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Editorial on the Research Topic

Translational research for better diagnosis and treatment of endome-
trial cancer
Endometrial cancer (EC) is the most frequent gynaecological malignancy in developed

countries and represents a clinical challenge, especially in terms of early diagnosis and risk

stratification of patients. Early diagnosis is fundamental to ensure a good prognosis, long

survival and good quality of life, whereas an accurate (and ideally) pre-operative

stratification of patients based on risk of recurrence is a prerequisite to appropriately

decide on the extent of surgery and on the adjuvant care.

Currently, both these aspects are not optimal. An invasive endometrial histology is the

gold standard for diagnosis, and there are no valid non-invasive methods; also, patient

stratification is based on histopathology and surgical findings. To tackle these limitations

and to develop non-invasive diagnostic/prognostic tools, the BioEndoCar project was

launched in 2018 (funded by EU framework programme Horizon2020). Six European

partners and five collaborating centres joined forces to prospectively collect blood

specimens from patients and controls, to perform metabolomics and proteomics

analyses in plasma samples in search for minimally invasive diagnostic and prognostic

biomarkers, and to model the data for the development of prediction algorithms. The

BioEndoCar project concluded with a two-day international symposium that was held in

Portorož (Slovenia, March 2022) focussing on state-of-the-art omics technologies,

biobanking, translational research and clinical management in the context of EC.

This symposium was the birth of the Research Topic for Frontiers on Oncology aiming

to transfer the current challenges and discussions on EC into a dedicated collection of

articles. The Research Topic focussed on translational research to improve diagnosis/

prognosis and treatment of EC. We collected high quality Original Research articles,

Systematic Reviews and Narrative Reviews describing different aspects of translational

research, with particular emphasis on omics profiling and multi-omics in tissues and

physiological fluids. Over 120 authors from China, Europe (Czech Republic, Germany,
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Poland, Slovenia, The Netherlands), India, Switzerland, UK and

United States contributed to the Topic with 15 papers.

In the present entitled ‘Translational research for better

diagnosis and treatment of endometrial cancer’, we coherently

organised these 15 papers in four sections: 1. Pathogenesis,

classification and treatment; 2. Comorbidities; 3. Diagnostic/

prognostic models based on histological and blood biomarkers;

and 4. Diagnostic/prognostic models based on imaging data.

The first Section (Pathogenesis, classification and treatment)

consists of five contributions (one review and four original papers).

The review by Zhang et al. summarises the expression, regulation,

and functions of glucose transporters (GLUTs) in human EC. The

authors review the upstream regulators of GLUTs, and briefly

discuss their functions in tumour growth and invasion. The

impact of GLUTs in the context of treatments and ongoing

clinical trials is also discussed. The authors conclude that GLUTs

overexpression may be implicated in insensitiveness to hormone

therapy or resistance to chemoradiotherapy.

The original articles focus on intracellular signalling and

tumour immune microenvironment. Ledinek et al. analyse the

possible interconnection between Wnt signalling and epithelial-

to-mesenchymal-transition (EMT) among 64 EC specimens.

Markers of Wnt signalling and EMT correlate significantly with

hormone receptor status, although no further correlation was found

with clinic-pathological features or integrated molecular subgroups.

The authors conclude that the correlation between hormone

receptors, Wnt signalling and EMT confirms the intimacy

between these pathways in EC. Dai et al. explore the immune cell

infiltration in tumour samples from a small cohort of EC patients

that were classified into four molecular subtypes (according to

transPORTEC). The profiles of infiltrating immune cells differed

between tumours with distinct molecular subtypes, implying

distinct immune reactions (normal responses, absence or

suppressed responses), and potentially explaining the differences

in prognosis and therapy efficiency among different EC

cancer subtypes.

The last two papers describe less-common forms of EC,

specifically clear cell and serous carcinoma. In the first study, Cui

et al. develop nomograms to predict overall survival (OS) at 3-, 5-,

and 10-year after diagnosis using a retrospective cohort of 1778

cases. Age at diagnosis, marital status, stage, tumour size and

surgery were independent predictors for OS among women with

FIGO stage I/II. Age at diagnosis, stage, lymph node involvement,

distant metastasis, tumour size, surgery, radio- and chemo-therapy

were all independent OS predictors for FIGO stage III/IV. The

authors conclude that the predictive models they built may be

valuable tools in clinical practice.

The second study focus on serous carcinoma, an aggressive

subtype of endometrial carcinoma. Alessandrino et al. examined

associations between genomics and metastatic patterns in 67

patients (including Hispanic and black subjects) and observe

lower overall survival in patients with presence or recurrence of

metastases to the liver and AKR1D1A mutations. This study

underscores the importance of genomic studies for individualised

treatment of these patients.
Frontiers in Oncology 026
Section 2 focuses on comorbidities associated with EC and

features one review on the impact of adipose tissue and one original

paper on the impact of type 2 diabetes on EC. The systematic review

of van den Bosch et al. explores the association between patient

characteristics and the distribution of adipose tissue. Eleven

retrospective studies are included and indicate that the

distribution of adipose tissue (visceral versus subcutaneous)

significantly correlates with obesity, cancer histology, metastasis,

sex steroid levels and survival. The work by Njoku et al. aims to

investigate whether pre-existing diabetes can affect survival

outcomes in patients with EC. The authors included over 500

subjects and demonstrated that pre-existing type 2 diabetes

confers an increased risk of death among EC patients.

Section 3 features studies (one review and three original

contributions) on diagnostic or prognostic models that included

histological and/or blood biomarkers. The systematic review by

Romano et al. describes the current state-of-the-art in diagnostic

and prognostic biomarkers for EC. The review provides a brief

description of technological and data analyses aspects, and

continues by describing all studies that used proteomics and/or

metabolomics for diagnostic and prognostic biomarker discovery.

Vinklerová et al. address in their study the problem of preoperative

risk stratification. The authors validate a previously developed

Bayesian network model for preoperative risk stratification of EC

patients (ENDORISK) developed within the ENITEC network

(European Network of Individualized Treatment of Endometrial

Cancer). In a cohort of 445 patients, ENDORISK, focusing on

lymph node metastases and disease-specific survival, has good

predictive value for low-risk but underestimates the risk among

high-risk patients. This confirms that further improvements of the

model are needed by including additional preoperative features

(molecular classification, myometrial, cervical invasion, distant

metastases, etc.) before its implementation in clinical practice.

The original article by Rosǩar et al. includes 202 subjects (91

cases and 111 controls) and shows that plasma levels of leptin are

significantly higher in patients with type 1 EC than in control

patients, whereas IL-8 is higher in type 2 ECs versus control

patients. The authors further develop a model based on age, IL-8,

leptin, and the angiogenic factor G-CSF with good diagnostic

accuracy. This section concludes with the study by He et al., who,

through mining the TCGA database combined with in vitro

investigations, explore the relation between KNL1 expression,

patient prognosis and the effect on cell proliferation, invasion and

metastatic potential. The authors conclude that KNL1 can be a

prognostic and diagnostic biomarker in patients with EC.

Section 4 includes one review and three original papers where

imaging techniques are used to develop diagnostic or prognostic

models. The molecular classification of EC subordinates the

histologic subtype to the molecular class. Fremond et al. suggest

that Deep Learning (DL) could open a new door to refining the

current EC classification by integrating histologic and molecular

data. To date two studies have provided proof of principle for the

prediction of molecular classes from H/E slide images by DL, albeit

with relatively poor performance, that should improve with dataset

size and quality and advances in DL technology. Automated DL
frontiersin.org
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models could provide a cost-effective alternative, accelerate the

diagnostic process and advance treatment. The study by Zhang

et al. explores atypical endometrial hyperplasia (AEH), which is

considered a direct precursor of EC, with concurrent EC diagnosed

in approximately 40% of patients undergoing hysterectomy for

AEH. The authors develop and annotate a multimodality MRI-

based radiomic-clinical model to noninvasively distinguish EC from

AEH. This model includes nulliparity status, endometrial thickness,

and a combined radiomicroscopic signature with excellent

performance. Further validation of this model in multicentre

studies is needed, and the properties of the model can be further

improved by combining it with genomic data. The diagnosis of EC

relies currently on a combination of pre-operatively collected data

such as age, BMI, blood-based tumour markers or imaging results,

which are semi-structured or unstructured data. Feng et al.

developed a clinical decision support system based on machine

learning algorithms that include 16 features to assist physicians in

classifying histology, stage, and grade of EC patients. The models

showed different performances depending on the algorithm, and

have highest accuracy if combined with a physician’s judgement.

Precise pre-operative EC tumour grade prediction is essential

for risk stratification and treatment. Thus, Yue et al. use

multiparametric magnetic resonance imaging (MRI) to determine

radiomics features, which are the basis for calculating a radiomics

score used to design a nomogram. The nomogram could improve

the accuracy of recognizing a high-grade tumour prior to surgery in

comparison to dilation and curettage and had a good net benefit

according to decision curve analysis.

In conclusion, this e-book presents an up-to-date overview of

the current diagnostic and prognostic tools that are under

development in translational research and that hopefully will find

their way to a clinical applicability in the near future. The editors

hope that this e-book and the studies described herein will represent

milestones in research and inspiration for all scientists and
Frontiers in Oncology 037
clinicians working in the field of EC to improve the care of

women with this disease in the future.
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Endometrial cancer is the most common gynaecological malignancy in high income
countries and its incidence is rising. Whilst most women with endometrial cancer are
diagnosed with highly curable disease and have good outcomes, a significant minority
present with adverse clinico-pathological characteristics that herald a poor prognosis.
Prognostic biomarkers that reliably select those at greatest risk of disease recurrence and
death can guide management strategies to ensure that patients receive appropriate
evidence-based and personalised care. The Cancer Genome Atlas substantially
advanced our understanding of the molecular diversity of endometrial cancer and
informed the development of simplified, pragmatic and cost-effective classifiers with
prognostic implications and potential for clinical translation. Several blood-based
biomarkers including proteins, metabolites, circulating tumour cells, circulating tumour
DNA and inflammatory parameters have also shown promise for endometrial cancer risk
assessment. This review provides an update on the established and emerging prognostic
biomarkers in endometrial cancer.

Keywords: endometrial cancer, prognosis, biomarkers, risk stratification, treatment
INTRODUCTION

Endometrial cancer is the sixth most frequently diagnosed cancer in females and the gynaecological
malignancy with the greatest incidence in high-income countries. In 2020, there were an estimated
417,000 incident cases and 97,000 deaths from the disease worldwide (1). The incidence of
endometrial cancer is rising alongside the growing obesity epidemic (2). In the United Kingdom
(UK), there are around 9,700 cases and 2,400 endometrial cancer-associated deaths every year (3).
Over the last decade, deaths have increased by 25%, a trend that has been reported in other high
income countries. It is projected that mortality rates for endometrial cancer will rise by a further
19% in the UK between 2014 and 2035, despite improvements in overall survival (3).

Most endometrial cancers are sporadic, with an estimated 5% occurring in the context of a
hereditary predisposition, most commonly Lynch syndrome (4). Lynch syndrome is an autosomal
dominant condition that arises from a defect in the DNA mismatch repair (MMR) system,
predisposing to a constellation of malignancies, including endometrial cancer (5). There are
currently no evidence–based screening options for endometrial cancer in either the general
population or in high-risk women (6). Most women are diagnosed following routine
investigations for post-menopausal bleeding, the cardinal symptom of the disease. In current
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clinical practice, symptomatic women are investigated by
sequential tests that include transvaginal ultrasound scan,
endometrial biopsy and hysteroscopy (7). Most women with
endometrial cancer are diagnosed at an early stage and have
highly curable disease, reflected in excellent 5-year survival rates
(3). A significant minority present with adverse clinico-
pathological characteristics including biologically aggressive
endometrial cancer phenotypes, and have a poor prognosis.
The management of endometrial cancer is primarily surgery,
with total hysterectomy and bilateral salpingo-oophorectomy as
standard of care worldwide. Women with high-risk features
are offered adjuvant therapy with chemotherapy and/or
radiotherapy, aimed at reducing risk of recurrence (8). A
significant minority are managed conservatively including
those of reproductive age or those for whom surgery carries
considerable risk such as the frail or medically unfit (7).

Identifying those with endometrial cancer at highest risk of
recurrence and cancer-related death is important to ensure
women receive appropriate evidence-based care whilst avoiding
the harms and costs of unnecessary treatments for those at lowest
risk. Clinical, sociodemographic, histopathological and
molecular factors all impact on endometrial cancer outcomes
(9). A validated risk-stratification model that accurately defines
risk of disease recurrence and death will guide clinical care by
allowing for treatment de-escalation for those at lowest risk and
intensification for those at high risk (10). Such a model may also
help define the optimal follow-up programme for recurrence and
guide decisions regarding alternative primary treatments for the
fraction of women who are managed conservatively. This review
provides an update of the current and emerging prognostic
biomarkers and risk-stratification algorithms in endometrial
cancer. Further, we highlight the challenges in clinical
translation and offer fresh perspectives on endometrial cancer
biomarker research.
CURRENT ENDOMETRIAL CANCER
PROGNOSTIC BIOMARKERS

What Are Prognostic Biomarkers?
Prognostic biomarkers are clinical or biological characteristics that
can be objectively assessed and evaluated to predict the course of a
disease regardless of therapy (11). Prognostic biomarkers are used
in clinical practice to identify the likelihood of a clinical event
(mortality, disease recurrence or progression) occurring amongst
those with the condition of interest (12, 13). Examples of
prognostic biomarkers include clinical, tumour specific
molecular and histopathological characteristics.

Bokhman Dualistic Model of
Endometrial Cancer
In 1983, Bokhman proposed a dualistic model of endometrial
cancer based on clinical, epidemiologic and prognostic features
(14). Type I tumours are by far the most common and are low-
grade, oestrogen driven tumours that are associated with obesity
and have a favourable prognosis. By contrast, type II tumours are
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relatively rare, high-grade, biologically aggressive tumours that
are more common in healthy weight women and act
independently of oestrogen (14). This model was of value
several decades ago but has been shown to lack sufficient
discriminatory ability to justify its continued use in the
classification and management of endometrial cancers today
(15). For example, ~20% of women with type I endometrial
cancer experience a relapse while ~50% of those with type II do
not, suggesting that the precision with which this dualistic model
guides receipt of adjuvant therapy is moderate at best (16).

Histopathological Biomarkers and Current
Risk Stratification Algorithms
Histological subtype, FIGO stage, disease grade, presence of
lympho-vascular space invasion (LVSI) and deep myometrial
invasion are established prognostic biomarkers in endometrial
cancer (17) (Figure 1). The histological subtypes of endometrial
cancer include endometrioid tumours, which have a favourable
prognosis, and non-endometrioid tumours (serous, clear cell,
carcinosarcomas and mixed), which are biologically aggressive
and associated with poor outcomes. Endometrioid tumours
make up over 80% of newly diagnosed endometrial cancers,
while serous, clear cell and carcinosarcomas make up 10%, 3%
and <2% respectively (18, 19). Low grade endometrioid tumours
are type I and high grade endometrioid and non-endometrioid
histological subtypes are type II tumours. The mutational profiles
of the different histological subtypes vary. PTEN mutations
portend a favourable prognosis are more common in
endometrioid endometrial cancers, while TP53 mutations are
associated with a poor prognosis and are common in serous
tumours (20). Surgical staging provides important prognostic
information in the management of endometrial cancer and is
based on the 2009 International Federation of Gynecology and
Obstetrics (FIGO) staging system (21) (Table 1). Women with
early stage (FIGO I/II) endometrial cancer have a favourable
prognosis compared to those with advanced disease (FIGO III/
IV). The 5-year survival rate is >90% in early stage disease and
<20% in late stage disease (17, 21). Disease grade is also an
important prognostic parameter (22). Studies have been
consistent in suggesting a correlation between tumour grade
and depth of myometrial invasion, presence of extra-uterine
disease and lymph node metastasis (23). Depth of myometrial
invasion is a component of FIGO staging for stage I tumours and
is an independent predictor of endometrial cancer outcomes
across all stages. A recent meta-analysis of 79 studies involving
68,870 women concluded that deep myometrial invasion is
associated with high endometrial cancer recurrence risk and
poor outcomes (24). LVSI is also an important prognostic
parameter, being linked to an increased risk of nodal spread,
disease recurrence and poor outcomes (25, 26).

Current endometrial cancer risk stratification is based on a
consensus algorithm by the three major endometrial cancer
consortiums: European Society for Medical Oncology, European
Society of Gynaecological Oncology, and European Society for
radiotherapy & Oncology (ESMO, ESTRO and ESGO) (8). This
was recently updated by ESGO, ESTRO and the European Society
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of Pathology (ESP) to also include prognostic risk groups where
endometrial cancer molecular classification information(described
in detail in section 3.0) is known (27). Women are classed as low,
intermediate, high-intermediate, high -risk and advanced
metastatic based on histological subtype, FIGO stage, and grade,
depth of myometrial invasion, presence of LVSI and molecular
grouping (27) (Table 2). The classification system based on
histopathological parameters is used to guide receipt of adjuvant
treatment but has been shown to have sub-optimal ability in
defining endometrial cancer outcomes (9, 28). Histological
subtype and grade have poor reproducibility even amongst
expert pathologists, while FIGO stage and LVSI are only
available post-hysterectomy, and thus cannot inform decisions
regarding surgical management (29–31). A pathology review of
patients with high-risk endometrial cancer as part of the
PORTEC-3 trial found significant disagreement in the
Frontiers in Oncology | www.frontiersin.org 310
assignment of several risk defining parameters including
histological subtype, grade, cervical stromal invasion, LVSI and
depth of myometrial invasion (32). It is therefore not surprising
that the currently used risk-stratification algorithm leads to
imprecise estimation of the risk of recurrence and death in
women with endometrial cancer (33). Furthermore, a small
minority of women with endometrial cancer are managed
conservatively for fertility-sparing and surgical fitness reasons,
and so cannot be surgically staged. Imaging with MRI +/-CT are
limited in their ability to define risk stratifiers. Novel prognostic
biomarkers that guide decisions regarding the type and suitability
of alternative primary treatments in this group of women has the
potential to transform patient care.
EMERGING ENDOMETRIAL CANCER
PROGNOSTIC BIOMARKERS

TCGA Endometrial Cancer Molecular
Classification
Molecular subtyping offers a more objective and reproducible
classification of endometrial cancer when compared with
histopathological evaluation and has the potential to revolutionise
patient care (33). Recently, the TCGA proposed four distinct
endometrial cancer molecular subgroups based on mutational
burden, microsatellite instability and copy number alterations
observed in 373 endometrial cancer cases: copy number high,
copy number low, MSI hypermutated, and POLE ultra-mutated
(34) (Table 3). This classification has been validated in subsequent
studies and shown to have prognostic and therapeutic implications
(29, 38–41).

The copy number high (serous-like) cancers have the worst
progression-free survival and are characterised by widespread
genomic alterations with extensive copy number aberrations
(34, 35). Patients in this subgroup have mostly high-grade and
TABLE 1 | FIGO staging of endometrial cancer (21).

FIGO
Staging

Carcinoma of the endometrium

Stage I Tumour confined to the uterus
IA No or <50% myometrial invasion
1B ≥50% myometrial invasion
Stage II Cervical stromal invasion, but not beyond the uterus
Stage III Local and/or regional tumour spread
IIIA Tumour invades serosa and/or adnexa
IIIB Vaginal and/or parametrial involvement
IIIC Metastases to pelvic and/or para-aortic lymph nodes
IIIC1 Pelvic node involvement
IIIC2 Para-aortic lymph node involvement ± positive pelvic lymph

nodes
Stage IV Tumour invades bladder and/or bowel, and/or distant metastases
IVA Tumour invasion of bladder and/bowel mucosa
IVB Distant metastases including abdominal metastases and/inguinal

nodes
Adapted based on the 2009 revised staging by the FIGO Committee on Gynecologic
Oncology.
FIGURE 1 | Current and emerging endometrial cancer prognostic biomarkers.
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biologically aggressive tumours including serous endometrial
cancers and 25% of the grade 3 endometrioid tumours (34, 35).
Mutations commonly observed in copy number high tumours
include those in TP53 and PIK3CA. Other mutations involving
FBXW7 and PPP2RIA are unique to copy number high tumours
(34). Amplifications of CCNE1 and ERBB2 are also commonly
observed (42, 43).

Copy number low endometrial cancers have few copy number
aberrations and no increased mutation burden.They comprise
low grade, microsatellite stable, endometrioid tumours (34, 35).
Whilst tumours in this subgroup generally have a favourable
prognosis, they have specific unique molecular features that are
associated with poor prognosis, namely CTNNB1 mutations and
amplification of chromosome arm1q, thus making the group an
interesting one for future stratified clinical trials (44, 45).

Microsatellite instable endometrial cancers have mismatch
repair deficiency (MMR-d), high mutation rates and few copy
number aberrations (34). They are characterised by mutations or
epigenetic silencing affecting the MMR genes MLH1, MSH2,
MSH6, and PMS2. Other commonly mutated genes in this sub-
group include PTEN, ARIDIA, PIK3CA, PIK3RI, and RPL22 (34,
35). These tumours are usually endometrioid although their
h i s to log ica l morphology can be unusua l , making
characterisation challenging (35).

The final subgroup of the TCGA classification is the POLE
ultra-mutated group. This subgroup is characterised by high
mutation rates and hotspot mutations in the POLE exonuclease
domain (EDM) of polymerase-έ (34). POLE ultra-mutated
tumours exhibit few copy number aberrations and have
mutations in PTEN, PIK3RI, PIK3CA, FBXW7 and KRAS
genes. These tumours have an excellent prognosis with the best
progression free survival (46). They are characterised by dense
Frontiers in Oncology | www.frontiersin.org 411
immune cell infiltrates. Whilst previously thought not to recur,
there is emerging evidence that the POLE tumours can recur but
at a much lower rate compared to other molecular subtypes (35,
46). The recent proteogenomic characterisation of endometrial
cancer by the National Cancer Institute’s Clinical Proteomic
Tumour Analysis Consortium (CPTAC) provides further
insights into the proteomic markers of endometrial cancer
clinical and genomic tumour subgroups (47).

Whilst the TCGA classification substantially advanced our
understanding of the molecular diversity of endometrial cancer
and the associated prognostic implications, its clinical
applicability in terms of refining surgical staging, guiding
decisions about adjuvant therapy and intensity of post-
treatment surveillance is limited (35). Barriers include the need
for fresh-frozen tumour specimens, high costs and technical and
methodological complexities.

Simplified and Pragmatic Endometrial
Cancer Molecular Classifiers
Novel molecular classification tools have been developed and
validated based on the use of surrogate markers to define four
distinct subgroups of endometrial cancer that are analogous but
not identical to the TGCA classification (40). The classifiers
include the TransPORTEC (48) and ProMisE models (49).These
novel classifiers utilise immunohistochemistry to identify MMR
and p53 abnormalities and targeted sequencing to identify POLE
mutations (40, 48). In contrast to the fresh-frozen tumour
specimens required for TCGA classification, these pragmatic
classifiers can be used on formalin-fixed, paraffin-embedded
tumour materials, thus enhancing their clinical utility (29).
There is good evidence to support their potential applicability
to endometrial biopsy and curettage diagnostic specimens (50–
TABLE 2 | Updated ESMO, ESTRO and ESGO endometrial cancer risk stratification algorithm (27).

Risk group Molecular classification unknown Molecular classification known

Low • Stage IA endometrioid + low-grade + LVSI negative or focal • Stage I–II POLE-mutant endometrial carcinoma, no residual disease
• Stage IA MMRd/NSMP endometrioid carcinoma + low-grade +

LVSI negative or focal
Intermediate • Stage IB endometrioid + low-grade + LVSI negative or focal

• Stage IA endometrioid + high-grade + LVSI negative or focal
• Stage IA non-endometrioid (serous, clear cell, undifferentiated carcinoma,

carcinosarcoma, mixed) without myometrial invasion

• Stage IB MMRd/NSMP endometrioid carcinoma + low-grade +
LVSI negative or focal

• Stage IA MMRd/NSMP endometrioid carcinoma + high-grade +
LVSI negative or focal

• Stage IA p53abn and/or non-endometrioid (serous, clear cell,
undifferentiated carcinoma, carcinosarcoma, mixed) without
myometrial invasion

High-
intermediate

• Stage I endometrioid + substantial LVSI regardless of grade and depth of
invasion

• Stage IB endometrioid high-grade regardless of LVSI status
• Stage II

• Stage I MMRd/NSMP endometrioid carcinoma + substantial LVSI
regardless of grade and depth of invasion

• Stage IB MMRd/NSMP endometrioid carcinoma high-grade regardless
of LVSI status

• Stage II MMRd/NSMP endometrioid carcinoma
High • Stage III–IVA with no residual disease

• Stage I–IVA non-endometrioid (serous, clear cell, undifferentiated carcinoma,
carcinosarcoma, mixed) with myometrial invasion, and with no residual
disease

• Stage III–IVA MMRd/NSMP endometrioid carcinoma with no residual
disease

• Stage I–IVA p53abn endometrial carcinoma with myometrial invasion,
with no residual disease

• Stage I–IVA NSMP/MMRd serous, undifferentiated carcinoma,
carcinosarcoma with myometrial invasion, with no residual disease

Advanced
metastatic

• Stage III–IVA with residual disease
• Stage IVB

• Stage III–IVA with residual disease of any molecular type
• Stage IVB of any molecular type
Focal LVSI refers to the presence of a single focus around the tumour. Key: p53abn, p53-abnormal; MMRd, MMR-deficient; NSMP, no specific molecular profile.
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52) and the inter laboratory concordance is high (51). Studies
have been consistent in confirming the prognostic value and
potential clinical utility of these classifiers across unselected
patient populations (53–56).

In the TransPORTEC initiative, the four molecular subgroups
are p53-abnormal, MSI-high, POLE-mutant and those with no
specific molecular profile (NSMP) (48) (Figure 2A). Of 116
high-risk endometrial cancer specimens analyzed by the
TransPORTEC group, p53-abnormal (n=36) and NSMP
(n=44) subgroups had significantly higher rates of distant
metastases and lower 5-year relapse free survival than MSI-
high (n=19) and POLE-mutant (n=14) tumours (48) (Table 4).
The 5-year recurrence-free survival rates were 93% and 95% for
the POLE-mutant and MSI-high subgroups respectively,
compared with 42% (p53-abnormal) and 52% (NSMP) (48). A
refined version of the TransPORTEC classifier has since been
developed that incorporates the presence of LVSI and other
molecular parameters such as L1CAM expression and the
presence of CTNNB1 mutation (57). This model is being
prospectively tested in a cohort of women with high-to-
intermediate risk endometrial cancer as part of the PORTEC-
4a trial.

ProMisE stratifies women with endometrial cancer based on
sequential molecular testing for aberrations in the order of
MMR-D, POLE mutation and p53 status (Figure 2B). The four
molecular groupings based on ProMisE are MMR-deficient
(MMRd; analogous to MSI-high subgroup), POLE EDM
(analogous to POLE ultramutated), p53-abnormal (p53 abn,
analogous to the copy number high group) and p53-wild type
(p53 wt, analogous to the copy number low group) (40, 49).
These molecular subgroupings have also been shown to correlate
with disease-free and overall survival even after adjusting for
Frontiers in Oncology | www.frontiersin.org 512
known risk parameters (35, 49). Women in the p53 abn group
have the worst prognosis with a 3- to -5 fold higher risk of
mortality or progressive/recurrent disease than the p53 wt group,
and a 2-fold higher risk following adjustment for clinico-
pathological parameters (35, 49). Those in the MMR-D
subgroup have a 1.5 to 2-fold increase in mortality compared
with the p53 wt subgroup; the survival benefit was non-
significant following adjustment for confounding. The POLE
EDM subgroup have the best prognosis and are least influenced
by clinico-pathological features (35, 49).

Other Molecular Prognostic Parameters
and Risk Algorithms
Other molecular parameters that are prognostic in endometrial
cancer include overexpression of L1CAM and loss of oestrogen
(ER) and/or progesterone receptors (PR), both of which are
linked to a higher risk of recurrence and death (58–61). L1CAM
expression strongly correlates with non-endometrioid histology,
LVSI and lymph node metastasis (58). Loss of ER/PR expression
is linked to high-grade disease, deep myometrial invasion and
lymph node metastasis (62). DJ-1 protein distinguishes low-
grade from high-grade endometrial cancer (63) while CTNNBI
mutations have shown potential in identifying those low-grade,
early stage, endometrial cancers at higher risk of recurrence and
death (44).

A number of risk-prediction models, incorporating clinical,
histological and molecular parameters, have been developed to
aid prediction of survival outcomes in endometrial cancer.
ENDORISK, a validated risk algorithm based on four pre-
operative molecular markers, namely L1CAM, PR, ER, and p53
status, predicted risk of lymph node metastasis and survival in a
multi-centric cohort of 763 women with endometrial cancer
A

B

FIGURE 2 | Defining the molecular subgroups of endometrial cancer based on the TransPORTEC classifier (A) and ProMisE (B). Adapted from (48, 49, 51).
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across Europe, and 2 independent cohorts from the Netherlands
and Norway (64). In a similar study, a model incorporating
L1CAM, PR, ER and p53 status demonstrated a 48% sensitivity
and 89% specificity for high-risk endometrial cancer (65).
Ravegnini and colleagues found better stratification of NSMP
patients with CTNNB1 mutation alongside miR-499a-5p
status (66).

Therapeutic Implications and Additional
Benefits of the Molecular Classification of
Endometrial Cancer
The molecular classification of endometrial cancer has
prognostic and therapeutic implications. The p53-abnormal
endometrial cancers are the most biologically aggressive and
would ideally be managed with complete/aggressive surgical
treatment. These tumours generally require adjuvant
treatment. A retrospective molecular analysis of the PORTEC-
3 trial for high-risk endometrial cancer confirmed that women
Frontiers in Oncology | www.frontiersin.org 613
with p53-abnormal endometrial cancer had significantly
improved recurrence-free survival when platinum-based
chemotherapy was used alongside radiation, compared with
radiation alone (67). This survival benefit was not observed in
the other molecular categories, although the PORTEC-3 trial was
not originally powered for these subgroup analyses (67). The
finding of several molecular similarities between the TCGA p53
endometrial cancer group and both high grade serous tubo-
ovarian cancer (HGSOC) and basal-like breast cancer, has
sparked interest in the potential for therapeutics that target
homologous recombination in these tumours (33, 34). A
number of clinical trials assessing the efficacy of PARP
inhibitors alone or in combination with anti-angiogenics/
immune checkpoint inhibitors for recurrent or metastatic
endometrial cancer are under way (68). The TransPORTEC
Refining Adjuvant treatment IN endometrial cancer Based On
molecular features (RAINBO) suite of clinical trials is evaluating
the role of adjuvant chemo-radiation with or without a DNA
TABLE 3 | Characteristics of the TCGA molecular classification of endometrial cancer.

Type POLE
(ultramutated)

MSI (hypermutated) Copy number low (endometrioid) Copy number high (serous like)

Prevalence 7% 28% 39% 26%

Mutation
frequency

Very high
(>100 mutations/

Mb)

High
100-10 mutations/Mb

Low
<10 mutations/Mb

Low
<10 mutations/Mb

Commonly
mutated genes

POLE (100%),
PTEN (94%)

PTEN (88%)
PIK3CA (54%)

PTEN (77%)
CTNNB (52%)

TP53 (92%)
PIK3CA (47%)

Copy number
aberrations

Very low Low Low High

MSI/MLH1
methylation

Mixed high and low
MSI, stable

High MSI
(MLH1, PMS2, MSH2, and/or

MSH6 deficiency)

MSI stable MSI stable

Histological
subtype

Endometrioid Mostly endometrioid Endometrioid Serous, 25% high-grade endometrioid and
mixed

Grade G1-3 G1-3 G1-2 G3
Other features Ambiguous histo-

morphology
Dense immune

infiltrates

Display tumour-infiltrating
lymphocytes

CTNNB mutations are associated with poor
prognosis

Subgroup with amplification of chromosome
arm 1q has poor prognosis

Similar to high-grade serous ovarian carcinoma
L1 cell adhesion molecule (L1CAM) expression

associated with poor prognosis

Prognosis Good moderate moderate Poor
Adapted from (35–37).
TABLE 4 | Prognostic performance of ProMisE and TransPORTEC classifiers, adapted from (49) and (48), respectively.

Subgroups N (%) Overall survival Disease specific survival Progression free survival

ProMisE HR(95%CI) LRT p HR(95%CI) LRT p HR(95%CI) LRT p

p53 wt 139 (45.6%) Comparator group
MMR-D 64 (20.1%) 1.90 (0.88-4.04) 0.0211 1.32 (0.51-3.35) 0.0156 0.64 (0.25-1.60) 0.011
POLE EDM 30 (9.4%) 1.01(0.26-2.99) 0.42 (0.04-1.88) 0.19 (0.02-0.81)
P53 abn 86 (27.0%) 2.61 (1.27-5.72) 2.28 (1.02-5.58) 1.75 (0.84-3.96)
TransPORTEC 5-year overall survival Distant recurrence rates 5-year recurrence free survival
NSMP 44 (38%) 61% <0.001 39% <0.001 52% <0.001
MSI-high 19 (16%) 63% 0% 95%
POLE mutant 14 (12%) 93% 0% 93%
p53 abnormal 39 (34%) 40% 50% 42%
A
pril 2022 | Volume 12 | Article
ProMisE data are based on multivariable analysis in a validation cohort of 319 cancers. Variables included in model are age, BMI, grade, histology, any treatment received. TransPORTEC
data included 116 high risk endometrial cancer patients. HR, hazard ratio; LRP, likelihood ratio test.
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damage response targeting agent in women with p53-abnormal
endometrial cancer (39). Women with p53 wild type disease have
lower metastatic potential and surgical treatment alone may
suffice (69). Those with POLE mutant tumours have such a
good prognosis that adjuvant treatment is unlikely to improve
survival outcomes and de-escalation of therapy may be
appropriate. The MMR-D molecular group is highly
immunogenic, providing therapeutic opportunities for the use
of immunotherapy. Marebella and colleagues, in the KEYNOTE-
158 study reported an objective response rate of 57.1% in 49
endometrial cancer patients with previously treated unresectable
or metastatic MMR-D disease who were treated with
pembrolizumab (70). The GARNET trial, a phase 1b trial of
anti-PD1 dostarlimab reported an objective response rate of
42.3% for women with recurrent or advanced MMR-D
endometrial cancer that had progressed after treatment with
platinum-based chemotherapy (71). Both pembrolizumab and
dostarlimab have been FDA approved (71, 72).

The incorporation of endometrial cancer molecular testing
into routine clinical care has several additional advantages. It will
allow for the early identification of women with an inherited
defect affecting one of the four MMR genes (Lynch syndrome)
for whom cancer surveillance and aspirin chemoprevention may
help to prevent future cancers, and cascade testing may identify
other affected family members (5). For women of reproductive
age who are considering non-surgical management, molecular
classification of endometrial biopsy specimens can guide
treatment decisions as p53 abnormal status would discourage a
conservative approach to management (69).
BLOOD-BASED ENDOMETRIAL CANCER
PROGNOSTIC BIOMARKERS

A blood-based prognostic biomarker has strong appeal to
clinicians and patients alike. ‘Can a blood test be used in
predicting survivorship and/or recurrent disease?’ ranked 5th

most important research priority in the James Lind Alliance
endometrial cancer priority setting partnership, representing the
views of patients, clinicians, and members of the general public
(73). A blood-based test that can accurately detect deep
myometrial invasion and lymph node metastasis pre-
operatively could inform surgical management. Such a test
may also have utility in risk stratifying within endometrial
cancer molecular groups, since women whose tumours fall
within MMR-D or NSMP groupings have overlapping survival
outcomes and adjuvant therapy may be beneficial for some but
not all (74). Several blood-based biomarkers, including proteins,
metabolites, circulating tumour cells, cell-free DNA, immune
cells and inflammatory parameters have shown potential for
refining endometrial cancer risk assessment. However, the
evidence to enable clinical translation is limited.

The most commonly reported blood-based protein
prognostic markers include cancer antigen 125 (CA125) and
Human Epididymis protein 4 (HE4) (75, 76). Serum CA125 was
first shown to be elevated in women with recurrent and advanced
Frontiers in Oncology | www.frontiersin.org 714
endometrial cancer by Niloff and colleagues in 1984 (77).
Subsequent studies have been consistent in suggesting an
association between serum CA125 concentration and adverse
endometrial cancer clinico-pathological parameters and
outcomes (78–82). Jiang and colleagues, in an analysis of 995
patients with endometrial cancer, found that elevated CA125
significantly correlated with lymph node metastasis, myometrial
invasion, FIGO stage but not histological subtype, and was an
independent prognostic factor (83). This study was limited by its
retrospective design and selection bias, as almost 20% of
endometrial cancer patients were excluded due to lack of pre-
operative serum CA125 (83). There is good evidence of an
association between serum HE4 levels and endometrial cancer
outcomes. The meta-analysis by Dai and colleagues, involving
4235 patients, reported that elevated HE4 levels were
significantly associated with worse overall, disease-free and
progression-free survival (84). Serum HE4 has also been shown
to correlate with adverse endometrial cancer histopathological
parameters, although the evidence has been limited by marked
heterogeneity across the various studies, small sample sizes and
significant variation in the prognostic thresholds used (74).
Several blood-based metabolites have also been linked to
adverse endometrial cancer clinico-pathological factors and
poor outcomes (13). As yet, none have been translated into
routine clinical practice.

There is emerging evidence of a correlation between
circulating cell-free tumour DNA levels and endometrial
cancer prognosis (85–88). Cicchillitti and colleagues found
elevated levels of cell-free DNA in grades 2 and 3 endometrial
cancer compared to grade 1 disease (86). These findings align
with the report by Vizza and colleagues of a significantly
increased level of total cell-free DNA in high grade
endometrial cancer (85). In addition, serum DNA integrity
(the ratio between long and short cell free DNA fragments)
was found to be higher in women with LVSI (85). Tanaka and
colleagues, on the other hand, did not find a significant change in
cell-free DNA by endometrial cancer grade or stage (89). Further
studies are thus needed to confirm the potential prognostic utility
of circulating tumour DNA in endometrial cancer. Circulating
tumour DNA have also been suggested as potential tools for the
early detection of recurrence in endometrial cancer (88, 90). The
small pilot study by Moss and colleagues found that ctDNA
could detect endometrial cancer recurrence and progression
earlier than imaging or clinical presentation with a median
lead time of 2.5 months (88). Specific blood-based tumour
mutations have also been associated with endometrial cancer
prognosis. Dobrzycka and colleagues found an association
between circulating cell-free DNA p53 antibody and KRAS
mutation status and high-grade endometrial cancer (87).
Bolivar and colleagues found a significant association between
the presence of plasma ctDNA mutation (CTNNBI, KRAS,
PTEN, or PIK3C) and advanced stage, deep myometrial
invasion, LVSI, and primary tumour size (91). Circulating
tumour cells have also been linked to endometrial cancer
prognosis. Lemech and colleagues, in a feasibility study of 30
patients with advanced endometrial cancer found an association
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between circulating tumour cell positivity and non-endometrioid
histology, tumour size, disease stage and survival (92). The small
prospective study by Bogani and colleagues, involving 28 patients
with grade 3 endometrial cancer reported a significant
correlation between the presence of circulating tumour cells
and deep myometrial invasion and lymph node positivity (93).
Studies exploring how best to incorporate circulating tumour
markers into routine clinical care are needed.

Systemic inflammatory parameters have shown potential as
prognostic biomarkers in endometrial cancer (94). Chronic low-
grade inflammation is one of the biological mechanisms
underpinning endometrial carcinogenesis. Inflammation is
known to damage DNA and potentiates pro-proliferative and
anti-apoptotic processes that contribute to tumour development
and progression. A recent study from our group found that
women with elevated CRP at a decision threshold of 5.5mg/L had
a two-fold increase in cancer-specific mortality risk (95). These
findings need to be validated in an independent cohort prior to
clinical translation. Other inflammatory parameters that are
prognostic in endometrial cancer include neutrophil to
lymphocyte ratio, monocyte to lymphocyte ratio, systemic
inflammatory index, and Glasgow prognostic score (Table 5).
However, there is insufficient evidence to enable clinical
translation at present.
RADIOMIC PROGNOSTIC PROFILING OF
ENDOMETRIAL CANCER

Radiomic-based risk-stratification models are emerging
prognostic systems in endometrial cancer (118). Radiomics deals
with the high-throughput mining of quantitative tomographic
image parameters and their application in clinical decisionmaking
(119). There is growing evidence for the potential utility of
radiomic techniques in improving cancer diagnostic, prognostic
and predictive accuracy across various tumour sites (118, 119).
This has been made possible by the advances in artificial
intelligence and machine learning techniques, thus allowing for
an in-depth tumour characterisation. Studies have been consistent
in suggesting the potential utility of radiomic signatures in
endometrial cancer risk-stratification and prediction of
outcomes (118, 120–123). Increasingly, radiomics is combined
with genomic data (radiogenomics) to aid the prediction of genetic
variants including microsatellite instability. Veeraravaghan and
colleagues proposed an integrated radiomic-clinical classification
algorithm that distinguishes MMR-D endometrial tumours from
copy number low and copy number high tumours with an AUC of
0.78 (121). Chen and colleagues found that an MRI-based
radiomic model had better discrimination than clinical and
conventional MRI parameters in predicting low risk endometrial
cancer (124). Yan and colleagues showed that radiomic based
models can aid the prediction of pelvic lymph node metastasis in
endometrial cancer (120). A high-quality, robust and generalizable
radiomic risk-prediction model is dependent on the optimal
collection and integration of data from multimodal sources and
rigor in model development and implementation (119, 125).
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CLINICAL PARAMETERS AND
ENDOMETRIAL CANCER PROGNOSIS

Several clinical parameters have been associated with
endometrial cancer survival outcomes. They include age at
diagnosis, body mass index (BMI) and the presence of
comorbidities (126). Age at diagnosis is universally accepted as
prognostic for most adult cancers, with older patients having
worse outcomes. In the UK, endometrial cancer mortality rates
were highest in women aged 85 to 89 between 2016 and 2018,
with over 50% of all endometrial cancer deaths occurring in
those aged 75 and over (3). An important consideration is
whether this association is purely related to age or other
unfavourable prognostic factors that are associated with age
(126). Studies have been consistent in reporting an association
between advancing age and the presence of adverse tumour
related parameters (127–129). For example, Lachance and
colleagues studied 396 women with endometrial cancer and
reported a higher prevalence of aggressive disease, specifically
higher grade, late stage, non-endometrioid endometrial cancers
in those >65 years of age (129). In a retrospective analysis of 551
endometrial cancer patients, Son and colleagues found that
age ≤40 years was associated with non-invasive cancers, less
lympho-vascular space invasion and a higher body mass index
(130). Lee et al, in a study of over 15,000 women with
endometrial cancer, reported a higher rate of serous histology
in those >40 years and a 5-year disease-specific survival rate of
86.4% compared to 93.2% in women <40 years (127).
Following adjustment for histology and adjuvant therapy, the
survival disadvantage persisted. Other factors including
differential treatment and treatment-related morbidity may be
contributory to these trends. Koul and colleagues found that
older women (≥75 years) were less likely to be offered adjuvant
therapy and had a significantly lower 5-year cancer-specific
survival rate compared to those <75 years (128). Zeng and
colleagues reported a higher rate of post-operative morbidity in
elderly endometrial cancer patients undergoing robotic surgery
(131). These findings are consistent with previously published
data where age has been reported to independently impact on
endometrial cancer outcomes, including risk of recurrence (130,
132–135).

Obesity is the most important modifiable risk factor in
endometrial cancer, with every 5kg/m2 increase in BMI
conferring a 60% increased risk of the disease (136). Obesity-
driven endometrial cancers are usually low grade, early stage,
endometrioid tumours with a favourable prognosis when
compared with the biologically aggressive non-endometrioid
endometrial cancer phenotypes (136–138). Despite the survival
advantages offered by favourable tumour biology, obesity is
associated with higher all-cause mortality due to comorbid
health conditions, particularly cardiovascular disease (139).
Indeed, cardiovascular disease is the leading cause of death
among endometrial cancer survivors (140). Arem and
colleagues found that women with BMI ≥35kg/m2 had an
almost 5-fold higher risk of cardiovascular-related mortality 10
years post diagnosis compared with those with BMI <25kg/m2
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(141). Secord and colleagues, in a meta-analysis involving
665,694 endometrial cancer cases reported significantly higher
odds of all-cause mortality with increasing BMI, with the highest
risk for those with class III obesity (BMI≥40kg/m2) (139).
Obesity may also influence cancer-specific mortality from
treatment-related factors (142). As an example, women with
class III obesity are less likely to be offered hysterectomy, have a
higher risk of perioperative morbidity and are more likely to
receive suboptimal doses of chemotherapy from dose capping
(142–146). Obesity may also impact on the optimal delivery of
adjuvant radiation due to physical, technical and dosimetric
constraints, thus contributing to poorer outcomes (147).
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Whilst obesity certainly impacts on endometrial outcomes, it is
unclear whether weight loss interventions can improve survival
and work in this space is on-going (148).

Studies have shown that women with a higher Age-adjusted
Charlson-Comorbidity (AAC) index scores are at a greater risk
of overall mortality, but not cancer-specific mortality or disease
recurrence (149). Robbins and colleagues, in an analysis of 671
patients with FIGO stage I-II endometrioid endometrial cancer,
report that high AAC scores independently predict short overall
survival (149). It remains unclear whether lifestyle changes,
including weight loss and dietary modifications, can reduce
cardiovascular risk in endometrial cancer survivors, although
TABLE 5 | Circulating endometrial cancer prognostic biomarkers.

Category Biomarker Prognostic features

Proteins Elevated CA125 Linked to poor survival (96, 97)
Higher stage (83, 98)
Higher grade (83, 98)
Deep myometrial invasion (83, 98)
Lymph node metastasis (83, 98)
LVSI (98)

Elevated HE4 Poor overall, disease-specific and recurrence free
survival (74, 84)
Deep myometrial invasion (99, 100)
Advanced stage (100–102)
Presence of LVSI (66, 103)
Tumour size (100)
Lymph node metastasis (99, 103)
Recurrence (103)

High Estriol (E3)
High Estrone sufate (E1-S)

Non-myoinvasive tumours, low risk of recurrence and
improved overall survival (104)
Increased relapse (104)

Metabolites Bradykinin, heme, lactic acid, homocysteine, myristic acid, valine, progesterone,
threonine, stearic acid, sarcosine, glycine etc

Associated with histological subtype (13, 105, 106)

Hydroxysphingomyelins, phospatidylcholines, estrogen metabolites Associated with deep myometrial invasion (13, 106–108)
Hexadecadienyl carnitine, phosphatidylcholines Associated with LVSI (13, 107)
Spermine, acylcholines, sphingolipids, linoleic acid, myristic acid, polyamines,
ceramides

Associated with recurrence (13, 105)

Methionine sulfoxide Poor survival (109)
Circulating tumour
cells
(CTC)

Detection of CTC Poor progression-free survival (92)
Association with non-endometrioid cancer (92)
Large tumour size (>5cm) (92)
Lymph node involvement (93)
Deep myometrial invasion (93)

Circulating tumour
DNA
(ctDNA)

Presence of ctDNA Associated with type II tumours (87).
Elevated in grades 2 and 3 endometrial cancer (85, 86)

Serum ctDNA integrity Elevated in LVSI (85)
Plasma p53 antibody Linked to serous tumours (87)

Linked to higher grade in Type I tumours (87)
Plasma KRAS mutation Elevated in grade 2 of type I tumours (87)
Presence of plasma mutation (CTNNBI, KRAS, PTEN, or PIK3CA) Linked to tumour stage (91)

Deep myometrial invasion (91)
LVSI (91)
Large tumour size (91)

Immune/inflammatory
parameters

Elevated CRP Associated with poor overall and cancer-specific survival
(65, 80, 81, 110)
Stage (111, 112)
Lymph node involvement (112)

Glasgow prognostic score Survival and recurrence (113)
Inflammatory parameters (NLR,MLR,PLR,SII etc) Adverse clinico-pathological features and outcomes (94,

95, 114–117)
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this is a tantalizing concept our group seeks to explore further.
There is growing evidence that thyroid dysfunction may be
linked to survival outcomes in endometrial cancer. The small
study by Seebacher and colleagues reported poor disease-specific
survival in women with TSH>2.5 mU/L (150). Our group
recently found that endometrial cancer patients with comorbid
hypothyroidism have significantly improved overall, cancer-
specific and recurrence-free survival than those who are
euthyroid (151). A prospective validation of these findings is
warranted and the underlying mechanisms will need to be
elucidated prior to clinical translation. Whether type 2 diabetes
mellitus (T2DM) status impacts endometrial cancer survival
outcomes is unclear. The meta-analysis by Zhang and
colleagues involving 12,195 endometrial cancer cases and 575
deaths found no evidence of an association between T2DM
status and endometrial cancer mortality (152). A more recent
meta-analysis of five cohort studies by Laio and colleagues
concluded that the data linking T2DM status and endometrial
cancer-specific mortality are inconsistent. This analysis was
limited by considerable clinical and methodological
heterogeneity of included studies (153). In two of the included
studies, a pooled relative risk of 1.32 (95% CI 1.10, 1.60. p=0.003)
was reported. One study reported a hazard ratio of 1.64 (95% CI
0.17, 9.60, p=0.58) while the other three studies reported SMRs
that could not be quantitatively synthesized (153). Further
research is needed to clarify the prognostic impact of T2DM
status on endometrial cancer outcomes.
SOCIODEMOGRAPHIC ASSOCIATIONS
WITH PROGNOSIS

There is good evidence to suggest that ethnicity affects outcomes
from endometrial cancer (154, 155). In the USA, Black women
are more likely to be diagnosed with late stage disease and
biologically aggressive endometrial cancer phenotypes (high
grade, non-endometrioid cancers) than women of White
ethnicity (154, 156–159). Park and colleagues found that non-
Hispanic Black women had significantly shorter overall survival
than non-Hispanic White women in an equal access healthcare
system, despite correcting for traditional clinico-pathological
characteristics, suggesting that other factors including
molecular phenotypic differences might be contributing (155).
It has been postulated that differential expression of specific
tumour markers such as p53, PTEN, HER2/neu and PIK3R1
mutations may explain some of the racial disparities (160, 161).
PTEN mutation portends a favourable prognosis and has been
reported to be less common in Black women compared to White
women (162). TP53 mutations, on the other hand, portend an
unfavourable prognosis and are more common in Black women
(163). Studies have also shown that women of Black ethnicity are
less likely to undergo hysterectomy (160, 164) or receive adjuvant
therapy than their White counterparts (165, 166). A review of the
US National Cancer Database found that 47% of the 19,594
endometrial cancer patients who met the criteria for adjuvant
radiation failed to receive radiation. The omission of adjuvant
Frontiers in Oncology | www.frontiersin.org 1017
radiation was more common amongst Black, Asian and Hispanic
women as well as those of lower socioeconomic status (166).
Differences in comorbid conditions may also contribute to racial
disparities in outcomes. Studies have been consistent in
suggesting a higher comorbidity burden amongst Black women
compared to women of White ethnicity (167, 168). Tarney and
colleagues found that Black women <65 years with endometrial
cancer are more likely to die from non-cancer related causes than
White women (169).

Socioeconomic status has been linked with endometrial
cancer outcomes too. Factors such as differential access to
health care, level of income, educational status and areal-level
economic deprivation may be contributory. Bedir and colleagues
analyzed data on 21,602 German women with endometrial
cancer and found differences in survival according to district
level socioeconomic deprivation (170). In a Swedish study,
women from the higher social groups were less likely to be
diagnosed with advanced stage disease and non-endometrioid
cancers, and had more favourable outcomes than women from
the lower social groups (171). These findings are consistent with
those reported in several high-income countries (149, 164, 172,
173). In the UK, results have been conflicting (174–176).
Donkers and colleagues found no evidence of a socioeconomic
disparity in survival after adjusting for confounding factors
(175). Using the English multiple indices of deprivation, Njoku
and colleagues found that women from more deprived
neighbourhoods were more likely to present with fatal
recurrence than those from less deprived areas (176). Further
research is needed to confirm these findings and identify
modifiable contributing factors.
CONCLUSION

Several clinical, sociodemographic and tumour specific parameters
have emerged as important endometrial cancer prognostic
biomarkers. The Cancer Genome Atlas and subsequent clinically
translatable molecular classification systems, in particular, hold
great promise to refine current endometrial cancer risk
stratification systems. The clinical utility of endometrial cancer
molecular classification in guiding adjuvant therapy and
recurrence monitoring is yet to be defined and must now be
prioritised. Blood-based markers including systemic inflammatory
parameters, proteins and metabolites, and circulating tumour cells
have also shown potential to refine endometrial cancer risk
stratification algorithms and their prospective validation in larger
study cohorts is warranted. The impact of socioeconomic status and
ethnicity on endometrial cancer outcomes is becoming more
apparent and studies exploring the factors underlying these
disparities are urgently needed.
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on Endometrial Cancer Survival:
A Prospective Database Analysis
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Purpose: Type 2 diabetes mellitus (T2DM) is an established risk factor for endometrial
cancer but its impact on endometrial cancer survival outcomes is unclear. The aim of this
study was to investigate whether pre-existing T2DM impacts survival outcomes in
endometrial cancer.

Patients and Methods: Women diagnosed with endometrial cancer were recruited to a
single centre prospective cohort study. Relevant sociodemographic and clinico-
pathological data were recorded at baseline. T2DM status was based on clinical and
biochemical assessment, verified by general practitioner records and analysed in relation
to overall, cancer-specific and recurrence-free survival using Kaplan-Meier estimation and
multivariable Cox-regression.

Results: In total, 533 women with median age and BMI of 66 years (Interquartile range
(IQR), 56, 73) and 32kg/m2 (IQR 26, 39) respectively, were included in the analysis. The
majority had low-grade (67.3%), early-stage (85.1% stage I/II), endometrial cancer of
endometrioid histological phenotype (74.7%). A total of 107 (20.1%) had pre-existing
T2DM. Women with T2DM had a two-fold increase in overall mortality (adjusted HR 2.07,
95%CI 1.21-3.55, p=0.008), cancer-specific mortality (adjusted HR 2.15, 95% CI 1.05-
4.39, p=0.035) and recurrence rates (adjusted HR 2.22, 95% CI 1.08-4.56, p=0.030),
compared to those without, in multivariable analyses.

Conclusion: T2DM confers an increased risk of death in endometrial cancer patients.
Well-designed longitudinal studies with large sample sizes are now needed to confirm
these findings.

Keywords: endometrial cancer, prognosis, survival, type 2 diabetes mellitus, mortality
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INTRODUCTION

Endometrial cancer is the sixth most common cancer in women
globally and the most common gynaecological malignancy in
high-income countries. Worldwide, there were an estimated
417,000 incident cases and 97,000 deaths in 2020 (1). The
incidence of endometrial cancer is rising year on year, in line
with the obesity epidemic (2). Deaths from endometrial cancer
are also rising, albeit at a slower rate, despite improvements in
overall survival (3, 4). Although most women with endometrial
cancer are diagnosed with highly curable disease and have a
favourable prognosis, a significant minority present with
adverse clinico-pathological characteristics that portend poor
outcomes (5).

Identifying women with endometrial cancer who are at a
higher risk of relapse and cancer-related mortality is
fundamental to ensuring women receive appropriate
evidence-based management whilst minimising the side
effects and costs of unnecessary interventions for those at
lowest risk (6). In current clinical practice, endometrial
cancer risk assessment is based on clinico-pathological
parameters including International Federation of Gynecology
and Obstetrics (FIGO) surgical stage, tumour grade and
histological subtype, lymphovascular space invasion and
depth of myometrial invasion. The molecular classification of
endometrial cancer offers a more objective and reproducible
endometrial cancer risk assessment compared with traditional
histopathological evaluation (7, 8). Age, body mass index (BMI)
and comorbidity status are other predictors of outcomes that
are often taken into consideration in treatment algorithms (9).
A retrospective analysis of 671 patients with FIGO stage I-II
endometrioid endometrial cancer found that higher age-
adjusted comorbidity scores are associated with worse
outcomes (10). Indeed, cardiovascular events are the leading
cause of death amongst endometrial cancer survivors (11).

Type 2 diabetes mellitus (T2DM) is an important risk factor
and a common comorbidity in women with endometrial cancer
(12). A meta-analysis of 13 primary studies adjusting for BMI
concluded that women with T2DM have a 62% increase in the
risk of endometrial cancer, independent of obesity (13).
Mechanistically, insulin resistance and the resultant
hyperinsulinemia promotes endometrial carcinogenesis and
progression by the direct pro-proliferative and anti-apoptotic
effect of insulin and insulin growth factor (IGF-1) on
endometrial cells (14, 15). Whether T2DM also impacts on
outcomes following diagnosis and treatment for endometrial
cancer is unclear. The meta-analysis of six prospective cohort
studies by Zhang and colleagues reported that there was
insufficient evidence for an association between T2DM status
and endometrial cancer mortality (16). A more recent meta-
analysis of five cohort studies by Liao and colleagues concluded
that the data linking T2DM and endometrial cancer-specific
mortality are inconsistent and the association uncertain (17).

The aim of this study was to investigate whether pre-existing
T2DM impacts on survival outcomes in endometrial cancer
patients in a large prospective database study.
Frontiers in Oncology | www.frontiersin.org 225
METHODS

Study Population
Women with a diagnosis of endometrial cancer who were treated
between 2010 and 2016 at St Mary’s Hospital, a regional specialist
centre for the management of gynaecological malignancies, were
eligible for inclusion. All study participants gave written informed
consent for their pseudo-anonymised data to be used for future
research. We collected relevant sociodemographic and clinico-
pathological data, including age, BMI, T2DM status,
socioeconomic quintile, histological subtype, tumour grade and
stage, depth of myometrial invasion, lymphovascular space
invasion (LVSI) and baseline serum C-reactive protein (CRP).
Age at diagnosis was dichotomised into <65 and ≥65 years,
consistent with previous studies, and women were classed as
underweight (BMI<18.5 kg/m2), normal weight (BMI 18.5-
24.9kg/m2), overweight (BMI 25-29.9kg/m2) or obese
(BMI≥30kg/m2) in line with the World Health Organisation
BMI groupings. Endometrial cancers were classified according to
histological subtype (endometrioid, serous, clear cell,
carcinosarcoma) based on expert histopathology review by two
specialist gynaecological pathologists, reporting according to the
UK Royal College of Pathology standards and using FIGO 2009
surgical staging classification.

The primary treatment for most women was surgical with total
hysterectomy and bilateral salpingo‐oophorectomy. Women with
intermediate and high-risk disease were offered adjuvant therapy
in accordance with national and international guidelines (9, 18). A
small minority of womenwith grade 1 stage IA endometrial cancer
who wished to preserve their fertility, or who were medically unfit
for surgery, were managed conservatively with primary hormonal
therapy (+/-delayed hysterectomy). A few women received
primary palliative radiotherapy.

All cases were reviewed in follow-up clinics at 3‐month (for
3 years), 6‐month (for 1 year) and 12‐month intervals for a total
duration of 5 years, or until relapse or death, whichever was sooner.
Where women had completed routine hospital-based follow up or
moved away fromManchester, general practitioners were contacted
to ascertain their current status.Womenwho relapsed during follow
up were managed according to national and international guidelines
(9, 18). Those with local pelvic recurrence were treated surgically or
with radiotherapy as appropriate, whereas those with wide-spread
metastatic or distant recurrent disease were managed with palliative
hormone therapy, chemotherapy +/- radiotherapy. The cause of
death was based on information obtained from death certificates.

Statistical Analysis
The study end-points were overall, cancer-specific and
recurrence free survival. Overall survival was calculated from
primary treatment initiation to death from any cause or the last
day of availability of survival data. Cancer‐specific survival was
calculated from initiation of primary treatment to death from
endometrial cancer or the date of last follow-up, and censored on
date of death from other causes. Recurrence‐free survival was
calculated from primary treatment initiation to the first record of
disease recurrence, death or date of last follow-up, whichever was
May 2022 | Volume 12 | Article 899262
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sooner. Chi-square (X2) and Fisher’s exact tests were used to test
for associations between categorical variables, as appropriate.
Student’s t-test and one-way or two-way ANOVA was used to
test for statistical significance for continuous variables as
indicated. We used the Kaplan–Meier method to compute
survival rates and the log‐rank test was used to assess survival
differences between groups. Cox regression multivariable
modelling was used to evaluate the association between T2DM
status and the study end-points while adjusting for confounding
and effect modifications. We computed hazard ratios (HRs) with
95% confidence intervals (95% CIs) for both univariable and
multivariable analyses. The confounding variables adjusted for in
the models were age at diagnosis, BMI, FIGO stage, histological
subtype, grade, LVSI, depth of myometrial invasion,
socioeconomic quintile and baseline CRP. We assessed for
confounding by evaluating the changes in hazard coefficients
following the introduction of these variables to the Cox
regression models. We assessed for the assumptions of
proportional hazards which was met for all models. A p-value
of <0.05 was considered statistically significant. All analyses were
conducted using the statistical package STATA 16.0 (https://www.
stata.com).
RESULTS

Descriptive Characteristics of the Study
Population
In total, 533 women with histologically confirmed endometrial
cancer were included in this analysis (Table 1). Their median age
and BMI were 66 years (Interquartile range (IQR), 56, 73) and
32kg/m2 (IQR 26, 39) respectively. Most women were overweight
or obese (83.5%) and aged ≥65 years (54.4%). One-fifth of the
study population (20.1%) had pre-existing T2DM. The modal
socioeconomic quintile was quintile I (most deprived) and
accounted for 37.0% of the study population. The majority had
low-grade (67.3%), early-stage (85.1% stage I/II), endometrial
cancer of endometrioid histological phenotype (74.7%). The
primary treatment was surgery in 87.8% of women, 45% of
whom received adjuvant therapy. LVSI and deep myometrial
invasion were present in 28.9% and 36.0% respectively. During
the study period, 78 women (14.7%) relapsed, 110 (20.6%) died,
and the remainder were alive as at 30th April 2021 (Table 1).

Associations Between T2DM Status
and Endometrial Cancer Clinico-
Pathological Parameters
Women with T2DM were more obese (median BMI 36kg/m2)
than those without (median BMI 31kg/m2, p<0.001). There was
an association between T2DM status and socioeconomic
quintile, with those from the more deprived neighbourhoods
being more likely to have T2DM than those from affluent areas
(p=0.045). Women with T2DM were less likely to receive
hysterectomy (81.3%) compared to those without (89.4%),
although the difference was not statistically significant
(p=0.071). There was no evidence of an association between
T2DM status and the receipt of adjuvant chemo-radiotherapy
Frontiers in Oncology | www.frontiersin.org 326
(22.5% vs 17.8%, p=0.136) or radiotherapy only (24.6% vs 18.7%,
p=0.136). There was a significant correlation between T2DM
status and elevated baseline CRP (p=0.013). There was no
evidence of an association between T2DM status and age
(p=0.141), FIGO stage (p=0.501), histological subtype
(p=0.980), disease grade (p=0.654), LVSI (p=0.979) or depth of
myometrial invasion (p=0.425) (Table 2).

Diabetic Status and Overall Survival
Women were followed up for a median duration of 40 months
(range 1-165 months). The overall survival rates for the study
cohort were 94% (95%CI 92-96%) at 12 months, 84% (95%CI 81-
87%) at 36 months and 75% (95% CI 70-80%) at 60 months. Age
at diagnosis, FIGO stage, disease grade, histology, LVSI and
depth of myometrial invasion were consistent in demonstrating
the expected prognostic associations. There was a 7% increase in
overall mortality risk per unit increase in age (HR 1.07, 95% CI
1.05-1.09), p<0.001), but no evidence of an effect of BMI (HR
0.99, 955 ci 0.98-1.01, P=0.629). The risk of overall mortality was
higher in women diagnosed with advanced-stage (FIGO III/IV)
(HR 3.06, 95% CI 2.03-4.61, p<0.001), high-grade (HR 3.01, 95%
CI 2.06-4.40, p<0.001), non-endometrioid (HR 2.98, 95% CI
2.04-4.34, p<0.001) endometrial cancers. LVSI and deep
myometrial invasion also correlated with higher risks of death
(HR 2.26, 95% CI 1.55-3.28, p<0.001 and 1.78 95%CI 1.22-2.59,
P=0.003), respectively. There was a 75% increase in overall
mortality for women with CRP>5.5mg/dl compared to those
with CRP <5.5mg/dl (HR 1.75, 95% CI 1.09-2.80), p=0.020).

Women with T2DM had a 97% increase in overall mortality
compared to those without, in univariable analysis (HR 1.97,
95%CI 1.32-2.94, p=0.001) (Table 3 and Figure 1). Following
adjustment for age, BMI, FIGO stage, disease grade, histology,
LVSI, depth of myometrial invasion, socioeconomic quintile and
baseline CRP, women with T2DM had a two-fold increase in
overall mortality compared to those without (adjusted HR 2.07,
95%CI 1.21-3.55, p=0.008).

T2DM Status and Cancer-Specific Survival
In total, there were 110 recorded deaths, 76 (69.1%) of which were
due to endometrial cancer while the remaining 34 (30.9%) were
non-cancer deaths. The cancer-specific survival for the study
cohort was 96% (95%CI 94-97%) at 12 months, 89% (95% CI
85-91%) at 36 months and 81% (76-85%) at 60 months. Cancer
specific mortality was worse with increasing age (HR 1.06, 955 CI
1.04-1.09, p<0.001), advanced FIGO stage (HR 5.01, 95% CI 3.16-
7.94, p<0.001), high-grade disease (HR 5.76, 95%CI 3.48-9.53,
p<0.001), non-endometrioid histology (HR 4.84, 95%CI 3.05-7.69,
p<0.001), presence of LVSI (HR 3.46, 95%CI 2.20-5.45, p<0.001),
deep myometrial invasion (HR 2.23, 95%CI 1.42-3.50, p=0.001)
and higher baseline CRP (HR 2.09, 95%CI 1.15-3.81, p=0.016).
There was no evidence of an effect of BMI on cancer-specific
deaths (HR 0.98, 95%CI 0.95-1.00, p=0.059).

Women with pre-existing T2DM had a 73% increase in
cancer specific mortality compared to those without (HR 1.73,
95%CI 1.05-2.85, p=0.030) (Table 3). Following adjustment for
age, BMI, FIGO stage, disease grade, histology, LVSI, depth of
myometrial invasion and baseline CRP, those with T2DM had a
May 2022 | Volume 12 | Article 899262

https://www.stata.com
https://www.stata.com
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Njoku et al. Diabetes and Endometrial Cancer Outcomes
two-fold increase in the risk of death from endometrial cancer
compared to those without (adjusted HR 2.15, 95% CI 1.05-
4.39), p=0.035).

T2DM Status and Recurrence-Free
Survival
Over the study period, there were 78 recurrences (14.7%) with a
median time to recurrence 13.5 months (IQR 8-25 months). The
recurrence-free survival for the study cohort was 93% (95% CI
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90-95%) at 12 months, 83% (79-86%) at 36 months and 80% (75-
84%) at 60 months. There was evidence of an association
between recurrence free survival and age (HR 1.05, 95%CI
1.02-1.07, p<0.001), FIGO stage (HR 4.89, 95% CI 3.1-7.7,
p<0.001), disease grade (HR 4.72, 95% CI 2.95-7.56, p<0.001),
histology (HR 3.67, 95% CI 2.35-5.71, p<0.001), LVSI (HR 4.00,
95% CI 2.55-6.28, p<0.001), and depth of myometrial invasion
(HR 2.39, 95% CI 1.53-3.73, p<0.001). There was no evidence of
an effect of BMI on recurrence free survival (HR 0.99, 95%CI
0.96-1.01, p=0.255).

Women with T2DM had a 70% increase in the risk of
recurrence compared to those without in univariable analysis
(HR 1.71, 95% CI 1.04-2.80, p=0.034). Following adjustment for
age, BMI, FIGO stage, disease grade, histology, LVSI, depth of
myometrial invasion and baseline CRP, those with T2DM had a
two-fold increase in the risk of disease recurrence compared to
those without (adjusted HR 2.22, 95% CI 1.08-4.56, p=0.030).
DISCUSSION

Main Findings
This was a prospective cohort study of 533 women with
histologically confirmed endometrial cancer followed up for a
median duration of 40 months. In this study, we found T2DM
status to be an independent predictor of endometrial cancer
outcomes. T2DM status was associated with BMI, baseline CRP
and socioeconomic quintile but not FIGO stage, disease grade,
histology, LVSI or depth of myometrial invasion. When these
sociodemographic and clinico-pathological factors were
controlled for, women with T2DM had a two-fold increase in
overall mortality, cancer-specific mortality and disease
recurrence. If validated in an independent cohort, T2DM
status may help refine endometrial cancer risk assessment and
when considered alongside other clinico-pathological
parameters, may guide decisions about adjuvant therapy in
endometrial cancer.

Strengths and Limitations
This study benefits from a large sample size of women with
endometrial cancer recruited to several population-based studies
that posed few restrictions according to clinico-pathological
parameters, alleviating concerns about the possibility of
selection bias. The availability of data on socio-demographic
and clinico-pathological characteristics allowed for a robust
adjustment for confounding factors and effect modifications.
To our knowledge, this is the first study to adjust for baseline
CRP, a parameter that is known to be associated with T2DM
status and which has been reported to independently predict
outcomes in endometrial cancer (6). The established endometrial
cancer prognostic factors, including FIGO stage, disease grade,
histological subtype, LVSI and depth of myometrial invasion,
were consistent in demonstrating the expected associations. We
did not collect comorbidity or medication use data, and neither
did we have information regarding endometrial cancer molecular
subgroup for our study cohort, and this may have led to an over-
or under-estimation of endometrial cancer outcomes. The
TABLE 1 | Socio-demographic characteristics of the study population.

Variable n (% total)

Age at diagnosis Median age 66 years (IQR 56 73)
<65 years 243 (45.6%)
≥65 years 290 (54.4%)
Body Mass Index (kg/m2) Median BMI 32kg/m2 (IQR 26, 39)
Underweight 6 (1.1%)
Normal weight 82 (15.4%)
Overweight 127 (23.8%)
Obese 318 (59.7%)
Tumour grade
1 239 (44.8%)
2 120 (22.5%)
3 174 (32.7%)
Tumour stage
I 397 (74.6%)
II 56 (10.5%)
III 70 (13.2%)
IV 9 (1.7%)
Histology
Endometrioid 398 (74.7%)
Non-endometrioid 135 (25.3%)
LVSI (n=530)
No 377 (71.1%)
Yes 153 (28.9%)
Depth of myometrial invasion
<50% 341 (64.0%)
≥50% 192 (36.0%)
Social deprivation quintile
Quintile I (Most deprived) 197 (37.0%)
Quintile II 125 (23.5%)
Quintile III 60 (11.3%)
Quintile IV 94 (17.6%)
Quintile V (Least deprived) 57 (10.7%)
History of type 2 diabetes mellitus
(n=535)
Yes 107(20.1%)
No 426(79.9%)
Primary treatment
Surgery 468 (87.8%)
Hormonal (Fertility sparing reasons) 23 (4.3%)
Hormonal (Not fit for surgery) 39 (7.3%)
Radiotherapy 3 (0.7%)
Adjuvant treatment
Yes 240 (45.0%)
No 293 (55.0%)
Recurrence
Yes 78 (14.7%)
No 454 (85.3%)
Survival status at end of follow up
Alive 423 (79.4%)
Cancer-specific mortality 76 (14.3%)
Non-cancer related mortality 34 (6.4%)
Total 533 (100%)
Bold: p < 0.05.
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generally favourable prognosis of endometrial cancer and
consequent low event rate affects the reliability of our
conclusions. The relatively small number of women with
T2DM reduces the precision of our estimates. Finally, as this
was a prospective study of mostly White British women managed
at a specialist cancer centre, we cannot necessarily generalise our
study findings to women from other treatment centres,
nationalities or ethnicities.

Interpretation
Large epidemiological and mechanistic studies have been consistent
in suggesting an association between T2DM and endometrial
carcinogenesis (13, 16, 17, 19, 20). Women with T2DM are at a
62% increased risk of endometrial cancer, independent of obesity,
compared to those without (13). Insulin resistance, hormonal
imbalance and systemic inflammation are the three main
biological pathways implicated in endometrial cancer
development (14). Insulin resistance results in hyperinsulinemia
and hyperglycaemia which alongside chronic inflammation
promotes endometrial tumorigenesis and metastasis by the direct
pro-proliferative and anti-apoptotic effect of insulin and insulin
growth factor (IGF-1) on endometrial cells (15). However, whether
Frontiers in Oncology | www.frontiersin.org 528
T2DM independently impacts on endometrial cancer outcomes is
unclear. The systematic review of relevant cohort studies by Liao
and colleagues concluded that the evidence for an association
between T2DM and endometrial-cancer specific mortality was
low quality (17). Of the six included studies, only two reported
relative risk ratios and were quantitatively synthesized (summary
estimate RR 1.32 [1.10-1.60]) (17). One study reported a hazard
ratio of 1.64 that was not statistically significant (21) while the
remaining three studies (22–24) reported standardised mortality
ratios that could not be pooled together. In our study, we show
evidence that T2DM impacts on endometrial cancer overall, cancer-
specific and recurrence free survival, following robust adjustment
for important clinico-pathological confounders. T2DM status was
associated with BMI, socioeconomic quintile and baseline CRP,
consistent with previous work (25–27). Our findings are consistent
with the recent report by Nagle and colleagues of a two-fold increase
in cancer-specific mortality in endometrial cancer patients with
T2DM compared to those without (28). If validated in a larger
independent cohort, our findings have important clinical and
therapeutic implications. Pre-existing T2DM was recorded for
20% of patients, for whom personalised care and careful follow-
up is justified.
TABLE 2 | Baseline socio-demographic characteristics stratified by T2DM status.

Parameters Categories Frequency No T2DM (n=426) T2DM (n=107) P value

Age (years) <65 243 201 (47.2%) 42 (39.3%) 0.141
≥65 290 225 (52.8%) 65 (60.7%)

BMI (kg/m2) Underweight 6 6 (1.4%) 0 (0.0%) 0.005
Normal 82 74 (17.4%) 8 (7.5%)
Overweight 127 107 (25.1%) 20 (18.7%)
Obese 318 239 (56.1%) 79 (73.8%)

FIGO stage I 397 318 (74.6%) 79 (73.8%) 0.501
II 56 44 (10.3%) 12 (11.2%)
III 70 54 (12.7%) 16 (15.0%)
IV 9 9 (2.1%) 0 (0.0%)

Histology Endometrioid 398 318 (74.6%) 80 (74.8%) 0.980
Others 135 108 (25.4%) 27 (25.2%)

Grade I 239 189 (44.4%) 50 (46.7%) 0.654
II 120 94 (22.1%) 26 (24.3%)
III 174 143 (33.5%) 31 (29.0%)

LVSI (n=530) No 377 301 (71.2%) 76 (71.0%) 0.979
Yes 153 122 (28.8%) 31 (29.0%)

Myometrial invasion <50% 341 269 (63.1%) 72 (67.3%) 0.425
≥50% 192 157 (36.9%) 35 (32.7%)

CRP (n=355) <5mg/dl 199 169 (59.3%) 30 (42.0%) 0.013
≥5mg/dl 156 116 (40.7%) 40 (57.1%)

Social quintile I 197 149 (35.0%) 48 (44.9%) 0.045
II 125 95 (22.3%) 30 (28.0%)
III 60 54 (12.7%) 6 (5.6%)
IV 94 81 (19.0%) 13 (12.1%)
V 57 47 (11.0%) 10 (9.3%)

Primary Treatment Surgery 468 381 (89.4%) 87 (90.7%) 0.071
Hormonal 62 43 (10.1%) 19 (17.8%)
Radiotherapy 3 2 (0.5%) 1 (0.9%)

Adjuvant therapy None 293 225 (52.8%) 68 (63.6%) 0.136
Chemoradiotherapy 115 96 (22.5%) 19 (17.8%)
Radiotherapy only 125 105 (24.6%) 20 (18.7%)

Recurrence No 454 370 (86.9%) 85 (79.4%) 0.054
Yes 78 56 (13.1%) 22 (20.6%)

Alive status No 110 75 (17.6%) 35 (32.7%) 0.001
Yes 423 351 (82.4%) 72 (67.3%)
Ma
y 2022 | Volume 12 | Article
Bold: p < 0.05.
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The impact of T2DM on endometrial cancer outcomes may
be related to tumour (cancer stage, disease grade, and tumour
biology), patient (age, obesity, and other comorbidities) or health
care factors (variation in type of care offered) (29). T2DM can
impact on the FIGO stage at endometrial cancer diagnosis. It is
indeed plausible that having a comorbidity like T2DM can result
in increased contact with the National Health Service, thus
creating opportunities for the early diagnosis of endometrial
cancer. Conversely, pre-existing T2DM may distract either, or
both, the patient and health care providers, resulting in delayed
cancer diagnosis and poor outcomes (29). In our study, we found
no evidence of an association between T2DM status and FIGO
stage, and there was minimal evidence of confounding by FIGO
stage; correction for FIGO stage did not considerably affect the
T2DM hazard ratios. Comorbid diabetes may also influence
disease grade and tumour biology. Mechanistically, the pro-
proliferative and anti-apoptotic effect of insulin and IGF on
endometrial cells, induced by insulin resistance in T2DMmay be
expected to lead to more aggressive endometrial cancer
phenotypes (15, 30). In our study, however, there was no
evidence of an association between T2DM status and disease
Frontiers in Oncology | www.frontiersin.org 629
grade or histological subtype; and neither mediated the link
between T2DM and endometrial cancer outcomes, as the hazard
ratios remained significant after adjusting for these variables.
T2DM may also affect endometrial cancer outcomes through
patient related factors such as age, BMI and the presence of
related comorbidities. However, both age and BMI were adjusted
for in the multivariable analyses, suggesting that they could not
have underpinned our study findings.

Healthcare and treatment related factors may also explain the
association between T2DM and endometrial cancer outcomes
(29). There is evidence to suggest that cancer patients with a
comorbidity are less likely to be offered curative treatment than
those with no comorbidity (31). Indeed, women with T2DM are
more likely to have other comorbid conditions such as
hypertension and heart disease and thus may be less likely to
be offered surgery, compared to those without (31, 32).
Furthermore, women with T2DM who undergo surgery may
be at an increased risk of peri-and post-operative complications
that contribute to poor outcomes (31, 33). Women with
comorbidities like T2DM may also be less likely to receive
adjuvant chemotherapy, be more liable to receive a reduced
TABLE 3 | Cox regression analyses of T2DM status and endometrial cancer survival outcomes with crude and adjusted hazard ratios and 95% confidence intervals.

T2DM Categories One year survival %
(95%CI)

3-year survival %
(95%CI)

5-year survival %
(95%CI)

Unadjusted HR
(95%CI)

p-value Adjusted HR
(95%CI)

p-value

Overall Survival
No T2DM 95% (92%-97%) 87% (83%-90%) 79% (74%-84%) 1.00 1.00
T2DM 92% (85%-96%) 73% (63%-81%) 60% (47%-70%) 1.96 (1.32-2.94) 0.001 2.07 (1.21-3.55) 0.008
Cancer-Specific Survival
No T2DM 96% (94%-98%) 91% (87%-93%) 84% (78%-88%) 1.00 1.00
T2DM 95% (88%-98%) 81% (70%-88%) 71% (58%-81%) 1.73 (1.05-2.85) 0.030 2.15 (1.05-4.39) 0.035
Recurrence free survival
No T2DM 94% (915-96%) 85% (815-89%) 81% (76%-86%) 1.00 1.00
T2DM 89% (81% -94%) 72% (60%-81%) 72% (60%-81%) 1.71 (1.04-2.80) 0.034 2.22 (1.08-4.56) 0.030
May 2022
 | Volume 12 | Article
Adjusted model includes age, BMI, disease histology, grade, FIGO stage, LVSI, depth of myometrial invasion, primary treatment and baseline CRP. Bold: p < 0.05.
FIGURE 1 | Kaplan Meier survival analysis for overall survival.
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dose and more likely to not complete treatment (34–38). In our
study, there was no evidence of a significant difference in
treatment allocation by T2DM status in either the primary or
adjuvant settings. However, treatment-related factors relating to
dosing and completion of treatment cannot be ruled out.
Furthermore, limited data suggest that metformin is associated
with improved overall and progression-free survival outcomes in
endometrial cancer (39, 40). Two meta-analyses, involving 1,594
and 3,923 women with endometrial cancer respectively,
concluded that metformin reduces the risk of recurrence and
death in endometrial cancer survivors (39, 40). However, we
were unable to include this in our multivariable model due to
lack of data on medication use in our cohort.

In conclusion, we found that T2DM confers an increased risk
of death from endometrial cancer. Well-designed longitudinal
studies with large sample sizes are now needed to confirm
these findings.
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Objectives: To develop and validate a radiomics model based on multimodal MRI
combining clinical information for preoperative distinguishing concurrent endometrial
carcinoma (CEC) from atypical endometrial hyperplasia (AEH).

Materials and Methods: A total of 122 patients (78 AEH and 44 CEC) who underwent
preoperative MRI were enrolled in this retrospective study. Radiomics features were
extracted based on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and
apparent diffusion coefficient (ADC) maps. After feature reduction by minimum
redundancy maximum relevance and least absolute shrinkage and selection operator
algorithm, single-modal and multimodal radiomics signatures, clinical model, and
radiomics-clinical model were constructed using logistic regression. Receiver operating
characteristic (ROC) analysis, calibration curves, and decision curve analysis were used to
assess the models.

Results: The combined radiomics signature of T2WI, DWI, and ADCmaps showed better
discrimination ability than either alone. The radiomics-clinical model consisting of
multimodal radiomics features, endometrial thickness >11mm, and nulliparity status
achieved the highest area under the ROC curve (AUC) of 0.932 (95% confidential
interval [CI]: 0.880-0.984), bootstrap corrected AUC of 0.922 in the training set, and
AUC of 0.942 (95% CI: 0.852-1.000) in the validation set. Subgroup analysis further
revealed that this model performed well for patients with preoperative endometrial biopsy
consistent and inconsistent with postoperative pathologic data (consistent group, F1-
score = 0.865; inconsistent group, F1-score = 0.900).
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Conclusions: The radiomics model, which incorporates multimodal MRI and clinical
information, might be used to preoperatively differentiate CEC from AEH, especially for
patients with under- or over-estimated preoperative endometrial biopsy.
Keywords: radiomics, magnetic resonance imaging, endometrial hyperplasia, endometrial neoplasms,
texture analysis
1 INTRODUCTION

Atypical endometrial hyperplasia (AEH), also known as
endometrial intraepithelial neoplasia, is considered a direct
precursor of endometrial carcinoma (EC). Approximately 40%
of AEH will proceed to EC within 12 months of onset (1, 2). In
addition, previous studies have found that 37%-43% of AEH
patients who undergo hysterectomy are diagnosed with
concurrent endometrial carcinoma (CEC) on final pathology
(3, 4).

Given the high risk of progression and CEC, the recommended
treatment of AEH is total hysterectomy (with bilateral salpingo-
oophorectomy when possible) in women who do not desire
pregnancy. In contrast, non-surgical management may be
appropriate for patients who plan on becoming pregnant in the
future or those with comorbidities precluding surgical
management (5). Previous studies have suggested that up to
12% of CEC patients suffer from high-grade tumors with deep
myometrial invasion and have a 3-7% risk of lymph node
involvement (6–9). Therefore, besides hysterectomy with
bilateral salpingo-oophorectomy, a proportion of CEC patients
may benefit from lymph node assessment as a guide to adjuvant
therapy (10, 11). However, it is impossible to perform sentinel
lymph node (SLN) mapping after hysterectomy due to disruption
of the lymphatic channels originating from the uterine corpus and
cervix during operation. Hence, an accurate preoperative diagnosis
of AEH or CEC is crucial for selecting candidates for proper
surgery or conservative treatment.

A primary diagnosis of AEH is usually made using dilation
and curettage, hysteroscopy-guided biopsy, or hysteroscopic
endometrial resection. Yet, these methods may fail to provide
adequate tissue and lead to an improper diagnosis (12). Recent
evidence suggested that non-invasive imaging tools may promote
an accurate pre-treatment assessment of endometrial changes
and optimize treatment planning (13). Magnetic resonance
imaging (MRI) is a routine imaging modality used for the
high-resolution evaluation of endometrial pathologies.
Compared to conventional MRI, which has a relatively weak
predictive value of CEC in patients with AEH (14, 15), the
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apparent diffusion coefficient (ADC) can be used to distinguish
benign from malignant endometrial lesions (16). Still, so far, no
studies have reported on the value of ADC in differentiating CEC
from AEH.

Radiomics is a quantitative approach that extracts features
from medical images using data-characterization algorithms and
has been widely applied for differential diagnosis of cancers,
evaluating therapeutic effects, and predicting the recurrence,
metastasis, and survival time (17–19). A previous study used
18F-FDG PET/CT (positron emission tomography (PET) with 2-
deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG)) quantitative
parameters and texture analysis to distinguish CEC from AEH
effectively (20). However, to the best of our knowledge, no
research has determined whether an MRI-based radiomics
study can detect CEC in AEH patients.

Thus, this study aimed to develop and validate a multimodal
MRI-based radiomics-clinical model for detecting CEC from AEH
before operation noninvasively. Also, we investigated the model
performance in patients with preoperative endometrial biopsy
consistent or inconsistent with postoperative pathological data.
2 MATERIAL AND METHODS

2.1 Patients
Our institutional ethics committee approved this study and
waived the informed consent from patients. We retrospectively
reviewed data of patients from our hospital database.

In total, 321 patients who underwent gynecological surgery
between January 2011 and December 2019 were pathologically
confirmed with AEH or stage IA CEC. Inclusion criteria were: 1)
AEH or stage IA CEC confirmed surgically and pathologically; 2)
pelvic MRI performed within 20 days prior to gynecological
surgery; 3) no tumor-related therapy received before MR
examination. Exclusion criteria were the following: 1) lacking
one of the following MRI sequences: sagittal T2-weighted
imaging (T2WI), axial diffusion-weighted imaging (DWI), or
the corresponding ADC map (n=3); 2) endometrium too thin
(maximum thickness less than 4mm) to be assessed on MRI
(n=10); 3) Poor image quality or obvious image artifacts affecting
the visualization of tumor (n=6); 4) incomplete clinical data
(n=5). Ultimately, MRI results of 122 patients (78 AEH and 44
CEC) were included in the study. The patients were divided into
a training set (87 patients) and an independent validation set (35
patients) according to the time of treatment. A pathologist (Y.S.)
with 20 years’ experience in gynecologic pathology reviewed
the pathological data. Figure 1 shows the flowchart of
patient enrollment.
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2.2 MRI Acquisition
All patients underwent conventional MR examination using 3.0T
MR scanners (Signa HDxt and Discovery HD750, GE Medical
System, Milwaukee, WI) with an eight-element phased-array
wrap-around surface coil. Patients received an intramuscular
inject ion of 10 mg raceanisodamine hydrochloride
approximately 10 minutes before MRI to reduce bowel
movement, excluding those with contraindications. The
following sequences were included: sagittal T2WI and axial
DWI. Diffusion gradients were applied in three orthogonal
directions with b values of 0 and 800 s/mm2, and DWI with b
value of 800 s/mm2 was involved in the analysis. ADCmaps were
manually generated from DWI on the post-processing
workstation (Advantage Workstation 4.6; GE Medical System).
Detailed sequence scanning parameters are shown in Table 1.

2.3 Clinical and Conventional
MR Assessment
The following clinical data were collected from medical records:
age, body mass index, menopausal status, childbearing history,
Frontiers in Oncology | www.frontiersin.org 334
history of metabolic syndrome or polycystic ovary syndrome,
history of endocrine therapy for breast cancer, blood serum
cancer antigen 125 and cancer antigen 19-9 level, and
preoperative pathological data.

Two radiologists (J.Z. and X.Y., with 6- and 18-years’
experience in gynecologic imaging, as Reader 1 and 2), who
were blinded to the medical records and pathological data,
independently measured endometrial stripe thickness on
sagittal T2-weighted images. The average values were taken.
Myometrial invasion [identified as interruption of the junction
zone (21)] using all MR images was also assessed. The
consistency between the two radiologists was evaluated by
calculating Cohen’s kappa coefficients. Discrepancies were
resolved by discussion until consensus was achieved.

2.4 Data Analysis
2.4.1 Tumor Segmentation and Feature Extraction
Segmentation of images of the volume of interest (VOI) covering
the whole tumor was performed using ITK-SNAP software
(version 3.8.0, www.itksnap.org). AEH lesions would typically be
FIGURE 1 | Flowchart of patient enrollment in this study.
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presented with intermediate signal intensity on T2WI, DWI, and
the ADC map compared with normal endometrium. Some
endometrial lesions would be detected as CEC if the lesion was
presented with isointense or slightly lower signal intensity on
T2WI, higher signal intensity on DWI, and a lower value on ADC
map compared with adjacent endometrium. In contrast, the
remaining CEC lesions could not be delineated. Representative
cases are presented in Figure S1. Each VOI was manually drawn
along the contour of the entire endometrium or tumor (with
visible tumor) slice-by-slice by Reader 1 on T2WI, DWI, and ADC
map. Hemorrhagic, necrotic, cystic areas, and adjacent normal
tissues were avoided using T1-weighted images and dynamic
contrast-enhanced images as references. With a 1-month
interval, the above procedure was repeated by Reader 1 and 2
independently. Each extracted feature’s inter- and intra-observer
agreements were determined by calculating the intraclass
correlation coefficients (ICC). Every case was then reviewed by
another radiologist (H.O., with 30-years’ experience in gynecologic
imaging) to ensure high-quality final segmentation results.

The feature extraction was realized using an open-source
Python package called Pyradiomics (22). Before feature
extraction, we applied image normalization in T2WI and DWI
sequences using the Pyradiomics normalization method by
centering it at the mean with standard deviation based on all
gray values in the image (not just those inside the segmentation),
thereby reducing the potential effects introduced by scanners,
scanning parameters, and protocols. Then we applied Z score
normalization to ensure that the radiomics features were
measured on the same scale. The radiomics features were
classified into three categories according to the feature
calculation method: (1) 14 shape-based features; (2) 18 first-
order statistical features; (3) 68 texture features, including gray
level co-occurrence matrix, gray level size zone matrix (GLSZM),
Frontiers in Oncology | www.frontiersin.org 435
gray level run length matrix, and gray level dependence matrix
(GLDM). Detailed radiomics features are listed in Table S1.

2.4.2 Radiomic Feature Selection and Analysis
Stability analysis of radiomic features between inter-/intra-
observer segmentations was first performed by removing
the radiomic features with low reproducibility (ICC < 0.75). The
remaining significant features were ranked using the minimum
redundancy maximum relevance (mRMR) algorithm.
Consequently, the top 10 features with low redundancy and
high relevance were obtained for the following analyses.

The least absolute shrinkage and selection operator (LASSO)
algorithm was applied to avoid overfitting. The 1-standard error
of the minimum criteria (the 1-SE criteria) was used to tune the
regularization parameter (l) and for feature selection using 10-
fold cross-validation. T2WI, DWI, and ADC radiomics scores
(T2WI-score, DWI-score, and ADC-score) were calculated for
each patient using a weighted linear combination of selected
features. Finally, a combined radiomics signature (Radscore)
was generated using logistic regression based on T2WI,
DWI, and ADC features. Figure 2 shows the workflow of
radiomic analysis.

2.4.3 Clinical and Radiomics-Clinical Model Building,
Discrimination, and Calibration
To select the optimal clinical parameters, the likelihood ratio test
with Akaike’s information criterion was applied as the stopping
rule for stepwise logistic regression analysis. The model with the
lowest Akaike’s information criterion score was selected as a
clinical model. Then, we developed a radiomics-clinical model
based on Radscore and the optimal clinical parameters using
multivariate logistic regression.
TABLE 1 | Detailed Sequences Scanning Parameters in Two MR Scanners.

Parameters Axial T1WI Axial T2WI SagittalT2WI Axial oblique T2WI AxialDWI Axial T1WI postcontrast

GE signa excite HD 3.0T
Technique FSE FS FSE FSE FSE SS-EPI 3D LAVA-XV
TR (ms)/TE (ms) 620/8.2 5900/121 4920/139.1 4900/131.5 4400/64.3 4.1/1.8
FOV (cm) 38 34 30 22 34 35
Matrix (phase × frequency) 320×224 320×256 320×256 320×256 256×256 350×350
Slice thickness (mm) 5 5 4 3 5 1
Slice gap 1 1 0.4 0 1 0
Average (NEX) 2 2 2 4 2 1
b-value (s/mm2) * – – – – 0, 800 –

GE Discovery HD750 3.0T
Technique LAVA-Flex FS FSE FSE FSE SS-EPI 3D LAVA-XV
TR (ms)/TE (ms) 4.2/1.3 4650/85.0 4220/125.4 5500/102.0 4000/56.1 7.9/4.1
FOV (cm) 38 34 30 22 34 35
Matrix (phase × frequency) 320×224 320×256 320×256 320×256 128×128 350×350
Slice thickness (mm) 3 5 4 3 5 1
Slice gap 0 1 0.4 0 1 0
Average (NEX) 1 2 2 4 2 1
b-value (s/mm2) * – – – – 0, 800 –
May 2022 | V
*ADC maps were calculated voxel by voxel with the monoexponential model using the formula: ADC = In (S0/S800)/(b800−b0)
where S800 and S0 are the signal intensities with and without a diffusion gradient, respectively.
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; FS, fat suppression; FSE, fast-recovery fast spin-echo; DWI, diffusion-weighted imaging; SS-EPI, single-shot echo-planar
imaging; LAVA-Flex, liver acquisition with volume acceleration; LAVA-XV, liver acquisition with volume acceleration-extended volume; TR, repetition time; TE, echo time; FOV, field of view;
NEX, number of excitations.
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2.5 Statistical Analysis
Statistical analyses were performed using R software (version 4.0.3;
http://www.Rproject.org). Differences between groups were
assessed using t-tests or Mann-Whitney U tests for continuous
variables; Chi-square test or Fisher’s exact test were applied for
categorical variables. Receiver operating characteristic (ROC)
curves were used to display and evaluate model performance.
The area under the ROC curves (AUC), sensitivity, specificity,
accuracy, and F1-score were used for evaluating the model
performance. F1-score assumes that recall [equivalently,
sensitivity, TP/(TP+FN)] and precision [equivalently, positive
predictive value (PPV), TP/(TP+FP)] are of equal importance,
where TP, FN, and FP represent true positive, false negative, and
false positive, respectively. The higher F1-score synthetically
reflects higher sensitivity and higher PPV. The formula for F1-
score is as follows:

F1 − score  =  
2Precison� Recall
Precison + Recall

DeLong’s test was used to compare the AUC of each model.
Calibration curves and the Hosmer-Lemeshow test were used
to assess the goodness of fit of the models. Decision curve
analysis (DCA) was conducted to estimate the clinical
usefulness of the models by calculating the net benefits at
different values of threshold probability. Model internal
validation in the training set was performed using the
enhanced bootstrap resampling method (n=1000), which
obtained the estimates of optimism in the regression models
to provide a bias-corrected AUC value through a Somers’ D rank
correlation metric whereby AUC = (1 + Somers’ D)/2. A p < 0.05
was considered statistically significant.
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3 RESULTS

3.1 Patient Characteristics
One hundred and twenty-two patients were enrolled in our
study, including 78 AEH and 44 CEC patients. Baseline
patients’ characteristics and preoperative biopsy results in the
training and validation sets are summarized in Table 2.

Based on the median, endometrial thickness (ET) was divided
into ≤11mm and <11mm groups. Detailed information on ET in
the subgroups (according to menopausal status and parity) of
AEH and CEC patients is shown in Table S2. The consistency
between the two radiologists was good to excellent in the
evaluation of myometrial invasion (Kappa value=0.781) and
measurement of ET (ICC = 0.908). In total, 29 (23.7%)
patients (18 AEH and 11 CEC) had conflicting results between
preoperative biopsy and postoperative pathology. Three (6.8%)
patients in the CEC group had intermediate-risk EC (2 with non-
endometrioid EC and 1 with high-grade tumor), and the
remaining had low-risk EC, according to the 2021 ESGO/
ESTRO/ESP guidelines for EC management (23).

3.2 Radiomics Signature Analysis
We extracted 300 features from the T2WI, DWI, and ADC maps
of each VOI and reduced them to 283 by stability analysis. For
T2WI, DWI, and ADC radiomics signature, the 7, 3, and 1 most
relevant features were selected using the variable selection
algorithm, respectively. Then, we determined the 5 top features
consisting of 3 from T2WI, 1 from DWI, and 1 from ADC maps
to build the combined radiomics signature (Table 3).

T2WI-score, DWI-score, ADC-score, and Radscore,
calculated as the linear combination of these features with
A B D EC

FIGURE 2 | Workflow of radiomic analysis. (A) MR imaging segmentation. Three-dimensional (3D) segmentation of tumors in MR images. (B) Radiomic feature
extraction. Radiomic features, including shape, intensity, and texture, were extracted from the tumor volume. (C) Feature selection process. The stability analysis, the
minimum redundancy maximum relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the radiomic feature
selection. (D) Model construction. Radiomics signatures were constructed using a binary logistic regression model. Finally, a nomogram for the optimal model was
developed. (E) Model assessment. The performances of our models were evaluated by discrimination, calibration, and clinical utility, as well as subgroup analysis.
VOI, volume of interest; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; GLDM, gray level
dependence matrix.
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coefficients of the logistic regression model, were all significantly
higher in the CEC group than the AEH group in the training set
Frontiers in Oncology | www.frontiersin.org 637
(all p < 0.001; Figure S2). The combined radiomics signature
achieved the highest AUC of 0.920 and bootstrap corrected AUC
of 0.892 in the training set and was then confirmed in the
validation set with an AUC of 0.942 (Table 4). As shown in
Figures 3A, B, Delong’s test demonstrated statistical differences
in AUC values between the combined and DWI radiomics
signature (p = 0.030) in the validation set. The mathematical
formula used to calculate radiomics scores is shown in
Method S1.

3.3 Clinical and Radiomics-Clinical Model
Construction and Performance
Assessment
In the clinical model, two parameters were independently associated
with CEC in AEH patients, including the status of nulliparity (odds
ratio [OR]: 7.082; 95% confidence interval [CI]: 1.159-43.288; p =
0.034) and ET>11mm (OR: 4.148, 95%CI: 1.553-11.073; p = 0.005).
These two parameters, along with Radscore, were used to build the
radiomics-clinical model. Nomogram (Figure 3E) was established
for this model. The auto- and cross-correlations of selected features
in the radiomics-clinical model derived from the training set are
shown in Figure S3.

The clinical model showed moderate performance with AUC
of 0.695 and 0.641, which was significantly improved by the
radiomics-clinical model to 0.932 and 0.942 in the training and
validation sets, respectively (Delong’s test, p < 0.001;
Figures 3C, D). There was no significant difference between
TABLE 3 | Features of T2WI, DWI, ADC, and Combined Radiomics Signatures.

Feature Name Coefficients

T2WI Radiomics Signature
Intercept -1.252
glszm_SizeZoneNonUniformityNormalized -0.850
glszm_SmallAreaLowGrayLevelEmphasis 0.397
firstorder_10Percentile 0.054
shape_Maximum2DDiameterSlice -0.871
shape_Flatness 0.769
firstorder_Skewness 1.100
gldm_LargeDependenceLowGrayLevelEmphasis 0.604
DWI Radiomics Signature
Intercept -0.777
shape_Maximum2DDiameterRow -0.444
firstorder_Kurtosis -0.740
shape_Flatness 0.678
ADC Radiomics Signature
Intercept -0.920
firstorder_10Percentile -1.595
Combined Radiomics Signature
Intercept -1.235
T2WI_shape_Maximum2DDiameterSlice -0.773
T2WI_gldm_LargeDependenceLowGrayLevelEmphasis 0.750
DWI_shape_Flatness 0.585
T2WI_firstorder_Skewness -1.472
ADC_firstorder_10Percentile 0.529
TABLE 2 | Baseline Characteristics of Patients in the Training and Validation sets.

Characteristics Training Set (n=87) Validation Set (n=35) p# value

AEH (n=57) CEC (n=30) p value AEH (n=21) CEC (n=14) p value

Age, years, mean ± SD 46.7 ± 4.9 46.7 ± 7.1 0.982 47.1 ± 5.2 48.2 ± 5.5 0.564 0.427
BMI, kg/m2† 0.610 0.697 0.752
≤24.9 26 (45.6) 11 (36.7) 12 (57.1) 7 (50.0)
25~29.9 22 (38.6) 12 (40.0) 6 (28.6) 6 (42.9)
≥30 9 (15.8) 7 (23.3) 3 (14.3) 1 (7.1)
Menopausal Status† 0.377 0.721 0.148
Premenopausal 45 (78.9) 26 (86.7) 15 (71.4) 9 (64.3)
Postmenopausal 12 (21.1) 4 (13.3) 6 (21.1) 4 (35.7)
Nulliparity† 2 (3.5) 5 (16.7) 0.045* 1(4.8) 3 (21.4) 0.279 0.727
CA125 (+) 5 (8.8) 5 (16.7) 0.303 0 (0.0) 1 (7.1) 0.400 0.175
CA19-9 (+) 2 (3.5) 3 (10.0) 0.335 0 (0.0) 1 (7.1) 0.400 0.672
Diabetes 3 (5.3) 1 (3.3) 1.000 1 (4.8) 0 (0.0) 1.000 1.000
PCOS 0 (0.0) 1 (3.3) 0.345 0 (0.0) 1 (7.1) 0.400 0.493
History of endocrine therapy† 1 (1.8) 1 (3.3) 1.000 0 (0.0) 2 (14.3) 0.153 0.578
Endometrial Thickness† 0.005* 0.296 0.842
≤11mm 37 (64.9) 10 (33.3) 14 (66.7) 6 (42.9)
>11mm 20 (35.1) 20 (66.7) 7 (33.3) 8 (57.1)
Myometrial invasion† 0.126 0.685 0.295
No 51 (89.5) 23 (76.7) 17 (81.0%) 10 (71.4%)
Yes 6 (10.5) 7 (23.3) 4(19.0%) 4(28.6%)
Preoperative Endometrial biopsy† <0.001* 0.002* 0.360
Hyperplasia without atypia 8 (14.0) 0 (0.0) 1 (4.8) 0 (0.0)
Atypical hyperplasia 42 (73.7) 6 (20.0) 18 (85.7) 5 (35.7)
Cancer 7 (12.3) 24 (80.0) 2 (9.5) 9 (64.3)
May 2022 | Volume 12 | Articl
†Data in parentheses are percentages.
*p < 0.05.
p# value represents the comparison between training and validation sets.
AEH, atypical endometrial hyperplasia; CEC, concurrent endometrial carcinoma; BMI, body mass index; CA125, cancer antigen 125; CA19-9, cancer antigen 19-9; PCOS, polycystic
ovary syndrome.
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the AUC of the combined radiomics signature and radiomics-
clinical model in the training and validation sets (Delong’s test,
p<0.05). Calibration curves showed good fitness for the
radiomics-clinical model (Hosmer-Lemeshow test, p = 0.933 in
the training set, 0.400 in the validation sets) (Figures 4A, B). The
patients’ risk scores, indicating the models’ high classification
ability, are shown in Figures 4C, D. DCA of the models is shown
in Figure 5.

As shown in Figure 6A, in the subgroup of patients with
preoperative endometrial biopsy inconsistent (under- or over-
estimated) with postoperative pathology, the combined
radiomics signature and radiomics-clinical model achieved the
highest sensitivity and NPV of 1.000, with an AUC of 0.955 and
0.934, respectively. The F1-score of the two subgroups is shown
in Figure 6B. The radiomics-clinical model showed good
potency among the six classification models (consistent group,
F1-score = 0.865; inconsistent group, F1-score = 0.900), while the
combined radiomics signature performed even better in patients
with inconsistent biopsy results (F1-score = 0.923).
4 DISCUSSION

In this study, we developed a multimodal MRI-based radiomics-
clinical model for preoperative differentiation of CEC from AEH.
The model consisting of radiomics features and clinical data (ET
>11mm and nulliparity status) demonstrated the best
discrimination ability and goodness of fit. Moreover, in patients
with under- or over-estimated preoperative biopsy results, the
sensitivity and NPV were greatly improved after applying the
model with relatively high PPV. Furthermore, despite differences
in the MR scanners among various subjects, the radiomics-clinical
model revealed an excellent capacity for detecting CEC from AEH
in the internal validation, with a bootstrap corrected AUC of 0.922
in the training set and AUC of 0.942 in the validation set, thus
surpassing other models.

Previous studies (24–27) showed that AEH and EC shared
common predisposing risk factors, such as age, postmenopausal
status, nulliparity, obesity, diabetes, PCOS, and long-term
tamoxifen therapy. Liakou et al. (14) found that myometrial
Frontiers in Oncology | www.frontiersin.org 738
invasion on conventional MRI was associated with increased
CEC risk for AEH patients; nevertheless, the sensitivity and
specificity of MRI in identifying cancer were poor (37% and 89%,
respectively). In the current study, we adopted the aforementioned
clinical parameters into our clinical predictive model. Nulliparity
and ET >11mm observed on conventional MRI were found to be
independently associated with the differentiation of CEC from
AEH. Nulliparity is an established risk factor for endometrial
cancer, and each pregnancy provides an additional risk reduction
(28). The study of ET as a predictive factor for endometrial
pathology with abnormal uterine bleeding is a debated topic with
conflicting results, especially in premenopausal patients, since its
predictive performance is affected by menstrual cycle phases. Vetter
et al. (29) demonstrated that ET >2cm on preoperative transvaginal
ultrasound was associated with increased odds of CEC in AEH
patients while controlling for age. Wise et al. (30) proved a strong
association between ET > 11 mm and AEH/EC in premenopausal
women. Based on the median, we found that the same ET cut-off
value (>11 mm) on MRI was associated with CEC in AEH patients
in the current study. Moreover, our study produced consistent
results that a higher proportion of CEC than AEH patients had an
ET >11mm in different subgroups based on menopausal status and
parity. However, the clinical model’s performance was
unsatisfactory, especially for patients with inconsistent
preoperative biopsy results.

Next, we constructed radiomics signatures based on different
MRI images (T2WI, DWI, and ADC maps). T2WI radiomics
signature performed better for categorizing CEC and AEH than
DWI. A reasonable explanation could be that T2WI is the critical
conventional sequence of non-enhanced MRI in diagnosing
endometrial diseases, providing detailed anatomical
characteristics with high contrast and spatial resolution. On
T2WI, AEH usually has a similar signal intensity with that of
the normal endometrium, while EC shows intermediate-low signal
intensity relative to hyperintense normal endometrium (21, 31). In
this study, multiple T2WI radiomic features were selected in the
T2WI radiomics signature, such as tumor shape, intensity, and
gray level texture features (from GLSZM and GLDM), reflecting
different aspects of intratumor heterogeneity and thus improving
the discriminative ability of CEC and AEH.
TABLE 4 | Performances of Different Models in the Training and Validation Sets.

Model Data sets AUC 95%CI Bootstrap Corrected AUC Sensitivity Specificity Accuracy F1-score

T2WI Radiomics Training Set 0.887 0.818-0.956 0.838 0.930 0.720 0.790 0.843
Validation Set 0.895 0.778-1.000 NA 0.929 0.857 0.886 0.897

DWI Radiomics Training Set 0.785 0.688-0.883 0.752 0.900 0.600 0.700 0.781
Validation Set 0.735 0.566-0.903 NA 0.500 0.904 0.743 0.627

ADC Radiomics Training Set 0.833 0.741-0.925 0.832 0.870 0.720 0.770 0.807
Validation Set 0.854 0.729-0.979 NA 0.643 0.905 0.800 0.739

Combined Radiomics Training Set 0.920 0.865-0.974 0.892 0.900 0.810 0.840 0.860
Validation Set 0.942 0.857-1.000 NA 0.857 0.952 0.914 0.900

Clinical Model Training Set 0.708 0.588-0.827 0.687 0.730 0.670 0.690 0.692
Validation Set 0.641 0.448-0.834 NA 0.571 0.667 0.629 0.600

Clinical-Radiomics Model Training Set 0.932 0.880-0.984 0.922 0.870 0.880 0.870 0.871
Validation Set 0.942 0.852-1.000 NA 0.857 1.000 0.943 0.923
May 2022 | Vo
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CEC patients tend to have small tumors that may not be
associated with endometrial thickening or have a signal intensity
similar to that of the normal endometrium. In those cases,
functional sequences, such as DWI, can be beneficial. A high
b-value makes images more sensitive to water diffusion, thus
increasing contrast enhancement between normal and cancerous
tissue (32). Therefore, the presence of restricted diffusion on
DWI within thickened endometrium will raise suspicion for the
existence of EC. This study included only first-order statistics
(Kurtosis) and shape-based features (Maximum 2D Diameter
Row, Flatness) in the DWI radiomics signature. No other texture
features were highly correlated to the classification task, probably
due to its relatively poor spatial resolution. Flatness was included
in both T2WI and DWI radiomics signatures, disillusioning
Frontiers in Oncology | www.frontiersin.org 839
largest from smallest principal components in the VOI shape,
with a value range between 1 (non-flat, sphere-like) and 0 (a flat
object, or single-slice segmentation). Flatness may provide
information as complementation for ET in detecting small-size
CEC from AEH.

Numerous studies have reported that ADC measurements
(without confounding T1 or T2 effects of DWI signal) could be
used as additional tools for differentiating between benign and
malignant conditions (19, 33, 34). Moharamzad et al. (35)
performed a meta-analysis and concluded that the combined
sensitivity and specificity of mean ADC values for differentiating
EC from benign lesions were 93% and 94%, respectively. Chen
et al. (36) developed an MRI-based radiomics model including
ADC_10Percentile for distinguishing EC from its benign mimics.
A B

D

E

C

FIGURE 3 | ROCs of the four radiomics signatures in the training (A) and validation (B) sets. ROCs of the clinical model, radiomics signature, and radiomics-clinical
model in the training (C) and validation sets (D). (E) Preoperative nomogram of the radiomics-clinical model. ET, endometrial thickness.
May 2022 | Volume 12 | Article 887546

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Differentiates CEC From AEH
Furthermore, Yan and colleagues (37) selected ADC_10Percentile
as the only component of ADC radiomics signature in developing
a radiomic nomogram predicting high-risk EC preoperatively.
Similarly, we found that ADC_10Percentile may further promote
the differentiation of CEC from AEH, compared to mean ADC
values. A possible explanation is that lower percentiles of ADC
may better represent aggressive solid components within
CEC (38).
Frontiers in Oncology | www.frontiersin.org 940
Finally, we discovered that a combined radiomics signature and
radiomics-clinical model obtained more precise and
comprehensive information about the tumors and yielded better
diagnostic performance in the classification tasks than single-
modal signatures. In clinical practice, it commonly happens that
endometrial sampling is not possible (usually due to cervical
stenosis) or the histopathology results are inconclusive or
inconsistent with the clinical suspicion. Our study proved that
A B

DC

FIGURE 4 | The calibration plots of the radiomics-clinical model in the training (A) and validation sets (B). Patient risk scores output by the radiomics-clinical model
in the training (C) and validation sets (D), while orange bars show scores for those who have concurrent endometrial carcinoma.
FIGURE 5 | Decision curve analysis for the models in the validation set. It can be concluded that when the threshold probability is over 30% approximately, the
radiomics-clinical model could provide extra profits over the “treat-all” or “treat-none” scheme, the combined radiomics signature, and the clinical model.
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the combined radiomics signature and radiomics-clinical models
performed fairly well, especially for patients with preoperative
endometrial biopsy inconsistent with postoperative pathologic
data, thus indicating the supplementary value of MRI-based
radiomics to preoperative endometrial biopsy.

Accurate preoperative prediction of the presence of CEC in
AEH patients is vital for making proper personalized treatment
decisions and assessing the prognosis of patients. Previous studies
exploring the risk of CEC in patients with AEH have mainly
focused on examining clinical factors such as sampling methods
and histologic characteristics of AEH (39, 40). For the first time,
we have developed and validated a multimodal MRI-based
radiomics-clinical model for evaluating tumor heterogeneity and
thus detecting CEC from AEH preoperatively. Strengths of this
study include final pathology review at a single institution and the
inclusion of clinical data as well as objective quantitative
parameter (Radscore) to better predict the risk of underlying
cancer at the time of hysterectomy for AEH. Knowledge of
lymph node status in EC patients would allow a more tailored
recommendation for postoperative therapy or surveillance. More
recently, SLN mapping has been introduced into the surgical
management of EC to obtain adequate nodal status information
with a reduction in lymphadenectomy-related morbidity (such as
lymphedema and lymphocele) (41). It is essential to know that the
ability to perform SLN mapping in EC depends on intact
lymphatic channels, and it cannot be performed after
hysterectomy (29). AEH patients diagnosed with high-risk EC at
the time of hysterectomy alone would then subsequently require a
full lymphadenectomy. Therefore, for AEH patients with a high
risk of CEC evaluated by our preoperative radiomics-clinical
model, SLN mapping during hysterectomy should be considered.

The present study has some limitations. First, this was a
retrospective study conducted at a single center and with a
Frontiers in Oncology | www.frontiersin.org 1041
relatively small sample size. We have to acknowledge that
despite the results of this study being promising, further
investigation with larger study cohorts is necessary to validate
our preliminary study. Second, AEH could not be accurately
contoured with s imilar s ignal intensi ty to normal
endometrium, while some CEC lesions could be detected on
multimodal MR images (we contoured the visible tumor as
VOIs in these cases). The bias introduced by inconsistency in
VOI drawing was inevitable; however, it reflected the “real
world” of routine diagnostic work. It was minimized by
consulting another experienced radiologist in our study.
Third, although we excluded patients with ET<4mm in this
study because of the limitation of visual evaluation, the risk of
developing CEC was relatively low in both pre- and post-
menopausal women (42, 43). Finally, genomic information
was not yet obtained and incorporated into our models. A
combination of gene marker panels and radiomic features could
have an extraordinary impact on the management of AEH in
future studies.

To sum up, this new diagnostic model incorporating
multimodal MRI-based radiomics and clinical information
may be used to distinguish CEC from AEH noninvasively and
effectively before the operation, especially for patients with
under- or over-estimated preoperative endometrial biopsy.
Nevertheless, a multicenter study with a larger dataset is
needed to further validate our models’ reproducibility
and generalizability.
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Purpose: To build a machine learning model to predict histology (type I and type II), stage,
and grade preoperatively for endometrial carcinoma to quickly give a diagnosis and assist
in improving the accuracy of the diagnosis, which can help patients receive timely,
appropriate, and effective treatment.

Materials and Methods: This study used a retrospective database of preoperative
examinations (tumor markers, imaging, diagnostic curettage, etc.) in patients with
endometrial carcinoma. Three algorithms (random forest, logistic regression, and deep
neural network) were used to build models. The AUC and accuracy were calculated.
Furthermore, the performance of machine learning models, doctors’ prediction, and
doctors with the assistance of models were compared.

Results: A total of 329 patients were included in this study with 16 features (age, BMI,
stage, grade, histology, etc.). A random forest algorithm had the highest AUC and
Accuracy. For histology prediction, AUC and accuracy was 0.69 (95% CI=0.67-0.70)
and 0.81 (95%CI=0.79-0.82). For stage they were 0.66 (95% CI=0.64-0.69) and 0.63
(95% CI=0.61-0.65) and for differentiation grade 0.64 (95% CI=0.63-0.65) and 0.43 (95%
CI=0.41-0.44). The average accuracy of doctors for histology, stage, and grade was 0.86
(with AI) and 0.79 (without AI), 0.64 and 0.53, 0.5 and 0.45, respectively. The accuracy of
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doctors’ prediction with AI was higher than that of Random Forest alone and doctors’
prediction without AI.

Conclusion: A random forest model can predict histology, stage, and grade of
endometrial cancer preoperatively and can help doctors in obtaining a better diagnosis
and predictive results.
Keywords: machine learning, endometrial carcinoma, diagnosis, prediction, random forest, preoperatively
1 INTRODUCTION

Endometrial carcinoma (EC) represents the sixth most common
malignant tumor worldwide (1). In 2020, the number of new
cases of endometrial cancer was 417,367, and the number of new
deaths was 97,370 (1). This may be due to increased obesity,
aging, and physical inactivity (2, 3). Endometrial carcinoma
occurs most commonly in postmenopausal women (4). The
first symptom is often abnormal vaginal bleeding. Transvaginal
ultrasound is an effective examination to evaluate the presence of
endometrial carcinoma, besides pelvic and physical examination
(2, 5). A histopathology diagnosis is commonly assessed by
dilation and curettage (D&C) or endometrial biopsy before
surgery. However, the preoperative endometrial biopsy and
final diagnosis are not completely consistent with only a
moderate agreement rate on grade, especially for grade 2
tumors (2). In addition, other serological and imaging tests are
routine tests for the diagnosis of endometrial carcinoma (2, 3).

With the development of computer science, clinical decision
support systems (CDSSs) are being developed. A CDSS is defined
as a system that enhances clinical information and medical
knowledge to help doctors and nurses with clinical decisions
for better health care (6). CDSS is a major subject of medical
artificial intelligence (AI). CDSS can be used pre-diagnosis
(prepare diagnoses), during diagnosis (review and filter
diagnoses), and post-diagnosis (predict future events).

However, there are no studies that use an AI model to predict
histology, stage, and grade for endometrial carcinoma based on
the preoperative examinations. Such an AI model can be a part of
an endometrial cancer CDSS to improve the efficiency of doctors,
reduce the rate of misdiagnosis, and improve the quality of
health care.

Machine learning (ML), a type of AI (7), is widely used in
medical fields, such as anatomy, medical diagnoses, and brain-
machine interfaces (8). In 2022 Otani et al. proposed an ML-
based classifier to predict the EC risk from the multiparametric
magnetic resonance images (MRI) (9). And, in 2021, Nakajo
et al. proved that an 18F-FDG PET-based radiomic analysis
using a machine learning approach may be useful for predicting
tumor progression and prognosis in patients with endometrial
cancers (10).

In this study, we used ML to build three models to predict
histology (type I and type II), stage, and grade for endometrial
carcinoma to quickly give a diagnosis and assist in improving the
accuracy of the diagnosis, which can help patients receive timely,
appropriate, and effective treatment.
245
2 METHODS

2.1 Study Subject
This study used a retrospective database of preoperative
examinations in patients with endometrial carcinoma who
were first treated in the Department of Obstetrics and
Gynecology at Beijing Chaoyang Hospital, Capital Medical
University, from January 2000 to April 2014. Inclusion criteria
were as follows: (1) undergoing surgical treatment at Beijing
Chaoyang Hospital, (2) confirmation of endometrial carcinoma
by postoperative pathology, (3) without neoadjuvant
chemotherapy and hormone therapy, (4) all treatments have
been completed, (5) complete clinical-pathological data. The case
exclusion criteria were: (1) presence of primary malignant
tumors of other organs, (2) metastatic cancer caused by
malignant tumors of other organs, (3) not the first-time
surgical treatment at Beijing Chaoyang Hospital, (4) with
neoadjuvant chemotherapy and hormone therapy, (5)
incomplete clinical-pathological data. The obtained data
included age, BMI, childbirth history, preoperative serum
tumor markers, imaging results, histopathology diagnosis after
D&C, hypertension, diabetes, menopause, symptoms,
postoperative histology, stage based on the 2014 International
Federation of Gynecology and Obstetrics (FIGO) staging
system (11), and grade. Ethics approval for this research
was given by the Beijing Chaoyang Hospital, Capital
Medical University.
2.2 Data and Machine Learning Algorithms
A total of 16 features mentioned above were used for the
development of the classification models.

For data preprocessing, first, we transformed semi-structured
and unstructured features such as preoperative serum tumor
markers and imaging results into structured features. Then, we
normalized the continuous variables such as age and BMI into 0
to 1.

In this study, we trained and compared three classifiers,
including logic regression(LR) (12), random forest (RF) (13),
and a deep neural network(DNN) (14). The DNN is based on the
extension of the perceptron: a neural network with many hidden
layers. Random forest is an ensemble algorithm (Ensemble
Learning), which belongs to the Bagging algorithms. By
combining multiple weak classifiers, the result is voted or
averaged, so that the result of the overall model has higher
accuracy and generalization performance.
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The DNN model was composed of two fully connected layers
which have a Rectified Linear Unit (ReLU) activation function to
increase the nonlinearity of the neural network model and
dropout layers with the rate of 0.5 to avoid over-fitting and
one fully connected layer without activation function. The cross-
entropy loss was used to guide the training process by using a
stochastic gradient descent (SGD) optimizer with a 0.0002
learning rate. The random forest included 100 decision trees.

The classification models were trained and tested with the
selected features to predict the histology, stage, and grade of
endometrial cancer. For model training, we trained and validated
the model 100 times (RF, LR) and 10 times (DNN) repeating
random sampling verification. We split the dataset into training
and testing datasets with a ratio of 7:3 in each validation. Then
we used the Synthetic Minority Oversampling Technique
(SMOTE) method in the training set for over-sampling, which
adds artificially simulated new samples to the data set to decrease
the influence of imbalanced data.

To evaluate the performance of the classification models, we
calculated the Area Under the Curve (AUC) and the accuracy.

In addition, we also investigated whether the AI algorithms
can play a role in the accuracy and speed of the doctor’s
diagnosis. We generated four test sets for doctors with 40
patients, half of the patients with an AI prediction class and its
possibility, and the other half of the patients without any
assistance. Then we sent the test sets to obstetric oncologists to
measure the AUC, accuracy, and the time consumption for
predicting the disease category with and without AI assistance.
The function of accuracy is shown below.

accuracy =
TP + TN

TP + TN + FP + FN

TP, True Positive; TN, True Negative; FP, False Positive; FN,
False Negative.

Data pre-processing and machine learning models were
implemented within Python 3.8, and scikit-learn 0.24 and
PyTorch 1.10 packages.

Comparison of Different Models
The comparison of accuracy between models was performed

by using the two-way ANOVA test in GraphPad Prism.
3 RESULTS

3.1 Clinical Information of Cases
A total of 344 endometrium cancer cases were reviewed and
collected. Of these, 14 cases were excluded because of 70% or
more of missing clinical data. As there was only one
undifferentiated case, this category could not be tested because
the test sample would be 0. Therefore, 329 cases were enrolled
into the train and test. The mean age was 56 (range 28-83) years
old (Table 1). The mean BMI was 26.87±4.43. Among these
cases, 86.3% of the patients were type I EC. Most (75.7%) of the
cases were FIGO stage I and 31 cases were grade (G) 1, 114 cases
were G2, 38 cases were G3, and 17 cases were unknown.
Frontiers in Oncology | www.frontiersin.org 346
3.2 Comparison of the Models for
the Prediction
3.2.1 Histology
The AUC and accuracy score of the LR were 0.69 (95% CI=0.67-
0.70) and 0.74 (95%CI=0.72-0.75). The AUC and accuracy score
of RF were 0.69 (95% CI=0.67,0.70) and 0.81 (95%CI=0.79-0.82).
The AUC and accuracy score of DNN were 0.60 (95% CI=0.54-
0.65) and 0.83 (95% CI=0.75-0.90). The LR and RF algorithms
had a similar score which was significantly better (p<0.05)
than DNN.

3.2.2 Stage
The AUC and accuracy score of the logistic regression were 0.56
(95% CI=0.54-0.59) and 0.42 (95% CI=0.41-0.44). The AUC and
accuracy score of the random forest were 0.66 (95% CI=0.64-
0.69) and 0.63 (95% CI=0.61-0.65). The AUC and accuracy score
of DNN was 0.48 (95% CI=0.46-0.51) and 0.78 (95%
CI=0.71,0.84). The RF was significantly better than LR and DNN.

3.2.3 Grade
The AUC and accuracy score of the LR were 0.61 (95% CI=0.60-
0.62) and 0.36 (95% CI=0.35-0.38). The AUC and accuracy score
TABLE 1 | Clinicopathological data of patients with endometrial cancer.

Features Frequency (%)
N=329

Age, mean (range) 56 (28-83)
BMI, mean±SD 26.87 ± 4.43
Hypertension
+ 144 (43.8)
– 184 (55.9)
Unknown 1 (0.3)

Diabetes
+ 71 (21.6)
– 256 (77.8)
Unknown 2 (0.6)

Gestation
+ 312 (94.8)
– 17 (5.2)

Parturition
+ 301 (91.8)
– 28 (8.5)

Menopause
+ 192 (58.3)
– 13 (4.0)
Unknown 124 (37.7)

Histology
type I 284 (86.3)
type II 45 (13.7)

FIGO Stage (2009)
I 249 (75.7)
II 28 (8.5)
III 42 (12.8)
IV 10 (3.0)

Differentiation
G1 31 (37.7)
G2 114 (45.6)
G3 38 (11.6)
Unknown 17 (5.2)
May 2022 | Volume 12
G, grade; SD, standard deviation; FIGO, the international federation of obstetrics and
gynecology.
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of RF was 0.64 (95% CI=0.63-0.65) and 0.43 (95% CI=0.41-0.44).
The AUC and accuracy score of DNN were 0.47 (95% CI=0.45-
0.50) and 0.43 (95% CI=0.40-0.45). The LR and RF algorithms
have a similar score significantly better than DNN.

3.3 Performance Comparison Between ML
Model, Doctors’ Prediction, and Doctors
With the Assistance of AI
The result of the doctors’prediction is shown in Table 2. The
average accuracy for histology was 86% (with AI) and 79%
(without AI), respectively. The average accuracy for the stage
was 64% and 53%, respectively. The average accuracy for
differentiation was 50% and 45%, respectively. The time
consumption for each patient to make a decision was 29.25 s
(with AI) and 28.75 s (without AI), respectively. For type and
stage diagnosis, the AI model can improve 6% and 10% of a
doctor’s accuracy. But the accuracy decreases 7% for the
differentiation diagnosis. The average time consumption with
AI was 10 s longer than that without AI, though the AI model
only cost 3 ms to predict one patient.

The comparison of a doctor’s prediction with and without AI
assistance is shown in Figure 2. Compared to LR (Figure 2A),
the accuracy of doctors’ prediction with AI is higher than that of
LR and doctors’ prediction without AI among histology, stage,
and grade. The comparison with RF (Figure 2B) also showed
similar results. However, the accuracy of the DNN’s prediction of
the stage was significantly higher than that of doctors’ prediction
with and without AI assist (Figure 2C). But the accuracy of the
combination of doctor and AI was relatively better as a whole.
4 DISCUSSIONS

Endometrial cancer is a relatively common gynecological tumor.
The development and application of AI in the medical field has
gradually generated significance and value. This study built AI
Frontiers in Oncology | www.frontiersin.org 447
models to predict histology, stage, and grade of EC. Besides the
prediction of AI models, we also compared the AI models,
doctors’ predictions, and doctors’ predictions assisted by the
AI model.

From the point of AUC alone, LR and RF models perform
better in the prediction of histology and grade. RF is better in the
prediction of the stage (Figure 1). If only accuracy is considered,
DNN and RF models work well in the prediction of histology and
grade (Table 3). In the real world, not every patient can complete
all examinations. In this way, the patients with missing values
were also included in the dataset. However, compared with RF
and DNN, the LR is sensitive to missing values, which means the
missing values will significantly influence the performance of LR
(15). On the other hand, DNN with hidden layers has more
capability to learn from nonlinear and complex relationships.
But it has higher requirements for the sample size of training
data than LR and RF (16).

Taking into account the above reasons, the RF model was
relatively better than other models, so RF was used to
assist doctors.

The doctor’s clinical experience combined with the assistance
of AI increases the accuracy of histology, stage, and grade
(Table 2). The main reason is that doctors analyze the highly
relevant features of the disease (such as BMI, D&C, imaging, etc.)
based on their clinical experience and draw conclusions, while
the algorithm learns the influence weights of different features
according to the distribution of training data, and more accurate
judgments can be obtained for some patients who are not
obvious in the preoperative features. Overall, the accuracy of
TABLE 2 | Comparison of doctors’ predictions with and without AI assistance.

Project Without AI (accuracy %) With AI (accuracy %)

Histology 79 86
Stage 53 64
Differentiation 45 50
May 2022 | Volu
AI, artificial intelligence.
A B C

FIGURE 1 | The ROC curve of the histology stage and grade between different models. (A–C) shows the ROC curve and AUC score of three different models for
histology, stage, and grade prediction, respectively.
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doctors with AI assistance is relatively the best choice among the
histology, stage, and grade whether compared to AI alone or
doctor alone (Figure 2). Therefore, the judgment of the doctor
with the RF assistance is the best choice.

The accuracy of grade and stage is not that high, and the AUC
is also relatively low. The reasons can be: 1. The pathological
results of preoperative curettage are not completely accurate, and
there are false negatives (3); 2. The staging of endometrial cancer
is the clinicopathological stage, the determination of staging
requires a combination of preoperative conditions, staged
surgery and postoperative pathology, as well as grade, but the
aim of this study is the preoperative diagnosis, so only
preoperative features are given to AI models and doctors, and
the intraoperative and postoperative characteristics were not
included. Despite this, the AUC of RF is greater than 0.6
among histology, stage, and grade, so it has predictive value,
especially given that it is only based on preoperative features.

Furthermore, in the past years, there is general agreement that
AI may assist physicians in making better clinical decisions. This
technology can provide additional information to help doctors
make proper diagnoses (17). In the classification of grade, the
outcome of AI alone and doctor alone is not very good, but
doctors’ prediction including the AI results improved the
accuracy. In the classification of histology, both doctors and AI
had high accuracy, but the accuracy of doctors combined with AI
was improved. The same is true for staging. The accuracy of
staging is not high, but doctors combined with AI improved the
accuracy. Comparing with and without AI assistance, the time
consumption for doctors with AI assistance is only 10 s longer,
only 0.5 s per patient, 1.7% longer than before, which can be seen
as almost no additional time cost. The extension of time
consumption is not because of the speed predicted by AI, but
because doctors need to analyze the information from AI.
Frontiers in Oncology | www.frontiersin.org 548
Therefore, the AI model we built can effectively assist doctors
in preoperative diagnosis and prediction of histology, stage,
and grade.

There are several limitations to this study. Some multi-
category classifications, such as staging and differentiation,
have small sample sizes, resulting in poor overall performance.
This was a single-center (country) study and an independent
validation set from another country can make the results more
convincing. Prospective, multi-center, large sample size research
will help improve the performance of this AI model. In addition,
the features of the database are mainly derived from text
information, and the dimension of information should be
improved. In the future, more dimensional information can be
directly extracted from the images and examinations, so that
intuitive information can be extracted.
5 CONCLUSION

This study demonstrated that a random forest model can
predict histology, stage, and grade of endometrial cancer
preoperatively and help doctors in obtaining a better diagnosis
and predictive results with minimal additional time, which
can help patients receive timely , appropriate , and
effective treatment.
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LR, Logic Regression; RF, Random Forest; DNN, Deep Neural Network; AUC, Area Under the Curve.
A B C

FIGURE 2 | The accuracy comparison between doctors with and without AI assistance and AI in predicting stage and grade. (A–C) shows the different AI assistance
models. * Indicates P < 0.05
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Endometrial cancer (EC) is a prevalent uterine cancer that remains a major contributor to
cancer-associated morbidity and mortality. EC diagnosed at advanced stages shows a
poor therapeutic response. The clinically utilized EC diagnostic approaches are costly,
time-consuming, and are not readily available to all patients. The rapid growth in
computational biology has enticed substantial research attention from both data
scientists and oncologists, leading to the development of rapid and cost-effective
computer-aided cancer surveillance systems. Machine learning (ML), a subcategory of
artificial intelligence, provides opportunities for drug discovery, early cancer diagnosis,
effective treatment, and choice of treatment modalities. The application of ML approaches
in EC diagnosis, therapies, and prognosis may be particularly relevant. Considering the
significance of customized treatment and the growing trend of using ML approaches in
cancer prediction and monitoring, a critical survey of ML utility in EC may provide impetus
research in EC and assist oncologists, molecular biologists, biomedical engineers, and
bioinformaticians to further collaborative research in EC. In this review, an overview of EC
along with risk factors and diagnostic methods is discussed, followed by a comprehensive
analysis of the potential ML modalities for prevention, screening, detection, and prognosis
of EC patients.

Keywords: machine learning, endometrial cancer, artificial intelligence, deep learning, histopathology, prediction
model, algorithm
INTRODUCTION

Rising endometrial cancer (EC) incidence and disease mortality represent a serious concern for
women, particularly in countries with rapid socioeconomic transitions where the incidence rate of
this cancer is the highest (1–3). The International Federation of Gynecology and Obstetrics (FIGO)
staging method is used to determine the surgico-pathological staging of EC (4). The majority of EC
patients are diagnosed at an early stage (80% in stage I), with a 5-year survival rate exceeding 95%,
the highest of all gynecological cancers (5). Individuals with early detection or who have EC with a
reduced risk show a favorable prognosis. Individuals detected with higher stage EC who have
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developed recurrence exhibit a worse 5-year survival ranging
between 47% and 58% for stage III EC patients and 15% and 17%
for stage IV EC patients; and possess a limited number of
accessible prognostic or therapeutic alternatives (6, 7).
Expensive screening, and a high rate of misdiagnosis majorly
contribute to high disease mortality (8–10). Although
endometrial biopsy with dilation and curettage is the standard
diagnostic approach for EC, there exist no clinically validated EC
screening approaches (11). Progestin treatment is appropriate for
women experiencing atypical endometrial hyperplasia (AEH), a
precancerous type of endometrial lesion, or stage 1A EC lacking
muscle penetration (12). Most women diagnosed with EC exhibit
a good prognosis after surgery alone; however, poorer outcomes
are associated with high-grade, recurrent, and metastatic EC
(13). Therefore, routine screening, early detection, and precise
prediction of recurrence or survival after oncotherapeutic
regimens may improve the survival of EC patients, rather than
a simple presentation of symptomology. In this review, machine
learning (ML)–based strategies and techniques that could
improve the prediction and prognostication of EC are discussed.

ML approaches (algorithms) have evolved in oncology to
raise the reliability of predication of cancer susceptibility,
recurrence, and survival (14, 15). ML is a subfield of artificial
intelligence (AI) that combines a range of statistical,
probabilistic, and optimization techniques to enable
computers to “learn” from previous examples and detect
complicated patterns in vast, noisy, or complex datasets (16,
17). AI allows computers to execute “cognitive” tasks for
humans, such as language comprehension, reasoning, and
problem solving. The use of an appropriate AI system enables
computers to discover patterns in available datasets and derive
inferences using the data without requiring explicit commands
(18). Currently, AI has mostly been utilized for image
identification tasks in healthcare (19). Several articles have
reported the high accuracy of AI in diagnosing conditions
such as skin cancer, and diabetic retinopathy (20–23). ML
algorithms have been effectively employed in the treatment of
cancer, such as breast cancer (24), oesophageal cancer (25),
head and neck cancer (26), osteosarcoma (27), prostate cancer
(28), and thoracic cancer (29). ML offers the opportunity to
“systematically evaluate every variable, present, and future, to
locate groupings of cancer cases with similar outcomes” as
cancer prediction and prognostication systems become more
complicated with rising variables. Implementation of ML
approaches for EC prediction and prognostication should be
of utility as patients with diverse outcomes may be
subcategorized into specific clinical stages.
CLINICO-PATHOLOGICAL FEATURES
OF EC

EC has typically been classified into two types: type I and type II
(30). These two classifications differ in terms of epidemiology,
histology, prognosis, and treatment (30, 31). Type I EC is the
Frontiers in Oncology | www.frontiersin.org 251
most common form and accounts for most diagnosed cases
(80%), has an overall 5-year survival rate of 81.3%, and usually
has less than 20% chance of recurrence (31, 32). Type I EC
offers a good prognosis in the majority of patients because they
are low grade and limited to the uterus at the point of diagnosis
(33). Type I EC is predominantly associated with obesity-
related complications and with excessive endometrial cell
proliferation (34). Type I EC is also observed to be
susceptible to excessive exposure to estrogen, via both
endogenous and exogenous routes and mainly affects younger
women (premenopausal or perimenopausal) (33). As a result,
hyperestrogenism, hyperlipidemia, diabetes, and anovulatory
uterine bleeding are common in individuals with type I EC.
Hence, pathological conditions that are associated with
metabolic deregulation have been recognized as an
autonomous risk component for the early onset of the EC
(35). Endometrial intraepithelial neoplasia (often termed
complex AEH) is a type I EC precursor lesion that is
frequently associated with a thicker endometrium and shares
the same estrogen exposure risk factors as EC (36, 37).
Hyperplasia contributes to a 1%–3% risk of the development
of cancer. Low-grade endometrioid adenocarcinomas
[International Federation of Gynecology and Obstetrics
(FIGO) grades 1 and 2] are the most common type I cancer
in women (38). Grade 1 cancers are well differentiated,
resemble normal tissue, and often show favorable prognosis
(39). Grade 2 malignancies contain a solid component that
ranges from 6% to 50% and are classified as differentiated.
Grade 1–2 ECs are also classified as type I; grade 3 tumors that
contain a solid component ranging >50% are high grade and
poorly differentiated, and they do not appear as normal
endometrial tissue, are aggressive, and associated with poor
prognosis. Grade 3 EC is classified as type II EC, often affects
old age women (postmenopausal), and is not associated with
endocrine disorders (40). Type II cancers are high-grade, non-
endometrioid histology and are mostly composed of serous
carcinomas and clear cell carcinomas (41). Type II ECs are
frequently diagnosed at a late stage, associated with
intermediate-to-poor prognosis, and a high rate of recurrence
with a decreased 5-year overall survival rate (55%) which
contributes disproportionally to disease mortality (31).
Although type II ECs contribute to only 20% of all ECs, they
are associated with ~40% of all EC patients with poor overall
survival (42). Around 20% of endometrioid cancers are
subcategorized as high grade (FIGO grade 3) and type II EC
(31). Dedifferentiated, undifferentiated, mixed cel l ,
neuroendocrine, and carcinosarcomas (also known as
malignant mixed mullerian tumors) are similar to serous and
clear cell carcinoma histology. Type II EC is more prevalent in
elderly women and is especially frequently observed in African-
American women with thin and atrophic endometrium
(13, 21).

Increased risk of developing type I EC, is related to
unopposed exposure of the endometrium to estrogen (E2) (43).
Hormone replacement therapy represents an example of
exogenous estrogen exposure (44). Premature menarche, late
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menopause, tamoxifen treatment, nulliparity, infertility or
inability to ovulate, and a polycystic ovarian disease can all
increase uterine estrogenic exposure (45). Family history, age
(over 50), hypertension, diabetes mellitus, obesity, and thyroid
disease are all independent risk factors through which the risk of
EC increases (33, 42, 46, 47). Being obese is the most significant
risk factor for hyperplasia progression to malignant EC (48).
Obesity affects more than 70% of people with initial stage EC
(49). Obesity is also hypothesized to increase the risk of EC by
increasing the peripheral conversion of androgens to estrone in
adipose cells (39). Obese premenopausal women are also
highly susceptible to prolonged anovulation, which is an
additional risk factor for EC (48). Genetic conditions like
Cowden syndrome, Lynch syndrome, and polymerase
proofreading-associated polyposis are associated with an
increased risk of developing EC among women (50, 51). Lynch
syndrome is a cancer risk disease characterized by a monoallelic
germline mutation in a mismatch repair (MMR) gene,
particularly MLH1, MSH2/6, or PMS2, or by a germline
deletion inside epithelial cell adhesion molecule (EpCAM) that
contributes to epigenetic silencing of the neighboring MSH2
gene (52). Carriers of these mutations are more likely to develop
ECs (53).

Early detection of EC can improve the chances of a good
prognosis. Abnormal uterine bleeding and postmenopausal
vaginal bleeding (PMB) are categorized as the most prevalent
symptom of EC. Despite the fact that PMB is present in 90% of
women with EC (regardless of tumor stage), it is not a reliable
indicator of the disease. Only 9% of PMB patients are diagnosed
with EC (54). Internal pelvic examination with a Pap
(Papanicolaou) smear test is generally regarded as the initial
investigation when symptoms, signs, and/or family history imply
the existence of gynecologic pathology (55). However, the Pap
smear is not a useful predictor of EC and is predominantly
utilized for cervical cancer screening and detection (56).
Transvaginal ultrasonography (TVUS) is the most helpful tool
to use in gynecologic practice to monitor the female reproductive
organs as it can help to determine the thickness and features of
the endometrial lining, as well as the size of the uterus, the
adnexa, and the presence of excess pelvic fluid (57). The TVUS
probe (which acts similarly to an ultrasound transducer) is
inserted into the vagina for the transvaginal scan (TVS).
Images from the TVS are then utilized to determine if there is
a mass (tumor) in the uterus or if the endometrium is thicker
than normal, which could indicate EC. It is also used to
determine if cancer has spread to the uterine muscular layer
(myometrium) (58). As a triage tool, TVS-based endometrial
thickness screening lacks sufficient specificity because it cannot
distinguish benign lesions, such as polyps, from their malignant
counterparts exposing a large proportion of women to further
testing (59–61). The endometrial histological information
provided by endometrial biopsy is a gold standard for
diagnostic evaluation and sufficient for preoperative assessment
(62, 63). In combination with EC biopsies, dilation and curettage
(D&C) are often recommended to confirm the EC diagnosis;
however, the D&C method is painful, expensive, requires general
Frontiers in Oncology | www.frontiersin.org 352
anesthesia and has a high rate of misdiagnosis in up to 31% of
women and demands multiple repeats for confirmation (8–10,
64). Another technique used to investigate EC is hysteroscopy,
which allows for direct viewing of the endometrial cavity, which
is often used to examine abnormal uterine bleeding (42).
Hysteroscopy can be combined with a focused biopsy or
curettage. In the detection of EC, hysteroscopy yields higher
accuracy than does blind D&C and had a sensitivity of 99.2% and
a specificity of 86.4% (65). Thus, except for histology of
endometrial biopsies, there is no clinically accepted method for
screening, detection, prediction, and diagnosis of EC.

To determine local extension and any metastatic disease,
imaging studies such as magnetic resonance imaging (MRI),
computerized tomography (CT), or positron emission testing/
CT may be used. However, imaging studies are limited in the
detection of lymph node dissemination, which is observed in at
least 90% of the cases using microscopic-based approaches (66).
However, one of the more interesting and difficult challenges for
clinicians is accurately predicting the outcome of an illness. As a
result, research is increasingly employing ML-based approaches
that are capable of discovering disease-associated patterns and
links in the large datasets and may accurately predict potential
disease risks and outcomes for individual patients.
MACHINE LEARNING: METHODS AND
ALGORITHMS

In 1959, Arthur Samuel first coined the expression “machine
learning”. ML determines a machine’s capability to understand
and simulate upcoming scenarios and potential effects predicated
upon massive datasets. Hence, the science of having a machine
function learning from the data, recognizing patterns, and giving the
outputs with minimal human input is ML. It has brought to society
autodriven vehicles, functional comprehension of voice, robust
online search, and a dramatically enhanced understanding of the
human genome. ML is a bustling field of medicine with tools being
used to integrate medical challenges with computer science and
statistics. ML may lead to more detailed diagnostic algorithms in
medicine and personalized patient care. ML is a data mining
software for creating analytical models that is fully automated and
is a subset of AI-based on the notion that machines could
extrapolate data, interpret trends, and generate results with little
human input. Data samples contain the basic constituents that are
required to develop a strategy for the application of the ML
algorithm. Sample representation contains multiple features and
each function consists of numerous classification values.
Understanding the particular form of data that is used in advance
facilitates the proper collection of methods and algorithms that
could perhaps be employed for the evaluation. Compared with
conventional biostatistical approaches, the strengths of ML
comprise versatility and scalability, which make it possible for
multiple functions such as stratifying threats, diagnosing and
classifying, and predicting survival. A further value of ML
algorithms is to integrate different forms of data (e.g., population
July 2022 | Volume 12 | Article 852746

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bhardwaj et al. ML Applications in EC
data, experimental outcomes, and data from imaging) to identify
patterns that could effectively classify the data into respective
categories. Amid such benefits, the use of ML in health care poses
specific difficulties that include preprocessing of data, experimental
design, and algorithm refinement related to the specific clinical issue
(67). A comprehensive overview of AI and its subfields [ML and
deep learning (DL)] is summarized in Figure 1.

ML plays an instrumental role to speed digital transformation
and is ushering in an age of automation. ML has become so
prevalent that it has now become one of the preferred methods
for researchers to handle a wide range of biological problems.
The emergence of computer-aided systems that have been
instructed to perform complex tasks in medical imaging,
bioinformatics, and medical robotics has stemmed from the
accessibility of advancing computational power, strongly
enhanced pattern recognition algorithms, and enhanced image
processing (IP) software operating at incredibly fast acceleration.
A “cognitive” computer having exposure to “big data” may scan
billions of bits of unstructured data, retrieve user data, and detect
complicated patterns with growing confidence. Several ML
algorithms are mathematical models that transfer a collection
of observable variables through a data point or sample, referred
to as “features” or “predictors”, into a set of outcome variables,
referred to as “labels” or “targets” (68, 69). Widely used ML
algorithms with their advantage and limitations are shown in
Table 1. The algorithms are trained to be competent to anticipate
labels by analyzing specific information in a phase termed
“training”. Presently, three prominent methods are used to
Frontiers in Oncology | www.frontiersin.org 453
train ML algorithms: supervised, unsupervised, and
reinforcement learning (Figure 2).
IMBALANCED DATA IN ML

ML algorithms are powered by the volume of data in datasets. A
balanced dataset is one in which the distribution of labels is
approximately equal. Labels, in this case, indicate the class
related to each data point. The class label is projected by
evaluating the input data or predictor in a classification issue
when the target or output variable is a categorical variable. A class
imbalance is common in most classification issues. In certain cases
although, when the dominant class is much bigger as compared
to the minority class, the disparity is quite pronounced. They
occur when one of the target class labels has a significantly lower
number of observations than the other class labels. An imbalanced
class dataset is a type of dataset that is particularly common in real
classification scenarios (76). Any conventional strategy to solve
this type of machine learning challenge frequently produces
ineffective results. In unusual situations like fraud detection or
disease prediction, it is vital to correctly determine the minority
classes. As a result, the model should not be biased toward
recognizing just the majority and therefore must assign the
minority class the same relevance or value as the majority. Most
machine learning algorithms, on the other hand, struggle with
imbalanced datasets (77). When dealing with imbalanced datasets,
there is no one-stop solution to increase the predictive accuracy of
FIGURE 1 | An overview of the machine learning (ML) integration with artificial intelligence (AI) and deep learning (DL). A computer science branch that uses
machines and programs to mimic human intelligence is known as AI, whereas DL is a subgroup of AI that employs models from statistics and mathematics.
ML covers a variety of algorithms and statistical methods, including logistic regression, random forest, and DL-based approaches. The ML algorithm is
continually integrated with a new dataset to test the validity and utility of algorithms.
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a model. It may be required to use several processes to determine
the best sampling methodology for the dataset. The most
successful strategies will differ depending on the peculiarities of
the imbalanced data set (). Resampling strategies, ensemble
learning techniques (78–80), use of right evaluation metrics,
boosting, cost-sensitive learning (81), one-class learning (82),
and active learning have all been considered as solutions to the
class imbalance problem. In resampling strategies, the most
commonly employed methodologies to assess the class
imbalanced issues are by using either random oversampling or
random undersampling.
ML APPLICATION IN EC PREDICTION,
DIAGNOSIS, AND PROGNOSIS

The advanced stage of diagnosis and limited therapy options
seriously hinders the prognosis of EC patients. Several
Frontiers in Oncology | www.frontiersin.org 554
investigations have suggested that screening, early detection,
monitoring, and prediction of EC could significantly improve
the prognosis of patients. Advances in ML techniques offer
unique and promising perspectives for the detection and
prediction of several cancers such as breast, colorectal, and
prostate cancer. Lately, ML has had a significant impact on the
development of potential computational tools for stratifying,
scoring, and prognosticating cancer patients to improve patient
survival (12). Recent studies have reported that ML algorithms
have been utilized to identify lymph node metastases, scoring
KI67 positivity in breast cancer, scoring tumor-infiltrating
lymphocytes in melanoma, and Gleason grading in prostate
cancer (83). ML has also successfully attempted to predict
tumor recurrence with high accuracy using pathological images
(84). Furthermore, Pariss et al. used a novel ML-based algorithm
to demonstrate an improved prognostic prediction for patients
with EC (85). Thus, ML-based approaches can be employed to
maximize the sensitivity and specificity of EC diagnosis
and prognosis.
TABLE 1 | List of algorithms used in ML with the advantages and limitations.

ML Algorithms Advantages Limitations

Decision Tree
(70)

- Training method that is simple to comprehend and efficient

- Training is unaffected by the sequence of training occurrences.

- Pruning reduces the complexity of the classifier and improves
predictive accuracy by the reduction of overfitting

- Classifications must be mutually exclusive

- The final decision tree is determined by the order in which the algorithm
parameters are selected

- Inaccuracies in the training set might lead to excessively complicated decision
trees

- When attribute’s values are missing, it is uncertain which branch to choose
when that attribute is checked.

Naïve Bayes (71) - Statistical modeling–based basis

-Training method that is simple to comprehend and efficient

- Training is unaffected by the sequence of training occurrences

- Useful in a variety of accuracy areas.

- Presupposes that those characteristics are statistically independent

- Expects that numeric characteristics have a normal distribution

- Classifications must be mutually exclusive

- Redundant characteristics classification error

- Attribute and class frequencies have an impact
k-Nearest
neighbor (72)

- Cases are quickly classified.

- Beneficial in non-linear classification situations

- Resilient in the face of irrelevant or new features

- Capable of withstanding noisy instances or instances with missing
attribute values

- May be used for regression as well as categorization

- Implies that instances with identical characteristics will be classified similarly

- Believes that all characteristics are equally important

- When the number of characteristics grows, it becomes too computationally
complex

Neural Network
(73)

- It has the potential to be utilized for classification or regression.

- Capable of representing Boolean functions (AND, OR, NOT)

- Tolerable to loud input

- More than one output can be used to classify instances

- The algorithm’s structure is tough to grasp

- Overfitting can occur when there are too many characteristics

- Experimentation is the only way to discover the best network structure

Support Vector
Machine (74)

- Nonlinear class boundaries are modeled

- It is unlikely that overfitting will occur

- Decreased computational complexity to a quadratic optimization
issue

- It is simple to adjust the complexity of the decision rule and the
frequency of mistake

- Compared to Bayes and decision machine trees, training takes longer

- Finding optimum settings is difficult when training data are not linearly
separable

- The algorithm’s structure is difficult to understand

Genetic
Algorithm (75)

- Simple algorithm that is simple to implement

- Can be utilized for feature categorization and selection

- Utilized mostly in optimization

- Always comes up with a “decent” answer (not always the best
solution)

- It is difficult to compute or create a scoring function

- It is not the more productive approach for locating some optima since it
prefers to discover local optima instead of global selection

- Complications involved in the representation of training/output data
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ML Approaches in Image and
Pattern Recognition
Pattern recognition is the process of automated distinguishing,
recognizing, and segmenting patterns and regularities in data
using ML algorithms. It categorizes data using statistics,
mathematical models, or knowledge derived from patterns and
their representation. In supervised pattern recognition, the data
are trained using specific labels. A label is assigned to each input
value that is utilized to generate a pattern-based output. On the
other hand, in unsupervised pattern recognition, various
computer algorithms like clustering or principal components
analysis are used to detect unknown patterns in the absence of
labeled data. IP is a type of computer technology that allows us to
process, analyze, and extract data from pictures. Some studies
applying machine learning patterns and image recognition
algorithms in EC have been summarized below.

There has been substantial progress in the application of
pattern recognition and IP in the detection, classification, and
identification of EC. Attempts have primarily been made in
medical imaging to incorporate AI in preoperative diagnostic
tools such as endoscopy, CT, MRI, ultrasound imaging, and
pathological imaging. MRI is an essential medical imaging tool
Frontiers in Oncology | www.frontiersin.org 655
assisting in the identification and preoperative assessment of EC
patients, and there have been some reports on its use in
conjunction with DL approaches (86–88)]. Hodneland et al.
demonstrated a fully automated approach for tumor
segmentation in EC using a 3D convolutional neural network
(CNN) named UNet3D (89) applied to a cohort of 139 EC
patients with preoperative pelvic MR images (86). The whole
value of tumor texture features and tumor volume estimations
along with the tumor segmentation accuracy was obtained.
The study showed that the available ML algorithms may offer
accurate tumor segmentation at the level of a human expert in
EC. The model generates tumor volume, tumor borders, and
volumetric tumor maps. Hence, the self-generated approach for
primary EC tumor segmentation seems to exhibit the prospect to
seek near-real-time whole-volume radiomic tumor profiling,
including tumor volume and texture properties, which could
be useful for risk stratification and developing more personalized
treatment strategies. Deep muscle invasion is an important
determinant of uterine cancer prognosis. A study by Dong
et al. created a DL model to predict deep muscle invasion
based on 4896 MR images from 72 EC patients and compared
it to radiologist’s readings and achieved (90) an accuracy rate of
FIGURE 2 | Overview of ML (supervised, unsupervised and reinforcement learning). The overview of ML depicts the analysis and testing of statistical models and
algorithms that computational approaches used to perform a specific task without being explicitly programmed. The figure represents subdisciplines of AI (ML and
DL) and their subtypes including supervised, unsupervised, and reinforced algorithms employed in fields such as pattern recognition, object detection, text
interpretation, and genomics. The algorithms of ML learn, improve, predict, and classify the data.
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75%; nevertheless, the difference was not statistically significant.
In a similar study, Chen et al. performed an analysis on 530 MR
images and generated 84%, 66.7%, and 87.5% accuracy,
sensitivity, and specificity, respectively (91). Lymph node
metastasis (LNM) is one of the strong predictive factors for EC
(88)]. Xu et al. developed a prediction model for LNM of normal
size using MR images and CA125 values from 200 specimens of
EC patients. The result showed approximately 85% accuracy
(92). Recently, endometrial cytology has been reported as a viable
diagnostic tool for detecting EC with good sensitivity and
specificity (93, 94)]. A study was performed by Markis et al. in
which they aimed to develop an automatic diagnostic system to
analyze liquid endometrial cytology images of 416 patients using
DL and found 90% accuracy for this model (95). Collectively,
these studies suggest that ML has made remarkable progress in
EC care.
ML Model for Classifying Endometrial
Lesions
Hysteroscopy for endometrial lesions is one of the gold standard
procedures in an examination of the endometrium. Hysteroscopy is
used to differentiate uterine body tumors, such as endometrial
polyps and EC, which however depends on the hysteroscopic
expertise. It has certain limitations such as it is dependent upon
the comprehensive knowledge and understanding of the target
pathology, lesion size, penetration depth of the lesion, skills, and
expertise of the physician, availability of equipment, and assessment
of patient comorbidities (65). ML-aided approaches to examine EC
not only increase accuracy but also provide a minimally invasive
and less expensive tool to correctly diagnose EC. A study conducted
by Zhang et al. developed a CNN-based computer-aided diagnosis
system using the VGGNet-16 model for diagnostic hysteroscopy
image classification (96). Using 1,851 hysteroscopic images of
uterine patients as input, Zhang et al. also investigated the
VGGNet-16 CNN model efficiency for the classification of
endometrial lesions. The result showed 80.8% overall accuracy
suggesting that the CNN model could be used as a tool for
EC diagnosis.
ML Model for Classifying DNA Mismatch
Repair–Deficient ECs
Approximately 3% of ECs are caused by germline mutations in
the MMR genes such as MLH1/2, MSH6, and PMS2 and are
termed MMR-deficient (MMR-D) tumors (97, 98). Recently, a
study by Veeraraghvan et al. used contrast-enhanced CT to
identify DNA MMR-D and/or tumor mutational burden-high
(TMB-H) subtypes in ECs (99). This study built two ML models
using generalized linear regression (GLMNet) and recursive
feature elimination random forest (RF) classifiers to effectively
differentiate between low copy number or high copy number
MMR-D in ECs and also increasing rate of TMB-H in ECs. The
authors analyzed data from a cohort of 422 patients and
prefiltering was performed using GLMNet. Their findings
indicated that radiomic models using ML algorithms can be
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utilized as a reproducible complementary or companion
diagnostics for clinical trial enrollment and standard-of-
care treatment.
ML ALGORITHMS IN EC PROGNOSIS

Lately, ML algorithms have been utilized in cancer care with an
aim to better understand cancer prognostication. The ability of
ML-based algorithms to detect, predict, and identify cancer
using complex datasets indicates their importance. Over the
past decade, several ML algorithms have been widely applied to
EC prediction and prognostication. In a study, Praiss et al. (85)
adapted an unsupervised ML algorithm named Ensemble
Algorithm for Clustering Cancer Data (EACCD) and used it
to classify patients based on TNM [tumor (T), nodes (N),
metastases (M)] staging, grade, and age. EACCD is a
combination of clustering method that derives dissimilarity
among two combinations by continuously applying criteria-
based clustering, followed by combining the learned
dissimilarity estimate with a hierarchical clustering approach
to find ultimate clusters of combinations. This innovative ML
method improved the prognostic prediction for EC (85, 100). In
another study, Chen and colleagues developed a tool
ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumors) that uses gene expression data to predict
tumor content and the degree of infiltrating stromal/immune
cells from tumor tissues (101). ESTIMATE is a reliable
algorithm that is widely accepted and has been used to
determine the immune and stromal scores in various cancers
such as breast cancer (102), glioblastoma (103), prostate cancer,
colon cancer (104), and cutaneous melanoma (105).
ESTIMATE total scores were found to be substantially closely
associated with tumor purity in clinical tumor samples and
tumor cell line samples, and they offered a simple and effective
method for determining the number of tumor cells in a sample.
ESTIMATE could further be improvised by the inclusion of
endothelial cell signatures and tumor type–specific normal
epithelial cells.

Most women with early stages of EC show a good prognosis.
However, among them, 15% of patients with stage I and II EC
develop recurrence (106). A study done by Akazawa et al.
utilized EC patients and applied five ML algorithms: RF
(107), logistic regression (LR) (108), decision tree (DT) (109),
support vector machine (SVM) (110), and boosted tree (111),
for the prediction of recurrence based on multiple clinical
parameters such as age, body mass index, stage, histological
type, grade, surgical content, and adjuvant chemotherapy. To
verify the effectiveness of these classifications, accuracy and
area under the curve (AUC) were analyzed. The maximum
accuracy was reported by the SVM followed by LR and the least
by boosted trees. The best AUC was observed in LR and the
least in RF. Hence, they reported LR as the best predictive
model for the study (108). They demonstrated the feasibility of
AI prediction in patients with EC through the current
investigation and concluded that, in the early stage of EC, the
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application of an ML algorithm made it possible to predict
recurrence (111, 112). This finding can help to improve the
efficiency and accuracy to predict recurrence and
treatment response.

Lymph node involvement (LNI) is a significant prognostic
indicator for several cancers including EC. However, at
present, there is no validated method to predict LNI
accurately in EC. Recently, a study by Günakan et al.
investigated the use of the Naïve Bayes (NB) algorithm
(113) for LNI prediction in EC patients. This study used
various histopathological factors such as final histology,
presence of lymphovascular space invasion (LVSI), grade,
tumor diameter, depth of myometrial invasion, cervical
glandular stromal invasion, tubal or ovarian involvement,
and pelvic LNI. The study reported that the algorithm
predicted the LNI using histopathological factors with high
accuracy and concluded that ML could occupy a position in
decision-making for managing EC. Subsequent studies using
sentinel lymph nodes (SLNs), biochemical data, or imaging
combined with ML algori thms might ass is t in EC
management (114). Another study by Reijnen et al. aimed at
developing and validating externally a preoperative Bayesian
network (BN) to predict LNM and disease-specific survival
(DSS) in EC patients (115). The study included 763 patients,
who had been treated surgically for EC. Using score-based
ML, an externally validated ENDORISK- BN (116) was
developed for EC patients involving the various molecular,
histological, and clinical biomarkers. Both outcomes showed
high discriminative performance and good calibration. With a
marginal rate of false negative 1.6%, ENDORISK was able to
identify more than 55% of the patients at 5% risk for LNM.
This approach guides both the patient and the clinician
regarding personalized risk assessments evaluating the needs
of patients and also the scope of the surgical solution. The
work also demonstrated how, by adding easily available and
multimodal biomarkers, BN may be utilized to personalize
therapeutic decision-making in oncology (115, 117).

Endometrioid endometrial adenocarcinoma (EEA) is the
most common type of EC among all types. A poor prognosis
for disease dissemination has been associated with a high
tumor grade, late surgical stage, and LVSI (118). All of these
characteristics suggest that traditional clinical features are
insufficient to accurately predict EEA prognosis. Therefore,
developing a predictive prognostic model for EEA would be of
great clinical value. A study by Yin et al. developed a
prognostic model for EEA that combines gene expression
and traditional features using RF. Three models were
derived using (a) 11 genes alone, (b) stage and grade, and
(c) both 11 genes and stage and grade. The study reported that
the RF model derived from the “11 genes and grade”
performed better than RF models derived from the 11 genes
or grade alone, indicating that the RF model derived from the
“genes and clinical features” had a stronger predictive ability
for the prognosis of EEA. Thus, a combined RF model and
clinical criteria may serve better for the stratification of
patients in the clinic (119–122).
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ML Models for EC Screening, Risk
Prediction, and Classification
Hart et al. used ML algorithms to categorize patients as low,
medium, or high risk (123). They evaluated the model’s
performance on the three-tier risk classification to that of
physicians’ judgment and found encouraging results. These
models offer a non-invasive and a cost-effective method of
identifying high-risk subpopulations which might gain from
early EC screening ahead of disease development. They
discovered a unique and successful technique for premature
cancer diagnosis and preventative measures for individual
patients by performing a statistical biopsy of personal health
data. Predicated on publicly available personal health data, seven
alternative models, namely LR, neural network (NN), SVM, DT,
RF, linear discriminant analysis, and NB (124) were developed to
estimate the likelihood of an individual woman having EC in
5 years. The RF model outperformed the other six models
regarding AUC with the NN coming in second. Both models
were employed in dividing the population into three risk groups
viz. low-, medium-, and high-risk groups. It does not aid in
choosing the most effective preventative approaches (e.g., diet
and exercise, progestin or antiestrogen therapy, and insulin-
lowering therapy). Nonetheless, the ML approach holds great
promise for assisting in the early detection of EC, as it produces
high-accuracy predictions based primarily on personal health
information before disease onset without the need for any
invasive or expensive procedures such as endometrial biopsy or
TVUS (123). Establishing personalized cancer preventive
measures for each patient might benefit from a risk prediction
model which classifies the population between low-, medium-,
and high-risk categories (125). A model like this can assist
doctors to identify high-risk groups for whom they can
recommend measures to reduce the risk of EC, including
dietary and activity modifications, progestin or antiestrogen
medication, insulin-lowering therapy, and scheduled
endometrial biopsies.

Prediction of EC Risk
According to a current analysis, establishing personalized
cancer preventive measures for each patient might benefit
from a risk prediction model which classifies the population
between low-, medium-, and high-risk categories (125). A
model like this can assist doctors to identify high-risk groups
for whom they can recommend measures to reduce the risk of
EC, including dietary and activity modifications, progestin or
antiestrogen medication, insulin-lowering therapy, and
scheduled endometrial biopsies.
EC Risk Factors: A Statistical
Meta-Analysis and the Use of Artificial
Neural Network to Develop a Risk
Prediction Model
Using a statistical meta-analysis technique, Hutt et al. aimed
at establishing the rank order of risk factors for EC and
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generating a collective risk and per centum risk for each
component, followed by creating a NN computer model that
could predict whether a patient’s overall cancer risk would
increase or decrease. The objective was to determine whether a
patient should be tested, to predict diagnosis, and to advise
preventative actions to patients. To quantify relative risk, a
meta-analysis of available data was performed, followed by the
design and implementation of a risk prediction computer
model based on a NN algorithm. Data for the meta-analysis
of EC patients with the risk factors were taken from National
Cancer Institute (NCI). Using a statistical meta-analysis
technique, they were able to identify the rank order of risk
variables for EC which was used to generate a pooled risk and
risk percentage for each factor. Furthermore, using a
computer NN model system, they developed a model that
could predict an overall increase or decrease in cancer risk and
cancer diagnosis for specific patients with 98.6% accuracy.
The findings of the study effectively reduce the amount of
unnecessary invasive testing of EC patients. This might be a
valuable tool for physicians to utilize in concert with
additional indicators to determine whether individuals
require enhanced preventative measures before the potential
development of EC (126).
LIMITATIONS OF ML APPROACHES IN EC

The sensitivity and specificity of EC data are frequently
necessary to train ML-based models. Data access should be
carefully controlled to protect privacy without impeding
innovation and technological development to enhance
performance. Some of the major challenges associated with
the implementation of ML in EC datasets are as follows:

i. Retrospective versus prospective studies: Recruitment of the
bulk of patients in the presented studies has been
retrospective using the past labeled data for the training
and testing of the used algorithms. Through prospective
studies only, may one infer the true utility of the built
systems when utilized in the real world. The introduction of
wearable technology is facilitating massive prospective trials
of historical standards; for instance, a study to diagnose
atrial fibrillation in 419,093 consenting Apple watch holders
is currently taking place (127).

ii. Peer-reviewed randomized controlled trials as the gold
standard: To develop trust and acceptance of ML amongst
the medical community, peer-reviewed evidence plays a
pivotal role. In addition to this, there are very few
randomized controlled trials published to date. ML
experiments require high-quality reporting. The
probability of bias and the possible utility of prediction
models can only be accurately measured if all facets of a
diagnostic or prognosis model are fully reported (128).

iii. Metrics often do not reflect clinical applicability: Amid
the widespread usage in ML research, the AUC of a
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receiver operating characteristic is usually not the
strongest measure for representing clinical validity and
is difficult for many clinicians to comprehend. Clinicians
ought to be trained to determine how the proposed
algorithms can enhance patient treatment in a real-
world setting, but most articles do not attempt to do so;
other methods have been proposed, such as decision
curve review that attempts at measuring the total
advantage by using a formula to direct future behavior
(129–131).

iv. Difficulty in comparing different algorithms: Since each
test’s output is recorded using various tools and methods
on various samples with distinct sample distributions as
well as characteristics, quantitative comparison of
algorithms through studies is difficult. Algorithms must
be compared on a similar self-dependent test set, which is
depictive of the target population util izing the
comparable effectivity measures to produce fair
comparisons. Lacking this, physicians would struggle to
determine which algorithm is most likely beneficial for
the patients’ (127).

v. Dataset shift: The clinical and operational practices evolve,
and the data are generated in a non-stationary
environment amidst the shifting population of patients.
When a novel predictive algorithm is introduced, it may
induce shifts in operation, leading to a different
distribution from the one used to generate the results.
As a result, detection systems drift and update models
about the quality of the results (132).

vi. Algorithmic bias: Clinical assessment should be
performed on a representative sample of the planned
implementation population, and algorithms should be
constructed keeping the global community in mind.
Factors such as age, race, sex, sociodemographic
stratum, and position should be considered when
analyzing output by population subgroups. Researchers
should be guided to make sure that the proper measures
are taken to assess bias while adopting models as there is
a better understanding of these problems, and clinicians
are empowered to engage objectively in system design
and growth. Algorithm bias may be divided into three
inputs: (1) bias of the model (models chosen to best
reflect the major, not exclusively underrepresented
groups) , (2) variance of the model and model
ambiguity (owing to a lack of data from minorities),
and (3) noise in the results (the impact of a collection
of unknown parameters on model predictions, which can
be avoided by selecting subpopulations in which to test
supplementary variables) (127).

vii. Challenges in generalization to new populations and
settings: External validation, which involves evaluating
an AI system with accurately scaled datasets obtained
from organizations except for those that supplied the
statistical model training, is required for the accurate
eva lua t ion o f r ea l -wor ld c l in i ca l ou tpu t and
generalizability. This will guarantee that any important
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changes in target patient demographics and conditions of
illness in real-world clinical settings are appropriately
reflected in the system where it will be used. This
technique is currently uncommon in the literature and
is a major source of concern. A current systematic
assessment of research that assessed AI algorithms for
medical imaging diagnostic analysis discovered that only
6% of 516 relevant scientific publications completed
external validation (133, 134).

viii. Logistical issues in implementing AI systems: The reality
that almost all medical data are not widely accessible for
ML is causing several of the existing difficulties in applying
AI to clinical research. Data are often segmented in a
variety of medical imaging archival programs, diagnostic
systems, EHRs, automated monitoring software, and
insurance databases, making it impossible to integrate
(135, 136).

ix. Human obstacles to AI adoption in healthcare: A good
understanding of human and computer interactions
should be a focus as there are significant human
obstacles to adoption. It will be critical to retain an
emphasis on clinical applicability and medical outcomes
to make sure that this technology reaches and benefits the
individual (127).

Also, other key points to be addressed are that the input data
should be of good quality, with few artifacts or noise levels.
While ML models might handle noisy input to a certain
measure, incorrect labels may significantly affect an ML
model ’s performance. Similar to different statistical
approaches, many ML models require a training set with no
missing characteristics, so the training sets must be as thorough
as feasible. While data augmentation approaches, ranging from
random imputations to ever further complex ML-based
algorithms, could be implemented to substitute the missing
data, they typically do not produce the identical results as
utilizing a complete dataset for training. Furthermore, bigger
datasets are typically desired since they allow the ML model to
understand the real variance in the data with a lower chance of
small outliers negatively affecting the model.
FUTURE PERSPECTIVE

An electronic health record (EHR) includes data comprising
the physician’s notes and other information documenting a
patient’s clinical history (137). The use of clinical data in
research is challenging due to several reasons: in that, raw
clinical data are often variable and are not well annotated, the
clinical data are accumulated in an unlinked manner making it
complex for research application, and the multimodal (i.e.,
radiology images, physician notes, pathology images, and
laboratory results) nature of the data makes it hard to be
automatically analyzed by ML algorithms without prior data
curation by human intervention (138). Therefore, introducing a
novel data integration and decision support system intended to
harness the potential of EHRs for EC management might be an
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attractive addition to the computer-guided EC research (139)
(Figure 3). An information technology infrastructure should be
established to ease the creation and testing of statistical learning
models for EC. This development l inked mult iple
organizational EHR database systems and continually gathers
data in a safe, comprehensive, and extendable manner.
MEDomics profiles of EC patients, which are at the heart of
the conceptual methodology, are synthesized data structures
that encompass a specific EC patient’s full clinical service
chronology. The longitudinal EC patient’s profiles are then
utilized for a variety of AI application designs, to communicate
meaningful interventions back into the health system. EC
patient’s cohorts were identified and were used to examine
institution-wide mortality outcomes among EC patients along
with examining the efficiency of targeted therapy and
overall survival.

Cancer genotype determination has garnered increased
attention to take advantage of biomarker-based targeted
therapies (140). Molecular diagnostics have shown promising
results in determining genetic biomarkers that are determined
by molecular assays but molecular assays are time-consuming
and are not available to all patients (140). Developing a link
between genotype and phenotype seems a promising approach.
Recent studies have shown that AI-based histologic diagnosis
links histology, molecular biomarkers, and prognosis in cancer
(141, 142). In a recent development in EC diagnosis, a
multiresolution deep CNN named “Panoptes” was utilized
where pathological images were used to predict the gene
mutations and histological and molecular subtypes in EC
(Figure 4) (143). The model was able to read one slide in
4 min and could predict 18 common gene mutations without
sequencing analysis, providing a cost-effective cancer detection
method. It is anticipated that the multiplex diagnosis and
prognosis of different cancer types could be developed where
a model trained for one cancer type might apply to other
relevant cancers.

Minimal invasive sampling procedures aid molecular studies to
help in detection and prevention of EC. More frequent tests or
more different tests would almost likely assist early detection
approaches (among the high risk or symptomatic); however, the
potential value of screening among the asymptomatic must also be
evaluated. Molecular testing may aid in refining present diagnostic
algorithms among symptomatic women by reducing the
effectiveness and rejection frequency of histological diagnosis
that now restricts the effectiveness of endometrial aspirate–based
diagnosis (144). Various screening techniques are being developed
to aid the early detection of EC; one such developed test is the
PapSEEK test which recognized the majority of women having EC
and one-third of women having ovarian cancer in the NCI-funded
study that employed the Pap test (standard screening test) among
women who had previously been confirmed with cancer (145).
SLN operations are becoming increasingly common in the
management of EC, and the performance of SLN biopsy and the
positive effect of early-stage EC were evaluated in a clinical trial
showing that the procedure was feasible and safe. SLN mapping is
built upon the idea of LNM as a consequence of a systematic
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process. The lymph empties in a precise manner away from the
tumor; hence, when the SLN, or initial node, is negative for
metastasis, the nodes following the SLN would likewise be
negative. While the disease needs to be properly staged to
ensure an accurate prognosis and a selection of suitable
treatment strategies, such techniques would assist patients
to escape the adverse consequences involved in a total
lymphadenectomy. Surgical expertise, commitment to an SLN
methodology, and the utilization of pathological “ultra-staging”
are all important variables in SLNmapping effectiveness (146, 147)
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Although ML techniques can learn from both small and large
datasets, the size and homogeneity of the datasets used for ML or
DL models are equally important for the accuracy of the models.
Most of the AI models are trained on small training datasets
resulting in a compromised accuracy of the model. Generating
larger datasets from real-world samples is a daunting task.
Although challenging, the lab-on-a-chip and organ-on-a-chip
technologies can be explored to simulate the tumor
microenvironment and generate clinically relevant larger
datasets required to develop powerful algorithms and models.
A

B C

FIGURE 3 | The MEDomics approach for EC prediction and prognostication. An AI framework integrating EHRs with continuous learning infrastructure called
“MEDomics” could use multimodal clinical data comprising thousands of cancer patients and millions of data points. The data are automatically extracted and
integrated with analytical workflows. In addition, integration of natural language processing models is utilized for extraction of medical notes and classifying
patients into different risk groups. The system has the potential to develop hypotheses based on the patients’ data rather than laboratory data alone and can
help to choose disease therapy and monitor disease prognosis. (A) Illustration of a patient’s electronic health data records over a normal cancer care timeline.
The MEDomics patterns are then used to construct AI and medical informatics software utilizing an “in silico randomized clinical trial” technique to discover,
retrieve, anticipate, model, and evaluate important clinical endpoints. Management dashboards and other types of communication between health practitioners
and data scientists are eventually used to transmit actionable solutions back into the health system. (B) Flow of medical data for the construction of AI and the
building of MEDomics profiles. The EHRs and the Clarity relational database keep track of medical actions in real time. Clarity generates custom reports, which
are then transmitted to the MEDomics server for deidentification, data structuring, and extraction/calculation of features. Data are eventually collected and
refreshed every day on the MEDomics database installed behind the institutional firewall which is protected for access via a double identification. (C) MEDomics
Lab as a system for medical research. Health records from institutional systems may be fed into a structured dataset, which is then fed into the MEDomics Lab
system. The MEDomics Lab engine combines and processes these data, which is then employed in five separate computing modules: input, extraction,
discovery, learning, and application. As a result, statistical models for precision oncology are developed, which may then be returned to hospital databases to
aid clinical decision-making. QA, quality assurance; BMI, body mass index; HPV, human papillomavirus; PACS, picture archiving and communication system;
OIS, oncology infrastructure system; SQL, Structured Query Language.
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Since clinical data (the major source of cancer research) sharing is
a pressing challenge due to ethical and legal issues, efforts can be
made to develop a secured data sharing system. For instance, a
learning system can be developed where the raw data remains with
the source organization or institution, and a model is shared with
the clinic to preprocess the raw data, and then the processed/
curated data are to be shared with the research center (transfer
learning making a web of information sharing in a protected way).
In this regard, robust AI systems with smart strategies are needed.
It is envisaged that, in near future, AI-based continuous learning
could develop a smart decision-making system where both the
physician and patient could be benefited.
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FIGURE 4 | Working of PANOPTES, a multiresolution deep convolutional neural network (CNN). In this trained model generated through the CNN algorithm, pathological
images were used to predict the gene mutations and histological and molecular subtypes of EC. PANOPTES ML models using multiresolution architecture can classify
histological subtypes of EC, molecular subtypes, and critical mutations (loss or gain of functions) with decent performance based on H&E (hematoxylin and eosin), IHC
(immunohistochemistry), and IF (immunofluorescence) images. Also, some data can be accessed from the input CEL files. Predicated on the input, CNN models identify
subtypes and mutations in EC. Multiresolution CNN models outperform single-resolution CNN models on the visual patterns. CNN models would incorporate human
interpretable tumor characteristics according to feature extraction. Tumor grade identifies the molecular subtype and classifies into high-risk or low-risk cohorts from
endometrioid histology samples to capture characteristics of varied sizes on the H&E, IHC, and IF slides, which is similar to a human operator pathological evaluation. Unlike
traditional CNN architectures, Panoptes’ input is a group of three tiles from the same region on the image slide rather than one tile. CEL file: differential expression profile
generated by Affymetrix DNA microarray-based software analysis.
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Introduction: Among industrialized countries, endometrial cancer is a

common malignancy with generally an excellent outcome. To personalize

medicine, we ideally compile as much information as possible concerning

patient prognosis prior to effecting an appropriate treatment decision.

Endometrial cancer preoperative risk stratification (ENDORISK) is a machine

learning–based computational Bayesian networks model that predicts lymph

node metastasis and 5-year disease-specific survival potential with percentual

probability. Our objective included validating ENDORISK effectiveness in our

patient cohort, assessing its application in the current use of sentinel node

biopsy, and verifying its accuracy in advanced stages.

Methods: The ENDORISK model was evaluated with a retrospective cohort of

425 patients from the University Hospital Brno, Czech Republic. Two hundred

ninety-nine patients were involved in our disease-specific survival analysis; 226

cases with known lymph node status were available for lymph node metastasis

analysis. Patients were included undergoing either pelvic lymph node

dissection (N = 84) or sentinel node biopsy (N =70) to explore the accuracy

of both staging procedures.

Results: The area under the curve was 0.84 (95% confidence interval [CI], 0.77–

0.9) for lymph nodemetastasis analysis and 0.86 (95% CI, 0.79–0.93) for 5-year

disease-specific survival evaluation, indicating quite positive concordance

between prediction and reality. Calibration plots to visualize results

demonstrated an outstanding predictive value for low-risk cancers (grades

1–2), whereas outcomes were underestimated among high-risk patients (grade

3), especially in disease-specific survival. This phenomenon was even more

obvious when patients were subclassified according to FIGO clinical stages.
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Conclusions: Our data confirmed ENDORISK model’s laudable predictive

ability, particularly among patients with a low risk of lymph node metastasis

and expected favorable survival. For high-risk and/or advanced stages, the

ENDORISK network needs to be additionally trained/improved.
KEYWORDS

Bayesian networks model, disease-specific survival, endometrial cancer, prognosis,
risk stratification, sentinel node biopsy, lymph node metastasis
Introduction

In industrialized countries, endometrial cancer (EC) is a common

malignancy with generally an excellent outcome and 5-year relative

survival rate of 76% among European women (1). Despite its overall

favorable prognosis, up to 15% of patients classified as low-risk

will experience recurrence and may profit from adjuvant treatment

(2). Conversely, a substantial number of patients classified as high-

risk surprisingly evidence no disease recurrence many years after

treatment. Respecting the current emphasis on personalized

medicine, we ideally seek as much information as possible

concerning a patient’s prognosis prior to determine the most

effective therapeutic approach, avoid overtreatment, and prevent

treatment-related morbidity. Current European guidelines classify

patients into five prognostic risk groups based on final tumor stage

and histological characteristics (3). However, in the preoperative

setting, risk stratification can be challenging owing to the lack of

certain essential definitive histology information such as

lymphovascular space invasion (LVSI) and myometrial invasion.

Lymph node (LN) involvement is an important issue that

impacts treatment approach and is related to poor prognosis.

Two large randomized trials (4, 5) renounced the curative

significance of lymphadenectomy. Nowadays, pelvic and para-

aortic lymphadenectomy (PLN and PALN) are mainly

considered as staging tools with substantial morbidity (6).

According to the recent European guidelines, sentinel node

biopsy (SNB) is an alternative to full lymphadenectomy in

low/intermediate-risk stage I/II EC and can also be considered

in high-intermediate and high-risk stage I/II groups (3).

In order to identify preoperatively which patients are at risk for

lymph nodemetastasis (LNM), the endometrial cancer preoperative

risk stratification (ENDORISK) was constructed within the

ENITEC network (European Network of Individal Treatment in

Endometrial Cancer) (7). This is a machine learning–based

computational Bayesian networks model, which predicts the

probability of LNM and 5-year disease specific survival (DSS)

in EC cases. This ENDORISK model has been validated forthwith

using two multicentric cohorts: MoMaTEC (theMolecular Markers
02
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in Treatment in Endometrial Cancer) (8) and PIPENDO (the

PIpelle Prospective ENDOmetrial carcinoma) study (9). The

diagnostic accuracy was 0.82 and 0.84, respectively. Input data

contains preoperative clinical and histological characteristics. Since

the original model consisted of a notably heterogeneous patient

group from many countries with possible treatment decision

divergencies, we were questioning how this model would perform

within our patient cohort with very well-structured and collected

preoperative clinical/histological data, adjuvant treatment, and

follow-up.

Our aim was to validate the ENDORISK model’s accuracy

and the applicability within the current SNB staging era. Since

the model was constructed based on full lymphadenectomy, our

further objective was to evaluate the model’s potential accuracy

bias by introducing the SNB method. Additionally, we wanted to

verify the model’s performance within advanced EC stages. Our

study points out the weaknesses and strengths of the original

ENDORISK model and proposes certain modifications in order

to utilize the model within the actual and real clinical

practice worldwide.
Methods

Patient cohort

We evaluated the ENDORISK model in our retrospectively

collected study cohort including 425 patients treated at the

University Hospital Brno, Czech Republic. Our cohort evolved

from an EC database of 835 patients treated between January

2006 and May 2021. Cases that were incorporated in the

original ENDORISK model (N = 150) and those without the

minimally required data for using ENDORISK (N = 240)

were excluded.

We assessed clinical and histological characteristics from the

EC database and patients’ medical records: age, BMI, follow-up

length, preoperative tumor grade/histotype, estrogen receptor

(ER), progesterone receptor (PR), L1 Cell Adhesion Molecule
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(L1CAM), p53 expression, cancer antigen (Ca) 125 serum level,

platelet count, preoperative cervical cytology result,

lymphadenopathy according to imaging methods, myometrial/

cervical invasion, LVSI, clinical/surgical staging, LN staging

method, LNM, and adjuvant treatment.

All patients underwent preoperative biopsy via hysteroscopy

or dilatation and curettage, imaging staging procedures with

expert ultrasound and computed tomography (CT) scan to

detect local or distant disease spread, and retroperitoneal

lymphadenopathy. Patients were allocated to the clinical FIGO

(International Federation of Gynecology and Obstetrics) (2009)

stages. Subsequently, patients were classified into low- and high-

risk groups. The low-risk group was defined as endometrioid/

mucinous carcinoma, clinically FIGO stage 1A or 1B, grade 1;

and endometrioid/mucinous cancer clinically FIGO 1A, grade 2,

all without clinical or imaging evidence of lymphadenopathy or

distant metastases. When the low-risk criteria were not met,

patients were considered high risk.
Surgical treatment

Hysterectomy with bilateral salpingo-oophorectomy as basic

surgical treatment was performed with an abdominal or

laparoscopic approach. In addition, high-risk patients

underwent systematic para-aortic/pelvic lymphadenectomy

(historically pelvic lymphadenectomy only)—at least five LNs

from each hemipelvis and 10 from the para-aortic region were

removed. Since 2019, systematic lymphadenectomy has been

replaced by SNB in all EC patients regardless of their

preoperative risk group. Currently, lymphadenectomy is

limited to patients experiencing bulky LNs on preoperative

imaging or perioperative finding.
Sentinel node ultrastaging

Regarding sentinel node methodology, we used intracervical

indocyanine green injections and searched for the nodes with an

endoscopic fluorescence imaging camera (Novadaq Pinpoint).

All sentinel LNs were fixed in 10% buffered formalin, sliced

at 2-mm lamellas, embedded in paraffin, and further examined

by ultrastaging protocol. This protocol consists of two

consecutive 4-mm thick sections obtained in regular 200-mm
intervals, which are cut from each paraffin block. The first

section was stained with hematoxylin and eosin, and the

second section was examined with cytokeratins (AE1/3). We

classified micrometastasis (0.2–2 mm) together with

macrometastases (>2 mm) as LN positive, whereas isolated

tumor cells (≤0.2 mm or single cells/clusters of cells ≤200 cells

in a single LN cross-section) were considered LN negative.
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Immunohistochemical analysis

The experienced gynecological histopathologist (J. H.)

examined all hematoxylin and eosin-stained slides to

confirm preoperative histological subtype and grade.

Immunohistochemical staining was effected on formalin-

fixed and paraffin-embedded tissue sections. L1CAM

positivity was defined as distinct membrane staining

in ≥10% of tumor cells. ER and PR were considered positive

when there were ≥10% of tumor cells with nuclear staining.

p53 was classified into wild type or mutant (strong diffuse

overexpression in more than 90% of tumor cells or completely

negative) phenotypes.
Statistical analysis

Following the original ENDORISK model validation, we

used preoperative tumor grade, at least three IHC markers

(ER, PR, p53, or L1CAM) and at least one of the clinical

preoperative markers (CA 125 serum level, LN status

according to imaging method, platelet count, or pap smear

result) as the minimal input data. A five-year follow-up (in the

5-year DSS group) and LN staging procedure (in the LNM

group) were available in all included cases.

Probabilities of LNM and 5-year DSS were calculated for

each patient and compared with observed reality. (i)

Discrimination testing was assessed using a receiver operating

characteristic (ROC) curve generated by plotting sensitivity

against 1-specificity. Discriminating performance was

quantified based on the AUC (area under the curve). (ii) The

model’s overall performance was quantified by the Brier score,

which is the mean squared difference between each predicted

probability and the observed outcome; a lower Brier score

indicates better accuracy of probabilistic predictions. (iii)

Calibration was visualized using a calibration plot, in which

the predicted outcome was plotted against the observed

outcome. To quantify model calibration, the predicted number

of events (i.e., sum of each predicted probability) was compared

with the observed number. (iv) Concordance between the

ENDORISK model, our data, and recent DSS prediction was

undertaken by using U.K. Uterine cancer survival data for

different FIGO stages (10). Sensitivity analysis was

accomplished by omitting patients with only SNB. Analyses

were achieved in R (4.1.1) with the bnlearn (4.7), pROC (1.18.0),

DescTools (0.99.44), and caret (6.0–90) packages.
Ethics approval

Our study was approved by the University Hospital Brno

Ethics Committee, Approval Number 06-151221/EK. All
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patients signed informed consent for histology sample storage,

scientific use, and publication purposes.
Results

Among the 835 patients in our EC database treated between

January 2006 and May 2021, 299 patients were involved in our

DSS analysis; 226 cases were available for LNM analysis

(Figure 1). Table 1 summarizes clinical data, histological

characteristics, and adjuvant treatment.
LNM analysis

A total of 226 patients were included in our LNM analysis:

84 (37%) PLN, 72 (32%) PLN+PALN, and 70 (31%) SNB. Forty-

one patients had at least one LNM (18%): 24 (59%) in pelvic,

three (7%) in para-aortic, and 14 (34%) in both localizations. A
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median of 27 and 22 LNs were removed during PLN and

PALN, respectively.

The AUC (0.84) and Brier score (0.11) indicated good

concordance between prediction and reality (Table 2,

Figure 2). Predicted/observed ratio displayed non-significant

underestimation (0.76; 95% CI 0.49–1.03). Results from

sensitivity analysis, where cases with SNB were excluded, were

comparable (Supplementary Material: Table 1, Figure 1),

indicating that involvement in the main analysis did not alter

the accuracy of ENDORISK.

Figure 3 shows LNM prediction and reality for the different

clinical FIGO stages (Supplementary Figure 2 complements

surgical stages).
DSS analysis

Only patients with at least 5 years of follow-up or who died

from EC were included (N = 299). The AUC was 0.86 (95% CI,
FIGURE 1

Cohort development. The evaluation cohort was developed using all patients from our clinical database treated between January 2006 and May
2021 with available data and lymph node staging (LNM cohort) and/or 5-year follow-up (DSS cohort). IHC, immunohistochemical; LNM, lymph
node metastasis; DSS, disease specific survival; PLN, pelvic lymphadenectomy; PALN, para-aortal lymphadenectomy; SNB, sentinel node biopsy;
EC, endometrial cancer.
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TABLE 1 Clinical and histological characteristics.

Variable LNM cohort 5- year DSS cohort

Total N N = 226* N = 299*

Age (years) 64.5 (59.0 to 68.8) 65.0 (59.0 to 72.0)

BMI (kg/m2) 30.0 (26.0 to 34.0) 32.0 (27.0 to 36.0)

Follow up length (month) 35.2 (13.0 to 90.6) 91.8 (64.5 to 122.2)

Preoperative tumor grade 1 38 (16.8) 62 (20.7)

2 103 (45.6) 171 (57.2)

3 85 (37.6) 66 (22.1)

ER expression Negative 28 (12.4) 23 (7.7)

Positive 198 (87.6) 276 (92.3)

PR expression Negative 42 (18.6) 38 (12.7)

Positive 184 (81.4) 261 (87.3)

L1CAM expression Negative 175 (77.4) 258 (86.3)

Positive 48 (21.2) 40 (13.4)

Unknown 3 (1.3) 1 (0.3)

p53 expression Wild type 185 (81.9) 244 (81.6)

Muttated 37 (16.4) 37 (12.4)

Missing 4 (1.8) 18 (6.0)

Ca-125 Negative (<35) 167 (73.9) 195 (65.2)

Positive (35+) 47 (20.8) 63 (21.1)

Unknown 12 (5.3) 41 (13.7)

Trombocytosis No 215 (95.1) 279 (93.3)

Yes 7 (3.1) 11 (3.7)

Unknown 4 (1.8) 9 (3.0)

Imaging results No lymphadenopathy 210 (92.9) 271 (90.6)

Lymphadenopathy 11 (4.9) 10 (3.3)

Unknown 5 (2.2) 18 (6.0)

Cervical cytology Normal 143 (63.3) 200 (66.9)

Abnormal 7 (3.1) 4 (1.3)

Unknown 76 (33.6) 95 (31.8)

Histological subtype Endometrioid 186 (82.3) 275 (92.0)

Non-endometrioid 40 (17.7) 24 (8.0)

Myometrial invasion less then 50% 129 (57.1) 200 (66.9)

more then 50% 97 (42.9) 99 (33.1)

Cervical invasion No 193 (85.4) 266 (89.0)

Yes 33 (14.6) 33 (11.0)

FIGO stage (surgical) IA 108 (47.8) 180 (60.2)

IB 41 (18.1) 58 (19.4)

II 29 (12.8) 30 (10.0)

IIIA 5 (2.2) 9 (3.0)

IIIB 1 (0.4) 1 (0.3)

IIIC 38 (16.8) 16 (5.4)

IV 4 (1.8) 5 (1.7)

LVSI No 170 (75.2) 271 (90.6)

Yes 53 (23.5) 24 (8.0)

Unknown 3 (1.3) 4 (1.3)

Type of lymphadenectomy PLN 84 (37.2) 68 (22.7)

PLN+PALN 72 (31.9) 31 (10.4)

SNB 70 (31.0) 1 (0.3)

Unknown 0 (0.0) 199 (66.6)

(Continued)
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0.79–0.93), Brier score 0.09. Five-year DSS prediction was well

calibrated with a trend toward overestimating survival among

the lower predicted survival rates (Figure 4 and Table 2).

Figure 5 displays the 5-year DSS prediction compared with

reality and expected survival according to previously published

probability (10) in different clinical FIGO stages (Supplementary

Figure 3 expands on surgical stages).
Discussion

In the era of personalized medicine, we aim to have optimal

information concerning a prognosis to facilitate adequate shared

decision-making with the patient and define the most

appropriate treatment decision. The ENDORISK model

definitively contributes to the preoperative knowledge on risk

of LNM and DSS.

Several EC predictive models have been published and focus

on discriminating patients pre- and postoperatively into risk

groups with predicting LNM or outcome. Previous models used
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traditional clinicopathological characteristics including LVSI,

myometrial invasion, histotype, grade, age, and/or BMI (11,

12). So far, results were only moderate and, currently, additional

immunohistochemical markers are already frequently used in

the clinic: ER, PR, L1CAM, p53, Ki67 (13, 14). Some authors also

included imaging information such as tumor diameter,

myometrial/cervical invasion, or lymphadenopathy (15, 16).

The original multivariate analysis is based on a simple

graphic calculating tool called nomogram. Jiang et al.

published an LNM prediction model based on histological and

IHC markers with a sensitivity of 82.8% and specificity of 82.7%

(AUC 0.9) (14). However, this model cannot be applied when

certain data are missing. Moreover, information on LVSI is

required, which limits the use of the model in a preoperative

setting. Similar results were presented with an effort to predict 3-

year recurrence-free survival (sensitivity 76.5%, specificity

86.7%, AUC 0.82) with comparable limitations (including

LVSI, all data required) (13).

With the development of computer technology, a Bayesian

network has become more accessible, used for determining
TABLE 1 Continued

Variable LNM cohort 5- year DSS cohort

Lymph nodes Negative 185 (81.9) 87 (29.1)

Positive 41 (18.1) 17 (5.7)

Unknown 0 (0.0) 195 (65.2)

SNB Negative 65 (28.8) 1 (0.3)

Positive 5 (2.2) 0 (0.0)

Unknown 156 (69.0) 298 (99.7)

Adjuvant treatment None 84 (37.2) 163 (54.5)

RT 94 (41.6) 106 (35.5)

CHT 17 (7.5) 14 (4.7)

CHRT 27 (11.9) 9 (3.0)

Unknown 4 (1.8) 7 (2.3)
*n (%); Median (IQR).
DSS, disease-specific survival; LNM, lymph node metastasis; BMI, Body Mass Index; ER, Estrogen receptor; PR, Progesterone receptor; L1CAM, L1 cell adhesion molecule; LVSI,
lymphovascular space invasion; PLN, pelvic lymphadenectomy; PALN, para-aortic lymphadenectomy; SNB, sentinel node biopsy; RT, radiotherapy; CHT, chemotherapy; CHRT,
chemoradiotherapy.
TABLE 2 Model concordance statistics.

LNM 5-year DSS

AUC (95% CI) 0.84 (0.77-0.9) 0.86 (0.79-0.93)

Brier score 0.11 0.09

Predicted no. of events 31.2 271.7

Observed no. of events 41 262

Predicted/observed ratio (95% CI) 0.76 (0.49-1.03) 1.04 (0.91-1.16)
Both AUC and Brier score substantiate very good concordance between prediction and reality in general across the dataset. Discriminative performance was quantified based on AUC (a
higher AUC indicates better performance). Overall model performance was quantified by the Brier score (a lower Brier score characterizes better accuracy of the probabilistic predictions).
The predicted/observed ratio <1 denotes a lower prediction than reality, whereas a ratio >1 signals overestimation compared with reality. If 95% CI includes value 1, the difference is non-
significant.
AUC, area under the curve; CI, confidence interval; DSS, disease specific survival; LNM, lymph node metastasis.
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probable relationships and causalities based on expert

knowledge with machine learning. An enormous advantage is

that it can be applied, even when some patient characteristics are

absent, which often occurs in clinical practice. The ENDORISK

model was established with a variety of pre- and postoperative

information, yet it could be applied exclusively with preoperative

data. Minimally required data to work properly include (1)

preoperative tumor grade, (2) minimally three of four IHC

markers (ER, PR, p53, or L1CAM), and (3) at least one clinical

biomarker (CA 125 serum level, LN status according to imaging

method, platelet count, or pap smear result) (7).

The original model was created cognizant of histologic results

from pelvic and para-aortic LN staging. Nowadays, complete

lymphadenectomy is not the standard practice with all patients,

and less invasive SNB is recommended with a low/intermediate-risk
Frontiers in Oncology 07
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disease (3). Certain authors prefer this method even in high-risk

cases (17). Isolated para-aortic nodal metastasis (notwithstanding

negative pelvic nodes) occurs in approximately 1% of surgically

staged cases (18). Consequently, we decided to also include patients

with only pelvic dissection or SNB, reflecting current diagnostic

practice. Sensitivity analysis, excluding SNB cases, presented

comparable results, supporting the results of the complete study

cohort (Supplementary Figure 1).

Historically, knowing the potential preoperative risk of LNM

guided whether or not para-aortic-pelvic lymphadenectomy was

indicated. Currently, SNB is preferred not only in low- but also

in high-risk EC and might reduce the benefit of preoperative risk

stratification. Yet, based on the very low risk in EC patients

without myometrial invasion, LN staging could be omitted in

these cases (3). If patients with truly low risk of LNM (<5%)
FIGURE 3

Lymph node metastasis prediction versus reality in different clinical FIGO stages. Gray boxes represent the model’s prediction; green rhombuses
indicate the real LNM frequency. Ideally, all green rhombuses lie in gray boxes. In clinical FIGO III–IV stages, ENDORISK predicts fewer cases of
LNM than reality. LNM, lymph node metastasis; FIGO, International Federation of Gynecology and Obstetrics.
FIGURE 2

Lymph node metastasis calibration plot of observed versus predicted events. A dashed line displays the predicted value, and black dots
represent the observed LNM. Ideally, all black marks are lying on the dashed line. LNM, lymph node metastasis.
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could be properly identified preoperatively by using the

ENDORISK model, SNB could be safely omitted in those

hospitals where this technique is not available. An interesting

question is whether it is necessary to provide LN staging in all

EC types or if, according to other preoperative markers, we could

abandon it. In an era of SNB staging practice, the ENDORISK

model for LNM prediction could be used in hospitals, where this

method is not available. Additionally, it could be supportive if

SNB fails and side-specific lymphadenectomy is considered,

especially in obese and fragile patients.

Our LNM prediction results were comparable with

validation on MoMaTEC cohort: AUC 0.84 versus 0.82, Brier
Frontiers in Oncology 08
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score 0.11 versus 0.09. The model very precisely predicts LNM in

early stages, albeit underestimates clinically advanced

carcinomas (Figure 3). For example, in patients with

preoperative suspicion of LNM according to imaging methods,

the ENDORISK model estimated an average probability of only

51% (25–78%). In fact, all were finally LNM positive. This might

be explained by the low number of advanced cases; however, the

model should be able to predict even worse stages.

ENDORISK model validation for 5-year DSS with our cohort

displayed very similar results with previous cohorts MoMaTEC and

PIPENDO, evaluated as well adjusted according to AUC (0.82,

0.84) and Brier score (0.12, 0.10) (7). Nevertheless, when using
FIGURE 5

Five-year disease-specific survival prediction versus reality versus expectation in different clinical FIGO stages. Gray boxes represent the model’s
prediction, green rhombuses indicate the real 5-year DSS, and pink dots denote expected 5-year survival according to surgical FIGO stages (10).
Ideally, all green rhombuses lie in gray boxes. In clinical FIGO II–III stages, ENDORISK predicts much better survival than reality. Only one patient
was preoperatively categorized into FIGO IV stadium—the survival result implies her misclassification. DSS, disease-specific survival; FIGO,
International Federation of Gynecology and Obstetrics.
FIGURE 4

Five-year disease-specific survival calibration plot of observed versus predicted events. A dashed line displays the predicted value; black dots
represent observed DSS. Ideally, all black marks are lying on the dashed line. There is a trend toward overestimating survival in the lower
predicted survival rates. DSS, disease-specific survival.
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calibration plots to visualize the results, predictive value was

obviously outstanding only for low-risk patients and significantly

overrated for high-risk patients. This phenomenon was even more

evident when patients were classified according to clinical FIGO

stages (Figure 5). Definitely, the most accurate results were

achieved, when the final surgical stage was applied

(Supplementary Figure 3); nevertheless, this information is

unknown preoperatively.

The FIGO stage is an important independent factor affecting

survival, even during molecular classification times. The average

5-year survival is declining from 92% in stage I, 74% within stage

II, and 48% in stage III to only 15% in stage IV (10). The

ENDORISK model, currently, does not include information

about the clinical stage disease (except for “enlarged lymph

nodes on imaging”), even though, there are other possibilities for

attaining these data. An expert oncogynecologic ultrasound or

magnetic resonance imaging (MRI) is suitable for myometrial

and cervical invasion detection; a CT scan can identify distant

metastasis (19). Although myometrial invasion <50% of >50% is

incorporated in the ENDORISK network, it is currently based on

final histology, yet might be a very valuable addition to the

model when determined preoperatively by either ultrasound or

MRI. In addition, ultrasound-measured tumor-free distance

from the tumor to the uterine serosa is another promising

marker for predicting deep myometrial invasion and poor

prognosis (20), which might be incorporated in an updated

version of the network.

Even when we situate the worst clinical and histological

characteristics into the model, the lowest survival prediction was

66%. This seems not in line with the published survival data of

only 48%/15% in stage III/IV (10). Nevertheless, the number of

cases with advanced stage in our cohort was limited and, hence,

validation in larger cohorts is needed.

ENDORISK is one of the most complex risk stratification

models so far. The authors imperiously searched the literature

for potential relevant risk factors and assigned them statistically

significant prognostic values. Unlike other models, ENDORISK

could be applied even with strictly preoperative and incomplete

information. However, as we ascertained, there is a need for

further improvement before introduction into clinical practice.

Clinical FIGO stage extension would definitively increase the

model’s accuracy. Additionally, the incorporation of molecular

classification would be highly relevant and is currently prepared

in the ENDORISK 2.0.

Forthwith, we present the first unicentric ENDORISK model

validation study, indicating a capacity for consistent treatment

decisions and high-quality follow-up data. Innovatively, we have

confirmed its application with SNB cases. Furthermore, we have

suggested certain ancillary improvements to achieve better

results among advanced cases that need to be considered when

updating the ENDORISK network.
Frontiers in Oncology 09
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Conclusions

ENDORISK is one of the best and most complex preoperative

risk stratification models promulgated at this point in time.

Nevertheless, there is still a place for improvement, particularly

with survival prediction. Including clinical FIGO staging would

increase model accuracy in advanced disease cases. In this SNB

era, preoperative LNM predictive importance is waning; however,

since SNB is not yet standard procedure in all countries,

ENDORISK could be a helpful factor in decision-making

regarding lymphadenectomy. With molecular classification’s

inclusion into clinical practice, the ENDORISK model’s authors

should consider its incorporation as well.
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Glucose is of great importance in cancer cellular metabolism. Working

together with several glucose transporters (GLUTs), it provides enough

energy for biological growth. The main glucose transporters in endometrial

cancer (EC) are Class 1 (GLUTs 1–4) and Class 3 (GLUTs 6 and 8), and the

overexpression of these GLUTs has been observed. Apart from providing

abundant glucose uptake, these highly expressed GLUTs also participate in

the activation of many crucial signaling pathways concerning the proliferation,

angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also

cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or

even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT

inhibitors may hopefully become a sensitizer for EC precision-targeted

therapies. This review aims to summarize the expression regulation, function,

and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for

better diagnosis and treatment of EC.
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glucose transporter, endometrial cancer, proliferation, angiogenesis, apoptosis,
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Introduction

Endometrial cancer (EC) ranks as the sixth most common

malignancy diagnosed among women. Most cases are diagnosed

after menopause (1). However, morbidity has been increasing

over the past years. Many risk factors are considered to be closely

related to EC, such as obesity, estrogen exposure, insulin

resistance, and age (2–4). Generally speaking, EC can be

divided into two types. Type 1 refers to endometrioid

carcinoma and accounts for 75%, which is believed to be

closely associated with long-term estrogen stimulation, while

type 2 tends to be high grade and with poor prognosis (5, 6).

Moreover, approximately 5%–10% of endometrial carcinomas

have a hereditary basis from hereditary non-polyposis colorectal

cancer (7).

Glucose plays a deterministic role in cellular metabolism.

Working together with several glucose transporters (GLUTs), it

provides enough energy for biological growth through diffusion

or secondary active transport. The major facilitator superfamily

(MFS) of membrane transporters is encoded by SLC2 genes,

controlling the transmembrane movement of various substrates.

As vital facilitative sugar transporters, these GLUTs can be

categorized into three classes in the light of respective

sequence similarity and substrate specificity: Class 1 (GLUTs

1–4 and 14), Class 2 (GLUTs 5, 7, 9, and 11), and Class 3

(GLUTs 6, 8, 10, 12, and 13/HMIT). Their physiological

substrate is generally a hexose, but their substrates can be

urate (8), dehydro-ascorbate (9), polyols (10), myo-inositol

(11), and trehalose (12). Among this SLC2 family of 14

members, GLUT2/4/12 mainly functions as insulin-dependent

transporters, GLUT5/7/11 chiefly refers to fructose transport

(13–17), and GLUT6 is a lysosomal transporter (18). All in all,

GLUTs 1–4 play a predominant role in maintaining cellular

glucose uptake and functional metabolic homeostasis.

Various physiological functions of the proteins mainly depend

on factors including the difference of principal substrates and the

cell type distribution, and the relevance between the proteins and

subcellular compartments. Some GLUT proteins can translocate

between subcellular compartments, and this effectively promotes
Frontiers in Oncology 02
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their control of long- and short-time scales in regulating the supply

of glucose to tissues (19). The occurrence of their dysfunction

means a number of pathological disorders, such as GLUT1

deficiency syndrome and the Fanconi–Bickel syndrome, type 2

diabetes mellitus, and cancers.

It is widely acknowledged that various malignant tumors

have an activated glucose metabolic rate under some adverse

circumstances, such as hypoxia, inflammation, and malnutrition

(20, 21). However, a special pattern called the Warburg effect

shows that even under an oxygen-rich environment, the glucose

metabolism of tumor cells still remains quite active (22).

Generally, a high expression of GLUTs accelerates glucose

metabolism, which is indispensable for endometrial

proliferation and differentiation (23). This review aims to

summarize the expression regulation, function, and therapy

sensitivity of GLUTs in EC.
Glucose transporters in
endometrial cancer

It has been reported that the main GLUTs in EC are mainly

Class 1 (GLUTs 1–4) and Class 3 (GLUTs 6 and 8), and their

basic functions have been mentioned above. Next, we will try to

elaborate on the expression of these GLUTs in endometrial

cancer (Table 1).

Class 1 (GLUTs 1–4): GLUT1 protein mainly localizes in the

luminal epithelium, glandular epithelium, endometrium stroma,

and endothelial cells (24–29). Of note, either in healthy

endometrium or EC tissues, the relative expression of GLUT1

is greater than that of any other GLUTs, suggesting that it is the

most important transporter in endometrial tissues. In addition,

studies have confirmed that the expression of GLUT1 is related

to tumor differentiation. Compared with well-differentiated

tumors, the expression of GLUT1 is significantly elevated in

poorly differentiated tumors, which may be of great significance

for predicting prognosis and survival estimates of EC (30).

Previous reports have indicated that GLUT2 has a low

expression in EC and is not controlled by a hormone, but it is
TABLE 1 Expression of glucose transporters in endometrial cancer.

Subtypes Highly expressed localization The relationship with grade/prognosis

Tissues Stromal cells Epithelial cell Grade Prognosis

GLUT1 + + + + Not mentioned

GLUT2 + + + Not mentioned Not mentioned

GLUT3 + + + + −

GLUT4 + + + + Not mentioned

GLUT6 + + + + +

GLUT8 + + + + +
+, expression or positive relationship; −, no relationship.
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not observed in normal endometrium (31, 32). The mRNA level

of GLUT3 seems to be much lower than that of GLUT1 in EC.

Compared with the expression of estrogen/progesterone

receptor (ER/PR)-negative EC, that of GLUT3 in ER/PR-

positive EC is much higher (23). However, the relationship

between the expression of GLUT3 and prognosis in EC has

not been clarified. A report has shown that GLUT4 is barely

present in healthy endometrium; nevertheless, it is upregulated

in EC and might have a similar level of expression to GLUT3

(24, 33).

Class 3 (GLUTs 6 and 8): Moststudies show that the level of

GLUT6 is quite low in normal endometrial epithelial and

stromal cells, while it is upregulated in early-stage EC cells.

Furthermore, the mutations and amplifications of GLUT6 are

observed more frequently in EC than in any other malignancies.

However, a study carried out by Byrne et al. showed that GLUT6

(instead of GLUT1) is the most significantly elevated GLUT in

the malignant endometrium and is especially highly expressed in

cancerous glandular epithelial cells, which are closest to blood

vessels in the surrounding stroma. This finding indicates that

GLUT6 is pivotal for the occurrence of EC and that it may have

some other unknown functions that remain to be discovered

(34). GLUT8 is predominantly localized in the endoplasmic

reticulum and has a moderate expression level, which can

translocate to the cell surface under insulin stimulation,

assisting in the indispensable glucose consumption for

glycosylation of protein. GLUT8 is highly expressed in EC.

Similar to GLUT1, the expression of GLUT8 is also related to

tumor differentiation, and a higher level is observed in poorly

differentiated tumors. Of note, its expression reached a peak in

endometrial serous carcinoma (35, 36). Interestingly, whether in

mammary epithelial cells or 3T3-L1 adipocyte cells, the
Frontiers in Oncology 03
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expression of GLUT8 seems to be reduced by hypoxia but is

not affected by the small interfering RNA (siRNA) knockdown

of hypoxia-inducible factor-1a (HIF-1a), indicating that

hypoxia may not play a predominant role in regulating

GLUT8 expression, which totally differs from other hypoxia-

dependent increased GLUTs (GLUT1/3) (24, 37). However,

whether its expression level in hypoxia-related endometrial

cancer cells (ECCs) is similar to the level of these cells is

unclear until now.
Upstream regulators of glucose
transporters

Estrogen or progesterone

Most studies support that estrogen can significantly increase

the expression level of GLUT1, far more than the effect on other

GLUTs (Table 2) (32). Differing from traditional two nuclear

ERs that function as ligand-activated transcription factors, G-

protein-coupled ER 1 (GPER), formerly known as GPR30, has

an increased expression in the intracellular location of various

cancer cells (e.g., breast, ovaries, and ECCs) and becomes

involved in transcriptional activities, such as the production of

cyclic adenosine monophosphate (cAMP), phosphatidylinositol

3-kinase (PI3K)/serine-threonine kinase (AKT), and AMP-

activated protein kinase (MAPK) pathways, which indirectly

strengthen the combination between ERs and other

transcriptional factors (38). High levels of GPER expression

are in consistence with poor survival (39). Here these estrogen-

induced GLUTs may be achieved by activating independent

transcription GPER or its downstream factor 6-phosphofructo-
TABLE 2 Upstream regulators of GLUTs in endometrial cancer.

Upstream regulators GLUT1 GLUT3 GLUT4 GLUT6 Regulatory mechanisms

Hormones Estrogen + + ER

Progesterone + PGRMC1, IR

High insulin + + IRAP, IGF1R, PI3K/AKT pathway

High glucose + + + ER, AMPK/mTOR/S6 pathway

Hypoxia + + HIF-1a, ATP, HtrA3

Cytokines IL-3/IL-7 + PI3K/AKT/mTOR pathway

TNF-a + NF-kB, RELA

VEGF + /

Enzymes ABHD5 + AKT pathway

ALDH + /

Natural compounds Flavonoids − /

Vitamin C − HIF-1a
+, positive regulation; −, negative regulation.
HIF-1a, hypoxia-inducible factor-1a; VEGF, vascular endothelial growth factor; IL-3/IL-7, interleukin 3/7; ABHD5, abhydrolase domain containing 5; ALDH, high-level aldehyde
dehydrogenase; Vitamin C, ascorbic acid; ER, estrogen receptor; PGRMC1, the progesterone receptor membrane component 1; IR, insulin receptor; IRAP, insulin-regulated
aminopeptidase; IGF1R, insulin-like growth factor 1 receptor; PI3K, phosphatidylinositol 3-kinase; AKT, the serine-threonine kinase; AMPK, adenosine 5′-monophosphate (AMP)-
activated protein kinase; mTOR, mammalian target of rapamycin; ATP, adenosine triphosphate; HtrA3, high-temperature requirement A3; NF-kB, nuclear factor kappa-B.
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2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels in

human healthy endothelial cells (40, 41). Progesterone also has

a role in promoting the expression of GLUT1, while this effect is

not as strong as that of estrogen. However, the combination

treatment of estrogen and progesterone eliminates the two

effects; namely, the combination therapy of the two hormones

reduces the expression of GLUTs. Upregulated GLUT4 is

predominantly associated with estrogen combined with its

receptor, which poses an important role in the epithelial–

mesenchymal transition (EMT) process of EC by stimulating

vascular endothelial growth factor (VEGF) secretion (42). The

expression of GLUT4 can also be elevated via estrogen-induced

ESR1 regulation, which may be through SRC (proto-oncogene

tyrosine-protein kinases)-mediated phosphorylation of ESR1 in

normal muscle and adipose cells (43). In type 2 diabetes, this

may induce GLUT4 expression and plasma membrane GLUT4

translocation in adipocytes (44). Another study shows that

estrogen indirectly activates primary gene transcription-

specificity protein 1, which directly functions as the GLUT4

gene promoter, increasing the expression of GLUT4 in type 2

diabetes (45). However, recent studies show that both estrogen

and progesterone have little influence on the activity of the low-

affinity transporter GLUT2/3/6.

As is commonly known, long-time estrogen exposure is closely

associated with hyperplastic proliferation of the endometrial glands;

however, the effect of progesterone is quite the opposite. There is

multiple evidence elucidating that progesterone plays an

antagonistic role in inhibiting cell growth, invasiveness, and

differentiation in type 1 EC (46). The progesterone receptor

membrane component 1 (PGRMC1) is the first identified

progesterone-binding membrane protein and has a high

expression in various cancer cells. PGRMC1 can stimulate the

expression of insulin receptors (IRs) in the plasma membrane and

increase the level of GLUT1 and GLUT4 in the plasma membrane

(47). However, whether the upregulation of GLUT1/4 is induced by

IR remains uncertain.
High insulin and high glucose

Insulin can increase the expression, transport, and oxidation of

GLUT1. In pancreatic cancer cells, insulin can stimulate DNA

synthesis by activating PI3K and phosphatidylinositol kinase

(PIPK) in a concentration- and time-dependent manner (48).

Previous studies have suggested that insulin can activate the

PI3K/AKT pathway in muscle and adipose cells, which shows a

beneficial effect on GLUT4 vesicle trafficking to the cell membrane

(49). Furthermore, placental leucine aminopeptidase (P-LAP) is a

cell surface aminopeptidase and a synonym for oxytocinase,

referred to as insulin-regulated membrane aminopeptidase

(IRAP). Hyperglycemia or hyperinsulinemia can be a signal to

facilitate GLUT4 expression and PI3K/AKT pathway, which can be

mediated by P-LAP/IRAP pathway (50, 51). A study has shown that
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insulin-like growth factor 1 receptor (IGF-1R) can inhibit the

translocation of GLUT8 to the cytoplasm, achieving redistribution

of cell survival in the murine blastocyst. Nevertheless, how insulin

regulates GLUT8 expression in EC has not been reported so

far (52).

High glucose directly activates the expression of GLUT1 and

GLUT3 via the modulation of AMPK/mammalian target of

rapamycin (mTOR)/S6 signaling in ECCs (53). Another study

found that high glucose can upregulate the level of ER-mediated

GLUT4 and facilitate the expression of VEGF/VEGFR, which in

turn increases the viability and invasion of ECCs (42).
Hypoxia

Hypoxia increases the expression of GLUT1 and GLUT3 in

endometrial stromal cells (54, 55). It seems that hypoxia can

increase intracellular adenosine triphosphate (ATP), which

sequentially triggers GLUT1 translocation to the plasma

membrane via ATP-sensitive potassium channels (KATP

channels) (56). Some studies have confirmed that glucose

consumption increases significantly under hypoxic conditions,

and the key regulator HIF-1a seems to play an important role in

the process. In both type 1 and type 2 EC, HIF-1a is widely

expressed in epithelial and stromal components; however, its

role may vary. By activating its downstream genes such as

GLUT1, VEGF, and epidermal growth factor (EGF), HIF-1a
accelerates the occurrence and development of EC (57, 58).

Nevertheless, it has been reported that HIF-1a activity can be

constitutively induced by oxygen-insensitive pathways in

addition to its induction by hypoxia/anoxia, such as

ubiquitination, acetylation, sumoylation, hydroxylation, and

phosphorylation. These pathways may make a joint effort to

promote HIF-1a activity and expression, which further activate

GLUT1-induced glucose uptake and crucial genes including

VEGF and matrix metalloproteinases (MMPs). This

mechanism has been reported in various cancers except in EC

(59, 60). Increased SHARP1 is a physiological transcription

factor to decrease the levels of HIF-1a, VEGF, and so forth,

functioning as a protective molecule to repress the development

of EC (61). This indicates that it may indirectly inhibit the

expression the GLUT1 via in a HIF-1a-dependent manner.

High-temperature requirement A3 (HtrA3) is a member of the

ATP-independent serine protease family. Many studies have

demonstrated that the expression of HtrA3 downregulates in

some cancers, indicating that it may act as a pro-apoptotic

protein in carcinogenesis (62). Hypoxia can further reduce the

expression of HtrA3, promoting the development of EC (63). It

has been reported that in vulvar squamous cell carcinoma, the

expression of GLUT1 may be dependent on neither hypoxia nor

aerobic glycolysis. However, this mode seems to be crucial for

protecting DNA’s integrity from oxygen radical damage as well

as promoting the regeneration of membranes (64).
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Various cytokines

Cytokines play an important role in synthesizing GLUTs.

Furthermore, previous evidence supports that all the known risk

factors for EC are directly or indirectly involved in inflammation

pathways, such as estrogen, obesity-related factors, and diabetes

mellitus (65). Tumor necrosis factor-a (TNF-a), one of the most

powerful cytokines, may activate the downstream mediator-RELA

via the nuclear factor kappa-B (NF-kB) signaling pathway,

increasing the expression of GLUT6, in addition to enhancing

local estrogen synthesis, insulin resistance, and the like (66). There is

evidence that TNF-a may act alone or together with GLUT6,

promoting the occurrence and progression of obesity-related EC

(67). A high expression of TNF-a seems to play a part in some

advanced and worse overall survival EC. Interleukin-3 (IL-3)

activates the PI3K/AKT/mTOR pathway, promoting the activity,

recycling, and internalization of GLUT1 in lymphoid/myeloid

hematopoietic precursor cells (68). Interleukin-7 (IL-7) can

upregulate reactive oxygen species, which rely on PI3K/AKT/

mTOR pathway, upregulating GLUT1 expression in EC (69). In

one previous EPIC cohort study, Dossus et al. concluded that IL-6

was associated with an increased risk of EC in obese women in

addition to TNF-a (70). Trabert et al. confirmed the positive

correlation between these cytokines (e.g., adipokines,

inflammatory cytokines, and angiogenic factors) and obese

women with EC in a nested case–control study (71). Further,

with the VEGF-A becoming the most important component of

the VEGF family, both VEGF-A binding to VEGFR1/2 and GLUT1

can be activated by HIF-1a under hypoxic conditions, accelerating

the occurrence and development of EC (60, 72). Similarly, there

exists a broad consensus that VEGF-A stimulated by estrogen also

has a positive correlation with GLUT4 in promoting the

angiogenesis process of EC. Sahoo et al. investigated visceral

adipocytes that could induce VEGF activation in the angiogenesis

of EC (73).
Other regulators

Abhydrolase domain containing 5 (ABHD 5) acts as a

carcinogenic component and is overexpressed in EC, which

significantly increases the expression of GLUT1 and glycolysis

enzymes via the AKT pathway, which is believed to be closely

related to cell proliferation, invasion, and EMT in EC (74). High-

level aldehyde dehydrogenase (ALDH) expression is significantly

correlated with increased expression of GLUT1, and the glycolytic

pathways’ activation plays a crucial role in the prognostic

evaluation of EC (75). As natural compounds with

antiproliferative activities, flavonoids can regulate the expression

of GLUT1 and glucose uptake, which may be of help in controlling

the growth of prostate cancer cells (76). Ascorbic acid (also named

vitamin C) can downregulate the activity of many GLUTs,

including GLUT1/3/4, which may be due to its repressive effect
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on HIF-1a under normoxic or hypoxic conditions. This

mechanism has been delineated in many tumors, such as

pancreatic cancer, liver cancer, and ovarian cancer (77).
The functions of glucose
transporters in endometrial cancer

Cell proliferation and apoptosis

Increased GLUT1 is always associated with cell

proliferation and tumorigenesis in various tumors via glucose

supply (78–80). Additionally, GLUT1 was regarded as a

downstream target of miR-150-5p, which can protect cells by

inhibiting GLUT1 expression (81). Another report indicates

that overexpression of GLUT1 is regulated by lncRNA-

plasmacytoma variant translocation 1 (PVT1) through the

PVT1/miR−150−5p/GLUT1 signaling axis to promote cell

proliferation and invasion and inhibit apoptosis in oral

squamous cell carcinoma (82). It has been reported that the

expression of GLUT1 is positively related to that of CASC9 (a

long non-coding RNA). In laryngeal carcinoma cells, through

activating PI3K/AKT/mTOR and EGFR signal pathways,

CASC9 facilitates cell proliferation and inhibits cell apoptosis

(83), while the level of GLUT1 is also regarded as an

independent prognostic predictor.

Previous studies show that ECCs rely on complicated

macromolecule synthesis to promote cell proliferation.

Through stimulating different GLUT (GLUT1/3/6) production,

the inactivation of proto-oncogenes phosphatase and tensin

homolog (PTEN) and mutation of oncogenes (e.g., BRAF and

KRAS) occur in the endometrium (Figure 1), activating the

PI3K/AKT pathway (84, 85). GLUT1-related glucose uptake is

tightly associated with ATM (an insulin-responsive protein

kinase). As a crucial regulator of tumorigenesis, ATM

facilitates the production of ATP and the activation signaling

of AKT, promoting cell proliferation and inhibiting apoptosis in

aggressive breast and prostate cancer cells (86).

Another study has also elucidated that GLUT3 expression

can be upregulated by the Hippo-Yes-associated protein (YAP)

at a transcriptional level. AMPK directly phosphorylates YAP at

S61 and inhibits YAP transcriptional activity, maintaining

glucose homeostasis in HEK293T and HeLa cells (87). In liver

cancer, therapy with the sodium-glucose transporter 2 (SGLT2)

inhibitor induces AMPK/mTOR-mediated cell cycle arrest,

antiproliferation, and apoptosis, which may be regarded as a

novel way of treatment. Nevertheless, the expression of SGLY2

has not been identified in EC (88). Estrogen is greatly associated

with the expression of GLUT1/4. It is reported that estrogen has

positive effects on excessive cellular proliferation and tumor

differentiation via the dysregulation of Wnt signaling-related

molecules including secreted frizzled-related protein 1 (sFRP1)

and sFRP4 and the upregulation of the IGF pathway (32, 89).
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Furthermore, studies show that GLUT4 is significantly

correlated with IRAP, which induces the activation of the

PI3K/AKT pathway (4, 51, 90). Increasing evidence supports

that activated GLUT1/4 expression and translocation from the

cytoplasm to the membrane are positively induced by AKT,

which may facilitate cell proliferation and lead to drug resistance

in EC treatment (91). GLUT6 plays the most important role in

glucose transport and glycolytic–lipogenic metabolism,

providing glucose for ECCs (34, 92, 93). GLUT8 plays a key

role in glucose supply by supporting serine/glycine biosynthesis

of KRAS/the Kelch-like ECH-associated protein 1 double

mutants in non-small cell lung cancer, while it has also been

found to be importantly upregulated in EC (94).
Epithelial–mesenchymal transition

Studies have confirmed that EMT is closely related to the

occurrence, progression, metastasis, and even treatment

resistance in EC. An early report indicated that estrogen-

induced GLUT1/4 plays a crucial role in the malignant

transformation of benign epithelial EC (95). Further, the

expression of ER-related GLUT4 can be upregulated by high

glucose, which in turn activates the transcription of many EMT-

related molecules in EC (42). By providing abundant glucose,
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they meet the glucose metabolism demand of these tumor cells,

which are far from stromal blood vessels (86). Estrogen activates

the binding of ERa to the expression of ubiquitin-conjugating

enzyme E2C promoter region and negatively modulates the

expression of p53 (96). In addition, this combination can also

improve the level of miR-200c, which inhibits the expression of

PTEN and PTENP1, leading to the activation of the PI3K/AKT

pathway (97). In a later study, the activation of the PI3K/AKT/

mTOR pathway and the inhibition of the level of E-cad under

the estrogen stimuli are both involved in the EMT process of EC

(98). These mechanisms facilitate cell migration, invasion, and

EMT-related vimentin in EC. Collectively, GLUTs may play a

pivotal role in the process of EMT in an estrogen-dependent

manner in EC.

There is increasing evidence that hypoxia is one of the

microenvironmental factors that directly promote the EMT

process and GLUT production in multiple cancers (99, 100).

The expressions of glycolysis-related GLUT1/3 and EMT-related

proteins (Vim, N-cad except for E-cad) are both increased under

hypoxia conditions (101–103). A study concerning laryngeal

carcinoma showed that by regulating the activity of MMPs,

hypoxia-induced GLUT1/3 may induce EMT and promote cell

invasion and metastasis (104). In addition, some studies showed

that hypoxia-induced GLUT1 expression not only is closely

correlated with tumor proliferation and angiogenesis but also
FIGURE 1

The functions of GLUTs in endometrial cancer. 1) Proliferation: GLUTs upregulate the expression of oncogenes (e.g., KRAS and BARF) and inhibit
anti-oncogenes (e.g., PTEN) in endometrial cancer cells (ECCs) by providing abundant ATP for cellular metabolism. 2) Apoptosis: GLUTs
downregulate pro-apoptosis genes (e.g., P53 and Bcl-2) and upregulate anti-apoptosis genes (e.g., Bad and Bax) in ECCs. 3) Angiogenesis:
GLUT1 regulates VEGF and its downstream molecule (MMPs), further accelerating angiogenesis in ECCs by activating STAT3. 4) EMT: GLUT1/3
regulates the expression of EMT-related proteins (Vim, N-cad, and E-cad) by upregulating the levels of MMPs in ECCs, facilitating the
development of EMT in ECCs; GLUT4/8 activates EMT-related transcription factors (TWIST, SNAI1, ZEB1) of ECCs. GLUTs, glucose transporters;
STAT3, signal transducer and activator of transcription 3; VEGF, vascular and epidermal growth factor; MMPs, matrix metalloproteinases; EMT,
epithelial–mesenchymal transition; Bcl-2, B-cell lymphoma-2; Bad, Bcl-2 agonist of cell death; Bax, BCL2-associated X; KRAS, Kirsten rat
sarcoma; BARF: BamHI A right frame 1; PTEN, phosphatase and tensin homolog; TWIST, time without significant symptoms of toxicity protein;
SNAI, Snail-1 protein. .
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has a strong positive correlation with Ki-67 expression (EMT-

related) in epithelial ovarian carcinoma and diffuse large B-cell

lymphoma (105, 106). Although such a mechanism has not been

found in EC, we speculate that hypoxia-induced GLUTs may

also participate in the regulation of EMT-related factors (such as

MMP, SNAI1, TWIST, and ZEB1).

High glucose and estrogen can upregulate GLUT4,

facilitating the expression of VEGF/VEGFR and the

progression of EMT, which finally improves the viability and

invasion of ECCs (42). As mentioned, the overexpression of

GLUT8 is related to the differentiation, proliferation, and

invasion of EC. Evidence suggests that the abnormal

transposition of GLUT8 is significantly associated with the

malignant transformation of ECCs. There are three possible

mechanisms that might explain this phenomenon: intracellular

phosphorylation events similar to those of GLUT4, mutation of

the di-leucine motifs, and the inhibition of IGF-1R by antisense

oligonucleotides (35).
Angiogenesis

Angiogenesis acts as a critical part of tumor growth and

invasion, providing a new colony for tumor immune escape (72).

Factors participating in angiogenesis include fibroblast growth

factor, VEGF, platelet-derived growth factor, and EGF. Among

them, VEGF plays the most important role (107). As mentioned

before, in EC, the expression of GLUT1 is related to tumor

differentiation; the expression of GLUT1 is significantly elevated

in poorly differentiated types compared with well-differentiated

types. In several EC-related clinical studies, tumor

aggressiveness has a positive correlation expression of GLUT1

in patients with early EC; nevertheless, the aggression-related

molecules of GLUT1 have not been identified (108). Further

studies confirm that the expression of GLUT1 is positively

correlated with VEGF and its downstream component MMPs,

which is induced by HIF-1a (60).

A large amount of evidence shows a tight relationship

between estrogen and angiogenesis and that estrogen can

activate the PI3K/AKT signaling pathway in a HIF-1a-
dependent manner, sequentially stimulating VEGF and

GLUT1/4 expression levels (109, 110). As mentioned above,

we speculate that SHARP1(a basic helix-loop-helix transcription

repressor) may indirectly regulate GLUT1 overexpression and

VEGF levels via a HIF-1a-dependent manner, which is

negatively associated with hypoxia-related angiogenesis in EC

(61). In addition, GLUT4 induced by high glucose or estrogen

may also play a role in promoting cell proliferation and

endothelial cell migration. Through activating the signal

transducer and activator of the transcription 3 (STAT3)

signaling pathway, GLUT4 upregulates the expression of

VEGF (42, 111, 112). We speculate that GLUT1/4 may

promote the invasion ability and angiogenesis in EC by
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influencing VEGF and its downstream gene, although the

exact mechanism remains unknown (113–115).

As mentioned before, progesterone can increase the

expression of GLUT1. Studies show that through activating

the GLUT1-related PI3K/AKT pathway, progesterone can also

downregulate the expression of progesterone receptor B (PRB),

promoting the proliferation and angiogenesis of ECCs (116).

Glucose transporters in endometrial
cancer therapies

Glucose transporter-related
radiotherapy sensitivity

Radiation therapy is one of the important complementary

treatments for EC. In recent years, research on how to enhance

the sensitivity of radiation therapy in EC has received more and

more attention. Autophagy is of great importance in the

formation of radiotherapy sensitivity in solid tumors, and

studies have verified that the PI3K/AKT/mTOR signaling

pathway may negatively regulate intracellular autophagy (117,

118). GLUT1 siRNA is the targeted inhibitor of GLUT1-

mediated glucose uptake, which can increase radiosensitivity

through activating autophagy in a PI3K/AKT pathway-

dependent manner and reducing DNA repair capability

(Figure 2) (119, 120). In addition, it can also interfere with the

active glucose metabolism to a large extent. This mechanism has

been certified in laryngeal carcinoma and prostate cancer

(121, 122).

The overexpression of GLUT1 is closely related to the

radiation therapy resistance in EC. It has been reported that in

rat glioma tumor cells, oleanolic acid (OA) shows a radio-

sensitizing effect by decreasing the expression of many

significant factors, including GLUT1 and its upstream

molecule HIF-1a, Ki-67, and P53 (123).

A large amount of data indicate that the anti-radiosensitivity

in EC refers to PI3K/PTEN/AKT/mTOR signaling pathway,

MAPK signaling pathway, and NF-kB signaling pathway; each

of them is directly or indirectly involved in tumor radio-

resistance and GLUT1-induced malignant processes that

include proliferation, angiogenesis, and EMT in EC (124, 125).

It is clear that either upstream elements’ inhibitors of these

significant pathways or inhibitors of GLUT1 itself should play a

therapeutic role in the radio-resistance of EC. Among them, a

prominently activated PI3K/AKT/mTOR pathway could

increase the expression and translocation to the plasma

membrane of GLUT1/3, and numerous preclinical setup and

clinical trials have been launched with some of their inhibitors

approved to be used in trials (126). For example, using sunitinib

(one AKT inhibitor) as a neoadjuvant treatment could promote

autophagy along with radiosensitivity to recalcitrant EC, which

only provides a novel point for clinical implementation of

sunitinib (127).
frontiersin.org

https://doi.org/10.3389/fonc.2022.933827
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.933827
In the tumor microenvironment, hypoxia, high glucose and

insulin, and various cytokines and all their inhibitors could play

different roles in the inhibition of the expression of GLUTs and

the final development of EC. Both hypoxia and its inducible factor

HIF-1a known as an aggressive biomarker are positively

correlated with the expression of GLUT1 and VEGF, which

makes their inhibitors a great potential treatment in the

prevention of angiogenesis, EMT process, and increased radio-

sensitivity of EC (128). As a HIF-1a inhibitor, curcumin

(diferuloylmethane) has been assumed to decrease glucose

uptake in many cancers, such as lung, cervical, prostate, and

breast cancers. It might function as a novel anticancer drug to

assist chemoradiotherapy by inhibiting a site overlapping the
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cytochalasin B of GLUT1 and metabolism-related enzymes

(129–131). In some studies concerning cervical cancer, the

theory that curcumin enhances radiosensitivity by inhibiting

GLUT1-induced PI3K/AKT/mTOR pathway or MAPK/mTOR/

ULK1 pathway and subsequently activating autophagy has also

been confirmed (121, 125, 132). Therefore, we speculate that there

may be a similar mechanism in EC. Several studies also indicate

that P-LAP siRNA (an inhibitor of hyperinsulinemia) may be a

potential agent of molecular-targeted therapy for EC via the

downregulation of GLUT4 expression and the prevention of

tumor cells’ proliferation and angiogenesis (133). As mentioned

before, ABHD5 may play an oncogenic role in GLUT1 expression

and the EMT process of EC via the AKT pathway, and its
FIGURE 2

PI3K/AKT/mTOR signaling pathway is associated with GLUT1 overexpression and endometrial cancer therapies. HIF-1a is implicated in both
GLUT1 expression and aberrant PI3K/AKT/mTOR signaling pathway in tumor microenvironments. In addition to hypoxia, HIF-1a can be
constitutively induced by oxygen-insensitive pathways, such as ubiquitination, acetylation, sumoylation, hydroxylation, and phosphorylation.
These pathways jointly promote the expression of HIF-1a and further activate the downstream genes of GLUT1, including VEGF, EGF, and
MMPs. 1) Radiotherapy: curcumin inhibits a site overlapping the cytochalasin B of GLUT1 and metabolism-related enzymes. OA decreases the
expression of many significant factors, including GLUT1, HIF-1a, Ki67, and P53. GLUT1-siRNA interferes with the targeted gene, inhibiting the
synthesis of GLUT1. ABHD 5 plays an oncogenic role in the development of EC, and its knockdown can notably suppress ECC proliferation and
invasion in vivo. All of them can inhibit the PI3K/AKT/mTOR pathway and activate autophagy of endometrial cancer cells (ECCs), increasing the
sensitivity to radiotherapy. 2) Chemotherapy: olaparib inhibits the activity of GLUT1 in plasma in a concentration-dependent manner. BAY-876
can suppress cell viability and decrease stemness oncogene (Nanog and c-Myc) expression of ECCs. RSV inhibits GLUT1-induced glycolysis in a
PI3K/AKT/mTOR-dependent manner, enhancing the anti-endometrial cancer (anti-EC) effects of cisplatin and doxorubicin. Curcumin inhibits a
site overlapping the cytochalasin B of GLUT1 and metabolism-related enzymes. Vitamin C inhibits the expression of HIF-1a and GLUT1 in ECCs.
2-DG/19FDG and disulfiram show notably antiproliferative and anti-angiogenesis effects by downregulating the level of GLUT1. Targeting HtrA3
can enhance the cytotoxic effect of chemotherapy via the X-linked inhibitor of apoptosis protein cleavage. 3) Hormonal therapy: GLUT1
participates in regulating PR of ECCs in a PI3K/AKT/mTOR pathway-dependent manner. Flavones, phloretin, and metformin can greatly increase
the sensitivity of hormonal therapy in EC by strengthening PR transcriptional activity. This figure was drawn by Figdraw (www.figdraw.com).
GLUT1, glucose transporter 1; HIF-1a, hypoxia-inducible factor-1a; VEGF, vascular and epidermal growth factor; EGF, epidermal growth factor;
MMPs, matrix metalloproteinases; OA, oleanolic acid; siRNA, small interfering RNA; ABHD 5, abhydrolase domain containing 5; RSV, resveratrol;
DG, deoxyglucose; PR, progesterone receptor.
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knockdown notably suppresses tumor cell proliferation and

invasion in vivo. This illustrates that it may act as a potential

therapeutic target in radio-resistance of EC (74).

Of course, large amounts of cytokines also play a unique role in

EC. Among them, VEGF as an upstream regulator in PI3K/AKT/

mTOR signaling pathway illustrates that either its inhibitors or

mTOR inhibitors could be a valid treatment of angiogenesis and

EMT of EC and the level of GLUT1 (73). Likewise, in the epithelial

cells, TNF-a also efficiently binds to its receptor to activate the NF-

kB transcription factor and subsequently regulates the expression of

genes and Snail-like proteins, which control E-cadherin

transcription in tumor invasion (134). TNF-a inhibitors (e.g.,

adalimumab) are known as effective agents in both suppressing

the level of GLUT6 and restraining the proliferation, angiogenesis,

and EMT process in EC (66, 135). Therefore, it is possible that not

only GLUT1 inhibitors but also blocking crucial pathways or

upstream regulative factors (e.g., hypoxia, hyperinsulinemia, and

cytokines) could promote apoptosis procedure and radiosensitivity

in EC.
Glucose transporter-related
chemotherapy sensitivity

The resistance of tumor cells to drugs is a major obstacle in

cancer chemotherapy. Thus, GLUTs as a novel therapeutic target

might be of great importance in the chemotherapy of EC (136).

At present, there are four inhibitor-bound hGLUTs, hGLUT 1–

4, and each of them can provide a significant inhibitory effect on

glucose uptake and cancer cell proliferation (137). BAY-876, as a

specific inhibitor of GLUT1, can suppress ALDH-dependent

glycolytic activation, cell viability, and stemness marker (e.g.,

Nanog and c-Myc) expression in ALDH-high ECCs. It can

strongly suppress the proliferation of endometrial cancer stem

cells (CSCs) when used in combination with paclitaxel (75).

However, despite some current progress in the treatment of

hepatocellular carcinoma, administration or intravenous

infusion of BAY-876 can cause the drug to be distributed

systemically, which greatly interferes with the physical uptake

of glucose in the body in addition to the negligible dose

distribution at the lesion site of cancer cells (138, 139).

As mentioned before, ALDH also plays an important role in

the maintenance of CSCs and chemoresistance through

upregulating GLUT1-induced glycolysis. Of note, the pan-

ALDH-specific inhibitor disulfiram (DSF) can improve the

paclitaxel-resistance effect in EC by suppressing GLUT1 and

crucial pathways in several processes (e.g., proliferation, EMT,

and angiogenesis) (75). Although it has not been confirmed in

EC treatment, this combination therapy has already been applied

in many preclinical trials for the treatment of several other

cancers (e.g., non-small cell lung cancer, glioblastoma, and
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breast cancer) (140, 141). Pharmacodynamics reveals that DSF

has a risk of reversible neurological toxicities, which readily

occur after treatment with 1,000 mg per day (142).

Olaparib is an inhibitor of poly(ADP-ribose) polymerase

(PARP)-1/2/3 (143–145). It can inhibit the activity of GLUT1 in

plasma in a concentration-dependent manner and reduce the

expression of cyclin D1 via a PARP-1 level-dependent manner.

In several EGFR inhibitor-resistant cancers, such as glioblastoma

and lung cancer, olaparib reduces lactate production and glucose

uptake in a pyruvate kinase 2 (PKM2)-dependent manner (146).

The most common adverse effects are nausea, fatigue, anemia,

and vomiting (147).

Substantial work has constantly sought to target glucose

metabolism. Among them, directly downregulating glucose

levels through a special compound known as 2-deoxyglucose

(2-DG) or inhibiting lactate production and excretion could be

more prominent than others. 2-DG has been used for

antiproliferation in numerous preclinical studies and partial

clinical testing. The example here is that 2-DG shows notable

antiproliferative effects and increased sensitization of resistant

cells on oral cancer by downregulating the level of PARP, LDHA,

and GLUT1 when it is used in a combination therapy with

paclitaxel and erlotinib (148). Nevertheless, how to manage

serious hypoglycemia symptoms caused by its higher dose

along with an insufficient therapeutic response to its lower

dose limits its clinical efficacy (149). Thus, 19FDG, as an

alternative to 2-DG, shows a better ability to inhibit GLUT-

dependent glycolysis, prevent cell viability and proliferation, and

induce apoptosis in vitro under normoxic and hypoxic

conditions. Niccoli et al. confirmed it in HeLa cells via by

combining 19FDG with doxorubicin and comparing its efficacy

with that of 2-DG and doxorubicin (150). Excessive lactate

production could promote angiogenesis and tumor

vascularization through the induction of HIF-1a-stimulated

VEGF increase, and dysregulated pH is also involved in

chemotherapeutic drug resistance (e.g. , vinblastine,

doxorubicin, and paclitaxel) (151). The cardiac Na+/H+

exchanger (NHE1) is a membrane glycoprotein for multiple

housekeeping tasks relying on cell function, including regulation

of intracellular pH, Na+ concentration, and cell volume.

Therefore, clinical NHE1 inhibitors and much more selective

inhibitors (e.g., KR-33028 and cariporide) might be taken into

consideration to attain increased chemotherapeutic effectiveness

in EC; this has been assessed in a triple-negative breast cancer

model (152). It is proven to be well tolerated in people with

cardiovascular disease. However, some side effects are inevitable,

mainly related to drug accumulation and cerebrovascular

complications (153).

Resveratrol (RSV) has no effect on GLUT1 mRNA and

protein expressions but disturbs intracellular GLUT1

trafficking to the plasma membrane by suppressing AKT/

mTOR activation, which ultimately impairs glucose uptake
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and induces apoptosis in ovarian cancer cells (154). In EC, RSV

can enhance the antitumor effects of cisplatin and doxorubicin

in a time-dependent manner (155–157). It may regulate the

expression of EGF/VEGF and angiogenesis to promote

chemosensitivity in an estrogen-dependent or estrogen-

independent manner (158, 159). This inhibitor has been

controversial because its biologically effective concentration

is hard to confirm. Moreover, it acts as a natural reservoir for

body antioxidants and is accompanied by many toxic effects,

such as high dosage-associated hormetic effects, systemic

inhibition of P450 cytochromes, and attenuation of the

activities of drugs (160).

Curcumin analog (EF24) could exert antiproliferative and

anti-angiogenic effects on three ovarian cancer cells (SKOV-3,

A2780, and OVCAR-3) in vivo via the downregulation of

GLUT1-related glucose glycolysis, lactate production, and its

upstream molecule HIF-1a (161). Anti-GLUT1 antibody or

curcumin combined with doxorubicin could significantly

enhance the ability in killing colorectal adenocarcinoma cells

(162). This result leads us to speculate that both curcumin and

anti-GLUT1 antibody may also have the effect of sensitizing

chemotherapeutic drugs of EC (121, 132). It is reported that

curcumin can cause diarrhea, and other toxic and adverse effects

have not been confirmed. However, in the long-term rat trials,

adverse effects are noticeable, such as incidence of ulcers, chronic

inflammation, and hyperplasia of the cecum as well as

carcinogenesis (163).

Ritonavir displays inhibitory effects on GLUT4 expression

and induces the apoptosis of multiple myeloma (MM) cells by

reducing myeloid cell leukemia-1 expression. It is regarded as a

sensitizer in the therapy of MM, which can make tumor cells

more sensitive to drugs such as doxorubicin, dexamethasone,

and melphalan (164, 165). Patients who are treated with

ritonavir at a dose higher than 7.9 ml/L may be at a higher

risk of experiencing neurological or gastrointestinal side effects.

Although ritonavir’s sensitizing effect in the chemotherapy of EC

has not been reported so far, related studies have already been

carried out in many clinical trials for the treatment of cancers,

such as multiple myeloma, prostate cancer, and breast cancer

(166, 167).

Vitamin C plays an important role in VEGF-related

angiogenesis and anti-chemoresistance in many cancers by

inhibiting the expression of HIF-1a and GLUT1/3/4 (77, 168).

For example, through inhibiting extracellular signal-regulated

kinase 1/2 and PKM2 phosphorylation, the combination of

vitamin C and cetuximab can significantly downregulate the

expression of GLUT1 in KRAS colon cancer (169). Therefore, we

infer that perhaps vitamin C is also valid in enhancing the

sensitivity of chemotherapy in EC. Targeting HtrA3 might be a

potential therapeutic measure to reverse the negative effects

induced by hypoxia and enhance the cytotoxic of conventional

chemotherapy via the X-linked inhibitor of apoptosis protein

(XIAP) cleavage in EC (170). However, a more detailed
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understanding of the molecular mechanisms and cellular

targets in clinical treatment agents is needed.
Hormonal therapy sensitivity

Progestogen is the most commonly used drug in the

conservative treatment of early EC (171, 172). However, the

response rate to progestin therapy varies from person to

person. As mentioned before, GLUT1 expression is

positively correlated with the activation of PI3K/AKT

pathways. Recent evidence has implicated that PI3K/AKT

pathway increases the drug resistance of progestin in EC by

weakening PRB transcriptional activity. GLUT1 may become

involved in regulating PR in the PI3K/AKT pathway-

dependent manner; therefore, GLUT1 inhibitors may be an

effective therapeutic strategy for increasing hormone-

insensitivity therapies in EC (116, 173). Metformin has

been a well-tolerated biguanide drug to treat type 2 diabetes

mellitus for decades. In the context of hyperinsulinemia easily

accompanying EC patients, some studies have demonstrated

that metformin could suppress the proliferation of ECCs by

changing GLUT1-related glucose metabolism and inhibiting

the PI3K/AKT/mTOR signaling pathway (174). Moreover,

metformin could facilitate the expression of PR, which

greatly promotes the sensitivity of medroxyprogesterone

acetate (MPA)-induced apoptosis progestin in resistant

ECCs (175). However, direct data concerning metformin

plus progestin producing a better therapeutic effect than

progestin alone have not been found. Its side effects include

diarrhea, dyspepsia, and flatulence.

In addition, it has been reported that some flavonoids, such

as flavones and phloretin, show a well-established inhibition of

GLUT1 via against ERs (176, 177). This suggests that GLUT1

inhibitors seem to be more effective in ER-positive EC.
Glucose transporter-related clinical trials

Until now, most advances in the GLUT inhibitors are in the

early preclinical stage, while a few are in the clinical trial stages

of many cancers except EC (148). Several indirect data still

exist; yet in a phase I trial of glioblastoma, 2-DG performed

notable effectiveness in asymptomatic QTc prolongation and

restriction of dose escalation (178). In addition, 2-DG

combined with radiation therapy shows improvement

including better tolerance of 2-DG toxicity and lower

incidences of late radiation effects in glioblastoma patients

(179). There are as few as 20 ongoing clinical trials on

curcumin combination therapy, with two being related to EC.

Both are in phase II trials: one was completed in 2016, which

showed an increased therapeutic effect on standard treatment

through disturbing tumor-induced inflammation. However,
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the other trial concerning pembrolizumab, radiation, and

immune modulation is still ongoing (180). Furthermore, in

obese women with early EC, a phase II non-controlled trial has

reported that metformin combined with MPA could lead to a

better complete response (CR) rate and a recurrence rate than

MPA alone (181). Another randomized controlled clinical trial

also confirms that the addition of metformin is associated with

a higher early CR compared with megestrol acetate (MA) alone

(182). In a phase III CONFIRM clinical trial, the VEGFR

inhibitor PTK787/ZK 222584 (vatalanib) has been confirmed

to have greatly increased benefit as compared to original agents

in metastatic colorectal cancer patients (183).

If combined with other radio- or chemo-therapeutic agents

and hormone therapy, these inhibitors could become an

excellent helper to enhance therapeutic sensitivity and reduce

toxicity and dosage. In fact, there are many studies focusing on

the combination of GLUT inhibitors with various glycolytic

inhibitors (e.g., hexokinase 2 (HK2) inhibitors, PKM2 activators,

and lactate dehydrogenase (LDH) inhibitors). Their joint

functions to confront glycolytic and mitochondrial metabolism

also make promising effectiveness in the treatment of active

proliferative cancer. Thus, preclinical and clinical trials are

needed for GLUT-related inhibitors and GLUT inhibitors to

be used for EC patients.
Perspectives

The main GLUTs in EC are Class 1 (GLUTs 1–4) and Class

3 (GLUTs 6, 8), and the overexpression of these GLUTs has

been observed. As mentioned above, such abnormal

overexpression of GLUTs may be related to the regulation of

estrogen or progesterone, insulin and high glucose,

microenvironment (such as hypoxia and cytokines), and so

on. On the one hand, these overexpressed GLUTs provide

abundant glucose uptake for various metabolic pathways; on

the other hand, they also participate in the activation of many

crucial signaling pathways and the regulation of key genes

concerning proli ferat ion and apoptosis , EMT, and

angiogenesis in EC. In addition, overexpressed GLUTs may

also cause ECCs to be insensitive to hormone therapy or even

resistant to chemoradiotherapy, which has become a huge

chal lenge in the treatment of EC in recent years .

Nevertheless, from what has been discussed in this review,

we can conclude that with more and more attention to the

regulation of various GLUTs and GLUT-related inhibitors in

EC, patients are bound to receive more effective treatment

strategies and better outcomes. For future EC therapies, there is

a consensus to monitor GLUT expression in tumors that are

being treated with several appropriate therapies (e.g.,

hormonal, chemotherapy, and radiotherapy), to ascertain

how their expression levels and activity change under

these treatments.
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However, there are still many problems that remain to be

solved. For example, the specific mechanism of GLUTs in the

regulation of endometrium, especially the heterogeneity of

GLUTs in EC, has not been clarified yet. Breakthroughs in

these fields will promote the development of personalized and

precise treatment of EC. In addition, the regulation of GLUTs on

the immune microenvironment in EC also deserves to be further

studied. The expression characteristics and metabolic regulation

mechanisms of GLUTs (e.g., GLUT1, GLUT4, GLUT6, and

GLUT8) in the EC microenvironment are likely to be a

hotspot, which will provide a basis for the realization of

immunometabolism typing of EC. Last but not least, how

GLUT inhibitors can reach maximum utilization in EC

precision-targeted therapies also remains to be explored. In

particular, how to achieve an efficient synergistic effect of

GLUT inhibitors and hormone therapy may be a focus of

future research.
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The evolving role of
morphology in endometrial
cancer diagnostics: From
histopathology and molecular
testing towards integrative data
analysis by deep learning

Sarah Fremond1, Viktor Hendrik Koelzer2, Nanda Horeweg3

and Tjalling Bosse1*

1Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands,
2Department of Pathology and Molecular Pathology, University Hospital and University of Zürich,
Zürich, Switzerland, 3Department of Radiotherapy, Leiden University Medical Center, Leiden,
Netherlands
Endometrial cancer (EC) diagnostics is evolving into a system in which

molecular aspects are increasingly important. The traditional histological

subtype-driven classification has shifted to a molecular-based classification

that stratifies EC into DNA polymerase epsilon mutated (POLEmut), mismatch

repair deficient (MMRd), and p53 abnormal (p53abn), and the remaining EC as

no specific molecular profile (NSMP). The molecular EC classification has been

implemented in the World Health Organization 2020 classification and the

2021 European treatment guidelines, as it serves as a better basis for patient

management. As a result, the integration of the molecular class with

histopathological variables has become a critical focus of recent EC

research. Pathologists have observed and described several morphological

characteristics in association with specific genomic alterations, but these

appear insufficient to accurately classify patients according to molecular

subgroups. This requires pathologists to rely on molecular ancillary tests in

routine workup. In this new era, it has become increasingly challenging to

assign clinically relevant weights to histological and molecular features on an

individual patient basis. Deep learning (DL) technology opens new options for

the integrative analysis of multi-modal image and molecular datasets with

clinical outcomes. Proof-of-concept studies in other cancers showed

promising accuracy in predicting molecular alterations from H&E-stained

tumor slide images. This suggests that some morphological characteristics

that are associated with molecular alterations could be identified in EC, too,

expanding the current understanding of the molecular-driven EC classification.

Here in this review, we report the morphological characteristics of the

molecular EC classification currently identified in the literature. Given

the new challenges in EC diagnostics, this review discusses, therefore, the

potential supportive role that DL could have, by providing an outlook on all
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relevant studies using DL on histopathology images in various cancer types

with a focus on EC. Finally, we touch upon how DL might shape the

management of future EC patients.
KEYWORDS

endometrial carcinoma, tumourmorphology, computer vision, deep learning,molecular
classification, phenotype, whole slide image, histopathology image
Introduction

The incorporation of the molecular endometrial cancer (EC)

classification in the fifth edition of the World Health Organization

(WHO) classification of female genital tumors and the 2021

European treatment guidelines (1, 2) has marked a new era in EC

diagnostics. This moved the field farther away from the classic

dualistic model proposed by Bockman in 1983 (3), who divided

endometrial carcinomas into type I and type II cancers. Type I EC is

endometrioid and estrogen driven and can be graded using the

International Federation of Gynaecology and Obstetrics (FIGO)

grading system (4). Type II EC includes a variety of non-

endometrioid histological subtypes, such as uterine serous

carcinoma, clear cell carcinoma, mixed carcinomas, un-/

dedifferentiated carcinomas, and uterine carcinosarcomas. The

new molecular EC classification that is now recommended by the

WHO (1, 2) completely changes the diagnostic perspective by

placing histological subtype secondary to molecular class. It

utilizes surrogate markers paralleling the four molecular classes

originally described by The Cancer Genome Atlas (TCGA) (5).

First, targeted sequencing (Sanger or panel next-generation

sequencing, NGS) of exons 9–14 of DNA polymerase epsilon

(POLE) can identify POLE-mutated (POLEmut) EC. Second,

mismatch repair-deficient (MMRd) EC is defined by loss of

expression of one of the mismatch repair proteins (MLH1, PMS2,

MSH6, and MSH2) by immunohistochemistry (IHC). Third, p53

IHC is performed to identify EC with abnormal p53 expression

patterns (p53abn) (6, 7). Finally, EC without a pathogenic POLE

variant, with retained MMR protein expression, and wild-type p53

IHC, is classified as “no specific molecular profile” (NSMP) EC.

Studies on EC with more than one molecular alteration, commonly

referred to as “multiple-classifiers,” have served to identify the order

by which these tests should be performed (8). It has resulted in the

EC diagnostic algorithm endorsed by the WHO 2020 classification

that first assesses POLE status regardless of other markers, then

MMR, and finally p53 (9) (Figure 1).

The molecular classification resolves one of the main

issues of the histology-driven EC classification, which is the

high level of interobserver variability (10). Particularly high-

grade and non-endometrioid histological subtypes are only

moderately reproducible (11), which provides a poor basis for
02
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patient management (12). The recent paradigm shift in EC

diagnostics follows preceding developments in surgical

pathology, in which a series of technological breakthroughs

such as immunohistochemistry and molecular testing have

continually improved diagnostic accuracy (13).

The molecular EC classification has also shown a

prognostic value across cohorts of different risk populations

and is predictive of response to treatment, specifically in

p53abn EC, which has a poor outcome and may benefit

from addition of adjuvant chemotherapy (14), and in

POLEmut EC, which has an excellent outcome regardless of

adjuvant treatment, whereas MMRd and NSMP EC have

intermediate prognoses (5, 14–20). This has been the

rationale for adapting the clinical risk stratification system

of EC patients (21) wherein it is encouraged to apply the

molecular classification in the management of EC, especially

high-risk EC (1, 2); ongoing and new trials such as PORTEC-

4a (22) and RAINBO (23) exploit the molecular classification

as a basis for targeted adjuvant therapy (Figure 1) (24).

Consequently, the gynecological oncology community has

started to utilize the molecular classification; however, the

current risk stratification system does not clearly indicate

which of the histological or molecular variables are most

clinically relevant, or leverage the combination of both.

New technological breakthroughs in pathology are now

driving progress in cancer diagnostics. Since the emergence of

convolutional neural networks in 2012 (25), deep learning

(DL) models have continuously demonstrated their high

accuracy for the classification of medical (26) and non-

medical image datasets (27). This was followed by the start

of a digital revolution in pathology, wherein state-of-the-art

DL models from the computer vision community were used

on digital histopathology slides. Hematoxylin and eosin

(H&E) staining procedure is the most common in cancer

diagnostics, and large, well-characterized retrospective

cohorts and clinical trial sets are available, enabling the

collection of large-scale histopathology imaging datasets to

train state-of-the-art DL models. A number of proof-of-

concept papers showed the potential of DL models to aid

the diagnosis and molecular classification of cancers (28–55)

or predicting patient prognosis (56–60), by recognizing
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phenotypes on H&E-stained tumor slide images. Image-based

DL models have been frequently trained onto colorectal

cancer (29–37) and breast cancer (35, 38–44). However, in

EC, only two studies (53, 54) so far have been published using

DL for predicting one to various EC molecular alterations or

gene mutations from publicly available datasets. They have

obtained promising performance; however, the size of the

dataset and application to a few non-endometrioid

histological EC subtypes limit the generalizability of the

findings. Furthermore, in these studies, DL models have not

been trained to predict the newly established four-class

molecular classification in EC diagnostics. Opportunities for

future image-based DL models to impact EC diagnostics and

thus guide clinical management decisions include the

following: improve EC diagnostic classification by serving

as a pre-screening tool to prioritize molecular testing, refine

EC risk stratification by identifying morphological features

with prognostic relevance, and predict patient outcome or

even response to treatment.

In the light of the redefinition of EC on the basis of

molecular features, we here provide a concise summary of the

histopathological features associated with the four molecular

classes (Table 1). These morpho-molecular correlates may serve

to explore the feasibility of histology-directed molecular testing,

particularly in low-income countries, and deepen our

understanding of the underlying biological processes. We also

present possible avenues by which image-based DL may be able

to support these objectives, by discussing the landmark studies
Frontiers in Oncology 03
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that have used DL onto histopathology slide images in EC and

other cancers, which illustrates how these novel DL applications

may impact the field of EC diagnostics in the future (Figure 2).
Morpho-molecular correlates of the
current EC classification

POLE-mutated endometrial cancers

Pathogenic mutations in the exonuclease domain of DNA

polymerase epsilon (POLE) in EC, POLEmut EC, were first

described by Church et al. (61) and quickly thereafter by the

TCGA (5). Mutations in POLE result in a defective proofreading

domain during DNA leading-strand replication, yielding a very

high mutation burden and increased neoantigen load. In these

original publications, only a limited number of non-endometrioid

ECwere tested, and these did not carryPOLEmutations.This led to

the assumption that POLE mutations could only occur in

endometrioid-type EC. However, subsequent larger studies

challenged this idea by showing that POLE mutations can be

identified in non-endometrioid carcinomas, including uterine

carcinosarcomas, serous carcinomas, clear cell carcinomas,

and un-/dedifferentiated carcinomas, albeit in low frequencies

(14, 62–65). A search for a POLEmut EC-specific phenotypic trait

resulted in the identification of specific morphological features

(Figure 3): first, approximately two-thirds of POLEmut EC show at

least 50% solid growth (also referred to as FIGO grade 3) (66, 67),
FIGURE 1

The diagnostic algorithm of the molecular classification of endometrial cancer, associated prognosis, diagnostic test, and potential adjuvant
treatment regime. EC, endometrial cancer; NGS, panel next-generation sequencing; POLEmut, polymerase epsilon mutated; MMRd, mismatch
repair deficient; NSMP, no specific molecular profile; p53abn, p53 abnormal; DDR, DNA damage response; PD-L1, programmed death ligand.
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and the glandular component, if present, usually consists of glands

with smooth luminal borders without hobnailing (66); second,

hyperchromatic (multi-nucleated) tumor giant cells scattered

throughout the solid sheets of tumor cells have been described as

a recurring feature (66, 68); third, a dense peri-tumoral and intra-

epithelial infiltrate of lymphocytes is frequently noted, likely the

phenotypic response of its high mutational load (66, 67, 69–71);

finally, a more recent addition to these features is the presence of

(often numerous) tertiary lymphoid structures (TLS) within the

myometrial wall of POLEmut EC (72–74).
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To date, there is no single immunohistochemical stain that

can serve to identify POLEmut EC, and only few studies have

studied specific markers (75). Among the IHC stains commonly

used in diagnostics, abnormal staining for MMR proteins is

present in about 20% of POLEmut EC (72). Mutant-type

abnormal p53 staining can be identified in 12%–30% of

POLEmut EC (5, 7, 8), but no specific morphological substrate

has been detected in this subset of cases (8). Among the

POLEmut EC with secondary p53 abnormality, subclonal/

regional mutant-type overexpression of p53 is a relatively
TABLE 1 Summary of the histopathological and immunohistochemical features correlated with the molecular endometrial cancer (EC)
classification, dividing EC into POLE-mutated (POLEmut) EC, mismatch repair deficient (MMRd) EC, p53 abnormal (p53abn) EC, and non-specific
molecular profile (NSMP) EC.

POLEmut EC MMRd EC p53abn EC NSMP EC

Prototypical histopathological features

Glands with smooth luminal borders ++ + − +++

Glands with hobnailing (ragged luminal surface) − + +++ −

Solid growth (at least 50%) +++ ++ + +

Squamous differentiation (including morulae) + + − +++

Nuclear atypia ++ + +++ +

Tumor giant cells +++ − + −

Peri-tumoral and intra-epithelial infiltrate of lymphocytes +++ ++ − −

Tertiary lymphoid structures (TLS) +++ ++ + +

Microcystic elongated and fragmented (MELF) − + − ++

Lymphovascular space invasion (LVSI) + ++ + +

Immunohistochemical features

Abnormal MMR staining + +++ − −

Abnormal p53 staining + + +++ −
fro
FIGURE 2

The evolving role of morphology in endometrial cancer diagnostics. EC, endometrial cancer; POLEmut, polymerase epsilon mutated; MMRd,
mismatch repair deficient; NSMP, no specific molecular profile; p53abn, p53 abnormal.
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common finding (7). Sequencing of the exonuclease domain of

POLE thus remains required to accurately identify POLEmut EC,

since morphology and adjunct studies alone are insufficient.
Mismatch repair-deficient
endometrial cancers

Damage in the DNAmismatch repair (MMR) pathway leaves

unrepaired post-DNA replication errors. Thus, the phenotype of

MMR-deficient EC (MMRd EC) much like POLEmut EC is most

likely shaped by the biological consequences of a high mutational

load, leading to a similar morphological representation (Figure 4).

In fact, several studies have described the abundance of stromal

and intra-epithelial lymphocytes and, more recently, the presence

of TLS in MMRd EC (69, 70, 72, 73, 76), yet in a somewhat lower

abundance than in POLEmut EC (69, 72). Furthermore,

endometrioid-type EC is the dominant histological subtype of

MMRd EC (5, 15, 17–19, 77, 78). Endometrioid EC with solid

growth (FIGO grade 3) is relatively more frequent in MMRd EC

than in NSMP EC but less frequent than in POLEmut EC (5, 14,

15, 18). However, a variety of other non-endometrioid histological

subtypes have also been reported within the MMRd EC subclass.
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For example, one recent study identified MMR deficiency in

uterine carcinosarcomas and interestingly noted that their

epithelial components often had an endometrioid morphology

(79). A small proportion of MMRd EC has also been observed

with a serous or clear cell morphology (14, 18). This serous-like

phenotype was found not to be associated with acquired TP53

mutations in these MMRd tumors (8). Instead, there is some

indication that MMRd EC with serous-like morphology is more

often seen in MMRd EC with underlying germline mutations

(Lynch syndrome associated); however this, observation needs to

be validated (62, 80, 81). Interestingly, about two-thirds of the

un-/dedifferentiated EC have been shown to be MMR deficient

(82). Finally, for yet unknown reasons, multiple reports described

an association between the presence of lymphovascular space

invasion (LVSI) and MMR deficiency in EC (15, 77). Hence,

morphology alone is insufficient to accurately detect and classify

MMRd EC.

Af t e r exc lud ing pa thogen i c POLE muta t i ons ,

immunohistochemical staining of the four MMR proteins is

therefore used to identify MMRd EC. Approximately one

quarter of all EC show loss of expression of one of the MMR

proteins. The most common combination (about 70%) in

MMRd EC is loss of MLH1 and PMS2 expression, which is
FIGURE 3

A selection of prototypical morphological features found in POLE-mutated endometrial cancer (POLEmut EC): (A) at least 50% solid growth;
(B) hyperchromatic tumor giant cells; (C) a dense peri-tumoral and intra-epithelial infiltrate of lymphocytes; and (D) tertiary lymphoid structures (TLS).
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usually caused by promotor hypermethylation of the MLH1

gene. The remaining cases show loss of protein expression in

other combinations, namely, single loss of MSH6, single loss of

PMS2, or MSH2/MSH6 loss, of which about 10% is Lynch

syndrome associated (80). p53 abnormal staining can be seen

in 10% of MMRd EC (72), of which approximatively three

quarters show p53 subclonal mutant-type overexpression (7).
p53 abnormal endometrial cancers

The prototypical p53 abnormal endometrial cancers

(p53abn EC) has a classic serous histology with a (micro-)

papillary or (pseudo-) glandular architecture. The papillae or

glands are lined by a single layer of tumor cells with strong

cytonuclear atypia resulting in a ragged luminal surface

(Figure 5). Furthermore, a brisk mitotic activity is consistently

found (14, 18, 78, 83–85). The p53abn EC molecular subgroup,

however, has a broader histological spectrum, as it also includes

uterine carcinosarcomas (78), clear cell carcinomas (14, 18), and

FIGO grade 3 endometrioid carcinomas (5, 14, 18, 84, 85).

Intriguingly, some studies described that p53abn EC can also

present with low-grade endometrioid morphology (15, 70, 84).
Frontiers in Oncology 06
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Whether this observation is true, or that these cases rather

represent misclassified pseudo-glandular serous endometrial

carcinomas, remains to be determined. The low abundance of

tumor-infiltrating lymphocytes and lack of TLS are other

histological features that differentiate p53abn EC from MMRd

EC and POLEmut EC (69, 70, 72).

p53abn ECs, per definition, are MMR proficient and POLE

wild type and displays one of the well-described mutant-like

immunohistochemical p53 staining patterns (9). This includes

abnormal p53 nuclear overexpression in 65%, abnormal null-

mutant pattern in 13%, or cytoplasmic p53 overexpression (6, 7).

In addition, strong and diffuse positive membranous Her2Neu

staining (3+), found in 20%–25% of p53abn EC, may be p53abn

subclass specific (7, 86).
No specific molecular profile
endometrial cancers

The group of EC that does not carry a pathogenic POLE

mutation is MMR proficient and shows wild-type expression of

p53 is currently referred to as “no specific molecular profile”

(NSMP) EC. The majority shows a predominant glandular
FIGURE 4

A selection of prototypical morphological features found in mismatch repair deficient endometrial cancer (MMRd EC): (A) solid growth;
(B) glandular architecture; (C) a dense to moderate peri-tumoral and intra-epithelial infiltrate of lymphocytes; and (D) tertiary lymphoid structures (TLS).
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proliferation in which the glands have smooth luminal borders

and the nuclei have mild to moderate atypia (FIGO grades 1 and

2) (5, 15, 17, 18, 78). A subset of these low-grade NSMP EC

present (morular) squamous differentiation to a varying degree,

a distinct morphological feature that has been linked to

underlying CTNNB1 mutations (87–90). In addition to these

prototypical features (Figure 6), approximately 20% of the low-

grade NSMP EC present with a specific type of invasion, referred

to as “microcystic elongated and fragmented” (MELF) type of

invasion (91–93), which is rarely seen outside NSMP EC. A

lower abundance of TILS and TLS in the NSMP EC group than

in MMRd EC and POLEmut EC has also been reported (69, 70,

72). Finally, non-endometrioid or high-grade NSMP ECs are

uncommon but have been described (14, 17–19, 78).

Emerging data suggest that NSMP EC may be further

stratified into two groups with a distinct prognosis based on

hormone receptor expression status (94). Although the

majority of NSMP EC shows high expression of estrogen

receptors (ER alpha) and progesterone receptors (PR A/B), a

notable subset of approximately 10% of the NSMP EC show

complete lack of ER and PR expression. Interestingly, this

subgroup is enriched with non-endometrioid morphology,

particularly clear cell morphology. It is also conceivable that
Frontiers in Oncology 07
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the recently described mesonephric-like endometrial

carcinomas and the gastric-type endometrial carcinomas fall

in this group of hormone-receptor-negative NSMP EC (78).
The current role of
morphology within the molecular
EC classification

All these outlined human-identified morpho-molecular

correlates are presently insufficient to accurately predict

molecular class on H&E features only, and no exclusive

phenotypic trait has been identified for any of the

molecular c lasses . The observed his topathological

heterogeneity within defined molecular classes clearly

challenges the role of morphology in the context of the

molecular EC classification. Morphological information may

still refine prognosis within a specific molecular context such

as histological subtype and grade in NSMP EC (95) or dense

immune infiltrate or presence of TLS in MMRd EC (69, 70).

Yet, at the same time, some morphological features may

arguably no longer carry prognostic value in some
FIGURE 5

A selection of prototypical morphological features found in p53 abnormal endometrial cancer (p53abn EC): (A) (micro-)papillary glandular
architecture; (B) glands with ragged luminal surface; (C) brisk mitotic activity; and (D) strong nuclear atypia.
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molecular subgroups. For instance, evidence showed that a

broad range of histological subtypes and grades can be found

in POLEmut EC and p53abn EC while carrying distinct

genomic alterations and having excellent and poor

prognosis, respectively (5, 14, 15, 17–20). Likewise, the

prognostic relevance of other morphological features is

under investigation such as the presence of LVSI within

POLEmut EC and MMRd EC (15, 66, 77) and the

lymphocyte density in NSMP EC and p53abn EC (69, 70, 72).

Implementation of the molecular EC classification is a step

forward, but it is questionable whether histological features

have become completely obsolete. Morphological features may

still contain pertinent information beyond the molecular

classification such as additional prognostic indicators. It is,

however, becoming increasingly complex for pathologists to

distinguish relevant morphological subtleties in EC

diagnostics. In this context, DL models may be capable of

learning relevant morphological features in association with

molecular alterations on digitized H&E-stained EC tumor

slides. DL-based research may show that further refining of

the EC classification is possible by accurately combining

histological and molecular data (Figure 2).
Frontiers in Oncology 08
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Deep learning can recognize
phenotypes of mutations on H&E
tumor slides

Landmark studies have recently provided the proof of

principle for the prediction of genetic mutations from H&E

whole slide images by DL in several types of cancer (28–52, 54,

55), albeit more frequently in colorectal cancer (29–37) and

breast cancer (35, 38–44). For example, the feasibility of

predicting TP53 mutation status has been explored across

breast, colorectal, lung, stomach, pan-gastrointestinal, bladder,

and liver cancer (36, 48, 51, 52, 55). In breast cancer, prediction

of hormone receptor status (38, 39, 42) and homologous

recombination deficiency (35, 40) has also been investigated. A

common task for DL has also been the prediction of

microsatellite instability, particularly in colorectal cancer (29,

31–36) and gastrointestinal cancer (40, 45, 46). Across all these

studies, encouraging performance was measured with the area

under the receiver operating characteristic (ROC) curve (AUC)

on some external test sets above 0.80 (29, 29, 32, 34, 36–39, 45,

48). Although sensitivity and specificity may be, at this date,

insufficient for end-to-end clinical implementations, this is a
FIGURE 6

A selection of prototypical morphological features found in non-specific molecular profile endometrial cancer (NSMP EC): (A) glands with
smooth luminal borders; (B) squamous differentiation; (C) microcystic elongated and fragmented (MELF) type of invasion; and (D) mild nuclear
atypia.
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proof of concept that genotype–phenotype correlations

can be identified using DL on H&E-stained tumor slides.

Sirinukunwattana et al. (37) tackled a more complex task: a

DL model predicted the four-class consensus molecular subtypes

(CMS) of colorectal cancer, obtaining a 0.84 AUC on the TCGA

external test set (N=431 slides from 430 patients). Among these

DL-based studies, one research angle that has got some

particular interests is explaining the DL predictions, frequently

referred to as a “black box” and deriving human-interpretable

features (31, 36, 37, 44). For instance, this can be done by

extracting subregions of the input slide image that were assigned

strong weights by the DL model to molecularly classify a given

case. The visual assessment of these regions of interest can be

used to reveal relevant morpho-molecular correlates, although

this may not always provide human-interpretable visual

information. Another approach can be to correlate the DL

predictions with clinicopathological data.

Similar DL performance and interpretability still need to be

shown in large cohorts of EC. To date, only Wang et al. (53) and

Hong et al. (54) have trained supervised binary classification

models from H&E-stained EC tumor slides and labels publicly

available from the TCGA and Clinical Proteomic Tumour

Analysis Consortium (CPTAC) datasets. Wang et al. (53)

limited the predictions to high microsatellite instability (MSI)

on the TCGA (N=516 of which 128 MSI patients) and obtained

an AUC of 0.73 on 25% hold-out internal test set. Hong et al.

(54) predicted various mutations and each of the four TCGA-

derived molecular EC classes separately. To this end, they

reached an AUC of 0.66 for POLE mutation (N=7 POLE-

mutated patients), 0.76 for MSI (N=25 MSI patients), 0.87 for

copy-number high (N=20 copy-number high patients), and 0.65

for copy-number low (N=43 copy-number low patients) on the

CPTAC external test set. Additionally, they obtained an AUC of

0.77 for the prediction of the TP53 mutational status (N=30

TP53-mutated patients). Although both studies represent first

proofs of concept of predicting genetic mutations from H&E

slide images that can be expanded to EC, the test sets remained

relatively small and did not reflect the heterogeneity of

histological subtypes and FIGO grades known to be present in

each molecular class. Specifically, with a few non-endometroid

samples included in the TCGA (5) and CPTAC (96), the

applicability to large cohorts of non-endometrioid EC remains

unknown. In addition, the authors limited the scope of mutation

prediction to binary classification tasks. Thus, to date, leveraging

DL to predict the four-class molecular EC classification and

deriving human-interpretable morpho-molecular correlates,

have yet to be explored. Finally, the DL models used in both

studies first divided the slide images into tiles, which is a

standard computational method in the field, and then

classified each tile individually with labels assigned at the

slide-level. The tile-level classification may introduce training

noise because morphological information in a given tile does not

always correlate with the given true slide-level label. Hong et al.
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(54) have also acknowledged this architectural limitation,

reporting that non-tumor tiles were often given inconclusive

prediction scores. The discrepancy between tile and slide-level

classification labels remains a well-known challenge in the field,

which has started transitioning to more state-of-the-art DL

architectures promising better performance (97–100).
Integrating deep learning into the
current molecular EC classification

The gynecopathological community has started exploring

how morphology-based information could be used to aid the

molecular EC classification for an optimized risk-stratification

strategy. Assistance to accurately weigh both histopathological

and molecular variables would be welcome, as the number of

relevant variables is steadily increasing (101). The innate

strength of DL technology for the analysis of multi-modal

datasets including both image and molecular information

suggests that DL could aid in the refinement of the current

morpho-molecular classification of EC.

EC-specific DL tasks could range from predicting one

specific molecular alteration to predicting the complete four-

class molecular classification from standard H&E images or

from a combination of H&E images and special stains. To

achieve this, the input data for DL models are digitized whole

slide histopathology images of EC with the associated EC

molecular classes. Importantly, such models achieve an

incrementally increasing performance with the size and quality

of the available datasets, ground-truth annotations, and

advances in DL technology. Furthermore, such models can be

purposely designed to generalize to previously unseen datasets

and can be run in a cloud environment, potentially enabling

broad access to AI-guided classification in future pathology.

This remarkable technological paradigm chance could support

an increase in the fidelity of EC patient diagnosis, prognostic, and

predictive classification impacting the whole diagnostic process and

treatment decision-making. Theoretically, if a DL model predicts

the four-class molecular EC classification at near perfect high

specificity and sensitivity, then one could envision that DNA

sequencing and immunohistochemistry would only be required

for confirmatory testing, if at all. If such aDLmodel is also shown to

be generalizable to external cohorts, EC patients could be

molecularly classified using only digitized H&E-stained tumor

slides. In this scenario, this automated tool would be clinically

relevant by (i) providing a cost-effective alternative to expensive

molecular testing without the need of additional tissue and

(ii) speeding the diagnosis process up and advancing treatment

initiation, which, in a real-world practice, can be delayed by weeks

with next-generation sequencing. Until a clinical-grade accuracy of

such model has been achieved, alternative and less complex DL

tasks can be taken forward to support EC patient management. In
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fact, a binary predictive model trained toward one single specific

molecular alteration may yield a higher sensitivity and specificity

than a four-class model and could subsequently serve as a pre-

screening tool. In the field of EC, pre-identifying p53abn EC in a

population of low-risk ECmay potentially be used to identify those

few patients with a poor prognosis for confirmatory testing (15).

Similarly, it may be possible to identify the aggressive subset of

NSMP EC that lack hormone receptor expression (94).

Furthermore, preselecting cases that would further require POLE

testing given MMR-IHC and p53-IHC would be particularly

supportive and cost saving in high-risk ECs, as treatment de-

escalation of POLEmut EC with good prognosis is currently

being explored (5, 14–17, 19, 65, 70).

An avenue by which DL has currently probably the biggest

role is as a research tool combined with gynecopathological

expertise. Several studies showed (36, 37, 44) that after training

an EC-specific DL model, image-based information associated

with EC molecular alterations could be visually extracted and

reviewed by gynecopathologists. From there on, the morpho-

molecular correlates that are outlined in this review may be

confirmed, but the DL model may also reveal morpho-molecular

features that have so far not struck the attention of human

observers. Increasing knowledge about the morphology of the

molecular classes will help to understand the biological processes

and dynamics of tumor–host interaction in the tumor

microenvironment. The prognostic value of the identified

morpho-molecular features can be subsequently explored,

which may open new doors to prognostic refinement in EC.

With increasing availability of digitalization aids such as

cloud computing and resources, DL-driven diagnostic tools

could be made available worldwide as an additional

inexpensive, if not free, resource without the need of local

hardware or knowledge (102). Particularly, users without

access to scanners would only need to generate slide images

using microscope cameras or even existing mobile phones for

diagnostic classification in a central expert center. However,

high-quality slide images may remain a limitation to the

applicability in low-income countries and country-specific

regulations on patient data transfer.
Discussion

In the past four decades, the classification of EC has evolved

from a histology-based to a molecular system. The recent

integration into guidelines indicates the increasing prognostic

value of the four-class molecular classification over morphology

in EC (1, 2), yet the integrated management with former

histopathological variables is still a challenge in the diagnostic

routine (9). As a result, questions have been raised about the

relevance of these histopathological features and the role of

morphology beyond the molecular EC classification. Now, given

the four molecular EC classes, a number of studies have
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described some distinct morphological characteristics, but they

remain insufficient to achieve accurate classification (66–70, 72,

73, 76, 83), and the pathologist’s eyes are not sufficiently trained

to spotlight them. In fact, this review stresses the difficulty in

weighing image-based information in relation to the current

four molecular EC classes. First, each molecular subclass shows

heterogeneity for histological subtype, FIGO grade, and

associated microscopic features. Second, many microscopic

features appear to be non-exclusive, for instance the presence

of high levels of immune cells between POLEmut EC and MMRd

EC (69, 70). Lastly, some morphological traits are detectable at

different magnifications and growth patterns, and nuclear atypia

within p53abn EC is one example.

In the quickly progressing research domain of computer

science, DL has demonstrated a well-known capability to work

with high-dimensional and multi-modal datasets, up to learn

phenotype–genotype correlates from highly complex and extra-

large digitized tumor slides (29–52, 54, 55). Hence, future DL-

based breakthroughs have legitimate potential to resolve the

current dilemma between molecular and histopathological

variables or even support EC patient management for pre-

screening and decision-making on treatment, ultimately

impacting EC diagnostics and patient care as a whole. As for

today, an urgent assignment given to DL technology in

combination with gynecopathological expertise is bringing to

the surface the clinical relevance of each morphological feature

associated with the four molecular EC subclasses, while

improving morphological and biological understanding of the

genomic EC alterations. Combining the strengths of molecular-,

clinical-, and DL-based information may refine the EC

classification to reach optimal prognostication and prediction

for our future EC patients.
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carcinoma: A population-
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Pengfei Cui, Xiaofeng Cong, Youhao Zhang,
Huimin Zhang and Ziling Liu*

Cancer Center, The First Hospital of Jilin University, Changchun, China
Background: A systematic analysis of prognostic factors concerning

endometrial clear cell carcinoma (ECCC) is lacking. The current study aimed

to construct nomograms predicting the overall survival (OS) of ECCC patients.

Methods: We performed a retrospective study, and predicted nomograms for 3-,

5-, and 10-year OS were established. The nomograms were verified with the

consistency index (C-index), calibration curve, and decision curve analysis (DCA).

Results: A total of 1778 ECCC patients, 991 from FIGO stage I/II and 787 from

FIGO stage III/IV, were included in this study. The age at diagnosis, marital

status, T stage, tumor size, and surgery-independent prognostic factors in

FIGO stage I/II, and the age at diagnosis, T stage, lymph node involvement,

distant metastasis, tumor size, surgery, radiotherapy, and chemotherapy in

FIGO stage III/IV were independent prognostic factors. The C-indexes of the

training and validation group were 0.766 and 0.697 for FIGO stage I/II and 0.721

and 0.708 for FIGO stage III/IV, respectively. The calibration curve revealed

good agreement between nomogram-predicted and actual observation

values. The DCA established that nomograms had better clinical benefits

than the traditional FIGO stage.

Conclusions: The predicted nomograms showed good accuracy, excellent

discrimination ability, and clinical benefits, depicting their usage in clinical practice.

KEYWORDS

endometrial clear cell carcinoma, prognosis, nomogram, FIGO stage, risk
classification system
Introduction

Endometrial carcinoma (EC) is the sixth most diagnosed cancer among women (1).

An estimated 66,570 new cases of uterine corpus cancer and 12,940 deaths were reported

in the United States in 2021 (2). EC is usually diagnosed during stage I, and patients have

a good prognosis as it induces symptoms from an early stage (3). Postmenopausal vaginal
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bleeding is the most common symptom of EC (3, 4).

Additionally, tumor invasion of the cervix can lead to blood or

pus in the uterine cavity, causing abdominal swelling and

cramping pain. Patients having advanced disease may suffer

pelvic and lumbosacral pain due to the invasion of the tumor

within the surrounding tissues or nerves (3, 4). EC is classified as

type I and type II based on Bokhman’s dualist model5. Type I EC

is estrogen-dependent and accounts for nearly 80% of all EC. Its

pathological type is primarily endometrioid carcinoma (3–5).

Endometrial clear cell carcinoma (ECCC) is a type II EC

accounting for approximately 2–4% of the total EC, and is

more common in older women (6). ECCC is an estrogen-

independent tumor whose onset has no apparent relationship

with estrogen (4, 5, 7). ECCC is more aggressive and prone to

early metastasis than endometrioid carcinoma (4, 5, 7). Many

studies report a 5-year survival rate of less than 50%, irrespective

of the ECCC clinical stage. However, all these studies included

small samples having limited persuasion (4). Only a few small

retrospective cohort studies and some case reports have explored

the prognostic factors in ECCC due to its low incidence. Notably,

there are no systematic analyses of ECCC from a large

population sample. Therefore, the current study aimed to

perform a comprehensive retrospective analysis depending on

the Surveillance, Epidemiology, and End Results (SEER)

database to evaluate the survival and prognostic risk factors

for ECCC. Moreover, it establishes definitive individualized

prognostic prediction models to predict the 3-, 5- and 10-year

overall survival (OS) in ECCC patients. The findings contribute

to developing appropriate treatment and follow-up strategies

for ECCC.
Methods

Data source and patient selection

The present study recruited ECCC patients from 18

registries of the SEER database between 2000 and 2018 using

the SEER* Stat software (version 8.3.9). The National Cancer

Institute established the SEER database in 1973, covering

approximately 28% of the U.S. population. It includes age, sex,

race, and year of diagnosis (8). All the data for this study were

retrieved from the SEER database.

The inclusion criteria for this study were: (1) Primary site-

labeled: C54.1-Endometrium. (2) ICD-O-3 Hist/behave: 8310/2:

Clear cell adenocarcinoma in situ, 8310/3: Clear cell

adenocarcinoma, NOS. (3) Year of diagnosis: 2000-2018. (4)

Diagnosis confirmed based on histology or cytology. (5) Single

primary cancer.

The exclusion criteria were: (1) The survival time was 0 and

unknown. (2) The T stage was T0. (3) Unknown race. (4)

Unknown AJCC stage.
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Variable selection

Each of the following variables was considered for every

patient: age at diagnosis, marital status (married, divorced,

separated, unmarried, widowed, or unknown), race (white,

black, or other), T stage (T1, T2, T3, T4, or TX), lymph node

involvement (no, yes, or unknown), distant metastasis (no, yes, or

unknown), tumor size (< 4.5 cm, 4.5–6.1 cm, > 6.1 cm or

unknown), grade (I: well differentiated, II: moderately

differentiated, III: poorly differentiated, IV: undifferentiated, or

unknown), the International Federation of Gynecology and

Obstetrics (FIGO) stage (I, II, III, or IV), surgery (partial

hysterectomy, or total hysterectomy), radiotherapy (no or yes),

chemotherapy (no/unknown, or yes), vital status (dead or alive),

and time of survival (length in months). The FIGO stage of the

patients was obtained based on the TNM staging system since no

data on the FIGO stage was available in the SEER database. The

endpoint of this study was OS, defined as the time from diagnosis

to death or from the last follow-up (patients lost to follow-up).
Statistical analysis

The Chi-square test and Cox regression analysis were

performed with the SPSS software. In contrast, the R software

performed the C-index, calibration curve, DCA, and Log-rank

tests. The Chi-square test determined the potential statistical

differences in the demographic clinicopathological features and

treatment patterns among patients with early and advanced

ECCC. Then, patients having ECCC in FIGO stages I/II and

III/IV were randomly assigned to the training and validation

cohort at a 7:3 ratio, respectively. Univariate and multivariate

Cox regression analyses were performed in the FIGO I/II and

III/IV training cohorts to identify the independent OS risk

factors. Predictive nomograms were established depending on

the results of the Cox regression analysis for OS to predict the 3-,

5- and 10-year OS. The accuracy of the nomograms was

validated with the consistency index (C-index). Moreover, the

calibration curves were developed to compare the consistency

between the OS predicted by the nomogram at 3, 5, and 10 years

and their actual values. The clinical benefit of the nomograms

and classical FIGO staging system was compared through a

decision curve analysis (DCA). The survival curve of patients

from different risk groups was analyzed with the Log-rank tests.

The significance threshold had been set at P < 0.05.
Results

Demographics and clinical
characteristics

A total of 1,778 patients diagnosed with ECCC were enrolled in

this study between 2000 and 2018, depending on the inclusion and
frontiersin.org
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exclusion criteria. They were divided into 991 (55.7%) patients from

FIGO stage I/II and 787 (44.3%) from FIGO stage III/IV. The

demographic features of patients with ECCC are listed in Table 1.

Themedianageof thepatientswas68years.Mostpatientswerewhite

(72.5%) and had been subjected to total hysterectomy (87.3%).

Almost one-third of the patients (29.3%) had a tumor < 4.5 cm in

size, 45.7%weremarried, 47.6%were in pathological grade III, 42.5%

received radiotherapy, and 46.2% received chemotherapy. There

were statistical differences between the FIGO stage I/II and FIGO

Stage III/IVpatients inmarital status, race, tumor size, grade, surgery,

radiotherapy, and chemotherapy (all P < 0.05). The number of

patients with tumor size < 4.5 cm and pathological grade I in

FIGO stage I/II was more than that in FIGO stage III/IV (36.2% vs.
Frontiers in Oncology 03
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20.6% and 1.9% vs. 0.8%, respectively) respectively). In contrast, the

number of patients with tumor size > 6.1cm and pathological grade

III inFIGOStage III/IVwasmore than that inFIGOstage I/II (23.1%

vs. 8.2% and 51.1% vs. 44.9%, respectively). Total hysterectomy and

radiotherapy rates in the FIGO stage I/II were 92.1% and 46.9%,

respectively, higher than the FIGO stage III/IV (81.2% and 36.8%).
Independent risk factors for OS

Univariate and multivariate cox analyses indicated that age

at diagnosis, marital status, T stage, tumor size, and surgery were

independent risk factors for OS among patients with FIGO stage
TABLE 1 Basic characteristics of ECCC patients from the total population, FIGO stage I/II, and FIGO stage III/IV cohorts.

Variables Total population FIGO stage I/II FIGO stage III/IV P value

N=1778 N=991 N=787

Age (years) 68 (27~96) 68 (31~96) 68 (27~95) 0.165

Marital status 0.018

Married 813 45.7 479 48.3 334 42.4

Divorced 192 10.8 99 10.0 93 11.8

Separated 22 1.2 11 1.1 11 1.4

Unmarried 275 15.5 133 13.4 142 18.0

Widowed 392 22.0 215 21.7 177 22.5

Unknown 84 4.7 54 5.4 30 3.8

Race 0.002

White 1289 72.5 739 74.6 550 69.9

Black 312 17.5 146 14.7 166 21.1

Other 177 10.0 106 10.7 71 9.0

Tumor size (cm) <0.001

<4.5 521 29.3 359 36.2 162 20.6

4.5-6.1 226 12.7 106 10.7 120 15.2

>6.1 263 14.8 81 8.2 182 23.1

Unknown 768 43.2 445 44.9 323 41.0

Grade 0.006

I 25 1.4 19 1.9 6 0.8

II 95 5.3 65 6.6 30 3.8

III 847 47.6 445 44.9 402 51.1

IV 331 18.6 189 19.1 142 18.0

Unknown 480 27.0 273 27.5 207 26.3

Surgery <0.001

Partial hysterectomy 226 12.7 78 7.9 148 18.8

Total hysterectomy 1552 87.3 913 92.1 639 81.2

Radiotherapy <0.001

No/Unknown 1023 57.5 526 53.1 497 63.2

Yes 755 42.5 465 46.9 290 36.8

Chemotherapy <0.001

No/Unknown 957 53.8 697 70.3 260 33.0

Yes 821 46.2 294 29.7 527 67.0

Median OS (m) 34 56 (1-227) 21 (1-225) <0.001

Cases of dead 926 366 39.5 560 60.5
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I/II (all P < 0.05) (Table 2). Additionally, age at diagnosis, T

stage, lymph node involvement, distant metastasis, tumor size,

surgery, radiotherapy, and chemotherapy were independent

predictors for OS stage III/IV patients (P < 0.05) (Table 3).
Nomograms for the prediction of OS

Predictive nomograms were developed depending on the

independent risk variables to predict the 3-, 5- and 10-year OS

(Figure 1). Surgery (31 scores) had themost prognostic impact on

FIGOstage I/II among the categorical variables. Itwas followedby

marital status (28 scores), tumor size (24 scores), and T stage (13

scores) (Table 4). Surgery (52 scores) was also themost important

factor in the FIGO stage III/IV among the categorical variables,

followed by distant metastasis (48 scores), T stage (38 scores),
Frontiers in Oncology 04
108
tumor size (25 scores), chemotherapy (23 scores), lymph node

involvement (20 scores), and radiotherapy (14 scores) (Table 5).

The internal and external validations of the nomograms were

performed in the training and validation cohorts, respectively.

The C-indexes of the training and validation groups from the

FIGO stage I/II and FIGO stage III/IV were 0.766 (95%CI: 0.750-

0.782) and 0.697 (95% CI: 0.640–0.754), and 0.721 (95% CI:

0.708–0.734) and 0.708 (95% CI: 0.667–0.749), respectively.

These values depicted that the constructed nomograms showed

a good predictive performance. In addition, the calibration curves

of the two groups had a good agreement between the nomogram-

predicted and the real observation values (Figures 2 and 3). The

DCA models revealed that the nomograms outperformed the

FIGO staging system in clinical benefit (Figures 4 and 5),

suggesting that nomograms showed more predictive power

than the traditional staging system.
TABLE 2 Univariate and multivariate COX analyses of OS in the FIGO stage I/II training cohort.

Variables Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Lower Upper Lower Upper

Age (years) 1.078 1.064 1.091 <0.001 1.071 1.056 1.086 <0.001

Marital status

Divorced vs Married 1.450 0.933 2.252 0.098 1.183 0.758 1.846 0.460

Separated vs Married 1.513 0.478 4.786 0.481 3.892 1.194 12.687 0.024

Unmarried vs Married 1.170 0.772 1.772 0.460 1.423 0.922 2.198 0.111

Widowed vs Married 2.954 2.204 3.959 <0.001 1.453 1.054 2.003 0.023

Unknown vs Married 1.479 0.828 2.640 0.186 1.031 0.572 1.856 0.920

Race

Black vs White 1.055 0.748 1.489 0.759 0.713 0.494 1.028 0.070

Other vs White 0.558 0.348 0.894 0.015 0.795 0.492 1.285 0.349

T

T2 vs T1 2.029 1.553 2.650 <0.001 1.700 1.283 2.252 <0.001

Tumor size (cm)

4.5~6.1 vs <4.5 0.739 0.428 1.274 0.276 0.632 0.364 1.096 0.102

>6.1 vs <4.5 1.998 1.244 3.211 0.004 1.884 1.140 3.112 0.013

Unknown vs <4.5 1.434 1.070 1.922 0.016 1.261 0.926 1.716 0.141

Grade

II vs I 1.511 0.567 4.028 0.409 – – – –

III vs I 1.564 0.639 3.829 0.328 – – – –

IV vs I 1.385 0.548 3.501 0.491 – – – –

Unknown vs I 1.456 0.586 3.621 0.419 – – – –

Surgery

Total hysterectomy vs Partial hysterectomy 0.175 0.126 0.243 <0.001 0.230 0.158 0.336 <0.001

Radiotherapy

Yes vs No/Unknown 1.062 0.829 1.360 0.633 – – – –

Chemotherapy

Yes vs No/Unknown 0.692 0.507 0.945 0.021 1.147 0.824 1.598 0.417
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The novel risk-stratification system

The ECCC patients were divided into low-risk, medium-risk,

and high-risk groups based on the total scores from each

variable. The median survival time in the high, medium, and

low-risk groups for the FIGO stage I/II were 14.5, 40, and 69

months (Figure 6A), respectively, and 7, 18, and 33 months,

respectively (Figure 6B) for the FIGO stage III/IV. The log-rank

tests revealed that the survival times for the three risk groups

differed significantly (both P < 0.001).
Frontiers in Oncology 05
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Discussion

Unlike EC, most ECCC patients have a tumor negative for

the estrogen and progesterone receptors. However, positive for

hepatocyte nuclear factor 1b and Napsin A. Notably, TP53 is the

most commonly mutated gene in ECCC (4, 9–11). The abnormal

p53 expression is considered a poor prognostic factor for EC

(11). Previous studies observed that the mutation rate of the

TP53 gene in POLE wild-type ECCC is 46%, while that of non-

POLE endometrioid carcinoma is only 11% (11). ECCC patients
TABLE 3 Univariate and multivariate COX analyses of OS in the FIGO stage III/IV training cohort.

Variables Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Lower Upper Lower Upper

Age (years) 1.028 1.017 1.038 <0.001 1.020 1.008 1.032 0.001

Marital status

Divorced vs Married 1.472 1.050 2.062 0.025 1.097 0.775 1.553 0.603

Separated vs Married 1.508 0.618 3.679 0.367 1.245 0.500 3.101 0.637

Unmarried vs Married 1.232 0.928 1.636 0.149 1.071 0.794 1.444 0.655

Widowed vs Married 1.831 1.427 2.350 <0.001 1.172 0.889 1.544 0.261

Unknown vs Married 0.896 0.518 1.550 0.694 0.598 0.338 1.060 0.079

Race

Black vs White 1.444 1.130 1.845 0.003 1.275 0.986 1.649 0.064

Other vs White 0.828 0.574 1.194 0.311 0.866 0.595 1.260 0.452

T stage

T2 vs T1 1.376 0.898 2.108 0.142 1.288 0.830 1.997 0.259

T3 vs T1 1.886 1.365 2.606 <0.001 2.037 1.452 2.858 <0.001

T4 vs T1 2.984 1.992 4.469 <0.001 2.297 1.492 3.536 <0.001

TX vs T1 3.543 2.364 5.309 <0.001 1.880 1.188 2.974 0.007

Lymph nodes involvement

Yes vs No 0.905 0.729 1.124 0.367 1.430 1.129 1.812 0.003

Unknown vs No 1.925 1.417 2.617 <0.001 1.476 1.052 2.070 0.024

Distant metastasis

Yes vs No 2.441 1.993 2.989 <0.001 1.970 1.538 2.524 <0.001

Unknown vs No 5.839 0.813 41.928 0.079 1.325 0.173 10.153 0.787

Tumor size (cm)

4.5~6.1 vs <4.5 1.465 1.037 2.068 0.030 1.482 1.039 2.114 0.030

>6.1 vs <4.5 1.275 0.924 1.759 0.140 1.180 0.842 1.655 0.337

Unknown vs <4.5 1.596 1.208 2.109 0.001 1.053 0.763 1.452 0.754

Grade

II vs I 0.71 0.226 2.233 0.558 – – – –

III vs I 0.897 0.333 2.414 0.830 – – – –

IV vs I 0.753 0.274 2.069 0.583 – – – –

Unknown vs I 0.888 0.327 2.414 0.816 – – – –

Surgery

Total hysterectomy vs Partial hysterectomy 0.337 0.264 0.430 <0.001 0.372 0.283 0.490 <0.001

Radiotherapy

Yes vs No/Unknown 0.550 0.444 0.682 <0.001 0.680 0.537 0.861 0.001

Chemotherapy

Yes vs No/Unknown 0.568 0.462 0.698 <0.001 0.582 0.461 0.734 <0.001
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are accompanied by high-risk factors for poor prognoses,

including advanced clinical stage, deep muscular infiltration,

lymphovascular space involvement, and distant metastasis, with

a high recurrence rate, high mortality, and poor prognosis than

in type I EC (3, 4, 7). Currently, The Cancer Genome Atlas

(TCGA) classification is the most authoritative classification

system of EC. However, it does not include ECCC patients.

Therefore, it is essential to analyze the demographic and
Frontiers in Oncology 06
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clinicopathological characteristics of ECCC patients

independently. Moreover, we must comprehensively evaluate

their prognosis to develop an adequate treatment guide for

ECCC patients.

Our study identified that age was an essential prognostic

factor among ECCC patients, positively correlating with the risk

of death. The findings of this study concerning the relationship

between age and prognosis in EC patients were consistent with

previous studies. A retrospective study found that patients aged

≤ 40 include more favorable prognostic factors, such as a higher

proportion of non-invasive carcinoma, a lower proportion in the

uterine segment involvement, and less invasion of the lymphatic

vascular space than in EC patients aged 40-60 years (12).

Furthermore, EC patients aged ≤ 40 years had a lower

probability of mismatch repair defects due to MLH1

methylation, a mutation associated with poor prognosis, than

patients aged 41-60 years (12). Another study also found that

ECCC patients aged ≥ 70 had worse progression-free survival

time and OS independent of the treatment modality they were

subjected to (13). An investigation on the influence of marital

status on the diagnosis and prognosis of EC revealed that

marriage was a protective prognostic factor for OS and cancer-

specific survival among EC patients. Unmarried, divorced/

separated, and widowed patients showed a higher risk of death

than married patients (14). This phenomenon was because

married patients were more likely to be diagnosed early,

possibly due to the stability of the endogenous hormone levels

in women associated with emotional benefits (14). In this study,

separated and widowed patients having early ECCC had a higher

risk of death than married patients at the same stage. However,

marital status had no significant effect on the prognosis of

patients with advanced ECCC. Previous studies have evaluated

the relationship between tumor diameter, myometrium invasion
BA

FIGURE 1

Nomograms for predicting 3-, 5-, and 10-year OS among patients with FIGO stage I/II (A) and FIGO stage III/IV (B) ECCC.
TABLE 4 Nomogram scores of each independent prognostic factor
in the FIGO stage I/II ECCC patients.

Variables Scores

Age (years) 1.56*Age-48.71

Marital status

Married 57

Divorced 60

Separated 85

Unmarried 64

Widowed 65

Unknown 58

T stage

T1 57

T2 70

Tumor size (cm)

<4.5 57

4.5~6.1 47

>6.1 71

Unknown 62

Surgery

Partial hysterectomy 57

Total hysterectomy 26
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depth, and prognosis of EC patients. Nilufer et al. observed that

more than half of the ECCC patients with a tumor diameter >

2 cm were prone to myometrial invasion (15). Kohei et al.

identified that large tumor size is associated with deeper

myometrial infiltration and lymph node metastasis among EC

patients (16). In this study, ECCC patients with large tumor sizes

and late T stages significantly enhanced the risk of death. These

findings were consistent with a retrospective study that inferred

that large tumor size and deep muscle invasion could be

associated with poor prognosis among ECCC patients (17).

Lymphatic metastasis is the main route of EC metastasis. The

survival time of patients is significantly shortened once they

develop lymph node metastasis, indicating disease progression

(18). This study also depicted that OS is significantly decreased

in ECCC patients with lymph node involvement.

A study revealed that black patients with EC were more

likely to develop invasive and non-endometrioid cancer than
Frontiers in Oncology 07
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white EC patients from America (19). However, this study did

not observe a correlation between race and prognosis in ECCC

patients. The degree of differentiation was not an independent

prognostic factor for ECCC. Therefore, we hypothesized that the

prognosis was poor irrespective of the degree of differentiation

due to the high invasiveness of ECCC and thus had no

significant effect on the prognosis of ECCC patients.

The preferred treatment method to cure ECCC is extensive

staging surgery, including total uterine and bilateral

adnexectomy, pelvic and para-aortic lymph node dissection,

more significant omentum biopsy, and examination of the

peritoneal washing fluid (20–22). The advantage of surgery is

that the tumor stage is more accurately identified, facilitating the

subsequent selection of the appropriate adjuvant treatment. Our

results revealed that total hysterectomy was a favorable factor for

a good prognosis. The risk of death after total hysterectomy was

lower than after partial hysterectomy in both early and advanced

stages. Therefore, active surgical treatment was recommended

for ECCC patients. Patients who cannot undergo radical surgery

should also be treated with tumor-reducing surgery, depending

on their physical condition. Adjuvant radiotherapy and

chemotherapy are fundamental approaches in treating ECCC.

Numerous studies underline that the choice of adjuvant

radiotherapy and chemotherapy is associated with the stage of

ECCC (23). The adjuvant therapy in patients with early ECCC

should be chosen based on prognosis-related factors, such as age

and the depth of myometrial invasion. Although our results

depicted that radiotherapy and chemotherapy had no role in

improving the prognosis of patients with early ECCC, this factor

did not hinder patients with early ECCC from benefiting from

radiotherapy and chemotherapy. Our results were attributed to

the SEER database limitations, which did not allow us to know

the adjuvant treatment regimen and course, thus preventing the

specific stratification study of the enrolled patients.

The FIGO stage of EC represents the pathological surgical

stage, which includes factors related to patient prognoses, such

as depth of muscular invasion, nodal metastasis, and distant

metastasis. It is the primary tool clinicians use to evaluate the

prognosis of EC patients. However, the FIGO stage does not

include other factors associated with the survival of patients,

such as age, marital status, and treatment methods. At the same

time, the nomograms contain the demographic, clinical

characteristics, and therapeutic approaches of the ECCC

patients. Additionally, the DCA curves applied to ECCC

patients established that nomograms had better clinical

benefits than traditional FIGO stages in stages I/II and III/IV.

Therefore, the nomograms had a significant practical value due

to their good accuracy, excellent discrimination ability, and

clinical benefits.

Compared to the existing prognostic classification, our

predictive model demonstrated several strengths. All the
TABLE 5 Nomogram scores of each independent prognostic factor
in the FIGO stage III/IV ECCC patients.

Variables Scores

Age (years) 1.29*age-34.59

T stage

T1 52

T2 60

T3 82

T4 90

TX 65

Lymph nodes involvement

No 52

Yes 71

Unknown 72

Distant metastasis

No 52

Yes 100

Unknown 79

Tumor size (cm)

<4.4 52

4.5~6.1 77

>6.1 57

Unknown 57

Surgery

Partial hysterectomy 52

Total hysterectomy 0

Radiotherapy

No/Unknown 52

Yes 38

Chemotherapy

No/Unknown 52

Yes 29
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FIGURE 2

Calibration curves for 3-, 5-, and 10-year OS among patients with FIGO stage I/II ECCC within the training and validation cohorts.
FIGURE 3

Calibration curves for 3-, 5-, and 10-year OS among patients with FIGO stage III/IV ECCC within the training and validation cohorts.
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A

FIGURE 4

DCA curves for 3-, 5-, and 10-year OS among ECCC patients with FIGO stage I/II within the training cohort (A) and validation cohort (B).
B

A

FIGURE 5

DCA curves for 3-, 5-, and 10-year OS among ECCC patients with FIGO stage III/IV within the training cohort (A) and validation cohort (B).
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clinical variables included in the survival prediction model were

easily accessible. This study enrolled ECCC patients; thus, our

nomogram was more applicable to ECCC patients than other

classification systems. Moreover, the nomogram intuitively and

clearly showed 3-, 5- and 8-year survival rates, which is

convenient for clinicians. However, this study had several

limitations. Firstly, all the variables selected in our study were

clinical characteristics. Several genetic and epigenetic features,

including Non-Coding RNAs, identified as predictors of EC

patients in previous studies (24, 25), were not included in this

study due to the limitations of the SEER database. The absence of

these new molecular characteristics deteriorated the

practicability of the nomogram model. Secondly, this was a

retrospective study; thus, the bias significantly affected the

results because the information about the patients was

partially missing. For instance, the tumor size of 43.2% of the

patients was unknown, which significantly reduced the accuracy

of the prediction model. Finally, it was unclear whether the

patients received neoadjuvant therapy, and the specific

information based on surgery, radiotherapy, chemotherapy,

and a potential targeted therapy was unknown.
Conclusions

Nomograms for predicting 3-, 5-, and 10-year OS in ECCC

patients were successfully constructed. Moreover, new risk

stratification systems were further built to stratify patients into

different risk groups. These predictive models may be valuable

tools to aid ECCC management and treatment in clinical practice.
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FIGURE 6

Kaplan-Meier survival curves for different risk groups among ECCC patients with FIGO stage I/II (A) and FIGO stage III/IV (B).
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Tumor immune
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endometrial cancer of
different molecular subtypes:
evidence from a retrospective
observational study

Yibo Dai1, Luyang Zhao1, Dingchao Hua2, Lina Cui2,
Xiaobo Zhang3, Nan Kang3, Linlin Qu3, Liwei Li1, He Li1,
Danhua Shen3, Zhiqi Wang1* and Jianliu Wang1

1Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China,
2Department of Medical Affairs, 3D Medicines Inc., Shanghai, China, 3Department of Pathology,
Peking University People’s Hospital, Beijing, China
Objective: Tumor immune microenvironmental features may predict survival

and guide treatment. This study aimed to comprehensively decipher the

immunological features of different molecular subtypes of endometrial cancer.

Methods: In this retrospective study, 26 patients with primary endometrial

cancer and four with recurrent disease treated in our center from December

2018 to November 2021 were included. Next-generation sequencing was

performed on tumor samples. Patients were classified into four subtypes,

including POLE mutant, microsatellite instability high (MSI-H), no specific

molecular profile (NSMP) and TP53 mutant subtypes. Tumor-infiltrating

immune cells were quantified using multiplex immunofluorescence assays.

Results:Of the 26 primary endometrial cancer cases, three were POLEmutant,

six were MSI-H, eight were NSMP and nine were TP53 mutant. Of the four

recurrent cases, two belonged to the NSMP subtype and two belonged to the

TP53mutant subtype. The tumormutation burden (TMB) levels of POLEmutant

and MSI-H cases were significantly higher than that of the other two subtypes

(p< 0.001). We combined POLE mutant and MSI-H subtypes into the TMB high

(TMB-H) subtype. The TMB-H subtype showed a high degree of infiltration of

CD8+ T cells. In the NSMP subtype, the overall degree of intra-tumoral

infiltrating immune cells was low. In the TP53 mutant subtype, the densities

of both PD-L1+macrophages (p = 0.047) and PD-1+ T cells (p = 0.034) in tumor

parenchyma were the highest among the four subtypes.
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Conclusion: Endometrial cancer of TMB-H, NSMP and TP53 mutant subtypes

displayed phenotypes of normal immune response, absence of immune

infiltration, and suppressed immune response, respectively. These features

may provide mechanistic explanations for the differences in patients’

prognosis and efficacy of immune checkpoint blockade therapies among

different endometrial cancer subtypes.
KEYWORDS

uterine neoplasms (MeSH), molecular subtype, tumor immune microenvironment,
prognosis, immunotherapy
Introduction

In the past decade, the development of high-throughput

sequencing technologies and computational algorithms has

facilitated the understanding of cancer genomics. In endometrial

cancer (EC), the establishment of molecular subtypes by the Cancer

GenomeAtlas (TCGA) consortium(1), on theonehand, has affected

patient stratification,promoting individualizedclinicalmanagement.

In 2021, the National Comprehensive Cancer Network (NCCN)

guidelines for uterineneoplasms recommendedmolecular subtyping

inECdiagnosis (2). In addition, theEuropeanSociety ofGynecologic

Oncology (ESGO)/European Society for Radiotherapy and

Oncology (ESTRO)/European Society of Pathology (ESP) guideline

for EC further incorporated molecular subtypes into the risk

stratification system for guiding postoperative adjuvant therapies (3).

On the other hand, molecular subtypes, to some extent, also

indicated possibly different routes of EC development and

differences in cancer microenvironmental features. Specifically,

immune components in the cancer microenvironment have

attracted increasing attention in recent years due to their

potential roles in predicting patients’ prognosis and guiding

immune checkpoint blockade therapies (4, 5). Improvements in

methodologies, including single-cell and spatial transcriptomics,

immune deconvolution algorithms (6) and multiplex

immunofluorescence assays (7), have significantly promoted

research in cancer immune microenvironment. In 2018,

European researchers, for the first time, established an

immune risk score based on tumor-infiltrating T cells in colon

cancer tissue and validated its effectiveness in predicting

recurrence in a large retrospective cohort (8). In EC, previous

findings have indicated the prognostic value of immune-related

gene signatures (9–11). However, most previous studies on the

immune microenvironmental features of EC were only based on

data of next-generation sequencing. Furthermore, extensive data

regarding the association of tumor-infiltrating immune cells

with patients’ molecular features are still needed to establish

incorporated risk stratification systems for clinical applications.
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In this study, we aimed to analyze the tumor immune

microenvironmental features in different molecular subtypes of

EC using multiplex immunofluorescence method, so as to

provide a better understanding of the mechanisms underlying

the differences in prognosis and immunotherapeutic efficacy

among different EC subtypes.
Materials and methods

Study population and data collection

This retrospective study included 30 EC cases treated at Peking

University People’s Hospital from December 2018 to November

2021.The caseswere consecutively includedon the condition that for

each case the genetic testing and PD-L1 immunohistochemical

assays were performed on fresh surgical specimens. We avoided

using archived pathological specimens for the above assays so as to

guarantee the accuracy of the testing results. Among all the eligible

patients, 26 were primary cases and 4 were recurrent cases. All

surgeries were conducted by experienced gynecologic oncologists in

our center. For all early-stage primary EC cases, surgical staging was

conducted, including total hysterectomy + bilateral

salphingoophrectomy ± pelvic lymphnectomy ± paraaortic

lymphnectomy ± omentectomy. Hysterectomy was performed

through either open or laparoscopic approaches, following the

routine procedures (12). Pelvic washing was collected during

surgeries and sent for cytology testing. For advanced-stage primary

EC cases, cytoreductive surgery was conducted. Postoperative

adjuvant therapies, including chemotherapies and radiotherapies,

were delivered based on patients’ clinicopathological risk factors. For

recurrent cases, surgerywas performed in an individualizedmanner,

and postoperative chemotherapies were delivered. All pathological

reviews were finished in the Department of Pathology of Peking

University People’s Hospital by two independent gynecologic

pathologists. When disconcordance occurred in pathological

diagnosis, the case was sent to the expert committee of the
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Department of Pathology for a final diagnosis. Patients’ clinical data,

including age, height andweight at diagnosis, disease history, disease

stage, and pathological information were retrieved from the

electronic medical record system of the hospital. The staging was

determined according to the International Federation ofGynecology

and Obstetrics (FIGO) 2009 staging system (13). Histopathological

classification was performed according to the World Health

Organization (WHO) 2014 classification system (14). The grading

of tumors was in accordance with the FIGO criteria (15). The study

was approved by the Institutional ReviewBoard of PekingUniversity

People’s Hospital (2022PHB097-001).
Genetic testing

(1) Sample processing and DNA extraction: Formalin-fixed

paraffin-embedded (FFPE) tissue sections were stained with

hematoxylin and eosin (H&E) to evaluate tumor cell content.

Samples with a tumor content of ≥ 20% were used for

subsequent analyses. After deparaffinization, the samples were

incubated together with lysis buffer and proteinase K at 56°C

overnight until completely digested. Then the lysate was

incubated at 80°C for 4 hours to reverse formaldehyde crosslinks.

Genomic DNA was extracted with the ReliaPrepTM FFPE gDNA

Miniprep System (Promega) and then quantified using the

QubitTM dsDNA HS Assay Kit (Thermo Fisher Scientific). For

each sample subject to the following steps, a final concentration of

DNA ≥ 0.6 ng/mL was needed, and the total content of DNA was

required to be ≥ 30 ng.

(2) Library preparation and targeted capture: DNA extracts

were fragmented by an S220 focused ultrasonicator (Covaris).

Then, we prepared libraries using the KAPA Hyper Prep Kit

(KAPA Biosystems). For each library, the concentration and size

distribution of DNA fragments were quantified using a Qubit 3.0

fluorometer (Thermo Fisher Scientific) and a LabChip GX

Touch HT Analyzer (PerkinElmer) respectively. The DNA

concentration was approximately 50-80 ng/mL, and the length

of the DNA fragments was approximately 390 bp. The library

was then subjected to hybridization with probes targeting 733

cancer-related genes. The probe baits were individually

synthesized 5′ biotinylated 120 bp DNA oligonucleotides

(IDT). Repetitive elements were filtered out from intronic baits

according to the annotation by UCSC Genome RepeatMasker

(16). The xGen® Hybridization and Wash Kit (IDT) was used

for hybridization enrichment. The concentration and fragment

size distribution of the final library were quantified with a Qubit

3.0 fluorometer (Thermo Fisher Scientific) and a LabChip GX

Touch HT Analyzer (PerkinElmer) respectively.

(3) DNA sequencing and data processing: The final libraries

were loaded onto a NovaSeq 6000 platform (Illumina) for

paired-end sequencing with a mean sequencing depth of 800-

1000×. Raw sequencing data were then mapped to the reference

human genome hg19 with the Burrows−Wheeler Aligner
Frontiers in Immunology 03
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(v0.7.12) (17). PCR duplicate reads were removed with Picard

(v1.130), and sequence metrics were collected with SAMtools

(v1.1.19). Single nucleotide variants and indels were then

analyzed. Variants were filtered by their unique supporting

read depth, strand bias and base quality based on the method

in a previous study (18). Single-nucleotide polymorphism

(SNPs) were annotated by ANNOVAR against the databases

dbSNP (v138), 1000Genome and ESP6500 (population

frequency > 0.015). Finally, only missense, silent, nonsense,

frameshift and non-frameshift indel mutations were kept.

(4) Determination of microsatellite status: In this study,

microsatellite status was determined according to the previously

described algorithm (19). We examined 100 microsatellite loci,

and the top 30 loci with the best coverage were used for

microsatellite-instability (MSI) score calculation. The model

for determining the stability of each locus is as follows:

P X = nið Þ = Cni
Ni
pnii 1 − pið ÞNi−ni

In the model, i is the locus being examined, pi is the cumulative

percentage at the cut-point repeat length of themicrosatellite-stable

(MSS) subtype, ni represents the number of unstable reads, and Ni

represents the total number of reads for that locus. A locus was

considered unstable if P (X ≥ ni) ≤ 0.001. AnMSI score was defined

as the percentage of unstable loci. Any sample with anMSI score of

≥ 0.4 was classified as MSI high (MSI-H).

(5) Calculation of tumor mutation burden (TMB): TMB was

defined as the number of somatic mutations per 1 Mb in

examined coding regions, excluding driver mutations. Tumor

somatic mutations include missense, silent, nonsense, frameshift

and non-frameshift indel mutations in coding regions.
Molecular classification of EC cases

The molecular subtype of each EC case was determined

according to POLE gene status, microsatellite status, and TP53

gene status. The pipeline for subtyping was designed in

accordance with the transPORTEC classification system (20),

as shown in Figure 1. Four molecular subtypes (POLE mutant,

MSI-H, no specific molecular profile [NSMP], and TP53

mutant) were identified accordingly.
PD-L1 immunohistochemical testing

PD-L1 expression levels of each sample were tested with a

PD-L1 IHC 22C3 pharmDx assay (Agilent Technologies). The

expression level of PD-L1 was quantified using tumor

proportion score (TPS), which is defined as the percentage of

viable tumor cells with partial or complete membrane PD-L1

staining at any intensity. In this study, positive PD-L1 expression

was defined as TPS ≥ 1% (21).
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Testing of tumor infiltrating
immune cells

For each sample, infiltrating immune cells were examined

using multiplex immunofluorescence staining, which was

conducted with the Akoya OPAL Polaris 7-Color Automation

IHC kit (NEL871001KT), following the manufacturer’s guide.

FFPE tissue slides were first deparaffinized in a BOND RX

system (Leica Biosystems), which was followed by epitope

retrieval. Then, the slides were incubated with primary

antibodies in two panels. In panel 1, the primary antibodies

against CD163 (Abcam, ab182422, 1:500), CD8 (Abcam,

ab178089, 1:200), CD68 (Abcam, ab213363, 1:1000), PD-1

(CST, D4W2J, 86163S, 1:200), PD-L1 (CST, E1L3N, 13684S,

1:400) and pan-CK (Abcam, ab7753, 1:100) were added

sequentially. In panel 2, the primary antibodies against CD20

(DAKO, L26, IR604, 1:1), CD3 (DAKO, A0452, 1:1), CD56

(Abcam, ab75813, 1:1000), CD4 (Abcam, ab133616, 1:100),

FOXP3 (Abcam, ab20034, 1:100) and pan-CK (Abcam,

ab7753, 1:100) were added sequentially. After incubating with

each primary antibody, the samples were incubated with

secondary antibodies and the corresponding reactive Opal

fluorophores (see Table S1 for details). Nuclei acids were

stained with DAPI. Slides bound with primary and secondary

antibodies but without fluorophores were used as negative

controls. The tissue slides were scanned by the Vectra Polaris

Quantitative Pathology Imaging System (Akoya Biosciences) at

20 nm wavelength intervals from 440 nm to 780 nm, with a fixed

exposure time and an absolute magnification of ×200. All scans

were then superimposed to obtain a single image for each slide.

The cellular phenotype identification was performed as

described previously (22). Briefly, the images were imported

into inForm v.2.4.8 (Akoya Biosciences) for image analysis, and

deconvolution was performed based on a multinomial logistic
Frontiers in Immunology 04
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regression model, according to the manufacturer’s guideline.

The files generated were then imported into HALO® (Indica

Labs) for cellular quantifications. For each case, the entire tissue

section was used for analysis. Tumor parenchyma and

mesenchyme were differentiated according to pan-CK staining,

and were also verified by pathological review of H&E stained

slides. The percentage of a certain immune cell type was defined

as the percentage of positively stained cells among all nucleated

cells. We calculated the fraction of CD8+ T cells, regulatory T

cells (Treg cells, CD3
+ CD4+ FOXP3+), M1 macrophages (CD68+

CD163-), M2 macrophages (CD68+ CD163+), CD56 dimly

stained natural killer (CD56dim NK) cells, PD-L1+ CD68+ cells

and CD8+ PD-1+ cells in the tumor parenchyma and

mesenchyme accordingly.
Statistical analysis

In this study, all intergroup comparisons were performed

based on the data obtained from tissue sections of multiple

samples in each group. For categorical variables, Fisher’s exact

test was used to compare the differences among groups. For

continuous variables, the normality of the data distribution was

tested. Variables in accordance with normal distribution were

described with the mean value and standard deviation (SD), and

intergroup comparisons were conducted with one-way analysis

of variance (ANOVA). Variables not in accordance with normal

distribution were described with the median value and

interquartile range (IQR), and the Kruskal−Wallis test was

conducted to compare the differences among groups. All

statistical analyses were performed using SPSS 26.0 (IBM

Corporation, Armonk, NY, USA) and R 4.1.0 (https://www.r-

project.org/). In all tests, two-sided p values were used.

Statistically significant differences were considered when p< 0.05.
FIGURE 1

The pipeline of molecular subtyping of EC. EC, endometrial cancer; MSI-H, microsatellite instability high; NSMP, no specific molecular profile.
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Results

Clinicopathological and molecular
features of EC cases

In this study, 26 primary EC cases were included, including

three of the POLE mutant subtype, six of the MSI-H subtype,

eight of the NSMP subtype, and nine of the TP53 mutant

subtype (see Figure S1 for the mutational profiles of all

patients). The mean age of all patients was 62.38 years.

Compared with the other three subtypes, the TP53 mutant

subtype showed numerically higher age at diagnosis (66.56 ±

10.90 y) and tended towards a larger proportion of

postmenopausal patients (88.9%), although the differences

were not significant. Body mass index (BMI) and disease

history were similar across the four molecular subtypes. Three

patients had other malignancies, including one case of the TP53

mutant subtype with cooccurring ovarian cancer, and two cases
Frontiers in Immunology 05
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of the MSI-H subtype with a history of colon cancer. One of the

MSI-H cases was later diagnosed as Lynch syndrome. (Table 1)

We found significant differences in pathological types across

different molecular subtypes (p< 0.001). All seven patients with

non-endometrioid EC had TP53 mutations, and of these seven

patients, one had carcinosarcoma and six had uterine serous

carcinoma. The percentage of advanced-stage cases in the TP53

mutant subtype was the highest among all the molecular

subtypes (66.7%, p = 0.028). Deep myometrial invasion,

cervical stromal invasion, lymphovascular space invasion,

adnexal involvement, and lymph node metastasis were more

common in the TP53mutant subtype than in other subtypes, but

the differences were not statistically significant, possibly due to

the relatively small sample size. For all primary cases, no patient

received neoadjuvant therapies. The proportion of patients

receiving open surgery (p = 0.024) and postoperative

chemotherapies (p = 0.005) was significantly higher in the

TP53 mutant subtype than in the other subtypes (Table 1)
TABLE 1 Clinicopathological characteristics of primary EC casesa.

Characteristics Total (n = 26) POLE mutant ( n= 3) MSI-H (n = 6) NSMP (n = 8) TP53 mutant (n = 9) p value

Age, y, mean (SD) 62.38 (8.79) 60.33 (11.02) 59.33 (8.60) 60.75 (4.20) 66.56 (10.90) 0.381b

BMI, kg/m2, mean (SD) 26.04 (4.15) 25.07 (2.88) 24.49 (1.99) 28.09 (6.45) 25.57 (2.47) 0.399b

Postmenopause, No. (%) 0.208

No 6 (23.1) 2 (66.7) 2 (33.3) 1 (12.5) 1 (11.1)

Yes 20 (76.9) 1 (33.3) 4 (66.7) 7 (87.5) 8 (88.9)

Hypertension, No. (%) 0.817

No 13 (50.0) 1 (33.3) 4 (66.7) 4 (50.0) 4 (44.4)

Yes 13 (50.0) 2 (66.7) 2 (33.3) 4 (50.0) 5 (55.6)

Diabetes, No. (%) 0.931

No 19 (73.1) 2 (66.7) 5 (83.3) 6 (75.0) 6 (66.7)

Yes 7 (26.9) 1 (33.3) 1 (16.7) 2 (25.0) 3 (33.3)

Other malignancies, No. (%) 0.278

No 23 (88.5) 3 (100.0) 4 (66.7) 8 (100.0) 8 (88.9)

Yes 3 (11.5) 0 2 (33.3) 0 1 (11.1)

Pathological type, No. (%) <0.001

Endometrioid 19 (73.1) 3 (100.0) 6 (100.0) 8 (100.0) 2 (22.7)

Non-endometrioid 7 (26.9) 0 0 0 7 (77.8)

FIGO stage, No. (%) 0.028

Early (stage I - II) 18 (69.2) 3 (100.0) 6 (100.0) 6 (75.0) 3 (33.3)

Advanced (stage III - IV) 8 (30.8) 0 0 2 (25.0) 6 (66.7)

Gradec, No. (%) 0.415

Low (grade 1-2) 17 (65.4) 2 (66.7) 5 (83.3) 8 (100.0) 2 (100.0)

High (grade 3) 2 (7.7) 1 (33.3) 1 (16.7) 0 0

Depth of myometrial invasion, No. (%) 0.269

<50% 14 (53.8) 3 (100.0) 3 (50.0) 5 (62.5) 3 (33.3)

≥50% 12 (46.2) 0 3 (50.0) 3 (37.5) 6 (66.7)

Cervical stromal invasion, No. (%) 1.000

No 22 (84.6) 3 (100.0) 5 (83.3) 7 (87.5) 7 (77.8)

Yes 4 (15.4) 0 1 (16.7) 1 (12.5) 2 (22.2)

Lymphovascular space invasion, No. (%) 0.175

(Continued)
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We also included four recurrent EC cases in this study, with

two of the NSMP subtype and two of the TP53 mutant subtype.

Detailed clinicopathological and molecular genetic information

on the recurrent cases are shown in Table 2 and Figure S1.
TMB levels of different molecular
subtypes of EC

We analyzed the tumor immune microenvironmental

features of the 30 EC cases, including TMB, infiltration of

antitumor-related immune cells and negatively regulatory

immune cells, and the expression of immune checkpoint

molecules. Consistent with TCGA data (1), patients with

POLE mutations showed the highest level of TMB, followed by

the MSI-H subtype, NSMP, and TP53 mutant subtypes

(Figure 2). Recent studies have indicated that TMB is highly

associated with tumor-infiltrating immune cells, PD-L1

expression, and patients’ prognosis in both endometrial cancer

and other cancer types (23–25). Additionally, considering the

relatively small sample size of the POLE mutant and MSI-H

subtypes, we combined the two subtypes into the TMB high

(TMB-H) subtype in the following analysis.
Frontiers in Immunology 06
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Infiltration of immune cell subsets in
different molecular subtypes of EC

We examined tumor-infiltrating immune cells in the three

molecular subtypes using multiplex immunofluorescence assays

(Figure 3 and Figure S2). The fractions of CD8+ T cells in both

the tumor parenchyma and the tumor mesenchyme were higher

in the TMB-H and TP53 mutant subtypes than in the NSMP

subtype, although the differences were not statistically significant

(p = 0.094 for tumor parenchyma, p = 0.215 for tumor

mesenchyme). The infiltration of M1 macrophages and

CD56dim NK cells did not differ significantly among the three

subtypes. (Figure 4 and Table S2)

With regard to negatively regulatory immune cells, a trend of

a higher degree of infiltration of M2 macrophages was observed

in tumors of the TP53 mutant subtype comparing with tumors

of the other two subtypes (Figures 5A, B). Similar trends were

also observed in the ratios of M2 macrophage fractions to M1

macrophage fractions (Figures 5C, D). The percentage of Treg

cells and the ratio of Treg cell fractions to CD8
+ T cell fractions in

the tumor parenchyma were the highest in the TP53 mutant

subtype among the three molecular subtypes, but the differences

were not significant. Interestingly, we noticed that the fraction of
TABLE 1 Continued

Characteristics Total (n = 26) POLE mutant ( n= 3) MSI-H (n = 6) NSMP (n = 8) TP53 mutant (n = 9) p value

No 17 (68.0) 3 (100.0) 5 (83.3) 6 (75.0) 3 (37.5)

Yes 8 (32.0) 0 1 (16.7) 2 (25.0) 5 (62.5)

Adnexal involvement, No. (%) 0.223

No 20 (76.9) 3 (100.0) 6 (100.0) 6 (75.0) 5 (55.6)

Yes 6 (23.1) 0 0 2 (25.0) 4 (44.4)

Lymph node metastasisd, No. (%) 0.178

No 20 (76.9) 3 (100.0) 6 (100.0) 7 (87.5) 4 (57.1)

Yes 4 (15.4) 0 0 1 (12.5) 3 (42.9)

Peritoneal cytology, No. (%) 0.283

Negative 22 (91.7) 2 (66.7) 6 (100.0) 8 (100.0) 6 (85.7)

Positive 2 (8.3) 1 (33.3) 0 0 1 (14.3)

Surgical approach, No. (%) 0.024

Open 9 (34.6) 1 (33.3) 2 (33.3) 0 6 (66.7)

Minimally invasive 17 (65.4) 2 (66.7) 4 (66.7) 8 (100.0) 3 (33.3)

Postoperative chemotherapy, No. (%) 0.005

No 10 (38.5) 3 (100.0) 3 (50.0) 4 (50.0) 0

Yes 16 (61.5) 0 3 (50.0) 4 (50.0) 9 (100.0)

Postoperative radiotherapy, No. (%) 0.619

No 17 (65.4) 3 (100.0) 3 (50.0) 5 (62.5) 6 (66.7)

Yes 9 (34.6) 0 3 (50.0) 3 (37.5) 3 (33.3)
f

a For some characteristics, the number of cases did not sum up to the heading totals due to missing data.
b One-way ANOVA test, all others were by Fisher’s exact test.
c Grade was only determined and calculated in endometrioid EC.
d Only cases receiving lymph node resections were included in the calculation.
MSI-H, microsatellite instability high; NSMP, no specific molecular profile; BMI, body mass index; FIGO, International Federation of Gynecology and Obstetrics; EC, endometrial cancer.
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Treg cells in the tumor mesenchyme was the highest in the TMB-

H subtype (p = 0.008), but the difference in the ratio of Treg cell

fractions to CD8+ T cell fractions in the tumor mesenchyme was

not significant across the three subtypes (Figures 5E–H and

Table S3).
Expression of immune checkpoint
molecules in different molecular
subtypes of EC

We also analyzed the expression of PD-L1 and PD-1 in

tumor samples of the three molecular subtypes. The TMB-H

subtype showed the highest rate of positive PD-L1 expression in

tumor cells (33.3%), although the difference was not significant
Frontiers in Immunology 07
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(Figure 6A and Table S4). The TP53 mutant subtype had the

largest fraction of PD-L1+ CD68+ macrophages in both the

tumor parenchyma and mesenchyme (p = 0.047 and 0.025,

respectively). In tumor parenchymal regions, CD8+ PD-1+ T

cell infiltrations were the highest in the TP53 mutant subtype

among all three molecular subtypes (p = 0.034). In the tumor

mesenchyme, the fraction of CD8+ PD-1+ T cells was higher in

the TMB-H and TP53 mutant subtypes compared with that in

the NSMP subtype (p = 0.004), yet the proportion of CD8+ PD-

1+ T cells in all CD8+ T cells was the highest in the TP53mutant

subtype among all three molecular subtypes, although not

significant enough (p = 0.084). (Figure 6 and Table S4)
Discussion

EC is one of the most common gynecologic malignancies

worldwide (26). Personalized treatment strategies for EC are

essential both for better precision care and for reducing

treatment-related health economic burdens. With the

emerging trend of applying immunotherapies in EC treatment,

and the increasing evidence indicating the potential role of

immunological features in predicting treatment responses (27–

29), understanding tumor immune microenvironmental features

and the associations with molecular features of cancer is

necessary to guide immunotherapy design and predict

patients ’ prognosis. In this study, we compared the

clinicopathological features of different molecular subtypes of

primary EC. Additionally we systemically analyzed the

association of EC molecular subtypes with tumor immune

microenvironmental features using experimental approaches.

The information provided here could be informative for the

design of relevant basic and clinical studies in the future.

Our data revealed that TP53 mutant EC was associated with

non-endometrioid histology, advanced stage, and multiple

negative prognostic factors, indicating compromised survival

outcomes. These results were in accordance with previous
TABLE 2 Clinicopathological and molecular features of recurrent EC cases.

Characteristics Patient A Patient B Patient C Patient D

Age at recurrence, y 65 55 67 68

Time of recurrence Second time First time First time First time

Disease-free interval, months 42 15 14 7

Site of recurrence Abdominal wall Chest wall Ilium Paraaortic lymph node

Pathological type of recurrent tumor Endometrioid Endometrioid Endometrioid Clear cell

Gradea Grade 3 Grade 3 Grade 3 –

Molecular subytpe TP53 mutant NSMP NSMP TP53 mutant

Chemotherapy before sampling Yes Yes Yes Yes

Radiotherapy before sampling Yes No No No

Targeted therapy before sampling No No No No
aGrade was only determined in endometrioid EC. EC, endometrial cancer; NSMP, no specific molecular profile.
FIGURE 2

TMB of different molecular subtypes of EC. The p value of
Kruskal-Wallis test for overall comparison is given, and significant
levels in pairwise comparisons are shown in the figure. In the
comparisons, n = 3 for POLE mutant, 6 for MSI-H, 10 for NSMP,
11 for TP53 mutant. The dot above the boxplot indicates an
outlier. MSI-H, microsatellite instability high; NSMP, no specific
molecular profile; EC, endometrial cancer; TMB, tumor mutation
burden. *p < 0.05.
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studies (20, 30–33). The following analysis of the tumor immune

microenvironment could, to some extent, provide explanations

for this. Indeed, in recent years, studies based on cancer

genomics have indicated that immunological subtypes could

be used to predict patient prognosis (5). There are also available

models for predicting clinical response to immune checkpoint

blockade therapies (34, 35). Nevertheless, current models are still

not sufficiently accurate, and further explorations are warranted.

Previous studies have indicated that increased infiltration of

intratumoral CD8+ T cells is associated with a better prognosis in

different cancer types (36–38), and a recent study based onmultiplex

immunofluorescent assays further supported the prognostic value of

tumor infiltrating T cells in early-stage endometrial cancer (39). In

this study, we also observed relatively high percentages of CD8+ T

cells in samples of TMB-H EC, which is believed to have a favorable

survival outcome (23). However, studies have shown that the

functional status of CD8+ T cells changes with tumor progression,

and different stages of dysfunctional T cells, characterized by the

expression of specific immune checkpoint molecules, are thought to

be associated with distinct response rates to immune checkpoint

inhibitors (40). In this study, we noticed that TP53 mutant EC
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showed abundant infiltration of CD8+ PD-1+ T cells in the tumor

parenchyma and a high proportion of CD8+ T cells with PD-1

expression in the tumormesenchyme, indicatingunfavorable clinical

outcomes of TP53mutant EC.

Innate immune cells, includingmacrophages andNK cells, could

also modulate the tumor immune microenvironment and regulate

antitumor responses. Macrophages can be further divided into M1

macrophages andM2macrophages basedoncell surfacemarkers and

functions. M1 macrophages mainly show antitumoral functions,

while M2 macrophages promote tumor progression via stimulating

tumor cell proliferation, angiogenesis, and epithelial-mesenchymal

transitions (41). According to our data, a trend of higher fractions of

M2macrophages in TP53mutant EC relative to the other molecular

subtypes was observed. This could possibly help explain the higher

rate of advanced-stage diseases in this subtype as a result of tumor

progression. Besides, NK cells could also be divided into two types,

CD56dim andCD56bright (CD56brightly stainedNKcells). CD56bright

NKcellsaremainlyresponsible forsecretingcytokines,whileCD56dim

NK cells show more potent cytotoxic effects (42). One recent study

indicated that lowNKcell infiltration in the tumorwasassociatedwith

worse survival (43). However, based on our data, the fraction of
A B

C D

FIGURE 3

Immune infiltration in different molecular subtypes of EC by multiplex immunofluorescence. (A) The immune infiltrations in EC of POLE mutant
subtype. Intense red fluorescence indicates large amount of CD8+ cell infiltration. (B) The immune infiltration in EC of MSI-H subtype. (C) The
immune infiltration in NSMP subtype. Few fluorescence signals could be observed, indicating absence of immune infiltration. (D) The immune
infiltration in TP53 mutant subtype. Intense yellow fluorescence indicates the infiltration of FOXP3+ cells. For each subtype, a representative filed
was selected, and the major tumor regions are outlined. TMB-H, high tumor mutation burden; MSI-H, microsatellite instability high; NSMP, no
specific molecular profile; EC, endometrial cancer.
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CD56dim NK cells was not significantly different among different EC

molecular subtypes, possibly due to the limited sample size.

Treg cells are another vital cell type with prognostic significance.

Evidence has shown that high Treg cell infiltration level is associated

with compromised survival and hyperprogression of disease

following immune checkpoint blockade therapy (44, 45). But

interestingly enough, in this study, a higher proportion of Treg cells

was observed in the tumor mesenchyme of the TMB-H subtype,

insteadof theTP53mutant subtype,which are commonly thought to

have poor survival. According to previous studies, Treg cells

responsible for modulating immune responses typically express the
Frontiers in Immunology 09
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same transcription factors, which are also expressed in the cells that

they regulate; moreover, in antitumor immune responses, Treg cells

could be triggeredby the samechemotaxismolecules that also recruit

CD8+ T cells to the tumor site (46). Therefore, the higher proportion

of CD8+ T cells in the tumor mesenchyme in TMB-H tumors may

have contributed to the higher proportion of Treg cells. Furthermore,

the similar ratio of Treg cells to CD8
+ T cells in the three molecular

subtypes also supported the above hypothesis.

In summary, EC patients with high TMB showed abundant

tumor-infiltrating CD8+ T cells and relatively high levels of PD-

L1 expression in tumor cells, which is consistent with data from
A B

C D

E F

FIGURE 4

Infiltration of antitumor-related immune cells in EC. (A, B) CD8+ T cell fractions in tumor parenchyma and mesenchyme. (C, D) M1 macrophage
fractions in tumor parenchyma and mesenchyme. (E, F) CD56dim NK cell fractions in tumor parenchyma and mesenchyme. For (A-F), the p
values of Kruskal-Wallis test for overall comparisons are given. In all panels, n = 9 for TMB-H, 10 for NSMP, 11 for TP53 mutant. The dots above
the boxplots indicate outliers. TMB-H, high tumor mutation burden; NSMP, no specific molecular profile; EC, endometrial cancer; CD56dim NK
cell, CD56 dimly stained natural killer cell.
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FIGURE 5

Infiltration of negatively regulatory immune cells in EC. (A, B) M2 macrophage fractions in tumor parenchyma and mesenchyme. (C, D) The ratio
of M2 macrophage fractions to M1 macrophage fractions in tumor parenchyma and mesenchyme. (E, F) Treg cell fractions in tumor parenchyma
and mesenchyme. (G, H) The ratio of Treg cell fractions to CD8+ T cell fractions in tumor parenchyma and mesenchyme. The p values of
Kruskal-Wallis test for overall comparisons are given, and significant levels in pairwise comparisons are shown in the figure. In all panels, n = 9
for TMB-H, 10 for NSMP, 11 for TP53 mutant. The dots above the boxplots indicate outliers. TMB-H, high tumor mutation burden; NSMP, no
specific molecular profile; EC, endometrial cancer; Treg cell, regulatory T cell. **p < 0.01.
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FIGURE 6

Expression of immune checkpoint molecules in EC. (A) PD-L1 expression in different EC molecular subtypes. The p value of Fisher’s exact test
for overall comparison is given. (B, C) PD-L1+ CD68+ cell fractions in tumor parenchyma and mesenchyme. (D, E) CD8+ PD-1+ cell fractions
in tumor parenchyma and mesenchyme. (F, G) The ratio of CD8+ PD-1+ cell fractions to CD8+ T cell fractions in tumor parenchyma and
mesenchyme. For (B-G), the p values of Kruskal-Wallis test for overall comparisons are given, and significant levels in pairwise comparisons are
shown in the figure. In all panels, n = 9 for TMB-H, 10 for NSMP, 11 for TP53 mutant. The dots above the boxplots indicate outliers. TMB-H, high
tumor mutation burden; NSMP, no specific molecular profile; EC, endometrial cancer. *p < 0.05, **p < 0.01.
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previous studies on POLE mutant and MSI-H EC (47–49). The

above indicates that there are strong antitumor immune

responses in TMB-H tumors and that this subtype is

potentially suitable for immune checkpoint blockade therapies.

In the NSMP subtype, the TMB, the proportions of multiple

tumor-infiltrating immune cells and the expression levels of

immune checkpoint molecules were low, indicating a lack of

effective antitumor immune responses. In the TP53 mutant

subtype, the TMB level was low. However, the proportions of

Treg cells, M2 macrophages, PD-L1+ CD68+ macrophages and

CD8+ PD-1+ T cells were relatively high, indicating a strong

immune suppressive microenvironment in this molecular

subtype. Based on the immune microenvironmental features

analyzed above, we summarize the immune phenotype of the

three molecular subtypes as normal immune response, absence

of immune infiltration, and suppressed immune response.

The distribution pattern of immune cells in the tumor tissue

couldalso indicatedifferences in their functions.Recently,Kerenet al.

(50) proposed amodel for describing immune infiltrative patterns in

the tumor: compartmentalized pattern, which suggested that tumor

cells and immune cells form relatively independent regions; cold

pattern, which indicated low levels of tumor infiltrating immune

cells; andmixedpattern,which implied thehighlymixeddistribution

of tumor and immune cells. Among these, patients with the

compartmentalized pattern showed better survival than those with

themixedpattern (50). In this study,wealsoanalyzed thedistribution

of immune cells in the tumor parenchyma and mesenchyme. Our

study showed that CD8+ T cells were distributed in both tumor

parenchymal andmesenchymal regions in TMB-HEC. The fraction

of CD8+ T cells in the tumor mesenchyme was the highest in the

TMB-H subtype, which means that a part of T cells could form a

relatively isolated regionadjacent to the tumor cells.Among the three

molecular subtypes, theNSMPsubtypedisplayed the lowestdegreeof

CD8+ T cell infiltration. In the TP53mutant subtype, CD8+ T cells

were mostly distributed in tumor parenchyma, with a relatively low

median level of infiltration in tumor mesenchyme. The features of

CD8+ T cell distribution in the three molecular subtypes, to some

extent, resemble that of the model mentioned above (50). Besides,

TP53 mutant EC typically shows the worst survival (1, 20, 30–33)

across all subtypes, which is also consistent with the survival features

revealed by the abovemodel (50). Another recent study analyzed the

interactions of cellular neighborhoods in colorectal cancer with

distinct immune infiltrative features (51). In brief, in tumors with

numerous tertiary lymphoid structures, T cell exchange between the

T cell cluster and tumor invasive front could help enhance the

antitumor immune response; while in tumors with diffuse

inflammatory infiltration, the immune suppressive macrophage

cluster showed strong contact with the tumor invasive front and

inhibited effective immune responses (51). The mechanisms

described above might also explain the distinct survival features in

EC of differentmolecular subtypes and immune infiltrative patterns.

Notably, in this study, both the TMB-H subtype and TP53

mutant subtype showed high levels of immune checkpoint
Frontiers in Immunology 12
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molecule expression. However, in the TMB-H subtype, PD-L1 was

mainly expressed in tumor cells, while in the TP53mutant subtype,

there were high levels of PD-L1 expression inmacrophages and high

levels of PD-1 expression in T cells. These results indicate that the

cellular distribution of immune checkpoint molecules could also

provide information on the immune response status of the patient

and differences in patients’ responses to immune checkpoint

blockade therapies. Further studies with larger sample sizes are

needed to confirm the findings.

In this study, we quantitively analyzed tumor immune

microenvironmental features in different EC molecular subtypes

and provided information about the spatial distributions of

multiple immune cell types in the tumor tissue. A key strength is

that we adopted experimentalmethods for in situ visualization of the

cells, which showed direct evidence for tumor immune infiltrations.

In this regard, this study could provide a vital supplement to previous

studies based on bulk tissue sequencing and computational

deconvolution. By systemically analyzing the TMB, tumor

infiltrating immune cells and immune checkpoint molecules, we

summarized the immunophenotypes of different EC molecular

subtypes, thus providing clues for understanding their distinct

survival features and treatment responses. However, there are also

some limitations. First, the sample size of the study was relatively

small, which limited the statistical power in some analyses. Studies

with larger sample sizes are needed to further validate our findings.

Second, since most cases in this study were treated recently and

follow-ups are on-going, survival information is still lacking. Long-

term follow-up is necessary to analyze the associations of tumor

immune microenvironmental features with patients’ recurrence,

survival and responses to multiple treatment modalities. Finally, as

an explorative study, the panel we used for testing tumor-infiltrating

immune cells included multiple cellular markers. Further

explorations are needed to refine the testing strategies and develop

clinically feasible panels for better practical applications.

Currently, with the deep clinical influence of TCGA molecular

subtyping and its surrogate methods (1, 20, 31), the diagnosis and

treatment of ECare becoming increasinglymore comprehensive and

individualized. Molecular markers provide vital information and

rationality for applying targeted drugs and immune checkpoint

blockade therapies in specific patient groups (52). Nevertheless,

heterogeneity in prognosis and treatment response could still be

seenevenwithin the samepathological andmolecular subtype,which

urges further refinement of the current risk stratification system (3).

During this effort, barriers still exist that the cellular architectures of

the tumor tissues and the biological behaviors of malignant and

surrounding stromal and immune cells are far less understood inEC.

As indicated above (50, 51), this information may also be highly

associated with clinical outcomes. The results from this study, on the

one hand, established the connection between molecular subtypes

and the immune microenvironmental features of EC. On the other

hand, it paved the way for further designing related studies. We

encouragemore efforts usingmultiplex imagingmethods to establish

a prognostic or treatment-related classification system based on
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immunological markers. Based on these efforts, incorporating

effective immunological features into current EC patients’ risk

stratification systems would be another vital step for better

individualized treatment.
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tea.lanisnik-rizner@mf.uni-lj.si

SPECIALTY SECTION

This article was submitted to
Gynecological Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 17 June 2022
ACCEPTED 26 October 2022

PUBLISHED 24 November 2022

CITATION
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1Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Ljubljana,
Slovenia, 2Division of Gynaecology and Obstetrics, General Hospital Murska Sobota, Murska Sobota,
Slovenia, 3Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of
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Background: The diversity of endometrial cancer (EC) dictates the need for

precise early diagnosis and pre-operative stratification to select treatment

options appropriately. Non-invasive biomarkers invaluably assist clinicians in

managing patients in daily clinical practice. Currently, there are no validated

diagnostic or prognostic biomarkers for EC that could accurately predict the

presence and extent of the disease.

Methods: Our study analyzed 202 patients, of whom 91 were diagnosed with

EC and 111 were control patients with the benign gynecological disease. Using

Luminex xMAP™ multiplexing technology, we measured the pre-operative

plasma concentrations of six previously selected angiogenic factors – leptin,

IL-8, sTie-2, follistatin, neuropilin-1, and G-CSF. Besides basic statistical

methods, we used a machine-learning algorithm to create a robust

diagnostic model based on the plasma concentration of tested angiogenic

factors.

Results: The plasma levels of leptin were significantly higher in EC patients than

in control patients. Leptin was higher in type 1 EC patients versus control

patients, and IL-8 was higher in type 2 EC versus control patients, particularly in

poorly differentiated endometrioid EC grade 3. IL-8 plasma levels were

significantly higher in EC patients with lymphovascular or myometrial

invasion. Among univariate models, the model based on leptin reached the

best results on both training and test datasets. A combination of age, IL-8,

leptin and G-CSF was determined as the most important feature for the

multivariate model, with ROC AUC 0.94 on training and 0.81 on the test

dataset. The model utilizing a combination of all six AFs, BMI and age

reached a ROC AUC of 0.89 on both the training and test dataset, strongly

indicating the capability for predicting the risk of EC even on unseen data.
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Conclusion: According to our results, measuring plasma concentrations of

angiogenic factors could, provided they are confirmed in a multicentre

validation study, represent an important supplementary diagnostic tool for

early detection and prognostic characterization of EC, which could guide the

decision-making regarding the extent of treatment.
KEYWORDS

angiogenic factors, endometrial cancer, diagnostic biomarkers, angiogenesis,
machine learning models, leptin, IL-8, sTie-2
1 Introduction

Endometrial cancer (EC) is the most frequent gynecological

malignancy in developed countries, with an increasing incidence

rate (1, 2). The diversity of EC dictates the need for precise early

diagnosis and pre-operative stratification to appropriately select

the extent of surgery and lower both the recurrence rate and risk

for overtreatment. A dualistic model, built mainly on the

histological findings and prognosis, was introduced by

Bokhman back in 1983 (3–5). Recent advances based on

molecular classification stratify EC into four risk categories:

POLE ultramutated, microsatellite instability hypermutated,

copy-number low, and copy-number high (6, 7). This

classification of endometrial cancer has been validated and

incorporated in the ESMO/ESTRO risk stratification and is

currently used in clinical practice to guide management

decisions. However, refinements of the current classification

with additional biomarkers are likely to further improve and

de-escalate treatment in certain subtypes of EC (8).

Biomarkers represent a noninvasive approach for more

precise stratification of various malignant diseases (9). No

single serum/plasma biomarker alone has yet been classified

for clinical use in the diagnostics of EC (10). Emerging findings

in genomics, transcriptomics, and proteomics may present a

pivotal role for noninvasive early diagnostic options (11).

Angiogenesis is the process of the formation of new vessels

from the preexisting vasculature. The process may be activated

due to ischemia and tissue trauma as part of normal tissue

healing, or it can be one of the key processes in cancerogenesis,

allowing fast growth of cancerous tissue and spreading to distant

organs. Tumor tissue receives oxygen and nutrition at its very

early stage via diffusion independently of the vascular network.

When the tumor size exceeds 1–2 mm3, the existing capillary

network becomes insufficient, causing hypoxia in solid tumors.

The resulting shortage of cellular oxygen and nutrients causes

the production of angiogenic factors (AFs), mostly cytokine

molecules, which are secreted into the surrounding tissue and

provoke the growth of new vessels (12–16). This angiogenic
02
132
switch makes AFs potential biomarker candidates for early EC

detection and assessment of prognosis (12, 17, 18).

In our previous research, we investigated 37 AFs as potential

biomarkers for EC. AFs’ concentrations in preoperative plasma

samples of patients with endometrioid EC (n = 38) and control

patients with benign gynecological conditions (e.g., prolapsed

uterus or myoma; n = 38) were measured using Luminex

xMAP™ multiplexing technology. Our discovery study

demonstrated significant differences in the plasma levels of six

AFs: sTie-2, G-CSF, and leptin were present in different

concentrations in EC versus control patients, and IL-8,

neuropilin-1 and follistatin differed among different EC

subgroups (19). The roles of these AFs have been described in

detail in our recent review paper (12). In the present study, we

aimed to validate our previous findings in a larger group

of patients.

Recently, machine learning algorithms, a part of artificial

intelligence, have evolved to help develop cancer risk

stratification systems with great precision. With the aim to

differentiate between patient groups, the machine learning

approach simultaneously consider multiple disease-specific risk

factors, which would otherwise present an impossible statistical

obstacle, especially in the heterogeneous type of disease like EC

(20, 21). In our study, besides basic statistical methods, we used

machine learning algorithms to create a robust diagnostic model

based on the plasma concentration of tested AFs.
2 Materials and methods

2.1 Patient enrollment

Patient enrolment took place between June 2012 and

October 2021 at the Department of Obstetrics and

Gynecology, University Medical Centre Ljubljana, Slovenia.

We included 215 consecutive eligible women who underwent

surgical treatment, including a group of histologically confirmed

EC patients (n = 98) and a control group of women with a
frontiersin.org
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prolapsed uterus or myoma (n = 117). 13 women were excluded

from data analysis (7 EC patients and 6 control patients) due to

the presence of other malignancies, withdrawal of consent or

when surgery was subsequently cancelled for any other reason.

The patients were recruited by senior gynecologists with the

help of study nurses. All histological analysis was performed in

the University Medical Centre Ljubljana, Department of

Pathology. Each sample was consecutively analysed by two
Frontiers in Oncology 03
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pathologists and their consensus report was logged into study

case report form. None of the included patients received drugs

with known anti-angiogenic effects, and no neoadjuvant

chemotherapy was used. One day to one week prior to

surgery, morning blood samples were collected, and additional

information was obtained regarding patients’ lifestyle,

medications used, and gynecological and clinical status

(Table 1). For sample collection and processing, strict and
TABLE 1 Detailed clinical characteristics of the study participants.

Control patients n = 111 (100%) EC patients n = 91 (100%) pa values

Age category

<50 years 33 (29.7) 8 (8.8)

50–59.9 years 38 (34.2) 22 (24.2) <0.001

60–69.9 years 25 (22.5) 40 (44.0)

70-79.9 years 14 (12.6) 16 (17.6)

>80 years 1 (0.9) 5 (5.5)

Body mass index (kg/m2)

<18.5 (underweight) 1 (0.9) 0 (0)

18.5–24.9 (normal weight) 40 (36.0) 19 (20.9)

25–29.9 (overweight) 41 (36.9) 25 (27.5)

30–34.9 (class I obesity) 23 (20.7) 22 (24.2) <0.001

35–39.9 (class II obesity) 5 (4.5) 13 (14.3)

40–49.9 (class III obesity) 1 (0.9) 9 (9.9)

> 50.0 (class IV obesity) 0 (0) 1 (1.1)

Missing data 0 (0) 2 (2.2)

Smoking status

Nonsmoker 68 (61.3) 63 (69.2)

Smoker 21 (18.9) 11 (12.1) ns

Former smoker 19 (17.1) 15 (16.5)

Missing data 3 (2.7) 2 (2.2)

Hormonal therapy in the past

No 67 (60.4) 56 (61.5)

Yes 9 (8.1) 6 (6.6) ns

Missing 35 (31.5) 29 (31.9)

Peroral contraception in the past

No 60 (54.1) 41 (45.1)

Yes 26 (23.4) 21 (23.1) ns

Missing 25 (22.5) 29 (31.9)

Diabetes

No 94 (84.7) 70 (76.9)

Yes 15 (13.5) 21 (23.1) ns

Missing data 2 (1.8) 0 (0)

Arterial hypertension

No 86 (77.5) 49 (53.8)

Yes 24 (21.6) 42 (46.2) <0.001

Missing data 1 (0.9) 0 (0)

Menopausal status

No 46 (41.4) 15 (16.5)

Yes 62 (55.9) 75 (82.4) <0.001

Missing data 3 (2.7) 1 (1.1)
fro
ap values were calculated using non-parametric Mann–Whitney test for continuous variables and chi-squared test for categorical variables; ns = not significant
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detailed standard operating procedures were followed. Briefly,

6 ml of blood was collected from each patient by venipuncture

using BD vacutainer K2 EDTA tubes (Cat. No#: 367864, BD

Medical, New Jersey, USA). Immediately after collection, tubes

were inverted 10 times to assure sufficient mixing of blood with

anticoagulant. Collected blood samples were centrifuged within

1 hour of collection at 1400 x g for 10 minutes at 4°C. Obtained

plasma was transferred to a 5 ml polypropylene tube (Cat. No#:

352063, BD Medical) and mixed several times using a disposable

plastic Pasteur pipette. Finally, plasma samples were divided into

200 µl aliquotes and stored in cryogenic tubes (Cat. No#: 375418,

Thermo Scientific, Waltham, Massachusetts, USA) at – 80°C

until further analysis.

This study was approved by the National Medical Ethics

Committee of the Republic of Slovenia (No. 0120-515/2017/4

and 0120-541/2019/7). All participants signed written informed

consent before participating in this study.
2.2 Measurements of AFs

All samples were anonymized, and the person performing

the assays was blind to the identity of the samples. Plasma

samples were tested for 6 circulating angiogenesis biomarkers

using Luminex xMAP multiplexing technology with two

Milliplex® MAP Human Angiogenesis/Growth Factor

Magnetic Bead Panels: HANG2MAG-12K and HAGP1MAG-

12K (Merck Millipore, Burlington, Massachusetts, USA,

LOT#3601567 and LOT#3601566, respectively). All tests were

performed according to the manufacturer’s protocol. Briefly, 10

µl of each plasma sample was used for the conduction of assays.

Samples were diluted 1:3 (4 AFs- Bead Panel 1) and 1:5 (2 AFs-

Bead Panel 2) using the Assay Buffer provided in the

manufacturer’s kit. Samples were mixed with 5.6 µm

polystyrene beads on 96 well plates and incubated overnight at

4°C with shaking. Each bead was coated with a specific captured

antibody and labelled with two different fluorescent dyes at

different ratios assigned for each individual antibody. Plates were

washed 3 times and incubated with detection antibody at room

temperature (RT) for 1h. Following incubation with

streptavidin-phycoerythrin for 30 minutes, plates were washed

again, and Drive Fluid was added to all wells. Reading was

performed on a MagPix® instrument (Luminex, Austin, Texas,

USA). Bio-Plex Manager Software (Bio-Rad Laboratories,

Hercules, California, USA) and five-parameter logistic

regres s ion mode l l ing were used to ca l cu la t e the

final concentrations.
2.3 Statistics

To assess the normality of the distributions, a Shapiro-Wilk

test was used. For univariate statistical analysis, the parametric t-
Frontiers in Oncology 04
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test or non-parametric Mann-Whitney U test was used to assess

the statistical significance of the difference in plasma

concentrations of 6 AF between EC patients and control

patients and between different subgroups of EC patients. The

non-parametric Kruskal–Wallis test with Dunn’s multiple

comparison corrections as post-hoc tests was used to compare

more than two groups. Fisher’s exact and Chi-square tests

were used for comparison of categorical variables. Statistical

significance was set at p < 0.05. Results of the descriptive

analysis (i.e. patient’s clinical data) were presented as mean ±

standard deviation (SD), while the concentrations of

the measured proteins were presented as median and

range (Tables 1, 2, respectively). Before further analysis,

we excluded measurements with reported out-of-range

concentrations. Outliers were detected and excluded from

further analysis, using the ROUT method (22) with cut off set

at 0,1%.
2.4 Machine learning based classification

The case/control classification models were created using the

dataset of the 202 women described in the Patient Enrolment

section using the scikit-learn library version 1.0.1 (23) for model

training and evaluation. Based on well-performing algorithms

for small datasets (24), the ml-jar library version 0.11.2 (25, 26)

was chosen to automate the model selection and perform the

hyper-parameters tuning and design an ensemble-based

classification model.

Preprocessing included the following steps: all out-of-range

values below the detection threshold (11.1 pg/ml for follistatin,

5.4 pg/ml for G-CSF, 0.2 pg/ml for IL-8, 42.8 pg/ml for leptin,

12.2 pg/ml for sTie-2 and 54.9 pg/ml for neuropilin-1) were

replaced with 0, all out-of-range values above the detection

threshold were defined as missing, and finally, missing data

imputation was performed. Imputation was done using the

mean method for interval/ratio level data and the mode

method for categorical data (27).

The dataset was then split into training and test datasets

using the scikit-learn library (23), using the built-in train/test

split function in an 80% to 20% ratio. All variables were then

compared using the Mann-Whitney U statistics to confirm no

significant differences between the training and the test datasets.

Finally, data were imported into Python using the Pandas library

(28, 29), and finally, input and output column selection was

performed for each of the hypotheses tested.

The models were trained by optimising the area under the

curve (AUC) for the Receiver Operating Characteristic (ROC)

curve using the mljar built-in roc_auc metric. The training was

performed for 20 minutes for multivariate models and for 15

minutes for univariate models, with a 5-minute limit per

individual run. The model selection during training was

performed using the k-fold cross-validation method with 20
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folds on each model; the threshold for deciding the prediction

was calculated based on the ROC curve of the best model by

maximising the difference between the true positive rate and the

false positive rate on the training set.

The best performing model was then tested using the

previously described testing set, again calculating the same

basic metrics and validating the models still perform well on

previously unseen data. To confirm that the model performance

was significantly better than random guessing, Fisher’s Exact test

was used on the confusion matrix produced on the training and

test datasets.

Two types of models were designed using the described

approach: univariate models for each AF and BMI individually

and multivariate models for the following combinations:
Fron
− Age + BMI + AFs, containing: age, BMI, neuropilin-1,

sTie-2, IL-8, follistatin, leptin, G-CSF
tiers in Oncology 05
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− BMI + AFs, containing: BMI, neuropilin-1, sTie-2, IL-8,

follistatin, leptin, G-CSF

− AFs only, containing: neuropilin-1, sTie-2, IL-8,

follistatin, leptin, G-CSF

− BMI + AFs without leptin: BMI, neuropilin-1, sTie-2, IL-

8, follistatin, G-CSF

− AFs only without leptin: neuropilin-1, sTie-2, IL-8,

follistatin, G-CSF

− Selected features: age, IL-8, leptin and G-CSF

The “Selected features” model was designed based on the

mljar automated feature selection capability, which

works in two steps (30):

− A random input feature is created and a model trained on

it; SHAP importance (31) is calculated for the feature.

− The model is trained on the rest of the features, and only

those features that have a higher SHAP importance than
TABLE 2 Plasma leptin and IL-8 levels in patients with endometrial cancer and control patients.

Patient group n (%) Leptin p IL-8 p

Median Range (adj. p)a Median Range (adj. p)a

Disease status

EC 91 (45.0) 36654 6248 - 149743 <0.0001 4.16 0.83 – 11.74 0.0619

Benign 111 (55.0) 23121 1526 - 93115 (0.0006) 3.08 0.39 – 10.75 (0.3185)

Histology

Type I 65 (74.7) 37715 6248 – 173402 0.1244 4.16 0.83 – 11.74 0.9594

Type II 22 (25.3) 34015 8183 – 72174 (0.5494) 4.29 0.83 – 12.48 (1.000)

EC differentiation

Well differentiated G1 46 (61.3) 38921 6248 - 173402 0.7636 3.47 0.83 – 9.17 0.0051

Moderately differentiated G2 19 (25.3) 35638 12328 - 149743 (0.9998) 4.70 1.42 – 6.97 (0.0302)

Poorly differentiated G3 10 (13.3) 35581 8183 - 61204 5.69 0.83 – 36.7

FIGO stage

IA 58 (65.9) 33436 6248 - 109865 0.3607 3.52 0.83 – 6.87 0.0206

IB 12 (13.6) 37568 12384 - 118709 (0.9317) 4.72 2.02 – 13.66 (0.1174)

II 8 (0.09) 54979 8183 - 149743 6.26 1.77 – 12.48

III 6 (0.07) 40824 34477 - 106658 4.35 2.93 – 8.38

IV 4 (0.05) 55375 16834 - 59024 12.02 0.83 – 36.70

Myometrial invasion

No invasion 28 (32.6) 37885 6248 – 173402 0.6168 3.07 0.83 – 5.72 0.0080

< 50% myometrium 32 (37.2) 34727 6661 – 122861 (0.9968) 4.11 1.10 – 11.74 (0.0471)

> 50% myometrium 26 (30.2) 46184 8183 – 149743 4.70 0.83 – 18.37

Lymphovascular invasion

No 65 (74.7) 35089 6248 – 122861 0.2144 3.52 0.83 – 6.97 0.0004

Yes 22 (25.3) 47372 8183 – 149743 (0.7649) 5.36 0.83 – 18.37 (0.0024)

Metastasis

No 78 (88.6) 35089 6248 - 122861 0.1854 4.16 0.83 – 11.74 0.2595

Yes 10 (11.4) 48380 16834 - 106658 (0.7078) 4.70 0.83 – 18.37 (0.8351)
fron
ap-values were calculated using non-parametric Mann-Whitney tests or Kruskal-Wallis tests with post hoc test and Dunn’s correction. Bonferroni-Šıd́ák method was used for multiple
comparison correction and adjusted p-values are listed in parenthesis.
Plasma levels of sTie-2, follistatin, neuroplin and G-CSF are included in Supplementary Table S1.
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Fron
the introduced random feature are used in training.

Those features included the aforementioned: age, IL-8,

leptin and G-CSF.
Lastly, the feature importance was calculated using the

permutation method (32). All models’ output (predicted)

variable was whether they belonged to the case or control

group. The complete Jupyter Notebook (iPython) and Python

scripts used for the model training, validation, plot drawing, and

dataset schema are published on: https://github.com/klokedm/

EndometrialCancerModelling.
3 Results

3.1 Characteristics of EC and
control patients

The case group included 91 EC patients with a mean age of

62.1 ± 9.8 years (range: 32–86 years) and a mean body mass

index (BMI) of 31.2 ± 7.7 kg/m2 (range: 18.8 – 58.5 kg/m2). 75

women (82,4%) were postmenopausal with an average duration

of menopause of 12.6 ± 8.4 years. The detailed clinical

characteristics are presented in Table 1.

Histology revealed 76 cases (83.5%) of endometrioid

endometrial cancer (EEC), 9 cases (9.9%) of serous EC and one

case (1.1%) of each of carcinosarcoma, clear cell EC and mixed

type EC. The deep myometrial invasion was observed in 26 EC

patients (30.2%), <50% invasion into the myometrium in 32 EC

patients (37.2%), and no invasion into the myometrium in 28 EC

patients (32.6%); this information was missing for five patients.

LVI was observed in 22 patients (25.3%). According to the

classification of the International Federation of Gynecology and

Obstetrics (33), the following EC stages were observed: IA (n = 58,

65.9%), IB (n = 12, 13.6%), II (n = 8, 9.1%), III (n = 6, 6.8%), and

IV (n = 4, 4.5%). Histopathological evaluation divided EC samples

according to the degree of histological differentiation: G1, 47 cases;

G2, 20 cases; and G3, 12 cases.

The control group included 111 patients with a mean age of

56.5 ± 10.5 years (range: 37–84 years) and a mean BMI of 27.0 ±

4.9 kg/m2 (range: 18.4–42.2 kg/m2). 62 women (55.9%) were

postmenopausal, with an average duration of menopause of 12.7 ±

8.5 years. The detailed clinical characteristics are presented

in Table 1.

When both groups were compared, there was a statistically

significant difference in BMI and age distribution, as well as in

menopausal status and in the presence of arterial hypertension

(all p < 0.001). There were no differences between groups in

hormonal therapy, smoking status or the presence of

diabetes (Table 1).
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3.2 Leptin is increased in EC patients and
IL-8 in patients with LVI and MI

Univariate statistical analysis revealed a significant difference

in the plasma concentration of leptin between EC and control

patients (Figure 1; Table 2). The difference in IL-8 levels between

EC and the control group was also substantial, although not

statistically significant. IL-8 was significantly higher in patients

with poorly differentiated G3 EC and in EC patients with present

myometrial (MI) or lymphovascular invasion (LVI) compared to

EC patients without invasion or control patients. Compared to

control patients, leptin was significantly higher in EC patients

regardless of MI or LVI or the presence of metastasis (Figure 2).

When EC patients were stratified according to the disease

stages, we detected higher plasma levels of leptin, IL-8 and sTie-2

as EC progressed from stage IA through stage II (Figure 3,

Table 2 and Supplementary Table 1). This trend was not seen in

stages III and IV, which might be due to a low number of

patients in these stages (6 and 4 patients, respectively). Leptin

was also significantly higher in type 1 EC patients versus control

patients, whereas IL-8 was higher in type 2 EC versus control

patients, particularly in poorly differentiated endometrioid EC

grade 3 (Figure 1; Table 2).

The prognostic potential of AFs was evaluated based on the

presence of MI and LVI. There was a statistically significant

difference in IL-8 plasma levels between patients with or without

MI and LVI (Figure 2). Although IL-8 is also produced and secreted

by adipocytes, and its levels increase with BMI, which is known to

be associated with EC incidence and outcomes (34), we found no

correlation between IL-8 and BMI with Pearson correlation

coefficient of 0.0009 (Suplementary Table 8). Plasma levels of IL-8

were able to stratify EC patients according to the MI (p = 0.0057)

and LVI (p = 0.0005), whereas BMI, which is not used in clinical

practice to asses EC risk, was not successful in differentiation among

groups: p = 0.8669 and 0.6156 for MI and LVI, respectively. The

data is presented in Supplementary Figure 1.
3.3 Machine learning approaches
identified several diagnostic models

The training dataset contained 161 patients (79.7%) and the

testing dataset contained 41 patients (20.3%), and none of the 8

variables used in modelling were significantly different between

the training and test datasets with p-values for: age (p=0.495),

BMI (p=0.721), neuropilin-1 (p=0.277), sTie-2 (p=0.826), IL-8

(p=0.556), follistatin (p=0.785), leptin (p=0.848), G-

CSF (p=0.256).

The AFs in the complete data set were weakly correlated

(correlation coefficient < 0.3) with known risk factors (Age and
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BMI), with the exception of BMI and Leptin, which were

strongly correlated (correlation coefficient > 0.7). All

correlations are shown in Supplementary Table 8.

3.3.1. Model based on leptin performed
significantly better than random guessing

The results obtained on the final ensemble using the training

dataset (best metric for each metric in bold) are shown in

Table 3. The table presents the Accuracy, Precision, F1 score

and Receiver Operating Characteristic (ROC) Area Under Curve

(AUC) metrics for all seven univariate models calculated on the

training dataset using the metrics presented in Supplementary

Table 2. The models with the highest accuracy were based on

leptin and IL-8 on the training dataset, the model with the

highest precision was based on follistatin, and the model with the

highest F1 score and ROC AUC was based on leptin. The model

based on leptin reached the best result on 3 out of 4 metrics:

accuracy, F1 score and ROC AUC.

The results obtained on the final ensemble using the test

dataset (best metric for each model in bold) are shown in

Table 4. The table presents the Accuracy, Precision, F1 score

and Area Under Curve (AUC) metrics for all seven univariate

models calculated on the test dataset using the metrics presented

in Supplementary Table 3. The model based on leptin reached
Frontiers in Oncology 07
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the best result on all 4 metrics: accuracy, precision, F1 score and

ROC AUC, and outperformed other AFs as well as BMI as an EC

risk predictor.

Additionally, the Fisher Exact p-values calculated for

confusion matrices on the test datasets on univariate models

are shown in Supplementary Table 4. They show that all models,

except the model based on neuropilin-1, performed significantly

better than random guessing on the training dataset. However,

only the model based on leptin performed significantly better

than random guessing on both the training and the test datasets

with a significance level of p < 0.01. The ROC curves for all seven

final univariate models on the training and test datasets are

shown in Figure 4.

3.3.2. The model, including the combination
of all AFs, BMI and age, shows the best
diagnostic characteristics

The results obtained on the final ensemble using the training

dataset (best model for each metric in bold) are shown in Table 5.

They show that the best results for all metrics were obtained for

the model utilizing the subset of features determined using the

method described in the Methodology section. However, all

models achieved good results on all metrics, and discrepancies

were minimal (Supplementary Table 5).
A B

C D

FIGURE 1

Box plots with median, minimum and maximum for plasma leptin and IL-8 levels (pg/mL). (A, C) Control patients and patients with endometrial
cancer. (B, D) Control patients and patients with histological subtypes of endometrial cancer – Type I (EEC G1, G2) and Type II (EEC G3 and
SEC). EC – endometrial cancer, EEC – endometrioid endometrial cancer, SEC – serous endometrial cancer, G – grade. Adjusted p values:
*p < 0.05, ***p < 0.001.
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Roškar et al. 10.3389/fonc.2022.972131
The results obtained on the final ensemble using the test

dataset (best model for each model in bold) are presented in

Table 6 (Supplementary Table 6) – the discrepancies are bigger

on the test data in line with the expectations. However, metrics

remain good, with the lowest accuracy being 63% and the

highest accuracy being 80%, and lowest precision being 73%

and the highest precision reaching 100%. The ROC AUC was in
Frontiers in Oncology 08
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the range of 0.69 to 0.89 (Figure 5), indicating good model

generalization to unseen data.

The “Selected Features” model was designed by

automatically selecting the features with the estimated highest

capability to discriminate between EC and control patients based

on SHAP importance. Those features were: age, IL-8, leptin and

G-CSF. The corresponding model reached a ROC AUC of 0.94
FIGURE 3

Box plots with median, minimum and maximum for plasma leptin, IL-8 and sTie-2 levels (pg/mL) for control patients and EC patients in different
FIGO stages. P-values were calculated using Kruskal-Wallis tests with post hoc test without correction. *p < 0.05; **p < 0.01.
A B

D E F

C

FIGURE 2

Box plots with median, minimum and maximum for plasma leptin and IL-8 levels (pg/mL). (A, D) Control patients and EC patients with absence
or presence of myometrial invasion. (B, E) Control patients and EC patients with absence or presence of lymphovascular invasion. (C, F) Control
patients and EC patients with absence or presence of metastasis. EC – endometrial cancer, MI – myometrial invasion, LVI – lymphovascular
invasion, Met – metastasis. Adjusted p values: *p < 0.05, **p < 0.01, ***p < 0.001.
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on the training dataset and 0.81 on the test dataset. The model

utilizing a combination of all AFs, BMI and age reached a ROC

AUC of 0.89 on both the training and test dataset.

The Fisher Exact test analysis results on the test dataset for

the multivariate models are presented in Supplementary Table 7.

Similarly to the univariate models, all models performed

significantly better than random chance on the training

dataset, and all models where AFs were used together with

additional clinical data also performed better than random

guessing on the test dataset. Based on this performance, the

models were able to generalize the patterns from the training

data and could be useful for predicting the risk of EC on

unseen data.
4 Discussion

Non-invasive diagnostic approaches invaluably assist

clinicians in the detection, management and treatment of

patients in daily clinical practice. Recently a proof-of-principle

was provided in the area of cytological analysis for EC screening:

O’Flynn et al. demontrated that endometrial cancer can be

detected with high accuracy in urine and vaginal fluid (35).

However, there are currently no validated diagnostic or

prognostic biomarkers for EC that could accurately predict the

presence and extent of disease, and thus pathohistological

examination remains the gold standard for EC diagnosis.

In our previous discovery study, we investigated 37 AFs as

potential biomarkers for EC. Preoperative plasma samples of 38
Frontiers in Oncology 09
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EC patients and 38 control patients were analyzed using

Luminex xMAP™ multiplexing technology. Six out of 37 AFs

were present in significantly different concentrations between

groups of patients. sTie-2 and G-CSF were lower in EC

compared to control patients, and plasma level of leptin was

higher in EC patients. Neuropilin-1 plasma level was higher in

patients with type 2 EC (G3) compared to patients with lower

grade cancer or controls. Follistatin level was higher in patients

with LVI, and IL-8 plasma level was higher in patients with

metastases (19). In this validation study, we further evaluated

those six AFs on a larger group of patients. While our previous

study was limited to post-menopausal women with

endometrioid EC, in the present validation study, women with

other EC types were also included, regardless of their

menopausal status. In the previous study, where 60.5% of

included EC patients were in IA stage EC, and no patients in

stage II or IV were included, we detected lower values of sTie-2

in EC patients compared to the control group. In the current

validation study, we observed a similar trend in the early stages,

whereas the concentration of sTie-2 significantly increased as the

disease progressed, particularly in FIGO stage IV. This is in

accordance with results from Saito et al., who reported higher

expression of Tie-2 in endometrial adenocarcinoma than in

normal epithelial cells (36).

EC often involves patients burdened with other

comorbidities, such as hypertension, diabetes or obesity (37).

In our study, diabetes status was balanced between EC and

control patients, and only leptin differed among patients when

stratified according to hypertension status or obesity. The effect
TABLE 4 Performance metrics of univariate models on the test dataset based on single angiogenic factors.

Model Accuracy Precision F1 score ROC AUC

BMI 0.57 0.50 0.56 0.57

Neuropilin-1 0.35 0.33 0.40 0.39

sTie-2 0.41 0.31 0.31 0.50

IL-8 0.59 0.52 0.59 0.61

Follistatin 0.62 0.57 0.53 0.54

Leptin 0.70 0.61 0.72 0.75

G-CSF 0.59 0.52 0.62 0.55
fr
Best metric shown in bold.
TABLE 3 Performance metrics of univariate models on the training dataset based on single angiogenic factors.

Model Accuracy Precision F1 score ROC AUC

BMI 0.66 0.65 0.59 0.68

Neuropilin-1 0.54 0.50 0.62 0.55

sTie-2 0.65 0.60 0.65 0.68

IL-8 0.75 0.74 0.71 0.83

Follistatin 0.73 0.75 0.67 0.77

Leptin 0.75 0.69 0.74 0.80

G-CSF 0.61 0.58 0.56 0.63
Best metric shown in bold.
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of BMI difference between groups was intensely further

investigated through machine learning modelling.

Obesity is an established risk factor for EC and presents a

larger risk for this malignancy than any other cancer type (38–

41). Adipose tissue is an endocrine organ which synthesizes

adipokines—biologically active substances participating in cell

growth and differentiation, apoptosis, angiogenesis, and

carcinogenesis. Leptin is among the most important

adipokines during EC development, and numerous recent

studies have already proposed it as a new candidate marker in

determining the potential risk of EC (42–45). In accordance with

the literature (46–50), our study showed higher leptin levels in

EC patients, particularly in Type I EC, at higher stages and in

patients with present metastasis or MI and LVI.

During carcinogenesis, leptin promotes tumor angiogenesis.

Early studies showed that endothelial leptin receptor Ob-R

generates a growth signal involving a tyrosine kinase-
Frontiers in Oncology 10
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dependent intracellular pathway, promoting angiogenic

processes (51, 52). Furthermore, leptin induces proliferation,

migration, and invasion and suppresses apoptosis of cancer cells

(42, 53). However, cancerogenic potential of leptin has been

shown to differ between different tissues (54, 55). In EC, it has

been shown in in vitro studies that leptin inhibits the apoptosis

of endometrial carcinoma cells through activation of the nuclear

factor kB-inducing kinase/IkB kinase pathway (49) and

stimulates endometrial carcinoma cell proliferation via

enhancing P450arom expression and estradiol synthesis (56).

Leptin has an important role in the regulation of energy

balance and glucose metabolism and is considered to play an

important part in the link between obesity and EC (57). There is

still an ongoing debate in the literature on whether the effect of

leptin on EC risk is related to higher BMI or whether it is an

independent risk factor for EC. Wang et al. (58) performed a

meta-analysis of 6 preceding studies and found that after
TABLE 5 Performance metrics of multivariate models based on multiple features on training data.

Model Accuracy Precision F1 score ROC AUC

Age+BMI+AFs 0.85 0.83 0.83 0.89

BMI + AFs 0.82 0.84 0.77 0.86

AFs 0.85 0.83 0.83 0.89

BMI + AFs without Leptin 0.84 0.79 0.83 0.92

AFs without Leptin 0.81 0.75 0.79 0.86

Selected Features 0.86 0.85 0.84 0.94
fr
Best metric shown in bold.
A B

FIGURE 4

The Receiver Operating Characteristic (ROC) curve for all seven final univariate models on the training (A) and test (B) dataset calculated using
the cross-folding method, as described in Section 2.4. (A) The curve shows how the true positive rates of individual models change according
to the false positive rate, by varying the detection threshold in the model. The AUC metric for each curve is displayed in the parentheses. As can
be seen, all models except neurpilin-1 perform better than random chance on the training dataset and the models are able to discern between
case and control group with an AUC ≥ 0.63. (B) The curve shows how the true positive rates of individual models change according to the false
positive rate by varying the detection threshold in the model. The AUC metric for each curve is displayed in the parentheses. As seen from the
curve, only leptin and IL-8 based models deviate from the random line, and as shown in the performance metrics, only leptin reaches a
statistically significant accuracy at the optimal ROC point. This indicates that the models (with the exception of the mentioned ones) overfit on
the training data.
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adjusting for BMI, leptin was still associated with an increased

risk of EC. On the other hand, another meta-analysis performed

by Ellis et al. observed that BMI and diabetes appeared to affect

the association between leptin levels and EC risk (43). Some

other studies found a strong positive correlation between

patients’ BMI and serum leptin levels (46, 50), while a recent

Mendelian randomization analysis showed a causal effect of BMI

on EC but failed to find evidence for leptin to be causally

implicated in EC risk (59).

By utilizing an automated machine learning approach and

comparing univariate models applying BMI and leptin as

predictor variables, our research indicates that leptin might be

able to predict EC better than BMI. This would seem to be

further indicated by the results of the automated feature

prediction selection described in the methodology, which

identified a combination of age, IL-8, leptin and G-CSF, but

not BMI, as the most important features for multivariate model

building and the performance of the corresponding model

utilizing those features. This supports findings that leptin

might be involved in EC development via pathways beyond
Frontiers in Oncology 11
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obesity-related pathophysiology, including through angiogenesis

(51, 52).

However, as always with machine learning models, this

should be interpreted with care. Due to the relatively small

data set, we observed overfitting on univariate models, and

classification close to random on the test dataset could simply

mean the model picked features that were not well generalizable.

On the other hand, leptin-based multivariate models performed

significantly better than random chance on the test dataset with

an AUC very similar to the one reached on the training dataset.

This indicates that the models were able to generalize and could

be useful for predicting the risk of EC even on unseen data.

Therefore, these models show good diagnostic characteristics,

with AUC in the range from 0.69 to 0.89.

Another link between adipose tissue and EC is through

chronic low-grade inflammation resulting from increased

secretion of pro-inflammatory molecules such as cytokines and

chemokines (60). IL-8 is a pro-inflammatory cytokine secreted

by adipocytes, with well-defined functions in tumor-associated

inflammation. It is chemotactic for lymphocytes and neutrophils
A B

FIGURE 5

Receiver Operating Characteristic (ROC) curve for the six final multivariate models on the training (A) and test (B) dataset calculated using the
cross-folding method, as described in Section 2.4. (A) The curve shows that all multivariate models were able to discern between case and
control group on the training dataset with relatively good results (AUC > 0.85). (B) Most models utilizing multiple features were able to
generalize to unseen data and maintained a relatively robust classification performance with ROC AUC > 0.80. The model utilizing a
combination of all AFs, BMI and age reached an ROC AUC of 0.89 on both the training and test dataset.
TABLE 6 Performance metrics of multivariate models based on multiple features on test data.

Model Accuracy Precision F1 score ROC AUC

Age+BMI+AFs 0.76 0.83 0.75 0.89

BMI + AFs 0.68 1.00 0.58 0.69

AFs 0.63 0.73 0.59 0.75

BMI + AFs without Leptin 0.80 0.89 0.80 0.83

AFs without Leptin 0.71 0.81 0.68 0.76

Selected Features 0.76 0.80 0.76 0.81
fr
Best metric shown in bold.
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and also has an important role in angiogenesis (61, 62). Its levels

increase with BMI and waist circumference, which is also

associated with EC incidence and outcomes (34, 63). Kotowicz

et al. (64) demonstrated the clinical usefulness of IL-8

measurements as potential prognostic factors in type 1 EC,

where elevated pretreatment IL-8 serum levels were

independently associated with shorter disease-free and

overall survival.

While in our study, leptin was significantly increased in type

I EC, IL-8 was higher in type II EC. Its level also increased

through higher grades, and it was particularly elevated in poorly

differentiated EEC G3, however the difference between G1/G2

and G3 cases was not statistically significant. We assessed EEC

G3 cancers together with type II tumors since several important

reports have strongly demonstrated that high-grade

endometrioid cancers have molecular characteristics, risk

factors, clinical behavior, and prognosis overlapping with those

of non-endometrioid cancers (65, 66). We demonstrated that

higher levels of IL-8 are suspect for higher-grade tumors.

However, there were only 10 G3 EC patients in our cohort. If

this result could be validated on a larger set of patients, a simple

blood test for IL-8 prior to the surgery might lead to a better

stratification for the extent of surgery.

The angiogenic switch occurs early in the process of

cancerogenesis. Correspondingly, we observed indicated trend

for leptin, sTie-2 and IL-8 progression through early EC stages,

which illuminates how growing tumor mass dictates a higher

need for additional oxygen and nutrient supply and accelerates

angiogenic activity. Nevertheless, due to low number of cases in

each EC stage, this should be taken with care and studies on

bigger cohort are needed to confirm this.

We also showed a statistically significant correlation between

EC myometrial invasion and IL-8 levels. This was previously

reported by Fujimoto et al., who suggested IL-8 might act as an

angiogenic switch in myometrial invasion in stage I EC (67).

According to the currently valid guidelines (10), LVI, among

other histopathological characteristics, is the cornerstone of risk

stratification. In our study, IL-8 levels significantly increased

during LVI, which further demonstrates the role of IL-8 in the

angiogenesis of EC. Since IL-8 is also associated with obesity, the

prognostic value of IL-8 was compared to BMI based on the

presence of MI and LVI. Plasma IL-8 level was a better

prognostic biomarker than BMI in terms of EC patient

stratification according to both MI and LVI. Levels of IL-8

were also higher in patients with present metastasis, which is

in accordance with our previous results (19) and in vitro study

on cell lines (68).

Due to the relatively low number of patients with LVI and

MI in our dataset, the IL-8 link to MI and LVI could not be

analysed using the machine learning approach; however, the

data presented indicate that it would be a good candidate for a

larger study with larger and more balanced datasets.
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In our study, we also evaluated neuropilin-1, follistatin and

G-CSF as potential biomarkers for EC. While they were

individually able to differentiate between EC patients and

control patients (with the exception of neuropilin-1), the

univariate models utilizing those AFs did not generalize well

to unseen (test) data (so-called overfitting). However, when used

in conjunction with other data, the AFs significantly improved

the classification capabilities of models, and the model utilizing a

combination of all AFs, BMI and age reached a ROC AUC of

0.89 on both the training and test dataset, strongly indicating the

usefulness of the combination of AFs.

The best multivariate model on the training set (“Selected

Features”) has also proven to be robust on both the training and

test datasets, where it revealed good diagnostic characteristics

with the ROC AUC of 0.94 and 0.81, respectively. It also greatly

outperformed individual results of univariate models for

included AFs, i.e. leptin, IL-8 and G-CSF.

Our study has also confirmed the importance of existing,

well-known risk factors, namely age and BMI, and the values for

both were significantly different between the EC and control

patients (69, 70). To confirm AFs can valuably add to diagnostics

of EC, we created and tested models using only the variables that

are – at most – weakly correlated with known risk factors. Using

those models, we have confirmed that even without knowing

age, BMI or hypertension status, we can reach relatively robust

results using only AFs (71% accuracy on the test dataset using

AFs without leptin). Nevertheless, combining AFs with the

existing risk factors yielded better results (80% accuracy on the

test dataset), which confirms the value of already established risk

factors in extended models.

Finally, the fact that models utilizing less data sometimes

outperformed models utilizing more data might seem

counterintuitive but would seem to hint at some combinations

of factors containing more noise and thus causing overfitting. In

our study, due to noise generation, models using a combination

of both BMI and leptin performed weaker than models with

either BMI or leptin alone, indicating some collinearity between

them. Consequently, a larger study providing more data would

be useful to fine-tune the developed diagnostic models and

determine the minimal subset required to achieve good

classification results.

Our study has the following limitations. First, relatively low

number of patients in different EC subgroups – in relation to

presence of LVI and MI, EC stage and grade, and EC subtypes.

Second, the control group was chosen randomly among women

with a prolapsed uterus or myoma who were admitted for

surgical procedure, whereas ideal control group for

endometrial cancer biomarker discovery would be

symptomatic post-menopausal women. In our study patients

in control group were relatively younger and with less additional

comorbidities than patients with EC. Since these limitations may

affect the generalisability of the study conclusions, the results of
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this study should be validated on bigger cohort in a multicentric

clinical study.

To conclude, AFs – especially leptin and IL-8, represent

valuable biomarkers candidates with a potential for early

diagnostics and risk stratification of EC. Leptin represents a

candidate for a diagnostic biomarker of EC, while IL-8 might be

valuable in EC patient stratification according to prognostic

characteristics, e.g. LVI, MI and EC grade. Other AFs further

increased the performance of multivariate models. As revealed

through the machine learning approach, the plasma

concentrations of AFs, in conjunction with other clinical data,

show good diagnostic characteristics. They could, provided they

are confirmed in a large-scale multicentre validation study,

represent a valuable supplementary diagnostic tool for EC’s

early detection and prognostic characterization. This could

guide the decision-making regarding the extent of surgery and

the choice of adjuvant therapy for EC.
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of angiogenic factors in endometrial cancer. Biomolecules. (2022) 12: 7 doi:
10.3390/biom12010007.

13. Risau W. Mechanisms of angiogenesis. Nature (1997) 386:671–4. doi:
10.1038/386671a0

14. Abulafia O, Sherer DM. Angiogenesis of the endometrium. Obstet Gynecol
(1999) 94:148–53. doi: 10.1016/S0029-7844(99)00262-8

15. Weston G, Rogers PAW. Endometrial angiogenesis. Best Pract Res Clin
Obstet Gynaecol (2000) 14:919–36. doi: 10.1053/beog.2000.0135

16. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature.
(2000) 407:249–57. doi: 10.1038/35025220
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KNL1 is a prognostic and
diagnostic biomarker related to
immune infiltration in patients
with uterine corpus endometrial
carcinoma

Kang He1†, Jingze Li1†, Xuemiao Huang1, Weixin Zhao2,
Kai Wang1, Taiwei Wang1, Junyu Chen2, Zeyu Wang1, Jiang Yi3,
Shuhua Zhao2* and Lijing Zhao1*

1Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China, 2The Department
of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China,
3Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, Jilin, China
Background: The incidence and mortality of uterine corpus endometrial

carcinoma (UCEC) are increasing yearly. There is currently no screening test for

UCEC, and progress in its treatment is limited. It is important to identify new

biomarkers for screening, diagnosing and predicting the outcomes of UCEC. A

large number of previous studies have proven that KNL1 is crucial in the

development of lung cancer, colorectal cancer and cervical cancer, but there is

a lack of studies about the role of KNL1 in the development of UCEC.

Methods: The mRNA and protein expression data of KNL1 in The Cancer Genome

Atlas (TCGA), Gene Expression Omnibus (GEO) and UALCAN databases and related

clinical data were used to analyze the expression differences and clinical

correlations of KNL1 in UCEC. A total of 108 clinical samples were collected, and

the results of bioinformatics analysis were verified by immunohistochemistry. KNL1

and its related differentially expressed genes were used to draw a volcano map,

construct a PPI protein interaction network, and perform gene ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis

(GSEA) and immune infiltration analysis to predict the function of KNL1 during

UCEC progression. The prognostic data of TCGA and 108 clinical patients were

used to analyze the correlation of KNL1 expression with the survival of patients, and

KM survival curves were drawn. The UCEC cell lines Ishikawa and Hec-1-A were

used to verify the function of KNL1.

Results: KNL1 is significantly overexpressed in UCEC and is associated with a poor

prognosis. KNL1 overexpression is closely related to cell mitosis, the cell cycle and
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other functions and is correlated with the International Federation of Gynecology

and Obstetrics (FIGO) stage, histological grade and other characteristics of UCEC

patients. Knockdown of KNL1 expression in UCEC cell lines can inhibit their

proliferation, invasion, metastasis and other phenotypes.

Conclusion: KNL1 is a prognostic and diagnostic biomarker associated with

immune evasion in patients with UCEC.
KEYWORDS

KNL1, uterine corpus endometrial carcinoma, bioinformatics, prognosis, biomarker
Introduction

Uterine corpus endometrial carcinoma (UCEC) has the second

highest incidence among types of gynecologic cancer (1, 2). In

contrast to other malignant tumors, endometrial cancer’s incidence

and associated mortality have been increasing, and its age of onset has

also demonstrated a pattern of becoming increasingly younger (3–5).

Although the vast majority of patients with endometrial cancer are

diagnosed at an early stage and have a good 5-year relative survival

rate (1), patients with advanced or recurrent endometrial cancer have

a poor response to therapy and a poor prognosis (6, 7). There is

currently no screening test for UCEC, and its diagnosis is entirely

based on symptoms; however, this approach has low specificity (8, 9).

All of these elements highlight the lack of advances in the

management of UCEC. The discovery and characterization of novel

biomarkers for screening, diagnosing, and predicting the outcome of

UCEC are crucial for patients with the disease.

Kinetochore Scaffold 1 (KNL1), also known as CASC5, D40, and

AF15Q14, is primarily expressed in healthy testicles, various human

cancer cell lines, and primary malignancies (10). It is a newly discovered

member of the cancer testicular gene family and is located on

chromosome 15 (11, 12). KNL1 can ensure high-fidelity chromosome

segregation and is essential for maintaining mitosis (13–15). KNL1 has

previously been identified as a possible lung adenocarcinoma driver gene

(16). Experiments have shown that KNL1 can inhibit the apoptosis of

colorectal cancer cells and promote their proliferation (17). Meanwhile,

knockdown of KNL1 expression in cervical cancer HeLa cells inhibited

their proliferation and induced apoptosis both in vivo and in vitro (18).

All of the aforementioned findings imply that KNL1may be crucial to the

emergence, growth, and progression of various malignancies.

Nevertheless, there has not been enough research to conclusively

show that KNL1 is involved in the emergence and progression of UCEC.

In this study, The Cancer Genome Atlas (TCGA) and the Gene
ma; KNL1, Kinetochore

pression Omnibus; PPI,

Kyoto encyclopedia of

is; FIGO, International

lly expressed genes; OS,
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Expression Omnibus (GEO) databases were used to analyze the

expression of KNL1 and its correlation with clinical features, and the

immunohistochemical results of 108 clinical specimens of UCEC were

used to verify its expression. At the same time, a protein−protein

interaction (PPI) network was constructed using KNL1 and its related

differentially expressed genes, and gene ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), gene set enrichment

analysis (GSEA) and immune infiltration analysis were performed to

predict the function of KNL1 in promoting the occurrence and

development of UCEC. Finally, the UCEC cell lines Ishikawa and Hec-

1-A were used to verify the function of KNL1 and clarify the molecular

mechanism by which KNL1 promotes the progression of UCEC.
Methods and materials

Data sources and preprocessing

RNA-seq data from the TCGA (https://portal.gdc.cancer.gov/)

UCEC project and GTEx database describe the differential expression

of KNL1 in unpaired and paired samples. The Toil process uniformized

the data (19). The TCGA level 3 HTSeq-FPKM (Fragments Per Kilobase

Per Million) format was translated to the TPM (transcripts per million

reads) format and log2-transformed. All final TCGA-based analyses were

conducted using TPM-formatted data. Using GEOquery [version 2.54.1]

(20), the differential analysis data for KNL1 in dataset GSE17025 (21, 22)

were extracted from the GEO database. These data were obtained by

removing probes corresponding to multiple molecules, and when probes

corresponding to the same molecule were encountered, only the probe

with the highest signal value was retained. The data were then normalized

once more using the normalize Between Arrays function of the limma

package [version 3.42.2] (23). Using the CPTAC database in UALCAN

(http://ualcan.path.uab.edu) (24, 25), differential expression of the KNL1

protein in UCEC and normal adjacent tissues was determined. R was

used for all statistical analyses and visualizations (version 3.6.3).
Single-gene differential analysis and
correlation analysis of KNL1

The DESeq2 package [version 1.26.0] and the STAT package

[version 3.6.3] were used to conduct single-gene differential analysis
frontiersin.org
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and single-gene correlation analysis of KNL1 in the UCEC project

utilizing the TCGA database (26). The findings of the single-gene

differential analysis were used to generate volcano plots with the

ggplot2 software [version 3.3.3]. |log2 fold change (LogFC)|>1 and

p.adj<0.05 were used as the thresholds for differentially expressed

genes (DEGs). The STRING database was utilized to show the DEGs

(27), the PPI network of DEGs was analyzed using the Cytoscape

program, and the MCODE plugin was used to identify the HUB

genes. The genes from the single-gene correlation analysis were then

sorted by |Pearson value| in descending order, and the top 50

correlations were retrieved. The KNL1 single-gene coexpression

heatmap was generated using the top 50 genes and the HUB gene

by the ggplot2 [version 3.3.3] package.
Functional enrichment analysis

In the TCGA UCEC project, gene set enrichment analysis (GSEA)

was utilized to investigate the putative signaling pathways based on

differential expression analysis (KNL1 high-expression vs. KNL1 low-

expression samples). The reference gene set was h.all.v7.2.symbols.gmt

[Hallmarks]. An adjusted p value <0.05 was considered significantly

enriched. After screening the DEGs based on the threshold (|LogFC |>1

and p.adj<0.05), Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses were performed to enhance the

pathways associated with KNL1 in UCEC using the R packages

“clusterProfiler” and “org.Hs.eg.db”. p.adj<0.05 was considered

significantly enriched.
Immunoinfiltration analysis of KNL1

GSVA [version 1.34.0] was used to examine the relative

infiltration levels of 24 immune cells (28). For the immune

infiltration algorithm, ssGSEA was employed, and Spearman

correlation analysis was applied. The markers for twenty-four

immune cells were derived from an article in Immunity (29). The

samples were then separated into low and high KNL1 expression

groups, the enrichment scores of various immune cell infiltrates in the

various subgroups were computed, and the analysis was conducted

using GSVA software [version 1.34.0]. Finally, the correlation

between KNL1 and CD47, CD273, and TNFRSF4 was computed,

and ggplot2 software [version 3.3.3] was used to depict it.
Analysis of the correlation between KNL1
mRNA expression and the prognosis of
patients with UCEC

The survival data of UCEC patients were statistically analyzed

using the survival package [version 3.2-10], and the results were

visualized using the survminer package [version 0.4.9] to plot the

overall survival (OS), disease-specific survival (DSS), and

progression-free interval (PFI) on Kaplan−Meier curves for the

UCEC patients. Using the pROC package [version 1.17.0.1], ROC

analysis was performed on the data to assess the accuracy of KNL1 for
Frontiers in Oncology 03148
prognostication. All predictive data for the aforementioned survival

study were from a Cell article (30). Finally, a dichotomous logistic

regression model and clinical baseline datasheet were developed to

predict the association between various clinicopathological

characteristics and KNL1 expression.
Specimens

Jilin University’s School of Nursing’s Ethical Review Committee

authorized the present study (Changchun, China). Paraffin−embedded

specimens were collected at the Second Hospital of Jilin University

(Changchun, China) from 108 patients with UCEC and 15 normal

controls diagnosed between December 2012 and December 2019.

Patients were informed about the UCEC-related study and agreed to

participate. The criteria for inclusion were: i) initially diagnosed with

UCEC and treated with standard surgery and/or radiotherapy and/or

chemotherapy according to the FIGO stage and pathological type of the

individual patient; ii) the diagnosis of UCEC was determined by an

experienced gynecological pathologist; iii) the postoperative pathology

results were interpreted by an experienced gynecological pathologist

using FIGO staging criteria (Version 2009); and iv) complete follow-up

data were available. The exclusion criteria were: i) a personal history of

other malignant tumors; ii) preoperative radiation, chemotherapy, or

hormonotherapy; and iii) a secondary uterine tumor. As stated in

Supplementary Table 4, accessible clinical/pathological data were

gathered from The Second Hospital of Jilin University’s Medical

Record Database. All 108 patients with UCEC were followed up, and

their OS was determined.
Cell culture and stably transfected cell
line development

The human UCEC cell lines Ishikawa and HEC-1-A were

purchased from iCell Bioscience Inc., Shanghai. Ishikawa cells were

cultured with Minimum Essential Medium (MEM, product code

iCell-0012, iCell) supplemented with 10% fetal bovine serum

(product code FS301-02; TransGen), 1% nonessential amino acids

(NEAA, product code iCell-01000, iCell) and 1% penicillin‐

streptomycin (product code P1400, Solarbio). HEC-1-A cells were

cultured with McCoy’s 5A medium (product code iCell-0011, iCell)

supplemented with 10% fetal bovine serum and 1% penicillin‐

streptomycin. The two cell lines were cultured at 37°C in a

humidified atmosphere with 5% CO2.

The lentiviral vector plasmid pLKO.1-Puro (product code

FH1717; Hunan Fenghui Biotechnology Co., Ltd.) was utilized to

construct the pLKO.1-Scramble and pLKO.1-shKNL1 plasmids. The

interference sequences were 5’-GGUAAAAGUCCCAUAGAAATT-

3’ for shKNL1 and 5’-GTATAAGTCAACTGTTGAC-3’ for

shScramble. The lentiviruses used in this study were packaged using

the 3 plasmid packaging system. After combining the lentiviral vector

plasmids with the packaging plasmid PMD2.G (product code BR037,

Fenghui), psPAX2 (product code BR036, Fenghui) and

Lipofectamine™ 3000 transfection reagent (product code L3000150,

Thermo Fisher), the complexed solution was introduced to HEK-
frontiersin.org
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293T cells (product code iCell-h237, iCell). The medium was collected

and filtered using a 0.22 mm filter after 48 and 72 hours. The medium

was then kept at 4°C for up to one week before use.

To generate stably transfected cell lines, Ishikawa and HEC-1-A

cells were seeded into 6-well plates (300,000 cells/well). Subsequently,

24 hours later, 1 ml of medium containing the above lentivirus was

added to each well. After 48 hours, the medium was changed. Cells

infected with viruses encoding the puromycin resistance gene were

selected in 2 mg/mL puromycin. One week of puromycin selection was

continued prior to cell collection and subsequent analysis.
Immunohistochemistry

Similar to an earlier study (31), immunohistochemical (IHC)

staining was conducted. After 24 hours of fixation in 10% formalin at

room temperature, the samples were embedded in paraffin and

sectioned to a thickness of 3 µm. The sections were immersed in

EDTA retrieval buffer (catalog number AR0023; Wuhan Boster

Biological Technology, Ltd.) and cooked in a microwave. Then, 5%

bovine serum albumin (product code AR1006; Boster Biological

Technology, Inc.) was applied at room temperature for 20 minutes to

prevent nonspecific binding. The histological sections were stained

overnight at 4°C with rabbit anti-KNL1 antibody (product code

DF13491; 1:100; Affinity), rabbit anti-CD56 antibody (product code

GB112671; 1:750; Servicebio), rabbit anti-CD4 antibody (product code

GB11064; 1:1000; Servicebio), and rabbit anti-B3GAT1 antibody

(product code GB113461; 1:1000; Servicebio). The secondary

antibody was goat antirabbit IgG coupled with horseradish

peroxidase (product code GB23204; 1:200; Servicebio), and the

staining technique was performed at 37°C for 30 minutes. Reactive

products were observed using 3,3’diaminobenzidene (Boster Biological

Technology, Inc.) as the chromogen, and the sections were

counterstained for 2 minutes at room temperature with 0.1%

hematoxylin (Boster Biological Technology, Inc.). Under a light

microscope (AE2000, Motic) with an objective magnification of x200

or x400, images of the stained sections were recorded. The positive cell

density was evaluated with Image-Pro Plus 6.0 (Media Cybernetics,

Inc.), and the findings are reported as the average optical density

(AOD) values. Two experienced pathologists from the Pathology

Department of the Second Hospital of Jilin University graded the

IHC staining independently under double-blind conditions.
Real time-PCR

Total RNA was isolated from fresh frozen tissue and stably

transfected cells using an EasyPure RNA kit (product code ER101-

01; TransGen), and first-strand cDNA was synthesized using a cDNA

synthesis kit (product code AT311-02; TransGen) following the

manufacturer’s instructions. KNL1 transcription levels were

determined by real-time PCR using the SYBR Green qPCR kit

(product code AQ132; TransGen) according to the manufacturer’s

instructions, with GAPDH serving as the internal reference gene. The

fo l lowing pr imers were used : KNL1 gene , 5 ’-GATGG

GGTGTCTTCAGAGGC-3’ for forward and 5’-AGAGGACTC
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CTTGGGGGTTT-3’ for reverse; GAPDH gene, 5’‐GAAGGTG

AAGGTCGGAGTC‐3 ’ for forward and 5 ’‐GAAGATGGT

GATGGGATTTC‐3’ for reverse. An ABI-Q3 was used to conduct

PCR at 94°C for 30 seconds, followed by 45 cycles of amplification at

94°C for 5 seconds, 51°C for 15 seconds, and 72°C for 10 seconds

(Thermo Fisher Scientific, Inc.). The expression levels of the mRNA

were measured using the 2-DDCt method (31).
Cell counting kit-8 assay

Ishikawa, HEC-1-A, Ishikawa-shScramble, HEC-1-A-

shScramble, Ishikawa-shKNL1 and HEC-1-A-shKNL1 cells were

seeded into 96-well plates (3,000 cells/well). CCK-8 reagent (10 ml/
well; product number BA00208, Bioss) was then added to each well

24, 48, and 96 hours later. After 1.5 hours of culture at 37°C, the

absorbance of each well was measured at 450 nm with a microplate

reader (E0226; Detie, Inc.
Invasion assay

For the invasion experiment, a Transwell chamber (Labselect,

product code 14342) was used to determine the invasive potential of

the UCEC cells listed above. The chamber was covered with Matrigel

(BD Biosciences, product code 356234) per the manufacturer’s

instructions. A total of 3x104 cells in 100 mL serum-free MEM or

McCoy’s 5A were placed in the upper chamber, while 600 mL 10% FBS

media-based medium was placed in the lower chamber. After 30

hours of treatment at 37°C, the residual cells on the top surface were

removed with a cotton swab, and the invasive cells were stained with

10% Giemsa. An optical microscope was used to record the images

(AE2000, Motic).
Wound-healing assay

A wound-healing experiment was performed to assess the

migratory capacity of the UCEC cells described above. Cells seeded

in six-well plates (3x105 cells/well) were scratched with a 200 ml
pipette tip to create a linear wound. The dislodged cells were washed

and removed with PBS. Photographs were obtained using a digital

camera and an optical microscope (Motic Corporation) to observe the

movement of cells into the wounded region at 24 and 48 hours. All

micrographs were obtained at the same magnification at the same

time for each cell type.
Colony formation assay

HEC-1-A and Ishikawa cells were seeded onto 6-well plates at a

density of 100 cells/well. Ten days later, the formation of typical

colonies was observed. The cells were fixed with methanol and stained

with 10% Giemsa (Biotopped, China). The number of visible colonies

was counted to evaluate the colony formation ability of the cells. All

experiments were conducted in three replicates.
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Statistical analysis

The statistical analyses were conducted with the mean of three

independent tests plus the standard deviation (SD). Statistical

analyses were conducted utilizing SPSS 23.0 or R version 3.6.3;

differences between groups were examined using one-factor analysis

of variance (ANOVA) followed by Dunnett’s post hoc test, Kruskal

−Wallis test, or Student’s t test. When p<0.05, differences were judged

statistically significant. The Spearman correlation coefficient was

calculated to determine the correlation between KNL1 and CD4,

CD56 and B3GAT1.
Results

Differential expression of KNL1 in pancancer
and UCEC

As shown in Supplementary Figure 1A, we found that in unpaired

samples, the expression of KNL1 was higher in the following tumors

than in normal tissues: adrenocortical carcinoma (ACC), bladder

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),

cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse

large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA),

glioblastoma multiforme (GBM), head and neck squamous cell

carcinoma (HNSC), brain lower grade glioma (LGG), liver

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),

lung squamous cel l carcinoma (LUSC), ovarian serous

cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),

prostate adenocarcinoma (PRAD), rectum adenocarcinoma

(READ), sk in cutaneous melanoma (SKCM), s tomach

adenocarcinoma (STAD), thyroid carcinoma (THCA), thymoma

(THYM), uterine corpus endometrial carcinoma (UCEC), and

uterine carcinosarcoma (UCS). Similarly, the expression of KNL1

was decreased in kidney renal clear cell carcinoma (KIRC), kidney

renal papillary cell carcinoma (KIRP), acute myeloid leukemia

(LAML), and testicular germ cell tumors (TGCTs) compared to

normal tissues.

As shown in Supplementary Figure 1B, in paired samples, the

expression of KNL1 in BLCA, BRCA, COAD, ESCA, HNSC, LIHC,

LUAD, LUSC, PRAD, STAD and UCEC was higher than that in

adjacent tissues. The expression of KNL1 in KIRC and KIRP was
Frontiers in Oncology 05150
lower than that in adjacent tissues. The number of tumor samples

used in the pancancer analysis is presented in Supplementary Table 1.

As shown in Figures 1A, B, in both unpaired and paired UCEC

samples, the expression of KNL1 in tumors was higher than that in

normal tissues. This point was validated by utilizing the mRNA and

protein expression data of KNL1 in the GSE17025 and UALCAN

databases, which were compatible with the results from the TCGA

database, as shown in Figures 1C, D.
Evaluation of the expression of KNL1 in
clinical samples of UCEC

The AOD of 108 UCEC clinical samples and 15 normal tissues

was measured by immunohistochemical staining. As shown in

Figure 2A, KNL1 expression was different in tissues with different

degrees of differentiation. The expression of KNL1 protein in normal

tissues is low, and the expression of KNL1 in tumor tissues gradually

increases with a gradual decrease in tumor differentiation. The

expression levels of KNL1 protein in 108 UCEC samples and 15

normal samples are shown in Figure 2B. The expression of KNL1 was

significantly increased in tumor tissues. As shown in Figures 2C–F,

KNL1 expression was different in patients with different FIGO stages,

different tumor invasion statuses, different histologic grades, and

different lymphatic metastases. A KNL1 expression box diagram of

patients with other clinical features is shown in Supplementary

Figure 2. Moreover, ROC curves of the protein expression data of

KNL1 are shown in Figure 2G. The AUC=0.764, suggesting that

KNL1 may be closely related to the occurrence and development

of tumors.
Single-gene differential analysis and
correlation analysis of KNL1

The results of single-gene differential analysis are shown in the

volcano plot in Figure 3A. There were 850 genes that satisfied the

threshold of |LogFC|>1 and p.adj<0.05, under which 243 genes were

highly expressed and 607 genes were poorly expressed. These 850

genes were imported into the STRING database to construct

differential protein interaction networks, and a total of 46 HUB

genes were identified (MELK, E2F7, SMC2, ANLN, HMMR, OIP5,

CDCA2, PBK, RAD51AP1, CENPI, CKAP2L, KIF14, FBXO5,
A B DC

FIGURE 1

Differential expression analysis of KNL1 in patients with UCEC. (A) Differential analysis of KNL1 expression in unpaired UCEC samples. (B) Differential
analysis of KNL1 expression in paired UCEC samples. (C) Differential analysis of KNL1 expression based on GSE17025 data. (D) Differential analysis of KNL1
protein expression based on CPTAC data. Significance identifier: ***, p<0.001.
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FAM83D, CENPF, DLGAP5, CCNE2, FOXM1, TOP2A, NCAPG,

SGOL2, DEPDC1, ASPM, KIF23, KIF15, BUB1, KIF11, MCM10,

BUB1B, KIF18A, ERCC6L, NEK2, ECT2, NEIL3, ATAD2, NUSAP1,

E2F8, DEPDC1 B, SMC4, MAD2L1, CENPE, KIF20B, CCNA2,

CLSPN, ESCO2, and ARHGAP11A), as shown in Figure 3B. After

that, we performed a correlation analysis and created a coexpression

heatmap utilizing the 50 genes with the strongest connection with

KNL1, as shown in Figure 3C. The heatmap of coexpression between

the HUB genes and KNL1 is shown in Figure 3D.
Functional enrichment analysis of KNL1
in UCEC

KNL1 and its differentially expressed genes were used for GO and

KEGG functional enrichment analyses. GO functional enrichment

analysis showed that in terms of “biological process”, pathways such

as acute inflammatory response, humoral immune response,

hormone metabolic process, chromosome organization involved in
Frontiers in Oncology 06151
meiotic cell cycle, and meiotic cell cycle process were enriched. In

terms of “molecular function”, significant enrichment occurred in the

pathways of G protein-coupled receptor binding, serine-type

endopeptidase inhibitor activity, cytokine activity, hormone activity,

and cysteine-type endopeptidase inhibitor activity involved in the

apoptotic process. In terms of “cellular component”, keratin filament,

catenin complex, kinesin complex, mitotic spindle, condensed

chromosome and other pathways were enriched, and the results are

shown in Figures 4A, C and Supplementary Table 2.

The results of KEGG functional enrichment analysis showed that

steroid hormone biosynthesis, metabolism of xenobiotics by

cytochrome P450, drug metabolism - cytochrome P450, pentose

and glucuronate interconversions, etc., were enriched, as shown in

Figures 4B, D and Supplementary Table 2.

Finally, GSEA functional enrichment analysis was used to predict

the function of KNL1 in the development of endometrial carcinoma,

and it was found that KNL1 was closely associated with hallmark

allograft rejection, hallmark complement, hallmark Kras signaling up,

hallmark g2m checkpoint, hallmark mitotic spindle, hallmark mtorc1
A

B D

E F G

C

FIGURE 2

Expression and clinical correlation analysis of KNL1 in UCEC clinical samples. (A) Immunohistochemical results of KNL1 in normal endometrial tissues and
UCEC tissues with different degrees of differentiation. (B) Group comparison of KNL1 immunohistochemical results in 108 UCEC clinical specimens and
15 normal endometrial cancer tissues. (C–F) Group comparison of KNL1 protein expression levels in samples with different clinical characteristics, (C)
FIGO stage, (D) Tumor invasion, (E) Histologic grade, and (F) Lymphatic metastasis. (G) The diagnostic ROC curve of KNL1. Significance identifier: ns (no
significance), p≥0.05; *, p< 0.05; **, p<0.01; ***, p<0.001.
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signaling, hallmark e2f targets, hallmark myc targets v1 and other

pathways, as shown in Figures 4E, F.
Immunoinfiltration analysis of KNL1 in UCEC

The relationship between the expression of KNL1 and the degree

of infiltration of 24 immune cells was analyzed, and the results are

shown in Figures 5A, C. The results showed that the expression of

KNL1 had a significant positive correlation with the infiltration

degree of Th2 cells, T helper cells, and Tcm cells, while the

expression of KNL1 showed a significant negative correlation with

the infiltration degree of pDCs, NK CD56bright cells, iDCs, and

NK cells.

To validate the results of ssGSEA, we analyzed the correlation

between the expression of KNL1 and the expression of various

immune cell surface marker proteins and plotted a heatmap, shown

in Figure 5B. The heatmap showed a strong correlation between

KNL1 and CR2, CD1A, TPSAB1, B3GAT1, IL3RA, CD3D, and

PTPRC, consistent with the previous analysis. Finally, as shown in
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Figures 5D–F, we analyzed the correlation between some common

immunotherapeutic targets and KNL1 and found that the expression

of KNL1 showed a significant positive correlation with the expression

of CD47.

To verify the relationship between KNL1 expression and immune

infiltration in patients with UCEC, immunohistochemical analysis of

CD4, CD56 and B3GAT1 was performed using samples from 108

patients, shown in Figures 6A–D. The immunohistochemical results

were used to analyze the correlation between KNL1 and CD4, CD56

and B3GAT1, and it was found that the expression of KNL1 was

negatively correlated with the expression of CD56 and B4GAT1 and

positively correlated with the expression of CD4, as shown in

Figures 6E–G.
Effect of KNL1 expression on the prognosis
of tumor patients

To determine the relationship between KNL1 expression and the

prognosis of UCEC patients, we performed survival analysis using the
A B

D

C

FIGURE 3

Single gene differential analysis and correlation analysis of KNL1. (A) Volcano map for single gene differential analysis of KNL1. (B) Protein interaction
network diagram (PPI) of the HUB genes. (C) Heatmap of coexpression of the top 50 most correlated genes with KNL1 in single gene correlation
analysis. (D) Heatmap of single gene coexpression of the HUB genes and KNL1.
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prognostic data of UCEC in TCGA, and the results are shown in

Figures 7A–C.We found that high expression of KNL1 was correlated

with worse overall survival (OS), disease-specific survival (DSS) and

progression-free interval (PFI). As shown in Figure 7D, we also

performed a ROC analysis to test the accuracy of KNL1 expression

in predicting patient outcome and found that the AUC=0.952,

suggesting that KNL1 expression is highly accurate in predicting

the outcome of UCEC patients.

After that, we analyzed the relationship between KNL1 expression

and various clinical characteristics of UCEC patients, for which the

baseline data table is shown in Supplementary Table 3, and the results

of the logistic analysis are shown in Table 1. The results in both

Supplementary Table 3 and Table 1 suggest that the expression of

KNL1 is closely related to the histologic grade of UCEC patients.

Finally, in addition to analyzing the correlation between KNL1

expression and the prognosis of UCEC patients, we also used the

prognostic data of GBMLGG, LGG, BRCA, KIRP, KIRC, and PAAD

in the TCGA database to analyze the association of KNL1 expression
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with the prognosis of these tumors, and the results are shown in

Supplementary Figures 3A–F. The results showed that high

expression of KNL1 led to worse OS of patients with these tumors,

suggesting that KNL1 may be closely related to tumor progression.

We then analyzed the relationship between KNL1 expression and

clinical features using the clinical information of 108 previously

collected samples to verify the relationship between KNL1 and the

prognosis of UCEC patients, and the results are shown in Figures 7E,

F. The results in Figure E show that high expression of KNL1 was

correlated with a poor prognosis in these 108 clinical patients, which

further verifies the relationship between KNL1 expression and the OS

of patients. Figure F shows the results of logistic regression analysis,

indicating that there is a relationship between KNL1 expression and

FIGO stage and histologic grade. The results in Supplementary

Table 4 also show that the expression of KNL1 is significantly

related to the degree of histologic grade, tumor invasion, FIGO

stage and the expression of Ki67 protein, which is consistent with

the previous analysis.
A B

D

E F

C

FIGURE 4

Functional enrichment analysis of KNL1 and related differentially expressed genes in UCEC. (A) Results of GO analysis. (B) Results of KEGG analysis. (C, D)
GO and KEGG analysis category names corresponding to the GO and KEGG Identifier. (E, F) Results of KEGG analysis. When the abscissa was positive,
KNL1 expression was positively correlated with this pathway, and when the abscissa was negative, the opposite was observed.
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Effect of KNL1 knockdown on the
proliferation, invasion and metastasis of
endometrial cancer cells

After knocking down the expression of KNL1 in HEC-1-A and

Ishikawa cell lines, the expression of KNL1 was confirmed to be

significantly reduced, as shown in Figure 8A. We then performed

CCK-8 assays and found that cell proliferation was significantly

reduced after knockdown, as shown in Figures 8B, C. We also

performed a wound-healing assay and found that the metastatic

ability of cells with KNL1 knockdown was significantly weaker than

that of the control group over time, as shown in Figures 8H–J. We also

performed Transwell experiments and the invasive ability of cells with

KNL1 knockdown was also significantly weakened, as shown in

Figures 8F, G. Finally, we performed a colony formation assay and

found that knockdown of KNL1 expression in cells was followed by a

decrease in their colony formation ability Figures 8D, E).
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Discussion

To date, there is a lack of good biomarkers for screening and

diagnosing UCEC (32). Finding and identifying new biomarkers for

early screening and diagnosis is particularly important for patients at

high risk of UCEC (33, 34). In addition, due to the limitations of

clinical staging, the final pathological diagnosis and staging are based

on surgical specimens (35, 36). Therefore, it is also necessary to study

the prognostic biological indicators of UCEC, which will help to

classify UCEC patients into low-risk and high-risk groups before

surgery to improve individualized treatment (37).

In this study, using RNA-seq data from the TCGA and GEO

databases, it was found that KNL1 was highly expressed in UCEC,

suggesting that KNL1 was related to the occurrence and development

of UCEC. Using 108 cases of endometrial carcinoma and 15 cases of

normal endometrium, we found that the expression of KNL1 protein

in tumors was higher than that in normal tissues. Its expression level
A B

D E F

C

FIGURE 5

Immunoinfiltration analysis of KNL1. (A) Correlation analysis between KNL1 and 24 immune cell infiltration levels. (B) Heatmap of the correlation between
KNL1 expression and various immune cell surface marker proteins: CR2 (B cells), CD8A (cytotoxic cells), SIGLEC8 (eosinophils), CD1A (iDCs), TPSAB1
(mast cells), B3GAT1 (NK cells), IL3RA (pDCs), CD3G (T cells), CD3D (T cells), CD3E (T cells), CD4 (T helper cells), PTPRC (Tcm), CXCR5 (Tfh), IL17A (Th17),
GATA3 (Th2), and FOXP3 (Treg). (C) Infiltration levels of 24 kinds of immune cells in samples with different KNL1 expression levels. (D–F) Correlation
analysis between KNL1 and the expression levels of CD274, TNFRSF4 and CD47. Significance identifier: ns (no significance), p≥0.05; *, p< 0.05; **,
p<0.01; ***, p<0.001.
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was related to FIGO stage, tumor invasion, histologic grade and

lymphatic metastasis. These results suggest that KNL1 may be a useful

diagnostic molecular marker for UCEC and could predict the

outcome of patients with UCEC. In addition, the ROC diagnostic

curve drawn with the data obtained from the clinical samples showed

that the AUC=0.764, further indicating that KNL1 could be useful in

UCEC diagnosis.

To clarify the role of KNL1 in the occurrence and

development of UCEC, 46 HUB genes closely related to the

function of KNL1 and the most relevant 50 genes were

identified by single gene differential analysis and single gene

correlation analysis, including the KIF protein family, SMC

protein family, BUB protein family, MELK and CENPF.

Previous studies have found that CENPF, MELK, PBK, TOP2A

and NEK2 are upregulated in breast cancer and this is associated

with a poor prognosis. CENPF, MELK and PBK are related to

CD4+ T cells, and TOP2A is related to CD8+ T cells (38, 39). In
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addition, MELK regulates cell cycle progression (40), leading to a

worse prognosis in patients with adrenal cortical carcinoma and

Wilms tumor (41, 42), and it could be a novel target for cancer

therapy (43). The expression of E2F family proteins and BUB

family proteins is also significantly related to the cell cycle and can

promote the proliferation of tumor cells (44–47). E2F family

proteins have also been shown to be potential targets for

molecular diagnosis and targeted therapy of clear cell carcinoma

and liver cancer (48). The expression of the SMC family is closely

associated with B cells, CD4+ T cells, CD8+ T cells, macrophages,

neutrophils, and DCs (49), which can be potential therapeutic

targets for HCC, and it has been demonstrated that inhibitors

targeting SMC2, SMC3, and SMC4 can be a practical therapeutic

strategy for HCC (50, 51). All of the above results suggest that

KNL1 may participate in cell mitosis and the cell cycle and thus

play an important role in the occurrence and development

of tumors.
A B
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C

FIGURE 6

Correlation between KNL1 expression and the expression of CD4, CD56 and B3TAG1 in patients with UCEC. (A) Immunohistochemical images of CD4,
CD56 and B4GAT1 in UCEC patients with different histologic grades. (B–D) Histogram of the immunohistochemical results for CD4, CD56, and B4GAT1.
(E–G) Scatter plot of the correlation between the expression levels of CD4, CD56, and B3GAT1 and KNL1. Significance identifier:p≥0.05; *, p< 0.05;
**, p<0.01.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1090779
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2023.1090779
To further understand the molecular mechanism of KNL1 in

tumorigenesis and development, functional enrichment analysis of

GO, KEGG and GSEA was performed using KNL1 and its related

differentially expressed genes. GO analysis showed that KNL1 was

involved in the humoral immune response, keratin filament,

mitotic spindle and other biological processes. There is increasing

evidence that the humoral immune response is associated with

tumorigenesis (52). As a cytoskeletal protein of epithelial cells,

keratin is involved in regulating apoptosis, growth and migration of

tumor cells. An elevated level of keratin in the serum or tumor
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tissue of tumor patients has been used for the clinical diagnosis of

tumors, and the expression level of keratin is negatively correlated

with the survival of tumor patients and can be used as a prognostic

marker (53–57).

The correct arrangement of mitotic spindles during cell division is

essential for cell fate determination, tissue organization, and

development. Changes in the dynamics and control of the

microtubules that compromise the mitotic spindle leads to

chromosomal instability, which in turn leads to the production of

tumor cells (58, 59).

KEGG analysis also showed that KNL1 function was related to the

biosynthesis of steroid hormones, the metabolism of cytochrome

P450 and other pathways. Estrogen, as a steroid hormone, can bind

to estrogen receptors and affect the progression of endometrial cancer

(60). Previous studies have reported that high expression of

cytochrome P450 can induce the development of tumors and

inactivate anticancer drugs (61).

Consistent with the results of the GO analysis, the results of

GSEA also showed that KNL1 was significantly enriched in many

pathways related to mitosis. KNL1 is also closely related to the

functions of the KRAS, mTORC1 and MYC genes. Previous

studies have found that the KRAS gene acts as a switch in the

body, regulating signaling pathways such as tumor cell growth

and angiogenesis. Mutations in the KRAS gene cause continuous

stimulation of cell growth, leading to tumorigenesis (62).

mTORC1 can regulate cell proliferation, metabolism and

survival by integrating growth factor signals and cell energy

status. mTORC1 dysfunction plays a key role in tumor cell

proliferation and metastasis (63). As a transcription factor with

extensive functions, MYC is mainly activated by amplification,
A B D
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FIGURE 7

Correlation of KNL1 expression with the outcomes of UCEC patients. (A–C) KM survival curves stratified by KNL1 expression for overall survival (OS),
disease-specific survival (DSS), and progression-free interval (PFI). (D) Prognostic ROC curve; the area under the ROC curve was between 0.5 and 1. The
closer the AUC is to 1, the better the diagnostic effect is. The AUC has a low accuracy when it is between 0.5 and 0.7, a moderate accuracy when it is
between 0.7 and 0.9, and a high accuracy when it is above 0.9. (E) KM OS curves stratified by KNL1 expression of 108 clinical samples of UCEC. (F)
Results of binary logistic regression analysis of the correlation between the KNL1 expression level and the clinical characteristics of the 108 patients. The
data were incomplete, as some records were lost.
TABLE 1 The results of the logistic regression model obtained from the
RNA-seq data in the TCGA database.

Characteristics Total
(N)a

Odds Ratio(OR) P
value

Clinical stage (Stage IV & Stage II
& Stage III vs. Stage I)

552 1.361 (0.965-1.924) 0.080

Age (>60 vs. <=60) 549 1.038 (0.734-1.466) 0.834

BMI (>30 vs. <=30) 519 0.950 (0.669-1.348) 0.773

Histological type (Mixed & Serous
vs. Endometrioid)

552 1.121 (0.765-1.644) 0.559

Histologic grade (G2 & G3 vs. G1) 541 3.395 (2.114-5.605) <0.001

Tumor invasion(%) (>=50 vs. <50) 474 0.976 (0.679-1.403) 0.898

Menopause status (Post vs. Pre &
Peri)

506 0.759 (0.423-1.349) 0.349

Diabetes (Yes vs. No) 451 1.206 (0.796-1.829) 0.377
aData incomplete as some record data were lost.
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chromosomal translocation and rearrangement, regulates cell

differentiation and proliferation through various mechanisms,

and participates in the occurrence, development and evolution

of tumors (64).

Given the correlation between KNL1-related genes and T cells, this

study further explored the relationship between KNL1 and immune cell

infiltration in tumors. KNL1 was positively correlated with the

infiltration of Th2 cells, T helper cells and Tcm cells and negatively

correlated with the infiltration of pDCs, iDCs and NK cells. This result

was confirmed by immunohistochemical analysis of 108 endometrial

carcinoma samples. Studies have shown that pDCs can promote the
Frontiers in Oncology 12157
antitumor immune response (65), iDCs can promote the activation of T

cells, and NK cells play a key role in immune regulation through

interactions with DCs (66). During tumor progression, the transition

from Th1/Th2 balance to Th2 dominance is crucial. Th2 cells are not

conducive to cellular immune antitumor effects. Restoring the Th1/Th2

balance is of great significance in tumor therapy (67). The results of this

study indicate that upregulation of KNL1 expression may be adverse to

the antitumor immune response of the body, and it is significantly

positively correlated with the immunotherapy target CD47, suggesting

that KNL1 may be a potential immunotherapy target for tumor

immunotherapy. Additional proteomics and larger sample size
A B

D

E

F

G

I

H

J

C

FIGURE 8

Effect of knockdown of KNL1 expression in UCEC cell lines on tumor cell proliferation, invasion and other phenotypes. (A) Ishikawa and Hec-1-A cells
were transfected with shKNL1, and the level of KNL1 was evaluated by qRT−PCR. (B, C) The proliferation of Ishikawa and Hec-1-A cells was examined by
CCK-8 (D, E) and colony-formation assays. (F, G) The migration of Ishikawa and Hec-1-A cells was examined by Transwell assays. (H–J) The metastatic
capacity of Ishikawa and Hec-1-A cells was examined by wound-healing assays. Significance identifier: p≥0.05; *, p< 0.05; **, p<0.01.
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studies are needed for further verification of this possibility in

the future.

Taking into consideration the upregulation of KNL1 expression in

tumor tissues and its inhibition of antitumor immunity, we speculated

that KNL1 might be correlated with the prognosis of patients with

endometrial cancer. Using KNL1 expression network data and clinical

data, KM survival analysis showed that high KNL1 expression

predicted a poor prognosis. The ROC curve analysis showed that

KNL1 had a high accuracy in predicting the outcomes of patients.

When analyzing the correlation between KNL1 expression and the

clinical characteristics of patients, this study found that the expression of

KNL1 was only correlated with the histologic grade of patients by using

RNA-seq data analysis from online databases. However,

immunohistochemical analysis of 108 clinical samples showed that

KNL1 protein expression was correlated with FIGO stage, tumor

invasion, histologic grades and lymphatic metastases of patients. The

inconsistency between these results may be because the former was

obtained from an analysis of RNA-seq data at the transcription level,

while the latter was obtained from immunohistochemical analysis results

at the protein level. The mRNA abundance does not necessarily have a

linear relationship with the protein expression level of its translated

products. There are many levels of regulation of protein content, and the

transcription level is only one level. In addition, mRNA degradation,

protein degradation, protein modification, protein folding and other

factors may cause the mRNA abundance and protein expression levels to

be inconsistent. These factors can all lead to differences in the final results

(68). Meanwhile, the protein expression level in this study was quantified

using the results of immunohistochemical analysis, and the sample size

used in the analysis was only 108 cases, which may lead to bias in the

analysis results. More proteomics and larger sample size studies are

needed in the future to verify the relationship between the protein

expression level of KNL1 and the clinical characteristics of patients.

Finally, to verify the function of KNL1, this study used the

endometrial cancer cell lines HEC-1-A and Ishikawa to

downregulate the expression of KNL1 by stable transfection of

shRNA. Knockdown of KNL1 expression weakened cell viability

and decreased the metastatic and invasive abilities of the tumor

cells. This result further verified that KNL1 is closely related to the

occurrence and development of tumors and is involved in the

invasion and metastasis of tumor cells. Therefore, KNL1 can be

used as a potential molecular target for tumor therapy.

In conclusion, the upregulation of KNL1 expression can promote

the occurrence, metastasis and invasion of UCEC and inhibit the

antitumor immune response. Therefore, KNL1 can be used as an

independent risk factor for UCEC and is a potential molecular marker

for diagnosing, treating and predicting the outcome of UCEC, which

can help doctors make more reasonable treatment plans for patients.

At the same time, this study has certain limitations. First, there is

a large difference between the numbers of tumor samples and normal

samples, and further research is needed to narrow this difference in

sample sizes in the future. In addition, the application of a single

biomarker is unlikely to be sufficiently accurate for prognostication

and diagnosis, and a combination of several different biomarkers

needs to be further evaluated in the future. This can lead to the

identification of algorithms with better diagnostic characteristics. This

study verified the effect of KNL1 on UCEC cells, but the results related

to pathway enrichment still need to be further verified by in vitro and
Frontiers in Oncology 13158
in vivo experiments. This study is a retrospective study, and more

prospective studies are needed in the future to reduce the bias

inherently caused by retrospective studies.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: The TCGA database (https://portal.gdc.cancer.gov/),

The UALCAN database (http://ualcan.path.uab.edu), and GSE17025 of

The GEO database (https://www.ncbi.nlm.nih.gov/geo/).
Ethics statement

The present study was approved by the Ethics Committee of the

School of Nursing, Jilin University (Changchun, China). The patients/

participants provided their written informed consent to participate in

this study. Written informed consent was obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article.
Author contributions

SZ and LZ conceived and designed the study. KH, JL acquired the

data performed the statistical analysis. KW and XH performed the

experiments and analysis the data. WZ and TW drafted the

manuscript. JC, ZW and JY contributed to revising the manuscript

for intellectual content and language editing. All authors contributed

to the article and approved the submitted version.
Funding

This study was supported by a grant from the Jilin Provincial

Department of Science and Technology project (grant number:

20210204200YY), the project of Jilin Province Development and

Reform Commission (2014G073), the project of Jilin Province of

Department Finance (2019SCZT050) and the project of Jilin Province

of Department Finance (2019SCZT040).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://portal.gdc.cancer.gov/
http://ualcan.path.uab.edu
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fonc.2023.1090779
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2023.1090779
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1090779/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Differential expression analysis results of KNL1 in pancancer patients. (A) Results of
differential analysis of KNL1 expression in 33 tumors based on TCGA database data.
(B) Pancancer analysis of paired samples based on data from the TCGA database.
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SUPPLEMENTARY FIGURE 2

Expression of KNL1 in UCEC patients with different histological types. (A) Box
diagram of KNL1 expression obtained from RNA-seq data in the TCGA database.

(B) Box plot of KNL1 expression using immunohistochemical analysis of 108
clinical samples.
SUPPLEMENTARY FIGURE 3

KM overall survival curves stratified by KNL1 expression in different tumors. (A)
KM survival curve of GBMLGG, (B) KM survival curve of LGG, (C) KM survival
curve of BRCA, (D) KM survival curve of KIRP, (E) KM survival curve of KIRC, and

(F) KM survival curve of PAAD.
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Multiparametric magnetic
resonance imaging-based
radiomics nomogram for
predicting tumor grade in
endometrial cancer

Xiaoning Yue1, Xiaoyu He1, Shuaijie He1, Jingjing Wu1, Wei Fan1,
Haijun Zhang2 and Chengwei Wang1*
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Background: Tumor grade is associated with the treatment and prognosis of

endometrial cancer (EC). The accurate preoperative prediction of the tumor grade

is essential for EC risk stratification. Herein, we aimed to assess the performance of

a multiparametric magnetic resonance imaging (MRI)-based radiomics nomogram

for predicting high-grade EC.

Methods: One hundred and forty-three patients with EC who had undergone

preoperative pelvic MRI were retrospectively enrolled and divided into a training

set (n =100) and a validation set (n =43). Radiomic features were extracted based

on T2-weighted, diffusion-weighted, and dynamic contrast-enhanced T1-

weighted images. The minimum absolute contraction selection operator

(LASSO) was implemented to obtain optimal radiomics features and build the

rad-score. Multivariate logistic regression analysis was used to determine the

clinical MRI features and build a clinical model. We developed a radiomics

nomogram by combining important clinical MRI features and rad-score. A

receiver operating characteristic (ROC) curve was used to evaluate the

performance of the three models. The clinical net benefit of the nomogram was

assessed using decision curve analysis (DCA), net reclassification index (NRI), and

integrated discrimination index (IDI).

Results: In total, 35/143 patients had high-grade EC and 108 had low-grade EC.

The areas under the ROC curves of the clinical model, rad-score, and radiomics

nomogram were 0.837 (95% confidence interval [CI]: 0.754–0.920), 0.875 (95%

CI: 0.797–0.952), and 0.923 (95% CI: 0.869–0.977) for the training set; 0.857 (95%

CI: 0.741–0.973), 0.785 (95% CI: 0.592–0.979), and 0.914 (95% CI: 0.827–0.996)

for the validation set, respectively. The radiomics nomogram showed a good net

benefit according to the DCA. NRIs were 0.637 (0.214–1.061) and 0.657 (0.079–
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1.394), and IDIs were 0.115 (0.077–0.306) and 0.053 (0.027–0.357) in the training

set and validation set, respectively.

Conclusion: The radiomics nomogram based on multiparametric MRI can predict

the tumor grade of EC before surgery and yield a higher performance than that of

dilation and curettage.
KEYWORDS
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Introduction

The incidence of endometrial carcinoma (EC) has risen steadily in

recent years and the standard operation for EC consists of

hysterectomy and bilateral salpingo-oophorectomy (1, 2). The 2020

the European Society of Gynaecological Oncology the European

Society for Radiotherapy & Oncology and the European Society of

Pathology (ESGO-ESTRO-ESP) guidelines recommend pelvic and

abdominal para-aortic lymph node dissection for patients with high-

intermediate-risk/high-risk EC (high-grade EC and myometrial

invasion ≥ 50%), but not low-risk EC (low-grade EC, myometrial

invasion< 50%, and lymphatic vascular space invasion [LVSI]

negative) (3). The prognosis of EC is related to tumor grade, deep

myometrial invasion (DMI), LVSI, and lymph node metastasis

(LNM). Tumor grade is an important predictor of disease outcome

and LNM as well as an important cornerstone for determining the

extent of surgical treatment (4, 5).

Almost all patients with EC undergo preoperative dilation and

curettage (D&C) or hysteroscopic biopsy. A recent review showed

moderate agreement between D&C and the final surgical pathology

(6). The underestimation of the pathological grade will lead to

inadequate treatment and risk of LNM in the future, whereas

overestimation of the pathological grade will lead to excessive

surgical treatment and cause unnecessary complications in patients

(7, 8). One study showed that the inconsistent diagnosis of

preoperative pathological grading is an important reason for the

high mortality rate (9). Consequently, it is necessary to develop an

accurate and noninvasive preoperative method to predict the tumor

grade of EC.

In addition to diagnostic curettage, magnetic resonance imaging

(MRI) has the greatest potential to predict tumor grade. Most studies

have predicted the pathological grade of EC using conventional MRI

features or apparent diffusion coefficient (ADC) values (10, 11).

However, owing to the subjective influence of measurement level

and experience, some quantitative indicators are difficult to represent

the heterogeneity of the whole tumor. Their value in evaluating tumor

grade remains controversial. Radiomics is a non-invasive method for

quantitatively assessing tumor heterogeneity by digitally analyzing a

large number of image features extracted from medical images with

high throughput. In addition, radiomics can link image features with

phenotypes by establishing descriptive and predictive models, which

may provide useful information for differential tumor diagnosis and
02162
evaluation of tumor response to treatment (12–14). In EC, previous

studies have demonstrated that radiomics performs well in assessing

the depth of myometrial invasion (MI), LVSI, LNM, and prognosis (9,

15–17). Therefore, we believe that radiomics is a promising tool for

predicting preoperative tumor grade.

This study aimed to develop a radiomics nomogram based on

multiparametric MRI to predict high-grade EC and compare the net

clinical benefit of the radiomics nomogram with that of

preoperative D&C.
Materials and methods

Patients

This study was approved by the Ethics Committee of our

institution and the requirement for patient informed consent was

waived. Between January 2017 and March 2022, 182 patients with a

histopathological diagnosis of EC underwent preoperative pelvic

MRI. The inclusion criteria were as follows: (1) patients with EC

confirmed by postoperative histopathology. (2) MRI was performed

within 2 weeks before the operation in our hospital, and (3) no

adjuvant therapy was performed before MRI examination. The

exclusion criteria were as follows: (1) tumor was less than two

layers on MRI or the maximum diameter of the tumor was less

than 10 mm (n = 23), (2) image quality pitfalls (n = 2), (3) no DCE-

MRI (n = 7), (4) incomplete histopathology report (n = 3), and (5)

combined with other pelvic malignancies (n = 4). Finally, a total of

143 patients (average age 55.52 ± 10.46 years) were enrolled and

randomly divided into the training set (100 patients, 27 of whom had

high-grade EC) and the validation set (43 patients, eight of whom had

high-grade EC) at a ratio of 7:3 by stepwise sampling. A flow chart of

the inclusion and exclusion criteria for the patients is shown

in Figure 1.
MRI protocols

Axial TI-weighted imaging (T1WI), sagittal and coronal T2-

weighted imaging (T2WI) without fat suppression, axial fat

suppression T2WI, axial diffusion-weighted imaging (DWI [b = 0

and 800 s/mm2]), and three planes (axial, sagittal, and coronal) of
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dynamic contrast-enhanced T1-weighted images (DCE-T1WI) of the

pelvis were performed using a 3.0 T magnetic resonance machine (GE

Discovery MR 750 W, Milwaukee, WI) and one 1.5 T MR machine

(Philips, Maltiva, the Netherlands). All the images were acquired using

an eight-channel phased array surface coil. The patients fasted for 4–6h

before MRI scans to reduce artifacts caused by bowel peristalsis. There

were eight dynamic phases in DCE-T1WI. The first was a mask film.

Before the second dynamic phase scanning, a contrast agent

(gadolinium chelate, GE Healthcare) was injected into the cubital

vein of the patient with a dosage of 0.2 ml/kg and an injection rate

of 2–3 ml/s. Each dynamic phase was scanned for 18–20 s. The details

of the MRI scanning protocols are listed in Supplementary Table S1A.
Classification of tumor grade

Two pathologists divided endometrioid adenocarcinomas into well

differentiated (grade 1), moderately differentiated (grade 2), and poorly

differentiated (grade 3) according to the proportion of non-squamous
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solid components in the tumor tissue (18). For the difference in 5-year

survival and prognosis, we considered grade 1/grade 2 endometrioid

adenocarcinoma as low-grade EC, grade 3 adenocarcinoma, and non-

endometrioid adenocarcinoma (e.g., clear, serous cell carcinomas, etc.)

as high-grade EC, which has a less favorable prognosis (1).
Clinical and conventional MRI features

Clinical data, including patient age, CA125 (within 2 weeks before

surgery), HE4 (within 2 weeks before surgery), and tumor grade by

preoperative D&C, were obtained through the hospital information

management system. Pathological reports should include tumor

differentiation, depth of MI, CSI, and FIGO stage.

Two radiologists (A and B with 5 and 12 years of experience,

respectively) reviewed the MRI images of each patient, blinded to the

pathological and clinical data. The evaluation items included

maximum tumor diameter (mean value of the tumor on axial

T2WI, DWI, and DCE-T1WI), depth of MI, CSI, and LNM.

Disagreements were re-evaluated by another senior physician.
Image segmentation and radiomics feature
extraction

The region of interest (ROI) was manually delineated in each

layer of the tumor on axial T2WI, DWI, and DCE-T1WI images (the

seventh dynamic scanning period) by radiologist A and automatically

converted into three-dimensional images to obtain the volume of

interest (VOI) using the 3D-Slicer software (v.4.11.0, https://www.

slicer.org). Subsequently, radiologist B randomly selected 40 patients

to draw the ROI in the same manner. All ROIs were drawn

considering cystic, necrotic, and bleeding areas within the tumor,

but avoiding the normal muscularis adjacent to the tumor tissue and

hematoma outside the tumor. A flowchart of the radiomics feature

extraction is shown in Figure 2.
FIGURE 2

Workflow of radiomics analysis and model building.
FIGURE 1

Flowchart of included and excluded patients with endometrial cancer.
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Before extracting radiomics features, MRI images must be pre-

processed to compensate for the difference in signal intensity caused

by different field strengths and scanning protocols. Image

preprocessing included resampling the image to a voxel size of 1

mm3 and discretizing the voxel intensity value with a fixed bin width

of 25 mm to standardize the gray intensity of each image and reduce

image noise.

In total, 851 radiomics features extracted from each VOI of

T2WI, DWI, and DCE-T1WI images included shape-based, first-

order, and texture features (including GLCM, GLDM, GLSZM,

GLRLM, and NGTDM). The intraclass correlation coefficient

(ICC) was used to evaluate the reproducibility of radiomics

features. To explore more information inside the tumor to

highlight the differences between tumor grades, the first-order

features and texture features were transformed by wavelet

transform, and eight wavelet decomposition features of different

frequency bands were obtained. Detailed information on all the

features is provided in Supplementary Table S2A. All radiomics

features were preprocessed using Z-score standardization to

eliminate the influence of different gray values.
Features selection and radiomics score
construction

The radiomics features with ICC ≥ 0.75 into R software (v4.2.0,

https://www.R-project.org). First, 80 radiomics features with the

greatest correlation with tumor grade were selected based on the

maximum relevance and minimum redundancy (mRMR) algorithm.

These features were further reduced in dimension and screened using

least absolute shrinkage and selection operator (LASSO) regression.

The regularization parameter l was adjusted by 10-fold cross-

validation to select robust features and construct a radiomics score

(rad-score) by linear combinations weighted by the corresponding

coefficients of the selected features.
Development of clinical model and
radiomics nomogram

Univariate and multivariate logistic regression analyses were used

for clinical and conventional MRI features associated with tumor

grade. Features with statistically significant differences were

considered independent risk factors and were used to establish the

clinical model. Next, a radiomics nomogram was established by

combining the above independent risk factors with the rad-score

using logistic regression. A calibration curve was drawn, and the p-

value of the Hosmer-Lemeshow test was used to evaluate the fitting

effect of the model.
Clinical usefulness

The clinical feasibility of the radiomics nomogram, rad-score and

clinical model was evaluated by decision curve analysis (DCA). The
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net benefits of both under different probability thresholds were

analyzed by comparing the clinical decision curves of the radiomics

nomogram and preoperative D&C. The net reclassification index

(NRI) and integrated discrimination index (IDI) were calculated to

analyze the advantages of the radiomics nomogram in predicting

high-grade EC compared with those of D&C. Finally, the clinical

impact curve (CIC) was used to analyze the loss-benefit ratio of the

nomogram and preoperative D&C compared with the actual

postoperative pathological results of each patient under different

probability thresholds.
Statistical analysis

The normality of all parameters was checked using the Shapiro–

Wilk test. Quantitative data were analyzed using the t-test or Mann-

Whitney U test, and qualitative data were analyzed using the chi-

square test. Stepwise logistic regression was performed to establish

models for predicting high-grade EC from the statistically significant

variables. The predictive performance indicators obtained in the

training and validation sets included receiver operating

characteristic (ROC) curves and correlation areas under the curve

(AUCs). The prediction efficiency of the models was compared using

the Delong’ test. P< 0.05 indicates statistical significance. Statistical

analysis of all data was conducted using the R software (v4.2.0, https://

www.R-project.org). The “Irr” package was used for ICC analysis. The

“mRMRe” package and “glmnet” package were used for screening and

dimensionality reduction of image features. The “rms” package was

required to obtain nomogram and calibration curve. The analysis of

DCA required the installation of “rmda” package. Finally, NRI and

IDI were calculated using “predidicABEL” package.
Results

Clinical features and model construction

The clinical and pathological features of the 143 patients were

balanced between the training and validation sets, and the difference

between the two sets was not statistically significant (Table 1). The

pathological grade was high-grade EC in of 35/143 patients (24.5%)

and low-grade EC in 108/143 patients (75.5%). Univariate t-test

analysis showed that age, HE4, DMI (MR_DMI), CSI (MR_CSI),

and LNM (MR_LNM) on MRI reports were significantly different

between high-grade and low-grade ECs, but no statistically significant

association between maximum tumor diameter and CA125 and

tumor grade was found (Supplementary Table S3A). Univariate and

multivariate logistic regression analyses indicated that age, MR_DMI,

MR_CSI, and MR_LNM were independent risk factors for high-

grade EC.

Discordance between the preoperative D&C and final

pathological results was observed in 34/143 patients (23.8%). The

tumor grade in 24/143 patients (16.8%) was underestimated, of which

10/24 patients (41.7%) with preoperative grade 1/2 were found to be

grade 3, and 14/24 patients (58.3%) with preoperative grade 1 were
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found to be grade 2. In contrast, the pathological grade was

overestimated in 10/143 patients (7.0%), including 3/10 grade 1/

grade 2 patients (30.0%) who were preoperatively diagnosed with

grade 3 or non-endometrioid cancer and 7/10 grade 1 patients

(70.0%) who were preoperatively diagnosed with grade 2.

Two radiologists at our institution retrospectively analyzed the

MR images of the patients with EC. The sensitivity for the diagnosis of

DMI, CSI, and LNM was 86.4, 66.67, and 40.0%, respectively, and the

specificity for the diagnosis of DMI, CSI, and LNM was 89.9, 93.64,

and 95.4%, respectively.
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Radiomics features selection and radiomics
score development

After ICC analysis, 2,225 features (739 T2WI features, 736 DWI

features, and 750 DCE-T1WI features) were retained. The mRMR

algorithm was used to screen out the 80 features most related to high-

grade EC, and then LASSO regression was used to avoid radiomics

feature overfitting, taking l as the minimum value (Supplementary

Figure S1A). Finally, 11 features with nonzero coefficients were

retained to construct the rad-score (Figure 3). The formula for
TABLE 1 Patient characteristics.

Characteristics Training set (n100) Validation set (n43) P value

Age (y) 55.5±10.5 55.5±10.4 0.979

CA125 45.8±57.4 31.5±31.7 0.128

HE4 107.6±94.8 109.1±90.4 0.933

Tumor size 50.4±20.0 53.5±35.9 0.516

MR_DMI 0.692

Absent 64 (64.0%) 29 (67.4%)

Present 36 (36.0%) 14 (32.6%)

MR_CSI 0.435

Absent 78 (78.0%) 36 (83.7%)

Present 22 (22.0%) 7 (16.3%)

MR_LNM 0.219

Absent 87 (87.0%) 38 (88.4%)

Present 13 (13.0%) 5 (11.6%)

FIGO stage 0.277

IA 48 (48.0%) 27 (62.8%)

IB 12 (12.0%) 6 (14.0%)

II 10 (10.0%) 5 (11.6%)

IIIA 7 (7.0%) 1 (2.3%)

IIIB 2 (2.0%) 1 (2.3%)

IIIC 18 (18.0%) 2 (4.7%)

IVB 3 (3.0%) 1 (2.3%)

Histopathology DMI 0.202

Absent 66 (66.0%) 33 (76.7%)

Present 34 (34.0%) 10 (23.3%)

Histopathology CSI 0.033

Absent 72 (72.0%) 38 (88.4%)

Present 28 (28.0%) 5 (11.6%)

Histopathology LNM 0.468

Absent 80 (80.0%) 38 (88.4%)

Present 20 (20.0%) 5 (11.6%)
fron
FIGO, Federation of International of Gynecologists and Obstetricians; HE4, human epididymis protein 4; MR_DMI, MRI-reported deep myometrium invasion; MR_CSI, MRI-reported cervical
stromal invasion; MR_LNM, MR-reported lymph node metastasis
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calculating the rad-score is as follows:

Rad − score = −1:1563 − 0:2885 * M1  +  0:0161 * M2 −

0:9530 * M3  +  0:0026 * M4 − 0:2165 * M5

+ 0:3375 * M6  +  0:1561 * M7  +  0:1368 * M8  +

 0:0492 * M9  +  0:3495 * M10 − 0:0084 * M11:

M1 = DCE_wavelet.LLH_firstorder_Entropy;

M2 = DWI_wavelet.LHH_glrlm_ShortRunLowGrayLevelEmphasis;

M3 = DCE_wavelet.LLH_firstorder_90Percentile;

M4 = DCE_wavelet.HLH_glcm_IMC1;

M5 = DCE_wavelet.LHL_glcm_InverseVariance;

M6 = DCE_original_firstorder_Maximum;

M7 = DWI_wav e l e t .HHH_g l dm_Dependen c eNon

UniformityNormalized;

M8 = AX_wavelet.HHH_glcm_DifferenceEntropy;

M9 = DWI_wavelet.HHH_firstorder_Kurtosis;

M10 = DCE_wavelet.LLH_glcm_ClusterTendency;

M11 = DWI_wavelet.HH_Hglcm_MaximumProbability.
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Prediction performance and validation of
radiomics nomogram

The radiomics nomogram was established using logistic

regression by combining the above four clinical and MRI factors

(age, MR_DMI, MR_CSI, and MR_LNM) with the rad-score

(Table 2), which was visualized by the nomogram in Figure 4. The

AUCs of the clinical model, rad-score, and radiomics nomogram were

0.837 (95% confidence interval [CI]: 0.754–0.920), 0.875 (95% CI:

0.797–0.952) and 0.923 (95% CI: 0.869–0.977) in the training set, and

0.857 (95% CI: 0.741–0.973), 0.786 (95% CI: 0.592–0.979), and 0.914

(95% CI: 0.827–0.998) in the validation set. The prediction

performance of the three models is shown in Table 3, with the

ROC curves shown in Figures 5A, B.

The radiomics nomogram yielded the best prediction performance

for both sets. The calibration curves are shown in Figures 5C, D,

indicating that the nomogram prediction results were in good

agreement with the pathological grade of EC in the training and

validation sets (p = 0.551 and 0.998, respectively). Delong’s test

demonstrated that the difference between the nomogram and clinical

model was statistically significant in the training and validation sets (p =

0.019 and 0.031, respectively). However, the difference between the rad-

score and clinical model was not statistically significant (all p > 0.05).
Clinical practicability

The DCA of the three models showed that the developed radiomics

nomogram had a higher net benefit than the rad-score and clinical

model at most threshold probabilities in the training (Figure 6A) and

validation sets (Supplementary Figure S2A), and a higher net benefit

than the actual D&C at threshold probabilities of 0–0.46 and greater than

0.67. The CIC showed the loss-benefit ratio obtained by the radiomics

nomogram and D&C at different probability thresholds (Figures 6B, C).

The reclassification measures of discrimination indicated that, compared

with those of D&C, the NRIs of the radiomics nomogram were 0.637

(95% CI: 0.214–1.061, p = 0.003) and 0.657 (95% CI: 0.079–1.394, p =

0.05), and IDIs of radiomics nomogram were 0.115 (95% CI: 0.077–
FIGURE 3

Eleven robust radiomics features and corresponding coefficients for
rad-score construction.
TABLE 2 Univariable and multivariable Logistic regression analyses results for high-grade EC.

Characteristics Univariable analysis Multivariable analysis

OR (95%CI) P value OR (95%CI) P value

Age 1.084 (1.037, 1.138) 0.001 1.090 (1.012, 1.186) 0.028

HE4 1.049 (1.029, 1.117) 0.014 1.008 (1.001, 1.018) 0.060

MI_MR 6.573 (2.559, 17.874) 0.001 5.268 (1.323, 24.498) 0.023

MR_ CSI 6.500 (2.303, 19.426) 0.001 6.547 (1.287, 39.904) 0.028

MR_LNM 8.625 (2.511, 34.918) 0.001 7.847 (2.106, 35.293) 0.012

Radiomics score 11.031 (4.280, 35.601) 0.001 9.237 (2.723, 43.079) 0.001
OR, odds ratio; CI, confidence interval; EC, endometrial cancer.
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0.306, p = 0.241) and 0.053 (95% CI: 0.027–0.357, p = 0.788) in the

training set and validation set, respectively.
Discussion

In this study, we developed a radiomics nomogram based on MRI

radiomics features for noninvasive preoperative prediction of tumor

grade in EC. The radiomics nomogram can improve the accuracy of

distinguishing high-grade EC before surgery, and DCA showed that

the nomogram has clinical practicability in assessing preoperative risk

stratification of EC. Because the required parameters are easy to
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obtain, the nomogram is expected to be a powerful tool for

gynecologists to develop individualized treatments.

Predictive value of clinical model for high-
grade EC

Two radiologists retrospectively analyzed the MRI images of each

patient, and the sensitivity and specificity of the diagnosis of DMI,

CSI, and LNM were consistent with those of previous studies (19–21).

Many studies (5, 22–24) have confirmed that patient age, DMI, CSI,

and LNM are important prognostic factors in high-risk patients with

EC. Our study indicated that advanced age, MRI-reported DMI, CSI,
FIGURE 4

Nomogram for predicting the tumor grade of endometrial cancer, established based on multiparameter magnetic resonance imaging and patient age.
A B

DC

FIGURE 5

Receiver operating characteristic curves of the three models predicting high-grade endometrial cancer in the training (A) and validation sets (B). The
graphs (C) and (D) show that the calibration curve of nomogram has good calibration ability in both the training and validation sets, respectively.
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and LNM were independent risk factors for high-grade EC. We found

that the serum HE4 level of high-grade EC was significantly higher

than that of low-grade EC. Although serum HE4 level was not an

independent predictor of high-grade EC in this study, serum HE4 was

connected with the prognostic factors of tumor grade, FIGO stage,

and LNM in EC (25). For gynecologists, preoperative serum HE4

levels are of great clinical value for assessing EC risk stratification. In

addition, CA125 was not significantly different between low-grade

and high-grade EC, which is inconsistent with the findings of Zheng

et al. (26). Serum CA125 is closely related to extrauterine invasion and

LNM (20, 27). Therefore, we speculate that this may be caused by

different pathological features, such as the FIGO stages. In addition,

the mean maximum tumor diameter in the three sequences was not

related to tumor grade. Although the clinical model combined

conventional MRI features with patient age, ROC and DCA

analyses revealed that it had limited usefulness in predicting the

pathological grade of EC.
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Predictive value of rad-score for
high-grade EC

Radiomics can extract massive features from MRI images, which

can effectively solve the problem of tumor heterogeneity that is

difficult to quantitatively evaluate (28). In this study, we screened

11 radiomics features that were strongly correlated with tumor grade

to construct the rad-score. Among them, the DCE sequence extracted

more radiomics features (7/11) than the other two sequences,

suggesting that DCE-MRI could provide more tumor information

using a contrast agent. The higher the grade of the tumor, the greater

the angiogenesis and vascular permeability, which makes the necrotic

cystic changes of the tissue more clearly displayed (29). In addition,

among all types of radiomics features, high-dimensional abstract

wavelet features accounted for the largest proportion, which

indicates that wavelet signs can capture clinical information that is

not easily perceived visually and can better reflect tumor
TABLE 3 Predictive performance of the clinical model, radiomics score, and radiomics nomogram for high-grade endometrial cancer.

Cohort Models AUC (95%CI) ACC SEN SPE NPV PPV

Training set Clinical model 0.837 (0.754, 0.920) 0.801 0.714 0.846 0.846 0.714

Radiomics score 0.875 (0.797, 0.952) 0.830 0.889 0.808 0.952 0.632

Radiomics nomogram 0.923 (0.869, 0.977) 0.877 0.741 0.918 0.905 0.769

Validation set Clinical model 0.857 (0.741, 0.973) 0.721 1.000 0.657 1.000 0.400

Radiomics score 0.786 (0.592, 0.979) 0.837 0.625 0.886 0.912 0.556

Radiomics nomogram 0.914 (0.827, 0.998) 0.839 1.000 0.771 1.000 0.500
frontier
AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value, NPV, negative predictive value.
A

B C

FIGURE 6

(A) The clinical decision curve demonstrated that nomogram has higher net benefits than preoperative curettage at a threshold probability of 0–0.47 and
> 0.67. The solid blue and orange lines in figures (B) and (C) represent the clinical impact curves of the nomogram and the actual preoperative DC,
respectively. The black dashed line represents the postoperative pathological results of patients with endometrial cancer, and the closer the solid line is
to the black dashed line, the better the prediction effect.
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heterogeneity. Therefore, radiomics can play a significant role in

predicting prognostic factors of EC in the future.
Radiomics nomogram further improved the
accuracy of prediction

The radiomics-based nomogram included patient age, MR_DMI,

MR_CSI, MR_LNM, and rad-score. Compared with that of the

radiomics score and clinical model, the nomogram had improved

accuracy, better predictive performance, and higher net benefit.

Bereby-Kahane et al. (30) suggested that texture features based on

two-dimensional MRI were of limited value in predicting high-grade

endometrial adenocarcinoma, with a sensitivity of 52% and a

specificity of 75%. A recent study (26) developed a radiomics

nomogram based on radiomics features, CA125, and body mass

index, with a sensitivity of 88.8% and specificity of 81.5% for

predicting high-grade EC. The prediction performance was higher

than that of the previous study, but the specificity was lower than that

of our study. Unfortunately, only shape features, first-order features,

and partial texture features were covered in their study. In our study,

the radiomics nomogram not only included conventional MRI

features assessed by two radiologists but also feature extraction

from multiple sequences (T2WI, DWI, and DCE-MRI), which can

provide a practical clinical tool for preoperative risk stratification

of EC.
The nomogram had great potential
compared with D&C in predicting
tumor grade

Although almost all patients underwent D&C or endometrial

biopsy before surgery, the accuracy of preoperative pathological

grading evaluation was uneven due to limited tumor tissue samples,

tumor heterogeneity, and operator experience. A previous meta-

analysis showed a 67% (95% CI: 0.60–0.75) agreement rate between

preoperative endometrial sampling and final histopathology, with

21% of tumor grades underestimated and 25% of tumor grades

overestimated (31). A recent review (6) obtained similar results and

concluded that preoperative EC sampling is not always the best

predictor of the final pathological grade of EC. In this study, we

found that the concordance rate between D&C and final pathological

diagnosis was approximately 76.2%, 16.8% of the tumor grade was

upgraded and approximately 41.7% of the patients with these

upgrades were upgraded from low-grade to high-grade, which was

not different from the results of previous studies. However,

inadequate grading may lead gynecologists to incorrectly assess the

risk of LNM and select suboptimal treatment plans (6). In theory,

radiomics can noninvasively obtain information about tumors and

predict tumor heterogeneity and aggressiveness. Therefore, we

compared the radiomics nomogram with the curettage results, and

DCA reported that the radiomics nomogram can get higher net

benefit. In addition, the NRI showed that the discrimination ability of

the radiomics nomogram was significantly improved compared with

that of D&C in the training and validation sets. Considering that the

NRI measures the improvement of a certain threshold and cannot
Frontiers in Oncology 09169
evaluate the overall improvement of the model, we recalculated the

IDI. The IDI indicated that about five to 11 patients would benefit

from the prediction of radiomics nomogram. In general, we believe

that the radiomics nomogram has advantages over preoperative D&C

in differentiating low-grade EC from high-grade EC.

With the rapid development of radiomics technology, a more

precise and accurate quantitative assessment of lesions and radiomics

has the advantages of being noninvasive and reproducible. We believe

that radiomics will become a safer and more reliable clinical tool for

predicting tumor grade and evaluating EC prognosis in the future.

Our study had some limitations. First, this retrospective study only

included patients who met the inclusion and exclusion criteria, which

might have resulted in selection bias. Second, all enrolled patients

underwent diagnostic curettage before the MRI scan, which may cause

the tumor volume seen on MRI to be smaller than the actual size, and

the evaluation of tumor grade by the maximum diameter of the tumor

in this study will be disturbed. Third, different field strengths and

machine types may cause image heterogeneity. Therefore, we

resampled and normalized the images and standardized the extracted

features to reduce differences. Finally, this was a single-center small

sample study, it cannot be denied that there may be an imbalance in the

distribution of pathological features in the validation set. Therefore, a

larger sample size and external validation are needed to verify the

robustness and reproducibility of the radiomics nomogram.

In conclusion, we developed a radiomics nomogram based on

MRI radiomics and clinical data that has good diagnostic

performance for identifying high- and low-grade EC. The

nomogram had a good net clinical benefit compared with that of

D&C and provided an effective noninvasive tool for gynecologists to

assess EC risk stratification before surgery.
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SUPPLEMENTARY FIGURE 1

(A) Radiomics features were selected by least absolute shrinkage and selection
operator (LASSO) logistic regression model in the training set. (B) The penalty

parameter log (l) was selected using 10-fold cross-validation through the

minimum criterion, with the dashed line on the left representing the
minimum log (l) and the dashed line on the right representing log (l) one
standard error from the minimum.

SUPPLEMENTARY FIGURE 2

The clinical decision curves of three models for predicting high-grade

endometrial cancer in the training (A) and validation sets (B).
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Knez J (2023) The association of Wnt-
signalling and EMT markers with clinical
characteristics in women with endometrial
cancer.
Front. Oncol. 13:1013463.
doi: 10.3389/fonc.2023.1013463

COPYRIGHT

© 2023 Ledinek, Sobočan, Sisinger, Hojnik,
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Endometrial cancer is the most common gynecologic malignancy in the

developed world. Risk stratification and treatment approaches are changing

due to better understanding of tumor biology. Upregulated Wnt signaling plays

an important role in cancer initiation and progression with promising potential

for development of specific Wnt inhibitor therapy. One of the ways in which Wnt

signaling contributes to progression of cancer, is by activating epithelial-to-

mesenchymal transition (EMT) in tumor cells, causing the expression of

mesenchymal markers, and enabling tumor cells to dissociate and migrate.

This study analyzed the expression of Wnt signaling and EMT markers in

endometrial cancer. Wnt signaling and EMT markers were significantly

correlated with hormone receptors status in EC, but not with other clinico-

pathological characteristics. Expression of Wnt antagonist, Dkk1 was significantly

different between the ESGO-ESTRO-ESP patient risk assessment categories

using integrated molecular risk assessment.

KEYWORDS

Wnt pathway, EMT - epithelial to mesenchymal transformation, endometrial cancer
(EC), b-catenin (B-catenin), DKK1, E-cadherin, N-cadherin
1 Introduction

Endometrial cancer (EC) is the most common gynecologic malignancy in the

developed world. With average overall 5-year survival rate of 76% and over 90% in

early-stage disease, the number of estimated deaths in 2020 still exceeded 97,000 (1–3).

Prognosis of patients with EC depends on pathomorphological as well as molecular

characteristics of tumors, the latter becoming an integral part of the latest World Health
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Organization (WHO) Classification of Female Genital Tumors (2,

4, 5). Currently, four molecular subtypes of EC have been proposed

based on genetic characteristics of tumors: (i) POLE (DNA

Polymerase Epsilon) ultra-mutated tumors, (ii) mismatch repair-

deficient (MMRd) tumors, (iii) p53-mutant tumors (p53abn), and

(iv) tumors of no specific molecular profile (NSMP) (5). Molecular

classification of EC has offered new insight in the process of

carcinogenesis and progression of EC and it has provided new

potential targets for treatment and different prognostic subgroups

of patients (6–8).

One of important mechanisms that has been linked to

tumorigenesis as well as progression of EC is dysfunction of Wnt/

b-catenin signaling pathway (9–11). The canonical Wnt/b-catenin
signaling pathway is activated by binding of Wnt ligands to

heterodimers of Frizzled (FZD) receptors and lipoprotein

receptor-related protein (LRP) co-receptors on the surface of the

cell. This leads to inactivation of b-catenin destruction complex in

the cytoplasm, enabling b-catenin to be transferred to the nucleus,

where it forms a complex with the lymphoid enhancer factor (LEF)

and T-cell factor (TCF), leading to transcription of cell cycle

regulator genes (11, 12). Mutations of catenin beta-1 (CTNNB1)

gene, occurring in approximately 20-25% of ECs, present an

alternative way of activating Wnt/b-catenin signaling pathway

through inefficient destruction of b-catenin. Clinically relevant

mutations in exon 3 of CTNNB1 gene prevent phosphorylation

and ubiquitination of the protein hence having the same result as

binding of Wnt ligands (11, 13–15). Mutations of CTNNB1 are

characteristic for NSMP molecular subtype of EC. Wnt signaling is

tightly regulated by Wnt inhibitors, among them the group of

Dickkopf (DKK) proteins. Among four members of DKK family

proteins, DKK1 – competitive inhibitor against Wnt3a is a

prototypical Wnt antagonist and the most extensively studied

DKK protein (16). Dysregulation of DKK1 has recently emerged

as a potential biomarker of cancer progression and prognosis for

several types of malignancies. Its overexpression in endometrial

cancer suggests a negative feedback loop between DKK1 expression

and Wnt signaling activation (17, 18). Wnt signaling is also

regulated by steroid sex hormones. Estrogens and progesterone

maintain a dynamic balance between the proliferation and

differentiation of endometrium, that is essential for the

prevention of abnormal endometrial growth that rises the risk of

developing EC (19). Expression of b-catenin was found to be

positively correlated with the expression of ER receptors in EC,

suggesting a synergy between estrogens and Wnt signaling (10). On

the other hand, intact progesterone signaling has a potential to

inhibit Wnt signaling by induction of Wnt inhibitors, such as

forkhead box 1 protein (FOXO1) (20, 21). Apart from rather

well-established role of estrogens and progesterone in the

carcinogenesis of EC, androgen receptor (AR) expression also

contributes to the progression and prognosis of the disease and

may be connected to the Wnt signaling. AR expression in EC is

more commonly present in primary tumors and is often lost in

metastatic disease (22–24). Tangen et al. discovered a correlation

between the loss of AR expression and more aggressive nature of EC

and worse prognosis in EC patients (25). Although a correlation
Frontiers in Oncology 02173
between the Wnt signaling and expression of AR has been studied

in some cancers (26, 27), there are no studies in EC yet.

Another important mechanism of carcinogenesis and

progression of EC is epithelial-to-mesenchymal transition (EMT).

EMT leads to the loss of intracellular junctions and of apical-basal

polarity in tumor cells as well as the reorganization of the

cytoskeleton, increased motility of individual cells, and

degradation of the extracellular matrix proteins (6). One of the

hallmarks of EMT is the loss of epithelial surface markers, most

notably E-cadherin and subsequently the expression of

mesenchymal markers, such as N-cadherin and vimentin (28–30).

The phenomenon of balanced downregulation of E-cadherin

expression and N-cadherin overexpression is described as

“cadherin switch” and is regarded as a marker of EMT (6, 30).

Wnt signaling is needed for both, the initiation and the

maintenance of the mesenchymal phenotype of tumor cells which

is mainly achieved by activating the transcription of target genes,

contributing to EMT process (31, 32) and is also connected to loss

of E-cadherin expression, enabling translocation of b-catenin to

participate in Wnt cascade (33). A connection between the Wnt

signaling and EMT suggests that Wnt inhibitors, such as DKK

proteins could prevent the EMT, making them potential

therapeutical targets (18, 20, 34).

This research aims to evaluate the correlation of clinico-

pathological and traditional molecular markers of EC with novel

biomarkers implicated in more/less aggressive subtypes of EC.

Through analyzing the interconnection of Wnt signaling markers

and EMT markers the aim of this research is to elucidate the

potential role of these novel candidates in prognosis of EC.
2 Material and methods

2.1 Patient selection and characteristics

This was a prospective cohort study, including all consecutive

patients between January 2020 and March 2022 at the University

Medical Centre Maribor. All recruited patients underwent surgical

treatment of EC after a multidisciplinary tumor board evaluation.

Patients’ demographic data such as age at the time of diagnosis,

BMI and clinical data were recorded. Exclusion criteria were

treatment for benign or pre-cancerous conditions or if there was

no available tissue for additional IHC staining.
2.2 Molecular analysis

Molecular analysis was performed as previously described

using the integrated molecular characterization approach (35).

Mutational status of CTNNB1 gene was determined by Sanger

sequencing of exon 3 following the previously described

methodology (35). Identification of clinically relevant (15)

missense mutations of the following amino acids: D32, G34,

S33, S37, T41, D207 and V516, the last one being a splice

site variant.
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2.3 Histopathological characteristics and
immunohistochemistry

Standardized pathohistological assessment and additional

immunohistochemical staining was performed on post-operative

specimens with confirmed endometrial cancer. In 4% of cases (n=3)

post-operative specimen showed only benign tissue. In these cases,

additional immunohistochemical staining was performed on pre-

operative biopsy samples. All samples were assessed at the

Department of Pathology of the University Medical Centre

Maribor. During routine clinical evaluation, samples are assessed

for estrogen (ER), progesterone (PR) expression and morphological

characteristics contributing to clinical decision-making as

previously described in (35).

In addition to standardized pathology report, samples were

selected for ancillary immunohistochemical staining. Paraffine

embedded tissue blocks were selected and 4 mm thick slices of

tumor tissue were transferred in sections to SuperFrost slides

(Thermo Fisher Scientific). Immunostaining was done by standard

method in an automatic stainer (BenchMark ULTRA, Ventana

Medical Systems, Inc.). Immunostaining was performed for

androgen receptors (AR) (rabbit monoclonal antibody, clone

SP107, F. Hoffmann-La Roche Ltd., RTU), MMRd (MLH1, MSH2,

PMS2, MSH6), p53, b-catenin (mouse monoclonal antibody; clone

17C2; Dako Cytomation Glostrup; at 1:10 dilution), E-cadherin

(mouse monoclonal antibody; clone NCH-38; Dako Cytomation

Glostrup; at 1:40 dilution), N-cadherin (mouse monoclonal

antibody; clone 5D5; GeneTex; at 1:1000 dilution) and DKK1

(rabbit monoclonal antibody; clone SC03-86; Invitrogen –

ThermoFisher; at 1:100 dilution). We used marker specific positive

and negative controls on every slide. Standard tissue block no. 1 (liver,

tonsil, and pancreatic tissue) was used as control for E-cadherin and

b-catenin staining. To test and optimize the protocols for N-cadherin

and Dkk1, tissue controls were chosen according to the

manufacturer’s recommendation – hepatocellular carcinoma,

colorectal carcinoma, and placental tissue. Reactions in control

tissue are shown in Supplementary Figure 1. N-cadherin had

overall stronger immuno-positive reactions, compared to Dkk1. A

research protocol for N-cadherin and Dkk1 staining was established

for EC evaluation. Both markers are not used in routine clinical

practice. Since E-cadherin and beta-catenin are validated and

frequently used molecular markers in clinical practice, standard

tissue blocks were used as controls. Overall reactions in control

tissue were similar on every slide with almost no difference in staining

intensity. To test and optimize the protocols for N-cadherin and

Dkk1, tissue controls were chosen according to the manufacturer’s

recommendations. There were internal negative controls in the

chosen tissue samples. Reaction of markers with tissue controls is

shown in Supplementary Figure 1.

The sample evaluation was done independently by two pathology

experts (DS and MH), who were blinded to each other’s grades. If

there was discrepancy between their grading, higher than 20%,

samples were re-evaluated, and the experts settled a final score.

Expression of all immunohistochemical markers (b-catenin, Dkk1,
E-cadherin and N-cadherin) was evaluated by counting the number

of immuno-positive tumor cells and expressed by percentage. Tumor
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cells were deemed positive if there was a clear membranous (b-
catenin) (36, 37), membranous and/or cytoplasmic (E-cadherin, N-

cadherin) (29, 38) and cytoplasmic (Dkk1) (10, 39, 40) reaction. At

the same time, intensity of reaction was scored on the scale from 0 to

3 (0 = no reaction, 1 = mild, 2 = moderate, 3 = strong). Examples of

scoring system is shown in Figure 1. Using the described parameters,

we calculated the standard H score, as previously reported (39, 41). H

score was calculated by multiplying the percentage of positive cells

with staining intensity. Additionally, we recorded the b-catenin
nuclear staining, that could be used as a surrogate for Wnt

signaling, in tumor cells and categorized it as either focal or diffuse,

based on the extent of nuclear reaction in tumor cells (42, 43).

Whole Slide Images (WSI) were taken using Aperio ScanScope

CS under the same conditions. WSI were then exported as.jpeg

format using Aperio Slide Manager software and were not edited,

only cropped to the same size.
2.4 Statistical analysis

Descriptive analysis was used for numeric variables, using

median (Me) and range. Absolute and relative frequencies were

reported for categorical variables. Expression levels of molecular

markers were all expressed as median value or either % of

expression or median H-score. To assess the correlation between

two numeric variables, namely the % of hormone receptor

expression and H-score of other molecular marker expression,

Spearman correlation coefficient was calculated, and scatter plot

diagrams (Supplementary Material) were used to present the

results. Correlations between numeric and categorical variables

were evaluated using non-parametric tests, either Mann-Whitney

U test or Kruskal-Wallis H-test. Results were presented by reporting

U value when Mann-Whitney U test was used and H value when

Kruskal-Wallis H test was used, along with the level of significance

(p value). Statistical significance was set at p<0.05. Statistical

analysis was performed using SPSS for Windows, Version 25.0.0

(IBM Corp., Armonk, NY, USA).
3 Results

3.1 Patient characteristics

Sixty-five women were included in this study. Their clinico-

pathological characteristics are depicted in Table 1.
3.2 Correlation between expression of
molecular markers

Expression of selected molecular markers (b-catenin, E-

cadherin, N-cadherin and Dkk1) and hormone receptors (ER, PR

and AR) in tumour tissue was evaluated and is presented in Figure 2

and Supplementary Table 1. Expression of ER was found to be

positively correlated with expression of PR (r(64) = 0.844, p<0.05),

AR (r(55) = 0.597, p<0.05), b-catenin (r(64) = 0.065, p<0.05), N-
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TABLE 1 Patient characteristics.

Median age at time of diagnosis (n=65) 69 years (41-87)

Median Body Mass Index (BMI) (n=65) 31 17-43)

n (%) CI 95%

Menopausal status
Pre-menopausal 6 (9%) [4-10]

Post-menopausal 59 (91%) [82 - 96]

EC subtype
Type I 55 (85%) [74 - 92]

Type II 10 (15%) [8 - 26]

EC grade
Low grade (G1-2) 50 (88%) [77 - 94]

High grade (G3) 7 (12%) [6 - 23]

LVSI

absent 46 (71%) [59 - 81]

focal 2 (3%) [1 - 10]

diffuse 17 (26%) [17 - 38]

Myometrial invasion
≤ 50% 32 (49%) [37 - 61]

> 50% 33 (51%) [39 - 63]

FIGO stage

Stage I
IA 32 (49%) [37 - 61]

IB 16 (25%) [15 - 36]

Stage II 1 (2%) [0 - 7]

Stage III 13 (20%) [12 -30]

Stage IV 3 (5%) [1 - 12]

Integrated molecular subgroup POLEmut 4 (6%) [2 - 14]

(Continued)
F
rontiers in Oncology 04175
 fron
FIGURE 1

Examples of IHC staining for b-catenin, E-cadherin, N-cadherin, and Dkk1 in EC tumour cells. Staining interpretation was done by assessing staining
intensity as weak (intensity score = 1), moderate (intensity score = 2) and strong (intensity score = 3). Intensity score was multiplied by the % of
tumour cells with positive reaction and the result was recorded as H score (range from 0 to 300). All micrographs are taken at 100x magnification.
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cadherin (r(64) = 0.280, p<0.05) and Dkk1 (r(64) = 0.263, p<0.05).

Expression of PR was positively correlated with expression of ER,

AR (r(55) = 0.554, p<0.05) and b-catenin (r(65) = 0.287, p<0.05).

Expression of AR was positively correlated with expression of ER,

PR, b-catenin (r(55) = 0,308, p<0.05) and N-cadherin (r(55) =

0.332, p<0.05). Expression of b-catenin was positively correlated

with expression of ER, PR, AR, E-cadherin (r(65) = 0.345, p<0.05),

N-cadherin (r(65) = 0.649, p<0.05) and Dkk1 (r(65) = 0.392,

p<0.05). Expression of E-cadherin was positively correlated with

expression of b-catenin and N-cadherin (r(65) = 0.452, p<0.05).

Expression of N-cadherin was positively correlated with expression

of ER, AR, b-catenin, E-cadherin and Dkk1 (r(65) = 0.365, p<0.05).

Expression of Dkk1 was positively correlated with expression of ER,

b-catenin and N-cadherin.
3.3 Expression correlation of b-catenin with
EMT markers and hormone receptors in EC

Nuclear expression of b-catenin was found in 45 (69.2%; 95%

CI [57.4%, 79.4%]) ECs. Pattern of expression was mostly focal with
Frontiers in Oncology 05176
smaller groups of tumour cells showing positive nuclear reaction.

Diffuse nuclear positivity was shown in 2 cases (3,1%).

We compared the membranous expression of b-catenin,
cadherins and Wnt antagonist Dkk1 in tumour tissue as well as

expression of hormone receptors (ER, PR and AR) against nuclear

expression of b-catenin. Results are shown in Table 2. Expression of

N-cadherin was higher for tumours with nuclear expression of b-
catenin (Me [H-score] = 270) than for tumours without nuclear b-
catenin expression (Me [H-score] = 253), U = 296.5, p < 0.05.

Expression of Dkk1 was also found to be higher for tumours with

nuclear expression of b-catenin (Me [H-score] = 115) than for

tumours without nuclear b-catenin expression (Me [H-score] =

102), U = 270.5, p < 0.05. Expression of membranous b-catenin was

found to be higher in tumours with nuclear b-catenin expression

(Me [H-score] = 250), compared to tumours without nuclear b-
catenin expression (Me [H-score] = 235), U = 254.5, p < 0.05.

There was no statistically significant correlation between

nuclear expression of b-catenin and the expression of E-cadherin.

Expression of ER receptors was higher in tumours with nuclear

expression of b-catenin (Me [%] = 100) compared to tumours

without nuclear expression of b-catenin (Me [%] = 70), U = 183.0,
FIGURE 2

Correlations between expression of different molecular markers. Lines connect IHC markers with positive and statistically significant correlation in
their expression in tumours cells.
TABLE 1 Continued

MMRd 23 (35%) [25 - 47]

NSMP
among them CTNNB1mut

32 (49%)
4 (6%)

[37 - 61]

p53abn 6 (9%) [4 - 18]

ESGO-ESTRO-ESP patient risk assessment

low risk 29 (45%) [33 - 57]

intermediate risk 8 (12%) [6 - 22]

high-intermediate risk 4 (6%) [2 - 14]

high risk 21 (32%) [21 - 44]

advanced carcinoma 3 (5%) [1 - 12]
fron
EC, Endometrial cancer; LVSI, Lympho-vascular infiltration; FIGO stage, The International Federation of Gynecology and Obstetrics; ESGO-ESTRO-ESP, European Society for Gynaecologic
Oncology - European Society Radiation Oncology – European Society for Pathology.
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p< 0.05. The same was true for the expression of PR in tumours with

nuclear expression of b-catenin (Me [%] = 100) versus without (Me

[%] = 45), U = 180.0, p < 0.05 and for expression of AR in tumours

with nuclear expression of b-catenin (Me [%] = 30) versus without

(Me [%] = 10), U = 163.0, p < 0.05.
3.4 Correlation between expression of
molecular markers and clinical
characteristics

Expression of molecular markers (b-catenin, E-cadherin, N-
cadherin and Dkk1) and hormone receptors (ER, PR and AR) was

compared to clinical data and histopathological characteristics of

the tumours, listed in Table 1. All results are shown in

Supplementary Tables 2, 3.

Comparison between the ESGO-ESTRO-ESP patient risk

assessment categories and expression of molecular markers

showed significant correlations with the expression of Dkk1, H =

10.196, p < 0.05. The expression of Dkk1 was lower in low-risk (H-

score = 105) and high-intermediate risk groups (H-score = 65),

compared to intermediate-risk (H-score = 112) ang high-risk (H-

score = 111) groups, but was highest in advanced carcinoma (H-

score = 130). There was no significant change between expression of

hormone receptors or other markers and patient risk groups.

There was no significant difference between expression of any of

the molecular markers or hormone receptors and presence of LVSI,

stage of the disease, myometrial invasion, FIGO stage or integrated

molecular subgroups as shown in Supplementary Table 2. Higher

expression of ER and PR was detected in Type I compared to Type

II tumour and in low grade compared to high grade tumours.
4 Discussion

This prospective study shows that Wnt signalling is significantly

involved in driving behaviour of endometrial cancer. Wnt signalling

and expression of EMT markers in EC were significantly correlated

with hormone receptors status in EC, but not with other clinico-
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pathological characteristics. Expression of Wnt antagonist, Dkk1

was significantly different among the ESGO-ESTRO-ESP patient

risk assessment categories, being the highest in advanced

carcinoma, lowest in high-intermediate risk group and

approximately the same in low-risk, intermediate-risk, and high-

risk groups.

The historical discrimination between type I and type II EC

shows the influence of hormone status on pathogenesis and

progression of EC. Recent studies have elucidated the impact of

ER and PR expression on clinicopathological characteristics of EC,

such as tumour invasiveness and FIGO stage. Loss of hormone

receptor expression has been linked to worse prognosis and lower

overall survival of patients with EC (44–47). Results of our study

showed significant difference between the ER and PR expression,

tumour type, and tumour grade, but not other clinicopathological

characteristics. Most likely explanation why our results do not

concur with previous studies is that our study compared a

combined H-score with other tumour characteristics, whereas

most of other studies used two-tier grading of hormone receptor

status (positive or negative) and only set a specific cut-off value. Our

approach has also been suggested to be more appropriate in clinical

practise (48).

Important mechanism of EC carcinogenesis is Wnt signalling

pathway. Its result is translocation of b-catenin into the cell nucleus,

triggering target gene expression of cell cycle regulators. Nuclear b-
catenin expression, determined by IHC, has been widely studied as

a potential surrogate for Wnt signalling and CTNNB1 gene

mutations. Such mutations of exon 3 in CTNNB1 gene occur in

up to 20% of tumours, more often in low grade, early ECs (15). In

our study 6% of women with EC had CTNNB1 mutations, which is

lower than expected (49, 50). CTNNB1 mutational status in EC was

not associated with any clinicopathological characteristics of the

tumours, or with expression of hormone nor other molecular

markers. However, it is possible to assess presence of Wnt

signalling by IHC determination of b-catenin, regardless of

mutational status of CTNNB1 gene (36, 43).

Comparing Wnt signalling to expression of other markers in

this study revealed positive correlation with the expression of all

hormone receptors, membranous expression of b-catenin and
TABLE 2 Correlations between expression of hormone receptors and molecular markers in tumours with and without nuclear expression of b-
catenin.

Molecular marker

Nuclear expression of b-catenin

PRESENT
(Median value)

ABSENT
(Median value)

Mann-Whitney U-test

ER 100% 70% U = 183.0; p < 0.05

PR 100% 45% U = 180.0; p < 0.05

AR 30% 10% U = 163.0; p < 0.05

b-catenin (membranous) H score: 250 H score: 235 U = 254.5; p < 0.05

E-cadherin H score: 223 H score: 223 U = 430.5; p = 0.782

N-cadherin H score: 270 H score: 253 U = 296.5; p < 0.05

Dkk1 H score: 115 H score: 102 U = 270.5; p < 0.05
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expression of N-cadherin as well as Wnt antagonist, Dkk1. Wnt

signalling in normal endometrium is regulated also by the

expression of Wnt antagonists, such as Dkk1. Our results showed

higher expression of Dkk1 in tumours with nuclear b-catenin
expression, suggesting negative feedback loop between Wnt

signalling and Wnt antagonists, as has been proposed by previous

studies (18, 51). So far Dkk1 expression was found to be higher in

benign endometrial tissue, compared to EC and was also found to

be higher in low grade EC compared to high grade EC (10, 40),

supporting the theory of downregulation of Wnt antagonists’

expression in EC (17, 52). Our results were in concordance with

research done so far (10, 40), we showed lower expression of Dkk1

in high grade EC compared to low grade EC, but the difference was

not statistically significant. We are among the first to compare

expression of Dkk1 to molecular characteristics of EC, as well as

integrated risk groups, based on new ESGO-ESTRO-ESP guidelines.

Studies that have compared IHC expression of Dkk1 among

different FIGO stages or histological grades of EC so far are

scarce (10, 40, 53) and do not consider the potential influence of

molecular classification. We did not find any significant correlation

between molecular groups themselves, but we found the expression

of Dkk1 to be significantly different between ESGO-ESTRO-ESP

risk groups, being upregulated in advanced carcinoma. However,

our results did not show linear increase in Dkk1 expression across

the integrated risk groups, which could be a consequence of a small

sample size. ESGO-ESTRO-ESP risk groups are based on a

combination of pathohistological characteristics (histological type,

tumour grade, LVSI), FIGO grade and molecular classification of

EC (4). Since Dkk1 could be one of potential therapeutic targets (52,

54) further studies are needed to determine, whether there is a

difference between expression of Dkk1 in tumour tissue and serum

of the patient and how any of those would influence the potential

use of therapeutics for EC.

Alterations in cellular adhesion molecules, are important

mechanism of tumour progression and metastasis. Lower

expression of membranous E-cadherin or complete loss of E-

cadherin expression has been associated with higher FIGO grade,

deep myometrial invasion, risk of tumour recurrence, and

metastatic disease (36, 55, 56). Our study showed similar patterns

of lower E-cadherin expression in tumours of Type II compared to

Type I endometrial cancer, presence of LVSI and deeper

myometrial invasion, but not in tumours of higher grade or

higher FIGO stage. However, none of our results were statistically

significant. Other authors have reported correlation between low

expression of E-cadherin and higher expression of other cadherins,

most importantly N-cadherin, marker of mesothelial differentiation

and thus indicator of EMT (6, 38, 57). Our study, on the contrary,

showed a positive correlation between expression of both cadherins,

a phenomenon that has not yet been recognized. The phenomenon,

called “cadherin switch” has been implicated, often described in

other types of cancer, i.e. breast cancer or ovarian cancer (58, 59),

but also in EC (29). We compared the expression of cadherins with

nonparametric test, comparing the mean H-score value, like other

studies (39, 41), since cut-off for defining positive or negative

expression of cadherins has not been validated in any of the

previous studies. In comparison to most other studies, we studied
Frontiers in Oncology 07178
the average overall expression of cadherins in tumour tissue. We did

not compare or distinguish between only membranous or

cytoplasmic staining to take into an account a possible different

intracellular location of the marker, also we did not compare the

IHC reaction in centre of the tumour-to-tumour front, where

differences have been most observed (6, 38). Our N-cadherin

staining has been very strong overall, having a very high mean H-

score, regardless of tumour type, stage, or grade.

There are different limitations of this study which are connected

to the explorative nature of the methodology as well as the cohort

itself. As previously discussed in cancers, where IHC receptor

expression is important in therapeutic decision-making, cut-off

values for predictive outcomes need to be validated in larger

cohorts. While there has been advancement in our understanding

of appropriate hormone receptor (ER, PR) cut-offs in EC, no such

cut-offs are determined for EMT markers and Wnt markers in EC.

IHC methods for assessment of molecular markers need broader

criteria validation for assessment of EMT levels andWnt marker cut-

off values. Our explorative study has added to this understanding, but

further evaluation is needed to test against specific cut-off values in

subgroups of EC. Validation of potential biomarkers is an extensive

process evaluating the rationale, mechanism and impact a certain

molecule has on the process of carcinogenesis. Several

recommendations suggest the use of archival samples and

prospective samples as the first steps in the biomarker discovery

process (60). These need to be followed or developed in parallel by

translational validation using Western blot validation. This enables

further protein identification and quantification and thus better

understanding of the mechanism of action (61). Due to the limited

resources, Western blot has not been performed in our study yet.

Furthermore, in improving our mechanistic understanding of the

topic, IHC is only the first step inWnt signalling evaluation. Since we

had very small group of tumours with CTNNB1mutations, we could

not study the effects of alternative activation of Wnt pathway and its

potential influence on EMT. Further studies are needed to address the

different activation mechanisms of Wnt pathway and its connection

to Wnt antagonists to evaluate the possible effects of guiding therapy

for EC. Lastly, the results, due to its pilot nature, need to be cautiously

evaluated due to a small number of cases reported. This cohort

provides insight into the topic, yet larger subgroup analyses are

needed to show utility for further translational understanding.
5 Conclusions

Our data indicates that Wnt signalling (nuclear b-catenin
expression) in EC could be correlated to markers of EMT (N-

cadherin), Wnt antagonist (Dkk1) and hormone receptors.

Although this should be verified on larger population of EC

patients, our data provides new insight into signalling pathways

in EC. Correlation between expression of hormone receptors and

other molecular markers affirms the connection between Wnt and

EMT pathways in EC. Significant difference between expression of

Dkk1 among ESGO-ESTRO-ESP patient risk assessment categories

contributes to a better understanding of its role in EC with further

implications for research of potential target immunotherapy.
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Klarić M, Kras ̌ević M, et al. The immunohistochemical pattern of epithelial-
mesenchymal transition markers in endometrial carcinoma. Appl Immunohistochem
Mol Morphol (2019) 28(5):339–46. doi: 10.1097/PAI.0000000000000754

7. Koskas M, Amant F, Mirza MR, Creutzberg CL. Cancer of the corpus uteri: 2021
update. Int J Gynecol Obstet (2021) 155(S1):45–60. doi: 10.1002/ijgo.13866

8. Nero C, Ciccarone F, Pietragalla A, Duranti S, Daniele G, Scambia G, et al.
Adjuvant treatment recommendations in early-stage endometrial cancer: What
changes with the introduction of the integrated molecular-based risk assessment.
Front Oncol (2021) 11. doi: 10.3389/fonc.2021.612450

9. Markowska A, Pawałowska M, Lubin J, Markowska J. Signalling pathways in
endometrial cancer. Wspolczesna Onkolog (2014) 18:143–8. doi: 10.5114/
wo.2014.43154

10. Kasoha M, Dernektsi C, Seibold A, Bohle RM, Takacs Z, Ioan-Iulian I, et al.
Crosstalk of estrogen receptors and wnt/b-catenin signaling in endometrial cancer. J
Cancer Res Clin Oncol (2020) 146(2):315–27. doi: 10.1007/s00432-019-03114-8

11. McMellen A, Woodruff ER, Corr BR, Bitler BG, Moroney MR. Wnt signaling in
gynecologic malignancies. Int J Mol Sci (2020) 21:1–21. doi: 10.3390/ijms21124272

12. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene (2017)
36:1461–73. doi: 10.1038/onc.2016.304
13. Taank Y, Agnihotri N. Understanding the regulation of b – catenin expression
and activity in colorectal cancer carcinogenesis : beyond destruction complex. Clin
Trans Oncol (2021) 23:2448–2459. doi: 10.1007/s12094-021-02686-7

14. Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W. Exon 3 mutations of
CTNNB1 drive tumorigenesis: a review. Oncotarget (2018) 9(4):5492. doi: 10.18632/
ONCOTARGET.23695
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Endometrial cancer is the most common gynaecological malignancy in

developed countries. Over 382,000 new cases were diagnosed worldwide in

2018, and its incidence and mortality are constantly rising due to longer life

expectancy and life style factors including obesity. Two major improvements are

needed in the management of patients with endometrial cancer, i.e., the

development of non/minimally invasive tools for diagnostics and prognostics,

which are currently missing. Diagnostic tools are needed to manage the

increasing number of women at risk of developing the disease. Prognostic

tools are necessary to stratify patients according to their risk of recurrence

pre-preoperatively, to advise and plan the most appropriate treatment and avoid

over/under-treatment. Biomarkers derived from proteomics and metabolomics,

especially when derived from non/minimally-invasively collected body fluids,

can serve to develop such prognostic and diagnostic tools, and the purpose of

the present review is to explore the current research in this topic. We first provide

a brief description of the technologies, the computational pipelines for data

analyses and then we provide a systematic review of all published studies using

proteomics and/or metabolomics for diagnostic and prognostic biomarker

discovery in endometrial cancer. Finally, conclusions and recommendations

for future studies are also given.
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1 Introduction

1.1 Endometrial cancer – The need for
minimally invasive diagnostic and
prognostic biomarkers

Endometrial cancer (EC) is the most common gynaecological

neoplasm in developed countries, and over 382,000 new cases were

diagnosed worldwide in 2018 (1). In general, EC is diagnosed in

postmenopausal women (85% of cases) and its incidence is rising

due to longer life expectancy and life style associated risk factors.

Women with BMI above 35 have an odds ratio of 5.7 for developing

EC, with an increase of 1.1 odds ratio per BMI unit (2, 3). Exposure

to unopposed estrogens or tamoxifen or genetic aberrations

associated with Lynch syndrome confer a cumulative risk up to

70% (4, 5). Finally, endocrine disruptors and other environmental

pollutants can also increase EC risk (6, 7). Therefore, an alarmingly

high number of women in the general population is exposed to risk

factors for developing EC.

In this context, screening programs would be extremely

beneficial for these women, but, unfortunately, no minimally- or

non-invasive diagnostic tool for EC exists today, and diagnosis

relies on invasive endometrial biopsy and pathology investigation.

A second unmet clinical need in EC is the necessity to accurately

stratify patients. EC is diagnosed at an early FIGO stage in 80% of

the cases, and the five-year survival of FIGO stage 1a is around 95%.

However, a proportion of women diagnosed with early-stage EC

develop recurrent disease, which dramatically decreases survival

rates (8). This represents a challenge as recent projections indicate

that the worldwide EC mortality will increase by 70% by 2040

(Global Cancer Observatory, World Health Organisation -

https://gco.iarc.fr).

Therefore, prognostic biomarkers to reliably predict patient

prognosis are needed, both prior to any intervention - to decide

on the most appropriate treatment and if needed optimally plan the

surgical procedure - as well as post-operatively, to define the most

appropriate adjuvant treatment, and avoid over-treatment and

under-treatment. A number of prognostic markers like

histological assessment of tumour type and grade, hormone

receptor status, PTEN expression, mismatch repair proteins

(MLH1, PMS2, MSH2, MSH6), POLE exon 3 mutation, CTTNB1

mutation, L1CAM overexpression, and TP53 aberrations allow

stratification of patients according to their risk of recurrence (9–

20). In particular, the recent introduction of The Cancer Genome

Atlas (TCGA) molecular classification improved the risk

stratification at the postsurgical (21, 22), but also improved the

concordance between presurgical biopsy and pathology assessment

at hysterectomy (23), which has been a problem in the past (24).

This classification groups EC patients in four clusters with distinct

prognosis and a number of studies demonstrated the reliability and

the clinical applicability of this classification using surrogate

analyses (i.e., IHC and POLE gene mutation analyses). Patients

with POLE mutated tumours have the best prognosis, followed by

mismatch repair deficient tumours and with the final groups having

an intermediate and the worse prognosis (no specific molecular
Frontiers in Oncology 02182
profile and p53 mutated, respectively) (14). Recently, also

classification methods fully based on IHC, hence applicable also

in centres with limited access to molecular infrastructures, showed

robustness and reliability (19).

Nevertheless, these methods require invasive biopsies, and

women consider the presurgical biopsy procedures discomforting

and painful (25). Therefore, non- or minimally-invasive prognostic

tools applicable presurgically are urgently needed.

Proteomic and metabolomic profiles are attractive approaches

for identifying biomarkers that can be detected in tissues or body

fluids obtained via non-, minimaly or semi–invasive procedures.

The purpose of the present review is to explore the current research

on the use of proteomics and metabolomics in the context of EC.

This review provides a brief introduction to the wet-lab

technologies, the computational pipelines for data analyses and a

systematic review of all published studies aimed at using proteomics

and/or metabolomics for diagnostic and prognostic biomarker

discovery in EC. This is followed by conclusions and

recommendations for future studies.
1.2 Proteomic and metabolomic
approaches for biomarker discovery

Proteomics and metabolomics represent fields that have grown

significantly in the last decades, thanks to the important

technological advances that allow accurate and sensitive analyses.

Both approaches have been extensively used for biomarker

discovery in various disorders (26–31).

1.2.1 Targeted and non-targeted proteomics
Large-scale proteomics mainly relies on two different

methodological approaches, namely immune-based, targeted

protein microarrays and (non-targeted and targeted) mass

spectrometry (MS). Making use of antibody-protein specific

binding, protein microarrays can be seen as miniaturized

conventional assays, thereby allowing multiplexing and high

throughput. Protein microarrays relevant for biomarker discovery

fall into three categories: analytical microarrays, reverse phase

protein array (RPPA), and bead-based microarrays. Analytical

protein microarrays are also called capture or antibody

microarray because proteins from complex protein lysates are

captured by antibodies or aptamers, which have been previously

immobilized on the surface of an array. Conversely, RPPA is based

on the immobilization of complex samples on a surface and

subsequent probing by pre-selected antibodies. Bead-based

microarrays use capture antibodies immobilised on microbeads

combined with secondary, detection antibodies. Protein

microarrays are highly sensitive and highly specific assays, which

allow relative quantification among different clinical sample groups.

While multiplexity is usually higher in analytical microarrays

compared to RPPA and bead-based microarrays, all methods

share simple sample processing allowing high throughput. A

further immune-based method, Olink technology, uses antibodies

that are labelled with ssDNA and detect proteins in a sample by
frontiersin.org
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proximity extension assay (PEA). Pairwise antibodies are linked

with complementary ssDNA which upon binding the target protein

are hybridized and extended using a DNA polymerase. Despite

being targeted hypothesis-driven approaches, antibody-based

technologies like protein arrays are solid and promising tools for

biomarker discovery and verification (32–34).

Mass spectrometry measures mass-to-charge ratios of ionized

peptides in order to analyse proteins. Ionization of proteins can be

achieved by electrospray ionization (ESI) or by matrix-assisted laser

desorption/ionization (MALDI). ESI allows the creation of ions in

solution, while in MALDI, ions are created by laser light pulsing on

matrix embedded proteins. A variation of MALDI is SELDI

(surface-enhanced laser desorption/ionization), where the

proteins are applied on a modified matrix surface allowing

binding of specific proteins or proteins classes (35). Mass analysis

of proteins is primarily conducted using TOF (time-of-flight) or

quadrupoles. Sample preparation for mass spectrometry is a

complex process. Upon cellular lysis, it includes subcellular

fractionation, depletion of highly abundant proteins, enrichment

of target proteins, denaturation and protein digestion. Resolving

and denaturation of proteins can also be achieved by SDS

polyacrylamide gel electrophoresis, 1D or 2D polyacrylamide gel

electrophoresis (PAGE) or difference gel electrophoresis (DIGE).

Mass spectrometry is not inherently quantitative but different types

of labelling (isobaric tags for relative and absolute quantitation -

iTRAQ; isotope-coded affinity tag - ICAT, stable isotope labelling

by amino acids in cell culture - SILAC) allow relative and absolute

quantification. Label-free quantification, based on signal intensity,

is an alternative, cost-efficient option but with a relatively low

throughput (36).

Non-targeted mass spectrometry is widely used for biomarker

discovery because of its suitability for hypothesis-free approaches.

Due to the complexity of the workflow, the number of samples

analysed in a discovery setting is usually quite limited, especially

when plasma samples are used. Furthermore, fractionation, depletion

of high abundant proteins or digestion could bias the results and limit

the sensitivity in the untargeted approach. In general, only a small

number of candidates undergo clinical validation using orthogonal

platforms and even fewer are tested in clinical studies (37, 38) as these

studies need first the transition of MS data into immunobased assays

to analyse a sufficiently large and statistically relevant number of

samples. In this regard, protein microarrays for discovery present the

advantage that such translation is not necessary (33).

Proteomics displays a large panel of different tools, which can be

combined for discovery and validation phases and subsequently

integrated in multi-omics approaches (39).

1.2.2 Targeted and non-targeted metabolomics
Metabolomics is the most recent ‘omics’-technology and strives

to measure ideally all metabolites in a given biological sample (40).

Since metabolites are final downstream products of all cellular

processes, metabolomics is closest to the phenotype compared to

the other ‘omics’-techniques.

Similar to proteomics, two approaches with different objectives

are used (41), namely non-targeted and targeted metabolomics.

Non-targeted metabolomics (profiling metabolomics) is a
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hypothesis-free approach, which aims to detect simultaneously as

many metabolites as possible. Depending on the analytical

platform, non-targeted metabolomics reveals metabolites from a

wide range of metabolite classes (42), which are annotated after the

measurement. Thus, the detection of unknown metabolites not yet

annotated in metabolite databases is common in non-targeted

metabolomics. Although being comprehensive, non-targeted

metabolomics does not allow absolute quantification, but can

provide at best only semiquantitative results (42).

Targeted metabolomics is hypothesis-driven and aims to

quantify the absolute concentrations of a predefined set of

metabolites (42). Since all measured metabolites are pre-selected,

a standard calibration curve for accurate quantification can be

prepared for each metabolite. Stable-isotope labelled internal

standards are added at known concentrations to all samples,

allowing compensation for any analytical interferences. With its

advantages such as validated analytical performance and the results

delivered in absolute concentrations, targeted metabolomics is often

used for biomarker validation (42). However, the limited number of

simultaneously quantified metabolites in targeted metabolomics

increases the risk of missing relevant biological processes.

Metabolomic approaches usually use MS or nuclear magnetic

resonance spectroscopy (NMR). While MS offers high mass

accuracy, high resolution, high dynamic range and high

sensitivity (43), NMR is less sensitive but is superior in terms of

structural information content, robustness, and reproducibility (44,

45). However, current analytical methods are not able to cover the

entire metabolome (46). To achieve a high metabolite coverage

combined with quantitative data, the integration of different

metabolomic techniques (multiplatform approaches) is necessary

(46, 47).
1.3 Bioinformatics and statistical
approaches for constructing diagnostic
and prognostic algorithms

Data from proteomic and metabolomic experiments can reveal

molecules that can possibly serve as diagnostic or prognostic

markers. However, even if well-designed and executed,

experiments often result in noisy, biased and incomplete data due

to a multitude of uncontrollable factors. Therefore, thorough data

analysis needs to be performed to eliminate technical noise, while

preserving genuine biological variation between samples. A set of

computational methods used to analyse data are typically bundled

together into one unified data analysis pipeline (Figure 1), which

treats raw data files as an input while providing the list of potential

biomarkers as the output.

Proteomic and metabolomic raw data is first processed by

background correction, signal transformation, outlier detection, and

normalisation. Pre-processing is essential to minimise unwanted

technical bias and enable comparisons of samples. Further, integration

of clinical information enables comparisons of average metabolite and

protein signals between phenotypic groups of interest (48–50).

Background correction addresses different effects in proteomics

and metabolomics. In protein microarrays, it is challenging to
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correctly quantify the fluorescent signal produced by the biological

reaction avoiding local residuary background (51–53). In

metabolomics, background (or baseline) correction is used to

eliminate low frequency artefacts and differences generated by the

measuring instrument (54). Data log-transformation is common

practice, as this renders fold changes symmetric around zero,

reduces potential skew in the data and provides a good

approximation for the normal distribution, which is a prerequisite

for most computational methods (52, 55), especially for linear

models. Following background correction, outlier detection is

performed by the three standard deviations technique and

subsequently removed or replaced.

In large-scale studies based onMS proteomics or metabolomics,

samples will be distributed into several analytical batches, which

may introduce instrumental variabilities into the data set. Such

batch effects can be very destructive as they render comparison

between phenotypic groups ineffective. Normalisation strategies for

metabolomic and proteomic experiments make use of control

samples and control molecules (52, 56, 57), which are usually

assumed to exhibit constant signal levels. Any differences in

signal values are considered to be technogenic and thus, corrected

for. The most popular normalisation strategies are global scaling,

quantile normalisation, cyclic loess and the ones involving linear

models (56).
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After appropriate pre-processing, the data is used for statistical

analysis, where a large number of techniques are available.

Characteristics of data and the research question determine the

choice of the statistical method. In biomarker discovery studies,

molecules that can reliably distinguish between two (or more)

groups, like disease versus controls, are referred to as significantly

differential and can be used as biomarker candidates. The process of

identifying such molecules is termed differential analysis (52, 58).

Classical univariate statistics such as Student’s t-test (requiring

normal data distribution) or Mann-Whitney U test (non-

parametric test that does not rely on parameterized data

distribution) can be used for differential analyses. Differential

analyses have a low probability (usually less than 5%) to deliver

significant results by mistake; however, if repeated multiple times,

as for omics studies, can result in the generation of false significant

hits. Therefore, the number of tests performed needs to be taken

into account. The simplest and one of the most popular methods for

multiple testing correction is ‘Bonferroni correction’ (59), which

adjusts the p-value threshold by dividing it by the number of tests.

This is a conservative approach that may result in a high number of

potential biomarkers being ignored, hence, less stringent methods

can be considered (like Benjamini and Hochberg False Discovery

Rate correction) that keeps the number of falsely significant results

at a predefined level (e.g., 5%).
FIGURE 1

Scheme illustrating the typical computational methods used in biomarker discovery studies to analyse data. The pipeline in figure refers to the
conventional protein microarray analysis (Fishman et al. https://arxiv.org/abs/2201.06074).
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While classical statistical methods analyse the significance of

each molecule of interest independently (60), machine learning

algorithms are able to efficiently assess the predictive performance

of multiple proteins, metabolites, features and even their

combinations. Machine learning is a field of computer science

that studies algorithms capable of learning valuable relationships

from data without being explicitly programmed. Myriads of

machine learning algorithms have been developed over the past

years (61) and are frequently used in biology to discover biomarkers

for various diseases (49, 62). The most popular machine learning

methods are decision tree (63), support vector machine, random

forest (64) and gradient boosting machines (65).

It can be challenging to build reliable machine learning models,

because most model algorithms can learn random patterns that can

only explain data these models were exposed to. This phenomenon

is known as overfitting and might cause models to report

completely irrelevant biomarkers and thus, render the entire

study obsolete. In order to account for potential overfitting and

keep its influence at minimum, various strategies have been

proposed (66). One of the most important techniques is k-fold

cross validation. By using only one part of the data to build a model

(training set) and the remaining part to assess its performance (test

set), researchers can be confident that the biomarkers identified by

the model are not random fluctuations in the training data.
2 Methods

2.1 Study design

With this systematic review we aimed to respond to the

following question: Can proteomics and metabolomics contribute

to identification of biomarkers for diagnostics and prognostics in

EC? The review was conducted according to the PRISMA guidelines

(67) and is registered at the ‘International prospective register of

systematic reviews ’ (PROSPERO, Registration number

CRD42022245880).
2.2 Search strategy, data extraction and
quality assessment

We performed a systematic search of the literature in the

PubMed® and OVID® Embase databases on July 20, 2022 using

the search terms listed in Supplementary Table S1. We focused on

proteomic and metabolomic studies performed in physiological fluids

and tissue samples. There was no restriction on publication date.

Reports were retrieved, and titles/abstracts were screened according

to the inclusion and exclusion criteria (Table 1) independently by
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authors AR and TLR. Disagreements were discussed and consensus

was reached. The search strategy is provided in Table 2.

The selected reports were read in detail and the following

relevant data was extracted (when applicable): author and year of

publication, country, fundings; sample: tissue (kind), plasma, serum

or other body-fluid; study design; methods: omics approach,

targeted/nontargeted proteomics/metabolomics; analytical

methods; patient selection: case/control, stratification of patients

according to reference test; patient characteristics: number of

patients, characteristics of the enrolled patients with EC (e.g.,

mean age, body mass index [BMI], type of EC, histological

differentiation, FIGO stage, menopausal status) and control

patients or healthy women (e.g., mean age, BMI, diagnosis,

menopausal status); study phase and statistical methods:

discovery, validation phase, machine learning approaches used;

differentially abundant proteins and metabolites in the study

groups; diagnostic characteristics (e.g., sensitivity, specificity, area

under the curve [AUC], positive predictive value [PPV], negative

predictive value [NPV]) or prognostic characteristics (overall

survival [OS], disease-free survival [DFS]), and hazard ratios

[HR]; diagnostic or prognostic models; disclosures: affiliations

with industry, industrial funds, patents.

Reporting was performed under the guidance of the PRISMA

diagnostic test accuracy checklist (67). The risk of bias and quality

of individual diagnostic accuracy studies were assessed following

the QUADOMICS tool, an adaptation of QUADAS (68) that was

designed specifically for omics studies (69) (Supplementary Table

S2). This tool focuses on study design, patient selection, index test,

reference standards, flow of timing, pre-analytical and analytical

procedures, and statistical analysis and nine questions per study

were specifically answered (Supplementary Tables S2–S4).

Additional potential financial, commercial and conflict of interest

biases were further examined (Supplementary Tables S5).
3 Results

Systematic literature search led to the identification of 52

studies in EC, 23 on proteomics and 29 on metabolomics (Figure 2).
3.1 Evaluation of the quality of
published studies

The quality of the studies included was assessed systematically

according to the QUADOMICS tool (Supplementary Tables S2–S4;

Figure 3). We evaluated study design and pre-analytical, analytical,

and post-analytical bias of all included studies. The majority of the

studies described the criteria for patient selection (question 1) in
TABLE 1 Inclusion and exclusion criteria.

Inclusion
criteria

research papers, papers in English, studies in humans, blood (plasma or serum), urine, other physiological fluids, tissue samples, at least 10 subjects per
study group.

Exclusion
criteria

abstracts, review papers, papers in other languages, studies in animals, studies in cell lines, studies including only unidentified metabolites,
epidemiological studies, studies evaluating drug effects.
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appropriate detail. Approximately 50% of metabolomic and 20% of

proteomic studies did not reflect the real clinical setting, because

they compared patients with healthy women, who are not likely to

need a diagnostic test (see discussion - question 2). The assessment

of pre-analytical bias (questions 3A and 3B) revealed that only a

fraction of all studies reported appropriate descriptions of the

samples, including the procedures for sample collection and

processing (e.g., centrifugation time, type of blood tube).

Furthermore, the majority of the studies did not report any

information about the time of sample collection, the time
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between blood draw and centrifugation, the time between sample

acquisition and storage, and the number of freeze/thaw cycles. In

75% of the metabolomic and 51% of the proteomic studies sufficient

information on the clinical and physiological factors that can affect

-omics data was not provided (question 4; e.g., BMI, menopausal

status, menstrual phase cycle, fasting status). Approximately 70% of

the included studies reported detailed descriptions on sample

storage and metabolite extraction (question 5). Almost all samples

were stored at -80°C or in liquid nitrogen, but several studies failed

to report this information. The time between the reference standard
TABLE 2 Search strategy for identification of manuscripts in Pubmed and OVID Embase.

Search Query Search results Selected manuscripts Additional manuscripts Included

Endometrial cancer and proteomics* 746 total
570 PubMed
176 OVID
275 duplicates
471 total
224 removed/titles
247 total
175 removed/abstract
Total 72

23
49 removed after full-text reading

0 23

Endometrial cancer and metabolomics* 214 total
89 PubMed
125 OVID
43 duplicates
171 total
70 removed/titles
101 total
70 removed/abstract
Total 31

31
4 removed after full-text reading

2 29
fr
*Search strategy is provided as Supplementary Table S1.
FIGURE 2

Workflow of the systematic search and paper selection.
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and the index test (metabolomics or proteomics) was not clear for

31% of the included metabolomic and 21% of the proteomic studies

(question 6), while in 52% of the metabolomic and 22% of the

proteomic studies, the verification by reference test was not

performed in all patients (question 7). With respect to analytical

biases, we observed that only 21% of all studies provided a detailed

description of the metabolomic analysis (question 8). Most studies

did not provide information on sample randomisation for MS-

based metabolomics, for the use and type of quality control samples,

and occasionally, important MS parameters were not given. In

proteomics, 78% of all included studies described the index test in

sufficient detail. Regarding post-analytical biases, we observed that

24% of the metabolomic studies described the statistical analysis in

sufficient detail, while 42% of studies provided incomplete

description. These studies failed to report information on missing

value treatment, sample-to-sample normalization, data

transformation and scaling and in one case also on model

calculation and cross-validation. In proteomics, 91% of all

included studies reported the statistical analysis in sufficient detail.
3.2 Disclosure of financial and other
potential conflicts of interest

We also evaluated whether studies clearly stated the financial

support, disclosed any potential conflict of interest, whether authors

were affiliated to industry and whether the studies complied with

the open science policy and deposited their data on public
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repositories (Supplementary Table S5). Although older studies

tend not to report any information on the financial support or

the presence of any conflict of interest, more recent studies provide

this information. The source of funding was declared in 88% of the

studies (19 out of 23 proteomic and 27 out of 29 metabolomic

studies) and the presence of any potential conflict was declared in

77% of the studies (14 out of 23 proteomic and 26 out of 29

metabolomic studies). Three studies (6% of those declaring the

source of funding) received industrial supports and four studies

included authors affiliated to companies. Only 25% of the studies

deposited the data in public repository (1 out of 23 proteomic and

12 out of 29 metabolomic studies) and four proteomic studies

declare that data are available upon request.
3.3 Proteomics in endometrial cancer

From the systematic literature search, 72 research papers were

selected based on title and abstract. From these, 19 papers were

excluded because focusing on basic cell mechanisms of

carcinogenesis with no further investigation on the diagnostic or

prognostic potential (70–80), response to metformin (81), side

effect to radiotherapy (82), racial disparities (83, 84), drug

resistance (85–87), premenopausal endometrial physiology (88).

Three studies were in silico analyses (89–91). Additionally, 11

papers (22, 92–101) were based on multi-omics approaches or

focused on pan-cancer biomarkers and will be discussed in

paragraph 3.4, thus resulting in 39 papers for review.
A

B

FIGURE 3

QUADOMICS scoring of all studies included for proteomics (A) and metabolomics (B). Proportion of studies with answers “yes”, “no”, or “not clear” to
each of the signalling questions. Each signalling question is numbered on the left and a short description of each question is given on the right. The
detailed scoring is given in Supplementary Tables S3 and S4.
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Papers that included less than 10 subjects per study group are

not further discussed here (n=16; see Supplementary Table S6 for

details). This resulted in a total of 23 papers focusing on proteomic

biomarkers for diagnosis, prognosis, risk stratification or

classification (Table 3 and Supplementary Table S7). Ten studies

used blood (serum or plasma), two studies used uterine aspirate

whereas eight studies used fresh frozen tissues and three used

formalin-fixed-paraffin-embedded (FFPE) tissues. Various

technologies were used, with the most common being 2D-DIGE/

MS based methods. Although studies on tissue proteomics preceded

chronologically those in body fluid, since this review focus of

diagnostic/prognostic biomarkers where body fluids represent the

most suitable biomaterial, we will start in the next paragraphs

describing studies using body fluids for biomarker discovery.

3.3.1 Blood proteomics
Under the rationale that protein fragments/peptides are

produced in the tissue microenvironment by proteolytic processes

and released into the blood, the first proteomic studies based on
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blood (serum or plasma) were published during the first decade of

2000. Zhu and co-workers (102) performed a biomarker discovery

study using SELDI-TOF-MS on 40 patients and 30 age-matched

healthy controls and identified 13 m/z protein-peaks that were

found in different levels between patients and healthy women. The

sensitivity of each single peak ranged from 40-95%. The authors

further built a decision tree-based algorithm that correctly

identified 95.7% (70) of the samples (30/33 healthy women and

37/40 ECs; Supplementary Table S7). The same authors further

improved the model using only four m/z protein peaks resulting in

sensitivity and specificity of 100% and 92.3%, respectively, in the

training set and 60% and 75%, respectively, in an independent

validation cohort (104). The authors did not identify the proteins

corresponding to the m/z spectra peaks (Supplementary Table S7).

A relatively large study including 199 serum samples from

untreated EC patients (n=92), patients with prolapsed uterus

(n=16), healthy women (n=17) (n=33), and uterine fibroids

(n=74) identified 507 peaks with m/z values ranging from 2,000

to 30,000 by MALDI QTOF-MS (103). Based on predefined
TABLE 3 List of the 23 proteomic studies in endometrial cancer.

Study Study aim Samples * Study design

Zhu, 2006 (102) Diagnostic Biomarkers Serum Case - Control

Kikuchi, 2007 (103) Diagnostic Biomarkers Serum Case - Control

Zhu, 2008 (104) Diagnostic Biomarkers Serum Case - Control

Qiu, 2010 (105) Diagnostic Biomarkers Serum Case - Control

Wang, 2011 (106) Diagnostic Biomarkers Serum Cases only

Enroth, 2018 (107) Diagnostic Biomarkers Plasma Case - Control

Tarney, 2019 (108) Diagnostic Biomarkers Serum Nested case-control

Ura, 2021 (109) Diagnostic Biomarkers Serum Case - Control

Celsi, 2022 (110) Diagnostic Biomarkers Serum Case - Control

Ura, 2022 (111) Diagnostic Biomarkers Serum Case - Control

Martinez-Garcia, 2016 (112) Diagnostic Biomarkers uterine aspirate Case - Control

Martinez-Garcia, 2017 (113) Diagnostic Biomarkers Prognostic Biomarkers uterine aspirate Case - Control

Yoshizaki, 2005 (114) Diagnostic Biomarkers Frozen tissue Case - Control

DeSouza, 2007 (115) Diagnostic Biomarkers Frozen tissue Case - Control

Voisin, 2011 (116) Diagnostic, Prognostic, Therapeutic Biomarkers Frozen tissue Case - Control

Shan, 2016 (117) Diagnostic Biomarkers Frozen tissue Cases only

Ceylan, 2020 (118) Diagnostic Biomarkers Frozen tissue Case - Control

Mauland, 2017 (119) Prognostic Biomarker associated with obesity Frozen tissue Cases only

Akkour, 2022 (120) Diagnostic Biomarkers Frozen tissue Case - Control

Kurimchak, 2020 (121) Prognostic Biomarkers Frozen tissue Cases only

DeSouza, 2010 (122) Diagnostic Biomarkers FFPE tissue Case - Control

Aboulouard, 2021 (123) Prognostic Biomarkers FFPE tissue Case - Control

Janacova, 2020 (124) Prognostic Biomarkers in the tamoxifen users FFPE tissue Cases only
See Supplementary Table S7 for further details.
* FFPE: Formalin fixed paraffin embedded.
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stringent criteria (P < 0.00001, AUC value > 0.80) three peaks were

differentially abundant between the case and the control groups and

showed sensitivity and specificity of 65.2% and 93.9%, respectively

(Supplementary Table S7). Surgical stage of patients could not be

discriminated by the selected m/z peaks but patients with EC and

patients with uterine fibroids could be dist inguished

(Supplementary Table S7).

Qiu and co-workers (105) performed proteomics on 30 EC

patients and 30 control patients on serum collected pre-operatively

and identified 147 differential peaks. They further used different

algorithms based on various peaks (from two to 10) and reported

specificities and sensitivities up to 97% and 100%, respectively

(Supplementary Table S7).

In another study, Wang and colleagues (106) performed a pilot

study to compare the serum proteomics in patients with distinct

stages of endometrial disease, from simple endometrial hyperplasia

(n=6), complex hyperplasia (n=4), hyperplasia with atypia (n=4)

and with early-stage EC (n=6). The authors identified 74 proteins

including potential biomarkers (Supplementary Table S7), but the

number of samples included was very limited.

A large nested case-control study aiming at identifying early

detection biomarkers for EC was based on the UK Prostate, Lung,

Colorectal, and Ovarian cancer screening trial (n =78,216 subjects),

including 112 incident EC cases and 112 matched postmenopausal

controls (108). Among cases who received an EC diagnosis less than

two years after inclusion (n=31), 1,100 total proteins were

identified, 565 of which were co-quantified across all patient

samples and 47 proteins resulted altered compared with controls.

Six candidate protein biomarkers were used to build a diagnostic

algorithm with over 45% sensitivity and 96% specificity

(Supplementary Table S7). A recent study employed PEA

proteomics (PCR-based) and Olink Multiplex assays to search for

candidate diagnostic biomarkers in gynaecologic malignancies,

including EC (107). The authors compared malignant cases with

both a group of healthy controls and with a group of women with

benign tumours. The abundance of 441 unique proteins in plasma

was first evaluated in a discovery phase that resulted in 16 potential

protein biomarkers. The diagnostic value of nine out of these 16

proteins was validated in a replication cohort and resulted in

sensitivities and specificities above 64% and 67%, respectively, to

distinguish EC from healthy women or from patients with benign

tumours (Supplementary Table S7).

Three proteomics studies using serum (109–111) were

performed by an Italian group. In 2021, the authors performed a

pilot study using the serum of 15 EC patients and 15 [non-cancer

patients (109)] and identified 16 proteins with diagnostic potential

(Supplementary Table S7), four of which (ITIH4, CLU, SERPIN1,

and C1R) were validated by western blotting. One year later, the

study was extended to a larger cohort including 60 non-EC controls

and 44 EC patients (110). Proteomic analyses was performed on 10

controls and 10 EC. It is not stated in the study whether the study

population and the samples used for proteomics overlaps with the

previous investigation from the same team (109). The authors

further validated the observed downregulation of SBSN in serum

of patients by western blotting and in silico analysis of the TCGA

database. In a subsequent study, the authors included 44 EC cases
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and 44 non-oncologic patients (111) - the study does not specify

whether this study population overlaps with the previously studied

groups (109, 110). By using PEA on two distinct protein panels

(Immuno-oncology panel and Target 96 Oncology III panel), the

authors identified several differentially expressed proteins and

proposed different models resulting in AUCs up to 0.96

(Supplementary Table S7).

3.3.2 Other body fluids
For diagnostics, another potentially interesting minimally

invasively obtained body fluid is the uterine aspirate, which has

the advantage to capture the tumour heterogeneity better than a

presurgical biopsy (current standard diagnostic method). Uterine

aspirate for proteomic biomarker discovery was used by Martinez-

Garcia and collaborators (112, 113). Since the LC-PRM targeted

proteomics technique allows the quantification of a limited number

of predefined proteins, the authors adopted a sequential workflow:

506 candidate biomarkers were first extracted from a literature

search. Subsequently, the authors determined the presence of these

biomarkers in uterine aspirates by LC-MS/MS and confirmed the

presence of 158 proteins. After method optimisation, a list of 52

candidate biomarkers was selected for PRM design/development

and 26 proteins were differentially expressed between cases and

controls (112). The same set of 52 proteins was subsequently tested

on an independent prospective cohort of 116 women entering the

EC diagnostic workup due to EC suspicion (113). A diagnosis of EC

was confirmed in 69 women and 28 proteins elevated in EC versus

controls had an AUC >0.75. Various tests and combinations of the

five best individual biomarkers were assessed, resulting in

diagnostic and prognostic models with sensitivities and

specificities above 89% and 83%, respectively (Table 3).
3.3.3 Tissue proteomics
3.3.3.1 Frozen tissue

Pioneering studies were conducted as early as 2005 using

iTRAQ. After determining the feasibility and comparing the

performance of iTRAQ and cICAT for proteomics (authors used

less than 10 samples per group; Supplementary Table S6, (125), the

authors used iTRAQ to analyse 40 frozen tissue samples including

proliferative, secretory endometrium and EC (115). Over 1,000

proteins were identified among which six candidate markers (PK,

PIGR, CPN10, MIF, AAT, CKB, and TAGLN) were confirmed as

differentially expressed from their previous pilot investigation (125).

Fourteen proteins were selected for further analyses and after

assessing the associations of each individual protein with

malignant or benign status using the two-sample t-test (p<0.005),

four proteins (PK, CPN10, AAT and CKB) were selected to build a

prediction model. Although these proteins used as single markers

reached maximum AUC of 0.95 (sensitivity: 85%; specificity: 90%;

PV: 87%; PPV: 89%), the use of three markers (AAT, PK and

CPN10) resulted in improved performance and an AUC of 0.96

(Table 3). The validity of these biomarkers was further confirmed by

two-thirds/one-third cross-validation, and also by using dot-blot

and IHC on a panel of independent samples (115). In a subsequent

study, the authors verified five of the identified markers (CPN10,
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S100A8, PIGR, PK-M2 and AAT) and one additional marker

(TIMP-1) by IHC on a tissue microarray (TMA), including 148

samples (two simple hyperplasia; eight complex hyperplasia; 39

endometrioid EC; 13 serous papillary/clear cell or Type II EC; one

carcinosarcoma: 85 benign endometrium samples of which 25

proliferative, 25 secretory, 25 atrophic, and 10 menstrual). They

further showed that CPN10 and PK-M2 could distinguish

hyperplasia and EC cases versus controls (sensitivity and

specificity of 77% and 87%, respectively), whereas the

combination of AAT, CPN10, and PK-M2 resulted in sensitivity

and specificity of 85% and 93%, respectively, in distinguishing EC

versus control patients (126). The same authors subsequently

performed a pilot study on 10 EC patients and 10 control

patients using a novel strategy (drill-down coupled to iTRAQ) to

improve their ability to detect novel proteins and identified 1,529

proteins, among which 40 candidate biomarkers. The PPV and

AUC of these proteins used as single diagnostic biomarkers ranged

between 62%-100% and 0.60-1.00, respectively (Supplementary

Table S7) (116).

In parallel to these studies based on iTRAQ, the first studies

analysing fresh/frozen EC tissues using 2D gel separation followed

by MS were published in 2005. By applying SELDI-TOF-MS to 19

cases of EC and 20 control patients, the authors identified one peak

(m/z 9,600) consistently upregulated and a second peak (m/z

11,300) consistently downregulated in case group versus control

group (114).

Additional biomarker discovery studies were published in

subsequent years, with most of them being pilot or feasibility in

nature and including less than 40 samples. Shan and co-workers

(117) compared EC versus adjacent normal tissue in 10 cases with

iTRAQ-based proteomics and identified 1,266 proteins, 103 of

which were upregulated and 30 downregulated in cancer versus

control tissue (Supplementary Table S7). Results were confirmed by

western blotting, qRT-PCR and functional studies using cell lines.

Ceylan and co-workers (118) also performed a diagnostic

biomarker discovery study based on 2D-DIGE-MALDI-TOF and

compared controls (pre- and post-menopausal women),

hyperplasia and EC. Several proteins were differentially expressed

between controls and EC, controls and hyperplasia (Supplementary

Table S7), or were associated with advanced-stage disease (CAH1,

PPIB, K2C8, and UAP56).

Mauland and colleagues (119) explored the levels of 163

proteins using RPPA in relation to prognosis and obesity. The

authors used patient cohorts from different geographical regions: a

group of samples collected in Norway in two different periods

served as training (n=272 collected between 2001-2013) and

validation (n=68 collected between 2011-2015) cohorts and a

third cohort collected in Texas (USA) was used as extra

validation (n=178 collected between 2000-2009). Beside

correlation with BMI, several proteins were associated with

patient prognosis, including proteins indicative of a low PI3K

activation in non-obese early-stage ER-positive tumours. Data

was further validated by RNA (correlation) and IHC (Table 3).

Akkour and colleagues (120) used 2D-DIGE to analyse tissues from

patients with hyperplasia (n=12), EC (n=12) and age-matched
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control patients (n=12) and identified 87 differentially expressed

proteins (26 between controls and hyperplasia and 32 between EC

and hyperplasia; Table 3). Further modelling was not performed. In

a recent study, Kurimchak et al. (121) used an innovative approach

based on Multiplexed Inhibitor Beads (MIB) and MS to chart the

kinase network in EC (n=20) and adjacent normal tissues (n=16).

The MIB binding value was measured for 347 kinases, 300 of which

were quantitated by both LFQ and s-SILAC, whereas 37 and 10 by

LFQ and s-SILAC, respectively. These analyses showed that SRPK1

was overexpressed in cancer tissue (Table 3). IHC on TMAs (39

serous and 18 endometrioid and 12 normal endometrial tissues),

functional/loss of function studies in vitro and the TGCA and

CPTAC datasets confirmed that SRPK1 is associated with EC and

with poor patient survival.

3.3.3.2 Formalin-Fixed-Paraffin-Embedded (FFPE)
tissue

A number of studies investigated the potential use of FFPE

material for proteomics (Supplementary Table 6), but only three of

them met our selection criteria (Table 3; Supplementary Table S).

DeSouza and colleagues confirmed the feasibility of mTRAQ

targeted proteomics using FFPE tissues (122). The authors laser-

capture-microdissected tissue and examined the tissue of interest

from 10 ECs and 15 proliferative endometrium samples and

detected 13 out of the 17 targeted proteins across 12 samples

(Table 3; Supplementary Table 7).

Janacova and colleagues (124) explored archival material from 36

EC patients, 15 of whom had received tamoxifen adjuvant treatment

for breast cancer, whereas 21 were never exposed to tamoxifen

previously. The authors explored with LC−MS/MS in SWATH-MS

mode 34 tumour samples (each from one subject) and 11 myometrial

tissues adjacent to the tumours. The proteomic approach targeted

over 1,100 different proteins, of which over 900 were consistently

identified. The authors compared clinical features in the tamoxifen

versus tamoxifen naïve patients and identified six upregulated and 22

downregulated proteins. The expression of CAPS and STMN1 was

confirmed with IHC and STMN1 was also associated with poor

patient prognosis (Table 3). Using a very innovative approach (123),

Aboulouard and coworkers compared the proteome profile in EC and

sentinel-lymph-node SLN tissues (Table 3; Supplementary Table 7).

Regions of interest were first microdissected, then analysed with

NanoLC-ESI-MS and a number of potential biomarkers indicative of

lymph node disease were identified.
3.4 Metabolomics in endometrial cancer

Our literature search identified 29 studies using metabolomics

in EC (Table 4 and Supplementary Table S8), with the majority

evaluating the metabolic profiles in blood samples (10 serum, seven

plasma, one serum and plasma, one dried blood). Seven studies

focused on endometrial tissue samples, one on cervical lavage, one

on endometrial brushing and one study on urine samples. Most

studies aimed to identify diagnostic and/or prognostic biomarkers,

better understanding the mechanisms of carcinogenesis (studies in
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tissue samples), and also to determine associations between

metabolic profiles and EC (131, 132). Plasma, serum and urine

represent appropriate sources for discovery of diagnostic/

prognostic biomarkers (155). However, also metabolic profiles of

cervical lavage, brushing endometrial samples, and tissue samples

(if obtained as pre-surgical biopsy) may be of clinical relevance.
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Non-targeted metabolomics was more commonly applied (20

studies) as compared to targeted metabolomics (10 studies). Only

six studies used NMR analysis, and there was one study that

combined NMR with the most commonly used LC-MS/MS (138).

The majority of the targeted metabolomic studies focused on lipids

and amino acids.
TABLE 4 List of the 29 metabolomic studies in endometrial cancer.

Study Study aim Samples Study design

Ihata, 2014 (127) Diagnostic Biomarkers Plasma Case-control

Knific, 2018 (128)
Diagnostic Biomarkers
Prognostic Biomarkers

Plasma Case-control

Strand, 2019 (129) Prognostic Biomarkers Plasma Cases only

Njoku, 2021 (130)
Diagnostic Biomarkers
Prognostic Biomarkers

Plasma Case-control

Kliemann, 2021 (131) Association Plasma & serum Nested case-control

Dossus, 2021 (132) Association Plasma Nested case-control

Breeur, 2022 (133) Association Plasma & serum Case-control study

Audet-Delage, 2018 (134)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Audet-Delage, 2018 (135)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Troisi, 2018 (136)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Shi, 2018 (137) Exploratory Serum Case-control

Bahado-Singh, 2017 (138) Diagnostic Biomarkers Serum Case –control

Lunde, 2020 (139) Exploratory Serum Cases only

Kozar, 2021 (140) Exploratory Serum Prospective observational study

Gu, 2021 (141)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Yan, 2022 (142)
Diagnostic Biomarkers
Prognostic Biomarkers

Serum Case-control

Schuhn, 2022 (143) Diagnostic Biomarkers Serum Case-control

Troisi, 2020 (144) Diagnostic Biomarkers Dried blood samples Multicenter prospective cohort study

Shao, 2016 (145) Diagnostic Biomarkers Urine Case-control

Cheng, 2019 (146) Diagnostic Biomarkers Cervicovaginal fluid Case-control

Jove, 2016 (147) Diagnostic Biomarkers Tissue Case-control

Altadill, 2017 (148) Diagnostic Biomarkers Tissue Case-control

Trousil, 2014 (149) Diagnostic Biomarkers Tissue Case-control

Cummings, 2019 (150) Diagnostic Biomarkers Tissue Case-control

Skorupa, 2021 (151) Diagnostic Biomarkers Tissue Case-control

Arda Düz, 2022 (152) Diagnostic Biomarkers Tissue Case-control

Gatius, 2022 (153) Diagnostic Biomarkers Tissue from Biobank Cases only

Shafiee, 2020 (154) Diagnostic Biomarkers Plasma & tissue Cros-sectional study

Yi, 2022 (101) Diagnostic Biomarkers Tissue & Urine Case-control
See Supplementary Table S8 for further details.
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3.4.1 Blood metabolomics
Metabolomic studies on serum samples from EC patients have

been performed from 2017 and identified a series of metabolites in

differential concentrations between study groups (Supplementary

Table S8). Audet-Delage and co-workers (134) reported that the

levels of 115 acylcholines, monoacylglycerols, and acylcarnitines

were increased while the levels of 22 free fatty acids were decreased

in 26 postmenopausal EC patients (type I and II, recurrent and non-

recurrent) versus 18 patients with benign conditions. The authors

identified a series of metabolites specific for recurrent EC, where

bile acids were increased in type I and sphingolipids in type II

recurrent EC. The authors constructed a diagnostic model

(including the levels of spermine, isovalerate, glycylvaline and

gamma-glutamyl-2-aminobutyrate) with an AUC of 0.92 and a

prognostic model (including 2-oleoylglycerol and TAG 42.2-

GA12:0) that separated between recurrent and non-recurrent EC

with an AUC of 0.90. Troisi and colleagues (136) used a GC-MS

approach and determined the metabolic profiles in 118 EC patients

and 130 healthy women and control patients. Using several

machine learning approaches and distinct patient cohorts, they

constructed and validated a diagnostic model (EC versus healthy

women) with accuracy of 0.99 and a prognostic model (type I/type

II) with accuracy of 0.93. The first was based on increased levels of

lactic acid, homocysteine, 3-hydroxybutyrate, and decreased levels

of linoleic acid, stearic acid, myristic acid, threonine, valine and

progesterone, whereas the latter on increased levels of progesterone

and decreased levels of lactic acid, cystine, serine, malate, glutamate

and homo-cysteine. Bahado-Singh and co-workers (138) performed

NMR analysis in 56 stage I-IV EC patients and 60 healthy women,

divided in discovery (33 ECs and 36 healthy women) and validation

phase (23 EC and 24 healthy women) and constructed several

diagnostic logistic regression models based on lipid levels with an

AUC above 0.8. The highest AUC (0.83) was reported for the

combination of C14:2, PCae C38:1 and 3-hydroxybutyric acid. This

model separated also between stage I-II EC and healthy women

(AUC = 0.82). An exploratory MS analysis by Kozar et al. in 15 EC

and 21 control patients (140) reported a Random Forest model

including Cer 34:1;2, Cer 40:1;2, AC 16:1-OH and 1-

methyladenosine with AUC of 0.92, but reported no validation.

Yan et al. performed a MS-based study (142) which included 23 EC

patients, 30 healthy women, 30 patients with endometrial polyps

and 12 patients with endometrial hyperplasia in the discovery phase

and 50 EC patients (stage I-IV) and 195 healthy women, 171 polyps

and 40 hyperplasia patients in validation phase. Their logistic

regression models for separation between EC and endometrial

polyps included 6-keto PGF1a, PA(37:4), LysoPC (20:1) and PS

(36:0) and showed good characteristics with AUC > 0.90. A recent

MS/MS targeted metabolomic study by Schuhn et al. performed in

20 EC patients, 157 healthy women and 14 control patients (143)

reported that individual metabolites (carnitines and amino acids)

allow stratification between EC and healthy women, and EC and

control patients, with AUCs of 0.82 and 0.85 for malonylcarnitine

and threonine, respectively (Supplementary Table S8). The study by

Lunde et al. (139) performed NMR analysis in serum samples from
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metabolic profiles that allow identification of patients with chronic

pelvic pain after hysterectomy. Using different machine learning

approaches on metabolites with different levels in the two groups

(Supplementary Table S8), several models were built, with the best

diagnostic characteristics (AUC of 0.87) seen for linear support

vector model.

Due to potential variability in the composition of serum, plasma

represents the preferred source for biomarker discovery. However, so

far a minority of the studies on blood metabolomics were performed

using plasma. The first study by Ihata et al. (127) used MS to analyse

plasma from 80 EC patients (stages I-IV), 122 patients with benign

gynaecological diseases and 240 healthy women using training (40 EC

and 120 healthy women) and validation sets (40 EC and 120 healthy

women and 122 control patients). The authors built logistic

regression diagnostic models based on panels of amino acids

(histidine, isoleucine, valine and proline) that separated EC from

healthy women (AUC > 0.91) and EC from control patients (AUC =

0.83; Supplementary Table S8). In a study by Knific et al. (128), 61 EC

patients and 65 patients with benign uterine conditions were

included. By employing LC-MS/MS analysis in training and test

sets, the authors constructed diagnostic logistic regression models to

separate EC from controls (AUC = 0.84) and prognostic models that

allowed stratification of patients with lymphovascular invasion (LVI;

AUC = 0.94) and myometrial invasion (AUC = 0.86). These were the

first diagnostic and prognostic models of EC that included metabolite

ratios. Strand et al. (129) used the same methodological approach but

focused on prognostic biomarkers to identify metabolic differences

between 20 EC patients with long versus 20 EC patients with short

survival, where patients were matched for stage, grade, age, and BMI.

Using Partial Least-Squares Discriminant Analysis (PLS-DA), three

models with AUC up to 0.96 were constructed but none has been

validated yet (Supplementary Table S8). Another MS-based study in

plasma samples (130) focused on diagnosis of EC in obese patients

(BMI > 30) and included 67 EC patients and 69 control patients (test

and training sets). RF algorithms including 20 metabolites separated

all EC patients from controls (AUC = 0.95) and showed even better

characteristics for separation of stage I EC from control patients

(AUC = 0.98). Individual metabolites showed potential as prognostic

biomarkers and separated EC patients with/without LVI (AUC =

0.83; Supplementary Table S8). Other studies on serum/plasma

metabolome in EC patients reported only different levels of

metabolites in EC patients (133, 135, 137, 141) and associations of

individual metabolites with EC (131, 132).

A well-designed GC-MS discovery study analysed dried blood

samples analysed 50 postmenopausal EC patients and 70 patients

without EC and validated prospectively the results among 1,430

postmenopausal women including 16 incident EC patients

(Supplementary Table S8). Their ensemble machine-learning

algorithm included 10 different classification models with

accuracy of 99.9% (144). Among studies reporting serum and/or

plasma metabolic profiles in EC patients, only few diagnostic/

prognostic models have been validated in large multicenter

studies, and the majority still awaits appropriate validation.
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3.4.2 Metabolomics in other physiological fluids
Only two studies searched for biomarkers of endometrial cancer

in urine samples (Supplementary Table S8). Shao et al. (145) used

nontargeted metabolomics to determine differences in urine

metabolic profiles from 25 EC patients, 25 healthy women and 10

endometrial hyperplasia patients and constructed PLS-DA and

Support Vector Machine models, but provided no diagnostic

characteristics. Yi et al. (101) analysed urine, tissue samples, and

brushing endometrial samples and identified 285 metabolites in

differential levels in urine samples from 10 EC patients compared

with 10 control patients. PLS-DA based on the top 100 metabolites

showed an AUC of 0.81. The cervicovaginal fluid from 21 EC

patients and 33 non-EC controls was analysed by NMR using

training and test sets (146). The levels of 29 metabolites differed

between groups and RF and SVM models with accuracy up to 0.78

were constructed (Supplementary Table S8). These studies in urine

samples and cervicovaginal fluid included a small number of

samples thus future attempts for biomarker discovery should

include respective metabolomics profiles from larger group of EC

and control patients.

3.4.3 Tissue metabolomics
Seven studies explored the metabolic profiles in EC tissue. The

first study was published in 2014 (149) and included 10 ECs and 10

control patients. NMR analysis revealed deviated concentration of of

several amino acids, phosphocholine, glutathione, scyllo-inositol,

myo-inositol, and inosine/adenosine in EC tissue (Supplementary

Table S8) and the authors built a PLS-DA model with an AUC of

0.99. Arda Düz et al. (152) employed NMR to analyse tissues from 17

ECs and 18 control patients, and reported a number of candidate

metabolite biomarkers e.g., lactate, alanina, phenylalanine and ratios

glutamate/glutamine/methionine and leucine/isoleucine with AUCs

up to 0.88 (Supplementary Table S8). A recent non-targeted NMR

analysis on 64 EC tissue (patients with different grades of disease) and

10 tissues from patients with benign uterine diseases, identified using

OPLS-DA the levels of a number of metabolites differentiating the

patient groups (151). The concentrations of dimethylsulfone and

phosphocholine were higher whereas the concentrations of

glycerophosphocholine and glutamine were lower in low grade EC.

In grade 1/2 EC, the levels of myoinositol were decreased and in grade

3 there were higher levels of 3-hydroxybutyrate, alanine, and betaine.

The models constructed based on individual metabolites allowed

separation between different grades of tumours with AUCs above

0.90 (Supplementary Table S8).

Other studies that investigated the metabolic profiles in cancerous

tissues contributed mainly to a better understanding of the

pathophysiology of EC, as these studies reported differential

metabolites and dysregulated pathways in EC. Jove et al. (147)

analysed 27 EC tissue samples and 15 normal endometrium samples

by MS/MS and identified 44 differential metabolites including

increased levels of stearamide, monoolein, hypoxanthine, 1,2-

dihexadecanoyl-sn-glycerol (Supplementary Table S8). Comparison

of cancer tissue of different grades identified 26 metabolites with

increased levels of taurine and erythriol and decreased levels of

oleamide. Importantly, this nontargeted metabolomic study used a

novel approach as the authors examined the differences between
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surface EC and the myometrial invasion front and reported 104

differential metabolites (147). Altadil et al. (148) used non-targeted

MS/MS to analyse 39 EC tissues and 17 control samples from

postmenopausal women with stage I-III EC and benign diseases,

respectively. Eighty metabolites, with 42 exhibiting differential levels,

were identified with increased levels of taurine and erythriol and

decreased levels of oleamide (Supplementary Table S8). Specific

metabolites had different levels between cancers and controls

(glutamate-phenylalanine-arginine-tryptophan, palmic amide,

stearamide, oleamide, 2-phosphatidylserine, phosphatidylglycerol,

inosine, and picolinic acid) or between stage I/II and stage III disease

(phosphatidylcholines, phosphatidylethanolamines, and arachidonic

acid; (Supplementary Table S8). Cummings et al. (150) performed a

targeted metabolomic study on 108 cancer tissues, 53 samples of

normal endometrium, 33 atrophic endometrium and 31 samples of

atypical hyperplasia. The authors showed decreased concentrations of a

number of metabolites including 13,14-dihydro-15-keto PGE2 in type 1

and 2 EC versus normal endometrium and 12-HETE in EC type 2

versus type 1; Supplementary Table S8). Shafiee et al. (154) focused on

the pathophysiology of EC and compared 34 cancerous tissues with 34

control endometrial tissues from patients with polycystic ovarian

syndrome (PCOS). Their nontargeted MS-based analysis revealed

changes mainly among lipids. Yi et al. (101) performed nontargeted

metabolomics in urine, intrauterine brushing, and tissues from 24 EC

patients and 18 control patients where PLS-DA identified 74

metabolites of which 47 were found in higher levels and 27 in lower

levels. Comparison of metabolic profiles in tissue samples to urine and

brushing samples showed that 49 of 74 metabolites were also detected

in urine samples and 21 of 74 metabolites in intrauterine brushing

samples, which supports the potential of urine metabolomics profiles

for non-invasive diagnostic/prognosis (Supplementary Table S8). A

recent study explored the metabolic profiles in biobanked tissue

samples from endometrioid (n=20) and serous EC (n=11) (153).

Using non-targeted MS analysis, 232 metabolic differences could be

characterised (Supplementary Table S8).

Three metabolomic studies using tissue samples (149, 151, 152)

identified individual metabolites and constructed diagnostic models

with promising AUC values; however, these studies included very

limited number of patients.
3.5 Combined metabolomics/proteomics

There was only one study that employed a combined omics

approach (101) and performed nontargeted metabolomics on 24

cancer and 20 control tissue samples (Supplementary Table S7) and

also nontargeted proteomics on a subset of 12 cancer and 9 control

tissue samples by LC-MS/MS. The authors identified 1,445 proteins

significantly up- or down-regulated in the EC group compared with

the control group (adj. p<0.05, FC<1.5). To further characterise any

relation between the metabolic and proteomic profiles, the authors

performed network analysis that showed 28 metabolites and 135

proteins with 212 connections. Glutamine, dopamine, noradrenaline,

adenosine-5-monophospate, and guanosine-5’-monophosphate were

the major centres of sub-networks showing differences in amino acid

and nucleotide metabolism.
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3.6 Additional multi-omics or
pan-cancer studies

A number of studies explored the proteome in patients with EC,

but such analyses were part of a larger multi-omics approach, or

part of systems-biology/pan-cancer approaches to study human

disease or to establish databases and repositories. Most of these

studies did not use proteomics for biomarker discovery, but as tools

to understand the pathophysiological processes.

Five studies aiming at improved patient classification were

performed within the TCGA consortium and used RPPA as

proteomic method (22, 92, 94, 95, 99). Two studies demonstrated

the utility of functional proteomics based on RPPA next to genomics

and transcriptomics (92) and further created the bioinformatic

resource ‘The Cancer Proteome Atlas’ (TCPA; (94)). The study of

Kandoth and co-workers (13) explored a cohort of 373 EC patients,

including 307 endometrioid and 53 serous ormixed histology cases to

assess somatic mutations, copy number alterations, RNA expression,

protein expression, DNA methylation and micro-RNA expression.

With regard to proteomics, 293 samples were analysed by RPPA and

several differentially expressed proteins were associated with other

specific molecular tumour features (22). One of the latter two TCGA

studies did not use proteomics (99), whereas the other study (95)

explored 57 carcinosarcomas and -also in this case-, protein analyses

were used to confirm other features identified with the molecular

analyses (like EMT transitions, PI3K/AKT pathway activation, low

steroid hormone receptor signalling). Similar to the TCPA (initiated

within TCGA), the Clinical Proteomic Tumor Analysis Consortium

(CTPAC) generated large proteomic datasets across various tumour

types, and further characterised the proteogenomic landscape in EC

(100). A pan-cancer study (98) aimed to characterise the actionable

mutations across different solid tumours (including EC) and used

RPPA to demonstrate PI3K and MAPK signalling pathways, whereas

one study was focussed on human diseases other than cancer (97).
4 Discussion

In this study, we systematically reviewed all papers that

explored the proteome or the metabolome in search for candidate

biomarkers for prognostic or diagnostic purposes in EC. After

screening the retrieved publications, we included 23 studies on

proteomics (serum, plasma, uterine aspirate or tissue) and 29

studies on metabolomics (serum, plasma, urine, intra-uterine

brushing, dried blood, cervicovaginal fluid or tissue).

Proteomic studies on body fluids and tissues (first fresh frozen

then FFPE) have been published from second half of 2000. Initial

studies were pilot in nature, and enrolled only a few patients

(Supplementary Table S6). The first metabolomic studies were

published one decade later, and study populations were in general

larger than those used for proteomics. Seven out of 23 proteomic

and 14 out of 19 metabolomic studies reported the performance of

the models as AUCs, and several candidate biomarkers show great

potential with AUC values above 0.8. However, the majority of the

reported proteins or metabolites and corresponding models
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represent biomarker candidates that still require validation. The

models developed need evaluation of their statistical performance

by splitting the data into training and test sets (so called “statistical

validation”) and further experimental validation on independent

cohort is essential (156).

With regard to statistical validation, this was performed by two

proteomic studies (two-thirds/one-third cross-validation (115);

leave-one-out-cross-validation (113) and four metabolomic

studies (127, 128, 136, 142). Data on differentially expressed

proteins was also confirmed experimentally using alternative

methodologies like dot-blot (115), IHC (119, 121), RNA/qRT-

PCR (117, 119), western blotting (110, 117), in vitro functional

studies (117, 121) or using existing databases and repositories

(119, 121).

In the context of proteomics, four studies only validated their

data using independent sample cohorts (104, 107, 113, 119), and

one study (115), validated their proteomic-based model in a

subsequent publication using TMAs (126). Three metabolomic

studies performed similar validations in independent cohorts

(138, 142, 144), and one study in particular successfully validated

the metabolic profiles identified in serum samples (136) also using

dried blood and reported excellent diagnostic characteristics (144).

For validation, the authors adopted a prospective design on a very

large study cohort (over 1,000 subjects), therefore, candidate

biomarkers identified in this study bear great potential for

translation into clinical practice. Of interest, these biomarkers

include steroids, which were also selected as candidate molecules

in other studies (135, 157)

A caveat in a number of the included studies on proteomics

(102, 104, 108) or metabolomics (136, 138, 142, 143) is the use of

healthy (not age/comorbidity matched) women, likely resulting in

an overestimated diagnostic accuracy. Also, if pre-menopausal

controls are included, this may induce biases as EC is

predominantly a postmenopausal disease (114–116, 122, 147, 149,

154). Additionally, biomarker discovery preferably includes a

relevant population needing diagnostic tests such as women with

postmenopausal uterine bleeding, or high-risk women, e.g., patients

treated with tamoxifen or with Lynch syndrome, but also women

with PCOS and obesity. Some proteomic studies focussed on these

target groups, like obese subjects (119), or women with previous

exposure to tamoxifen (124). One metabolomic study was

performed in an obese population, and reported a Random

Forest-based diagnostic model combining the top 10 performing

metabolites that stratified stage I EC from other obese patients with

an AUC of 0.98 (130), whereas the second metabolomic study

included patients with PCOS (154).

A final relevant confounder is the ethnic background, known to

affect the proteome profiles (83, 84). However, only one study used

a cohort from a different geographical background, although still

Caucasian to validate their data (119).

In a diagnostic/preoperative workup, ideal biomarkers should

be present in easily and minimally invasively obtained body

specimens. The proteomic studies included in this review

predominantly used blood (serum of plasma) or uterine aspirate.

The pilot studies using urine, although possibly the ideal body fluid
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for biomarker detection, were too small to be included

(Supplementary Table S6). Also in the context of metabolomics,

only a few studies were performed on physiological fluids other than

blood. One study explored cervicovaginal fluid (146) and two

studies used urine samples, both of which have important

limitations as they either used healthy women as controls (145)

or included a few samples only (10 EC patients and 10 control

patients) (101). Despite these limitations, these studies are also

promising and future attempts for biomarker discovery in urine or

cervicovaginal fluids using larger group of EC and control patients

are warranted.

Importantly, although research groups were often able to

validate their own candidate biomarkers in subsequent studies,

rarely data was confirmed by independent authors/researchers,

most probably due to methodological issues and also the

abovementioned biases associated with geographical locations/

ethnicity and lifestyles. Of note, there were candidate biomarkers

that were validated in independent studies, and these represent

highly promising molecules. Besides lipids, phospholipids and

steroids, candidate proteins were reported as well. ANXA1 is

described upregulated by three independent groups in EC tissues,

uterine aspirates, and lymph nodes contaminated with EC cells

(112, 113, 118, 123). ANXA1, annexin A1, plays an important role

in immunity and inflammation and is associated with various

diseases and cancers (158). HSPB1 was found upregulated in EC

tissues and uterine aspirates by two teams (112, 113, 118). The

HSPB1 gene encodes for Heat Shock Protein Family B (Small)

Member 1, a protein that is associated with gynaecological cancers

(159). In addition, SERPINC1, APOA4, APOE and ITIH4 are

described deviated in the serum of hyperplasia or cancer patients

by two teams (106, 109). In metabolomic studies, both molecule

levels but also the ratio between levels of molecules proved to be

good biomarkers, and a number of studies included metabolite

ratios in modelling/analyses (128, 130, 132, 148, 152).

Overall, the major limitations of the studies published up to

data are: i) the use of small study cohorts; ii) the diagnostic or

prognostic accuracy was seldom compared with other known

biomarkers or reference molecules (e.g., CA-125). iii) the 95%

confidence intervals for AUC values, sensitivity and specificity

were rarely reported; iv) as outlined above, validation in

independent cohorts was done by a few studies only; specifically

in metabolomic studies, validation using other technologies was

never performed.
4.1 Strengths and limitations of
the present study

The limitations reported above related to the papers retrieved and

reviewed are reflected also in the present study, i.e., small study

cohorts, potenial pre-analytical and analytical bias, potential bias due

to ethnic background, lifestyle; lack of validations; no comparison

with a reference or gold standard. This, in combination with the

heterogeneity in study designs and in the technologies adopted

precluded us making any meta-analyses of identified candidate
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biomarkers, whose potential can be assessed at a qualitative level

only. This implies the impossibility to make any clinically relevant

recommendation or conclusion at this moment. Nevertheless, the

strength of the present study is that, due to the rigorous systematic

approach we adopted, it offers a balanced and realistic view of the

potential of these technologies for the future. It sets the milestones in

proteomic and metabolomic biomarker discovery research, and

indicates the path to follow in the future (see paragraph 4.2.

Recommendations for further biomarker discovery).

It should be also noted that recently systematic reviews focused

on metabolomic and/or proteomic biomarkers for diagnosis of EC

(160), and liquid biomarkers for diagnosis of EC (161). However,

our systematic review has additional unique strengths: we did not

limit our analyses on one biospecimen only, but focused on

metabolomics and proteomics in different biospecimens; we

rigorously assessed the study quality using QUADOMICS and

analysed additional potential conflicts of interest. The study

quality was also assessed by Karkia and co-workers (161),

however, these authors included only studies published in the two

years prior to the publication, whereas we did not set a time limit for

publication. Additionally, we used strict inclusion and exclusion

criteria, which were defined and deposited in the PROSPERO

repository prior to the start of our work. We finally provide

comprehensive tables with all available diagnostic accuracy data

(AUC, sensitivity, specificity).
4.2 Recommendations for further
biomarker discovery

As thoroughly discussed, body fluids and liquid biopsies

represent the most suitable material for diagnostic and prognostic

biomarkers (162, 163), as they capture the disease heterogeneity

better than a biopsy and they are non- or minimally invasive, thus

create less anxiety in patients. In the context of the most appropriate

body material, plasma preparation is less prone to technical (pre-

analytical) biases than serum. Therefore, plasma represents the

preferred source at least for the discovery phase of non-invasive

diagnostic/prognostic biomarkers. Urine also represents an

important clinical sample for non-invasive diagnostics (155),

calling for further biomarker discovery studies. However, urine

poses a challenge for biobanking, as large sample volumes are

needed for analyses (this applies not only if 24-hour urine needs

to be collected, but also for morning urine, which is common in

biomarker discovery studies).

In terms of methodology, statistical and experimental validation

in independent cohorts should be an intrinsic part of biomarker

discovery studies, and inclusion of study populations with distinct

lifestyles, geographical regions of origin and ethnic backgrounds is

essential to identify candidate biomarkers truly associated with

diseases. Strict standard operation procedures for sample

collection and processing should be prepared by experts and

rigorously followed (164). The importance of adhering to quality

standards is also emphasized in a recent narrative review on

biomarker discovery in EC (165).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1120178
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Romano et al. 10.3389/fonc.2023.1120178
5 Conclusions and future prospects

Clinically, there is a great need for non/minimally invasive

biomarkers of EC that could serve as replacement test for

endometrial biopsy or a triage test to select patients for further

invasive diagnosis. Tissue biomarkers are also needed to allow

preoperative stratification of patients and further individualised

treatment. Recent advances in analytical technologies and

computational approaches that can handle increasingly larger

numbers of features offer unprecedented potentials to develop

diagnostic and prognostic tools. The studies performed so far

were in most cases pilot or explorative in nature, and

heterogeneous in terms of study design, technology, and

methodologies. These aspects need harmonisation for the future,

and the study quality should be scrupulously monitored by journals,

reviewers, and stakeholders in order to ensure translationability of

the discoveries.
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Glossary

AUC area under the curve

BMI body mass index

CPTAC Clinical Proteomic Tumor Analysis Consortium

Da Dalton

DFS disease-free survival

DIGE difference gel electrophoresis

EC Endometrial cancer

ELISA enzyme-linked immunosorbent assay

ER estrogen receptor

ESI electrospray ionization

FFPE formalin-fixed-paraffin-embedded

FIGO International federation of gynaecologic oncology

GC Gas chromatography

HER2/Neu Human Epidermal growth factor Receptor 2

HR hazard ratios

iCAT Isotope-coded affinity tag

IHC immunohistochemistry

iTRAQ Isobaric tags for relative and absolute quantitation

LC Liquid chromatography

LFQ Label free quantification (LFQ)

LVI lymphovascular invasion

MALDI matrix-assisted laser desorption/ionization

MIB Multiplexed Inhibitor Beads

MRM multiple-reaction monitoring

MS mass spectrometry

MSI mass spectrometry imaging

NMR nuclear magnetic resonance spectroscopy

NPV negative predictive value

OS overall survival

PAGE polyacrylamide gel electrophoresis

PCOS Poly Cystic Ovarian Syndrome

PEA proximity extension assay

PLS-DA Partial Least-Squares Discriminant Analysis

PPV positive predictive value

PR progesterone receptor

PRM parallel reaction monitoring

PTEN Phosphatase and tensin homolog

RPPA reverse phase protein microarray

(Continued)
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SD Standard Deviation

SDS sodium dodecyl sulphate

SELDI surface-enhanced laser desorption/ionization

SILAC Stable isotope labelling by amino acids in cell culture

SLN sentinel-lymph-node

SRM Selected-reaction monitoring

TCGA The Cancer Genome Atlas

TCGA The Cancer Proteome Atlas

TMA tissue microarray

TOF time-of-flight
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Uterine serous carcinoma:
assessing association
between genomics and
patterns of metastasis
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Sarah Wishnek Metalonis3, Cibele Luna1, Matthew M. Mason2,
Jiangnan Lyu3 and Marilyn Huang4

1Department of Radiology, University of Miami, Miami, FL, United States, 2University of Miami Miller
School of Medicine, Miami, FL, United States, 3Division of Biostatistics, Department of Public Health
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Background: Uterine serous carcinoma (USC) is an aggressive subtype of

endometrial carcinoma which has been increasing at alarming rates,

particularly among Asian, Hispanic and Black women. USC has not been well

characterized in terms of mutational status, pattern of metastases and survival.

Objective: To investigate the association between sites of recurrence and

metastases of USC, mutational status, race, and overall survival (OS).

Methods: This single-center retrospective study evaluated patients with biopsy-

proven USC that underwent genomic testing between January 2015 and July

2021. Association between genomic profile and sites of metastases or

recurrence was performed using c2 or Fisher’s exact test. Survival curves for

ethnicity and race, mutations, sites of metastasis/recurrence were estimated

using the Kaplan-Meier method and compared with log-rank test. Cox

proportional hazard regression models were used to examine the association

between OS with age, race, ethnicity, mutational status, and sites of metastasis/

recurrence. Statistical analyses were performed using SAS Software Version 9.4.

Results: The study included 67 women (mean age 65.8 years, range 44-82) with

52 non-Hispanic women (78%) and 33 Black women (49%). The most common

mutation was TP53 (55/58 women, 95%). The peritoneum was the most

common site of metastasis (29/33, 88%) and recurrence (8/27, 30%). PR

expression was more common in women with nodal metastases (p=0.02) and

non-Hispanic women (p=0.01). ERBB2 alterations were more common in

women with vaginal cuff recurrence (p=0.02), while PIK3CA mutation was

more common in women with liver metastases (p=0.048). ARID1A mutation

and presence of recurrence or metastases to the liver were associated with lower

OS (Hazard Ratio (HR): 31.87; 95%CI: 3.21, 316.9; p<0.001 and HR: 5.66; 95%CI:

1.2, 26.79; p=0.01, respectively). In the bivariable Cox model, the presence of

metastasis/recurrence to the liver and/or the peritoneum were both

independent significant predictors of OS (HR: 9.8; 95%CI: 1.85-52.7; p=0.007

and HR: 2.7; 95%CI: 1.02-7.1; p=0.04, respectively).
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Conclusions: TP53 is often mutated in USC, which most commonly metastasize

and recur in the peritoneum. OS was shorter in women with ARID1A mutations

and with metastasis/recurrence to the liver. The presence of metastasis/

recurrence to liver and/or peritoneum were independently associated with

shorter OS.
KEYWORDS

uterine serous cancer, next generation sequencing, endometrial cancer, somatic
mutations, recurrence, metastases
Introduction
Endometrial cancer (EC) is the most common gynecologic

malignancy in the United States (1, 2) and is increasing at an

alarming rate. Based on clinical and histological variables, EC have

been divided into two types. Type I tumors, or endometrioid EC,

represent approximately 85% of cases, and are usually low-grade

with favorable outcomes. Type II tumors, or non-endometrioid EC,

typically arise in postmenopausal patients, and are frequently of

high-grade thus contributing to a relatively poor prognosis (3, 4).

Type II EC is largely comprised of uterine serous carcinomas

(USC), which represents less than 10% of all endometrial cancers,

yet accounts for more than half of deaths attributed to EC (4–6).

While type I are estrogen-dependent, the role of estrogens in type II

EC is less clear, although studies have shown that the pathogenesis

of type II EC may at least partially depend on the level of estrogens,

differently from what was previously believed (7).

Pathological reporting of EC has limitations due to poor

reproducibility of tumor typing and to accurately identify patients

at risk for recurrence or metastatic disease (8). The identification of

the underlying molecular background of EC has resulted in the

development of new molecular based classifications of EC, namely

The Cancer Genome Atlas (TCGA), which stratifies EC into four

distinct clusters with prognostic significance: polymerase e (POLE)
ultramutated, copy-number low, and microsatellite instability

(MSI) hypermutated, and copy-number high (9, 10).

The genomic characterization of USC is distinct from

endometrioid EC, with USC exhibiting a high frequency of

genetic aberrations involving TP53, FBXW7, PPP2R1A and

ARID1A.USC are mostly classified as copy-number high

according to TCGA (10, 11). In contrast, endometrioid EC

typically demonstrates a higher frequency of microsatellite

instability, frequent activation of WNT/CTNNB1 signaling, and

mutations of POLE, KRAS, and CTNNB1. Endometrioid EC are

mostly classified as copy-number low according to TCGA (9–11).

Although EC is typically diagnosed early and associated with a

high 5-year survival of 80-90%, USCs have higher recurrence rates

and carry a poor prognosis with significantly lower survival (4, 12).

USCs have high risk of recurrence (up to 80%) and are associated

with an increased incidence of extrauterine disease on presentation

(5, 12–15). Hence, the ability to reduce mortality of EC largely
02203
depends on developing tailored therapy and management for

recurrent and advanced USC (16).

Patterns of recurrence and metastasis may provide prognostic

information for EC. For example, patients with single-site local or

nodal recurrence of EC have been associated with improved survival

compared to those with pelvic recurrence or distant metastasis (17,

18), while patients with peritoneal carcinomatosis or multiple sites

of recurrence have significantly worse post-relapse survival

rates (18).

Comprehensive genomic analysis of USC provides a clearer

understanding of the molecular pathways involved in oncogenesis

(19). Knowledge of the somatic mutations may help predict patterns

of metastases and recurrence in various cancers, including

urothelial cancer, where patients with TP53 mutations are at a

higher risk of lymph nodes metastases (12, 20–22).

The primary objective of this study is to investigate the

association of somatic mutations occurring in a diverse patient

population diagnosed with USC to the patterns of metastases,

recurrence, overall survival (OS) and recurrence free survival (RFS).
Materials and methods

Patients and histopathologic data

This institutional review board (IRB)-approved, Health

Insurance Portability and Accountability Act (HIPAA)-compliant

retrospective study was performed at a single institution on

consecutive patients diagnosed with USC who underwent somatic

molecular testing between January 2015 and July 2021. Patients

were excluded for 1) non-serous or mixed histology, or 2) data on

recurrence or metastasis was not available in the electronic medical

records (EMR).
Clinical and histopathologic data

Medical records in the EMR were reviewed to extract

clinicopathologic data of the patients by (C.L.) (M.M.) (N.G.)

(M.H.). The collected information included demographics; date

and stage at diagnosis; histopathology and genomic testing results;

initial treatment (systemic therapy, radiotherapy, or surgery); date
frontiersin.org
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and sites of metastatic and recurrent disease; treatment modality for

recurrent disease; progression date; and date of death or last

follow-up.
Imaging review

Cross-sectional images (Computed tomography (CT) of the

chest, abdomen, and pelvis; FDG- Positron emission tomography

(PET)/CT, and Magnetic resonance Imaging (MRI)) and reports

were reviewed initially by a cancer imaging fellow (C.L.) and

separately by a fellowship-trained cancer imaging radiologist with

5 years of experience (F.A.). Discrepancies were resolved by

consensus between the two radiologists. The date of the first

imaging showing metastasis or recurrence was recorded. Reports

and images, when available, were analyzed to record sites of

metastatic or recurrent disease, including pelvis, lung, liver,

pleura, lymph nodes, peritoneum, bones, brain, and muscle for all

patients. Lymph node involvement was determined by short-axis

diameter ≥1.0 cm. Any new lesion identified at follow-up imaging

after curative treatment was defined as recurrence based on

pathologic confirmation whenever possible, or if it showed

unequivocal growth on follow-up imaging, defined as >20%

increase in the sum of diameters compared to baseline or nadir

(with an absolute increase of at least 5 mm) according to RECIST

1.1 (23). Any extrauterine lesion present before curative treatment

was performed was considered metastatic, based on pathologic

confirmation whenever possible, or if it showed unequivocal

growth on follow-up imaging exams according to RECIST 1.1 (23).
Molecular testing

Molecular profiling was performed with immunohistochemistry

(IHC) and next-generation sequencing (NGS) on either the primary

tissue at diagnosis or from tissue obtained at recurrence. A board-

certified gynecologic oncologist (M.H.) assigned a TCGA cluster

based on the mutational profile (10). IHC and molecular testing

was performed using either Caris Life Sciences (Caris Life Sciences,

Phoenix, AZ, USA) or FoundationOne CDx (Foundation medicine

inc., Cambridge, MA, USA) genomic profiling assays.

The IHC assays were performed using FDA-approved

companion diagnostic or FDA-cleared tests consistent with the

manufacturer’s instructions: ALK (Ventana ALK (D5F3)

CDxAssay; ER (confirm anti-estrogen receptor ER, SP1, Ventana;

FOLR1 (Ventana FOLR1-2.1 RxDx, Ventana; PR (confirm anti-

progesterone PR (1E2), Ventana); HER2/neu (pathway anti-HER-

2/neu (4B5), Ventana; PD-L1 22c3. pharmDx, Dako; Mismatch

repair (MMR) proteins (MLH1, MSH2, MSH6, and PMS2; Ventana

MMR RxDx Panel, Ventana). For ER/PR, staining intensity was

classified as 0, 1+, 2+, 3+. The intensity thresholds for a positive test

for ER were >/= 2+ with >/= 75% or >/=3+ with >/=50% of cells

stained, for PR were >/=1+ and >/= 10% of cells stained.
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Regarding molecular testing, details of specific NGS testing are

available from Caris Life Sciences or FoundationOne CDx (24, 25).

Among the genes covered, we focused our mutational analysis on

the 12 genes most frequently mutated in this cohort.
Statistical analysis

Categorical variables were summarized using frequencies and

percentages and the continuous variable, age, was summarized

using mean and standard deviation. Different genetic aberrations

involving the same gene were grouped under that gene. The

association of mutational status with the location of metastases or

recurrence was assessed using Chi-square tests or Fisher’s exact tests

when 20% or more of the frequency cells had expected counts less

than 5.

OS was measured from the date of initial diagnosis of USC to

death from any cause, censored at the date of the last follow-up in

alive patients. Stratified Kaplan-Meier survival curves were

generated, and univariable Cox proportional hazards regression

was used to examine the association of ethnicity, race, mutational

status, sites of recurrence or metastases with OS. OS curves were

computed in all patients. Statistical significance was determined

through the log-rank test. A p-value <0.05 was considered

statistically significant.

Multivariable Cox proportional hazard regression with

backward stepwise selection was performed with OS as response.

The variables that had log-rank p-values<0.20 and sample size > 50

were used as the predictors in the model. Likelihood Ratio tests were

used to test model predictability and test significance for additional

individual and/or collection of variables. Hazards ratios and 95%

CIs were calculated in each model to determine association and

significant predictors of survival. Statistical computations were

performed, and output was generated using SAS Software Version

9.4 (The SAS Institute, Cary, NC).
Results

Patient characteristics

From a total of 134 patients with EC who underwent genomic

profiling, 67 patients with USC were included in the final study

analysis. Fifty-eight patients with endometrioid histology, 5 patients

with clear cell histology, 3 patients with mixed histology, and 1

patient with no data on recurrence or metastasis were excluded.

Characteristics of the included subjects are summarized in Table 1.

The average age was 65.8 years (Standard Deviation=8.3 years).

Fifty-two patients were non-Hispanic (78%), 33 patients were Black

(49%), 32 were White (48%), 1 was Asian (1.5%), and 1 patient self-

reported multi-racial (1.5%). Thirty-three patients had evidence of

metastases at time of diagnosis (49.2%), 27 patients had evidence of

recurrence during follow-up (40.3%), and 7 patients did not show
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evidence of recurrence or metastasis during follow-up (10.5%).

Median follow up was 21 months (range 20 days-10.2 years).
Molecular aberrations

Molecular profiling was performed on primary tissue at

diagnosis on 45/67 patients (67%), on tissue obtained at

recurrence in 20/67 patients (30%). In 2/67 patients (3%),
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molecular profiling was not performed. The most frequently

mutated genes identified on NGS were TP53 (55/58 patients;

94.8%), followed by PIK3CA (14/61 patients; 22.9%), and ERBB2

(12/37 patients; 32%) (Table 1). A high tumor mutational burden

(TMB) was identified in 14/51 patients (27.5%). On IHC, PTEN was

expressed in 51/56 patients (91.1%), ER was expressed in 43/65

patients (66.2%), PR in 24/65 patients (36.9%). None of the patients

expressed MMR gene mutation or microsatellite instability

(MSI) (Table 1).

Fifty-three patients were classified as TCGA copy-number high

(79%), six patients as TCGA copy-number low (9%), and 8 patients

could not be classified (12%) based on mutational profile.
Location of metastases and recurrence

Thirty-three patients (49.2%) had evidence of metastases at

time of diagnosis (7 on biopsy, 18 on CT, 1 on MRI and 7 on PET/

CT), 27 patients (40.3%) had evidence of recurrence during follow-

up (3 on biopsy, 13 on CT, and 11 on PET/CT), and 7 patients

(10.5%) did not show evidence of metastasis or recurrence during

follow-up (Table 1).

The sites of metastasis and recurrence are summarized in

Figure 1. The most common sites of metastasis were the

peritoneum (29/33, 88%), followed by lymph nodes (18/33, 55%)

and in the pelvis (14/33, 42%). The most common site of recurrence

was lymph nodes (18/27, 67%), followed by peritoneal implants (8/

27, 30%) and vaginal cuff (6/27, 22%).
Association of mutational status with
ethnicity, metastatic and recurrent disease
with survival

PR was expressed on IHC more commonly in patients with

lymph node metastases (p=0.02), and in non-Hispanic patients

(p=0.01). ERBB2 was more commonly mutated in patients with

vaginal cuff recurrence (p=0.02), while PIK3CA was more

commonly mutated in patients with liver metastases (p=0.048).
TABLE 1 Clinical characteristics of 67 patients with uterine
serous carcinoma.

Characteristic Number

Age (mean, standard deviation, in years), range 65.8 +/- 8.3, 44-82

Race

Black
White
Asian
More than one

33 (49.2%)
32 (47.8%)
1 (1.5%)
1 (1.5%)

Ethnicity

Hispanic
Non-Hispanic

15 (22.4%)
52 (77.6%)

Treatment

Surgery 52 (78%)

TAH
“ + BSO
“ + BSO + PLND
“ + BSO + PLND + Omentectomy and debulking

2
2
10
38

Initial chemotherapy 65 (97%)

Carboplatin
“ + Paclitaxel
“ + Paclitaxel + Bevacizumab
“ + Paclitaxel + Herceptin
“ + Paclitaxel + Pembrolizumab
“ + Taxotere
“ + Taxotere + Bevacizumab

2
55
4
1
1
1
1

Radiation therapy 23 (34.3%)

FIGO Stage at diagnosis

I
II
III
IV

13 (19.4%)
3 (4.5%)
18 (26.9%)
33 (49.2%)

Metastatic disease 33 (49.2%)

Recurrent disease 27 (40.3%)

Mutational status

TP53
PIK3CA
FBXW7
ARID1A
PTEN
BRCA1
BRCA2
CTNNB1

55/58 (94.8%)
14/61 (22.9%)
10/60 (15%)
3/32 (9.4%)
5/57 (8.7%)
2/57 (3.5%)
2/57 (3.5%)
1/58 (1.7%)

(Continued)
TABLE 1 Continued

Characteristic Number

ERBB2 alterations
AKT1,2,3
KRAS

12/37 (32.4%)
2/61 (3.3%)
1/61 (1.6%)

Immunohistochemistry

ER
PR
PTEN
TOP2A
TOP01
RRM1
MGMT
TS
TUBB3

43/65 (66.2%)
24/65 (36.9%)
51/56 (91.1%)
20/22 (90.9%)
14/22 (63.6%)
4/20 (20%)
3/5 (60%)
10/22 (45.5%)
11/22 (50%)
TAH, total hysterectomy; BSO, Bilateral salpingoophorectomy; PLND, pelvic lymph
node dissection.
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Peritoneal metastases were significantly more common in Non-

Hispanic patients (p=0.04). No other associations between

mutations, ethnicity, sites of metastatic and recurrent disease

were identified.

ARID1Amutation was associated with lower OS (mean OS: 10.2

months vs 60.9 months; Hazard Ratio (HR): 31.87; (95% CI: 3.21,

316.9)). Presence of recurrence or metastases to the liver was

associated with lower OS (mean OS: 48.8 months vs 58.4 months;

HR: 5.66; (95% CI: 1.2, 26.79)) (Figures 2, 3).
Predictive survival model

A Cox proportional hazards model was selected using a

backward stepwise selection process starting with a fully adjusted

model. The fully adjusted model included AKT1,2,3 mutations,

presence of recurrence or metastases to the liver, peritoneum,
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lymph nodes, lungs and a race dummy variable defined as Black

or not Black. The predicters in the full model all had log rank p-

values<0.20 except for race (p-value=0.59). The Full model was

reduced 4 times based on the Wald test statistics for individual

variables and the Likelihood Ratio tests (-2 Log Likelihood)

resulting in a bivariable Cox model with a total of 60 cases. The

final model included presence of recurrence or metastases to the

liver, and presence of recurrence or metastases to the peritoneum as

predictors (HR: 9.8; 95% CI: 1.85, 52.7; p=0.007 and HR: 2.7; 95%

CI: 1.02, 7.1; p=0.04, respectively) (Table 2).
Discussion

With advances in genomic testing and improved understanding

of cancer biology, an increasing number of cancer patients undergo

mutational testing to identify potential targeted treatment options.

As we gain more insight into the impact of the mutational make-up

of cancer on prognosis, understanding its associations to known

clinicopathologic factors is crucial. Our study cohort was largely

comprised of minority Hispanic and Black women that were poorly

represented in prior TCGA data and in the PanCancer Atlas (26).

Furthermore, 40% of our patients had evidence of recurrence

during follow-up while 49% of patients had metastatic disease at

diagnosis. This is significantly higher than the TCGA cohort, where

32% presented with recurrence and only 11% had metastatic disease

at diagnosis (10).

We showed that TP53, PIK3CA and ERBB2 are often mutated in

USC, consistent with TGCA data. In our cohort, 79% of cases were

classified as copy-number high, consistent with TCGA data, where

77% of cases with serous histology were classified as such (10). In a

recent study by Watanabe et al. on 100 EC cases, TP53 mutations

were associated with non-endometrioid histology (12). Several
FIGURE 1

Sites of metastases (blue) and recurrence (orange) in women with USC.
FIGURE 2

Kaplan-Meier OS curve for women with ARID1A mutations (red)
versus women without ARID1A mutation (blue). ARID1A mutation
was associated with shorter OS (mean, 10.2 months vs 60.9 months;
Cox proportional hazard model - Hazard Ratio: 31.87; 95% CI: 3.21,
316.9; p<0.001). Numbers at the bottom of the graph refers to the
number of women with ARID1A mutations (red) versus women
without ARID1A mutation (blue) at risk at a determinate timepoint.
FIGURE 3

Kaplan-Meier OS curve for women with evidence of liver
metastases/recurrence (red) versus women with no evidence or liver
metastases or recurrence (blue). Presence of liver metastases/
recurrence was associated with shorter OS (mean, 48.8 months vs
58.4 months; Cox proportional hazard model - Hazard Ratio: 5.66;
95% CI: 1.2, 26.79; p=0.01). Numbers at the bottom of the graph
refers to the number of women with evidence of liver metastases/
recurrence (red) versus women with no evidence or liver metastases
or recurrence (blue) at risk at a determinate timepoint.
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TABLE 2 Univariable and multivariable Cox proportional hazard regression analysis of survival in patients with uterine serous carcinoma.

ed Model 2
(n=60)

Reduced Model 3
(n=60)

Reduced Model 4
(n=60)

CI) P-value HR (95% CI) P-value HR (95% CI) P-value
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ref ref
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Univariable Models Full Model (n=50) Reduced Model 1
(n=50)

Redu

Variable HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95%

Recurrence/Metastases
Liver

0.029 0.365 0.366

ref ref ref ref

5.66 (1.20-26.79) 3.11 (0.27-36.27) 3.21 (0.26-40.44) 5.27 (0.73-3

Recurrence/Metastases
Peritoneum

0.098 0.044 0.024

ref ref ref ref

2.14 (0.87-5.25) 3.53 (1.03-12.03) 3.91 (1.19-12.84) 2.88 (1.09-

Recurrence/Metastases
Lung

0.099 0.268 0.325

ref ref ref ref

3.13 (0.81-12.10) 2.92 (0.44-19.42) 2.61 (0.39-17.73) 2.95 (0.55-1

Black 0.587 0.448 0.377

ref ref ref ref

1.26 (0.55-2.88) 1.49 (0.53-4.19) 1.59 (0.57-4.44) 1.02 (0.43-2

AKT1,2,3 0.114 0.432 0.481

ref ref ref

5.46 (0.67-44.66) 4.34 (0.11-168.65)
3.65 (0.10-
133.79)

Recurrence/Metastases
Lymph Nodes

0.130 0.473

ref ref

0.52 (0.22-1.23) 0.68 (0.24-1.94)

ARID1A 0.003

ref

31.87 (3.21-
316.9)

HR: Hazard Ratio; CI: Confidence Interval.
Bold values relate to the p value <0.05.
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studies have demonstrated that human epidermal growth factor

receptor 2 (HER2) a tyrosine kinase increasing cell proliferation

encoded by ERBB2, is frequently overexpressed in USC (27–29).

HER2 overexpression has also been associated with advanced-stage

disease, and poorer survival outcomes in USC (25). Few ARID1A

gene mutations in were identified in our cohort, consistent with the

findings of the PanCancer Atlas, where ARID1A gene mutations

were identified in 13% of cases (26, 30). Mutations in ARID1A in EC

have been associated with promoting tumor invasion and

metastasis, which may shed light on the significant mortality

among women diagnosed with USCs (30).

In our cohort, ER and PTEN are expressed in the majority of

USC on IHC. A study on 1054 women with EC showed that ER,

though more common in type I EC, was expressed in 72% of type II

EC (31). A study on 56 high grade EC showed that majority of USC

were positive for PTEN on IHC (32). A study on 221 women with

EC, showed that loss of PTEN expression was associated with

endometrioid histology and favorable survival (33).

In our study, FBXW7 was mutated in 15% of USC. No

association between FBXW7 mutations, ethnicity and race was

identified in our study. FBXW7 was mutated in 29 out of 109

(27%) USC included in the PanCancer Atlas. In a study on 66 USC,

FBXW7 mutations were identified in 18.2% of cases (11). On the

study by Watanabe et al., FBWX7 mutations were associated with

late-stage, vascular invasion, and lymph node metastasis (12).

In our cohort, USC most commonly metastasized to lymph

nodes, peritoneum and pelvic organs, while recurrences were

mostly nodal, peritoneal and at the vaginal cuff. These findings

are similar to two prior studies: a study on 841 EC, which showed

that the most common sites of recurrence of USC was the abdomen,

including ascites, followed by the vaginal cuff and a study on 50

USC, which showed that the most common sites of metastases of

USC were the lymph nodes, pelvic organs and peritoneum/

omentum (13, 14).

In our study, PR expression was associated with non-Hispanic

ethnicity and nodal metastases. A study on 99 endometrioid EC

showed that nodal metastases correlated with negative PR status on

IHC (34). This discrepancy may be related to the different

histologies. The association between non-Hispanic ethnicity and

PR expression is unclear.

We found that ERBB2 alterations were more common in

patients with vaginal cuff recurrence and PIK3CA mutation was

more common in patients with liver metastases. ERBB2

amplifications are associated with higher stage, chemoresistance,

and lower survival, especially in Black patients (35, 36).

Trastuzumab, a HER2/neu receptor inhibitor monoclonal

antibody, demonstrated increased progression free survival when

added to carboplatin paclitaxel, in patients with USC and ERBB2

overexpression (37). This highlights the significance of somatic

tumor testing either at diagnosis or at recurrence to aid in

prioritizing treatment options.

Women with presence of recurrence or metastases to the liver

and ARID1A mutations had lower OS. A study on 86 recurrent EC,
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showed that recurrence to the liver was associated with lower OS,

with an HR of 10 [3.72–26.81 95% CI] (14). A metanalysis on the

prognostic significance of ARID1A in endometrium-related

gynecological cancers showed that negative ARID1A expression

predicted shorter progression free survival (38). ARID1Amutations

affects multiple pathways, and may mediate resistance to platinum

chemotherapy, possibly explaining the lower OS observed in our

study (39). Therapies targeting the pathways affected by ARID1A

mutations, such as poly(ADP-ribose) polymerase inhibitors,

immune checkpoint inhibitors and mTOR inhibitors, have shown

activity in preclinical models and in patient, and could be

implemented in patients with ARID1A-mutated USC (40, 41).

Finally, on multivariable Cox proportional hazards regression

analysis, the presence of recurrence or metastases to the liver and/or

the peritoneum were independently associated with shorter OS

regardless of their mutational status, race, ethnicity or other sites of

recurrence or metastases. Various studies attempted to build

predictive survival models for USC, including a study by Chen

et al. on 110 women with USC which showed that a combination of

mutated genes, a 4-gene signature, was predictive of OS (42).

Differently from our study, their model did not include sites of

metastases or survival as potential predictors. Knowledge of the

associations between survival data and sites of recurrence or

metastases of USC is valuable: it allows for a more accurate risk

stratification and helps the oncologists and radiologists to

potentially formulate more appropriate follow-up strategies (43).

Some limitations of this study should be noted. This is a

retrospective study performed at a single institution with inherent

selection bias. The relatively small patient cohort and the widely

variable follow-up period may have limited the power in detection

of some of the associations between mutations and patterns of

metastases and recurrence, as well as the prognostic values of

mutations. Furthermore, our sample included only patients with

USC selected from a tertiary cancer center and may not be

representative of patients treated at a community hospital. We

grouped different genetic aberrations involving the same gene under

that gene to facilitate analysis until additional data are available.

This methodology has also been previously utilized and reported

(11, 21).

One of the significant strengths of this study is the cohort of

Hispanic and Black women diagnosed with USC with genomic

testing. Our study showed that mutational status of USC had

implications on pattern of metastases and survival, and that sites

of recurrence and metastases influence survival. These findings

should be assessed in larger studies, to confirm our findings and

may be valuable for future trial design.
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Introduction: Endometrial cancer (EC) is the most common gynecological

cancer with a rising incidence, attributed to advanced life expectancy and

obesity. Adipose tissue (AT) is an important endocrine organ, and its metabolic

activity is affected by the different anatomical distribution or locations. AT

distribution influences a number of diseases. In EC, it remains unclear whether

the type of AT distribution affects development or prognosis. This systematic

review aimed to determine whether AT distribution is associated with patient

characteristics, disease characteristics, and patient prognosis in EC.

Materials and methods: A search was conducted in Medline, MEDLINE EMBASE,

and Cochrane Library. We included studies that enrolled patients with EC with

any histological subtype and that distinguished between the visceral and

subcutaneous AT compartment. In eligible studies, correlative analyses were

performed for all outcome measures and AT distribution.

Results: Eleven retrospective studies were included, with a wide range of

measurements for the visceral and subcutaneous AT compartments. AT

distribution was found to be significantly correlated to a number of relevant

(disease) characteristics including obesity measures, histological subtype, lymph

node metastasis, and sex steroid levels. Five studies reported on survival

parameters including overall survival, progression-free survival and disease-

specific survival, and they found that increased VAT volume was statistically

significantly associated with a worse survival.

Discussion/conclusion: This review demonstrates that there are significant

correlations between AT distribution and prognosis, body mass index, sex

steroid levels, and disease characteristics like histology. Well-designed,

prospective, and larger-scale studies are needed to pinpoint these differences

more specifically and understand how it can add in prediction and even therapy

in EC.

KEYWORDS

endometrial cancer, adipose tissue distribution, prognosis, obesity, visceral adipose
tissue, subcutaneous adipose tissue
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1 Introduction

Endometrial cancer (EC) is the sixth most common cancer type in

women worldwide with a rising incidence (1). Advanced life

expectancy and obesity are the most important contributing factors

for these increasing numbers (2). Obesity is defined as a body mass

index (BMI) above 30 kg/m2 (3). Obesity is linked to a number of

diseases like cardiovascular disease (CVD), diabetes, and hypertension

(4, 5). It is also a risk factor for the development of multiple cancer

types, with the strongest association for EC (6). Every five BMI units

above the normal range (18–25 kg/m2) result in a 50% increase risk of

developing EC (7). The association between obesity and EC is complex

and only partially explained by the increased levels of circulating sex-

steroid hormones in obese women. This may underlie that, despite this

strong relationship of obesity with EC, the effects of obesity on EC

characteristics and patient prognosis are still not fully understood. This

includes the exact (molecular) mechanisms through which obesity

facilitates EC development and understanding why (morbid) obesity

does not cause EC in all women. In addition, it might clarify how

obesity contributes to the rising incidence of non-endometrioid ECs,

considered to be non-hormone sensitive (8). Furthermore, the impact

of obesity on the prognosis of EC remains conflicting, as most patients

with EC die because of CVD or other underlying comorbidities instead

of EC (9). Three main hypotheses link obesity to cancer development:

endogenous sex-steroid production, chronic hyperinsulinemia, and

systemic inflammation (10, 11).

Adipose tissue (AT) is an endocrine organ that plays an

important role in the production of a plethora of bioactive

molecules with endocrine, paracrine, and autocrine functions

(12). It has distinct metabolic activities depending on its

anatomical locations. After menopause, circulating estrogens are

produced predominantly in subcutaneous AT (SAT) through the

conversion of androgens by aromatase (13). This mechanism of

increased endogenous sex-steroid hormone production plays an

important role in the development of EC, especially the

endometrioid subtype. In contrast, visceral AT (VAT) plays a role

in low-grade systemic inflammation and insulin resistance (14, 15),

which have also been linked to cancer development.

Obesity is classified by the WHO as an abnormal or excess fat

accumulation impairing health and includes any BMI ≥ 30 kg/m2

(16). BMI is a simple and clinically easily applicable indicator;

however, it neither does discriminate muscle from AT nor does give

insight in the AT distribution. Magnetic resonance imaging (MRI)
Abbreviations: EC, endometrial cancer; BMI, body mass index; AT, adipose

tissue; MRI, magnetic resonance imaging; CT, computed tomography; CVD,

cardiovascular disease; NOS, Newcastle–Ottawa Scale; VAT%, visceral adipose

tissue percentage; TAV, total adipose tissue volume; SAV, subcutaneous adipose

tissue volume; VAV, visceral adipose tissue volume; A4, androstenedione;

DHEAS, dehydroepiandrosteronsulfate; SATI, subcutaneous adipose tissue

index; SFA, subcutaneous fat area; TFA, total fat area; OS, overall survival;

PFS, progression-free survival; DSS, disease-specific survival; VAV%, visceral

adipose volume percentage; VAT, visceral adipose tissue; V/S ratio, visceral/

subcutaneous ratio; SAT, subcutaneous adipose tissue; TAT, total adipose tissue;

E2, estradiol.
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and computed tomography (CT) perform equally well in visualizing

and measuring AT distribution, including in subcutaneous, visceral,

and intramuscular compartments (17).

The relationship between AT distribution and prognosis of CVD

and, e.g., (colo)rectal cancer has been studied (18–22). However, the

impact of AT distribution on EC characteristics, like FIGO stage,

histology, and patient’ prognosis, is still unclear despite its tight relation

with obesity. This systematic review aims to determine whether AT

distribution is associated with patient characteristics (BMI and sex

steroid levels), disease characteristics (FIGO, histopathology, and

lymph node status), and patient prognosis.
2 Methods and materials

2.1 Study design and search strategy

We used the PRISMA 2020 checklist as a guideline to write this

review (23). A search was conducted in Medline (1976 to May 2022),

MEDLINE EMBASE (1951 to May 2022), and Cochrane Library,

Database of Systematic Reviews for articles concerning this question

(research question and search terms can be found in Supplementary

File 1). The search strategy was constructed at the Maastricht

University Medical Centre (MUMC+) by the primary researcher

AvdB with support of a senior librarian of the Maastricht University.

Our search was finalized May 2022. As far as possible, search

terms were identical in the three databases to ensure comparable

output. The search resulted in 310 hits (see Figure 1).
2.2 Selection of studies

Articles were included if they met the following criteria: articles

should investigate the relationship between EC and visceral/

subcutaneous (V/S) AT and meet the search criteria.

For this review, we included primary research papers, both of

prospective and retrospective nature. We included studies that

enrolled patients with EC with any histological subtype that

distinguished between the visceral AT and SAT compartment,

either through CT or MRI. Studies were excluded if the language

was other than English, Dutch, or German. From all relevant

articles, full text could be obtained. Because of a lack of a gold

standard, all levels of measuring AT distribution (L3 through S1)

were accepted. If studies did not report on all outcomes, they were

included for the reported outcomes only.

Exclusion criteria: conference papers
2.3 Quality assessment

To assess the risk of bias of the included studies, two different

risks of bias tools were used to account for both cohort studies

[Newcastle–Ottawa Scale (NOS)] and cross-sectional studies

[appraisal tool for cross-sectional studies (AXIS)] (24, 25) (see

Figures 2, 3). The NOS has thresholds to convert the study

assessment into a categorical scale of “good”, “fair”, or “poor”. The
frontiersin.org
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AXIS is more subjective in nature. To make the assessment more

comparable, it was also converted to the previously mentioned scale.

All scores were reviewed by two experts (AvdB and HW). Subdomains

were scored separately and divided into three categories: good (if > 2/3

of the items were present and deemed acceptable), fair (if at least 1/2 of

the items was present and deemed acceptable), or poor (if less than 1/2

of the items was present and deemed acceptable).
2.4 Outcome

We defined our primary outcome as the association of the type

of AT distribution with patient characteristics and disease

characteristics. The included patient characteristics consisted of

BMI and sex steroid hormone levels; the disease characteristics were

FIGO stage, histology, grade, myometrial invasion, tumor size, and
Frontiers in Oncology 03213
lymph node status. As a secondary outcome, we aimed to determine

the relationship between AT distribution and patient prognosis

defined as (disease-specific/overall) survival. Meta-analysis was not

possible after consulting a statistician (predominantly) due to

heterogeneity in the quantification in AT compartments

measurement in the included studies.
3 Results

3.1 Data extraction and characteristics of
eligible studies

The PRISMA flow chart is shown in Figure 1 and resulted in a

total of 11 studies that fulfilled the inclusion criteria. Articles were

published between 2011 and 2022. From these 11 articles, the

following information was recorded: author, year of publication,

journal, number of included patients, setting (university/teaching

hospital/community hospital), EC subtype, FIGO stage, grade,

mean age, mean BMI, AT measurements, level of imaging, and

primary outcome and results (see Table 1). As shown in Table 1, the

transverse CT plane of imaging that was used to measure the AT

compartments was different between the studies that were included.

Five cohort and six cross-sectional studies were included. Seven

studies were retrospective and four prospective. The number of

participants in these studies ranged from 20 to 545. Ten studies used

CT imaging, and one MRI to quantify visceral AT and SAT. Four

studies included women from Asian ethnicity, six studies included

women from European populations, and one study included South

American women. All studies but one focused solely on EC, whereas

this latter focused on gynecological cancers and did perform

subanalyses for patients with EC. Three studies included ≥ 50%

women with high-grade (grade III) EC. Four studies included > 50%

low-grade (grade I/II) tumors, and, in the remaining four studies, the

subdivision was not clear. Furthermore, the BMI distribution was not

equal in all studies, and mean BMI ranged from 23.5 to 32.9 kg/m2.

All included studies investigated AT compartments on CT scan;

however, different terminologies were used to describe the same AT

compartments (see Figure 4). To facilitate legibility for the reader, we

added Figure 4.

There was considerable variation in the quality of the included

studies. Four studies were scored as “poor” quality (26–29), three

studies were scored as “fair” (14, 30, 31), and four studies were
FIGURE 2

Risk of bias table, AXIS.
FIGURE 3

Risk of bias table, NOS.
FIGURE 1

PRISMA flowchart of the selection of articles.
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TABLE 1 Study characteristics of included studies.

ssue
ents

Unit Imaging Aim Results

FA * cm² CT L4/L5 Determine fat
accumulation in
visceral and
subcutaneous

adipose tissue on
CT. Study the

relationship of these
findings with

clinical variables in
the various

histological types.

Patients with type
I endometrial
cancer have a
statistically
significant

association with
obesity-related

biological
parameters.

AV * cm³ CT L5/S1 Investigate the
relationship between

body fat
distribution,

assessed by CT-
scan, in relation to
overall and disease-
specific survival in
high-grade (grade 3)
endometrial cancer

patients.

In non
endometrioid

endometrial cancer,
high visceral fat
percentage was an

independent
predictor of poor

survival.
Hypertension and
diabetes mellitus
were significantly
associated with

high BMI and high
visceral fat
percentage.

SMI * cm²/
m²

CT L3 Provide the
percentiles of

distribution of body
composition
parameters

according to cancer
staging and body
mass index (BMI).

Identify the
contribution of age,
BMI, and cancer
staging in the
variation of the

different parameters
of body

composition.

BMI was associated
with body fat
parameters and
low-radiodensity
SM index. Cancer
stage was associated
with SM index,
mean SMD, and
high-radiodensity

SM index.
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FIGO Grade Mean
Age

Mean
BMI
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Nakamura 2011 Oncology
reports

122 University
Hospital,
Okayama

All All I - 50%
II -

20.5%
III -
16.4%

56.98 X VFA, SFA, T

Donkers 2021 European
journal of

Obstetrics &
Gynecology

and
Reproductive

Biology

176 Royal Cornwell
Hospital Trust,
UK (academical

hospital)

All All III -
100%

70.0 29.4 SAV, VAV, T

dePaula 2020 Nutrition 545 Leading cancer
institute, Brazil

All All I -
16.1%
II -

25.1%
III -
58.8%

64.5 29.8 SATI, VATI,

214
i
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TABLE 1 Continued

ose tissue
urements

Unit Imaging Aim Results

T, SAT * % CT L4/L5 To assess the effect
of visceral adiposity

on clinical and
pathological

characteristics in
patients with

endometrial cancer.

Viscerally obese
patients were more
likely to be old and
have positive lymph
nodes as well as
extrauterine
disease.

V, SAV * cm³ CT L5/S1 Investigate the
relation between
level of steroids in
blood and prognosis
for endometrial
cancer patients.

DHEA, DHEAS,
progesterone, 21
OH progesterone
and E1S were
significantly
increased in

patients with long
survival compared
to patients with
short survival.
Estradiol levels
were significantly

positively correlated
with visceral fat
percentage.

VAT, SAT * cm² CT L3/L4 Investigate the
impact of body
composition on

overall survival (OS)
in gynecological
malignancies.

There was no
statistically

significant impact
of any BC-

parameters on OS.

VAV, TAV * cm³ CT L5/S1 Explore the relation
between BMI,
visceral and

subcutaneous fat
volumes and sex
steroids and lipids

levels in
endometrial cancer

patients.

Serum estradiol is
moderately

correlated with
BMI and VAV and
strongly correlated
with SAV. Other
sex steroids and
lipids have weak
and moderate

correlations with
VAV or SAV
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Ye 2016 BMC Cancer 200 Shanghai All I-III I -
43.0%
II -

42.5%
III -
14.5%

54 24.7 VA

Tangen 2019 Gynecologic
Oncology

20 Haukeland
University

Hospital, Bergen

Endometrioid/
non-

endometrioid

I/II I/II -
50%
III -
50%

X 25.2 VA

Nattenmüller 2018 Oncotarget 54 University
Hospital
Heidelberg

X All X X 28.4 TAT,

Weelden 2019 BMC cancer 39 Radboudumc,
Nijmegen
(academical
hostpital)

All All I - 10%
II -
41%
III -
48%

68.0 26.9 SAV,
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TABLE 1 Continued

Mean
Age

Mean
BMI

Adipose tissue
measurements

Unit Imaging Aim Results

62.9 32.9 VAT, SAT * cm² MRI
umbilical

Explore the
relationship between

VAT/SAT and
survival in

endometrial cancer
patients.

Visceral adipose
tissue is a

significant and
reliable prognostic

indicator for
endometrial cancer

prognosis.

66.9 27.9 SAV, VAV, TAV * ml,
%

CT L5/S1 Explore CT-
quantified

abdominal fat
volumes and fat
distribution in
relation to BMI,
clinicpathological

features and survival
in endometrial
cancer patients.

High VAV%
independently
predicts reduced
survival in EC

patients.

X X VFA, SFA, TFA * cm² CT L4/L5 Predict the effect of
subcutaneous and
visceral fat on

endometrial cancer.

Unlike
subcutaneous fat,
visceral fat is more
directly related to
the development of
endometrial cancer.

61.5 23.5 Visceral fat,
Subcutaneous fat,

V/S ratio

cm² CT
umbilical

Investigate the
association between
prognostic factors of

type 1 and 2
endometrial cancer

and obesity
parameters.

A V/S ratio > 0.5 is
a possible factor for
poor prognosis in
type 1 endometrial

cancer.
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Author Year Journal Included
patients

Hospital of
inclusion

Type of
endometrial

cancer

FIGO Grade

Celik 2021 Obstetrics
and

Gynaecology
Research

186 Istanbul
University
Institute of
Oncology

Endometrioid/
non-

endometrioid

All I -
38.7%
II/III -
61.3%

Mauland 2017 oncotarget 227 Haukeland
University

Hospital, Bergen

Endometrioid/
non-

endometrioid

All I/II -
68%
III -
32%

Cho 2020 biomedical 52 Soonchunhyang
University
College of

Medicine, Seoul

All All X

Wada 2022 International
journal of
clinical
oncology

148 National
Hospital

Organization
Kyoto Medical
Center, Kyoto?

Endometrioid/
non-

endometrioid

All X
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scored as “good” quality (32–35). The reason for judging a study as

“poor” was mostly due to lack of information in the methods and

the results/outcome sections (see Figures 2, 3).

3.1.1 Relationship between AT distribution and
patient characteristics
3.1.1.1 BMI

Five studies (n = 746) explored the correlation between BMI

and CT scan–based AT distribution (28, 29, 34–36). All five studies

found a significant positive correlation between AT distribution and

BMI (Table 2) (28, 29, 34–36), indicating that patients with a higher

BMI also demonstrated higher quantities of AT on their CT scan.

This relationship was significant for all measured AT distribution

parameters as applied in different studies, including visceral,

subcutaneous, and total AT (TAT). The two studies that

investigated the relation between BMI and V/S ratio and VAT%

did not find a significant relation between these parameters (29, 35).
3.1.1.2 Sex steroid hormone levels

Two smaller studies (n = 20 and n = 39) in postmenopausal

women compared sex steroid hormone levels in relation to AT

distribution (14, 31). Tangen et al., in a highly selective cohort of

women with poor and good prognosis, reported a positive correlation
FIGURE 4

Explanation of AT distribution and different terminology.
TABLE 2 Relationship between adipose tissue (AT) distribution patient characteristics (BMI and sex steroid levels).

Relationship between AT distribution and BMI Patients (n) VFA/VAV SFA/SAV TFA/TAV V/S ratio VAT%

Cho 52
r2 = 0.299
p ≤ 0.0001

r2 = 0.528
p ≤ 0.0001

r2 = 0.584
p ≤ 0.0001

x x

Wada 145
R = 0.678
p ≤ 0.01

R = 0.872
p ≤ 0.01

R = 0.871
p ≤ 0.01

R = 0.05
p = 0.52

x

Ye 200 x x
R = 0.667
p ≤ 0.0001

x
R = 0.743
p = 0.495

Nakamura 122
R = 0.743
p ≤ 0.0001

R = 0.895
p ≤ 0.0001

R = 0.907
p ≤ 0.0001

x x

Mauland 227
r = 0.78

p ≤ 0.0001
r = 0.87

p ≤ 0.0001
r = 0.89
p ≤ 0.001

x x

Relationship AT distribution and sex steroid levels Patiënts (n) VAV SAV TAV BMI VAV%

Tangen 20

* E2
r = 0.42
p = 0.068

r = 0.005
p = 0.98

r = 0.24
p = 0.31

x
r = 0.47
p = 0.035

Weelden 39

* E2
r = 0.58
p ≤ 0.01

r = 0.74
p ≤ 0.01

r = 0.74
p ≤ 0.01

r = 0.62
p ≤ 0.01

r = −0.06
NS

* A4
r = 0.29
NS

r = 0.43
p ≤ 0.01

r = 0.37
p ≤ 0.05

r = 0.26
NS

r = −0.17
NS

* DHEAS
r = 0.3
p ≤ 0.05

r = 0.3
p ≤ 0.05

r = 0.30
NS

r = 0.36
p ≤ 0.05

r = −0.10
NS
fron
VFA, visceral fat area; VAV, visceral abdominal fat area; SFA, subcutaneous fat area; SAV, subcutaneous abdominal fat area; TFA, total fat area; TAV, total abdominal fat area; VAT%/VAV%,
percentage of visceral adipose tissue; A4, androstenedione; DHEAS, dehydroepiandrosteronsulfate; x, outcome not reported; NS, not significant.
Bold values are statistical significant values.
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between VAT percentage (VAV%) and estradiol (E2) levels (r = 0.47,

p = 0.035; Table 2). Notably, neither BMI, TAT volume (TAV), SAT

volume (SAV), nor VAT volume (VAV) were found to be

significantly correlated with E2 levels (31). In contrast, Weelden

et al., in a cohort selected on the basis of availability of a broad

hormone analysis and preoperative CT scan, found a positive

correlation between E2 and SAV (r = 0.74, p < 0.01), TAV (r =

0.74, p< 0.01), BMI (r = 0.62, p < 0.01), and VAV (r = 0.58, p < 0.01)

(see Table 3). Androstenedione (A4) was positively correlated with

SAV (r = 0.43, p < 0.01) and TAV (r = 0.37, p < 0.05).

Dehydroepiandrosteronesulfate (DHEAS) was positively correlated

with BMI, VAV, and SAV (r = 0.36, r = 0.35 and 0.34, all

p < 0.05) (14).
3.1.2 Relationship between AT distribution and
disease characteristics
3.1.2.1 FIGO stage

The relation of AT fat distribution and FIGO stage was reported

in three studies including a total of 948 patients (27, 33, 34). The

largest study (n = 545) observed a lower mean SAT index (SATI) in

patients with a higher FIGO stage (FIGO stage III/IV) (p = 0.034)

(33). Whereas, two other studies (n = 403 in total) did not find any

significant association between AT distribution and FIGO stage

[low (I/II) vs. high (III/IV)] (27, 34). These two studies included

quite different patient populations, with 38% endometrioid EC and

100% grade III tumors in the study by Donkers et al. and 82%

endometrioid EC with only 32% grade III tumors in the study by

Mauland et al. However, a combination of these study

characteristics was quite similar to that in the first study by de

Paula et al.
Frontiers in Oncology 08218
3.1.2.2 Histopathological characteristics

Two studies (n = 298) presented data on the relationship

between AT distribution and histological subtype (27, 28). The

first study, by Nakamura et al. (n = 122), that included

predominantly grade I/II EC (>70%), observed that patients with

endometrioid EC had a significant higher BMI (p = 0.006),

increased subcutaneous fat area (SFA) (p = 0.005), and increased

total fat area (TFA) (p = 0.006) when compared to patients with

non-endometrioid subtypes (28). Donkers et al. (n = 176), who

solely included grade III EC, however, did not find an association

between any obesity parameters and endometrioid and non-

endometrioid subtypes (27).

3.1.2.3 Lymph node status

The study from Ye and colleagues was the only study reporting

specifically on histopathological features in relation to VAT%. The

study mostly included low-grade EC and only 14.5% high-grade EC.

Higher VAT% in this study was significantly associated with the

presence of lymph node metastases (p = 0.042), unrelated to

subtype. They did not find any statistically significant association

between VAT% and histological subtype, grade, myometrial

invasion depth, tumor size, or lympho-vascular invasion (35).

3.1.3 Relationship between AT distribution and
patient prognosis

Five studies (n = 788), which were quite dissimilar in their

patient cohorts, reported on survival parameters including overall

survival (OS), progression-free survival (PFS), and disease-specific

survival (DSS) (27, 29, 30, 32, 34). In two studies, the VAV% in

relation to OS was evaluated (see Table 4). Mauland et al. (n = 227),
TABLE 3 Relationship between adipose tissue (AT) distribution and disease characteristics (FIGO stage, histology, and other histopathological
features).

Relationship between AT distribution and
higher FIGO stage

Patiënts
(n) SATI/SAV VATI/VAV TAV VAV% HRSMI BMI

de Paula 545 p = 0.034 p = 0.085 x x
p =
0.044

x

Mauland 227 p = 0.66 p = 0.79 p = 0.90 p = 0.21 x x

Donkers 176 p = 0.17 p = 0.45 p = 0.17 p = 0.88 x
p =
0.036

Relationship between AT distribution and his-
tology

(Type I and II endometrial cancer)

Patiënts
(n)

VFA/VAV SFA/SAV
TFA/
TAV

VAV% BMI

Nakamura* 122 p = 0.309 p = 0.005
p =
0.006

x p = 0.006

Donkers 176 p = 0.64 p = 0.28 p = 0.88 p = 0.97 p = 0.66

Relationship between AT distribution (VAT%)
and histopathological features **

Patients
(n)

Histology Grade
Myometrial
invasion
depth

Tumor
size

Positive
lymph node

status
LVSI

Ye 122 p = 0.381
p =
0.069

p = 0.093
p =
0.791

p = 0.042 p = 0.582
frontie
SATI, subcutaneous adipose tissue index; SAV, subcutaneous abdominal fat volume; SFA, subcutaneous fat area; VATI, visceral adipose tissue index; VAV, visceral abdominal fat volume; VFA,
visceral fat area; TAV, total abdominal fat volume; TFA, total fat area; VAV%, percentage of visceral fat volume; HRSMI, high-radiodensity skeletal muscle index; BMI, body mass index; LVSI,
lympho-vascular invasion; x, outcome not included in article. *, significant in type II EC; **, (VAT % < 31.89% and VAT% ≥ 31.89%).
Bold values are statistical significant values.
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with 82% endometrioid EC and 32% grade III tumors in their

cohort, found that a VAV% ≥ 37% was independently associated

with a reduced OS (p = 0.005) (34). Donkers et al. (n = 176),

including 38% endometrioid EC and 100% grade III tumors,

observed a similar relationship, but with a different cutoff value

(VAV% > 34%) and only in univariable analysis. However, in

subgroup analysis within non-endometrioid patients in the

Donkers study, this association remained significant in the

multivariable analysis for OS (p = 0.006) and DSS (p = 0.026) (27).

A third study, by Celik and colleagues (n = 186), classified

patients into a VAT index ≤ 0.265 and a VAT index > 0.265. This

index could not be translated to a clinical percentage based on the

study information (32). This study, including a somewhat higher

risk population with 61% grade III tumors despite 71%

endometrioid EC, found no significant difference in PFS (p =

0.186); however, DSS was more favorable in the lower VAT index

group (p = 0.029) (32). Wada et al. (n = 145), including a cohort

with a relatively lower mean BMI of 23.5 kg/m2, explored the V/S

ratio as a prognostic factor for PFS and OS in type I and II EC (29).

The authors found that a V/S ratio > 0.5 was associated with a poor

prognosis (OS and PFS) in univariable analyses including

endometrioid (p = 0.0053 and p = 0.0080) but not in non-

endometrioid EC (29). The remaining, smallest, study (n = 54)

did not show a significant impact of AT distribution on OS (30).

This study by Nattenmuller et al. also failed to provide any patients

characteristics besides mean BMI.
4 Discussion

This review aimed to give an overview about the knowledge

concerning AT distribution and EC. EC is considered to be affected

by the obesity paradox, which presumes that, in contrast to an

overall poorer prognosis due to obesity, obesity is associated with

less aggressive biological subtypes of EC and, therefore, a better

cancer specific prognosis may be found (9). However, this contrasts

the observation that also the non-endometrioid or more aggressive

subtypes show a rising incidence in obese women. As mentioned

earlier, obesity is defined as a BMI above 30 kg/m2 (3). This
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definition, however, does not differentiate between the amount

of AT or muscle or cover the complexity of AT distribution in

visceral and subcutaneous compartments. Therefore one possible

explanation for the obesity paradox is that it considers obesity

as one entity and disregards these distinct localizations,

subcutaneously or viscerally, with most likely different metabolic

activity and distinct effects on cancer development. Low-grade

inflammation is associated with VAT rather than with the SAT,

where there is high aromatase activity. To our knowledge, this may

distinctly affect EC development and fuel the attention for AT

distribution and the way that we portray obesity (15).

Overall, this review had a number of notable findings that we

will discuss in details. First, there is a strong correlation between

BMI and imaging-based AT distribution measures. Second, studies

indicate a significant association between AT distribution and sex-

steroid hormone levels. Third, there are indications that a relation

between AT distribution and histopathological findings exists. This

relation is not consistent in the included studies, which may, in part,

be explained by inclusion bias, as studies varied widely in subtypes

and grades included. Last, and maybe most importantly, in all

studies reporting about patient prognosis, increased VAV is

associated with a worse survival (OS, DSS, and PFS) (27, 29, 32, 34).

All included studies found a significant positive correlation

between BMI and the amount of SAT VAT and TAT (28, 29, 34,

36). BMI is the easiest way of classifying obese patients, and, currently,

CT scans are not routinely performed for AT distribution (only). A

study by Kammerlander et al. reported that simple anthropometric

measures of obesity such as waist circumference and BMI were

accurate for assessing cardiovascular risk in men but not in women.

In women, VAT measurement through CT scan allowed a more

precise assessment of obesity-associated cardiometabolic and

cardiovascular risk (21). This underscores that there is an additional

and clinical value in supplementing routine BMI measurement with

more sophisticated measurements of other obesity-linked variables,

including AT distribution above all in women. A similar study has not

been yet carried out in patients with cancer.

Studying the relation between AT distribution and sex-steroid

hormone level is challenging because of the uncertain contribution

of pre- and postmenopausal ovaries to the systemic sex-steroid
TABLE 4 Relationship between adipose tissue (AT) distribution and survival.

Relationship between AT distribution and
Survival

Patients
(n)

Patient
group

Fat distribution param-
eter Outcome p-

value

Mauland 227 All patients VAV% ≥ 37% Reduced OS (#) 0.005

Donkers 176

All patients

VAV% > 34%

Reduced OS ($) 0.006

Non-
endometrioid

Reduced OS & DSS
(#)

0.026

Celik 186 All patients VAT index > 0.265 Reduced DSS ($) 0.029

Wada 145 Endometrioid V/S ratio (> 0.5)
Reduced OS ($) 0.005

Reduced PFS ($) 0.008

Nattenmuller 54 All patients Any No effect on OS ($) NS
fron
#, multivariable analyses; $, univariable analyses; VAV%, visceral fat percentage; VAT index, visceral adipose tissue index; V/S ratio, visceral/subcutaneous index; OS, overall survival; DSS,
disease-specific survival; PFS, progression-free survival; NS, not significant.
Bold values are statistical significant values.
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hormone levels. The retrospective nature of the included studies

further complicates this. The two studies reporting on this outcome

though included women with mean age of 66–68 and, therefore,

presumably mostly postmenopausal women. Although sample size

urgently needs to be enlarged, these studies demonstrate that AT

distribution, specifically increased SAT and VAV%, is significantly

associated with increased E2 levels. Future prospective larger studies

are needed to confirm this relationship. We have recently set up the

ENDOCRINE study, prospectively studying the effect of obesity, AT

distribution, and oophorectomy on hormone levels in patients with

EC and controls (37). This study may therefore be able to answer

which AT compartment plays the most important role in E2

production and quantify how obesity and AT distribution

contribute to differences in systemic sex-steroid hormone levels

and resulting risk of EC.

The positive association between the higher amount of TAT and

SAT and endometrioid type EC (28) fits with the classical etiological

risk factors for endometrioid type EC (38). In the study by Nakamura,

70% of patients indeed suffered from low-grade endometrioid EC. This

may therefore also support the lack of a similar association between AT

distribution and subtype in the study by Donkers et al. (27), who only

included high-grade EC, of which 60% of non-endometrioid subtype.

The association between higher VAT% and a relative abundance of

VAT with lymph node metastasis as reported by Ye et al. (35) may

suggest a different and more aggressive tumor biology effect by VAT.

Unfortunately, none of the other studies included lymph node

metastasis as an outcome parameter. This more aggressive tumor

biology might be in line with a study of Habanjar et al. They

demonstrated that chronic low-grade inflammation resulted in a

higher influx of macrophages in the tumor microenvironment,

which stimulated angiogenesis, tumor cell motility, and infiltration.

The macrophages also initiated the pre-metastatic site, promoting

extravasation, survival, and sustained growth of tumor cells (39).

Although speculative, as a higher amount of VAT results in a state

of chronic low-grade inflammation, a higher incidence of lymph node

metastasis may be expected (40).

Considering patient outcome, all studies reporting on this

outcome demonstrated a worse prognosis, predominantly shown

by a reduced OS and DSS, in patients with a higher VAV (27, 29, 32,

34). Relevant literature for comparison was mostly found in breast

and colorectal cancer. A review in breast cancer by Picon-Ruiz et al.

summarized that overall obesity was linked to both a shorter DSS

and OS, both in pre- and postmenopausal women (41). Another

breast cancer study focusing specifically on AT distribution found

in their cohort a negative relation between the amount of SAT and

OS but no relation between the amount of VAT and OS (42). This

might be explained by the fact that patients with in the lowest VAT

quartile were, on average, 12 years younger (48 years) compared

with the patients in the highest quartile of VAT (60 years), affecting

survival in itself. They also hypothesized that some parts of the

abdominal SAT might have similar metabolic effects to VAT (41).

However, this hypothesis has not been substantiated in other

studies. A further study in (colo)rectal cancer in contrast showed

a longer OS in patients with a higher SAT ratio but did not find

VAT to be an independent prognostic factor (43). In a last study

concerning colorectal patients, increased V/S ratio was significantly
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associated with a higher recurrence and shorter OS and DSS in

patients with mid and low rectal cancer (22). These studies indicate

that there is evidence on the role of AT distribution and survival in a

number of cancer types. So far, there is evidence suggesting that AT

distribution plays a role in the pathogenesis of several different

cancer types. This evidence, however, is not conclusive yet and

associations may be tumor specific.

There are a number of limitations that need to be addressed.

First, studies used different measurements for displaying the AT

distribution, like SAV, SAT, SATI, and SFA that are all used to

display the amount of SAT. Using all these different terms makes

the comparison and thus interpretation of these studies challenging

(See Figure 4). Second, there is a plethora and heterogeneity in the

quantification measures of the AT compartments in the included

studies, precluding meta-analyses. For example, there is no

agreement at what transverse CT-plane AT compartments are

best measured. Because of the lack of a gold standard, all levels

(L3 through S1) were accepted in this review but will need to be

more standardized in future studies. In addition, this may have

caused confounding in the results.

A broad search was performed to avoid missing any important

studies in this research area. As a consequence, studies of moderate

quality were also included, where varying degrees of selection bias

were present, as documented in the risk of bias tables. This

precluded strong conclusions.

To conclude, to our knowledge, this is the first review to

summarize the evidence on the role of AT distribution on patient,

disease characteristics, and prognosis in patients with EC. AT

distribution may be the missing link between obesity and EC. There

is strong evidence, already in these retrospective studies, that AT

distribution affects patient prognosis in EC. Furthermore,

correlations exist between AT distribution and patient and disease

characteristics (including histology and lymph node status). Well-

designed, prospective, and large-scale studies are essential to further

understand and maybe find a way for more selective identification of

women at risk of EC and even in therapeutic options for EC. Possible

clinical applications might be improving the understanding of different

drivers in the pathogenesis of EC and therefore develop a better tool in

recognition of patients at risk and differentiate which patients would

benefit from additional therapeutic options. Furthermore, specifying

the role of obesity in the pathogenesis of EC supports educating the lay

public in the importance of obesity prevention.
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