mainstream research techniques. The data typically collected
for IPA are interview transcripts, and as such depend on the
participants’ recollection for the event or events being examined.
Where the particular coupling of experience and behavior is of
interest, there are quite strong limits on what kind of insights this
form of analysis will enable.

Descriptive experience sampling aims to access “pristine”
(Hurlburt and Akhter, 2006) experience, relying less on
retrospective accounts of an experience, more on notes and
recorded comments made in the moments immediately following
an instant of experience, prompted by a beeper device or
similar trigger. The pristine nature of the experience – that
it is within the flow of the person’s natural activity, sampled
without much warning by a randomly occurring trigger – is at
the heart of the method’s intended use. Random sampling, and
the uncontrolled character of the environment mean that the
possibility of associating experiences with particular behaviors is
once again limited (though not entirely ruled out, see Hurlburt
et al., 2002).

Wide approaches to the study of experience are open to
the flow of experience and behavior within naturally occurring
activity. In approaches that are both qualitative and mixed
methods, these techniques have been applied in domains such
as Nursing (e.g., Traylen, unpublished MPhil dissertation),

Education (e.g., Onwuegbuzie et al., 2007; Palak and Walls,
2009), Anthropology (e.g., Killick, 1998), as well as Psychology
(e.g., Hurlburt and Akhter, 2006). They offer useful insights
into the relationship between experience and behavior, and
can be used to help structure sequential mixed methods
research projects where concepts and experiences are sampled
in ecologically rich settings and then variables identified for
closer inspection in laboratory experiments. For the more fine-
grained examination of specific variability of behavior in those
experiments, however, these approaches tend to be too broad,
examining timescales that are too long to adequately sample
experience at the grain of analysis that the behavior is being
measured.

“Narrow” approaches, on the other hand, focus more
particularly at the level of momentary experience and momentary
behaviors. In a sense, the entire domain of psychophysics
exists at this level of analysis, a very longstanding and finely
tuned examination of the relationship between physical stimuli
and a person’s experience of them. A somewhat related but
distinct precedent in the methodological literature is that of
systematic observation (Hintze et al., 2002; Podsakoff et al.,
2003). Systematic observation, with a long history in various
disciplines, clearly specifies the behaviors of interest in advance
and observes them (and only them) in naturalistic settings. It
therefore constitutes as more focused form of observation than
the “wide” approaches outlined above. The technique tends not
to involve the sampling of participants’ experience or awareness
of their surroundings at the moment of interest, however,
and the measurements of behavior while specific, are typically
more coarsely grained than would be common in controlled
experiments (though this may change as technology advances).

In the present paper, our interest is specifically with
the experience-behavior relationship, and how variability in
experience might be used to better understand variability in
measured behaviors. For that purpose we find two candidate
approaches in recently developed methods for fine-grained
experiential data collection: neurophenomenology (Varela, 1999;
Lutz and Thompson, 2003; Thompson et al., 2005) and the
elicitation interview (Petitmengin, 2006; Petitmengin et al.,
2013).

Both neurophenomenology and the elicitation interview
involve quite substantial control over the environment in which
that data are collected. In the case of neurophenomenology
the research is conducted in a neuroscience laboratory, usually
with EEG recording, and involves the careful training of
participants in phenomenological introspective techniques (that
is, introspection that attempts to avoid conceptualisation of
the experience, but to review and report it in as close to an
atheoretical fashion as possible). Neurophenomenology is thus an
example of a mixed methods approach (Tashakkori and Teddlie,
2010; Creswell and Plano Clark, 2011), seeking calibration of
quantitative measures with qualitative reports. The elicitation
interview is similarly conducted in a controlled setting, but in this
case the participant is not trained to introspect but interviewed
by a specialist in a manner intended to evoke the experience
of a particular moment, as opposed to some particular post hoc
understanding of that moment.
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Being lab-based, both neurophenomenology and the
elicitation interview offer the possibility of linking experience
with reliably, and finely, measured behaviors. They provide the
possibility of a high resolution examination of the relationship
between experience and action. They are not, of course, without
their drawbacks.

Neurophenomenology requires training of participants in the
particular introspective techniques associated, and in doing so
alters the very experience we are studying. Lutz and Thompson
(2003) argue that this is not a deep problem, though do not offer
a full explanation as to why. While it is quite possibly true that
coming to an understanding of experience will necessarily change
it, we would argue that methods should still be explored that
might possibly provide us with naive or unreflective experiential
reports. We do not argue against neurophenomenology, but
simply note that there may yet be useful experiential data to
collect from participants whose reports are not pre-disciplined
by the training they have received. Neurophenomenology is one
tool available to us, we note that others are yet needed.

The elicitation interview purports to provide just such naive
data, and in this we see real promise, but two facets of the
technique imply limits that might still leave us with an important
methodological blindspot.

The collaboratively constructed nature of the interview
process is one point of consideration, keenly aware as we already
are about the ease with which apparently confabulated responses
about experiential reports are produced. While proponents of
the elicitation interview approach argue strongly that a properly
skilled interviewer neither foists particular descriptions nor
prompts invented reports from their interviewees (Petitmengin,
2006), we must yet proceed with care. This means that the
approach, while both demanding of extraordinary discipline on
the part of the interviewer and substantial time for its conduct
(often between half an hour to an hour per interview), must
still be used with caution. Such pragmatic considerations must
not stop us from doing good science, but they do, nevertheless,
motivate us to be fully cognisant of the range of choices we have
available.

More concerning for our current purposes is the standard
focus of the elicitation interview: the re-evocation of a particular
moment of experience, an instant, as it were, during which a
decision was made, or a response to a question as it popped into
the interviewee’s mind. The techniques of the interview bring
the participant back to that moment, as though it were as real
and rich as their immediate environment. With the previous
experience thus being relived, it can be interrogated in fine
detail. In doing so, however, the temporal relationship between
event and subsequent discussion is broken. In Petitmengin et al.’s
(2013) recent study on the Johansson et al. ’s (2005, 2006) choice
blindness task, for instance, some participants completed the
photo choice and explanation at the normal pace, with reports on
the decision occurring between 5 s and 1 min after the choice.
The elicitation interview involved a period of between 30 and
45 min post-decision before re-presentation of the photo and
evoking of explanation. It is very likely that the collection of
systematic experiential reports of any kind is going to involve
the interruption of the flow of behavior within a task in some

form. We would argue, however, that more modest interruptions
should be more attractive, and where possible the temporal
dimensions of the task should be carefully balanced across
participant groups. What is more important, however, is the
possibility of multiple sampling points throughout the course of
a task. Where highly focused techniques such as the elicitation
interview provide fine-grained examination of a single moment,
there is not only a possibility but some suggestive evidence of
multiple strands of experience, and multiple rhythms of attention
or endogenous sensitivity to different aspects of the environment
operating over different timescales (Varela et al., 1981; Donald,
2001; Busch et al., 2009). That is, our experience is not just a string
of beads, but has multiple tempos and currents to it that will need
multiple sampling to observe, a form of repeated probing that the
likes of the elicitation interview makes unfeasible.

We therefore argue that there is room between the wide
and narrow forms of investigation of experience for a set
of intermediate methods. This intermediate range is more
anchored in recorded events and actions than wide approaches.
Such an approach will enable it to be used within controlled
environments, and thus offers promise in collecting data relevant
to the interrogation of variable behavior in controlled settings.
The approach would also, though, be less finely coupled to
particular stimuli or instants of experience than the more narrow
approaches. The meaningfulness of actions is to be sampled
at this intermediate range, where we might find patterns of
behavior rather than individual events, and themes of experience
rather than fine-grained particulars. Instead of the fast, very
short durations of most neural events as measured and used
in neurophenomenology, we might explore the slower, 10s of
seconds or minutes of duration in common behavior settings.
Given the history of research on experience-behavior links, we
might expect relationships between sampled experience and
behavior to need this kind of re-sampling, so that variability in
behavior can be calibrated against variability in experience, rather
than trying to capture something fixed in either one.

SUGGESTING AN INTERMEDIATE LEVEL
OF ANALYSIS

While dependencies of behavior on a host of contextual factors
is violated in laboratory experiments, this is a compromise
adopted for the purposes of maximizing communicability
(through standardized meanings to terms and procedures) as
well as replicability [an issue of some current concern amongst
researchers (Koole and Lakens, 2012; Nosek et al., 2012; Open
Science Collaboration, 2012, 2015; Ritchie et al., 2012; Roediger,
2012)].

Long running debates over the value of lab vs. field research
are essentially the professional policing of this compromise,
an exercise in maintaining perspective on the complementary
values of different forms of data collection, and an effort at
continually refining and improving our methods. The collection
of reports of the experiences of participants is no exception to this
issue, with wider approaches serving richer understandings of
context, while the more narrowly focused techniques offer higher
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resolution accounts of more finely circumscribed phenomena.
Wide approaches explore the general attitudes and experiences of
a person at a conceptual level that fits the person’s understanding
of their situation and actions, but that makes specific reference
to particular experiences and behaviors challenging. Narrow
approaches, on the other hand, may in fact be swamping the
signal on the relationship between experience and behavior
with the noise of momentary stream of consciousness, much
of which is irrelevant to the niceties of bodily action (Aglioti
et al., 1995; Milner and Goodale, 1995). If the meaning of the
situation (as suggested by the likes of Barrett et al., 2010), rather
than strings of isolated stimuli, are part of what matter to the
structuring of behavior, and the variability of measurements
around a mean for a given behavioral variable, then at least
some of the varied methods we use should be calibrated at that
appropriate scale.

Without knowing what experiential data most matter for
best understanding behavior, the wise course of action is to
sample widely and often, but within a setting where the
behavior is sufficiently reliable to keep subtle relationships
stable (or as stable as they can be). We suggest a form
of controlled descriptive experience sampling (a “C-DES”),
where introspective moments are triggered as with standard
DES – without prior warning to the participant, via a beep
or flash, perhaps. The participants might understand these
triggers to be random, but they need not be in actuality.
Descriptions can be kept brief, to potentiate multiple such
sampling during a single task or event as appropriate. Further,
the purely verbal descriptions of standard DES might also
be augmented with simple video recording of non-verbal
behaviors such as blinks, eye-movements, or other possibly
subtle, aspects of the participant’s behavior, offering a richer
interpretative context for the content of reports (Olivares et al.,
2015).

To offer an illustration, the Iowa Gambling Task (Bechara
et al., 1994) is a frequently used laboratory activity conducted to
evaluate participants’ sensitivity to certain kinds of consequences,
or to investigate trait characteristics such as impulsivity or
executive control. The task is sometimes augmented with
questions to the participant about their knowledge of its various
components, to see how this changes over the course of
the activity. Just what the relationship between participants’
knowledge and their behavior is over the course of the task is
somewhat problematic, but C-DES would eschew a need for the
participant to understand the task at all, or report knowledge of
it. Rather, by sampling what they were aware of either at key
moments, or at regular intervals over the course of the task,
researchers might be able to explore this relationship without
relying on participant insight.

While this runs counter to the standard use of DES, for
which naturalistic activity is vital, many of the strengths of
the approach are maintained (no pre-specification or priming
of behavior or moment to be introspected upon, naturalistic
description of experience by participants). These strengths might
thus be deployed in the service of understanding people’s
experiences of the laboratory during the laboratory task, and
provide one of several perspectives from which we build up a

richer understanding of what people are doing, and how they are
experiencing the doing of it.

We will not know without conducting the research what
kinds of experience will be relevant. History indicates clearly that
introspective explanations of behavior are not the data we are
looking for, but a plethora of other options are available, across
numerous scales of time. Sensory experiences, physiological
rhythms and responses, emotions, moods, culturally relevant
routines – these things, and more show up in people’s descriptions
of their experience. While long-practiced habits might primarily
shape behavior at the level of momentary particulars, experience
may instead be coupled with action at the level of “molar
behavior” (Barker, 1968).

This is to say that experience may not be a flow of
individual moments in continuous accumulation, but a general
awareness of a situation within which various relationships
become distinguished – an event does not simply happen at
some psychological “now”, but early or late within a general
expectation or understanding of the setting. Longstanding (but
little known) work indicates that people are very sensitive to the
standing patterns of behavior or expected routine present within
a given physical or social setting (Barker, 1968; Schoggen, 1989;
Heft, 2001, 2003, 2007; see also Heft et al., 2014, for a recent
examination of people’s ability to recognize settings with very
limited information). The work of Mesquita (2010) and Barrett
et al. (2011, 2014), have shown a similarly situational character to
people’s emotional reactions.

Within a more controlled form of DES the probing of
conscious awareness can remain open and largely unstructured.
Participants are free to describe their experience in familiar
and comfortable terms, which can be explicated in conversation
with the experimenter either immediately, or at a later time
after the experimental task itself is completed. For the main,
the standard DES principles outlined by Hurlburt et al. (2002)
apply. The time between experience reporting and exploration
in collaboration with the researcher is very short. Moments of
experience are clearly defined (by the use of a tone or other
trigger). Various practices of the interview are used to ensure that
careful distinctions are made between the experience itself and
any attempt to explain that experience.

In addition, however, given that the initial probings of
experience can be kept brief (or varied in length depending
on research goals), the possibility of multiple samplings over
the course of a single experimental session is maintained. The
intervals between samplings can be used as a means of exploring
the temporal aspects of experience, its rhythms, and periodic
variations.

USING THE UN-MEAN-ABLE TO
CALIBRATION THE MEAN (AND
VICE-VERSA)

Focusing closely on averages as summaries of collections of data
is a practice that depends on a host of background theoretical
assumptions. Speelman and McGann (2013) raised concerns
(oft-noted in statistics courses, but rarely applied in practice) that
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these assumptions are commonly unquestioned, and frequently
ill-considered. While there are some reporting and analysis
practices that might help contextualize the mean in mathematical
or statistical terms, and we support calls to move toward
standardizing such practices (such as Doherty et al., 2013), it
is equally important to query the psychological, and not just
statistical, context to the data being collected.

In this paper we have argued that there are good reasons for
paying more attention than we typically do to the experience
of the participant within rigorous laboratory experiments. There
is clearly a relationship between participants’ experiences of a
given situation and their behavior within that situation, but the
relationship is not a simple one. The validity of our measures, and
relatedly our understanding of their variation, must be achieved
through the coordination of multiple sources of knowledge about
a person and their actions in a given setting. Experiential data,
however, challenging they are to work with, have some role to
play in that validation and calibration process (Froese et al.,
2011a).

What we have termed “wide” approaches to such experiential
data collection do not provide us with the behavioral data at
the level of detail we need to effect this calibration. Conversely,
the approaches we have termed “narrow” we suggest are too
narrow. Though they enable the collection of specific behavioral
data, the pre-focused nature of their experience sampling imposes
expectations or prior understandings of the kinds of experience
we need to probe, and include assumptions about the momentary
nature of those experiences, that are inappropriate for our current
levels of understanding (or perhaps more accurately, ignorance),

about the behavior-experience relationship, particularly of the
varying timescales of different phenomena of consciousness.

We propose that a C-DES is a data collection technique ideal
for the kinds of disciplined exploratory research that is needed
to adequately observe the experience-behavior relationship. In
order to determine to what degree a calculated mean actually
matters to what people do, and how to refine the validity of
what it measures, we need a level of description and analysis
of experiential data that is not commonly in use – one that is
exploratory and potentially wide-ranging, but evoked within a
controlled, managed situation such as the laboratory experiment.
The paired examination of controlled behaviors still offers us
a means of understanding and interpreting the descriptions of
experiences captured through this process. The validation of the
mean and the un-meanable is a two-way relationship, achieved
not through a single ideal study, but through a long process of
negotiation across multiple studies, using multiple methods.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENT

The work in this paper constitutes part of AA’s doctoral studies,
supervised by MG.

REFERENCES
Aglioti, S., De Souza, J. F., and Goodale, M. A. (1995). Size-contrast illusions

deceive the eye but not the hand. Curr. Biol. 5, 679–685. doi: 10.1016/S0960-
9822(95)00133-3

Banister, P. (2011). Qualitative Methods in Psychology: A Research Guide. London:
McGraw-Hill.

Barker, R. G. (1968). Ecological Psychology: Concepts and Methods for Studying the
Environment of Human Behavior. Stanford, CA: Stanford University Press.

Barrett, L. F., Mesquita, B., and Gendron, M. (2011). Context in
emotion perception. Curr. Dir. Psychol. Sci. 20, 286–290. doi:
10.1177/0963721411422522

Barrett, L. F., Mesquita, B., and Smith, E. R. (2010). “The context principle,” in
The Mind in Context, 1st Edn, eds B. Mesquita, L. F. Barrett, and E. R. Smith
(London: Guilford Press).

Barrett, L. F., Wilson-Mendenhall, C. D., and Barsalou, L. W. (2014). “The
conceptual act theory: a roadmap,” in The Psychological Construction of
Emotion, eds L. F. Barrett and J. Russell (New York, NY: Guildford Press).

Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W. (1994). Insensitivity
to future consequences following damage to human prefrontal cortex. Cognition
50, 7–15. doi: 10.1016/0010-0277(94)90018-3

Bruner, J. (1990). Acts of Meaning. Cambridge, MA: Harvard University Press.
Bruner, J. S., and Goodman, C. C. (1947). Value and need as organizing

factors in perception. J. Abnorm. Soc. Psychol. 42, 33–44. doi: 10.1037/h00
58484

Bruner, J. S., and Postman, L. (1949). On the perception of incongruity:
a paradigm. J. Pers. 18, 206–223. doi: 10.1111/j.1467-6494.1949.tb
01241.x

Busch, N. A., Dubois, J., and VanRullen, R. (2009). The phase of ongoing
EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876. doi:
10.1523/JNEUROSCI.0113-09.2009

Creswell, J. W., and Plano Clark, V. L. (2011). Designing and Conducting Mixed
Methods Research. London: Sage.

Dennett, D. C. (1991). Consciousness Explained. London: Penguin.
Di Paolo, E. (2009). Extended life. Topoi 28, 9–21. doi: 10.1007/s11245-008-9042-3
Doherty, M. E., Shemberg, K. M., Anderson, R. B., and Tweney, R. D. (2013).

Exploring unexplained variation. Theory Psychol. 23, 81–97.
Donald, M. (2001). A Mind So Rare. London: Norton.
Fancher, R. (1996). Pioneers of Psychology, 3rd Edn. New York, NY: W. W.

Norton & Co.
Froese, T., Gould, C., and Barrett, A. (2011a). Re-viewing from within:

a commentary on first-and second-person methods in the science of
consciousness. Construct. Found. 6, 254–269.

Froese, T., Gould, C., and Seth, A. K. (2011b). Validating and calibrating first-and
second-person methods in the science of consciousness. J. Conscious. Stud. 18,
38–64.

Gallagher, S., and Marcel, A. J. (1999). The self in contextualized action.
J. Conscious. Stud. 6, 4–30.

Goodale, M. A., and Milner, A. D. (2005). Sight Unseen: An Exploration of Conscious
and Unconscious Vision. Oxford: Oxford University Press.

Heft, H. (2001). Ecological Psychology in Context: James Gibson, Roger Barker, and
the Legacy of William James’s Radical Empiricism, 1st Edn. London: Lawrence
Erlbaum Associates.

Heft, H. (2003). Affordances, dynamic experience, and the challenge of reification.
Ecol. Psychol. 15, 149–180. doi: 10.1207/S15326969ECO1502_4

Heft, H. (2007). The social constitution of perceiver-environment reciprocity. Ecol.
Psychol. 19, 85–105. doi: 10.1080/10407410701331934

Heft, H., Hoch, J., Edmunds, T., and Weeks, J. (2014). Can the identity of a behavior
setting be perceived through patterns of joint action? An investigation of place
perception. Behav. Sci. 4, 371–393. doi: 10.3390/bs4040371

Hintze, J. M., Volpe, R. J., and Shapiro, E. S. (2002). “Best practices in the systematic
direct observation of student behaviour,” in Best Practices in School Psychology

Frontiers in Psychology | www.frontiersin.org May 2016 | Volume 7 | Article 674 | 40

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00674 May 5, 2016 Time: 16:44 # 9

McAuliffe and McGann Meaning and the Mean

IV Vol. 2, eds A. Thomas and J. Grimes (Bethesda, MD: National Association
of School Psychologists), 993–1006.

Hurlburt, R. T., and Akhter, S. A. (2006). The descriptive experience sampling
method. Phenom. Cogn. Sci. 5, 271–301. doi: 10.1007/s11097-006-9024-0

Hurlburt, R. T., and Heavey, C. L. (2002). Interobserver reliability of
descriptive experience sampling. Cogn. Ther. Res. 26, 135–142. doi:
10.1023/A:1013849922756

Hurlburt, R. T., Koch, M., and Heavey, C. L. (2002). Descriptive experience
sampling demonstrates the connection of thinking to externally observable
behavior. Cogn. Ther. Res. 26, 117–134. doi: 10.1023/A:1013849922756

Johansson, P., Hall, L., Sikström, S., and Olsson, A. (2005). Failure to detect
mismatches between intention and outcome in a simple decision task. Science
310, 116–119. doi: 10.1126/science.1111709

Johansson, P., Hall, L., Sikström, S., Tärning, B., and Lind, A. (2006).
How something can be said about telling more than we can know: on
choice blindness and introspection. Conscious. Cogn. 15, 673–692. doi:
10.1016/j.concog.2006.09.004

Killick, D. (1998). “On the value of mixed methods in studying mining
communities,” in Social Approaches to an Industrial Past: The Archaeology and
Anthropology of Mining, eds A. B. Knapp, V. C. Piggott, and E. W. Herbert
(New York, NY: Wiley), 279–290.

Koole, S. L., and Lakens, D. (2012). Rewarding replications a sure and simple
way to improve psychological science. Perspect. Psychol. Sci. 7, 608–614. doi:
10.1177/1745691612462586

Lutz, A. (2007). Neurophenomenology and the study of self-
consciousness. Conscious. Cogn. 16, 765–767. doi: 10.1016/j.concog.2007.
08.007

Lutz, A., and Thompson, E. (2003). Neurophenomenology integrating subjective
experience and brain dynamics in the neuroscience of consciousness.
J. Conscious. Stud. 10, 31–52.

Marcel, A. J. (1993). “Slippage in the unity of consciousness,” in Experimental and
Theoretical Studies of Consciousness, eds G. R. Rock and J. Marsh (Chichester:
John Wiley & Sons), 168–180.

Mesquita, B. (2010). “Emoting: a contextualized process,” in The Mind in Context,
1st edn, eds B. Mesquita, L. F. Barrett, and E. R. Smith (London: Guilford Press).

Milner, D., and Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford
University Press.

Nisbett, R. E., and Wilson, T. D. (1977). Telling more than we can know: verbal
reports on mental processes. Psychol. Rev. 84, 231–259. doi: 10.1037/0033-
295X.84.3.231

Nosek, B. A., Spies, J. R., and Motyl, M. (2012). Scientific utopia II. Restructuring
incentives and practices to promote truth over publishability. Perspect. Psychol.
Sci. 7, 615–631. doi: 10.1177/1745691612459058

Olivares, F. A., Vargas, E., Fuentes, C., Martínez-Pernía, D., and Canales-
Johnson, A. (2015). Neurophenomenology revisited: second-person
methods for the study of human consciousness. Front. Psychol. 6:673.
doi: 10.3389/fpsyg.2015.00673

Onwuegbuzie, A. J., Witcher, A. E., Collins, K. M., Filer, J. D., Wiedmaier, C. D.,
and Moore, C. W. (2007). Students’ perceptions of characteristics of effective
college teachers: a validity study of a teaching evaluation form using a mixed-
methods analysis. Am. Educ. Res. J. 44, 113–160. doi: 10.3102/0002831206
298169

Open Science Collaboration (2012). An open, large-scale, collaborative effort to
estimate the reproducibility of psychological science. Perspect. Psychol. Sci. 7,
657–660. doi: 10.1177/1745691612462588

Open Science Collaboration (2015). Estimating the reproducibility of
psychological science. Science 349, aac4716. doi: 10.1126/science.aa
c4716

Orne, M. T. (1962). On the social psychology of the psychological experiment:
with particular reference to demand characteristics and their implications. Am.
Psychol. 17, 776–783. doi: 10.1037/h0043424

Orne, M. T. (1973). “Communication by the total experimental situation: why it is
important, how it is evaluated, and its significance for the ecological validity of
findings,” in Communication and Affect: Language and Thought (pp. xii, 200),
eds P. Pliner, L. Krames, and T. Alloway (New York, NY: Academic Press).

Palak, D., and Walls, R. T. (2009). Teachers’ beliefs and technology practices:
a mixed-methods approach. J. Res. Technol. Educ. 41, 417–441. doi:
10.1080/15391523.2009.10782537

Palmer, M., Larkin, M., de Visser, R., and Fadden, G. (2010). Developing an
interpretative phenomenological approach to focus group data. Qual. Res.
Psychol. 7, 99–121. doi: 10.1080/14780880802513194

Petitmengin, C. (2006). Describing one’s subjective experience in the second
person: an interview method for the science of consciousness. Phenom. Cogn.
Sci. 5, 229–269. doi: 10.1007/s11097-006-9022-2

Petitmengin, C., Remillieux, A., Cahour, B., and Carter-Thomas, S. (2013). A gap in
Nisbett and Wilson’s findings? A first-person access to our cognitive processes.
Conscious. Cogn. 22, 654–669. doi: 10.1016/j.concog.2013.02.004

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., and Podsakoff, N. P. (2003). Common
method biases in behavioral research: a critical review of the literature and
recommended remedies. J. Appl. Psychol. 88, 879–903. doi: 10.1037/0021-
9010.88.5.879

Reid, K., Flowers, P., and Larkin, M. (2005). Exploring lived experience.
Psychologist 18, 20–23.

Richards, G. (2002). Putting Psychology in Its Place: A Critical Historical Overview.
London: Routledge.

Ritchie, S. J., Wiseman, R., and French, C. C. (2012). Replication, replication,
replication. Psychologist 25, 346–348.

Roediger, H. L. (2012). Psychology’s woes and a partial cure: the value of replication.
APS Observer 25:9.

Rosenberg, S. (1969). “The conditions and consequences of evaluation
apprehension,” in Artifact in Behavioral Research, eds R. Rosenthal and
R. L. Rosnow (New York, NY: Academic Press), 279–349.

Schoggen, P. (1989). Behavior Settings: A Revision and Extension of Roger G.
Barker’s ‘Ecological Psychology’. Stanford, CA: Stanford University Press.

Schwarz, N. (2010). “Meaning in context: metacognitive experiences,” in The Mind
in Context, 1st Edn. eds B. Mesquita, L. F. Barrett, and E. R. Smith (London:
Guilford Press), 105–125.

Shapiro, L. (2010). Embodied Cognition, 1st Edn. Abingdon: Routledge.
Speelman, C. P., and McGann, M. (2013). How mean is the mean? Front. Psychol.

4:451. doi: 10.3389/fpsyg.2013.00451
Tashakkori, A., and Teddlie, C. (2010). Sage Handbook of Mixed Methods in Social

and Behavioral Research. London: Sage.
Thompson, E. (2007). Mind in Life: Biology, Phenomenology and the Sciences of

Mind, 1st Edn. Cambridge, MA: Harvard University Press.
Thompson, E., Lutz, A., and Cosmelli, D. (2005). “Neurophenomenology: an

introduction for neurophilosophers,” in Cognition and the Brain: The Philosophy
and Neuroscience Movement, eds A. Brook and K. Akins (Cambridge:
Cambridge University Press), 40.

Treisman, A. M. (1960). Contextual cues in selective listening. Q. J. Exp. Psychol.
12, 242–248. doi: 10.1523/JNEUROSCI.1820-14.2014

Varela, F. J. (1999). “The specious present: a neurophenomenology of time
consciousness,” in Naturalizing Phenomenology: Issues in Contemporary
Phenomenology and Cognitive Science, eds J. Petitot, F. J. Varela, B. Pachoud,
and J.-M. Roy (Stanford, CA: Stanford University Press), 266–314.

Varela, F. J., Thompson, E., and Rosch, E. (1991). The Embodied Mind. Cambridge,
MA: MIT Press.

Varela, F. J., Toro, A., John, E. R., and Schwartz, E. L. (1981). Perceptual framing
and cortical alpha rhythm. Neuropsychologia 19, 675–686. doi: 10.1016/0028-
3932(81)90005-1

Wason, P. C. (1971). Natural and contrived experience in a reasoning problem.
Q. J. Exp. Psychol. 23, 63–71. doi: 10.1080/00335557143000068

Watson, J. B. (1913). Psychology as the behaviorist views it. Psychol. Rev. 20,
158–177. doi: 10.1037/h0074428

Wilson, A. D., and Golonka, S. (2013). Embodied cognition is not what you think
it is. Front. Cogn. Sci. 4:58. doi: 10.3389/fpsyg.2013.00058

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 McAuliffe and McGann. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org May 2016 | Volume 7 | Article 674 | 41

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


REVIEW
published: 28 October 2015

doi: 10.3389/fpsyg.2015.01615

Frontiers in Psychology | www.frontiersin.org October 2015 | Volume 6 | Article 1615 |

Edited by:

Marek McGann,

Mary Immaculate College, Ireland

Reviewed by:

Martin Lages,

University of Glasgow, UK

Amanda Jane Barnier,

Macquarie University, Australia

*Correspondence:

Kim Kirsner

pkirsmer@bigpond.net.au

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 18 June 2015

Accepted: 06 October 2015

Published: 28 October 2015

Citation:

Kirsner K (2015) Target definition for

shipwreck hunting.

Front. Psychol. 6:1615.

doi: 10.3389/fpsyg.2015.01615

Target definition for shipwreck
hunting
Kim Kirsner *

School of Medicine, University of Notre Dame, Fremantle, WA, Australia

The research described in the present article was implemented to define the locations of

twoWorldWar II shipwrecks, the German raiderKormoran, and the Australian light cruiser

HMAS Sydney. The paper describes the long and complex trail that led through inefficient

oceanographic prediction to ambiguous historical prediction involving a single report and

on to precise cognitive prediction based on nine reports from more than 70 survivors,

a process that yielded a single target position or “mean” just 2.7NM (nautical miles)

from the wreck of Kormoran. Prediction for the position of the wreck of Sydney opened

with wishful thinking that she had somehow reached the coast more than 100NM away

when cognitive analysis of the survivor’s reports actually provided the basis for accurate

prediction in a position near to the wreck of Kormoran. In the account provided below, the

focus on cognitive procedures emerged from, first, a review of a sample of the shipwreck

hunts, and, second, growing awareness of the extraordinarily rich database available

for this search, and the extent to which it was open to cognitive analysis. This review

touches on both the trans-disciplinary and the cognitive or intra-disciplinary issues that so

challenged the political entities responsible for supervising of the search for the wrecks of

Kormoran and Sydney. One of the theoretical questions that emerged from these debate

concerns the model of expertise advanced by Collins (2013). The decomposability of

alleged forms of expertise is revealed as a fundamental problem for research projects

that might or might not benefit from trans-disciplinary research. Where expertise can be

decomposed for operational purposes, the traditional dividing lines between experts and

novices, and fools for that matter, are much harder to discern, and require advanced and

scientifically informed review.

Keywords: shipwreck hunting, error, memory, decision making, cognition, mental models, trading zones

CONTEXT

HMAS Sydney and HSK Kormoran sank within an hour or two of each other and approximately
13 nm apart on November 19th, 1941. The British light cruiser and the German raider met by
chance while Sydney was steaming south from Sunda Strait to Fremantle and Kormoran was
searching for merchant targets before laying mines off the small coastal port of Carnarvon. The
vessels met on a clear afternoon and sighted each other at a distance of 20 or more nautical miles
(NM). Kormoran turned to the west to avoid combat but Sydney followed, and, when Sydney closed
to less than oneNM, combat was inevitable. Sydney had squandered her advantages in regard to
long range gunnery, director control, armor, and speed. Kormoran fired first and the engagement
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lasted less than 30 nm. Sydney was hit by at least fifty 155mm
rounds, hundreds of smaller missiles, and one torpedo, and she
sank with the loss of all hands about 5 h later. Kormoran was hit
by only three or four six inch rounds but one of those destroyed
her motive power and she was scuttled about 6 h after the battle
following an orderly disembarkation of the majority of her crew
in five lifeboats and two life-rafts. A brief history of the event was
published by Gill (1957, 1985).

PERFORMANCE CRITERIA

Before the detailed analyses are considered, it is appropriate
to identify critical performance criteria for the domain, and to
underline the relationship between the performance criteria and
the author’s focus on the mean. The author has adopted three
performance criteria, and one simplifying convention.

The first and most important criterion corresponds to the
aim of this edition of Frontiers, and the focus on the challenge
of identifying an optimal search target or mean given six or
more forms of evidence, the impact of time on the accuracy
of each of those forms, and the inevitable presence of human
error. The convention involves the use of “Distance from the
wreck of Kormoran,” or Error, to minimize reliance on the
two-dimensional world of traditional cartography. Distances are
specified in nautical miles (NM), where oneNM = 1.85 km
or 1.15 statute miles. The primary challenge for wreck-hunters
involved extraction of a mean target position from the reports
available for a particular wreck. The first criterion therefore
involved Accuracy.

The second criterion involved selection of an efficient search
box, a box that must therefore include the wreck of Kormoran
while minimizing the size of the search area. The search areas
associated with the historical shipwreck searches of interest
ranged from 100 Square Nautical Miles or SNM to 600 SNM,
however the areas originally tabled for the search for Kormoran
involved far larger areas than that, up to 13,000 SNM or more in
some cases.

The third criterion involved the extent to which a particular
solution reflected the power and variety of the available evidence.
All other things being equal, a recommendation that reflected
one report and one report only must be set aside in favor
of a recommendation that reflected several reports or even a
substantial fraction of the available evidence. This approach
highlighted the weaknesses associated with cherry-picking. For
convenience, this criterion is referred to as Explanatory Power.

DISCIPLINES AND EXPERTISE

The question under review in this paper concerns the location of
the wrecks of Kormoran and Sydney. In retrospect, and with the
benefit of hindsight, it is now evident that many of the critical
entities in the search were overwhelmed by the shear variety
and the depth of the evidence available. The critical issue bears
some comparison with the signal detection challenge described
by Tanner and Swets (1954) more than half a century ago. But
there is another problem. Although Thagard (2005) described
the boundary regions between disciplines as a critical venue

for innovation in science, the absence of informed scientific
leadership among the entities responsible for management of
the search created an unsympathetic environment for science in
general and scientific innovation in particular.

Figure 1 identifies seven data types and four or possibly
five disciplines with an interest in the search for the wreck
of Kormoran. The presence of so many interested disciplines
reflected the shear variety and the volume of the known and
potential sources of data available for the search. The following
is a short summary of the available types of evidence and sources:

1. Flotsam (Oceanography): The first type of evidence involved
the positions of flotsam, information open to hindcasting
to reconstruct the point or points of entry into the water.
However, oceanographic hindcasting depends critically on an
understanding of the direction, velocity and stability of wind
and water currents, and the increasing challenge faced by
hindcasting with the passage of time, where time for this
search ranged from 84 to 209 h.

2. Lifeboat diary (Oceanography and Navigation): One person
in one of the lifeboats maintained a simple diary recording
performance data, evidence that enabled reconstruction of
the position of Kormoran. In practice, interpretation of the
diary depended on oceanographic as well as navigational
assumptions, and, if the former are misunderstood,
navigational reconstruction can be far off the mark.

3. Reports from Kormoran survivors (History and the Cognitive
Sciences): It is now apparent that the Kormoran survivors
provided more than 70 reports about the absolute or relative
position of Kormoran. In addition, RN and RAN servicemen
provided nearly 50 summary reports that included comment
about the location of the wreck.

4. Reports from observers on the coast (History and the Cognitive
Sciences): Commencing with journalist Bryan Clark in the
1980’s, more than 90 reports were accumulated from about 30
people living on the coast between Geraldton and Dirk Hartog
Island.

5. Magnetic Anomaly (Geophysics): The first WAMM/RAN
search in 1984 was driven by the presence of an anomaly off
the coast near Kalbarri, about 130 nm from the wrecks, and
received no support from any other source.

6. Map Dowsing: Commencing in 1989 Lindsay Knight and
Warren Whittaker claimed that a combination of hand-based
and electronic-based map dowsing procedures had located the
wrecks of Kormoran and Sydney near the Abrolhos Islands,
180 nm from the position of the wrecks.

7. The United States Navy (USN): Mike McCarthy, Curator
of the West Australian Maritime Museum (WAMM),
sought assistance from the USN subsequent to the 1991
Oceanography Workshop. The following quotations are from
a FAX from the Curator to David Gallo of the Woods Hole
Oceanographic Institute (WHOI) in Falmouth, Massachusetts
in 1992:

“My hopes for the search now lie in anti-submarine warfare

records, for it has long been my understanding that many

of the magnetic anomalies on the seafloor throughout the

world are known and have been mapped for strategic
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FIGURE 1 | Overview of the disciplines that contributed to the Search Definition debate. The figure indicates the source of each type of report, and the form

or forms of expertise relevant to the report types, where known. The blue, brown, and red connections reflect the complexity of the relationships among the reports

and the disciplines. The gray boxes identify unproductive streams of argument. The aviation and maritime symbols reflect the focus of the WAMM and/or the services

in regard to research and search activities.

purposes. These suspicions have been long since confirmed in

discussions with the US, GB, and Australian anti-submarine

operatives and were first mooted here in the searches for the

SS Koombana many years ago.”

And significantly,

“If the approximate locations of the Sydney/Kormoran are

to be found by that route, my problem will be how to keep

confidential my source and yet not pretend that we had found

the wrecks purely by our own means.”

The overview of the disciplines involved in the search acknowledged the extra-

ordinarily rich mixture of evidence, expertise, wishful-thinking, and fantasy that

dominated the first 25 years of interest in the search for Kormoran and Sydney

as well as the challenge faced by the private and government entities that

engaged in supervision of the search, a challenge they accepted without

deploying, seeking, or recognizing the need for expertise.

OCEANOGRAPHIC AND NAVIGATION
ANALYSES

In 1991 the author approached the WAMM, and proposed that
it design and establish an oceanography workshop, the objective
of which was to adjudicate between the positions advanced by
Montgomery and Barbara Winter, the trigger for the author’s
initial interest in the project. The first question therefore involved
the power of the oceanographic procedures. Could they be used
to adjudicate between the positions advanced by Montgomery
and Winter?

The rationale for the position advanced by Winter was clear.
Winter (1991) included translations of critical elements from
Detmers’ Battle Summary, and the entry for 1700 h on November
19, 1941 included the following, “Straat Malakka 111E 26S.”

Winter had tabled the same general position in 1984 on the map
shown at page 160. The position was supported in the earlier
publication by reference to the statement by Winter that,

“Calculations, ignoring some minor variables, show that the

end of nautical twilight on 19th November 1941, latitude 26◦S

longitude 111◦E, was 1901G; the time quoted by Detmers, give

or take a minute.”

The critical issue, as recognized by Winter, involved the
distinction between the “private” and partially encoded values
in the Battle Summary, and the “public” positions provided to
the RAN interrogators during the Search and Rescue (SAR) and
interrogation processes during and following the SAR operation
in 1941. The weakness associated with this report involved the
probability that the report was intended to be accurate to only
the nearest degree, that is 26◦S 111◦E, as distinct from the nearest
minute, that is 26◦00′S 111◦00′E. Technically, the former involves
an area of approximately 3400 Square Nautical Miles (SNM).
Justification for the position advanced by Montgomery (1981)
was less clear, and relied on selection of one German report, and
a dubious claim about the location of the direct route from Sunda
Strait to Fremantle.

The original SAR operation conducted by the Royal
Australian Air Force (RAAF) and the Royal Australian Navy
(RAN) betweenNovember 24th andNovember 29th 1941 yielded
eight reports about the locations of flotsam together with 11
reports about the locations of five lifeboats. Two further reports
involved the locations of two life-rafts, but these involved chance
meetings with passing vessels. The aerial arm of the operation
involved approximately nine systematic searches by Hudson
aircraft, searches that were dispersed over an area in excess of
30,000 SNM, but searches that were probably too high to detect
anything smaller than a lifeboat. In addition, long-range aircraft
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examined specific targets out to sea, and smaller aircraft searched
along the coast. The maritime arm of the search involved some
nine ships, and focused on the area where the flotsam was
observed.

Drifting Objects
Oceanographic reconstruction could be based on some or all of
the known positions of the objects discovered after the battle.
The objects comprised two life-rafts, three lifebelts, one float,
one dog kennel, and one raft, and they were discovered between
84 and 209 h after the battle. The critical questions therefore
concerned the elapsed time for each object, the drifting and/or
sailing characteristics of that object, and the direction, velocity
and, critically, the variability, of the currents and winds for the
period. In addition, as each object had individual characteristics,
the analysis had to be applied to each object as an independent
entity.

The professional contributions to the 1991 Oceanographic
Workshop used hind-casting based on themovements of some or
all of the objects that left Kormoran or possibly Sydney between
1800 and approximately 2300 h on November 19th, 1941. The
objects were discovered approximately 120NM north of the now

known position of the wreck of Kormoran. The hindcasting
analyses typically relied on velocity and bearing information
for four variables; current, wind, wind-driven current, and
leeway. The workshop yielded four professional reports. The
report implemented by Search and Rescue expert Hughes (1991)
actually included the position of the wreck of Kormoran but the
center of the search area was 33NM from that wreck, and the
overall area was ∼ 7850 SNM. A second, by oceanographers
Steedman and McCormack (1991), involved an area of ∼ 1000
SNM, but it did not quite include the wreck ofKormoran. A third,
by Penrose and Klaka (1991), did not include a search area but
it did specify a 30NM long contour that passed within ∼4NM
of the wreck. The fourth analysis, by CSIRO expert Alan Pearce
(1991) asserted that the amount of variability in the current and
wind values for the area precluded accurate prediction. The first
three reports are reflected in Figure 2.

The challenge posed by Pearce was evident in the current
rose re-published by him from the from the KNMI (Dutch)
Marine Atlas (See Figure 3A). What the figure highlights is
the extraordinary variability in the bearing and velocity of the
currents for the area. The figure should be considered in the
context of Figure 3B where the presence of huge eddies is

FIGURE 2 | Depicts positions advanced by Montgomery and Winter and results of 1991 Oceanography Workshop. The figure includes the

recommendation tabled by Gill (1957, 1985) as well as the now known position of Kormoran.
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FIGURE 3 | (A) Monthly “current rose” from the KNMI Atlas for area encompassed by 25◦S, 28◦S, 110◦E, and 113◦E for November. (B) Example of oceanic high

showing the scale and the type of movement that complicated prediction off the coast of Western Australia.

noted. The eddies are up to 50KM in diameter, move in either
a clockwise or anti-clockwise direction (for highs and lows,
respectively), and the entire system moves gradually from West
to East. Furthermore, because the current observations involve
almost every point on the compass, the net drift vector, the
distance made good in any one direction, is very small. Pearce
wrapped up his argument in the following terms,

“It is concluded that “climatological” current data cannot be used

with any confidence to predict the likely currents which may have

carried debris from the HMAS Sydney away from the site of the

engagement.”

The role of oceanography for Search Definition was set aside by
the author in 1993 for four reasons; first, the size of the error circle
defined by Hughes and others was prohibitive for in-water search
purposes; second, the argument advanced against reliance on
oceanography by CSIRO-expert Alan Pearce underlined doubts
about the relevance of the discipline to the search; third, a review
that assigned little or no responsibility to oceanography for
historically significant searches by Ballard; and, fourth, evolving
awareness that the scale and reliability of the reports provided by
the survivors might not provide a platform for an efficient search.

The Navigation Argument
The critical note for reconstruction of the lifeboat voyage from
disembarkation to the coast is attributed to von Malapert, a
member of the crew on the lifeboat captained by Henry Meyer,
the navigator. The critical extract from VonMalapert’s Diary is as
follows:

(a) ET0-ET71: 12 h drifting, 59 h sailing at an estimated speed

of 1.1 knots 062◦, Distance sailed 63 miles; (b) ET71-ET90:

Drifted in Force 6–7 winds; (c) ET90-ET134; Sailed for 42 h at an

estimated speed of 1.9 knot; Estimated distance= 81 miles.

The Navigation argument can be thought of as one facet of
the oceanography analysis. Lifeboats, whether under sail or

not, are influenced by the direction, velocity, and duration of
the prevailing winds and currents. Steedman and McCormack
(1991), a professional oceanographer, reviewed, and rejected
analysis of the lifeboat journey, arguing that there were too many
unknowns about the sailing and drifting characteristics of the
lifeboats to accept the diary for formal analysis (Steedman and
McCormack, 1991).

In 2000, shortly after the death of Lindsay Knight,
owner/developer of the so-called Knight Direct Location
System, a map dowser’s dream, Warren Whittaker, his long-time
collaborator, finally abandoned map dowsing and advanced a
new argument for another target near the Abrolhos Islands. The
account was based on the diary maintained by von Malapert.
According to Whittaker (2000),

“These “logs” (i.e., written records from the German survivors)

contain clear evidence that the battle actually took place west of

the Abrolhos Islands and not in the northern or Detmers area.

The Abrolhos Islands site is consistent with KDLS Target No.

3 (suspected site of the wreck of HSK Kormoran) at 28◦39′S

113◦22′E; Error= 196NM) (Whittaker, 2000).

The claim advanced byWhittaker in 2000was contradicted by the
fact that both Meyer, the Kormoran navigator, and von Malapert,
specified the approximate distance covered by their lifeboat over
the entire voyage, and they put the distance at 150 miles and 153
miles respectively, about half of the distance from the Houtmann
Abrolhos Islands to Cape Cuvier by sea.

Whittaker was not the last person to focus on interpretation
of the diary. The first endorsement came from LCDR David
McDonald RAN.McDonald reviewed and distributed an analysis
of the lifeboat voyage that placed the point of origin in a large
ellipse off the coast in the latitude of Port Gregory, the latitude
long-advocated by his mother on the basis of the oral history
accounts described below (McDonald, 2003).

The second endorsement came from the RAN Seapower
Centre (Johnstone et al., 2003). The RAN conducted a Lifeboat
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workshop in order to facilitate recognition of the site of the
wrecks. An expert panel was formed to resolve the issue. The
panel’s conclusions were as follows:

“Analysis of the lifeboat voyage by the workshop panel suggests

that the correct site of the battle between SYDNEY and

KORMORAN lies between the Whittaker and Detmers positions.

However, given the paucity of information from the lifeboat

log, limited meteorological data from November 1941, and

unclear data on the handling characteristics of the lifeboat, the

actual position of the battle cannot be narrowed sufficiently to

confidently suggest the resting place of the KORMORAN wreck.

For these reasons also the Detmers and the Whittaker positions

cannot be definitively ruled out at this time.”

Consideration of the oceanographic evidence removed the Abrolhos arguments

from the table, rendered in-shore locations improbable, and indicated that the

discipline could not be used to provide an accurate or efficient solution.

HISTORICAL ANALYSES

In the first professional historical analysis of the engagement,
Herman Gill located the contact and battle positions for
Kormoran and Sydney near 26◦34′S 111◦E and 26◦40′S 110◦33′E,
respectively, the second of these positions being 42NM from the
wreck. Gill was not of course touched by any interest in a search
for the wrecks. As discussed above, Barbara Winter interpreted
Detmers’ Diary correctly, and located the battle and therefore the
wrecks in the vicinity of 26◦S 111◦E (Winter, 1984, 1991).

The next historical analysis was published by Wes Olson
in 2000. Based on the map on page 192 (Olson, 2000), Olson
locatedKormoran near 26◦34′S 111◦Ewhen she first encountered
Sydney on November 19th, and the extrapolation developed by
Olson placed the battle and therefore the wrecks near ∼ 26◦42′S
110◦35′E, 42NM from the wreck of Kormoran.

The final historical analysis, by Olson et al. (2001), reverted
to the argument advocated by Winter (1984); Winter (1991),
however their paper included a new and independent detail.
They assumed that 26◦34′S 111◦E specified Kormoran’s noon
position, and used dead reckoning based on Detmers’ account
of Kormoran’s subsequent movements to locate the wreck near
25◦58′S 110◦56′E. This position is 11NM from the wreck of
Kormoran, however, as they advocated a search circle with a
radius of 10NM only, their analysis did not quite include the
wreck of Kormoran.

The historical analyses focused almost exclusively on the
content and interpretation of the report included in Detmers
Battle Summary. Before turning to the cognitive analyses, brief
consideration will be given to the technologies that so captured
the attention of the WAMM, the RAN, and the public agencies
engaged in the search between 1981 and 2005.

The original historical argument provided a target accurate to only 30′ or

27–30NM, thereby defining an area of ∼ 3400SNM. When combined with

dead reckoning a more specific target was provided but in each case the

solution relied on only one report and one source, a source that had provided

inaccurate and inconsistent information at the time of the in-water search after

the engagement.

MAGNETIC ANOMALIES, MAP DOWSING,
AND ORAL HISTORY

The amount of credence placed on Montgomery’s claim by the
WAMM is evident in the fact that the relevant team used it to
justify an in-water search involving collaboration with the RAN
while searching to the south of 27◦ South, more than 130 nm to
the south of the position actually recommended byMontgomery,
and the position recommended by Winter, and the wreck of
Kormoran (See Green et al., 1984).

The Map Dowsing argument passed through two
incarnations. The first of these involved traditional hand-
based map dowsing or “divining” while the second was based
on the principle of Electron Spin Resonance. Each of these
procedures pointed to positions off the Abrolhos Islands, nearly
200NM from the now known positions of the wrecks. One of the
positions allegedly attracted a search from an RAN submarine
in 2000. In 2003, based on Whittaker’s interpretation of von
Malapert’s diary of the voyage of a lifeboat, the RAN established
a workshop involving four senior navigators, and provided
qualified endorsement for the navigation argument for the
Abrolhos Islands.

The Oral History argument reflected an interesting and
recently established branch of history, however it is usually used
to capture subjective experience as distinct from fine details about
the timing or the location of specific events. For example, Studs
Terkel, a key player in the tortuous history of the discipline, noted
that,

“They would sit around and tell us their hard luck story. Whether

it was true or not, we never questioned it. It’s very important

you learn people as they are. At that particular moment when

you are talkin’ to that person, maybe that’s how that person were.

Tomorrow they can be different people.” (Emma Tiller, a cook in

Western Texas, as reported by Studs Terkel, 1970).

In fact, the majority of the oral history reports submitted as
evidence of a battle near the Abrolhos Islands involved eye-
witness accounts by individuals, and the claim that they involved
Oral History was therefore problematic. As accounts based on
RemoteMemory, they involved critical flaws. For example, Bryan
Clark, the journalist who first recorded many of the stories in the
late 1980’s, opined that some of them at least reflected experiences
from later years, when Catalina maritime patrol aircraft flew
practice missions off Port Gregory. In our view (Kirsner and
Dunn, 1998c), the accuracy levels for recall of remote events are
so low after an interval of nearly 50 years that little confidence
can be placed in them (e.g., Wagenaar, 1986). Furthermore, the
historian providing advice to the Joint Standing Committee on
Foreign Affairs, Defence, and Trade (JSCFADAT) advised that few
of the accounts included any form of link to the engagement
between Kormoran and Sydney. Statistical analysis supported this
argument and revealed that fewer than 10% of the accounts
actually included any link with Kormoran and Sydney at all.
Another line of argument indicated that the reports emerged
from positions covering more than 20,000 SNM, hardly a pointer
to a specific battle on a given day. None of these arguments
prevailed. The JSCFADAT gave the oral history argument pride
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of place for the 2001 Shipwreck Seminar; and the RAN and
the RAAF implemented expensive and risky aerial and surface
searches of the target positions identified by the oral historian.

Analysis implemented by the author and his colleagues rejected the remote

memory or “oral history” argument, despite strong support from WAMM and

the JSCFADAT (Kirsner and Dunn, 1998c), and the map dowsing case was

intrinsically weak (Kirsner and Dunn, 1998b).

THE COGNITIVE SCIENCES

Review of Wreck-Hunting
Following the Oceanography Workshop, and aware that
oceanography would not be able to provide a precise target,
the author sought to achieve a better understanding of the
challenges and solutions associated with deep-sea wreck-hunting.
The first section involved a review of the available evidence
on deep-sea/off-shore shipwreck hunting, with the focus on the
identification of search targets and the definition of search areas.
The critical history of the engagement between Kormoran and
Sydney was published by Hermon Gill in the first book of his two
volume history of the RAN in World War II (Gill, 1957, 1985).
Gill wrote more than 12 pages about the engagement between
Sydney and Kormoran, however, unavoidably, his analysis was
based exclusively on reports provided by the Kormoran crew,
and that was perhaps the first trigger for doubt among the
old salts in the local community. Further doubt about the
reliability of the reports provided by the Kormoran survivors
was facilitated by the fact that the Captain and the Navigator
provided inconsistent reports to the RAN officers during late
November and early December 1941. A second cause for doubt
arguably involved the gradual release of information about the
role of Signal Intelligence following World War II, a process that
was still yielding new information and an occasional surprise
up to the very end of the twentieth century (e.g., Fry, 2012). A
third issue that compromised the search debate between 1991
and 2013 involved the widespread assumption by the official
bodies associated with the search that a sou’wester was the key to
expertise, and that scientists without sou’westers had no business
entering the arena.

The first section of the review involved consideration of five
examples of deep-sea wreck-hunting. The first example involved
the search for the wreck of the Titanic, sunk on April 14th–
15th 1912. The search area adopted for the first three searches
for Titanic appear to have been constrained exclusively by
navigational reports about the position of the sinking, and the
resulting search involved only 100 SNM. In 1985 the area was
expanded by Ballard to 150 SNM to incorporate the southerly
movement of the lifeboats between the sinking and the rescue
but even here the critical factor involved navigational reports
about the final position of the lifeboats (i.e., without reference
to oceanographic assumptions), coupled with a decision to
commence the search beyond even that position, and shape the
in-water search from that position toward the estimated position
of the wreck of Titanic. In summary, the critical points were
determined solely by navigational reports although the reports
were selected to define a search area that reflected the movement

of lifeboats in the water. The current in-water technology enables
more efficient in-water search, but that should not be critical if
the actual search box has been chosen with due consideration for
uncertainty.

The second example involved the German battleship
Bismarck, sunk on May 26th 1941. The search area for Bismarck
was shaped around reports about the sinking position provided
by British battleships HMS King George V and HMS Rodney, and
British cruiser HMS Dorsetshire, although only the third of these
was present when Bismarck actually sank. As the search unfolded
however the focus shifted to a search for debris, and then a
landslide on an underwater mountain, the end of which finally
revealed the location of the wreck. The assumption adopted by
Ballard was that the landslide was actually triggered by Bismarck,
when it hit the ocean floor. Ballard indicated that the search area
involved was = 200 SNM. Descriptions of the search operations
for these wrecks are detailed in Ballard (2008), and available from
earlier reports by Ballard (1988, 1990); Ballard and Archbold
(1999).

The third example involved the US Aircraft Carrier Yorktown,
lost during the Battle of Midway. A review of the search indicated
that a search area of≤500 SNM was used by Ballard, and that the
area was specifically extended to the south in order to cater for
uncertainty about the distance covered by Yorktown between the
final aerial attack on the afternoon of June 5th and her sinking
on the morning of June 7th following a submarine attack on
June 6th.

The fourth example involved the search by David Mearns for
the bulk carrier Derbyshire. Initial analysis revealed three reliable
reports of oil slicks. Further, analysis suggested that the wreck
might be up to five nm to the north of the position where the oil
actually breached the surface. Mearns (1995) defined two search
areas, of ∼ 90 and ∼ 170 SNM as “high” and “low” probability
areas respectively, and the wreck was duly found in the predicted
area. It is a matter of interest that Mearns used “the principles of
modern probability analysis” as described by Discenza and Greer
(1994) to shape the search plan.

The fifth example involved the search byMearns for the wreck
of HMS Hood, sunk on May 24th, 1941. Information about this
search was not available in the public domain until 2001, and the
work did not therefore inform the author’s review. As described
by Mearns and White (2001) however, the record included no
fewer than 10 reports about the location ofHood. Mearns rejected
three of these because they depended on aerial calculation. Of
the remaining seven no fewer than five were from battleships or
cruisers and occupied a very tight box of approximately 40 SNM.
The remaining two involved positions determined by destroyers
and either dead reckoning or movement after a substantial time
lag (and therefore uncertainty over wind and current). Mearns
tabled two search boxes for operational purposes, of ∼ 600 and
200 SNM respectively, however the quantitative bases for these
areas remain unspecified. Mearns andWhite (2001, p. 107) noted
however that,

“The first two decisions were dictated by the simple application

of the navigational errors we had found to exist in the reported

sinking positions of the reported sinking positions during the
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First and Second World Wars. The errors that I chose to apply

in this case were divided into two different categories: the worst

error reported by a surface ship and the average error reported

by a number of surface ships. These circles of error were drawn

around each of the five most likely sites for Hood to have sunk.”

The details of the in-water searches conducted by Mearns have
not been published, as they formed “part of a commercial
operation.”

The history-based procedures implemented by Ballard
and Mearns realized substantially smaller search areas than
those generated by the 1991 Oceanography Workshop. The
three searches by Ballard involved areas that ranged 150–
500 SNM, values dramatically smaller than those generated by
the 1991 Oceanography Workshop, and areas that enabled
discovery of each of the wrecks concerned. The areas used
by Mearns in searches for the SS Derbyshire and HMS Hood
are less clear but they were probably less than 600 SNM,
and they too relied primarily on contemporary reports from
observers.

The review removed any doubt about the relative merits
of the oceanography-based and history-based procedures in
research to define accurate and efficient areas for in-water search.
The oceanography-based procedures yielded an overall area
of ∼8400 SNM for Kormoran [sum of areas provided by Hughes
(1991) and Steedman and McCormack (1991)], although even
that solution came with a significant caveat from CSIRO based
expert Alan Pearce. The central issue was therefore clear. As the
oceanography-based analyses for Kormoran had produced search
areas between 10 and 100 times larger than the areas used for the
Titanic, Bismarck, and Yorktown searches, an historically-based
analysis was essential, and the author embarked on the collation
and analysis of the survivors’ reports.

The review indicated that search definition was dominated by reports from

captains, navigating officers and professional observers, and that it generally

resulted in areas of 500SNM or less.

The Kormoran Database
The critical question concerned the scope, extent, and reliability
of the reports provided by the German survivors. Given
inconsistent reports from the Captain and the Navigator, was
it possible to accept as valid reports from other crew members,
particularly if they too varied from report to report? The records
at WAMM provided an initial set to work on, and the books
published by Montgomery (1981) and Winter (1984) provided
pointers to additional material, however it was by no means
obvious that these sources covered the full extent of the reports
provided by the Kormoran survivors and the RN/RAN interviews
and interrogations.

The second step involved archival research in London,
Washington, and Norfolk, Virginia as well as Sydney, Perth,
Canberra, andMelbourne, in Australia.When combined with the
material available from Fremantle, the archival research yielded
a total of 73 reports that involved reference to the absolute or
relative location of Kormoran, a further nine about the bearing
and distance of Sydney relative to Kormoran for the period
between the battle and the last sighting of Sydney, and a further
44 that involved official or unofficial reports from RN or RAN

officers. Collation of the reports and the creation and analysis
of a substantial database located the project firmly within the
tradition of error analysis in Cognitive Psychology and Human
Factors. The project therefore required consideration of two data
types, involving the positions of objects in the ocean and the
reports of the survivors, and three methodological approaches,
involving oceanographic hindcasting, historical review, and
cognitive analysis and modeling.

The products of the archival research were summarized in the
following extract (Kirsner, 1997b). The paper was entitled The
War of the Ghosts: Using dusty records to hind-cast the locations
of HMAS Sydney and HSK Kormoran and it was presented to a
Humanities Conference at the University of Western Australia.

The traditional problem with archives is that they contain too

little information, and that too many inferences must therefore

be left to logical analysis or intuition. The archives concerning

the loss of Sydney and Kormoran arguably involved the opposite

problem where location is concerned. Analysis of the archives

and other historical sources revealed at least 60 separate sources

of information about the location or locations of the wrecks,

and these sources identified no fewer than 25 different sites,

only a few of which could be discounted absolutely. The sources

are, furthermore, distributed among five or six layers involving

SAR operations, the interrogation of survivors both during and

after the SAR operation, operational reports prepared by RN and

RAN officers, administrative reports, political reports and, finally,

historical argument. Worse still, the deeper layers even include

reports suggesting new sites, not recorded in the earlier reports.

The data depicted in Table 1 is a summary of the reports from the
Kormoran Database. The reports were obtained from numerous
sources. Some of these were available from Montgomery (1981)
and Winter (1984); some were from the library of the West
Australian Maritime Museum; some were obtained from the
state archives in Perth, Melbourne, Sydney, and Canberra; and
a handful were discovered in the national archives of the UK and
theUSA, and twowere discovered byHore andMearns in theOld
Admiralty Library in London. Most of the reports were collated
between 1993 and 1997, however additional items were added
later as they became available. A summary file was provided to
the Cole Commission at its request in 2008, and re-distributed by
it on request.

Table 1 can be read as a form of “stem and leaf” diagram. The
numbered reports in the fawn rows were included in the final
analyses; the reports with black bullets were treated as derivatives,
and discarded; and the bullets with open circles were treated as
outright errors.

The Kormoran Database comprised more than 70 reports by survivors about

the location of the wreck of Kormoran, a source of evidence that would be

invaluable for an accurate and efficient solution provided that the major part of

the database was reliable. A substantial database was essential if the solution

was to be efficient as well as accurate.

Reliability of the Kormoran Database
Figure 4 is a plot of the data from Table 1. The axes depict
the data in Log-Log coordinates. The y-axis reflects a log
transformation of the number of reports associated with each
Type of Report. The x-axis reflects a log transformation of the
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TABLE 1 | Stem and leaf plot of Reports from Kormoran survivors.

Type of Report AR E Comment

1. 26◦S 111◦E (to be read as ±30′) 17 Mode (including one report from Bunjes, two from Detmers)

• 26◦S 110◦E 2 EC including one report from Detmers

• 26◦S 1 EO

• 26◦S 11◦E 1 EO

• 26◦S 108◦E 1 EC

• 26◦S 111◦40′E 1 EC

• 26◦S 111◦21′E 1 EC

• 24◦S 111◦E 1 EC

• 25◦S 111◦E 2 EC including one report from Detmers

1a. 26◦S 111◦E (to be read as ±30′) 1 Meyer as revealed by diary in 2000

• 27◦S 111◦E 5 Initial reports from Meyer

• 26◦30′S 111◦40′E 1 Later report from Meyer

2. 120 nm from Coast 4 Bunjes; 120 nm selected on basis of MDP

• 150 nm from coast 2 EC

• 60 nm off land 1 EC

3. 160 nm SW of Cape Cuvier 0 Bunjes; Cape Cuvier selected on basis of MDP

◦ 160 nm SW of NW Cape 1

4. Geraldton signal 2 (gap) 7S 11115E 1 26◦07′S 111◦15′E selected on basis of MDP

◦ 7C 115E 1000 GMT 1

5. Sailed 150 nm NE to land 1 Meyer—lifeboat diary

• Sailed 153 nm NE to land 1 V Malapert—lifeboat diary

6. 26◦34′S 111◦E 3 6 Detmers: Winter (1991) classified as noon report

• 26◦32′S 111◦E 6 Detmers

• 25◦34′S 111◦E 2 Detmers

• 26◦31′S 111◦E 1 Detmers

7. 130 nm SW of Shark Bay 4 Habben

8. Due West of Shark Bay at 2000 h 1 Detmers to be “due west of Shark Bay at 2000”

◦ 120 nm SW of Fremantle 4 EC

◦ 100 nm off Fremantle 1 EC

◦ 130 nm due West of Perth 1 EC

◦ 125 degrees SW of Frem. 1 EC

◦ 20 nm SW of Fremantle 1 EC

Total 35 38

The numbered and colored items define the stems. The bulleted items comprise the leaves associated with each stem. The gray items are “pure” errors.

rank value of each Type of Report. Following Zipf (1949), the
resulting function is linear and the observed pattern is consistent
with the proposition that resource limitations played a role
in report selection and recall. Zipf demonstrated that a linear
relationship is observed for many relationships provided that
Log-Log axes are used. The r2-value for the survivors’ reports was
0.89, a value that accounts for more than 80% of the observed
variation in the data. A small sample of the many variables
that honor Zipf ’s Law includes word frequency distributions for
English (Zipf, 1949; Miller and Newman, 1958), recall (Kaplan
and Carvellas, 1969), and character frequency distributions for
Japanese Kanji (Speelman and Kirsner, 2005). The figure also
depicts the equivalent set of results for the 44 reports tabled by
RN and RAN officers, and it shows essentially the same pattern.

Zipf ’s Law does not constitute a “proof” in the definitive
sense of that term. Rather, it is a pattern we would expect

to observe in a memory study involving recall of a number
of words. The distributions of the reports are consistent with
the proposition that the observed patterns reflected randomly
distributed memory or transcription errors. The most obvious
alternative hypothesis involved the argument that the Kormoran
survivors rehearsed their answers. In the extreme case, this
approach would have produced just one Type of Report, or
something close to that. The fact that the reports were distributed
across eight or more than eight referents contributed to the
assumption of reliability.

Two issues were critical to the final assessment; first, the
fact that no fewer than eight independent groups of reports
or constraints pointed toward the same general position, and,
second, the fact that all five lifeboats either arrived at or were
approaching one point on the coast when they were discovered
by rescue craft, a degree of convergence that would have been
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FIGURE 4 | Zipf functions for the Kormoran survivors (blue circles) and

RN/RAN officers (red circles) associated with the 1941 interrogations

and interviews. The figure depicts Log Frequency plotted against Log Rank

for each set of data.

improbable had the survivors had no idea where they were, or
where they were going.

Mathematical analyses determined that the Database was reliable, overall,

although it was clear that a number of individual reports were not.

The 2004 Solution
The majority of the reports used for the wreck-hunts described
in the review relied on reports from navigators about the
coordinates of the vessel prior to or at the moment of loss. Each
set of reports involved some variability among the navigators
who reported the loss of a vessel, involving the own ship
navigation, time of the observation, or the position of the
survivors, however they all relied on professional reports, where
precision was reduced because each navigator produced a unique
solution. The Kormoran Database reflected a very different form
of evidence and error. Many of the reports provided only a
general guide to the location of Kormoran at the time of her
loss, for sailors at sea, and at risk, and an alternative approach
therefore involved a weaker assumption that all or at least many
of the reports were valid, and could therefore be considered as
a set to point to the position of the wreck. Working alone in
the first instance, and then in collaboration with John Dunn,
this approach was refined in four stages. The stages were as
follows:

1. Discount and remove obvious errors from consideration.
2. Group reports that involved a single concept, or “root,” in

evolutionary terms.
3. Develop principles to resolve competition when reports in a

single group involved inconsistent evidence.
4. Design and implement a mathematical decision model to

integrate the surviving statements or constraints, the task
completed by John Dunn.

The Constraints
The overall procedure was designed to produce a single and
accurate estimate of the location of the wreck of Kormoran.

The analysis evolved over the period 1991–2004. The concept of
converging operations shaped the research.

Constraint 1: 26◦S 111◦E
The majority of the 18 reports that involved 26◦S 111◦E
were provided by Wireless Telegraphy Officers (WTOs), adding
further weight to the validity of the report. The critical weakness
with the mode is that the position as reported, 26◦S 111◦E,
is accurate to only the nearest degree, and for wreck-hunting
purposes it should therefore have read 26◦ ± 30′S 111◦ ± 30′E,
where provision for error identified a search area of 3400 SNM.

Constraint 2: Report by Bunjes that the battle occurred

“120 nm from the coast”
The second constraint involved the distance from the coast.
Three estimates were available from the reports from the
Kormoran survivors, at 60, 120, and 150 nm. One hundred
twenty nanometer was adopted for two reasons: First, Bunjes
provided 120 nm value on three occasions during the fortnight
after the battle whereas he provided the value of 150 nm in
one report only, and years after the event; and, second, 120 nm
provided a better fit with the first and third constraints under the
Minimum Distance Principle described below.

Constraint 3: 160 nm SW of NW Cape (interpreted as Cape
Cuvier)
The third constraint, also attributed to Bunjes, involved the
report that the battle occurred 160 nm “South-West of North-
West Cape.” North-West Cape is more than 300 nm from the
area of the battle, and out of the game. An error is the obvious
explanation but what sort of error. While the author was working
out the tracks of the lifeboats in 1991 (Kirsner, 1991), detailed
analysis indicated that all five of the lifeboats could have been
heading for the same position on the coast. Two of the lifeboats—
those captained by Meyer and Kohn–beached 5 and 12 nm north
of Cape Cuvier respectively, and the other three were sailing east
and more and less directly for Cape Cuvier after some 4 or 5 days
drifting to the north with the current and wind.

Triangulation
Given the availability of multiple and converging constraints,
triangulation provided an appropriate model for our approach to
the problem. Maritime triangulation is illustrated in Figure 5A.
In that example the approximate location of a ship is assumed to
be inside the triangle defined by convergence among the three
observations or “Lines of Position” specified by the navigator.
Figure 5B is a summary of three reports provided by Wilhelm
Bunjes, a sometime officer in the pre-war German merchant
marine. Argument for the reliability of Bunjes’ intentions came
from the fact that one of his reports about the Kormoran officer’s
was “masked” in the archives for nearly 30 years, allegedly to
protect him from repercussions associated with his anti-Nazi
sentiments.

Although the Kormoran Database included reports that relied
on a variety of referents, including cartographic coordinates,
distance from the coast, and distance and bearing from coastal
features, it is evident that Bunjes’ reports converged on a
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FIGURE 5 | (A) Illustration of triangulation as the term is generally understood by mariners (Hansel, 2011). (B) Convergence among reports from Bunjes. The circle

and the rectangle represent 26◦00′S 111◦00′E, and 26◦S 111◦E, respectively.

single “position,” a position that could be used to define the
point of disembarkation from Kormoran prior to her sinking.
Convergence was not straightforward. As indicated above in
regard to the first three constraints, convergence was achieved
only when Cape Cuvier was substituted for North-West Cape
as the coastal feature, and 120NM was adopted in preference to
150 and 60NM as the distance from the coast, and even then the
“error” associated with the first constraint a significant handicap.

The authors’ use of triangulation is closer to its nautical roots
than it is to the role of triangulation in the social sciences
(e.g., Yeasmin, 2012). In the latter case it constitutes a form
of validation although it may also be implemented in order to
increase “understanding” of a specific problem. In the present
case however, triangulation is being used to refine the location
of a wreck by using “Lines of Position” when most if not all of
the lines involve an element of potential but unknown error and
uncertainty.

The approach outlined above involves very different principles
and assumptions from the oceanographic models, however it
is the contrast with the historical analyses that is particularly
interesting. Six historians or teams of historians tabled solutions
to the Search Definition problem; Gill (1957, 1985); (Error =

42NM), Winter (1984); Winter (Error = 7NM), Winter (1991);
Winter (Error = 7NM), Olson (2000); Olson (Error = 42 nm),
Olson et al. (2001, Error = 11 nm), and Hore and Mearns
(2003); Hore and Mearns (Error = 7NM), and in each case
attention was restricted to a single option or interpretation of
one or possibly two reports. It is evident that the attention of
the historians was focused either substantially or exclusively on
the reports provided by Detmers, the Captain of Kormoran,
and that the only issue that vexed them concerned the relative
merits of the noon and battle interpretations of 26◦34′S 111◦E.
Indeed the only individuals or teams to opt for that remote
position as the position of the battle and therefore the wrecks
were Gill (1957, 1985), Olson (2000), and Mearns (e.g., Finding

Sydney Foundation, 2007), and Mearns included the so-called
noon position, 26◦34′S 111◦E, in the in-water search area
in 2008, a decision that depended on his recommendation
alone.

Constraint 4: 2#◦#7′S 111◦15′E; Geraldton signal received at

1800G (interpreted as 26◦07′S 111◦15′E)
The Geraldton signal has come down to us in two forms. The first
form was included in a report prepared by SWACH and dated
November 27th. The wording of the report is as follows:

“Geraldton radio reports that at 1005Z/19/11 they received a weak

message. The beginning was unintelligible. Then followed “7C

115E 1000 GMT.” The radio operator could not estimate the

distance. No Qs were distinguished. They waited 2min but there

was no repetition”

The second version of the report is included in the Fremantle
Report of Operations for the period November 24–29th (see
Olson et al., 2001, p. 38). The wording of this report is as follows:

“At about the same time Geraldton radio picked up a weak signal

unintelligible excerpt for ’2 (gap) 7 111 15 East 1000 GMT (These

two reports were not received until 1345H/27)”

The number of operational and cognitive steps between the
Kormoran transmission and the SWACH report of operations
is difficult to estimate. Radio signals occurred in noisy
environments, and it is no accident that signal detection
theory (Tanner and Swets, 1954) evolved as a response to the
classification problems experienced by radio operators during
and after World War II (e.g., Shannon, 1949). We can safely
assume that the radio operator in Geraldton was dealing with a
noisy signal. She or he may have misheard parts of the signal.
They may have heard it correctly but made a transcription error.
They may have transcribed the signal correctly, only to have a
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supervisor introduce an error, in reading or during preparation
of a signal for transmission to SWACH. We do not know for
example why the second report comprised “2 (gap) 7” whereas
the first comprised “7C,” and we probably never will.

The Minimum Distance Principle
The solution adopted to solve the uncertainty associated
with this potential constraint involved the Minimum Distance
Principle. In brief, six alternative interpretations of the signal
were benchmarked against the established candidates; that is,
constraints 1, 2, and 3, and the alternative that involved the
smallest movement was adopted. The positions in the mix were;
25◦37′S 111◦15′E, 25◦47′S 111◦15′E, 25◦57′S 111◦15′E, 26◦07′S
111◦15′E, 26◦17′S 111◦15′E, and 26◦27′S 111◦15′E. As illustrated
in Figure 6, the fourth of these positions provided the best
fit, and 26◦07′S 111◦15′E was therefore adopted as the fourth
constraint.

Constraint 5: Meyer’s “lifeboat originated 150–153 nm SW of

landing point”
The critical information is summarized in Section
Oceanographic and Navigation Analyses, The Navigation
Argument. The uncertainty associated with the relevant estimate
was acknowledged by Meyer.

Constraint 6: Report from Detmers’ Battle Summary: 26◦34′S
111◦East
Barbara Winter provided the critical interpretation of Detmers’
Battle Summary (Winter, 1991). Her analysis left no doubt that
26◦34′S 111◦E and 26◦S111◦E were the noon and battle positions
of Kormoran, respectively.

We nevertheless used the distance between the solution
offered by this potential constraint and the position provided by
other constraints to test the noon and battle interpretations of

Detmers’ report. The noon interpretation won that competition
too, and we therefore adopted the noon interpretation for
integration purposes. Our dead reckoning analysis confirmed
the argument advanced by Olson et al., 2001, and yielded a
solution oneNM to the North of theirs, 12NM from the wreck
of Kormoran.

Constraint 7: Report by Habben: “130 nautical miles
south-west of Shark Bay”
Siebelt Habben, a medical doctor, was repatriated to Germany in
1943 as part of a Prisoner-of-War exchange. Habben provided
descriptions of the action between Kormoran and Sydney to the
German naval authorities, and the Kreigsmarine subsequently
included them in Operationen and Taktiks, Volume 10.

Constraint 8: Detmers’ statement that Kormoran should be

due west of Shark Bay at 2000G
According to Detmers (1959),

“The KORMORAN was proceeding at medium speed on her

usual sweep and gradually approaching Shark’s Bay from the

south west. At 1500 h I checked the ship’s course and decided

to carry on without change until 2000 h, and then turn eastward

toward Shark’s Bay.”

This solution to this constraint also involved dead reckoning,
from the assumed track of Kormoran from noon to 1700 h.

Constraint 9: Mathematical analysis identified a “circle of

equal speed” for the life-rafts discovered by Aquitania and
Trocas
This analysis was submitted to and published by the 2001
Shipwreck Workshop (Dunn and Kirsner, 2001). The
mathematical model designed by Dunn was based on three
assumptions about the life-rafts;

FIGURE 6 | The Minimum Distance Principle. Distance between six candidate interpretations of the signal and the position defined by the first three constraints.
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• They were under the influence of the same currents and winds,
and they would therefore display essentially the same “sailing”
characteristics.

• They had similar buoyancy and “sailing” characteristics, and
they would therefore move downwind in a similar direction
and at a similar velocity.

• They would conform to wind direction ±35◦, an assumption
accepted by the Search and Rescue profession.

The cross in Figure 7 denotes the now known position of
Kormoran. The distance between Kormoran and the nearest
point on the circle is ∼2 nm. The blue circles denote the areas
advanced at the 1991 Oceanography Workshop by Hughes
(1991) and Steedman and McCormack (1991). The Circle of
Equal Distance reflected a purely mathematical solution based
only on the assumption that the life-rafts were influenced by the
same forces, and drifted at the same velocity. The area of the red
circle is irrelevant; prediction involved the circumference.

Integration
In 2004 John Dunn designed a mathematical generalization of
the Minimal Distance Principle. The aim of the generalization
was to identify the most likely position of the wreck, and the
procedure involved selection of the position that involved the
smallest “movement” for the set of nine constraints outlined
above. We therefore integrated all of the available information
under the assumption that each piece of information would
be broadly consistent with the remainder, and that integration
would converge on the most likely point.

FIGURE 7 | Circle of Equal Distance (Figure from Dunn and Kirsner,

2001).

For each candidate location, corresponding to a point in the
ocean, and each constraint, we calculated the minimum distance
that the candidate location would have to be moved in order
to satisfy the constraint exactly. We referred to this measure
as the error distance for each location-constraint pair. We then
calculated the average error distance across the set of constraints
for each location which then provided a single goodness of fit
measure for that location. Clearly, a candidate location with a
relatively small average error distance satisfies the constraints
to a greater extent than a point with a relatively large average
error distance. No single candidate location satisfied all of the
constraints exactly.

Averaging the error distances treats each constraint as having
the same weight or importance. We considered and rejected a
range of weighting schemes, however we were not persuaded
that there was any basis for treating one constraint as more
critical than another. We were also guided by studies of expert
decision making in which equally weighted linear models (so-
called improper linear models) are nearly as efficient as optimally
weighted models (Dawes, 1979).

Integration yielded 26◦04′S 111◦02′E as the position of the
wreck. This position is 2.7 nm from the true position of the wreck
as established by the FSF in 2008 (Finding Sydney Foundation,
2008). The approach was described by Kirsner and Dunn (2004)
and Dunn and Kirsner (2011). The recommendation was also
used and published by the FSF in 2005 and 2007.

Performance

Accuracy
FSF Director Bob King chaired the Technical Search Committee
of the FSF from 2005 to 2007 inclusive. In 2005 King designed a
Powerpoint presentation for use by the FSF. The critical figure is
reproduced as Figure 8 below. The figure includes the positions
recommended for Kormoran and Sydney by the FSF in 2005 on
the basis of the arguments and recommendations advanced by
Kirsner and Dunn (2004). They are depicted as black stars (from
the original) identified by the black labels (added) indicating the
names of the two ships. The now known positions of the two
wrecks are depicted by solid red circles identified by red labels,

FIGURE 8 | Map including search areas prepared by Bob King for use

by FSF in 2005. The figure compares the predicted and observed positions of

the wrecks Finding Sydney Foundation (2005).
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each of which has been added to the map. The errors for the two
recommendations were 3 and 9NM for Kormoran and Sydney
respectively. Research and argument advanced subsequent to that
date was superfluous, and served only to transfer responsibility
for the success of the search.

Efficiency
The pink rectangle and the purple quadrant indicate the search
areas recommended by the FSF for Kormoran and Sydney
respectively, in 2005. The area of the pink rectangle, the
recommended search box for Kormoran, reflected conventional
statistical analysis based on the latitude and longitude values
associated with each of the nine constraints. The area was
therefore defined by the 95% confidence intervals for the x
(longitude) and y (latitude) values based on positions attributed
to each of the nine constraints. The area of the rectangle,
400 SNM, and the location of the wreck of Kormoran, can be
compared with the area of 2200 SNM adopted by the FSF on the
advice of Mearns a few weeks before the in-water search in 2008.

Explanatory power
The final cognitive analysis reflected the majority of the data
summarized in Table 1. The cognitive solution was, furthermore,
consistent with the known tracks of Sydney through the area,
and the oceanographic solutions described above although these
considerations did not contribute directly to the quantitative
solution. The historical analyses exploited only the report
originally extracted by Winter from Detmers’ Diary (Winter,
1991), based on the noon position plus dead reckoning.

The research provided an accurate estimate of the position of
the wreck of Kormoran, an efficient solution given a search box
of < 400 SNM, and it exploited more than 50% of the items in
the Kormoran Database. The research also provided an accurate
estimate of the location of Sydney, based on a time series analysis
of her reported bearing and distance from Kormoran over a 5 h
period after the battle.

Opportunity Cost
The author did not review information about the 1968 search for
the USS Scorpion prior to creation of the Kormoran Database.
However, in 2006, when the FSF invited John Dunn and
the author to table a new search proposal, we revisited the
Search Definition problem, gave consideration to the Baysian
description of the search for Scorpion (See Sontag and Drew,
1999), and tabled a new proposal that included provision for
expert-based weighting for the individual constraints.

SKILL ACQUISITION

Table 2 is a summary of the recommendations advanced by the
author and his colleagues between 1991 and 2005. The Search
Definition problem was solved by Australian science for both
Kormoran and Sydney by 2005.

The foregoing analysis described the collection and analysis
of evidence concerning the location of the wreck of Kormoran.
The improvement in performance summarized in Table 2

and Figure 9 does not reflect the performance of either a

TABLE 2 | Summary of positions advanced by the author and his

colleagues for Kormoran.

Sources Coordinates Error (NM)

STAGE 1: OCEANOGRAPHY/SAR

Kirsner, 1991 25◦58′S 111◦24′E 22

Kirsner et al., 1992 26◦01′S 111◦16′E

26◦01′S 111◦20′E

12

15

Kirsner and Hughes, 1993 ∼26◦13′S 111◦25′E 17

STAGE 2: COGNITION—CONVERGING OPERATIONS

Kirsner, 1997a 26◦15′S 111◦E 10

Kirsner and Dunn, 1998a 26◦15′S 111◦E 10

Finding Sydney Foundation, 2001 ∼26◦06′S 110◦52′E 11

Finding Sydney Foundation, 2003 ∼26◦10′S 111◦10′E 7

STAGE 3: COGNITION—DECISION MODEL

Kirsner and Dunn, 2004, 2008;

Dunn and Kirsner, 2011; King,

2014; Kirsner and Dunn, 2014

26◦04′S 111◦02′E 3

Finding Sydney Foundation, 2005:

Acknowledged Kirsner and Dunn

26◦04′S 111◦02′E 3

Finding Sydney Foundation, 2007:

Acknowledged Kirsner and Dunn

26◦04′S 111◦02′E 3

single individual or a regular team in the traditional sense
of these terms. The task of wreck-hunting lies somewhere on
a continuum of decomposability. At one extreme, the slow,
and fundamental changes involved in landing safety on aircraft
carriers (Wiegmann and Shappell, 2003, p. 5) and construction
time for Liberty ships during World War II (Searle and Gody,
1945). Involved massively decomposable tasks where dozens
or even hundreds of people contributed to the improvement
in performance. The skills associated with accurate kicking
for an oval-shaped Australian Football League football can be
decomposed for learning purposes but they cannot be distributed
across players or experts during a game. Each one has to kick the
ball for himself or, on rare occasions, herself.

Figure 1 identified a number of discipline-specific approaches
to wreck-hunting, several of which were adopted by the author
and his colleagues. The learning curve observed in Figure 9

arguably reflects transitions across domains, from oceanography
(1991–1993) to history to the cognitive sciences including
adoption of a formal decision model. The critical drivers
reflected: first, the construction of a substantial database; second,
decisions about the viability of the report data; and, third,
adoption of informal and then formal approaches to the use of
multiple constraints. The research also reflected a coherent and
evolving approach to a clearly defined problem concerning the
location of the wreck of Kormoran, and, critically, it reflected
input from a variety of disciplines, domains and scientists,
individuals with diverse backgrounds.

Figure 9 includes the positions that the author and his
colleagues tabled between 1991 and 2004. All of the positions in
the plot are shown against an ordinate that indicates the distance
between the position recommended and the position of the wreck
of Kormoran, and the plot therefore reflects learning or skill
acquisition. The reports formed three obvious groups involving
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FIGURE 9 | Performance (Error) for the author and his colleagues

between 1991 and 2005.

oceanography, informal analysis of the Kormoran Database, and
formal or mathematical instantiation of the Minimum Distance
Principle on the database respectively. The model tested a
potentially infinite range of candidate locations, and selected the
position that involved the smallest possible amount of movement
for the set of nine constraints. The one and only solution
associated with the third stage of the project therefore involved
26◦04′S 111◦02′E, a position just 2.7 nm from the wreck of
Kormoran.

EXPERTISE

The path of improvement from 1991 to 2005 reflected input from
no fewer than three disciplines, oceanography, history, and the
cognitive sciences. One implication of this perspective is that the
research involved both a horizontal trajectory, as we accepted
and understood the limitations and opportunities associated
with oceanographic and historical research respectively, and a
vertical trajectory, as we implemented successive more and more
powerful cognitive analyses of the survivors’ reports. In so far as
the project involved a vertical skill acquisition path, it conformed
to the tradition established by John Anderson more than 30 years
ago (e.g., Anderson, 1982), as well as the more specific benefits
associated with transfer involving component process models,
models that might or might not cross domain boundaries (e.g.,
Speelman and Kirsner, 2005).

The horizontal trajectory reflects an argument advanced
by Engeström and his colleagues (e.g., Engeström and

Sannino, 2010). According to Engeström (2014) for
example,

“Learning by Expanding challenges traditional theories that

consider learning a process of acquisition and reorganization of

cognitive structures within the closed boundaries of specific tasks

or problems.”

Elsewhere, Engeström (1996) proposed that learning is not
restricted to “vertical movement across levels” but should also
be viewed as “horizontal movement across borders.” From
a cognitive perspective however, the boundaries between the
domains and the skills can be inherently fuzzy, and improvement
will depend on comprehension and practice at the level of the
component processes, and the discipline behind a given process
might or might not be critical.

People acquire expertise or skill over a more or less unlimited
range of domains and problems. The shear variety of the
domains encompassed by human enterprise is formidable, and
few attempts have been made to provide a universal model; that
is, a model that covers all realms of human activity. To list but
five disparate topics, a universal model would need to cater for
the acquisition of skill or expertise in everything from cigar-
rolling (Crossman, 1959) to survival in aerial combat (Spick,
1989), teamwork on the navigation bridge of a notional escort
carrier (Hutchins, 1996), the reduction of flying accidents on
Aircraft Carriers over 50 years (Wiegmann and Shappell, 2003)
and construction times for Liberty ships (Searle and Gody, 1945).
Wreck-hunting is just another cab off the ranks in the drive to
describe and understand expertise and, if possible, define not
only universal principles, such as the power law of learning, but a
universal taxonomy as well.

Collins (2013) has offered a useful starting point in regard
to a universal taxonomy with a three-dimensional model of
expertise. Themodel was introduced under the heading of Studies
of Expertise and Experience, and Figure 10 honors the Expertise-
Space Diagram depicted by that author.

The dimensions described by Collins were as follows:

1. The first or diagonal dimension is referred to as “Individual or
group accomplishment” by Collins but the author has adopted
a more traditional approach, treating this dimension as “Skill
Acquisition,” or, more simply, Skill, a term that usually
pre-supposes qualitative changes in information processing
strategies or processes as individuals or groups transit from
novice to expert.

2. The second dimension described by Collins refers to the
“transmission of domain-specific tacit knowledge,” or Tacit
Knowledge, involving either groups or individuals. The
dimension is referred to as Tacit Knowledge in Figure 10, and
depends on “immersion in the society of those who already
possess it” (Collins, 2013, p. 3).

3. The third dimension referred to by Collins is “Esotericity,” and
this dimension is depicted on the vertical axis in Figure 12.
According to Collins (2013, p. 5).

“While traditional analyses take the word “expert” to refer only

to rare, high-level, specialists, SEE (i.e., the model described by
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FIGURE 10 | Three dimensional model of expertise (from Collins, 2013). (A) reflects classification by a notional wreck-hunter. (B) reflects classification by the

author, a classification that depends on the assumption that expertise for wreck-hunting is open to decomposition, a fourth dimension.

Collins) considers that ordinary language-speaking, literacy and

the like exhibit a high degree of expertise even though everyone

has them—they are ubiquitous. This is, perhaps, one of the

most radical contributions of SEE to the analysis of expertise

as indicated by the initial strong opposition to the idea of

“ubiquitous expertise” from philosophers and psychologists. Part

of the task of this paper will be to try to make it obvious that

the idea of ubiquitous expertise is a necessity if we are to avoid

confusion.”

In the following analysis, and in Figure 10, the term rarity
is preferred to esotericity because of its frequency in natural
language and its quantitative roots. A critical issue raised by
Collins concerned the rarity of the relevant skills or expertise in
his three-dimensional model of expertise. Collins questioned the
traditional view that experts are of necessity “unusual individuals
who have self-consciously devoted many hours of their lives
to gaining a special ability.” Instead, and based in part on the
proposition that all native speakers of a language are experts
to a greater or lesser extent in their native language, Collins
mounted an argument against the esoteric or rarity characteristic
of expertise, and proceeded to assert that “the idea of ubiquitous
expertise is a necessity.” Later, when faced with the challenge
posed by racing car drivers, he proposed that the relevant skills
form a body distinct from that of driving in general.

The importance of decomposition is evident. Changes in
construction times for Liberty ships built in the US ranged from
about 1.2 million man-hours per ship in the early days to less
than 0.5 million man-hours per ship after 2000 or more vessels
had been constructed. While a team of experts would have been
essential to the design, co-ordination and management of each
project, the improvement in ship-building times reflected many
and widely distributed forms of expertise.

Another type of skill that reflects practice involved the
performance and survival of fighter pilots in World Wars I and
II (See Spick, 1989). Spick, for example, depicted the extent to
which the probability of survival as a fighter pilot increased
as a function of missions completed. Task analysis in this case

involved a totally different picture from ship-building. The task
of flying and fighting in World War I aircraft depended on
indivisible expertise, expertise that accumulated with combat
experience. The role of decomposition is quite different in this
case however. While decomposition would have been possible
and even desirable for instruction and training purposes, it was
not possible to spread the skill across individuals under combat
conditions, and each individual fighter pilot had to bring a
full suite of skills to bear on the combat problem. Thus, while
expertise can be distributed across thousands of engineers and
craftsmen for ship-building, and reflect skill acquisition for the
corporate entities as well as the individual tradesmen, a very
different story applied to the performance of fighter pilots during
World Wars I and II, and decomposition was not feasible under
operational conditions.

But where does the foregoing analysis leave wreck-hunting
in regard to expertise, or indeed, any research challenge that
involves or could involve trans-disciplinary forms of expertise?
The owners of the traditional forms of expertise might be
reluctant to include provision for trans-disciplinary expertise,
particularly if their background did not prepare them for
challenges of this type.

Figure 10A depicts the model that a professional wreck-
hunter might assert, and the model that was asserted or endorsed
by virtually all of the parties involved the search for Kormoran
and Sydney. However, as implied in the foregoing analysis, wreck-
hunting can be treated as a decomposable example of expertise,
involving a series of semi-independent skills or components. The
critical issue implied by Figure 10B is that the set of reports from
the Kormoran Database was open to analysis and interpretation
by any one of a large number of cognitive scientists. In many
cases we would have required support from historians and
linguists but that can be assumed for multi- or trans-disciplinary
projects. Figure 10 therefore provides two frames of reference
for a discussion of expertise in wreck-hunting; that of the wreck-
hunter who claims that he or she is the only person who can solve
the problem, and that of the cognitive scientist who claims that
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wreck-hunting can be decomposed into component skills, skills
that are widely distributed in the scientific community.

The argument outlined in this section has significant ramifications for the

agencies and individuals responsible for unprecedented challenges such as

those faced by the officials associated with the searches for Kormoran and

Sydney, and, more recently, Malasia Airlines 370. The decision space should not

be dominated by mate-ship and political expediency. Where inter- and trans-

disciplinary opportunities are or might be relevant, effective leadership should

involve scientifically informed and flexible leadership.

CONVERGING OPERATIONS, TRADING
ZONES, AND “ENACTIVE” COGNITION

The author is not aware of any past attempts to consider or
review wreck-hunting as a domain of expertise. The challenge
is further complicated by the fact that it depends on several
more specific forms of expertise, and few people will enjoy the
complete set of skills involved. The project outlined in this
paper therefore involved a de facto “trading zone” (See Thagard,
2005), or, to be more specific, an attempt to exchange ideas
and approaches among navigators, oceanographers, historians,
and cognitive scientists. The solution actually involved an
expansion of triangulation, with nine as distinct from three
Lines or Estimates of Position. However, the general principles
guiding the cognitive approach to the challenge remained
stable throughout the research, and relied on the presence of
multiple constraints to negate the uncertainty and possible error
associated with many if not all of the available reports. Given
the central role of triangulation, a task that traditionally involved
the use of maps, rulers, and Lines of Position, our analysis
provides an interesting fit to the framework offered by Enactive
Cognition (Froese et al., 2012). Specifically, it involves a task
where the “cognitive agents” implement triangulation to solve
a problem—to define the location of a wreck—and the physical
vehicle for implementation, be it in a map, a head or a computer,
is of secondary importance. Thus, triangulation constituted
the critical scaffold for prediction, and the deep challenge
facing us as scientists involved the selection and, if necessary,
refinement of new Lines or Position. The solution was also

consistent with earlier lines of argument involving: publications
and papers describing the search and rescue solution, the
SAR/Oceanography solution published by Sam Hughes, the
Sunda Strait to Fremantle tracks taken by Sydney on earlier
voyages, and the lifeboat tracks from the probable point of
disembarkation from Kormoran to the coast.

As argued by Thagard (2005), science has changed out of
recognition over the course of the twentieth century. Whereas,
the early days of the century witnessed the establishment of the
now traditional disciplines and divisions, some of which have
been retained in the current curricula of universities, many of the
critical advances in science and technology reflected migration to
the boundaries of the established disciplines, as, like memes, they
embarked on new inter-disciplinary journeys of their own. These
transformations are particularly clear in the new and rapidly
changing sciences, and the industries behind them, underwater
target detection and forensic science being two obvious examples.

It is also very clear in medical science and in medical training,
where the nature and application of knowledge are undergoing
similar transformations.

Much of the work described in this article reflected the
author’s origins in the cognitive sciences but it also capitalized
on concepts, practices, and assumptions from older disciplines,
involving oceanography and history in particular. Furthermore,
and as argued by Thagard, trading zones are likely to flourish
when they involve “people, places, organizations, ideas, and
methods,” and the arcane world of wreck-hunting provided a
fascinating and challenging “trading zone.”

CONCLUSION

The critical issue discussed in this article concerned the location
of the wreck of the German raider Kormoran off the coast
of Western Australia. An accurate solution required cognitive
analysis of a chaotic database comprising more than 70 reports,
a decision preceded by decisions to set aside oceanographic,
navigation, map dowsing, historical and oral history arguments.
The procedure reflected exceptional collaboration involving three
or possibly more “trading zones,” a critical step for innovation in
science.
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Attaining Automaticity in the Visual
Numerosity Task is Not Automatic
Craig P. Speelman* and Katrina L. Muller Townsend
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This experiment is a replication of experiments reported by Lassaline and Logan (1993)
using the visual numerosity task. The aim was to replicate the transition from controlled
to automatic processing reported by Lassaline and Logan (1993), and to examine
the extent to which this result, reported with average group results, can be observed
in the results of individuals within a group. The group results in this experiment did
replicate those reported by Lassaline and Logan (1993); however, one half of the sample
did not attain automaticity with the task, and one-third did not exhibit a transition
from controlled to automatic processing. These results raise questions about the
pervasiveness of automaticity, and the interpretation of group means when examining
cognitive processes.

Keywords: automaticity, skill acquisition, average, individual differences, practice

INTRODUCTION

Speelman and McGann’s (2013) paper contained a clear message for Psychology: Be wary of
phenomena that are discovered on the basis of average group data. Speelman and McGann (2013)
argued that the averaging process typically used in the analysis methods adopted by Psychology can
mask individual results that may actually be counter to those revealed by the group results. As a
result, group results may not be an accurate reflection of the behavior of many, and possibly most,
individuals in the group.

Most of the phenomena we teach as the basic facts in an introductory course in Cognitive
Psychology have typically been generated by experiments where groups of subjects perform the
same task under various conditions. The classic result is usually observed and interpreted as a
pattern of differences between group and/or condition means. That is, the take-homemessage from
these experiments is usually represented as a pattern of results that are generated by averaging
across the results of individuals. This results in a ‘clean’ picture of behavior where the noise
associated with individual differences has effectively been removed. Thus well-known effects such
as the word superiority effect, the serial position curve, the power law of learning, and the
phonological similarity effect have been well replicated by different researchers and under different
conditions, but they all are observed by averaging data collected from groups of individuals.
Speelman andMcGann (2013) argued that such effects may not be as pervasive as their replicability
suggests. That is, although the effects can be replicated easily enough, they may only exist when the
data from several individuals are combined, and as a result may not reflect the cognitive processes
of many, and at worst, any individuals in that group.

Speelman and McGann (2013) reported results from a replication of the Word Superiority
Effect. Although the average performance of the sample in their experiment replicated the classic
effect, an examination of the performance of individuals in the sample revealed that very few people
produced results consistent with the effect. Speelman andMcGann (2013) argued that such a result
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should reduce the confidence we have in using means to
reveal information about fundamental cognitive processes.
A further implication of this result is that it may be prudent
to determine the extent to which individuals demonstrate
performance patterns that have to date been demonstrated in
group results.

The research reported in this paper was designed to examine
a well-replicated finding in the field of attention. From at
least as far back as the 1970s, researchers (e.g., Posner
and Snyder, 1975; Schneider and Shiffrin, 1977; Hasher and
Zacks, 1979) have drawn a distinction between automatic
and controlled/conscious/effortful forms of mental processing.
Controlled processes are typically exhibited early in the practice
of a task, while we are more likely to perform automatically after
a long period of practice. Controlled, deliberate psychological
processes are used for difficult and unfamiliar tasks. These
processes operate serially, use substantial cognitive resources,
require attention, and are flexible. In contrast, automatic
processes are used for easy and familiar tasks, operate in parallel,
require very few cognitive resources, do not require attention, and
are difficult to modify (Speelman andMaybery, 1998). Automatic
performance only comes after extensive practice. Thus, with
sufficient practice under appropriate conditions (Schneider and
Shiffrin, 1977; Shiffrin and Schneider, 1977) one can develop the
ability to respond in an automatic fashion to particular stimuli.

Most theories of cognitive skill acquisition describe
mechanisms by which practice produces a shift from controlled
to automatic processing (e.g., Logan, 1988; Anderson and
Lebiere, 1998). Although these theories propose different means
by which practice leads to more efficient processing, all of the
theories lead to the same prediction: with sufficient practice of
a task where the stimulus–response relationship is consistent,
performance will reach the stage where perception of a known
stimulus will trigger an automatic response (i.e., seeing ‘3× 4= ?’
will automatically lead to a response of ‘12’).

This view of the development of automatic processing has
influenced ideas of how we acquire complex skills. When we
initially embark on the acquisition of such skills, effort, and
attention are focused on basic, low level tasks (e.g., recognizing
letters when learning to read). These tasks are practiced until
processes are developed that perform this task automatically.
Initially, these processes require most of the available cognitive
resources to proceed. Little capacity is available for any other
task (e.g., reading words). Once these processes have become
automatic, however, sufficient cognitive resources are available
for the person to attempt higher level tasks (e.g., reading
words). Importantly, higher level tasks (i.e., reading words) are
considered to operate on the outcomes from lower level tasks
(e.g., letter identification; Karmiloff-Smith, 1979). With further
practice, processes will be developed that are specific to the higher
level task and these in turn may become automatic, enabling
further developments in the level of skill (Speelman and Kirsner,
2005). This view is clearly articulated in mainstream educational
practice (e.g., Cumming and Elkins, 1999; Caron, 2007; Baroody
et al., 2009).

Automaticity can be attained quickly with simple tasks.
Lassaline and Logan (1993) trained subjects on a visual

numerosity task. In this task pictures of dots or similar, ranging
in number from 6 to 11 and arranged in a seemingly random
manner, are presented on a computer screen, one at a time
(Figure 1). Subjects are required to indicate how many dots are
presented, as quickly as possible. Typically, the speed with which
subjects can perform this task is associated with the number of
dots on the screen. That is, the more dots in a picture, the slower
the reaction time (RT). However, when pictures are repeated, and
subjects have a lot of practice at the task, eventually their RTs
are no longer associated with the number of dots in a picture –
subjects respond to each picture with equivalent speed (Figure 2).
According to Logan’s (1988) theory of skill acquisition, early in
training subjects count the dots and this typically takes longer to
complete the more dots there are in a picture. Late in training,
subjects are more likely to recognize pictures and so remember
the number of dots rather than have to count them. As a result
they can respond to each picture with the same speed and hence
RT will not be a function of the number of dots in a picture. An
RT line with a zero slope, therefore, indicates automaticity of this
response.

In Lassaline and Logan’s (1993) experiments, subjects reached
this state after four sessions of training (1920 trials and 64
repetitions per item). Lassaline and Logan (1993) interpreted
this change in the pattern of RTs as subjects moving from a
counting strategy early in practice (a controlled process) to a
memory strategy later in practice (i.e., subjects recognized each
picture and remembered the correct response – an automatic
process).

FIGURE 1 | An example of the type of dot picture used by Lassaline
and Logan (1993). Subjects are asked to indicate the number of dots in the
picture.

FIGURE 2 | Reaction time (RT) in the visual numerosity task as a
function of number of dots in each stimulus picture.
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A similar explanation invoking a transition from controlled
to automatic processing has been used to account for results
in the alphabet arithmetic task (Logan, 1988) and memory
scanning (Schneider and Shiffrin, 1977). The fact that the
pattern of performance changes that accompany practice are
so easily replicated has no doubt fostered confidence in this
explanation. What is not clear in any of this research, however,
is the extent to which this transition occurs in individuals.
The traditional approach in this area of research, as in many
other areas of cognitive psychology, is to collect data from
groups of subjects, and analyze the trends in the average results.
Certainly, theories such as Logan’s (1988) have been developed
to explain the average results. But are these theories a good
explanation for what occurs in the minds of all individuals when
they practice any of these tasks? It is difficult to answer this
question because it is not traditional practice to publish data
that reflects how well the average trends match the pattern of
results produced by each individual. The aim of the experiment
reported here was to provide data that could be used to
answer this question with respect to the visual numerosity
task.

The experiment was an attempt to replicate the results
reported by Lassaline and Logan (1993) and depicted in Figure 2.
In addition, we looked at the individual RT results of each subject
to determine the extent to which the apparent transition from
controlled to automatic processing occurs in a sample of people.
If a result similar to that reported by Speelman and McGann
(2013) was obtained – that is, that the group results replicate the
classic effect but that a substantial proportion of the sample do

not show the effect – then this would raise questions regarding
the validity of theories designed to explain the group results.

MATERIALS AND METHODS

Subjects
Eighteen psychology students from Edith Cowan University
voluntarily participated in the study. The inclusion criteria
required participants to have ‘corrected’ or ‘corrected-to-normal’
vision and English as their primary language. The participants’
ages ranged from 19 to 65 years (Table 1). Participants were
reimbursed with a $20 shopping voucher for their time. This
experiment was approved by the Edith CowanUniversity Human
Research Ethics Committee. All subjects granted their written
informed consent to participate in the experiment.

Design and Stimuli
The visual numerosity task used in this experiment was
performed as part of a larger task used to examine transfer of
training issues. Each trial had two parts. In the first part of each
trial, a configuration of asterisks was presented on the computer
screen. Subjects were asked to indicate the number of asterisks as
quickly as possible by pressing one of six buttons on a response
box. The second part of each trial involved subjects adding a
number presented on the screen to the number of dots that
had been presented in the previous part. Subjects then decided
whether the sum was an odd or even number, indicating their
decision by pressing the appropriate button on the response

TABLE 1 | Slopes of regression lines (ms/asterisk) fitted to RT data as a function of numerosity for each subject.

Participant Age (years) Early slope Mid slope Late slope Matches auto pattern Auto (<100 ms)

1 48 157.83 (0.42) 264.35 (0.71) 329.44 (0.66)

2 55 221.06 (0.74) 174.39 (0.64) 147.55 (0.52) y

3 47 194.95 (0.21) −21.02 (0.01) −45.10 (0.02) y y

4 49 106.44 (0.23) −16.02 (0.00) −77.38 (0.15) y y

5 49 425.72 (0.94) 335.25 (0.75) 377.09 (0.80)

6 57 247.66 (0.82) 224.68 (0.69) 263.65 (0.69)

7 25 336.01 (0.68) −95.78 (0.07) −71.43 (0.07) y y

8 23 381.07 (0.81) 305.30 (0.81) 218.92 (0.92) y

9 27 264.21 (0.90) 361.59 (0.91) 250.73 (0.54)

10 31 318.85 (0.84) 41.37 (0.09) 6.13 (0.00) y y

11 28 193.07 (0.38) −15.49 (0.00) −126.67 (0.07) y y

12 39 277.37 (0.85) 90.37 (0.27) 59.12 (0.08) y y

13 65 367.46 (0.50) 254.99 (0.32) 248.84 (0.55) y

14 20 309.01 (0.88) 537.37 (0.52) 232.21 (0.34)

15 23 625.63 (0.58) 86.52 (0.13) −54.47 (0.25) y y

16 19 447.66 (0.70) 551.07 (0.84) 450.31 (0.78)

17 30 290.94 (0.83) 108.88 (0.24) −11.66 (0.00) y y

18 48 216.73 (0.52) 38.69 (0.01) −65.27 (0.12) y y

Mean/total 37.94 298.98 (0.94) 179.25 (0.57) 118.44 (0.46) 12/18 9/18

r with age –0.42ns −0.19ns 0.09ns

Values in parentheses are r2 values for the regression lines. Matches auto pattern: y = yes, slopes descend from Early to Mid to Late. Auto (<100 ms): y = yes,
slope = 100ms or less by the Late period. ns = p > 0.05.
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box. Only data from the visual numerosity part of each trial is
considered in this paper.

Six stimuli were prepared for this experiment, one for each
level of numerosity from 6 to 11. In each stimulus, asterisks were
arranged in a pseudo-random manner, with the constraint that
each asterisk was separated from other asterisks by at least 1 cm.

Procedure
Subjects were provided with 12 trials of practice using stimuli that
were not used in the experimental trials but which were similar in
appearance to the experimental stimuli. Once participants fully
understood the procedure the experimental trials began. In part
one of each trial a fixation point appeared in the centre of the
screen for 250ms, followed by a configuration of asterisks ranging
in number from 6 to 11. Subjects were required to determine
the number of asterisks. The picture remained on screen until
a response was made on the response box by pressing one of
the keys labeled 6–11. A blank screen then followed for 250 ms.
Participants were then asked to add a number to the number of
stars just identified and determine whether the answer was odd
or even by pressing the corresponding keys. Participants were
instructed to respond as accurately and as quickly as possible.
Trials were presented in blocks of six. The six trials within each
block were presented in a random order. There were 50 blocks of
trials, leading to 300 trials, with each stimulus being presented 50
times.

RESULTS

Accuracy of responses was examined to ensure that participants
were not guessing with their responses. All participants
maintained a mean accuracy above 80% for each block of trials.

Average RT across all levels of numerosity for each block was
calculated. Figure 3 shows RT as a function of practice for each
block. Mean RT for the group became faster over the experiment,
and is well described by a power function.

Blocks were examined in phases (each block consisted of six
trials): Early (blocks 1–10); Mid (blocks 21–30); and Late (blocks
41–50). Mean RT for each level of numerosity for each phase
is presented in Figure 4. The slope of a regression line relating
response latency to numerosity was calculated for each of the
three phases to determine whether automaticity was reached.
These values are presented in Table 1. Although the slope values
follow the pattern of results reported by Lassaline and Logan
(1993) – that is, the slopes decline in value from Early to Late in
practice – the Late result does not reach 0 ms/asterisk, as would
be expected if the results reflected complete automaticity. The
slope value in the Late phase (118.44 ms/asterisk), however, is
consistent with the slope value reported by Lassaline and Logan
(1993) in several experiments after a similar amount of practice
(circa 100 ms/asterisk).

Regression lines were also fitted to the RT data as a function
of numerosity for each phase and for each subject. The slope
values for these lines are presented in Table 1. Two analyses
were performed with this data. The first examined the number
of subjects whose slope values followed the pattern of the slopes

FIGURE 3 | Mean RT for each block of trials. The smooth line is the
best-fit power function (RT = 342.30 + 3500 × block−0.13, r2 = 0.86, and
rmsd = 99.68).

FIGURE 4 | Mean RT as a function of numerosity for the three phases
of the experiment.

calculated on group data. Twelve out of 18 (67%) subjects fell into
this category, although subject 13 barely shows a reduction in
slope value from the Mid to the Late phase. The other analysis
of slope values looked at whether or not a subject reached a slope
value of 100 ms/asterisk or less, to signify whether a subject had
reached automaticity. This was the same cut-off point as used
with the group results. The slope values of nine out of 18 (50%)
subjects met this criterion.

A further test was performed to determine whether the pattern
of slope value changes from phase to phase was consistent
amongst the subjects. Kendall’s coefficient of concordance
indicated that there was some degree of consistency amongst
subjects in their slope value changes (W = 0.373, X2(2) = 13.444,
p = 0.001). However, the fact thatW was not equal to 1 indicates
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that there was not complete unanimity in the pattern of slope
changes, and being closer to 0 than 1 supports the fact that there
was a sub-set of subjects that did not show the typical pattern of
slope reductions throughout training.

To explore whether some characteristic of the subjects was
associated with the likelihood of them attaining automaticity,
Pearson correlation coefficients were calculated between subject’s
age and the regression slopes in the three practice phases. These
values are reported in Table 1. None of these correlations were
statistically significant.

DISCUSSION

This experiment replicated the result reported by Lassaline and
Logan (1993). That is, practice with the visual numerosity task
resulted in a change in the pattern of performance, with RT early
in practice being a function of numerosity (i.e., the more asterisks
to be counted, the longer the RT), whereas later in practice the
relationship between RT and numerosity became weaker. These
results can, therefore, be explained by the typical account, that
performance has moved from a controlled form of processing
early in practice (i.e., counting asterisks in a serial manner) to
automatic processing (i.e., subjects recognize each stimulus and
remember the number of asterisks in the picture). At least, this is
what the group results suggest.

A different picture is apparent when the results of individual
subjects are considered. First, only half of the sample produced
results that suggested they had reached automaticity with the
task. Second, at least one-third of the sample did not show results
consistent with the group trend that replicated Lassaline and
Logan’s (1993) result. Thus, for this latter sub-group, there is no
evidence that their results reflected a transition from controlled
to automatic processing. So, although the overall group results
reflect a pattern that describes well the results of two thirds of
the sample, they do not reflect the pattern of behavior in all
subjects. Indeed, a sizeable minority exhibited results that suggest
there was nomove toward automatic performance with the visual
numerosity task.

One possible explanation for why so many people in this
experiment did not attain automatic performance concerns the
nature of the task used in this experiment, which differed from
that used by Lassaline and Logan (1993). In this experiment there
were two parts to each trial. The results reported in this paper
only concerned the first part of each trial, the part that matched
the task used by Lassaline and Logan (1993). It is possible that
the presence of the second part of each trial in this experiment
may have contributed to many subjects not showing a transition
to automatic performance. On the other hand, the fact that the
group results for this experiment were consistent with the group

results reported by Lassaline and Logan (1993) indicates that the
two-part structure to each trial did not affect the overall results.
It is therefore not possible to rule this explanation in or out at
this stage without knowing the individual results of subjects in
the Lassaline and Logan (1993) experiments. It is worth noting,
though, that in other visual numerosity experiments we have
conducted in our laboratory with a similar two-part structure
to each trial, the group results suggested a transition from
controlled to automatic processing, whereas the individual results
indicated that this transition was not universal. That is, in three
experiments, 7/16, 15/20, and 23/40 people showed a transition
to automaticity.

Another possible point of difference between our experiment
and those reported by Lassaline and Logan (1993) concerns
age. Lassaline and Logan (1993) did not report the ages of
their subjects, only that they were undergraduate Psychology
students. Our subjects also were undergraduate Psychology
students, however, given the age profile of students at Edith
CowanUniversity, the age range of our subjects being 19–65 years
is not unusual. It may well be the case that the age range of our
subjects is larger than the age range of subjects in Lassaline and
Logan’s (1993) experiments; however, age was not correlated with
our measure of automaticity (regression line slopes) at any point
in the experiment, and so cannot explain why so many subjects
did not attain automaticity.

At the least, this experiment questions the conclusions that
can be drawn from group results on the visual numerosity
task. Although the group results are consistent with a transition
from controlled to automatic processing, they do not reflect
the performance of all subjects in the group. Even though
there was a similar number of repetitions per item in this
experiment (50 repetitions/item) to that in Lassaline and Logan’s
(1993) experiments (up to 64 repetitions/item), and so a
similar opportunity to attain automaticity, some subjects in this
experiment showed no evidence of moving toward automatic
processing. Indeed, it seems that these people continued to count
asterisks throughout the experiment. Thus, the transition from
controlled to automatic processing as a result of practice with
a task, which is a feature of many theories of skill acquisition
(e.g., Logan, 1988; Anderson and Lebiere, 1998), may not be an
automatic feature of skill acquisition, at least for some people.
Other work has demonstrated that not all experimental subjects
adopt more efficient performance strategies when acquiring
skills, but rather just improve the application of a less-efficient
strategy (Rowell et al., 2015). It is now an open question as to
why some people do not exhibit this transition whenmany others
do. Importantly, this is a question that would never arise without
attention to differences between individual and group results
(Speelman and McGann, 2013).
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To transform or not to transform:
using generalized linear mixed
models to analyse reaction time data
Steson Lo* and Sally Andrews

School of Psychology, University of Sydney, Sydney, NSW, Australia

Linear mixed-effect models (LMMs) are being increasingly widely used in psychology

to analyse multi-level research designs. This feature allows LMMs to address some of

the problems identified by Speelman and McGann (2013) about the use of mean data,

because they do not average across individual responses. However, recent guidelines

for using LMM to analyse skewed reaction time (RT) data collected in many cognitive

psychological studies recommend the application of non-linear transformations to satisfy

assumptions of normality. Uncritical adoption of this recommendation has important

theoretical implications which can yield misleading conclusions. For example, Balota

et al. (2013) showed that analyses of raw RT produced additive effects of word frequency

and stimulus quality on word identification, which conflicted with the interactive effects

observed in analyses of transformed RT. Generalized linear mixed-effect models (GLMM)

provide a solution to this problem by satisfying normality assumptions without the need

for transformation. This allows differences between individuals to be properly assessed,

using the metric most appropriate to the researcher’s theoretical context. We outline

the major theoretical decisions involved in specifying a GLMM, and illustrate them by

reanalysing Balota et al.’s datasets. We then consider the broader benefits of using

GLMM to investigate individual differences.

Keywords: RT transformations, generalized linear mixed-effect models, mental chronometry, interaction effects,

additive factors

Introduction

A central theme of this special issue is how the uncritical use of statistical procedures in
psychological research can lead researchers to draw incorrect theoretical and practical conclusions.
From a procedure as simple as averaging over a set of data points, Speelman and McGann (2013)
elaborated how the resulting value is often used to draw conclusions that violate many theoretical
positions describing individual, or evenmoment to moment, volatility in human cognitive systems.

Similarly, Trafimow (2014) expressed concern over the use of statistical techniques like related-
samples t-tests, which appropriately assess differences between individuals (e.g., do changes
in attitudes differ across people on average because of variable X), but are ubiquitously used
inappropriately to address hypotheses formulated within each individual (e.g., does variable X cause
a particular person’s attitude to differ).

Extending this theme, we focus on another simple procedure that can lead researchers to
draw misleading theoretical conclusions if applied uncritically: the routine transformation of the
dependent variable to meet assumptions of normality in inferential statistics. In particular, we
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address issues associated with analysis of reaction time (RT)
data—one of the most commonly used dependent variables in
cognitive psychological research.

For over 100 years, cognitive psychologists have used RT to
investigate unobservable mental processes (Donders, 1868/1969;
Luce, 1986). These investigations are based on two fundamental
assumptions: (i) mental processes take time to complete, and that
(ii) each measured RT reflects a composite of several distinct
stages of processing (e.g., visual encoding, mental processing,
and response selection). This “chronometric” approach to mental
processes underpins many paradigms in cognitive psychological
research (Posner, 1978).

Because any single RT might contain idiosyncratic processes,
such as lapses in attention, orthogonal to the mental process
under investigation (however see Speelman and McGann,
2013 for an alternative perspective), researchers usually recruit
multiple participants and subject them tomultiple measurements
of RT. This distribution of RTs obtained in simple decision
tasks is invariably positively skewed. In traditional mean-based
ANOVA analyses, issues regarding skew are typically ignored
because the method has been repeatedly shown to be “robust
to violations of normality” (e.g., Glass et al., 1972; Harwell
et al., 1992; Lix et al., 1996). Consequently, many cognitive
theories have been developed and validated against such mean
RT data, raising many of the interpretive problems highlighted
by Speelman and McGann (2013).

In response to such theoretical limitations, there have been
two major developments in analysis of RT in cognitive research
relevant to the themes of this issue. First, many researchers have
moved “beyond mean RT” (Balota and Yap, 2011) by analysing
changes in the RT distribution at a more fine-grained level in
order to yield more accurate measures of group performance
(Heathcote et al., 2004). Application of these procedures has
allowed researchers to conduct sophisticated tests of cognitive
theories that cannot be distinguished on the basis of mean RT
alone (e.g., Heathcote et al., 1991; Andrews and Heathcote,
2001; Yap et al., 2009). For example, Yap et al. (2009) reported
that an individual’s vocabulary level modulated how word
frequency and semantic priming affected the shape of their
RT distribution. They found additive effects between these
factors across the RT distribution for those of high vocabulary,
suggesting that semantic priming was automatically triggered
for both high and low frequency words among these people
with highly fluent lexical representations. In contrast, those of
low vocabulary showed interactive effects, particularly for slow
responses, suggesting that the increased skew associated with
greater priming for less familiar, low frequency target words
might be due to strategic use of semantic information. Analyses
of individual RT distributions have therefore proved to be useful
in identifying and interpreting individual differences in speeded
response tasks.

A second recent response to limitations of traditional ANOVA
analyses of mean RT, which is the focus of the present paper,
is the use of linear mixed-effect models (LMMs). LMMs have
become increasingly prevalent within many areas of science,
because they are able to account for random populations that
share a nested relationship like hospitals chosen from different

districts (Carey, 2002), or blocked relationships like fertilizer
treatment on samples over different soil plots (Lane, 2002).
Within cognitive psychology, LMMs have had the strongest
recent impact in psycholinguistics, because the use of mean RT
in traditional ANOVA analyses has been unable to capture the
crossed relationship between counterbalanced sets of linguistic
stimuli presented to different subjects (Clark, 1973; Forster and
Dickinson, 1976; Baayen, 2008). LMMs provide a statistical
solution to this problem (Baayen et al., 2008), and have become
the recommended form of analysis in high impact journals within
the field.

Importantly, LMMs have the potential to address many of
the problems raised by Speelman and McGann (2013) about
the use of mean RT, because the ability of these models to
simulate the multi-level structure of the designs described above
eliminates the need to average data across subjects, items, plots,
or hospitals. This crucial property of LMMs therefore provides
a powerful and refined method for investigating interactions of
experimental effects with individual and item differences that
cannot be investigated in traditional ANOVA approaches because
they do not collapse across these variables. For example, by
exploring the variance/covariance parameters, Kliegl et al. (2010)
showed that individuals who responded more quickly tended
to produce larger masked repetition priming effects in a lexical
decision task. Across individual trials, Kinoshita et al. (2011)
showed that sensitivity to the difficulty of the previous trial
interacted significantly according the prime-target relationship
and task environment in a parity judgment task. Thus, LMMs
have the potential to accommodate the different levels of analysis
required to “optimize both scientific rigor and sensitivity to
individual variability” that was identified as one of the goals
outlined in this Special Issue.

Although the sophistication of LMMs present a significant
leap forward for individual differences research, their application
is complicated for skewed dependent variables like RT because
current guidelines for LMM recommend that researchers
transform their RT for two reasons. The first is that skewed
RT data can affect the estimate of the mean, thus distorting
the outcome of statistical tests. For example, Baayen (2008)
recommends transforming RT data to avoid a situation in
which “just a few extreme outliers might dominate the
outcome, partially or even completely obscuring the main trends
characterizing the majority of datapoints” (p. 33). The second
reason is that non-normally distributed residuals produced by
skewed data reflect a non-constant heteroscedastic pattern that
affects the precision with which the standard error of the mean
is estimated (Cohen et al., 2003). Therefore, researchers are
expected to use the Box–Cox procedure (Box and Cox, 1964) to
identify a transformation that allows them to meet the Gaussian
assumptions of normality and homoscedasticity. For RTs, the
transformation that best satisfies this mathematical assumption
is often the reciprocal or inverse RT (Balota et al., 2013).

To Transform or Not to Transform?
Unfortunately, routinely applying such transformations has
important theoretical implications. For example, applying a non-
linear (e.g., log, inverse) transformation to the dependent variable

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 1171 | 68

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lo and Andrews Generalized linear mixed-effect models

not only normalizes the residuals, but also distorts the ratio scale
properties of measured variables, such as dollars, weight or time
(Stevens, 1946). As a concrete example within the aging literature,
two samples—one older and one younger—might exhibit
differential benefits in RT when the preceding prime word was
semantically related to the target (e.g., nurse–doctor) relative to
when it was semantically unrelated (e.g., plane–doctor) (e.g., 600
and 700ms for the younger adults, and 780 and 910ms for the
older adults). However, on the log-transformed scale, differences
between these two samples are obscured because on this scale the
differences disappear [e.g., log(700ms)−log(600ms) = 0.15415;
log(910ms)−log(780ms)= 0.15415] (i.e., there is no interaction
between age and priming).

While many readers will recognize these discrepant results as
another example of “scale dependent” interactions (Loftus, 1978),
the critical question that we wish to address is what the correct
scale should be in “chronometric” research. According to the
“mental chronometry” approach (Posner, 1978), the answer is
clearly raw RT. Differences in RT over experimental conditions
are assumed to directly reflect differences in the amount of time
taken to perform these mental operations (Townsend, 1992).
In the example above, additive effects suggest that automatic
spreading activation, which is thought to underlie semantic
priming, proceeds in much the same way for both younger and
older adults (e.g., Hasher and Zacks, 1979), whereas over-additive
effects suggest that age-related deficits in terms of response speed
interacts with semantic activation in order to produce greater
savings in time when both the prime and target are semantically
related (Laver and Burke, 1993).

But this does not mean that raw RT is always the
most appropriate dependent variable. Other theoretical
positions assume a different relationship between RT and
mental operations that is most appropriately measured by
a transformation such as log or inverse RT. For example,
differences calculated on the logarithmic metric reflect
proportional change [i.e., log(700ms)−log(600ms) =

log(700/600ms)], which aligns with many theories of aging
which attribute a causal role to general cognitive slowing (e.g.,
Salthouse, 1985). However, the vast majority of cognitive theories
have been developed and validated on raw RT. So by routinely
applying a transformation to yield the normal distribution
required for LMM, the researcher may ultimately fail to test their
hypotheses using the dependent variable that underpinned their
theoretical predictions.

In individual differences research, scale dependent
interactions touch upon even broader theoretical implications.
At its most basic conceptualization in a two-factor design, a
significant interaction indicates that the effect of a particular
variable (the numerical difference on the dependent variable
between levels of one of the factors) changes across the
population of interest because it differs as a function of a
second independent variable; typically another group of people
or a different condition. Conversely, a lack of interaction
between these factors suggests that the average effect remains
uniform across individuals or conditions under assessment.
Thus, statistical assessment of interactions provides insight as
to whether there is a single “true value that we are trying to

approximate when we measure humans on some dimension”
(Speelman and McGann, 2013, p. 2), or whether multiple values
exist particular to each individual.

Thus, the increasing reliance on LMM in cognitive psychology
presents researchers with a conundrum created by the mismatch
between the dependent variable dictated by theory and
the dependent variable dictated by the requirements of the
statistical analysis. As discussed above, in cognitive psychological
investigations of “mental chronometry,” raw untransformed RTs
are usually the metric about which the researcher has predictions.
However, to satisfy the assumptions of LMM, the statistical
analysis is conducted on the transformed metric. Thus, in order
to interpret the results and in order to compare them with earlier
published ANOVA data, the estimates of the empirical effects
from the LMM are often “back-transformed” into raw RT. But
unfortunately, back-transformation can be unreliable because
statistically significant differences on the transformed metric are
uninformative as to whether significant differences exist on the
original untransformed metric and vice versa (Berry et al., 2010).
Cognitive psychologists are therefore trapped between a rock and
a hard place. Analyses on raw RT are inappropriate because they
fail to meet the assumptions of the linear model, but analyses on
transformed RT are uninformative because they fail to answer the
research questions of interest.

The ideal solution to this quandary would be to allow
statistical assessment on the original raw RT metric, but to also
meet the mathematical constraints imposed by the statistical
model. Such a solution is offered by generalized linear mixed-
effect models (GLMMs) which offer one approach to achieving
this ideal that is readily implemented in many statistical
packages. By separating the mathematical and theoretical
components of the model, GLMMs allow researchers to use
the dependent variable most appropriate to their research
question, while simultaneously meeting the mathematical
criterion of normalized, homoscedastic residuals in linear
regression. To achieve these goals, GLMMs require the
researcher to consider these issues as part of the specification
process.

A Case Study: Effects of Word Frequency and
Stimulus Quality on Lexical Retrieval
To demonstrate the interpretative problems associated with
routinely transforming RT to meet the normality assumptions
of LMM and to illustrate how GLMM can be applied to avoid
the need for transformation, we present re-analyses of data
recently reported by Balota et al. (2013). Specifically, they used
LMM to re-analyse the data from three published studies which
reported additive effects of word frequency and stimulus quality
in ANOVA analyses of raw RT (Yap and Balota, 2007; Yap
et al., 2008). However, for the LMM analyses on inverse RT,
the data transformation that most effectively normalized the
residuals for all datasets, the results yielded a completely different
pattern for all three experiments: significant underadditive
interactions.

In “chronometric” research, additive or interactive effects
reflect fundamental assumptions about the nature of RT
described at the beginning of this paper. Because each measured
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RT is assumed to reflect a composite of several distinct stages
of processing, separate stages in mental operation can be
inferred if the time required to perform a second mental
operation is independent of the time required to complete the
first mental operation (i.e., the effects are additive) (Sternberg,
1969). This reasoning is crucial for additive-factors logic
(Sternberg, 1969), because without the ratio measurement scale
properties in raw RT (Townsend, 1992), the inferential power
of this technique is lost because equivalence in measurable
raw RT can no longer be taken as evidence of equivalence in
processing.

Thus, within the additive-factors logic (Sternberg, 1969)
framework described above, the temporal relationship between
word frequency and stimulus quality has important theoretical
implications regarding the nature of lexical representation.
Taken individually, low frequency words and visually degraded
stimuli both serve to slow RT relative to when the stimuli
are clearly presented or of high frequency (Stanners et al.,
1975). However, the additive effects of these two variables
on raw RT reported in the original papers suggest that that
these factors selectively influence separate stages of mental
processing, and produce significant challenges for activation
models which predict interactive effects between frequency
and stimulus quality (Borowsky and Besner, 1993). Specifically,
activation models propose that the threshold for activation is
determined by word frequency and the rate of activation by
stimulus quality, so stronger effects of stimulus quality on low
frequency words should therefore be observed because more
time is required to reach the higher activation threshold for
low frequency words when combined with a slower rate of
activation in the context of degraded stimuli (Morton, 1969).
This consistent evidence of additive effects of word frequency and
stimulus quality in the experimental data, under conditions that
yield interactions between each of these variables and semantic
priming, therefore presents a strong challenge to fully interactive
activation models (Borowsky and Besner, 1993; Balota et al.,
2013). Given the central theoretical importance of the additive
effects of word frequency and stimulus quality observed on raw
RT, Balota et al.’s (2013) demonstration that the additive pattern
is specific to raw RT and changes when the dependent variable is
transformed directly reflects the theoretical quandary presented
above.

The Generalized Linear Mixed-Effect
Model (GLMM) Framework

GLMMs combine and extend the properties of LMM and
generalized linear model (GLM) approaches, by relaxing LMM’s
assumption that the dependent variable (and the residuals) follow
a normal (Gaussian) distribution, and extending GLM’s scope of
inference to extend beyond a single random population. Rather
than making the default assumptions of LMM methods, GLMM
requires researchers to specify a number of components of their
data and design:

(1) the explanatory variables responsible for systematic variation
in responses: referred to as the fixed factors;

(2) the sampling structure of the design contributing to random
variability in responses: the random factors;

(3) the probability distribution describing the plausible
processes underlying the observed data: the distribution of
the dependent variable; and

(4) the mathematical function characterizing the relationship
between the fixed factors and the dependent variable: the link
function.

The following sections introduce the key theoretical and
methodological issues regarding specification of GLMMs within
the context of the three experiments from Balota et al.
(2013). Readers interested in more technical mathematical and
computational details regarding LMM (Pinheiro and Bates, 2000;
Raudenbush and Bryk, 2002; Baayen, 2008), GLM (McCullagh
and Nelder, 1989), and GLMM (Jiang, 2007; Stroup, 2013)
should consult the excellent resources already published on these
topics.

The three experiments re-analyzed by Balota et al. (2013) each
factorially manipulated word frequency and stimulus quality
within a lexical decision task. For the word responses in all three
experiments, each participant responded to 100 high frequency
and 100 low frequency words, presented in either clear or
degraded stimulus quality conditions. In Yap and Balota (2007),
the stimulus quality manipulation was conducted between
subjects while Yap et al. (2008, Experiments 1 and 2) used within-
subjects manipulations conducted on counterbalanced item sets.
The non-word items in Yap and Balota (2007) and Yap et al.
(2008, Experiment 1) comprised of 200 pronounceable pseudo-
words (e.g., flirp), while Yap et al. (2008, Experiment 2) used
200 pseudo-homophones (e.g., brane). Further details regarding
the design are available in each experiment’s respective published
reports.

The Fixed Factors
Users of ANOVA and ordinary least squares regression in the
basic linear model framework will already be familiar with
specifying fixed factors in their analyses. Both at a conceptual
and practical level, this remains unchanged in GLMM. In
order to differentiate them from random factors described
below, fixed factors are the components of the linear predictor
responsible for systematic variability in the observed responses.
Typically, fixed factors consist of the independent variables
(or covariates) with a small finite number of levels under
experimental manipulation. The levels of these factors are the
object of hypothesis testing (fixed effects), and represent the
conditions for which the model provides estimates of the average
response over the entire population(s) (generally denoted by
the symbol µ̂ —the estimated mean corresponding to each
condition).

Across the three experiments reported in Balota et al. (2013),
the fixed factors correspond to word frequency and stimulus
quality. Normalized sum contrasts specified on these fixed factors
yielded four fixed effects in the statistical model: mean RT
associated with the lexical decision task (intercept), differences
in RT associated with the manipulations of word frequency (high
vs. low), stimulus quality (clear vs. degraded), and frequency ×
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stimulus quality interaction1. Of central interest is whether the
observed data are consistent with interactive effects of frequency
and stimulus quality predicted by interactive models, or the
additive effects that follow from the independent processing
stages assumed by serial models.

The Random Factors
Within the mixed modeling framework, random factors
correspond to components of the linear predictor in which a
random subset of levels are sampled from a larger population.
As opposed to fixed factors, in which systematic variability
between conditions (i.e., mean differences) is explicitly estimated
and compared, variability in the random factors is used to:
(1) estimate the extent to which mean responses vary across
units of the random factor; (2) allow inferences about whether
fixed effects generalize beyond the units sampled in the random
factor; (3) remove variability in responses that are associated with
the random factor rather than the conditions of experimental
interest (i.e., reduce Type I error rate). Typically, many levels of
the random factor are sampled in the experiment under which
responses are meaningfully clustered. Although clustering is one
form of structural dependency typically associated with a random
factor, other structural dependencies such as nesting, cross-
classification, blocking and other counterbalancing procedures
can also contribute to nuisance variability that is partialled out
with a random factor2.

Subjects and items constitute the random factors common
across the three experiments reported in Balota et al. (2013),
because responses are clustered according to individual
participants and English words—both of which represent a
random sample from their respective populations. Following
nomenclature within the LMM literature (e.g., Barr et al., 2013),
the overall mean for each subject and item were estimated as
“random intercepts” in each of the experiments, while with the
degree to which each fixed effect varied across subjects and/or
items were estimated as “random slopes.” This latter specification
for random slopes differed according to the design of the three
experiments. In the Yap and Balota (2007) experiment, stimulus
quality was manipulated between-subjects and word frequency
was manipulated between-items, so the random slopes controlled
for subject-specific variability in the frequency effect which can
be distinguished from variability associated with particular

1Balota et al. (2013) also included the lexicality and stimulus quality of the previous

trial as fixed factors in their analyses in order to investigate the modulating

role of trial history on performance, and to assess the generality of Masson and

Kliegl’s (2013) claim that additive effects of word frequency and stimulus quality

are a spurious outcome of ignoring trial history. Evaluating the effects of such

trial level variables is only possible in LMM and GLMM using unaggregated

data because they allow structural dependencies to be accounted for as random

factors. However, Balota et al. (2013) reported no evidence of previous trial history

significantly modulating the relationship between word frequency and stimulus

quality, so these variables were not included in our analyses.
2At the time of writing, implementation of LMM and GLMM in popular statistical

software assumes that the mean responses across the units of the random factor

are normally distributed. Though this may be a reasonable assumption given that

sample means can be normally distributed even though the underlying population

of responses is non-normal based on the central limit theorem, further advances in

computation may allow non-normally distributed random factors to be specified

in doubly generalized linear mixed-effect models as described by Lee et al. (2006).

words, and item-specific variability in the stimulus quality effect
which can be distinguished from variability associated with
different participants. For the other two experiments in which
word frequency and stimulus quality were both manipulated
within-subjects, the random slopes controlled for subject-specific
variability in the frequency effect, stimulus quality effect, and
frequency by stimulus quality effect, as well as item-specific
variability in the stimulus quality effect. This represents the
“maximal” random effect structure (Barr et al., 2013) for each of
the experiments.

The Dependent Variable
A key feature of GLM and GLMM is the ability to appropriately
model a variety of response distributions. As noted previously,
GLMM does not make the default assumption that this
distribution is Gaussian and therefore requires that the researcher
specify an appropriate distribution. In some measurement
contexts, this selection is straightforward—binary responses
are described by a binomial distribution; count responses are
described by a Poisson distribution. But selecting the appropriate
dependent variable is less straightforward in domains like
cognitive psychology, where researchers often investigate latent
constructs that are indexed by continuous behavioral measures,
like RT, which can be described by a host of distributions (e.g.,
normal, beta, gamma, uniform, etc.), and where there is often
no consensus on the “correct” distribution. This ambiguity has
contributed to researchers’ willingness to transform RTmeasures
to meet the mathematical assumptions of LMM. GLMMoffers an
alternative: the researcher can select the quantitative distribution
that best captures the properties of their measured variable. As
we describe below, both theoretical and empirical considerations
underpin this decision.

Across the three experiments reported in Balota et al. (2013),
the dependent variable was the RT to correctly classify each
stimulus as an English word. As illustrated in Figure 1, the
distributions of observed RT (represented by solid lines) for all
three experiments were unimodal with a distinct positive skew. In
addition to this characteristic shape, the data for all experiments
also revealed a linear relationship between the standard deviation
of RTs and mean RT demonstrated in many previous studies of
RT in binary choice tasks (e.g., Luce, 1986; Faust et al., 1999;
Wagenmakers and Brown, 2007). This linear relationship is also
evident in plots of the residuals which show hetereoscedasticity
in LMM analyses, evidenced by increasing spread in residuals
for longer predicted RT (Kliegl et al., 2010; top row of plots in
Figure 3).

Rather than transforming the dependent variable to eliminate
this deviation from normality, GLMM allows the researcher to
select a theoretical distribution that matches the properties of
measured RT. Two of the two-parameter distributions currently
implemented for GLMMs in the stats package as part of the
default installation of the R program for statistical computing
(R Core Team, 2013), the Gamma and Inverse Gaussian
distributions reproduce these surface characteristics of raw RT—a
unimodal skewed distribution with continuous responses greater
than or equal to 0. As shown in Figure 1, they both provide
a closer approximation to the observed distribution of RTs
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FIGURE 1 | Observed (solid lines) and fitted densities (dotted,

dashed and broken lines) to the RT from the three Balota et al.

(2013) experiments. For the Yap and Balota (2007) experiment, the

gamma density was fitted with a rate of 0.018 and a shape parameter

of 11.967 (dashed line), the inverse Gaussian density was fitted with a

λ parameter of 8201.5 and a mean of 658.8 (dotted line), the normal

density was fitted with a mean of 658.8, and a standard deviation of

212.97 (broken line). For the Yap et al. (2008, Experiment 1), the

gamma density was fitted with a rate of 0.026 and a shape parameter

of 16.000 (dashed line), the inverse Gaussian density was fitted with a

λ parameter of 10223.8 and a mean of 620.1 (dotted line), the normal

density was fitted with a mean of 620.1 and a standard deviation of

172.26 (broken line). For the Yap et al. (2008, Experiment 2), the

gamma density was fitted with a rate of 0.015 and a shape parameter

of 10.740 (dashed line), the inverse Gaussian density was fitted with a

λ parameter of 7704.3 and a mean of 697.0 (dotted line), the normal

density was fitted with a mean of 697.0 and a standard deviation of

242.67 (broken line).

in the three experiments than the normal distribution. The
distributions also provide an explicit mathematical relationship
between the mean and variance. For the Gamma distribution,
the variance of the distribution increases proportionally with the
mean, while the variance increases proportionally with the cube
of the mean for the Inverse Gaussian distribution. Despite the
differences in their mathematical expression, both distributions
are able to approximate a variety of distributional shapes that
allow them to “statistically mimic” RT responses and yield fits
that are practically indistinguishable from each other (Van Zandt
and Ratcliff, 1995).

As well as approximating the surface characteristics of
the distribution of the dependent variable, the probability
distribution should also provide a plausible description of the
processes underlying the response. At a conceptual level, both
the Gamma and Inverse Gaussian distributions can be linked to
waiting time—how long it takes until an event of interest (e.g., a
button press) to occur. Mathematically, the Gamma distribution
is the sum of multiple exponential distributions, which can be
considered to model the probability that no event occurs until
a certain period of time. The Gamma distribution can therefore
be considered to model several serial stages of processing, each
of which finishes with a time that is exponentially distributed
(Van Zandt and Ratcliff, 1995). Similarly, the Inverse Gaussian
distribution has been identified with the time for evidence
accumulation to reach a single threshold boundary within a
diffusion process (Schwarz, 2001).There are other distributions
as described in the General Discussion (e.g., ex-Gaussian, ex-
Wald, shifted Wald) with parameters that have also been
associated with psychological processes underlying RT (Matzke
and Wagenmakers, 2009). Given that there is no consensus as
to the “correct” distribution for mapping from psychological

processes to RTs, the purpose of this introduction is not to
advocate for a particular distribution, but to illustrate that the
Gamma and Inverse Gaussian are examples of distributions that
provide a plausible description of processes reflected in RT.

The Link Function
In GLM and GLMM, fixed factors are assumed to be linear
predictors of a function of the observed response rather than
the observed response itself. Thus, the model assesses the linear
predictors (µ̂) on an unbounded transformed scale (e.g., the scale
upon which a latent variable like “lexical retrieval” is measured
could contain any numerical value), that is different from the
bounded original scale of the dependent variable (DV) (e.g.,
observed RT contains strictly positive values like those produced
by the Gamma distribution; the observable probability of an
inaccurate response is bound between the values of 0 and 1
like those from a binomial distribution). The transformed and
original scales are connected by a monotonic differentiable link
function that allows back-transformation to the original metric
by providing a one-to-one mapping between the range of fitted
values produced by the linear predictor on the transformed
metric and the range of observed values on the original metric
[i.e., DV = f (µ̂)]. Therefore, the nature of the relationship
between the two scales can be considered to be defined by the
mathematical function connecting the observed response to the
latent construct upon which the fixed factors are assessed. In the
special case where “no function” is required and the observed
response is assumed to directly tap the latent construct (e.g., RT
is a direct measure of the time required for lexical retrieval), the
function binding the expected values produced by the predictors
to the dependent variable is the identity link (i.e., DV = µ̂).
Ordinary linear regression and LMM assumes an identity link
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between the DV and the latent construct. When researchers
using these methods believe that the measured DV is not directly
related to the latent construct, they canmathematically transform
the DV into the latent construct, and then apply this transformed
variable in the analysis as the DV in order to achieve a similar
effect3. That is, the link function in GLM(M) explicitly defines the
nature of the expected relationship between the predictors and
the observed response.

In the context of the experiments reported in Balota et al.
(2013), there are two reasons as to why the identity link is
appropriate. Firstly, from a theoretical perspective, the tradition
of mental chronometry assumes that manipulations directly
affect RT rather than some function of RT. More explicitly within
additive factors logic, RT is assumed to be linearly affected by the
experimental factors so that factors that affect a single processing
stage interact, while those that affect separate processing stages
do not. By changing the form of this mapping with a non-linear
link function or a non-linear transformation of the dependent
variable as applied in LMM, such an interpretation cannot be
applied and cannot inform the models from which they were
derived. Secondly, from a mathematical perspective, a non-linear
link function is usually applied to constrain the predicted values
within the bounds of the dependent variable. Since the bulk of
observed RTs in Balota et al. (2013) are situated well away from
the negative boundary (in part because RTs faster than 200ms
were removed), and predictions are not extrapolated beyond the
observed conditions, there is little danger of the model producing
impossible negative values for RT which are difficult to interpret.

Using GLMM to Avoid the Need for
Transformation of Skewed RT Data

To illustrate the application of GLMM to address the problems
with transformation outlined earlier, we re-analyzed the three
experiments that Balota et al. (2013) recently demonstrated to
yield contradictory outcomes in analyses conducted on raw and
transformed data. They report that LMM analyses of the inverse
RT transformed data that best satisfied criteria for normality
yielded underadditive interactions rather than the additive effects
of frequency and stimulus quality found with raw RT.

We report the results of six analyses of each of the three
experiments. Two of the analyses parallel Balota et al.’s (2013),
by using LMMs on raw RT (DV = RT) and inverse RT
(DV = − 1000/RT). By default, these analyses assume a
Gaussian distribution and identity link function. The remaining
four analyses are GLMMs on raw RT which assume either a
Gamma or Inverse Gaussian distribution of the DV, and a linear
(identity link function; RT = µ̂) or inverse relationship (inverse
link function; RT = − 1000/µ̂) between the predictors and
RT. We chose −1000/µ̂ as the specific form of the inverse link
function to parallel the inverse transformation applied to RTs
in Balota et al.’s (2013) LMM analyses (i.e., −1000/RT). These

3It is important to note that differences in the logs of the means (i.e., passing µ̂

through a log link) is not the same as differences in the means of log-transformed

data, but general compression in differences involving larger values on either scale

is maintained in either method.

GLMM analyses are therefore analogous to the LMM analyses
conducted on inverse RT.

The primary interest is in the results from the properly
specified GLMMbased on the decisions described in the previous
section, but we also aim to clarify how differences in the
specification of the dependent variable and link function relate
to the conflicting findings between raw and inverse transformed
RT reported by Balota et al. (2013).

The analyses were conducted on RT data for correct word
responses for Yap and Balota (2007) and Yap et al. (2008
Experiments 1 and 2) using version 1.0-5 of the lme4 package
(Bates et al., 2013) in the R program for statistical computing
(R Core Team, 2013) following the same trimming procedures
described in Balota et al. (2013). Since there is continuing debate
as to how p-values should be generated for LMMs because of
computational issues regarding degrees of freedom, we follow the
current practice of considering effects greater than two standard
errors (i.e., |t|> 2) to be significant at the 0.05 level for datasets
involving a large number of observations (Kliegl et al., 2010;
Masson and Kliegl, 2013). The R syntax used to generate these
models along with the full model output and predicted mean RT
for each condition can be found in the Supplementary Materials.

Figure 2 summarizes the predictions of the models assuming
a linear relationship between the predictors and RT for the three
experiments. The corresponding results for models assuming
an inverse relationship between the predictors and RT are
presented in Figure 4. Each column of Figures 2–5 corresponds
to a different experiment, while the rows of the figures present
estimates from the LMM models (top row), and GLMM models
assuming Gamma (middle row), and Inverse Gaussian (bottom
row) distributions, respectively, of the DV.

For each model summarized in Figures 2, 4, the shaded
region of the prediction plot depicts the estimated effect of
word frequency (difference between high and low frequency
conditions) based on the fitted values for each of the four
frequency by stimulus quality conditions as plotted on the
model transformed scale (x-axis), while the y-axis plots the
same difference after the mean estimates have been back-
transformed via the link function on the original RT scale. The
estimates are identical on the model and back-transformed RT
scales in Figure 2 because the identity link assumes that the
scale of the latent construct assessed by the model (x-axis) is
synonymous with RT. The form of the link function itself is
depicted by the solid black line connecting the diagonals of
the plot.

Although an identity link function (DV = µ̂) was also
specified for the LMM analysis on inverse transformed RTs
(DV = −1000/RT), we depict a non-linear function in Figure 4

to illustrate the back-transformation from inverse to raw RT
(RT = −1000/µ̂) that researchers typically apply to interpret
their data. The p-value corresponding to the critical interaction
effect, which is presented in the bottom-right corner of each plot
only assesses whether there is a significant difference in the linear
effect of frequency on the model transformed scale (x-axis), and
does not assess whether significant (linear) differences exist on
the original RT scale (y-axis) unless the identity link was specified
(Berry et al., 2010).
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FIGURE 2 | Prediction plots illustrating the estimated frequency effect

and statistical results (t- or z- value and corresponding p-value) of

the word frequency by stimulus quality interaction (shaded region on

x-axis) based on models assuming a linear relationship between the

predictors and RT (identity link function). Note that the

back-transformed estimates (shaded region on y-axis) are identical because

of the identity link function. Each column of plots represents the results from

a different experiment (from left to right: Yap and Balota, 2007; Yap et al.,

2008: Experiment 1; and Yap et al., 2008: Experiment 2), and each row of

plots represents a different assumption for the distribution of RTs (from top to

bottom: Gaussian, Gamma, and Inverse Gaussian). Note that precise

p-values are produced in GLMM for the Wald Z-statistic in R, while

approximate p-values can only be inferred based on the magnitude of the

t-value produced in LMM.

Selecting the Right Model
Each of the individual analyses in Figures 2, 4 produced subtle
differences in the magnitude, direction or statistical significance
of the word frequency by stimulus quality interaction. A
decision must therefore be made about the best-fitting correctly
specified model. There are a number of ways to address this
question.

Throughout the previous sections, we have argued that, from
a theoretical perspective, the dependent variable of theoretical
interest in mental chronometric research like this is raw RT,
and that additive factors logic assumes a linear relationship
between the experimentally manipulated variables and RT itself.
From this perspective, only the analyses using raw RT as the
dependent variable and specifying an identity link function
provide meaningfully interpretable results for this experiment
(Figure 2).

To further discriminate between the analyses, we can identify
the statistical model that provides predictions which best fits

the observed RTs. Figure 3 allows a visual inspection of model
fit, by plotting the residuals against predicted RT. The LMM
analyses (top row of plots), which assume a Gaussian distribution
of raw RT, clearly exhibit a heteroscedastic (fan-shaped) pattern
that is not evident in the GLMM analyses assuming a Gamma
or Inverse Gaussian distribution (middle and bottom row of
plots). Therefore, these plots suggest that the Gamma or Inverse
Gaussian distributions provide a better fit to the data because they
explicitly account for the hetereoscedastic pattern of increasing
variability with slower responses and therefore yield more
normally distributed residuals.

A similar conclusion derives from AIC and BIC summary
fit indices presented in Table 1, and the estimated Gaussian,
Gamma, and Inverse Gaussian distribution fits to the observed
RT density in Figure 1. Across the three experiments, the Inverse
Gaussian distribution (followed by the Gamma and Gaussian
distributions) produce parameters that best approximate the
shape of the observed RT distribution, and yield fit values
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FIGURE 3 | Plots of the residuals over predicted RT from models

assuming a linear relationship between the predictors and RT

(identity link function). Each column of plots represents the results

from a different experiment (from left to right: Yap and Balota, 2007;

Yap et al., 2008: Experiment 1; and Yap et al., 2008: Experiment 2),

and each row of plots represents a different assumption for the

distribution of RTs (from top to bottom: Gaussian, Gamma, and

Inverse Gaussian).

that are consistently lower than the Gamma or Gaussian
distributions. Thus, on both these graphical and empirical
indices, the Inverse Gaussian distribution provides the best fitting
model.

Having identified the most appropriate statistical model, we
can consider its results. Consistent with the ANOVA analyses
reported in the original published papers, none of the three
experiments yielded a significant interaction between word
frequency and stimulus quality in the Inverse Gaussian GLMM
with identity link function (bottom row of plots in Figure 2).
This model predicted effects of frequency that were 5, 8, and
5ms greater for the degraded than clear condition in the Yap
and Balota (2007), Yap et al. (2008, Experiment 1), and Yap
et al. (2008, Experiment 2) data, respectively. The magnitude and
direction of these effects are essentially identical to the 6, 7, and
5ms overadditive effect reported in original ANOVA analyses.
Although these estimated effects are similar to those predicted in
the poorer fitting Gamma andGaussian GLMMwith identity link
(top and middle row of plots in Figure 2), the test statistic (t- or
z-value) is larger and corresponding p-value lower for the better
fitting models, suggesting that the standard errors have been
more precisely estimated. Better fitting models provide more
powerful adjustment to extreme values, particularly in the slowest
condition of degraded low frequency words, where calculation of
the average would be most affected, thus allowing greater power
as well as reliability with which to assess individual differences
between subjects and items (see Appendix in Supplementary
Material for mean RT predicted for each condition by the six
models).

Different conclusions about the relationship between word
frequency and stimulus quality are suggested by the results of
models using transformed RTs or link functions that assume a
non-linear relationship between the predictors and RT. From
the perspective of model fit alone, the analysis on inverse
transformed RT produces residuals that offer the least amount
of hetereoscedasticity (Figure 5), suggesting that the fit is at
least as good, if not better, than the Inverse Gaussian GLMM
with identity link described above4. This is the expected
outcome of applying the Box–Cox procedure to estimate a
power transformation that stabilizes variance in order to create
normally distributed data. However, although these models meet
the mathematical assumptions of normality required by LMM,
as Balota et al. (2013) report, relying on the transformed DV in
LMM put the researcher in the unhappy situation of developing
an ad-hoc explanation of why the estimated effect of frequency
is now underadditive (Figure 4), as opposed to the additive or
slightly overadditive effects observed on raw RT.

These contradictions arise because interval differences
in the dependent variable are distorted when non-linear
transformations are applied. For each of the prediction plots
based on an inverse transformation or inverse link function
in Figure 4, almost all of the back-transformed estimates
suggest no difference, or a slightly larger numerical effect of
frequency for degraded words (a small overadditive effect) on
the RT scale (y-axis). However, on the model estimate scale

4Empirical fit indices such as AIC/BIC values are not comparable across models

with different dependent variables (Burnham and Anderson, 2002).
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FIGURE 4 | Prediction plots illustrating the estimated frequency effect

and statistical results (t- or z-value and corresponding p-value) of the

word frequency by stimulus quality interaction (shaded region on

x-axis) based on models assuming an inverse relationship between

the predictors and RT (inverse link function). The plots also present the

back-transformed estimates (shaded region on y-axis) on the original RT

metric. Each column of plots represents the results from a different

experiment (from left to right: Yap and Balota, 2007; Yap et al., 2008:

Experiment 1; and Yap et al., 2008: Experiment 2), and each row of plots

represents a different assumption for the distribution of RTs (from top to

bottom: Gaussian, Gamma, and Inverse Gaussian). Note that precise

p-values are produced in GLMM for the Wald Z-statistic in R, while

approximate p-values can only be inferred based on the magnitude of the

t-value produced in LMM.

(x-axis), these differences are distorted by the non-linear inverse
link function into a numerically larger effect of frequency for
clear words (underadditive effect). For the Yap and Balota
(2007) experiment, the distortion caused by the non-linear
transformation was severe enough to push the underadditive
effect to statistical significance in the LMM analysis (top left
panel of Figure 4). The underadditive interactions in this dataset
were also marginally significant in the GLMM analyses using the
inverse link function.

Tomeaningfully interpret this underadditive effect, and effects
assessed on the inverse RT scale more generally, the researcher
must assume that the predictors are inversely related to RT.
This view is consistent with recent attempts to map effects
assessed on the reciprocal scale to differences in processing rate
or processing speed (Kliegl et al., 2010). For example, processing
rate or speed of evidence accumulation is assumed to be slower
for visually degraded as opposed to clearly presented words in
activation models (e.g., McClelland and Rumelhart, 1981), thus

yielding the slower RT typically observed for these conditions.
However, a core assumption within all of these models is that
rate of evidence accumulation is linear over time (e.g., Borowsky
and Besner, 1993; Ratcliff and Rouder’s, 2000, diffusion model;
Brown and Heathcote’s, 2008, linear ballistic accumulator)—in
direct contrast to the non-linear relationship implied by the
inverse scale. So while there may be physiological reasons to
expect non-linearity at the level of neural spike rates (e.g.,
Carpenter and Williams, 1995), the implications associated with
the reciprocal nature of this transformation on RT appears to
be limited because psychological models assuming linearity are
able to closely predict responses in observed data (Ratcliff, 1978;
Brown and Heathcote, 2008).

Thus, the GLMM procedure allows researchers to select the
DV most appropriate to their research question rather than use
a transformed DV simply to meet mathematical assumptions.
If raw RT is the most appropriate metric, as we have argued
to be the case for most mental chronometric research, an
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FIGURE 5 | Plots of the residuals over predicted RT (or inverse RT)

from models assuming an inverse relationship between the

predictors and RT (inverse link function). Each column of plots

represents the results from a different experiment (from left to right: Yap and

Balota, 2007; Yap et al., 2008: Experiment 1; and Yap et al., 2008:

Experiment 2), and each row of plots represents a different assumption for

the distribution of RTs (from top to bottom: Gaussian, Gamma, and Inverse

Gaussian).

TABLE 1 | AIC and BIC indices of model fit comparing LMMs and GLMMs of different distribution and link assumptions for each of the three experiments.

Link function Distribution (DV) Yap and Balota (2007) Yap et al. Yap et al.

(2008, Experiment 1) (2008, Experiment 2)

AIC BIC AIC BIC AIC BIC

LMM (Identity link) Gaussian (inverse RT) 6337 6404 3284 3356 6832 6912

Gaussian (raw RT) 170,573 170,640 66,775 66,847 138,196 138,276

GLMM (Identity link) Gamma (raw RT) 164,722 164,790 64,954 65,026 133,528 133,608

Inverse Gaussian (raw RT) 163,161 163,229 64,461 64,533 132,318 132,398

GLMM (Inverse link) Gamma (raw RT) 164,545 164,613 64,870 64,942 133,304 133,384

Inverse Gaussian (raw RT) 163,012 163,079 64,395 64,467 132,128 132,207

Note that the dependent variable (DV) specified in the first row (LMM) were on inverse transformed RT, so these fit indices are not directly comparable with the other five rows of models

which used raw RT as the DV.

Inverse Gaussian or Gamma distribution can be assumed to
achieve more normal homoscedastic residuals, while retaining
raw RT as the DV. As Figure 2 shows, this produces more
power than LMMs conducted on raw RT. Alternatively, if the
researcher’s predictions are for a transformed scale, such as
inverse RT, specifying a non-linear link function of the same
form as the inverse transformation applied to RTs (inverse
link function; −1000/µ̂) produces an identical distortion of
frequency effects toward underadditivity (see middle and bottom
row of prediction plots in Figure 4). Moreover, there appears to
be no loss in model fit relative to the matching models using an

identity link according to both a visual inspection of the residuals
(Figures 3, 5) and empirical fit statistics (Table 1).

In summary, GLMMs allow assumptions regarding the
relationship between the predictors and the dependent variable
to be tested independently of assumptions regarding the
distribution of dependent variable. In LMM, the two are
confounded because the relationship between the predictors
and the dependent variable is dictated by the transformation
selected to normalize the distribution of the dependent variable.
By contrast, GLMM allows the form of the link function to be
determined by the theoretical issues under consideration.
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General Discussion

The broad goal of this paper is to echo Speelman and McGann’s
(2013) cautions about the routine use of statistical procedures
without reflecting on the theoretical assumptions underlying
their use. Within cognitive psychology, researchers are keenly
aware of the dangers associated with relying on the mean,
and many have begun to turn to the multilevel properties
of LMMs as a way of simultaneously controlling for (or
explicitly investigating) individual sensitivity between each item
or participant as an explanation of overall differences between
conditions (Clark, 1973; Locker et al., 2007). These methods
offer one approach to reconciling the logic of group-based and
individually focused research, one of the topics suggested for this
Special Issue.

However, this change in statistical practice raises a new set
of theoretical assumptions that have to be critically evaluated.
Many cognitive researchers have adopted LMM because it is
the statistical technique in current vogue, and a vast majority
follow the recommendation to normalize RTs without proper
consideration of the implications of such transformation for the
theoretical rationale underpinning their research question.While
for some researchers, the issues and recommendations proposed
in this paper seem as obvious to those provided by Speelman and
McGann (2013) with respect to the mean, we hope for many
others that this discussion will serve as a timely reminder to
reflect on the theoretical implications wedded to a seemingly
innocuous statistical procedure.

Specifically, we have argued that raw RT is the most
appropriate metric from the assumptions derived as part of
the “mental chronometry” approach. However, transforming
the dependent variable might be more appropriate from other
theoretical perspectives. For example in the aging literature,
theories of general cognitive slowing (e.g., Salthouse, 1985)
propose that larger differences in RT for older as opposed to
younger adults arise simply because the older adult’s slower
responses allowmore time for the experimental effect to manifest
(e.g., Kliegl et al., 2010). Such models therefore predict that
the magnitude of effect expressed by younger and older adults
should be defined by a constant ratio across RT (Myerson
et al., 1992). Returning to the semantic priming example
presented in the introduction, we showed that proportional
differences can be mathematically expressed through logarithms.
Thus, at a conceptual level, log RT is more appropriate than
raw RT if one’s research question is concerned with whether
an experimental effect deviates from the theoretically defined
proportional increase expected for slower responses. In our
semantic priming example, parallel analyses of log and raw RT
would therefore provide useful complementary insight regarding
the nature of the relationship between response speed, age, and
lexical activation.

There are, however, two major obstacles which impede the
widespread application of logarithmic transformations within
psychological data. The first is the finding in large-scale meta-
analyses that proportional effects predicted by models such as
general cognitive slowing are not fully captured by a logarithmic
transformation alone, (e.g., Chapman et al., 1994; Faust et al.,

1999). This is echoed in applications of the Box–Cox procedure
in LMM analyses which typically identify the reciprocal rather
than natural logarithm as the transformation best suited for
psycholinguistic data (Balota et al., 2013). The result is that
comparisons using LMM are being conducted on the inverse
scale rather than on log or raw RT for which the researcher has
predictions. By separating the mathematical issues related to the
distribution of RT in GLMM, the researcher is able to specify
the form of the link function (e.g., log, identity) that directly
addresses their theoretical questions of interest.

The other major goal of the present paper is to introduce
how GLMMs might be specified using a popular statistical
program and concrete psycholinguistic example (see Appendix
in Supplementary Material). Using a GLMM that fulfilled
the mathematical requirements of homoscedastic residuals by
assuming an Inverse Gaussian distribution but maintained the
theoretically relevant dependent variable through the identity
link function, the results yielded additive effects of word
frequency and stimulus quality across the three experiments
from Balota et al. (2013). This finding is important for two
reasons. Computationally, the more powerful GLMM analyses
yield statistical outcomes that confirm the robust additivity
reported between these factors in previous literature, and yield
numerical results that are consistent with a small overadditive
effect estimated in the ANOVA analyses conducted by Yap
and Balota (2007) and Yap et al. (2008). Theoretically, additive
effects are consistent with separate stages of processing within
the additive-factors framework (Sternberg, 1969) and support
interpretations that assume an initial perceptual normalization
process that is sensitive to stimulus quality which precedes the
memory retrieval process responsible for effects of frequency
(Borowsky and Besner, 1993; Yap and Balota, 2007).

Alternatively, additive effects of word frequency and stimulus
quality can be accommodated in dynamic connectionist models
(e.g., Plaut and Booth, 2000). A core assumption underlying
these models is that the amount of activation required for
the network to settle and output a RT response depends on
the strength of its input along a non-linear sigmoidal function
(see Figure 6). Variables which produce stronger input (e.g.,
higher frequency words, more semantically related concepts,
older individuals with greater reading or perceptual ability)
elicit stronger activation within the network, and thus output
faster RT. However, proportionally smaller differences on RT
are expected if all of the input falls within the upper and lower
extremities of the sigmoid for which RT is most compressed
(right part of Figure 6), relative to themore linear middle portion
of the activation curve (left part of Figure 6). As described
above, this proportional difference can bemathematically defined
through a non-linear transformation. For example, a reciprocal
relationship between input and RT (i.e., RT = −1000/µ̂ as
in Figure 4) might characterize a situation in which the input
strength associated with word frequency and stimulus quality are
both assumed to fall at specific points within the lower rising
part of the sigmoid. But in order to yield the observed additive
effect on RT, a smaller effect of frequency must have arisen
among the clearly presented items, which are assumed to produce
stronger input. Given the positive relationship between input and
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FIGURE 6 | The sigmoid activation function from the Plaut and Booth

(2000) model. In this diagram the effects of perceptual ability, word

frequency, and semantic priming are all assumed to lie in the linear and upper

portion of the curve. From “Individual and developmental differences in

semantic priming: Empirical and computational support for a

single-mechanism account of lexical processing” by Plaut and Booth (2000).

Copyright 2000 by American Psychological Association. Reproduced with

permission.

activation, this finding is exactly opposite to that predicted by
activation models as described in the Introduction.

Conversely, a completely opposite pattern is derived if the
effects of word frequency and stimulus quality are both assumed
to fall on the upper part of the sigmoidal function (as depicted
in Figure 6). For example, specifying a logarithmic link function
[RT = 500 × log(µ̂)], paralleling the upper section of the
sigmoid function within GLMM analyses assuming an Inverse
Gaussian distribution of RT, revealed a trend toward significant
overadditive interaction in all three experiments (z = −1.75,
p = 0.08, for Yap and Balota, 2007; z = −1.26, p = 0.21,
for Yap et al., 2008 Experiment 1; z = −1.45, p = 0.15; for
Yap et al., 2008 Experiment 2). Individuals can therefore yield
underadditive, additive or overadditive effects depending on their
hypothesized position on the sigmoidal function.

As a concrete demonstration of this possibility, Plaut and
Booth (2000) hypothesized that children of both high and low
perceptual ability lie within the more linear portion of the
sigmoid, because these less proficient readers are understood
to possess generally weaker input than highly proficient adult
readers. The result is that the magnitude of semantic priming

is approximately equal for both high and low frequency words
among those of high or low perceptual ability. In contrast,
adult readers are hypothesized to possess greater input strength,
positioning them within the upper part of the sigmoid. Because
of the non-linearity associated with this upper portion of
the curve (see Figure 6), adult readers of greater perceptual
ability produce attenuated effects of semantic priming for high
frequency words, relative to the more additive effects observed
among adults of low perceptual ability. By manipulating overall
input strength associated with children and adults though
the stimulus-onset asynchrony (SOA) of the prime, Plaut and
Booth were able to induce interactive effects between semantic
priming, word frequency, and perceptual ability in children by
lengthening prime SOA, and more additive effects between these
variables in adults by shortening SOA. Thus, Plaut and Booth’s
approach provides important theoretical insight into how a single
mechanism (prime SOA) can yield a range of different behavioral
outcomes for different individuals. However, without concrete
specification of how the sigmoid maps onto the RT scale for the
lexical decision task, connectionist models become unfalsifiable
if the theory is able to simultaneously predict every form of
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relationship between the factors, and the empirical data can
be transformed by different parts of the sigmoidal function to
produce any pattern of effect.

In general, we recommend against a “trial-and-error”
approach to specification of the link function without firm
theoretical guidance. However, such an approach might be
considered if the statistical analysis has the truly exploratory
goal of providing a description of how the dependent variable
is affected by the predictors5. Critically, the focus of such
exploratory analyses should not be on the statistical outcome
of the fixed factors, because such tests assess how much
the predictors affect the transformed metric rather than the
dependent variable (Berry et al., 2010). Instead, the emphasis
should center on how closely the description defined by the
link function fits the observed data. Interestingly, the fit values
determined by the AIC/BIC criteria favor the inverse link
function over the identity link for all three experiments. Since we
know of no current theory that explains why word frequency and
stimulus quality are defined by an inverse relationship with RT,
the fact that such a relationship is observed in the data remains of
interest for future theoretical development.

Besides the mathematical form of the link function, we have
also emphasized the importance of specifying an appropriate
probability distribution for the dependent variable. Principally,
this was achieved though theoretical consideration of the
processes described by the probability distribution (e.g., RTs are
more likely to reflect waiting time captured by a Gamma or
Inverse Gaussian distribution than the number of times an event
occurs in a Poisson distribution—even though the likelihood
of observing extreme responses from both these processes are
positively skewed). When multiple distributions provide equally
plausible description of the processes underlying the dependent
variable, as is the case with RT, the statistical analysis should be
conducted using each of the distributions, with final selection
based on the distribution that provides the closest fit to the
observed data as determined by AIC/BIC fit statistics. Although
the Inverse Gaussian distribution provided a superior fit for the
experiments reported in Balota et al. (2013), the Gamma or other
distributions not yet considered may provide a better match for
other RT experiments.

Specifically, Rouder (2005) proposed that distributions for
RT should also account for differences in minimum RT across
experiments or individuals. Two-parameter distributions are
ill-fitting because a third “shift” parameter is thought to be
necessary in order to capture the fact that there is little or
no mass below this minima in observed RTs. However, three-
parameter Gamma or Inverse Gaussian distributions, which
are similar to the shifted lognormal or shifted Weibull used
by Ratcliff and Murdock (1976) and Rouder et al. (2008), are
beyond the scope of GLMMs. This has led Rouder and colleagues
to develop hierarchical models that use Bayesian statistics to
make the necessary computations tractable (e.g., Rouder and
Lu, 2005). Although such innovations will produce significant

5Other more appropriate methods, such as regression splines (Friedman and

Roosen, 1995) and generalized additive models (Hastie and Tibshirani, 1990), are

available if the goal is estimation of this relationship.

improvements over model fit as Bayesian techniques become
better supported in popular statistical programs, the same careful
consideration of the relationship between RT and the linear
predictors (e.g., Rouder et al., 2008), and appreciation of models
that capture rather than transform the attributes of RT are issues
which remain pertinent for hierarchical Bayesian models.

While the results from the Balota et al. (2013) data suggest
that better fitting distributions produce more precise standard
errors and statistical greater power, the statistical outcomes from
these datasets also seem to be relatively robust against moderate
misspecification of the distribution in the GLMM framework.
Given there is now evidence that experimental factors can
produce isolated or even opposing effects on different parts of
the RT distribution (e.g., Heathcote et al., 1991), GLMM analyses
could be supplemented by consideration of how distributional
shape is affected through variation in its parameters. An
important step in this direction are the distributional analyses
reported in Yap et al. (2009) that demonstrated differential
effects of the experimental factors on the skewed tail of the RT
distribution. By fitting ex-Gaussian distributions to the observed
RTs, Yap et al. (2009) detected a significant four-way interaction
between an individual’s vocabulary ability, word frequency, non-
word type and semantic priming on the τ parameter, reflecting
stronger growth in the expression of semantic priming across
the RT distribution for low compared to high frequency words
particularly among those of lower vocabulary scores within
a pseudo-homophone non-word environment. Importantly,
transforming the data and analysing log or inverse RTwould have
obscured these findings of variation across individuals because
the slowest condition - reflecting precisely those responses from
low frequency words by those of poor vocabulary in a difficult
pseudo-homophone non-word environment at the very tail of
the distribution—would be more affected by the non-linear
transformation than any of the other conditions (Balota et al.,
2013). To extend these findings, future analyses could investigate
these differences within the µ or λ parameters of the Inverse
Gaussian distribution used in the present analyses, or to consider
effects in three parameter distributions such as the ex-Gaussian
or shifted Weibull (Rouder et al., 2008).

In summary, researchers are keenly aware of the potential
biases associated with using skewed RT data for mean-based
analyses. This has prompted recommendations to “transform
away” these “erroneous. . . deviations from nature’s ideals”
(Speelman and McGann, 2013, p. 2), which exert even greater
“undue influence” in skewed data than if responses had been
normally distributed. By accommodating the shape of the
skewed RT distribution, GLMMs remove the need to transform
the dependent variable and allow the researcher to construct
statistical models that answer their questions of interest, rather
than being forced to change their question of interest to meet
the constraints of the statistical model. Apart from alerting
researchers to the problems associated with transforming their
data and potentially obscuring systematic differences between
individuals, the primary focus of this paper is to introduce
an alternative solution and to describe the set of decisions
required to correctly specify a GLMM. We have argued that
the mental chronometry assumptions underlying much of the

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 1171 | 80

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lo and Andrews Generalized linear mixed-effect models

cognitive psychological research using RT data mean that
the “correct metric” to analyse is often raw RT, but have
illustrated scenarios for which transformed data might be more
appropriate depending on the research question at hand. Should
researchers have a clear theoretical basis for expecting a non-
linear relationship between the predictors and the dependent
variable, we have shown how specification of the form of the link
function is able to achieve the same result in GLMMs without
directly transforming the raw data. As the present analyses
demonstrate, without such theoretical motivation, analyses based
on non-linear transformations can lead researchers to spuriously
conclude that an average effect is uniform across individuals or
conditions (or vice versa) by altering the scale of the differences in
an interaction to produce misleading or potentially contradictory
results.
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Whether level 1 predictors should be centered per cluster has received considerable
attention in the multilevel literature. While most agree that there is no one preferred
approach, it has also been argued that cluster mean centering is desirable when the
within-cluster slope and the between-cluster slope are expected to deviate, and the
main interest is in the within-cluster slope. However, we show in a series of simulations
that if one has a multilevel autoregressive model in which the level 1 predictor is the
lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster
mean centering will in general lead to a downward bias in the parameter estimate of
the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if
the main question is whether there is on average an autoregressive effect. Nonetheless,
we show that if the main interest is in estimating the effect of a level 2 predictor on the
autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should
be preferred over other forms of centering. Hence, researchers should be clear on what is
considered the main goal of their study, and base their choice of centering method on this
when using a multilevel autoregressive model.

Keywords: centering, autoregressive models, multilevel models, dynamics, inertia

Longitudinal data are characterized by a nested structure, in
which occasions are clustered within individuals. While such
data are traditionally analyzed using repeated measures ANOVA,
this approach is restrictive in that it requires an equal num-
ber of observations for each participant. A further limitation
associated with repeated measures ANOVA is that the results
pertain to the aggregate and may not be meaningful for any
particular individual. A more sophisticated approach—which
overcomes these limitations—is multilevel modeling (Singer and
Willett, 2003; Hox, 2010; Snijders and Bosker, 2012; also known as
mixed modeling, see Verbeke and Molenberghs, 2000; hierarchi-
cal modeling, see Raudenbush and Bryk, 2002; or random-effects
modeling, see Laird and Ware, 1982): This approach can be used
for (highly) unbalanced longitudinal data, and it allows for indi-
vidual trajectories over time. The latter implies we can study
between-person (or interindividual) differences in within-person
(or intraindividual) patterns of change.

It is not uncommon for the residuals of a longitudinal mul-
tilevel model to be autocorrelated, meaning that residuals are
related to each other over time. Failing to account for this may
bias the estimates of the standard errors, and as a result affect the
inferences based on them. Therefore, multilevel software packages
include the option to control for autocorrelation through speci-
fying diverse structures for the errors, such as a Toeplitz matrix,
or a first order autoregressive process. Alternatively, autocorrela-
tion can be modeled explicitly through the inclusion of the lagged
outcome variable (that is, the outcome variable at the previous
occasion) as a covariate. Such models have been referred to as
(prospective) change models (e.g., Larson and Almeida, 1999),

and are used to investigate the—potentially causal—effect of a
(lagged) predictor on the outcome variable, while “controlling”
or “adjusting” for the previous level of the outcome variable (e.g.,
Bolger and Zuckerman, 1995; Gunthert et al., 2007; Moberly and
Watkins, 2008; Henquet et al., 2010).

While autocorrelation is typically considered a nuisance in
longitudinal multilevel modeling, there are a few multilevel
studies that focus specifically on the autoregressive relationship
between consecutive observations, and on individual differences
therein (cf., Suls et al., 1998; Rovine and Walls, 2006; Kuppens
et al., 2010; Koval and Kuppens, 2012; Wang et al., 2012; Brose
et al., 2014). The interest in an individual’s autoregressive param-
eter comes from the fact that this parameter is related to the
time it takes the individual to recover from a perturbation and
restore equilibrium: While an autoregressive parameter close to
zero implies that there is little carryover from one measurement
occasion to the next and recovery is thus instant, an autoregressive
parameter close to one implies that there is considerable carryover
between consecutive measurement occasions, such that perturba-
tions continue to have an effect on subsequent occasions. For this
reason, the autoregressive parameter can also be considered as a
measure of inertia or regulatory weakness.

Empirical studies have shown that individual differences in
inertia in emotions and affect are positively related to neuroticism
and depression, in that people higher on neuroticism or depres-
sion take longer to restore equilibrium than others (Suls et al.,
1998; Kuppens et al., 2010; Wang et al., 2012). In addition, women
tend to have higher inertia than men in both their daily affect
(Wang et al., 2012), and their daily drinking behavior (Rovine and
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Walls, 2006). In a prospective study, Kuppens et al. (2012) showed
that affective inertia at age 9–12 was predictive of the onset of
depression two and a half years latter, corresponding to the idea
that high inertia is reflective of a maladaptive regulation mech-
anism. Similarly, Wang et al. (2012) showed that inertia is posi-
tively related to later detrimental health outcomes. Furthermore,
inertia has been shown to be related—but not identical—to rumi-
nation (Koval et al., 2012) and perseverative thoughts (Brose et al.,
2014), and is positively related to depression even after these
related characteristics are taken into account. Taken together,
these studies show that inertia is a meaningful individual char-
acteristic that is reflective of a maladaptive regulatory mechanism
that is associated with both current and future well-being.

To model individual differences in inertia, the above studies
all relied on multilevel modeling based on a first-order autore-
gressive process: In this model, the level 1 predictor is formed by
the lagged outcome variable, and its random slope thus represents
individual differences in inertia. A pressing question in this con-
text is whether the autoregressive predictor should be centered
per person or not. This is a rather fundamental issue, as it is well-
known from the multilevel literature that the centering method
used for a level 1 predictor (i.e., no centering, centering with the
grand mean, or centering per cluster), affects the results (cf. Kreft
et al., 1995; Raudenbush and Bryk, 2002; Hox, 2010; Snijders and
Bosker, 2012). The consensus seems to be that there is no one pre-
ferred method and that the choice should depend on the specific
situation and the research question (cf. Kreft et al., 1995; Nezlek,
2001; Snijders and Bosker, 2012). One such specific situation is
described by Raudenbush and Bryk (2002), who indicate that if
the within-cluster and between-cluster slopes differ, centering per
cluster should be preferred, because failing to do so will lead to
results that are “uninterpretable” (p. 135). Furthermore, Enders
and Tofighi (2007) argue that if there is a clear interest in the
within-cluster slope, centering per cluster is recommendable.

With this latter advice in mind, centering the lagged autore-
gressive predictor per person seems the right approach, because:
(a) we are interested in the within-person slope; and (b) we
expect the within-person slope to differ from the between-person
slope.1 The aim of the current paper is therefore to investigate
whether the advice formulated by Raudenbush and Bryk (2002)
and Enders and Tofighi (2007) also applies to the multilevel
autoregressive model with a random slope that represents indi-
vidual differences in inertia. To this end, we begin by presenting
the multilevel autoregressive model and discuss its interpreta-
tion. To make the model compatible with standard multilevel
software, we discuss two parameterizations—based on different
centering methods—and we show through an empirical applica-
tion that these lead to different results for the inertia parameter.
In the second section we draw from several key publications in
the multilevel literature and discuss the effects of centering a
level 1 predictor. The third section contains simulations based
on the standard multilevel model to verify some of the claims
made in the literature. Additionally, we simulate the multilevel

1As we will show later on, the between-person slope will always be (essentially)
1 in this model, while the within-person slope is expected to lie between −1
and 1.

autoregressive model to investigate how centering affects the esti-
mation of inertia. In the fourth section we apply the insights
obtained from the simulation study to the empirical data set. We
end by presenting recommendations to the researcher interested
in studying inertia using the multilevel autoregressive model,
either with or without level 2 predictors.

1. MULTILEVEL AUTOREGRESSIVE MODEL
Many applications of longitudinal multilevel modeling consist of
modeling deterministic trajectories over time, for instance a lin-
ear or quadratic trend. While such models are extremely useful for
studying developmental processes (cf., Curran and Bauer, 2011),
they may be less useful when the longitudinal data comprise daily
affective or symptom measurements, or affective ratings in an
observation study: Then the interest may be not so much in over-
all trends (as they are likely to be absent from the data), but rather
in the dynamics of a stationary process, that is, a process that is
characterized by changes over time, while these changes are not
directly a function of time. A promising model for this purpose is
the multilevel autoregressive model, which has been successfully
applied in an increasing number of studies (e.g., Suls et al., 1998;
Rovine and Walls, 2006; Kuppens et al., 2010; Koval and Kuppens,
2012; Wang et al., 2012; Brose et al., 2014).

We begin this section by presenting the multilevel autore-
gressive model using a parametrization that we consider to be
most useful from a substantive viewpoint. However, since this
parametrization is not compatible with standard multilevel soft-
ware, we also present two alternative parametrization of this
model, and discuss their advantages and disadvantages. We apply
both parameterizations to an empirical data set consisting of daily
measurement of positive and negative affect.

1.1. A MODEL TO STUDY INDIVIDUAL DIFFERENCES IN MEAN AND
INERTIA

Let yti be the observation for individual i at occasion t, for
instance the person’s negative affect or self-esteem measured at a
daily basis, with i = 1, . . . , N and t = 1, . . . , Ti. The most basic
model for such nested data would be a model which allows for
individual differences in means. At level 1 the observations are
then modeled as

yti = μi + ati (1)

where μi represents the individual’s mean score, which can be
interpreted as his/her trait score or equilibrium, while ati is the
individual’s temporal deviation from this equilibrium; and at level
2 the individual means are then modeled as

μi = μ + u0i (2)

where μ is the grand mean, and u0i is the individual’s devia-
tion from the grand mean. These deviations are assumed to be
normally distributed, that is, u0i ∼ N(0, σ 2

u0).2

2Note that the model presented in Equations 1 and 2 corresponds to what
is known as a random intercept model or empty model, and is typically
considered as one of the options in longitudinal multilevel modeling.
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If repeated measures are taken (relatively) close in time, the
current measurement is likely to be predictable from the preced-
ing measurement. That is, the individual’s deviation from his/her
equilibrium at a particular occasion is likely to affect the devia-
tion at the next occasion, which can be expressed as a first order
autoregressive model, that is,

ati = φiat − 1,i + eti (3)

where the residuals eti are independently and identically dis-
tributed, with eti ∼ N(0, σ 2

e ). This residual eti can be thought
of as representing everything that influences the process under
investigation: For instance, if we are measuring negative affect,
factors that are likely to influence this process include the occur-
rence of negative or stressful events, the appraisal of these events
and the associations and memories that they trigger, but also psy-
chophysiological factors like caffeine or alcohol consumption, et
cetera.

The autoregressive parameter φi relates the outcome variable
to itself at the preceding occasion, and thus represents the iner-
tia of the person. For an autoregressive process to be stationary,
the autoregressive parameter has to lie between −1 and 1 (e.g.,
Hamilton, 1994). Note however that this does not imply that the
autoregressive parameter is truly restricted to this range: Values
larger than 1 (or smaller than −1) are possible, but the resulting
process would no longer be a stationary process. In psycholog-
ical research, this parameter typically lies somewhere between 0
and 0.6 (e.g., Rovine and Walls, 2006; Wang et al., 2012), and
we are therefore not concerned about boundary constraints when
estimating this model.

The individual differences in the autoregressive parameter can
be modeled at level 2 as

φi = φ + u1i (4)

where φ denotes the average autoregressive parameter across peo-
ple, and u1i denotes the individual’s deviation from this average,
with u1i ∼ N(0, σ 2

u1). Furthermore, the individuals’ means and
their autoregressive parameters may be correlated, as represented
by the covariance between u0i and u1i, which is denoted as σu0,u1.
Wang et al. (2012) for instance found a significant positive cor-
relation of 0.40 between the individuals’ means μi and their
autoregressive parameters φi based on daily measurements of
negative affect.

1.2. MAKING THE MODEL COMPATIBLE WITH STANDARD MULTILEVEL
SOFTWARE

The model in Equations 1–4 represents the multilevel autoregres-
sive model, where Equations 1 and 3 form level 1, while Equations
2 and 4 form level 2. However, most multilevel software packages
do not allow for formulating a level 1 model using more than one
equation. We consider two solutions for this.

The first solution consists of specifying the model at level 1 as

yti = ci + φn
i yt − 1,i + eti, (5)

and at level 2 as

ci = γ n
00 + un

0i (6)

φn
i = γ n

10 + un
1i, (7)

where the superscript n indicates that in this approach no center-
ing (NC) was used (i.e., the raw data were used). The relationship
between the model specified in Equations 1–4 and the model
specified in Equations 5–7 is shown in Appendix 1; however, while
the multilevel models presented here are structurally the same, the
current formulation is based on the assumption that ci is normally
distributed, which necessarily implies that μi will not have a nor-
mal distribution (as it is a function of ci and φi, see Appendix 1).
This is detrimental, as we are typically interested in μi as repre-
senting an individual’s average or trait score, and assume these
trait scores to be normally distributed in the population. In con-
trast, ci is a rather arbitrary score (i.e., the expected score when
the individual scored zero on the preceding occasion), that is of
limited (or no) substantive interest, and for which we do not have
a particular distributional expectation. Also, if we are interested
in including predictors at level 2, we would prefer to use these as
predictors of μi, rather than of ci.

Therefore, we consider a second solution, which is based on
using the individually centered lagged autoregressive predictor
(
yt−1,i − μi

)
, such that the model at level 1 is

yti = μi + φc
i

(
yt − 1,i − μi

) + eti (8)

and at level 2 it is

μi = γ c
00 + uc

0i (9)

φc
i = γ c

10 + uc
1i (10)

where the superscript c implies that the level 1 predictor was
subjected to cluster mean centering (CMC; also referred to as
within-group or within-person centering). The advantage of the
current approach over the previous one is that it results in μi and
φi being the random coefficients that are subsequently modeled
at level 2. However, it also presents us with a catch-22: To center
the lagged predictor, we need an estimate of μi, which we actually
need to estimate using this model. We will consider several solu-
tions to this problem in our simulations, including the use of the
sample mean per person.

1.3. APPLICATION: PART 1
To investigate whether the two approaches proposed above lead
to the same or different results for the inertia parameter, we apply
the two parameterizations of the multilevel autoregressive model
to an empirical data set that was obtained as part of the Dynamics
of Dyadic Interactions Project at the University of California,
Davis (Ferrer and Widaman, 2008; Ferrer et al., 2012). The data
used here consist of daily measurements of relationship specific
positive and negative affect. We analyzed these data for men and
women separately (sample sizes 193 and 192, respectively), using
multilevel autoregressive models with random intercepts (i.e., ci,
based on NC) or means (i.e., μi, based on CMC), and random
autoregressive parameters (φi). The estimates for the fixed effects
parameters γ00 and γ10 are presented in Table 1.
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Table 1 | Results for multilevel autoregressive model (with random

effects).

NC CMC

Males PA γ00 2.167 [2.044, 2.290] 3.518 [3.425, 3.611]

γ10 0.387 [0.357, 0.417] 0.353 [0.322, 0.384]

NA γ00 0.971 [0.923, 1.020] 1.344 [1.300, 1.389]

γ10 0.268 [0.235, 0.301] 0.242 [0.208, 0.275]

Females PA γ00 2.220 [2.095, 2.346] 3.491 [3.392, 3.590]

γ10 0.370 [0.340, 0.399] 0.341 [0.311, 0.370]

NA γ00 0.978 [0.935, 1.021] 1.348 [1.304, 1.392]

γ10 0.255 [0.222, 0.288] 0.225 [0.192, 0.258]

Estimates for the fixed effects parameters in a multilevel autoregressive model

(with random intercept and slope). The 95% confidence intervals are given

between brackets. Estimation was based on using NC or CMC (with the sam-

ple means) for the lagged autoregressive predictor. Fixed effects are: (a) γ00,

which represents the averaged intercept when using NC, or the grand mean

when using CMC; and (b) γ10, which represents the averaged (i.e., fixed effects)

autoregressive parameter.

It shows that the parameter estimates obtained with the two
models are not identical. This is not surprising as we are already
aware that the two parameterizations differ with respect to the
meaning of γ00. However, it also shows that the parameter esti-
mates for γ10—which represents the average inertia in both
parameterizations—differ from each other. Especially when con-
sidering relationship specific PA in males, it can be seen that CMC
and NC lead to estimates of the inertia that are not covered by
the 95% confidence interval of the alternative parametrization
(implying these estimates are relatively different).

The question thus arises, which approach should be
preferred—NC or CMC—when the interest is in obtaining an
appropriate estimate of the average autoregressive parameter. As
this touches upon the more general topic of whether level 1 pre-
dictors should be centered or not in multilevel models, we first
consult the multilevel literature with respect to centering level 1
predictors.

2. TO CENTER OR NOT TO CENTER: A PERSISTING
QUESTION IN MULTILEVEL MODELING

Centering a level 1 predictor in multilevel modeling is a compli-
cated affaire. While there are several sources that provide excellent
coverage of this topic (e.g., Kreft et al., 1995; Snijders and Bosker,
2012), it still seems to create much confusion, especially amongst
the more novice users. A fundamental issue when dealing with a
level 1 predictor is the fact that the relationship between a predic-
tor and an outcome variable may differ across levels. For instance,
consider the hypothetical example in the left panel of Figure 1,
representing the relationship between typing speed and number
of typos. This relationship is likely to be positive within individu-
als (i.e., at level 1), in that a person tends to make more mistakes
if he/she types faster. However, the relationship across individuals
(i.e., at level 2) is likely to be negative, because individuals who
tend to type fast on average, also tend to be more experienced and
therefore make fewer mistakes on average (cf. Hamaker, 2012; see
also Nezlek, 2001; Enders and Tofighi, 2007; Kievit et al., 2013).

In this section we discuss the effects of different centering
methods, when there are different slopes at the two levels. Our
main interest is in obtaining an appropriate estimate for the
within-cluster slope, as this is most informative with respect to the
within-person process. To facilitate the transition to the multilevel
autoregressive model, we will present the issue based on repeated
measures within individuals (rather than individuals organized in
groups). In following Raudenbush and Bryk (2002) and Enders
and Tofighi (2007), we begin by considering models with a fixed
slope only. Subsequently, we discuss contextual models, in which
the cluster means are included as a predictor at level 2. Then we
discuss extensions that allow for random slopes. We end this sec-
tion by speculating on the effects of centering in the context of the
multilevel autoregressive model.

2.1. THE WITHIN-CLUSTER AND BETWEEN-CLUSTER SLOPES IN
MULTILEVEL DATA WITH A FIXED SLOPE

Suppose that xti is the predictor, such as typing speed or the
occurrence of a negative event, and that yti is the outcome vari-
able, such as number of typos or negative affect. Let i = 1, . . . , N
denote the individual, and t = 1, . . . , Ti denote the measure-
ment occasion within individual i. Raudenbush and Bryk (2002)
discuss how to obtain estimates of the between-person slope,
relating the trait scores on the outcome variable to the trait scores
on the predictor, and of the averaged or pooled within-person
slope, describing the process that operates within individuals,
using ordinary least squares (OLS). To this end, we first need
the individual means on the predictor and the outcome variable,
that is,

x̄·i = 1

Ti

Ti∑

i = 1

xti and ȳ·i = 1

Ti

Ti∑

i = 1

yti. (11)

Then the between-person or between-cluster slope βB can be
obtained by analyzing these individual means using the regression
equation

ȳ·i = β0 + βBx̄·i + ei. (12)

Additionally, the averaged within-person or within-cluster slope
βW can be obtained through applying CMC to both the predictor
and the outcome variable, and analyze these data for individuals
simultaneously, that is

yti − ȳ·i = βW
(
xti − x̄·i

) + eti. (13)

Clearly, βW and βB need not be the same.
Raudenbush and Bryk (2002) discuss how the slopes from

diverse multilevel approaches are related to these two basic slopes.
There are three approaches that can be used, that is: no centering
(NC), grand-mean centering (GMC), and cluster-mean center-
ing. GMC is simply a linear transformation of the data, and leads
to a model that is statistically equivalent to NC (cf. Kreft et al.,
1995; Raudenbush and Bryk, 2002; Snijders and Bosker, 2012).
Therefore, we do not discuss this approach separately, and only
focus on the comparison between NC and CMC below.
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FIGURE 1 | Illustration of within-person and between-person

relationships between two variables. Each ellipse represents the data from
a single person. Dashed lines represent the between-person slope (i.e., βB),

which may have a different sign as the within-person slope (Left panel), may
be similar to the (average or fixed) within-person slope (Middle panel), or
may be larger than the (average or fixed) within-person slope (Right panel).

The model based on NC—with a random intercept and a fixed
slope—can be expressed as

yti = αn
i + βn

i xti + eti

αn
i = γ n

00 + un
0i (14)

βn
i = γ n

10.

whereas the corresponding model based on CMC of the predictor
results in

yti = αc
i + βc

i

(
xti − x̄·i

) + eti

αc
i = γ c

00 + uc
0i (15)

βc
i = γ c

10.

Note that the fixed slope γ c
10 from the CMC model is analogous

to βW in Equation 13, with yti − ȳ·i being replaced by yti − αc
i .

Hence, CMC leads to an estimate of the within-cluster slope. The
question is whether the within-cluster slope can also be obtained
from the model in Equation 14.

To this end, we enter the level 2 expressions into the level 1
expressions, such that the model based on NC can be expressed as

yti = γ n
00 + γ n

10xti + un
0i + eti, (16)

and the model based on CMC can be expressed as

yti = γ c
00 + γ c

10xti − γ c
10x̄·i + uc

0i + eti. (17)

From these expressions it becomes clear that these models
are not equivalent, as one cannot be considered an alternative
parametrization of the other (cf. Kreft et al., 1995). This also
implies that the within-cluster slope cannot be derived based on
the results obtained from NC. Raudenbush and Bryk (2002) indi-
cate that the slope of the level 1 predictor obtained with NC (γ n

10)
is “an uninterpretable blend” (p. 139) of the averaged within-
cluster slope βW and the between-cluster slope βB. This has led
them to formulate the advice to use CMC whenever the interest is
in obtaining an unbiased estimate of the within-cluster relation-
ship, and the within-cluster and between-cluster relationships are

expected to differ from each other (see also Enders and Tofighi,
2007).3

One could argue that the models above are not correct,
because the between-cluster relationship is not explicitly mod-
eled. Raudenbush and Bryk (2002) discuss the option of obtain-
ing estimates of both βW and βB in a single multilevel model,
through including the cluster means on the predictor as a level
2 predictor for the intercept. In case of NC, this results in

yti = αn
i + βn

i xti + eti

αn
i = γ n

00 + γ n
01x̄·i + un

0i, (18)

βn
i = γ n

10.

while in case of CMC this gives

yti = αc
i + βc

i

(
xti − x̄·i

) + eti

αc
i = γ c

00 + γ c
01x̄·i + uc

0i, (19)

βc
i = γ c

10.

In the latter approach, the within-cluster slope is again repre-
sented by γ c

10, and now the between-cluster slope is represented
by γ c

01.
To see whether NC and CMC lead to equivalent models in this

case, we substitute the level 2 expressions in the level 1 expression.
For NC this results in

yti = γ n
00 + γ n

01x̄·i + γ n
10xti + un

0i + eti, (20)

3Note that there may be situations in which the within-person slope and
the between-person slope do not differ that much, such that failing to sep-
arate them does not affect the results very much: For instance, in the middle
panel of Figure 1 the relationship between negative events and negative affect
is represented, which shows that within individuals, there is (on average) a
positive relationship (i.e., people tend to experience more negative affect on
days that more negative events occur), and the between-person relationship
is very similar (i.e., people who tend to experience more negative events on
average, also tend to have higher levels of negative affect on average). In this
case, using CMC or NC/GMC will not change the estimate of the fixed slope
very much. However, the point remains that to obtain an adequate estimate of
the averaged within-cluster slope, CMC should be preferred.
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and for CMC it results in

yti = γ c
00 + (

γ c
01 − γ c

10

)
x̄·i + γ c

10xti + uc
0i + eti, (21)

showing the models are equivalent. Furthermore, it becomes clear
that actually both models provide an estimate of the within-
cluster slope, that is, γ n

10 = γ c
10 = βW . Additionally, we have

γ n
01 = γ c

01 − γ c
10 = βB − βW , that is, γ n

01 represents the differ-
ence in the between-cluster and the within-cluster slopes. This
is also referred to as the contextual or compositional effect (cf.
Raudenbush and Bryk, 2002 p. 141).4 , and these models are
referred to as contextual models.

In sum, when there is a fixed slope, NC, and CMC lead to
equivalent models if one includes the cluster means for the level 1
predictor as a level 2 predictor for the intercept (Kreft et al., 1995).
However, if the cluster means are not included, these two models
are not equivalent.

2.2. EFFECTS OF NC AND CMC WHEN THERE IS A RANDOM SLOPE
While the model equivalence above is interesting, it is of limited
value in practice, as we are often interested in models with ran-
dom slopes. For instance, consider the middle panel of Figure 1,
representing the hypothetical relationship between the number
of negative events and negative affect in daily measurements: It
shows that the strength of the within-person relationship differs
across individuals.

Snijders and Bosker (2012) show that if there is a ran-
dom slope, the model equivalence presented above no longer
holds. Allowing for a random slope in the NC model in
Equation 18, implies we have βn

i = γ n
10 + un

1i, and we can thus
write

yti = γ n
00 + γ n

01x̄·i + γ n
10xti + un

1ixti + un
0i + eti. (22)

For the CMC model in Equation 19, a random slope implies we
have βc

i = γ c
10 + uc

1i, such that the model can be expressed as

yti = γ c
00 + (

γ c
01 − γ c

10

)
x̄·i + γ c

10xti + uc
1ixti

− uc
1ix̄·i + uc

0i + eti. (23)

This shows that—once there is a random slope—these models
are no longer statistically equivalent, as they differ with respect
to the term

(−uc
1ix̄·i

)
. However, Kreft et al. (1995) pointed out

that the fixed effect within-cluster slope is still the same across
these two models: That is, γ n

10 = γ c
10 = βW (see Kreft et al., 1995,

p. 13). Hence, when the goal is to obtain an estimate of the
within-cluster slope, and the within-cluster and between-cluster
slope are expected to differ, it seems that one can chose either use
CMC, or the contextual versions of CMC or NC/GMC: Although
the contextual models are not equivalent when a random slope
is included, they will result in the same within-cluster slope
estimate.

4Here it represents the expected difference in number of typos when compar-
ing two participants who type the same number of words, while they differ
one unit on the number of words they type per minute on average (meaning
they have different levels of experience).

For the sake of completeness, we also provide the expression
for the models that include a random slope but without the cluster
means as a level 2 predictor—as these are more common than the
contextual models and the fixed slope models discussed above. In
that case, NC leads to

yti = γ n
00 + γ n

10xti + un
1ixti + un

0i + eti. (24)

and CMC leads to

yti = γ c
00 + γ c

10xti − γ c
10x̄·i + uc

1ixti − uc
1ix̄·i + uc

0i + eti. (25)

As expected based on what was discussed above, both the fixed
and the random parts of these models differ, and only CMC leads
to an estimate of the average within-cluster slope, while NC leads
to a slope that represents some mix of the within-cluster and
between-cluster slopes.

2.3. PRELIMINARY THOUGHTS ON CENTERING IN THE MULTILEVEL
AUTOREGRESSIVE MODEL

Before turning to our simulation study, we speculate briefly on the
effects of NC and CMC in case of the multilevel autoregressive
model. The contextual model would imply that we include the
within-person means as a predictor for the intercept at level 2,
that is

yti = μi + φi
(
yt−1,i − μi

) + eti

μi = γ00 + γ01μi + u0i (26)

φi = φ + u1i,

where φ = βW is the average within-cluster relationship, and
γ01 = βB is the between-cluster relationship. Note however that
now μi appears on both sides of the equality sign, and it follows
that γ01 = 1, γ00 = 0 and u0i = 0 (and subsequently σ 2

u0 = 0)5.
We can draw two conclusions from this. First, including

the within-person means as a level 2 predictor in a multilevel
autoregressive model is not logical, and therefore the results
for contextual models presented above are less relevant in the
current context. Second, the within-cluster slope will—without
exception—differ from the between-cluster slope in multilevel
autoregressive models: That is, while the between-cluster slope is
(essentially) 1, the within-cluster slope is identical to the auto-
correlation and will thus have to lie between -1 and 1 for a
stationary process (Hamilton, 1994). This is illustrated in the
right panel of Figure 1, which shows that the between-cluster
slope is equal to 1, while the within-cluster slope (averaged across
individuals) is smaller (in this case between 0 and 1).

Applying the reasoning offered by Raudenbush and Bryk
(2002) and Enders and Tofighi (2007) about the effects of
NC/GMC vs. CMC in case of standard multilevel models to

5In practice, the means on the outcome variable yti are virtually identical to
the cluster means on the predictor yt−1,i, as it is the same variable; slight
difference may arise however, because the outcome runs over t = 2, . . . , Ti

while the predictor runs over t = 1, . . . , Ti − 1. As T becomes larger, these
differences will become smaller.
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the multilevel autoregressive model, one may thus be inclined
to think that: (a) NC/GMC will result in an overestimation of
the fixed effect (i.e., average) autoregressive parameter, since
βW < βB = 1; and (b) CMC will remove the “contamination”
of βB, such that the fixed effect autoregressive parameter ade-
quately represents βW , that is, the (averaged or pooled) within-
person autoregression φ. This would imply that CMC should
be the preferred form of centering in a multilevel autoregressive
model.

Note that we already discussed two other reasons for prefer-
ring CMC in case of the multilevel autoregressive model, that is,
it allows us to model μi as a random effect, rather than the less
meaningful ci = μi(1 − φi), and it allows us to include predictors
for μi (rather than for ci). Taken together, these seem very con-
vincing reasons for preferring CMC over GMC/NC in a multilevel
autoregressive model.

3. SIMULATIONS
We performed a series of simulations to investigate the effect of
NC vs. CMC on the estimation of the within-cluster slope. We
begin with the standard multilevel model to verify the claims
made by Raudenbush and Bryk (2002) and Enders and Tofighi
(2007), and to determine whether these also generalize to mod-
els with a random slope (as presented in Equations 24 and 25).
Following this, we consider the effects of NC and CMC in the
multilevel autoregressive model, both with a fixed and a ran-
dom autoregressive parameter. In addition, we consider the effects
of diverse factors, that is: sample sizes, the sign and strength
of the autoregressive parameter, and a level 2 predictor for the
autoregressive parameter. All our simulations were performed in
R (R Development Core Team, 2009). To estimate the multilevel
models, we used the function lmer() from the R-package lme4
(Bates and Sarkar, 2007).

3.1. SIMULATIONS FOR THE STANDARD MULTILEVEL MODEL
We begin with simulating data from the standard multilevel
model with different within-cluster and between-cluster slopes,
using Equation 19 for a model with a fixed within-cluster slope,
and Equation 23 for a model with a random within-cluster slope.
Our specific interest is in obtaining an appropriate estimate of the
within-cluster slope, when this differs from the between-cluster
slope. Hence, we want to verify that when the cluster means are
not included as a level 2 predictor, the slope estimate obtained
with NC is indeed a blend of the within-cluster and between-
cluster slopes, while CMC (based on Equation 15) leads to a pure
within-cluster slope estimate.

We used the following model parameter values: (a) the vari-
ance of the predictor xti within each cluster is 1, and the variance
of the cluster means between the clusters is also 1; (b) the fixed
effect within-cluster slope γ10 is 0.3; (c) the standard deviation of
the within-cluster slope βi is either 0 (i.e., fixed slope only model),
or 0.1 (i.e., random slope model); (d) the between-cluster slope
γ01 is 1; (e) the grand mean γ00 is zero; (f) the level 1 residual
variance σ 2

e was either 1 or 3; and (g) the level 2 residual variance
for the intercept σ 2

u0 was either 1 or 0. The reason we considered 0
as well here, is because this would make the model more compa-
rable to the multilevel autoregressive model we consider later on

(see Equation 26). We set the number of clusters to 100, and the
number of observations per cluster to 20.

The results are presented in Table 2: It includes the OLS esti-
mate of the between-cluster slope (based on Equation 12), the
OLS estimate of the within-cluster slope (based on Equation 13),
and the fixed effects slope obtained with CMC and with NC.
These confirm the point made by Raudenbush and Bryk (2002)
and Enders and Tofighi (2007): While CMC leads to a slope
estimate that is almost identical to the OLS within-cluster esti-
mate and which adequately represents the actual within-cluster
slope, the estimate obtained with NC is a blend of the within-
cluster and the between-cluster slopes. Specifically, if the level 2
residual variance (i.e., σ 2

u0) becomes smaller relative to the level
1 residual variance (i.e., σ 2

e ), the slope estimate is more strongly
affected by the between-cluster slope. Furthermore, the results are
very similar for models and data without a random slope (left part
of Table 2), and with a random slope (right part of Table 2).

3.2. SIMULATIONS FOR THE MULTILEVEL AUTOREGRESSIVE MODEL
To determine whether the results reported above generalize to the
multilevel autoregressive model, we considered the following sce-
narios. We simulated data using the model defined in Equations
1–4, with: (a) a fixed effects within-cluster slope of φ = 0.3; (b)
a standard deviation of the individual within-cluster slope φi of
either 0 (for a model with a fixed autoregressive parameter only)
or 0.1 (for a model with a random autoregressive parameter); (c)
a level 2 variance of the intercept μi of 1, 3 or 9; and (d) a grand
mean of 0. We used the same number of observations as in the
previous simulations, that is, 100 clusters (i.e., persons here) and
20 observations per cluster (i.e., repeated measurements here).
The results based on 1000 replications are presented in Table 3.

Table 2 | Estimates for fixed effect slope γ10.

Estimation method σ 2
u0

σ 2
e Fixed slope only Random slope

OLS between 1 1 0.963 0.965

0 1 0.966 0.967

0 3 0.965 0.966

OLS within 1 1 0.300 0.299

0 1 0.298 0.300

0 3 0.299 0.302

CMC (sample) 1 1 0.300 0.299

0 1 0.298 0.300

0 3 0.299 0.303

NC 1 1 0.323 0.323

0 1 0.372 0.373

0 3 0.492 0.489

Mean point estimates for fixed effects slope γ10 in a standard multilevel model

with either a fixed slope only (left; βi = γ10), or with a random slope (right; βi =
γ10 + u1i ). True fixed effect within-cluster slope is γ10 = 0.3, and true between-

cluster slope is γ01 = 1. Number of observations per cluster is 20; number of

clusters is 100; number of replications is 1000. Estimation methods are: OLS

between and within (Equations 12 and 13); centering per cluster (CMC) using

the sample mean; and no centering (NC).
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Table 3 | Estimates for fixed effect autoregressive parameter φ.

Estimation method σ 2
e Fixed slope only Random slope

OLS within 1 0.230 0.233

3 0.229 0.233

9 0.228 0.233

CMC (sample) 1 0.231 0.229

3 0.230 0.229

9 0.229 0.229

NC 1 0.304 0.307

3 0.304 0.306

9 0.303 0.304

Mean point estimates for the fixed effects autoregressive parameter φ in a mul-

tilevel autoregressive model, with a fixed slope only (left; φi = φ), and with a

random slope (right; φi = φ + u1i ). True fixed effect autoregressive parameter

(i.e., the true within-cluster slope) is φ = 0.3. Number of observations per per-

son is 20; number of persons is 100; number of replications is 1000. Estimation

methods are: OLS within (Equation 13); centering per cluster (CMC) using the

sample mean; and no centering (NC).

As before, CMC leads to estimates that are very close to
the OLS within-cluster estimates. However, for the multilevel
autoregressive model, these are biased: That is, they underesti-
mate the actual fixed effect autoregressive parameter (i.e., esti-
mated bias between 0.069 and 0.071 for CMC). Surprisingly,
NC leads to an estimate that is less biased (i.e., estimated
bias between 0.003 and 0.007). In Appendix 2, this down-
ward bias for the OLS within-cluster estimate in multilevel
autoregressive model is confirmed analytically. Note further that
whether or not inertia was random, did not affect the results
substantially.

3.3. INVESTIGATING THE INFLUENCE OF OTHER FACTORS
To gain more insight in this matter, we considered three addi-
tional factors that may affect the estimation of the within-cluster
slope in a multilevel autoregressive model. First, in addition to
using the individual sample means in CMC (i.e., ȳ·i), we also
considered the empirical Bayes estimator (also referred to as
shrinkage estimator) of the individuals’ means (i.e., μ̂i, obtained
with estimating the empty model first), and the true person
means that were used to generate the data (i.e., μi; we considered
this option here to see to what extent the results for CMC can be
attributed to having to use an estimate of the individual’s mean).
Second, we considered different samples sizes, both with respect
to number of persons N, and the number of repeated measures
T. Third, we considered different strengths and signs of the fixed
effects autoregressive parameter. Throughout we used the level 1
residual variance σ 2

e = 3, the level 2 intercept variance σ 2
u0 = 3,

and the level 2 slope variance σ 2
u1 = 0.01.

Based on the results presented in Table 4, we can conclude the
following. First, CMC of the autoregressive predictor leads to bias,
regardless of the kind of mean that is used (i.e., the sample esti-
mate ȳ·i, the empirical Bayes estimate μ̂i, or the true value μi). It
is noteworthy that even using the true mean results in bias that
is about the same as the bias obtained with the empirical Bayes

estimate of the mean, while using the sample mean leads to only
slightly more bias. In contrast, NC does not lead to (considerable)
bias. Second, when using CMC, increasing the number of obser-
vations per person (i.e., T) leads to a decrease in bias, whereas the
number of individuals N does not affect the bias. Third, the bias
for CMC reported in Table 4 is always negative, regardless of the
actual value of φ, although the bias is largest when φ = 0.3, and
smallest when φ = −0.3. This implies that in general, φ will be
underestimated when CMC is used, and the bias is larger when φ

is positive (which will often be the case in practice). This is also
confirmed by the analytical results in Appendix 2.

With respect to the coverage rates of the 95% confidence
intervals, we make the following two observations. First, while
in general they are too low, for NC most coverage rates are
above 0.900, while for all three forms of CMC they are much
lower (which is not surprising, given the bias of CMC estimates).
Second, while increasing T leads to higher coverage rates for the
CMC approaches, increasing N actually leads to lower coverage
rates. This result is explained by the fact that the standard errors
decrease when N increases, while the bias remains unaffected by
changes in N. Note that the pattern for the coverage rates obtained
with NC is less clear.

3.4. INCLUDING A LEVEL 2 PREDICTOR OF THE AUTOREGRESSIVE
PARAMETER

An important question when applying the multilevel autoregres-
sive model is whether other variables predict individual differ-
ences in the autoregression (cf. Suls et al., 1998; Kuppens et al.,
2010). Therefore, we performed an additional simulation study
to determine the effect of CMC and NC on the estimation of the
effect of a level 2 predictor on the autoregressive parameter.

Let zi be a level 2 predictor that may have an effect on the
individuals’ average score μi, but more importantly, may have an
effect on the individuals’ autoregressive parameter φi. We assume
this level 2 predictor is centered across people. When using NC,
the model can be expressed as

yti = ci + φn
i yt−1,i + eti

ci = γ n
00 + γ n

01zi + u0i (27)

φn
i = γ n

10 + γ n
11zi + u1i

where γ n
00 is the overall intercept, and γ n

10 is the average autore-
gressive parameter (assuming the level 2 predictor zi is centered).
The regression coefficients γ n

01 and γ n
11 represent the effects of

the level 2 predictor on the individuals’ intercept ci and their
autoregressive parameter φn

i , respectively.
In contrast, when using CMC for the autoregressive predictor,

the model can be defined as

yti = μi + φc
i

(
yt−1,i − μi

) + eti

μi = γ c
00 + γ c

01zi + u0i (28)

φc
i = γ c

10 + γ c
11zi + u1i

where γ c
00 now represents the grand mean, and γ c

10 is again the
average autoregressive parameter (assuming the level 2 predictor
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Table 4 | Bias and coverage rates for fixed autoregressive parameter φ in multilevel autoregressive model under diverse scenarios.

AR parameter Sample size Bias CR0.95

N T NC C(ȳ ·i ) C(μ̂i ) C(μi ) NC C(ȳ ·i ) C(μ̂i ) C(μi )

φi ∼ N(0.3, 0.1) 20 20 0.002 −0.072 −0.069 −0.068 0.928 0.762 0.785 0.787

50 0.000 −0.027 −0.027 −0.026 0.940 0.900 0.901 0.898

100 0.000 −0.013 −0.013 −0.013 0.932 0.932 0.932 0.932

50 20 0.005 −0.071 −0.069 −0.067 0.893 0.480 0.512 0.518

50 0.001 −0.027 −0.026 −0.026 0.936 0.800 0.804 0.805

100 0.000 −0.013 −0.013 −0.013 0.946 0.902 0.902 0.903

100 20 0.006 −0.070 −0.068 −0.066 0.892 0.196 0.227 0.242

50 0.001 −0.027 −0.027 −0.027 0.930 0.623 0.630 0.637

100 0.000 −0.013 −0.013 −0.013 0.930 0.851 0.854 0.851

φi ∼ N(0, 0.1) 20 20 0.001 −0.053 −0.050 −0.050 0.923 0.844 0.858 0.851

50 −0.000 −0.020 −0.020 −0.020 0.944 0.912 0.915 0.911

100 0.000 −0.010 −0.009 −0.009 0.929 0.926 0.926 0.925

50 20 0.003 −0.052 −0.049 −0.049 0.922 0.700 0.727 0.725

50 −0.001 −0.021 −0.021 −0.021 0.942 0.860 0.862 0.861

100 0.000 −0.010 −0.010 −0.010 0.939 0.910 0.910 0.909

100 20 0.003 −0.053 −0.051 −0.050 0.929 0.431 0.479 0.477

50 0.000 −0.021 −0.021 −0.021 0.931 0.775 0.785 0.785

100 0.000 −0.010 −0.010 −0.010 0.942 0.892 0.896 0.896

φi ∼ N(-0.3, 0.1) 20 20 0.003 −0.034 −0.031 −0.032 0.943 0.907 0.916 0.913

50 0.000 −0.014 −0.013 −0.014 0.940 0.932 0.934 0.928

100 0.001 −0.005 −0.005 −0.005 0.928 0.928 0.929 0.929

50 20 0.000 −0.038 −0.035 −0.036 0.940 0.783 0.802 0.795

50 0.000 −0.014 −0.014 −0.014 0.932 0.894 0.896 0.896

100 0.000 −0.007 −0.006 −0.006 0.927 0.914 0.914 0.914

100 20 0.000 −0.039 −0.036 −0.037 0.932 0.597 0.639 0.624

50 0.000 −0.015 −0.015 −0.015 0.928 0.848 0.851 0.851

100 0.000 −0.007 −0.007 −0.007 0.942 0.908 0.911 0.911

Bias and coverage rates of 95% confidence intervals (CR0.95) based on 1000 replications. N refers to number of persons, T refers to number of observations per

person. The random coefficient φi comes from a normal distribution, with mean φ (either 0.3, 0, or −0.3), and standard deviation 0.1. Results are obtained for: NC

of the autoregressive predictor; C(ȳ·i ) is CMC using the sample mean; C(μ̂i ) is CMC using the empirical Bayes estimate; and C(μi ) is CMC using the true mean per

person (for comparison).

zi is centered). The regression coefficients γ c
01 and γ c

11 represent
the effects of the level 2 predictor on the individuals’ means μi

and their autoregressive parameters φc
i , respectively.

Based on the results from the previous simulations, we expect
that CMC (as in Equation 28) will lead to a downward bias in
the estimation of the average autoregressive parameter φ (i.e.,
γ c

10 will be an underestimate), while NC (as in Equation 27) is
not associated with such bias (i.e., γ n

10 is an unbiased estimate of
φ). However, the question here is how CMC and NC affect the
estimation of the level 2 predictor on φi, that is, γ c

11 and γ n
11.

We created a level 2 predictor with a mean of zero and a vari-
ance of 0.01. We chose this rather small variance for numerical
reasons: Because the variance of φi is necessarily small (say about
0.01), having a level 2 predictor with a large variance may lead to
numerical problems in estimating the regression coefficient γ11.
The mean autoregressive parameter φ was set to 0.3. The effect
of the level 2 predictor zi on the individual inertia parameters φi

was set to 0.4. The other parameters were chosen such that the

correlations between μi, φi and zi were not unrealistically high
(μi and φi were both correlated 0.37 with zi, and 0.14 with each
other). After generating μi and φi from zi, we used Equations 1
and 3 to generate the data. The results for this simulation study
are presented in Table 5.

The left part of the Table 5 contains the results that reflect
the bias. In line with our previous results, the average autore-
gressive parameter γ10 = φ is characterized by a downward bias
when CMC is used for the autoregressive predictor, while NC
leads to unbiased estimates. However, when considering the effect
of CMC vs. NC on the estimation of γ11, we see that CMC actu-
ally leads to less bias than NC. Note also that while increasing T
reduces the bias obtained with NC, the effect of increasing N is
not that clear (i.e., when T = 20, increasing N actually increases
the bias).

The right part of Table 5 contains the coverage rates of the 95%
confidence intervals. As before, the coverage rates for the aver-
age autoregressive parameter obtained with CMC are lower than
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Table 5 | Results for average autoregressive parameter φ and the effect of a level 2 predictor zi on the autoregressive parameter φi .

N T Bias CR0.95

γ 10 γ 11 γ 10 γ 11

NC CMC NC CMC NC CMC NC CMC

20 20 −0.007 −0.076 −0.050 −0.007 0.897 0.720 0.944 0.958

50 −0.005 −0.030 −0.045 −0.026 0.922 0.856 0.939 0.944

100 0.000 −0.013 −0.019 −0.008 0.923 0.909 0.942 0.944

50 20 0.004 −0.071 −0.068 −0.022 0.885 0.476 0.950 0.959

50 0.001 −0.026 −0.032 −0.014 0.904 0.781 0.945 0.948

100 0.000 −0.013 −0.018 −0.006 0.924 0.890 0.953 0.949

100 20 0.004 −0.071 −0.084 −0.036 0.918 0.170 0.921 0.940

50 0.000 −0.027 −0.024 −0.003 0.907 0.628 0.944 0.955

100 0.001 −0.012 −0.019 −0.008 0.928 0.832 0.939 0.942

Bias and coverage rate of 95% confidence intervals (CR0.95) based on 1000 replications. Results for γ10 = 0.3, that is, the average autoregressive parameter φ, and

for γ11 = 0.4, that is, the effect of a level 2 predictor on the autoregressive parameter, using NC and CMC (with sample mean) for the autoregressive predictor.

those obtained with NC. For γ11 the coverage rates obtained with
NC are in general lower than those obtained with CMC (which
was to be expected given the results for the bias).

3.5. CONCLUSION
The first set of simulations presented in this section clearly illus-
trated the point made by Raudenbush and Bryk (2002) and
Enders and Tofighi (2007) in case of a standard multilevel model.
In addition it was shown that the claims regarding the within-
cluster slope generalize to the model with a random slope, in that
CMC leads to an estimate of the within-cluster slope, whereas NC
results in a blend of the within-cluster and the between-cluster
slope. The second set of simulations was based on the multilevel
autoregressive model and showed that while CMC still leads to
results that are almost identical to the OLS-within estimate, both
of these are biased with respect to the actual within-cluster slope
(i.e., the autoregressive relationship).

Additional simulations showed that there is a downward bias
regardless of the sign of φ, and that this bias is most severe when T
is small, while N has little (if any) influence. This bias could not be
attributed to the quality of the estimate of the individuals’ means
(as very similar results are obtained when using the true means μi

for centering). Furthermore, these results were supported by the
derived relationship between the OLS within-cluster slope esti-
mate and the value of φ in Appendix 2. In contrast, NC does
not lead to bias in the estimation of the autoregressive parameter,
which implies that the obtained result is actually not contami-
nated by the between-cluster relationship, as is the case in regular
multilevel analysis. Finally, when adding a level 2 predictor to the
model, the results described above for the average autoregressive
parameter remain intact, but for the effect of the level 2 predic-
tor on the autoregressive parameter, NC actually results in bias,
whereas CMC does not.

4. APPLICATION: PART 2
Returning to the empirical data that we introduced in the begin-
ning of this paper, we are now able to study inertia in daily

relationship specific PA and NA, and include a level 2 predictor
for the individual differences in the means and the inertia. We
used Relationship Satisfaction, which was obtained prior to the
diary study, and standardized this level 2 predictor to facilitate
interpretation (i.e., we subtracted the grand mean, and divided it
by the grand standard deviation). We used the model based on
CMC (see Equation 28), and summarized the results for all the
fixed effects in Table 6. We also included the estimate of the fixed
effects inertia obtained with NC in this table, as the simulations
reported in this paper showed that this is an unbiased estimate of
the average inertia, whereas the corresponding estimate obtained
with CMC is negatively biased.

It shows that on average there is significant inertia in rela-
tionship specific PA and NA for both males and females (see
γ n

10). In addition, Relationship Satisfaction proved a significant
positive predictor of mean levels of relationship specific PA in
both males and females, and a significant negative predictor of
mean levels of relationship specific NA in both males and females
(see γ c

01). Furthermore, Relationship Satisfaction is a significant
negative predictor of inertia in relationship specific PA in males
(but not in females), and in relationship specific NA in males
and females (see γ c

11). This implies that individuals who are less
satisfied with their relationship, are characterized by more carry-
over of relationship specific NA, than individuals who are more
satisfied with their relationship. In addition, males who are less
satisfied with their relationship, are also characterized by more
carryover in their relationship specific PA. While the latter may
seem surprising at first—as it implies that elevated relationship
specific PA tends to persist over time for males who are less
satisfied with their relationship—it also implies that attenuated
relationship specific PA tends to prevail, which could be con-
sidered undesirable. These results are in agreement with other
findings regarding inertia reported by Koval et al. (2013), who
found that the inertias of PA and NA are positively correlated, and
Kuppens et al. (2012), who found that inertia of angry and dys-
phoric behavior, but also of happy behavior all predicted the onset
of depression. Taken together, these results seem to confirm the
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Table 6 | Results for multilevel autoregressive model with a level 2

predictor (with random effects).

Males Females

est. SD t-value est. SD t-value

PA γ c
00 3.514 0.043 81.98 3.498 0.043 80.93

γ c
01 0.303 0.046 6.58 0.383 0.045 8.43

γ c
10 0.354 0.016 22.46 0.340 0.015 22.50

γ n
10 0.385 0.015 25.41 0.369 0.015 24.69

γ c
11 −0.045 0.017 −2.67 −0.015 0.016 −0.98

NA γ c
00 1.346 0.022 59.96 1.346 0.020 5.75

γ c
01 −0.072 0.024 −2.99 −0.132 0.022 −6.15

γ c
10 0.242 0.017 14.31 0.224 0.016 13.64

γ n
10 0.267 0.017 16.14 0.254 0.017 15.39

γ c
11 −0.046 0.017 −2.63 −0.060 0.016 −3.71

Parameter estimates, standard errors and t-values for the fixed effects parame-

ters in a multilevel autoregressive model (with random intercept and slope), for

males and females. Parameters include: (a) the grand mean (i.e., γ c
00); (b) the

effect of Relationship Satisfaction on the individuals’ means (i.e., γ c
01); (c) the

average inertia obtained with CMC (i.e., γ c
10), and with NC (i.e., γ n

10); and (d) the

effect of Relationship Satisfaction on the individuals’ inertias (i.e., γ c
11).

idea that inertia—whether in pleasant or unpleasant emotions—
is a detrimental property of affect regulation, reflective of some
maladaptive process.

5. DISCUSSION
Over the past two decades we have witnessed an exponential
increase in the number of studies based on intensive longitudinal
data in the social sciences. This development is triggered by the
rapid development of electronic data collection methods based on
hand-held computers, the internet, and—more recently—smart
phones (Trull and Ebner-Priemer, 2013): As a result it has become
relatively easy to gather large numbers of repeated measurements
from a large sample of individuals. Such data differ from more
traditional longitudinal data in two important ways: (1) intensive
longitudinal data contain many more measurements per individ-
ual (i.e., often T > 20) than traditional longitudinal data (i.e.,
often T < 10); and (2) the measurements in intensive longitudi-
nal data are typically spaced relatively close to each other in time
(e.g., measurements are taken at a daily basis using a daily diary
method, or even multiple times a day using experience method
sampling), whereas traditional longitudinal data are character-
ized by much larger intervals between measurements (e.g., annual
measurements are not uncommon). These differences reflect a
different focus on part of the researchers: Whereas the purpose of
many studies based on traditional longitudinal data is to discover
broad underlying increasing or decreasing trends, the purpose
of studies based on intensive longitudinal data is to gain more
insight into the patterns of fluctuations in affect, behavior, and
cognition in daily life (Bolger et al., 2003; Mehl and Conner,
2012).

One particular aspect of such patterns is referred to as iner-
tia or autoregression, and represents the amount of carryover
from one measurement occasion to the next (Suls et al., 1998).
Diverse empirical studies have now shown that individual differ-
ences in inertia are meaningful with respect to the way people

differ in their regulation of emotions and behavior. As the popular
method for studying inertia is through a multilevel autoregressive
model, an important research question in this area is whether the
autoregressive predictor included at level 1 should be centered per
person or not.

The current study shows through a series of simulations that
CMC should be preferred if: (a) one wishes to obtain a mean-
ingful intercept (i.e., an intercept that represents the individual’s
mean score over time, which can be interpreted as his/her trait
score); and (b) the interest is in how the autoregressive parameter
depends on a level 2 predictor. However, CMC should not be used
when the interest is in whether or not there is an autoregressive
relationship on average (i.e., across individuals).

In practice, researchers using a multilevel autoregressive model
to study inertia are likely to be interested in various aspects of
the model, including the individuals’ means, the average autore-
gressive parameter, and the effect of a level 2 predictor on the
individuals’ means and autoregressive parameters. In that case,
it may be wise to use both estimation procedures, as we did in
the empirical application, and to use CMC for the estimation of
the grand mean and the effect of the level 2 predictor on the indi-
vidual means and autoregressive parameters, while NC results are
used for determining whether there is an autoregressive effect on
average. While this may be unconventional advice, it is based on
the rather clear simulation results presented in this paper.

Given the recent interest in inertia, and its emerging recog-
nition as a separate and valuable property of regulation that is
related to but does not coincide with more traditionally stud-
ied process features such as the tendency to ruminate or the
persistence of negative thoughts, we expect to see more work in
this area. Hence, it is important to improve our ways to estimate
average inertia, and individual differences therein. Specifically,
the current study has shown that many of the inertia estimates
reported in the literature may actually be underestimates of the
true inertias, simply because the lagged autoregressive predictor
was centered per person (e.g., Koval et al., 2012; Brose et al.,
2014). Although this may not come as a surprise to those famil-
iar with time series literature, as it has been known for a long time
that estimates of autoregressive parameters are biased (cf., Orcutt,
1948; Marriott and Pope, 1954), it is an unexpected result from a
multilevel perspective. Furthermore, it is of interest that the bias
disappears when the lagged autoregressive predictor is not cen-
tered; in fact, this may be considered an important advantage of
the multilevel approach over a two-step procedure in which dur-
ing the first step individual time series models are estimated, while
in the second step the individual parameters are combined into a
population model.

Additional improvements in the study of inertia may come
from taking measurement error into account—which is also likely
to obscure the actual inertia of a process—and developing appro-
priate techniques for handling unequal intervals between the
observations—which are a feature of certain intensive longitu-
dinal data, and which may lead to less precise estimates when
not taken into account, and therefor to more difficulty in detect-
ing relationships between inertia and other person characteristics.
When these issues are handled in an appropriate way, inertia
may prove to be an even more important feature of regulatory
processes in psychology than the existing studies already suggest.
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Finally, note that the advice given here regarding CMC vs. NC
or GMC exclusively applies to an autoregressive level 1 predic-
tor: That is, if one includes other level 1 predictors, the common
results based on Raudenbush and Bryk (2002) apply to them,
meaning that CMC of these predictors should be preferred over
NC or GMC if the within-cluster and between-cluster slopes are
expected to differ, and one wants to obtain an estimate of the
within-cluster slope.
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APPENDIX 1
To show that the model expressed in Equations 5, 6 and 7, is struc-
turally equivalent to the model in Equations 1–4, we first make
use of the fact that yt − 1,i − μi = at − 1,i, such that we can rewrite
Equation 3 as

ati = φiat − 1,i + eti

= φi
(
yt − 1,i − μi

) + eti

= φiyt − 1,i − φiμi + eti. (A1)

Entering this in Equation 1, we can write

yti = μi − φiμi + φiyt − 1,i + eti

= (
1 − φi

)
μi + φiyt − 1,i + eti, (A2)

which shows that

ci = (1 − φi)μi. (A3)

This is a standard result from the time series literature on the first-
order autoregressive model (cf. Hamilton, 1994).

APPENDIX 2
The rather unexpected results regarding CMC (i.e., centering the
autoregressive predictor per person actually leads to bias in esti-
mating the autoregressive parameter), was confirmed by the near
identical results when using OLS. Below we show that OLS indeed
leads to bias in the estimation of the autoregressive parameter φ.
For simplicity of the presentation we will not make notational
distinction between a random variable and it’s (observed) value
here.

Note that the OLS estimate of the regression model yi = b0 +
b1xi + ei can be expressed as b̂1 = cov(xi, yi)/var(xi). In a sim-
ilar fashion, the OLS estimate of the within-person relationship
φ in the autoregressive multilevel model can be expressed as the
covariance between the person-centered predictor variable yti and
the person-centered outcome variable yi,t+1, divided by the vari-
ance of the person-centered predictor variable. To this end, let
T∗

i = Ti − 1, and let

ȳi·(1) = 1

T∗
i

T∗
i∑

t = 1

yti and ȳi·(2) = 1

T∗
i

T∗
i∑

t = 1

yi,t + 1 (A4)

represent the estimated person means of the predictor variable
yti and the outcome variable yi,t + 1, respectively. Then the OLS
estimator of φ can be expressed as

φ̂ =
∑n

i = 1

{

1
T∗

i

∑T∗
i

t = 1

(

yti − ȳi·(1)

)(

yi,t + 1− ȳi·(2)

)}

∑n
i = 1

{

1
T∗

i

∑Ti
t = 1

(

yti − ȳi·(1)

)2
}

=
1
n

∑n
i = 1

{

1
T∗

i

∑Ti − 1
t = 1

(

ytiyit + 1− T∗
i ȳi·(1) ȳi·(2)

)
}

1
n

∑n
i = 1

{

1
T∗

i

∑Ti
t = 1

(

y2
ti−T∗

i ȳ2
i·(1)

)} , (A5)

To derive the asymptotic bias of this estimator, we begin by
deriving the numerator of Equation A5. To this end, we first con-
sider the conventional estimate of the covariance between yti and
yi,t + 1 per person, that is,

si(t + 1, t) = 1

T∗
i

T∗
i∑

t = 1

{

ytiyit + 1 − T∗
i ȳi·(1)ȳi·(2)

}

.

Taking the expectation of this covariance, conditional on i, gives

E
[
si(t + 1, t)| i

] = 1

T∗
i

T∗
i∑

t = 1

{

E
[
ytiyi,t + 1| i

]

−T∗
i E

[
ȳi·(1)ȳi·(2)| i

]}

. (A6)

Focussing on the first expectation on the right-hand side of
Equation A6, we make use of the fact that yi,t + 1 = ci + φiyti +
ei,t + 1, such that we can write

E
[
ytiyi,t + 1|i

] = E
[

yti
{

ci + φiyti + ei,t + 1
}|i

]

= E
[
ytici|i

] + E
[
φiy

2
ti|i

] + E
[
ytiei,t + 1|i

]

= (1 − φi)μiE
[
yti|i

] + φiE
[
y2

ti|i
]

= (1 − φi)μ
2
i + φi(σ

2
i + μ2

i )

= μ2
i + φiσ

2
i , (A7)

where ci = μi(1 − φi), μi = E(yti|i) and σ 2
i = Var(yti|i) ∝

1
1 − φ2

i
.

The second expectation on the right-hand side of Equation A6
can be rewritten (using the geometric series), to obtain

E
[
ȳi·(1)ȳi·(2)| i

] = 1

T∗
i T∗

i

T∗
i∑

t = 1

T∗
i∑

τ = 1

E
[
ytiyi,τ + 1| i

]

= 1

T∗
i T∗

i

T∗
i∑

t = 1

T∗
i∑

u = 1

{

φ
|t − u − 1|
i σ 2

i + μ2
i

}

= σ 2
i

T∗
i (1 − φ2

i ) − (1 + φ2
i )(1 − φ

T∗
i

i )

T∗2
i (1 − φi)2

+ μ2
i . (A8)

Inserting the expression in Equations A7 and A8 in Equation A6,
the expected value for the covariance conditional on person i can
be expressed as

E
[
si(t + 1, t)| i

]=σ 2
i

{

φi− T∗
i (1 − φ2

i ) − (1 + φ2
i )(1 − φ

T∗
i

i )

T∗2
i (1 − φi)2

}

.(A9)
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In a similar way, the expected value of the variance conditional on
person i can be obtained, resulting in

E
[
si(t, t)| i

] = σ 2
i

{

1 − Ti(1 − φ2
i ) − 2φi(1 − φ

Ti
i )

T2
i (1 − φi)2

}

. (A10)

By the law of large numbers, as the number of participants
n → ∞, the numerator on the right-hand side of Equation A5
converges in probability to E[si(t + 1, t)] = E{E[si(t + 1, t)| i]},
while the denominator converges in probability to
E[si(t, t)] = E{E[si(t, t)| i]}. Therefore,

φ̂
p−→ E

[
si(t + 1, t)

]

E
[
si(t, t)

] =
E

[

σ 2
i

{

φi − T∗
i (1 − φ2

i ) − (1 +φ2
i )(1 − φ

T∗
i

i )

T∗2
i (1 − φi)2

}]

E

[

σ 2
i

{

1 − Ti(1 −φ2
i ) − 2φi(1 −φ

Ti
i )

T2
i (1 − φi)2

}] .

(A11)

To show that in general the asymptotic bias will be negative, for
simplicity, we assume Ti is large enough to treat T∗

i ≈ Ti. Then
we have to show that

E

[

σ 2
i

{

φi − T∗
i (1 − φ2

i ) − (1 + φ2
i )(1 − φ

T∗
i

i )

T∗2
i (1 − φi)2

}]

E

[

σ 2
i

{

1 − Ti(1 − φ2
i ) − 2φi(1 − φ

Ti
i )

T2
i (1 − φi)2

}] ≤ φ.

As the denominator is always positive6 when Ti ≥ 2, this is
equivalent to showing that

E
[

σ 2
i (φi − φ)

]

+E

[

σ 2
i

Ti(1 − φ)(1 − φ2
i ) − (1 − 2φφi + φ2

i )(1 − φ
Ti
i )

T2
i (1 − φi)2

]

≥ 0.

The first term on the left-hand side is the sum of the covariance
between autoregressive parameter φi and the variance of the series
σ 2

i . Note that σ 2
i = σ 2

e /(1 − φ2
i ), which implies that σ 2

i and φi

are correlated. For symmetric distributions of φi around φ, using
a Taylor expansion of φi − φ

1 − φ2
i

, we can show7 that the correlation

6This follows if [T(1 − φ2) − 2(1 − φT )]/[T2(1 − φ)2] < 1 ⇐⇒ T(1 −
φ2) − 2(1 − φT ) < T2(1 − φ)2, or 0 < T(T − 1) − 2(T2 − 1)φ + T(T +
1)φ2 − 2φT+1 for all φ. The latter may be seen to be true by graphing
the function, or by differentiation. To this end, let’s denote the right-hand
side by Q. The second derivative is Q′′ = 2T(T + 1)(1 − φT − 1) which is
clearly always positive when φ ∈ ( − 1, 1). Hence, the first order derivative
Q′ = −2(T2 − 1) + 2T(T + 1)φ − 2(T + 1)φT is increasing on ( − 1, 1) and
reaches a maximum of 0 at φ = 1. At any φ lower than φ = 1 therefore, y′ < 0
(for instance at φ = 0, Q′ = −2(T2 − 1) < 0 assuming T > 1) which implies
that Q must be strictly decreasing on ( − 1, 1). In fact, Q reaches a minimum
at Q′ = 0 ⇐⇒ φ = 1, at which point Q = 0. Therefore, the minimum of the
right hand side of the inequality is always positive, and so the inequality holds
for all φ ∈ ( − 1, 1), as required.
7The Maclaurin series of φi−φ

1−φ2
i

= u1i
1−(φ+u1i)2 = ∑

k = 0[(1 − φ)−k − ( − 1 −
φ)−k]uk

1i, hence E{ u1i
1−(φ+u1i)2 } = ∑

k = 0[(1 − φ)−k − ( − 1 − φ)−k]E{uk
1i}.

FIGURE A1 | Numerator of expectation, [that is, y = T (1 − φ)(1 − φ2
i
) −

(1 − 2φφi + φ2
i
)(1 − φT

i
)] plotted against φi , for T = 40 and different

values of φ (i.e., average φi ). Note that only for φ = 0.95 the numerator
becomes negative on a substantial portion of the interval (−1, 1). See text
for implications.

is positive if φ > 0 and negative if φ < 0. Therefore, assuming a
density f�(φi) that is (approximately) symmetric about φ, the first
term should be deemed positive if φ > 0, and negative, if φ < 0.

Regarding the second term, since the denominator in this
term is always positive, the only way this expected value can
be negative is if on a substantial portion of the support of the
density f�(φ) of φi the numerator is negative. Since no closed
form expression for this region can be found in terms of T and
φ, below we plot the numerator for T = 40 and different val-
ues of φ in Figure A1. The interval for φ is limited to ( − 1, 1)
by the requirement of stationarity. The picture is slightly differ-
ent for uneven T, but since the term 1 − φT only really matters
near the edges of the interval, it has little effect on the global
shape. It is clear that only for extreme values of φ (φ > 0.9) a
substantial portion of the numerator is negative, but then also
only at the lower end of the interval. This means that for any

reasonable f�(φ) (which incidentally must have
∫ 1
−1 φf�(φ)dφ =

E(φi) > 0.9 and therefore cannot have a large probability mass
in the area where the numerator is negative), the numerator
will be positive and hence the second term will be positive. As
Ti grows larger, the always positive term Ti(1 − φ)(1 − φ2

i ) in
the numerator becomes much larger than the term (1 − 2φφ +
φ2)(1 − φT). Hence for values of Ti larger than 40, the negative
region of the numerator in the expectation vanishes. As a result,
the estimator φ̂ will in most cases underestimate the real value
of φ.

For u1i symmetrically distributed about 0, the odd moments are zero and the
even moments are positive, and so the sign of E{ u1i

1 − (φ + u1i)2 } only depends on

the sign of (1 − φ)−k − ( − 1 − φ)−k where k = 2m even. It is readily verified
that this is negative if and only if φ < 0.

Frontiers in Psychology | Quantitative Psychology and Measurement January 2015 | Volume 5 | Article 1492 | 96

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Hamaker and Grasman Centering in a multilevel autoregressive model

From Equation A11 it can be seen that as the lengths Ti

of the observed series increase without bound, φ̂ converges in
probability to E{(σ 2

i + μ2
i )φi}/E{(σ 2

i + μ2
i )}. The disconcerting

consequence is that the OLS estimator may be biased, even if an
infinity number of samples is obtained!

THE CASE OF σ 2
u1

= 0

In the first set of simulations for the multilevel autoregressive
model, σ 2

u1 = 0—that is, all individuals were characterized by the
same autoregressive parameter (i.e., φi = φ with probability 1).
In this case, setting Ti = T without loss of generality, the above
inequality simplifies to

E

[

σ 2
i

T(1−φ)(1 − φ2)−(1 − φ2)(1 − φT )
T2(1 − φ)2

]

= (
1 − φ2

)T(1 − φ)−(1 − φT )
T2(1 − φ)2 E[μ2

i ] ≥ 0,

where the first expectation dropped out because E[σ 2
i (φi − φ)] =

0 (since φi − φ = 0 when φi = φ).
The above inequality is satisfied if g = T(1 − φ) − (1 −

φT) ≥ 0. This is true for all −1 ≤ φ ≤ 1, as then g′ = −T +
TφT − 1 ≤ 0 for all T = 1, 2, ..., and g achieves a minimum of 0
at φ = 1. Hence, in this case, the estimator of φ is always biased
downwards.
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1Department of Methodology and Statistics, Utrecht University, Utrecht, Netherlands, 2 Academic Centre of Psychiatry,
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Measurement error is omnipresent in psychological data. However, the vast majority

of applications of autoregressive time series analyses in psychology do not take

measurement error into account. Disregarding measurement error when it is present in

the data results in a bias of the autoregressive parameters. We discuss two models

that take measurement error into account: An autoregressive model with a white noise

term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation

study we compare the parameter recovery performance of these models, and compare

this performance for both a Bayesian and frequentist approach. We find that overall,

the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small)

sample sizes, psychological research would benefit from a Bayesian approach in fitting

these models. Finally, we illustrate the effect of disregarding measurement error in an

AR(1) model by means of an empirical application on mood data in women. We find

that, depending on the person, approximately 30–50% of the total variance was due to

measurement error, and that disregarding this measurement error results in a substantial

underestimation of the autoregressive parameters.

Keywords: autoregressive modeling, n = 1, measurement error, Bayesian modeling, idiographic, time series

analysis

1. Introduction

The dynamic modeling of processes at the within-person level is becoming more and more
popular in psychology. The reason for this seems to be the realization that inter-individual
differences, in many cases, are not equal to intra-individual differences. Indeed, studies that
compare interindividual differences and intraindividual differences usually do not harbor the
same results, exemplifying that conclusions based on studies of group averages (including cross-
sectional studies and panel data studies), cannot simply be generalized to individuals (Nezlek and
Gable, 2001; Borsboom et al., 2003; Molenaar, 2004; Rovine and Walls, 2006; Kievit et al., 2011;
Madhyastha et al., 2011; Ferrer et al., 2012; Hamaker, 2012; Wang et al., 2012; Adolf et al., 2015).

The increased interest in analyses at the within-person level, and the increasing availability
of technology for collecting these data, has resulted in an increase in psychological studies that
collect intensive longitudinal data, consisting of many (say 25 or more) repeated measures from
one or more individuals. A popular way to analyze these data currently is by autoregressive time
series (AR) modeling, either by modeling the repeated measures for a single individual using
classical n = 1 AR models, or by using multilevel extensions of these models, with the repeated
measures for each individual modeled at level 1, and individual differences modeled at level 2

98
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(Cohn and Tronick, 1989; Suls et al., 1998; Nezlek and Gable,
2001; Nezlek and Allen, 2006; Rovine and Walls, 2006; Moberly
and Watkins, 2008; Kuppens et al., 2010; Lodewyckx et al.,
2011; Madhyastha et al., 2011; Wang et al., 2012; De Haan-
Rietdijk et al., 2014). In an AR model of order 1 [i.e., an
AR(1) model], a variable is regressed on a lagged version of
itself, such that the regression parameter reflects the association
between this variable and itself at the previous measurement
occasion (c.f., Hamilton, 1994; Chatfield, 2004). The reason for
the popularity of this model may be the natural interpretation
of the resulting AR parameter as inertia, that is, resistance to
change (Suls et al., 1998). Resistance to change is a concept which
is considered to be relevant to many psychological constructs
and processes, including attention, mood and the development
of mood disorders, and the revision of impressions and opinions
(Geller and Pitz, 1968; Goodwin, 1971; Suls et al., 1998; Kirkham
et al., 2003; Kuppens et al., 2010; Koval et al., 2012).

However, a problem with the regular AR(1) model is that
it does not account for any measurement errors present in
the data. Although AR models incorporate residuals, which are
referred to as “innovations” or “dynamic errors,” these residuals
are to be distinguished from measurement error. Simply put, the
distinction between dynamic errors and measurement errors is
that dynamic errors carry over to next measurement occasions
through the autoregressive relationship, while measurement
errors are specific to one measurement occasion. Therefore, even
though taking measurement errors into account is considered
business as usual in many psychological studies of interindividual
differences, it is largely neglected in AR modeling. Two
exceptions are formed by Wagenmakers (2004) and Gilden
(2001)1, both of which concern studies on reaction time and
accuracy in series of cognitive tasks. Gilden notes that there
is evidence that some variance in reaction time is random
(measurement) error as a result of key-pressing in computer
tasks. Measurement error however is not limited to “accidentally”
pressing the wrong button or crossing the wrong answer, but
is made up of the sum of all the influences of unobserved
factors on the current observation, that do not carry-over to the
next measurement occasion. Disregarding measurement error
distorts the estimation of the effects of interest (Staudenmayer
and Buonaccorsi, 2005). This is quite problematic, considering
that in psychological studies it is often impossible to directly
observe the variable of interest, and it therefore seems likely (and
this seems generally accepted among psychological researchers)
that psychological research in general is prone to having noisy
data.

The aim of this study is therefore three-fold. First, we aim
to emphasize the importance of considering measurement error
in addition to dynamic error in intensive longitudinal studies,
and illustrate the effects of disregarding it in the case of the
n = 1 autoregressive model. Second, we aim to compare two
modeling strategies for incorporating measurement errors: (1)
fitting an autoregressive model that includes a white noise term

1Other exceptions are of course dynamic factor models, and other latent variable

models in which the measurement structure for multiple items is explicitly

modeled. Here we focus on applications in which each construct is measured with

one variable.

(AR+WN), and (2) fitting an autoregressive moving average
(ARMA) model. These modeling strategies are the two most
frequently suggested in the literature (e.g., in mathematical
statistics, control engineering, and econometrics, c.f., Granger
and Morris, 1976; Deistler, 1986; Chanda, 1996; Swamy et al.,
2003; Staudenmayer and Buonaccorsi, 2005; Chong et al., 2006;
Costa and Alpuim, 2010; Patriota et al., 2010). Third, our
aim is to compare the performance of these models for a
frequentist and a Bayesian estimation procedure. Specifically,
for the frequentist procedure we will focus on a Maximum
Likelihood (ML) procedure based on the state-space modeling
framework, which is a convenient modeling framework for
psychological longitudinal modeling, as it readily deals with
missing data, and is easily extended to multivariate settings, or to
include latent variables (Harvey, 1989). The Bayesian alternative
shares these qualities, and has the additional advantage that the
performance of the estimation procedure is not dependent on
large samples (Dunson, 2001; Lee and Wagenmakers, 2005),
while the performance of the frequentist ML procedure depends
on asymptotic approximations, and in general requires large
samples. This is convenient for the modeling of intensive
longitudinal data, given that large amounts of repeated measures
are often difficult to obtain in psychological studies. By means
of a simulation study we will evaluate the parameter recovery
performance of the Bayesian procedure for the ARMA(1,1) and
the AR+WNmodel, and compare it to the ML procedure.

This paper is organized as follows.We start by introducing the
AR(1) model, ARMA(1,1) model, and the AR(1)+WN model,
and discussing their connections. After that, we present the
methods for the simulation study, followed by the results. We
present an empirical application concerning the daily mood of
eight women, in order to further illustrate the consequences of
disregarding measurement error in practice, and we end with a
discussion.

2. Models

In this section we present the AR(1) model, and explain the
difference between the dynamic errors that are incorporated
in the AR(1) model, and measurement errors. After that we
will introduce models that incorporate measurement errors,
namely the autoregressive model with an added white noise term
(AR(1)+WN model), and the autoregressive moving average
(ARMA) model.

2.1. The AR(1) Model
In order to fit an ARmodel, a large number of repeated measures
is taken from one individual. Each observation, or score, yt in the
AR model consists of a stable trait part—the mean of the process
denoted as µ, and a state part ỹt that reflects the divergence from
that mean at each occasion. In an AR model of order 1, the
state of the individual at a specific occasion ỹt depends on the
previous state ỹt−1, and this dependency is modeled with the AR
parameter φ. Specifically, the AR(1) model can be specified as

yt = µ + ỹt

ỹt = φỹt−1 + ǫt (1)
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ǫt ∼ N
(
0, σ 2

ǫ

)
. (2)

For a graphical representation of the model, see Figure 1A.
A positive value for φ indicates that the score at the current
occasion will be similar to that at the previous occasion— and
the higher the positive value for φ, the more similar the scores
will be. Therefore, a positive AR parameter reflects the inertia, or
resistance to change, of a process (Suls et al., 1998). A positive AR
parameter could be expected for many psychological processes,
such as that of mood, attitudes, and (symptoms of) psychological
disorders. A negative φ indicates that if an individual has a high
score at one occasion, the score at the next occasion is likely
to be low, and vice versa. A negative AR parameter may be
expected for instance in processes that concern intake, such as
drinking alcoholic beverages: If an individual drinks a lot at one
occasion, that person may be more likely to cut back on alcohol

A

B

C

FIGURE 1 | (A) Graphical representation of an AR(1) model. (B) Graphical

representation of an AR(1)+WN model. (C) Graphical representation of an

ARMA(1,1) model.

the next occasion, and the following occasion drink a lot again,
and so on Rovine and Walls (2006). An AR parameter close to
zero indicates that a score on the previous occasion does not
predict the score on the next occasion. Throughout this paper
we consider stationary models, which implies that the mean and
variance of y are stable over time, and φ lies in the range from−1
to 1 (Hamilton, 1994). The innovations ǫt reflect that component
of each state score ỹt that is unpredictable from the previous
observation. The innovations ǫt are assumed to be normally
distributed with a mean of zero and variance σ 2

ǫ .

2.2. Dynamic Errors vs. Measurement Errors
The innovations ǫt perturb the system and change its course
over time. Each innovations is the result of all unobserved events
that impact the variable of interest at the current measurement
occasion, of which the impact is carried over through the AR
effect to the next few measurement occasions. Take for example
hourly measurements of concentration: Unobserved events such
as eating a healthy breakfast, a good night sleep the previous
night, or a pleasant commute, may impact concentration in
the morning, resulting in a heightened concentrating at that
measurement occasion. This heightened concentration may then
linger for the next few measurement occasions as a result of an
AR effect. In other words, the innovations ǫt are “passed along”
to future time points via φ, as can be seen from Figure 1A, and
this is why they are also referred to as “dynamic errors.”

Measurement errors, on the other hand, do not carry over
to next measurement occasions, and their effects are therefore
restricted to a single time point. This can also be seen from
Figure 1B: The dynamic errors are passed from yt−1 to yt through
the AR effect while the measurement errors ωt are specific
to each observation. Classical examples of measurement error,
which are moment-specific, are making an error while filling in a
questionnaire, or accidentally pressing a (wrong) button during
an experiment (e.g., Gilden, 2001). However, any unobserved
effect of which the influence is not carried over to the next
measurement occasion may also be considered as measurement
error, rather than dynamic error. The only distinguishing
characteristic of measurement errors and dynamic errors is that
the latter’s influence lingers for multiple measurement occasions.
Therefore, in practice, what unobserved effects will end up as
measurement error, andwhat effects will end up as dynamic error,
will depend largely on the measurement design of the study, such
as on the frequency of the repeated measures that are taken. For
example, some unobserved effects may carry-over from minute
to minute (e.g., having a snack, listening to a song), but not
from day to day—if measurements are then taken every minute,
these unobserved effects will end up in the dynamic error term,
but if measurements are taken daily, such effects will end up
in the measurement error term. As such, the more infrequent
measurements are taken, the more measurement errors one can
expect to be present in the data, relative to the dynamic errors.

In psychological research measurement is complicated, and
likely to be noisy. As such, the contribution of measurement
error variance to the total variance of the measured process may
be considerable. Ignoring this contribution will result in biased
parameter estimates. Staudenmayer and Buonaccorsi (2005) have

Frontiers in Psychology | www.frontiersin.org July 2015 | Volume 6 | Article 1038 | 100

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Schuurman et al. AR with measurement error

shown that in the case of an AR(1) model, φ will be biased
toward zero. Specifically, the estimated AR coefficient φ̂ will be
equal to (1 − λ) ∗ φ, where φ is the true AR parameter and
λ is the proportion of measurement error variance to the total
variance. Hence, in order to prevent the measurement error from
biasing estimates of φ, it is necessary to take measurement error
into account in the modeling procedure. This approach has two
advantages: First, it leads to less biased estimates of φ, and second,
it allows us to investigate to what extent the measurements are
determined by measurement error.

2.3. Incorporating Measurement Error: The
AR(1)+WN Model
A relatively simple way to incorporate measurement error
in dynamic modeling is to add a noise term to the model,
typically white noise, to represent the measurement error. White
noise is a series of random variables that are identically and
independently distributed (Chatfield, 2004). For the AR model
with measurement error (AR(1)+WN), the white noise ωt is
simply added to each observation yt (see Figure 1B). We assume
that this white noise is normally distributed with a mean of zero
and variance σ 2

ω. This results in the following model specification
for the AR(1)+WNmodel

yt = µ + ỹt + ωt

ỹt = φỹt−1 + ǫt (3)

ǫt ∼ N
(
0, σ 2

ǫ

)
(4)

ωt ∼ N
(
0, σ 2

ω

)
. (5)

Important to note is that when φ is equal to zero, the
measurement error and dynamic error will no longer be
discernible from each other, because they are only discernible
from each other from the merit that the innovations are
passed to future time points through φ, while the measurement
errors are not. In that case, the AR(1)+WN model is no
longer identified, which is problematic for estimating the model
parameters. Further note that when φ is nonzero, the higher
|φ|, the easier it will be to discern measurement error from the
innovations, and as such the model will be easier to identify
empirically, and likely easier to estimate. Hence, in this sense
the (empirical) identification of the AR(1)+WN model may be
seen as dimensional rather than dichotomous, ranging from
unidentified when φ is zero, to maximally empirically identified
when |φ| is one.

2.4. Incorporating Measurement Error: The
ARMA(1,1) Model
Another way to incorporate measurement error into an AR(1)
model that is relatively frequently suggested in the literature
on dynamic modeling with measurement error, is to use an
autoregressive moving average (ARMA) model (see for instance:
Granger and Morris, 1976; Deistler, 1986; Chanda, 1996; Swamy
et al., 2003; Wagenmakers et al., 2004; Staudenmayer and
Buonaccorsi, 2005; Costa and Alpuim, 2010; Patriota et al., 2010).
Granger and Morris (1976) have shown that the AR(p)+WN
model is equivalent to an ARMA(p,p) model, where p stands

for the number of lags included in the model. As a result,
an ARMA(1,1) model can be used as an indirect way to fit
an AR(1) model and take measurement error into account
(Granger and Morris, 1976; Staudenmayer and Buonaccorsi,
2005; Wagenmakers et al., 2004). One advantage of fitting an
ARMA(1,1) model rather than fitting an AR(1)+WN model
directly, is that it can be estimated with a wide range of estimation
procedures, and a wide range of software, including for instance
SPSS. A second important advantage is that the ARMA(1,1) is
identified when the value of φ is equal to zero, so that in practice
it may be easier to estimate than the AR(1)+WNmodel.

An ARMA(1,1) process consists of an AR(1) process, and a
moving average process of order 1 [MA(1)]. In anMA(1) process,
the current state ỹt depends not only on the innovation, ǫ∗t , but
also on the previous innovation ǫ∗t−1, through moving average

parameters θ .2 For example, consider the daily introverted
behavior for a specific person. On a certain day, the person
has a shameful experience, resulting in a strong boost (e.g., an
innovation or perturbation) in introverted behavior. The next
day, this person may display lingering heightened introverted
behavior from the previous day as a result of an AR effect, but
there may also be a delayed response to the perturbation from
yesterday, for instance because the person remembers the events
of the previous day. The strength of the delayed response depends
on the size of θ . The ARMA(1,1) model, which is depicted in
Figure 1C, can be specified as:

yt = µ + ỹt

ỹt = φỹt−1 + θǫ∗t−1 + ǫ∗t (6)

ǫ∗t ∼ N
(
0, σ 2∗

ǫ

)
. (7)

The ARMA(1,1) model is characterized by four parameters, that
is, the mean µ, AR parameter φ, moving average parameter θ ,
and innovation variance σ 2∗

ǫ . The model is stationary when φ lies
between –1 and 1, and is invertible if θ lies between −1 and 1
(Chatfield, 2004; Hamilton, 1994).

If the true underlying model is an AR(1)+WN model, the φ

and µ parameter in an ARMA(1,1) will be equal to those of the
AR(1)+WNmodel. Granger and Morris (1976) have shown that
the innovation variance σ 2

ǫ and measurement error variance σ 2
ω

can be calculated from the estimated θ , φ, and σ 2∗
ǫ as follows (see

also Staudenmayer and Buonaccorsi, 2005),

σ 2
ω = (−φ)−1θσ 2∗

ǫ , (8)

σ 2
ǫ = (1+ θ2)σ 2∗

ǫ − (1+ φ2)σ 2
ω. (9)

It is important to note that while the AR(1)+WN models is
equivalent to an ARMA(1,1) model, an ARMA(1,1) models is
not necessarily equivalent to an AR(1)+WN model. That is,
it is only possible to transform the ARMA(1,1) parameters to
AR(1)+WN model parameters under these restrictions in line
with an underlying AR(1)+WN model (Granger and Morris,
1976; Staudenmayer and Buonaccorsi, 2005):

2We add the ∗ to ǫ, to distinguish the innovations for the ARMA(1,1,) model from

the innovations of the AR(1)+WNmodel.

Frontiers in Psychology | www.frontiersin.org July 2015 | Volume 6 | Article 1038 | 101

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Schuurman et al. AR with measurement error

1

1+ φ2
>

θ

1+ θ2
(−φ−1) ≥ 0 (10)

3. Simulation Study Methods

We present a simulation study in which we simulate data
according to an AR process with added measurement error.
We fit an AR(1) model to the data in order to illustrate the
effects of ignoring any present measurement error, and compare
the performance of the AR(1) model to the AR(1)+WN, and
ARMA(1,1) model, which both account for measurement error.
Furthermore, we will compare the performance of the Bayesian
and frequentist estimation of these models.

3.1. Frequentist Estimation
For the frequentist estimation of the AR(1) model and the
ARMA(1,1) model a relatively wide range of procedures and
software is available. Potential estimation procedures for fitting
the AR(1)+WN model include specially modified Yule-Walker
equations, and modified Least Squares estimation procedures
(Chanda, 1996; Staudenmayer and Buonaccorsi, 2005; Dedecker
et al., 2011). However, we opt to use the (linear, Gaussian)
state-space model, for which the Kalman Filter (Harvey, 1989;
Kim and Nelson, 1999) is used to estimate the latent states,
while Maximum Likelihood is used to estimate the model
parameters (c.f., Staudenmayer and Buonaccorsi, 2005, for this
approach, but with the measurement error variance considered
as known). This is an especially convenient modeling framework
for psychological longitudinal modeling, as it readily deals with
missing data, and is easily extended to multivariate settings, or to
include latent variables (c.f., Hamilton, 1994; Harvey, 1989; Kim
and Nelson, 1999).

In the state-space model representation, a vector of observed
variables is linked to a vector of latent variables—also referred
to as “state variables”—in the measurement equation, and the
dynamic process of the latent variables is described through a
first-order difference equation in the state equation (Hamilton,
1994; Harvey, 1989; Kim and Nelson, 1999). That is, the
measurement equation is

yt = d + Fỹt + ωt

ωt ∼ MvN (0, 6ω) ,
(11)

where yt is anm×1 vector of observed outcome variables, ỹt is an
r×1 vector of latent variables, d is anm×1 vector with intercepts
for the observed variables, F is anm× rmatrix of factor loadings,
and ωt is an m × 1 vector of residuals that are assumed to be
multivariate normally distributed with zero means and m × m
covariance matrix 6ω. The state equation (also referred to as the
transition equation) is specified as

ỹt = c+ Aỹt−1 + ǫt

ǫt ∼ MvN (0, 6ǫ) ,
(12)

where c is an r×1 vector of intercepts for the latent variables,A is
an r× rmatrix of structural coefficients, and ǫt is an r× 1 vector
of residuals, which are assumed to be multivariate normally
distributed with zero means and r × r covariance matrix 6ǫ .

The previously discussed AR(1) and AR(1)+WN model are
both already specified in terms of a state-space representation
in Equations (1) through (5) (simplified where possible). For the
state-space model specification for the ARMA(1,1) model vector
d is µ, F is [ 1 0 ]T , ỹt is [ ỹ1t ỹ2t ]

T , 6ω is a zero matrix, c is a zero
vector, A is 2 × 2 matrix

[
φ 0
1 0

]
, and 2 × 2 matrix 6ǫ is equal to

HTH with H equal to [ σ1ǫ∗ θσ1ǫ∗ ], where superscript T indicates
the transpose.

To fit the frequentist state-space models we use R, with R
packages FKF (Kalman Filter; Luethi et al., 2010) combined with
R base package optim (for maximum likelihood optimization;
R Development Core Team, 2012). Within optim we used
optimization method l-bfgs-b, with lower bounds and upper
bounds for φ and θ of −1 and 1, -Inf and Inf for µ, and 0 and
Inf for σ 2

ǫ , σ
2
ω, and σ 2

ν .

3.2. Bayesian Estimation
Bayesian modeling shares a lot of conveniences with the
frequentist state-space modeling framework: For instance, like
frequentist state-space modeling procedures, Bayesian modeling
can deal conveniently with missing data, is flexible in modeling
multivariate processes, and in including latent variables in the
model. Particular to Bayesian modeling is the relative ease in
extending models to a hierarchical or multilevel setting (e.g.,
Lodewyckx et al., 2011; De Haan-Rietdijk et al., 2014). Another
advantage may be the possibility to include prior information
in the analysis, based, for instance, on expert knowledge or
results from previous research (e.g., Rietbergen et al., 2011, 2014).
Finally, the Bayesian estimation procedures are not dependent
on large sample asymptotics like the frequentist procedures,
and may therefore perform better for smaller samples (Dunson,
2001; Lee and Wagenmakers, 2005). Because currently there is
no literature on the Bayesian estimation performance for the
AR(1)+WN model, we will compare the performance of the
Bayesian AR(1), ARMA(1,1), and AR(1)+WN model with the
frequentist modeling equivalents in a simulation study.

In Bayesian estimation the information in the data, provided
through the likelihood, is combined with a prior distribution
using Bayes’ rule (c.f., Gelman et al., 2003; Hoijtink et al., 2008).
The prior distribution is specified such that it contains prior
information the researcher would like to include in the analysis.
Here we prefer to specify uninformative prior distributions that
contain minimal prior information, such that their influence is
minimal. Specifically, we use the following prior specifications
across the three models: A uniform(0, 20) prior on σ 2

ω, σ 2
ǫ , and

σ 2
ν , a uniform(−1, 1) prior on φ and θ , and a normal(0, 0.001)

prior for µ (specified with precision rather than variance). When
the prior distribution and the likelihood are combined using
Bayes’ rule, this results in the posterior probability distribution
or density of the estimated parameters. Summary statistics
based on this distribution can then be used to summarize the
information on the estimated parameters, for instance, the mean
ormedianmay be used to obtain a point estimate for an estimated
parameter, and the posterior standard deviation can be used to
describe the uncertainty around that point estimate.

Although it is possible to obtain the posterior distribution
analytically for some simple models, the Bayesian estimation
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of more complex models is usually done with Markov Chain
Monte Carlo algorithms, such as Gibb’s sampling, which relies on
consecutively samples from the conditional distributions of the
parameters (rather than directly from their joint distribution, c.f.,
Casella and George, 1992); when the procedure has converged,
one effectively samples from the (joint) posterior distribution.
These samples can then be used as an approximation of the
underlying posterior distribution, which in turn can be used to
obtain point estimates for the parameters. A particularly desirable
feature of MCMC procedures is that, based on the samples of the
estimated parameters, it is also possible to calculate new statistics
and obtain their posterior distribution. For instance, based on the
estimated parameters θ , φ, and σ 2∗

ǫ for the ARMA(1,1) model,
we will calculate the innovation variance σ 2

ǫ and measurement
error variance σ 2

ω in each sample, such that we obtain posterior
distributions for these parameters. In our simulations we use the
free open source software JAGS (Plummer, 2003) which employs
a Gibb’s sampling algorithm, in combination with the R package
Rjags (Plummer et al., 2014).

3.3. Simulation Conditions
Throughout the simulation study, we simulated 1000 data sets
per condition according to the AR(1)+WN model specified in
Equations (3–5) using R (R Development Core Team, 2012).
For all conditions, the mean of the model is fixed to 2. The
study consists of three parts. First, we examine the effect of the
proportion of measurement error variance to the total variance, on
parameter recovery. The total variance for the AR(1)+WN is the
sum of the variance for an AR(1) model and the measurement
error variance: σ 2

total
= σ 2

ǫ /(1 − φ2) + σ 2
ω (c.f., Harvey, 1989;

Kim and Nelson, 1999). To vary the proportion of σ 2
ω to the

total variance, φ and σ 2
ǫ are both fixed to 0.5 in this study

while the measurement error variance is varied. Specifically, the
measurement error variance takes on the values 0, 0.1, 0.2, 0.3,
0.5, 0.7, 1, 2, 4, and 12, which results approximately in the
following proportions of measurement error variance to the total
variance: 0, 0.13, 0.23, 0.31, 0.43, 0.51, 0.6, 0.75, 0.86, and 0.95.

Second, we examine the effect of the size of φ on parameter
recovery. We vary φ over the values −0.75, −0.5, −0.25, 0, 0.25,
0.5, and 0.75. The proportion of measurement error variance to
the total variance of the AR(1)+WN process is fixed to 0.3 here,
through varying the innovation variances σ 2

ǫ by approximately
1.2, 1.1, 0.9, 0.5, 0.9, 1.1, and 1.2 respectively.

Third, we examine the effects of sample size. In part 1 and
2 of the study we use a sample size 100 repeated measures. We
based this number roughly on what one may expect for research
in psychology: Typically, what we see in time series applications
in psychology is a range of about 60–120 repeated measures per
person (e.g., see Nezlek and Gable, 2001; Rovine andWalls, 2006;
Madhyastha et al., 2011; Ferrer et al., 2012; Wang et al., 2012;
Adolf et al., 2015). However, in preliminary analyses we found
difficulties in estimating the model with a small sample size,
especially for the frequentist estimation procedure, that pointed
to empirical underidentification (we elaborate on this in the next
section). Therefore, we varied sample size by 100, 200, and 500.
For this part of the study σ 2

ǫ , σ
2
ω, and φ were fixed to 0.5, implying

a proportion of measurement error variance to the total variance
of 0.43.

We judge the performance of each model based on: (a) its bias
in the estimates; (b) the absolute error in the estimates; and (c)
coverage rates for the 95% confidence or credible intervals. It is
not clear whether Bayesian 95% credible intervals should have
exactly 95% coverage rates, however, with uninformative priors
we would expect this to be the case. Moreover, we consider it
informative to see how often the true value lies within the credible
interval across multiple samples (e.g., if this occurs very rarely
this seems problematic for making inferences).

For the coverage rates of the variances estimated with the
frequentist ML procedure, we calculate the confidence intervals
based on a χ2 distribution with n − 1 degrees of freedom as

follows: CI( (n−1)s2

χ2
1−α/2

,
(n−1)s2

χ2
α/2

), where n is the sample size, and s2 is

the estimated variance.

3.4. Expectations
For part 1, we expect that all models will decrease in performance
(i.e., more bias and absolute error, lower coverage rates) as the
proportion of measurement error variance increases, because an
increase in random noise should make it harder to distinguish an
(autoregressive) effect. Furthermore, we expect that the decrease
in performance will be larger for the AR(1) model than for
the ARMA(1,1) and AR(1)+WN model. Specifically, based on
Staudenmayer and Buonaccorsi (2005), we expect a bias in the
estimates of φ in the AR(1) model of approximately 0, −0.07,
−0.12, −0.16, −0.21, −0.26, −0.30, −0.38, −0.43, and −0.47,
given that the proportions of measurement error variance are 0,
0.13, 0.23, 0.31, 0.43, 0.51, 0.6, 0.75, 0.86, and 0.95.

For part 2, we expect that the AR(1)+WN and ARMA(1,1)
models will improve in performance as the value of |φ| increases,
given that σ 2

ω and σ 2
ǫ should be more easily distinguished from

each other as |φ| approaches 1. We are specifically interested
in the performance of the AR(1)+WN model compared to the
ARMA(1,1) model when |φ| is relatively small. Given that the
ARMA(1,1) model is identified regardless of the value of φ, we
expect the ARMA(1,1) model may converge better, and therefore
to perform better when φ is relatively close to zero than the
AR(1)+WNmodel, which is no longer identified when φ is equal
to zero.

For part three, we expect that performance will improve
as sample size increases for the ARMA(1,1) model and the
AR(1)+WN model, both in the frequentist and Bayesian
estimation procedure. Finally, we expect that the Bayesian
procedure will perform better than the frequentist state-space
procedures for smaller sample sizes, given that both modeling
procedures have similar benefits, but the Bayesian estimation
procedure is not dependent on large sample asymptotics
(Dunson, 2001; Lee and Wagenmakers, 2005).

4. Simulation Study Results

In this section we present the results of the simulation study. As
was mentioned before, for a sample size of 100 we found some
convergence issues especially for the frequentist ML procedure.
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Given that convergence is an important precondition for
obtaining reasonable parameter estimates, we start by discussing
the convergence of the Bayesian models and frequentist models
across the different parts of the simulation study. After that, we
discuss the parameter recovery performance for each condition
specific for each of the three parts of the simulation study. We
end with a summarizing conclusion.

4.1. Convergence of the Bayesian Procedures
For the Bayesian procedures we obtained three chains of 40,000
samples each for each replication, half of which was discarded
as burn-in. We judged convergence based on the multivariate
Gelman-Rubin statistic and autocorrelations for all replications,
and we inspected the mixing of the three chains visually a
number of replications (c.f., Gelman and Rubin, 1992; Brooks
and Gelman, 1998). For the AR(1) model the chains mixed
well, the Gelman Rubin statistic was generally equal to one, and
the autocorrelations for the parameters decreased exponentially
across all conditions.

For the ARMA(1,1) the chains generally mixed well, and the
Gelman Rubin statistic was equal to one across all conditions.3

The autocorrelations for the parameters decreased slower than
for the AR(1) model, and decreased most slowly when the
proportion of measurement error variance was higher than 50%
or |φ| was zero.

For the AR(1)+WNmodel, overall the chains mixed well and
the Gelman Rubin Statistic was equal to one formost replications.
For approximately 1–2% of the data sets the Gelman Rubin
statistic was larger than 1.1, indicating possible non-convergence,
with the exception of the condition where φ = 0.75, for
which it was 8%. Closer inspection indicated that these problems
usually originated and were limited to µ. The percentage of non-
convergence is larger for the condition φ = 0.75, most likely
because when φ is strong and positive it is most difficult to
estimate µ because observations may tend to linger longer above
or below the mean. The autocorrelations for the AR(1)+WN
model are higher overall, and slower to decrease than those for
the AR(1) and ARMA(1,1) model across all conditions. More
measurement error and a closer |φ| to zero, was associated with
more slowly decreasing autocorrelations.

4.2. Convergence of the (Frequentist) ML with
State-space Modeling Procedures
For the ML procedure we encountered three types of problems:
(1) negative standard errors for the estimated parameters , (2)
optim failing to initialize (more rarely), and (3) Heywood cases
(negative variances) for the measurement error variance or the
innovation variance. The first and second type of problem could
usually be resolved by providing alternative starting values and
rerunning the model. For a small percentage of data sets, five

3By visually inspecting the chains for µ in the ARMA(1,1) model, we found some

extreme values for some of the Gibb’s samples (visible as large “spikes” in the

chains). To limit these extreme values we adjusted the normal prior for µ to have a

smaller variance (10), however this did not resolve the issue completely. As a result,

the posterior standard deviation for µ was very large, however, the effects on the

point estimates and credible intervals seem limited when we compare these results

for µ to those of the other models.

sets of starting values still did not resolve these issues (for the
number of data sets per condition, see Table A1 in Supplementary
Materials). These data sets are excluded from the parameter
recovery results. When sample size was increased to 200 or
500 repeated measurements, these problems were no longer
encountered.

The third type of problem—Heywood cases—was much more
prevalent, and could generally not be resolved by providing
different starting values. For the AR(1)+WNmodel, for 10–55%
of the replications σ 2

ω, or more rarely σ 2
ǫ , were estimated at the

lower bound of zero. For the ARMA(1,1) model, we similarly
detected Heywood cases for σ 2

ω and σ 2
ǫ (note that σ 2

ω and σ 2
ǫ are

calculated a posteriori based on the estimated φ, θ and σ 2∗
ǫ by

means of Equations 8 and 9). In the case that for the AR(1)+WN
model σ 2

ω or σ 2
ǫ were estimated at the lower bound, usually a

Heywood case would also observed for the ARMA(1,1) model
for that replication. The proportions of Heywood cases for σ 2

ω

and σ 2
ǫ across all conditions are reported in Table A1 in the

Supplementary Materials.
The number of Heywood cases increased when: (1) φ got

closer to zero, such that it is harder to discern measurement
errors from innovations (2) when there was very little
measurement error, such that σ 2

ω was already close to zero, and
(3) There was a lot of measurement error, such that all parameter
estimates were uncertain (large standard errors). This indicates
issues of empirical identification, and as such we expected these
issues to decrease as sample size increases.

The Heywood cases for σ 2
ǫ and σ 2

ω decreased as sample size
increased—however, the issues were not resolved completely: For
n = 200 almost 30% of the data sets still returned a Heywood
case, and for n = 500 almost 13% still returned a Heywood
case. Given that for smaller sample sizes (e.g., less than 500),
which are much more common in psychological studies, the
proportion of replications with Heywood cases was quite large
for many conditions, this seems quite problematic. In practice,
encountering such a result may lead a researcher to erroneously
conclude that there most likely is no considerable measurement
error variance, so that a regular AR(1) model should suffice.

In the following sections, where we discuss the parameter
recovery results, the data sets with Heywood cases for σ 2

ω or σ 2
ǫ

are included in the results, because to exclude so many data sets
would make a fair comparison to the Bayesian procedure (for
which no data sets need to be excluded) problematic. However,
the results with these data sets excluded for the ML AR(1)+WN
model and ARMA(1,1) model are presented and discussed in
Supplementary Materials. Finally note that, in contrast to our
expectations, in the ML procedure the ARMA(1,1) model does
not seem to converge more easily than the AR(1)+WNmodel. In
general it seems that in order to properly estimate and distinguish
the measurement error variance from the innovation variance
using ML, quite large sample sizes are required.

4.3. Parameter Recovery for Different
Proportions of Measurement Error
In general, as the proportion of measurement error increases,
the estimated parameters become increasingly more biased,
the absolute errors become larger, and coverage rates become
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lower, as expected. In Figure 2 we provide plots of the 95%
coverage, absolute errors, and bias for eachmodel, condition, and
parameter. As can be seen from this figure, overall, the Bayesian
AR(1)+WN model outperforms the other procedures in terms
of coverage rates and absolute errors, and for the variance
parameters also in terms of bias. TheML state-space AR(1)+WN
model performs second-best overall, and performs the best for
φ in terms of bias. The Bayesian and frequentist AR(1) and
ARMA(1,1) models perform relatively poorly in all respects.
However, the ARMA(1,1) models result in better coverage rates
for φ than the AR(1) models, so that an ARMA(1,1) model is still
preferred over a simple AR(1) model. Below, we will discuss the
results in more detail, per parameter.

For µ, all models perform similarly well in terms of bias and
absolute error, as can be seen from the top-left panel of Figure 2.
In terms of coverage rates, the Bayesian AR(1) and AR(1)+WN
model outperform the other models for µ, most pronouncedly
when the proportion of measurement error is high.

For φ, the models that perform the best in terms of bias are the
ML AR(1)+WN model, followed by the Bayesian AR(1)+WN
model (see the top-right panel in Figure 2). The bias for φ in
both AR(1) models is in line with our expectations, increasing
from approximately 0 to −0.5 as measurement error increases.
As can be seen from the top-right panel of Figure 2, in terms of
absolute error for φ, the Bayesian AR(1)+WN model performs
the best, followed by the ML AR(1)+WN model. The top-
right panel of Figure 2 shows that the coverage rates for φ

FIGURE 2 | Coverage rates, absolute errors, and bias for the parameter estimates for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN

models across different proportions of measurement error variance to the total variance.
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based on the 95% CI’s for the Bayesian ARMA(1,1) model are
consistently higher than those for the other models, however,
this is a result of having wider credible intervals, rather than a
result of more precise estimates for φ. The coverage rates for the
Bayesian AR(1)+WN model are most stable across the different
proportions of measurement error variance. The coverage rates
for this Bayesian model are generally higher than 0.954, only
dropping below 0.95 when 75% or more of the total variance is
measurement error variance. In comparison, theMLAR(1)+WN
model starts with a coverage rate of approximately 0.95 for φ

when measurement error is absent, and the coverage decreases
as measurement error increases (with a lowest coverage of 0.55
when 95% of the variance is due to measurement error). The
ML ARMA(1,1) model and the Bayesian and ML AR(1) models
perform the worst, as can be seen from Figure 2. Note that for
the AR(1) models, the coverage rates for φ are already below 90%
when the proportion of measurement error variance is as little
as 0.13.

In the bottom panel of Figure 2 the results for σ 2
ω and σ 2

ǫ are
displayed. When the proportion of error variance is larger than
about 0.3, the Bayesian AR(1)+WN model starts to outperform
the ML AR(1)+WN model in terms of bias for σ 2

ω and σ 2
ǫ .

Further, it can be seen from Figure 2 that for the AR(1)+WN
models, when the proportion of measurement error is small, the
measurement error variance is slightly overestimated, while when
the proportion of measurement error is large, the measurement
error variance is underestimated. The coverage rates are the
highest for the Bayesian AR(1)+WN and ARMA(1,1) model.
Note that for the ARMA(1,1) model σ 2

ω and σ 2
ǫ are calculated

based on the estimated ARMA(1,1) parameters. For the Bayesian
model this was done in each Gibbs sample by means of Equations
(8) and (9), resulting in a posterior distribution for σ 2

ω and σ 2
ǫ .

However, depending on the specific values of the ARMA(1,1)
parameters in each Gibbs sample, σ 2

ω and σ 2
ǫ may become

quite large or even negative. As a result, the posterior standard
deviations and credible intervals for σ 2

ω and σ 2
ǫ in the Bayesian

ARMA(1,1) model can be quite large, including negative and
large positive values. The confidence intervals for the variances
parameters in frequentist procedures are consistently too narrow,
which results in low coverage rates, as can be seen from the
bottom panel of Figure 2. As such, for the two variances, the
Bayesian AR(1)+WN model performs best in terms of coverage
rates, followed by the Bayesian ARMA(1,1) model (which has
higher coverage rates, but much wider intervals), and the ML
AR(1)+WN model. The same pattern holds for the absolute
errors as can be seen in Figure 2.

4.4. Parameter Recovery for Different Values of φ
For this part of the study, the value of φ was varied from −0.75
to−0.5,−0.25, 0, 0.25, 0.5, and 0.75. As can be seen from the top-
left panel of Figure 3, for µ all the models perform very similarly
in terms of bias, absolute errors, and coverage rates. The absolute

4While it may seem undesirable that the Bayesian model has “too high” coverage

rates, indicating too large credible intervals or exaggerated uncertainty about the

estimated parameters, it is important to note that compared to the ML model, the

Bayesian estimates actually have smaller posterior standard deviations than theML

standard errors for φ.

errors and bias increase as φ becomes larger, because when φ is
strong and positive, observations may tend to linger longer above
or below the mean than when φ is weak or negative, making it
harder to estimate µ.

As can be seen from the top-right and bottom panel of
Figure 3, the results for φ and the variance parameters are
symmetric for negative and positive values of φ (or mirrored
in the case of bias). As such, we will discuss these results in
terms of |φ|. For the parameters φ, σ 2

ǫ and σ 2
ω, performance

increases as |φ| increases, except the AR(1) models, for which
it is the opposite. Overall, the Bayesian AR(1)+WN performs
best, followed by respectively the ML AR(1)+WN model, the
Bayesian ARMA(1,1) model, and theMLARMA(1,1) model. The
performance of the latter three models decreases considerably
more as |φ| decreases than that of the Bayesian AR(1)+WN
model, as can be seen from Figure 3.5 For the two variances,
the ML AR(1)+WN model outperforms the Bayesian model in
terms of bias. Finally, we find that when |φ| is relatively close to
one, the measurement error variance is underestimated, however,
when |φ| is relatively small, the measurement error variance was
actually overestimated, as can be seen from the bottom panel of
Figure 3.

4.5. Parameter Recovery for Different Sample
sizes
For this part of the simulation study, the sample size was varied
from 100 to 200 and 500. As shown in Figure 4, as sample size
increases, parameter recovery improves: Bias and absolute errors
decrease, while coverage rates become closer to 0.95. We Further,
the ML AR(1)+WN results become more similar to those of the
Bayesian AR(1)+WN model as sample size increases, although
the Bayesian model still outperforms the ML model in terms of
absolute error and coverage: The Bayesian procedure results in
higher coverage rates, but less wide intervals, that is, in more
precise estimates than the ML procedure for φ. Note that the
performance of the ML and Bayesian ARMA(1,1) models only
near the performance of the AR(1)+WN models as sample size
has increased to 500 observations.

4.6. Conclusion
Overall, the Bayesian AR(1)+WN model performs better than
the other five procedures we considered. We expected that
the ARMA(1,1) models may outperform the AR(1)+WN
models in parameter recovery, because we expected this model
to have less trouble with identification and convergence.
Interestingly, although the Bayesian ARMA(1,1) model seems
to converge more easily than the Bayesian AR(1)+WN model,
the AR(1)+WN model still outperforms the ARMA(1,1) model
in terms of parameter recovery, even when φ is close or equal
to zero. The ML AR(1)+WN model and ARMA(1,1) models
are both unstable for small sample sizes (n = 100), frequently
resulting in Heywood cases for the innovation and measurement
error variances. However, the ML AR(1)+WN model still

5The diverging patterns in the bias and absolute errors for the ML ARMA(1,1)

model is a result of the Heywood cases discussed in Section 4.2; when the Heywood

cases are removed the pattern is similar to the patterns of the other models, as can

be seen in Figures B1,B2 in Supplementary Materials.
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FIGURE 3 | Coverage rates, absolute errors, and bias for the parameter estimates for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN

models across different values for φ.

performs relatively well for estimating φ compared to the AR(1)
models. For a smaller sample size of 100 observations the
Bayesian procedure outperforms the frequentist ML procedure.
When sample sizes are larger, the discrepancies between the
Bayesian and frequentist AR(1)+WN model decrease, although
the confidence intervals for the variance parameters in the
frequentist procedures are consistently too narrow. As expected,
the AR(1) models severely underestimate |φ|, which is reflected
in large bias and absolute errors, and low coverage rates.
Finally, we note that although the AR(1)+WN models perform
considerably better than the AR(1) models, some bias in φ

still remains, because the innovations and measurement errors
cannot be perfectly discerned from each other. Generally, the
moremeasurement error and the lower |φ|, themore the estimate

of |φ| will be biased, even when measurement error is taken into
account by the model.

5. Empirical Application on Mood Data

To further illustrate the AR(1), ARMA(1,1), and AR(1)+WN
model discussed above, we make use of time series data that was
collected from female first year social science students at Utrecht
University in 2007. Eleven women kept a daily electronic diary
for approximately 3 months (across participants the minimum
was 90 observations, the maximum 107 observations), in which
they filled out how they felt that day on a scale from 1 to
100—1 meaning worst ever, and 100 meaning best ever. Three
of the eleven women were excluded from the current study
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FIGURE 4 | Coverage rates, absolute errors, and bias for the parameter estimates for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN

models across sample sizes.

because of non-compliance, issues with the electronic devices,
and one woman had very little variation in her scores. For the
remaining women the average number of missing observations
was approximately nine. Values for these missing observations
will be automatically imputed as part of the estimation procedure,
based on the specified model.

We are interested in finding out to what extent current mood
influences mood the following day. As such, we are interested
in fitting an AR(1) model, and specifically in the AR effect
reflected in parameter φ. However, the mood of each person is
not likely to be perfectly measured. For instance, it is possible that
participants accidentally tapped the wrong score when using the
electronic diary stylus to fill in the questionnaire. Furthermore,
the participants evaluate their mood for the day on average, such

that momentary influences around the time of filling out the
diary may have colored their evaluation of the whole day (i.e., a
form of retrospective bias). In fact, anything that is not explicitly
measured and modeled, and of which the influence does not
carry-over to the next day, can be considered measurement error.
As such, it seems likely that there is at least some measurement
error present in the data. Therefore, we fit the AR(1)+WNmodel
to take this measurement error into account, and for illustrative
purposes compare it to an ARMA(1,1) model, and an AR(1)
model (which disregards measurement error). The data and
codes for running the analyses are included in the Supplementary
Materials. We make use of a Bayesian modeling procedure, given
that the results from our simulation study indicate that the
parameter recovery performance of the Bayesian procedure is
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better and more stable for this number of repeated measures.
The priors we use for the models are aimed to be uninformative,
specifically: A uniform(0, 500) prior distribution for all variance
parameters, a uniform(−1, 1) prior distribution for φ and θ ,
and a normal(0, 0.001) prior distribution for µ (specified with a
precision rather than a variance).

We evaluated the convergence of the AR(1), ARMA(1,1), and
AR(1)+WNmodel by visually inspecting the mixing of the three
chains, the Gelman Rubin statistic, and the autocorrelations. For
the AR(1) and AR(1)+WN model the chains mixed well, the
Gelman Rubin statistic was approximately equal to one, and
the autocorrelations for the parameters decreased within 50–100
lags across all participants. For the ARMA(1,1) model this was
the case, except for participants 3 and 8.6 We included the

6For participants 3 and 8 we found that the estimates for φ and θ in the ARMA(1,1)

model were very dispersed, varying across the entire range of −1 to 1, switching

from negative to positive values. A density plot of their samples revealed a

bimodal distribution for φ and θ (with one peak around negative values, and

one for positive values): This seems to be some form of label switching, which is

ARMA(1,1) estimates for these participants in Table 1, but these
should be interpreted with caution.

The parameter estimates of the mean µ, AR parameter φ,
innovation variance σ 2

ǫ , measurement error variance σ 2
ω, and

moving average parameter θ for each person are presented in
Table 1. For most of the eight individuals, the baseline mood is
estimated to be around 60–70, which indicates that on average
they are in moderately good spirits. Further, we see that across
models and persons, the AR parameters are either estimated to be
positive, or nearly zero. Participant 8 has an AR effect near zero
in both the AR(1) model and the AR(1)+WN model, so that for
her, everyday seems to be a “new day”: How she felt the previous
day does not predict her overall mood today. On the other hand,
for participants 2, 4, 5, and 6, the credible intervals for φ include
only positive values across models: how they feel today depends
in part on how they felt yesterday. For the remaining individuals,

indicative of (empirical) under–identification of the ARMA(1,1) model for these

two participants.

TABLE 1 | Parameter estimates for the AR(1), ARMA(1,1), and AR+WN model for the mood of eight women, estimated with Bayesian software.

Pp Model µ (95% CI) φ (95% CI) σ2
ǫ (95% CI) σ2

ω (95% CI) σ2*
ǫ (95% CI) θ (95% CI)

1 AR1 75 (72,79) 0.08 (−0.17,0.32) 166 (122,235) – – –

ARMA 76 (72,81) 0.53 (−0.32,0.90) 21.34 (− 91,180) 125 (− 6,278) 160 (117,227) −0.41 (−0.81,0.29)

ARWN 76 (72,79) 0.39 (−0.23,0.77) 42 (3,160) 112 (16,193) – –

2 AR1 63 (59,68) 0.36 (0.13,0.57) 188 (141,256) – – –

ARMA 63 (58,69) 0.48 (−0.21,0.97) 103 (−740,1087) 69 (− 870,960) 189 (142,257) −0.13 (−0.64,0.49)

ARWN 63 (58,68) 0.52 (0.15,0.84) 101 (20,208) 77 (7,184) – –

3 AR1 63 (61,66) 0.21 (0,0.42) 108 (81,148) – – –

ARMA 64 (61,66) 0.02 (−0.72,0.81) −1 (− 288,251) 109 (− 134,418) 105 (79,144) 0.19 (−0.64,0.95)

ARWN 64 (61,67) 0.40 (−0.01,0.82) 38 (4,112) 64 (6,118) – –

4 AR1 56 (53,58) 0.21 (0.01,0.42) 103 (78,141) – – –

ARMA 54 (40,59) 0.85 (0.35,0.99) 7 (1,47) 75 (44,112) 95 (71,130) −0.68 (−0.87,−0.14)

ARWN 55 (49,59) 0.69 (0.07,0.97) 19 (2,88) 70 (17,111) – –

5 AR1 69 (64,75) 0.48 (0.28,0.67) 174 (131,239) – – –

ARMA 69 (62,77) 0.67 (0.20,0.92) 86 (24,348) 61 (− 139,143) 173 (130,237) −0.26 (−0.58,0.24)

ARWN 69 (62,77) 0.67 (0.37,0.91) 90 (27,190) 66 (6,140) – –

6 AR1 73 (71,74) 0.27 (0.07,0.46) 31 (24,42) – – –

ARMA 73 (71,74) 0.18 (−0.43,0.66) 22 (− 305,349) 8 (− 314,339) 31 (24,42) 0.09 (−0.45,0.61)

ARWN 73 (71,74) 0.33 (0.01,0.62) 21 (4,35) 10 (0.51,30) – –

7 AR1 71 (69,73) 0.08 (−0.13,0.28) 105 (79,144) – – –

ARMA 71 (65,75) 0.48 (−0.77,0.99) 7 (− 132,175) 87 (− 63,248) 104 (78,142) −0.36 (−0.90,0.77)

ARWN 71 (68,74) 0.26 (−0.57,0.92) 23 (1,101) 76 (8,123) – –

8 AR1 73 (71,74) 0.03 (−0.18,0.24) 59 (44,80) – – –

ARMA 73 (71,74) −0.22 (−0.81,0.84) −5 (− 131,102) 67 (− 41,197) 57 (43,78) 0.31 (−0.98,0.95)

ARWN 73 (71,74) −0.03 (−0.65,0.51) 16 (0.35,61) 42 (2,70) – –

Note that the negative values for in the credible interval for σ 2
ǫ and σ 2

ω for the ARMA(1,1) models result, because they are calculated a posterior based on the samples for φ, θ , and

σ 2*
ǫ based on Equations (8) and (9): It is possible that for certain combinations of these parameters σ 2

ǫ and σ 2
ω become negative. For participants 3 and 8 the ARMA(1,1) model did not

converge properly, so that these results should be interpreted with caution.
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1, 3, and 7, the point estimates for φ are also positive, however,
the credible intervals including negative and positive values
for φ.

When we compare the results for the AR(1) model and
the AR(1)+WN model, we find that for all participants except
participant 8, the AR parameter is estimated to be higher in
the AR(1)+WN model: Because the AR(1) model does not take
measurement error into account, the AR parameter is estimated
to be lower than for the AR(1)+WNmodel. The extent to which
the estimate for φ differs across the AR(1) and AR(1)+WN
model, differs from person to person. The larger the estimated
measurement error variance relative to the total variance, the
larger the difference between the estimated φ in the AR(1) and
AR(1)+WN model. For instance, for participants 4 and 6 their
estimates of φ in the AR(1) model are quite similar to each other
(i.e., 0.21 and 0.27), but because the measurement error variance
for participant 4 is estimated to be much larger than that for
participant 6 (i.e., 70 vs. 10), her φ in the AR(1)+WN model φ

is also estimated to be larger (i.e., 0.69 vs. 0.33).
Note that the ARMA(1,1) and AR(1)+WN model should

not necessarily give the same results: Although the AR(1)+WN
model is equivalent to the ARMA(1,1) model, the reverse is not
the case. In other words, it is possible that the ARMA(1,1) model
captures a different pattern of variation in the data than the
AR(1)+WN model, giving different results. However, when we
compare the results for the ARMA(1,1) and AR(1)+WN model,
we do find fairly similar results for most of the participants (with
exception of participants 3 and 8, who had convergence issues
for the ARMA(1,1) model), especially for participants 2 and
5. However, a clearly notable difference is that the ARMA(1,1)
model has less precise estimates than the AR(1)+WN model, as
can be seen from the relatively wide credible intervals for the φ

parameters in Table 1.
Finally, we note that when we calculate the estimated

proportion of measurement error variance relative to the total
variance based on the AR(1)+WN model for each participant,
we find a range of 0.34–0.50 (i.e., 0.36, 0.47, 0.48, 0.50, 0.46, 0.42,
0.46, and 0.34 respectively). This implies that across these eight
women, between one third to half of the observed variance is
estimated to be due to measurement error.

6. Discussion

In this paper we demonstrate that it is important to take
measurement error into account in AR modeling. We illustrated
the consequences of disregarding measurement error present in
the data both in a simulation study, and an empirical example
based on a replicated time series design. Further, we compared
the parameter recovery performance for the Bayesian and
frequentist AR(1)+WN and ARMA(1,1) models that account for
measurement error. Ignoring measurement error present in the
data is known to result in biased estimates toward zero of the AR
effects in AR(1) models, with the extent of the bias depending
on the proportion of measurement error variance and the size
of φ (Staudenmayer and Buonaccorsi, 2005). Our simulations
also demonstrated this bias, and showed large absolute errors
and importantly, very poor coverage rates for the AR effect when

measurement error is disregarded, regardless of sample size. For
research in psychology, for which it is very difficult or perhaps
impossible to measure error-free, it seems imperative to consider
this potentially large source of variance in our (AR) time series
models. In our empirical application for instance, between one
third to half of the variance in the data is estimated to be due to
measurement error.

Comparing the parameter recovery for the models that
incorporate measurement error—the Bayesian and ML
ARMA(1,1) model and AR(1)+WN model—revealed that
the Bayesian AR(1)+WN model performed best in terms of
parameter recovery. It proved relatively tricky to properly
estimate the ML ARMA(1,1) and AR(1)+WN model, even for
larger sample sizes of 500 repeated measures: These models are
prone to Heywood cases in the measurement error variance and
to a lesser extent in the innovation variance. This was especially
common (up to 55% of the replications) when AR effect was
closer to zero, or the amount of measurement error was large. In
practice, hitting such a lower bound for the measurement error
variance may erroneously suggest to researchers that the model
is overly complex, and that there is no notable measurement
error present in the data, which is problematic.

Note that while 100 observations may be small for estimation
purposes, it is quite a large number of repeated measures to
collect in practice. In psychological research using intensive
longitudinal data, we usually see no more than about 120
observations per person (to illustrate, 120 observations would
arise from about 4 months of daily measurements, or for more
intense 2 weeks regime, measuring someone 9 times a day).
Fortunately, the Bayesian AR(1)+WN model provides a good
option even for such small sample sizes. Still, the models that
incorporate measurement error need more observations to give
as precise estimates as the basic AR(1)model, which has relatively
small credible/confidence intervals (although this is precision
around a wrong estimate when there actually is measurement
error present in the data). Therefore, it seems good practice to
take potential measurement error into account in the design
of the study, thus collecting more repeated measures in order
to compensate for any potential measurement error that has
to be filtered out later. Expectedly, and as is shown in the
simulation study, this becomes especially important when the
proportion of measurement error variance is relatively large,
or when the AR effects are (expected to be) relatively small.
One option to improve the estimates may be to use (weakly)
informative prior specifications based on previous research, or
expert knowledge. However, prior information on the model
parameters may currently prove difficult to obtain, given that
studies that estimate measurement error or take it into account
are very rare, and that the model parameters differ from person
to person, and from variable to variable. Another option could be
to extend the AR+WN model to a multilevel model, assuming a
common distribution for the parameters of multiple individuals,
and allowing the model parameters to vary across persons. By
making use of this hierarchical structure that can take similarities
between persons into account, a relatively low number of time
points may be compensated for to some extent by a large number
of participants, whichmay be easier to obtain (for examples of the
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multilevel AR(1) model, see Rovine and Walls, 2006; Lodewyckx
et al., 2011; De Haan-Rietdijk et al., 2014).

The reader may wonder how one may determine if there
is, or isn’t, measurement error present in the data. One way
to do this is to use information criteria to compare the AR(1)
model with the ARMA(1,1) or AR(1)+WN model. Although
a thorough study of model selection is beyond the scope of
the current paper, we provide some preliminary evaluations
of the model selection performance of the AIC, BIC, and
DIC, in Supplementary Materials. We find that these criteria
frequently incorrectly selects the simpler AR(1) model over
the (true) AR(1)+WN model and ARMA(1,1) model, so that
these criteria seem inappropriate for selecting between the
AR(1) and the ARMA(1,1) model or the AR(1)+WN model
in this context. Selecting between an AR(1)+WN model and
an ARMA(1,1) model will also be problematic using standard
information criteria, because the AR(1)+WN model may be
considered a restricted (simpler) version of the ARMA(1,1)
model (see Equation 8), while they have the same number
of parameters, and thus the same penalty for complexity for
many fit criteria. In that sense, when they have equal fit,
the AR(1)+WN model may be preferred because it is the
simpler model, but if this is not the case, it becomes more
complicated to choose between the two. Directions for future
research therefore are to establish information criteria for
selecting between the AR(1)+WN model and the AR(1) and
ARMA(1,1) model, perhaps using information criteria or Bayes
factors developed for restricted parameters (c.f., Dudley and
Haughton, 1997; Klugkist andHoijtink, 2007; Kuiper et al., 2012).
Although model selection using information criteria may prove
complicated, it is important to note that the estimates for φ in the
AR(1)+WN models seem to be reasonably accurate, even when
there is no measurement error present in the data. Combined
with the intuition that most psychological measurements
will contain at least some measurement error, fitting the
model that incorporates measurement error seems a relatively
“safe bet.”

Another interesting topic for future work is howmeasurement
error affects estimates of the effects variables have on each
other over time, that is, the cross-lagged effects. This may
be especially relevant for individual network models of
psychological processes (Schmittmann et al., 2013). For example,

in a network model for an individual diagnosed with a depressive
disorder, the depression symptoms constitute the nodes in the
network, and the AR and cross-lagged effects between the
symptoms constitute the connections in this network (Borsboom
and Cramer, 2013; Bringmann et al., 2013). It would be
interesting to investigate to what extent measurement error in
each variable affects the resulting network.

Finally, while incorporating measurement error into time
series models is likely to decrease distortions as a result of
ignoring measurement error to the parameter estimates, we
emphasize that it is not a cure-all. Even in the models that
incorporate measurement errors, the AR parameters may be
slightly under- or over-estimated, because measurement error
variance and innovation variance are not completely discernible
from each other. The more measurement error present in the

data, the more difficult it will be to pick up any effects. Therefore,
there is still a strong argument for preventing measurement
errors in the first place. One option to potentially improve
the measurements is to use multiple indicators to measure
the relevant construct. However, in a intensive longitudinal
data setting, using multiple items for each variable would
strongly increase the burden on the participant, who would
have to repeatedly fill out all these questions. What remains are
classical ways of preventing measurement error: Improving the
respective measurement instruments, the circumstances under
which participants are measured, and explicitly measuring and
modeling potential sources of measurement error. Still, any
remaining measurement error that could not be prevented,
should be taken into account in the respective model. That is,
prevention is better than cure—but a cure is better than ignoring
the issue.
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The coefficient of variation (CV ) is an
important and underused statistic that
implies that the standard deviation has dif-
ferent meanings depending on the mean
(Fisher, 1925; Yates, 1951; Yadav et al.,
2013; Trafimow, 2014) and is computed
by dividing the standard deviation by the

mean
(

CV = σ
μ

)

. To gain a feel for how

means impact the meanings of standard
deviations, imagine that there are two
classes and that the standard deviation of
the final exam is 5 points in both of them
but that the mean is 25 in Class 1 and 75
in Class 2. It follows that the coefficient
of variation is 0.200 in Class 1 whereas it
is 0.067 in Class 2. Thus, relative to the
mean the standard deviation is thrice the
size in Class 1 as in Class 2. Consequently,
the actual value of the standard deviation
is the same in both classes but its meaning
is very different.

In keeping with this Special Issue on
means, my goal is not to discuss how
means influence the meanings of stan-
dard deviations (see Trafimow, 2014 for
this discussion). Rather, it is to show that
the coefficient of variation is a two edged
sword so that if means modify the mean-
ings of standard deviations, the reverse
also is so. Standard deviations influence
the meanings of means. An easy demon-
stration involves defining a new variable,
termed the coefficient of centrality (CC),
which is the reciprocal of the coefficient
of variation and is given as Equation (1)
below.

CC = 1

C V
= 1

μ
σ

= μ

σ
(1)

To gain a preliminary idea of how the
coefficient of centrality works, suppose

Company A makes pies with a mean of
100 per day and distributes them to a store
that, on average, sells 100 of the pies per
day. Attending only to means, life seems
good because Company A is producing
exactly the number of pies that maximizes
profit but avoids the perils of overpro-
duction. But now consider the standard
deviation. Suppose that the standard devi-
ation is 15 so that there is an approximately
16% chance that on any particular day, the
factory will be short by 15 or more pies
and a 16% chance that the factory will
be long by 15 or more pies. Now, imag-
ine that the company makes an innovation
that reduces the standard deviation from
15 to 5. From a mean-centric point of
view, the innovation might seem irrelevant
because the mean remains at 100 pies per
day. But the coefficient of centrality sug-
gests otherwise as the innovation causes
an increase in the coefficient from 6.67 to
20. Now the probability of underproduc-
tion by 15 or more pies decreases from
16% to 0.15% and the probability of over-
production by 15 or more pies decreases
similarly. Clearly, the same mean value
of 100 pies per day has different impli-
cations for underproduction and over-
production depending on the standard
deviation.

Let us now consider Company B that
also makes pies. This company produces
a mean of 105 pies per day, with a stan-
dard deviation of 15 pies, even though
their outlet is only willing to buy 100 pies
per day. A possible reason for overpro-
ducing is that it is much worse to anger
the customer by not having enough pies
than to overproduce. Assuming this reason
is valid, if we take Company A before its

innovation when it also had a standard
deviation of 15 but a mean of 100, it is
obvious that the mean of Company B is
higher than the mean of Company A, and
Company A is therefore more at risk of
angering its customer base. But let us now
compare the means of the two companies
after the Company A innovation reduced
its standard deviation to 5. Which mean
is larger? It depends on what we mean by
“larger.” At first blush, the mean is 105
for Company B and 100 for Company A
and so the mean is larger for Company
B than for Company A. On the other
hand, consider the coefficients of central-
ity; these are 7 for Company B and 20
for Company A and suggest the opposite
conclusion. Which conclusion is correct?
It depends on the goal. If the goal were
simply to maximize pie production over a
period of time, then a mean of 105 is supe-
rior to a mean of 100. But if the goal is
to avoid dramatic underproduction, then
the latter conclusion is correct; Company
B (despite the mean of 105) will have
more days of dramatic underproduction
than will Company A (despite the mean of
100). The coefficient of centrality demon-
strates that means have different meanings
depending on standard deviations.

Consider a more basic example. One
professor teaches an undergraduate class
on abnormal psychology and another
professor teaches an undergraduate class
on cognitive psychology where the mean
scores on the final exam are 75% and 65%,
respectively. Is the abnormal psychology
class better than the cognitive psychology
class? Suppose that the standard deviations
are 25% and 5% so that the coefficients
of centrality are 3 and 13, respectively.
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Relative to the standard deviations, the
cognitive psychology class mean well
exceeds the abnormal psychology class
mean, which suggests exactly the oppo-
site conclusion. Of course, there are many
other factors that could be at play but
the coefficient of centrality suggests that
it can be a mistake to consider the means
without also considering the standard
deviations.

In light of this example, it is worth
mulling over advanced statistical liter-
atures pertaining to standard deviation
weighted analysis of variance (Kulinskaya
et al., 2003) and weighted least squares lin-
ear regression (Strutz, 2010). These anal-
yses result in means that are weighted by
standard deviations to take differing stan-
dard deviations (heteroscedasticity) into
account. Given the availabilities of the pro-
posed coefficient of centrality and these
advanced methods, it is difficult to justify
researchers routinely failing to consider

standard deviations when interpreting
their means in future research, regardless
of how complicated the data happen to be.
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