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Editorial on the Research Topic

Multimodal fusion technologies and applications in the context of

neuroscience

In recent years, sensor and information technologies have greatly boosted

the wearable/portal/medical devices development. A large number of multimodal

biomedical signals such as electroencephalography (EEG), electrocardiography (ECG),

electrooculogram (EOG), and electromyography (EMG), have been recorded for

rehabilitation analysis, mental disorders evaluation, emotion recognition, cardiovascular

disease diagnosis, etc. In these research fields, most researchers often use single-modal

biomedical signals to build the corresponding analysis models. However, many clinical

practice tasks, such as disease diagnosis, arrhythmias detection, and sleep condition

monitoring, require multimodal biomedical signals together to make correct diagnoses,

decisions, identifications, and predictions. It is noted that learning from multimodal

biomedical signals can offer the possibility of capturing corresponded information and

gaining an in-depth understanding of the relationship among different modalities.

The aim of this topic is to present recent research works to advance the fundamental

theory and technologies in biomedical signal processing methods, multimodal fusion

algorithms, and biomedical signal-based clinical applications. The special section began

with several original researches about the applications of the biomedical signals in specified

diseases such as stroke, dysphonia, and visual-spatial neglect (VSN). Three papers explored

the applications of EMG signals. Sheng et al. explored the relevance between the increased

muscle co-contraction and the corticospinal tract (CST) function in stroke survivors via

EMG signals. It demonstrated that the CST and peripheral muscle co-contraction were

closely related in stroke survivors. And increasing the intervention of the CST excitability

would facilitate the recovery of muscle coordination in the upper limb after stroke. Zhu et al.

have measured the speech and the high-density surface EMG signals of the subjects, which

suggested that the muscle contraction patterns would be used as a reference of pitch-related

phonation functions evaluation. It was a potential alternative method to improve the clinical

method for evaluating muscle functions of dysphonia diagnoses, facial paralysis, and other

neuromuscular-inclined diseases. Asogbon et al. used KNN, LDA, and RF algorithms to

study the impact of various EMG-signal recording duration (SRD) on the characterization
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of motor intents related with multiple kinds of finger gestures. It

demonstrated that choosing a optimal signal length was crucial to

characterize multiple classes of targeted limb motions.

The applications of EEG signals in stroke have been explored in

three papers. Liang et al. were the first who considered the EEG

and functional near-infrared spectroscopy (fNIRS) features as the

biomarkers for stroke assessment. The authors have established

a linear regression model to predict Berg Balance Scale (BBS)

values and used an eightfold cross validation to test the model.

It got a result that the EEG features including stroke-related

desynchronization (ERD), oxygenated hemoglobin (HBO), and the

age were the promising biomarkers for stroke motor recovery.

Two researches explored a most common cognitive impairment

named visual-spatial neglect (VSN) of poststroke patients. Cao

et al. explored the recovery neural substrates of VSN. The study

had demonstrated that the dorsal attention networks played a

more significant role in recovery from VSN instead of ventral

attention networks and the cerebellum was also involved in

recovery. Zhang et al. explored the resting-state EEG (rsEEG)

features in stroke patients with VSN, which suggested that the

resting-state DARAH could differentiate the patient with VSN

or not. They demonstrated the resting-state EEG signals would

be a useful tool for VSN stroke patients’ monitoring and DAR

and pdBSI alpha parameters in resting-state EEG could be

useful biomarkers.

Aside from EEG and EMG signals, ECG signals are also critical

indicators of disease detection. Existingmeasuringmethods of ECG

signals don’t meet the demands of dynamic measurement. Wang

et al. have developed a wearable biosensors system for dynamic

ECG monitoring which used a flexible electrode. This system was

able to collect high quality ECG signals when subjects exercised. It

showed that the proposed electrode could be a potential tool used

in long time detection for physiological signal measurements for

patients and athletes.

To overcome the effect of physiological signals noises and the

single signals’ low accuracy, Fu et al. proposed a substructure-

based joint probability domain adaptation algorithm (SSJPDA)

with bi-projection matrix (BPM) algorithm. The authors used

these algorithms to recognize the emotion of subjects based

on multimodal fusion physiological data. Compared with other

algorithms, the proposed SSJPDA and SSJPDA-BPM algorithms

could better deal with noises in data and had improved the

performance of emotion recognition.

Deep learning algorithms based on physiological signals

were explored in four papers. Li et al. have constructed a

centralized steady-state visually evoked potential collaborative

brain computer interface (SSVEP-cBCI) system which studied

the multi- person EEG features. The system used a transfer

learning-based convolutional neural network and three feature

fusion methods, which showed the multi-person fusion features

achieve more competitive results than single person’s. Hu et al.

have proposed a generative adversarial network E2SGAN based on

EEG-to-stereoelectroencephalography (SEEG), which was aim to

synthesize SEEG data from the simultaneous EEG data. E2SGAN

is superior to the baseline methods on the real-patient experiments,

which demonstrated that the synthesized results had the potential

to capture abnormal discharges of the epileptic patients before

seizures.

The algorithms about diagnosing the sleep disorders were

explored in the other two papers. Chen et al. have creatively

proposed a novel method named CNN-BiGRU which consists

of considerable spatio-temporal blocks. It was used to classify

the sleep apnea (SA) events based on ECG signals. Compared

with the state-of-art ECG-based detection methods, CNN-BiGRU

demonstrated an obviously competitive result, which could provide

sleep monitoring service for the SA detection. Yubo et al. have

explored a multimodal attention network MMASleepNet for

sleep staging, which can extract the effective features from the

multimodal electrophysiological information. Compared with the

baseline methods, MMASleepNet performs better in the accuracy

and the training speed aspects. It provides a good solution for

multimodal sleep monitoring.

Conclusion and further considerations

To sum up, the papers accepted by this Research Topic mainly

explored the biomedical signals applications or novel algorithms

based on the detection of diseases in neural science. It enriches the

present research studies, some of papers proposed novel methods

that achieved better results than baselines. By issuing this Research

Topic, it greatly boosts the advancement of multimodal fusion

technologies for neuroscience applications based on biomedical

signals.
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Upper Limbs Muscle Co-contraction
Changes Correlated With the
Impairment of the Corticospinal
Tract in Stroke Survivors: Preliminary
Evidence From Electromyography
and Motor-Evoked Potential
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Objective: Increased muscle co-contraction of the agonist and antagonist muscles
during voluntary movement is commonly observed in the upper limbs of stroke survivors.
Much remain to be understood about the underlying mechanism. The aim of the study is
to investigate the correlation between increased muscle co-contraction and the function
of the corticospinal tract (CST).

Methods: Nine stroke survivors and nine age-matched healthy individuals were
recruited. All the participants were instructed to perform isometric maximal voluntary
contraction (MVC) and horizontal task which consist of sponge grasp, horizontal
transportation, and sponge release. We recorded electromyography (EMG) activities
from four muscle groups during the MVC test and horizontal task in the upper limbs of
stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum
(FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG
was applied to assess the muscle activation during horizontal task. We adopted a co-
contraction index (CI) to evaluate the degree of muscle co-contraction. CST function
was evaluated by the motor-evoked potential (MEP) parameters, including resting
motor threshold, amplitude, latency, and central motor conduction time. We employed
correlation analysis to probe the association between CI and MEP parameters.

Results: The RMS, CI, and MEP parameters on the affected side showed significant
difference compared with the unaffected side of stroke survivors and the healthy group.
The result of correlation analysis showed that CI was significantly correlated with MEP
parameters in stroke survivors.
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Sheng et al. Muscle Co-Contraction and Corticospinal Tract

Conclusion: There existed increased muscle co-contraction and impairment in CST
functionality on the affected side of stroke survivors. The increased muscle co-
contraction was correlated with the impairment of the CST. Intervention that could
improve the excitability of the CST may contribute to the recovery of muscle
discoordination in the upper limbs of stroke survivors.

Keywords: stroke, muscle co-contraction, motor-evoked potential, corticospinal tract, correlation analyses

INTRODUCTION

Stroke is the major disease that leads to mortality and disability
worldwide GBD 2016 Stroke Collaborators (2019). The most
common impairment of stroke survivors is motor impairment,
which affects an individual’s ability to perform everyday activities
and participate in social life (Langhorne et al., 2009). Hemiparesis
is the most common symptom in stroke survivors (Bourbonnais
et al., 1989; Nakayama et al., 1994; Wolfe, 2000; Roger
et al., 2012), with abnormal muscle activation patterns being
commonly observed (Bourbonnais et al., 1989). In many stroke
survivors, motor impairment originates primarily in abnormal
muscle coactivation (Dewald et al., 2001). Muscle co-contraction
refers to the simultaneous activity of the agonist and antagonist
muscles across the same joint (Banks et al., 2017; Souissi et al.,
2018). Surface electromyography (EMG) can detect the muscle
activities of the agonist and antagonist muscles (Campanini
et al., 2020), and it can be used to identify abnormal muscular
coordination in stroke survivors (Bourbonnais et al., 1989;
Safavynia et al., 2011). The co-contraction between agonist and
antagonist muscles can be evaluated quantitatively using the co-
contraction index (CI) (Frost et al., 1997; Song and Tong, 2013;
Banks et al., 2017; Li et al., 2020). Song and Tong (2013) found
that there was an increased co-contraction between agonist and
antagonist muscles of elbow during voluntary movement on
the affected side compared with the unaffected side in stroke
survivors. Increased muscle co-contraction indicates that the
muscles could not contract independently (Hu et al., 2013).
Hammond et al. (1988) found that the agonist and antagonist
muscles of the wrist joint have a higher co-contraction ratio
during voluntary isometric contraction on the affected side
compared with the healthy control group. Kamper and Rymer
(2001) found that stroke survivors had excessive co-contraction
of hand muscles compared with the healthy control group.
Increased muscle co-contraction leads to impairment in the
upper limb motor function in stroke survivors. Previous studies
reported that increased muscle co-contraction had a negative
effect on voluntary movement (Chae et al., 2002; Chalard et al.,
2019). It could bring about increased duration of the movement,
muscle discoordination, and decreased range of movement
(Arene and Hidler, 2009; Gross et al., 2015; Sarcher et al., 2015).
Several studies applied the CI to evaluate muscular coactivation
pattern changes during stroke recovery (Hammond et al., 1988;
Chae et al., 2002; Hu et al., 2009; Nam et al., 2017; Qian
et al., 2017; Rong et al., 2017). Chae et al. (2002) found that
the co-contraction between the agonist and antagonist muscles
of the wrist showed a negative relationship to motor function

of the upper limbs, evaluated by Fugl-Meyer scales and arm
motor ability test. Previous studies assessed the structural and
functional muscle alternation after stroke by ultrasonography
(Kim et al., 2021), muscle biopsy (Dalise et al., 2020), sEMG (Hu
et al., 2015), high-density-surface (HD-sEMG) (Tanzarella et al.,
2020), and dual-energy X-ray absorptiometry (Choi et al., 2021).
There are studies that applied sEMG, kinematic parameters, and
clinical scales to evaluate the upper-limb motor function in stroke
survivors (Donoso Brown et al., 2014; Pan et al., 2021). But
these studies focused only on the changes in the properties of
muscles. For better stroke rehabilitation, it is necessary to assess
the peripheral muscle changes and alternation in descending
motor pathway at the same time (Azzollini et al., 2021).

The corticospinal tract (CST) is the principal neural pathway
of the voluntary drive to the upper limb where muscle synergy
is modulated (Lemon, 2008; McMorland et al., 2015; Van
Wittenberghe and Peterson, 2021). The assessment of CST
includes the transcranial magnetic stimulation (TMS) and
diffusion tensor imaging (DTI) (Jang, 2013; Potter-Baker et al.,
2016). Motor-evoked potential (MEP), elicited by TMS, provides
quantitative method for evaluating the functional integrity of
the CST (Groppa et al., 2012; Bestmann and Krakauer, 2015;
Okamoto et al., 2021). TMS could induce rapidly changing
magnetic field that stimulates cortical neurons and generates
induced current. The induced current then depolarizes cortical
axons and triggers MEP at suprathreshold stimulus intensities.
The MEP is transmitted to the peripheral muscle through a
descending path such as CST and corticobulbar motor pathways
(Groppa et al., 2012). MEP provides insight into the mechanisms
of motor output control (Bestmann and Krakauer, 2015) and can
be applied to monitor the clinical progression stroke recovery
(Cakar et al., 2016). Longer latency, smaller amplitude, and
higher thresholds of MEP were observed on the affected side
compared with the unaffected side in stroke survivors (Turton
et al., 1996; Pennisi et al., 2002). During the recovery from
stroke, the MEP of the paresis side changes toward the healthy
state (Barker et al., 2012). Byrnes et al. (1999) showed that the
MEP had a broad relationship with motor deficit as assessed
by the Motor Assessment Scale and British Medical Research
Council Scale (Brouwer and Schryburt-Brown, 2006). Bowden
et al. (2014) showed that muscle weakness of the upper limb in
stroke survivors resulted from the impairment of the descending
corticospinal connections. Madhavan et al. (2011) investigated
the correlation between the CST integrity and muscle strength by
TMS, DTI, and dynamometer. There are few studies combining
the assessment of muscle activation with the evaluation of the
CST. Although there are many studies using MEP to assess
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the motor function of the stroke survivors (Turton et al., 1996;
Traversa et al., 1998; Hendricks et al., 2003), only a limited
number of studies investigated the correlation between MEP and
muscle discoordination in stroke survivors.

Hortobágyi and Devita (2006) found that there was increased
muscle co-contraction in the agonist and antagonist muscles
in older adults. The age-associated change in the muscle co-
contraction might result from the cortical component. The
increased coactivation between the ankle and knee extensors
in the paretic leg of stroke survivors was correlated with
alterations in propriospinal pathways (Dyer et al., 2011). Chalard
et al. (2020) conducted an EEG study, which found that an
increased co-contraction was correlated with cortical movement-
related beta oscillation alterations. Increased recurrent Renshaw
inhibition is considered to be related to the increased co-
contraction of the agonist and antagonist muscles (Katz and
Pierrot-Deseilligny, 1982), Another physiological mechanism
associated with increased muscle co-contraction of the agonist
and antagonist includes the decrease in the Ia reciprocal
inhibition, presynaptic inhibition, and Ib inhibition (Morita et al.,
2006; Crone et al., 2007; Baude et al., 2019). The decrease in
reciprocal inhibition was associated with the impairment of the
CST (Crone et al., 2004). Much remains to be understood about
the correlation between the impairment of the CST and increased
muscle co-contraction of the upper limbs of stroke survivors. The
impaired motor function is not only the result of the dysfunction
of central motor control system but the result of the alternation
in muscle activation (Azzollini et al., 2021). MEP evoked by TMS
could reflect the function of the CST. The sEMG data provided
the information of the peripheral muscle activity. The correlation
between sEMG and MEP from TMS could lead to a better
understanding about the mechanism of the abnormal muscle
contraction pattern in stroke survivors. Especially, these findings
provided insights into the mechanism of increased muscle co-
contraction in stroke survivors. Therefore, the study aimed to
probe the possible correlation between MEP and CI of the
agonist and antagonist muscles during voluntary movement of
the upper limbs of stroke survivors. We attempted to investigate
whether the abnormal muscle coordination was associated with
the impairment of the CST in stroke survivors.

MATERIALS AND METHODS

Participants
Nine stroke survivors and nine age-matched healthy people were
recruited after obtaining approval from the Human Subjects
Ethics Subcommittee of The First Affiliated Hospital of Sun
Yat-sen University. This study is part of the clinical research
that was registered on the Chinese Clinical Trial Registry
(ChiCTR2000032245). All participants signed written consent
prior to participation. The study was performed in accordance
with the Declaration of Helsinki. The inclusion criteria of stroke
survivors are (1) unilateral stroke; (2) 30–75 years old; (3)
the elbow flexors, wrist flexors, and finger flexors scored less
than 3 on the Modified Ashworth Scale (MAS); (4) the muscle
strength of elbow extensors, wrist extensors, and finger extensors

scored more than 2 on the manual muscle testing; (5) no metal
implants in brain and cervical spine; (6) has sufficient cognitive
ability to follow experimental procedure; and (7) has detectable
MEP on abductor pollicis brevis. The exclusion criteria are (1)
epilepsy, (2) pregnancy, (3) severe respiratory and circulatory
failure, and (4) posterior circulation infarction or posterior
circulation hemorrhage.

Clinical Measures
Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) and
Action Research Arm Test (ARAT) were applied to assess motor
function of the upper limb of stroke survivors. The MAS was
applied to evaluate the spasticity. All survivors were evaluated by
an experienced therapist.

Electromyography Experiment
After preparing the skin (Nuprep, Weaver and Company, Aurora,
CO, United States) and 75% alcohol, four pairs of surface
electrodes (Dongguan Quanding Medical Supplies Co., Ltd.,
Guangdong, China) were placed on the skin surface of four
muscle groups in the upper limbs to record EMG signals. The
involved muscle groups included flexor digitorum (FD), extensor
digitorum (ED), the biceps brachii (BIC), and the triceps brachii
(TRI) muscle groups (Figure 1A).

Participants were first directed to perform isometric maximal
voluntary contraction (MVC) of the four involved muscles. When
a participant conducted the MVC test for the ED and FD, the
elbow was kept extended at 130◦ and the wrist was kept in a
neutral position. When a participant conducted the MVC test
for the BIC and TRI, the shoulder joint was kept flexed at 45◦
and the elbow flexed at 90◦ (Hu et al., 2013; Nam et al., 2017).
Each contraction was repeated three times with 2 min intervals.
EMG signals were recorded during each MVC test. The EMG data
recorded in MVC were used to normalize the RMS recorded in
horizontal task.

Then, all the participants were guided to conduct a horizontal
task (Figure 1A) for left upper extremity, the participant was
instructed to grasp a sponge at point A. Then, the participant
held the sponge and transferred it laterally to point B with natural
speed. Finally, the participant released the sponge at point B.
For right upper extremity, the participant performed the sponge
transfer from point B to point A. The distance between point
A and point B is 50 cm. The thickness of the sponge is 3 cm.
EMG signals were recorded during the whole horizontal task.
During the transfer task, the participant kept the testing hand at
a height of 2–5 cm from the table top. Each task was repeated
three times with 2 min intervals. Figure 1A shows the setup of
the horizontal task.

Motor-Evoked Potential Experiment
Figure 1B shows the setup of the MEP evaluation. A pair
of HEX Dual Electrodes (Noraxon U.S.A. Inc., Arizona,
United States) were attached to the surface of the abductor
pollicis brevis to record the MEP signals. We employed a
magnetic stimulator (Yiruide CCY-IA, Wuhan, China) to deliver
magnetic stimulation. The stimulation coil was an “8”-shaped coil
with a radius of 7 cm. The maximum stimulator output (MSO) of

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 8869099

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-886909 May 26, 2022 Time: 14:40 # 4

Sheng et al. Muscle Co-Contraction and Corticospinal Tract

FIGURE 1 | The experimental setup. (A) The electromyography (EMG) evaluation during horizontal task. (B) The experimental setup for motor-evoked potentials
(MEP) evaluation.

the magnetic stimulator was 2.0 T. The stimulator coil was held
over the thumb area of the contralateral motor cortex and C7
cervical spine to elicit MEP signals. The resting motor threshold
(rMT), latency and amplitude, and central motor conduction
time (CMCT) were measured in bilateral abductor pollicis brevis
in the upper limbs of all participants following the published
guidelines (Rossini et al., 1994; Kobayashi and Pascual-Leone,
2003; Cakar et al., 2016).

The participants sat on the chair with palms face up on legs.
The rMT was defined as the lowest stimulus intensity to evoke
liminal MEP, which has an amplitude of at least 50 µV in 5 of
10 continuously trials in resting state. The rMT was expressed
as % maximum stimulator output (% MSO) (Rossini and Rossi,
2007). The stimulation intensity on motor cortex was set at 120%
of the rMT. The stimulation intensity on C7 cervical spine was
set at 80% of the rMT. The CMCT refers to the difference in
latency between MEP elicited by the cortical stimulation and
MEP produced by spinal stimulation. The MEP signals were
captured and amplified with a resolution of 200 µV, signals
were then filtered with a bandpass of 10 Hz–2 kHz, and a noise
eliminator of 50 Hz (Groppa et al., 2012).

Data Processing and Analysis
All raw EMG data were amplified 1,000 times (amplifier:
INA 333, Texas Instruments Inc., Dallas, TX, United States)
and sampled with 1,000 Hz for digitization with a data
acquisition card (DAQ, 6218 NI DAQ card; National Instruments
Corp., Austin, TX, United States). Then, the digitized EMG
signals were transferred to the computer for storage. The
signals were processed by removing bias, bandpass filtering

(bandwidth range from 40 to 490 Hz), full-wave rectification.
Lowpass filtering (30 Hz cutoff frequency with fourth-order
zero-phrase Butterworth filter) was applied to have the linear
EMG envelopes. A typical trial of linear envelopes of the
EMG signals captured during horizontal task is shown in
Figure 2. EMG data recorded during horizontal tasks were
normalized to the maximum value emerging during the MVC
test of each muscle. The maximum value of EMG activity
was often found in the MVC test, but when higher amplitude
of EMG activation emerged in horizontal task, this value
would be substituted to be used for normalization. The muscle
firing moment was identified as the abrupt moment of EMG
signal activation that was greater than the threshold value
(Figure 2). The threshold value is calculated by the mean
of the EMG baseline plus two times the standard deviation,
lasting for 20 ms.

The root mean square (RMS) was calculated to assess the EMG
activation level of each muscle (Chae et al., 2002). The RMS
value was computed from the EMG data section from the firing
moment to the point when the task was finished. The RMS value
was calculated by the following expression:

VRMS =

[
1
T

∫
v2dt

]1/2

Where T is the length of the signal, and v is the voltage
of the EMG signal (Chae et al., 2002). The RMS value could
be applied to evaluate the neuromuscular system and the
workload on muscles (Moritani, 1993; Shimomura et al., 1999).
CI was calculated to assess the degree of muscle co-contraction
(Hu et al., 2012, 2013; Nam et al., 2017). The CI value was
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FIGURE 2 | The EMG signals of a typical trial from one stroke survivor captured during horizontal task. The EMG signal of flexor digitorum (FD) and extensor
digitorum (ED) are shown together. (A) Affected side; (B) unaffected side.

calculated by the formula previously presented in Frost’s study
(Frost et al., 1997):

CI =
1
T

∫ T

0
Aij(t)dt

Where Aij (t) is the overlapping activity of the muscles of i and
j in the EMG envelopes, and T is the duration of the task. The
CI value varied from 0 to 1. When the activities of two muscles

were fully overlapping and the level of EMG activity kept at 1
during the task, the CI value reached 1. When the activities of two
muscles did not overlap at all during the task, the CI value was 0.

Statistical Analysis
The Shapiro–Wilk test was employed to verify the data normality.
The difference of EMG parameters and MEP parameters among
the groups (affected side, unaffected side, and healthy group)
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was analyzed by one-way analysis of variance (ANOVA).
Bonferroni test was applied to perform post hoc pairwise
comparison. When the data did not conform to a normal
distribution, we transformed the data by natural logarithm
or taking cosine until the data were normally distributed.
Correlation analysis was applied to analyze the correlation
among clinical scale outcomes, CI, and MEP parameters. For
data with a normal distribution, Pearson’s correlation analysis
was adopted. For data that do not conform to a normal
distribution, Spearman’s correlation analysis was employed. The
significant level was set at p < 0.05. The data analysis was
performed with the software SPSS Statistics 26 (IBM Inc., Seattle,
WA, United States).

RESULTS

The characteristics of stroke survivors included in the study are
summarized in Table 1.

Electromyography Parameters
Figure 3 presents the mean and standard deviation of normalized
RMS values of the four muscles (FD, ED, BIC, and TRI) during
horizontal task. The RMS values of the muscles (FD, BIC, and
TRI) on the affected side were significantly higher than the
unaffected side in stroke survivors (p < 0.05) and the healthy
group (p < 0.05). The RMS values of the four muscles of the
unaffected side of stroke survivors were higher than healthy
people but without a significant difference (p > 0.05).

Table 2 presents the CI of ED and FD. The CI between two
muscles of ED and FD during horizontal task on the affected
side was significantly higher than those from the unaffected side
(p < 0.05) in stroke survivors and the healthy group (p < 0.05).
The CI of the two muscles of ED and FD in the unaffected side
of survivors were higher than those in healthy group but do not
reach significant level (p > 0.05).

Motor-Evoked Potential
Table 2 shows the mean and standard deviation of MEP
parameters among the three groups. The MEP latency of the
affected side of stroke survivors was significantly longer than the
unaffected sides (p < 0.05) and the dominant side of healthy
people (p < 0.05). The MEP amplitude of the affected side of

stroke survivors was significantly lower than the unaffected sides
(p < 0.05) and the dominant side of healthy people (p < 0.05).
The MEP threshold of the affected side of stroke survivors was
significantly higher than the unaffected sides (p < 0.05) and the
dominant side of healthy people (p < 0.05). The MEP CMCT of
the affected side of the survivors were significantly longer than
the unaffected sides (p < 0.05) and the dominant side of healthy
people (p < 0.05). There was no significant difference in all four
MEP parameters between the unaffected sides with the dominant
side of healthy people (p > 0.05).

Motor-Evoked Potential and Clinical
Scales
Table 3 presents the correlation between MEP parameters and the
outcomes of clinical scales. The latency and CMCT of MEP on
the affected side were negatively correlated with the upper-limb
motor function that was assessed by both clinical scales of Fugl-
Meyer scale and ARAT. The amplitude and rMT of MEP showed
no significant correlation with the outcome of both clinical scales
of Fugl-Meyer scale and ARAT (Figure 4 and Table 3).

Root Mean Square and Motor-Evoked
Potential
The latency of MEP was positively correlated with the RMS value
of EMG activity of FD (r = 0.52, p = 0.033), BIC (r = 0.667,
p = 0.003), and TRI (r = 0.578, p = 0.015) muscles during
horizontal task in stroke survivors. The RMS value of ED during
horizontal task was not significantly correlated with the latency
of MEP (r = 0.245, p = 0.343).

Co-contraction Index and Motor-Evoked
Potential
Figure 5 presents the correlation between CI and MEP
parameters. The CI of the two muscles of ED and FD during
horizontal task was positively correlated with latency (r = 0.7,
p < 0.05), rMT (r = 0.52, p < 0.05), and CMCT (r = 0.56,
p < 0.05) of the MEP in stroke survivors. The CI of the muscles
of ED and FD increased along with the increase in latency, rMT,
and CMCT of the MEP. The CI of the two muscles of ED and
FD during horizontal task was negatively correlated with the
amplitude of the MEP (r = –0.55, p < 0.05) in stroke survivors.

TABLE 1 | Clinical characteristics of stroke survivors.

Subject Age Gender Paralyzed side Stroke type Month since stroke FMA-UE ARAT MAS (wrist)

1 57 Male Left Ischemia 4 53 38 1

2 68 Male Left Hemorrhage 2 66 57 0

3 38 Male left Hemorrhage 9 32 14 1+

4 31 Male Left Hemorrhage 2 61 35 0

5 69 Male Right Ischemia 2 54 38 1+

6 72 Female Left Ischemia 2 49 33 1

7 66 Male Left Ischemia 2 63 54 0

8 31 Male Left Hemorrhage 2 62 38 0

9 71 Male Left Ischemia 10 45 21 1+

FMA-UE, Fugl-Meyer Assessment Upper Extremity Scale; ARAT, Action Research Arm Test; MAS, Modified Ashworth Scale.
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FIGURE 3 | The mean and standard deviation of root mean square of EMG data of all participants during horizontal task involved in the study. The significant
difference between the groups is indicated by (∗p < 0.05 with one-way ANOVA). ED, extensor digitorum; FD, flexor digitorum; BIC, biceps brachii; TRI, the triceps
brachii.

The CI of the muscles of ED and FD increased as the amplitude
of the MEP decreased.

DISCUSSION

The main finding of this study indicated that muscle activation
alternation of the upper limb was correlated with the changes
in the function of CST in stroke survivors. The result provided
insights into the origin of the increased muscle co-contraction
in the upper limb of stroke survivors. The latency and CMCT
of MEP on the affected side in stroke survivors were negatively
correlated with the Fugl-Meyer upper extremity scale and ARAT.
The CI of the muscle pair of ED and FD during horizontal
task was significantly correlated with MEP parameters in stroke
survivors. The CI increased, along with an increase in latency,
rMT, and CMCT of the MEP. The CI increased along with a
reduction in the amplitude of the MEP in the upper limbs of
stroke survivors.

The Differences of Root Mean Square
Value and Co-contraction Index Among
Groups
The RMS values recorded from the four muscles of the affected
side were higher than the unaffected side in the stroke group
and also the healthy group during horizontal task. Canning
et al. (2000) found that there was a higher biceps muscle
activation during a tracking task in the paretic upper limb of
stroke survivors compared to the healthy group. Lee et al. (2015)

reported an increase in muscle activations on the affected side
during a drinking task compared with the unaffected side.
Wagner et al. (2007) found that there was higher level of muscle
activity during a reaching task on the affected side of the upper
limb of stroke survivors than healthy individuals. The results
of our study are consistent with previous studies that showed
increased muscle activation on the affected side during task
execution in stroke survivors. Hu et al. (2013) found a reduction
in the upper limb muscles EMG activity that corresponded
with upper limbs functional improvement after a 20 sessions
training program. The reduction in EMG activities post training
was proposed to be the result of a reduction in spasticity that
contributed to a lower level of muscle activities (Hu et al.,
2007, 2013). The other possible reason was that training sessions
contributed to an increase in muscle force production which
enabled survivors to perform tasks with less muscle effort (Hu
et al., 2007). These findings supported that muscle activation level
during task could assist the assessment of clinical progression in
motor function during the recovery from stroke. The CI of the
muscle pairs of FD and ED on the affected side was higher than
the unaffected side in the stroke group and the healthy group
during horizontal task. The result was in agreement with previous
studies which recorded EMG signals during isometric movement
(Hammond et al., 1988; Kamper and Rymer, 2001; Chae et al.,
2002). Silva et al. (2014) found that the co-contraction ratio of
the proximal upper extremity muscles increased during reaching
movement on the affected side of stroke survivors. In contrast
to the previous studies, we investigated the abnormal muscular
coordination pattern during horizontal task which was more
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similar to the movement pattern of some daily activities. Song
and Tong (2013) reported an increase in co-contraction between
the BIC and TRI of the affected side during a tracking task.
The excessive co-contraction between the agonist and antagonist
reflects the reduction in the control of muscle activity of the
affected side in stroke survivors (Song and Tong, 2013). Hu et al.
(2013) showed that the CI of ED and FD during horizontal task
decreased, along with an improvement in motor function during
the recovery from stroke. The result indicated the CI of ED
and FD during task could assist in the monitoring of clinical
progression of the upper limbs during the recovery from stroke.

The Difference in Motor-Evoked
Potential Parameters Among Groups
The latency, rMT, and CMCT of MEP of the affected side of the
stroke group were higher than the unaffected side and the healthy
group. The amplitude of MEP was smaller on the affected side.
These results were consistent with previously published studies
(Turton et al., 1996; Traversa et al., 1997, 1998; Byrnes et al.,
1999; Pennisi et al., 2002; Brouwer and Schryburt-Brown, 2006;
Barker et al., 2012). MEPs are efficacious in evaluating the CST
functionality (Di Lazzaro et al., 1999). The difference of MEPs
between groups indicated impairment in the CST functionality.
Cakar et al. (2016) showed that latency was negatively correlated
with functional outcomes improvement. Cakar et al.’s (2016)
results were consistent with our study, where the latency of the
MEP was negatively correlated with motor function of the upper
limb of stroke survivors. Besides, Cakar et al. (2016) reported that

TABLE 2 | The mean (M) and standard deviation (SD) of CI and MEP parameters
of stroke survivors and the healthy group.

Affected side
(M ± SD)

Unaffected side
(M ± SD)

Healthy group
(M ± SD)

CI (horizontal task) 0.69 ± 0.13ab 0.46 ± 0.18 0.44 ± 0.11

MEP latency (ms) 27.59 ± 5.14ab 22.15 ± 1.67 22.19 ± 2.23

Amplitude (µV) 196.02± 163.68ab 565.48 ± 334.98 366.85 ± 119.71

rMT (% MSO) 70.11 ± 19.64ab 39.78 ± 6.67 47.33 ± 8.31

CMCT (ms) 12.46 ± 6.12ab 7.32 ± 2.20 7.81 ± 1.33

MEP, motor-evoked potential; rMT, resting motor threshold; CMCT, central motor
conduction time.
ap < 0.05 compared to the unaffected side.
bp < 0.05 compared to the dominant side of healthy group.

TABLE 3 | Correlation analyses between the motor function measures of affected
limb, CI, and the MEP parameters of affected hemisphere.

FMA-UE ARAT

CI −0.318 (P = 0.405) −0.433 (P = 0.245)

MEP latency (ms) −0.883 (P = 0.02) −0.729 (P = 0.026)

Amplitude (µV) 0.117 (P = 0.765) 0.153 (P = 0.695)

rMT (% MSO) −0.406 (P = 0.279) −0.504 (P = 0.166)

CMCT (ms) −0.883 (P = 0.02) −0.678 (P = 0.045)

FMA-UE, Fugl-Meyer Assessment Upper Extremity Scale; ARAT, Action Research
Arm Test; CI, co-contraction index; MEP, motor-evoked potential; rMT, resting
motor threshold; CMCT, central motor conduction time.

the rMT and amplitude of MEP were correlated with the clinical
outcomes of Brunnstrom motor stage, Motricity index, finger
tapping test, and motor activity log. However, this study did
not observe significant correlation between rMT and Fugl-Meyer
scale and ARAT, or between MEP amplitude and Fugl-Meyer
scale and ARAT. The amplitude of MEP could be influenced by
various factors such as the intensity of stimulation, the condition
of intent muscle, and the condition of EEG phase and power
fluctuations (Rossini et al., 2015). The rMT of MEP could also be
impacted by drugs, age, the intent muscle, and sleep-wake cycles
(Groppa et al., 2012). These might be the potential explanations
for the different results observed between Cakar et al.’s study
and this study. The amplitude and rMT have relatively higher
intraindividual variations.

Okamoto et al. (2021) found that the CMCT had a negative
relationship with the ARAT score. Cakar et al. (2016) showed
that the CMCT of MEP was correlated with the clinical outcomes
of Barthel Index, Brunnstrom motor stage, finger tapping test,
and motor activity log. Higher motor thresholds and smaller
amplitude might result from a loss of corticomotoneurons in
the corticospinal pathway and reduced excitability of the motor
cortex (Byrnes et al., 1999; Brouwer and Schryburt-Brown, 2006).
Thus, MEP latency and CMCT may be appropriate indicators to
evaluate the motor function of the upper limb.

The Correlation Between
Electromyography and Motor-Evoked
Potential Parameters
Wagner et al. (2007) suggested that the increased level of muscle
activities on the affected side of stroke survivors might have
originated from extra muscle units recruitment owing to the loss
of the functional motor units. In this study, the RMS values of
the FD, BIC, and TRI during horizontal task were correlated
with the latency of MEP. The results indicated that the increased
muscle activity during voluntary movement was correlated with
the impairment of the CST. The RMS value of ED showed no
significant correlation with the latency of MEP. The possible
reason was that the ED muscle took part in a small part of the
horizontal task.

The latency of MEP is thought to reflect the conduction
time for the neural impulses from the cortex to peripheral
muscles (Groppa et al., 2012; Bestmann and Krakauer, 2015).
In this study, the CI of FD and ED during horizontal task
were positively correlated with the latency of MEP. Shorter
latency of MEP corresponded to smaller CI value, which reflected
better muscle coordination. The MEP signals involved in the
study were recorded from the muscle of the abductor pollicis
brevis. Thus, the latency of MEP recorded at FD and ED would
be also prolonged due to the anatomical location. The result
suggested that the level of the muscular coordination in the upper
limb of stroke survivors was correlated with the impairment of
cortical transmission.

The result indicated muscle co-contraction of the upper limb
of stroke survivors was correlated with the loss of corticospinal
projections. The amplitude of MEP is considered to reflect
the integrity of the CST and the excitability of the motor
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FIGURE 4 | Scatter diagrams of clinical scales and MEP parameters on the affected side of stroke survivors. (A) MEP latency versus Fugl-Meyer assessment upper
extremity scales. (B) CMCT of MEP versus Fugl-Meyer assessment upper extremity scales. (C) MEP latency versus ARAT. (D) CMCT of MEP versus ARAT. ARAT,
Action Research Arm Test; CMCT, central motor conduction time.

FIGURE 5 | Scatter diagrams of the co-contraction index of flexor digitorum and extensor digitorum during horizontal task versus (A) MEP latency, (B) amplitude of
MEP, (C) resting motor threshold of MEP, and (D) central motor conduction time of MEP.

cortex (Groppa et al., 2012; Bestmann and Krakauer, 2015).
The amplitude of MEP could reflect the transsynaptic excitation
of corticospinal cells (Ziemann et al., 2015). Cakar et al.
(2016) found that MEP amplitude was positively correlated

with the outcomes of motor performance and dexterity of
the upper limb. In our study, the CI of FD and ED during
horizontal task was negatively correlated with the amplitude
of MEP. The lower amplitude of MEP corresponded to an
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increase in CI. The reduction in MEP amplitude reflected
the loss of corticospinal projections (Hömberg et al., 1991;
Pennisi et al., 2002).

The rMT of MEP is considered to reflect the integrated
excitability of the corticomotor projection (Groppa et al., 2012).
Lower rMT was correlated with better motor performance (Cakar
et al., 2016). For the CI of a muscle pair of a joint, lower CI
value suggested a separation of the co-contraction phase which
means the muscle pair could contract more independently (Hu
et al., 2013). The CI of FD and ED during horizontal task was
correlated with the rMT of MEP in our study. The increase in
rMT could be caused by the decrease in the CST excitability
which might have originated from loss of the corticospinal
projection (Caramia et al., 1991; Pennisi et al., 2002). The result
indicated the reduction in the CST excitability might be the
possible mechanism to increase muscle co-contraction in the
upper limbs of stroke survivors. Recently, Hammerbeck et al.
(2021) found that the degree of the CST connectivity is the
principal determinant of proximal dexterity strength and muscle
synergy in upper limbs of patients with subacute stroke. The
result of this study indicated that muscle co-contraction of FD
and ED was correlated with the excitability of the CST.

Moreover, the result of this study provided evidence to support
that CMCT positively correlated with muscle coherence. Longer
CMCT corresponded to higher CI. The CMCT is the most
related electrophysiological maker to evaluate the integrity of
the CST (Groppa et al., 2012). The increase in CMCT might
have originated from the loss of the fast corticospinal fibers and
damage to the axonal (Misra and Kalita, 1995; Pennisi et al.,
2002; Groppa et al., 2012). The result suggested that the increased
muscle co-contraction of the upper limb was correlated with the
loss of the corticospinal projection.

The correlation between CI and MEP parameters indicated
that increased muscle co-contraction was correlated with the
impairment of the CST in the upper limb of stroke survivors.
Chae et al. (2002) suggested the underlying mechanisms for
the increase in muscle co-contraction included an increase
in alpha motoneuron excitability and increased activity in
brainstem pathways after damage to the CST and cortical
reorganization (Ohn et al., 2013). Chalard et al. (2020) found the
increased muscle co-contraction was associated with a reduction
in movement-related beta desynchronization. Other various
physiological mechanisms such as reduction in Ia reciprocal
inhibition, decrease in presynaptic inhibition, and reduction in
Ib inhibition were considered to be correlated with an increase
in muscle co-contraction in stroke survivors (Baude et al., 2019).
The decrease in reciprocal inhibition was correlated with the
impairment of the CST (Crone et al., 2004). We propose that the
increased muscle co-contraction might have a cortical origin that
was correlated with the impairment of the CST. Interventions
that facilitate the recovery of the CST function might accelerate
the recovery of the muscle coordination in the upper limb after
stroke. An example of this type of intervention is neuromuscular
electrical stimulation that could enhance the excitability of the
CST and facilitate function recovery in stroke survivors (Ridding
et al., 2001; Mang et al., 2010; Rong et al., 2015). Studies showed
that neuromuscular electrical stimulation could improve the

muscular coordination and clinical outcomes (Hu et al., 2009,
2012, 2013; Rong et al., 2015, 2017; Nam et al., 2017). The result
of this study provided further evidence for the application of
the neuromuscular electrical stimulation in the rehabilitation of
muscle dyscoordination in the upper limb of stroke survivors.
The correlation between CI and MEP parameters indicated that
MEP could be applied to assess the muscle co-contraction in the
upper limbs of stroke survivors.

Limitation
This is a preliminary study and the sample size is limited,
which might contain type II error. Part of the survivors involved
in the study were chronic stroke survivors. Further studies
are required to verify the result in early stroke survivors.
Stroke survivors at different stages could have different muscle
contraction patterns. The stroke survivors at later stages such
as more than 6 months could accompany with compensatory
movement. The compensatory movement was proved to
have originated from cortical compensatory neuroplasticity.
The cortical compensatory neuroplasticity might influence the
conclusion. The survivors involved in the study had mild
to moderate impairment of the upper-limb function. Further
studies are required to verify the results in stroke survivors
with severe impairment. The stroke survivors with posterior
circulation infarction or hemorrhage were excluded from the
study. Future studies are required to verify the result in this group
of stroke survivors.

CONCLUSION

We demonstrated a statistically significant correlation between
muscle co-contraction and the CST function in stroke survivors.
The correlation between CI and MEP parameters indicated
the CST and peripheral muscle coordination were closely
correlated in stroke survivors. Interventions that could increase
the excitability of the CST might facilitate the recovery of muscle
coordination in the upper limb after stroke.
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Electrocardiogram (ECG) is a critical physiological indicator that contains abundant
information about human heart activities. However, it is a kind of weak low-frequency
signal, which is easy to be interfered by various noises. Therefore, wearable biosensors
(WBS) technique is introduced to overcome this challenge. A flexible non-contact
electrode is proposed for wearable biosensors (WBS) system, which is made up of
flexible printed circuits materials, and can monitor the ECG signals during exercise for
a long time. It uses the principle of capacitive coupling to obtain high-quality signals,
and reduces the impact of external noise through active shielding; The results showed
that the proposed non-contact electrode was equivalent to a medical wet electrode.
The correlation coefficient was as high as 99.70 ± 0.30% when the subject was resting,
while it was as high as 97.53 ± 1.80% during exercise. High-quality ECG could still
be collected at subjects walking at 7 km/h. This study suggested that the proposed
flexible non-contact electrode would be a potential tool for wearable biosensors for
medical application on long-term monitoring of patients’ health and provide athletes
with physiological signal measurements.

Keywords: wearable biosensors system, flexible non-contact electrode, electrocardiogram, monitoring, motion

INTRODUCTION

Physiological signals are widely used in medical applications and health monitoring, and they serve
as the objective indicators closely related to human health (Le et al., 2010). For example, the ECG
signals that contain abundant information of the heart activities provide useful information for
disease prevention (Zhang et al., 1997). And it is a critical physiological indicator for screening
cardiovascular diseases and evaluating heart or cardiovascular functions. Therefore, the standard
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wet silver chloride (Ag/AgCl) electrodes as the most commonly
used biopotential electrodes for measuring electrocardiogram
(ECG) signals is found in hospital-based medical diagnostic
and home health monitoring systems (Fernandez and Pallas-
Areny, 2000). However, the ECG signal is a low-frequency weak
signal and is susceptible to various noise interferences during
acquisition (Song and Yu, 2010). For example, Muscle cells
tremble as they contract, producing high-frequency EMG signals,
which have a high frequency and a low amplitude (Deng et al.,
2000). This EMG signal will cause interference to the original
signal when collecting ECG. The affected ECG signal appears
as a small glitch in the time domain. In addition, breathing can
also affect the acquisition of signals. While breathing, people are
accompanied by small fluctuations in the body, producing lower
frequency interference signals (Wu et al., 2014). The baseline of
a normal ECG signal is a straight line, while the baseline of the
interfered signal is no longer a straight line, often referred to
as baseline drift (Chouhan and Mehta, 2007; Yu et al., 2014).
Moreover, the impact of motion on signal acquisition is more
obvious (Garcia-Casado et al., 2006; Lee et al., 2014; Torfs et al.,
2014; Pei et al., 2016). This kind of interference is uncontrollable
and will cause a large change in the signal. Therefore, general
ECG acquisition requires the subject to remain as static as
possible (Liu et al., 2018). In the state of motion, the electrode and
the human skin will be distorted and displaced. Friction can cause
changes in the impedance between the skin and the electrodes,
causing some interference during the entire process.

Due to the special occupation of athletes, higher requirements
are placed on the electrodes. Currently used in the clinic
is a standard wet electrode, which reduces the impedance
between the skin and the electrode through a conductive
gel to achieve high-quality ECG (Li et al., 2018). However,
there are still lots of problems to be solved. For high-
quality ECG monitoring, researchers did their efforts on
the Wearable Biosensors, most of which are dry electrodes
that do not require conductive gels (Dozio et al., 2007;
Assambo and Burke, 2009; Zhang et al., 2015; Joutsen et al.,
2017). Kim et al. (2016) proposed a 1D-2D hybrid carbon
nanocomposites-based ECG electrode and recorded ECG with
three movements, namely wrist curl, squat, and writing. Noh
et al. (2016) proposed a novel conductive carbon black and
PDMS ECG electrode which could achieve ECG recording
with water exposed conditions. Asadi et al. (2021) realized
continuous medical ECG monitoring by constructing a graphene
elastomer electrode. Even though plenty of WBSs were
proposed, none of the existing methods met the requirement
on ECG monitoring in motion. Besides, the dry electrodes
without conductive gel would have the impedance between
electrodes and skin rather high, which makes the recorded
signal be easily affected by the body motion of the subjects
(Pei et al., 2016). Non-contact electrodes, which can make
measurements through clothing without any contact between
the electrode and the skin, is essential for building user-
friendly WBS networks for physiological recording during
motion (Lee et al., 2013). Up to date, most of the non-
contact electrodes are rigid and sensitive to motion (Chi
et al., 2009, 2010, 2011, 2013), not benefiting for long-term

monitoring. Therefore, monitoring ECG signals during motion
is definitely a challenge.

In this study, a flexible non-contact electrode for WBS was
proposed based on the principle of capacitive coupling for
physiological signal acquisition. The electrode was built with
flexible printed circuits (FPC) materials and could be bent to
ensure better capacitive coupling with the skin (Yi et al., 2018;
Liu et al., 2019). Although the motion had a great influence, the
proposed non-contact electrode could acquire high-quality ECG
compared with the wet electrode. In this study, we first studied
the effects of the layers of the insulation materials on flexible non-
contact electrode-based ECG quality compared with the gold
standard method. Then, we further studied on the effect of the
size of the flexible non-contact electrode on the ECG quality.
After that, we investigated the performance of flexible non-
contact electrodes on ECG recording at different walking speeds.

MATERIALS AND METHODS

Subjects
Three male subjects aged from 20 to 25 years old were
recruited in this study. The subjects had normal cardiac function,
normal muscle function, and no cognitive impairments. The
experimental procedures were clearly explained to the subjects,
and the data collection was carried out in an ordinary laboratory
environment without any electromagnetic shielding. All the
experimental protocols were approved by the Institutional
Review Board (IRB) of the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. (SIAT-IRB-190615-
H0352).

The Experimental Scheme
The overall design block diagram of the system was shown in
Figure 1. Two non-contact electrode sheets and one driven right
leg (DRL) electrode were used to collect physiological electrical
signals (Guermandi et al., 2008; Kim and Park, 2008; Guerrero
and Spinelli, 2017). The physiological signal monitoring of non-
contact electrodes mainly utilizes the principle of capacitive
coupling. The non-contact electrode sheet and the skin
corresponds to both the conductive surface of the capacitor,
while the clothing corresponds to the insulating dielectric-filled
in the middle of the capacitor. The signal coupled into the circuit
was pre-processed by an anti-aliasing filter, and then entered
the ADS1299 (Texas Instruments, Dallas, Texas, United States),
a front-end board, for signal acquisition and conversion from
analog signals into high-resolution digital signals. The data
acquisition process was controlled by the wireless CC3200
MCU (Texas Instruments, Dallas, Texas, United States) and
the data from ADS1299 was streamed through high-speed Wi-
Fi to the PC, where a Matlab (Mathworks Inc., United States)
GUI was ready to display the real-time waveform and stored
the raw data for offline analyses. The physiological electrical
signal acquisition system was shown in Figure 2, including
a circuit board, electrode board, and electrode sheets. The
electrode sheet was of round shape and composed of a double-
layer flexible printed circuit board (FPCB), which could be
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FIGURE 1 | The overall design block diagram of the non-contact ECG signal acquisition system.

FIGURE 2 | The photos of the ECG signal acquisition system and flexible non-contact electrodes with different sizes [small (the diameter is 1.5 cm), medium (the
diameter is 2.1 cm), and large (the diameter is 3.0 cm)] electrode.

bent according to the skin curve. The bottom layer was
completely filled with copper to prevent the sensing plate
from external interferences; the top layer was composed of
one circular copper-filled non-contact capacitive sensing plate
and one concentric outer shielding ring connected with the
outer ring at the bottom to improve the shielding outcomes
(Muneer, 2014; Chen et al., 2017; Jiang et al., 2017). The flexible
non-contact electrode was connected with the electrode board
using a soft shielded cable, whose inner wire was connected
with the top sensing plate and the outer shield was connected
with the shielding layer. The ADS1299 and CC3200 WIFI
modules were soldered on the circuit board. In addition, the
lithium battery was used for the power supply to reduce power
frequency interference.

RESULTS

The Effects of Insulation Layers and
Electrode Size
To verify the performance of the proposed electrodes, the
standard wet electrodes were used as a reference, which was
shown by the blue line in Figure 3. The red signals were
the ECG signals collected by our electrodes when a layer of

canvas was used as the insulating material, while the pink signal
was acquired when three layers of canvas were used as the
insulating material. All signals were collected synchronously
while the subject remained relaxed stationary position. It was
clear that the ECG signal quality was high, the baseline was very
thin and stable and P-wave, T-wave, and QRS waves could be
clearly observed. However, as the number of interlayer materials
increased, the signal quality tended to decline. In the figure,
the baseline was widened and the signal contains burrs, but
it did not evidently influence the quality. The second, third,
and fourth rows in the figure used small (the diameter is 1.5
cm), medium (the diameter is 2.1 cm), and large (the diameter
is 3.0 cm) electrode sheets, respectively. As the size of the
electrode sheets increased, the amplitude of the ECG signal
increased a little bit.

Among them, the medium electrode signal quality was
the best, and the electrode sheet was too large or too small
would have an impact on the signal quality. If the electrode
piece was too small, it would cause a less effective signal
to be transmitted, affecting the signal quality, while if the
electrode piece was too large, and in the case of non-contact,
the noise generated by the friction would be mixed into the
signal, reducing the signal-to-noise ratio. In all, our non-contact
electrodes could acquire high-quality ECG signals which were
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FIGURE 3 | Static electrocardiographic signals collected under different electrodes (blue for wet electrode, red and pink for flexible non-contact electrode) and under
different thicknesses of canvas (red for a layer of canvas and pink for three layers). The second, third, and fourth rows used small, medium, and large electrodes,
respectively.

highly similar to the standard wet electrode signal, when the
subject was quiet.

Electrocardiogram Collected During
Motion
The flexible non-contact electrodes could not only capture signals
when the subject was quiet but also acquired signals when they
were in motion. When the subject was exercising at a speed of
2 km/h on the treadmill, we selected the medium electrode piece
as the non-contact electrode for signal monitoring. At the same
time, we used the standard wet electrode and the dry electrode
for simultaneous monitoring, and the positions of the electrode
pieces were as close as possible. The original ECG time-domain
waveforms obtained by the three different electrodes including
the wet, flexible non-contact, and dry electrodes, were shown
in Figure 4. It could be observed that the signals collected by

the three electrodes were highly similar. Therefore, although
the subject was in motion, the proposed non-contact electrodes,
especially the flexible one, could achieve a comparable quality of
signals with the standard wet electrodes in ECG measurements.

Electrocardiogram Collected With
Different Walking Speeds
Next, we used the flexible non-contact electrode to further
investigate the ECG monitoring during exercise. Subjects
were kept at a constant speed from 2 to 7 km/h on the
treadmill. At the same time, we used non-contact electrodes
and standard wet electrodes to monitor ECG signals, as shown
in Figure 5. It could be observed from the figure that as
the speed of the subject increased, the number of R waves
detected during the same time increased, which was in line
with the mechanism of human motion. Besides, as the speed
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FIGURE 4 | The ECG recorded by wet electrode (blue), proposed electrode (red), dry electrode (pink) at the speed of 2 km/h.

increased, the signal quality of both the non-contact electrode
and the wet electrode decreased, and the T wave and the P
wave were gradually unclear, but the R wave could still be
clearly detected.

Mathematical Statistics Analysis
When the subject remained stationary, the small, medium, and
large electrodes all had a high correlation coefficient with the
wet electrode, as shown in Figure 6, indicating that the perfectly
designed flexible electrode can perform ECG monitoring in a
non-contact state. When studying the effects of insulation layers
and electrode size, the ECG signals from the wet and non-
contact electrodes were compared and analyzed by calculating the
average correlation coefficient. An average correlation coefficient
of 99.28 ± 0.42, 99.70 ± 0.30, and 97.18 ± 0.52% was calculated
for the small, medium and large ECG electrodes, respectively
when compared to the wet Ag/AgCl electrode. Therefore,
the size of the electrode would bring about a difference in
the correlation coefficient, which meant that the size of the
electrode would affect the signal. For example, the medium-
sized electrode had the best signal. When the electrode pad
area became smaller, the effective signal would decrease; when
the electrode pad area became larger, the noise entering the
circuit would also increase. When considering the condition in
motion, taking the standard wet electrode as the gold standard,
the correlation coefficient between the non-contact electrode
and the wet electrode was as high as 97.53 ± 1.80%, and
the correlation coefficient between the dry electrode and the
wet electrode was as high as 98.43 ± 0.77%. Moreover, we
calculated the SNR of the ECG acquired by the proposed
electrode under different walking speeds, the result showed that
with the increment of the speeds, the quality of the ECG could
maintain reliable.

DISCUSSION

Effects of Electrode Size
The non-contact electrode uses the principle of capacitive
coupling (Wang et al., 2015; Li and Sun, 2017). According to the
formula of the capacitance, the capacitance increases as the area
of the electrode sheet increases, and decreases as the distance
between the electrode sheet and the skin increases. However,
according to actual experiments, the quality and strength of
effective signals do not increase with the increase in electrode
pad size. In this experiment, we used non-contact electrodes with
diameters of 1.5, 2.1, and 3 cm, with an area ratio of 1:1.4:2,
respectively. As the area of the electrode sheets increased, the
amplitude of the electrocardiographic signal appeared to become
larger, but not significant. At the same time, we used the method
of calculating the correlation coefficient to evaluate the ECG
signal quality compared with the standard wet electrode. An
average correlation coefficient of 99.28 ± 0.42, 99.70 ± 0.30,
and 97.18 ± 0.52% was calculated for the small, medium and
large ECG electrodes, respectively when compared to the wet
Ag/AgCl electrode. The results demonstrated that the proposed
electrode performed as better as the gold standard method
does. Besides, we found that the signal quality of the medium
electrode was the best, so in the non-contact acquisition, the
quality of the ECG signal and the area of the electrode pad
were not simply proportional. It was possible that as the
area of the electrode sheet became larger, the effective signal
was increased, but at the same time, noise interference was
also introduced.

Effects of Clothing Thickness
Since the non-contact electrode is based on the capacitive
coupling between the electrode plate and the skin surface, the
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FIGURE 5 | The ECG signals recorded by wet (blue) and flexible non-contact electrode (red) under different walking speeds (from left to right and from up to down,
they were 2, 3, 4, 5, 6, and 7 km/h, respectively).

FIGURE 6 | Mathematical statistics analysis: (A) Correlation coefficients between electrodes of different sizes and wet electrodes under static conditions; (B)
correlation coefficients between flexible non-contact electrodes, flexible dry electrodes and wet electrodes under motion; (C) SNR at different walking speeds.

effective capacitance is proportional to the area of the electrode
plate and the dielectric constant of the insulating material while
inversely proportional to the distance between the electrode and
the skin. As the thickness of the insulating layer increases, the
signal quality decreases. In theory, the further the electrode is
from the source, the smaller the coupling signal (Liu et al.,
2019). In this experiment, we used two thicknesses of clothing
for monitoring and both obtained an effective ECG signal,
namely one layer and three layers. The result showed that thin

clothes had less noise interference than thick clothes. It was
consistent with the principle of capacitive coupling. As the
layers of the insulation materials increase, the distance between
the electrode and the skin increase, which finally causes the
decrease of the effective capacitance and therefore leads to the
deterioration of the ECG quality. This result was consistent with
the existing research that had been reported (Chi et al., 2009;
Mathias et al., 2015; Wang et al., 2019). And in our study,
for three layers of the insulating material, the ECG signals still
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had recognizable ECG characteristics, which could be used for
further analysis.

Effects of Walking Speed
We not only performed ECG signal acquisition when the subject
was at rest but also monitored the subject at constant speeds
ranging from 2 to 7 km/h with the increment of 1 km/h.
The results showed that as the speed increased, the ECG cycle
became shorter, which was consistent with the mechanism of
human motion that the heart would beat faster when the
human being did exercise. As the speed increased, the wet-
electrode and our electrode signal quality tended to decrease,
mainly affected by myoelectric signals and noise from electrodes
friction and breathing. When the subject was walking, muscle
cells tremble as they contract, producing high-frequency EMG
signals, which had a high frequency and a low amplitude. This
EMG signal would cause interference to the original signal
when collecting ECG. The affected ECG signal appeared as a
small glitch in the time domain. With the increase of speed,
the EMG signal became stronger and the interference to the
ECG became larger. During the exercise, the electrodes and skin
would rub against the clothes and cause relative displacement.
At this time, a large amount of motion artifact noise was
generated. It was no doubt that motion artifacts had a great
impact on the signal. As the speed increased, the motion artifacts
also increased, therefore, leading to the quality of the ECG
signal decreasing. In addition, breathing could also affect the
acquisition of signals. While breathing, people were accompanied
by small fluctuations in the body, producing lower frequency
interference signals. The baseline of a normal ECG signal was
a straight line, while the baseline of the interfered signal was
no longer a straight line, often referred to as baseline drift.
The deterioration of signal quality was mainly manifested by
the thickening of the baseline and the unclear T and P waves.
However, the QRS waveform could be clearly seen in this
study. Overall, our electrodes were resistant to noise interference
during motion monitoring, with good signal quality and a
correlation coefficient of 97.53 ± 1.80% with standard wet
electrodes. The SNR of ECG in 3, 4, 5, 6, and 7 km/h were
7.87 ± 3.36, 8.23 ± 4.22, 6.83 ± 3.33, 5.20 ± 3.24, and
4.64 ± 0.40 dB, respectively. This result suggested that the
proposed electrode could achieve high quality ECG recording
even in motion. In the future, we would like to recruit more
subjects with different sexualities and weights to further evaluate
the proposed electrode.

Noises in Electrocardiogram
In common practices, the recorded ECG signals are easily
contaminated by noises such as powerline interferences,
electrode displacement, electrode lead jitter, EMG noises and
so on. It could be observed from Figures 3–5 that the
recorded ECG signals for our proposed non-contact electrode
did now show significant contamination by the abovementioned
noises. Such anti-noise capacity was achieved by the following
technologies of our hardware and experimental protocol: (1)
the active shielding technology (Jiang et al., 2018) in which
all the frontend pathway of the non-contact electrode was

shielded by a buffered voltage of the same level as the
inner-wire signal, so that the capacitive coupling to the
mains and to the ground could almost be eliminated, leading
to extraordinary attenuation of the powerline interferences.
With the assistance of the same active shielding technology,
the interferences introduced by electrode lead jitter during
body movements were also eliminated, which simplifies the
subsequent signal processing and analysis tasks. (2) the
proposed non-contact electrode was quite flexible so that it
could bend freely according to the local curvation of the
skin. In this way, it was very difficult for the electrode
to move after it was fixed, even when the subject was
running. The noises introduced by electrode displacement
were prevented from degrading the ECG signal quality as a
result. (3) in the experimental protocol, the electrodes were
placed in the forearm positions where there were few muscles
underneath. The subjects were also asked to avoid making
large forearm muscle contractions when running. In this way,
there were no significant EMG noise interferences in the
ECG recording of this study. The data acquisition system
of this study with flexible non-contact electrode could be a
great tool to measure ECG signals with robust performance
in noise immunity.

CONCLUSION

In this study, we proposed a wearable device for dynamic ECG
monitoring, whose electrodes were flexible and non-contact,
which was very friendly to subjects. When developing WBS
devices, consideration should be given to user comfort, stability
of long-term monitoring, and reliability of acquired signals.
To enhance user comfort, we designed a flexible capacitive
electrode that could bend along the curvature of the body
surface. This capacitive coupling means that the ECG signal can
be monitored while the subject is wearing the clothes, which
avoids the possibility of allergy when using a wet electrode. We
designed the electrode shielding ring to reduce noise interference
and monitor the motion of the motion center. The results
showed that the proposed electrodes could effectively resist the
interference of noise. The ECG signal collected at rest reached
the correlation coefficient of 99.70 ± 0.30% compared with
the standard wet electrode. While, in the motion state, the
correlation coefficient of the signal was as high as 97.53 ± 1.80%
compared with the wet electrodes and dry electrodes. We
verified the performance of the electrode by walking on a
treadmill at a speed of up to 7 km/h. The results confirmed the
feasibility of the developed system in daily life ECG monitoring,
and suggested that the proposed flexible non-contact electrode
would be a potential candidate for WBS systems on long-
term healthcare monitoring for patients and physiological signal
measurements for athletes.
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Pitch, as a sensation of the sound frequency, is a crucial attribute toward constructing

a natural voice for communication. Producing intelligible sounds with normal pitches

depend on substantive interdependencies among facial and neck muscles. Clarifying

the interrelations between the pitches and the corresponding muscular activities would

be helpful for evaluating the pitch-related phonating functions, which would play a

significant role both in training pronunciation and in assessing dysphonia. In this

study, the speech signals and the high-density surface electromyography (HD sEMG)

signals were synchronously acquired when phonating [a:], [i:], and [

e

:] vowels with

increasing pitches, respectively. The HD sEMG energy maps were constructed based

on the root mean square values to visualize spatiotemporal characteristics of facial

and neck muscle activities. Normalized median frequency (nMF) and root-mean square

(nRMS) were correspondingly extracted from the speech and sEMG recordings to

quantitatively investigate the correlations between sound frequencies and myoelectric

characteristics. The results showed that the frame-wise energy maps built from sEMG

recordings presented that the muscle contraction strength increased monotonously

across pitch-rising, with left-right symmetrical distribution for the face/neck. Furthermore,

the nRMS increased at a similar rate to the nMF when there were rising pitches,

and the two parameters had a significant correlation across different vowel tasks

[(a:) (0.88 ± 0.04), (i:) (0.89 ± 0.04), and (

e

:) (0.87 ± 0.05)]. These findings suggested

the possibility of utilizing muscle contraction patterns as a reference for evaluating

pitch-related phonation functions. The proposed method could open a new window for

developing a clinical approach for assessing the muscular functions of dysphonia.

Keywords: phonation function, pitches, speech communication, high-density, surface electromyogram
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INTRODUCTION

Phonation is an essential physiological process via which natural
voices are produced to aid human communication during daily
life activities (Alku, 2011). Fundamentally, a normal voice is
characterized by loudness, pitch, and quality, among which
pitch is considered the most significant contributor toward
constructing intelligible sounds (Kryshtopava et al., 2017). A
wide range of normal pitches can enhance vocalization with the
rich capability to express one’s interpersonal emotions for social
communication (Kim et al., 2009; Craig et al., 2015). Pitches
used to describe the sound on a scale from low to high are
often characterized and quantified in terms of frequencies (in
cycles per second or hertz) (Rinaldi et al., 2016). For instance,
to deliver a speech or sing a song with high intelligibility,
the produced sound should consist of pitches accompanied
by harmonic overtones that are multiples of the fundamental
frequency (Bishop and Keating, 2012). However, an abnormal
pitch resulting in a sound/vocalization that is too high, too
low, unstable, monotonous, and unpleasant to listen would
lead to phonating difficulty, often known as dysphonia (Jani
and Gore, 2014; Knuijt et al., 2014; Sommerville et al., 2017).
Also, dysphonia remains a major health issue, especially, for
individuals whose jobs require high speech intelligibility such as
teachers, singers, lawyers, tour guides, and salespeople, among
others (Rosen and Murry, 2000; Cutiva et al., 2013; Martins et al.,
2014). Therefore, early examinations and diagnoses of the pitch-
related functions of dysphonia could be of great importance for
these high-risk populations.

The evaluation of the normality of pitch-related phonation
function plays a significant role in diagnosing dysphonia.
Currently, most of the methods for assessing the pitch-
related phonation functions are based on the analysis of
speech signals (Gerratt et al., 2016; Brajot and Lawrence,
2018; Murtola et al., 2019). However, the speech signals are
easily affected by environmental acoustic noises and human-
introduced interferences (Dennis et al., 2010; Balata et al.,
2015). It is difficult to collect speech signals with high quality
in a noisy environment, and therefore, the recorded noise-
contaminated speech signals were unreliable for assessing pitch-
related phonation functions. Moreover, speech signals only
contain one-dimension acoustic information about speech, and
it is usually insufficient to evaluate the physiological process of
phonation activities, the analysis of which requires the dynamic
information of the related muscular activities.

Notably, phonation is a complex process controlled by

multiple articulatory muscles (Chhetri and Neubauer, 2015).
The construction of a normal pitch relies on the oscillation

rate of the vocal cords controlled by the contraction patterns
of the inherent and extrinsic articulation of the facial and

neck muscles associated with phonation (Horáček et al., 2016).
The strength, contraction rate, and coordination of the facial
and neck muscles are essential factors in the construction of
normal pitches during phonation (Macdonald et al., 2012).
Therefore, examining themuscular activities during pitch-related
phonation tasks is crucial for evaluating the phonating function.
It is noteworthy that surface electromyography (sEMG) is an

important technique for detecting, recording, and interpreting
the electrophysiological characteristics of muscular activities
(Tang et al., 2018). Meanwhile, the sEMG approach is non-
invasive, safe, easy to operate, and cost-effective when compared
with other methods (Naik et al., 2015; Strazzulla et al., 2016),
making it widely utilized for assessing the muscular function
associated with phonation activities (Pettersen et al., 2005; Van
Houtte et al., 2013; Khoddami et al., 2017; Kaneko et al., 2018;
Xu et al., 2018). For instance, four channels of sEMG signals
recorded while the subjects were phonating a set of vowels at an
increasing pitch were utilized to study the electrical activities of
scalenus, sternocleidomastoideus, and upper trapezius muscles
(Pettersen et al., 2005). In another study, time-domain features
of sEMG signals from two channels were used to assess the
functions of the cricothyroid and thyrohyoid muscles in patients
with dysphonia (Khoddami et al., 2017).

Up to date, most of the previous studies mainly focused on
assessing pitch-related phonation functions individually using
either speech signals (Gerratt et al., 2016; Brajot and Lawrence,
2018; Murtola et al., 2019) or sEMG recordings (Pettersen
et al., 2005; Van Houtte et al., 2013; Khoddami et al., 2017;
Kaneko et al., 2018; Xu et al., 2018), whereas the quantitative
interrelationship between the pitches and the corresponding
muscular activities during the pitch-related phonation remains
unclear. It is noteworthy that the interrelations between the
pitches and the corresponding muscular activities are an essential
prerequisite for exploring the electrophysiological mechanisms
of pitch-related phonation functions, and such mechanisms play
an important role in pronunciation training and dysphonia
diagnosing. Therefore, the synchronous analysis of both speech
signals and sEMG recordings is necessary to clarify the
interrelations between the pitches and muscular activities.

Furthermore, since the phonation process involves a large
group of small facial and neck muscles that span a relatively
large area (Dewan et al., 2017), dynamically evaluating the
electrophysiological spatiotemporal properties of the entire
group of coordinated facial and neck muscles could be helpful
for the analysis of the pitch-related phonation functions.
However, most of the existing studies utilized only a few
surface electrodes (typical 2–4 channels) with limited coverage,
and they rarely provided adequate neuromuscular information
required for consistently accurate diagnoses (Pettersen et al.,
2005; Khoddami et al., 2017). A small number of sEMG
electrodes might miss important muscles and major electrical
activities that would be essential for the dynamic assessment of
the entire phonation process. Therefore, a large number of sEMG
electrodes would be necessary to cover the whole group of facial
and neck muscles in enough density so that the spatiotemporal
properties and coordination activities of all the muscles could be
studied systemically.

High-density sEMG (HD sEMG) is a non-invasive technique
to measure sEMG signals with a two-dimension array of
closely spaced electrodes, and it could provide comprehensive
information for dynamic evaluation of the spatiotemporal
characteristics of muscle groups (Johns et al., 2016; Zhu et al.,
2017b, 2018b; Chen et al., 2018; Glaser andHolobar, 2018).When
applied in the phonation study, the HD sEMG technique could

Frontiers in Neuroscience | www.frontiersin.org 2 July 2022 | Volume 16 | Article 94159430

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhu et al. Phonation Function High-Density Surface Electromyography

be beneficial for collecting sufficiently relevant information to
evaluate the properties of the facial and neck muscles across the
entire phonation process. In this regard, a series of sequential
energy maps constructed from HD sEMG recordings could be
utilized to evaluate the muscular activities of the frontal neck
while phonating vowel [a:] in our pilot studies (Zhu et al., 2017a,
2018a). Afterward, Bracken et al. utilized a 20-channel array of
HD sEMG signals located around the anterior neck to evaluate
the muscular activities when phonating in three manners (rest,
low, and high pitches) (Bracken et al., 2019). Nevertheless, these
studies only focused on myoelectric characteristics of the neck
muscles without simultaneously considering the properties of
speech signals that are commonly applied in clinical settings,
and therefore, the interrelations between the speech signals and
the sEMG recordings during pitch-related phonation have rarely
been investigated.

In this study, we investigated the possibility of utilizing
the acquired dual-signal (speech and HD sEMG signals) for
systematically exploring the interrelations between the pitches
(sound frequencies) and the corresponding muscular activities
associated with pitch-related phonation. This purpose had been
achieved by dynamically visualizing the electrophysiological
spatiotemporal properties of the facial/neck muscles and
quantitatively analyzing the correlations between sound
frequencies and myoelectric characteristics when phonating with
increasing pitches across different vowel tasks. The proposed
method might open a new window for developing a clinically
relevant approach for training the pronunciation and diagnosing
the dysphonia.

METHODS

Subjects
Toward reducing the complexity of the subjects, a total of
14 healthy male volunteers (mean age = 24.7 ± 1.5 years)
participated in this study involving a set of systematically
designed phonation tasks. Before the experiments, all the subjects
were enquired to ensure that they had no history of phonation
difficulties, and a pure-tone audiometry test was conducted to
ensure that they had no hearing problems. Then, the objective
and experimental procedures of the experiments were clearly
explained before the data collection session. All the subjects gave
written informed consent and provided permission to publish
their photographs/data for scientific and educational purposes.
The protocol of this study was approved by the Institutional
Review Board of Shenzhen Institutes of Advanced Technology
(#IRB ID: SIAT-IRB-170815-H0178).

Experimental Procedures
In this study, the speech signals and the HD sEMG recordings
were simultaneously acquired from all the recruited subjects
when a subject phonated the back vowels [a:], front vowels [i:],
and central vowels [ e:] with a continuously increased pitch. The
speech signals were recorded at a sampling rate of 44,100Hz
via a headset-attached microphone placed above the first row
of sEMG electrodes on the right side of the face, as seen in
Figure 1A. Meanwhile, the HD sEMG signals were recorded

by using a multichannel EMG recording system (TMSI, REFA,
the Netherlands) at a sampling rate of 2,048Hz. During the
experiment, we implemented a hardware circuitry that could
trigger the start of the data acquisition of both the speech andHD
sEMG to achieve the synchronization of the two types of signals.
By using double-sided small-sized tapes, a total of 120 channels
of surface electrodes were evenly placed on the skin surface of
the face and the neck, both with left/right symmetry (Figure 1B).
The double-sided tapes were medical grade and had very strong
adhesive strength to stick the electrode on the skin to avoid the
interferences introduced by the electrode wire movements or lip
motion. Before placing each electrode, the skin of the subject was
carefully prepared with an abrasive skin preparation gel and then
cleaned with alcohol cotton to remove any sweat and oil that
could possibly reduce the adhesion of the double-sided tapes.

Each surface electrode is ∼10mm in diameter, and an inter-
electrode distance of about 15mm was ensured between two
neighboring electrode centers to cover the phonation-related
muscles in intensive densities. In this regard, a two-dimension
(2D) array made up of 80 electrodes in a 5 × 16 grid was placed
on the suprahyoid and infrahyoid muscles located in the front
neck regions of each subject, as seen in Figure 1B. The electrodes
were identified and labeled by 5 rows (E–I) and 16 columns (1–
16). The remaining 40 electrodes were symmetrically placed over
the facial muscles (including the masseter, the buccinators, the
orbicularis oris, and the zygomatic minor muscles), with a 4×5
grid on both the left and right sides. The 2D facial electrodes
were identified and labeled by 4 rows (A–D) and 10 columns
(1–10), as seen in Figure 1B. The extra space in the middle
between the left and right neck electrode arrays was to avoid the
laryngeal prominence of the subjects, especially in male subjects.
Afterward, a fabric electrode was placed on the left wrist of the
subject to serve as the reference electrode.

The phonation experiments were individually carried out
on all the recruited subjects in an electromagnetic-shielded
and soundproofed room that allowed the collection of high-
quality electric and acoustic signals. Three different phonating
experiments were adopted in the current study to assess the
muscle activation patterns and to explore the interrelations
between the speech and HD sEMG signals. First, the subjects
were asked tomaintain a quiet state without phonating ormoving
their body parts for around 30 s so that the baseline for the
speech and the HD sEMG signals could be determined. Then,
the subjects were asked to pronounce [a:], [i:], and [ e:] vowels,
respectively, in a sequential order with a monotonously rising
pitch (from low to high) for three successive repetitions per trial.
In each repetition, the target vowel was phonated for ∼4 s and
followed by a rest period of 6 s that comprised 3 s before the
phonation and 3 s after the phonation to prevent the subjects
from experiencing either muscle or mental fatigue that may
compromise the fidelity of the signals. During the phonation, the
speech signals and the HD sEMG recordings were synchronously
acquired from all the subjects.

Analysis of the Speech Signals
The spectrogram of the speech signals during the phonation task
was derived by using the short-time Fourier transform (STFT)
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FIGURE 1 | (A) Experimental setup to record the speech and HD sEMG signals simultaneously; (B) Placement of the high-density surface electrodes on the facial and

neck muscles.

method to perform the time-frequency analysis. The duration
of the STFT analysis window was 20ms, and the overlap width
between two neighboring windows was 10ms. The formula of
the STFT method implemented in this study could be expressed
as follows:

STFT {x [n]} (m,ω) = X (m,ω) =
∞
∑

n=−∞

x [n]ω [n−m] e−jωn (1)

where x[n] is the segmental speech signal at time frame n and
ω[n-m] is a Hamming window with the same duration as x[n].

To further illustrate the frequency domain features, the
speech signals obtained during the phonation tasks were
segmented into a series of frames with a duration of 250ms,
and the amplitude spectrum of each frame was calculated
accordingly. Then, frame-by-frame spectral curves could be
obtained to demonstrate the frequency-domain characteristics
of the speech signals when the subject was phonating vowels
in an increasing pitch. Afterward, the median frequency
(MF) of the speech signals from all frames was computed.
MF is defined as the frequency at which the spectrum is
divided into two regions with equal amplitude; in other
words, MF is the frequency at half of the power spectral
density of the signals (Phinyomark et al., 2012). It can be
expressed as given in Equation (2). Finally, the MF values were
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normalized by employing the min-max normalization method
given in Equation (3).

MF
∑

j=1

pj =

M
∑

j=MF

Pj =
1

2

M
∑

j=1

Pj (2)

where Pj is the EMG power spectrum at frequency bin j andM is
the length of the frequency bin.

nMF(i) =
MF(i)−min(MF)

max(MF)−min(MF)
(3)

where nMF(i) is the normalizedMF value of speech signals,MF(i)

is the MF value in analysis window i, min(MF) is the minimum
MF value, and max(MF) is the maximum MF value during the
entire phonation.

Analysis of the HD sEMG Signals
A set of digital filters were used to enhance the quality of the HD
sEMG signals obtained during the different phonation tasks. In
this regard, we first used a third order Butterworth band-pass
filter from 10 to 500Hz to reduce baseline fluctuations. Then,
a Butterworth band-stop filter was also applied to attenuate the
power line interferences at 50Hz and its harmonics. After the
pre-processing, the filtered sEMG signal of each channel was
sliced into a series of sequential 250ms analysis windows, and
the root-mean square (RMS) was computed for each analysis
window to obtain the average energy distribution of the muscular
activities as follows:

RMS {sEMG [n]} =

√

√

√

√

1

n

n
∑

i=1

sEMG2 [i] (4)

where RMS{sEMG[n]} is the RMS value of sEMG signals for
each analysis window, sEMG[i] is the ith sample in the analysis
window, and n is the total sample number of the analysis window.

Then, the frame-by-frame RMS values of all the 120 channels
were computed to investigate the dynamic activities of the
facial and neck muscles during the phonation with continuously
increasing pitches. Besides, RMS values of the same time frame
from different neighboring channels were joined together to form
a 2D array according to the electrode positions so that a 2D
energy map could be obtained to present the energy distribution
of the corresponding region. In this way, an energy map with
a size of 4 × 5 could be obtained for the left and right faces,
respectively. A 5× 16 energy map could also be generated for the
neck region. Then, the energy maps of all the time frames were
globally normalized for the face and neck region, respectively, so
that the sequential energy maps in a frame-wise manner could
help to demonstrate the spatial and temporal changes in energy
and muscular activities during different phonation stages.

nRMS(i) =
RMS(i, j)−min[RMS(i)]

max[RMS(i)]−min[RMS(i)]
(5)

where nRMS(i) is the normalized RMS value of sEMG signals
in channel i, RMS(i, j) is the RMS value of channel i in analysis
window j, min[RMS(i)] is the minimum RMS value of channel i,
and max[RMS(i)] is the maximum RMS value of channel i.

Correlation Analysis Between Speech and
sEMG Signals
The nMF of the speech signals, as well as nRMS values of the HD
sEMG signals per analysis window, was obtained and compared
to investigate the correlations between the speech signals and
muscular activities. The entire phonation process with a duration
of 10 s was segmented into a series of analysis windows with a
length of 250ms, resulting in a total of 40 nMF and 40 nRMS
values. Then, the correlation coefficients between the two groups
of nMF and nRMS were calculated to analyze the interrelations
between the speech and sEMG signals.

RESULTS

Features of the Speech Signals With an
Increasing Pitch
In this study, the time-domain and time-frequency
characteristics of the speech signals obtained during the
phonation process of [a:] vowel using low to high pitch were
analyzed as follows. The waveform characteristic of the speech
signals in the time-domain is seen in Figure 2A. From this
figure, the speech signals were observed to immediately rise
to ∼76 dB SPL (calibrated through a professional sound level
calibrator, Model AWA6021A, Gester Instruments Co., China)
at the commencement of the phonation, and about 4 s later,
the volume of the signal fluctuated around 80 dB SPL, thus
exhibiting a relatively stable phenomenon when the pitch
increased continuously from low to high. The speech signals
instantaneously returned to the baseline at the completion of the
phonation task.

Meanwhile, the time-frequency characteristics of the speech
signals along the time axis are presented in Figure 2B. According
to the analysis herein, the time-frequency distribution during
phonation revealed that the high intensity of the speech
signals was obtained from low-frequency components, especially
between 0 and 8KHz, which covered the entire phonating
activities. Additionally, the frequency values of the speech signals
were observed to increase steadily with a corresponding rise in
pitch when [a:] vowel was phonated. Also, the highest frequency
components appeared at the end of the phonation, where the
pitch also got to its peak.

A series of waveforms across the phonation process of [a:]
vowel was constructed to characterize the amplitude spectrum
of the speech signals. In this regard, the speech signals were
segmented into 40 continuous windows of a length of 250ms,
otherwise known as frames from which the amplitude spectrum
waveforms were later obtained and presented in a successive
manner, as seen in Figure 3. Each spectrum showed the
amplitude of each individual frequency within the corresponding
time frame of speech to visualize the dynamic variation in
the frequency domain. The amplitude spectrum of the frames
(F1–F13) that correspond to the speech signals obtained before
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FIGURE 2 | The amplitude and spectrogram of the speech signals when phonating the vowel [a:] with continuously increasing pitch. (A) The amplitude of the speech

signal as a function of time; (B) The time-frequency spectrogram of the speech signal.

FIGURE 3 | Amplitude spectra of the speech signal with an increasing pitch from a series of analysis windows (F1–F40).

phonating the vowel [(a:)] was observed to have a low-frequency
band with low intensities. Meanwhile, the amplitude spectra were
observed to vary considerably between the 14th and 29th frames
when the subjects began phonating at a low pitch and steadily
increased to a high pitch. Specifically, at the beginning of the
phonation task represented in frames F14–F16, the frequency
band of the speech signals increased slightly to values below
10KHz with a corresponding increase in the amplitude of the
frequency. With a further increase in the pitches, the frequency
band of the signals became even wider from frames F17–F29
with a band that was ∼20KHz. Meanwhile, the amplitude of

the frequency also increased steadily from F17–F29 with a
corresponding increase in pitches. Subsequently, the frequency
band and the amplitude of the speech signals suddenly dropped
when the subjects stopped phonating.

Temporal Waveforms of the HD sEMG
Signals Across the Phonation Process of
[a:] Vowel With a Rise in Pitch
The temporal waveforms of HD sEMG signals are displayed
in Figure 4 for showing the characteristics of facial and neck
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FIGURE 4 | The temporal waveforms of the HD sEMG signals recorded from all the 120 surface electrodes on the facial and neck muscles during the phonation with

rising pitch.

muscles, in which the waveform of a typical channel (E8) was
presented to exhibit the variation of the sEMG amplitudes. At
the onset of the phonation task, the temporal waveforms of the
HD sEMG signals associated with the facial and neck muscles
had relatively lower intensity, and as the pitch increases from
low to high, the amplitude of the waveforms also increased
correspondingly across all the channels. Meanwhile, at the offset
of the phonation task, the HD sEMG waveforms were observed
to have a sudden drop in amplitude to the baseline.

As seen in Figure 4, the HD sEMG waveforms were
constructed for 120 channels that were divided into two parts: the
first denotes the facial region (in the blue rectangle) consisting

of 40 channels (from columns 1 to 10 and rows A to D)
and the other part indicates the neck region (in red rectangle)
consisting of 80 channels (from columns 1 to 16 and rows E
to I). On the facial region (row A to D), the amplitudes of the
sEMG waveforms obtained from the electrodes located around
the mouth (from columns 3 to 8) were relatively smaller than
those obtained from the signals on the outer part of the face
(right side: columns 1–2 and left side: columns 9–10) during
the entire phonating process. On the contrary, as shown in the
neck region (rows E–I), the amplitudes of the sEMG signals
turned out to be larger at the center of the neck area (from
columns 6 to 11) than those at the edge of the neck (right
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FIGURE 5 | The HD sEMG energy maps of the facial and neck muscles by using 40 analysis windows with a length of 250ms during phonating vowel [a:] with pitch

increase: (A) A typical frame of HD sEMG energy map visualizing the facial and neck muscle activities; (B) HD energy maps of the facial muscles; (C) HD energy maps

of the neck muscles.

side: columns 1–5 and left side: columns 12–16). Meanwhile, the
sEMG signals on the first row of the neck region (E1–E16) also
showed high intensities when phonating with an increasing pitch.

Additionally, the symmetrical distributions of the HD sEMG
waveforms were observed between the left and right sides for
both facial and neck regions.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2022 | Volume 16 | Article 94159436

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhu et al. Phonation Function High-Density Surface Electromyography

Dynamic HD sEMG Energy Maps When
Phonating [a:] Vowel With Increasing Pitch
In this section, dynamic HD energy maps were constructed
to analyze the characteristics of the facial and neck muscles
during the entire phonation process. For visualizing the dynamic
changes in muscular activities associated with facial and neck
muscles during rising pitches, the earlier described RMS feature
was computed from a series of analysis windows that resulted
in feature matrices utilized for generating the HD sEMG energy
maps presented in Figure 5. Note that different intensities of
myoelectric activities are represented by the color gradient of
the energy maps, in which the color toward red signified high
intensity and that toward blue denoted low intensity.

First, a typical dynamic HD sEMG energy map of the facial
and neck muscles from an analysis window during the phonation
process is displayed in Figure 5A. It could be seen that the map
in the neck region had higher intensity, especially for muscles
that appeared around the center of the neck. Thus, the muscles
in the active neck region were distinctively separated into two
parts symmetrically, in which the right side had slightly higher
energy intensity than the left region of the neck. Meanwhile,
low-intensity energy was observed on the top of the map that is
symmetrical between the right and left sides. In addition, a highly
symmetrical energy distribution was equally observed between
the right and left sides. The energy map on the right side of the
facial muscles had high intensity on the edge of the right face
region, while the map on the left side of the facial muscles reflects
high intensity on the left side of the facial muscles (Figure 5A).

Subsequently, a further analysis that involved the entire
phonation process was done to observe if similar results could
be obtained from a single channel described earlier. In this
regard, the entire phonation task was segmented into 40 analysis
windows of a length of 250ms each, and a sequence of HD
sEMG energy maps was constructed to reflect the dynamism
of the myoelectric activities associated with the facial and neck
muscles. Hence, a total of 40 frames of HD sEMG energy maps
representingmyoelectric activities of the facial muscles are shown
in Figure 5B, while 40 frames of HD sEMG energy maps of the
neck muscles are presented in Figure 5C.

At the onset of the phonation task (F1F10), the subjects
were asked to assume a quiet state without moving. Hence,
no activity could be seen for both the facial (Figure 5B) and
neck (Figure 5C) muscles. Meanwhile, when the subjects began
phonating, the HD sEMG energy maps became different between
the facial and neck muscles, as could be seen from F11 to F30 in
Figures 5B,C.

As seen in Figure 5B, the facial muscles were kept in
unconspicuous activities on both the right and left sides from F11
to F20 even after the subject had already begun to increase the
pitch. It was noticed that there was some delay in the facial muscle
activation during the phonating process. Then, from F22 to F28,
the intensity of the energy maps started constantly increasing to
reach the maximum value on F28, and the high-intensity areas
of the maps on the right and left sides were concentrated on the
edge of the facial muscles. The active regions on the left side
of the facial muscles appeared at the bottom left of the maps,
while that on the right side of the facial muscles performed at

the bottom right of the maps. Additionally, it was found that the
HD sEMG energy maps of the facial muscles were symmetrically
distributed on both the left and right sides, besides there were
some differences between the two sides, in which the intensities
of the left facial muscles were a little higher than that of the right
facial muscles. After that, at the end of the phonating process,
the myoelectric activities of the facial and neck muscles were
diminished in a short time (from F29 to F30) when the subject
prepared to stop pronouncing. Finally, after the subject went back
to quiet, the high-intensity area of the energy maps disappeared
from F31 to F40.

Then, it was observed that the muscular activities of the neck
muscles (Figure 5C) were activated before the facial muscles
(Figure 5B). The high intensity of the energy maps on the neck
muscles started to emerge from the center of the map at the
11th frame in low intensity, while that of the facial muscles was
activated at the 21st frame (Figure 5C). Afterward, the energy
maps weremaintaining a stable intensity along with the following
five frames from F12 to F17. Later, from F18 to F28, the energy
maps showed that the intensities in the center region of the
neck muscles were gradually increased and spread upward to the
upper locations when the subject was phonating vowel [a:] with
continuous rising pitches. During the whole phonating process,
the muscle activations were concentrated on the center of the
neck muscles and split up into two parts by the centerline.
Meanwhile, the energy maps clearly presented approximately
symmetric activity regions on the left and right sides of the
neck muscle. Also, the total intensity of myoelectric activities on
both the right and left sides reached a maximum value at the
28th frame. Thereafter, at the end of the phonating process, the
intensities of energy maps were diminished in the 29th frame in a
short time. Finally, when the subject stopped phonating, the high-
intensity area of the energy maps disappeared from F30 to F40 in
Figure 5C. Besides, similar energy patterns of the dynamic HD
sEMGmaps on facial and neck muscles could also be observed in
the other 14 subjects when they were phonating vowel [a:] with
pitch increase.

Interrelations Between Sound Frequencies
and Myoelectric Activities During
Phonating [a:] Vowel
To quantitatively investigate the interrelations between the
pitches of the speech signals and the intensity of the myoelectric
activities while phonating vowel [a:] on a rising pitch scale, the
nMF of speech signals and the nRMS values of sEMG recordings
were compared across the entire phonating process. Then, the
correlation coefficient between the nMF and nRMS features
was computed across three repetitions of the phonation task,
and the obtained result for a representative subject is presented
in Figure 6.

In Figure 6A, the curves in blue showed the normalized nMF
of the speech signals, while that in red represented the nRMS
of the sEMG signals for a randomly selected channel. It could
be observed that the waveforms of the nMF and nRMS features
exhibited similar morphology in the first test session (test 1),
in which the nRMS values (from sEMG signals) increased in
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FIGURE 6 | (A) Comparison of the nMF of the speech signals and the nRMS of the sEMG recordings from one channel when phonating vowel [a:] with increasing

pitch; (B) Correlation coefficients between the nRMS values of 120 channels of sEMG recordings and the nMF of the speech signal from three repeated tests.

a similar rate with the nMF values (from speech signals) at a
constantly rising pitch. It could be seen that when the pitch
reaches its maximum value, both the nMF and nRMS values
rapidly declined in a similar manner until they both hit the
baseline. This phenomenon is also observed for the other two
test sessions (test 2 and test 3) in Figure 6A. The nRMS feature
curve appeared before the nMF feature curve at the onset of the
phonation task, while the nRMS feature curve disappeared after
the nMF feature curve at the offset of the task. Furthermore, a
significant correlation was observed between the nMF and the
nRMS features (r = 0.95 in test 1, r = 0.92 in test 2, and r = 0.94
in test 3) at a p < 0.05 based on Pearson’s correlation coefficient
analysis. In other words, this analysis indicated that a strong
correlation existed between sound frequencies and muscular
activities associated with pitch-related phonation.

To further validate the above claim, the correlation coefficient
between the nMF of the speech signals and the nRMS across the
120 channels of sEMG recordings in the three repeated tests was
computed, and the obtained result is presented in the scatter plots
seen in Figure 6B. The red, blue, and black scatterplots separately

showed the correlation coefficients corresponding to test 1, test 2,
and test 3. The correlation coefficients were closely clustered with
an average value of 0.86 in test 1, 0.89 in test 2, and 0.88 in test 3
for a representative subject, indicating that there was a significant
correlation between the nMF of the speech signals and the nRMS
of the sEMG signals across the three repeated tests. Additionally,
a few points were seen to be dispersed away from the center of
the cluster, which could be a result of either random noises or
unintentional body movements that must have occurred during
the data acquisition session.

Averaged Dynamic HD sEMG Energy Maps
When Phonating [i:] and [

e

:] Vowels on a
Rising Pitch Scale
The effects of the facial and neck muscle activities across different
vowels ([i:] and [ e:]) during the normal phonating processes were
also investigated using the HD sEMG energy maps from another
subject. Each phonating task that contained 40 frames of energy
maps was truncated to 24 frames (from frame 9 to 32). Then, two
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FIGURE 7 | The averaged HD sEMG energy maps of the facial and neck muscles during the phonating vowel [i:] with a pitch increase.

of the adjacent frames from the remaining 24maps were averaged
with non-overlapped epochs to construct 12 consecutive energy
maps (F1–F12). It can be seen from Figures 7, 8 that the HD
sEMG energy maps from the two phonating tasks showed the
explicit difference with regard to the duration and strength of the
facial and neck muscle contractions.

Figure 7 showed the averaged dynamic sEMG energy maps
when one subject was phonating [i:] vowel. When starting
phonating, the high-intensity areas were first observed on the
sEMG maps of the facial muscles (from F2 to F5), while the
activities of the neck muscles were kept at low intensity. There
was some delay in the neck muscle activation than the facial
muscles during the phonating process. Then, from F6 to F10, the
intensity on the energy maps of both the facial and neck muscles
started increasing continuously to reach the maximum value on
F10. The high-intensity areas of facial muscles were concentrated
below the angulus oris on the right and left sides, while the areas
were over the center of the neck muscles with high symmetrical
distribution on the left and right sides of the neck. Meanwhile,
the activated areas of the facial and neck muscles were expanded
during increasing pitches (F6–F10). After that, the intensity of
the maps was diminished in a short time at frame 11 when the

subject prepared to stop phonating. Finally, the high-intensity
area of the energy maps disappeared in frame 12 at the end of
the phonating tasks.

The HD sEMG energy maps in Figure 8 represent a sample
of the energy distribution of the facial and neck muscles when
phonating the vowel [ e:] on a rising pitch scale, which was
observed to be consistent in the other 13 subjects. Before the
phonation, the maps showed a low intensity from the 1st through
the 5th frame. Then, the intensities of the energy maps on the
neck muscles were gradually increased from frame 6 to 10, while
themaximum intensity was achieved in frame 10. The areas of the
high intensity were also gradually expanded with the symmetrical
distribution of both the left and right sides. Meanwhile, the high
light areas of the map on the facial muscles first appeared at
the bottom edge of the maps in low intensity (in F8), where the
activation time was delayed than the neck muscles. After that, the
intensities on the maps were increased until F10 on both the left
and right sides of the face and the highlighted areas were enlarged
when increasing pitches. Then, the intensity of the energy maps
on the facial areas reduced at F11 and finally disappeared at F12
after the subject stopped phonating (Figure 8). The intensities
of the neck muscles were higher than that of the neck muscles,
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FIGURE 8 | The averaged HD sEMG energy maps of the facial and neck muscles during the phonating vowel [

e

:] on a rising pitch scale.

which revealed that the neck muscles were more active than the
facial muscles when phonating [ e:].

Correlations Between the nMF of the
Speech Signals and the nRMS of the sEMG
Recordings Across Different Vowel Tasks
In this section, the correlations between the nMF of the speech
signals and the nRMS of the sEMG recordings were investigated
for the three phonating tasks including the back [(a:)], front [(i:)],
and central [( e:)] vowels across subjects when the pitch increased
from low to high, and the obtained results are shown in Figure 9

and Table 1.
In Figure 9, the nRMS values from one channel of sEMG (red

lines) and the nMF values (blue lines) from the speech signals
for a specific subject were examined and compared across the
three different phonating tasks [(a:), (i:), and ( e:) vowels]. From
Figure 9A, it could be seen that the nMF of the speech signals
was gradually rising when the phonating vowel [a:] was with a
constantly increasing pitch and suddenly drop to the baseline
after the maximum pitch is attained, indicating the end of the
phonation task. Meanwhile, the nRMS of the sEMG recordings

also exhibited similar characteristics as the nMF at the onset,
intermediate, and offset points. However, the curve of the nRMS
got initiated before that of the nMF at the onset of the phonation
task and as well as hit the baseline after the nMF curve at the
offset of the task. In like manner, the phenomenon observed
between nMF and nRMS while phonating the [a:] vowel was also
observed when phonating [i:] vowel and [ e:] vowel. In summary,
significantly high correlations were recorded between the nMF of
the speech signals and the nRMS of the sEMG signals during the
three phonation tasks: [a:] (r = 0.95, p < 0.05), [i:] (r = 0.94, p <

0.05), and [ e:] (r = 0.91, p < 0.05).
Moreover, to investigate the interrelations between the nMF of

the speech signals and the nRMS from the 120 channels of sEMG
recordings across different vowel tasks, the correlation coefficient
of the two parameters was calculated and displayed as box plots
shown in Figure 9B. The blue-violet, yellow, and red boxes in
Figure 9B show the correlation coefficients corresponding to
phonating [a:], [i:], and [ e:] vowels, respectively. The correlation
coefficients had overall average values of 0.90± 0.05 in [a:] vowel
task, 0.82 ± 0.08 in [i:] vowel task, and 0.86 ± 0.04 in [ e:]
vowel task, which revealed that there was a significant correlation
between the nMF of the speech signals and the nRMS of the
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FIGURE 9 | (A) Comparison of the nMF of the speech signals and the nRMS of the sEMG recordings from channel E8 when phonating three different vowels [(a:), (i:),

and (

e

:)] with increasing pitch; (B) Correlation coefficients between the nRMS values of 120 channels of sEMG recordings and the nMF of the speech signal across

three different vowels [(a:), (i:), and (

e

:)].

TABLE 1 | The average correlation coefficients between the nRMS of sEMG recordings from all channels and the nMF of the speech signals across all recruited subjects

(p<0.05).

Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[a:] M 0.83 0.94 0.85 0.94 0.83 0.86 0.90 0.87 0.87 0.83 0.89 0.95 0.90 0.89

SD 0.02 0.02 0.04 0.02 0.06 0.02 0.03 0.1 0.04 0.03 0.03 0.01 0.03 0.01

0.88 ± 0.04

[i:] M 0.88 0.90 0.91 0.96 0.86 0.84 0.82 0.92 0.83 0.90 0.91 0.92 0.88 0.90

SD 0.05 0.02 0.02 0.02 0.05 0.03 0.07 0.02 0.03 0.03 0.06 0.03 0.03 0.05

0.89 ± 0.04

[

e

:] M 0.90 0.92 0.82 0.95 0.90 0.87 0.78 0.87 0.90 0.89 0.79 0.95 0.81 0.88

SD 0.02 0.01 0.05 0.01 0.01 0.01 0.02 0.03 0.04 0.08 0.03 0.01 0.08 0.04

0.87 ± 0.05

sEMG signals across the different phonating tasks. Additionally,
a few overflows were observed to be dispersed away from the
central areas in phonating [a:] and [ e:] vowels.

To further confirm if the correlations between the speech
signals and the sEMG recordings are consistent across all of the
individuals, the correlation coefficients between the nMF and

nRMS values for all the 14 subjects were obtained when [a:],
[i:], and [ e:] vowels were phonated from a low to a high pitch
(Table 1). The results presented in Table 1 are expressed in terms
of the mean and standard deviation values of the correlation
coefficients across the three repeated tests for all 14 subjects.
It could be observed from Table 1 that for the [a:] vowel, an

Frontiers in Neuroscience | www.frontiersin.org 13 July 2022 | Volume 16 | Article 94159441

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhu et al. Phonation Function High-Density Surface Electromyography

average correlation coefficient of 0.88 ± 0.04 (p < 0.05), was
achieved across subjects while a maximum correlations value
of 0.95 and was recorded by subject 12, indicating a significant
correlation between the nRMS and the nMF when phonating
vowel [a:]. A mean correlation coefficient of ∼0.89 ± 0.04 was
recorded across subjects when the vowel [i:] was phonated, and
of almost 0.87± 0.05 when phonating vowel [ e:], with 0.96 as the
highest value (subject 4) also indicating significant interrelations
between the nMF of the speech signals and the nRMS of HD
sEMG recordings when phonating [i:] vowel with a continuous
increase in pitch. Similarly, when the vowel [ e:] was phonated, an
average correlation coefficient of 0.87± 0.05 was recorded across
all participants with subject 5 attaining themaximum value (0.95)
at p < 0.05, which also indicated significant correlations between
the sound frequencies andmuscular activities when the vowel [ e:]
was phonated.

DISCUSSION

The principal objective of this study was to investigate the
interrelations between the pitches and the corresponding
muscular activities when phonating different vowels with
increasing pitches, which would be helpful for evaluating the
pitch-related phonating functions. This objective has been
reached by dynamically visualizing the myoelectrical activities
of the facial/neck muscles and quantitatively investigating
the correlations between sound frequencies and myoelectric
characteristics during different phonating tasks.

In this study, the speech and the HD sEMG signals were
synchronously acquired from 14 subjects when phonating [a:],
[i:], and [ e:] vowels with increasing pitches. The synchronous
analysis of the speech and HD sEMG signals would clarify
the interrelations between the pitches and the myoelectric
activities of facial and neck muscles associated with pitch-related
phonation. The sEMG signals display the potential difference
between two separate electrodes above the muscles on the skin,
which can be used to assess muscular function by recording
electric potential activities generated by muscle cells that are
from the inherent and extrinsic muscles. Moreover, phonating is
a complex process controlled by multiple articulatory muscles,
which contain the inherent and extrinsic muscles spanning a
relatively large area of the face and neck. There were ∼30
facial and neck muscles that are involved in a phonating
movement. Therefore, a total of 120 channels of closely spaced
electrodes were used to construct the 2D electrode arrays for
recording the HD sEMG signals that were processed in the
space dimension to assess global facial and neck muscle activities
corresponding to pitch-related phonation. The use of the HD
sEMG signals, which provided spatiotemporal information on
muscular activities, could address the limitations that finite
myoelectric information obtained from several muscles, which
might not afford enough functional characteristics for dynamic
assessment of the articulatory muscles associated with an entire
phonation process. As it is known, the nMF of the signals
is defined as the frequency value at which the signal power
spectrum was divided into two sections of equal energy content,

and it can afford an acceptably good representation of the sound
frequency shift. Meanwhile, the nRMS values of the sEMG
signals represent the average power of the myoelectric activities
(Phinyomark et al., 2012). Therefore, the two parameters, nMF
of the speech signals and the nRMS of the sEMG recordings,
were extracted to quantitatively evaluate the correlations between
sound frequencies andmyoelectric features associated with pitch-
related phonation.

During the phonating process, the characteristics of the speech
signals demonstrated that the sound frequencies were increasing
with the continuous rising of the pitches while the sound volume
was kept on a stable scale (Figures 2, 3). These results indicated
that the sound frequencies were tracked with the pitches, which
was corresponding to the previous studies where the pitch was
used to order sounds on a frequency-related scale (Lolli et al.,
2015). In the current study, the results of the sound volume
indicated that the effects on the muscle activities came from the
variation of the sound frequency rather than the loudness.

Then, the temporal waveforms of HD sEMG signals across all
the 120 channels on the facial and neck regions displayed that
the myoelectric activities of the facial and neck muscles were
orderly altered with the variation of the sound pitches (Figure 4).
The sEMG waveforms from one electrode were different from
each other even if it was from the two adjacent electrodes, which
reveals that there was no cross-talk of the HD sEMG signals.
The results suggested that the facial and neck muscles could
produce synergetic muscle contractions to aid the movement of
the passive and active articulators for constructing sound in high
intelligibility with a wide scale of the pitch.

In this study, the typical normal phonating process (pitch
rising) was divided into a sequence of duration, and the RMS
values of the HD sEMG signals in each duration were calculated
and visualized as pixels placed at a certain location of the
electrode array on the facial and neck muscles. Thus, a series
of 2D temporal sEMG energy maps of the facial and neck
muscles were constructed for displaying the dynamic activities
of the facial and neck muscles when phonating different vowels
[(a:) in Figure 5, (i:) in Figure 7, and ( e:) in Figure 8]. Also,
the spatial and temporal properties of the myoelectric activities
were dynamically presented in the HD sEMG energy maps to
visualize the muscular contraction patterns corresponding to the
pitch-related phonation activities.

According to the HD sEMG energy maps, it was found
that the facial and neck muscles were both activated during
phonating tasks, and the strength of the facial and neck muscles
gradually increased while the high-density areas of these muscles
progressively enlarged when the pitches were continuously rising.
These spatiotemporal properties of the facial and neck muscles
corresponded to the physiological process of phonation as a
transmission path of the airstream used for generating certain
sounds, during which the airstream was expelled from the
lungs through the throat (controlled by the neck muscles) into
the mouth (controlled by the facial muscles) (Miller et al.,
2009). Meanwhile, the sound pitches were determined by the
oscillatory rates of the vocal cords with orderly opening and
closing, which were controlled by the facial and neck muscles
that were synergistically operated with alternate contracting
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and stretching in precision (Echternach et al., 2017). These
coordinated sequences of the facial and neck muscles would
produce myoelectric activities related to phonation activities.
Moreover, when the sound pitches continuously increased from
low to high, the vocal cords needed to vibrate faster and
faster to reach the high pitches. During this pitch-increasing
process, it could require more articulatory muscles and higher
muscle strength to control the airstream transmitting faster for
generating the faster vibration of the vocal cords, thus resulting
in the higher intensities and larger areas of muscle activities
on the face and neck. Additionally, the results of the energy
maps also displayed that the intensities of the neck muscles
were higher than that of the facial muscles, which reveals
that the neck muscles would be the main contributors during
phonating movements. The signals from the middle region of
the neck demonstrated larger amplitude when compared with
other regions, as could be observed from the columns 6–11 in
Figure 4. When observing the energy distribution in Figure 5,
similar consistent results were found for the activation patterns of
the articulatorymuscles with larger activities in themiddle region
of the neck in Figure 5A and middle frames in Figure 5B. This
phenomenon is also based on the physiological characteristics of
the phonating process, in which the vocal cords located inside of
the larynx are the major organ to produce a natural voice, whose
activities are controlled by the middle neck muscles.

Furthermore, the energy concentration was symmetrically
distributed on the left and right sides of the facial and larynx
regions, which indicated that the energy of muscles associated
with phonation activities had a nearly equivalent intensity and
durability on the right and left sides of the facial and neck
muscles. Notably, there was a little difference between the left
and right facial muscles, such as the intensities of the left facial
muscles were a bit higher than that of the right one during
phonation. This phenomenon would be based on personal habits
in speaking and swallowing. For instance, if someone eats bolus
by often using the left side of the teeth, the left facial muscles
would be more exercised than the right one, which would lead
to stronger muscles on the left face. Thus, when the subject
phonated different vowels, the activities of the left facial muscles
were higher than that of the right one. This result suggested that
the HD sEMG energy maps might be a useful tool for guiding
the subjects to rectify their undesirable habits in speaking and
swallowing activities.

The HD energy maps obtained from different phonating
tasks showed the effects of the facial and neck muscles across
different vowels [(a:), (i:), and ( e:)]. Based on the HD energy
maps, the high intensity of the maps on the neck region
appeared before that of the facial areas, which indicated that
the muscular activities from the neck muscles were activated
before the facial muscles at the onset of the phonating [a:] and
[ e:] vowels (Figures 5, 8). In contrast, the activities of the neck
muscles presented a little more delay than the facial muscles
when phonating the [i:] vowel (Figure 7). These results indicated
that the styles of the pronunciation would produce different
voices, which required sequential contractions of facial and neck
muscles in a certain order. Moreover, the energy maps on the
facial muscles showed that the high-intensity areas appeared on

different muscles when phonating different vowels. For instance,
when phonating back vowel [a:], the subject should first relax and
open the mouth, while keeping the lips in a round shape; this
manner of pronunciation would lead to the strong strength of the
masseter muscles. Hence, the high intensities of the maps were
concentrated on the edge of the face both on the left and right
sides (Figure 5B). On the contrary, when phonating the front
vowel [i:], the subject needed to extend the lips to the sides in
a flat shape, which could cause the activation of the orbicularis
oris muscles, resulting in the high-intensity activities around the
mouth (Figure 7). Finally, when phonating the central vowel [i:],
the mouth of the subject just needed to be opened slightly, and
the lips should keep in relaxation. Thus, the strength of facial
muscles was very weak, and there were low intensities presented
in the energy maps of the facial regions (Figure 8). Moreover, no
significant effects of the phonating task order on the HD sEMG
results were found in our pilot experiments of this study.

Consequently, the dynamic properties of the HD sEMG
energy maps were well corresponding to the physiological and
biomechanical principles of phonation, which would make the
HD sEMG method a simple and non-invasive tool for accurately
visualizing the phonating process and assessing the temporal
and spatial properties of facial and neck muscles associated with
phonation functions. Moreover, it could also help researchers
and laryngologists to better understand the dynamic muscular
activities of the facial and neck muscles during phonation. The
HD sEMG technique might pave the way for developing a
clinically relevant approach to screen, diagnose the phonating
disorder caused by muscle problems, and even provide a
potential method to locate the abnormal muscles that lead to the
phonating disorder. Furthermore, the findings from the proposed
method are not only applicable to the assessment of phonating
function but may also spur positive advancement in other
rehabilitation areas, including swallowing function evaluation
(Zhu et al., 2017b) and back pain rehabilitation (Hu et al., 2014),
among others, that equally adopts sEMGmaps.

Considering the fact that phonation is a complex process
controlled by multiple articulatory muscles, the use of both
speech signals and sEMG recordings are necessary indicators
for the analysis of the pitch-related phonation activities (Zhu
et al., 2017b; Murtola et al., 2019; Zhang et al., 2020). However,
it should be noted that the correlations between the sound
frequencies (pitches) and the muscular activities of facial and
neck muscles during a pitch-related phonation remains unclear.
In this investigation, the nMF of the speech signals and the
nRMS of theHD sEMG recordings weremeasured and compared
during a pitch increase across three different phonating tasks
[(a:), (i:), and ( e:) vowels]. The results presented that the
nRMS values (from sEMG signals) increased at a similar rate
with the nMF values (from speech signals) when constantly
increasing pitches (Figures 6, 9). These results demonstrated that
a strong interrelation existed between the sound frequencies and
the muscular activities associated with pitch-related phonation.
Meanwhile, the results of the correlation coefficients showed that
there were significant correlations between the nMF of speech
signals and the nRMS of sEMG recordings across different vowel
phonation tasks [back (a:), front (i:), and central ( e:)] (Table 1).
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The findings revealed that the muscular activity patterns of the
facial and neck muscles related to phonation might be served as
a reference for evaluating the pitch-related phonation functions.

The purpose of the present study focused on the normal
phonating functions, so the patients with phonating
disorders will be recruited for further study. The HD energy
maps and the interrelations between the speech signals
and the sEMG recordings obtained in this investigation
might be used as the reference for further evaluating
and diagnosing the phonating functions or dysphonia in
clinical application.

CONCLUSIONS

In this study, the speech and the HD sEMG signals were
simultaneously measured when the subjects were phonating
vowels with an increasing pitch. The sequential energy maps
constructed from multichannel sEMG recordings showed that
muscle contraction strength increasedmonotonously as the pitch
increased, and left-right symmetrical distribution was observed
for the face and neck regions when phonating different vowels
with increasing pitch. The nRMS parameter of the HD sEMG
signals increased in a similar pattern to the nMF parameter of
the speech signals when the pitch rose, and there were significant
correlations between the two parameters across different vowel
tasks. The present study suggested that the muscle contraction
patterns might be used as a reference for the evaluation of pitch-
related phonation functions that is important for dysphonia
diagnoses. This study might also spur positive advancement
in the evaluation of facial paralysis and diagnoses of other
neuromuscular-inclined diseases.
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Objective: The conventional single-person brain–computer interface (BCI)

systems have some intrinsic deficiencies such as low signal-to-noise

ratio, distinct individual differences, and volatile experimental effect.

To solve these problems, a centralized steady-state visually evoked

potential collaborative BCI system (SSVEP-cBCI), which characterizes multi-

person electroencephalography (EEG) feature fusion was constructed

in this paper. Furthermore, three different feature fusion methods

compatible with this new system were developed and applied to EEG

classification, and a comparative analysis of their classification accuracy

was performed with transfer learning-based convolutional neural network

(TL-CNN) approach.

Approach: An EEG-based SSVEP-cBCI system was set up to merge

different individuals’ EEG features stimulated by the instructions for the

same task, and three feature fusion methods were adopted, namely

parallel connection, serial connection, and multi-person averaging. The

fused features were then input into CNN for classification. Additionally,

transfer learning (TL) was applied first to a Tsinghua University (THU)

benchmark dataset, and then to a collected dataset, so as to meet the

CNN training requirement with a much smaller size of collected dataset

and increase the classification accuracy. Ten subjects were recruited for

data collection, and both datasets were used to gauge the three fusion

algorithms’ performance.

Main results: The results predicted by TL-CNN approach in single-

person mode and in multi-person mode with the three feature fusion

methods were compared. The experimental results show that each

multi-person mode is superior to single-person mode. Within the

3 s time window, the classification accuracy of the single-person
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CNN is only 90.6%, while the same measure of the two-person

parallel connection fusion method can reach 96.6%, achieving better

classification effect.

Significance: The results show that the three multi-person feature fusion

methods and the deep learning classification algorithm based on TL-CNN can

effectively improve the SSVEP-cBCI classification performance. The feature

fusion method of multi -person parallel feature connection achieves better

classification results. Different feature fusion methods can be selected in

different application scenarios to further optimize cBCI.

KEYWORDS

steady-state visually evoked potential, collaborative BCI, feature fusion,
convolutional neural network, transfer learning

Introduction

Brain–computer interface (BCI) is a human–computer
interaction technology that allows people to directly
communicate with a computer or control peripheral device
without their surrounding muscles (Vaid et al., 2015). This
technology is useful for patients with movement disorders
and partial brain injuries, as it helps them realize simple
operation and communication (Wolpaw et al., 2000). At
present, electroencephalography (EEG)-BCI systems mainly
include event-related potentials evoked by endogenous events
based on cognitive function (Li et al., 2019), visually evoked
potentials (VEP) based on visual stimulation (Mary Judith and
Baghavathi Priya, 2021), and event-related area synchronization
and event-based active motor imagery in the phenomenon of
correlation synchronization (Munzert et al., 2009). Steady-state
visually evoked potential (SSVEP) is one of the most popular
EEG patterns in the field of BCI. Owing to its advantages such
as high information transmission rate (ITR), low requirement
on user training, and easy evocation, SSVEP is widely applied to
various fields such as medical care, industries, communication,
smart home, gaming, robotics, and vehicle control (Zhao
et al., 2016; Angrisani et al., 2018; Dehzangi and Farooq, 2018;
Farmaki et al., 2019; Nayak et al., 2019; Chai et al., 2020; Shao
et al., 2020).

Single-person BCI system’s performance is subject to
individual differences between users and their physical
or mental conditions, and this weakness becomes more
prominent as BCI system develops further (Song et al.,
2022). In contrast, multi-person-coordinated BCI can better
serve the future socialized human–computer interaction
and will most certainly dominate this field both in terms
of research and application. Studies have shown that
increasing the number of users can substantially improve
BCI performance (Valeriani et al., 2016). In human behavior

research, teams’ performance is always better than that
of individuals. The distinction in performance between
teams and individuals is even greater when humans acquire
diversified skills, judgments, and experiences under time
constraints (Katzenbach and Smith, 2015). As single-person
EEG signals have significant individual differences, by collecting
multi-person EEG signals and fusing these signals in a
reasonable way, signals with more distinctive features can
be obtained, and the BCI performance can be improved.
EEG signals from multiple subjects can significantly improve
ITR in the system compared to single EEG signals (Bianchi
et al., 2019). Subjects who need to stare at the stimulation
area for a long time are prone to fatigue due to visual
stimulation in SSVEP-BCI, which affects the quality of
EEG signal acquisition, and this is particularly evident for
some subjects (Peng et al., 2019). SSVEP-cBCI can make
up for this deficiency by increasing the user dimension and
improve the information transmission rate. Acknowledging
this viewpoint, this paper explores three feature fusion
methods, which include (1) parallel connecting features,
(2) serial concatenating features, and (3) feature averaging.
These approaches will be explained in detail in section
“Methods.” The three feature fusion methods aim to improve
the signal-to-noise ratio by merging multi-person EEG
information to get refined new features to enhance the
BCI performance.

As a branch of machine learning, deep learning has
achieved great success in solving problems in computer
vision and natural language processing. It is different from
traditional machine learning as it does not entail manual
feature extraction (LeCun et al., 2015). Using gradient descent
learning to optimize convolutional neural network (CNN)
parameters successfully solved the problem of handwritten
digit classification (LeCun et al., 1998). However, owing
to the complexity of EEG signals, the application of deep
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learning neural networks in EEG signal detection is still in the
exploratory stage. Cecotti and Graser (2010) developed a four-
layer CNN for P300 detection. At present, the SSVEP EEG
signal classification method converts the original EEG signal
through FFT and then inputs it into CNN for classification
(Cecotti, 2011; Zhang et al., 2019; Ravi et al., 2020). As
a superb CNN model designed for EEG, EEGNet exhibits
good classification performance, but other models perform
better in some moments. In this study, some details of
the basic EEGNet were adjusted, and the network structure
was modified to adapt to the newly created fusion features.
The transfer learning (TL) training strategy using a THU
benchmark dataset as the source task training set was
adopted to initially train the parameters of the convolutional
layer and build the basic feature extractor. Using the data
collected by the laboratory as the target task training set
and test set, the CNN parameters were further optimized
to construct SSVEP-cBCI. In this paper, the classification
model is trained with the TL-CNN method, which reduces
the required amount of training collected data and improves
the classification accuracy. And the feature fusion approach
further improves BCI performance in classification accuracy,
ITR and stability.

Section “Methods” elaborates on the personnel, equipment,
and experimental paradigms associated with the experiments,
the three multi-person features fusion methods, the specific
structure of the modified CNN in this study, and its difference
from EEGNet. Then the following part introduces the specific
training method of TL. In section “Results,” the classification
accuracy and ITR difference of the three feature fusion methods
and those predicted by a single-person CNN are compared.
Finally, some significant conclusions are drawn, and the
specific usage of the three feature fusion methods in this
experiment is analyzed.

Methods

Experimental setup

The structure of cBCI system
The cBCI system mainly has two structural forms:

distributed and centralized (Wang and Jung, 2011). In
both systems, experiments are simultaneously conducted
on more than one subject. In the distributed cBCI,
subjects’ EEG information is collected individually for
subsequent data preprocessing, feature extraction, and
pattern recognition through the corresponding BCI
subsystem. The results corresponding to each subject
are then transmitted to the integrated classifier, and
the final decision is produced through decision-making
layer’s voting mechanism, while in the centralized cBCI,
as shown in Figure 1, subjects’ EEG information is

collected individually for sequential data preprocessing
and feature extraction. The EEG data features of all
subjects are fused for pattern recognition to make the
final decision for the group. The model adopted in
this study is a centralized cBCI system, which does
not rely on the voting mechanism of the distributed
system, and classification is carried out with a CNN
based on TL (TL-CNN).

Experimental paradigm
In this experiment, the EEG data were collected and

transferred from the EEG amplifier to the software Curry8
(Neuroscan). Three electrodes were placed on O1, Oz, and O2
according to the International 10–20 system. Using the double
mastoid as reference and ground electrodes, the impedance of all
electrodes was reduced to below 5 k�. The sampling frequency
is 256 Hz, and a band-pass filter between 5 and 40 Hz is used in
the data processing to filter out low-frequency noise and 50 Hz
power frequency noise.

Ten healthy subjects (8 males, 2 females, 21–27 years
old) participated in the experiments. All participants had
normal or corrected vision. Four of them had participated
in SSVEP experiments previously. All participants read
and signed the informed consent forms. Subjects sat on
a comfortable chair 60 cm in front of a standard 24-
inch monitor (60 Hz refresh rate, 1,920 × 1,080 screen
resolution). The SSVEP stimulation interface is shown in
Figure 2, and the four stimulation squares are all 50 × 50
pixels. The refresh frequency of the display equals integer
multiples of the stimulation frequency of the four color
blocks, which can ensure stable stimulation frequency and
avoid frequency deviation. The stimulation frequencies of the
four color blocks are 8.6, 10, 12, and 15 Hz, respectively.
It was evidenced that stimulation frequencies of 10 and
12 Hz can stably induce high-amplitude SSVEP signals
(Chen et al., 2015), and the stimulation duration was set
to be 4 s. To avoid interference caused by simultaneous
flickering of the four color blocks, the phases of the four
color blocks are set as 1.35π, 0.35π, 0.9π, and 0.35π,
respectively. Prolonged staring at the flickering stimulus
color blocks made the subjects feel tired and distracted
them, resulting in a frequency deviation of the SSVEP
signal. To improve the concentration of the subjects and
the quality of SSVEP EEG signals, random labels were
used to remind the subjects to look at the corresponding
stimulus squares.

0.02 s after the five-pointed star appeared, the four color
blocks started to flash. After the flashing, a rest time of 2 s
was given to the subject to adjust the viewing angle. During
the experiment, the subjects were asked to focus on the
corresponding color block and blink as few times as possible.
Each color block flashed twice in total, and there was a 1-min
rest between two consecutive experiments.
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FIGURE 1

Centralized cBCI structure designed in this study.

FIGURE 2

SSVEP stimulation interface and label reminder method. (A) Stimulus interface. (B) Random tag prompt.

Multi-Person feature extraction and
fusion

Multi-Person feature extraction
The EEG data filtered and processed by the fourth-order

Butterworth filter is converted from the time domain to
the frequency domain by FFT transformation (Chen et al.,
2015). Low-frequency (8.6, 10, 12, and 15 Hz) stimulation
area was used in these experiments. The features of the
frequency band from 6 to 32 Hz were selected from the FFT-
transformed data to further filter out noise and improve feature
quality.

The characteristics of the SSVEP signal are as follows:


FeatueO1 = |FFT(XO1)|

FeatueOZ = |FFT(XOz)|

FeatueO2 = |FFT(XO2)|

(1)

The input of the convolutional neural network is:

Input =

∣∣∣∣∣∣∣
min_max(FeatueO1)

min_max(FeatueOz)

min_max(FeatueO2)

∣∣∣∣∣∣∣ (2)

The min–max normalization (discrete normalization)
is conducted on the data of each channel (Ali et al.,
2014) to avoid adverse effects on the classification
accuracy owing to huge differences between values,
ensure good performance of different data within the
same neural network, and improve the robustness
of the algorithm.

Feature fusion
This paper proposes three methods to fuse multi-

person EEG features. As shown in Figure 3, in parallel
connection, three-channel (O1, Oz, O2) data are extracted
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FIGURE 3

Three fusion methods: (1) feature parallel connection (2) feature serial connection (3) feature averaging. Single-1 and Single-2 represent two
single-person features for feature fusion.

to obtain the effective feature after data preprocessing and
FFT transformation. The features of different subjects are
connected in parallel, serial concatenation, or averaging.
In parallel feature concatenation, connection is made
mainly the spatial domain, which implies more feature
lead channels. In serial feature connection, connection
is made mainly in the frequency domain, which implies
that there is no change in the number of channels, but
the domain scope expands greatly, and thus, the effective
features are enhanced from the frequency perspective and the
BCI performance improves. However, serial concatenation
requires more training on epoch and convolution kernel
to achieve the similar classification accuracy of parallel
connection. It involves more complex algorithm, so it is
more difficult to set up an online system by Python. The
above two feature fusion methods are suitable for subjects
with a known number of participants in the experiment,
but when the number of participants in the brain group
is unknown, different CNNs meant for various number
of subjects should be set up and trained, which entails
more input in the experimental preparation. This problem
can be solved by adopting the third approach, feature
averaging, that is, to get new features by averaging the
normalized EEG frequency features of all subjects. The CNN
using this approach shares the same structure of single-
person CNN, and its classification accuracy is superior
to that of a single-person CNN but inferior to that of
a two-person CNN.

Deep learning network construction

Improved the network structure of
convolutional neural network

Lawhern et al. (2018) designed EEGNet, a compact CNN
specially for EEG signals, that is based on CNN and includes
two parts: spatial feature extraction and frequency or time
domain feature extraction. It can efficiently extract features from
frequency-domain EEG information and send them to a neural
network-based classifier, eliminating the need to manually
extract two-part features. This paper makes some adjustments
on the EEGNet, changing the number of convolution kernels,
the size of the convolution kernel, and the depth of the
convolution layer. In this experiment, the collected data were
used to predict the classification accuracy of the test set, and
the EEGNet was modified to accommodate the data. In this
study, the ordinary convolution layer was discarded, a depthwise
convolution layer was added, and the pointwise convolution
layer was changed into a small narrow-band convolution.
The network consists of six consecutive layers, including four
convolutional layers, one fully connected layer, and one softmax
output layer (Jang et al., 2016). Network fitting is accelerated
through batch normalization (Ba et al., 2016). Linear activation
layer adopts ReLu function (Agarap, 2018).

Table 1 summarizes the modified CNN structure. The
convolution kernel of the C1 convolution layer has size 3 ×
1, and its function is to learn the linear combination and
spatial filtering features between different channels. The method
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TABLE 1 Single-person convolutional neural network structure.

Layer
number

Layer Filter Kernel
size

Feature
size

Activation

1 Input data – – (3.78) –

2 Conv2D 16 (3.1) (3.78) ReLU

3 Conv2D 32 (3.1) (1.78) ReLU

4 Conv2D 32 (1.3) (1.78) ReLU

5 Conv2D 64 (1.3) (1.76) ReLU

6 Flatten – – – –

7 Dense 8 – – –

8 Dropout – Rate = 0.5 – –

9 Dense 4 – – Softmax

of padding and zero-filling is adopted to prevent the loss of
information caused by convolution (Dwarampudi and Reddy,
2019). The C2 layer does not use the method of padding
and zero-filling and integrates multi-channel data into a single
channel by convolution. The C3 convolution layer extracts
features along the input frequency spectrum by convolution
and acts as a band-pass filter. The C4 convolution layer also
integrates frequency features without padding. Among them,
the convolution operations of the C2 and C4 layers have
achieved the down-sampling effect. After Flatten layer, a fully
connected layer is followed by softmax for classification.

Network structure of feature fusion
convolutional neural network

As can be seen in Table 2, compared with the single-person
CNN, the difference between the two-person parallel feature
concatenation CNN structure is that it increases the number
of key channels, from three-channel to six-channel EEG data,
which greatly increases the number of features.

Therefore, the two-person parallel feature connection
CNN structure was added to unpadded convolution layers
C2 and C3 in accordance with the single-person CNN

TABLE 2 Two-person parallel feature connection CNN structure.

Layer
number

Layer Filter Kernel
size

Feature
size

Activation

1 Input data – – (6.78) –

2 Conv2D 16 (6.1) (6.78) ReLU

3 Conv2D 32 (3.1) (4.78) ReLU

4 Conv2D 64 (3.1) (2.78) ReLU

5 Conv2D 64 (2.1) (1.78) ReLU

6 Conv2D 128 (1.3) (1.78) ReLU

7 Conv2D 256 (1.3) (1.76) ReLU

8 Flatten – – – –

9 Dense 8 – – –

10 Dropout – Rate = 0.5 – –

11 Dense 4 – – Softmax

TABLE 3 Two-person serial feature connection CNN structure.

Layer
number

Layer Filter Kernel
size

Feature
size

Activation

1 Input data – – (3.234) –

2 Conv2D 48 (3.1) (3.234) ReLU

3 Conv2D 96 (3.1) (1.234) ReLU

4 Conv2D 96 (1.3) (1.234) ReLU

5 Conv2D 192 (1.3) (1.232) ReLU

6 Flatten – – – –

7 Dense 8 – – –

8 Dropout – Rate = 0.5 – –

9 Dense 4 – – Softmax

structure while keeping the fully connected layer and the
last two layers unchanged. The network classification results
show that the classification accuracy falls by about 1% as
each of the two convolutional layers is reduced. Multiple
convolution operations can effectively extract complex multi-
channel features and integrate them into a single spatial feature.

As can be seen in Table 3. The CNN structure used by
the two-person serial feature connection method is similar to
the single-person CNN structure. With the dual serial feature
connection, the number of features input to the CNN is
increased. This builds more feature extractors by increasing
the number of convolution kernels to get better results. If
the number of convolution kernels of the two-person CNN
connected by serial features is the same as that of the single-
person CNN, the classification accuracy will drop by about 2%.

Transfer learning-based feature fusion strategy
with different datasets

Compared with traditional machine learning algorithms,
deep learning methods heavily rely on high-quality data.
Obtaining sufficient high-quality datasets to train high-quality
convolution kernel parameters is a critical problem to be solved
in CNN setup. Transfer learning (Pan and Yang, 2009) gives an
effective solution to this problem. The SSVEP EEGs collected
in the THU benchmark dataset (Chen et al., 2015) exhibit
good features and low error rates of subjects’ operation, and
thus, this dataset was used as the source dataset for initial
parameters training on the model. In general, parameters
in CNN are randomly initialized by training collected data
directly. Compared with transfer learning, it requires a larger
amount of data and training time to fit and get a satisfactory
feature extractor. While using transfer learning methods, initial
parameters can be constructed in a pre-training manner, and
these parameters are usually derived from prior knowledge
and hence can well perform the corresponding task. As a
consequence, only a small amount of actual experimental data
serve as the training set, and the model parameters are re-
learned through fine-tuning for the model to adapt to the actual
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FIGURE 4

Training strategy.

experimental data. This method can improve the classification
accuracy of the model and effectively reduce the required size of
experimental data collected in our laboratory to train the CNN.

The comparison among various fine-tune methods suggests
significant differences in their stability but insignificant
difference in their classification accuracy. Figure 4 shows that
only the parameters of the deep convolutional layer and the
fully connected layer are trained, while the parameters of the
shallow CNN are frozen and not involved in the training. Since
the feature distribution of the source task data (THU benchmark
dataset) does not coincide with that in this experiment, fine-
tuning on the parameters of the deep convolutional layer
with a small learning rate can improve the feature extraction
performance of the convolutional layer.

In the first step, training was conducted with the THU
benchmark dataset as the training set, and a total of 720
samples were used, with 180 samples per stimulus. The network
weights are learned in accordance with the Adam learning
algorithm, which optimizes the network weights through back-
propagation, and the cross-entropy function is adopted as the
loss function (Zhang and Sabuncu, 2018).

Loss = −
T∑

j = 1

yjlogPj (3)

The data of 24 people in the THU benchmark dataset is
used as the pre-training dataset, and different combinations of
multiple people are randomly used for feature fusion. After
repeated experiments to verify,the different combinations of
multiple people used for feature fusion during the pre-training
of the initialized feature extractor do not have an impact on
the final classifier. An initial pretraining learning rate of 0.001
was adopted. The epoch was set to 80 and the mini-batch
size of stochastic gradient descent is set to 16. Next, the pre-
training model with initial weights was established for the
experimental paradigm followed in this study. Based on the pre-
training model, the epoch was then reset as 40 for training with

the collected experimental data. A very large epoch makes a
personal private network and reduces the generalization ability
(Pan and Yang, 2009).

Results

The 10 subjects were labeled as S1 to S10, and two adjacent
subjects made up one group (e.g., S1 and S2 made up group C1,
and S3 and S4 made up C2). Table 4 shows only one grouping
case to show the fusion of features at different levels of feature
quality, group members were interchangeable and tried different
combinations. As the parallel feature connection method gives
the best classification result with fused features and CNN,
Table 4 only lists the classification of different subjects and
subject groups in different time windows under parallel feature
connection. The three-channel EEG data of the two people in
each group were connected in parallel to obtain six-channel EEG
data, and the six-channel CNN model was trained using the
TL strategy. Table 4 shows that, based on the CNN classifier,
the classification accuracy of both single- and two-person
feature fusion declines as the time window decreases. Personal
characteristics become more marked when the stimulation time
is longer. This table compares the classification accuracy results
of single-person CNN and five representative results of two
grouping types with two people in a group: (1) Feature fusion
of subject data with significant and insignificant features. That
is, one of them yielded a high classification accuracy, but the
other yielded a low classification accuracy. The final result is
lower than the best single-person classification accuracy with
significant features. (2) Feature fusion of subjects’ data with
only significant features. As the data features of the two people
were both significant, the classification accuracy of the neural
network was markedly improved.

Taking the 3-s time window as an example, the 10-person
average classification accuracy of the single-person system CNN
without TL is only 43.5%, but with TL, it can reach as high
as 90.6%. The five-person average classification accuracy of the
two-person CNN without TL is only 55.0%, while with TL,
it reaches 96.6%.

The 10-person data containing S1–S10 were used as data
sets for subsequent experiments and called the collected
data set. The results of each model training and prediction
are different. The collected data are randomly shuffled, and
then feature fusion is performed to calculate the average
classification accuracy and ITR through the 10-fold cross-
validation method, as shown in Figure 5, respectively. It can
be clearly seen from Figure 5 that the classification accuracy
results of the two feature fusion methods and feature averaging
method based on CNN invariably exceed that of single-person
CNN in different time windows. Three multi-person fusion
methods based on CNN ITR significantly outperformed single-
person CNN (p < 0.0001). Parallel feature connection ITR
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TABLE 4 Classification accuracy comparison of single- and two-person models under different time windows.

TL-CNN (%)

3 s 2.8 s 2.6 s 2.4 s 2.2 s 2.0 s 1.8 s 1.6 s

S1 91.6 87.5 81.3 77.1 79.1 75 70.8 60.4

S2 89.5 85.4 87.5 83.2 77.1 66.7 66.7 66.6

S3 97.9 91.6 91.6 89.6 91.7 83.3 77.1 70.8

S4 79.1 68.6 77 70.8 66.7 68.6 70.8 64.5

S5 100 100 97.9 95.8 95.8 93.7 87.5 75

S6 93.7 87.5 83.3 83.3 83.4 79.2 77.1 72.9

S7 79.1 77 77.1 68.8 60.4 60.4 58.3 54.2

S8 100 100 100 97.9 97.9 93.4 87.5 85.4

S9 75 64.5 68 70.9 60.4 60.4 60.4 50

S10 100 97.9 97.9 93.7 91.7 91.7 72.9 72.9

Saverage 90.6 86.4 86.2 82.4 80.4 77.3 72.9 67.3

C1 95.8 93.3 87.5 79.2 91.6 77 75.1 75

C2 89.5 93.3 95.5 85.4 81.2 79.2 81.3 75

C3 100 95.8 97.9 95.8 91.7 85.4 91.2 91.2

C4 100 100 95.8 93.7 87.5 85.4 85.4 75

C5 97.9 97.9 93.7 93.7 83.3 87.5 81.2 70.8

Coverage 96.6 96.1 94.1 89.6 87.1 83.1 82.9 77.4

FIGURE 5

Accuracy and ITR under different time windows. (A) Classification accuracy for different time windows. (B) ITR for different time windows.

also significantly outperformed the other two feature fusion
methods (p < 0.05). Among these three methods, the parallel
feature connection method always ranks first, with the highest
classification accuracy and ITR. The serial feature concatenation
method and the feature averaging method exhibit similar overall
performance, but the feature averaging method is more flexible
and requires less computation. It can thus be concluded that
feature averaging is better than serial feature concatenation.

The optimal scheme to set up cBCI is to train the
corresponding parallel feature connection model with the TL
method in advance when the number of subjects is known or

to train the single-person model with the TL method and then
apply the feature averaging method to this trained model when
the number of subjects is unknown.

The classification accuracy of different time windows was
averaged to obtain the total classification accuracy as shown
in Figure 6. The total classification accuracy of the single-
person CNN is 80.4% as baseline, which is far lower than
the total classification accuracy of the multi-person CNN-
based three feature fusion methods. As can be seen from
Figure 6, when the number of participants in the experiment
increased, the total classification accuracy of the three feature
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FIGURE 6

Total classification accuracy of three fusion methods under
different number of participants. The line “a” is the total
classification accuracy of the single features.

fusion methods slightly improved. The fusion method of
parallel feature connection invariably attained the highest total
classification accuracy; the feature averaging method was always
noted to be the second best, and the serial feature connection
was found to be the worst. Why is the parallel method so
good? Upon increasing the number of participants, owing to the
increase in the number of features, the CNN used by the three
feature fusion methods needs to be slightly modified, mainly
by increasing the number of convolution kernels. However, as
the parallel feature connection needs to continuously integrate
the information of multiple-lead channels through convolution,
more convolutional layers are added. It has been proven that
the convolution method can integrate the features of multiple
individuals and multiple leads in a nonlinear way, which is
better than the method of feature averaging. Therefore, if the
computing power of the computer allows, it is an excellent
cBCI construction method to use the method of parallel feature
connection to fuse the EEG features of multiple people and send
them into the TL-CNN model.

Discussion

Visually evoked potentials have been extensively studied
by researchers (Mary Judith and Baghavathi Priya, 2021).
When subjects gaze at flickering visual stimuli with flicker
frequencies exceeding 4 Hz, their cerebral cortical activity would
be modulated, resulting in a periodic rhythm similar to that of
the stimulus (Bondre and Kapgate, 2014). CNN-based EEGNet,
which was specially designed for EEG, has been widely applied
to classification tasks in various EEG paradigms: e.g., P300
VEP, falsely correlated negatively matched waves, motor-related
cortical potentials, and sensorimotor rhythms. In this study,

the original EEGNet was modified, and the accuracy of the
classification mode was improved by increasing the number
of convolutional layers and the number size of convolutional
kernel of each convolutional layer. In addition, three different
multi-person EEG feature fusion methods are proposed herein
to integrate multi-person EEG information to improve BCI
performance. Each of the three fusion methods was found to
have merits and shortcomings. In summary, in the case of
known multi-person BCI collaborations with a fixed number
of people, the parallel feature connection method is the best
choice because it involves smaller models and fewer training
parameters than the serial connection method; also, compared
with feature averaging method, it produces higher classification
accuracy. When the number of subjects is unknown, the feature
averaging method should be chosen, and feature averaging using
multiple subjects can be directly applied to a trained single-
person CNN. Serial feature concatenation method is not suitable
for the construction of online BCI system.

In this study, a small number of leads (e.g., O1, OZ, O2)
were collected for setting up a multiple-person BCI system,
which can facilitate the experimental preparation, reduce the
subjects’ fatigue, and improve the system’s execution efficiency.
Different from the voting and averaging methods of the
existing distributed multi-person BCI systems, a complete
single EEG data is constructed through multi-person feature
fusion, and a transfer learning-based CNN is used to achieve
classification in this new system. Compared with traditional
CNN methods, the number of samples to collect is markedly
reduced, and the accuracy is slightly improved. Moreover,
a neural network with multiple narrow-band convolution
kernels is constructed, and a multi-channel and multi-person
feature fusion method is set up to extract the corresponding
nonlinear features for fusion so as to improve the recognition
accuracy of SSVEP-cBCI, further enhancing the classification
accuracy and signal-to-noise ratio. The experimental results of
the 10 subjects show that the CNN classification fusing two
persons’ features produces a higher SSVEP-cBCI recognition
accuracy, and the TL-CNN-based two-person BCI effectively
raises the classification accuracy and the robustness of BCI.
The impact of individual differences in single-person BCI
systems on system performance stability has been resolved.
With the increase in the number of participants in the
experiment, the total classification accuracy of the three
feature fusion methods has been slightly improved, and the
parallel feature connection method invariably exhibits the
best performance.

The deep learning SSVEP-cBCI algorithm based on multi-
person feature fusion established in this paper has been verified
through offline system experiments and can be extended to real-
time online systems in the future to complete real-time control
of external equipment. Since the SSVEP-cBCI experimental
paradigm requires multiple subjects to simultaneously fixate on
the same flickering stimulus interface, a method of replicating
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multiple monitors was employed, and the collected multi-
person EEG data were used for subsequent data processing
and identification by a microcomputer. In the case of a
fixed number of multi-person BCI collaborations and the
computing power is allowed, it is necessary to prepare
multiple corresponding number of different participants CNN
classification models, perform corresponding feature fusion
(parallel feature connection) and classification model training,
and use the trained models to complete real-time online
experiments. This feature fusion method can maximize the
performance of cBCI. If the number of multi-person BCI
collaborations is not fixed, or the computing power is
not allowed, or there is not enough corresponding CNN
classification model established, then the multi-person features
can be integrated by the method of feature averaging, and the
single-person CNN model can be used to complete real-time
online experiments. Parallel feature connection are suitable for
high-precision tasks, such as controlling unmanned vehicles,
which requires precise control of the vehicle’s travel to avoid
collision. The feature averaging method fits into rehabilitation
centers. Different numbers of patients can send requests at
the same time, and as the number increases, medical staff can
make corresponding responses more accurately. Serial feature
connection can be used as an alternative method to increase the
robustness of cBCI.
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Sleep apnea (SA) is a common chronic sleep breathing disorder, which

would cause stroke, cognitive decline, cardiovascular disease, or even death.

The SA symptoms often manifest as frequent breathing interruptions during

sleep and most individuals with sleeping disorders are not aware of the

SA events. Using a portable device with single-lead ECG signal is an

e�ective way to help an individual to monitor their sleep conditions at

home. However, the SA detection performance of ECG-based methods is

still di�cult to meet the clinical practice requirement. In this study, we

propose an end-to-end spatio-temporal learning-based SA detectionmethod,

which consists of multiple spatio-temporal blocks. Each block has the

identical architecture with a convolutional neural network (CNN) layer, a max-

pooling layer, and a bi-gated recurrent unit (BiGRU) layer. This architecture

with repeated spatio-temporal blocks can well capture the morphological

spatial feature information as well as the temporal feature information from

ECG signals. The proposed SA detection model was evaluated on the

publicly available datasets of PhysioNet Apnea-ECG dataset (Apnea-ECG)

and University College Dublin Sleep Apnea Database (UCDDB). Extensive

experimental results show that our proposed SA model on both Apnea-ECG

and UCDDB datasets achieves state-of-the-art results, which are obviously

superior to existing ECG-based SA detection methods. It means that our

proposed method has the potential to be deployed into a healthcare

system to provide a sleep monitoring service, which can screen out SA

population with high risk and help to take timely interventions to prevent

serious consequences.

KEYWORDS

sleep apnea, ECG signals, spatio-temporal learning, BiGRU, attention

1. Introduction

Sleep apnea (SA) is a sleep disorder in which breathing is interrupted several times

during sleeping. Its typical symptoms include headache, insomnia and others, and it can

be potentially serious (Russell et al., 2014). Without prompt and appropriate treatment

measures, patients with SA would suffer from serious complications such as stroke
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(King and Cuellar, 2016), cognitive decline (Vanek et al., 2020),

cardiovascular disease (Lin et al., 2020), and even death. SA is

considered by some researchers to be a recognized independent

risk factor for stroke, such that individuals with SA have an

approximately twofold greater risk of stroke compared with

those without SA (Lyons and Ryan, 2015). This indicates that

SA is a great threat to the global physical and mental health,

with ∼936 million adults (male and female) aged 30–69 years

worldwide suffering frommild to severe obstructive sleep apnea,

and 425million adults aged 30–69 years suffering frommoderate

to severe obstructive sleep apnea (Benjafield et al., 2019). Due to

the prevalence of SA, it is very vital to screen out individuals with

SA and take timely interventions.

In clinical practice, polysomnography (PSG) is the gold

standard test to diagnose SA. However, conducting PSG is

expensive and often unavailable due to the shortage of physical

therapists and sleep monitoring units (Graco et al., 2018). PSG

with many biomedical sensors, including electroencephalogram

(EEG), electro-oculogram (EOG), electromyogram (EMG),

electrocardiogram (ECG) and pulse oximetry as well as airflow

and respiratory effort, is performed as an SA test overnight

in a sleep laboratory or specific unit in a hospital (Ali et al.,

2019). This can be quite cumbersome and uncomfortable, so the

collected signals cannot reflect the individuals’ sleep conditions.

In addition, a physical therapist must be available when the PSG

is conducted in the hospital, which significantly restricts the

screening of people with SA.

Home Sleep Test (HST) is an alternative to PSG for SA

diagnosis, which is usually conducted overnight outside of

the hospital or sleep laboratory (Rosen et al., 2017). Portable

devices, which are simple, of low-cost and easy to operate, have

been developed to enable the patients to monitor their sleep

conditions in an unattended home environment. Gaiduk et al.

(2020) have developed a system based on pressure sensors that

can work independently and via wireless connection, which is

as accurate as the current technology. However, this pressure

sensor-based approach is highly sensitive to pressure, and the

pressure signal can be easily contaminated with noise from

the external environment. ECG is considered to be one of

the most relevant physiological signals for the SA detection

because patient’s heart rate increases when SA occurs (Somers

et al., 2008; Wang T. et al., 2019). ECG contains valuable

information about the cardiorespiratory system and is therefore

of great importance for SA detection (Bahrami and Forouzanfar,

2021). Over the past twenty years, various approaches have

been proposed for the automated SA detection using HRV

and EDR signals which can be derived from ECG (Gutiérrez-

Tobal et al., 2015; Faust et al., 2016; Smruthy and Suchetha,

2017; Viswabhargav et al., 2019). In addition, ECG can be easily

recorded. Therefore, ECG-based portable devices represent a

better option. A wearable ECG acquisition system has been

developed (Weder et al., 2015), which is designed as a chest strap

that can continuously monitor ECG signals for multiple nights.

As a more comfortable option, Ankhili et al. (2018) developed

a reliable, washable ECG monitoring undergarment that can

record and send the ECG signal wirelessly to a smartphone to

analyze the ECG signal in real-time.

Using ECG signals can greatly reduce the complexity

of diagnostic SA tests and allow for better monitoring of

physiological changes in the patient (Bsoul et al., 2011). Several

algorithms have been proposed for ECG-based SA detection.

These algorithms generally include a first step of feature

extraction from the original ECG signals, and then these features

are used as the input and fed into a classification model (Baty

et al., 2020). Sharma and Sharma (2016) extracted features

from QRS complex waves using Hermite decomposition. Then,

these features were combined with time series features, and

least squares-support vector machine (LS-SVM) was used as

a classifier for SA detection. Song et al. (2015) introduced a

classifier that blends an SVM with a hidden Markov model

(HMM) to take advantage of the time-dependent nature of

SA segments. In recent years, deep neural networks (DNN)

with end-to-end training are also applied to build SA detection

models. Li et al. (2018) used HMM, ANN, and ECG signals

for the identification of SA segments. Feng et al. (2020) used

an unsupervised neural network to learn features, and they

improved the performance of the classifier by taking into

account the time-dependence and imbalance problems.

Although aforementioned models achieved promising

results, there still exists a gap between their SA detection

performance and the requirement of actual applications. Note

that spatial patterns and temporal correlations are both

important for SA detection. For example, the R-peak has salient

spatial features on the ECG signals; while the RR intervals

can be derived from the temporal dependencies. In reality, RR

intervals are frequently utilized in SA detection (Bahrami and

Forouzanfar, 2021). However, the spatio-temporal correlations

are seldom utilized in the existing SA detection models (Sharan

et al., 2020; Chen et al., 2021; Yang et al., 2022). Bahrami

and Forouzanfar (2021) has used a hybrid CNN and LSTM

network to extract spatio-temporal feature from ECG signals.

However, they only use a simple combination of CNN and

LSTM networks. To improve the performance of SA detection,

a spatio-temporal learning based DNN model is proposed in

this paper. In order to take advantage of more spatio-temporal

dependencies, multiple adjacent segments are concatenated

and used as the input of the proposed model. A spatio-

temporal learning block is designed which is composed of a

one-dimensional convolutional neural network (CNN), a max-

pooling layer, and a bidirectional gated recurrent unit (BiGRU).

Multiple spatio-temporal blocks are stacked in the proposed

model to extract long-range spatial and temporal correlations.

As a result, this model can fully utilize the multiple concatenated

ECG segments. Moreover, an attention mechanism is employed

to further utilize the global correlations by using the high-

level forward and backward spatio-temporal features. These
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FIGURE 1

Flowchart of the proposed sleep apnea detection model.

characteristics have made our model different with the other

spatio-temporal model (Bahrami and Forouzanfar, 2021). The

performance of our model has outperformed the one of Bahrami

and Forouzanfar (2021). Experimental results on two public

domain datasets of PhysioNet Apnea-ECG dataset (Apnea-

ECG) and University College Dublin Sleep Apnea Database

(UCDDB) showed that CNN-BiGRU achieved the competitive

performance to the previous state-of-the-art methods. The main

contributions of this study can be listed as follows:

• To fully extract spatio-temporal information from ECG

signals, we proposed a spatio-temporal learning-based

model called CNN-BiGRU with multiple spatio-temporal

blocks, each block of which consists of a one-dimensional

CNN layer, a max-pooling layer, and a BiGRU layer.

• We employed an attention mechanism to further exploit

the high-level forward and backward spatio-temporal

features from the last spatio-temporal block, which was

able to extract the global correlations from multiple ECG

signal segments.

• Experiment results on two public domain datasets of

Apnea-ECG and UCDDB showed that the proposed

CNN-BiGRU achieved a state-of-the-art performance,

which outperforms the previous state-of-the-art methods.

It means that the proposed CNN-BiGRU can be potentially

deployed into a medical system to provide the SA

monitoring service.

The remainder of this paper is organized as follows. Section 2

details the composition of the CNN-BiGRU model. In Sections

3 and 4 the results are presented and discussed. The conclusion

is presented in Section 5.

2. Methods

2.1. Overview

The main idea of this study is to develop a fully automated

(or end-to-end) spatio-temporal learning-based SA detection

method, which is illustrated in Figure 1. First, in the pre-

processing phase, the RR intervals and R-peak amplitudes

are extracted from combining adjacent and labeled segments.

Then, the RR intervals and R-peak amplitudes are fed into the
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FIGURE 2

Five segments schematic diagram.

proposed CNN-BiGRU model, which recycles through multiple

spatio-temporal blocks to capture high-level spatio-temporal

features. The whole method can be mathematically defined as

follows: Given the input X ∈ R
D, a mapping function f :X →

{0, 1} is learned, where D is the dimensionality of the input,

and 0 and 1 denote normal and SA, respectively. Specifically,

the spatio-temporal block consists of CNN, max-pooling and

BiGRU layers. Furthermore, the attention mechanism is used to

extract the most effective part of the spatio-temporal features

and improve the accuracy. Finally, the fully connected layer is

used to identify whether the labeled segment belongs to SA.

2.2. Preprocessing

The method in Wang T. et al. (2019) to obtain the RR

intervals and R-peak amplitudes were applied in this study

to pre-process ECG signals. Considering adjacent segment

information is useful for SA detection in each segment. As

shown in Figure 2, both the labeled segment and its surrounding

ECG signal ±2 segments (five segments total of 1 min)

were extracted and processed. Firstly, the Hamilton algorithm

(Hamilton, 2002) was used to find R-peaks and adjust the

detection peak to match the local signal maximum. Then, RR

intervals were calculated and the amplitudes were extracted

using the locations of the R-peaks, while anomalous signals were

removed. For physiologically unexplained points, median filters

were chosen to solve the extracted RR intervals (Chen et al.,

2015). The final problem of unequal time intervals between the

RR intervals and amplitudes was tackled by cubic interpolation,

which yielded 900 RR interval points and 900 amplitudes over 5

min segments.

2.3. The proposed CNN-BiGRU for SA
recognition

The proposed CNN-BiGRU consists of spatio-temporal

blocks of CNNs and BiGRUs, an attention layer and fully

connections layers. These layers are introduced in detail

as follows.

2.3.1. Convolutional neural network

Convolutional neural networks are among the most

common and efficient techniques that are widely used in various

signal and image processing applications (Fan et al., 2018, 2019;

Wang et al., 2018). A lightweight CNN model can be trained

on a mixed-scale graph in order to extract deep features for the

detection of obstructive SA (Mashrur et al., 2021). In this study,

we used a one-dimensional CNN to extract spatial dependencies

from ECG signals, which is mathematically defined as follows:

[w⊛ x](i) =

L−1
∑

u=0

wuxi+u (1)

where x,w, L are the input, filter, and filter size, respectively.

The next layer of the CNN is generally the pooling layer. The

max-pooling layer can be used to reduce mean value shift errors

caused by bad initialization of weights (Wang L. et al., 2019).

In this paper, the max-pooling layer was used to decrease the

computational effort and to mitigate the overfitting problem by

selecting the maximum value of each feature.

2.3.2. Gated recurrent unit

Gated recurrent units (GRU) (Cho et al., 2014) represent

a more advanced alternative to the simple recurrent neural

network (RNN) and are more capable of learning long-term

dependencies than vanilla RNN (Zhang et al., 2022). While both

GRU and Long Short-Term Memory (LSTM) units have gating

units that regulate the flow of information within the unit, GRUs

do not have a separate memory unit, only update and reset gates.

The j-th hidden unit of eachmentioned gate is defined as follows:

Reset gates:

rj = σ

(

[Wrx]j +
[

Urh〈t−1〉
]

j

)

(2)
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where σ and [·]j are the logistic sigmoid function and the j-th

element of a vector, respectively; t is the time step, x denotes the

input, and h〈t−1〉 represents the previous hidden state.

Update gates:

zj = σ

(

[Wzx]j +
[

Uzh〈t−1〉
]

j

)

. (3)

Output:

h
〈t〉
j = zjh

〈t−1〉
j +

(

1− zj
)

h̃
〈t〉
j (4)

The weight matrices Wr , Wz , Wx, Ur , Uz , and Ux are learned

during training. The candidate hidden state h̃
〈t〉
j is computed as

follows:

h̃
〈t〉
j = tanh

(

[Wxx]j + rj
[

Uxh〈t−1〉
])

(5)

The GRU can be heavily dependent on the dataset and the

corresponding task, and the Apnea-ECG dataset works better

with GRU than with LSTM, since it has fewer parameters and

faster training (Chung et al., 2014). In this work, a bidirectional

GRU was used to capture richer temporal information. By

recursively computing the hidden states Ht in the forward

and backward directions, the forward sequence F and the

backward sequence B were obtained, respectively. This can be

mathematically defined as follows:

H→t = [h
〈t〉
1 , h

〈t〉
2 . . . h

〈t〉
n ] (6)

H←t = [h
′〈t〉
1 , h

′〈t〉
2 . . . h

′〈t〉
n ] (7)

F = [H→1 ,H→2 , . . . ,H→s ]T∈ R
s×n (8)

B = [H←1 ,H←2 , . . . ,H←s ]T∈ R
s×n (9)

where n denotes the number of GRUs and s represents the total

number of the time step.

2.3.3. Attention mechanism

Dot-product attention (Luong et al., 2015) was used to

extract the global correlation information from the input

multiple ECG segments. Specifically, dot-production attention is

applied on the forward sequence F and the backward sequence

B of the BiGRU unit within the last spatio-temporal block. The

attention score is calculated as follows:

Attention (F,B,B) = softmax
(

FBT
)

B (10)

Using the attention mechanism allows the model to pay more

attention to specific high-level spatial-temporal dependency

information, improving the accuracy of the model. Note that

dot-product attention is fast and spatially efficient because

it enables a highly optimized code for matrix multiplication

(Vaswani et al., 2017).

2.3.4. Proposed CNN-BiGRU model

To better extract the spatio-temporal features of ECG

signals, we have specially designed a SA detection model, named

CNN-BiGRU. The proposed CNN-BiGRU model is mainly

composed of a CNN layer, multiple stacked spatio-temporal

learning blocks, an attention layer, and fully connected layers.

First, a convolutional layer was used to extract the base features

before using spatio-temporal blocks. A spatio-temporal learning

block consists of a one-dimensional CNN, a max-pooling layer,

and a BiGRU unit. The use of multiple spatio-temporal blocks

enables the CNN-BiGRU model to extract high-level spatio-

temporal features from the ECG signal. Specifically, our model

is able to extract local spatial features of the R-peaks, as well as

global temporal features of the heartbeat intervals. Then, the

attention score of the fused high-level forward and backward

features from the spatio-temporal blocks was calculated. This

attention mechanism is able to further utilize the global spatio-

temporal correlations from the multiple ECG segments. Finally,

three dense layers were used for classification. Additionally,

some of the layers were immediately followed by a dropout

layer to mitigate the effects of overfitting. The mathematical

expression of the wholemodel computation process is as follows:

For the CNN input X, the output C is:

C = g(f (X;W)) (11)

where g denotes the ReLU activation function g(x) = max(0, x)

andW denotes the convolution kernel.

As previously mentioned, this study uses BiGRU with the

matrices Wr , Ur , Wz , Uz , Wx, and Ux as the parameters to

be learned. After reducing the size of the feature map through

the max-pooling layer, the output C of the CNN was fed into

the BiGRU. The output of the spatio-temporal block can be

mathematically represented as follows:

F = ϕ(C;W→r ,U→r ,W→z ,U→z ,W→x ,U→x ) (12)

B = ϕ(C;W←r ,U←r ,W←z ,U←z ,W←x ,U←x ) (13)

where F and B are the stacked hidden states in the forward

and backward directions, respectively. If the next layer of the

BiGRU was a CNN, then F and B were concatenated along

the channel dimension, otherwise the attention score a was

calculated as follows:

a = softmax
(

FBT
)

B (14)

Finally, the attention score was entered into the fully connected

layer for classification, and the labeled segments were classified

to be SA or normal. Table 1 has listed the architecture details of

the proposed CNN-BiGRU model. Specifically, the architecture

contains three spatio-temporal blocks (see the layers of 2–5, 7–

10, and 12–15, respectively in Table 1). And the dropout ratios

in Table 1 have all been set to 0.2.
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Algorithm 1 CNN-BiGRU training.

Input: Given training set [X,Y] =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xn, yn
)}

and validation set
[

X̃, Ỹ
]

,

the CNN-BiGRU model f with initialized parameters θ0,

epochs T, learning rate α

Output: Trained model weight 2

1: Initialize the parameters of the Adam optimizer: the

exponential decay rates of the first and second order

moments are estimated as β1 and β2

2: m0 = 0, v0 = 0

3: for t = 1 to T do

4: Forward-propagation: ŷ = f (X; θt)

5: Compute loss error:

J(θ) = −
1

n

n
∑

i=1

[

yi ln
(

ŷi
)

+
(

1− yi
)

ln
(

1− ŷi
)]

6: Compute the gradient of the current data:

gt =
∂

∂θt
J (θt)

7: Update network parameters by Adam optimizer:

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g
2
t

θt = θt−1 − α

√

(

1−βt
2

)

mt
(

1−βt
1

)

(
√
vt+ǫ)

8: if f (X̃; θt) turns out better on the validation set than

before then

9: Save weight θt to 2

10: end if

11: end for

2.4. Experimental settings

In order to enable an enhanced performance of the

CNN-BiGRU model, the number of spatio-temporal blocks

was tuned from 1 to 5. Adam optimizer (Kingma and Ba,

2017) and binary cross-entropy loss function were applied

for parameter optimization. The learning rate and batch

size were set to 0.001 and 128, respectively. The proposed

model was trained for 40 epochs. In each training epoch,

the model parameters were evaluated using the validation

set and the best model parameters were saved to perform

classification on the test set. Detailed training methods are

described in Algorithm 1. Our model was implemented using

the Tensorflow framework with a Tesla P100-PCIE-16GB

graphics card.

Various performance metrics, such as precision, specificity,

F1 score, sensitivity, and accuracy, were used to assess the

TABLE 1 Detailed parameter settings for the CNN-BiGRU model.

Layer Type
Number of

filter/cell/unit

Kernel

size

Activation

function

1 Convolutional 128 3 ReLU

2 Convolutional 128 3 ReLU

3 Max-Pooling – 3 –

4 Dropout – – –

5 Bidirectional GRU 128 – Tanh

6 Dropout – – –

7 Convolutional 128 3 ReLU

8 Max-Pooling – 3 –

9 Dropout – – –

10 Bidirectional GRU 128 – Tanh

11 Dropout – – –

12 Convolutional 128 3 ReLU

13 Max-Pooling – 3 –

14 Dropout – – –

15 Bidirectional GRU 128 – Tanh

16 Attention – – –

17 Flatten – – –

18 Dense 64 – ReLU

19 Dropout – – –

20 Dense 64 – ReLU

21 Dense 2 – Softmax

performance of the proposed model. These metrics are defined

as follows:

Precision =
TP

TP + FP
(15)

Specificity =
TN

TN + FP
(16)

Recall =
TP

TP + FN
(17)

F1 score =
2× Precision× Recall

Precision+ Recall
(18)

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

where FP, TP, FN, and TN stand for “false positive,” “true

positive,” “false negative,” and “true negative,” respectively. The

SA class is the positive class in this study, while the normal class

is the negative class.

This model was also evaluated using the receiver

operating characteristic (ROC) and the related area under

the curve (AUC).
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FIGURE 3

Datasets division methods on PhysioNet Apnea-ECG dataset.

3. Experimental results

3.1. Datasets

3.1.1. PhysioNet Apnea-ECG dataset

In this paper, we used the PhysioNet Apnea-ECG dataset

provided by Philipps University (Penzel et al., 2000) for model

evaluation. The Apnea-ECGdataset has 70 recordings, including

35 records in the released dataset (a01–a20, b01–b05, and c01–

c10) and 35 records in the withheld dataset (x01–x35). And

the release set is used to train the model with the withheld

set used to test the model. Regarding the released set, 20%

of the 35 released data were used to validate the model and

tune its hyperparameters (Figure 3). ECG recordings for this

dataset were obtained from subjects with an AHI (apnea

hypoventilation index) between 0 and 83. And these subjects

ranged in age from 27 to 63 years and their body mass indices

varied between 19.2 and 45.33kg/m2. The ECG signal was

sampled at 100 Hz over a range of 401 to 587 min. The

experts labeled each 1 min recording segments as SA or normal.

According to our pre-proccessing method, the release and

withheld set contained 17,045 and 17,302 segments, respectively.

The experimental results show that CNN-BiGRU achieves an

outstanding performance in SA detection.

3.1.2. University college Dublin sleep Apnea
database (UCDDB)

UCDDB was used as a second dataset to validate the

performance of CNN-BiGRU. This database contains 25 full

overnight polysomnograms from adult subjects suspected sleep-

disordered breathing. ECG recordings of this dataset have been

collected by a modified lead V2. We used ECG signals sampled

at 128 Hz and with the durations ranging from 355 to 462

min. Following previous studies (Mostafa et al., 2017, 2020),

we labeled a 1 min segment as SA if the segment contains

more than 5 s of SA events. Considering the class imbalance

problem of UCDDB, the data of patients without SA events

(ucddb008, ucddb011, ucddb013, and ucddb018) are not used

(John et al., 2021).

3.2. Classification performance on
Apnea-ECG dataset

The SA detection involves two stages. The first stage is to

detect whether a 1 min segment is SA. In the second stage, each

patient is assessed for sleep quality overnight based on the results

of the first stage.

3.2.1. Per-segment classification on
Apnea-ECG dataset

Test sets were used to evaluate the effectiveness of the

proposed model. First, the pre-processed 5 min ECG segments

were fed into the CNN-BiGRU network to automatically extract

the features. Then, the extracted features were fed into the fully

connected layers, and the ECG signal of the middle segment

was classified. The results of the CNN-BiGRU model with

three spatio-temporal blocks for ten runs are listed in the

Table 2. It is worth noting that the 10th experiment exceeded

the average on all evaluation metrics. In addition, the 5th

experiment reached the highest values of 91.54 and 88.82%

for the accuracy and F1 score, respectively. To evaluate the

classifier more comprehensively, Figure 4 shows the ROC curve

and AUC. It can be seen that the model proposed in this study is

stable, with an AUC value of 0.9692± 0.0013.

Table 3 lists the comparison results between the CNN-

BiGRU model and previous state-of-the-art works on the

detection of per-minute ECG signals. Notice that the compared

methods and the proposed models listed in Tables 3, 4 were all

trained on the release set and evaluated on the withheld set.
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TABLE 2 Per-minute detection performance Results on the Apnea-ECG dataset.

Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score (%)

1 91.25 85.69 94.71 90.96 88.24

2 90.80 86.84 93.26 88.88 87.85

3 91.18 88.10 93.09 88.79 88.45

4 91.14 88.37 92.86 88.49 88.43

5 91.54 87.72 93.92 89.95 88.82

6 90.95 86.38 93.79 89.62 87.97

7 91.18 84.84 95.12 91.52 88.05

8 91.36 83.78 96.07 92.97 88.13

9 91.37 86.41 94.45 90.63 88.47

10 91.41 86.64 94.38 90.53 88.54

Mean 91.22 86.48 94.16 90.23 88.30

Std 0.2098 1.360 0.9404 1.316 0.2833

FIGURE 4

ROC curves for 10 random repeated runs on PhysioNet

Apnea-ECG dataset.

The results show that the average performance of CNN-BiGRU

outperforms the previous optimal model in terms of accuracy,

specificity, and F1 metrics. It is worth noting that CNN-BiGRU

only underperforms the approach of literature (Li et al., 2018;

Yang et al., 2022) in terms of the recall metric. However, our

model achieved the F1 score of 88.3%, which is better than that

of literature (Yang et al., 2022), while literature (Li et al., 2018)

did not give F1 score.

In summary, some previous works (Song et al., 2015;

Sharma and Sharma, 2016) were based on feature engineering

techniques that attempt to improve the performance bymapping

high-dimensional training data to a low-dimensional feature

space. However, this is time-consuming and ineffective. Deep

learning methods can extract important features from ECG

signals, and the DL-based methods (Chen et al., 2021; Yang

et al., 2022) mentioned in Table 3 have all achieved good

results, but their performance was inferior to that of the

CNN-BiGRU model proposed in this paper. Our model uses

spatio-temporal blocks, which can extract spatio-temporal

features more effectively from ECG signals and provide better

performance on SA classification.

3.2.2. Per-recording classification on
Apnea-ECG dataset

In order to further assess the quality of the subjects’ sleep, an

overall SA diagnosis of the subjects’ recordings was performed.

Each of the subjects’ recordings consisted of multiple 1 min

segments. The AHI is commonly used clinically as an indicator

of whether a subject is suffering from SA. An individual is

considered to have SA if the subject’s AHI is>5 (Ruehland et al.,

2009). The formula for calculating the AHI is as follows:

AHI =
60× N

T
(20)

where T is the number of 1 min segments and N indicates the

number of 1 min SA segments.

In the per-recording detection, the accuracy, sensitivity,

specificity, and AUC of the CNN-BiGRU model were calculated

on the retention set as 97.1, 95.7, 100, and 0.996%, respectively.

The accuracy was 97.1% because the model misclassified one

from the total 35 patients. More specifically, one subject (x12)

with SA had an AHI of 6.75, whereas the proposed model

calculated an AHI of 4.00, thus classifying the patient as normal.

It is worth noting that the low precision per-segment approach

may show better per-recording performance because of the

relatively small amount of data in the test set (Wang T. et al.,

2019). Therefore, according to the previous literature (Sharma
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TABLE 3 Per-minute detection performance comparison on Apnea-ECG dataset.

References
Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score (%)

Bahrami and Forouzanfar (2021) 80.7 75.0 84.1 – 74.72

Sharma and Sharma (2016) 83.4 79.5 88.4 – –

Li et al. (2018) 84.7 88.9 88.4 – –

Feng et al. (2020) 85.1 86.2 84.4 77.2 81.4

Song et al. (2015) 86.2 82.6 88.4 – –

Wang T. et al. (2019) 87.6 83.1 90.3 – –

Sharan et al. (2020) 88.2 82.7 91.6 – –

Yang et al. (2022) 90.3 87.6 91.9 – 87.3

Chen et al. (2021) 90.6 86.0 93.5 – 87.6

This work (mean) 91.2 86.5 94.2 90.2 88.3

TABLE 4 Per-recording detection comparison on Apnea-ECG dataset.

References
Accuracy (%) Recall (%) Specificity (%) MAE Corr

Song et al. (2015) 97.1 95.8 100 – 0.860

Sharma and Sharma (2016) 97.1 95.8 100 – 0.841

Li et al. (2018) 100 100 100 9.41 –

Wang T. et al. (2019) 97.1 100 91.7 – 0.943

Feng et al. (2020) 97.1 95.7 100 5.60 –

Shen et al. (2021) 100 100 100 4.23 –

Chen et al. (2021) 100 100 100 – 0.979

Yang et al. (2022) 100 100 100 2.70 0.985

This work 97.1 95.7 100 2.49 0.984

and Sharma, 2016; Wu et al., 2021; Yang et al., 2022), the

Pearson correlation coefficient (Corr) and mean absolute error

(MAE) were also used as new evaluation indicators to ensure

the reliability of the comparison. These metrics are defined

as follows:

MAE =
1

N

N
∑

i=1

∣

∣

∣
AHIipre − AHIitrue

∣

∣

∣
(21)

Corr =

∑N
i=1

(

AHIipre − AHIpre

)

(

AHIitrue − AHItrue
)

√

∑N
i=1

(

AHIipre − AHIpre

)2
√

∑N
i=1

(

AHIitrue − AHItrue
)2

(22)

where N is the number of recordings, and AHIipre and AHIitrue
represent the predicted and true AHI values of the i-th

recording, respectively.

Table 4 lists the comparison of the per-recording

classification performance between the CNN-BiGRU model

and state-of-the-art works in recent years. As mentioned above,

traditional evaluation metrics do not provide a comprehensive

and accurate assessment of model performance, and a better

approach is to use MAE and Corr metrics. As listed in Table 4,

our model achieved 2.49 and 0.984 for the MAE and Corr

metrics, respectively. Our model achieved the best performance

in terms of MAE metrics. On the Corr metric, literature (Yang

et al., 2022) achieved the best value of 0.985, while our model

achieved 0.984, which is a comparable result. Overall, our

proposed model provides more competitive performance than

those of the works presented in Table 4.

3.3. Classification performance on
UCDDB dataset

Usually, UCDDB is utilized to evaluate the robustness of the

SA detection models (Wang T. et al., 2019; Mashrur et al., 2021;

Yang et al., 2022). Similarly, we evaluated our CNN-BiGRU
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model on UCDDB to demonstrate the model’s robustness.

Different from the Apnea-ECG dataset, UCDDBwas not divided

into the training set and test set by the original publishers. As a

result, the previous works (Wang T. et al., 2019; Mashrur et al.,

2021; Yang et al., 2022) had used their own splitting of training

and testing sets in evaluations. In this paper, we used the same

preprocessing method for the UCDDB as mentioned in Section

2.2. The difference is that the UCDDB is divided into a training

set, a validation set and a test set with a proportion of 8:1:1. Due

to the relatively small number of patients with SA at theUCDDB,

the training set was balanced by oversampling the minority class

(SA events). Meanwhile, per-recording testing is not performed

for the same reason.

We used the model trained on the Apnea-ECG dataset

to continue training on the UCDDB training set, with the

experimental settings mentioned in Section 2.4. On the UCDDB

test set, the performance of the CNN-BiGRU model on the

accuracy, recall, specificity, and AUC metrics reached 92.3, 70.5,

93.9, and 0.890%, respectively. Figure 5 shows the ROC curves

and AUC of the proposed model for per-segment detection.

FIGURE 5

ROC curves on UCDDB when positive class is apnea.

Table 5 lists the results of CNN-BiGRU on the test set and

compares them with other detection algorithms in the literature.

The results show that the CNN-BiGRU model is far superior

to the previous models, with an accuracy and specificity of

92.3 and 93.9%, respectively. In regard to recall metrics, we

obtained a comparative result to the works (Mashrur et al.,

2021). Compared to the Apnea-ECG dataset, our model has a

significant decrease in the recall metric on the UCDDB. A major

reason for this is that the ratio of pre-processed SA segments

to all segments is about 1%, indicating that the class imbalance

is intensified. Note that it is a rough comparison in Table 5, as

there is no uniform data partitioning of training set and test set

for UCDDB. In summary, our CNN-BiGRU model is useful for

SA detection.

4. Discussion

4.1. Hyperparameter tuning

In order to verify the efficacy of spatio-temporal blocks,

the number of spatio-temporal blocks was tuned from 1 to 5

on PhysioNet Apnea-ECG dataset. As shown in Figure 6 and

Table 6, one spatio-temporal block model cannot effectively

extract high-level spatio-temporal information. Meanwhile, too

many spatio-temporal blocks also fail to learn high-level feature

information due to the overfitting problem. Considering that

Apnea-ECG dataset suffers from class imbalance, the F1 score

became the main metric we considered. And the CNN-BiGRU

model using three spatio-temporal blocks reached the highest

values of 88.30% for F1 score. Therefore, we set the number of

spatio-temporal blocks for CNN-BiGRU to 3 in this study.

4.2. Ablation study

We conducted an ablation study on the Apnea-ECG dataset,

considering that there was sufficient data in the Apnea-ECG

TABLE 5 Per-minute detection performance comparison on UCDDB dataset.

References
Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score

Wang T. et al. (2019) 71.8 26.6 86.9 – –

Papini et al. (2018) 74.7 50.6 84.0 – –

Yang et al. (2022) 75.1 61.1 80.8 – –

Willemen et al. (2015) 75.9 62.3 – 41.1 –

Xie and Minn (2012) 77.7 69.8 80.3 – –

Fatimah et al. (2020) 80.4 68.9 87.6 – –

Mashrur et al. (2021) 81.9 71.6 86.1 – 69.63

This work 92.3 70.5 93.9 46.7 76.0
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dataset to fully evaluate the performance of the model. As

shown previously, the CNN-BiGRU model uses a convolutional

layer, spatio-temporal blocks, and an attention layer to extract

features. Therefore, the results of the ablation experiments

with the convolutional layer and the attention layer removed

separately are listed in Table 7. It was found that removing

either the convolutional layer or the attention layer will make

the classification performance degrade. Specifically, the accuracy

of the models with the convolutional layer removed and

the attention layer removed is decreased by 0.47 and 0.67%,

respectively. Overall, using the convolutional layer and attention

layer improved the classification performance of the CNN-

BiGRU model.

4.3. Cross-dataset evaluation

Cross-dataset evaluations are performed to demonstrate

the general performance of our proposed model, using the

Apnea-ECG and UCDDB datasets. Specifically, the model is

FIGURE 6

Hyperparameter tuning for the number of spatio-temporal

blocks.

trained on one dataset and evaluated directly on another dataset.

When CNN-BiGRU was trained on Apnea-ECG and tested

on UCDDB, an accuracy of 85.3% and an F1-score of 50.5%

were achieved. Similarly, when it was trained on UCDDB and

evaluated on Apnea-ECG, the accuracy was 53.8% and the

F1-score was 36.3%. It is found that the performances of cross-

dataset evaluation are not satisfactory. To comprehensively

understand the evaluation, we performed the same cross-dataset

evaluation using a previous state-of-the-art model (Chen et al.,

2021) listed in Table 3. The accuracy achieved was 85.9% and

the F1-score was 51.1% using the UCDDB as the testing set and

Apnea-ECG as the training set. They are very slightly better than

those of our model (85.9 vs. 85.3%; 51.1 vs. 50.5%). However,

when it was trained with UCDDB and tested on Apnea-ECG,

the accuracy and the F1-score were 45.5 and 29.2%, respectively.

Obviously, our model has outperformed this previous model

(53.8 vs. 45.5%; 36.3 vs. 29.2%). In general, CNN-BiGRU is

superior to the compared model (Chen et al., 2021), in terms

of cross-dataset evaluation.

Finally, we attribute the low performance of cross-dataset

evaluation to the following reasons: (1) the populations of

datasets are different. For example, subjects with central apnea

and periodic respiratory episodes are included in UCDDB; (2)

the different sampling rates may impact the performance (the

ECG signals are sampled at 100 Hz on Apnea-ECG while 128 Hz

on UCDDB); (3) UCDDB has a severe class imbalance problem.

In other words, the distributions of normal and SA are quite

different between the two datasets.

5. Conclusion

In this study, a novel spatio-temporal learning-based model

named CNN-BiGRU was explored to classify SA events from

ECG signals. Specifically, the proposed CNN-BiGRU is an

end-to-end deep learning model, which consists of multiple

spatio-temporal blocks. Each block has the identical architecture

with a CNN layer, a max-pooling layer, and a BiGRU layer.

This architecture with repeated spatio-temporal blocks can

well capture the morphological spatial feature information as

well as the temporal feature information from ECG signals.

TABLE 6 Comparison of per-segment detection results using di�erent numbers of spatio-temporal blocks.

# Spatio-temporal blocks Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score

1 89.40± 0.4486 84.69± 1.867 92.32± 1.135 87.30± 1.509 85.95± 0.6510

2 91.08± 0.2314 87.70± 1.449 93.19± 0.9452 88.92± 1.262 88.28± 0.3309

3 91.22± 0.2098 86.48± 1.360 94.16± 0.9404 90.23± 1.316 88.30± 0.2833

4 91.26± 0.1953 85.77± 1.588 94.67± 0.8665 90.94± 1.243 88.26± 0.3714

5 90.92± 0.1502 87.59± 1.222 92.99± 0.7195 88.60± 0.9142 88.08± 0.2603
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TABLE 7 Ablation of CNN-BiGRU.

Convolutional

layer

Attention

layer
Accuracy (%) Recall (%) Specificity (%) Precision (%) F1 score

X 90.55± 0.1128 85.28± 1.741 93.81± 1.183 89.60± 1.629 87.35± 0.2002

X 90.75± 0.2061 86.57± 2.054 93.35± 1.118 89.05± 1.468 87.76± 0.4489

X X 91.22± 0.2098 86.48± 1.360 94.16± 0.9404 90.23± 1.316 88.30± 0.2833

Experiment results on the apnea-ECG dataset showed that

the proposed CNN-BiGRU achieved an accuracy of 91.22

and 97.10% for per-minute classification and per-recording

classification, respectively. And the accuracy on the UCDDB

dataset reached 91.24%. In contrast to the previous state-of-

the-art methods, our proposed CNN-BiGRU has an obvious

advantage with a big margin. It means that the CNN-BiGRU

can be potentially deployed into a medical system to help

physicians to screen out SA patients to avoid malignant events.

In future work, we will further apply the proposed model to real

healthcare systems.
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Resting-state
electroencephalography
changes in poststroke patients
with visuospatial neglect
Yichen Zhang, Linlin Ye, Lei Cao and Weiqun Song*

Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China

Background: This study aimed to explore the electrophysiological

characteristics of resting-state electroencephalography (rsEEG) in patients

with visuospatial neglect (VSN) after stroke.

Methods: A total of 44 first-event sub-acute strokes after right hemisphere

damage (26 with VSN and 18 without VSN) were included. Besides, 18

age-matched healthy participants were used as healthy controls. The resting-

state electroencephalography (EEG) of 64 electrodes was recorded to obtain

the power of the spectral density of different frequency bands. The global

delta/alpha ratio (DAR), DAR over the affected hemispheres (DARAH), DAR

over the unaffected hemispheres (DARUH), and the pairwise-derived brain

symmetry index (pdBSI; global and four bands) were compared between

groups and receiver operating characteristic (ROC) curve analysis was

conducted. The Barthel index (BI), Fugl-Meyer motor function assessment

(FMA), and Berg balance scale (BBS) were used to assess the functional

state of patients. Visuospatial neglect was assessed using a battery of

standardized tests.

Results: We found that patients with VSN performed poorly compared with

those without VSN. Analysis of rsEEG revealed increased delta and theta

power and decreased alpha and beta power in stroke patients with VSN.

Compared to healthy controls and poststroke non-VSN patients, patients with

VSN showed a higher DAR (P < 0.001), which was significantly positively

correlated with the BBS (DAR: r = –0.522, P = 0.006; DARAH: r = –0.521,

P = 0.006; DARUH: r = –0.494, P = 0.01). The line bisection task was positively

correlated with DAR (r = 0.458, P = 0.019) and DARAH (r = 0.483, P = 0.012),

while the star cancellation task was only positively correlated with DARAH

(r = 0.428, P = 0.029). DARAH had the best discriminating value between VSN

and non-VSN, with an area under the curve (AUC) of 0.865. Patients with VSN

showed decreased alpha power in the parietal and occipital areas of the right
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hemisphere. A higher parieto-occipital pdBSIalpha was associated with a worse

line bisection task (r = 0.442, P = 0.024).

Conclusion: rsEEG may be a useful tool for screening for stroke patients with

visuospatial neglect, and DAR and parieto-occipital pdBSIalpha may be useful

biomarkers for visuospatial neglect after stroke.

KEYWORDS

stroke, visuospatial neglect, resting-state EEG, delta/alpha ratio, alpha oscillation

Introduction

Visuospatial neglect (VSN) is the most frequent neglect
syndrome, characterized by failure to orient or respond to
visual stimuli presented in the contralesional space (Heilman
and Valenstein, 1979; Parton et al., 2004), particularly in
patients with right hemisphere damage (Ten Brink et al.,
2017). The prevalence of VSN after unilateral stroke is 30%
(Esposito et al., 2020), and it disrupts basic activities of
daily living (such as dressing and walking; Nijboer et al.,
2013; Aravind and Lamontagne, 2018) and increases the
risk of falls (Chen et al., 2015). Worsely, many individuals
with VSN are unaware of these deficits. Furthermore, VSN
hinders the ability to perform rehabilitation and limits recovery
during early post-stroke neuroplasticity enhancement. VSN is
an important predictor of poor functional recovery 1 year
after stroke (Jehkonen et al., 2000; Hammerbeck et al.,
2019). Despite its high prevalence and serious sequelae, VSN
often remains unrecognized and undertreated because of the
heterogeneity of its clinical manifestations and the limitations
of assessment methods (Puig-Pijoan et al., 2018). Pencil-
and-paper clinical tests are the most commonly used tools
to assess VSN, but they sometimes lack sensitivity (Azouvi,
2017). Some patients with severe VSN symptoms may be
unable to complete the scale assessment, whereas patients
with mild VSN symptoms may have normal scale assessments.
Therefore, in addition to assessing the severity of VSN
symptoms from a behavioral perspective, new assessment tools
that can sensitively reflect dynamic changes at physiological
levels are needed.

Electroencephalography (EEG) is a non-invasive method
with high temporal resolution, which contributes to the rapid
evaluation of instantaneous brain function. Closed-eye resting-
state EEG (rsEEG) provides an important opportunity to
examine EEG oscillatory patterns of spontaneous brain activity
unbiased by any task (Fingelkurts and Fingelkurts, 2015).
Specific EEG oscillation patterns are associated with specific
psychological or behavioral states (Herrmann et al., 2016).
A previous study showed that alpha desynchronization in the

spatially contralateral hemisphere of attention is a reliable
marker of attentional orientation in the healthy human brain
(Lasaponara et al., 2019). A large number of studies have found
that spectral rsEEG can be a useful tool for auxiliary diagnosis
of Alzheimer’s disease, post-stroke aphasia, and post-stroke
depression. However, few studies have used rsEEG as a VSN
screening tool. Previous studies have found that resting EEG
topography has high sensitivity and reliability, and can help
distinguish patients with different severities of VSN (Pirondini
et al., 2020). However, there are no studies on the spectral power
parameters of rsEEG.

The delta/alpha ratio (DAR) and pairwise-derived brain
symmetry index (pdBSI) are commonly used resting-state EEG
parameters, which are potentially valuable early predictors
of the severity of post-stroke dysfunction (Saes et al., 2020,
2021). Hemispheric stroke has been associated with increased
low-frequency oscillations in delta bands (Cassidy et al.,
2020) and decreased alpha activity (Zappasodi et al., 2019).
Compared to the individual spectral components, the DAR
quantifying these spectral power changes may more sensitively
reflect the severity of neurological deficits. The pdBSI assesses
the asymmetry of the spectral power distribution between
hemispheres after unilateral hemispheric stroke by calculating
the power spectral densities along with homologous EEG
channel pairs (Sheorajpanday et al., 2009). However, it is
still unknown whether these rsEEG parameters differ in post-
stroke VSN patients compared to healthy subjects and patients
without VSN after stroke, and whether they are related to the
severity of VSN.

In this study, we aimed to determine the specific
rsEEG characteristics in poststroke patients with visuospatial
neglect. The rsEEG of patients with VSN after stroke,
patients without VSN after stroke and healthy individuals
were collected, and the differences in rsEEG parameters
(DAR and pdBSI) and topographic maps among the three
groups and their correlation with clinical manifestations were
analyzed. We aimed to determine whether specific rsEEG
features of these post-stroke VSN patients could be used
to aid in diagnosis and evaluation and to help design
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clinical screening procedures for visuospatial neglect in post-
stroke patients.

Materials and methods

Participants

Patients were recruited from sequential admissions to the
Department of Rehabilitation at the Xuanwu Hospital of Capital
Medical University, China. A total of 44 first-event subacute
stroke patients after right hemisphere damage were included,
comprising of 26 patients with left VSN and 18 patients
without VSN (non-VSN). The demographic characteristics
are reported in Tables 1, 2. We also recruited 18 age-
matched healthy controls (HC). The inclusion criteria for
stroke patients were as follows: (1) first-ever cerebral stroke
according to computed tomography or magnetic resonance
imaging (MRI) scan; (2) ability to complete the necessary
checks; (3) age ≥ 18 years; and (4) all right-handed patients
who had normal or corrected-to-normal visual acuity. The
exclusion criteria were as follows: (1) other neurological
diseases; (2) severe cognitive problems, that is, Mini-Mental
State Examination score < 18; and (3) worsening condition. All
participants provided written informed consent and the study
was approved by the Ethics Committee of Xuanwu Hospital
(approval number: [2020]155).

All stroke patients were assessed for activities of daily
living (ADL), motor function, and balance. The Barthel index
(BI) was used to assess patients’ daily living abilities. The
total BI score was 100, and higher scores suggest stronger
daily living ability. The Fugl-Meyer Motor Assessment (FMA)
Scale included upper and lower extremity movements, with
33 assessment items for upper extremity movement and 17
assessment items for lower extremity movement, with a total
score of 100. Higher scores indicated better limb motor
function. The Berg Balance Scale (BBS) was a commonly
used balance scale that can comprehensively evaluate the
dynamic and static balance function of stroke patients in
the sitting and standing positions. It consisted of 14 items
with a total score of 56. A lower score indicates poorer
balance function.

Clinical assessment of visuospatial
neglect

Line bisection task
The patients were asked to bisect five horizontal black

lines of differing lengths (80, 100, 120, 140, and 160 mm).
The deviation of the patient’s marked point from the
true midpoint of the line (in millimeters) was measured
and converted to a percentage score (line bisection error

[LBE]). Rightward deviations from the true line center
were scored as positive and leftward deviations were
scored as negative. VSN was diagnosed when the average
LBE was > 12%.

Line cancellation task
This test involved 30 lines, each with a length

of 15 mm, evenly distributed on the paper. Stroke
patients were asked to cross all the lines on the
page. The ratio of the number of missing line
segments to 30 was the omission rate for the line
cancellation task (ORL).

Clock copying task
The subjects were instructed to copy a clock on paper.

Errors of omission in hands and numbers were considered
pathological VSN.

Star cancellation task
There were 56 small stars interspersed with 52 large stars, 10

short words, and 13 letters. All patients were asked to mark all
small stars. The omission rate of stars (ORS) was the number of
missing small stars divided by 56.

Electroencephalography

All subjects were requested to relax and not engage
in any specific mental activity during EEG recording. Eye-
closed rsEEG signals were recorded for 5 min using a
NeuroScan NuAmps amplifier (Compumedics United States,
Ltd., El Paso, TX, United States), and 64 Ag–AgCl electrodes
were mounted on a Quik Cap using a modified 10–20
placement scheme to record the EEG. The EEG data were
recorded with a 0.1–100 Hz band-pass filter at a sampling
rate of 1,000 Hz. The ground electrode was placed on the
forehead and the reference electrode was placed on the
nose. The impedance of all the electrodes was maintained
at ≤ 10 k�.

Pre-processing
Offline EEG preprocessing was conducted using the open-

source EEGLAB toolbox and custom MATLAB 2013b (Math
Works, Natick, NA). The raw EEG data were filtered using
an FIR filter at 0.1–40 Hz. A 48–52 Hz notch filter was
used to eliminate the power frequency interference. The data
were then segmented into 2 s epochs. Bad channels were
discarded by visual inspection and interpolated using the
spherical method, followed by re-referencing to the remaining
average. Data portions contaminated by eye blinks and eye
movements were corrected using independent component
analysis (ICA). The EEG epochs with amplitude values
exceeding ± 100 µV at any electrode were excluded. The
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TABLE 1 Stroke characteristics.

Subject number Gender Age (years) Duration after stroke (days) Type of stroke Lesion location

VSN01 Female 47 16 Ischemic T, P, BG

VSN02 Male 48 31 Ischemic BG

VSN03 Male 62 9 Ischemic F, BG

VSN04 Male 61 16 Ischemic F, T, P, BG, CS

VSN05 Male 67 21 Ischemic F, T, BG

VSN06 Female 69 18 Ischemic F, T, P, BG, CR

VSN07 Male 69 25 Ischemic F, T, P, CS

VSN08 Female 66 12 Ischemic F, T

VSN09 Female 51 18 Ischemic F, T, P, BG

VSN10 Male 58 36 Ischemic F, T, P

VSN11 Female 73 19 Ischemic F, T, P

VSN12 Male 48 17 Hemorrhagic BG

VSN13 Male 37 42 Hemorrhagic F, T, P

VSN14 Male 58 17 Ischemic BG

VSN15 Male 65 13 Ischemic F, BG

VSN16 Male 61 30 Hemorrhagic BG

VSN17 Female 31 24 Ischemic F, T, P, BG

VSN18 Female 71 10 Ischemic F, BG

VSN19 Female 78 23 Ischemic F, T, P, BG

VSN20 Male 49 22 Ischemic F, T, P, BG, CR

VSN21 Male 59 14 Ischemic F, T, P, BG

VSN22 Female 66 24 Ischemic BG, CS

VSN23 Male 67 28 Ischemic F, P, CR

VSN24 Male 73 8 Ischemic T, BG

VSN25 Male 56 40 Ischemic F, T, BG

VSN26 Male 67 17 Hemorrhagic P

Non-VSN01 Male 74 21 Ischemic BG

Non-VSN02 Male 45 14 Hemorrhagic F, BG

Non-VSN03 Male 53 15 Ischemic F, T, P, BG, CR

Non-VSN04 Male 38 19 Ischemic BG

Non-VSN05 Male 69 14 Ischemic F, P, BG

Non-VSN06 Male 53 8 Ischemic BG

Non-VSN07 Male 43 26 Hemorrhagic F, T, P, BG

Non-VSN08 Female 63 41 Ischemic BG, CR

Non-VSN09 Male 65 20 Ischemic F, T, P, CR

Non-VSN10 Female 69 22 Ischemic F, T, P, BG

Non-VSN11 Male 58 27 Ischemic BG

Non-VSN12 Male 72 20 Ischemic BG, CR

Non-VSN13 Male 63 32 Hemorrhagic F, P, BG

Non-VSN14 Female 66 10 Ischemic BG

Non-VSN15 Female 68 15 Ischemic T, P, BG, CS

Non-VSN16 Male 68 21 Ischemic F, P, BG

Non-VSN17 Male 62 20 Ischemic F, P

Non-VSN18 Male 57 18 Hemorrhagic F, T, P, BG

BG, Basal ganglia; CR, Corona radiata; CS, Centrum semiovale; F, Frontal lobe; T, Temporal lobe; P, Parietal lobe.

power of spectral density (PSD, µV2/Hz) using fast Fourier
transform (FFT) was carried out for four frequency bands:
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–
30 Hz).

Resting-state electroencephalography
parameters
Delta/alpha ratio

The DAR was defined as the ratio between the mean delta
power and mean alpha power. For every channel c, the power
of the delta and alpha (f = 1,. . .,4 Hz and f = 8,. . .,12 Hz,

respectively) was determined as the mean of the spectral
power [Pc(f)]over this range. The DAR was computed as

DARc =
〈Pc

(
f
)
〉f=1,...,4Hz

〈Pc
(
f
)
f=8,...,12Hz

The ratios were averaged over all N EEG channels yielding
the global DAR as:

DAR =
1
N

N∑
c=1

DARc
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TABLE 2 Patients’ demographic and clinical characteristics.

VSN (n = 26) Non-VSN (n = 18) HC (n = 18) p

Gender(female/male) 9/17 4/14 5/13 0.666

Age(M ± SD) 59.88±11.40 60.33±10.35 54.72±9.10 0.197

Type of stroke (ischemic/hemorrhagic) 22/4 14/4 – 0.857

Lesion location (cortical/cortico-subcortical/subcortical) 1/21/4 1/10/7 – 0.185

Poststroke time(M± SD; Day) 21.15±9.04 20.17±7.85 – 0.709

BI 34.23±15.28 53.06±19.41 – 0.001

FMA 30.27±18.84 50.11±16.47 – 0.004

BBS 8.19±8.20 16.39±13.55 – 0.016

In addition, the DAR was calculated over the affected
hemisphere (DARAH) and the unaffected hemisphere (DARUH),
excluding the electrodes covering the midline.

Pairwise-derived brain symmetry index

The pdBSI was defined as the absolute pairwise normalized
difference in spectral power between the homologous channels
CL and CR for the left and right hemispheres, excluding the
electrodes covering the midline. The difference was averaged
over a range of 1–25 Hz, according to

BSICP = 〈

∣∣∣∣∣PCR

(
f
)
− PCL

(
f
)

PCR

(
f
)
+ PCL

(
f
) ∣∣∣∣∣〉f = 1, . . . , 25Hz

These values were averaged over all channel pairs (cp):

BSI =
2
N

N/2∑
CP=1

BSICP

The pdBSI estimated the global asymmetry along with
homologous channel pairs, ranging from 0 to 1, with 0 defined
as the maximal symmetry. In addition, the BSI values of each
frequency band and of the alpha frequency band of the parieto-
occipital region (Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3,
PO4, PO5, PO6, PO7, PO8, Oz, O1, O2) were also calculated.

Statistical analysis

All statistical analyses were performed using IBM SPSS
Statistics V22.0 (IBM Corp, Armonk, NY, United States).
The distribution of data was tested for normality using the
Kolmogorov–Smirnov test. Categorical data were analyzed
using the chi-squared test. One-way ANOVA with post hoc
testing using Bonferroni’s test was used to test the differences
among the three groups (VSN, non-VSN, and HC). Differences
between the VSN and non-VSN groups were compared using
an independent sample t-test. Pearson correlation analysis
was performed to investigate the relationship between rsEEG
parameters and patient characteristics. In addition, EEG
parameters that showed a significant difference among groups
were analyzed using receiver operating characteristic (ROC)

curve analysis. The sensitivity/specificity cut-off values, positive
predictive value (PPV), and negative predictive value (NPV)
were determined using Youden’s index.

Results

Demographic information and
descriptive data

The relevant demographic and clinical characteristics of the
three groups were shown in Table 2. There were no significant
differences in age or sex among the three groups. No significant
difference was found in the type of stroke or time since stroke
onset between VSN and non-VSN subjects. The BI, FMA, and
BBS scores of the VSN patients were significantly lower than
those of the non-VSN patients.

According to the Pearson correlation analysis results, LBE
scores were significantly correlated with BBS scores (r = –0.605,
P = 0.001) but not with BI or FMA scores in patients with VSN.
Scatter plots showing the relationship between LBE and BBS are
presented in Figure 1.

Electroencephalography parameters

Delta/alpha ratio
The ANOVA results shown in Figure 2 indicated that

there were significant differences in the DAR among the
three groups. DAR values were higher in patients with
VSN compared with both patients without VSN and
HCs (F = 28.348, P < 0.001; VSN vs HC: P < 0.001;
VSN vs Non-VSN: P < 0.001). Patients with non-
VSN had a higher DAR than HCs (P = 0.048). Patients
with VSN had higher DARAH and DARUH values than
non-VSN patients.

For the DAR, a trend toward a negative association with BBS
was found in patients with VSN, as were DARAH and DARUH

(see Figure 3; DAR: r = –0.522, P = 0.006; DARAH: r = –
0.521, P = 0.006; DARUH: r = –0.494, P = 0.01). In patients
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FIGURE 1

Correlation between LBE and BBS.

with VSN, no significant correlation was found between the
DAR, DARAH, DARUH, BI, or FMA. In patients without VSN,
no significant correlation was found between the DAR and
BI, FMA, or BBS.

Pairwise-derived brain symmetry index
As shown in Figure 4, pdBSI values were significantly

elevated in both non-VSN and VSN patients compared
with healthy subjects (F = 16.822, P < 0.001; VSN vs
HC: P < 0.001; Non-VSN vs HC: P < 0.001). These
differences were most pronounced in the delta and theta
bands. We found no significant difference in pdBSI
values between patients with and without VSN. However,
there were significant differences in pdBSIdelta and
parieto-occipital pdBSIalpha between patients with and
without VSN patients.

As shown in Figure 5, pdBSI showed a trend toward a
negative association with FMA in stroke patients (r = –0.508,
P < 0.001), mainly in the delta and theta frequency bands. No
correlation was found between pdBSI and BI or BBS in both
VSN and non-VSN patients.

Topographic plots
We found increased delta and theta power and decreased

alpha and beta power of the EEG in VSN subjects. Regarding
delta power, significant abnormalities were found in the right
frontal, parietal and temporal areas in VSN patients compared
to HCs, but they were located only in the right parietal
areas compared to non-VSN patients. For theta power, the
significantly abnormal brain regions in patients with VSN were
mainly the frontal and parietal areas compared to non-VSN
patients. For alpha power, significant abnormalities were found
in the frontal, parietal, and occipital regions of patients with
VSN compared with HCs, but they were located only in the
right parietal and occipital areas compared with non-VSN
patients. The topographic plots of the delta, theta, alpha, and
beta frequency bands of the groups are shown in Figure 6.

Association between
electroencephalography parameters
and symptom of visuospatial neglect

The DAR showed a trend toward a positive association with
LBE (r = 0.458, P = 0.019). Furthermore, the DARAH showed
a positive correlation with LBE (r = 0.483, P = 0.012) and ORS
(r = 0.428, P = 0.029; see Figure 7). No correlation was found
between the DAR and ORL. Parieto-occipital pdBSIalpha showed
a trend toward a positive association with the LBE (r = 0.442,
P = 0.024), but no correlation was found with the ORL or ORS
(see Figure 8). There was no significant correlation between the
pdBSI in the other frequency bands and the paper-pencil test.

Receiver operating characteristic
analysis for diagnostic discrimination

The area under the ROC curve (AUC), cutoff value,
sensitivity, specificity, PPV, and NPV of each EEG parameter

FIGURE 2

DAR values for each group. (A) DAR values between three groups. (B) DARAH values between Non-VSN and VSN. (C) DARUH values between
Non-VSN and VSN.∗p < 0.05; ∗∗∗p < 0.001.
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FIGURE 3

Signifcant correlations between DAR values and BBS. (A) Correlation between DAR and BBS. (B) Correlation between DARAH and BBS.
(C) Correlation between DARUH and BBS.

FIGURE 4

pdBSI values for each group. (A) pdBSI values between three groups. (B) pdBSIdelta values between three groups. (C) Parieto-occipital
pdBSIalpha values between Non-VSN and VSN.∗p < 0.05; ∗∗∗p < 0.001.

FIGURE 5

Correlation between LBE and BBS.

for differentiating between non-VSN patients and HCs were
shown in Table 3. The results of ROC analyses showed that
the DAR (AUC = 0.870, cut off = 1.778, P < 0.001), pdBSI
(AUC = 0.867, cut off = 0.118, P < 0.001) and pdBSIdelta

(AUC = 0.728, cut off = 0.201, P = 0.02) could discriminate
non-VSN patients and HCs. The sensitivity of the pdBSI was the
highest (0.90); however, the specificity was much lower (0.63).
The specificity of the DAR was the highest (0.99), while the
sensitivity was 0.71.

As shown in Table 4, the ROC analysis indicated that
the DAR (AUC = 0.803, cut off = 3.472, P = 0.001), DARAH

(AUC = 0.865, cut off = 3.112, P < 0.001), and DARUH

(AUC = 0.731, cut off = 3.141, P = 0.01) could discriminate
between patients with and without VSN. The pdBSIdelta and
parieto-occipital pdBSIalpha had poor diagnostic ability. The
sensitivity of DARAH was 0.85, and the specificity was 0.78.
The specificities of DAR and DARUH were high (0.94 and 0.99,
respectively); however, the sensitivities were generally much
lower (0.62 and 0.58, respectively).

Discussion

In this study, we analyzed the resting-state EEG of
three groups (patients with VSN, patients without VSN, and
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FIGURE 6

Topographic plots of the delta (A), theta (B), alpha (C), and beta (D) frequency bands in three groups.

HCs) using spectral analysis. We found that patients with
VSN performed poorly compared with those without VSN.
Resting-state EEG has high temporal resolution, sensitivity,
and specificity for evaluating the severity of VSN. Spectral

analysis of the rsEEG revealed increased DAR, DARAH, DARUH

and parieto-occipital pdBSIalpha in stroke patients with VSN,
and these parameters measure the severity of VSN and are
reliable markers of VSN after stroke. The DARAH was shown
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FIGURE 7

Significant correlations between DAR values and paper-pencil test. (A) Correlation between DAR and BBS. (B) Correlation between DARAH and
BBS. (C) Correlation between DARUH and BBS.

to be highly sensitive to VSN and showed a good ability to
discriminate poststroke patients with VSN. It has the potential
to assist in the identification of VSN after stroke and is useful for
clinical rehabilitation.

VSN has profound implications for quality of life after
stroke; however, there is a lack of consensus regarding
the screening and diagnosis of this syndrome due to the
heterogeneity of its clinical manifestations. In routine stroke
unit assessment, VSN was greatly underdiagnosed with a missed
diagnosis rate of up to 56% (Puig-Pijoan et al., 2018). The
line bisection task, line cancellation task, and star cancellation
task were shown to be more sensitive tests for diagnosing VSN
(Azouvi et al., 2006). However, these paper-and-pencil tests
have some limitations. When ceiling and floor effects cause the
scale to not truly reflect the severity of VSN, the recording of
patients’ electrical brain activity may be more sensitive. Because
many stroke patients cannot complete task-state EEG owing to
factors such as reduced cognitive level and fatigue, resting-state
EEG is more suitable for VSN patients after stroke. Previous
studies in healthy participants and stroke patients have shown

FIGURE 8

Correlation between parieto-occipital pdBSIalpha and LBE.

that quantitative parameters of resting-state brain activity, such
as the spectral power of different bands, are intra-individually
stable in repeated measurements (Dalton et al., 2021; Duan et al.,
2021). The characterization of resting-state brain activity is a
reliable biomarker that may aid in clinical decision-making and
treatment selection (Saes et al., 2019; Sebastian-Romagosa et al.,
2020). In the current study, we explored whether spontaneous
brain activity could be used as a diagnostic and assessment tool
in poststroke patients with VSN.

Higher delta and theta activity in the right fronto-parietal
region and lower alpha activity in the right parieto-occipital
region were found in patients with VSN. Compared with HCs,
DAR values were higher in both VSN and non-VSN patients;
most importantly, they were significantly higher in VSN patients
than in non-VSN patients. Furthermore, the DAR and DARAH

were positively correlated with the paper-pencil test scale. This
reveals that the DAR contains unique information regarding
visuospatial neglect impairments. Excessive delta power after
stroke is associated with cognitive function. Delta frequencies
may reflect alertness modulation involving the corticothalamic
and corticocortical neural circuits (Rabiller et al., 2015). Alpha
oscillations are considered markers of vigilance, attention,
cognitive processing, and cortical communication in both
healthy individuals and patients (Sadaghiani and Kleinschmidt,
2016; Clayton et al., 2018). Resting EEG studies of healthy
people found that alpha power in the right hemisphere was
greater than that in the left hemisphere (Cicek et al., 2003).
This greater right hemisphere EEG alpha activity may explain
the prominent role of the right hemisphere in attention. In
stroke patients with VSN, however, we found a reduction
in alpha power in the right parieto-occipital region. This
suggests that alpha neural oscillations may underlie the
electrophysiological underpinnings of widespread attentional
network connectivity in both hemispheres. VSN was initially
thought to be a parietal syndrome; however, an increasing
number of functional magnetic resonance imaging and EEG
studies have confirmed that VSN is a disturbance in the
attention network (Corbetta and Shulman, 2011; Ros et al.,
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TABLE 3 Results from receiver operating characteristic (ROC) analysis to distinguish non-VSN from HC.

EEG measure AUC [95% CI] Cutoff value Sensitivity Specificity PPV (%) NPV (%)

DAR 0.870 [0.753, 0.987] 1.778 0.63 0.99 98.44 72.90

pdBSI 0.867 [0.751, 0.983] 0.118 0.90 0.71 75.27 87.05

pdBSIdelta 0.728 [0.562, 0.893] 0.201 0.53 0.88 81.68 65.04

AUC, area under the receiver operating curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

TABLE 4 Results from receiver operating characteristic (ROC) analysis to distinguish VSN from non-VSN.

EEG measure AUC [95% CI] Cutoff value Sensitivity Specificity PPV (%) NPV (%)

DAR 0.803 [0.674, 0.933] 3.472 0.62 0.94 91.65 71.03

DARAH 0.865 [0.760, 0.971] 3.112 0.85 0.78 79.21 83.48

DARUH 0.731 [0.581, 0.880] 3.141 0.58 0.99 98.29 70.06

pdBSIdelta 0.688 [0.530, 0.846] 0.252 0.62 0.78 73.48 66.90

parieto-occipital pdBSIalpha 0.658 [0.495, 0.821] 0.212 0.81 0.50 61.77 72.25

AUC, area under the receiver operating curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

2022). The parietal lobe, particularly the posterior parietal cortex
(PPC), is a critical component of the attentional network. The
bilateral parietal lobes compete to mediate direct attention to
the contralateral space. The posterior rsEEG alpha in healthy
individuals was associated with LBT performance (Cicek et al.,
2003). Task EEG studies in healthy humans have shown a
relative reduction in alpha-band activity in the parieto-occipital
hemisphere contralateral to the direction of spatial attention,
possibly reflecting enhanced cortical excitability (Banerjee et al.,
2011). In contrast, patients with VSN show pathologically
enhanced alpha oscillations during both baseline fixation and
cue orientation when completing a spatial orientation task
(Lasaponara et al., 2019). This pathological enhancement was
significantly associated with the severity of VSN and damage
to white matter fiber tracts. Transcranial magnetic stimulation,
inhibits cortical activity in the right PPC, disrupts attentional
processes, affects visuospatial attention, and induces transient
spatial neglect-like symptoms in healthy adults (Fierro et al.,
2000; Mariner et al., 2021). Moreover, multiple studies have
demonstrated that transcranial magnetic stimulation of the
PPC can effectively improve the symptoms of patients with
VSN after stroke (Salazar et al., 2018; Ye et al., 2021).
Therefore, alpha oscillations in the parietal cortex are a reliable
biomarker of visuospatial neglect after stroke and may be useful
for rehabilitation interventions involving non-invasive brain
stimulation and EEG-based neurofeedback.

Not only did DAR values increase in the affected hemisphere
after stroke compared to healthy individuals, but DAR values
also increased in the unaffected hemisphere. Although structural
damage from stroke is focal, remote dysfunction may occur in
areas of the brain that are distant from the damaged area (Siegel
et al., 2016). This view of distributed brain network connectivity
disturbances provides new insights into the recovery from
post-stroke dysfunction. The bimodal balance recovery theory

suggests that the recovery of dysfunction in some stroke patients
may be related to the contralateral hemisphere (Di Pino et al.,
2014), and this has been confirmed in patients with visuospatial
neglect (Cao et al., 2016). In fact, the DARAH was higher
than the DARUH in some patients with VSN, and the opposite
was observed in other patients in our study. Whether this
inconsistency is related to the patient’s recovery pattern is
unclear and further research is warranted.

Analyses of the pdBSI index indicated no significant
hemispheric asymmetry in healthy participants. In contrast,
patients with damage to the right hemisphere showed
significantly increased low-frequency oscillations in the lesional
hemisphere. Our results showed that patients with subacute
right hemisphere stroke had significantly higher pdBSI values
than healthy subjects. Higher BSI values reflect a greater
power asymmetry in the hemispheres. This finding is consistent
with those of other studies (Sheorajpanday et al., 2011).
However, we found no significant difference in pdBSI values
between patients with and without VSN. Indeed, previous
studies have found that pdBSI is significantly associated
with infarct volume after controlling for various confounding
factors (Sheorajpanday et al., 2011). The interhemispheric
asymmetry represented by pdBSI persisted during the chronic
phase of stroke (Saes et al., 2019). In healthy individuals,
the bilateral hemispheres competitively inhibit each other to
achieve balance, but this balance is broken after a stroke. The
inhibitory effect of the contralateral hemisphere on the affected
hemisphere was higher, which results in interhemispheric
asymmetry. Interhemispheric asymmetry can affect recovery
from dysfunction. Our study found that higher pdBSI values,
mainly pdBSIdelta and pdBSItheta, but not DAR, were associated
with lower FMA in patients with stroke with or without VSN,
which is consistent with the results of some studies (Saes
et al., 2019). However, other studies have come to the opposite
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conclusion that compared with differences between cerebral
hemispheres, DAR values can be more sensitive in assessing
the severity of dyskinesia in stroke patients (Brito et al., 2021).
The low number of EEG channels (nine scalp electrodes) used
in the study by Brito et al. may have contributed to these
inconsistent results. The slower delta and theta frequencies are
thought to be generated by cortical layers II-VI. Low-frequency
cortical activity may reflect the integrity of the cortical-cortical
network connectivity. Previous studies also found that higher
BSItheta values were significantly negatively correlated with
upper extremity motor function 6 months after stroke (Saes
et al., 2020, 2021). Therefore, low-frequency oscillations may
reflect both injury and recovery after stroke and may be a reliable
biomarker for stroke rehabilitation (Cassidy et al., 2020). Our
study found that visuospatial neglect following stroke affects the
EEG alpha rhythm, mainly in the right parietal and occipital
areas. This resulted in marked asymmetry of the alpha band
in the parietal and occipital regions, which was significantly
associated with neglect severity. These results showed that
interhemispheric asymmetry in the alpha band of the parieto-
occipital region can provide a measure of the severity of neglect.

Thus, rsEEG may be a useful tool for identifying patients
with VSN after stroke. In the present study, we found that
the use of the DARAH to distinguish between patients with
VSN and non-VSN patients was more than 80% sensitive and
70% specific. Therefore, DARAH is a promising marker for the
diagnosis of VSN after stroke. This finding is important for
the early diagnosis of VSN after stroke. In distinguishing non-
VSN patients from healthy individuals, DAR is an indicator
with high specificity and low sensitivity, while pdBSI is an
indicator with high sensitivity and low specificity. MRI is
contraindicated in some patients and expensive. In contrast,
EEG may allow an inexpensive, reliable bedside evaluation
with practically no contraindications. Due to the advantages
of EEG, there have been many studies on EEG-assisted
diagnosis of acute stroke (Erani et al., 2020; van Meenen
et al., 2021). The low sensitivity of the DAR in this study
was inconsistent with that of previous studies. Studies have
found that a DAR of 3.7 has 100% sensitivity and 100%
specificity in distinguishing acute ischemic stroke from healthy
individuals (Finnigan et al., 2016). This study collected patients
in the acute phase, while our study collected patients in
the subacute phase. The spectral signature of rsEEG changes
over time, especially in the delta frequency band. Differences
in EEG acquisition time and processing methods may have
contributed to the differences in the studies. Therefore, to
facilitate the use of rsEEG for stroke diagnosis, standardized
EEG acquisition and processing procedures are required. In
addition to this, larger sample size and other methods, such as
coherence, should also be used to assess the accuracy of rsEEG
aids in diagnosis.

Some studies found that VSN patients were more dependent
on ADL than non-VSN patients (Bosma et al., 2020), a finding

that is consistent with our results. VSN can disrupt a patient’s
balance and affect motor function recovery. Compared with the
line bisection and star cancellation tasks, no correlation was
found between the line cancellation task and the resting-state
EEG parameters. This may be because the line cancellation task
contained only 30 line segments, and the calculated omission
rate was not as sensitive as that of the line bisection task or star
cancellation task.

The current study had several limitations. First, the sample
size of the current study is insufficient, which weakens the
influence of the article; however, we will conduct further studies
with a larger sample size to confirm the feasibility of the research
conclusions. Second, we only assessed patients at admission
and did not follow up with these patients. Although our study
demonstrated that resting-state EEG may be a useful tool
for identifying potential VSN after stroke, EEG parameters
can also reflect the severity of VSN after stroke. However,
over time, the spectral features show a gradual normalization.
Studies have found that the DAR value of patients with chronic
stroke is not different from that of healthy people. We do
not know whether rsEEG remains a useful assessment tool
for VSN after spontaneous recovery in patients with VSN.
A longitudinal assessment of patients with stroke was not
performed, and the relationship between EEG parameters and
VSN could not be clearly defined. Future studies should expand
the single time point to multiple time points to verify our
conclusions further. Third, stroke was divided into acute,
subacute, and chronic phases, but this study only included
patients in the subacute phase; therefore, further research is
needed to perform subgroup analysis on acute and chronic
phase patients. Fourth, due to lack of MRI data, this study
only corrected for lesion location without calculating lesion
volume. However, it did not calculate the lesion area in
stroke patients.

Conclusion

To the best of our knowledge, this is the first study on
VSN resting-state EEG spectral analysis after stroke. Overall, our
EEG results are consistent with those of previous EEG studies
and provide new evidence for rsEEG features of visuospatial
neglect after stroke. The rsEEG cortical asymmetry and the
DAR were increased in patients with visuospatial neglect after
stroke. Higher asymmetry in the parieto-occipital region of the
alpha band and higher DAR values are associated with more
severe visuospatial neglect. Furthermore, our study showed
that resting-state DARAH can accurately differentiate between
patients with and without VSN after stroke. This implies that
rsEEG could be used for the auxiliary diagnosis of VSN after
stroke, and the DAR and pdBSI alpha in resting EEG may be
useful biomarkers of visuospatial neglect after stroke.
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Feature extraction is a key task in the processing of surface electromyography

(SEMG) signals. Currently, most of the approaches tend to extract features

with deep learning methods, and show great performance. And with the

development of deep learning, in which supervised learning is limited by

the excessive expense incurred due to the reliance on labels. Therefore,

unsupervised methods are gaining more and more attention. In this study,

to better understand the different attribute information in the signal data,

we propose an information-based method to learn disentangled feature

representation of SEMG signals in an unsupervised manner, named Layer-

wise Feature Extraction Algorithm (LFEA). Furthermore, due to the difference

in the level of attribute abstraction, we specifically designed the layer-wise

network structure. In TC score and MIG metric, our method shows the best

performance in disentanglement, which is 6.2 lower and 0.11 higher than the

second place, respectively. And LFEA also get at least 5.8% accuracy lead

than other models in classifying motions. All experiments demonstrate the

effectiveness of LEFA.

KEYWORDS

information theory, feature extraction, unsupervised learning, information
bottleneck, disentangled representation, surface electromyography

Introduction

Feature engineering is an important component of pattern recognition and signal
processing. Learning good representations from observed data can help reveal the
underlying structures. In recent decades, feature extraction methods (He et al., 2016;
Howard et al., 2017; Hassani and Khasahmadi, 2020; Zbontar et al., 2021) have
drawn considerable attention. Due to the high cost of obtaining labels, supervised
learning methods suffer from data volume limitations. Unsupervised learning methods

Frontiers in Neuroscience 01 frontiersin.org

85

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.975131
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.975131&domain=pdf&date_stamp=2022-08-16
https://doi.org/10.3389/fnins.2022.975131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.975131/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-975131 August 16, 2022 Time: 9:28 # 2

Li et al. 10.3389/fnins.2022.975131

therefore becomes critical for feature extraction. Most of
these are based on probabilistic models, such as maximum
likelihood estimation (Myung, 2003), maximum a posteriori
probability estimation (Richard and Lippmann, 1991), and
mutual information (MI) (Thomas and Joy, 2006). Methods
such as principal component analysis (PCA) (Abdi and
Williams, 2010), linear discriminant analysis (Izenman, 2013),
isometric feature mapping (Tenenbaum et al., 2000), and
Laplacian eigenmaps (Belkin and Niyogi, 2003) are widely used
owing to their good performance, high efficiency, flexibility, and
simplicity. Other algorithms are based on reconstruction errors
or generative criteria, such as autoencoders (Bengio et al., 2013)
and generative adversarial networks (GANs) (Goodfellow et al.,
2014). Occasionally, the reconstruction error criterion also has a
probabilistic interpretation.

In recent years, deep learning has become a dominant
method of representation learning, particularly in the
supervised case. A neural network simulates the mechanism
of hierarchical information processing in the brain and is
optimized using the back propagation (BP) algorithm (LeCun
et al., 1988). Because several feature engineering tasks are
unsupervised, that is, no label information is available in
the real situation and collecting considerable labeled data is
expensive, methods to discover the feature representation in
an unsupervised case have been significantly developed in
recent years. MI maximization (Bell and Sejnowski, 1995)
and minimization criteria (Matsuda and Yamaguchi, 2003)
are powerful tools for capturing salient features of data
and disentangling these features. In particular, variational
autoencoder (VAE) (Kingma and Welling, 2013) based models
and GAN have exhibited effective applications in disentangled
representations. There are two benefits of learning disentangled
representations. First, models with disentangled representations
are more explainable (Bengio et al., 2013; Liu et al., 2021).
Second, disentangled representations make it easier and more
efficient to manipulate training-data synthesis. However, the
backpropagation algorithm still requires a high amount of
computation and data.

To extract features information in SEMG signal data, we
propose a Layer-wise Feature Extraction Algorithm (LFEA)
based on information theory in the unsupervised case, which
includes a hierarchical structure to capture disentangled
features. In each layer, we split the feature into two
independent blocks, and ensure the information separation
between the blocks via information constraint, which we
called Information Separation Module (ISM). Moreover, to
ensure the expressiveness of the representation without losing
crucial information, we propose the Information Representation
Module (IRM) to enable the learned representation to
reconstruct the original signal data. Meanwhile, redundant
information would affect the quality of the representation
and thus degrade the effectiveness of downstream tasks, for
which Information Compression Module (ICM) is proposed

to reduce the redundant and noisy information. In terms of
the optimization algorithm, our back-propagation process is
only performed in a single layer and not back propagated
throughout the network, which can greatly reduce the
amount of computation while having no effect on the
effectiveness of our method. Regarding the experiments, we
have made improvement and strengths in terms of motion
classification and representation disentanglement over the
traditional methods of surface electromyography (SEMG).
Especially, on NinaPro database 2 (DB2) dataset, our approach
gets a significant 4% improvement in the motion classification,
and better model stability.

This manuscript is organized as follows. In Section 2, we
introduce the related work. The proposed method LFEA is
described in Section 3. We present the numerical results in
Section 4. Section 5 gives the conclusion of this manuscript.

Related work

Disentangled representation

The disentanglement problem has played a significant
role, particularly because of its better interpretability and
controllability. The VAE variants construct representations in
which each dimension is independent and corresponds to
a dedicated attribute. β-VAE (Higgins et al., 2016) adds a
hyperparameter to control the trade-off between compression
and expression. An analysis of β-VAE by Burgess et al. (2018)
is provided, and the capacity term is proposed to obtain
a better balance of the reconstruction error. Penalizing the
total correlation term to reinforce the independence among
representation dimensions was proposed in Factor VAE (Kim
and Mnih, 2018) and β-TCVAE (Chen et al., 2018). FHVAE
(Hsu et al., 2017) and DSVAE (Yingzhen and Mandt, 2018)
constructed a new model architecture and factorized the
latent variables into static and dynamic parts. Cheng et al.
(2020b) described a GAN model using MI. Similar to our
study, Gonzalez-Garcia et al. (2018) proposed a model to
disentangle the attributes of paired data into shared and
exclusive representations.

Information theory

Shannon’s MI theory (Shannon, 2001) is a powerful tool
for characterizing good representation. However, one major
problem encountered in the practical application of information
theory is computational difficulties in high-dimensional spaces.
Numerous feasible computation methods have been proposed,
such as Monte Carlo sampling, population coding, and
the mutual information neural estimator (Belghazi et al.,
2018). In addition, the information bottleneck (IB) principle
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(Tishby et al., 2000; Tishby and Zaslavsky, 2015; Shwartz-Ziv
and Tishby, 2017; Jeon et al., 2021) learns an informative
latent representation of target attributes. A variational model to
make IB computation easier was introduced in variational IB
(Alemi et al., 2016). A stair disentanglement net was proposed
to capture attributes in respective aligned hidden spaces and
extend the IB principle to learn a compact representation.

Surface electromyography signal
feature extraction

With the development of SEMG signal acquisition
technology, the analysis and identification of SEMG signals has
also drawn the attention of researchers.

As machine learning has demonstrated excellent feature
extraction capabilities in areas such as images and speech, it
can also be a good solution for recognizing SEMG signals.
The basic motivation was to construct and simulate neural
networks for human brain analysis and learning. Deep neural
networks can extract the features of SEMG signals while
effectively avoiding the absence of valid information in the
signal and improving the accuracy of recognition. Xing et al.
(2018) used a parallel architecture model with five convolutional
neural networks to extract and classify SEMG signals. Atzori
et al. (2016) used a convolutional network to classify an
average of 50 hand movements from 67 intact subjects and 11
transradial amputees, achieving a better recognition accuracy
than traditional machine learning methods. Zhai et al. (2017)
proposed a self-calibrating classifier. This can automatically
calibrate the original classifier. The calibrated classifier also
obtains a higher accuracy than the uncalibrated classifier. In
addition, He et al. (2018) incorporated a long short-term
memory network (Hochreiter and Schmidhuber, 1997) into
a multilayer perceptron and achieved better classification of
SEMG signals in the NinaPro DB1 dataset.

As stated, deep learning methods can help overcome
the limitations of traditional methods and lead to better
performance of SEMG. Furthermore, deep-learning methods
can provide an extensive choice of models to satisfy different
conditional requirements.

Method

Preliminary

Information theory is commonly used to describe stochastic
systems. Among the dependency measurements, mutual
information (MI) was used to measure the correlation between

random variables or factors. Given two random variables X and
Z, the MI is defined as follows:

I (X;Z) = Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
(1)

Regarding the data processing flow as a Markov chain
X→ Z→ Y , the information bottleneck (IB) principle desires
that the useful information in the input X can pass through
the ‘bottleneck’ while the noise and irrelevant information are
filtered out. The IB principle is expressed as follow:

min RIB = I (X;Z)− βI(Z;Y) (2)

where, β is the tradeoff parameter between the complexity of the
representation and the amount of relevant essential information.

Framework

The diagram of our proposed Layer-wise Feature Extraction
Algorithm (LFEA) is illustrated in Figure 1. Our algorithm aims
to learn a representation that satisfies three main properties:
“Compression,” “Expression” and “Disentanglement.” To this
end, three key information process modules are introduced,
including the information compression module (ICM),
information expression module (IEM), and information
separation module (ISM) in each layer.

In the ICM, input si−1 of layer i is compressed into hi (s0
=

X). In the IEM, zi as part of hi is constrained to represent the
original input X. In the ISM section, si and zi are irrelevant. The
parameters of the ICM and IEM in layer i are denoted as φi and
θi. The data information flow can be expressed as follows:

hi
∼ qφi

(
hi
|si−1) , (3)

hi
=
(
zi, si) , (4)

X̃ ∼ pθi
(
X̃|zi) , (5)

where, s0
= X, and qφi and pθi are the condition distributions

with φi and θi for hi and X̃. In following sections, we describe
these three modules in detail.

Information compression module

According to (3), hi is the hidden representation of si−1. To
ensure information ‘compression,’ the optimal representation of
si−1 should forget redundant information altogether, that is, hi

represents si−1 with the lowest bits. Formally, the objective in
the i-th layer to be minimized is as follows:

minLICM ,Iφi
(
Si−1
;Hi) (6)
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FIGURE 1

The diagram of Layer-wise Feature Extraction Algorithm (LFEA). LEFA contains three core modules: Information Compression Module (ICM),
Information Expression Module (IEM) and Information Separation Module (ISM), to ensure compression, expression and disentanglement of
representation, respectively.

Due to intractability of mutual information, optimizing
LICM with gradient methods directly is not feasible. We therefore
derived the upper bound of LICM with the variational inference
method and get decomposition as follows:

Iφi
(
Si−1
;Hi)

= Eq
φi(si−1,hi)

[
log

qφi
(
hi
|si−1) p

(
h
)

qφi(hi)p
(
h
) ]

= Lupper
ICM − DKL

(
qφi

(
hi)
||p
(
h
))

, (7)

where, p
(
h
)

is the prior, and Lupper
ICM is the upper bound of LICM

defined as follows:

Lupper
ICM = Eq

φi(si−1)
[
DKL

(
qφi

(
hi
|si−1)

||p
(
h
))]

,

DKL (P, Q) = EP

[
log

p
q

]
. (8)

Information expression module

With the ICM guaranteeing the information compression,
LFEA also need to ensure the expressiveness of the
representation to the data. We therefore propose the
information expression module (IEM). To ensure sufficient
information to reconstruct the original data X, we maximize the
MI between and Zi in i-th layer, that is,

maxLIEM ,Iφi,θi
(
zi;X

)
(9)

For LIEM , we can obtain a lower bound using the variational
approximation method as follows:

LIEM ≥ Llower
IEM − DKL

(
p (x) ||pθi(x)

)
, (10)

where, pθi(x)

Llower
IEM = Ep(x)

[
Eq

φi(zi|x) log pθi(x|zi)
]

(11)

can be viewed as the reconstruction loss.

Information separation module

To achieve disentanglement of representations
(Independent of each block z1, z2, . . . , zn in Z), we further
introduce the information separation module (ISM) in each
layer. In i-th layer, the principle of ISM is to ensure that there is
no intersection information between zi and si, that is,

maxLISM ,Iφi
(
zi; si

)
= DKL

(
qφi(hi)||qφi(zi)qφi(si)

)
. (12)

In practice, the products of qφi(zi) and qφi(si) are not
analytical in nature. We introduce discriminator D̂(.) (see
Figure 2) to distinguish samples from the joint distribution and
the product of the marginal distribution, that is,

LISM ≈ Le
IEM = Eq

φi(hi)[log
D(.)

1− D(.)
]. (13)
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FIGURE 2

Discriminator D(.). To compute and optimize LISM, we need an additional discriminator as shown in Eq. (13).

FIGURE 3

Movements in NinaPro DB2. (A) Isometric, isotomic hand configurations. (B) Basic movements of the wrist. (C) Grasps and functional
movements. (D) Single and multiple fingers force measurement patterns. (E) Rest position. Available from: http://ninapro.hevs.ch/node/123.

TABLE 1 Subject attribute information of NinaPro DB2 dataset.

Subject Hand Laterality Gender Age Height (cm) Weight (kg)

1 Intact Right Handed Male 29 187 75

2 Intact Right Handed Male 29 183 75

3 Intact Right Handed Male 31 174 69

4 Intact Left Handed Female 30 154 50

5 Intact Right Handed Male 25 175 70
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FIGURE 4

Sample data image.

TABLE 2 Detail parameters for LFEA.

Parameter Value

Number of layers 4

Size of zi 5

λ 0.1

β 0.2

TABLE 3 Results of TC score.

Method TC score MIG

LFEA (Ours) 12.3 0.72

VAE 23.6 0.54

β-VAE 25.8 0.61

PCA 18.5 0.49

We compare our method the classic methods including VAE, β-VAE and PCA. Our
HFEA method is much better than others. The bold indicates the best results.

Algorithm optimization

As presented above, our model contains three modules:
ICM, IEM, and ISM. However, during optimization, the
back-propagation algorithm is computationally intensive and
potentially problematic when training deep networks, so we
propose a layer-wise training step. After training one layer of
the network, we fix the parameters of the trained layers and only
train the next layer in the next step. Finally, we can obtain the
final model after training all the layers. Such optimization design
allows for training parameters at the bottom layers without bac-
propagation from the top layers, avoiding the problems that
often occur with deep network optimization, like vanishing and
exploding gradient.

Numerical results

Dataset

In our experiments, we used the NinaPro∗ DB2 dataset
and DB5 dataset. Atzori et al. (2014), Gijsberts et al.
(2014) as the benchmark to perform numerical comparisons.
NinaPro is a standard dataset for the gesture recognition
of sparse multichannel SEMG signals. The SEMG signals in
DB2 were obtained from 40 subjects and included 49 types
of hand movements (see Figure 3).

Detailed attribute information of the five subjects in
NinaPro DB2 is shown in Table 1. The original SEMG signal was
processed through sliding windows, and the size of the sample
data used in the experiment was (200,12). Figure 4 shows 20
processed data points.

DB1 consists of 11 subjects and the data set of each subject
contains three types of gestures, which are Exercise A, Exercise
B, and Exercise C. Exercise A includes 12 basic movements
of fingers (see Figure 5). Exercise B includes 17 movements.
Exercise C includes 23 grasping and functional movements.

We preprocessed the dataset with the digital filter to cutoff
frequency and sliding window to split signal, which follows He
et al. (2018).

Model setting

In the following experiments, we used four layers model.
The loss function is as follows:

min L ,Lupper
ICM −λLlower

IEM +βLISM,
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FIGURE 5

12 basic movements signal of fingers in Exercise A.

FIGURE 6

Feature distribution in layer 1–4 with (A–D).

Detail parameters are listed in Table 2.

Results

First, we used total correlation (TC) as the
quantitative metric for the quality of the disentanglement
of the representation. TC is defined as follows:

TC
(
z1, z2, z3, z4)
= Ep(z1,z2,z3,z4)

[
log

p
(
z1, z2, z3, z4)

p
(
z1
)

p
(
z2
)

p
(
z3
)

p
(
z4
)] .

The TC was estimated using a three-like algorithm
(Cheng et al., 2020a). A low TC score indicated that the
representation had less variance. MIG metric (Chen et al., 2018)
is another disentanglement metric; the higher the value, the
more disentangled representation is. We compared the quality
of disentanglement among PCA, β-VAE, VAE, and HFEA.
Table 3 shows the comparison results on TC score and MIG
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TABLE 4 Classification results on NinaPro DB2 dataset.

Methods Windowing Train/Test Accuracy

LFEA + SVM(Ours) 200 ms 2/1 75.2± 2.3%

CNN 200 ms 2/1 65.7± 5.9%

LSTM + MLP 200 ms 1/1 75.4± 8.2%

Random forest 200 ms 2/1 75.0± 5.1%

KNN 200 ms 2/1 61.1± 3.4%

SVM 200 ms 2/1 67.2± 5.2%

The bold indicates better result.

metric. In TC score and MIG metric, HFEA has the best
performance, which is 6.2 lower and 0.11 higher than the second
place, respectively.

Furthermore, in Figure 6, we visualize the distribution of
z1, z2, z3, and z4, respectively in a two-dimensional space based
on t-distributed stochastic neighbor embedding. We can find
that the variance of representation decreases with deeper layers,
which indicates that the deeper networks learn more robust
representations.

Classification results on NinaPro DB2 dataset is described in
Table 4. Our method is based on LFEA and SVM and the feature
Z used in SVM is computed by LFEA.

Z =
(
z1, z2, z3, z4)

The methods used for comparison include LSTM + CNN
(He et al., 2018), k-nearest neighbor (KNN), support vector

machine (SVM), random forest, and convolutional neural
network (CNN) (Atzori et al., 2016). In all experiments, our
method was second best in all methods and only 0.2% lower than
the best. What is more, our method showed more stable results
(2.3% fluctuations) than others.

Discrimination results for Exercise A, Exercise B, and
Exercise C in DB1 and DB2 is shown in Figures 7, 8,
respectively. For each exercise, we compare feature
combinations from layer 1–4. Detail feature combinations
is described in Table 5. Tables 6–8 list the classification
accuracy with different feature combinations for
DB1, respectively.

Discrimination value in Tables 6–8 measures the
representation capability of feature in each layer. The
higher the value, the better the feature representation
ability. In Exercise A, C4 obtains the highest discrimination
value, which means feature z3 plays the most import
role in Exercise A. Similarly, feature z2 makes little
difference in Exercise A.

Conclusion

In this manuscript, we propose an Unsupervised Layer-
wise Feature Extraction Algorithm (LFEA) to perform the
sEMG signal processing and downstream classification
tasks. The model contains three core modules: Information
Compression Module (ICM), Information Expression

FIGURE 7

Feature discrimination results for DB1.
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FIGURE 8

Feature discrimination results for DB2.

TABLE 5 Feature combinations.

C1
(
z1, z2, z3, z4)

C2
(
z2, z3, z4)

C3
(
z1, z3, z4)

C4
(
z1, z2, z4)

C5
(
z1, z2, z3)

TABLE 6 Classification results with different feature
combinations for Exercise A.

Feature
Combinations

Accuracy Discrimination
(C1-Accuracy)

C1 0.79 0

C2 0.72 0.07

C3 0.74 0.05

C4 0.53 0.26

C5 0.61 0.18

The bold values mean the lowest and highest discrimination values.

Module (IEM) and Information Separation Module (ISM),
that ensure that the learning representation is compact,
informative and disentangled. We further use a layer-wise
optimization procedure to reduce the computation cost
and avoid some optimization problem, like vanishing and
exploding gradient. Experimentally, we also verify that
the untangling effect and downstream classification tasks
give better results.

In the future, we hope to combine the advantages of
supervised and unsupervised to build a semi-supervised
learning framework that can be adapted to more
scenarios.

TABLE 7 Classification results with different feature
combinations for Exercise B.

Feature Combinations Accuracy Discrimination (-C1)

C1 0.8 0

C2 0.53 0.27

C3 0.59 0.21

C4 0.69 0.11

C5 0.73 0.07

The bold values mean the lowest and highest discrimination values.

TABLE 8 Classification results with different feature
combinations for Exercise C.

Feature Combinations Accuracy Discrimination (-C1)

C1 0.82 0

C2 0.63 0.19

C3 0.64 0.18

C4 0.74 0.08

C5 0.71 0.11

The bold values mean the lowest and highest discrimination values.
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MMASleepNet: A multimodal
attention network based on
electrophysiological signals for
automatic sleep staging

Zheng Yubo, Luo Yingying, Zou Bing, Zhang Lin and Li Lei*

School of Artificial Intelligence, University of Posts and Telecommunications, Beijing, China

Pandemic-related sleep disorders a�ect human physical and mental

health. The artificial intelligence (AI) based sleep staging with multimodal

electrophysiological signals help people diagnose and treat sleep disorders.

However, the existing AI-based methods could not capture more

discriminative modalities and adaptively correlate these multimodal

features. This paper introduces a multimodal attention network

(MMASleepNet) to e�ciently extract, perceive and fuse multimodal features

of electrophysiological signals. The MMASleepNet has a multi-branch feature

extraction (MBFE) module followed by an attention-based feature fusing (AFF)

module. In the MBFE module, branches are designed to extract multimodal

signals’ temporal and spectral features. Each branch has two-stream

convolutional networks with a unique kernel to perceive features of di�erent

time scales. The AFF module contains a modal-wise squeeze and excitation

(SE) block to adjust the weights of modalities with more discriminative features

and a Transformer encoder (TE) to generate attention matrices and extract

the inter-dependencies among multimodal features. Our MMASleepNet

outperforms state-of-the-art models in terms of di�erent evaluation matrices

on the datasets of Sleep-EDF and ISRUC-Sleep. The implementation code is

available at: https://github.com/buptantEEG/MMASleepNet/.

KEYWORDS

multimodal, attention network, automatic sleep staging, electrophysiological signals,

features fusion

1. Introduction

Sleep is an essential natural behavior for humans to maintain mental and physical

health. Surveys show that ordinary people worldwide also have insomnia attributed to

pandemic-related stress, anxiety, depression, and other mental health conditions during

the new coronavirus pandemic (Semyachkina-Glushkovskaya et al., 2021). Survivors of

COVID-19 are still bothered by insomnia (Taquet et al., 2021). The research found that

adequate and effective sleep helps people improve the efficacy of COVID-19 vaccines

(Benedict and Cedernaes, 2021), and sleeping in the rapid eye movement (REM) stage

helps restore the brain’s ability and remove waste from the brain (Van Alphen et al.,

2021). Sleep staging helps ordinary people better understand their sleep quality and helps
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patients with insomnia or other related diseases to obtain better

diagnoses and treatment (Pan et al., 2020).

Polysomnography (PSG) is the primary tool for

assessing sleep in the laboratory and can be used for

clinical and research purposes (Rundo and Downey, 2019).

During polysomnography, EEG, EOG, EMG, and other

electrophysiological signals are recorded as multimodal data

and then used by professional doctors to divide sleep into

distinct stages. The American Academy of Sleep Medicine

(AASM) classifies each 30 s sleep epoch into five different stages

(W, N1, N2, N3, and REM) (Chriskos et al., 2021). However,

manual sleep staging requires professional knowledge and is

highly time-consuming. Artificial intelligence technology helps

to improve efficiency and has become a research hot spot of

sleep staging in recent years.

There have been two main approaches widely adopted in

sleep staging studies. Some researchers employed conventional

machine learning methods, which mainly contained feature

extraction algorithms and fed features into conventional

classifiers (Awais et al., 2021). Due to the need for prior

professional knowledge for feature extraction, these models

have poor transfer ability, and non-end-to-end learning

is significantly subject to subjective influence. For other

researchers, deep learning methods were adopted due to their

superior performance and less need for prior knowledge. Some

studies designed convolutional neural networks (CNNs) for

sleep staging (Supratak et al., 2017; Phan et al., 2018; Perslev

et al., 2019; Jia et al., 2020). Some studies employed long short-

term memory (LSTM) to capture the temporal context from

the representative features in forward and backward directions

(Supratak et al., 2017; Supratak and Guo, 2020; Neng et al.,

2021). Recurrent Neural Networks (RNNS) were proposed to

capture the temporal correlation of electrophysiological signals

(Michielli et al., 2019). Attention mechanism and attention-

based feature fusion have been widely used in multimodal

representation learning (Huang et al., 2019, 2020; Lu et al., 2019;

Wei et al., 2020; Zhang et al., 2020a,b,c; Desai and Johnson,

2021; Yu et al., 2021; Ma et al., 2022). The existing studies based

on attention mechanisms usually used single-modal data such

as EEG or EOG, which only focused on the inter-relationship

among single modality features rather than cross-modal features

(Eldele et al., 2021).

The waveforms of EEG, EOG, and EMG in each sleep

stage are shown in Figure 1. The signal characteristics of each

modality among the five sleep stages are different, whether

in the time domain or frequency domain. Observed from

the time domain, signal amplitudes and cycles of different

modalities signals are also various. Using EEG alone for sleep

staging has been a feasible solution since EEG is the main

basis of artificial sleep staging. It can also be observed that

there are significant differences between the W stage and N1

stage in EOG waveforms, and the EMG waveforms are also

helpful in identifying REM. Most studies chose EEG as the

primary modality (Supratak et al., 2017). Some studies selected

EOG signals which could be more convenient to acquire than

EEG signals (Fan et al., 2021). Other studies also adopted EMG

signals with more distinguishable features between the W and

REM stages (Li et al., 2022). Further, it can be verified that

the electrophysiological signals of the three modalities have

complementary characteristics to sleep staging. By designing a

neural network method of modality fusion, the accuracy of sleep

staging can be improved. The existing multimodal sleep staging

methods usually took EEG and EOG as the input of the model,

and the fusion of multimodal features was mainly based on

concatenation (Jia et al., 2020, 2021) without focusing on parts

of the features.

To efficiently extract multimodal features of EEG, EOG,

and EMG, use the attention mechanism for feature fusion,

and improve the accuracy of sleep staging, the multimodal

attention network (MMASleepNet) is proposed, which has a

multi-branch feature extractionmodule followed by an attention

fusing module, as shown in Figure 2. The contributions of this

paper are as follows.

(1) The multi-branch feature extraction (MBFE) module is

proposed, and unique kernels are specially designed based on

the effective frequency band of three modalities.

(2) The attention-based Feature Fusion (AFF) module is

proposed, and modal-wise squeeze and excitation block are

combined with Transformer Encoder to fuse the features of

EEG, EOG, and EMG.

(3) Experiments on four public datasets validate the effectiveness

of the MMASleepNet. The results demonstrate that

MMASleepNet outperforms all the baseline models in

automatic sleep staging.

The context of this paper is as follows. Section 2 introduces

data and methodology. The experiment design is described in

the Section 3. Section 4 presents the results of experiments, and

Section 5 analyses the results.

2. Materials and methods

2.1. Data description

Publicly available datasets were used for method evaluation,

whose summary is shown in Table 1.

2.1.1. Sleep-EDF

The Sleep-EDF dataset contains two sub-datasets, namely,

Sleep-EDF-20 and Sleep-EDF-78 (Goldberger et al., 2000). The

Sleep-EDF-20 dataset contains 42308 epochs in 39 sleep cassette

files collected from 20 subjects aged 25–34. The Sleep-EDF-78

dataset contains 195479 epochs in 153 sleep cassette files of 78

subjects aged 25–101. Each subject of the Sleep-EDF database

contains 2 day-night PSG recordings except subjects 13, 36,
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FIGURE 1

The waveforms of EEG, EOG, and EMG in each sleep stage. The data is randomly selected from the Sleep-EDF-78 dataset, and each epoch is

30 s.

FIGURE 2

The architecture of the proposed network. It consists of a multi-branch feature extraction module, an attention based feature fusion module

and a classification module. ⊕ is the point-wise addition and ⊗ is the point-wise multiplication. Conv is the convolutional layer, Pool is the

pooling layer, FC is the fully connection layer, Norm is the normalization layer.

TABLE 1 Summary of the datasets and selected channels.

Dataset Subjects Samples W (%) N1 (%) N2 (%) N3 (%) REM (%) Score method k for k-fold

Sleep-EDF-20 20 42,308 19.58 6.63 42.07 13.48 18.24 R&K 20

Sleep-EDF-78 78 195,479 33.74 11.01 35.37 6.67 13.22 R&K 10

ISRUC-Sleep-1 100 87,187 22.95 12.85 31.51 19.45 13.23 AASM 5

ISRUC-Sleep-3 10 8,589 20.44 14.04 30.12 22.90 12.50 AASM 10

and 52, whose one recording is lost due to device failure. The

duration of each epoch is 30 s, and it has been labeled as {Wake,

REM, N1, N2, N3, N4, MOVEMENT, UNKNOWN } by experts

according to the R&K standard.

2.1.2. ISRUC-sleep

ISRUC-Sleep-1 and ISRUC-Sleep-3 are the sub-datasets of

the ISRUC-Sleep (Khalighi et al., 2016). The ISRUC-Sleep-1

dataset contains 69,671 epochs in 100 PSG data files collected

from 100 subjects aged 20–85. The ISRUC-Sleep-3 dataset

contains 8,589 epochs in 10 PSG data files collected from 10

subjects aged 30–58. Each recording contains 6 EEG channels

(F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, and O2-A1), 2 EOG

channels (LOC-A2 and ROC-A1), 3 EMG channels (Chin EMG,

left leg movements and right leg movements), and 1 ECG

channel, and all signals were sampled at 200 Hz. The duration

of each epoch is 30 s, and it has been labeled as {Wake, REM,

N1, N2, N3 } by experts according to AASM standard.
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For a fair comparison with baseline models, the following

data preprocessing steps have been applied to the Sleep-EDF

and ISRUC-Sleep datasets. The N3 and N4 are merged into N3

according to the AASM standard for the Sleep-EDF dataset.

Then, MOVEMENT and UNKNOWN epochs are excluded.

The signals of EEG (Fpz-Cz and Pz-Oz), EOG (ROC-LOC),

and EMG (CHIN1-CHIN2) are adopted. For the ISRUC-Sleep

dataset, the signals of EEG ( F3-A2, C3-A2, O1-A2, F3-A1,

C4-A1, O2-A1), EOG (ROC-A1), and EMG (CHin-EMG) are

adopted. For the four datasets, 30 min of wake epochs before

and after sleep epochs are maintained to focus more on the sleep

stages. In this study, all these signals are resampled at 100 Hz.

2.2. Method

Figure 2 illustrates the overall framework of MMASleepNet.

The MMASleepNet consists of three main modules: multi-

branch feature extraction (MBFE), attention-based feature

fusion (AFF), and classification. The network can be trained

and optimized using multimodal electrophysiological signals.

Firstly, raw signals of eachmodality are processed into high-level

features by the specially designed branches in theMBFEmodule.

This module has several two-stream convolutional networks,

which consist of a small kernel fully convolutional network

(FCN) and a large kernel FCN to perceive features of different

time scales. The AFF module includes a modal-wise squeeze and

excitation (SE) block to adjust the weights of modalities with

more discriminative features and TE layers to generate attention

matrices and extract the inter-dependencies among multimodal

features. Finally, the staging results can be obtained through the

classification layer.

2.2.1. Multi-branch feature extraction

In order to extract the features from the original multimodal

data (EEG, EOG, and EMG), two-stream convolutional network

branches are designed in the MBFE module. Each branch in

the MBFE module consists of two FCN streams with four

convolutional layers and two Max-Pooling layers. Referring to

previous studies, the different sizes of convolutional kernels

capture different scale features, making the feature matrix more

comprehensive (Supratak et al., 2017). One FCN stream adopts

a large kernel, and the other adopts a small kernel at the

first convolutional layer. As the electrophysiological signals are

sampled at 100 Hz, the convolutional layer with a kernel size of

500 extracts low-frequency information using 5-s windows. On

the contrary, the small convolutional layer with a kernel size of

50 extracts the high-frequency information and detailed features

using half-second windows. As the modalities have different

interesting frequency ranges, the size of the convolutional kernel

in the EEG branch is twice that of EOG and EMG. Due to

EEG having higher classification accuracy in most cases, the T
A
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number of convolutional kernels dEEG for the EEG branch is

also larger than dEOG and dEMG for EOG and EMG branches.

The parameters of the MBFE module are given in Table 2. The

leaky rectified linear unit (Leaky-ReLU) is employed as the

activation function of each convolutional layer, which can be

defined as follows:

LeakyReLU(x) =







x, x ≥ 0

αx, x < 0
(1)

The Leaky-ReLU can solve the zero gradient vanishing problems

for negative values, which are essential for the following

modules. Dropout layers are applied after the first Max-Pooling

in both streams and after the concatenation of both streams to

reduce overfitting. The input XM ∈ R
3×CM×N are fed into

the MBFE module for extracting the multimodal features where

M ∈ {EEG,EOG,EMG} represent modalities, and CM is the

number of channels for modalM,N = SampleRate×EpochTime

is the samples for a single channel in one epoch. The operation

is formalized as follows:

FM = FCNs
M(XM)‖FCNl

M(XM) ∈ R
dM×l (2)

where FCNs and FCNl represent FCN stream with the small and

large convolutional kernel and ‖ is the concatenate operation.

FEEG ∈ R
dEEG×l is divided into FiEEG ∈ R

d×l, where d =
1
2dEEG, i ∈ {1, 2} to align with the FEOG and FEMG for the

following concatenate operation. A new dimension is created

on each modalities’ features, and the concatenate operation is

formalized as follows:

F = [F1EEG, F
2
EEG, FEOG, FEMG] ∈ R

4×d×l (3)

where [·] is the concatenate operation on the newly created

modal dimension. A feature map F that contains different

modalities of information is obtained through above operations.

2.2.2. Attention-based feature fusion

The AFF module is designed for fusing features extracted

by the MBFE module. The architecture shown in Figure 2 is

designed based on attention methods. AFF module consists of

a modal-wise SE block and TE layers.

2.2.2.1. Modal-wise SE

The modal-wise SE block is proposed based on the

SENet (Hu et al., 2020). Different from the SENet using 1D

convolutional and Max-Pooling layers, as shown in Figure 2,

2D convolutional and Max-Pooling layers are implemented

to reconstruct the input features. Given a feature map F ∈

R
4×d×l, two convolution operations are applied to F such that

F′ = Conv2(Conv1(F)) and F′ has the exact dimensions as

the input feature map. Global Average Pooling is performed

along the spatial dimensions, and F′ is turned into S =

{S1, S2, S3, S4}. Two additional 2D convolutional layers replace

the full connection layers in SENet to reconstruct S further. The

first layer followed with ReLU activation function designed to

reduce the dimensions of F, and the second layer followed with

Sigmoid layer aims to increase the dimensions. The operation is

formalized as follows:

E = Sigmoid(Conv2(ReLU(Conv1(S)))) ∈ R
4×d×l (4)

where Conv1 and Conv2 are the 2D convolution operations,

sigmoid and ReLU are the activation functions and ReLU(x) =

max(0, x). The output dimension matches the number of input

modalities. It characterizes the global distribution of responses

over features. Then, the feature map F is scaled by E:

OSE = F ⊕ (F ⊗ E) ∈ R
4×d×l (5)

where ⊕ is the point-wise addition and ⊗ is the point-wise

multiplication, OSE is the output of the modal-wise SE block.

Modal-wise SE block adaptively learns the correlation among

multiple modalities and the attention of different modalities.

2.2.2.2. Transformer encoder

As shown in Figure 1, each TE layer comprises two core

modules: multi-head attention and position-wise feed-forward

network. Multi-head attention consists of H attention modules.

Firstly, H different linear projections are applied to the input,

and the result is mapped to parallel queries, keys, and values.

Secondly, dot-product is performed on Qi and Ki to calculate a

similarity score. A normalization operation is applied to stabilize

the gradient. Then, the Softmax operation calculates the weight

for Vi, and another dot-product is applied. Finally, all the Ai

are concatenated together to produce the final output. The

operations can be formulated as follows:

Qi = ZW
Q
i ,Ki = ZWK

i ,Vi = ZWV
i , 0 < i ≤ H (6)

Ai = Softmax(
Qi · K

T
i√

d
) · Vi (7)

MA = A1‖A2‖...‖AH (8)

where Z ∈ R
4l×d is the input of the TE layer. W

Q
i , W

K
i ,

WV
i ∈ R

d× d
H are learnable weights of linear projections, d is

the column length of Z, and ‖ is the concatenate operation.

Residual layers are applied as Equation 9. The position-wise

feed-forward network consists of two linear transformations

with ReLU activation as follows:

O1 = LayerNorm(MA+ Z) (9)

O2 = ReLU(O1W1 + b1)W2 + b2 (10)

Frontiers inNeuroscience 05 frontiersin.org

100

https://doi.org/10.3389/fnins.2022.973761
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yubo et al. 10.3389/fnins.2022.973761

where W1 ∈ R
d×dFF , W2 ∈ R

dFF×d are learnable weight

matrices b1 ∈ R
dFF , b2 ∈ R

d is learnable biases. dFF is

the middle dimension of the feed-forward network. Then the

output of the attention-based feature fusion module OAF can be

obtained as follow:

OTE = LayerNorm(O1 ⊕ O2) (11)

OAF = Z ⊗ OTE (12)

where Z is the flattened output of modal-wise SE block, andOTE

is the output of the TE layer. Then the OAF is fed into two linear

layers for the final classification.

3. Experiment

3.1. Baseline methods

Our method has been compared with the three baseline

models: AttnSleepNet, SleepPrintNet, and SalientSleepNet. The

publicly available codes have been used for AttnSleepNet,

whereas SleepPrintNet and SalientSleepNet were re-

implemented. For a fair comparison, all models were trained

and tested on the same data partition with the same random

seeds. Brief descriptions for models are as follows:

• AttnSleepNet (Eldele et al., 2021): AttnSleepNet deploys

a custom CNN architecture followed by a multi-head

attention mechanism and causal convolutions.

• SleepPrintNet (Jia et al., 2020): An EEG temporal

feature extraction module, an EEG spectral-spatial feature

extraction module, and two multimodal feature extraction

modules are combined and classified.

• SalientSleepNet (Jia et al., 2021): A fully convolutional

network based on the U2-Net architecture. Two

independent U2-like streams are composed to extract

the features from multimodal data.

3.2. Experiment settings

To evaluate the performance of models, subjects in each

dataset were divided into several groups using k-fold cross-

validation. For each fold, one group of subjects was selected

as validation data. The remaining k-1 groups were selected as

training data. Finally, four performancematrices were calculated

by combining the predicted sleep stages of all k test groups. For

the MMASleepNet, the Adam optimizer with the learning rate

of 1e-4 was applied. The weight decay of Adam was set to 1e-3,

the betas (b1, b2) were used as (0.9, 0.999), respectively, and the

epsilon value was 1e-08. The parameters of the MBFE module

are introduced in Table 1. The TE block has only one encoder

layer with four heads. The training epoch is 150. Weighted

cross-entropy loss was adopted as follows:

L = −
1

N

N
∑

i=1

C
∑

c=1

ωcy
c
i log(p

c
i ) (13)

where N is the batch size, C is the number of classes, yci is the

true label, and pci is the predicted label of i-th samples for class c.

ωc ∈ {1.0, 1.80, 1.0, 1.25, 1.20} is the weight of class c.

TABLE 3 Comparison among MMASleepNet and baseline models.

Dataset Method
Per-class F1-score Overall matrices

W N1 N2 N3 REM ACC MF1 κ MGm

Sleep-EDF-20

AttnSleepNet 79.02 32.70 87.03 85.67 72.36 79.10 71.35 71.43 66.34

SleepPrintNet 88.77 47.99 86.72 86.21 80.26 83.08 77.99 76.67 76.34

SalientSleepNet 90.79 49.86 89.03 84.77 88.44 86.28 80.58 81.02 77.32

MMASleepNet 92.20 54.75 89.70 90.20 86.41 87.30 82.65 82.63 81.67

Sleep-EDF-78

AttnSleepNet 92.08 36.98 84.70 81.63 73.61 81.12 73.80 73.75 68.64

SleepPtintNet 92.65 47.39 83.59 79.97 78.75 81.64 76.47 74.70 74.27

SalientSleepNet 92.28 50.52 84.37 71.17 84.19 82.61 76.51 75.92 73.42

MMASleepNet 92.85 49.05 84.94 81.26 79.75 82.67 77.60 76.12 76.06

ISRUC-SLEEP-1

AttnSleepNet 84.19 43.80 71.52 81.93 61.12 71.65 68.53 63.70 67.43

SleepPtintNet 79.12 40.12 58.22 68.80 73.67 65.40 63.99 56.02 62.47

SalientSleepNet 85.24 51.34 76.41 83.50 79.25 76.95 75.15 70.31 74.25

MMASleepNet 87.83 54.03 77.05 85.29 83.31 79.02 77.51 73.02 76.79

ISRUC-SLEEP-3

AttnSleepNet 67.58 26.91 66.31 84.08 54.33 64.24 59.85 54.88 55.83

SleepPrintNet 85.15 52.53 74.95 87.28 74.84 76.88 74.95 70.29 73.69

SalientSleepNet 78.37 50.64 77.33 87.99 75.47 76.11 73.96 69.39 73.20

MMASleepNet 88.87 59.57 82.00 87.00 86.87 81.92 80.64 76.79 80.00

The best values on each dataset are highlighted in bold.
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FIGURE 3

The confusion matrices of MMASleepNet, (A) is the confusion matrix valuated on SleepEDF-20 dataset, (B) is the confusion matrix valuated on

SleepEDF-78 dataset, (C) is the confusion matrix valuated on ISRUC-Sleep-1 dataset, (D) is the confusion matrix valuated on ISRUC-Sleep-3

dataset.

For a fair comparison, all baseline models and

proposed methods used the same dataset partitioning

during training and evaluation. A number of experiments

were conducted to find the best hyperparameters of the

proposed MMASleepNet. The hyper-parameters of baseline

models were set as introduced best in their article or open

source codes. The train and validation codes are available at

https://github.com/buptantEEG/MMASleepNet/.

3.3. Evaluation matrices

Four matrices were adopted to evaluate the performance of

sleep staging models, namely, accuracy (ACC), macro-averaged

F1-score (MF1), Cohen Kappa (κ), and the macro-averaged G-

mean (MGm). Given True Positives (TPi), False Positives (FPi),

True Negatives (TNi), and False Negatives (FNi) for the i-th

class, the overall accuracy of ACC,MF1, κ , andMGmare defined

as follows:

ACC =

∑C
c=1 TPc

N
(14)

κ =
ACC − pe

1− pe
(15)

MF1 =
1

C

C
∑

c=1

2× Precisionc × Recallc

Precisionc + Recallc
(16)

MGm =
1

C

C
∑

c=1

√

Specificityc × RecallC (17)

where pe =

∑C
c=1 ac×bc
N×N , Precisionc =

TPc
TPc+FPc

, Recallc =

TPc
TPc+FNc

and Specificityc =
TNc

TNc+FPc
, ac is the number of

samples of class c, bc is the number of samples predicted as the

class c. C is the number of classes, and N is the total number

of samples.

4. Results

4.1. Results comparison with baselines

Table 3 shows the comparison among AttnSleepNet,

SleepPrintNet, SalientSleepNet, and our MMASleepNet.

The single-modal method AttnSleepNet obtained the lowest

accuracy of the four models. The multimodal approaches,

SleepPrintNet and SalientSleepNet, achieve higher accuracy

than the single-modal method. The multimodal model can

capture different electrophysiological signal features diversity

compared to single-modal signals. In addition, the accuracy of

the proposed MMASleepNet reaches 87.30, 82.67, 79.02, and

81.92%, which is higher than all the baseline models. The MF1,

κ , and MGm of MMASleepNet outperform all baseline models

on the four datasets, which means that the MMASleepNet is

better at adapting to unbalanced data and should get better

accuracy when the classes are balanced.

According to the confusion matrix in Figure 3, the

classification accuracy of W, N2, N3, and REM is relatively

high both on the Sleep-EDF dataset and ISRUC dataset. The

accuracy of recognizing stage N1 is lower than in other stages,

which is related to the insufficient N1 samples in the sleep

records. Table 3 shows that the MMASleepNet obtained a higher

F1 score for stage N1 on the smaller datasets Sleep-EDF-

20, ISRUC-Sleep-1, and ISRUC-Sleep-3, indicating that the

MMASleepNet performs better than the baseline methods for

imbalanced categories. The results demonstrate the advantages

of MMASleepNet in automatic sleep staging with the proposed

feature extracting and fusion operations applied to multimodal

electrophysiological signals.

4.2. Ablation experiments

The MMASleepNet consists of an MBFE module, modal-

wise SE block, and Transformer Encoder layers. To analyze the
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FIGURE 4

The results of ablation experiments, panel (A) is for the module ablation, panel (B) is for the modalities ablation.

influence of each module and to prove the effectiveness of each

modality used in MMASleepNet, the ablation experiment was

designed on the Sleep-EDF-20 dataset as follows:

• MBFE(basic): This model is only MBFE module input

with EEG, EOG, and EMG signals. The features obtained

from MBFE are fed into a linear classification module for

sleep staging.

• MBFE+TE: This model adds TE layers based on the basic

model input with EEG, EOG, and EMG signals.

• MMASleepNet1: The completely MMASleepNet with

MBFE, modal-wise SE block, and TE layers, only input with

EEG signals.

• MMASleepNet2: MMASleepNet input with EEG and

EOG signals.

• MMASleepNet3: MMASleepNet input with EEG, EOG,

and EMG signals.

Figure 4 presents the results of ablation experiments.

Figure 4A shows that the attention-based feature fusion module

improves the performance of the basic model. The modal-

wise SE block helps the MMASleepNet achieve higher accuracy

than only using TE layers. Figure 4B shows that MMASleepNet

input with more modalities achieves higher accuracy. Themodel

training with EOG and EMG performed better than with

EEG alone.

5. Discussion

This study proposes a multimodal attention network

for sleep staging using EEG, EOG, and EMG. The basis of

using EEG, EOG, and EMG for sleep staging is that the

PSG data collected in sleep health monitoring commonly

includes multimodal electrophysiological signals. According

to the experimental results, there are complementary features

related to sleep stages among multiple modalities. The result

shows that the proposed MMASleepNet achieves the highest

classification performance on four publicly available datasets.

Compared with the single-modality model AttnSleepNet,

the proposed MMASleepNet can be fed with more data of

multiple modalities, which means more information to extract

and leads to big improvements in four evaluation matrices.

Compared with the multimodal methods SleepPrintNet and

SalinetSleepNet, MMASleepNet contains better-designed

feature extraction methods and feature fusion methods for

multimodal electrophysiological signals. The modal-wise SE

block construct fusion of features adopted 2D convolutional,

which makes it reasonable for complementary modalities.

The SalientSleepNet also achieves high accuracy, but the high

complexity of themodal led to lower training speed. The number

of MMASleepNet parameters is 1.5M. The MMASleepNet has

lower computation complexity and floating-point operations,

improving the training speed. The AttnSleepNet, SleepPrintNet,

SalientSleepNet, and the proposed MMASleepNet cost 0.4, 0.9,

7, and 1 h for 100 training epochs on the NVIDIA GeForce RTX

2080 Ti, respectively. Considering the accuracy and the training

speed, the MMASleepNet performs better.

The ablation experiment results verify each module’s

effectiveness in the proposed MMASleepNet for automatic sleep

staging. The ablation experiments in the first step verified

that MMASleepNet fed with the data of three modalities

achieves better results than a single modality. This preliminary

verifies that the data of different modalities correlate with

sleep stages and can be combined to obtain more time-

frequency information. Features extracted from EOG and EMG

complement those extracted from EEG only.

Figure 5 shows the down-sampled features before and after

the AFFmodule. Themain difference is that the features become

more focused after the AFF module. The features after attention

are easier to be distinguished using the same classifier, and the

classifier is easier to converge. The visualized features show

that the separability of the fused multimodal features can be
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FIGURE 5

The features before and after attention mechanism of MMASleepNet. The data was selected randomly from the Sleep-EDF-20 dataset. Panel (A)

is before the attention module, panel (B) is for the modalities ablation.

enhanced with the attentionmechanism, and the neural network

observes more detailed differences.

Unlike previous studies, the proposed MMASleepNet has

a more effective feature fusion module, especially the modal-

wise SE block, rather than a simple concatenate operation on

different modalities’ features. Although the model complexity

has increased slightly, the model understands the relationship

among different modalities. MMASleepNet can extract effective

information from different modalities and fully use multimodal

information by fusing the features with attention methods.

Experiment results show that MMASleepNet achieves state-

of-the-art performance. A series of ablation experiments have

shown that different modules of the model contribute to the

sleep staging task. MMASleepNet improves the accuracy of

sleep staging, which provides a solution for multimodal sleep

monitoring and is helpful for people to understand sleep status

and improve their sleep quality.

Sleep disturbances increased significantly during the

pandemic (Semyachkina-Glushkovskaya et al., 2021). For

studying whether there has been a change in sleep disturbances,

new sleep data set during the pandemic and new methods

need to be supported, and deeper analysis based on statistical

principles is required. Sleep staging is a fundamental application

that helps study sleep disturbances during a real pandemic.

With the existing standards, the definition of sleep stages will

not be easily changed. Data set during the pandemic will be

collected, and new methods for deeper analysis will be devised

to raise awareness of the pandemic. The interpretability of the

model and transfer learning method will be investigated to

improve generalization across subjects and datasets.
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Visual-spatial attention disorder after stroke seriously affects recovery and

quality of life in stroke patients. Previous studies have shown that some

patients recovery rapidly from visual-spatial neglect (VSN), but the brain

networks underlying this recovery are not well understood. Using functional

magnetic resonance imaging, we aimed to identify network differences

between patients who rapidly recovered from VSN and those with persistent

VSN. The study included 30 patients with VSN who suffered subacute stroke.

Patients were examined 2–4 weeks after stroke onset and 4 weeks after

the initial assessment. At the last evaluation, patients in the persistent VSN

(n = 15) and rapid recovery (n = 15) groups underwent paper-and-pencil

tests. We defined the bilateral frontal eye fields, bilateral intraparietal sulcus in

the dorsal attention network, and right temporoparietal junction and ventral

frontal cortex areas in the ventral attention network as regions of interest

(ROI) and measured whole-brain ROI-based functional connectivity (FC) and

amplitude of low-frequency fluctuations (ALFF) in subacute right-hemisphere

stroke patients. VSN recovery was associated with changes in the activation

of multiple bilateral attentional brain regions. Specifically, persistent VSN was

associated with lower FC in the right superior frontal gyrus, right inferior

temporal gyrus, right medial orbitofrontal cortex, left precuneus, right inferior

parietal gyrus, right medial frontal gyrus, right rectus gyrus, left superior

frontal gyrus, left middle cingulate gyrus, right superior temporal pole, right

postcentral gyrus, and right posterior cingulate gyrus compared to that in

those with rapid recovery, whereas ALFF in the left cerebellum were decreased

in patients with persistent VSN. Our results demonstrate that the DAN rather

than the VAN, plays a more important role in recovery from VSN, and that

the cerebellum is involved in recovery. We believe that our results supplement

those of previous studies on recovery from VSN.

KEYWORDS

visual-spatial neglect, recovery, dorsal attention network, functional connectivity,
ALFF
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Introduction

Visual-spatial neglect (VSN) is one of the most common
cognitive impairments after stroke, particularly in the right
hemisphere. VSN occurs in more than half of right hemisphere
stroke survivors (Esposito et al., 2020). Unfortunately, in
approximately 40% of patients, VSN persists to 1 year after onset
(Nijboer et al., 2013) and is associated with poor functional
outcome (Chen et al., 2015).

The mechanisms underlying this recovery remain largely
unknown. Functional magnetic resonance imaging (fMRI)
studies have revealed global activation changes in functional
organization far beyond the lesions in VSN patients after stroke
(Corbetta et al., 2005). In fact, attentional networks, dorsal
attention networks (DAN), and ventral attention networks
(VAN) have been identified as crucial components of VSN
recovery (Corbetta and Shulman, 2011). A few VSN studies
have shown that interhemispheric and intrahemispheric
functional connections between attention networks affect
recovery from VSN. Baldassarre et al. (2014) highlighted
that large-scale changes in network interactions following
focal injury are associated with decreased interhemispheric
functional connectivity (FC) and the patterns of abnormal
functional connectivity between VAN and DAN. Further
studies have shown that attention deficit following stroke is
significantly more correlated with interhemispheric FC in
the DAN and proposed interventions that restore normal
patterns of resting FC may be associated with good recovery
(Baldassarre et al., 2016). Two important longitudinal studies
have demonstrated that improvement of VSN was correlated
with an increase in previously depressed interhemispheric FC
across attention and network normalization of interhemispheric
regions in multiple networks, predominantly the left
functional homologs (Ramsey et al., 2016; Umarova et al.,
2016).

Recent research extracted the amplitude of low-frequency
fluctuations (ALFF) from each region of interest (ROI)
as a marker of regional spontaneous neuronal activity in
acute right-hemisphere stroke patients with left hemispatial
neglect, which can complement the fact that FC analysis
cannot offer local dysfunction in a specific area of the
network. They also confirmed a reduction in spontaneous
neuronal activity in the superior parietal lobule as a
consequence of VSN. Intervention at the superior parietal
lobule may improve left VSN behavior in stroke patients
(Machner et al., 2020).

Previous studies have shown that some patients recover
rapidly from VSN (Ye et al., 2020). However, these studies did
not consider the effects of the DAN and VAN. We investigated
attention network differences between good and poor recovery
from VSN to identify specific features of favorable recovery from
VSN after a right hemisphere stroke by using two parameters of
resting-state fMRI (rs-fMRI): ALFF and FC.

Patients and methods

Patient group and clinical details

We retrospectively analyzed data from 30 patients who
were admitted to the rehabilitation department of Xuanwu
Hospital with a subacute stroke and tested within 2-4 weeks of
stroke onset between July 2017 and October 2018. The patients
were diagnosed with first-onset right-hemisphere stroke and
VSN. The inclusion criteria were: (1) right-handedness, (2)
age ≥ 18 years, and (3) availability of informed consent. The
exclusion criteria were: (1) non-cooperation with paper-and-
pencil tests, (2) previous history of a psychiatric or neurological
disorder, (3) claustrophobia, (4) metal implants such as artificial
cochlea and cardiac pacemaker; and (5) bilateral-hemisphere or
previous brain lesions. All patients received upper- and lower-
extremity exercise therapy for 1 h twice daily for 2 weeks. No
specific intervention was provided for the VSN. All patients
completed paper-and-pencil tests and underwent MRI before
exercise therapy.

This study was approved by the local ethics committee and
written informed consent was obtained from all participants.

Neuropsychological assessment

Standardized paper-and-pencil tests were used to evaluate
the severity of the VSN. These tests included the line-bisection,
line-cancelation, star-cancelation, clock-drawing, and sentence-
reading tests. All tests were conducted on a horizontally placed
295 × 210 mm A4 sheet of paper. Behavioral scores were
calculated using previously described methods. In the line-
bisection task, patients were instructed to mark the midpoints
of five horizontal lines of different lengths (between 80 and
160 mm) distributed on the paper. Rightward or leftward
deviations from the real midpoint were measured, and a
deviation >12% was considered pathological neglect. In the
line-cancelation task, patients were instructed to mark 30
line symbols, and a difference between left- and right-sided
omissions of three or more was considered pathological neglect.
In the star-cancelation task, patients were instructed to mark
all small stars that were symmetrically distributed among the
distractors on the test paper (27 in the left field, two in the
middle field, and 27 in the right field). A difference between
left- and right-sided omissions of more than five was considered
pathological neglect. In the clock-drawing task, a clock with a
random time was presented on paper, and participants were
instructed to copy a duplicate clock on the test paper; omission
of the left side of the clock compared with the right side was
considered pathological neglect. In the sentence-reading task,
participants were instructed to read an article aloud in three
columns (left, center, and right). Omission of words in one
or more sentences was considered pathological neglect. We
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calculated the scores by considering the total number of targets
omitted and left-right differences.

Subjects were diagnosed with VSN when the results of at
least two of the paper-and-pencil tests were positive. Behavioral
results were independently evaluated by two neurologists.

Paper-and-pencil tests were performed in the early subacute
phase (2–4 weeks after stroke) and 4 weeks after the first
assessment. MRI was performed in the same day after first
assessment. At four weeks after the second assessment, 15
patients still had VSN and were assigned to the persistent VSN
group, while the remaining 15 patients were free of VSN, as
judged by all behavioral tests, and were assigned to the rapid
recovery group. We carefully checked the clinical profiles of
all the patients without neglect and found no signs of neglect.
Subsequently, a retrospective analysis was performed.

MRI acquisition

Data were obtained using a GE Signa 3.0T scanner. Foam
pads were used to prevent head movement. Functional images
were obtained using an echo-planar imaging sequence with the
following parameters: 33 axial slices, thickness/gap = 3.5/0 mm,
in-plane resolution = 64 × 64, repetition time = 2000 ms, echo
time = 30 ms, flip angle = 90◦, and field of view = 212 × 212
mm2. The resting-state MRI sessions lasted for 8 minutes.
Patients were instructed to hold still, plug their ears with
sponge earplugs, not think systematically, and not fall
asleep. In addition, a T1-weighted sagittal three-dimensional
magnetization-prepared rapid gradient echo sequence was
acquired using the following parameters:144 slices, repetition
time = 2,300 ms, echo time = 3.39 ms, slice thickness = 1 mm, flip
angle = 7◦, inversion time = 1100 ms, field of view = 200 × 256
mm2, and in-plane resolution = 200 × 256. T1-weighted
MRI protocols had the following parameters: 32 slices,
repetition time = 3823.5 ms, echo time = 24 ms, flip
angle = 111◦, matrix 256 × 288, 32 slices. The standard slice
thickness was 3.0 mm.

Regions of interest selection

Six ROI were selected based on previous research (Farrant
and Uddin, 2015). In the DAN, the ROI were located in the
right frontal eye field (rFEF) (Montreal Neurological Institute
[MNI] coordinates: x = 28, y = −8, z = 52), left FEF (lFEF)
(MNI coordinates: x = −28, y = −8, z = 52), right intraparietal
sulcus (rIPS) (MNI coordinates: x = 21, y = −58, z = 53),
left IPS (lIPS) (MNI coordinates: x = −28, y = −56, z = 44),
right temporoparietal junction (TPJ) (MNI coordinates: x = 60,
y = −48, z = 22), and right ventral frontal cortex (VFC)
(MNI coordinates: x = 42, y = 20, z = −6) for ventral
attention networks.

Imaging data analysis

The fMRI data were processed and analyzed performed
using the Data Processing Assistant of the rs-fMRI software
(DPARSF Advanced Edition V5.2)1. The first 10 volumes
for each participant were discarded. All images were time-
shifted, such that the slices were temporally aligned. The
images were then realigned, and all participants moved
no more than 3 mm in translational or 3◦ in rotational
dimensions. The images were then co-registered with
anatomical images, which were segmented into gray and
white matter. Anatomical images were obtained using
Diffeomorphic Anatomical Registration Exponentiated
Lie Algebra (DARTEL). First, a sample-specific template
was generated from the T1-weighted images. Second, the
individual anatomical images were normalized non-linearly
to the template, followed by linear registration to the MNI
template. The images were smoothed using a Gaussian
filter with a full width at half maximum of 4 mm. Finally,
nuisance signals, including 24 head-motion parameters,
cerebrospinal fluid signals, and white matter signals, were
regressed from the MRI data.

Further preprocessing, including removal of linear trends,
temporal band-pass filtering (0.01–0.1 Hz), and ALFF, was
performed using the Data Processing Assistant of rs-fMRI
software (DPARSF Advanced Edition V5.2; See Text Footnote
1). All ALFF map results were converted into z-maps.

To perform the FC analyses, time series from the resting-
state scan were extracted for the subject-specific ROI in the rFEF,
lFEF, rIPS, and lIPS for DAN, and right TPJ and right VFC for
VAN by averaging the time series of all voxels in the spherical
ROI (radius = 6 mm). Whole-brain voxel-based FC analysis was
used to calculate the FC strength between each voxel in each
subject and the ROI and convert it into z-maps.

Statistical analyses

SPSS (version 22.0; IBM Corp., Armonk, NY, United States)
was used for all statistical analyses. Demographic characteristics,
including symptom severity, were analyzed using descriptive
statistics (mean differences ± standard deviation (x ± s) for
each group. Sex and type of stroke were compared using the
χ2 test, and other quantitative variables were compared using
the independent-sample t test. Statistical significance was set at
p ≤ 0.05.

Group-level statistical analyses were performed using the
statistical analysis model in DPARSF. A two-sample t-test was
conducted on the individual z-ALFF and z-ROI FC maps of the
two groups with a small volume correction for the one-sample

1 http://www.rfmri.org/DPARSF
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result masks. Multiple-comparison corrections were performed
using the Gaussian random field correction. Significant
between-group differences met the criteria of corrected p < 0.01
for voxel level and p < 0.05 for cluster size level.

Results

Patient classification and
demographics

The average age of the persistent VSN patients and the rapid
recovery patients were 57.27 ± 10.93 and 56.20 ± 10.93 years,
respectively (the persistent VSN group: three women, 12 men,
age 32–73 years; the rapid recovery group: four women, 11 men,
age 37–71 years). There were no significant differences in age,
sex, type of stroke, years of education, initial paper-and-pencil
test scores, or clinical course following stroke between the two
groups (p > 0.05). The demographic and clinical characteristics
of the patients are presented in Table 1. The overlapped lesion
plots of the patients are presented in Figure 1.

Neuropsychological performance

The behavioral scores in the early subacute phase showed no
significant difference between the rapid recovery and persistent
VSN patients (Line bisection t = −0.005, p = 0.996; Line
cancelation t = 0.688, p = 0.498; Star cancelation t = 0.044,
p = 0.965; Sentence reading t = 0.417, p = 0.680). The behavioral
scores of the two groups are presented in Figure 2.

Differences in whole-brain functional
connectivity of dorsal attention
networks nodes

In the persistent VSN group, the rFEF showed strong FC
with the right precentral gyrus, left precuneus, left precentral
gyrus, left middle cingulate gyrus, left supplementary motor
area, and left cerebellum. In the rapid recovery group, the
rFEF showed strong FC with the right supplementary motor
area, right superior frontal gyrus, right precentral gyrus,
left lingual gyrus, left cerebellum, left medial orbitofrontal
cortex, right middle temporal gyrus, and left middle frontal
gyrus (Figure 3A).

In the persistent VSN group, the lFEF showed strong FC
with the left superior frontal gyrus, left triangular part of the
inferior frontal gyrus, and left putamen. In the rapid recovery
group, the lFEF showed strong FC with the left precentral
gyrus, right cerebellum, left inferior temporal gyrus, and left
cerebellum (Figure 3B).

In the persistent VSN group, the rIPS showed strong
FC with the right superior parietal gyrus, left lingual gyrus,
left superior marginal gyrus, right supplementary motor area,
left middle cingulate gyrus, right middle temporal pole,
right superior marginal gyrus, and right fusiform gyrus.
In the rapid recovery group, the rIPS showed strong FC
with the right superior parietal gyrus, left thalamus, right
superior frontal gyrus, right middle frontal gyrus, left medial
superior frontal gyrus, left cerebellum, right cerebellum, right
middle temporal gyrus, right superior frontal gyrus, left
triangular part of the inferior frontal gyrus, left middle
temporal gyrus, and left opercular part of the inferior frontal
gyrus (Figure 4A).

In the persistent VSN group, the lIPS showed strong FC with
the left superior parietal gyrus and left cerebellum. In the rapid
recovery group, the lIPS showed strong FC with the left inferior
parietal gyrus and right rolandic operculum (Figure 4B).

The FC between the DAN and voxel-based whole-brain of
the rapid recovery group was significantly increased compared
to that of the persistent VSN group (p < 0.01). The FC
between the rFEF, lFEF, rIPS, lIPS, and the whole brain
is shown in Figure 3. The rFEF ROI showed significantly
stronger FC with the right superior frontal gyrus, right
inferior temporal gyrus, right medial orbitofrontal cortex,
left precuneus, and right inferior parietal gyrus in the rapid
recovery group than in the persistent VSN group. The lFEF
ROI showed significantly stronger FC with the right superior
frontal gyrus, right medial frontal gyrus, right rectus gyrus,
and left superior frontal gyrus in the rapid recovery group
than in the persistent VSN group. The rIPS ROI showed
significantly stronger FC with the left middle cingulate gyrus
in the rapid recovery group than in the persistent VSN
group. The lIPS ROI showed significantly stronger FC with
the right superior temporal pole, right postcentral gyrus,
and right posterior cingulate gyrus in the rapid recovery
group than in the persistent VSN group (Table 2 and
Figures 3, 4).

Differences in whole-brain functional
connectivity of ventral attention
networks nodes

In both the persistent VSN and rapid recovery groups,
the right TPJ showed strong FC in the right superior
temporal gyrus.

In both the persistent VSN and rapid recovery groups, the
right VFC showed strong FC in the right insula.

In terms of FC with other VAN regions, no group differences
were found in VAN (TPJ/VFC) connections. In other words,
the persistent VSN and rapid recovery groups did not differ
in FC strength between VAN and whole-brain voxel-based
functional connections.
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TABLE 1 Demographic data and clinical data.

Patient
ID

Age Sex Time
science
stroke
(days)

Type of
stroke

Years of
education

Line
bisection

(deviation%)

Line
cancelation

(all
omissions)

Star
cancelation

(all
omissions)

Clock
drawing

Sentence
reading
omissions

P1 32 M 28 CH 18 54.8 28 38 + 5

P2 69 M 28 CI 15 39.7 15 38 + 4

P3 54 M 25 CI 12 35.66 26 48 + 9

P4 51 M 20 CI 14 64.95 8 36 + 6

P5 57 M 21 CI 11 17.26 5 14 + 2

P6 51 M 27 CI 12 14.72 6 24 + 2

P7 57 F 20 CH 16 78.04 24 48 + 13

P8 70 M 20 CI 9 52.95 9 13 + 2

P9 62 M 14 CI 9 69.97 17 48 + 7

P10 55 M 19 CI 15 20.95 6 42 + 4

P11 41 F 21 CI 18 21.46 6 26 + 4

P12 73 M 23 CI 8 82.69 15 27 + 9

P13 65 F 27 CI 12 42.37 4 22 + 2

P14 64 M 24 CI 9 50 23 46 + 7

P15 58 M 14 CI 12 32.75 5 9 + 2

R1 37 F 26 CI 18 69.46 21 48 + 4

R2 53 M 25 CH 12 42.34 14 46 + 7

R3 71 M 26 CI 6 56.07 18 34 + 4

R4 50 M 21 CI 3 69.96 6 25 + 6

R5 65 M 19 CI 9 33 15 40 + 5

R6 47 M 22 CI 12 25.4 14 25 + 2

R7 42 M 22 CI 16 68.37 12 30 + 6

R8 52 M 17 CI 15 38.26 4 25 + 4

R9 52 M 27 CI 14 62.96 10 45 + 13

R10 47 F 18 CI 19 28.7 19 34 + 2

R11 60 M 26 CI 9 75.23 10 17 + 6

R12 67 M 26 CH 12 42.27 7 33 + 4

R13 72 F 20 CI 6 20.2 6 16 + 2

R14 59 F 21 CI 12 16.67 9 44 + 4

R15 69 M 20 CI 9 30 5 14 + 2

P1-P15: patients with persistent VSN; R1-R15: patients with rapid recovery VSN; M: male; F: female; CH: cerebral hemorrhage; CI: cerebral ischemia.
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FIGURE 1

(A) Overlapped lesion plots of the patients with persistent VSN. (B) Overlapped lesion plots of the patients with rapid recovery VSN.

FIGURE 2

The behavioral scores in two groups, all p > 0.05. (A) Line bisection (deviation %); (B) Line cancellation (all omissions); (C) Star cancellation (all
omissions); (D) Sentence reading omissions.

Amplitude of low-frequency
fluctuations

At the group level (Figure 5), the z-ALFF value did
not differ significantly between the persistent VSN and rapid
recovery groups for most ROI. Only the mean z-ALFF value
in the left cerebellum anterior lobe was significantly reduced
in the persistent VSN group compared with that in the
rapid recovery group.

Discussion

VSN is common following stroke, but the neural substrates
for recovery are unclear. Our results showed that the
interhemispheric and intrahemispheric FC of the DAN to
the whole brain was reduced in patients with persistent
VSN compared to that in patients with rapid recovery. The
results provide novel insights into the mechanisms underlying

recovery; that is, the FC of the DAN, but not the VAN, key
nodes play a crucial role in recovery from VSN. In addition, local
reduction in spontaneous neuronal activity in the cerebellum is
associated with poor recovery.

Recovery is associated with changes in FC in the DAN.
Consistent with previous research, changes in interhemispheric
FC are sensitive markers related to recovery, especially in the
DAN (Ramsey et al., 2016; Umarova et al., 2016). In this
study, we found that the ipsilesional DAN was more related to
recovery by an increase in the interhemispheric FC of the key
nodes in the ipsilesional frontal, parietal, and temporal regions,
whereas the contralesional DAN was more related to the key
nodes of the lesionlateral hemisphere. This indicates that both
the ipsilesional and contralesional hemispheres are involved in
compensation of the attention network after injury. This may
involve reorganization and integration of the attention network.
Umarova et al. conducted a longitudinal study on patients with
VSN and found that transneuronal changes in the contralesional
frontoparietal and bilateral occipital connections were distinctly
related to an unrecovered VSN in patients with chronic stroke.
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FIGURE 3

Functional connectivity (FC) maps. Individual and group comparisons of resting state functional connectivity of seed ROIs rFEF (A) and lFEF (B).
First panel show individual one sample t-test for persistent VSN(P-VSN) (p < 0.001). Second panel show individual one sample t-test for rapid
recovery VSN(R-VSN) (p < 0.001). Remaining panels show two-sample t-tests comparing persistent VSN with rapid recovery VSN(P-R) (p < 0.01).

FIGURE 4

Functional connectivity (FC) maps. Individual and group comparisons of resting state functional connectivity of seed ROIs rIPS (A) and lIPS (B).
First panel show individual one sample t-test for persistent VSN(P-VSN) (p < 0.001). Second panel show individual one sample t-test for rapid
recovery VSN(R-VSN) (p < 0.001). Remaining panels show two-sample t-tests comparing persistent VSN with rapid recovery VSN(P-R) (p < 0.01).
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TABLE 2 Group differences in functional connectivity of DAN and VAN ROIs.

Seed Functional connectivity MNI coordinates Z-score Cluster size

X Y Z (voxels)

rFEF right superior frontal gyrus 15 48 33 −4.92 456

right inferior temporal gyrus 66 −36 −12 −5.01 211

right medial orbitofrontal cortex −15 69 −3 −4.59 186

left precuneus −6 −66 39 −3.55 152

right inferior parietal gyrus 60 −33 39 −4.87 114

lFEF right superior frontal gyrus 6 54 39 −4.52 206

right medial frontal gyrus −21 60 27 −5.36 204

right rectus gyrus 3 57 −27 −5.53 116

left superior frontal gyrus −9 42 54 −4.45 110

rIPS left middle cingulate gyrus −3 39 30 −3.94 104

lIPS right superior temporal pole 51 12 −33 −5.72 428

right postcentral gyrus 54 21 39 −4.53 376

right posterior cingulate gyrus 0 −54 24 −4.13 117

FIGURE 5

ALFF maps. ALFF maps show two-sample t-tests comparing persistent VSN with rapid recovery VSN(P-R) (p < 0.001).

This revealed a large-scale structural reorganization of the
visual-spatial attention network after stroke, especially in the
trans-hemisphere (Umarova et al., 2017). Lunven et al. believed
that persistent neglect is due to disconnection between the DAN
and VAN. This emphasizes the importance of network-based
integration (Lunven et al., 2015).

Large-scale reorganization of functional connections in the
whole-brain network structure has been previously reported.
Animal studies have shown that when one hemisphere is
damaged, activation of the entire attention network decreases,
in addition to the decrease in activation of the ipsilesional
attention network. Synaptic loss occurred 2–4 days after stroke,
the normal network activation mode was disrupted, and the
entire attention network was in an overexcited state 7 days after
stroke, and characterized by the expansion of excitatory neurites
and an increase in synapses. This phenomenon exists not only
around the lesion but also in the contralesional hemisphere

(Deuel and Collins, 1983; Gonzalez et al., 2004). A recent study
found that axonal and retrograde degeneration occurs not only
occur around the lesion but also in distant regions that are not
directly connected to the lesion by transneuronal remodeling
(Fornito et al., 2015). In addition, the lesions in our patients
were located within the territory of the right middle cerebral
artery. According to some studies, hemispheric differences occur
in different hemispheres after an acute middle cerebral artery
infarction. Compensatory activation occurs in related brain
areas of the dominant hemisphere after acute infarction in
the middle cerebral artery of the non-dominant hemisphere
(Gao et al., 2021).

In the current study, we also found that patients with
persistent VSN showed weaker FC of the DAN to the whole
brain, particularly in the frontal region, as revealed by group
differences in the whole-brain FC of key DAN nodes. Previous
studies have indicated an important role of the frontal lobe in the
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DAN. The contralesional prefrontal cortex supports to residual
ipsilesional attention centers to accelerate restoration or the
reorganization of the perilesional cortex (Umarova et al., 2016).
According to the degree of injury to the patient, the prefrontal
cortex produces different advanced controls over movement
and sensation systems (Liu et al., 2016). In stroke patients
with mild dysfunction, rs-fMRI has shown that a stronger FC
between the prefrontal lobe and motor cortex is associated
with better recovery (Lam et al., 2018). However, in patients
with severe dysfunction after stroke, the prefrontal cortex may
play a greater role in functional recovery, and FC between
the prefrontal sensorimotor cortex was significantly correlated
with recovery (Yin et al., 2012). In unilateral hemispheric
prefrontal lobe injury in macaque monkeys, FC between the
contralesional prefrontal cortex and ipsilesional parietal cortex
was related to recovery (Adam et al., 2020). Activation of
the contralesional prefrontal cortex is a compensatory strategy
underlying cortical mechanisms during the recovery process
after VSN (Takamura et al., 2016).

In addition to conventional FC analyses, we extracted the
ALFF from each ROI as a marker of spontaneous regional
neuronal activity. The ALFF is a low-frequency fluctuation
index that improves sensitivity and specificity in the detection
of spontaneous brain activitiy (Zou et al., 2008). Interestingly,
we found that the ALFF values in the left cerebellum anterior
lobe were lower in the persistent VSN group than in the
rapid recovery group. This indicates that the cerebellum has a
positive effect on recovery and may compensate for the VSN
by affecting the attention network. Inconsistent with previous
studies by Machner et al., we found that the ALFF of fMRI in
the cerebellum of patients with persistent VSN was lower than
that of patients with rapid recovery. However, the reduced ALFF
also reflects local disruption of long-range neuronal network
communication in VSN patients (Machner et al., 2020).

These findings do not contradict the previous proposal of
a crucial role for the DAN in VSN. However, the functional
role of cerebellar structures in cognitive networks remains
poorly understood. In fact, an article published in Science
in 1997 was the first fMRI study propose the role of the
cerebellum in attention processing (Allen et al., 1997). However,
in the following 20 years, the role of the cerebellum in
motor function gradually came into view, and its role in
cognition was rarely mentioned. Buckner et al. identified
a region spanning cerebellar lobules VIIb and VIIIa that
exhibited connectivity with the cortical DAN (Buckner et al.,
2011). In electrophysiological tests of patients with cerebellar
injury, the lateral CrusI and CrusII of the cerebellum were
associated with the attention network of the frontal parietal
lobe (Striemer et al., 2015). A few months later, Brissenden
et al. found that a region located in the posterior cerebellar
lobe (lobules VIIb and VIIIa) showed strong activation
under the attention multi-objective paradigm through visual
attention-related tasks, which provided evidence that the

DAN extended functionally to the cerebellum (Brissenden
et al., 2016). Subsequently, this team demonstrated that
neurons in the VIIb/VIIIa area of the cerebellum generates
stronger recruitment during spatial coding tasks and were
strongly activated under visual working memory load. This
performance was mirrored by the corresponding areas of
the cerebral hemisphere, which further proved that there
was a highly specific cortical cerebellar network involved in
attention function (Brissenden et al., 2018). Furthermore, a
recent study showed that the cerebellum, as an attention
structure across the cortex and subcortex, was strongly
activated during the attention paradigm, which provides new
evidence for the cerebellum as an important node of the
DAN (Brissenden et al., 2016). There are more neurons
in the intact cerebellum than in the cerebral cortex that
may participate in the DAN and compensate for recovery
through the cerebellum-to-cortex circuit. Consistent with
our results, all the patients with good outcomes showed
cerebellar activation (Lasek-Bal et al., 2018). The results of
these studies also support the idea that neurological deficits
are compensated by engagement of larger areas of the
cerebral cortex.

The potential limitations of this study should be considered.
First, this was a retrospective study that compared differences
in FC between patients with different outcomes. However, we
did not include right brain lesions without VSN. Second, due
to the high requirements of rs-fMRI for patients, we included
only patients who could cooperate with the examination.
Therefore, we were unable to assess the attention network
of patients with a more serious disability who could not
cooperate in the examination. Third, our study focused on
patients with VSN in the early subacute stage after stroke.
There has been no follow-up of these patients, and it is
unknown whether patients with persistent VSN also experience
neglect in the chronic phase. Finally, patients with cerebral
hemorrhage and cerebral infarction were included in this
study. To minimize the impact of cerebral hemorrhage
on the results, we included examinations of patients 2–
4 weeks after stroke. Cerebral hemorrhage was resolved
in four patients, and there was no obvious perilesional
edema. We also believe that it would be better to unify the
types of stroke.

Conclusion

Persistent VSN patients with stroke show interhemispheric
and intrahemispheric FC of the DAN to the whole brain, and
the ALFF value in the left cerebellum anterior lobe was reduced
compared to that in those with rapid recovery. Our results
demonstrate that the DAN rather than the VAN, plays a more
important role in recovery from VSN, and that the cerebellum
is involved in recovery. Our findings provide activation in
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DAN between key notes as important evidence for recovery
and facilitate the design of therapeutic approaches such as non-
invasive brain stimulation to ensure better recovery of VSN and
development of newer interventions after stroke.
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Balance rehabilitation is exceedingly crucial during stroke rehabilitation and

is highly related to the stroke patients’ secondary injuries (caused by falling).

Stroke patients focus on walking ability rehabilitation during the early stage.

Ankle dorsiflexion can activate the brain areas of stroke patients, similar to

walking. The combination of electroencephalography (EEG) and functional

near-infrared spectroscopy (fNIRS) was a new method, providing more

beneficial information. We extracted the event-related desynchronization

(ERD), oxygenated hemoglobin (HBO), and Phase Synchronization Index

(PSI) features during ankle dorsiflexion from EEG and fNIRS. Moreover, we

established a linear regression model to predict Berg Balance Scale (BBS)

values and used an eightfold cross validation to test the model. The results

showed that ERD, HBO, PSI, and age were critical biomarkers in predicting

BBS. ERD and HBO during ankle dorsiflexion and age were promising

biomarkers for stroke motor recovery.

KEYWORDS

brain-computer interface, EEG, fNIRS, stroke, balance rehabilitation

Introduction

Stroke is a disease affecting the arteries within the brain, resulting in motor
impairment in about 80% of survivors (Langhorne et al., 2009). Among many stroke
survivors, most patients were left with sequelae of motor dysfunction, and 30% of
patients completely lost the ability to work and became highly disabled (Langhorne
et al., 2009; Benjamin et al., 2017). Motor dysfunction causes patients to lose part of their
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living ability, rendering them unable to complete some
daily living activities (Basteris et al., 2014). Therefore,
motor recovery always focuses on stroke rehabilitation
(Hatem et al., 2016). Balance recovery is essential to motor
recovery, as the imbalance-leading falling substantially affects
regular training and rehabilitation. In clinical practice,
the Berg Balance Scale (BBS) is often used to evaluate
the balance function of patients with cerebrovascular and
brain injury (Sapmaz and Mujdeci, 2021). However, the
scale’s accuracy depends on the experience and subjective
judgment of the physical therapists. A biomarker that
can illustrate the balance recovery process is necessary to
organize the rehabilitation strategy better and improve
balance recovery. Developed imaging techniques have given
valuable information for diagnostic and functional prognosis.
Nevertheless, they may have limitations, such as the special
requirements for patients and low temporal resolution
(Mukherjee et al., 2008; Buchbinder, 2016). Therefore, more
and more studies have concentrated on more convenient
methods with electroencephalography (EEG) (Wu et al., 2016;
Sebastian-Romagosa et al., 2020).

The EEG acquisition device is simple and portable and
has a high temporal resolution. It is highly sensitive to
detecting EEG activities and allows subjects to perform some
complex limb movement tasks while observing them non-
invasively and dynamically in real-time. The neurons’ activity
in the brain has been broadly used to monitor the stroke
survivors’ brain states (Cillessen et al., 1994; Foreman and
Claassen, 2012; Xin et al., 2017). The EEG’s beta band power
patterns differed according to the location of the lesion
(Park et al., 2016), and event-related desynchronization (ERD)
magnitude correlated with residual motor function in the
paretic arm (Bartur et al., 2019). However, one challenge
of using EEG is its low spatial resolution problem, i.e., the
ERD may be contaminated and weakened by the neural
activities in the nearby areas. One alternative solution is
to use functional near-infrared spectroscopy (fNIRS) as a
supplement (Li et al., 2020). In a study using fNIRS to
assess the correlation between cortical activation and external
postural disturbances, the correlation became stronger with
an increase in position-related oxygenated hemoglobin signal
and an increase in balance function as measured by the BBS
balance scale supplementary motor area (SMA) (Fujimoto
et al., 2014). The fNIRS alone has been applied to assess
the stroke’s progressive brain plasticity (Delorme et al., 2019).
It has also been used with EEG to estimate the effect of
different training strategies (Wang et al., 2019). Therefore,
combining fNIRS and EEG may give new sight to stroke
rehabilitation assessment.

The stroke rehabilitation assessment with EEG or fNIRS
was usually undertaken during resting tasks (Nicolo et al.,
2015; Sebastian-Romagosa et al., 2020). However, motor
recovery should be reflected better during motor or motor

imagery tasks (Wang et al., 2019; Li et al., 2020) when
the corresponding brain area is activated. Walking ability is
an urgent need for stroke patients in the early stage. The
assessment should be taken during walking to assess the walking
ability of stroke patients precisely. Bipedal locomotion is a
complex task requiring maintaining specific motion frequencies,
balance and load-bearing, visual integration, and multi-joint
coordination (Petersen et al., 2012). However, most stroke
survivors during the early stage cannot walk, or they may fall
off during walking.

Additionally, ankle dorsiflexion is critical for walking as
it occurs throughout the swing phase and at the initiation of
the stance phase of gait (Dobkin et al., 2004). How the stroke
survivors complete the ankle dorsiflexion affects their walking
ability. Therefore, ankle dorsiflexion may be a promising task for
stroke rehabilitation assessment (Gennaro and De Bruin, 2020).

This paper aims to evaluate the combination of EEG
and fNIRS features during ankle dorsiflexion in rehabilitation
assessment. We collected data from stroke survivors during
ankle dorsiflexion and built a linear regression model with age,
ERD, and oxygenated hemoglobin (HBO) as the predictors and
BBS as the response. Our results verified the feasibility of EEG
and fNIRS combination in predicting stroke balance state.

Materials and methods

Participants and experiments

Eight participants (three females and five males; mean age:
53.5± 15.48 years old) with stroke participated. All participants
suffered hemiplegia from the first unilateral stroke, resulting
in lower limb function limitation without sensory function
loss. They needed to understand written and oral instructions
and be in a good mental state, with a mini-mental state
examination (MMSE) score > 24. The healthy control group
consisted of six age-matched adults. All participants gave their
written informed consent prior to participation. The Ethical
Committee of Tianjin Medical University General Hospital
approved the study.

Before the experiment, the motor function of the
participant was assessed by three physical therapists with
the BBS scale for lower extremities. The mean of the scale
values was recorded. The participants were seated in a
chair during the experiment, with their feet naturally on
the ground. They were asked to complete the paraplegic
dorsiflexion according to the instructions on the screen as in
Figure 1.

During the experiment, there were five sessions, each
including ten trials. A single trial lasted for 11.5 s. Thus, it
consisted of 1-s preparation, 2.5-s dynamic dorsiflexion, three-
second static dorsiflexion maintenance, and five-second rest
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FIGURE 1

Experimental scenario.

FIGURE 2

A session trail.

(Figure 2). A 5-min rest between successive sessions in case of
muscle fatigue existed.

The participants were asked to relax their upper body, keep
their upper body and head as still as possible, and avoid moving
their heads, talking, swallowing, and blinking excessively during
the dorsiflexion. The stimulation interface was completed based
on E-Prime 3.0 software (Psychology Software Tools, Pittsburgh,
PA, United States).

Data recording

EEG signals were recorded by the Neuroscan Greal EEG
system (Neuroscan, Victoria, Australia). Twenty-eight-lead EEG
signals were collected according to the 10/20 system, as in
Figure 3A. The sampling rate of the EEG signal was 1,024 Hz,
with the top of the head as a reference. The ground electrode
was placed on the GND of the forehead.

Data processing

ERD

As ankle flexion was highly related to the activities of
neurons under Cz, the collected raw EEG signals at Cz were

pre-processed. Data pre-processing was performed using Matlab
R2014b (Math Works, MA, United States) with the toolbox
EEGLAB (Swartz Center for Computational Neuroscience1).
EEG signals were filtered to 0.05–35 Hz, and the EEG was
down-sampled to 256 Hz. Then, eye movements and excessive
muscle activity components were identified by visual inspection
and removed after independent component analysis (ICA). Data
were intercepted from 1 s before to 5 s after the onset of ankle
dorsiflexion (0 s), and−1 s to 0 s was the baseline.

The event-related power changes can be shown in the
time-frequency domain by event-related spectral perturbation
(ERSP), an excellent method to evaluate the time-frequency
characteristics of event-related potentials. ERSP could provide
information for event-related synchronization (ERS) and event-
related desynchronization (ERD). It considers the average power
spectrum changes of event-related potentials in a frequency
band range. The ERSP for n-trial data was calculated as:

ERSP
(
f , t
)
=

1
n

n∑
k=1

Fk
(
f , t
)2 (1)

where n indicated the total trial number, and Fk
(
f , t
)

the
spectral estimation at frequency f and time t for the kth trial.

To show ERD/ERS during the task, we calculated the
baseline-normalized ERSP. For each time bin, the normalized
ERSP across frequency f was obtained by

nERSP
(
f
)
= ERSP

(
f
)
− baseline

(
f
)

(2)

where baseline
(
f
)
=

1
N
∑0s

t=−1s ERSP
(
f , t
)
, N was the number

of time bins from −1 s to 0 s. The ERD index, the predictor of
the BBS scale value, was the mean of negative nERSP within a
specific area (15 Hz∼23 Hz and 0 s∼1 s), determined by the
average of nERSP in the time-frequency domain.

Phase synchronization index

The brain’s function depends on the interaction between
neurons in different regions or across brain regions (He et al.,
2007). Recent studies have also demonstrated the efficacy
of synchronized brain activity in evaluating neural networks
and their relationship with various clinical conditions (Engel
et al., 2013). Brain damage after a stroke can change brain
function connections. Therefore, the multi-regional interactions
in the brain network are valuable for understanding the
pathophysiology and neurological dysfunction after a stroke
(Du et al., 2018).

The phase synchronization index is a normalized parameter
that measures the relationship between a pair of variables and
effectively describes the integration between neurons. First, the
pre-processed signal is filtered to the band of interest, and then

1 http://sccn.ucsd.edu/eeglab/
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FIGURE 3

Signal acquisition. (A) EEG electrodes, and (B) fNIRS probe arrangement.

FIGURE 4

Mean of nERSP at Cz for (A) 8 patients and (B) 6 healthy control group.

the instantaneous phase of the filtered EEG signal is extracted
using the Hilbert transform. The phase synchronization index
is calculated as follows, quantifying the phase synchronization
level of the signal:

PSI =

√〈
cos φH

xy(t)
〉2
t
+

〈
sin φH

xy(t)
〉2
t

(3)

which, φH
xy(t) is the instantaneous phase difference between the

signals x(t) and y(t), and 〈.〉 represents the mean operation over
some time. PSI is a real number between 0 and 1. When PSI = 1,
the two signals are completely synchronized, and when PSI = 0,
they are entirely out of sync.

A multi-channel oxygenation monitor (NirScan, Danyang
Huichuang Medical Equipment Co., Ltd.) recorded the
participants’ hemodynamic responses over sensorimotor cortex
areas. The distance between the source and the detector was
3 cm, and the sampling frequency was 20 Hz. The layout

of the fNIRS acquisition cap is in Figure 3B, where S1-S8
represents fNIRS emission source probes and D1-D8 fNIRS
detector probes. Thus, there were twenty-two fNIRS channels
in total.

Oxygenated, deoxygenated, and total
hemoglobin

The oxygenation monitor software calculated the
oxygenated, deoxygenated, and total hemoglobin (HBO,
HBR, and HBT). Then the data were 0.01 Hz∼0.2 Hz filtered to
exclude disturbance. The data within the area covered by S2-D4,
S2-D2, S7-D2, S7-D4, S7-D7, S7-D5, S5-D7, and S5-D5 were
segmented from 2 s before (baseline) to 10 s after ankle flexion.
The task-related changes of HBO, HBR, and HBT according
to the 2-s baseline were calculated and averaged for the above
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FIGURE 5

ERD index of patients and the control group.

FIGURE 6

PSI index of patients and the control group. *Significant
difference.
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FIGURE 7

Cerebral blood oxygen concentration during ankle flexion.

fNIRS channels. The area between the average HBO curve and
the horizontal axis predicted the BBS scale values.

Linear regression method

Linear regression analysis is a common modeling method;
its fundamental principle is to use one or more independent

variables to predict a dependent variable to establish a linear
relationship. Assuming that the response variable Y is a linear
function of one or more predictive variables (explanatory
variables) X, multiple linear regression can be expressed as:

Y = β0 + β1X1 + β2X2 + · · · + βnXn + e (4)

where Y is the target variable, βi (i = 0, 1, 2. n) is the regression
parameters, Xi = (i = 0, 1, 2. n) is the predictive variable of
regression. The e is the error term.

After building the model, it is usually necessary to analyze
whether the linear influence of the predictive variable Xi on
the target variable Y is significant further. Next, we select the
predictive variable with the most significant effect on the target
variable Y and then determine the relative weight of each
independent variable on the target variable.

This paper explored the correlation between BBS and
multiple variables, including age, ERD, HBO and the square
of HBO. A 4 × 8 variable existed for linear regression. The
coefficient of determination, R2, was used to evaluate the
goodness of fit and statistical significance for each predictor with
a pre-set alpha level of 0.05 for analysis. In order to further
demonstrate and evaluate the effectiveness of the model, an
eightfold cross validation of the model was done, with seven
samples as the data for model establishment, and one sample
for testing. The RMSE was calculated for the cross validation.

Results

ERD features

Figure 4A depicts the mean nERSP at Cz in a total of 400
tests of ankle flexion in eight stroke patients, while Figure 4B
illustrates the mean nERSP at Cz in a total of 300 tests of ankle
flexion in six healthy controls. Blue represents ERD and red
ERS region. The ankle enters a dynamic buckling process within
2.5 s after 0 s and a static contraction after 2.5 s considering
−1 s∼0 s as the baseline. The figure reveals that the patient
had an apparent ERD phenomenon at about 15 Hz (lasting
the entire exercise cycle) and about 20 Hz (mainly during
dynamic dorsiflexion within 1 s after the start of the movement
and declining during the rest period). However, the evident
ERD phenomenon of healthy subjects appeared at about 13 Hz
and 25 Hz, and later than patients, and lasted shorter in the
whole movement cycle. ERD phenomenon showed that cortical
regions of the Cz electrode are convoluted in task planning and
motion control during the task process, aligning with previous
studies (Xu et al., 2018). Results verified that the paralyzed ankle
flexion induced ERD within the beta band at Cz.

This study used the ERD index as the predictor of the BBS
scale, the mean value of negative nERSP within a specific area
(15 Hz∼23 Hz and 0 s∼1 s) determined by the mean nERSP
in the time-frequency domain. In Figure 5, the calculated mean
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TABLE 1 Age, ERD, HBO, and BBS of the patients.

Patient Age ERD HBO BBS

P1 60 −1.834 1.905 55

P2 74 −0.396 1.999 33

P3 49 −1.977 0.211 40

P4 64 −0.695 0.098 8

P5 33 −0.979 2.925 46

P6 32 −0.448 2.066 55

P7 67 −0.825 1.170 40

P8 49 −0.790 2.000 40

Avg. 54 −0.993 1.547 39.6

ERD of 8 patients was higher than that of the healthy controls.
However, no significant difference between the two, possibly due
to the limited sample size.

Phase synchronization index
We compared the phase synchronization index of EEG

signals. We found significant differences (p = 0.023) in
inter-PSI between patients and healthy subjects at the α

band (Figure 6), a better understanding the differences
between patients and healthy subjects during exercise. It
suggested the stroke inactivation of the cortical network. The
difference in PSI between hemispheres also indicated that the
dynamic mode of synchronous activation between the two
hemispheres deteriorated in functional communication due to
the brain injury.

HBO features

Figure 7 shows that the mean HBO, HBR, and HBT values
varied during ankle flexion: the HBO and HBT increased slowly
after the ankle flexion onset (0 s) and decreased after the
flexion completion (5.5 s). The fNIRS data differed consistently
with ankle flexion, but the change lasted longer than the
movement. HBO closely relates to the metabolism of local
tissues. Therefore, the measured HBO can reflect the motor
area activities.

Regression analysis

Table 1 lists the peak of the HBO curve for every patient.
Then, this index should reflect the oxygen consumption of the
specific brain area. It also depicts the ERD indexes at Cz of eight
participants and the corresponding average values. We used the
values in this table for the regression analysis.

The multiple linear regression model was established using
the data in Table 1. Table 2 lists the beta coefficient and p-
values for all the model parameters. The adjusted R2 was 0.840,
indicating the model explained 84% of the variability in BBS.

TABLE 2 Multiple linear regression model.

Independent variable β (95% CL) p value

Constant 30.6 (17.2, 44.0) 0.107

ERD −12.4 (−16.5,−8.4) 0.054

HBO 37.3 (28.9, 45.8) 0.021

AGE −0.5 (−0.7,−0.3) 0.075

HBO*HBO −10.6 (−13.7,−7.4) 0.043

*Multiplication sign.

Correlation analysis revealed that no significant correlation
between any two of the three predictors existed.

The regression model showed that the predictors ERD, AGE,
and HBO could predict patients’ balance function (Figure 8),
and the prediction model was significant (p = 0.043).

The result of cross validation was shown in Figure 9. The
RMSE of the predicted and actual BBS scores was 9.83 for the
cross validation.

Discussion and conclusion

We focused on event-related desynchronization (ERD) as a
motor command. ERD is a phenomenon where the α and/or
the β band voltages decrease as the number of synchronized
neural assemblies increases. Theα and β ERD occur before and
during motor execution or motor imagery (Babiloni et al., 1999).
Therefore, ERD can be interpreted as an electrophysiological
correlate of activated cortical areas involved in processing
sensory or cognitive information or the production of motor
behavior (Pfurtscheller, 1992). An increased and/or more
widespread ERD could result from the involvement of a more
extensive neural network or more cell assemblies in information
processing. Factors contributing to such an enhancement of
the ERD include increased task complexity and more efficient
task performance (Defebvre et al., 1996). This study covers
dorsiflexion of the ankle joint as simple and easy for healthy
subjects. However, they require more attention and energy
for stroke patients due to motor dysfunction. It may also
explain why ERD is more pronounced in patients than in
healthy subjects. The ERD of healthy people during dynamic
contraction of the ankle joint is more noticeable than that during
static contraction, which may be due to activity in primary
sensorimotor areas increasing in association with learning a
new motor task and decreasing after the task has been learned
(Zhuang et al., 1997).

In the fNIRS study, when subjects performed the ankle
flexion task, the sensorimotor area of the cerebral cortex
consumed oxygen and energy. At this point, the over-
compensation mechanism of the brain blood supply system
would flood the region with oxygen-rich blood, increasing
HBO concentration and decreasing HBR. It further suggests
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FIGURE 8

Scatterplots showing the relations between the actual and predicted BBS scales.
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FIGURE 9

Scatterplots showing the relations between the actual and
predicted BBS scales for cross validation.

that the experimental task activated this brain region. Previous
studies have demonstrated that EEG and fNIRS-based brain-
computer interface technology can enable a broader range of

cortical activation in stroke patients, enhancing neuroplasticity
(Kaiser et al., 2014). In this study, EEG features, including
ERD, fNIRS, and HBO, can predict patients’ balance function,
providing a new idea for guiding the rehabilitation of stroke
patients and evaluating and predicting patients’ rehabilitation
status. We considered the mean ERD and HBO values
in this study. However, more features should be extracted
from the data providing varied information. Future studies
should address these features. Only eight stroke patients
and six healthy control groups were recruited for our
experiment, providing a relatively small number of subjects.
The result of the regression analysis should be further
validated after collecting more data from patients and
healthy control.

To sum up, it was the first study considering both EEG
and fNIRS features during ankle dorsiflexion as the biomarkers
for stroke assessment. We extracted ERD and HBO features
from eight stroke patients and established a linear regression
model to predict BBS scale values. Age, ERD, and HBO during
ankle dorsiflexion were promising biomarkers for stroke motor
recovery. Further studies should include more participants with
stroke and healthy controls to obtain a reliable relationship
between these features and motor function state.
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High-quality brain signal data recorded by Stereoelectroencephalography

(SEEG) electrodes provide clinicians with clear guidance for presurgical

assessments for epilepsy surgeries. SEEG, however, is limited to selected

patients with epilepsy due to its invasive procedure. In this work, a brain signal

synthesis framework is presented to synthesize SEEG signals fromnon-invasive

EEG signals. First, a strategy to determine the matching relation between

EEG and SEEG channels is presented by considering both signal correlation

and spatial distance. Second, the EEG-to-SEEG generative adversarial network

(E2SGAN) is proposed to precisely synthesize SEEG data from the simultaneous

EEG data. Although the widely adopted magnitude spectra has proved to

be informative in EEG tasks, it leaves much to be desired in the setting of

signal synthesis. To this end, instantaneous frequency spectra is introduced

to further represent the alignment of the signal. Correlative spectral attention

(CSA) is proposed to enhance the discriminator of E2SGAN by capturing the

correlation between each pair of EEG and SEEG frequencies. The weighted

patch prediction (WPP) technique is devised to ensure robust temporal results.

Comparison experiments on real-patient data demonstrate that E2SGAN

outperforms baseline methods in both temporal and frequency domains. The

perturbation experiment reveals that the synthesized results have the potential

to capture abnormal discharges in epileptic patients before seizures.

KEYWORDS

EEG-SEEG mapping, GANs, epilepsy, signal synthesis, stereoelectroencephalography,

deep learning

1. Introduction

Stereoelectroencephalography (SEEG) is an intracranial recording that can pinpoint

the areas of the brain where seizures occur (Chabardes et al., 2018). SEEG signals

are acquired by depth electrodes implanted into the brain (Li et al., 2018). Its high

spatial and temporal resolution enable the recording of high-amplitude and high-

frequency intracranial discharges that are sometimes difficult to observe on scalp

electroencephalogram (EEG) (Ramantani et al., 2016). Despite its enormous benefits,

SEEG is yet to be a panacea. To implant the electrodes, an invasive surgical procedure

is required to make 10–20 small incisions in the scalp and skull. SEEG is only reserved

for selected epilepsy patients due to the potential risk of infection (Cossu et al., 2005).
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EEG, on the other hand, is an electrophysiological recording

of electrical activity on the scalp by placing electrodes in fixed

positions (Henry, 2006). EEG is non-invasive, relatively safe,

inexpensive, functionally fast, and has been widely used to

observe the spontaneous electrical activity of the brain. The

electromagnetic fields recorded by EEG represent the linear

summation of collective source activity (Plummer et al., 2008;

He et al., 2019). Nevertheless, its relatively low signal-to-noise

ratio, due to the attenuation by the layers lying around the brain,

hinders the use of EEG for accurate epilepsy diagnoses.

In order to obtain intracranial signal recordings at low risk,

a feasible solution is to recover an intracranial signal from a

low-cost non-invasive signal. Cao et al. (2022) introduce the

concept of virtual intracranial EEG (ViEEG) to reconstruct

electrocorticography (ECoG) from magnetoencephalographic

imaging (MEG). Dynamical network models are then applied to

ViEEG to probe the underlying mechanisms of complex neural

dynamics. Compared with ECoG, SEEG acts as an intracranial

signal in the same way with richer spatial resolution, and the

reconstruction is more challenging as well. As a collection

of intracranial signals in the scalp, EEG is thought to be

closely related to SEEG (Ramantani et al., 2016). Inspired

by previous work and supported by the existing medical

background, we propose a solution to synthesize intracranial

SEEG from non-invasive EEG to face the above challenge

and define this challenge as EEG-to-SEEG translation which

is shown in Figure 1. The synthesized SEEG should retain the

key features of real SEEG. In particular, the key features should

carry clinical implications that can be regarded as plausible

explanations of specific intracranial electrophysiological activity

such as abnormal epileptic discharges. By indicating under what

conditions key features are captured, clinicians can use the

synthesized results in a targetedmanner when assessing the need

for SEEG implantation and then pinpointing the location for

electrode implantation.

In recent years, the thriving of deep learning drives the

development of various fields including EEG analysis, providing

us with a new and feasible way of thinking. Antoniades et al.

(2018) made an attempt to devise an asymmetric auto-encoder

stacked with multi-layer neurons to map the temporal sequence

of EEG to SEEG and outperform the previous linear methods

such as least-squares regression (Kaur et al., 2014) and coupled

dictionary learning (Spyrou and Sanei, 2016). The stacked

architecture enhances the model’s capacity but the simple auto-

encoder architecture is still not powerful enough to achieve the

desired result. Their attempt demonstrated the possibility of

synthesizing SEEG from an input EEG and helped us recognize

the necessity of a more powerful feature extractor and a

sophisticated generation architecture. More recently, generative

adversarial networks (GANs) (Goodfellow et al., 2014) have

become amilestone in data generation and attracted our interest.

GANs are basically composed of a generator network and

a discriminator network. The process of adversarial training

forces the generator to synthesize results with more details.

As a result, the discriminator can hardly distinguish the real

and generated ones. The ability of GANs to fit input and

output distributions makes it outstanding in heterogeneous data

synthesis (Jiao et al., 2019; Selim et al., 2020). The excellence

of GANs soon inspired researchers to leverage this architecture

as a new fashion to generate EEG signals (Hartmann et al.,

2018; Luo T-j. et al., 2020; Yao et al., 2020). Furthermore, an

improvement in GAN by imposing a condition on the input has

achieved great success in image-to-image translation (Isola et al.,

2017), which makes it possible to transfer the style or texture

of the input to the output image. They utilized PatchGAN as

a new paradigm of discriminator in order to restrict GANs to

only model high-frequency structures. Their work enlightened

us to leverage conditional GANs (cGANs) (Mirza and Osindero,

2014) together with PatchGAN-based paradigm to transfer an

EEG segment to the SEEG segment.

Although the above methods are mature and proved to be

effective, most of them only consider temporal representation,

neglecting the informative features hidden behind. Numerous

studies have demonstrated that time-frequency representations

obtained from Short-Time Fourier Transform (STFT) (Li

et al., 2021) or Morlet wavelet convolutions provide richer

information and help give better predictions (Yao et al.,

2018; Wang et al., 2020). Clinically, different EEG bands

have discriminative implications (Tatum, 2014) and serve as

beneficial features in many tasks (Yao et al., 2018; Wang et al.,

2020). Therefore, in the context of EEG-to-SEEG translation,

it is necessary to explore and exploit the correlation between

two signals from a frequency domain perspective. Another

discovery that has intrigued us is that the partial derivative

of the unwrapped phase with respect to time, commonly

referred to as the instantaneous frequency (IF), has great

potential in the synthesis of phase spectra (Engel et al., 2019;

Marafioti et al., 2019). Better phase spectrum synthesis ensures

more coherent temporal results, which is one of the aims

of this work.

Furthermore, SEEG electrodes outnumber EEG electrodes

in most cases, and the placement of SEEG electrodes varies

from patient to patient. Therefore, for the set-wise translation,

it is inevitable to determine the matching relationship between

the EEG and the SEEG set. This requires us to develop

a strategy to select reasonable pairs from a large number

of candidate fragments. The selected pairs are expected to

contain clinically meaningful features. Subject to the complexity

of EEG data, we were unable to accurately capture key

signals such as potential pre-seizure micro-abnormal discharges.

However, based on the good synchronization property of

EEG and SEEG, it can be assumed that this key signal must

be hidden in pairs with a strong correlation. In general,

this correlation is affected by physical distance, and the

strength can be measured by calculations based on power

spectral density.
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FIGURE 1

Description of EEG-to-Stereoelectroencephalography (SEEG) translation. EEG and SEEG are represented with a concatenated matrix of

frequency and IF spectra. The di�erence between the real invasive SEEG and that synthesized from simultaneous non-invasive EEG is minimized.

In this work, by leveraging both the temporal and frequency

characteristics of brain signals, an EEG-SEEG matching strategy

is designed to construct an aligned dataset and an EEG-to-SEEG

generative adversarial network called E2SGAN is proposed.

First, the EEG-SEEG matching strategy explores the

nonlinear correlation between EEG and SEEG by observing how

signal similarity varies with spatial distance. An aligned dataset

is constructed with the selected pairs in the form of the time-

frequency representation obtained from the STFT transform.

Second, the E2SGAN trained on the aligned dataset is

proposed to convert the input EEG to the corresponding SEEG.

The E2SGAN architecture takes full advantage of the time-

frequency features and learns how to synthesize the magnitude

and IF spectra accurately. The generator is built with residual

blocks connecting a CNN-based encoder-decoder structure, and

the discriminator is designed according to the patch-based

paradigm. Two auxiliary modules, called correlative spectral

attention (CSA) and weighted patch prediction (WPP), are

devised to enhance the discriminator’s ability. CSA captures

the correlation between different combinations of EEG and

SEEG frequencies and prevents the discriminator from making

judgments based solely on the geometry of the spectra. WPP is

a technique that eliminates potential mode collapse that occurs

with each frequency to ensure more robust temporal results.

Extensive comparison experiments have shown

that the proposed framework is able to outperform

the baseline methods. The perturbation experiment

reveals that the synthesized results have the potential

to capture abnormal discharges in epileptic patients

before seizures.

The main contributions of this work are as follows:

• We propose E2SGAN, a practical deep-learning

algorithm to address the EEG-to-SEEG translation.

CSA and WPP are devised to capture the correlation

between EEG and SEEG spectra and ensure robust

temporal results.

• We pioneer the introduction of both magnitude and IF

spectra as a time-frequency representation in a brain signal

conversion setup.

• We develop an EEG-SEEG matching strategy to determine

the matching relation between EEG and SEEG sets.

The strategy explores the nonlinear correlation of signal

similarity with respect to spatial distance.

• Evaluation results on extensive real-patient-based

experiments demonstrate the excellent performance of

the proposed framework in both temporal and frequency

domains. A further perturbation experiment reveals the
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potential of the synthesized results to capture abnormal

epileptic discharges.

2. Materials and methods

2.1. Framework overview for SEEG
synthesis

A two-fold pipeline is designed for SEEG synthesis as

depicted in Figure 2, (1) to prepare aligned training data by

matching EEG and SEEG segments (see Section 2.2) and (2) to

translate EEG to SEEG (see Section 2.3 to 2.3.6).

The first stage does a preliminary job of organizing

preprocessed EEG and SEEG signals in pairs to form a

temporally aligned dataset. Raw EEG and SEEG signals are

filtered and segmented using a synchronized sliding window.

Then, segments from two sources are matched into pairs with

the proposed matching strategy (see Section 2.2) based on the

correlation between signal similarity and physical distance. The

paired segments are processed with STFT to obtain magnitude

spectra and IF spectra. The aligned dataset is constructed with

the processed pairs.

At the second stage, E2SGAN is trained on the aligned

dataset. The generator transforms the input EEG spectra to the

target SEEG spectra while the discriminator makes an effort

to distinguish real and fake targets conditioned by the input

EEG. CSA (see Section 2.3.4) and WPP (see Section 2.3.5)

are two auxiliary modules devised to give a further boost

to the discriminator. Specifically, CSA is a mutual attention

sub-network that captures the correlation between EEG and

SEEG frequencies. The captured correlation can be considered

as an extra supervision signal which ensures the correct

frequency correlation of the synthesized target with respect

to the input. WPP is a customized technique to disturb the

monotonous distribution of patch prediction. The variation

within patch-based prediction alleviates the mode collapse

caused by low variance in IF spectra. The optimization of the

whole network is described in Section 2.3.6. In the end, the

synthesized SEEG spectra are transformed back to temporal

representation via inverse STFT. The implementation of the

proposed framework is available at https://anonymous.4open.

science/r/E2SGAN-180B/.

2.2. EEG-SEEG matching strategy

As is discussed in Section 1, a matching strategy aims to

address two challenges. First, it has to make a compromise on

the difficulty of directly translating the whole set of EEG to

SEEG. Second, it should single out the potential pairs carrying

implicit clinical features, which can be measured by the strength

of correlation within a pair. Therefore, we settle for the second

best to focus on one-to-one mapping within pairwise EEG and

SEEG channels. Based on this setting, the set-wise translation

is decomposed to sub-tasks where the pairwise translation will

be performed. Such a strategy has to guarantee the existence

of a correlation between EEG and SEEG segments within a

pair. Specifically, a qualified solution should obey the following

procedure:

1. Map the set of EEG channels to the set of SEEG channels

via any form of bipartite graph matching to obtain a sea of

candidate EEG-SEEG pairs

2. Search for the optimal pairs while ensuring the correlation

3. Generalize the solution so as to be applied to upcoming

subjects

For this strategy, such correlation is defined as signal

similarity based on a given similarity metric. The correlation

does not vary with distance in a linear trend as is habitually

deemed, but rather a non-linear fashion. To demonstrate this

counterintuitive relation, the Hellinger Distance (Chen et al.,

2020) from two SEEG channels and the target EEG channel are

compared as shown in Figure 3. The leftmost column gives an

example of what a matching strategy is expected to solve. When

matching the EEG Cz (yellow-dotted at the top of Figure 3A),

the strategy is making a decision between the choice of SEEG

A14 and H14 (red-/green-circled at the bottom of Figure 3A).

Despite the closer physical distance of the SEEG channel A14 to

EEG Cz as is shown in the topological map (top of Figure 3B)

and the 3-D location (bottom of Figure 3B), the farther HD is

observed in A14 rather than H14 in Figure 3C. Hence, H14 is

considered to be an appropriate match to Cz. Potential reasons

can be the influence of brain geometry or brain functional

connectivity on signal propagation (Frauscher et al., 2018).

To guarantee a meaningful pairwise translation, a matching

strategy has to take into account the complex correlation within

a pair.

Here, one of the implementations following the

proposed procedure is presented in Algorithm 1 which

deals with the complex correlation in a simple but

efficient way. Regarding the EEG and SEEG channels

as two non-overlapped sets, the problem is initiated as

bipartite graph matching. To fulfill Procedure 1, all the

SEEG channels are first matched to a given EEG channel

to obtain candidate EEG-SEEG pairs. In Algorithm 1,

Euclidean distance is adopted as d(·) to sort the pairs.

Considering the non-linear trend, the set of C is divided into

subsets, leaving each subset corresponding with a distance

interval itv.

For each subset, linear regression is used as f to explore

the correlation between physical distance and signal similarity.

Here, Hellinger Distance is adopted as s(·) and the first-

order derivative ∇f is calculated, of which the positive value

indicates that the similarity between the EEG channel and SEEG

channels decreases as the physical distance becomes farther. The
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FIGURE 2

Proposed framework for EEG-to-SEEG translation. (A) Raw EEG and SEEG signals are filtered and segmented using a synchronized sliding

window. Then, segments from two sources are matched into pairs with the proposed strategy. Short-Time Fourier Transform (STFT) is

performed to obtain magnitude and IF spectra. The aligned dataset is constructed with the processed pairs. (B) EEG-to-SEEG generative

adversarial network (E2SGAN) is trained on the aligned dataset to synthesize SEEG from simultaneous EEG. Correlative Spectral Attention (CSA)

and Weighted Patch Prediction (WPP) are devised to give a further boost to the discriminator.

FIGURE 3

Demonstration of the counterintuitive relation between signal correlation and physical distance. (A) Illustrates that the matching strategy needs

to match the EEG channel (Cz, yellow-doted at the top) to one of the candidate SEEG channels (A14/H14, red-/green-circled at the bottom).

Despite the closer physical distance of SEEG A14 to EEG Cz which is shown in the topological map (top of B) and the 3-D location (bottom of B),

the farther HD is observed in A14 rather than H14 (C). H14 is considered to be an appropriate match to Cz.
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Input: EEG channel o and SEEG channels C = {c1, c2, ..., cN }

Function: physical distance metric d(·), signal

similarity metric s(·), regression function f, and

correlation operator ∇

Output: distance interval itv∗

1: Sort elements ci ∈ C by d(o, ci) in ascending order

2: Split C into subsets so that each subset Csub

corresponds with a distance interval itv

3: for Csub of subsets do

4: Obtain the correlation ∇f where f : d(o, cj) → s(o, cj),

cj ∈ Csub

5: end for

6: Repeat 1 to 5 on all segments and subjects

7: return interval itv∗ where the most frequent

correlation appears

Algorithm 1. EEG-SEEG Matching Strategy

proportion of positive ∇f is counted on each subset. The steps

mentioned above are carried out on all segments and subjects.

After that, the interval itv∗ where the most positive derivatives

appear, ranging from a to b mm, i.e., itv∗ = [a, b], is chosen.

SEEG channel approximately a mm away from the investigated

EEG is considered a match.

Within itv∗, the similarity between EEG and SEEG segments

prominently declines as the physical distance increases. Latent

correlations between SEEG and EEG signals have been shown

within this interval, even not necessarily stronger than the

others, thus satisfying Procedure 2. Other off-the-shelf methods

for finding optimal EEG-SEEG similarity can be directly applied

to the proposed strategy by replacing the metric s(·) in

Algorithm 1.

In the following experiments, EEGCz is chosen to obtain the

output interval itv∗, and the conclusion is extended to all other

EEG channels as is required by Procedure 3.

2.3. E2SGAN method

In the second stage, we center on the EEG to SEEG

translation. In this section, some rudiments of instantaneous

frequency and conditional GAN are provided as preliminary.

Then, the details about the generative model are provided,

including two auxiliary modules and the objectives.

2.3.1. Brain signal representation with
instantaneous frequency

To better characterize brain signals, we employ STFT, which

transforms the original signal into the frequency domain for

the generation task. Different from the previous classification

tasks, in addition to considering the energy distribution of the

brain signal in the frequency domain, the phase distribution

of the signal needs to be taken into consideration. Otherwise,

the time domain representation of the signal cannot be

restored. In practice, frame-based techniques used in signal

process/generation such as deconvolutions will cause the initial

phase of the segment intercepted by the frame to change over

time when the stride of frames does not equal the signal’s

periodicity. This phenomenon renders the generation of phase

spectra a tricky task as covering all the necessary frequencies and

all possible phase alignments to preserve the phase coherence is

impractical (Engel et al., 2019).

The partial derivative of the unwrapped phase with respect

to time, commonly referred to as instantaneous frequency (IF),

is a time varying measure of the true signal oscillation. For

example, given a function of phase with respect to time

ϕ(t) = ωt + θ (1)

where ω is the frequency and θ is the initial phase or phase

offset. The instantaneous frequency is defined as

ω(t) =
dϕ(t)

dt
(2)

where ϕ(t) has to be in unwrapped form (Sejdic et al., 2008).

In this case, a time-independent constant θ is derived. It has

been proved that the instantaneous frequency of phase is a more

promising modeling target than the phase itself when generating

signals or phase spectra (Marafioti et al., 2019). The assumption

of instantaneous frequency alleviates this risk since it remains

constant on each frequency and is feasible to be learned by

neural networks.

2.3.2. Conditional GANs for EEG-to-SEEG
translation

The Generative Adversarial Network proposed by

Goodfellow et al. (2014) has been proved to have strong

data generation ability, which benefits from its unique

network architecture: a pair of generator network and

discriminator network competing with each other to generate

indistinguishable data. The generator network is usually

composed of an encoder-decoder structure, which takes noise

sampled from a known prior distribution as input and aims

to fit the target data distribution as precisely as possible. The

discriminator network focuses on determining whether the

input data comes from the target data distribution or is forged

by the generator. Analogous to the game process, the two

networks optimize their own parameters through the feedback

given by each other and finally produce an output that is

indistinguishable from real and fake.

To control the modes of the data being generated, Mirza

and Osindero (2014) proposed the conditional version of GANs.
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FIGURE 4

Proposed discriminator with the pre-positioned CSA module capturing the frequency correlation of EEG and SEEG, and the post-positioned

WPP module ensuring robust temporal results.

Given a generator networkG and a discriminator networkD, the

optimization objective of cGANs can be formulated as follows:

LcGAN = Ex∼pdata(x)
[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))]

(3)

where x is a sample from the target distribution, y is the

condition, and z is sampled from a prior distribution. The

core idea of cGANs is to concatenate an extra condition to the

inputs of both G and D, imposing the networks to determine

whether the generated data matches the given condition. If y

also conforms to a known distribution, we are able to realize

the conversion between the two different data distributions. To

ensure a one-to-one mapping, the addition of noise needs to be

removed.

The basic idea of cGANs is adopted to achieve the goal of

translating EEG to SEEG. Overall, the generator G establishes

a mapping from an EEG segment e to an SEEG segment s

where e, s ∈ R
2×m×n. The first dimension represents the

concatenated magnitude and IF spectra. m and n are the

numbers of frequencies and time steps after the STFT operation.

Subsequently, D takes the (e, s) pair as input where s is either a

real SEEG segment or generated and outputs a scalar to indicate

the difference between the distributions of real and fake pairs.

PatchGAN (Isola et al., 2017) is adopted as D, which is a fully

convolutional neural network that penalizes structure at the

scale of patches based on the Markov chain assumption. Noise

added to the input is omitted since the task is a determinate

one-to-one mapping.

Furthermore, CSA and WPP are devised to give a further

boost to the discriminator as is shown in Figure 4. CSA is

a mutual attention sub-network that captures the correlation

between each combination of EEG and SEEG frequencies. The

captured correlation can be considered an extra supervision

signal which ensures the correct frequency correlation of

the synthesized target with respect to the input. WPP is a

customized technique to disturb the monotonous distribution of

patch predictions. The variation within patch-based prediction

alleviates the mode collapse caused by low variance in IF spectra

and ensures robust temporal results.

2.3.3. Architecture of generator and
discriminator networks

The architectures of the generator and discriminator

networks are shown in Table 1. The generator is basically a

three-layer CNN autoencoder with two residual blocks as the

bottleneck. 2D convolution filters are used for feature extraction

since the input is similar to an image. It is worth mentioning that

we use upsampling function followed by the same convolution

instead of a deconvolution filter to avoid checkerboard artifacts

(Odena et al., 2016). The discriminator is a PatchGAN, namely a

fully-convolutional structure. Equalized learning rate layer and

pixel-wise norm layer are applied to improve the stability of

training (Karras et al., 2018). Leaky ReLU (Maas et al., 2013) is

applied as the activation function.

2.3.4. Correlative spectral attention

To capture the latent correlation between the input EEG

segment and the target SEEG segment, the CSA is proposed.

It adopts a mutual attention module to model the correlation

from a perspective of magnitude spectra. The mutual attention

module serves as an observer that learns to express to what

extent the correlation between EEG and SEEG segments is

preserved and then passes the message to the discriminator as

a supply.

Specifically, given an input pair (e, s), only the magnitude

Emag and Smag ∈ R
m×n are extracted. The magnitude is defined

as a sequence of frequency vectors (f1, f2, ..., fm) where each

frequency vector fi ∈ R
n is a time series (t1, t2, ..., tn). To map
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TABLE 1 Architectures of the proposed generator and discriminator.

Layers Output shape Norm./Act.

Generator

Input 2× 128× 128 –

Padding 2× 128× 128 ELR/LReLU/PN

Conv2d 32× 64× 64 ELR/LReLU/PN

Conv2d 64× 32× 32 ELR/LReLU/PN

ResBlock*2 64× 32× 32 ELR/LReLU/PN

Upsample 64× 64× 64 –

Conv2d 32× 64× 64 ELR/LReLU/PN

Upsample 32× 128× 128 –

Conv2d 16× 128× 128 ELR/LReLU/PN

Padding 16× 134× 134 –

Conv2d 2× 128× 128 Tanh

Discriminator

Input 4× 128× 128 –

Conv2d 16× 64× 64 ELR/LReLU

Conv2d 32× 32× 32 ELR/LReLU

Conv2d 64× 16× 16 ELR/LReLU

Conv2d 128× 15× 15 ELR/LReLU

Conv2d 1× 14× 14 –

Emag and Smag to a proper space, learned affine transformations

A1 and A2 are applied. A(·,w, b) is defined as

A(X,w, b) = X · w+ b (4)

where X is the input matrix, w ∈ R
n×n and b ∈ R

n are

learnable affine parameters. To further obtain the correlative

expressions, mutual attention is calculated between Emag and

Smag . The attention score α is defined as

α = softmax(
A1(Emag ,w1, b1) · A2(Smag ,w2, b2)

T

√
n

) (5)

where each scalar in α ∈ R
m can be considered as the level of

correlations between different combinations of EEG and SEEG

frequencies. Emag is multiplied by α to obtain the output of CSA

CSA(e, s) = α · Emag (6)

and concatenate it with the original pair (e, s) as the final

input to D. Here, the output of CSA acts as an auxiliary

supervision signal which suggests the principal components of

input correlated to the target. CSA reinforces the temporal-

frequency representation to be better utilized by the downstream

PatchGAN.

2.3.5. Weighted patch prediction

The patch-based technique described in Isola et al. (2017) is

not powerful enough to discriminate the features of an image in

low variance situations since a little change in features provides

many similar sub-images of monotonous mode and therefore

leads to mode collapse. In practice, the low variance in IF along

each frequency is observed, which leads to mode collapse in

both generated magnitude and IF spectra. The collapsed spectra

have a salient characteristic of repetitive stripes along with

each frequency. To eliminate the undesirable results, a patch-

weighting technique is adopted by applying a learnable weight

to the prediction of a patch. The weighted patch predictions are

then conforming to a distorted distribution distinguishable from

each other. In addition, the averaged representation of all patch

predictions is weighted to provide a global view of the input to

adjust the final prediction.

Specifically, the original PatchGAND outputs a one-channel

matrix P ∈ R
1×k×k, of which the element represents the

prediction of a patch. k is the number of rows in the output

matrix. P is flattened to obtain vector p ∈ R
k2 . The global

representation pglobal is calculated by averaging the predictions

in p and applying a non-linear transformation:

pglobal = LReLU(
1

k2

k2
∑

i=1

pi) (7)

We choose leaky rectified activation (LReLU) (Maas et al.,

2013) as the non-linear function because it has been proved

to work well for training GAN models (Radford et al., 2015).

LReLU helps to ensure the gradient can flow through the entire

architecture. Then, pglobal and p are concatenated in preparation

for the weighted prediction ŷ, which is defined as

q = cat(pglobal, p), q ∈ R
k2+1 (8)

ŷ =

k2+1
∑

i=1

βiqi (9)

In Equation (9), βi denotes the learnable weight assigned

to the global view and the patch predictions. The behavior

of weighting disturbs the original monotonous distribution

among patches. The global representation pglobal plays a role in

providing the complete insight into the input since it collects

views from all patches.

2.3.6. Objectives

WGAN-GP (Gulrajani et al., 2017) is adopted to stabilize

the training of cGAN. The objective with the proposed auxiliary

modules are formulated as follows:

LGAN =Ee,s∼pr(e,s)[D(e, s,CSA(e, s))]−

Ee∼pr(e)[D(e,G(e),CSA(e,G(e)))]+

λgpEê,ŝ∼pi(ê,ŝ)[(‖∇(ê,ŝ)D(ê, ŝ,CSA(ê, ŝ))‖2 − 1)2]

(10)

Frontiers inNeuroscience 08 frontiersin.org

134

https://doi.org/10.3389/fnins.2022.971829
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnins.2022.971829

where pr(e, s) is the joint distribution of real pairs and pr(e)

is the distribution of EEG. pi(ê, ŝ) is the joint distribution defined

on the interpolated space derived from real and synthesized

pairs. WGAN-GP uses the interpolated space derived from the

real and synthesized samples to represent the input space of D

in order to compute gradients. λgp is used to scale the gradient

penalty.

L1 loss is adopted in the generator for it contributes to

capturing the low-frequency components of a image (Isola et al.,

2017), which in this work corresponds to the slow-changing

regions of spectra:

LL1 = Ee,s∼pr(e,s)[‖s− G(e)‖1] (11)

As a result, the final min-max optimization objective is

G
∗
E2SGAN = argmin

G
max
D

LGAN + λL1LL1 (12)

where λL1 is a hyper-parameter adjusting the L1 loss.

3. Results

3.1. Subjects and data recording

Seven subjects participated in the study. Subjects were

patients with intractable epilepsy who had implanted SEEG

electrodes for pre-surgical assessment of their seizure focus. All

implant parameters were determined solely by clinical needs

rather than those of this research. SEEG signals were acquired

using a clinical recording system (EEG-1200C, Nihon Kohden,

Irvine, CA) and sampled at 2,000 Hz. We also recorded scalp

EEG simultaneously. All subjects gave informed consent to this

study, which was approved by the Ethics Committee of Huashan

Hospital (Shanghai, China).

3.2. Preprocessing

Both EEG and SEEG signals are vulnerable to noise

interference. Slow signal drifts mask genuine cortical activity in

the low frequency range (de Cheveigné and Arzounian, 2018).

Electrical line noise causes unwanted effects on a fixed frequency

of 50 or 60 Hz and their harmonics. To remove these unwanted

components from the signal, EEG signal at 1 Hz and SEEG at

0.5 Hz is high-pass filtered to remove slow signal drifts (Li et al.,

2018), and the signal at 50 Hz and their harmonics are notch

filtered to remove line noise. SEEG electrodes located in the

cortex are filtered out for the reason that they contributed little to

the scalp signal. For the convenience of computation, the filtered

signal is down-sampled to 64 Hz where the majority of power

is distributed. Segmentation was performed on the continuous

brain signals. A sliding window with a size of 1,016 sampling

points (15.875 s) and a stride of a quarter of the window size is

performed on the filtered signal. STFT with the window size of

256 and the hop length of 8 was performed to transform each

segment to magnitude and phase spectra matrix with the same

shape of (128, 128). IF spectra matrix from phase spectra is then

derived. The final representation of each segment was a (2, 128,

and 128) tensor.

We used pre-ictal EEG and SEEG recorded simultaneously

from seven epileptic rest-state patients. The placement of EEG

electrodes conformed to the 10–20 system. After segmentation

and pairing, each subject had 8,000 EEG-SEEG pairs as the

training set, 200 as the validation set, and 200 as the test set.

3.3. Evaluation metrics

The quality of results is evaluated by calculating the distance

between real and generated SEEG segments from both temporal

and frequency perspectives. From a temporal perspective,

dynamic time warping (DTW) is used which matches two-

time series through a dynamic programming strategy. From a

frequency perspective, the Hellinger Distance and root mean

square errors (RMSE) of the power spectral density (PSD)

are adopted. The Hellinger Distance reflects the similarity of

the power distribution of different frequencies. MSE of PSD

reflects to what degree the dominant components of power

are recovered. Inception score (Salimans et al., 2016) and

Frechet Inception Distance (Heusel et al., 2017) are no longer

considered in this work which is a determined mapping instead

of generation from noise.

For evaluation, the leave-one-patient-out cross-validation

strategy is employed. The averaged results are computed only on

the test sets. Evaluation of the input EEG was used as a baseline.

The evaluations are post-processed according to Equation (13)

by dividing them by the baseline evaluation. A binary logarithm

was taken as the final result. For each experiment, the baseline

evaluation is shown on the header of the tables. For all metrics,

a smaller value indicates a better result.

Evallog (Sfake, Sreal) = log2
Eval(Sfake, Sreal)

Eval(Ereal, Sreal)
(13)

3.4. Baselines

The proposed architecture is compared with different

approaches using mainstream generative models. ASAE and

AE adopt an encoder-decoder architecture while EEGGAN,

GANSynth, and Pix2pix are based on GANs.

3.4.1. ASAE

Asymmetric-Symmetric Autoencoder uses an asymmetric

autoencoder to map scalp signal to intracranial signal, followed

by a symmetric autoencoder to enhance the generated results.
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3.4.2. AE

This baseline has the same architecture as the generator in

our method (see Table 1).

3.4.3. EEGGAN

EEGGAN uses an improved WGAN-GP by gradually

relaxing the gradient constraint to map a noise distribution to

the EEG distribution. In the experiments, the input noise is

replaced with EEG segments to generate SEEG.

3.4.4. uTSGAN

uTSGAN uses two WGAN-GP sub-models to interactively

learn the time- and frequency-domain generation of time series

from a noise distribution. The input noise is replaced with

reshaped EEG segments. It has to be mentioned that since the

authors of uTSGAN did not open-source their code, we only

reproduce their work in a simple way as efficiently as possible.

We use 2D Conv for the spectral WGAN and 1D Conv for the

temporal WGAN. The loss function and optimizers follow as

described in the original work (Smith and Smith, 2020, 2021).

3.4.5. Pix2pix

Pix2pix is a generic image-to-image translation approach

based on cGANs. In the experiments, we implement the

generator with the same architecture as the AE method and

adopt PatchGAN which was originally used in the work (Isola

et al., 2017).

3.4.6. GANSynth

GANSynth is a GAN-based method used in audio synthesis

which takes the magnitude and IF spectra as input to generate

the audio segments in a progressive way. The input noise is also

replaced with EEG segments.

For the baselines that are originally applied to signal

generation such as ASAE, EEGGAN, and GANSynth, we follow

the setting specified in the paper. In other words, STFT will

not be performed to preserve the temporal representation

for ASAE and EEGAN while magnitude and IF spectra are

used for GANSynth. For the rest, magnitude and phase

(instead of IF) spectra are used as a two-channel image

to be compatible with the CNN-based architectures. For

uTSGAN, we use both the temporal representation and the

magnitude matrix.

3.5. Experiment settings

λgp and λL1 are set to 10. The learning rate of G and D

is set to 1e-5 and 2e-5, respectively. In the training phase, the

model is first trained by 80 epochs without the CSA module

and then jointly trained by another 40 epochs. We adopted

Adam optimizer to perform gradient descent optimization

(Kingma and Ba, 2014) and implemented our framework with

Pytorch. Preprocessing is done with the help of the MNE toolkit

(Gramfort et al., 2013).

3.6. Performance of di�erent methods

3.6.1. Comparison with baseline methods

The results of the proposed method trained on the aligned

dataset guided by the proposed matching strategy introduced in

Section 2.2 are denoted as E2SGAN-S. The comparison results

are shown in Table 2. The full visual results are provided in

Supplementary Figures 1, 2. ASAE performs poorly in DTW and

HD because its encoder-decoder architecture simply based on

stacks of fully-connected layers is not powerful enough to learn

the complicated mapping between EEG and SEEG. Although it

seems to perform well on PSD, the fact is that the model only

has learned low-frequency pulses that dominate the magnitude

of the power spectrum. AE is able to capture the majority

of low-frequency features but underfits the high frequency.

This reflects on the temporal result as slow fluctuations with

simple ripples. Both the autoencoder-based methods overfit the

low frequencies because of no extra regularization on high-

frequency features. EEGGAN learns the mapping directly from

the temporal domain and captures the general distribution of the

target power spectrum, but it fails to learn the exact features of

the waveform, which leads to a competitive performance only

on HD. uTSGAN is inferior to the proposed E2SGAN and other

baselines. Pix2pix has a slightly better performance compared

to AE on PSD and HD. The patch-based discriminator enables

it to learn more complicated patterns but also makes it hard

to generate them accurately, resulting in poor performance on

DTW. GANSynth achieves the most competitive performance

among baselines because it utilizes IF spectra which contributes

to the accuracy in phase recovery. The progressive approach

enables it to capture the general power distribution and thus

perform well on HD metrics. The proposed method achieves

the best results on all metrics. The DTW result far superior

to the others demonstrates the effectiveness of adopting IF

spectra and the WPP technique. In addition, the lowest MSE of

PSD and HD results suggest that the CSA module successfully

captures not only the general power distribution of the target but

also the exact magnitude of different frequencies by imposing

regularization on the correlations between input and target

frequencies.

3.6.2. Influence of matching strategies

Furthermore, the performance of the proposed model on

datasets constructed under the guidance of different matching
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TABLE 2 Performance comparison with baselines.

Method DTW/1.636e-3 PSD/1.128e-9 HD/2.886e-6

ASAE (Antoniades et al., 2018) 2.867± 0.126 −1.384± 1.794 0.490± 0.800

AE(∗) −0.059± 0.815 −1.357± 1.659 0.337± 0.756

EEGGAN (Hartmann et al., 2018) −0.019± 0.624 −0.821± 1.457 0.068± 0.734

uTSGAN (Smith and Smith, 2021) 3.867± 0.012 3.424± 0.134 3.127± 0.050

Pix2pix (Isola et al., 2017) 0.133± 0.829 −1.396± 1.754 0.316± 0.834

GANSynth (Engel et al., 2019) −0.107± 0.740 −0.929± 1.453 0.191± 0.763

E2SGAN-N −0.424 ± 0.400 0.185± 0.298 0.572± 0.565

E2SGAN-S −0.414± 0.764 −1.480 ± 1.609 −0.221 ± 0.843

AE(∗) is implemented with the same architecture as the generator of the proposed method. The bold values indicate the baseline values of evaluation.

TABLE 3 Ablation study.

Method DTW/1.636e-3 PSD/1.128e-9 HD/2.886e-6

w/o CSA &WPP −0.318± 0.723 −1.633± 1.732 −0.393± 0.948

w/o WPP −0.325± 0.729 −1.681 ± 1.734 −0.425 ± 0.953

w/o CSA −0.346± 0.770 −1.385± 1.615 −0.112± 0.851

E2SGAN −0.414 ± 0.764 −1.480± 1.609 −0.221± 0.843

The bold values indicate the baseline values of evaluation.

strategies is investigated. A variant E2SGAN-N is proposed

to be trained on the dataset guided by the nearest neighbor

matching strategy. We adopt a most intuitive and practical

strategy, that is to match the EEG and SEEG channels with

the closest physical distance, and ensure the selection is not

repeated. The results are shown at the bottom of Table 2.

E2SGAN-N and E2SGAN-S have similar performance in the

time domain, but E2SGAN-N is inferior to most baselines in

the frequency domain. The main reason is that our proposed

matching strategy explicitly guarantees the correlation between

EEG-SEEG. This finding confirms the point mentioned in the

previous Section 2.2, that the signals recorded by channels with

closer distance do not necessarily have obvious correlations

in the frequency domain. This can be mainly attributed to

the irregular topology of gyri and sulci in the brain so that

the propagation direction of intracranial signals does not

necessarily follow the direction closest to the scalp. Assuming

that the proposed model is sensitive to EEG-SEEG correlation,

a paired dataset with a stronger correlation should achieve

better performance. This experiment demonstrates the ability

of E2SGAN to implicitly capture the correlation between

EEG and SEEG.

3.7. Ablation study

In order to verify how CSA and WPP are beneficial to

the whole model, three variants are compared to E2SGAN.

For the “w/o WPP” variant, the WPP module is removed

and the original PatchGAN prediction is used as output. For

“w/o CSA” variant, we do not concatenate the CSA output

to the input of PatchGAN. For “w/o CSA & WPP” variant,

both of the aforementioned changes are adopted. As shown in

Table 3, the removal of “WPP” degrades the performance in the

temporal domain (DTW) and the removal of “CSA” degrades the

performance in the frequency domain (PSD & HD). Although

the two variants without “WPP” seem to perform better in

the frequency domain, they actually suffer from mode collapse,

leading to poor temporal robustness.

3.7.1. Temporal robustness study

We further compare the proposed method to w/o CSA

and w/o CSA & WPP in the temporal domain to verify the

temporal robustness by calculating the standard deviation (STD)

distribution of the RMSE between the real and synthesized

SEEG. Specifically, each SEEG segment is equally divided into

sub-segments, the width of which is traversed from 2 to half

of the whole length. RMSE is calculated gradually on sub-

segments, and the STD distribution of it on different scales

of width is plotted in Figure 5. The horizontal axis is STD

and the vertical axis is density. It can be clearly observed

that the majority of STD of both methods with WPP are

centrally distributed in low-value regions. The high STD in w/o

CSA and WPP method implies some kind of spur occurring

in the generated segments, which is actually observed in

visual results.

3.8. Input-signal perturbation

To determine what key features in the input signal play a

significant role in relating EEG to the simultaneous SEEG, input-

signal perturbation is performed as is described in Gemein et al.

(2020) and Schirrmeister et al. (2017). Specifically, random noise

z ∼ N(0, σ 2) drawn from Gaussian distribution (with mean

0 and standard deviation σ identical with that of the original

input) was added to the magnitude spectra of input EEG e while
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FIGURE 5

Temporal robustness study by comparing the standard deviation (SD) distribution of RMSE. Dotted vertical lines are the means of SD.

the phase was kept unperturbed. RMSE of PSD is computed

with the perturbed EEG ê as input. Changes compared to the

unperturbed result were computed to indicate the effect 1effect

of perturbation.

1effect =

√

√

√

√

1

m

m
∑

i=1

(PSD(G(ê))(i) − PSD(s)(i))2−

√

√

√

√

1

m

m
∑

j=1

(PSD(G(e))(j) − PSD(s)(j))2

(14)

1mag denoting the changes in the magnitude of the input

EEG was obtained by averaging the added noise z. Such

perturbation was done on every EEG-SEEG pair and repeated

50 times on each investigated feature, including four frequency

bands: δ (0–4 Hz), θ (4–7 Hz), α (8–15 Hz), β (16–31 Hz).

For each feature, 1effect is correlated with 1mag by computing

the correlation coefficient. It could be determined whether the

increase or decrease in themagnitude of the investigated features

contributed to a better or worse SEEG synthesis.

The perturbation operation is carried out individually on

each patient. We selected three patients as representatives, who

showed three kinds of responses to the proposed model to

perturbation: (1) the captured perturbation-sensitive area is

consistent with the epileptic focus; (2) the captured sensitive

area is close to the focus; (3) being unable to capture sensitive

areas near the focus due to data missing. The three cases are

displayed in Figure 6 by visualizing the topological map of the

correlation coefficients. EEG electrodes are partly missing due to

the restriction in the collection and the proposed pairing strategy

(which causes the unmatched channels to be discarded). We

pay attention to the sensitivity of signals at different electrode

locations to perturbation in different frequency bands. In patient

1, a dramatic effect is found in the parietal and temporal zones

(P3 and T5) of all bands and is most significant in the δ band.

In patient 2, the most affected areas are the left frontal and

central zones (F3, C3). In patient 3, the left temporal zone

(T3, T5) is more sensitive. The added perturbation can be seen

as a simulation of the underlying micro-abnormal discharges

that occur before seizures. To verify that the sensitive channels

we find are clinically significant, the seizure location provided

by the clinician is marked with yellow-edged dots. Patient 1

shows that the seizure location (P3) coincides with the sensitive

zone. For patient 2, the seizure location (T3, F7) is close to the

sensitive zone we have found despite the missing of channels. An

exceptional case is patient 3, where the real epileptic focus (T4) is

in the right temporal zone, far away from the available channels

in the training dataset. The cases of patients 1 and 2 demonstrate

that the proposed model is able to capture the abnormal signal

before seizures and is preserved in the synthesized SEEG. If the

seizure location is too far away from the electrodes available in

the dataset, our model will perform poorly. We provide the rest

of the patients with Supplementary materials.

It has been verified that the δ power is associated with sleep

and shows abnormal changes prior to seizures (Minecan et al.,

2002; Long et al., 2021). The perturbation results in the δ band

confirm the expected conclusion.

3.9. Case study of visual results

A visual case study is conducted by comparing the spectral

and temporal results synthesized by the proposed method to

the groundtruth. As is shown in the top rows of Figure 7, the

proposed method produces clear results in both frequency and

IF spectra, which indicates it has captured the details of how
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FIGURE 6

The topological map of correlation coe�cient from input-signal perturbation where red indicates a high correlation and blue indicates a low

correlation. Four bands (δ, θ , α, and β) are investigated on each patient, and three of them are displayed as representatives. The names of

available EEG channels for each patient are listed, and the channels nearby a seizure focus are marked with yellow-edged dots. Patients 1 and 2

are good examples that the sensitive zone (left parietal and temporal zone for Patient 1, left frontal and temporal for Patient 2) coincides with

the seizure location, while Patient 3 is an exceptional case due to the missing of T4 channel in the dataset.

the power and phase are distributed along with time. From the

bottom rows, it can be seen that the proposed method is able to

produce the general morphology highly close to the groundtruth

although the details of ripples are still far from satisfactory.

4. Discussion

In this paper, a GAN-based framework is introduced

for the task of EEG-to-SEEG translation. First, a matching

strategy is developed to select EEG-SEEG pairs. Second,

E2SGAN is proposed to learn from the magnitude and

IF spectra to synthesize the simultaneous SEEG segment

given an input EEG segment. CSA and WPP technique

are proposed to give a further boost to the discriminator.

Extensive comparison experiments have demonstrated the

capability of the proposed framework to transform EEG

segments into SEEG segments. To find out whether the

model has captured clinically significant features, a perturbation

experiment is conducted. The final result shows that the

synthesized SEEG signal retains the abnormal discharges

before seizures.

4.1. Why not directly model the physical
distance between EEG and SEEG?

Intuitively, it is more reasonable to generate the nearest

EEG-SEEG pairs. We favor the impact of physical distance on

SEEG generation, but it is not the only factor. In this work,

we have tried to match EEG-SEEG pairs using a strategy based

on the nearest physical distance. However, we found that EEG-

SEEG pairs based solely on the physical distance were not

necessarily strongly correlated (see Section 2.2 and Figure 3).

This observation has also been confirmed in relevant clinical

studies, where the geometry of the brain and its complex

interconnections affect signal propagation (Frauscher et al.,

2018). In the comparison experiment, we also experimented

with the nearest physical distance matching strategy, but the

results were not satisfactory. Therefore, we incorporated the

HD distance into the matching strategy to limit the correlation

between an EEG-SEEG pair. In this way, we avoid the influence

of some unrelated pairs in the training process, even if they have

a relatively close physical distance.

We agree that modeling the physical distance into the model

is a worthwhile and practical consideration, and there have been
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FIGURE 7

Case study of spectral results (top) and temporal results (bottom) synthesized by the proposed method compared to the groundtruth.
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many related works to spatially model the fixed position of

EEG (Fang et al., 2020; Jia et al., 2021). However, for SEEG

electrodes, this can be a huge challenge. SEEG positions are

not fixed and cannot be uniformly modeled for all patients.

Additionally, due to the very limited number of patients with

simultaneous SEEG data we have access to, it is difficult to learn

location representation with such large variance across different

patients from a data-driven perspective. Another approach is

to learn a fixed position representation and train a model per

patient. Although this is feasible, the next problem we cannot

avoid is that the position space of SEEG is continuous. For

the generation task, we cannot achieve the goal of generating

the accurate SEEG segment given an arbitrary position in the

continuous space. To this end, the proposed matching strategy

can essentially be viewed as discretizing the continuous position

space (by dividing the physical distance into intervals) and

selecting the “nearest” electrode pair that guarantees EEG-SEEG

correlation. In other words, we incorporate physical distance

as a prior knowledge into the data preprocessing process. In

future work, we aim to collect a larger dataset and try to

model the electrode position, distance, direction, and other

information in a unified way through the deep-learning network

to explore whether the existing technology can fully capture the

rich clinical information.

4.2. Trade-o� between extracted features
and raw signal

When analyzing EEG signals, clinicians can judge whether

there are signs of seizures through either the raw waveform and

spectrum or the meaningful features computed by mathematical

methods. Different input types affect the difficulty of generation

tasks.

If the extracted features are used for the generation, the

generated results can be directly applied to specific downstream

tasks (Luo Y. et al., 2020). Traditional signal features such as

Differential Entropy (DE) and PSD are highly informative and

discriminative for specific tasks such as emotion recognition.

They can be easily learned by neural networks and generate

accurate results that are suitable for downstream tasks. However,

the high compatibility with downstream tasks also limits the

applicability of the generated results. For each feature or task,

a neural network needs to be trained separately, which is not

feasible in clinical use.

If the raw signal is directly used as the target, the generated

results are applicable to a wider range of scenarios. Ideally, the

generated results would approximate the real signal distribution,

on which clinicians can perform any posterior analysis of

interest. However, this type of generation is tricky because the

informative signal components are often sparse and difficult for

the network to fit.

There is a trade-off between using the extracted features

or the raw signal as the generation target. Hence, large-scale

simultaneously recorded EEG-SEEG datasets are necessary,

which can improve the performance of end-to-end generation

tasks to a certain extent. In addition, appending a downstream

task to the generation stage that recognizes specific features

can further improve the generation results, while ensuring good

adaptability to specific tasks at the same time.

4.3. Challenges of di�erent channel
mapping assumptions

So far, only the one-to-one channel mapping has been

considered in this work. Guided by this assumption, the

proposed method can theoretically capture arbitrary EEG-SEEG

correlations as long as the available dataset covers adequate

EEG-SEEG combinations and achieve the brain-wide generative

capability. In practice, this mapping assumption is not always

plausible due to complex electrode arrangements. There are

situations where it is impossible to find electrodes that fit

the distance required by the proposed strategy, such as those

positioned nearby wounds. Moreover, the scarcity of patients

with synchronized EEG recordings is still a hindrance.

A more realistic assumption than one-to-one modeling

is multiple-to-one/multiple-to-multiple mapping. EEG, as the

collection of SEEG on the scalp, is actually the superposition

of multiple intracranial discharge sources. However, multiple-

to-one/multiple-to-multiple mapping is a more intractable

problem that requires elaborate modeling techniques to

extract the universal relations among multiple heterogeneous

channels. For clinical research based on EEG signals, the

study of multiple-to-multiple mapping is of great significance

because the interpretive work based on it can reveal how

intracranial signals propagate, thereby assisting clinicians to

solve the problem of source localization. In the future,

graph modeling using GCN may be more suitable for tasks

based on this assumption, and graph-based interpretation

algorithms will reveal richer principles of intracranial EEG

signal propagation.

For future work, our proposed method can serve as a

baseline for solutions developed on massive datasets or as

a benchmark for formulating the multiple-to-one/multiple-to-

multiple assumptions.

4.4. Unsupervised learning in SEEG
generation

In this research, the adopted GANs framework is an

unsupervised learning paradigm. Unsupervised learning

eliminates the stage of labeling sample categories by experts
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and gets rid of the constraints of limited data sets. This

property is particularly valuable because clinical data is

often massive and unlabeled, and qualified clinicians rarely

have the chance to withdraw from clinical work. With the

advent of unsupervised learning, a new paradigm of pre-

training has also emerged and has been applied in EEG

research (Kostas et al., 2021; Yue et al., 2022; Zhang et al.,

2022). This new paradigm inspired us to see if pre-trained

models trained on large-scale EEG datasets can be used

to generate SEEG signals after a fine-tuning stage. This

is also one of the ideal solutions for the research topic in

this paper.
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In emotion recognition based on physiological signals, collecting enough

labeled data of a single subject for training is time-consuming and expensive.

The physiological signals’ individual differences and the inherent noise

will significantly affect emotion recognition accuracy. To overcome the

difference in subject physiological signals, we propose a joint probability

domain adaptation with the bi-projection matrix algorithm (JPDA-BPM).

The bi-projection matrix method fully considers the source and target

domain’s different feature distributions. It can better project the source and

target domains into the feature space, thereby increasing the algorithm’s

performance. We propose a substructure-based joint probability domain

adaptation algorithm (SSJPDA) to overcome physiological signals’ noise

effect. This method can avoid the shortcomings that the domain level

matching is too rough and the sample level matching is susceptible to noise.

In order to verify the effectiveness of the proposed transfer learning algorithm

in emotion recognition based on physiological signals, we verified it on the

database for emotion analysis using physiological signals (DEAP dataset).

The experimental results show that the average recognition accuracy of

the proposed SSJPDA-BPM algorithm in the multimodal fusion physiological

data from the DEAP dataset is 63.6 and 64.4% in valence and arousal,

respectively. Compared with joint probability domain adaptation (JPDA), the

performance of valence and arousal recognition accuracy increased by 17.6

and 13.4%, respectively.

KEYWORDS

emotion recognition, transfer learning, domain adaptation, physiological signal,
multimodal fusion, individual difference
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Introduction

Emotion is a complex expression that integrates people’s
psychological and physiological functions. It reflects the
subjective response of individuals to external stimuli all the
time (Sharot et al., 2004). Since affective computing was
proposed, researchers have devoted to digitizing the concept
of emotion, enabling computers to recognize and process it,
and providing more reliable signal input for human-computer
interaction (Picard, 2003; Mühl et al., 2014). In the human-
computer interaction system, accurately decoding the user’s
emotion can make the device not only passively receive the user’s
instructions but also truly perceive the user’s state, to better
understand the user’s intention and establish a more natural
and harmonious human-computer interaction environment
(Egger et al., 2019). As a research hotspot in human-computer
interaction, affective computing is widely used in traffic safety
(Liu et al., 2019; Du et al., 2020), brain-computer interface
(Al-Nafjan et al., 2017; Rao et al., 2018), medical health
(Hosseinifard et al., 2013; Huang et al., 2019), and other
fields. Affective computing includes three continuous processes:
emotion recognition, behavior generation, and induction.
Accurate emotion recognition is the basis for building a good
human-computer interaction experience (Egger et al., 2019).
However, in practical applications, collecting large numbers
of data for each user to train the classifier is difficult, and
the recognition accuracy is easily affected by data noise (Wan
et al., 2021). When the accuracy of emotion recognition is
influenced by physiological signals’ individual differences and
inherent noise, making the model trained in the existing data set
accurately identify new users’ emotions without collecting data
or collecting as little data as possible has essential research value
and application significance.

Nowadays, there are many emotion recognition methods,
such as analyzing users’ voices (Li et al., 2019; Shaqra et al.,
2019), facial expressions (Lawrence et al., 2015; Abdulsalam
et al., 2019), and physiological signals (He et al., 2017; Liao et al.,
2020). Physiological signals are the most easily acquired signals
by the human body through sensors. It contains many important
physiological and psychological information about the human
body and plays a significant role in computer recognition of
human emotions (Li et al., 2021). Compared with emotion
recognition based on facial expression, emotion recognition
based on physiological signals not only has the advantages of low
cost and high efficiency in data acquisition but also can avoid the
errors caused by light and shadow acquisition and the invasion
of user privacy (Hao et al., 2020; Fu et al., 2021).

In the aspect of emotion recognition, electroencephalogram
(EEG) has been paid more attention by researchers among
many physiological signals. The analysis of EEG signals in the
field of emotion recognition depends on data preprocessing,
feature extraction, and feature classification (Xie et al., 2021).
Many researchers use traditional machine learning or deep

neural network to classify EEG signals by extracting the
energy features of the delta, theta, alpha, beta, and gamma
bands. For example, Verma and Tiwary (2014) extracted
the relative power energy, logarithmic relative power energy,
absolute logarithmic relative power energy, standard deviation,
and spectral entropy features of five frequency bands from
EEG signals. Liu et al. (2016) used a deep autoencoder to
extract the features of EEG signals in the DEAP dataset
and extract features. Sorkhabi (2014) used continuous wavelet
transform to extract energy features of five frequency bands
and entropy features of wavelet coefficients. Yin et al. (2017)
extracted the frequency band power features, statistical features,
signal zero crossing rate, Shannon entropy, spectral entropy,
kurtosis, skewness, and other features of the five frequency
bands. Torres-Valencia et al. (2017) extracted statistical
features of EEG signals and power features of five frequency
bands.

However, a single EEG signal’s lack of feature information
will lead to low emotion recognition accuracy. Some researchers
use feature level fusion or signal level fusion to fuse multimodal
signals to improve emotion recognition accuracy. He et al.
(2021) extracted 11 features from the EEG signal of FP2 channel
and 6 features from HR. Using multi-core learning for fusion,
they achieved 67% binary classification accuracy under fewer
signals and channels. Song et al. (2019) used attention-based
long-term short-term memory to fuse multimodal physiological
signals, including electroencephalogram (EEG), Galvanic Skin
Response (GSR), respiration (RSP), and electrocardiogram
(ECG), to improve the classification accuracy. Our study
uses EEG, RSP, GSR, and photo-plethysmograph (PPG)
signals collected from the database for emotion analysis
using physiological signals (DEAP) (Koelstra et al., 2011)
for feature extraction. We concatenate four mode features to
achieve multimodal feature fusion. It can remedy the inherent
limitations of the single mode by providing more dimensional
features. Consequently, the multimodal features improve the
accuracy of emotion recognition.

The EEG signals are very complex due to the inherent non-
stationary, non-linear, and non-Gaussian characteristics (Subha
et al., 2010). Meanwhile, EEG signals are greatly affected by
age, psychology, and other factors, which result in significant
differences in individual EEG signals (Lotte et al., 2018). This
difference is often substantial and cannot be ignored. The
traditional emotion recognition based on EEG does not consider
the existence of differences and directly trains a general model.
The difference between EEG signals of different individuals
will directly affect the accuracy of model recognition and
classification and lead to a poor generalization ability of the
model (Zheng and Lu, 2016). Considering different types of
information in EEG signals make it difficult to filter out
information sensitive to specific tasks, and there are few similar
EEG data among different individuals due to the significant
difference in EEG, it is problematic that use the deep learning
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model based on old user data training to estimate the mental
state of new users (Wan et al., 2021).

In order to solve the above problems, some researchers
have introduced transfer learning to emotion recognition.
Li et al. (2019) proposed a multi-source transfer learning
algorithm to transfer the existing emotion model to new
subjects. The experimental results show that this method can
effectively reduce the demand for data quantity and increase
the calibration capability of the model. Chai et al. (2017)
proposed an adaptive subspace feature matching algorithm
for emotion recognition, which aligns the source and target
subspaces by learning linear transformation to reduce the
distribution discrepancy between the source and target domains.
Lin and Jung (2017) proposed a conditional transfer learning
framework. The algorithm first evaluates the individual’s
transferability to positive transfer and then selectively leverages
the data from others with comparable feature spaces. Therefore,
in order to solve the low accuracy of emotion recognition
caused by the mismatch between individual specificity and
global threshold, we introduce domain adaptation, a transfer
learning method, into emotion recognition. This method can
apply the patterns learned in one domain to other domains
and reduce the differences in EEG data distribution so
that to improve the model’s ability to recognize new users’
emotions.

Generally, the domain adaptation method usually seeks the
alignment between the source and target domains. Different
domain adaptation methods often use different alignments. The
current alignment methods can be divided into three categories
according to distribution matching schemes: domain-level,
class-level, and sample-level (Lu et al., 2021). Pan et al. (2010)
proposed the transfer component analysis (TCA) method,
which uses the maximum mean difference (MMD) to learn a
transformation matrix in the reproducing kernel Hilbert space
(RKHS) to align the marginal distribution between the two
domains. Long et al. (2017) proposed the joint distribution
adaptation (JDA) method to align the joint distribution of
multiple domains through multi-kernel MMD. Sun et al. (2017)
proposed the correlation alignment (CORAL) method, which
minimizes the domain shift by aligning the second-order
statistical data of source and target distribution. The above
commonly used domain adaptation methods belong to domain-
level matching. The domain-level matching completely ignores
the intra-domain data structure. It is too rough to miss some
details and challenging to achieve good matching results.

The sample level matching can avoid the problem that
domain-level matching ignores intra-domain data structure.
Courty et al. (2017) proposed a regularized unsupervised
optimal transport model, which uses the optimal transport
theory to calculate the distance between the probability
distributions of the source and the target domain. In the
research of Das and Lee (2018), the source and the target
domain are regarded as hypergraphs, and the first-order,

second-order, and third-order similarities between graphs are
used for class-regularized hypergraph matching to obtain the
matching between the samples of the source domain and the
target domain. However, sample level matching is very time-
consuming, and it is more prone to overfitting when local
information is affected by the noise.

Class-level matching can neutralize too rough domain-
level matching and too fine sample-level matching. Wang
et al. (2018) proposed the Stratified Transfer Learning (STL)
method. STL transforms the same classes in the source and
the target domain into the same subspace and uses the intra-
affinity of the class to perform knowledge migration within
the class. Tian et al. (2020) proposed the Centroid Matching
and local Manifold Self-learning (CMMS) method. CMMS
can thoroughly explore the data distribution structure of the
domain and minimize the distribution difference in domain
adaptation by combining class centroid matching with local
manifold self-learning. Lu et al. (2021) proposed a domain
adaptation method based on substructure level matching, which
regards a class as synthesizing multiple substructures and
aligning the substructures. The above commonly used domain
adaptation methods belong to class-level matching. Considering
that the EEG signal acquisition process contains the location
information of different channels, which has the intra-domain
data structure, we adopt the class-level domain adaptation
to avoid rough alignment of domain-level adaptation and
overfitting of sample-level adaptation.

In the matching process of the source and target domains, it
is necessary to project the source and target domains into the
same feature space through the projection matrix. The TCA,
JDA, BDA, and JPDA all uses the single projection matrix
for transfer (Pan et al., 2010; Long et al., 2017; Wang et al.,
2017; Zhang et al., 2020). However, the distribution of the
source domain and target domain is different, and a single
projection matrix cannot account for all the feature distribution
of the source and target domains. Therefore, we propose a bi-
projection matrix (BPM) to better project the source and target
domains into the feature space.

This paper uses EEG, RES, PPG, and GSR signals
collected from the DEAP dataset to extract features, and
we concatenate four mode features to achieve multimodal
feature fusion. Multimodal fusion gives full play to the
advantages of each mode and makes up for its inherent
limitations, improving the accuracy of emotion recognition.
In order to improve the generalization ability of the model,
we propose a joint probability domain adaptation method
based on the substructure. Substructure-level data is aligned by
discriminative joint probability maximum mean discrepancy
(DJP-MMD) (Zhang et al., 2020). Substructure-based
joint probability domain adaptation (SSJPDA) can avoid
inadaptability caused by rough matching and overfitting when
learning local information caused by noise points. In order
to better project the source and target domains, we propose a
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method of the bi-projection matrix (BMP), which can effectively
avoid data loss in the projection stage.

The main contributions of this study are as follows:

We proposed a substructure-based joint probability
domain adaptation method (SSJPDA).
We proposed the bi-projection matrix (BPM) method and
applied it to the SSJPDA algorithm.
We validated the SSJPDA algorithm and the SSJPDA-BPM
method on DEAP dataset.

The rest of this paper is arranged as follows: Section
“Materials and methods” introduces the SSJPDA with the BPM
algorithm. Section “Results” presents the results verified on the
DEAP dataset. Section “Discussion” gives the full discussion
above the result.

Materials and methods

Physiological signal dataset

This study adopted the DEAP dataset to inspect our
proposed algorithm. DEAP dataset was established by Koelstra
et al. (2011) in 2012 and contained 32 subjects. Every subject
watched the 40 selected music videos, and each video viewed by
the subjects was regarded as an independent experiment. After
the video viewing, the subjects need to use the self-evaluation
model to score arousal, valence, like/dislike, dominance, and
familiarity, providing label information for each signal. Every
experiment recorded 40 physiological signals of subjects, of
which the first 32 signals were EEG signals collected according to
the international 10–20 system, and the remaining 8 signals were
peripheral physiological signals, including 2 ophthalmic signals,
1 skin electrical signal, 2 EMG signals, 1 respiratory record, 1
plethysmography, and 1 temperature record. The dataset also
preprocessed the collected signals. Each test section’s EEG data
and other peripheral physiological signal data were divided into
3 s baseline data and 60 s test data. EEG signals are collected
according to the international 10–20 lead system and down-
sampling from 512 Hz original sampling frequency to 128 Hz.
RES, PPG, and GSR signals are down-sampled to 128 Hz.
A band-pass frequency filter of 4–45 Hz and a blind source
separation technique were used to remove the eye artifacts.

Feature extraction

Considering that the subjects are not always in a high
emotional activation state if the sliding window is used to divide
the data into small segments, many segments will contain useless
information (Piho and Tjahjadi, 2018). Therefore, we directly
extract features from the preprocessed 60 s experimental data to

make samples instead of dividing continuous data into multiple
segments and making each segment into samples in the feature
processing. We extract the differential entropy features of five
frequency bands from each recorded EEG data from each EEG
channel. These five frequency bands are related to people’s state
of mind, so they also contain information about the state of
specific thinking tasks. These five bands are Delta (1–4 Hz),
Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma
(30–48 Hz). Some studies have shown that the differential
entropy feature is superior to the power spectral density feature
(PSD) in EEG-based emotion recognition (Zheng and Lu, 2015;
Soleymani et al., 2017).

We extract their time-domain and frequency-domain
features for the peripheral physiological signals PPG, GSR,
and RES. The extracted time-domain features and frequency-
domain features refer to numerous previous studies (Verma
and Tiwary, 2014; Yin et al., 2017; Zhang et al., 2021). Time-
domain features depend on statistical features, which are simple
and intuitive. It realizes classification by analyzing statistical
features such as mean, maximum, minimum, root mean square,
standard deviation, etc. The time-domain analysis contains all
the characteristics of physiological signals, and the signal is
processed directly. Hence the loss of information is relatively
small. For example, from the time domain characteristics of PPG
signals, we can analyze the heart rate and its changes, which
are closely related to emotional arousal. In addition, Frequency
domain features can show the frequency information that time-
domain features cannot reach in more detail. Consequently, we
got 1,280 samples (32 subjects × 40 samples). Table 1 lists the
features extracted from the data.

The generation of substructures

The source domain {XS, YS} = {(xs,i, ys,i)}
ns
i=1containing the

label recorded as Ds. The target domain Xt = {xt,j}
nt
j=1 without

label recorded asDt . The ns and nt are the number of source
domain samples and target samples, respectively. x ∈ Rd×1is
the feature vector, and y ∈ {1, . . . , C} is its label in the C-
class classification problem. Ds and Dt have the same feature
space and label space, but the feature distribution is different,
i.e., P(Xs, Ys) 6= P(Xt, Yt). The task of domain adaptation is to
reduce the distribution difference between the source domain
and the target domain, so as to predict the label ytof the target
domain Dt with the help of the source domain Ds (Lu et al.,
2021).

We use δ ∼ N
(
0; σ2) and X to represent all feature data

and the Gaussian mixture model (GMM) to fit them. The kth
component in GMM is recorded as Xk ∼ N (zk, σk) where
zk represents mean value and σk represents covariance. Our
goal is to get mean value zk and covariance σk. These GMM
parameters can be obtained using the Expectation Maximum
(EM) algorithm. Suppose Ks and Kt are the number of GMM
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TABLE 1 The features used in Experiment 1 and Experiment 2.

Signal Feature Description Dimension

EEG Differential Entropy (DE) DE in different bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz),
and Gamma (30–48 Hz)

32 channels× 5 features

PPG Time Domain Mean value, maximum value, minimum value, standard deviation and root mean square
value of heart rate interval.
Heart rate (times/second)

1 channel× 8 features

Frequency domain Power spectral density of bands 0.1–1.5 Hz and 1.5–3 Hz.

GSR Time Domain Mean, standard deviation 1 channel× 7 features

Frequency domain Power spectral density of bands 0.4–0.8 Hz, 0.8–1.2 Hz, 1.2–1.6 Hz, 1.6–2.0 Hz, and
2.0–2.4 Hz.

RES Time Domain Mean, maximum, minimum, standard deviation, and root mean square value of respiratory
interval. Respiratory rate (times / second)

1 channel× 8 features

Frequency domain Power spectral density of bands 0.1–1.5 Hz and 1.5–3.0 Hz.

components in the source domain and the target domain,
respectively. Ks is determined by the Bayesian Information
Criterion (BIC), and Kt is manually set according to the
specific data set.

After obtaining the GMM of the source domain and the
target domain, we regard each component of the GMM as a
substructure in the feature space, and the information of the
cluster center represents the substructure. Specifically, set

µs =

ks∑
i=1

ws,iδzs,i (1)

µt =

kt∑
i=1

wt,iδzt,i (2)

where µs and µtare the distribution of source domain and
target domain, respectively. z ∈ Rd×1 is cluster center, and δz

is the Dirac function at location z. wis the probability weight

associated with z, where
ks∑

i=1
ws,i = 1 and

kt∑
i=1

wt,i = 1.

The cost between zi and zj in square Euclidean distance can
be expressed as

c
(
zs,i, zt,j

)
=
∣∣∣∣zs,i − zt,j

∣∣∣∣2
2 (3)

Therefore, the problem can be regarded as the partial
optimal transmission (POT) problem, and the upper bound
ws,iis 1. The total cost of POT is 〈π, C〉F that is the Frobenius dot
product of cost matrix C and coupling matrix π. The C ∈ Rks×kt

represents the cost of µs and µtdistribution, and theπ ∈ Rks×kt

represents the coupling between µs and µt distribution.
The goal is to obtain the optimal transmission, which can be

expressed as

π∗1 = arg minπ〈π, C〉F + λ1H(π)

s.t.πT1ks = wt
(4)

where H(π) =
∑
ij

πij log πij is the entropy term, and λ1 is the

super parameter to balance the speed and accuracy calculation.
The feasible solution set of πT1ks = wt is C1, and then it can

be solved by the Lagrange method. Thus, we can easily get the

optimal π∗.

π∗1 = π0diag
(

wt�πT
0 1ks

)
(5)

where π0 = exp
(
−

C
λ1
− 1

)
and � represent element-wise

divide and diagrepresents the diagonals. Once the coupling
matrix π∗1 is obtained, the source domain weights can be easily
calculated as ws = π∗1 1kt .

Substructural joint probability domain
adaptation

The domain adaptation (DA) method attempts to find a
mapping h. The source domain and target domain are mapped
to the same subspace, so that the classifier trained on h(xs)can
achieve good classification effect on h(xt). For example, a linear
maph(x) = ATxfor the source and the target domains, where
A ∈ Rd× p, p ≤ d.

Due to the difference between the source domain and the
target domain, it is generally assumed that their probabilities
distributions are not equal. The derivation of TCA, JDA
and BDA algorithms are based on the inequality of the
marginal probabilities P(Xs) 6= P(Xt) or the conditional
probabilities P(Ys|Xs) 6= P(Yt|Xt). However, the JPDA
algorithm derives from the inequality assumption of joint
probabilities P(Xs, Ys) 6= P(Xt, Yt). Because JPDA directly
considers the difference of joint probability distribution, the
performance of JPDA is better than the traditional DA method,
which JPDA can improve the between-domain transferability
and the between-class discrimination (Zhang et al., 2020).

After obtaining the substructure, the set of substructures
in source domain is recorded as {ZS, Y ′S} = {(zs,i, y′s,i)}

ks
i=1, and

the set of substructures in target domain is recorded as Zt =

{zt,j}
kt
j=1, where ks and kt are the number of source domain

substructure and target domain substructure, respectively.
Let the source domain substructure one-hot coding label

matrix be Y
′

s = [y
′
s,1; . . . ; y

′

s,ks
] and the predicted target

domain substructure one-hot coding label matrix be Ŷ ′t =
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[ŷ′t,1; . . . ; ŷ
′

t,kt
] where y′s,ks ∈ R1×C and ŷ′t,kt ∈ R1×C. Define

Fs = [Y ′s(:, 1)∗ (C − 1) , ..., Y ′s(:, C) ∗ (C − 1)] (6)

F̂t = [Ŷ ′t(:, 1 : C)ĉ 6=1, ..., Ŷ ′t(:, 1 : C)ĉ 6=C] (7)

where Y ′s(:, c) denotes the c-th column of Y ′s , Y ′s(:, c) ∗ (C − 1)

repeats Y ′s(:, C) C−1 times to form a matrix in Rks×(C−1), and
Ŷ ′t(:, 1 : C)ĉ 6=c is formed by the 1st to the C-th, (except the c-th)
columns of Y ′t . Clearly, Fs ∈ Rks×(C(C−1)) and F̂t ∈ Rkt×(C(C−1)).
Fs is fixed, and F̂t is constructed from the pseudo labels, which
are updated iteratively.

Therefore, the objective function of JPDA can be written as
follows:

min
A
||ATZsNs − ATZtNt||

2
F − µ||ATZsMs − ATZtMt||

2
F + λ||A||2F

s.t.ATZHZTA = I
(8)

where µ > 0 is a trade-off parameter and λ is a regularization
parameter. Ns, Nt , Ms and Mt are defined as

Ns =
Y ′s
ks

, Nt =
Ŷ ′t
kt

(9)

Ms =
Fs

ks
, Mt =

F̂t

kt
(10)

where H = I − 1k is the centering matrix, in which k = ks + kt

and 1k ∈ Rk×k is a matrix with all elements being 1
k .

Let Z = [Zs, Zt], then we reach the Lagrange function of
Eq. 8

J = tr(AT(Z(Rmin − µRmax)ZT
+ λI)A)+tr(η(I − ATZHZTA))

(11)

where η is Lagrange multiplier, and

Rmin =

[
NsNT

s −NsNT
t

−NtNT
s NtNT

t

]
(12)

Rmax =

[
MsMT

s −MsMT
t

−MtMT
s MtMT

t

]
(13)

Rmax and Rmin have dimensionality k× k.
By setting the derivative ∇AJ = 0, Eq. 17 becomes a

generalized eigen-decomposition problem:

(Z(Rmin − µRmax)ZT
+ λI)A=ηZHZTA (14)

A is then formed by the p trailing eigen-vectors. A classifier can
then be trained onATZs and applied to A TZt .

The pseudocode of SSJPDA for classification is summarized
in Algorithm 1.

Input:

XS and Xt, source and target domain

feature matrices;

YS, source domain one-hot coding label

matrix;

µ, trade-off parameter;

λ, regularization parameter;

T, number of iterations;

Output:

Ŷt, estimated target domain labels.

Begin:

Use EM for GMM, cluster each class

data in the source to obtain

{ZS, Y ′S} = {(zs,i, y′s,i)}
ks
i=1,and cluster the

unlabeled data in target domain to

obtain Zt = {zt,j}
kt
j=1;

Compute cost matrix C and coupling

matrix π using Eq. 3 and Eq. 4,

respectively;

Compute the weights of source

substructures ws = π∗11kt and target

substructures wt =
1kt
kt

for n = 1,..., T do

Construct the joint probability

matrix Rmin and Rmax by Eq. 12 and

Eq. 13;

Solve the generalized

eigen-decomposition problem in

Eq. 14 and select the p trailing

eigenvectors to construct the

projection matrix A;

Train a classifier f on (ATZs, Y ′S) and

apply it to ATZt to obtain

Ŷ ′t = {y
′
t,j}

kt
j=1 which is the label matrix

of substructure in target domain

Zt = {zt,j}
kt
j=1

End for

For each substructure zt,j, assign its

label y′t,j to all samples it contains,

and getsŶt = {yt,j}
nt
j=1

End

Algorithm 1. Substructural Joint Probability Distribution Adaptation

(SSJPDA)

Substructure-based joint probability
domain adaptation algorithm with
bi-projection matrix

As described in the previous subsection, the source and
target domains have different probability distributions, so
applying only a single projection matrix to both domains
simultaneously may lack the ability to align their probability
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distributions well. It is better to make the source domain and the
target domain have their own projection matrix to accomplish
the distribution alignment task together. On this basis, we take
SSJPDA algorithm as an example to explain how to design
the projection matrix of source domain and target domain,
respectively, and call it SSJPDA-BPM.

Donate the projection matrices of the source domain and the
target domain asAs and At , respectively. Therefore, the objective
function of SSJPDA-BPM can be written as follows:

min
A
||AT

s ZsNs − AT
t ZtNt||

2
F − µ||AT

s ZsMs − AT
t ZtMt||

2
F

+λ
(
||As||

2
F + ||At||

2
F
)

s.t.AT
s ZsHsZT

s As = Iks , AT
t ZtHtZT

t At = Ikt

(15)

where Hs = Iks − 1ks (or Ht = Ikt − 1kt ) is the centering matrix,
in which 1ks ∈ Rks×ks (or 1kt ∈ Rkt×kt ) is a matrix with all
elements being 1

ks
(or 1

kt
).

LetZA = [AT
s Zs, AT

t Zt], then we reach the Lagrange function
of Eq. 15

J = tr(ZARZT
A)+ tr(ηs(Iks − AT

s ZsHsZT
s As))

+tr(ηt(Ikt − AT
t ZtHtZT

t At))+ tr(AT
s As)+ tr(AT

t At) (16)

where ηs ηt are Lagrange multipliers, and

R = Rmin − µRmax =

[
R11 R12

R21 R22

]

=

[
NsNT

s − µMsMT
s −NsNT

t + µMsMT
t

−NtNT
s + µMtMT

s NtNT
t − µMtMT

t

]
(17)

By setting the derivative ∇AsJ = 0, ∇AsJ = 0, and add a
constraint ZsR12ZT

t As=ZtR21ZT
s At , then Eq. 16 becomes two

generalized eigen-decomposition problem:

(ZsR11ZT
s + ZtR21ZT

s + λI)As=ηsZsHsZT
s As (18)

(ZtR22ZT
t + ZsR12ZT

t + λI)At=ηtZtHtZT
t At (19)

As and At are then formed by the p trailing eigen-vectors of each
problem. A classifier can then be trained on AT

s Zs and applied to
A T

t Zt .
The pseudocode of SSJPDA-BPM for classification is

summarized in Algorithm 2.

Input:

XS and Xt, source and target domain

feature matrices;

YS, source domain one-hot coding label

matrix;

µ, trade-off parameter;

λ, regularization parameter;

T, number of iterations;

Output:

Ŷt, estimated target domain labels.

Begin:

Use EM for GMM, cluster each class

data in the source to obtain

{ZS, Y ′S} = {(zs,i, y′s,i)}
ks
i=1,and cluster the

unlabeled data in target domain

to obtain Zt = {zt,j}
kt
j=1;

Compute cost matrix C and coupling

matrix π using Eq. 3 and Eq. 4

respectively;

Compute the weights of source

substructures ws = π∗11kt and target

substructures wt =
1kt
kt

for n = 1,..., T do

Construct the joint probability

matrix R in Eq. 17

Solve the generalized

eigen-decomposition problem in

Eq. 18 and Eq. 19, and select the p
trailing eigenvectors to construct

the projection matrix As and At;

Train a classifier f on AT
s Zs

and applied to AT
t Zt to obtain

Ŷ ′t = {y
′
t,j}

kt
j=1 which is the label matrix

of substructure in target domain

Zt = {zt,j}
kt
j=1

End for

For each substructure zt,j, assign its

label y′t,j to all samples it contains,

and getsŶt = {yt,j}
nt
j=1

End

Algorithm 2. Substructural Joint Probability Distribution Adaptation

with Bi-Projection Metrix (SSJPDA-BPM)

Validation of the substructure-based
joint probability domain adaptation
algorithm and substructural joint
probability distribution adaptation with
bi-projection metrix

The DEAP dataset contains 32 subjects, each taking turns
as the target domain and the remaining 31 people as the source
domain. The number of samples in the source domain is 1,240
(31 subjects × 40 samples), and the number of target domain
samples is 40 (1 subject × 40 samples). After dividing the
source and target domains, the EEG, GSR, PPG, and RES modes
were transferred, respectively, and all the subjects’ valence and
arousal dimensions were classified, respectively. In each sample,
the feature dimension of EEG is 160, the feature dimension of
GSR is 7, the feature dimension of PPG is 8, and the feature
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dimension of RES is 8. Those four modes were fused through
average splicing, where the feature dimension after fusion in
each sample is 183. The feature dimension of the modes remains
the same dimension before and after the transfer learning.
The effects of single-mode transfer and multi-mode transfer
are compared to explore whether data fusion can promote
the accuracy of the transfer learning algorithm. By comparing
SSJPDA with other transfer learning methods and traditional
machine learning methods, this paper explores whether SSJPDA
can improve recognition accuracy.

Hyperparameters of the model will affect the recognition
accuracy. We divide the target domain with 40 samples from
1 subject into a verification set and a test set for the specific
hyperparameter configuration in the algorithm, which follows
similar protocols used in Courty et al. (2016). Among them,
the training set is an optional 10 samples, and the test set is
the remaining 30 samples. Both validation and test sets have
no labels. The validation set data and source domain data are
trained together to obtain the best accuracy within the range of
hyperparameters, and the range of hyperparameter sets follows
(Kerdoncuff et al., 2021). Under the best hyperparameters set,
the classification accuracy and F1 measure are used to measure
the performance of our proposed algorithm on the test set.

Result

Experiment 1

In Experiment 1, JPDA, JPDA (BMP), SSJPDA, and SSJPDA
(BMP) algorithms were used to transfer EEG, PPG, GSR, RES,
and four-mode fusion data (ALL) of subjects, respectively.
Table 2 shows the average accuracy and F1-measure of 32
subjects in valence and arousal.

Table 2 shows that in the DEAP dataset, the recognition
accuracy of multimodal fusion data is less improved than that of
single-mode data recognition. Even in the identification of some
modes of JPDA and JPDA-BPM, the accuracy of single-mode
is higher than that of multi-mode. However, this phenomenon
does not appear in the domain adaptation algorithm using
substructure. In the classification of valence and arousal by
SSJPDA and SSJPDA-BPM algorithms, the recognition accuracy
and F1-measure based on multimodal data are generally higher
than that of single-mode data. In the recognition of multimodal
data, the recognition accuracy of SSJPDA and SSJPDA-BPM
in valence is 14.1 and 19.3% higher than that of JPDA and
JPDA-BPM, respectively. In the recognition accuracy of arousal,
SSJPDA and SSJPDA-BPM are higher than JPDA and JPDA-
BPM by 11.8 and 12.4%, respectively. In the single-mode
recognition, SSJPDA-BMP has higher recognition accuracy and
F1 than JPDA-BMP in every single mode. Similar rules also
appear in the comparison between SSJPDA and JPDA. By
comparing the recognition ability of the two transfer learning

algorithms with or without the BPM algorithm in each mode,
we find that the BPM algorithm is more effective in the transfer
learning algorithm with substructure. Among the algorithms
that do not use substructures, whether to use the BPM algorithm
has little impact on transfer performance.

In order to present the representations generated by
different methods more intuitively, we use the t-SNE algorithm
in multimodal data experiments to reduce the dimension and
visualize the representations generated by different algorithms.
Figure 1 is the t-SNE diagrams of each algorithm in Experiment
1 on multimodal data. The dots legend represents the source
domain data, and the legend of the star represents the target
domain data. The light blue and dark blue represent positive
samples, and the orange and red represent negative samples.

According to Figure 1, the representations generated by
different algorithms have consistent performance, regardless of
valence or arousal classification. The substructures generated by
SSJPDA and SSJPDA-BPM through clustering in the domain
can significantly reduce the quantity of data. JPDA-BPM and
SSJPDA-BPM can lessen the intra-class sample distance and
increase the inter-class sample distance in the same domain.
At the same time, they can make the same kind of samples in
different domains align better compared with not using the BPM
algorithm. The representation generated by SSJPDA-BPM has
better separability than others.

TABLE 2 The average accuracy (ACC_100%) and F1-measure in
different algorithms with single-mode and multi-mode data in
valence and arousal classification.

Method Modality Valence Arousal

ACC F1-measure ACC F1-measure

JPDA EEG 0.529 0.563 0.549 0.615

PPG 0.561 0.603 0.551 0.589

GSR 0.537 0.578 0.567 0.619

RES 0.531 0.574 0.509 0.567

ALL 0.541 0.576 0.568 0.626

JPDA-BPM EEG 0.536 0.605 0.525 0.624

PPG 0.536 0.63 0.551 0.582

GSR 0.553 0.446 0.537 0.57

RES 0.517 0.555 0.537 0.613

ALL 0.533 0.615 0.573 0.613

SSJPDA EEG 0.604 0.617 0.614 0.645

PPG 0.588 0.537 0.633 0.634

GSR 0.605 0.596 0.613 0.618

RES 0.614 0.643 0.619 0.614

ALL 0.617 0.627 0.635 0.643

SSJPDA-BPM EEG 0.621 0.645 0.629 0.655

PPG 0.62 0.619 0.648 0.652

GSR 0.608 0.581 0.62 0.65

RES 0.595 0.601 0.636 0.653

ALL 0.636 0.653 0.644 0.679

The numbers in bold indicate the highest value of the experimental results.
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FIGURE 1

The source and target domain’s prediction samples are projected to two-dimensional visualization through t-SNE in multimodal data
experiments with different algorithms. (A) Shows valence classification representations, and (B) shows arousal classification representations,
where (I) is JPDA algorithm, (II) is JPDA (BPM) algorithm, (III) is SSJPDA algorithm, (IV) is SSJPDA(BPM) algorithm.

Experiment 2

The source domain data and target domain data settings
of Experiment 2 are the same as Experiment 1, but only

fusion data is used for comparison in the different algorithms.
Traditional machine learning and transfer learning algorithms
are used to classify valence and arousal. Because the TCA, JDA,
BDA, and JPDA algorithms all use the 1-Nearest Neighbor
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(1NN) model in classification, we choose 1NN as the traditional
machine learning model to compare the impact of the transfer
learning algorithm on recognition results. Table 3 shows the
average accuracy and F1-measure of 32 subjects using different
algorithms in valence and arousal.

Table 3 shows that in the problem of emotion recognition
based on the DEAP dataset, when the data distribution of the
source domain and target domain is different, the performance
of all transfer learning algorithms is better than the 1NN
algorithm. In recognition of valence and arousal, the algorithm
with the worst classification accuracy in the transfer learning
algorithm is still 1.2% (TCA) and 2.2% (JDA) higher than
1NN, respectively. We proposed SSJPDA-BPM algorithm has
the best performance. The recognition accuracy and F1-
measure values of valence are 63.3 and 65.3%, respectively.
The recognition accuracy and F1-measure arousal values are
64.4 and 67.9%, respectively. Its accuracy and F1-measure
values are higher than other algorithms. Compared with the
traditional transfer learning algorithm, SSJPDA-BPM has higher
classification accuracy than TCA, JDA, and BDA by 29.8,
28.2, and 22.5%, respectively, in valence classification. In the
recognition accuracy of arousal, SSJPDA-BPM is 23.6, 25.1,
and 19.7% higher than TCA, JDA, and BDA, respectively. The
comparison results of whether to use BPM and SS algorithms
have been described in detail in Experiment 1, which will not be
explained in this part.

Figure 2 is the line chart showing the recognition accuracy
of each algorithm in Experiment 2 in 32 subjects in descending
order, of which Figure 2A is the recognition accuracy of valence
and Figure 2B is the recognition accuracy of arousal. The gray
horizontal line is the chance level of 50% for the two classes.
Each color corresponds to an algorithm. Subjects above the gray
level line are represented by upward triangles. The recognition
accuracy of this subject in the algorithm is higher than that of
the chance level. Downward triangles represent subjects below
the gray level line, and the recognition accuracy of this subject
in the algorithm is lower than the accuracy of the chance level.

TABLE 3 The average accuracy and F1-measure of different
algorithms in valence and arousal classification.

Method Valence Arousal

ACC F1 ACC F1

1NN 0.484 0.529 0.504 0.555

TCA 0.49 0.533 0.521 0.583

JDA 0.496 0.535 0.515 0.578

BDA 0.519 0.56 0.538 0.572

JPDA 0.541 0.576 0.568 0.626

JPDA-BPM 0.533 0.615 0.573 0.613

SSJPDA 0.617 0.627 0.635 0.643

SSJPDA-BPM 0.636 0.653 0.644 0.679

The numbers in bold indicate the highest value of the experimental results.

Figure 2A shows that more than half of the subjects have
a recognition accuracy higher than the chance level of 50%
for two classes in recognition of valence by the 1NN, TCA,
and JDA algorithms. The recognition accuracy of 1NN and
TCA in some subjects is less than 30%. Therefore, the average
recognition accuracy of these two algorithms is lower than
JDA. By comparing JDA, BDA, and JPDA algorithms in order
of this arrangement, we can see that the number of people
whose three algorithms are higher than the chance level of
50% is slowly increasing. Meanwhile, the highest and lowest
recognition accuracy of subjects in the test set is also gradually
increasing. The performance of JPDA-BPM is lower than that of
JPDA. Although JPDA-BPM algorithm has more subjects with
recognition accuracy higher than 70 and 60%, wrong matching
still leads to more subjects with recognition accuracy lower than
45%. The SSJPDA and SSJPDA-BPM algorithms have improved
compared to the original algorithm. It is worth noting that the
recognition accuracy of the SSJPDA-BPM algorithm is above
55% in all subjects.

Figure 2B shows that the number of subjects with arousal
recognition accuracy higher than the chance level exceeded half
of the total sample size. 1NN, TCA, and JDA algorithms have
more than 70% recognition accuracy in some subjects. However,
the recognition performance of the algorithm is poor in some
subjects, and its recognition accuracy is lower than 35%, which
leads to the low average recognition accuracy of these three
algorithms. In the JPDA-BPM algorithm, one subject has a
recognition accuracy of 85%, which is the highest among the
eight algorithms. Meanwhile, its minimum recognition accuracy
is 35%, and the number of people lower than the chance
level of 50% is also higher than JPDA, which leads to little
difference between its average recognition accuracy and JPDA.
In the comparison between SSJPDA and SSJPDA-BPM, the
performance of SSJPDA-BPM is generally higher than SSJPDA,
and the recognition accuracy is lower than SSJPDA only in a
few subjects. Comparing whether to use the SS method, SSJPDA
and SSJPDA-BPM have been improved compared to the original
algorithm, and the recognition accuracy of all subjects is above
50%.

Discussion

The performance of different
algorithms with multi modal and single
modal data

In the algorithm based on non-substructure, the recognition
accuracy using multimodal data is less improved than that using
single-mode data. In the substructure-based algorithm,
multimodal data can significantly improve recognition
performance. Multimodal data in JPDA, the amount of data in
the source domain and target domain are very different. The
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FIGURE 2

The recognition accuracy of each algorithm in Experiment 2 in 32 subjects was ranked in descending order. (A) Shows the recognition accuracy
of valence in different algorithms of 32 subjects, and (B) shows the recognition accuracy of arousal in different algorithms of 32 subjects.

source domain consists of 31 subjects, each of which contains
40 samples. The target domain is 40 samples from one subject,
of which 40 samples are also divided into a validation set
composed of 10 random samples and a test set consisting of 30
random samples. Therefore, there is an enormous difference
in the data volume between the source domain and the target
domain. When the source and the target domain are projected
to the same feature space, the probability of false matching will
increase, which affects transfer recognition’s accuracy.

Fusing the features of the four modes will increase the
sample dimensions of the source and the target domain. The
probability of sample error matching is greater than that of
single-mode identification, so the performance of the non-
substructure algorithm in multimodal data identification is
poor. The transfer learning algorithm based on substructure can
avoid error matching caused by sample dimensions increasing
and data volume differences between the source and target
domains. SSJPDA first generates substructures by clustering
in the domain and then matches the substructures. The
generation of substructures can dramatically reduce the data

volume gap between the source and target domains. This can
significantly reduce the probability of false matching. Therefore,
the SSJPDA algorithm performs better than JPDA in single-
mode emotion recognition. Without the influence of data
volume, multimodal fusion data can provide more dimensional
information to align the substructures of the source domain
and target domains’ substructures. Therefore, using the SSJPDA
algorithm to recognize multi-mode emotional data can obtain
high recognition accuracy.

The application of BPM in SSJPDA can significantly
improve recognition performance. Because the emotional labels
of subjects in the DEAP dataset are provided by the subjects
themselves, this will affect the consistency of the emotional
labels of different subjects. At the same time, because the
emotional stimulation of the DEAP dataset depends on
multimedia clips, some subjects also have the problem of weak
emotional stimulation. In this experiment, the source domain
contains all the test samples of 31 subjects, so there must be
many abnormal samples and noise in the source domain. If
no substructure is generated in the source domain and the
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data is projected directly, the abnormal samples and noise
greatly impact the projecting matrix. Therefore, the advantages
of the BPM algorithm are not reflected in JPDA. However,
the substructure algorithm can cluster the noise or outliers of
samples into the substructures of adjacent samples to reduce the
impact of noise and outliers. When the source and target domain
samples are clustered into substructures, we fully consider the
distribution differences between the source and target domain
substructures. Projecting the substructure through two different
projecting matrices can better project the substructure of the
source domain and the target domain to the feature space to
improve the algorithm’s recognition performance.

The comparison of different algorithms

When the data distribution of the training set and test
set is inconsistent, the traditional machine learning algorithm
cannot be competent for classification. Therefore, the 1-
NearestNeighbor (1NN) algorithm performs worst in this
emotion recognition problem. The purpose of transfer learning
is to solve the inconsistency between the data distribution
of the training set and test set, that is, the inconsistency
between the distribution of the source domain and target
domain. Therefore, the transfer learning algorithm performs
well in this emotion recognition problem. Among them,
transfer component analysis (TCA) assumes that if the marginal
distributions of the source domain and the target domain are
close, the conditional distributions of the two domains will
also be close. Therefore, TCA projects the source and target
domain data together into a high-dimensional reproducing
kernel Hilbert space. In this space, the data distance between
the source and the target is minimized, while their respective
internal attributes are preserved to the greatest extent to
complete the transfer learning. The joint distribution adaptation
(JDA) method simultaneously assumes that the marginal and
conditional distribution of the source and target domains are
different. Then the two distributions are adapted together to
achieve transfer. The goal of JDA is to reduce the distance
between the source and target domain’s joint probability
distribution to complete the transfer learning. Balanced
distribution adaptation (BDA) is improved on the basis of
JDA. BDA assumes that marginal distribution adaptation and
conditional distribution adaptation are not equally important.
BDA adaptively adjusts the importance of marginal and
conditional distribution in the distribution adaptation process
according to specific data fields to complete the transfer.

We proposed the SSJPDA algorithm can better measure
the distribution difference between the two domains through
the joint probability distribution. This is better than JDA
and BDA algorithms, which directly calculate the sum of
marginal probability and conditional probability distribution
differences between the two domains. In the SSJPDA algorithm,

the algorithm’s transferability is achieved by minimizing the
difference in joint probability distribution between different
domains of the same class, and the algorithm’s discriminability
is achieved by maximizing the difference in joint probability
distribution between different domains. At the same time, using
substructures reduces the difference in data volume between the
source domain and the target domain and reduces the impact
of noise or outliers. After using the substructure, the SSJPDA-
BPM algorithm we proposed fully considers the distribution
difference between the substructure of the source domain and
the target domain and projects the substructure through two
different mapping matrices to improve the performance of
the algorithm further. Therefore, this paper’s SSJPDA (BMP)
algorithm has the highest recognition performance accuracy.

Discussion on negative transfer

Negative transfer means that the knowledge learned in the
source domain has a negative effect on the learning in the target
domain. When the source domain data is not similar to the
target domain data, or the source domain data is similar to the
target domain data, but the transfer learning method is not good
enough that no transferable components are found, the negative
transfer is likely to occur in those two cases (Pan and Yang,
2009). In this experiment, the distribution of source domain
data and target domain data are different. Through the multi-
source domain transfer method, the data in the target domain
is correctly classified by using the knowledge learned from
multiple source domains so that the target domain can learn
more comprehensive feature information. This can well avoid
the negative transfer caused by the low correlation between
the source domain and the target domain in the single source
domain transfer.

However, if the source domain data used in the transfer
learning algorithm contains a lot of noise, it is likely to
negatively impact the classification model. The multiple source
domain transfer method will further amplify the impact of
noise. Regrettably, the four physiological signals, especially
EEG signals, in this experiment contain numerous noise and
abnormal samples. Therefore, the noise and abnormal samples
in the source and target domains will inevitably lead to negative
transfer. Therefore, in addition to SSJPDA-BPM algorithm, the
classification accuracy of every algorithm in some subjects is
lower than the chance level of 50% for two classes.

Compared with other algorithms, SSJPDA and SSJPDA-
BPM generate substructures in the source domain and target
domain. These substructures can properly process the data
according to the data’s similarity, which can validly reduce
the negative impact of noise and abnormal samples in the
source and target domains. It can effectively avoid negative
transfer and improve the performance of the transfer learning
algorithm. At the same time, as traditional migration learning
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methods, TCA, JDA, and BDA algorithms have a better effect
on the transfer of feature size within a certain threshold.
The information redundancy caused by too large feature
vectors makes the impact of confusing information greater than
that of task-related information, resulting in negative transfer
(Zhang et al., 2020). However, SSJPDA and SSJPDA-BPM
can filter abnormal samples affected by confusing information
through substructure, which further improves the algorithm’s
performance.

More than that, how to transfer the components found
in the source and target domain data also affects the negative
transfer. In comparing whether to use the BPM algorithm, if the
algorithm finds the correct transferable components, projecting
the effective data to the feature space through two different
projecting matrices can improve the algorithm’s performance
and better avoid the negative transfer. However, suppose there
is a lot of noise and outliers in the data. In that case, the
BPM algorithm changes from an excellent method that avoids
more negative transfers to a lousy method that leads to more
negative transfers.

Conclusion

This paper proposes SSJPDA and SSJPDA-BPM algorithms
to use the labeled physiological data to recognize the emotion
of new subjects. We also explored single-mode and multimodal
data’s influence on emotion recognition based on physiological
signals. The performance of the SSJPDA-BPM algorithm is
verified by the comparative experiments of various algorithms
on DEAP dataset. The results show that SSJPDA and SSJPDA-
BPM algorithms can better deal with noise and outliers in
data by clustering substructures. Meanwhile, these algorithms
can reduce the quantity of data that better use the multi-
dimensional information provided by multimodal fusion data.
BPM algorithm can project the substructure through two
different projecting matrices, which can better project the
source domain and target domain data to the feature space,
to improve the algorithm’s recognition performance. The
experimental results show that the average recognition accuracy
of the proposed SSJPDA-BPM algorithm in the multimodal
fusion physiological data is 63.6 and 64.4% in valence and
arousal, respectively.
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Otoacoustic emissions (OAEs) are low-level sounds generated by the cochlea

and widely used as a noninvasive tool to inspect cochlear impairments.

However, only the amplitude information of OAE signals is used in current

clinical tests, while the OAE phase containing important information about

cochlear functions is commonly discarded, due to the insufficient frequency-

resolution of existing OAE tests. In this study, swept tones with time-varying

frequencies were used to measure stimulus frequency OAEs (SFOAEs) in

human subjects, so that high-resolution phase spectra that are not available

in existing OAE tests could be obtained and analyzed. The results showed

that the phase of swept-tone SFOAEs demonstrated steep gradients as the

frequency increased in human subjects with normal hearing. The steep

phase gradients were sensitive to auditory functional abnormality caused by

cochlear damage and stimulus artifacts introduced by system distortions.

At low stimulus levels, the group delays derived from the phase gradients

decreased from around 8.5 to 3 ms as the frequency increased from 1 to

10 kHz for subjects with normal hearing, and the pattern of group-delay versus

frequency function showed significant difference for subjects with hearing

loss. By using the swept-tone technology, the study suggests that the OAE

phase gradients could provide highly sensitive information about the cochlear

functions and therefore should be integrated into the conventional methods

to improve the reliability of auditory health screening.

KEYWORDS

swept-tone, otoacoustic emissions, cochlear impairment, phase gradients, auditory
health screening
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Introduction

Otoacoustic emissions (OAEs) are low-level sounds
generated by the normal activities of the cochlea and can
be recorded by a sensitive microphone inside the ear canal.
Although it is difficult to physically examine the cochlea due
to its deep location inside the temporal bone, the discovery
of OAEs provides a non-invasive window to observe the
functional status of the cochlea. Studies have shown that OAEs
are byproducts of the mechano-electrical activities of outer
hair cells (OHCs) that can provide energy feedback to boost
the vibrations of the basilar membrane and to amplify the
cochlear response to incoming sounds (Dallos et al., 1997).
Such physiological OHC activities, also called electromotility,
are crucial for the extraordinary frequency selectivity and
hearing sensitivity of the human auditory system (Liberman
et al., 2002). During the active process of OHC electromotility,
part of the extra energy provided by OHCs travels inversely
along the basilar membrane and propagates to the ear canal
and is recorded as OAEs. A study showed that OAE signals
would significantly decrease or even disappear as a result of
the blockage of the OHC electromotility (Brownell, 1990).
Therefore, the presence of OAEs is a reliable indicator of
thriving OHC activities as well as a normal functioning cochlea.
Moreover, OAE signals are easy to measure and not affected by
attentions or consciousness of the patients (Meric and Collet,
1994). Therefore, OAE measurements have been intensely used
in routine hearing screening and audiological assessments in
the clinic, especially for the pediatric population that is difficult
to test in conventional audiogram assessments (Kemp et al.,
1990).

Otoacoustic emission signals are commonly analyzed in the
frequency domain by examining both amplitude and phase
spectra. Since OHCs at different cochlear positions generate
OAEs of different frequencies, their amplitude spectrum has
been widely used as a direct approach to inspect the presence
of OAE signals and to evaluate OHC functionalities at different
frequencies. The OAE amplitude spectrum demonstrates
regular spectral periodicity that is unique to each subject
(Neumann et al., 1994; Talmadge et al., 1999; Wagner et al.,
2008). Another distinctive feature of OAE signals is that the
phase changes dramatically with frequency and there is a steep
phase gradient in the OAE phase spectrum (Dhar et al., 2002;
Choi et al., 2008; Martin et al., 2009; Henin et al., 2011).
The steep phase gradient, which reflects the round-trip travel
time of OAE signals, is closely related to the active process
of OHC electromotility and the frequency selectivity of the
cochlea (Shera and Bergevin, 2012). The unique feature of phase
gradient enables it to act as an important tool for various
studies in the peripheral auditory system (Shera and Guinan,
1999, 2003; Kalluri and Shera, 2001). The phase gradient
could also be utilized to investigate the sources and generation
mechanisms of different types of OAEs (Zweig and Shera, 1995;

Shera and Guinan, 1999; Kalluri and Shera, 2001; Goodman
et al., 2003; Lineton and Lutman, 2003), to estimate the cochlear
tuning by deducting group delays of the basilar membrane at
different frequencies (Shera et al., 2002; Siegel et al., 2005; Shera
and Bergevin, 2012), and to examine the olivocochlear efferent
control of OHC activities introduced by a contralateral stimulus
(Giraud et al., 1995; Guinan et al., 2003). Moreover, a recent
study showed that there was a close relation between unstable
OAE phase shift and a stiff cochlear partition, suggesting that
the phase could be possibly used as a non-invasive way to detect
endolymphatic hydrops of Menière’s disease (Avan et al., 2011).

Although the OAE phase gradients are useful in different
ways, they are mostly restricted to auditory research only
and rarely used in clinical practices (Abdala et al., 2018; Liu
et al., 2020). Currently, two types of OAEs are measured in
the clinics: transient evoked otoacoustic emissions (TEOAEs)
measured with brief tones such as clicks, and distortion product
otoacoustic emissions (DPOAEs) induced by two sinusoids with
closely spaced frequencies. However, only the OAE amplitude is
provided upon the completion of both types of measurements
while the phase information which essentially represents the
OAE signals is completely discarded. One reason is that
the measure of phase information requires that the OAEs
be tested with a sufficient frequency resolution so that the
phase difference between two neighboring frequencies does
not exceed 2π to avoid possible phase discontinuities (Shera
et al., 2002). However, the frequency resolution of current
OAE measurements is usually in the order of hundreds of
hertz and it is far from sufficient to capture OAE phases
that change dramatically with frequency (Shera and Bergevin,
2012). Recently, Chen et al. (Chen et al., 2013; Jun et al.,
2014) proposed a method of using swept tones with rapidly
varying frequencies to measure OAE signals with a frequency-
resolution as high as a few hertz, making it a great candidate to
measure the phase of OAE signals across frequencies. Another
possible reason for the lack of use of OAE phases is that
the phases of TEOAEs and DPOAEs could be deteriorated
by their complex generation mechanisms (Shera and Guinan,
1999). The multiple reflections of TEOAEs (Kemp et al., 1990;
Avan et al., 1993; Tognola et al., 1997) and two distinctive
sources of DPOAEs (Shera and Guinan, 1999, 2003; Kalluri
and Shera, 2001) make it rather difficult to interpret the phase
information of the two types of OAEs currently used in the
clinic. Stimulus frequency otoacoustic emission (SFOAE) is
another type of OAEs commonly evoked by one single stimulus
and it attracts increasing attention recently due to its appealing
features when compared with other types of OAEs (Guinan
et al., 2003; Choi et al., 2008; Bentsen et al., 2011; Cheatham
et al., 2011; Ren et al., 2013). Studies showed that SFOAEs were
more frequency-specific in reflecting the functional status of
corresponding OHCs (Guinan et al., 2003; Choi et al., 2008).
It is widely accepted that SFOAEs are generated by linear
coherent reflections within the cochlea (Shera and Guinan, 1999;
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Goodman et al., 2003; Lineton and Lutman, 2003), and therefore
the interpretation of SFOAEs is less complicated, by avoiding
multiple reflections in TEOAEs and source mixing in DPOAEs.

The purpose of this study is to use the swept-tone method
to measure the phase gradients of SFOAEs in high frequency-
resolution, and to demonstrate the role of using phase gradient
in combination with conventional amplitude spectrum to obtain
more reliable results of auditory health screening in the clinic.

Materials and methods

Subjects

Sixteen subjects were recruited from Shenzhen Institutes
of Advanced Technology, with ages from 23 to 36 years old.
All subjects declared that they had no congenital auditory
disease in the family and no history of ontological surgery
or ototoxic drug usage. A conventional audiogram test was
also performed on each subject at standard frequencies (1, 2,
3, 4, 6, and 8 kHz) prior to the experiment. Twelve subjects
demonstrated normal hearing with thresholds better than 20 dB
HL across all frequencies, and the other four subjects had mild
hearing loss over certain frequencies due to long-term exposure
to loud sounds. The subjects were told to lie comfortably on
a foam-covered bed in a double-walled sound booth during
the experimental tests. All subjects gave informed consent and
provided permission of their data for scientific purposes. The
protocol of this study was approved by the Institutional Review
Board of Shenzhen Institutes of Advanced Technology (SIAT-
IRB-130124-H0015).

Equipment

The presentation of the stimuli and the recording of the
acoustic response were controlled by a custom Windows PC
program implemented in Matlab environment (Mathworks Inc.,
USA). Signal Processing Toolbox in Matlab was adopted in this
manuscript to further analyze the signals. The digital waveforms
of the stimuli were initially synthesized from the PC and then
sent to an USB sound card (E-MU 0204, Creative Technology
Ltd.) with very low noise background and rather low nonlinear
distortion via a universal ASIO driver. The sound card is a
full duplex with two input channels and four output channels,
with all channels of pristine resolutions of 24 bits and very
high signal-to-noise ratios (SNRs) up to 117 dB. Two ER-2A
earphones (Etymotic Research) were connected to the sound
card and converted the digital voltage to acoustic sounds to
stimulate the auditory system at the ear canal. The acoustic
response was simultaneously recorded by an ER-10+ low-noise
microphone (Etymotic Research) seated together with the two
earphones inside a foam earplug, and digitized by the USB

sound card at a sample rate of 48 kHz. All the original raw data
were stored for offline analyses.

Experimental design and procedures

Three-interval protocol to extract stimulus
frequency otoacoustic emissions

Since SFOAEs share the same frequency as the evoking
stimulus, the extraction strategy becomes more complicated
than the simple spectral analysis of TEOAEs or DPOAEs
(Kalluri and Shera, 2007). A three-interval protocol (Keefe,
1998; Keefe and Ling, 1998; Chen et al., 2013; Jun et al., 2014)
based on the two-tone suppression phenomenon (Kemp and
Chum, 1980) was used to extract the SFOAEs in the experiment.

In the three-interval protocol, two stimulus tones (s1 and
s2) were presented in a specially designed order within three
intervals of equal duration (Figure 1A). When either stimulus
(s1 or s2) was presented alone in the first or the second interval,
the acoustic response (p1 or p2) contained both the stimulus
artifact and the evoked SFOAEs. However, when the same
stimuli s1 and s2 were presented simultaneously during the
third interval, the SFOAEs evoked by either stimulus in the
response p12 would be suppressed by the other stimulus and
the amplitude would decrease by 4p1 or 4p2 as a result. In
contrast, the stimulus artifacts related with s1 and s2 remained
unchanged. When subtracting the response of p12 from p1p2:

4p = p1 + p2 − p12 (1)

Most of the stimulus artifacts would be canceled out, and
only the SFOAE amplitude changes in the third interval (4p1

and 4p2), as well as other background noises and interferences,
would be left in the residue4p.

Stimulus generation and presentation
In this study, both stimuli s1 and s2 were swept tones

with time-varying frequencies to improve the efficiency of
SFOAE measurements (Figure 1B). The swept tones were
constructed by customizing the amplitude and phase spectra in
the frequency domain, and converting to the time domain to
get the temporal waveform via an inverse fast Fourier transform
(iFFT) (Müller and Paulo, 2001; Chen et al., 2013).

In the experiment, the duration of all three intervals was
kept at 1 s. The frequency of s1 (the probe tone) was increased
linearly from 0.5 to 10 kHz within 1 s, and the frequency of s2
(the suppressor tone) was kept 200 Hz lower than s1 (Figure 1B).
The level of s1 (L1) was increased from 45 to 60 dB FPL at a 5-dB
step, and the level of remained constant at 80 dB FPL.

Experimental procedures
During the experiment, a foam earplug of the selected size

was carefully inserted into the ear canal of the subject. Then
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A B

FIGURE 1

The three-interval protocol to measure stimulus frequency otoacoustic emissions (SFOAEs) (A) and frequency functions of swept-tone
stimuli (B).

the digitally generated swept tones were presented by the two
earphones in a three-interval fashion as shown in Figure 1,
and the acoustic response at the ear canal was simultaneously
collected by the microphone seated inside the earplug. For
each signal condition, the same stimulus tones were repeatedly
presented for 20 times and the responses were digitally averaged
to improve the SNR. In the experiments, the stimulus level was
equalized across frequencies according to the forward sound
pressure (Chen et al., 2014) to avoid the impacts of standing
waves. As a comparison, another session with no stimulus level
calibration, during which there might be excessive stimulus level
within a certain frequency range, was also carried out to examine
the effects on the swept-tone SFOAEs.

For verification purposes, the earplug was also inserted
into a plastic uniform tube with one end closed and the same
procedures were performed to measure the response. The tube
was 25 mm in length and 7 mm in diameter, approximately
the same size as an adult ear canal. The acoustic response was
recorded and analyzed to compare the differences between the
human ear and the plastic tube.

Data analysis
A tracking filter that can dynamically follow the

instantaneous frequency of the target was used to extract
the swept-tone SFOAEs in this study, and the details of the
swept-tone and tracking filter could be found in Abdala
et al. (2018) and Liu et al. (2020). Another advantage of the
tracking filter is that it can easily attenuate the unwanted
signal components by placing zeros around the corresponding
frequency (Chen et al., 2013). As noted in Eq. 1, two major
swept-tone SFOAE components (4p1 and 4p2) coexisted in
the residue response 4p. Since nonlinear system distortions

might be involved at high stimulus level (80 dB FPL) for s2, only
the swept-tone SFOAEs evoked by s1 (the 4p1 component)
were analyzed in this study. Accordingly, there was one pole
to track the 4p1 component, and one zero to attenuate the
4p2 component in the setup of the tracking filter. The signal
passed through the tracking filter four times to improve the
filter performance (Chen et al., 2013).

As shown in Figure 2, the tracking filter was applied to the
temporal waveform of 4p to get a dynamic estimate (4p1) of
the swept-tone SFOAE component 4p1. Then a fast Fourier
transform (FFT), with a fixed 1-s length Hanning window, was
performed on the 4p1, and the magnitude of the FFT result
X
4p1
′ was taken as the amplitude spectrum of the swept-tone

SFOAEs. Meanwhile, the center frequency of the tracking filter
was set 100 Hz above the frequency of 4p1, and the amplitude
of the filter output was calculated as the reference of the noise
floor.

To get the phase of the swept-tone SFOAEs, the same
tracking filter that was used to obtain 4p1

′

was applied to
the response of p1 in Figure 1, and an FFT was performed
on the corresponding filter output to get the spectral complex
Xp1 (Figure 2). Then the phase of Xp1 was subtracted from
the phase of X

4p1
′ (FFT result of 4p1

′

), and the unwrapped
phase difference was calculated as the phase of the swept-tone
SFOAEs. The phase subtraction was used to eliminate the delays
introduced by the recording system and the tracking filter, so
that the phase gradient attribute to the swept-tone SFOAEs
could be truly revealed.

Since the frequency of the stimulus continuously changed
with time, the evoked swept-tone SFOAEs were also continuous
in frequency, making it possible to obtain the phase spectrum of
SFOAEs in high definition to avoid possible discontinuities. For
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FIGURE 2

Signal processing procedures to get the amplitude and phase of swept-tone stimulus frequency otoacoustic emissions (SFOAEs). The phase
subtraction in the last step was to cancel the phase shifts introduced by the stimulus and the tracking filter.

an SFOAE phase spectrum φ(f ) prepared by the procedures in
Figure 2, the group delay τ, defined as the transit time of a signal
through a system, could be calculated by:

τ = −
1

2π

d φ f
df

(2)

The group delay of SFOAEs was a rather useful measure of
the travel time of the OAE signals inside the cochlea, and it could
provide quite useful information about the functional status
of the OHCs and the sharp tuning of the cochlea (Shera and
Guinan, 2003; Siegel et al., 2005). In this study, the group delays
were calculated at discrete frequencies (fi) from 1 to 10 kHz (at
a 1-kHz step) for all the subjects. For each discrete frequency fi,
the phase-frequency function from fi−100Hz to fi+100Hz was
fitted with a straight line and the slope was used to calculate the
group delay according to Eq. 2.

Results

Swept-tone stimulus frequency
otoacoustic emissions in subjects with
normal hearing

The presence of OAE signals is a distinctive feature of
the healthy human ear that makes it different from other
passive systems such as acoustic tubes. The use of swept tones
made it possible to observe the OAE features in such a high
definition. For comparison purposes, swept-tone SFOAEs were
measured in both human ears with normal hearing and a
plastic tube of similar sizes under the same signal conditions
(L1 = 50 dB FPL) in this study. A typical comparison of
the spectrogram (energy distribution as a function of time
and frequency), amplitude and phase spectra between the two

responses (represented by 4p in Eq. 1) was shown in Figure 3.
The most important finding was that the responses in the human
ear and plastic tube showed dramatically different patterns. For
the response in the human ear, two ascending lines, which
reflected the energy concentrations in the residue response,
were clearly observed in the spectrogram (Figure 3A). The two
lines corresponded to the two SFOAE components (4p1 and
4p2) and had quite similar frequency patterns as their evoking
stimuli (Figure 1B). Then a tracking filter was applied to extract
the 4p1 component, and the filtered amplitude and phase
spectra were shown in Figures 3B,C, respectively. The SFOAE
amplitude in Figure 3B consisted of slow baseline variations
and rapid spectral periodicity (or fine structures) indicated by
alternating peaks and troughs. The overall SFOAE amplitude
could get around 30 dB FPL above the noise floor for the
subject with normal hearing. The pattern of the fine structures
is unique for each specific subject. Another unique feature of
the ear response was that the phase decreased dramatically as
the frequency increased: the amount of the phase decrease could
exceed 150 rad when the frequency increased from 0.5 to 10 kHz.
However, for the response in the plastic tube, no swept-tone
SFOAEs were observed in either the spectrogram (Figure 3D)
or the amplitude spectrum (Figure 3E). The phase no longer
demonstrated steep gradient and fluctuated around 0 as the
frequency increased (Figure 3F).

Swept-tone stimulus frequency
otoacoustic emissions in subjects with
mild hearing loss

Since SFOAEs are closely related to the normal functions
of the cochlea, any alterations in the cochlear functions
accompanied by auditory functional abnormality would result
in changes in SFOAEs. A typical example of the swept-tone
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FIGURE 3

Difference in the spectrograms, amplitude, and phase spectra between the acoustic responses in a human ear (A–C, respectively) and in a
plastic tube (D–F, respectively).

SFOAEs of a subject with mild hearing loss of 2–3 kHz was
shown in Figure 4. As shown in Figure 4A, the overall baseline
amplitude of the SFOAEs fell below the noise floor within 2–
3 kHz, which was consistent with the frequency region of the
hearing loss. However, there was a large amplitude of SFOAEs
over other frequencies. For the phase spectrum in Figure 4B,
although steep phase gradients could be observed at most
frequencies, the phase function became rather flat when the
frequency was from 2 to 3 kHz. The flattening of the phase was
consistent with the SFOAE amplitude reduction, as well as the
region of the hearing loss. The abrupt phase discontinuities at
other frequencies (such as 5–7.3 kHz) were due to the lower
SNR at the trough of the SFOAE fine structures where the phase
estimation was more susceptible to random noises.

Phase gradients of swept-tone
stimulus frequency otoacoustic
emissions with artifacts

The SFOAEs of different frequencies originate from
activities of OHCs at different positions along the cochlea. In
practice, equalization of stimulus level across frequencies was
usually desired so that SFOAEs from different frequencies could
be compared. However, it is very common to have excessive
stimulus level over certain frequency ranges without calibrations
of stimulus levels, leading to large artifacts that could not be
ignored in the SFOAE analyses (a typical example was shown
in Figure 5). As shown in Figure 5B, a large amplitude of
SFOAEs could be observed across all frequencies from 0.5
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FIGURE 4

Amplitude (A) and phase (B) of swept-tone stimulus frequency otoacoustic emissions (SFOAEs) of a subject with hearing loss from 2 to 3 kHz
(indicated by dotted boxes).

to 10 kHz, and it could reach up to 25 dB FPL around the
frequency of 9 kHz. However, as we checked the corresponding
stimulus level in Figure 5A, it was found that the stimulus
level above 5 kHz was much higher than the expected level of
50 dB FPL. Such excessive stimulus level (as high as 20 dB)
could introduce nonlinear system distortions that could not be
canceled out during the subtraction in Eq. 1 or the filtering
by the tracking filter, resulting in unexpected artifacts during
the SFOAE measurements (Whitehead et al., 1995; McCreery
et al., 2009; Burke et al., 2010; Chen et al., 2014). Fortunately,
such artifacts could be correctly identified by the abnormal
phase gradient in Figure 5C, where the phase gradually violated
the steep gradient pattern of OAE signals above 5 kHz. The
flattening of the phase curve suggested that there might be
a large amplitude of system distortion involved, leading to
unreliable results in the extracted signals above 5 kHz.

Groups delays of swept-tone stimulus
frequency otoacoustic emissions

Group delays, obtained from the derivative of the phase
versus frequency function (Eq. 2), could provide a non-invasive
tool to monitor the cochlear tuning that is important for
cochlear healthiness (Shera and Bergevin, 2012) as well as the
frequency selectivity which is essential for speech perception
(Evans, 1975). In this study, the SFOAEs were measured using
swept tones to provide SFOAE phases in high frequency-
resolution, making it possible to obtain reliable SFOAE group
delays with high efficiency. In the experiment, the group
delays of the swept-tone SFOAEs were measured at 10 discrete
frequencies (from 1 to 10 kHz at a step of 1 kHz) under
different stimulus levels. The means and standard deviations
of the group delays averaged across the 12 normal-hearing
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FIGURE 5

Amplitude (B) and phase (C) of swept-tone stimulus frequency otoacoustic emissions (SFOAEs) with artifacts above 5 kHz caused by excessive
stimulus level (indicated by the dotted box in A).

subjects were shown in Figure 6. For the stimulus of 45 dB
FPL, the average group delay decreased from around 8.5 ms
to about 3 ms as the frequency increased from 1 to 10 kHz.
The group delay decreased more rapidly at lower frequencies.
When the stimulus level increased from 45 to 60 dB FPL,
the group delay at a given frequency decreased monotonously,
which was consistent with the findings of relevant studies (Shera
and Guinan, 2003; Bentsen et al., 2011; Shera and Bergevin,
2012). Due to the impacts of low-frequency noises in the
ear canal, the group delays of different stimulus levels almost
overlapped at 1 kHz. Since the phase versus frequency function
became rather flat as consequence of hearing loss (Figure 4),
the estimated group delays within the corresponding frequency
range would approach 0 ms and the group delay pattern would

be quite different from Figure 6 for subjects with hearing
loss.

Discussion

Usefulness of stimulus frequency
otoacoustic emission phase gradients
in auditory health screening

The study showed that the phase gradients of swept-tone
SFOAEs were rather useful to help improve the reliability
of auditory health screening using OAE measurements. As
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FIGURE 6

Group delays averaged across all subjects as functions of frequency and stimulus level derived from phase gradients of the swept-tone stimulus
frequency otoacoustic emissions (SFOAEs).

observed in Figure 3, the steep phase gradient of OAE signals is a
unique feature of the normal functioning human cochlea. Such
steep phase gradient would totally disappear if measurements
were made in a passive tube (Figure 3) or partially vanish if
auditory functional abnormality like hearing loss existed within
certain frequency ranges (Figure 4). The close relation between
the OAE phase gradients and cochlea healthiness is also reported
in relevant studies using fixed-frequency tones (Martin et al.,
2009; Avan et al., 2011; Shera and Bergevin, 2012). However,
the phase information of OAEs is habitually abandoned due
to insufficient frequency-resolution in clinical applications.
Currently, only the results of OAE amplitude vs. noise level were
provided and the presence of OAEs is determined by whether
the OAE amplitude is above the noise level (Kemp et al., 1990;
Erenberg et al., 1999; Abujamra et al., 2013). One problem is
that the screening results are largely dependent on the reliability
of the noise estimate. Since there is no universal standard for
noise estimation, different levels of noise might be obtained if
different algorithms are used for the noise calculation (Attias
et al., 2001; Reavis et al., 2008), leading to inconsistent results
among different methods. In this study, the noise floor was
obtained by setting the center frequency of the tracking filter
100 Hz above the swept-tone SFOAEs (Figures 3–5). However,
slight differences in the estimated noise floor might be expected
if the tracking filter was set in different ways, which might
result in differences in the identification of a possible hearing-
loss region in Figure 4A. In contrast, the calculation of SFOAE
phases is independent of the noise estimation, making it more

suitable and reliable to indicate the presence of OAE signals or
the existence of possible auditory healthy issues (hearing loss
in this study) over certain frequencies (Figure 4B). However,
it is recommended that the phase of SFOAEs should be used
in combination with the conventional amplitude spectra for
more accurate auditory health screening in clinical practices.
Moreover, the group delays calculated from the phase gradient
could also be used to detect the abnormality of cochlear tuning
that demonstrates evident alterations at the early stage of
auditory functional disorders such as hearing loss (Francis and
Guinan, 2010; Shera and Bergevin, 2012).

Phase gradients and group delays to
detect otoacoustic emission artifacts

The present study also showed that the SFOAE phase
gradients could help to identify possible artifacts that otherwise
could be falsely treated as actual OAE signals. As mentioned
earlier, the major difference between OAE signals and other
responses is that the unique phase gradient (Figure 3) is so
steep that the derived group delay is about 8.5 ms at 1 kHz
for all subjects (Figure 6), not including the system round-
trip delay that the stimulus spending on traveling along the
outer and middle ears. The steep phase gradient, as well as the
group delay, originates from the signal front delay which is
the time difference between the onset of the basilar membrane
(BM) and stapes, and the filter delay that the BM spends on
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building the peak of the traveling wave (Ruggero, 2004). The
filter delay of the BM, the major portion of the OAE group
delay, is a unique physiological parameter closely related to the
frequency selectivity of the cochlear tuning, with sharper tuning
corresponding to longer group delays (Shera and Guinan, 2003;
Ren et al., 2006). If there is no cochlear tuning involved (such
as the response in a passive tube), the steep phase gradient
would disappear (Figure 3) and the group delay would approach
0 as a consequence. In Figure 5, system distortions were
involved above 5 kHz due to the excessive stimulus level, leading
to incomplete cancellation of stimulus artifacts during the
subtraction in Eq. 1. The remaining stimulus artifacts with zero
group delay would dominate the low-level SFOAE components
(4p1 and 4p2) in the residual response 4p (Eq. 1), resulting
in the violation of steep phase gradients at the corresponding
frequency range (Figure 5C). However, it would be mistaken
if we determined the presence of large OAE signals by merely
checking the high SNR in the amplitude spectrum above 5 kHz
(Figure 5B). Therefore, checking the steep phase gradient in
combination with the amplitude spectrum is a more reliable way
to distinguish OAE signals from other irrelevant interferences or
unexpected noises.

Conclusion

In this paper, SFOAEs were measured with swept tones
in high frequency-resolution, so that the phase spectrum that
is conventionally not feasible in auditory research or clinical
tests could be obtained in a quite efficient way. The results
demonstrated that the SFOAE phases in human ears showed
steep gradients as the frequency increased, and such steep
gradients are unique features that make the human-ear response
different from other passive systems. The steep phase gradients
could help to efficiently validate frequency regions of auditory
functional abnormality, and to identify stimulus artifacts that
could be mistakenly treated as evident OAE signals in practical
applications. The pattern of the group delays derived from
SFOAE phase gradients might be used to reflect the cochlear
latency characteristics that were useful to evaluate the sharpness
of the cochlear tuning and the normalcy of the cochlear
frequency selectivity. The study suggested that using swept tones
to measure SFOAEs and involving the phase information in
combination with the amplitudes could be a rather promising
approach to help improve the reliability of current hearing
screening in the clinic.
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Artificial intelligence (AI) based on the perspective of data elements is widely

used in the healthcare informatics domain. Large amounts of clinical data

from electronic medical records (EMRs), electronic health records (EHRs), and

electroencephalography records (EEGs) have been generated and collected

at an unprecedented speed and scale. For instance, the new generation

of wearable technologies enables easy-collecting peoples’ daily health data

such as blood pressure, blood glucose, and physiological data, as well as

the application of EHRs documenting large amounts of patient data. The

cost of acquiring and processing health big data is expected to reduce

dramatically with the help of AI technologies and open-source big data

platforms such as Hadoop and Spark. The application of AI technologies

in health big data presents new opportunities to discover the relationship

among living habits, sports, inheritances, diseases, symptoms, and drugs.

Meanwhile, with the development of fast-growing AI technologies, many

promising methodologies are proposed in the healthcare field recently. In

this paper, we review and discuss the application of machine learning (ML)

methods in health big data in two major aspects: (1) Special features of health

big data including multimodal, incompletion, time validation, redundancy, and

privacy. (2) ML methodologies in the healthcare field including classification,

regression, clustering, and association. Furthermore, we review the recent

progress and breakthroughs of automatic diagnosis in health big data and

summarize the challenges, gaps, and opportunities to improve and advance

automatic diagnosis in the health big data field.

KEYWORDS

healthcare big data, machine learning, automatic diagnosis, healthcare informatics,
data elements, artificial intelligence
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Introduction

The global “digital divide” status quo is quickly changing
with the progress in artificial intelligence (AI) technologies
and their application area expansion. Nowadays, AI has been
widely researched and achieves great success in recent years,
and the heart of AI technologies is machine learning (ML)
algorithms (Xiong et al., 2022). With the development of the
digital economy, Internet, Internet of things (IoT), mobile
Internet, and cloud technologies, the application of AI based
on health big data presents an explosive increase in recent
years (Gokmen and Vlasov, 2016; Dolley, 2018; Ngiam and
Khor, 2019; Ye et al., 2021; Weerasinghe et al., 2022). Besides,
large amounts of personal health records (PHRs), electronic
medical records (EMRs), and electronic health records (EHRs)
in hospitals, many governments, and health organizations built
the public health monitoring system to collect health data
(Heart et al., 2017), such as NEDSS (National Electronic Disease
Surveillance System) (National Electronic Disease Surveillance
System Working Group, 2001), ProMED-mail (Yu and Madoff,
2004), GPHIN (Global Public Health Intelligence Network)
(Dion et al., 2015), HealthMap (Freifeld et al., 2008), MediSys
(Linge et al., 2010) and BioCaster (Collier et al., 2008). Among
the public health regulatory systems, the representative system
is NEDSS. It first defined the standard data protocol to
ensure the medical or healthcare data with the identical data
format collected across the country. Then, it enables large
organizations to upload data automatically through electronic
data interchange. The system mainly focused on the collection,
exchange, and reporting of diseases and is lagging behind in
knowledge mining and early disease warning. Meanwhile, the
Internet giants like Google, Facebook, and Twitter collected
large amounts of Internet social network data through their
products and achieved influenza and other infectious diseases
for early warning and tracking (Ginsberg et al., 2009; Signorini
et al., 2011; Oflac et al., 2015). Google developed flu outbreak
forecast software Google Flu, and the corresponding research
result was published in Nature which invoked a large influence
on the academic community (Oflac et al., 2015). However,
recent research showed that the above-mentioned model in
the prediction of flu outbreak existed big defects due to the
instability of social network data (Lazer et al., 2014). Intel
and IBM companies have also tried to use AI technologies for
diabetes control (Nachman et al., 2010; Neuvirth et al., 2011) and
the research results were published at the top conference of KDD
(Knowledge Discovery in Database) (Neuvirth et al., 2011).

It is widely accepted that health big data have the potential
to help physicians to improve diagnosis and aid drug usage.
However, there exist many challenges in processing health big
data even though researchers have achieved a lot of good results
and applications. Except for five major features (5Vs) Volume,
Velocity, Variety, Veracity, and Value, health big data have five
additional special features (shown in Figure 1) as follows:

Health big data

Multimodal Incompletion

Time-
validation

Redundancy Privacy

FIGURE 1

Five special features of health big data.

(1) Multimodal: healthcare data consist of text data, image
data, and numerical data.

(2) Incompletion: There is a gap between medical data
collection and treatment, which cause disease information
reflection not enough. At the same time, recording data
manually would have deviation, incompletion, and expression
uncertainty due to subjective cognition.

(3) Time validation: There is progress between the
patient’s treatment and the disease outbreak. For example,
electrocardiogram (ECG) and electroencephalogram (EEG) are
time signals which have strong time-validated properties.

4) Redundancy: There are many same records stored in the
healthcare data system. Take EHRs for example, physicians who
serve in community hospitals often input multiple records due
to unfamiliar computer operations, especially in China.

5) Privacy: It is inevitably related to the patient’s
private information when researchers process healthcare
data. Disclosure of patients’ privacy information will hurt
patients’ lives.

The rest of this paper is organized as follows. Section II
introduces big data technologies like Hadoop, Spark, and Storm.
The artificial intelligence technologies in health big data are
described in section III. Section IV summarizes this paper.

Big data technologies

In the big data era, the traditional data management
framework which is based on a relational database management
system (RDBMS) is challenged by the increasing data deluge.
The old framework is unable to deal with the growing amount of
unstructured data. Therefore, new technologies were developed
to serve the need for big data management, in the aspects of file
systems and programming models. These technologies aim at
providing scalability as well as fault tolerance, to handle the huge
volume and heterogeneity of big data (Wang, 2017). Big data
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Google file system architecture.

have a wide range of applications, including Smart Grid cases,
E-health, Internet of Things, Public utilities, Transportation
and logistics, and other areas. The following passages introduce
newly developed big data technologies in two aspects in detail.

Distributed file system

Although Moore’s law promised that the storage capacity
of computer chips doubles roughly every 18 months or so,
current magnetic storage technology relies on a million atoms
per bit, and the quantity of data grows much faster (Bradley,
2017). It is in great demand to develop an efficient and
persistent distributed file system. In 2000, Brewer proposed the
CAP theorem which states that it is impossible to meet the
requirements of consistency, availability, and partition tolerance
in an asynchronous distributed read/write system (Wang and
Manzie, 2022). As frequent requests are common in big data
scenarios, distributed file systems are commonly designed as AP
systems, in which only eventual consistency rather than strong
consistency is ensured.

As a pioneer in the attempts of providing users with high-
performance services with a distributed file system, Google File
System (GFS) achieved great success and its concepts were
inherited by a lot of its successors. It features work division
between control and storage servers, and replication of the
same data, to provide performance and reliability in this way
(Ghemawat et al., 2003). Its basic architecture and the data flow
in it during a writing procedure was shown in Figure 2.

The highlight of this architecture includes that the control
flow is separated from the data flow which leads to higher
performance and that the replicas of data offer both reliability
and efficiency under good management. Meanwhile, this system
also has limitations in supporting small files, for its specific
design purpose to support Google’s own service.

Some successors of GFS are generally different
implementations of the same idea, for example, HDFS

(Kumari and Bucker, 2022) and KosmosFS. Others made
some improvements to meet their own demands. Facebook
developed Haystack which reduces disk operations for metadata
lookups and increases overall throughput to support their
Photos application (Beaver et al., 2010). Taobao developed
TFS (Fu et al., 2014) which provides significantly higher
performance in dealing with small files to support their online
shopping service.

In conclusion, after many years of development, distributed
file systems are relatively mature, and it is a prevailing trend to
develop a customized DFS for a certain field.

MapReduce framework

As scalability and performance are two of the key
requirements of a big data system, parallel computing must
be implemented to offer these features. However, traditional
parallel programming models fail in migrating to big data
systems which consist of a massive number of servers over a
wide area. In recent years, a lot of programming models were
proposed to provide solutions to this specific need.

As the forerunner in distributing heavy computations
across thousands of machines, MapReduce abstracted two basic
operations from a broad variety of real-world tasks (Kalia
and Gupta, 2021). The map function takes an input pair and
produces a set of intermediate key/value pairs which will then
be grouped and passed to the Reduce function. Reduce function
is responsible for merging a set of values for one key to
form a possibly smaller set of values. Once programmers give
the proper definition to the two operations, the underlying
runtime system will automatically parallelize and distribute
the computation and handle other details including machine
failures and inter-machine communication. The major part of
its work procedure is illustrated in Figure 3.

Many programming models have been proposed afterward.
Some provided considerable improvement to the MapReduce
model. Microsoft developed Dryad (Isard et al., 2007) in
which a job is abstracted as a directed acyclic graph. Each
vertex is a program, and data channels are represented by
edges. Higher generality is reached as data channels can be
customized to support functions more than Map and Reduce.
Spark (Solovyev et al., 2010) introduced an abstraction called
resilient distributed datasets (RDDs) and parallel operations
on them. An RDD represents a read-only collection of objects
across a set of machines. By combining parallel operations based
on data, Spark avoids redundant I/O operations and multiplied
the performance. Other models focus on specific categories
of distributed computing. Pregel (Malewicz et al., 2010) aims
at large-scale graph processing, in which poor locality of
memory access and very little work per vertex often lead to
poor efficiency. Storm, as a stream processing model, offers
outstanding performance in event processing and incremental
computation.
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Artificial intellectual technologies

In the big data era, various public hospitals and private
healthcare providers are producing large amounts of data
that are difficult to process. Therefore, powerful automatic
artificial intellectual algorithms are needed for the analysis
and processing of useful information from healthcare data.
This information is very precious for healthcare specialists and
physicians to apprehend the cause of diseases and for providing
better and cost-effective treatment to patients. To improve
prediction accuracy, there are various artificial intelligence
technologies such as classification, regression, clustering, and
association used in healthcare data analysis to increase the
healthcare provider’s capability for making the decision in
regard to patients health. There are large amounts of research
resources available regarding artificial intellectual application in
health big data which are presented in subsequent sections with
their advantages and disadvantages.

Classification

One of the data analysis tasks is classification, which divides
data into target labels. Each data point is predicted into the target
label by a pattern classifier. For instance, hypertension patients
can be classified into three stages of stage 1 hypertension,
stage 2 hypertension, and stage 3 hypertension (Wermelt and
Schunkert, 2017) on the basis of a supervised classification
model. Dataset is often partitioned into a training set, validation
dataset, and testing dataset. The training dataset is utilized for
training the classifier. The validation dataset is used to tune the

classifier parameters to achieve optimal performance. Testing
dataset verifies the classification accuracy. Figure 4 shows the
entire flowchart of classification.

In the ML domain, SVM as a supervised classifier is
widely used for classification (Tsang et al., 2005). It is widely
applied in healthcare data recently. Fei proposed the PSO-
SVM model which has a strong global search capability (Fei,
2010), and the PSO-SVM model is applied to the diagnosis
of arrhythmia cordis, in which PSO is used to determine
the free parameters of the support vector machine (Cuong-
Le et al., 2022). The testing results showed that the average
classification accuracy is 95.65%. Huang et al. (2008) developed
a hybrid SVM-based strategy with feature selection to render a
diagnosis between breast cancer and fibroadenoma and to find
the important risk factor for breast cancer (Azar and El-Said,
2014). The experimental results showed that the features {HSV-
1, HHV-8} or {HSV-1, HHV-8, CMV} could achieve identical
high accuracy, at 86% of the average overall hit rate. Zheng
et al. (2014) used a hybrid of K-means and support vector
machine (K-SVM) algorithms to extract useful information and
diagnose the tumor. According to 10-fold cross-validation, the
developed methodology which was tested on the Wisconsin
Diagnostic Breast Cancer (WDBC) dataset from the University
of California—Irvine ML repository, increased the accuracy
to 97.38%. Avci utilized the genetic-support vector machine
(GSVM) approach to classify the Doppler signals of heart valve
diseases (Gonzalez-Abril et al., 2014). With the combination
of feature extraction and classification from measured Doppler
signal waveforms, the performance of the GSVM system showed
that this GSVM system is effective to detect Doppler heart
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sounds. The average rate of correct classification rate was about
95%.

A decision tree (DT) is a common ML method for
constructing prediction models from data. The models are
obtained by recursively partitioning the data space and fitting a
simple prediction model within each partition (Kotsiantis, 2013;
Loh, 2014). Due to its results with features of human-readable
and interpretable, DT is widely used by many researchers in
the healthcare field. Khan et al. (2008) proposed to investigate
a hybrid scheme based on fuzzy decision trees, as an efficient
alternative to predict breast cancer survivability for personalized
healthcare. The experimental results showed that, for cancer
prognosis, hybrid fuzz decision tree classification can achieve
an average accuracy of 85%. Levashenko et al. (2016) proposed
fuzzy decision trees in the medical decision-making support
system. The classification accuracy of breast cancer was over
96%. Hassan et al. (2011) developed a decision tree with a CART
classification algorithm to forecast response to therapy with
200 chronic hepatitis C patients. The overall classification error
was 20%, and 80% was the best accuracy. Moon et al. (2012)
developed decision tree models for characterizing smoking
patterns in older adults. Their results suggest that social
workers need to provide more customized and individualized
interventions to older adults. Chang and Chen (2009) applied
a decision tree and neural network to increase the quality
of dermatologic diagnosis. Using sensitivity analysis combined
with the decision tree model, on the contrary, has the least
accuracy, which is 80.33%.

A neural network (NN) is based on a biological nervous
system having multiple interrelated processing elements known
as neurons, functioning in unity to solve a classification
problem. Rules extracted from the trained model help
to improve the interoperability of the learned network
(Schmidhuber, 2015). Er et al. (2010) developed an artificial
neural network (ANN) to diagnose chest diseases. Sokolov
(2018) presents recent research on approaches in autonomous
systems for combining multiple modalities for emotion
estimation based on neural networks. Sharma and Parmar

(2020) utilized a neural network approach to analyze a heart
disease dataset the experimental results proved better accuracy
(90.76%) than other optimizations. It is applied to heart
disease datasets and finds out a good prediction (Sharma
and). In the past several years, intricate neural networks
have inspired the further development of intelligent systems.
Many disciplines, including the complex field of medicine,
neuroimaging modalities, and diagnosis of the disease, have
taken advantage of the useful applications of artificial neural
networks (Yang et al., 2018; Deperlioglu et al., 2020).

Bayesian decision theory is a basic method under the
statistic framework, and it is extended easily to do classification
tasks (Chickering et al., 2004). Liu and Lu (2009) proposed
to use Bayesian belief network (BBN) as decision support
for the higher-level risk estimate which can represent the
probabilistic relationships between all kinds of health effects
and air pollutants. Dawson et al. (2015) used the Bayesian
network to produce the baseline distribution by taking the
joint distribution of the data and conditioning it on attributes
that are responsible for anomaly pattern detection for disease
outbreaks. Curiac et al. (2009) analyzed the psychiatric
patient data using BBN in making a significant decision
regarding patient health suffering from psychiatric disease and
performed an experiment on real data obtained from Lugoj
Municipal Hospital.

Long et al. (2015) proposed a heart disease diagnosis system
using rough set-based attribute reduction and interval type-2
fuzzy logic system (IT2FLS). The experimental results showed
that it could efficiently find minimal attribute reduction from
the high-dimensional dataset that enhances the performance
of the classification system. The use of an interval type-
2 fuzzy logic system for the classification of heart disease
datasets to handle the uncertainties and noisiness of these
datasets was successful. Nahar et al. (2013) presented the
potential of an expert judgment-based (i.e., medical knowledge-
driven) feature selection process (termed as MFS). The medical
knowledge-based feature selection method has shown promise
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for use in heart disease diagnostics. The main classification
methods used in healthcare big data are shown in Table 1.

The application of classification analysis methods in
medicine is getting more and more advanced, not only is it
used extensively in disease diagnosis, but also there will be more
breakthroughs in disease treatment options in future, and all of
these expectations become more apparent in the near future.

Regression

Regression analysis is a statistical method to determine
the quantitative relationship between two or more variables.
Based on observational data, regression analysis could establish
appropriate dependencies between variables and analyze the
inherent rules of data (Merrick et al., 2022). It is widely
used for forecasting in the healthcare field. Gutiérrez et al.
(2010) proposed a hybrid multi-logistic methodology, named
logistic regression using initial and radial basis function (RBF)
covariates. Agarwal (2011). developed weighted support vector
regression (SVR) approach for remote healthcare monitoring.
Vinsnes et al. (2001) developed a regression analysis approach
for healthcare personnel’s attitudes to predict nursing assistants’
attitudes. Ko and Osei-Bryson (2004) explored the productivity
impact of information technology (IT) in the healthcare
industry using a regression spline (RS)-based approach. Luo
et al. (2012) presented scalable orthogonal regression (SOR) for
non-redundant feature selection and its healthcare applications.

Regression analysis can accurately measure the degree of
correlation between factors and the degree of the regression
fit to improve the effectiveness of prediction, which is of great
significance in medical diagnosis. More recently, regression
analysis is one of the most frequently used analytical techniques
in disease diagnosis and etiology analysis (Hannan et al., 2010;
Liu et al., 2018; Jfri et al., 2021).

Clustering

Clustering is an unsupervised learning method that is
different from classification. Clustering is a process of classifying
data into different classes or clusters, so objects in the same
cluster have a large similarity, and objects between different
clusters have a large degree of dissimilarity (Caron et al.,
2018). Clustering is also used in the healthcare field. Sinaga
and Yang (2020) proposed a novel unsupervised k-means (U-
k-means) clustering algorithm which automatically finds an
optimal number of clusters without giving any initialization
and parameter selection. Stein et al. (2007) used data clustering
techniques to develop health state descriptions based on data
from 66 women who completed the EORTC QLQ-C30 over
a 6-month period while receiving chemotherapy for ovarian
cancer. Belciug et al. (2010) detected breast cancer recurrence
with the help of a clustering-based approach. Zhao et al.

(2020) proposed to propose a new deep learning and clustering
UDFCMN (Unsupervised Deep Fuzzy C-Means clustering
Network) model, to cluster lung cancer patients from lung
CT images; these results also indicate that this method has
practical applications in lung cancer pathogenesis studies and
provide useful guidelines for personalized cancer therapy.
Balasubramanian and Umarani (2012) analyzed the impact of
fluoride on human health (dental) with the help of a clustering-
based method and found meaningful hidden patterns which
gave meaningful decision-making to this socio-economic real-
world health hazard. In addition, some researchers have also
used clustering methods to early detect Alzheimer’s disease
(Escudero et al., 2011; Holilah et al., 2021). The main clustering
methods used in healthcare big data are shown in Table 2.

Cluster analysis is essentially finding a statistic that
objectively reflects the affinity of an element and then classifying
the elements into categories based on this statistic. Cluster
analysis decomposes the symptoms of chronic diseases and
is used to assess the quality of life in chronic diseases,
such as lung cancer; cluster analysis is very effective in
assessing these diseases.

Association

Association is one of the most vital approaches to data
mining that is used to find out the frequent patterns, and
interesting relationships among a set of data items in the
data repository. Frequent patterns are patterns that appear
frequently in a dataset. The initial motivations of the association
rules were raised for the issue of the market basket analysis.
The association process analyzes the customer’s shopping
habits by discovering the association between the different
items placed in the “shopping basket" by the customer. The
discovery of this association can help retailers understand
which goods are frequently purchased by customers at the
same time, so as to help them develop better marketing
strategies (Tomar and Agarwal, 2013). Association also has a
great impact in the healthcare field to detect the relationships
among diseases, health status, and symptoms. Nahar et al.
(2013) presented a rule extraction experiment on heart
disease data using different rule-mining algorithms (Apriori,
Predictive Apriori, and Tertius). Further rule-mining-based
analysis was undertaken by categorizing data based on gender,
and significant risk factors for heart disease were found for
both men and women. Ji et al. (2010) developed a new
interestingness measure, exclusive causal-leverage, based on
an experience-based fuzzy recognition-primed decision (RPD)
model. On the basis of this new measure, a new association
rule algorithm is proposed to discover infrequent causal
relationships in electronic health databases (Horton et al., 2019).
In addition, Soni and Vyas (2010) used the associative method
to construct a classifier for predictive analysis in healthcare
data mining.
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TABLE 1 Main application of classification methods in healthcare big data.

Method Scenes Features

SVM Diagnosis of arrhythmia cordis; diagnosis between breast cancer
and fibroadenoma; diagnosis of the tumor; detect Doppler heart
sounds and so on

Non-linear mapping; low generalization error rate, fast
classification; suitable for small samples, excellent generalization
ability, etc.,

DT Predict breast cancer survivability; medical decision-making
support system; characterizing smoking patterns and so on

Simple to understand, easy to explain, visualization, and wide
applicability; prone to overfitting, in addition, small changes in the
data can affect the results and are unstable

NN Including the complex field of medicine, neuroimaging modalities,
and diagnosis of the disease; image analysis and interpretation

With self-learning function; no a priori assumptions about the
problem model are required. suitable for some problems with very
complex environmental information, unclear knowledge
background, and unclear inference rules.

BN Anomaly pattern detection for disease outbreaks; regarding patient
health suffering from psychiatric disease

Distribution of input data in each layer of the network is relatively
stable, which accelerates the model learning speed; makes the model
less sensitive to the parameters in the network, simplifies the tuning
process, and makes the network learning more stable

TABLE 2 Main application of clustering methods in healthcare big data.

Method Scenes Features

k-means Health state descriptions; Alzheimer’s disease; health hazards and so
on

Fast convergence; better clustering effect; stronger interpretability of
the model and so on

Fuzzy C-means Lung cancer patients from lung CT images Clustering objectively and accurately

Using the association analysis method to discover the
relationship between the attributes in the medical dataset,
especially some general factors such as age and smoking habits,
and the measured body organ function indices related to the
possibility of disease, the doctor can accurately determine
the possibility of disease through the patient’s characteristics,
which is very meaningful for medical diagnosis, and the future
application of the association analysis method to predict diseases
and develop treatment plans based on vital signs.

In summary, AI as a role in healthcare big data, its effects
on the development of the medical industry, applications of AI
in medicine, challenges, and promises of both AI and big data
with respect to healthcare, and prevailing techniques (methods
such as deep neural network, convolutional neural network,
and recurrent neural network) and tools for performance
optimization of healthcare big data can be used by the
medical industry.

Conclusion

This paper investigated the application of AI technologies in
health big data based on a data elements perspective. Traditional
data management framework, which is based on a relational
database management system (RDBMS), is hard to deal with
a growing amount of healthcare data. Big data processing
frameworks like Hadoop (Spark et al.) are employed in the
data preprocess stage to accommodate big data and accelerate
computing efficiency. We found that there is no single ML

method that gives consistently good results for all kinds of health
big data. The performance of ML methods depends on the type
of dataset that researchers have taken for doing the experiment.
To get the higher performance of ML method, most of the
research combined many artificial methods to complement the
deficiency of each one called hybrid method or integrated
method or assemble method.

In addition, it is well known in the AI field that feature
selection and extraction are very important factors that affect
the performance of artificial methods. Features are extracted and
selected on the basis of healthcare/medical domain knowledge
and optimal techniques in normal conditions. For healthcare
providers and medical providers, AI technologies are widely
utilized to make effective decisions in regard to how to enhance
patients’ health, how to provide healthcare service at low
cost, and how to remind physicians to avoid misusing drugs
and misdiagnosing.
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Introduction: Electromyogram-based pattern recognition (EMG-PR) has been widely

considered an essentially intuitive control method for multifunctional upper limb

prostheses. A crucial aspect of the scheme is the EMG signal recording duration (SRD)

from which requisite motor tasks are characterized per time, impacting the system’s

overall performance. For instance, lengthy SRD inevitably introduces fatigue (that

alters the muscle contraction patterns of specific limb motions) and may incur high

computational costs in building the motion intent decoder, resulting in inadequate

prosthetic control and controller delay in practical usage. Conversely, relatively

shorter SRD may lead to reduced data collection durations that, among other

advantages, allow for more convenient prosthesis recalibration protocols. Therefore,

determining the optimal SRD required to characterize limb motion intents adequately

that will aid intuitive PR-based control remains an open research question.

Method: This study systematically investigated the impact and generalizability of

varying lengths of myoelectric SRD on the characterization of multiple classes of

finger gestures. The investigation involved characterizing fifteen classes of finger

gestures performed by eight normally limb subjects using various groups of EMG

SRD including 1, 5, 10, 15, and 20 s. Two different training strategies including

Between SRD and Within-SRD were implemented across three popular machine

learning classifiers and three time-domain features to investigate the impact of SRD

on EMG-PR motion intent decoder.

Result: The between-SRD strategy results which is a reflection of the practical

scenario showed that an SRD greater than 5 s but less than or equal to 10 s (>5

and < = 10 s) would be required to achieve decent average finger gesture decoding

accuracy for all feature-classifier combinations. Notably, lengthier SRD would incur

more acquisition and implementation time and vice-versa. In inclusion, the study’s

findings provide insight and guidance into selecting appropriate SRD that would aid

inadequate characterization of multiple classes of limb motion tasks in PR-based

control schemes for multifunctional prostheses.

KEYWORDS

electromyogram (EMG), finger gestures, pattern recognition (PR), prostheses, signal
recording duration (SRD)
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1. Introduction

Upper limb loss precludes amputees from full exploration of
their environment especially in accomplishing tasks that require their
arm functions (Cordella et al., 2016; Wheaton, 2017). The varied
setbacks faced by amputees during daily life activities have spurred
the development of intelligent prosthetic limbs meant to intuitively
restore their limb functions. At the forefront of this technology
are myoelectric pattern recognition (PR) based prostheses that use
decoded motion intent from surface electromyogram (EMG) signals
for their control (Cordella et al., 2016; Vujaklija et al., 2016; Parajuli
et al., 2019). In an archetypal PR-based prosthetic control pipeline,
EMG signals of coordinated muscle activities of specific limb motion
are recorded, processed, and motor tasks are decoded via machine
learning algorithms which serve as control inputs to the device (Li
et al., 2010; Asogbon et al., 2020a; Nsugbe et al., 2021a).

A number of confounding factors that impede the clinical and
commercial relevance of PR-based prostheses in practical settings
have been well studied with solutions proposed in recent years
(Fougner et al., 2010; Lorrain et al., 2010; Tkach et al., 2010; Young
et al., 2011; He et al., 2013; Qing et al., 2021). For instance, electrode
shift (Young et al., 2011), muscle contraction force variation (Lorrain
et al., 2010; Tkach et al., 2010), abrupt alteration in limb position
(Fougner et al., 2010), and variability arising from long-term EMG
recordings (He et al., 2013), etc., are confounding factors that have
been researched with potential solutions proposed. Despite these
advances, an essential aspect that the above factors and many others
rely upon is the EMG signal recording duration (SRD) per time that
may impact the characterization of finger gestures. To the best of
the author’s knowledge, EMG SRD has not been studied to date.
For instance, when the EMG SRD is relatively lengthy, phenomena
such as muscle fatigue is inevitable and may alter the muscle
contraction patterns of specific limb motions; which may undermine
the decoding of finger movements and, by extension, degrades the
prosthesis control performance. In addition, long SRD often leads to
relatively larger volume features, and classifier training time and may
result in computational complexity and increased controller delay in
real-time usage. On the other hand, somewhat shorter SRD may lead
to reduced data collection durations that, among other advantages,
allow for more convenient prosthesis recalibration protocols. On the
other hand, signals acquired using short SRD may result in poor
motion gesture recognition if sufficient/adequate neural information
is not contained in the signal, especially if it is collected from amputee
patients.

To date, several existing studies have arbitrarily employed varied
myoelectric SRD for decoding targeted limb motions in the context
of PR-based prostheses without taking into consideration whether
or not they would yield optimal characterization of the motor tasks.
For instance, Cengiz and Demir (2020) acquired myoelectric and
gyroscopic signals of multi-class finger gestures with SRD of 5 s
and Al-Timemy et al. (2015) investigated the influence of muscle
contraction force variation on the classification performance of the
EMG-PR system using SRD in the range of 8–12 s. In addition, Li
et al. (2021) used an SRD of 4 s in a study aimed at enhancing the
motion classification accuracy of the EMG-PR system and Samuel
et al. (2018b) utilized an SRD of 5 s in a study aimed at improving the
EMG-based features for prostheses control. While we acknowledge
that several efforts have been made toward tackling pertinent issues
in the field of PR-based prostheses technology (Cordella et al., 2016;

Bates et al., 2020; Nsugbe et al., 2021b), the investigation of
the optimal myoelectric SRD remains an open research question.
Hence, it is essentially necessary to investigate and determine the
optimal myoelectric SRD that would aid adequate characterization
of amputees’ limb motion intents and by extension the intuitive
control of multifunctional prostheses. Also, the investigation should
provide researchers and developers in the field with proper insight
and guidance on the selection of appropriate SRD when conducting
research or developing a requisite solution.

Therefore, this study systematically examined the impact of
varied lengths of myoelectric SRD on the characterization of
motor intents associated with multiple classes of fine-finger gestures
performed by recruited subjects. More specifically, the experiments
involved eight normally limb subjects (including six males and two
females with no muscular or neurological disorder history), and each
subject elicited fifteen classes (single and combined classes) of finger
gestures under varying durations of EMG-SRD including 1, 5, 10, 15,
and 20 s. Afterward, each SRD was pre-processed, notable feature
extraction methods were applied for feature vector construction, and
the feature vector was employed to build three distinct machine
learning classification algorithms for the decoding of the finger
gestures based on Within-SRD and Between-SRD strategies, which
are described in the methodology section. Benchmark performance
metrics were applied to evaluate the gesture pattern characterization
and their corresponding decoding performance for each SRD.

2. Materials and methods

2.1. Data collection and processing

The myoelectric dataset utilized in this study was acquired from
an online EMG datasets repository (OneDrive). The signal was
collected using BagnoliTM EMG Acquisition System (manufactured
by Delsys Inc.). The equipment setup and electrode placement
scheme is shown in Figures 1A, B. Prior to the data collection
process, a total of eight normally limb subjects including six males
and two females with no history of muscular or neurological
disorders were recruited and informed about the study’s objectives
(Khushaba and Kodagoda, 2012). Before their inclusion in the
experiment, written informed consent was obtained from each
subject, indicating their willingness to participate in the study.
Afterward, eight EMG signal sensors were placed over the forearm
muscles of each subject and a dual-slot adhesive skin interface was
applied to firmly fix the electrodes to the skin to prevent undesirable
displacement that may affect the quality of the signals. Besides, a
reference electrode was placed on the wrist of each of the participants
as shown in Figure 1B.

For the data recording task, the participants were instructed to sit
down on a chair in a comfortable manner with their arms supported
and fixed at a specific position (to ensure consistent arm position
throughout the experiment). And fifteen classes of finger gestures
were elicited as shown in Table 1 where each motion class lasted for a
period of 20 s and was followed by a rest period of 5 s. Meanwhile,
EMG recordings of three experimental trials were utilized in this
study (Khushaba and Kodagoda, 2012).

The recorded EMG signals were amplified using a Delsys Bagnoli-
8 amplifier to a total gain of 1000 while the signal was sampled at
the rate of 4000 Hz. A bandpass filter between 20 and 450 Hz and a
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FIGURE 1

(A) EMG data acquisition system (Delsys Inc.) setup; (B) electrodes placements on the anterior and posterior on the participant’s right arm (Khushaba and
Kodagoda, 2012).

notch filter was applied to the signal to process and eliminate power
line interference.

2.2. Feature extraction

To investigate the impact of SRD on the characterization of the
multiple classes of figure motions, different lengths of EMG signal
recordings (1, 5, 10, 15, and 20 s), as conceptualized in Figure 2
were examined. Each SRD data was analyzed by partitioning each
motion duration into a series of analysis windows with a length
of 150 and 100 ms increments via an overlapping segmentation
scheme, which has been commonly applied in the field of EMG

TABLE 1 Fifteen classes of finger motions with their respective codes.

Motion
group

SN Motion classes Code

Flexion of each
individual
fingers

1 Thumb T

2 Index I

3 Middle M

4 Ring R

5 Little L

Combined
fingers motions

6 Thumb-index TI

7 Thumb-middle TM

8 Thumb-ring TR

9 Thumb-little TL

10 Hand close HC

11 Index-middle IM

12 Middle-ring MR

13 Ring-little RL

14 Index-middle-ring IMR

15 Middle-ring-little MRL

signals processing (Englehart and Hudgins, 2003; Menon et al., 2011;
Asogbon et al., 2020b). The segmentation process is often carried
out to enhance the performance and response time of the PR-based
myoelectric control scheme in practical settings (Asogbon et al.,
2020b).

From each analysis window segment of the EMG signal, three
different features whose mathematical expressions are presented in
(Eqs 1–3) were extracted individually to build a machine learning
classifier for decoding the different classes of finger motions. It
should be noted that the feature extraction methods have been
widely applied for characterizing multiple classes of targeted limb
motions and they include the Hudgins’ time-domain feature set
(mean absolute value: MAV, number of zero crossings: ZC, waveform
length: WL, and number of slope sign changes: SSC), Novel Time-
Domain Feature (NTDF, proposed by our research team), and the
Root Mean Square (RMS) (Hudgins et al., 1993; Englehart and
Hudgins, 2003; Samuel et al., 2018a; Asogbon et al., 2020a,b).

MAV =
1
k

k∑
n=1

|xn|

WL =
k − 1∑
n=1

[(|xn+1 − xn|)] (1)

ZC =
k − 1∑
n=2

[(xn − xn − 1) ∗ (xn − xn+1)]

SSC =
k − 1∑
n=1

[
sgn (xn ∗ xn+1) ∩ (xn − xn+1) ≥ Thr.

]
Where xnis the nth sample in a given segment of the EMG

recordings of length k. Briefly, the MAV represents an estimate of
the mean absolute value of x in a given segment of the signal which
is of length k, WL provides information regarding the wavelength
characteristics in a given segment of the signal, ZC represents a
frequency measure of the number of times the waveform crosses
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FIGURE 2

Conceptualized diagram of varying signal recording lengths considered in the study for three trials.

zero (baseline), and SSC denotes an alternative but complementary
measure of the number of times the slope changes sign (Hudgins
et al., 1993; Englehart and Hudgins, 2003). And an aggregation of
these descriptors forms the TD4 feature set that was adopted in the
subsequent section of the manuscript (Hudgins et al., 1993; Englehart
and Hudgins, 2003). Meanwhile, the Thr. (with a value of 0.01)
represent the threshold upon which the SCC value is computed.

SIS =
N − 1∑
n=0

x[n]2

normRSD1=
1
N

N − 1∑
n=0

dx1[n]2

normRSD2 =
1
N

N − 1∑
n=0

dx2[n]2

normLogDet. = norm(e
1
N
∑N − 1

n=0 log(x[n])) (2)

mMSR =
1
k

k∑
n=1

(xn)
1/2

mASM =

∣∣∣∣∣
∑k

n=1 (xn)
exp

k

∣∣∣∣∣
exp =

{
0.50, if

(
n ≥ 0.25 ∗ k && n ≤ 0.75

)
0.75, otherwise

Where SIS the denotes the simple integral square which captures
the energy content in a segment of EMG signal (x[n]/xn) and N
denote the total length of the signal in a segment, the normRSD1
and normRSD2 represent the normalized form of the first and

second order of the root squared descriptors, which captures the
spectral information in a given EMG signal segment, and the mMSR
and mASM descriptors capture an estimate of the power of the
signal per segment (Asogbon et al., 2020a). And an aggregation of
these descriptors forms the NTDF feature set that was employed
subsequently (Asogbon et al., 2020a).

RMS=

√√√√1
k

k∑
n=1

xn2 (3)

Where RMS denote the square root of the average power of EMG
recordings (xn) in a given segment of the signal whose length is
denoted by k.

After each of the above-mentioned features has been extracted,
three widely utilized machine learning classification algorithms
with simple and intuitive structure, high accuracy, and fast
computation characteristics including the Linear Discriminant
Analysis (LDA), K-Nearest Neighbor (KNN), and Random Forest
classifiers (Boughorbel et al., 2017; Asogbon et al., 2021) were applied
to classify the motion classes for the considered SRD groups. Thus,
we examined the impact of varied SRD on finger movement pattern
characterization using a fixed set of features and machine learning
classifiers using two approaches described below.

2.3. Data analysis and performance
evaluation

The effect of SRD on EMG-PR motion intent decoding was
systematically investigated based on two varied types of training and
testing strategies, namely Within-SRD Group (which is represents
the commonly adopted approach) and Between-SRD Approach
described as follows:
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(a). Within-SRD Group Scenario: In this approach, the EMG-PR
scheme’s performance was investigated when the training and
testing feature vectors were constructed from EMG recordings
of the same SRD group. Specifically, in this approach, the
requisite feature vector is constructed from the first two trials
(Trial 1 + Trial 2) of the recordings (designated as the training
set) while the corresponding test set feature vector is obtained
from the third trial (Trial 3).

(b). Between-SRD Group Scenario: In this approach, the EMG-PR
scheme’s performance was examined when the feature vector
constructed from a specific EMG SRD group (say 1 s) is used
for training the classifier while the feature vector obtained from
all the SRD groups (1, 5, 10, 15, and 20 s) is used for testing
the classifier’s decoding performance. In addition, it should be
noted that the training set is constructed from all the trials while
the test set is also obtained based on all the trials.

For each of the approaches described above, evaluation metrics
including classification accuracy (CA) and Mathew Correlation
Coefficient (MCC) were considered and their descriptions are given
as follows. The CA, a commonly used evaluation metric that
represents the number of correctly classified samples over the sum
of all samples [Eq. (4)] was utilized. The MCC metric which has
been widely applied in multiclass problems was also adopted for
evaluation in the study [Eqs (5, 6)]. MCC is considered to be a
highly informative metric for assessing classification tasks since it is
considered to be a balanced ratio amongst the four confusion matrix
parameters (false positives, true positives, true negatives, and false
negatives) (Liarokapis et al., 2014; Asogbon et al., 2020a).

CA=
Number of correctly classified samples

Total number of testing samples
∗100% (4)

MCCj =
(TP ∗ TN)− (FP ∗ FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

MCCave=

∑n
j=1 MCCj

nclass
(6)

Where j = 1,2,3. . .. . .number of classes (n, nclass), TP is the count
of true positives, TN represents the count of true negatives, FP is the
number of false positives, and FN is the number of false negatives as
obtained from a confusion matrix. Meanwhile, the MCC value was
computed using the macro-averaging technique.

Furthermore, the statistical significance test between the SRD
groups was performed using the Friedman test with a confidence level
set to p < 0.05. The statistical analysis was carried out in MATLAB.

3. Results

3.1. Within-SRD group scenario

3.1.1. Performance evaluation of varying signal
length on EMG-PR classifier across finger gesture
tasks

Utilizing different classifiers and feature sets, Figure 3 presents
the average classification accuracies across the fifteen-finger motion
tasks across eight subjects. The aim here is to examine the impact
of individual SRD (1, 5, 10, 15, and 20 s) on the classification

performance EMG-PR system. It can be observed from the result
presented in Figure 3 that the average classification accuracy varies
across the features and classifiers. For instance, 5 s SRD achieved the
highest CAs across subjects and finger gestures with an increment
ranging from 0.01 to 3.86% for the LDA classifier when compared
with the performance of the other SRD groups. Similarly, some worth
different phenomenon was observed when KNN and RF classifiers
were employed. The 10 s (for RF) and 20 s (for KNN) outperformed
other SRD groups with an increment in the classification accuracies
ranging from 0.22 to 8.26% and 0.33 to 7.99%, though with an
insignificant difference with the other SRD groups except for 1 s
SRD. In terms of feature performance, the NTDF achieved the highest
average accuracies while RMS has the lowest accuracies for all the
classifiers.

Overall, the combination of LDA + NTDF recorded the highest
average classification accuracy rate compared to KNN, RF, and other
features. Specifically, the 1 s SRD can be observed to be the least
accuracy while the other SRDs achieved higher but similar accuracies
compared to 1 s SRD for the LDA-NTDF combination. Analyzing the
effect of the signal recording length based on classification accuracies
reported in Figure 4 for all the classifiers and features, it can be seen
that the classification accuracy of 1 s SRD is significantly (p > 0.05)
lower than the other SRDs while 5 s has the highest accuracy though
with almost the same decoding performance with 10, 15 and 20 s
SRD (p > 0.05). It is worth noting that in this study, an increase in
SRD incurs increased training and testing time, which may introduce
some sort of delay in the performance of the prostheses in practical
deployment. In other words, the longer the recording duration the
higher the computational cost and vice-versa. One possible reason
for the poor performance of the 1 s SRD could be due to a lack of
adequate neural information in the signal length. This result indicates
that an appropriate selection of crucial parameters/methods (such
as signal recording length and feature-classifier combination) would
greatly impact the overall performance of the EMG-PR-based motion
intent decoding strategy employed in the control of multifunctional
prostheses. Across all the classifiers, statistical analyses via Friedman’s
test show no significant difference in decoding accuracies for the SRD
groups for NTDF: p = 0.11 and TD4: p = 0.10, though with substantial
increment between 1 s and the other SRDs. Meanwhile, there is a
significant difference for RMS: p = 0.043.

3.2. Between-SRD group scenario

3.2.1. Effect of signal recording duration on
EMG-PR classification performance

The Within-SRD Scenario has been used in many existing works;
however, it may be difficult to utilize this approach to select the
optimal SRD for motion intent characterization because it is not
practicable in real-life situations. Hence to determine the optimal
SRD, we employed the Between-SRD Approach to systematically
investigate the generalizability of each SRD group for movement
intent decoding. In this scenario, the machine learning classifiers
were trained with data concatenated across all the trials for a
specific SRD (say, 1 s) and tested using data from all trials of
all the SRD groups (1, 5, 10, 15, and 20 s) and the obtained
results is shown in Figures 4A–C. This Figure depicts the average
CA across the 15 classes of finger gesture and participants, and it
could be seen that the CA decreased for all SRDs, features, and
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FIGURE 3

Average classification accuracies of the different groups of signal recording length based on the Within-SRD Group Scenario using (A) LDA, (B) KNN, and
(C) RF for NTDF, TD4, and RMS features across finger gestures and participants.
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classifiers compared to the result presented for within-SRD scenario
in Figure 3 (where the training and testing data are from the same
SRD). Besides, for the Between-SRD scenario, the highest decoding
performance was achieved by 15 s, followed by 10 s SRD (though
with insignificant difference), while 1 and 20 s yielded the lowest
CA for all features-classifier combinations. Examining the classifiers
performance further, RF (Figure 4C) outperformed LDA (Figure 4A)
and KNN (Figure 4B) for all the SRDs and features except for 1 s
SRD for the combination of LDA + NTDF. For instance, for the most
performing feature (NTDF) across motion classes and participants,
RF achieved an increment of up to 7.09 and 4.71% compared to
LDA and KNN, respectively, for 10 s SRD. In a similar manner,
RF achieve an increment of 8.82 and 5.79% compared to LDA and
KNN, correspondingly for 15 s SRD. Besides, across classifiers, the
NTDF feature outperformed the other features for all the SRDs.
Amid the classifiers, there are statistical significances among the SRDs
for NTDF (p = 0.021), TD4 (p = 0.017), and RMS (p = 0.017).
Similarly, significant differences occurred among the SRDs across
features. From the statistical significance result, 10 and 15 s SRD

achieved similar performance with no substantial difference when
compared with each other. Furthermore, performance comparison
between the results reported in Figure 4 for each SRD reveals that the
Between-SRD Approach would significantly influence the decoding
performance of the EMG-PR system.

It is worth mentioning that observations during the EMG-
PR scheme’s implementation revealed that the computational cost
generally increase with an increase in SRD, and this may necessitate
us to consider an SRD that is greater than 5 s but less than or equal to
10 s (>5 s and < = 10 s).

3.2.2. Evaluating signal duration effect based on
MCC metric

The effect of the different groups of SRD on the characterization
of the motor intent for the Between-SRD strategy was further
examined using the MCC metric defined in section “2.3. Data analysis
and performance evaluation” of the paper. Notably, the MCC is a
highly informative evaluation method for estimating classification
tasks mainly due to its ability to balance the ratio among the four
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confusion matrix parameters effectively. Thus, the corresponding
MCC values for each group of signal length were computed from their
respective confusion matrices.

Using the same number of classifiers and features, the obtained
average MCC value across all the finger motion tasks and subjects is
shown in Figures 5A–D using horizontal dot plots. Inspecting each
of the classifier-feature combinations (Figures 5A–C) for all the SRD
groups, NTDF yielded the highest MCC values for LDA and similar
values with TD4 for KNN and RF. Meanwhile, the RMS feature has
the lowest MCC values for the different groups of signal recording
lengths investigated.

Observing the performance of the SRDs from Figures 5A–C, an
overlap of symbols could be seen for 5, 10, and 15 s for LDA, and 10
and 15 s symbols overlap for KNN and RF, respectively, indicating
similar MCC values. For all the classifiers and features, 1 s achieved
the lowest MCC value, followed by 20 s, while 10 and 15 s SRD
obtained the highest MCC values, indicating consistency with the
CA results described in section “3.2.1. Decoding performance for
between-SRD scenario.” Compared to other classifiers, RF recorded
the best values for RMS, TD4, and NTDF features. A similar
performance trend of the classifiers and features for the SRD groups
could be observed in the result presented in Figures 4A–C (see
section “3.2.1. Decoding performance for between-SRD scenario”).
And Figure 5D depicts classifier-wise computation of the mean
MCC values across all features, motion tasks, and subjects. It can
be seen that the RF classifier achieved the best MCC values of 0.36,
0.60, 0.65, 0.67, and 0.52 for 1, 5, 10, 15, and 20 s signal recording
lengths, respectively. Furthermore, statistical analyses via Friedman’s
test show a significant difference (p = 0.007) in decoding accuracies
across SRDs and features for LDA, KNN, and RF classifiers. Also,
statistical significance occurs between the SRD groups (0.017) across
classifiers.

3.2.3. Effect of signal recording length on
individual finger gesture decoding

In this section, the recognition rate of each class of finger motion
for individual signal recording length was examined across subjects
using the combination of the NTDF feature and the RF classifier
based on their performance in the Between-SRD. Utilizing line
and scatter plots with error bars, the obtained result is shown in
Figures 6A–F. It should be noted that the standard deviation across
the subjects is shown with error bars in the plot. From the results, it
can be seen that there are variations in the error bars for all finger
gestures across the SRDs (1, 5, 10, 15, and 20 s). Specifically, in all
the SRD groups, the thumb-index class (denoted by TI) recorded the
highest decoding accuracies of 37.44, 60.51, 69.28, 72.36, and 60.68%
for 1, 5, 10, 15, and 20 s, respectively. Also, for all the SRDs, this
gesture (TI) has the highest standard error compared to other finger
gestures, signifying performance variation across the participants.

On the other hand, the thumb-little (TL) finger gesture recorded
the least performance for 1 s, class ring (I) for 5 s, hand close (HC) for
10 s, and thumb middle (TM) for 15 and 20 s SRD.

Comprehensively, the performance comparison between the
groups revealed that the 15 s SRD group achieved the highest average
recognition followed by the 10 s SRD group across all the classes
of finger gestures compared to other SRDs. Meanwhile, for a clear
comparison of the characterization of the motor intent across the
groups, Figure 6F depicts the results obtained for all the groups of
signal recording length. Careful analyses revealed that most classes
achieved the best performance at 10 and 15 s signal recording length

with most classes’ symbols overlapping with one another. This result
reveals that some finger gestures’ decoding performance may depend
on relatively longer SRDs while 1 s SRD can be seen to achieve the
least decoding performance followed by 20 s SRD.

4. Discussion

Pattern recognition (PR)-based myoelectric system has been
widely studied primarily because of its capability to provide control
schemes that could aid seamless realization of multiple degrees of
freedom functions in upper limb prosthetic technology (Cordella
et al., 2016; Kuiken et al., 2016; Samuel et al., 2019; Mereu et al., 2021).
In an ideal PR-based scheme, it is anticipated that repeatable muscle
contraction patterns should be generated for specific limb motion
tasks across trials from which feature vector of requisite motor intent
is constructed and applied to build machine learning algorithms that
decipher the motion intentions of amputees (Li et al., 2010; Asogbon
et al., 2020a; Nsugbe et al., 2021a). Besides, various factors could
affect the repeatability of muscle activation patterns even for the same
limb motion task, which may dampen proper characterization of
motion intent and its decoding. One of such factor that has rarely
been investigated to date is the EMG-SRD employed to build the
machine learning classifier meant to decode the motion task. In
an attempt to gain proper insight into how EMG-SRD dynamically
impacts the characterization of multiple patterns of elicited limb
motion tasks, this study systematically investigated different groups
of SRD (1, 5, 10, 15, and 20 s) based on the Within-SRD and Between-
SRD strategies using the dataset of eight able-bodied subjects who
performed fifteen classes of simple and combined finger gestures.
The outcome of the investigation showed that decoding performance
across subjects and finger gestures would vary depending on the
EMG SRD employed regardless of the feature extraction methods and
machine learning classification algorithms utilized.

The Within-SRD has been one of the popularly utilized
methods for gesture recognition/classification in myoelectric- PR
based systems. Through this method, several studies have reported
satisfactory or high classification accuracy for either forearm or finger
motion tasks using an average of ≤ 6 s SRD. Unfortunately, the high
accuracies reported in all these studies have not translated into robust
or intuitive prostheses control schemes that could be widely adopted
in clinical and commercial settings. One possible reason may be that
the commonly adopted Within-SRD approach in the existing works
may not reflect what is obtainable as it relates to practical deployment
of the prostheses, which led us to investigate the Between-SRD
scenario in the current study. Comparing the performance of the
Within-SRD (Figures 3A–C) and Between-SRD (Figures 4A–C), it is
obvious that the selection of optimal EMG-SRD should be based on
using a more realistic/practical approach (such as the Between-SRD)
that will accommodate changes in real-life situations rather than the
Within-SRD scenario that has been widely adopted.

Specifically, in the Within-SRD scenario (Figure 3), the average
classification accuracies for motion intent decoding were mostly
observed to increase with a corresponding increase in EMG signal
length for all the features except for a few instances, where the
performance either remains approximately the same or declines.
Besides, this phenomenon was less obvious when the same set
of features were employed on KNN and RF classifiers except for
the NTDF feature. Unlike the RMS and TD4 features, the NTDF
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FIGURE 5

Average MCC values of the motion duration groups across finger gestures and participants based on Between-SRD Strategy using NTDF, TD4, and RMS
for (A) LDA, (B) KNN, and (C) RF, (D) average MCC value using all the features, for LDA, KNN, and RF classifiers.

feature recorded relatively higher average classification accuracies
especially for the LDA and KNN classifiers, demonstrating its
consistency and stability capabilities. Examining the Between-SRD
scenario results (Figures 4A–C), a relatively similar performance
trend is seeable with the Within-SRD approach for the features
(NTDF, TD4, and RMS) and Classifiers (RF, KNN, LDA) except where
LDA + NTDF achieved better performance than KNN + NTDF and
RF + NTDF (Figures 3A–C). However, for these two scenarios, this
trend is different for the SRD groups suggesting that EMG-SRD
will influence the control performance of the prosthesis system in
practical applications. In Figures 4A–C, the CA increased as the EMG
SRD increased and dropped significantly after 15 s for all the features
and classifiers. One potential explanation for the poor performance of
1 s SRD could be that the SRD is too short, and the contained motor
information in this short signal recording cannot adequately provide
motor information for characterization of the finger gestures. And
performance degradation in 20 s SRD could result from fatigue or
lack of generalizability of relatively lengthy EMG signal recordings.

In addition to the classification accuracy metric, we investigated
the impact of signal recording length on the characterization of the
finger motions using the MCC metric and found that the different
groups of signal length would result in the varied characterization
of the corresponding classes of finger motions (Figures 5A–D).
Precisely similar to the result in Figures 4A–C for the Between-SRD

scenario, the MCC values increase with a corresponding increase
from 1 to 15 s SRD and declined for 20 s SRD. From the plots
in Figure 5, overlaps were noticeable for the MCC values of 10
and 15 s SRD, that achieved the best MCC values. Meanwhile,
the 1 and 20 s SRD recorded the lowest values. And these results
further substantiate the Between-SRD decoding accuracies presented
in Figures 4A–C.

To understand how the SRD would impact the characterization
of the individual class of finger gesture based on the Between-SRD
strategy, we analyzed the fifteen classes of gestures performed across
subjects for each group of SRD and observed that signal length would
differently influence the classification of the gestures (Figure 6). For
all the SRD groups, the thumb-index (TI) finger gesture has the
highest accuracy, though with high error bars. From the further
examination, the high error bars was because of high-performance
variation among the subjects. For instance, participants 5, 6, and
7 recorded higher accuracies for all the SRDs except for 1 and 5 s
SRD where participant 5’s performance is like the others. Overall, the
decoding accuracies for most finger gestures were higher for 10 and
15 s SRD, with most classes CA overlapping each other. Again, the
performance of the SRD groups corroborates our earlier analyses.

Generally, for all the metrics considered in this study for
the Between-SRD scenario, the 15 s SRD achieved the highest
performance, followed by 10 s for the combination of RF + NTDF.
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FIGURE 6

Average decoding performance across subjects for individual finger gesture using the combination of NTDF feature and LDA classifier for (A) 1 s, (B) 5 s,
(C) 10 s, (D) 15 s, and (E) 20 s, (F) multiple splines curve lines and scatter plot showing performance comparison among the motion classes.

Nevertheless, it is noteworthy to state that the performance difference
in these two SRD groups (10 and 15 s) is not statistically significant
(p > 0.05), almost the same or slightly different (<1–2% for CA
and MCC metrics), and also increased SRDs would lead to increase
computational cost. Therefore, we would suggest a signal recording
length of greater than 5 s but less than or equal to 10 s (>5 and
≤ 10 s) as being potential considering the fact that the lengthier the
EMG recordings the more processing time it may require to build the
classifier. Findings from our study suggest that the may be a safe zone
in terms of the SRD.

Finally, the main strength of this study is that it provided a
proper insight into the impact of SRD on EMG classification accuracy
using three different time domain features and machine learning
classification algorithms and how to select the optimal SRD that
would be robust in practical situations. To the authors’ knowledge,
this has not been previously investigated. Moreover, it is essential to
mention the drawbacks of this study. Firstly, the dataset was acquired

from only healthy subjects with three trials for each class of finger
gestures. Secondly, the presented experimental results were based
on offline analysis. In our future work, we hope to recruit more
healthy subjects and amputees from which a wider range of gestures
(including finger, forearm, and wrist movements) will be obtained
to further validate our hypothesis. It also worth mentioning that our
future investigations shall be done in an online setting other than the
offline analysis carried out in the current study, employing real-time
evaluation metrics to further validate our hypothesis.

5. Conclusion

Pattern recognition-based electromyogram control method for
prostheses has been highlighted and demonstrated as a potential
control strategy that can aid the realization of multiple degrees of
freedom prosthetic functions in a dexterous manner. Besides, an
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important aspect of the framework that has rarely been investigated
is the myoelectric SRD upon which multiple classes of limb motion
tasks are characterized. Thus, this study systematically investigated
the impact of varying EMG-SRD on the characterization of motor
intents associated with multiple classes of finger gestures. The
investigation involved characterizing fifteen classes of finger gestures
performed by eight normally limb subjects under varying lengths
of EMG-SRD (1, 5, 10, 15, and 20 s). Thereafter, each group
of recordings was pre-processed followed by the extraction of
different feature sets, and machine learning classification algorithms
were employed for decoding the corresponding gestures based on
two strategies namely Between-SRD and Within-SRD scenarios.
Comparison between these scenarios revealed that EMG-SRD would
influence the performance of motion intent decoding. In the
experimental results for Between-SRD scenario, SRDs of 10 and 15 s
yielded reasonably decent performance compared to other SRDs in
terms of movement intent decoding across finger gestures, subjects,
feature sets, and classifiers. Considering the increased computation
complexity that comes with increased SRD and the fact that no
significant/substantial improvement was seen in the performance
of 10 and 15 s SRD, the study will recommend a longer SRD (>5
and ≤ 10 s) depending on the research objective. The optimal SRD
was determined based on the Between-SRD approach because it
is more realistic/practicable compared to the Within-SRD scenario.
More importantly, determining the optimal signal length is crucial to
adequately characterize multiple classes of targeted limb motions in
the context of EMG-PR-based control for multifunctional prostheses.
In our future work, further investigations will be conducted to
validate the findings of this study.
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