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Editorial on the Research Topic

Therapeutic potential of innate and innate-like effector lymphocytes in
autoimmune and inflammatory diseases
Modulating the immune system holds great promise for treating a variety of

autoimmune and inflammatory diseases, by stimulating desired immune responses and/

or by inhibiting undesired immune responses. Traditional therapeutic modalities for

autoimmune and inflammatory conditions exert global suppressive effects on immune

responses and often impair overall immune competence, as they quell both pathogenic and

protective immune responses. More recently developed biological therapies selectively

suppress the pathogenic responses in autoimmune and inflammatory diseases by acting on

specific immune cell subsets or the inflammatory mediators they produce. The latter

treatments require a thorough understanding of the underlying disease pathology,

especially the role of antigen-specific effector B and T lymphocytes of the adaptive

immune system. However, comparatively little attention has been paid to the

immunotherapeutic potential of innate and innate-like effector lymphocytes, which also

make important contributions to the development and progression of autoimmune and

inflammatory diseases. This Research Topic focuses on our emerging understanding of the

roles of innate and innate-like lymphocytes in the pathogenesis of autoimmune and

inflammatory diseases, and how this information might be exploited for the development

of new and improved immunotherapies.

Innate and innate-like lymphocytes share a number of features that make them

particularly attractive targets for immunotherapy. For example, their specificity is not

impacted by polymorphic major histocompatibility complex (MHC) ligands and, therefore,

uniform tools could be employed to elicit their therapeutic properties in genetically

disparate individuals. Furthermore, their therapeutic activation or inactivation might not

lead to widespread immune impairment and susceptibility to infection or cancer.
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Among the innate lymphocytes, natural killer (NK) cells have

been studied predominantly for their anti-tumor and anti-viral

activities. Yet, these cells also play critical roles in a variety of other

diseases. Wang et al. review the controversial role of NK cells in

sepsis, where they might contribute to protective immune responses

against the invading microbes, but also to the overall hyper-

inflammatory phase of sepsis by producing cytokines and causing

tissue destruction, and to the subsequent immune-suppressive

phase of sepsis where they might adopt a hyporesponsive

phenotype rendering the host susceptible to secondary infection.

The original research article by Qi et al. explores the features of NK

cells in patients with Alzheimer’s disease, revealing quantitative and

qualitative alterations in these cells, and the presence of a unique

NK cell subset whose prevalence negatively correlates with patient

cognitive functions. Although NK cells are best known for

displaying innate effector functions, in some situations, such as

during infection by human cytomegalovirus (HCMV), some NK

cells might exert adaptive-like memory responses. The activating

NKG2C receptor on such NK cells might engage with HCMV-

derived peptides bound with the unconventional human leukocyte

antigen (HLA)-E protein. The primary research article by Almazán

et al. describes the identification of three peptides from HCMV that

induce such NK cell-mediated memory responses. The investigators

also generated synthetic versions of these HCMV peptides that

could be potentially employed as therapeutic vaccines.

In addition to NK cells that were discovered nearly fifty years

ago, work during the past two decades has identified multiple

additional innate lymphocyte subsets. This growing family of

innate lymphoid cells (ILCs) is typically partitioned into three

groups: group 1 includes NK cells and ILC1 cells producing type

1 cytokines such as interferon (IFN)-g, group 2 includes ILC2 cells

producing type 2 cytokines such as interleukin (IL)-4 and IL-5, and

group 3 includes ILC3 cells and lymphoid tissue inducer cells

producing type 3 cytokines such as IL-17. Jia et al. review the

contributions of distinct ILC subsets to the development of atopic

dermatitis, with a focus on the pathogenic role of ILC2s. Zhang et al.

discuss the controversial role of group 3 ILCs in intestinal diseases,

which might be related to the capacity of these cells to respond to

dietary metabolites and gut microbiota. Thomas and Peebles review

IL-10-producing ILCs, which have been observed among all ILC

subsets. These cells display a regulatory phenotype that promotes

gut and lung homeostasis, with the potential for therapeutic

applications in intestinal and lung diseases.

A unique subset of innate lymphocytes with T cell features and

with the capacity for IFN-g production and cytotoxicity has been

identified within the intestinal epithelium. Hariss et al. present new

findings on these so-called innate intestinal intraepithelial

lymphocytes (iIELs) during infection by the intestinal, protozoon

pathogen Cryptosporidium parvum, revealing the capacity of these

iIELs to control parasite proliferation at early stages of the infection.

Multiple subsets of T lymphocytes display innate-like functions,

including CD1d-restricted natural killer T (NKT) cells, MHC class I

related-1 (MR1)-restricted mucosal-associated invariant T (MAIT)

cells, innate subsets of T cell receptor (TCR) gd-expressing T cells,
Frontiers in Immunology 026
and subsets of innate-like, TCR-expressing iIELs. Bharadwaj and

Gumperz review different ways by which the anti-inflammatory

properties of NKT cells might be harnessed to control pathological

inflammation, and how differences in the functional properties

between murine and human NKT cells will likely make this goal

rather challenging. Lee et al. review the role of NKT cells to

immunity in the skin, where these cells can exert either protective

or pathogenic effects on inflammatory skin diseases, raising the

possibility to modulate NKT cell effector functions for

immunotherapy. The original research article by Imahashi et al.

also focuses on skin inflammation, using a mouse model of allergic

contact dermatitis, to explore the role of MR1-restricted MAIT cells

to disease, showing that these cells are activated quickly following

challenge with a contact allergen to suppress skin inflammation.

Joyce et al. review the contribution of NKT cells and MAIT cells to a

wide variety of infectious agents, arguing that these cells can

integrate signals delivered by innate sensor cells responding to

pathogens and then relay those signals to downstream innate and

adaptive immune effector cells. Finally, Zhou reviews the role of NK

cells, NKT cells, MAIT cells, and gd T cells to early liver

inflammation in various contexts, how such cells might trigger

chronic liver inflammation and fibrosis, and how their depletion

might be able to attenuate several liver diseases.

Similar to the T cell lineage, subsets of B lineage cells with

innate-like functions have been identified. This includes marginal

zone B (MZB) cells that reside at the interface between the

circulation and lymphoid tissue, and B-1 B cells that reside

primarily in the mesothelial cavities. Tandel et al. review yet

another B cell subset, referred to as natural killer-like B (NKB)

cells, with reported innate-like characteristics. While some research

groups have confirmed that NKB cells express characteristic

markers of both NK cells and B cells, other researchers have

argued that these cells display phenotypic and functional

characteristics of conventional B cells, prompting the need for

further investigations of their origin and identity.

The articles included in this Research Topic provide elegant

examples of the exciting, ongoing work on innate and innate-like

lymphocytes, highlighting the potential of targeting these cells for

immunotherapy of human autoimmune and inflammatory diseases.
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Roles and therapeutic potential
of CD1d-Restricted NKT cells in
inflammatory skin diseases

Sung Won Lee1, Hyun Jung Park1, Luc Van Kaer2

and Seokmann Hong1*
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Development, Sejong University, Seoul, South Korea, 2Department of Pathology, Microbiology and
Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize

glycolipid antigens rather than peptides. Due to their immunoregulatory

properties, extensive work has been done to elucidate the immune functions

of NKT cells in various immune contexts such as autoimmunity for more than

two decades. In addition, as research on barrier immunity such as the mucosa-

associated lymphoid tissue has flourished in recent years, the role of NKT cells

to immunity in the skin has attracted substantial attention. Here, we review the

contributions of NKT cells to regulating skin inflammation and discuss the

factors that can modulate the functions of NKT cells in inflammatory skin

diseases such as atopic dermatitis. This mini-review article will mainly focus on

CD1d-dependent NKT cells and their therapeutic potential in skin-related

immune diseases.

KEYWORDS

CD1d-restricted NKT cells, glycolipid antigens, atopic dermatitis, allergic contact
dermatitis, psoriasis, UV-induced skin inflammation
Introduction

Inflammatory immune responses in the skin are attributed to exposure to allergic irritants

(e.g., metals, fragrance chemicals, preservatives, antibiotics, and drugs), pathogens (e.g.,

Staphylococcus aureus and fungi), and ultraviolet (UV) radiation (1, 2). While many immune

cell types contribute to the pathogenesis of inflammatory skin diseases, we focus here on the

role of natural killer T (NKT) cells, a subset of innate-like T cells that co-express T andNK cell

receptors. In general, NKT cells recognize glycolipid antigens presented by MHC I-like CD1d

molecules. NKT cells can be further classified into two subsets based on their distinct TCR

characteristics: type I (invariant TCRa chain, Va14Ja18 in mice and Va24Ja18 in humans)

and type II (diverse TCR, non-Va14Ja18/Va24Ja18) NKT cells (3–6). Type I NKT cells are

also called invariant NKT (iNKT) cells, owing to their unique expression of an invariant TCR

alpha chain, and these cells react with the prototypical glycolipid antigen a-
frontiersin.org01
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galactosylceramide (a-GalCer). Both subsets of NKT cells make

crucial contributions to skin inflammatory responses, playing either

protective or pathogenic roles in animal models of inflammatory

skin disorders (7, 8). Consistent with these animal studies, patients

with inflammatory skin diseases (e.g., atopic dermatitis (AD),

allergic contact dermatitis (ACD), psoriasis, and UV-induced skin

inflammation) display functional alterations in CD1d-restricted

NKT cells (7, 8). Functional heterogeneity of CD1d-restricted

NKT cells may also contribute to the distinct outcome of various

skin diseases. In particular, depending on the expression profile of

CD4 and CD8 co-receptors, type I NKT cells can be subdivided into

CD4+ and CD4-CD8- (double negative, DN) subsets. Furthermore,

type I NKT cells are functionally subclassified by differential

expression of transcription factors: T-bet for NKT1, GATA3 and

PLZF for NKT2, and RORgt for NKT17 cells (3–6). This mini-

reviewwill discuss the immunomodulatory roles of CD1d-restricted

NKT cells in various inflammatory skin disorders.
Atopic dermatitis (AD)

AD is a pruritic and chronic inflammatory skin disorder

characterized by T helper type 2 (Th2)-dominant responses. It is

elicited by pro-Th2 cytokines (e.g., thymic stromal lymphopoietin

(TSLP), IL25, and IL33) released by keratinocytes and fibroblasts

(9). Interestingly, AD’s pathogenesis in humans closely correlates

with quantitative and qualitative changes in iNKT cells among

peripheral blood mononuclear cells (PBMCs) (10–17). Recently,

several studies have reported that AD patients display phenotypic

changes in CD1d-restricted NKT cells, suggesting their potential

role in AD pathogenesis.

The frequencies of surface immune cell markers [i.e., CD4/

CD8 (10, 12, 14, 15), CD161 (13), and CXCR4 (17)] among NKT

cells of AD patients are altered. In addition, one study reported

that AD patient-derived IgG antibodies induce selective

expansion of the CD4+ subpopulation in thymic but not

splenic iNKT cells from non-atopic infants and such IgG-

stimulated CD4+ iNKT cells produced high amounts of IL4,

IL17, and IL10 (18). Recently, Sun et al. reported that skin-

resident CXCR4+ iNKT cells recruited by fibroblast-derived

CXCL12 aggravate AD through excessive secretion of both

IFNg and IL4 (17). Conversely, our study demonstrated that

adoptive transfer of iNKT cells (mostly DN cells) from Va14
TCR transgenic (Tg) NC/Nga (NC) mice effectively prevented

spontaneous AD development in recipient NC mice by

increasing IFNg-producing CD8+ T cells and regulatory T

(Treg) cells (19). Furthermore, consistent with our report,

previous studies have shown that DN iNKT cells can protect

against airway hypersensitivity in a mouse model of asthma via

expansion of Treg cells (20, 21). Moreover, based on studies that

influenza infection or injection of Th1 cytokine-biasing

glycolipids (e.g., a-C-GalCer and napthylurea-modified

a-GalCer) during the neonatal period can induce preferential
Frontiers in Immunology 02
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expansion of DN NKT cells in mice, expansion of DN NKT cells

during early life might be effective in preventing AD

development (20, 21). However, repeated injection of a-
GalCer into Va14 TCR Tg NC mice exacerbated AD

pathogenesis, indicating that Th2-biased iNKT cells induced

by repeated a-GalCer injection exhibit adverse effects on AD

symptoms (22). This study therefore suggests that continuous

exposure to pathogen-derived glycolipid antigens can

dramatically influence AD development.

Pro-Th2 cytokines, including TSLP, IL33, and IL25, play a

critical role in initiating Th2 immune responses in AD (9). It has

been reported that enhanced expression of keratinocyte-derived

TSLP in AD patients activates iNKT cells to secrete IL4 and IL13,

which positively correlated with AD severity (23). Moreover,

murine keratin-14+ keratinocytes and HMGB1+ fibroblasts in

the skin express high levels of IL33 after intradermal injection of

S. aureus (24). Although IL33- and IL25-induced iNKT cell

activation has been shown to play an essential role in a mouse

model of asthma (25, 26), it remains unclear whether CD1d-

restricted NKT cells stimulated by IL33 and IL25 contribute to

AD progression. It has been reported that the skin lesions of

most AD patients are heavily colonized with S. aureus (27). In

particular, the prevalence of multi-drug resistant S.

aureus (MRSA) in children with AD has continued to increase

for over ten years (28). Unlike a-GalCer, heat-killed S. aureus

induces the secretion of substantial amounts of IFNg rather than
IL4 by iNKT cells via CD1d-dependent activation in the

presence of DCs (29). In addition, an S. aureus-derived lipid

fraction, containing a 60:40 ratio of PG (phosphatidylglycerol):

lysyl-PG, stimulated type II NKT cells through CD1d-TCR

engagement to produce IFNg, resulting in protection against

MRSA infection (30). However, treatment with sulfatide, a well-

known endogenous ligand for type II NKT cells, significantly

attenuated S. aureus sepsis via decreased secretion of TNFa and

IL6 cytokines in the blood (31), suggesting that type II NKT cells

might be involved in regulating S. aureus pathogenesis in

the skin.

Epicutaneous and intradermal infection of S. aureus induces

skin inflammation through MyD88-dependent signaling (32).

Additionally, TLR-activated DCs can present self-lipid antigens

(e.g., b-D-glucopyranosylceramide (b-GlcCer) and iGb3) to

activate iNKT cells in a MyD88-dependent fashion (33).

Furthermore, rapid up-regulation of Ugcg (ceramide

glucosyltransferase) in DCs accompanied by S. aureus

infection induces endogenous b-GlcCer accumulation in DCs,

resulting in the CD1d-dependent presentation of b-GlcCer to

iNKT cells. Notably, b-GlcCer C24:1 was the most potent b-
GlcCer variant to activate iNKT cells in TLR-stimulated DCs

(34). These findings support the notion that CD1d-restricted

NKT cells contribute to regulating S. aureus infection-elicited

immune responses via CD1d-dependent TCR engagement. It is

well established that staphylococcal superantigens (SsAgs), such

as staphylococcal enterotoxin B (SEB), contribute to the
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pathogenesis of skin inflammation in AD (35). In addition,

SsAgs expand Vb8+CLA (cutaneous lymphocyte-associated

antigen)+ memory T cells in PBMCs and induce their

infiltration into skin lesions of AD patients (36). Since iNKT

cells predominantly express a Vb8 chain paired with a Va14-
Ja18 chain, S. aureus (strain COL)-derived superantigen SEB

directly stimulated iNKT cells to release IFNg rather than IL4 in

an MHC II- but not CD1d-dependent manner (37).
Allergic contact dermatitis (ACD)

ACD, also called “contact hypersensitivity (CHS)”, is

considered a Type IV or delayed-type hypersensitivity (DTH)

because it is mainly mediated by T cells. Many iNKT cells

infiltrating ACD skin lesions display an effector phenotype

with high levels of IFNg and IL4, indicating that iNKT cells

might play an essential role in ACD pathogenesis. Interestingly,

the ratio of two cytokines, IFNg and IL4, in the skin of these

patients appears to diverge in a manner dependent on the

allergen type (38).

Nickel allergy is the most prevalent metal-induced ACD. In

the murine experimental setting of nickel allergy, iNKT cells are

predominant in inflamed skin. They secrete high amounts of

Th1-type cytokines (i.e., TNFa, IFNg, and IL2) as well as

cytolytic molecules (NKG2D, perforin, granzymes A and B,

and FasL), suggesting that iNKT cells influence nickel allergy

development (39). Notably, among iNKT cells in the ACD skin

lesions, the DN iNKT subpopulation is over three times more

abundant than the CD4+ iNKT cell subset (39). Furthermore,

since DN iNKT cells exhibit a Th1-like phenotype with high

IFNg and IL2 but low IL4 secretion in mice (19), and CD4- iNKT

cells express high levels of NKG2D on their surface in humans

(40), it is likely that DN but not CD4+ iNKT cells play a

pathogenic role in nickel allergy. Moreover, it has been

reported that keratinocytes do not activate resting iNKT cells

but could serve as targets for activated iNKT cells releasing

cytolytic granules such as perforin and granzymes in ACD

patients (41). Furthermore, the cytotoxicity of iNKT cells

against keratinocytes was CD1d-dependent, consistent with a

pathogenic role in ACD. However, the precise mechanism of

iNKT cell activation in nickel allergy remains to be elucidated.

Since TLR4 signaling (in humans) and MyD88/IL1 signaling (in

mice) have been implicated in nickel-induced ACD (42–44),

either immune cells (i.e., DCs and macrophages) or non-

immune cells such as keratinocytes may mediate iNKT

cell activation.

Different types of ACD can be induced by haptens (e.g., 2,4-

dinitrofluorobenzene (DNFB), dinitrochlorobenzene (DNCB),

and oxazolone). In murine DNFB-induced ACD, iNKT cells

attenuate ACD pathogenesis via modulation of CD8+ T cell

activation but not Treg cell induction, suggesting a protective

role of iNKT cells. These effects were attributed to IL4 and IL13
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released from iNKT cells stimulated by hapten-loaded DCs

through a CD1d-dependent pathway (45). A protective role of

iNKT cells has also been reported in the DNCB-induced ACD

mouse model, in a mechanism involving suppression of IFNg
production (46). These protective effects were strongly linked

with increased IL10-producing regulatory B (Breg) cells

constituting most of the CD1dhiCD5+ subset in the spleen and

peritoneal cavity (46). However, a previous study demonstrated

that iNKT cells play pathogenic roles in the oxazolone-induced

ACD murine model. Oxazolone sensitization triggers iNKT cells

to produce IL4 to co-activate innate-like B1 cells along with

specific antigens for IgM antibody production, ultimately

exacerbating ACD by recruiting effector T cells (47). Previous

studies provide support for a critical role of CD1d-dependent

cognate interactions between iNKT cells and B1 cells to induce

B1 cell-derived circulating IgM in oxazolone-induced ACD (48–

50). Moreover, the progression of oxazolone-induced ACD

could be attenuated effectively by intraperitoneal injection of

the iNKT cell antagonist a-ManCer (51), which provides

support for the pathogenic role of iNKT cells in this model.

Taken together, iNKT cells can play differential roles in ACD

depending on the type of hapten employed in disease induction.
Psoriasis

Psoriasis is a chronic immune-mediated skin disorder

characterized by red, scaly, thickened, inflamed, and itchy

skin. Pro-inflammatory cytokines (i.e., TNFa, IFNg, IL17, and
IL22) are central in initiating psoriatic skin inflammation (52).

Interestingly, Va24+Vb11+ NKT cells (53) or CD3+CD56+ NKT

cells (54) in PBMCs were statistically decreased in number in

psoriasis patients compared with healthy controls. In contrast,

the relative frequencies of iNKT2 and iNKT17 cells in PBMC of

psoriatic patients were increased compared with healthy

controls, whereas total and CD69+ iNKT cells were

significantly decreased in number (55). Moreover, infusion

therapy to psoriatic patients with CD3+CD56+ NKT cells

(which likely consist of CD1d-restricted NKT cells) restored

CD3+CD56+ NKT cell levels in patient PBMCs, leading to

improved skin lesions in severe psoriasis (56). These studies

indicate that CD56+ NKT cells contribute to regulating psoriatic

skin inflammation, possibly by producing Th2 cytokines such

as IL4.

Conversely, psoriatic patients have significantly higher

numbers of skin CD161+ NKT cells in the pre-psoriatic skin

than in normal skin (57). Importantly, CD1d-restricted CD161+

NKT cells from psoriatic patients were capable of rapidly

producing IFNg upon recognition of glycolipid antigen

presented by CD1d on keratinocytes (58). In addition,

intradermal injection of these cells into pre-psoriatic human

skin grafted on severe combined immunodeficiency (SCID) mice

caused the development of psoriatic plaques (59). Furthermore,
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injection of allogeneic blood-derived psoriatic lymphocytes

induced psoriatic plaques in the skin of SCID mice receiving

human skin xenografts, and increased CD161+ NKT cell

infiltration closely correlated with psoriasis pathogenesis (60).

Another study also showed that CD1d-expressing keratinocytes

could stimulate CD161+ NKT cells to produce a more significant

amount of IFNg, resulting in exaggerated psoriasis (58). In

addition, increased activity of PKCz in TNFa-stimulated

keratinocytes has been implicated in enhanced Va24 and

CD1d expression in psoriatic skin (61). Collectively, these

studies suggest that CD161+ NKT cells play a central role in

the pathogenesis of psoriasis by inducing Th1-type cytokine

production in a CD1d-dependent manner.

It is well known that patients with psoriasis show increased

transepidermal water loss (TEWL), which reflects skin barrier

abnormalities (i.e., increased permeability), accompanied by a

reduction of epidermal ceramides (Cer) (62). In the upper

epidermis, b-glucocerebrosidase (GlcCer’ase) was decreased in

psoriatic skin compared with normal skin, suggesting that the

decreased activity of GlcCer’ase may be responsible for GlcCer

accumulation and a reduction of Cer in the lesional skin of

psoriatic patients (63). In particular, the accumulation of 5-25%

GlcCer in the stratum corneum (together with the concomitant

loss of 5-25% Cer) has been implicated in increased TEWL in

human skin (64). Since TNFa increases CD1d expression on

keratinocytes and GlcCer-rich fractions activate NKT cells in a

CD1d-dependent manner (61, 65), it will be worthwhile to

investigate whether treatment with both a GlcCer’ase activator

and a TNFa inhibitor (i.e., infliximab, adalimumab, or etanercept)

can improve clinical symptoms by controlling pathogenic CD1d-

restricted NKT cell activation in psoriatic patients.
UV-induced skin inflammation

CD1d-dependent iNKT cells play protective roles in UV-

induced skin inflammation. For example, iNKT cell-deficient

CD1d KO mice are more resistant to UV-induced apoptosis of

keratinocytes and fibroblasts (66). Furthermore, Fukunaga et al.

demonstrated that UV irradiation suppresses DNFB-

induced CHS in mice. Such immunoregulatory effects of UV

exposure are associated with enhanced IL4 production by iNKT

cells induced via CD1d-expressing Langerhans cells (LCs) in

skin-draining lymph nodes (67). These studies identify CD1d-

dependent NKT cells as therapeutic targets to modulate UV

exposure-elicited Th1-type skin immune diseases such as CHS.

Interestingly, two different NKT cell-deficient mouse models

displayed distinct outcomes in response to UV-induced skin

inflammation: Ja18 KO and CD1d KO mice generated

pathogenic and protective responses, respectively. Although

these results might reflect differential functions between type I

and type II NKT cells (68), the effect of altered TCR repertoire

diversity in Ja18 KO mice should be reassessed (69–71).
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UVB irradiation induces the accumulation of sphingolipids

such as GlcCer in the mouse epidermis (particularly the stratum

corneum), resulting from markedly reduced GlcCer’ase activity,

with a concomitant increase in TEWL (72). One previous study

showed that in vivo glucosylceramide synthase (GCS)-dependent

glycosphingolipid (GSL), in particular GlcCer, influences iNKT

cell development in the mouse thymus (73). Because endogenous

GlcCer is widely found in most mammalian tissues, the GlcCer-

enriched lipid fraction could activate iNKT cells in a CD1d-

dependent manner (34, 65). Therefore, these findings suggest that

the CD1d-dependent immune suppressive effects of UV exposure

might be attributed to iNKT cell recognition of CD1d loaded with

endogenous glycolipids such as GlcCer. In addition, UV

irradiation has beneficial effects on bacterial infection-induced

pathology. For instance, in UV-irradiated mice, CD4+DX5+ NKT

cells produce IL4 to inhibit Candida albicans infection-induced

DTH immune responses in a CD1d-dependent manner (74).
Other skin-related diseases

In patients with scleroderma, also known as systemic

sclerosis (SSc), numerical and functional defects of iNKT cells

have been identified (75). B cells have been suggested as one of

the key players in SSc pathogenesis. Scleroderma patients display

significantly higher IL6 production by B cells, and suppression of

B cell-derived IL6 was attributed to cell contact between iNKT

and CD1d-expressing B cells via the CD1d-TCR axis (76).

Furthermore, iNKT cells have been reported to play important

roles in wound healing (77). For example, after skin wound

induction, the healing process was delayed in iNKT cell-deficient

Ja18 KO mice, which was associated with reduced IFNg
production. iNKT cells promote skin wound healing by

preventing prolonged neutrophilic inflammatory responses

(78). In addition, iNKT cells promote the clearance of

Pseudomonas aeruginosa at the wound site during skin wound

healing by inducing IL22, IL23, and antimicrobial peptide

S100A9 after bacterial infection (79). Alopecia areata (AA) is a

skin disorder that causes hair loss. A previous study showed that,

in the human skin xenograft model, IL10-secreting iNKT cells

prevent AA development, suggesting that their activities are

related to suppression of NKG2D+CD8+ T cells, which are

potential mediators of AA (80). In addition, vitiligo patients

display defective frequencies and functions of iNKT cells in

PBMCs (81).
Concluding remarks

CD1d-restricted NKT cells are critical immune mediators

in regulating skin inflammatory responses (Figure 1 and

Table 1). Thus, modulating the effector functions of NKT

cells may be explored to develop therapeutics for skin
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immune diseases. For example, the effects of NKT cell

activation could be altered by the protocol employed to

administer glycolipids [i.e., dosage (82), frequency (83), route

(84, 85)]. Further, distinct types of NKT cell-stimulating

glycolipids can contribute to the immune balance between

Th1 and Th2 responses (86–88). Interestingly, it has been

reported that the long-chain fatty acid palmitate (C16:0)

directly activates iNKT cells to induce a decrease in IFNg and
IL4 (89), but an increase in IL10 production (90) via inositol-

requiring enzyme 1a. Such iNKT cell-produced IL10

ultimately suppresses inflammatory responses, suggesting

palmitate as a promising candidate to treat inflammatory

skin diseases.

From the perspective of developing topical therapeutics for

skin diseases, the skin barrier remains a significant challenge.

Thus, there is growing interest in designing safe and effective

drug delivery systems. One example is nanocarriers such as

liposomes and micelles to help increase the penetration of

drugs through the skin barrier (91). In particular, palmitate-

containing liposomes may provide significant therapeutic
Frontiers in Immunology 05
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benefits to iNKT cell-mediated skin inflammation (92). In

addition, as increased b-GlcCer accumulation by the

reduction of GlcCer’ase activity affects NKT cell activation

(63, 93), extracellular vesicle-based delivery of GlcCer’ase

represents a promising therapeutic approach (94).

Furthermore, the smaller the nanoparticles, the higher their

drug delivery efficiency to the skin (95). Recently, we have

demonstrated that nano-sized graphene oxide (nGO) mediates

anti-inflammatory responses via conversion of iNKT cells

toward a regulatory phenotype (96). Thus, nGO could be a

promising strategy to modulate iNKT cells for suppressing

inflammatory skin diseases.

As already noted, iNKT cells are functionally divided into

several groups depending on the expression of transcription

factors. Despite emerging evidence on distinct roles of iNKT cell

subsets in various immune responses, little is known about their

involvement in inflammatory skin diseases. Thus, it will be

important to explore the precise immunoregulatory

mechanisms of the skin resident iNKT cell subsets to develop

better therapeutic agents for skin inflammation.
FIGURE 1

Cellular networks of CD1d-restricted NKT cells and their soluble factors in regulating skin inflammatory responses. Since the skin is constantly
exposed to external stimuli such as pathogens and allergens, inflammatory immune responses occur when the skin barrier is broken. For
example, during infection, endogenous glycolipids (i.e., b-GlcCer) induced by TLR signaling can stimulate CD1d-restricted NKT cells to produce
large amounts of soluble factors such as cytokines that promote or regulate immune responses, contributing to maintaining skin homeostasis.
Thus, CD1d-restricted NKT cells can link innate and adaptive immunity, despite the small number of these cells in the skin. In addition, CD1d-
restricted NKT cells can regulate immune responses by interacting with non-immune cells (i.e., fibroblasts and keratinocytes) and immune cells
(i.e., Langerhans cells, dermal DCs, Breg cells, and B1 cells) during skin inflammation. Furthermore, staphylococcal superantigens (SsAgs), such
as staphylococcal enterotoxin B (SEB), bind to both MHC II expressed on APC and TCR Vb8 chain of CD1d-restricted NKT cells, consequently
bridging interaction between APC and NKT cells via antigen-independent manner. Thus, TCR Vb8-expressing NKT cells might be involved in
regulating S. aureus pathogenesis in the skin even without glycolipid antigens. Moreover, upon cross-talk with various cell types, CD1d-restricted NKT cells
produce soluble factors (e.g., IFNg, IL2, IL4, IL13, TNFa, perforin, and granzymes), which are either protective or pathogenic in inflammatory skin diseases.
AD, atopic dermatitis; ACD, allergic contact dermatitis; APC, antigen-presenting cells; b-GlcCer, b-D-glucopyranosylceramide; Breg cells, regulatory B
cells; DCs, dendritic cells; LCs, Langerhans cells; SsAgs, staphylococcal superantigens.
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TABLE 1 Roles of CD1d-restricted NKT cells in various inflammatory skin diseases.

Diseases NKT
type

Subtype Relative
proportion

Species Cellular
source

Cytokines/Signaling
molecules

Functions References

Increase Decrease

AD I CD4- ↓ H PBMC ‐ ‐ ‐ (10)

I DN ↓ H PBMC ‐ ‐ ‐ (12)

I CD161+ ↓ H PBMC ‐ ‐ ‐ (13)

I CD4+ ↑ H PBMC ‐ ‐ ‐ (14)

I DN ↓ H PBMC IL4 IFNg ‐ (15)

I ‐ ↑ H PBMC,
Skin

‐ ‐ ‐ (23)

I CXCR4+ ↑ H Skin ‐ ‐ ‐ (17)

I CXCR4+ ↑ M Skin IFNg, IL4, IL17 ‐ Pathogenic (17)

I DN ↑ M Skin IFNg, IL2 ‐ Protective (19)

I DN = M Spleen IL4, IL10 IFNg Pathogenic (22)

ACD I ‐ ↑ H Skin IFNg, IL4 ‐ ‐ (38)

I CD4+,
DN

↑ M Spleen IFNg ‐ ‐ (39)

I ‐ ↑ H Skin Perforin, Granzyme
B, K

‐ ‐ (41)

I ‐ ‐ M ‐ IL4, IL13 ‐ Protective (45)

I, II ‐ ‐ M ‐ ‐ ‐ Protective (46)

I ‐ ‐ M ‐ ‐ ‐ Pathogenic (51)

Psoriasis I ‐ ↓ H ‐ ‐ ‐ ‐ (53)

I CD69+ ↓ H PBMC IL4, IL17, GATA3,
RORgt

‐ ‐ (55)

I CD161+ ↑ H Skin ‐ ‐ ‐ (59)

I ‐ ↑ H Skin PKCz ‐ ‐ (61)

I CD161+ ↑ H Skin IFNg ‐ Pathogenic (58)

UV-induced skin
inflammation

I, II ‐ ‐ M ‐ ‐ ‐ Pathogenic (66)

I ‐ ‐ M Lymph
nodes

IL4 ‐ Protective (67)

I ‐ ‐ M ‐ ‐ ‐ Protective (68)

I, II ‐ ‐ M ‐ ‐ ‐ Pathogenic (68)

Scleroderma I ‐ ↓ H PBMC IL17 ‐ ‐ (75)

Alopecia
areata

I ‐ ↑ H Skin IL10 ‐ Protective (80)

Vitiligo I CD4+ ↓ H PBMC ‐ ‐ ‐ (81)

Skin wound healing I ‐ ‐ M ‐ ‐ ‐ Protective (77–79)
fr
I, type I; II, type II;‐, not evaluated; DN, double negative; ↑, increase; ↓, decrease; =, no change; H, human; M, mouse; PBMC, peripheral blood mononuclear cells.
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Harnessing invariant natural
killer T cells to control
pathological inflammation

Nikhila S. Bharadwaj and Jenny E. Gumperz*

Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, United States
Invariant natural killer T (iNKT) cells are innate T cells that are recognized for

their potent immune modulatory functions. Over the last three decades,

research in murine models and human observational studies have revealed

that iNKT cells can act to limit inflammatory pathology in a variety of settings.

Since iNKT cells are multi-functional and can promote inflammation in some

contexts, understanding the mechanistic basis for their anti-inflammatory

effects is critical for effectively harnessing them for clinical use. Two

contrasting mechanisms have emerged to explain the anti-inflammatory

activity of iNKT cells: that they drive suppressive pathways mediated by other

regulatory cells, and that they may cytolytically eliminate antigen presenting

cells that promote excessive inflammatory responses. How these activities are

controlled and separated from their pro-inflammatory functions remains a

central question. Murine iNKT cells can be divided into four functional lineages

that have either pro-inflammatory (NKT1, NKT17) or anti-inflammatory (NKT2,

NKT10) cytokine profiles. However, in humans these subsets are not clearly

evident, and instead most iNKT cells that are CD4+ appear oriented towards

polyfunctional (TH0) cytokine production, while CD4- iNKT cells appear more

predisposed towards cytolytic activity. Additionally, structurally distinct

antigens have been shown to induce TH1- or TH2-biased responses by iNKT

cells in murine models, but human iNKT cells may respond to differing levels of

TCR stimulation in a way that does not neatly separate TH1 and TH2 cytokine

production. We discuss the implications of these differences for translational

efforts focused on the anti-inflammatory activity of iNKT cells.

KEYWORDS

iNKT cell, CD1d, anti-inflammatory, immunotherapy, immuno-regulatory, immunomodulatory
Introduction

iNKT cells are innate T lymphocytes that are present in all individuals and use a unique

“semi-invariant” TCR, comprised of a canonically rearranged TCRa chain (TRAV10-

TRAJ18) paired with TCRb chains utilizing TRBV25-1 in diverse rearrangements (1–3).

The TCRs of iNKT cells are specific for CD1d, a non-classical antigen presenting molecule
frontiersin.org01
17

https://www.frontiersin.org/articles/10.3389/fimmu.2022.998378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.998378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.998378/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.998378&domain=pdf&date_stamp=2022-09-15
mailto:jegumperz@wisc.edu
https://doi.org/10.3389/fimmu.2022.998378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.998378
https://www.frontiersin.org/journals/immunology


Bharadwaj and Gumperz 10.3389/fimmu.2022.998378
that has minimal polymorphism at the amino acid level in human

populations (4). CD1d molecules are constitutively expressed by

professional APCs, including B cells, monocytes, macrophages, and

DCs (5), and also by non-hematopoietic cells (particularly epithelial

cells) in a variety of tissues (6). CD1d molecules are specialized for

presenting lipidic antigens, which are structurally conserved

molecules that are not highly mutable (7). Antigens recognized by

iNKT cells derive from both self and microbial sources (8). Self-

lipids recognized by iNKT cells are constitutively presented by

CD1d+ APCs, and may also be up-regulated during inflammation

or cellular stress (9). Hence, because of their status as ‘donor-

unrestricted’ T cells that recognize conserved antigens and do not

mediate alloreactivity, iNKT cells are ideal candidates for allogeneic

cellular immunotherapies. Due to their self-lipid recognition iNKT

cells can be used for adoptive cellular immunotherapies without

added antigens. Alternatively, they can be specifically activated by

synthetic mimetics of their lipid antigens.

Extensive studies have demonstrated remarkable potency of

iNKT cells in limiting TH1-driven pathology in multiple settings,

including autoimmune diseases, inflammation associated with

obesity, and graft versus host disease (GVHD) [reviewed in (10–

12)]. However, a central conundrum about iNKT cells is that they

can also potently promote TH1 responses. Their TH1-promoting

functions have been associated with enhanced defense against

infections and cancer (reviewed in (13, 14)), but also appear to

play pathological roles in certain contexts, including atherosclerosis,

sickle cell disease, and endotoxic shock (reviewed in (15–17)). Thus,

in order to successfully exploit the potential of iNKT cells to treat

inflammatory disease, it may be important to selectively engage

their anti-inflammatory pathways.
Frontiers in Immunology 02
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How are the anti-inflammatory
effects of iNKT cells mediated?

Two distinct mechanistic processes have been identified that

may explain how iNKT cells limit TH1-driven inflammation. The

first is a regulatory axis characterized by iNKT cell production of

TH2 (IL-4, IL-13) or regulatory (IL-10, TGFb) cytokines, and by

activation of anti-inflammatory cells including M2-polarized

macrophages, myeloid-derived suppressor cells (MDSCs), and

Tregs (Figure 1A). The second is a cytolytic pathway involving

iNKT-mediated killing of inflammatory antigen presenting cells

(APCs) that activate TH1 effectors (Figure 1B).
iNKT regulatory axis

Studies investigating insulitis in non-obese diabetic (NOD)

mice were amongst the first to elucidate the regulatory activity of

iNKT cells, with early work revealing a critical link to IL-4 and

IL-10 production (18–21), and further analysis showing that

they promote the differentiation of tolerogenic APCs that limit

the activation of autoreactive T cells (22–25). A similar axis has

been observed in murine models of diet-induced obesity, where

adipose-resident iNKT cells play a powerful role in glucose

tolerance by promoting macrophage polarization into a non-

inflammatory M2 phenotype through secretion of IL-4 and IL-

10 (26, 27), and by transactivating regulatory T cells via secretion

of IL-2 (28). iNKT cells also contribute to the resolution phase of

sterile inflammation in the liver by promoting monocyte

transition into an anti-inflammatory phenotype through
BA

FIGURE 1

iNKT cell anti-inflammatory mechanisms. (A) iNKT cells interact with myeloid cell types to initiate the activation of regulatory pathways.
Recognition of antigens presented by CD1d molecules expressed by myeloid cells induces iNKT cells to produce cytokines like IL-4, IL-10, or
IL-13, that in turn act on the APCs. IL-4 and IL-10 promote macrophage differentiation into an M2 phenotype. IL-13 promotes monocyte
differentiation into APCs that express suppressive cytokines such as IL-10 and TGF-b. Secretion of ATP by iNKT cells leads to upregulation of the
checkpoint inhibitors PD-L1 and PD-L2, and iNKT interaction with monocytes induces secretion of PGE2 by mechanisms that have not yet been
determined. Additionally, IL-2 produced by iNKT cells helps to drive the expansion of Tregs. (B) iNKT cells can lyse pro-inflammatory APCs,
leading to reduced T cell activation. In this case, recognition of antigens presented by CD1d molecules activates iNKT cells to release cytolytic
granules that induce apoptosis of pro-inflammatory APCs.
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secretion of IL-4 (29, 30). In murine models of allogeneic

hematopoietic transplantation, iNKT cells protect against

GVHD through IL-4 dependent mechanisms (31–33), and by

promoting the regulatory functions of myeloid-derived

suppressor cells (MDSCs) while driving Treg expansion via

secretion of IL-2 (34–36).

Analyses of human iNKT cells have suggested that they may

participate in similar regulatory processes. IL-10 producing

iNKT cells recently identified in the intestinal lamina propria

of Crohn’s Disease patients showed suppressive activity towards

pathogenic CD4+ T cells, and the frequency of IL-10 producing

iNKT cells in colon tissue of these patients correlated inversely

with TH1 and TH17 cell frequency, and was associated with

reduced disease severity, higher TGFB gene expression, and

lower levels of inflammatory proteins (37). Moreover, co-

culture of human Tregs with iNKT cells led to increased Treg

FOXP3 expression, enhanced IL-10 secretion, and more

profound inhibition of conventional T cell proliferation (38).

Human iNKT cells can also mediate potent suppression of T

cell IFN-g production by modulating the functions of monocytic

cells. Our research group showed that GM-CSF and IL-13 secretion

by human iNKT cells induced monocytes to differentiate into

tolerogenic APCs that produced high levels of IL-10, expressed

the checkpoint inhibitors PDL-1 and PDL-2, and potently

suppressed T cell proliferation and IFN-g secretion (39, 40). The

regulatory phenotype of the APCs was due to iNKT cell release of

extracellular ATP, which signaled through the P2X7 receptor on the

monocytes to induce upregulation of PD-L1 and PD-L2 (41). This

iNKT-monocyte interaction resembles a pathway observed in a

murine model in which IL-13 secreted by CD1d-restricted T cells

promoted monocyte expression of TGFb, which led to suppression

of T cell effector responses (42, 43), although the role of TGFb in the
human iNKT-monocyte pathway remains unclear.

We also used a xenotransplantation model of hematopoietic

engraftment to investigate the impact of the human iNKT-

monocyte pathway in vivo. The addition of allogeneic adult

iNKT cells to human cord blood mononuclear cell grafts resulted

in dramatically improved engraftment, which was due to iNKT

cells inducing cord blood monocytes to secrete prostaglandin E2,

which potently suppressed T cell IFN-g production (44). Since

hematopoietic engraftment is suppressed by excessive IFN-g
(45), this analysis shows that human iNKT cells can engage

powerful regulatory pathways that limit adverse effects of human

TH1 activation in vivo.
iNKT cytolytic activity

A number of studies have suggested that iNKT cells may also

control inflammation by eliminating pro-inflammatory APCs

through a mechanism involving CD1d-dependent activation of

the iNKT cells and lysis of APCs by cytotoxic granule deposition

(46–50). Human iNKT cells were found to kill monocyte-derived
Frontiers in Immunology 03
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DCs and blood DCs, but did not kill monocytes or plasmacytoid

DCs, suggesting they specifically target certain types of APCs (46,

49). In another analysis, human iNKT cells preferentially eliminated

monocyte-derived DCs that produced high levels of IL-12 while

those that produced mainly IL-10 were spared, resulting in a DC

population that limited TH1 activation (48). Together these studies

suggest that this cytolytic pathway selectively targets pro-

inflammatory APCs, and might thereby limit pathological

inflammation. Consistent with this, in mice infected with a highly

pathogenic strain of influenza A virus, iNKT cells were associated

with reduced accumulation of inflammatorymonocytes in the lungs

(50). iNKT cell activity in this model was associated with reduced

levels of MCP-1 (a chemokine that recruits monocytes and CD4+ T

cells), reduced damage to lung tissue, and improved survival even

though viral loads were not affected (50). The effect of iNKT cells

was thought to be due to their cytolytic activity against influenza-

infected monocytes, suggesting that iNKT cells may limit

pathological inflammation during viral infections by eliminating

inflammatory APCs. However, an important note is that in all of

these studies the iNKT cells were experimentally exposed to strong

TCR stimulation prior to analysis of their cytolytic activity.

Therefore, the physiological conditions that might lead to APC-

targeted cytolytic activity by iNKT cells remain unclear.
How are iNKT cells activated,
physiologically?

iNKT cells can be activated in two ways: either through TCR-

mediated recognition of antigen presented by CD1d, or through

TCR-independent pathways such as exposure to the cytokines IL-

12 or IL-18, or LFA-1 ligation by high-density ICAM-1 (51–54).

These TCR-independent pathways selectively induce iNKT cells to

produce IFN-g and not TH2 or regulatory cytokines (52, 54).

Additionally, iNKT cells require a TCR signal for cytolysis

of target cells (55–57). Thus, the anti-inflammatory activities of

iNKT cells are probably highly dependent on TCR-recognition

of antigens presented by CD1dmolecules. Since it is clear that iNKT

cells can mediate regulatory effects in the absence of infectious

challenges, the antigens required for their anti-inflammatory

pathways must be constitutively or chronically present. However,

the sources and nature of the antigens that physiologically activate

iNKT cells, and correspondingly the processes that contribute to

their increased or decreased activation in different contexts, remain

an ongoing area of inquiry.
Sources of antigen

Due to their shared use of a canonical TCRa chain, all iNKT

cells recognize an unusual type of glycolipid in which the sugar head

group is present in an a-anomeric configuration. Certain microbes
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produce glycolipids of this type that are potent antigens for iNKT

cells (reviewed in (8)). Recent studies indicate that bacterial species

that can be found within the normal gut microbiota can produce

similar antigenic lipids (58, 59), although these may be counter-

regulated by related forms produced by other bacteria that are

antagonists (60). These studies suggest that, particularly at mucosal

sites, TCR-dependent activation of iNKT cells may fluctuate

according to the composition of the microbial community.

iNKT cells can also recognize self-lipids as antigens.

Mammalian cells do not directly synthesize the a-linked
glycolipids recognized by iNKT cells, but the b-linked forms

they produce may be converted at low frequencies to a-linked
forms that are strongly antigenic (61, 62). Additionally, iNKT

cells can recognize mammalian b-linked glycolipids as weak

agonists (63). Some antigenic self-l ipids, including

lysophospholipids, glycosylated sphingolipids, and neutral

lipids, are specifically upregulated during inflammation or

cellular stress (64–70). Conversely, some non-antigenic self-

lipids, such as sphingomyelin, can inhibit presentation of

antigenic species (66). Together, the available data suggest that

antigenic self-lipids are constitutively present, but are

maintained in a manner that is only weakly agonistic for

iNKT cells, and that during inflammation or cellular stress the

abundance or nature of the antigenic self-lipids changes in a way

that provides stronger TCR signals to iNKT cells. Additionally,

as discussed below, activation by self antigens can be markedly

enhanced by TCR-independent signals (71, 72).
What determines the nature of the
functional response mediated by
iNKT cells?

Exposure to inflammatory cytokines (IL-12, IL-18) or

elevated levels of the adhesion ligand ICAM-1 selectively

promotes iNKT cell IFN-g secretion (51, 52, 54, 71, 72). Thus,

when these signals are present, such as during inflammation,

iNKT cells probably predominantly promote inflammatory

responses. In contrast, the TCR-dependent activation pathway

can promote either pro-inflammatory or anti-inflammatory

outcomes (reviewed in (73)), and it has been of considerable

interest to understand how TCR-mediated activation of iNKT

cells leads to these contrasting effects. Two central factors have

emerged: first, that the iNKT cell population contains multiple

functionally distinct subsets; and second, that iNKT cell

functional responses vary according to antigen characteristics.
Distinct subsets

In contrast to conventional T cells that become polarized into

different effector phenotypes by priming in the periphery, iNKT
Frontiers in Immunology 04
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cells are already cytokine competent as they exit the thymus (74).

Murine iNKT cells are segregated into four functionally distinct

subsets based on their expression of master-regulator transcription

factors that govern cytokine production (Tbet, GATA3, RORgT,
E4BP4) and on differences in expression levels of PLZF

(promyelocytic leukemia zinc finger), a transcription factor that

promotes cellular characteristics associated with innate lymphocytes

(28, 75–78). NKT1 cells have a TH1 cytokine profile, often express a

cytotoxic effector program, and are PLZFloTbethi; NKT2 cells are

characterized by high levels of IL-4 secretion and are

PLZFhiGATA3+; NKT17 cells produce IL-17 and express RORgT
with intermediate levels of PLZF; NKT10 cells produce IL-10, are

preferentially found within adipose tissues, and are negative for

PLZF but express E4BP4 (Figure 2A). NKT1, NKT2, and NKT17

lineages are generated during thymic selection, and are thought to

home to distinct tissues (79). In contrast, NKT10 cells may originate

from other subsets and differentiate into a regulatory phenotype as a

result of exposure to factors in adipose tissues (27). The

identification of these iNKT sub-lineages has led to the paradigm

that the anti-inflammatory effects of iNKT cells are due to NKT2 or

NKT10 cells, which become activated in different situations than

NKT1 and NKT17 subsets as a result of differences in

tissue localization.

In contrast, it has thus far not been straightforward to

categorize human iNKT cells into NKT1, NKT2, and NKT17

lineages matching those in mice. Similar to their murine

counterparts, most human iNKT cells express PLZF (80–82),

and are characterized by an innate-like transcriptional profile

that results in a “poised-effector” status allowing them to rapidly

mediate functional responses (83). Multi-parameter flow

cytometric analyses and gene expression studies have revealed

human iNKT cells to express a diverse selection of cytokines and

chemokines (84–88). Human iNKT cells can be segregated into

two major subsets according to CD4 expression (84, 85). Those

that express CD4 often appear to co-produce GM-CSF, IL-13,

TNF-a, IFN-g, IL-4, and IL-2, while those lacking CD4 appear

more specialized for cytolysis (Figure 2C). These two major

populations are sub-divided into further subsets characterized

by additional markers (e.g. CD8a, CD161, CD62L) with

distinctions in functional characteristics, but it is not clear that

these subsets equate to the NKT1, NKT2, or NKT17 lineages

observed in mice (89, 90). It is also not clear whether anti-

inflammatory activity segregates according to CD4+ or CD4-

status of human iNKT cells, although CD4+ iNKT cells are the

ones that have been found to induce regulatory functions in

monocytic cells, and the CD4- subset has appeared more likely to

kill DCs.
Antigenic modulation

The prototypical iNKT antigen is called a-galactosylceramide

(a-GalCer) (91), and synthetic forms of this lipid have proved
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extremely valuable as pharmacological agents that activate iNKT

cells in a highly specific manner (92). Observations that structural

variants of a-GalCer can produce substantially different

immunological outcomes in vivo have led to interest in using

these agents to selectively tune iNKT responses towards pro- or

anti-inflammatory functions (92). Administration of a-GalCer to
mice potently stimulates iNKT cells, and induces a mixed

response where TH1, TH2, and regulatory cytokines are all

produced, although with different kinetics (93). In contrast,

certain analogues of a-GalCer have been shown to produce a

TH2-biased cytokine response (94, 95), while other variants

produce a highly TH1-biased response (96) (Figure 2B). The

mechanisms underlying these differential responses appear

complex. One component may be that certain variants induce

biased cytokine production from iNKT cells themselves (97),

while another important element likely relates to whether or not

antigen-driven interactions between iNKT cells and APCs result

in release of cytokines (e.g. IL-12) that activate a secondary IFN-g
response by NK cells (96, 98). A key factor may be the relative

duration of antigen presentation by CD1d molecules, with more

durable antigens being associated with TH1-biased responses (99).

Additionally, TH1-biasing forms of a-GalCer may be selectively

presented by APCs that produce IL-12, whereas TH2-biasing

forms may be more promiscuously presented and thus less
Frontiers in Immunology 05
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likely to produce a secondary wave of IFN-g production by NK

cells (100). It is not clear whether antigen variants selectively

activate different iNKT cell subsets, or bias the cytokine profile

produced within a given subset (for example, by inducing higher

IL-4 production by NKT1 cells, or increased IFN-g by NKT2 or

NKT17 cells), or whether any structural variants selectively

promote IL-10 product ion. Interest ingly , repeated

administration of a-GalCer results in selective loss of its TH1-

promoting features, but under such “anergizing” conditions a-
GalCer retains the ability to induce IL-4 secretion and to promote

control of EAE pathology (101).

Whether human iNKT cell responses can be modulated

similarly using a-GalCer structural variants remains an open

question. It has become clear that TCR differences between

murine and human iNKT cells result in significant discrepancies

in TCR-signaling strength induced by lipid variants (102).

Perhaps more importantly, polyfunctional human iNKT cells

show a hierarchy of cytokine production in response to TCR

stimulation that does not neatly segregate into clear TH1 or TH2

patterns. Weak TCR stimulation of human iNKT cells

preferentially induces production of IL-3, GM-CSF, and IL-13,

with increasing stimulation leading first to IFN-g, then IL-4, then
IL-2 (44, 103, 104) (Figure 2D). Secondary induction of NK cell

IFN-g secretion was associated with activation of human iNKT
B

C D

A

FIGURE 2

Determinants of the nature of the functional response mediated by iNKT cells. In both mice and humans the nature of the response mediated
by iNKT cells may depend on the subset of iNKT cells activated or on the characteristics of the antigenic stimulation leading to activation.
However, there are important differences between mice and humans in each of these parameters. (A, C) Murine iNKT cells can be classified into
four lineages with functionally segregated cytokine profiles; whereas the two major subsets of human iNKT cells are characterized by
comparatively polyfunctional cytokine production (CD4+) or a more TH1/cytotoxic profile (CD4-). (B, D) Structural features of lipid antigens can
bias murine iNKT cell responses towards either a TH1 or TH2 output, whereas human iNKT cell cytokine production proceeds in a hierarchical
manner depending on the strength of the TCR signal. Antigens that stimulate a TH1-biased response in mice typically also produce a strong
secondary wave of IFN-g production by NK cells, whereas strong agonists produce this effect from human iNKT cells.
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cells by strong TCR agonists (104). It is therefore not clear that it

will be feasible to selectively polarize human immune responses

towards IL-4 production through the use of specific lipid antigen

variants, although it may be possible to drive IL-13 production

through administration of weak agonists.
Discussion

The potential of engaging iNKT cells therapeutically to treat

TH1-inflammatory pathology is well supported by pre-clinical

studies in murine models, in vitro experiments using human

cells, and ex vivo analyses of human subjects, but clinical data

have been limited. Recently, however, a pilot clinical trial using

allogeneic iNKT cells as a cellular immunotherapy to treat

patients who were intubated with acute respiratory distress

syndrome (ARDS) secondary to SARS-CoV-2 infection has

shown highly promising results, with 77% survival of treated

patients compared to a national average of 40% survival for other

intubated SARS-CoV-2 patients during the same period of

enrollment (105). Understanding whether such iNKT cell

therapies work through one of the regulatory pathways shown

in Figure 1A, or through elimination of inflammatory cells via

cytolysis as depicted in Figure 1B, has important implications.

For example, if APC killing is a key component it may be

necessary to deliver a strong TCR signal to the iNKT cells to

prime their cytolytic activity. Alternatively, if a regulatory

pathway is involved it may be beneficial to generate iNKT cells

that are biased towards production of TH2 cytokines or IL-10,

depending on the pathway.

Also critical to developing effective iNKT cell therapies is to

determine whether human iNKT cells include stable regulatory

subsets, or whether polyfunctional iNKT cells are converted into

a regulatory phenotype through particular signals. If a stable

NKT10 lineage exists in humans, an attractive option might be

to specifically engage these cells for immunotherapy.

Alternatively, if human iNKT cells generally retain functional

plasticity, it may be important to identify methods to specifically

promote their regulatory functions. To this end, a recent study

found that the presence of IL-7 during in vitro expansion of

human iNKT cells resulted in a CD4+ population with enhanced

TH2 cytokine production (106), while exposure to short chain

fatty acids, palmitate, or the mTOR inhibitor rapamycin may

induce a regulatory phenotype (27, 37, 107). Another important

consideration is that iNKT immunotherapy that engages TH2

pathways would likely be contraindicated in certain

inflammatory diseases, including asthma, chronic obstructive

pulmonary disease, and ulcerative colitis, where TH2 cytokine

production by iNKT cells has been associated with disease-

exacerbating effects (reviewed in (108–110)).

Overall, studies of human and murine iNKT cells over the

last three decades clearly support the potential of this unique

population to be utilized clinically to control inflammatory
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pathology. Key areas of further investigation will be to

better understand the antigens that physiologically or

pharmacologically activate human iNKT cells, and to

determine the impact of iNKT cell antigenic activation in

different tissues or by distinct APCs. For example, since lipid

antigens can be retained locally at the site of administration

(111), or distributed to distal sites through binding to lipid

transport proteins (112, 113), it may be possible to control the

location of iNKT cell activation. Additionally, since iNKT cells

promote anti-inflammatory outcomes through interactions with

multiple distinct APC populations, it may be possible to direct

specific effects through engaging particular APC types, such as

the regulatory B cells that ameliorate arthritic pathology (114). It

will also be of importance to understand roles of non-invariant

populations of CD1d-restricted T cells (often called type II NKT

cells, reviewed in reference (115)), and to determine whether

these other T cell populations promote or counter-regulate anti-

inflammatory outcomes mediated by the “type I” iNKT cells

discussed here. Finally, given the likely importance of TCR and

CD1d structural differences, the difference in abundance

between murine and human iNKT cel l s (common

experimental mouse strains have ~100-fold higher frequencies

of iNKT cells than humans), and of additional CD1 molecules

(CD1a,b, c, and e) expressed in humans that may impact antigen

availability or T cell responses (7, 116, 117), an important step

for translating iNKT-based immunotherapies to the clinic may

be the development of new animal models that better capture

determinants that affect human iNKT cell functions.
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Innate lymphoid cells (ILCs) are a critical element of the innate immune system

and are potent producers of pro-inflammatory cytokines. Recently, however,

the production of the anti-inflammatory cytokine IL-10 has been observed in

all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a

regulatory phenotype that serves to maintain lung and gut homeostasis. Other

studies advocate a potential therapeutic role of these IL-10-expressing ILCs in

allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection.

Herein, we review IL-10 producing ILCs, discussing their development,

function, regulation, and immunotherapeutic potential through suppressing

harmful inflammatory responses. Furthermore, we address inconsistencies in

the literature regarding these regulatory IL-10 producing ILCs, as well as

directions for future research.

KEYWORDS

regulatory, innate, lymphoid, IL-10, cell
Introduction

Innate lymphoid cells (ILCs) are an immune cell type that have cytokine production

features of T lymphocytes but lack rearranged antigen receptors. As a result, ILCs lack

antigen specificity and instead respond to alarmins released predominantly, but not

exclusively, by epithelial and endothelial cells in response to damage caused by infection,

injury, or disease. Currently, three groups of ILCs have been discovered and defined. Group

1 innate lymphoid cells (ILC1s), the counterpart to CD4+ T helper (Th) type 1 cells, produce

interferon gamma (IFN-g) and express the transcription factor T-bet (1, 2). Group 2 Innate

Lymphoid cells (ILC2s), analogous to CD4+ Th2 cells, produce interleukin (IL)-5, IL-9, and

IL-13, and express the transcription factor GATA binding protein 3 (GATA-3) (3–5). Group

3 innate lymphoid cells (ILC3s), that parallel CD4+ Th17 cells, produce IL-17 and IL-22, and

express the transcription factor retinoid-related orphan receptor gamma t (RORgt) (6–9).
In the field of allergy, ILC2s are a primary focal point due to their double-edged

sword nature in both the pathogenesis, and possibly prevention, of allergic disease. In the

respiratory and gastrointestinal tracts, epithelial cells can be challenged by infectious
frontiersin.org01
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agents or allergens that contain pathogen- or damage- associated

molecular patterns, resulting in epithelial cell release of alarmins:

IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), which

activate ILC2s (10–12). ILC2s respond by migrating to the

challenged site where they proliferate and release the pro-

inflammatory cytokines mentioned earlier at an amount that is

10-fold greater, on a per cell basis, than that released by their

CD4+ Th2 counterpart (13). As a result, ILC2s can participate in

host protective roles, such as the eradication of helminthic

parasites through IL-5-induced eosinophil recruitment and IL-

13-induced goblet hyperplasia and peristalsis (14–16). However,

when ILC2s are activated by alarmins in the setting of asthma,

the IL-5 they produce can lead to eosinophil activation

whose products damage the airway and exacerbate

bronchoconstriction. IL-13 is a central mediator of asthma by

promoting bronchial hyperresponsiveness and airway

remodeling, as shown in Figure 1 (17). Additionally, IL-13

disrupts the integrity of the epithelial barrier by breaking

down tight junctions (18) and promoting TSLP release,

leading to corticosteroid resistance in ILC2s (19).
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To promote immunologic tolerance, T regulatory cells (Tregs)

derived in the thymus or extrathymically from CD4+ naïve T cells

release the anti-inflammatory cytokines transforming growth factor

beta (TGF-b) and IL-10 (20, 21). Interestingly, recent studies reveal
a unique ability for ILCs to adopt a regulatory phenotype, similar to

Tregs, through production of IL-10. Herein we review the

development, function, regulation, pathogenic and potential

immunotherapeutic roles of IL-10-producing ILCs, as well as

address controversies and directions for future research.
Regulatory innate lymphoid
cells (ILCregs)

Using IL-10-green fluorescent protein (GFP) reporter mice, a

small subset of Lin- CD45+ CD127+ IL-10+ ILCs were identified in

the small intestinal lamina propria (sLP) at baseline. Sample

analysis of human intestinal biopsies using flow cytometry also

confirmed the presence of these IL-10+ ILCs in the sLP of humans

at baseline (22). These cells were named regulatory innate
B

A

FIGURE 1

Development of IL-10+ ILCs in the Lung and Colon of Humans. (A) Alternaria alternata activates airway epithelium 2a) activated airway
epithelium releases TSLP and IL-33 2a) IL-33 activates ILC2s, causing release of IL-5 and IL-13, while TSLP confers corticosteroid resistance 3a)
IL-5 recruits and activates eosinophils 4a) IL-13 causes goblet cell hyperplasia, AHR, and release of RA from airway epithelium 5a) RA promotes
the trans differentiation of ILC2s into ILC210s 6a) ILC210s release IL-10 which inhibits ILC2-mediated type 2 inflammation and maintains barrier
integrity through the inhibition of IL-6 and IL-8 which function to increase barrier permeability, resulting in neutrophil transmigration 7a) Tregs
form and regulate type 2 inflammation through release of TGF-b which blocks ILC210s. (B) In the colon, CD103+ mDCs release RA and IL-23A,
promoting CD127+ ILC1s trans differentiation into ILC3s 2b) Tregs release TGF-b promoting the trans differentiation of ILC3s into ILCregs. AHR,
airway hyperreactivity; ILC, innate lymphoid cell; ILC1, type 1 innate lymphoid cell; ILC2, type 2 innate lymphoid cell; ILC3, type 3 innate
lymphoid cell; ILC210s, IL-10

+ type 2 innate lymphoid cell; ILCreg, regulatory innate lymphoid cell; IL, interleukin; mDC, monocyte-derived
dendritic cell; RA, retinoic acid; TGF-b, transforming growth factor beta; Treg, regulatory T cell; TSLP, thymic stromal lymphopoietin. Figure 1
was created using BioRender.com.
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lymphoid cells (ILCregs) due to their absence of ILC1 markers

NK1.1, NKp46, and Tbx21 (encodes T-bet); ILC2 markers ST2,

killer cell lectin-like receptor subfamily Gmember 1 (KLRG1), and

GATA-3; and ILC3markers NKp46, CD4, and RORgt. Thus, these
IL-10+ ILCs were deemed to be a new kind of ILC subset (22).

Interestingly, while ILCregs exhibited similarities to Tregs,

such as their ability to produce IL-10 and TGF-b, they lacked

expression of the Treg transcription factor Foxp3 (23). Unlike

ILC1s, ILC2s, and ILC3s, ILCregs originate from the common

helper-like innate lymphoid precursor (CHILP)-a4b7+Id2high

and express Id3 which is required for their development/

maintenance (1, 22). Due to the constitutive presence of

ILCregs in the intestines and their expansion seen during

dextran sodium sulfate (DSS)-induced colitis in Rag-/- mice

(22), ILCregs have been conjectured to maintain gut tolerance

through production of IL-10. When activated ILC1s and ILC3s

were adoptively transferred into DSS-induced colitis Rag1-/-

Il2rg-/- (ILCreg deficient) mice, severe colitis resulted, an effect

that was attenuated upon ILCreg reconstitution (22). However,

severe colitis resulted upon transferring IL-10Ra-/- ILC1s and

ILC3s into Rag1-/- Il2rg-/- mice reconstituted with WT ILCregs,

revealing that ILCregs protect against colitis through IL-10 (22).

Notably, Tregs isolated from Foxp3-DTR (human diphtheria

toxin receptor)-GFP mice adoptively transferred into ILC1/ILC3

reconstituted Rag1-/- Il2rg-/- mice had no effect on intestinal

inflammation even after the depletion of Foxp3+ Tregs using

diphtheria toxin (DT) treatment (22). However, when

ILCregDTR cells were depleted in the intestines of mice

following DT treatment, severe inflammation ensued (22).

Importantly, these studies distinguish ILCregs as having a

unique protective function in the intestines of mice.

In addition to the sLP, ILCregs have been discovered residing

in the kidney’s interstitium of both humans and mice at baseline.

These ILCregs produce large amounts of IL-10 and TGF-b that
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protect against renal ischemia/reperfusion injury (IRI), an effect

that was abolished by neutralizing IL-10 and TGF-b antibodies

(24). Interestingly, administration of an IL-2/anti-IL-2

monoclonal antibody complex (IL-2c) expanded ILCregs in the

kidney of IRI Rag-/- mice, reducing tubular epithelial cell apoptosis

and improving renal function (24). Importantly, depletion of these

renal ILCregs using PC61 (an anti-CD25 antibody) showed

greater kidney injury in IRI Rag-/- mice, revealing their critical

role in renal protection (24). Adoptive transfer of ILCregs

expanded ex vivo with IL-2c into IRI C57BL/6 mice further

confirmed their protective role by restoring kidney function

through the suppression of ILC1 and neutrophil infiltration and

enhancing M2 macrophage generation (24). Notably, ILCregs in

the kidneys reduced the frequency of ILC1s but not ILC2s or

ILC3s, suggesting a pathogenic role of ILC1s in renal IRI (24) as

well as differences in ILCreg function dependent on anatomical

location (see Table 1).
Regulatory phenotype of ILC2s

There is also evidence that ILC2s have the capacity to

produce IL-10 and may have immunoinhibitory potential. For

instance, the hypoxic microenvironment of pancreatic ductal

adenocarcinoma tumors (PDAC) can promote ILC2s to become

regulatory IL-10+ ILC2s through the upregulation of hypoxia-

inducible factor 1-alpha (HIF-1a) which binds to the Il10

promoter (27). Importantly, reoxygenation or neoadjuvant

chemotherapy caused IL-10+ ILC2s to convert back into

ILC2s, suggesting a regulatory plasticity. Unlike the previously

described ILCregs, IL-10+ ILC2s maintained their ILC2

phenotype through the expression of Il1rl1 (ST2), KLRG1 (26)

and Gata3 (28); thus, they have been termed ILC210s

(see Table 1).
TABLE 1 Differences between mouse and human ILCregs and ILC210s.

Cell Location
(Ref)

Species Phenotype % Of Total IL-10+ ILCs
at Baseline

Express
Id3

Express GATA-3/
KLRG1/ST2?

TGF-b Function

ILCregs

Kidneys
(24)

Human Lin- CD127+

CD161+ IL-10+
~4.4%

Yes No Stimulatory

Suppresses
ILC1s

Mouse Lin- CD127+ IL-10+ ~2.7%

Intestines
(22)

Human Lin- CD45+ CD127+

IL-10+
~15% Suppresses

ILC1s and
ILC3sMouse ~13%

ILC210s

Lungs
(25, 26)

Human Lin- CD45+ CD127+

CD161+ IL-10+
0%

No Yes Inhibitory
Suppresses
ILC2s

Mouse Lin- CD45+ Thy-1.2+

IL-10+
~0.4%
f

GATA-3, GATA binding protein 3; Id3, inhibitor of DNA binding 3; ILCs, innate lymphoid cells; ILC1s, type 1 innate lymphoid cells; ILC2s, type 2 innate lymphoid cells; ILC3s, type 3
innate lymphoid cells; ILC210s, IL-10+ type 2 innate lymphoid cells; ILCregs, regulatory innate lymphoid cells; KLRG1, killer cell lectin-like receptor G1; Ref, reference; sLP, small intestine
lamina propria; ST2, soluble interleukin 1 receptor-like 1; TGF-b, transforming growth factor beta.
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ILC2s treated with the common Treg polarization factors

TGF-b, vitamin D, or retinoic acid (RA), became ILC210s only in

the presence of RA (25). Notably, administration of a pan-

retinoic acid receptor (RAR) inhibitor blocked ILC210s

generation in a dose-dependent manner, revealing that RA

acts through RAR to induce the ILC210 phenotype (25). In an

in vitro study using air liquid interface (ALI) cultures of primary

bronchial epithelial cells treated with IL-5, IL-13, and IL-33,

from patients with chronic rhinosinusitis with nasal polyps

(CRSwNP), only IL-13 promoted RA generation (25). This

result suggests that IL-13 derived from ILC2s upregulates

ILC210s by promoting RA generation from epithelial cells,

which in turn downregulates the ILC2-induced type 2

inflammatory response through IL-10 release (see Figure 1).

This implies that ILC2s have a mechanism to autoregulate the

inflammation that they induce.

In a model of allergic lung inflammation in mice induced

by either four daily intranasal administrations of IL-33 or

chronic papain exposure, a population of IL-10 producing

Lin- Thy1.1+ ILC2s emerged (26). Interestingly, the same

population of IL-10+ ILC2s was induced by treating ILC2s in

vivo with IL-2c (26). However, ILC2 production of IL-10 is not

restricted to the lungs. When treating small intestinal ILC2s

from naïve mice with IL-2, IL-4, IL-10, IL-27, and neuromedin

U (NMU) together, these ILC2s began producing IL-10 (29).

Interestingly, IL-2 and IL-4 enhanced IL-10 production by

ILC2 when these cytokines were administered individually

in culture (29). As a result, these experiments collectively

suggest that ILC2 trans-differentiation into ILC210s is a self-

amplifying process instructed by their cytokine milieu

and environment.
Regulation of IL-10 producing
ILCregs and ILC2s

Immune suppression is not always beneficial, as in the case

of PDAC tumors where IL-10+ ILCs promote tumor growth

(27). As a result, regulation of IL-10 by ILCs is crucial. A study

conducted on ILC2 from WT and C3a receptor knockout

(C3ar-/-) mice reported that genetic deletion of the C3a

receptor resulted in significantly less IL-13, IL-5, and

granulocyte-macrophage colony-stimulating factor (GM-CSF)

production, while C3a signaling inhibited IL-33-induced IL-10

production from ILC210s (30). Thus, the anaphylatoxin C3a

combined with IL-33 stimulation enhanced the pro-

inflammatory ILC2 phenotype through inhibiting Il10

transcription and promoted ILC2 antigen-presentation to

CD4+ T cells, resulting in Th2 differentiation (30).

Additionally, tumor necrosis factor-like cytokine 1A (TL1A)

strongly abrogated IL-10 production in ILC210s while increasing

IL-5 and IL-13 production (29). Collectively, these results reveal
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that the regulatory phenotype adopted by ILC2s is reversible and

influenced by environmental conditions.

Cytokines can also downregulate IL-10-expressing ILCs. In

human ILC210s from patients with systemic sclerosis (SSc),

treatment with TGF-b dramatically decreased the production

of IL-10 and reduced KLRG1 expression, an ILC2 surface

marker found to be required for IL-10 production (29, 31, 32).

However, unlike ILC210s, ILCregs rely on TGF-b signaling for

their survival and expansion (see Table 1), as seen through the

effects of deleting TGF-b receptors on ILCs using Tgfbr2flox/flox;

CreERT2 mice (22, 33). This finding reveals differences between

ILCregs and ILC210s, potentially revealing the presence of two

regulatory ILC subtypes.
Regulatory phenotype of ILC3s and
ex-ILC1s

Several pieces of evidence suggest that ILC3s are plastic and

can become ILCregs. A study investigating colorectal cancer

(CRC) tumor infiltrating ILCs from azoxymethane/dextran

sodium sulfate (AOM/DSS)-induced colitis models revealed

that ILC3 numbers decreased, while ILCreg numbers

increased, during CRC tumor progression (34). At the late-

stage of CRC tumors, fate mapping using Rosa26-STOP-

tdTomato;Rorc-Cre;IL-10-GFP lineage tracing mice followed

by AOM/DSS treatment revealed former ILC3s (exILC3s)

producing IL-10 and expressing Id3 (34). Using TGF-b
receptor knockout mice treated with AOM/DSS, ILCreg

numbers decreased while ILC3 numbers increased, causing

tumor growth suppression (34). Furthermore, ILC3 treatment

with a TGF-b inhibitor prevented the conversion of ILC3s to

ILCregs, a result that was consistent in both the AOM/DSS-

induced CRC mice and patient derived xenograft (PDX) tumors

(34). Collectively, TGF-b drives the trans-differentiation of

ILC3s towards ILCregs in both humans and mice. This

important finding reveals that IL-10 production from ILCs is

not limited to KLRG1+ ILC2s, as previously thought (29, 32),

and brings to question whether ILC1s can adopt a

regulatory phenotype.

CD127+ ILC1s that lost their ability to proliferate contained

the capacity to reversibly differentiate into ILC3s (exILC1s) in

the presence of IL-2, IL-23, and IL-1b when administered

together (35). Further analysis revealed that exILC1s lost their

T-bet expression and IFN-g production, but began expressing

RORgt and producing IL-22, committing to an ILC3 phenotype

(35). Notably, in the presence of IL-2 and IL-12, ILC3s and

exILC1s lost their RORgt and IL-22 expression while

upregulating T-bet expression and IFN-g production,

committing to an ILC1 phenotype (35). In addition to the

mentioned cytokines, RA signals through its receptors (RARA,

RARG, and RXRG) present on CD127+ ILC1s to accelerate the
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differentiation of ILC1s into ILC3s (35, 36). Human monocyte

derived dendritic cells (mDCs) treated with RA upregulated

CD103 expression and began producing RA and IL-23A under

basal conditions and lipopolysaccharide (LPS) stimulation,

revealing a role CD103+ mDCs play in CD127+ ILC1s

differentiation toward ILC3s (35). As a result, it is possible

ILC1s can become ILCregs through their commitment to an

ILC3 phenotype in the presence of CD103+ mDCs (Figure 1).

However, ex vivo stimulation with IL-12/IL-15 markedly

increased IL-10 production in human ILC1s revealing their

direct ability to adopt a regulatory phenotype (33). These

findings reveal a regulatory plasticity within all ILC subtypes,

and potential crosstalk between DCs and ILCs which should be

further investigated in future research.
Immunotherapeutic potential of
IL-10 producing ILCs through
stimulation or inhibition

Through in vivo generation and stimulation in the lungs,

ILC210s show promise as potential therapeutics for allergic

airway inflammation. Using CRSwNP patient nasal epithelial

cells, ALI cultures co-cultured with ILC210s and challenged with

grass-pollen allergen revealed that the addition of the ILC210s

prevented allergen-induced epithelial barrier disintegration, an

effect that was diminished upon the addition of anti-IL-10

neutralizing antibodies (32). Elevation of IL-10R surface

expression on epithelial cells occurred upon allergen exposure,

enhancing the ILC210-induced epithelial barrier restoration (32).

As a result of this restoration, grass-pollen sublingual allergen

immunotherapy (GP-SLIT) was investigated in allergic

individuals. In groups treated with GP-SLIT, frequencies of

ILC210s increased compared to the placebo-treated group,

negatively correlating with clinical symptoms (32). This result

shows promise in using GP-SLIT to induce ILC210s in atopic

individuals, which function to restore barrier integrity and

attenuate type 2 inflammation through IL-10 production.

Furthermore, an in vitro study on nasal epithelium from allergic

individuals co-cultured with ILC210s revealed that IL-10 served to

maintain epithelial and endothelial barrier integrity by blocking IL-

6 and IL-8, both of which promote neutrophil translocation by

increasing barrier permeability as shown in Figure 1 (37, 38). In

mice, IL-10 attenuatedTh2-mediated allergic airway inflammation

by downregulating Th2 survival through restoring granzyme B

expression in CD4+ IL-10-/- cells (39).

To further investigate the immunosuppressive role of

ILC210s in allergic diseases such as asthma, ILC210s and ILC2s

in a 1:1 mix were adoptively transferred into Rag-/- gc-/- (T-cell,
B-cell, and NK cell deficient) mice intranasally challenged with

IL-33. In doing so, ILC2-dependent allergic airway

hyperreactivity (AHR) was downregulated, a result that was
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abrogated upon the intraperitoneal administration of anti-IL-

10R (40). ILC210s-induced AHR attenuation was further

confirmed in mice challenged with Alternaria alternata that

were adoptively transferred the same 1:1 ILC210s/ILC2s mix.

The role of IL-10 was confirmed when administration of anti-IL-

10R antibodies abrogated this effect (40). Collectively, in vivo

generation of ILC210s in the lungs attenuates type 2 allergic

responses through IL-10 production.

Another potential therapeutic role of ILC210s is the

promotion of islet allograft survival in mice as measured

through improved glucose tolerance (41). ILC210s were

delivered to recipient mice either intravenously or through co-

transplantation with the graft. Interestingly, allograft survival

was increased in only the co-transplantation group, revealing a

need for ILC210s to be within the graft to achieve maximal graft

protection (41). Further investigation is needed to determine

how these findings translate into clinical practice.
ILCregs and ILC210s – The same cell
or are they different?

In this review we discussed ILCregs as those cells that express

Id3, are stimulated by TGF-b, and arise from the a4b7+Id2high

CHILPs or from ILC3s in the presence of TGF-b. Separately, we
defined IL-10+ ILC2s as ILC210s as a consequence of their sustained

expression of GATA-3 and suppression by TGF-b (see Table 1).

However, whether these cells are the same or different remains to be

fully defined. Notably, ILCregs arose in the gut and kidneys at

steady state and during inflammation (22), while ILC210s arose in

both the gut and lungs in the presence of inflammation only (25,

27). As such, further studies should be directed towards the

molecular comparison of ILCregs and ILC210s to determine if

their GATA-3 expression and response to TGF-ß is cell type

specific or influenced by their environment/location.

As previously discussed, ILCregs devoid of all ILC markers

were expressed in the sLPofmice (22).However,upon repeatof this

experiment by a different group, no such cell populationwas found

(29). Interestingly, this group discovered that only Lin- CD127+

Thy1- ILC2s expressed IL-10 in the small intestine (29). This

finding revealed inconsistencies surrounding the presence and

identification of ILCregs in the sLP. One reason for the

inconsistent result was suggested to be caused by genetics and/or

environmental factors. However, even controlling for these factors

by purchasing C57BL/6 mice from three different vendors, no

ILCregswere identified (29). As a result, the existence of ILCregs in

mice are non-generalizable. Further studies need to investigate the

contributions of other environmental influences such as

inflammation or autoimmunity on the presence of ILCregs, in

both the intestines of mice and humans.

Through studying the suppressive function of ILCregs in a

mouse model of colitis, IL-10 inhibited the activation of both
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ILC1s and ILC3s, as previously discussed. However, in an in

vitro study investigating the suppressive role of TGF-b and IL-10
in human ILC subsets, IL-10 inhibited cytokine production from

pre-stimulated ILC2s while having no effect on pre-stimulated

ILC1s (33). As a result, further studies are needed to determine

the differential role of ILCregs in repressing the function of

ILC1s, ILC2s, and ILC3s between mice and humans, and to

determine whether this difference is influenced by the

inflammatory environment.

Other roles of ILC210s remains to be investigated, such as its

ability to suppress lung eosinophilia. Through treating Rag-/-

mice with IL-33 and IL-2c, a significant reduction in IL-33-

induced lung eosinophilia occurred with extensive generation of

ILC210s (26). However, no inhibitory studies using anti-IL-10

antibodies or IL-10-/- ILC2s were performed to prove the role of

ILC210s in attenuating eosinophil migration to the lungs. As a

result, in vivo delivery of IL-2c should be further investigated in

its efficacy as an immune-targeted therapy that could reduce

eosinophilia in atopic patients as well as protect against renal

IRI, colitis, allergic airway inflammation, and allograft rejection

due to its ability to generate ILC210s both in vivo and in vitro.

Interestingly, a cross-sectional study comparing grass-pollen

allergic (GPA) and house dust mite-allergic (HDMA)

individuals to a non-atopic healthy control (NAC) revealed

that ILC2s from atopic individuals fail to adopt an IL-10-

producing regulatory phenotype (32). This finding reveals a

possible limitation in treating allergic disease through ILC210
generation. As a result, the regulation of the IL-10 promoter in

ILC2s from GPA and HDMA patients should be investigated as

it could further explain the lack of immune regulation seen in

atopic patients.
Conclusion

There is increasing evidence that the IL-10 produced by ILCs

suppresses immune responses and could be helpful, such as in

allergic disease, or harmful, such as in the setting of cancer, to

patients. However, due to the limitations regarding the specific
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deletion of IL-10+ ILCs in vivo, these cells remain an enigma as

their exact role in human or mouse disease remains unknown.

For instance, there are no specific surface markers for ILCregs

for which antibody depletion could target to determine their role

in regulating inflammatory processes. This is an emerging field

that is certainly ripe for further investigation to understand the

full nature and importance of these suppressive ILCs in

human health.
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Alzheimer’s disease alters the
transcriptomic profile of natural
killer cells at single-cell
resolution

Caiyun Qi, Fang Liu, Wenjun Zhang, Yali Han, Nan Zhang*,
Qiang Liu* and Handong Li*

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
Alzheimer’s disease (AD) is the most common dementia without an effective

cure at least partially due to incomplete understanding of the disease.

Inflammation has emerged as a central player in the onset and progression

of AD. As innate lymphoid cells, natural killer (NK) cells orchestrate the initiation

and evolution of inflammatory responses. Yet, the transcriptomic features of

NK cells in AD remain poorly understood. We assessed the diversity of NK cells

using web-based single-cell RNA sequencing data of blood NK cells from

patients with AD and control subjects and flow cytometry. We identified a

contraction of NK cell compartment in AD, accompanied by a reduction of

cytotoxicity. Unbiased clustering revealed four subsets of NK cells in AD, i.e.,

CD56bright NK cells, CD56dim effector NK cells, adaptive NK cells, and a unique

NK cell subset that is expanded and characterized by upregulation of CX3CR1,

TBX21, MYOM2, DUSP1, and ZFP36L2, and negatively correlated with cognitive

function in AD patients. Pseudo-temporal analysis revealed that this unique NK

cell subset was at a late stage of NK cell development and enriched with

transcription factors TBX21, NFATC2, and SMAD3. Together, our study

identified a distinct NK cell subset and its potential involvement in AD.

KEYWORDS

Alzheimer’s disease, natural killer cell, single cell sequencing, cytotoxicity, innate immunity
Introduction

Alzheimer’s disease (AD) is the most common dementia type with limited

therapeutic options partially due to the incomplete understanding of disease.

Inflammation has emerged as a major contributor to AD pathogenesis (1–3).

Mounting evidence has demonstrated that microglia and hematogenous myeloid cells
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participate in b-amyloid pathology and cognitive decline (4–6).

In contrast, the involvement of lymphocytes in the etiology of

AD is less studied.

As innate lymphoid cells, natural killer (NK) cells are critical

players that control the initiation and progression of brain

inflammation (7, 8). NK cells are generally divided into

CD56bright and CD56dim subsets. As a less numerous subset,

CD56bright cells are the primary source of NK cell-derived

regulatory cytokines, whereas CD56dim cells are mainly

cytotoxic effector cells producing IFN-g upon stimulation.

However, the phenotype and function of NK cells in AD

remain poorly understood. To address this question, we

assessed the transcriptomic alterations of NK cells in AD by

analyzing web-based single-cell RNA sequencing data of blood

NK cells. As a result, we found reduced number and cytotoxic

activity of blood NK cells in AD patients versus control subjects.

In particular, we identified an increase of a unique NK cell subset

that is at a late stage of development and enriched with

transcription factors (TFs) TBX21, NFATC2 and SMAD3, and

negatively correlated with the cognitive decline in AD.
Materials and methods

Single-cell RNA sequencing
data collection

Single-cell RNA sequencing data of 36,830 cells from a recent

published study on human peripheral blood mononuclear cells

(PBMCs) from three patients with AD (two men and one woman,

22,770 cells) and two control subjects (one man and one woman,

14,060 cells) were accessed from the GEO public database

(GSE181279) (9). There was no significant statistical difference

regarding the age between two groups (AD vs. control: 67.7 ± 8.6

vs. 71.0 ± 8.5 years, p = 0.699). Low-quality cells with <200 genes,

>20,000 UMI, and >10% mitochondrial genes as well as genes that

expressed less than three cells were filtered out. The remaining

36,561 cells were finally included in the analysis.
Data integration, dimensionality
reduction, clustering, and visualization

Seurat (v 4.1.0) (10) was used for dimensionality reduction,

clustering, and visualization. For each sample dataset, we used

the filtered expression matrix to identify cell subsets. The filtered

gene express ion matrix was normalized using the

NormalizeData function, in which the number of UMIs of

each gene was divided by the sum of the total UMIs per cell,

multiplied by 10,000, and then transformed to log scale (in UMI-

per-10,000+1). After normalization, the data were scaled with

the ScaleData function, and the top 2,000 highly variable genes

were identified by the FindVariableFeatures function and used
Frontiers in Immunology 02
34
for the following principal component analysis (PCA).

Subsequently, the harmony v1 integration method was used to

correct the potential batch effect and then clustering with top 20

principal components and resolution 0.5 was performed by

graph-based clustering and visualized using t-Distributed

Stochastic Neighbor Embedding (t-SNE) with Seurat functions

RunTSNE. After the identification of cell types, NK cells were

extracted and subclustered for further detailed analysis. The

subclustering was performed via Seurat with top 13 principal

components and a resolution of 0.4. To identify cell types in

sample datasets, we used sets of marker genes for each of those

cell types and annotated each cell type based on their average

expression and expression ratio as previously described (11, 12).
Differential gene expression analysis

Differentially expressed genes (DEGs) in a given cell type

compared with all other cell types were determined with the

FindAllMarkers function from the Seurat package (Wilcoxon

rank-sum test, p-values adjusted for multiple testing using

Bonferroni correction). The FindMarkers function was used to

compute the DEGs between groups. We set min.pct = 0 and

logfc.threshold = 0 to obtain all the DEGs and finally filter by p-

value < 0.05 to draw the DEGs’ volcano plot.
Enrichment analyses of differentially
expressed genes

The enrichGO and enrichKEGG (cutFC = 0.5) functions of the

RNAseqStat R (https://github.com/xiayh17/RNAseqStat) package

were used to calculate and visualize the enrichment results of the

whole NK cells’ DEGs between AD and controls; the Gene

Ontology (GO) enrichment mainly displayed the enrichment

results of upregulated genes. The Database for Annotation,

Visualization, and Integrated Discovery (DAVID, https://david.

ncifcrf.gov/) was used to annotate and analyze the associated GO

terms and Kyoto Encyclopedia of Genes andGenomes (KEGG) and

Reactome pathways of the DEGs (p-value < 0.05 and

LogFoldChange > 0.25). GO terms and KEGG and Reactome

pathways with adjusted p-value < 0.05 were considered significant.
Gene set module score analyses

To further verify the identity of each NK cell cluster, the

AddModuleScore function was used to calculate the gene set

score as previously defined (13–16): (i) blood CD56dim NK

(FGFBP2, GZMB, GZMA, SPON2, S100A4, CST7, FCGR3A,

IGFBP7, GZMH, and CFL1); (ii) blood CD56bright NK (GZMK,

CD44, PPP1R14B, CXCR3, RPL36A, SCML1, COTL1, NCF1,

XCL1, and HLA-DRB1); and (iii) adaptive NK (KLRC2, CD52,
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IL32, CD3E, CD3D, CD3G, B3GAT1, TTC16, CADM1, SGCD,

VIM, and CCL5). Owing to the similarity between NK and ILC1

cells, we identified ILC1 by scoring the gene signatures of CXCR3,

IFNG, LTA, IL12RB1, TBX21, IKZF3, LEF1, ZBP1, JUNB, TSHZ2,

SP140, BCL11B, PRDM1, IL6R, IL6ST, IL18BP, SOCS3, IFNG-

AS1, GZMM, GZMK, GZMA, SH2D1A, CD6, CD27, CD5, CCR7,

CD28, TNFRSF1B, TNFSF8, TNFRSF10A, CCL5, LAG3, CD3D,

CD3E, CD3G, CD4, CD8A, CD8B, TRAV13-1, TRAV8-2, TRAV4,

TRBV5-1, TRAV9-2, TRAV2, TRBV2, TRAV41, TRBV20-1,

TRAV26-2, and TRAV8-4 as previously described (17). Cell

subclusters with high score were deemed as ILC1 and excluded.
Pseudo-time analysis

For NK cell subclusters, we performed pseudo-time analysis

with Monocle2 (v2.18.0). The ordering was based on the 3,801

DEGs between clusters. Then, the data space was reduced by

DDRTree algorithm into two dimensions. The cells were finally

ordered in pseudo-time and clusters with a high score of

CD56bright NK signatures were considered as the start point of

the trajectory.

To identify significantly branch-dependent genes, we used

the BEAM algorithm function and gene significance was set to q-

value < 1E-04. The selection of branch-dependent TFs was

according to the intersection between 682 branch-dependent

genes and human TF sets from the Human TFDB database.
Protein–protein interaction network
construction

After the identification of TFs, STRING (https://cn.string-

db.org/) was used to construct the protein–protein

interaction network.
Human peripheral blood samples

Peripheral blood samples were collected from seven patients

with AD (three men and four women) and 11 control subjects (six

men and five women). There was no statistically significant

difference regarding the age (AD vs. Control: 61.6 ± 7.8 vs. 66.5

± 6.7, p = 0.202) and sex (p = 0.280) of AD patients vs. control

subjects. For AD patients, participants were diagnosed with AD

(IWG-2) and had positive amyloid PET imaging. Control subjects

were generally healthy with normal laboratory test results.
Flow cytometry

PBMCs were isolated from whole-blood specimens and

stained with fluorescent-labeled antibodies. For the staining of
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the intracellular molecules, cells were fixed and permeabilized

using commercial kit (eBioscience) according to the

manufacturer’s instruction. All antibodies were purchased

from BioLegend (San Diego, CA, USA), including CD3

(UCHT1), CD56 (HCD56), CD69 (FN50), CD27 (O323),

NKG2D (1D11), CX3CR1 (2A9-1), and IFN-g (4S.B3). Flow

cytometry was performed using FACS Aria III (BD Bioscience,

San Jose, CA, USA). Data were all analyzed by FlowJo v10.8.1.
Statistical analysis

All statistical analyses of single-cell sequencing data were

performed using R software, version 4.1.3. Data represent mean

± SEM. The statistical significance of module gene set analysis

was assessed by the Wilcoxon rank sum test with continuity

correction or by the Kruskal–Wallis test with Dunn’s multiple

comparisons test, with p-value adjustment by the Benjamini–

Hochberg method. Unpaired Student’s t test was employed to

compare flow cytometry data from AD patients in comparison

to controls. p < 0.05 was considered to be statistically significant.
Results

Single cell transcriptomic analysis of
PBMCs from patients with AD

We analyzed the single-cell RNA-sequencing data of PBMCs

(GEO database: GSE181279) from three patients with AD and

two control subjects. A total of 36,561 cells were included for

assessment. Among these cells, 22,582 were from AD patients

and 13,979 were from control subjects (Figure 1A,

Supplementary Figures 1A–C). Unbiased clustering identified

eight major cell subsets based on specific markers: CD4+ T cells

(CD3D, CD3G, and CD4), CD8+ T cells (CD3D, CD3G, and

CD8A), double-positive T cells (CD3D, CD3G, CD4, and

CD8A), NK cells (identified as expression of NKG7, KLRD1,

and NCR1, and lack of expression of CD3), B cells (CD19,

CD79A, and CD79B), plasma cells (CD19, CD79A, TNFRSF17,

and CD38), monocytes (CD14), and platelets (PPBP and PF4)

(Figure 1B). The cellular distribution of each group is shown in

Figure 1C. The dot and violin plots displayed the expression of

specific genes in each cluster (Figures 1D, E).
Reduced number and cytotoxicity in
blood NK cells from patients with AD

In the determination of cellular composition and distribution,

we found a reduction of blood NK cells in patients with AD versus

control subjects (Figures 2A–C, Supplementary Figure 1D). NK

cells from patients with AD displayed upregulation of DUSP1 and
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DUSP2 that are regulators of the ERK signaling pathway and the

RNA-binding prote in ZFP36L2 that i s re la ted to

immunosuppression as well as TBX21 involved in NK cell

maturation (Figure 2D). We also observed a decrease in

cytotoxicity genes (FCER1G, CTSW, GZMB, GNLY, KLRF1,

SPON2, FGFBP2, and PRF1) and activation markers (CD69 and

KLRB1) in NK cells from patients with AD (Figure 2E). The KEGG

analysis also revealed a reduction of NK cell-mediated cytotoxicity

(Figure 2F). GO analysis revealed the DEGs in NK cells regarding

lymphocyte activation, cell adhesion, and related intracellular

pathways (Figure 2G).

To verify the above findings, we conducted flow cytometry

analysis of peripheral blood from 7 AD patients and 11 control

subjects. In line with scRNA-seq results, we found a reduction of

NK cell number and percentage in peripheral blood from AD

patients, though the difference was not significant (Supplementary

Figures 2A, B, D). We also found reduced expression of CD69,

CD27, NKG2D, and IFN-g in NK cells from peripheral blood of AD
Frontiers in Immunology 04
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patients (Supplementary Figures 2C, D). Together, these results

suggest reduced number and cytotoxicity in blood NK cells from

patients with AD.

Subclustering analysis revealed
expansion of a unique NK cell subset
expressing CX3CR1, TBX21, MYOM2,
DUSP1, and ZFP36L2 in patients with AD

Next, subclustering analysis was performed to assess the

transcriptomic alterations in blood NK cells from patients with

AD after exclusion of ILCs via module score analysis.

Unsupervised clustering of the remaining 2,897 NK cells

(Control: 1,842 cells, AD: 1,055 cells) revealed four subsets:

NK0, NK1, NK2, and NK3 (Figure 3A, Supplementary

Figure 1E). As shown in Figure 3B, the expression of NK cell

signatures (CD7, NKG7, GNLY, KLRD1, and KLRF1) was

identified in these subsets.
A

B

D E

C

FIGURE 1

Single-cell transcriptomic analysis of PBMCs from patients with AD. (A) Schematic of experimental design. (B) tSNE plot of 36,561 single cells
from total PBMCs of three AD patients and two control subjects. (C) tSNE plots of 13,979 single cells from control subjects and 22,582 single
cells from AD patients, colored by group. (D, E) The violin (D) and dot (E) plots showed expression levels of known cell type-specific markers.
PBMCs: peripheral blood mononuclear cells; tSNE: t-distributed Stochastic Neighbor Embedding.
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Thereafter, we assessed the top genes that were expressed

among these four NK cell subsets (Figure 3C). We found that

the NK0 cluster expressed genes associated with cytotoxic

factors (FCER1G, SPON2, GZMM, and GZMB) and

activation markers CD69 and CD160, resembling CD56dim

effector NK cells. The NK1 cluster displayed an enrichment

of genes including CX3CR1, TBX21, MYOM2, DUSP1, and
Frontiers in Immunology 05
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ZFP36L2. The expression of CX3CR1, TBX21, and KIR2DL2

suggests that the NK1 subset was in the late stage of NK cell

development as previously described (14). The NK2 cluster

expressed CD3E, GZMH, CCL5, IL32, VIM, and KLRC3 as

well as HLA molecule-encoding genes (HLA-DRB1, HLA-

DPB1, and HLA-DPA1) related to previously reported

adaptive NK cells (14, 15). The NK3 cluster expressed
A B

D E

F G

C

FIGURE 2

Reduced number and cytotoxicity in blood NK cells from patients with AD. (A) tSNE plots of total PBMCs from controls and patients with AD. NK
cells were labeled with ellipse tag, which were reduced in the AD group. (B) The distribution of cell clusters in AD and control groups. (C) NK
cell percentage in individual level. Data are presented as means ± SEM. *p < 0.05, **p < 0.01. (D) Assessment of differentially expressed genes
(DEGs) using log-fold change expression versus the difference in the percentage of cells expressing the gene in blood NK cells from patients
with AD versus controls (▲Percentage Difference). Genes labeled were chosen based on log-fold change > 1.5 (Up) and log-fold change < −0.5
(Down), adjusted p-value from Wilcoxon rank sum test < 0.05. (E) Violin plots show the expression levels of cytotoxicity and activation markers
in blood NK cells from patients with AD versus controls. (F) KEGG pathway analysis of DEGs in blood NK cells from patients with AD versus
controls. Blue: downregulated pathways, pink: upregulated pathways. (G) GO enrichment analysis of DEGs in NK cells.
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GZMK, IL7R, SELL, XCL1, XCL2, KLRC1, and CD44,

resembling CD56bright NK cells (13–15).

Gene signature module score analysis revealed that the NK0,

NK1, and NK2 clusters resemble CD56dim NK cells (13–15),

whereas the NK3 cluster resembles CD56bright NK cells

(Figure 3D). Of note, the NK2 subset shared the highest

adaptive NK cell gene set score (Figure 3D). GO, KEGG, and

Reactome enrichment analysis revealed that the NK0 cluster had

an enrichment of cytotoxicity (Figure 4A). The NK1 subset was

enriched in apoptotic process and cellular senescence,

accompanied by upregulation of CX3CR1 and KLF2

(Figure 4A). In contrast, NK2 displayed an enrichment in
Frontiers in Immunology 06
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adaptive features of NK cells (Figure 4A). The NK3 cluster

was enriched in cytokine signaling and pathways related to

immune regulatory function (Figure 4A).

Correlation analysis was performed to measure the similarity

among these four NK cell clusters. As shown in Figure 4B, the

NK0 cluster was similar to the NK2 cluster. The NK1 cluster had

a weak similarity with NK0 and NK2 clusters. In contrast, NK3

represented a distinct subset to other NK cell clusters.

Correlation analysis of DEGs revealed the NK1 subset as an

enriched subset in AD relative to controls (Figures 4C, D,

Supplementary Figure 1F), accompanied by a contraction of

the NK0 subset and the NK2 subset (Figures 4D, E).
A B

D

C

FIGURE 3

Subclustering of blood NK cell in patients with AD. (A) tSNE plot of 2,897 NK cells from three patients with AD and two control subjects. (B)
Violin plots display the expression of NK cell lineage markers in each cluster. The y-axis represents normalized expression value. (C) Top 10
most enriched genes among the total gene set and among upregulated genes encoding secreted proteins, cell membrane markers, and
transcription factors that are different among four NK cell subpopulations. Blue: secreted protein, red: cell membrane, green: transcription
factors. (D) The boxplots showing the distribution of the module score for blood CD56dim as well as CD56bright NK cells and adaptive NK cells
among each NK cell subset. **p < 0.01.
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Similarly, flow cytometry results show that the percentage

and number of NK cells expressing CX3CR1 were increased in

AD patients (Figures 4F, G). A negative correlation was seen

between the number of CX3CR1-expressing NK cells and the

severity of cognitive impairment (Supplementary Figure 2E).

These results demonstrate the expansion of a distinct

blood NK cell subset expressing CX3CR1, TBX21,

MYOM2, DUSP1, and ZFP36L2 in AD patients and its

relation to cognitive impairment.
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Pseudo-temporal ordering of blood NK
cells reveals a branched trajectory with a
significant shift toward the NK1 subset in
patients with AD

Since the enrichment of CX3CR1 and TBX21 in the NK1

subset suggests augmented maturation of NK cells, we next

conducted pseudo-temporal analysis with Monocle2. The

pseudo-time analysis ordered cells along a trajectory that
A

B D

E F G

C

FIGURE 4

The functional characteristics and distributions of four NK cell subsets. (A) Bar plots show the selected GO and KEGG as well as Reactome terms
enrichment for each of the four NK cell subsets in patients with AD versus controls. The significance threshold was set to p < 0.05.
(B) Correlations among four NK subsets. (C) Scatter plot showing the correlation between total fold changes of NK cells’ gene expression from
AD versus control (x-axis) against NK1 subset fold changes from AD versus control analysis (y-axis). Selected top genes are shown. (D) The
distribution of four NK subsets in patients with AD and controls. (E) The relative proportion of each cluster was calculated in each sample. (F)
Bar plot showed the CX3CR1 expressing NK cell percent in AD and control groups. (G) Bar plot showed the number of CX3CR1 expressing NK
cell in groups of AD patients and control subjects. In (F, G), AD: n = 7, control: n = 11. Data are presented as means ± SEM. *p < 0.05, **p <
0.01.
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segregates 2,897 NK cells into two major branches of cell fate 1

and cell fate 2, highlighting a specific developmental trajectory of

NK cells. As shown in Figures 5A, B, the cell fate 1 branch was

mostly constituted by the CD56dim effector NK cell subset and

the adaptive NK cell subset, whereas the cell fate 2 branch was

mainly constituted by the NK1 subset. CD56bright NK cells were

mainly distributed in the top trajectory of the pre-branch that

represents the initial state of NK cells. Notably, the trajectory in

AD displayed an evident shift toward the NK1 subset in the cell

fate 2 branch (AD: 89.1%, Control: 5.0%) (Figure 5C).

We identified 682 branch-dependent genes during the

cellular state transition from the pre-branch to cell fate 1 and

cell fate 2 through branched expression analysis. Hierarchical

clustering of these genes revealed three gene modules.

Representative TFs for each gene module are shown in

Figure 5D. Among these modules, most of the genes in

module 2 were concentrated in the cell fate 2 branch cells.

Notably, TBX21, NFATC2, and SMAD3 are representative TFs

of module 2 and may serve as hub genes in control of NK cell

alterations in AD (Figures 5E, F). Meantime, these genes’

expression level was enriched in patients with AD versus

controls (Figure 5G).

These results demonstrate that the blood NK1 subset in

patients with AD is at the late stage of NK cell development and

key TFs including TBX21, NFATC2, and SMAD3 may play a

vital role in this subset expansion.
Discussion

The major goal of this work was to address the alterations

of human NK cell transcriptome in AD from an unbiased

transcriptome-wide perspective, and identify an NK cell

subset that may be linked to disease pathogenesis. As

documented here, we found reduced numbers and cytotoxic

activity of blood NK cells in AD. Among identified NK cell

subsets (i.e., NK0, NK1, NK2, and NK3), a unique NK1 subset

is expanded in AD and characterized by expression of

CX3CR1, TBX21, MYOM2, DUSP1, and ZFP36L2. Pseudo-

time analysis identified that this distinct NK cell subset is at a

late stage of NK cell development, accompanied by an

increased expression of TFs of TBX21, NFATC2, and

SMAD3. Flow cytometry analysis of blood NK cells from

AD patients revealed this subset, together with its

association with cognitive impairment.

In this study, we subclustered NK cells at single-cell

resolution and identified four different subsets. We found

reductions of cytotoxic (NK0) and adaptive (NK2)

subclusters in the blood of AD patients. Previous single-cell

studies have demonstrated the adaptive features of NK cells

expressing KLRC2 (NKG2C), CD52, and IL32 (15), along with
Frontiers in Immunology 08
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expression of antigen presentation and T-cell activation

markers (14). Consistent with the above studies, we also

found adaptive features of NK cells such as the lack of CD3

and the expression of NK cell markers (NKG7, KLRD1, and

NCR1). The lower distribution of cytotoxic (NK0) and

adaptive (NK2) subsets in the blood suggests that these NK

cells may be mobilized and recruited into other organ

compartments in AD. Another explanation could be a

result from altered neurogenic innervations toward these

NK cell subsets, leading to their reduction, although other

possibilities cannot be excluded. These postulations await

future investigations.

CX3CR1 is involved in the chemotaxis of leukocytes; a

previous study revealed a beneficial role of CX3CR1+ NK cells

in experimental autoimmune encephalomyelitis (EAE), in a

mouse model of multiple sclerosis (MS) (18). Another study

suggested that CX3CR1 could identify a late stage of NK cell

development characterized by decreased effector function (19).

In this study, we found reduced NK cell cytotoxicity and

expansion in a unique subset of CX3CR1+TBX21+ NK cells

associated with cognitive impairment in AD patients.

Trajectory analysis suggests that the expansion of this NK

cell subset in AD patients may have resulted from augmented

differentiation from the NK3 subcluster, although enriched

apoptotic processes were noted in this subcluster. Nevertheless,

the discrepancy between previous studies and our findings may

involve distinct features of NK cells across different disease

conditions, i.e., MS vs. AD, and the potential discrepancies of

NK cells in humans vs. mice. Future studies are required to

pinpoint NK cell features and their precise contributions to

AD progression.

Although a few studies have suggested the involvement of

NK cells in AD patients and mouse models (20, 21), it is still

early to conclude the precise impact of NK cells on the initiation

and progression of AD pathology. NK cells participate in CNS

inflammatory injury once they sense danger signals and are

receptive to neurogenic innervations in brain disorders (22, 23).

It is reasonable to postulate that the alterations of NK cell

signatures are likely, at least partially, the result of the brain

pathology in AD. On the other hand, the altered features of NK

cells may be involved in AD pathology, albeit further studies are

required to better understand the role of NK cells during disease

progression. Additionally, the small sample size in a Chinese

cohort of both single-cell analysis and flow cytometry tests is a

limiting factor to interpret our findings. Future studies are

required to verify these results among large populations

including Chinese and subjects from other countries.

In summary, our study demonstrated the alterations of

transcriptomic profile in blood NK cells from patients with

AD and identified a distinct NK cell subset related to cognitive

decline. These new results provide additional support to the

involvement of NK cells in AD pathology.
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FIGURE 5

Pseudo-temporal ordering of NK cells reveals a branched trajectory with a significant shift toward the NK1 subset in AD. (A) Pseudo-time
ordering of NK cells shows a branched trajectory. (B) The distribution of the four NK subsets among each branch. (C) Evident shift toward a NK1
phenotype (cell fate 2) in AD (right panel) versus control (left panel). (D) Hierarchical clustering of the branch-dependent genes reveals three
gene modules. The significance threshold was set to a q-value of the branched expression analysis modeling test < 1e-04. The transcription
factors involved in each module are shown. (E) The protein–protein interaction network of the module 2 transcription factors was constructed
by STRING. TBX21, SMAD3, and NFATC2 are colored red and serve as hub genes. (F) Six key TFs displaying branch dependence are from gene
module 2; most of them are enriched in cell fate 2. (G) Violin plots show the expression levels of six specific transcription factors in AD and
control group. *p < 0.05, **p < 0.01.
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NKB cells: A double-
edged sword against
inflammatory diseases

Nikunj Tandel1, Sushmita Negi2 and Rajeev K. Tyagi2*

1Institute of Science, Nirma University, Ahmedabad, Gujarat, India, 2Division of Cell Biology and
Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and
Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
Interferon-g (IFN-g)-producing natural killer (NK) cells and innate lymphoid

cells (ILCs) activate the adaptive system’s B and T cells in response to

pathogenic invasion; however, how these cells are activated during

infections is not yet fully understood. In recent years, a new lymphocyte

population referred to as “natural killer-like B (NKB) cells”, expressing the

characteristic markers of innate NK cells and adaptive B cells, has been

identified in both the spleen and mesenteric lymph nodes during infectious

and inflammatory pathologies. NKB cells produce IL-18 and IL-12 cytokines

during the early phases of microbial infection, differentiating them from

conventional NK and B cells. Emerging evidence indicates that NKB cells play

key roles in clearing microbial infections. In addition, NKB cells contribute to

inflammatory responses during infectious and inflammatory diseases. Hence,

the role of NKB cells in disease pathogenesis merits further study. An in-depth

understanding of the phenotypic, effector, and functional properties of NKB

cells may pave the way for the development of improved vaccines and

therapeutics for infectious and inflammatory diseases.

KEYWORDS

innate lymphoid cells, inflammation, IFN-g, NKB cells, Th1 cells, IL-18, IL-12,
infectious diseases
Abbreviations: ACE, Aceclofenac; ALD, Alcoholic liver disease; AsC, Asymptomatic HBV carrier; BCR, B-

Cell receptor; BMMSCs, Bone marrow derived mesenchymal stem cell; CDR3, Complementarity-

determining region 3; CHB, Chronic hepatitis B; CIA, Collagen induced arthritis; GSF, Gingival

crevicular fluids; HBV, Hepatitis B virus; HBV-ACLF, HBV-associated acute-on-chronic liver failure;

HC, Healthy control; HIS, Humanized immune system; IFN-g, Interferon-g; ILCs, Innate lymphocyte cells;

IL-18BP, IL-18 binding protein; LN, Lymph nodes; LPS, Lipopolysaccharide; LPHNPs, Lipid-polymer

hybrid nanoparticles; MLNs, Mesenteric lymph nodes; MTX, Methotrexate; MZ, Marginal Zone; NK cells,

Natural killer cells; NKB, Natural killer-like B cells; NKBP, NKB precursor; NLCs, Nanostructure lipid

carriers; PBMCs, Peripheral blood mononuclear cells; RA, Rheumatoid arthritis; SIV, Simian

immunodeficiency virus.
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NKB cells and their
immune functions

Technological advances in cell biology have allowed

investigators to better understand the phenotypic and

functional characteristics of individual immune system cell

types. Further, in vitro and in vivo investigations have

identified the contributions of various immune effector cells to

infections and inflammatory diseases (1–4). Moreover,

advancements in immunobiology have allowed increased

understanding of the mechanisms that underlie the signaling

pathways responsible for pathogen elimination (2, 5–10).

B and T cell populations in the adaptive immune system

share functional similarities with cells in the innate immune

system, including natural killer T (NKT) cells (11), gdT cells (12,

13), and B1 B cells (14–16). The latter cell subsets play regulatory

roles by stimulating acquired and innate immune responses in

the host in order to fight pathogens. Furthermore, the

characteristic features of NK cells and ILC subsets have been

well studied with respect to IFN-g production in response to host

cell invasion by infectious agents (17–20).When analyzing NK

cells in the spleen and mesenteric lymph nodes (MLNs) of mice,

a population of cells co-expressing the NK cell markers NK1.1

and NKp46, as well as the B cell markers CD19 and IgM, were

identified (21). Distinct from conventional NK and B cells, these

cells uniquely expressed CD106 and CD63, and lacked

expressions of common lineage marker (CD3, CD4, CD8,

CD11b, and CD11c). This novel cell population, with

properties comparable to NK and B cells, was referred to as

“natural killer-like B (NKB) cells” (CD19+NK1.1+) (21). Giemsa

staining, electron microscopy, immunofluorescence staining,

imaging flow cytometry, and immunohistochemistry

investigations confirmed that NKB cells exhibit a morphology

similar to lymphocytes. These cells contained a small amount of

endoplasmic reticulum and lacked cytotoxic granules in

their cytoplasm.

NKB cells are primarily localized to the marginal zone (MZ)

of the spleen; CD19+NKp46+ NKB cells were observed in the

human spleen (∽ 2.7%) as well as in the MLNs (∽ 2.3%) (21).

Gene expression profile studies revealed that NKB cells

predominantly express components of the B-cell receptor

(BCR), members of the Ly49 family of NK cell receptors, the

major histocompatibility complex-I and II (MHC-I and II),

CD40, CD83, and a higher expression of IL-18 as well as the

proliferation marker Ki67. NKB cells expressed elevated levels of

the B cell transcription factor Pax5 and low levels of the NK cell

transcription factor Id2. These cells also expressed high levels of

CD63 and CD106 but lacked expressions for several

characteristic dendritic cell (DC) markers (CD11c), ILC

markers (CD127 or IL-7Ra), and T cell markers (CD3).

Studies involving several knock-out mouse models (Rorc-/-,

mMT-/-, Id2-/-, Rag1-/-, and Il2g-/-) confirmed the roles played

by the IL-2R common g chain as well as Rag recombinase
Frontiers in Immunology 02
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signaling in NKB cell development and/or maturation (21).

Furthermore, common g chain-associated cytokines (IL-2, IL-

15, and IL-4) were required for NKB cell expansion

and longevity.

NKB cells were unable to secrete two major effector

cytokines, namely, IFN-g and TNF-a, and did not exhibit NK-

like cytotoxic activity. Analysis of the complementarity-

determining region 3 (CDR3), the most hypervariable region

of the BCR and TCR, revealed a non-Gaussian distribution in

the length of CDR3 sequences and a restricted BCR repertoire in

NKB cells. However, conventional B cells exhibited a Gaussian

distribution of CDR3 sequences with a broad BCR repertoire.

These findings suggest the distinct nature of NKB cells as

compared with B and NK cells. NKB cells were phenotypically

characterized following the microbial infection of mice. The

NKB cells expanded for up to 24 h post-infection and these cells

secreted a variety of cytokines (IL-6, IL-12, IL-15, IL-1b, and IL-

18), suggesting important functions. Moreover, infection

progression led to a gradual increase in IL-18 production,

whereas higher levels of IL-12 production were observed

during the early phases of infection. When exposed to

microbial agents in vitro, NKB cells were able to transactivate

Th1 cells and ILCs to produce IFN-g. NKB cells that were

adoptively transferred into Rag1-/- mice became activated, and

expanded in response to Listeria monocytogenes infection,

suggesting immune activation independent of conventional B

and T cells. Furthermore, IL-18 appeared to be the signature

cytokine produced by NKB cells (21–23). Co-culture assays

demonstrated the rapid activation of both NK cells and ILCs

that secrete IL-18 and IL-12 to clear bacterial infections.

The developmental origin of NKB cells was revealed by

transferring either NK cell progenitors (NKP) or pro-B cells to B

cell-deficient mMT mice. The transferred pro-B cells

differentiated into NKB and B cells, whereas the NKP cells did

not further differentiate. The Lin-CD122+CD19+NK1.1+ cell

lineage facilitated the conversion of NKP cells to NK cells via

IL-15 (binds with CD122), and the former cells further

differentiated into Lin-CD122-CD19+NK1.1+ NKB cells.

Hence, the subpopulation of Lin-CD122+CD19+NK1.1+ cells

was termed NKB precursor (NKBP) cells. This was further

confirmed by transferring NKBP cells into NKB-deficient

mice, after which NKBP cells differentiated into NKB cells.

However, the transfer of different B cell populations into mMT

mice failed to produce NKB cells. In short, the Lin-

CD122+CD19+NK1.1+ lineage was proposed as the relevant

precursor to NKB cells. These cells exhibit the bonafide NKB

cell development pattern as well as their functional responses to

microbial infection (21).

The frequencies, locations of tissue residence, and

phenotypic markers of NKB cells were defined using genetic

murine models. The majority of IgM+ cells failed to display

stains for other markers of NK cells. NK1.1+NKP46-CD19+ and

NK1.1-NKp46+CD19+ cells resembled conventional B cells
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rather than the distinct NKB cell population (24). Sorted

NK1.1+NKP46-CD19+ cells that were stimulated with

lipopolysaccharide (LPS) for three days rapidly differentiated

into CD138+Blimp-1+ plasmablasts. Further, the proliferation

and survivability of splenic NK1.1+NKP46-CD19+ cells were

assessed in the presence of bonafide NK cell homeostasis

factors. The majority of the NK1.1+NKP46-CD19+ cells did

not survive in the presence of IL-15, and several cells exhibited

an NK1.1+NKp46+ phenotype. Additionally, anti-NK1.1 and

-NKp46 monoclonal antibodies were bound to the relevant

antigens present on BCR+ cell subsets. Nevertheless, it was

suggested that the novel NKB cell population is part of the

conventional B cell lineage, rather than a distinct population.

Although the possible role of NKB cells in the pathogenesis of

infectious and inflammatory disorders has been explored, the

precise identity of this cell type requires further validation using

antibody-based identification methods (24).

Kerdiles et al. utilized the Ncr1-driven Cre model, where

inefficient expression of Cre may be a possible explanation for

the low or absent expression of NKp46. Furthermore, Wang and

colleagues reported that bone marrow-derived pro-B cells were

the primary source of NKB cells that originated from NKBP

cells. The transcription factors involved (as stated earlier for

NKB cells), and the regulatory mechanisms by which pro-B cells

are converted to NKBPs (the results of an adoptive transfer

experiment carried out on mMT mice), followed by their

maturation into NKB cells is of particular interest. Moreover,
Frontiers in Immunology 03
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LPS stimulation failed to induce the production of IgM by NKB

cells. These conflicting results may be attributed to the detection

method employed by Kerdiles et al. Finally, NKB cells are

distinct from conventional B cells and thus represent a unique

subset of innate B cells that may play an important role during

microbial infection. The conversion of pro-B cells to mature

NKB cells requires further investigation (25).
NKB cells and their role in infectious
and inflammatory diseases

NKB cell studies in SIV-infected
non-human primates

Based on the discovery of novel NKB cell populations in

rodents, Manickam et al. investigated NKB cells in macaques and

humans (26) (Figures 1A, B). The peripheral blood mononuclear

cells (PBMCs) and tissue mononuclear cells from various organs

of uninfected and HIV-infected humans, as well as those from

uninfected and simian immunodeficiency virus (SIV)-infected

macaques, were analyzed. Similar NKB cell frequencies were

identified in both groups of primates, and their enrichment in

the spleen validated earlier findings carried out in rodents

(Figures 1A, B). A broad distribution was also noted in other

human organs such as the tonsils, colon, jejunum, and lymph
A B

DC

FIGURE 1

Natural killer-like B cells (NKBs) play a crucial role in the pathogenesis of infectious and inflammatory diseases. The expression profile of NKB
cells with cytolytic granules and other signaling and defense molecules which help to understand inflammatory disorders. (A) NKB cells and
their expression profile in the periphery and deep-seated secondary lymphoid organs of naïve and simian immunodeficiency virus (SIV)-infected
macaques. Expression of inflammation mediators and cytolytic granules in cytotoxic immune cells. (B) The numbers and characteristics of NKB
cells that were studied in the circulation and lymphoid organs of patients with viral infections. (C) The increased number of NKB cells is
proportional to the elevated expression of IL-18 during inflammation observed in liver pathologies. (D) An increase in NKB cells mediates
enhanced IL-18 production in patients with periodontitis.
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nodes (LN). These cells expressed NKp46, moderate levels of

CD16, and low levels of both HLA-DR and CD40. Molecular

studies confirmed the expression of several NK cell markers

(CD2, NKp30, NKG2A/C, and CD16) by NKB cells in both

species (Figures 1A, B) (26).

Manickam and colleagues identified this unique NKB cell

population in both naïve and chronically SIV-infected macaques.

The distributions of NKB cells in different deep-seated organs

varied in the uninfected macaques. NKB cells were differentiated

from other cell types depending on their CD3-NKG2A+/-

NKp46+/-CD20+CD127- phenotype, as characterized by

fluorescence-activated cell sorting (FACS). In healthy humans,

NKB cells expressed CD40 and HLA-DR, and the levels of these

markers did not significantly differ in HIV-infected individuals

following antiretroviral therapy (ART). The expression pattern of

surface immunoglobulin differentiated NKB cells from other cell

lineages. High expressions of IgM and IgA and a low expression

of IgG were observed in uninfected macaques and humans

(Figure 1B) (26). It was estimated that IgG expression levels

were increased 10-fold in both the spleen and MLNs of SIV-

infected macaques, compared with the levels of PBMC in HIV-

infected patients (26).

The role of NKB cells in gut-associated inflammation during

mucosal immune responses to SIV infection was investigated

(27). NKB cells present in the lamina propria of SIV-infected

rhesus or cynomolgus macaque colons were compared with

uninfected controls. RNA sequencing and flow-cytometry

analyses showed that the NKB cells display receptors, markers,

and functions similar to NK and B cells (27). The NKB cells were

the primary source of IL-18 production in the colon following

SIV infection. This was confirmed by staining lamina propria

lymphocytes with anti-IL-18 antibodies and NKB cell marker

antibodies. In vitro studies confirmed that NKB cells were the

“natural source” of IL-18. Additional findings showed that

almost 68% of the NKB cells (from the colon tissues of six

infected subjects) produced IL-18, whereas none of the B or NK

cells produced IL-18. Since IL-18 and IL-1b are canonically

produced in response to inflammasome activation, IL-1b was

investigated. IL-1bwas produced by NK and B cells; however, no

production was observed by the NKB cells (27). Thus, the NKB

cells were concluded to be the primary source of IL-18, whose

expression is highly regulated by a non-canonical pathway that

mounts inflammatory responses in the SIV-infected colon.

Transcriptional analyses demonstrated that NKB cells

possessed a unique transcriptome, compared with that of NK

and B cells. The NKB cells expressed both MS4A1 (CD20) and

NCR1 (NKp46), whereas the B and NK cells only expressed

MS4A1 and NCR1, respectively.

NKB cells expressed increased levels of granzyme H

transcripts compared with NK and B cells. In NK cells, the Fas

ligand (FasL) targets and destroys virus-infected cells. An

increased expression for FasL in NKB cells was observed

during viral infection (27). Furthermore, over 84% of the NKB
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cells expressed FasL, compared with 10% and 14% of NK and

CD8+T cells, respectively. Protein expression confirmed elevated

IFN-g production (46.7% of NKB cells vs. 7.95% of NK cells and

8.14% of CD8+ T cells) in the infected macaque colons. These

findings suggest that NKB cells may have originated from NK

cells that were extracted from the colon. However, these findings

contradict earlier results which showed that NKB cells originated

from pro-B cells. The immunoglobulin (Ig) loci in the NK cells

did not undergo de novo V(D)J recombination since expressions

for m heavy as well as l and k light chains inside the cytoplasm

were observed. In addition, over 40% of the NK cells (excluding

the CD56-CD16+ phenotype) expressed intracellular IgM.

Hence, other B-cell molecules began to appear during SIV

infection. CD79b expression plays an important role in surface

Ig expression, depending on its interaction with the Ig heavy

chain and CD79 (28). Neither NK cells nor CD79b expressions

were observed in the SIV-infected colon, despite the intracellular

expression of IgM. The NKB cells expressed IgA, similar to gut B

cells, except for the co-expression of CD56 and CD20. B cells

produce IgA with J chains upon conversion to plasma cells,

therefore, CD79b and Ig are crucial for NKB cell signaling

pathways. The co-expression of CD79b and IgA may be

important since CD79b acts as a signal transducer and Ig may

trigger the production and activation of NKB cells. The

interaction between CD79 and the Iga heavy chain ruled out

the possibility of poly-IgA playing a role, resulting in the

monomeric expression of IgA. The expression mechanism for

Ig in NKB and NK cells present in infected colons, which can

allow confirmation of whether the NKB cells originate from NK

or pro-B cells, warrants further investigation (27). These findings

suggest that the expression of CD79b in NKB cells functions

differently to conventional B cells. Furthermore, affinity

maturation in the germinal center (GC) and downregulation

of CD79b are essential for the selection of B cells in GCs,

followed by antigen presentation to T follicular helper cells.

The signature pro-inflammatory cytokine IL-18 is produced

by NKB cells together with IFN-g and TNF-a. The production of

granzyme B and perforin confirmed the cytotoxic nature of NKB

cells (27). Moreover, significantly increased production of

granzyme A was found in NKB cells, compared with NK and

CD8+T cells. In addition, two subpopulations of granzyme A-

producing NKB cells were observed, although their prevalence

and phenotypic and functional characterization requires further

investigation. IL-18 binds to IL-18Rb secreted by NKB cells and

facilitates both IFN-g and TNF-a production during the

pathogenesis of infectious and inflammatory diseases. The

expressions for IL-7, IL-2b, and 4-1BB compared with NK

cells, the increased Ki67 expression (proliferation marker)

compared with CD8+ T cells (Figure 1A), and RNA-

sequencing analyses demonstrated the enhanced proliferation

of NKB cells compared with NK and CD8+ T cells. In brief, these

studies presented the presence of newly identified NKB cell

populations in the colons of SIV-infected macaques and other
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deep-seated tissues. The phenotypic characteristics shared by

these cells with NK and B cells, together with their functional

properties and enhanced proliferative activity (compared with

NK and CD8+ T cells) indicates their important role during

infectious pathologies. The origin of NKB cells, their role in SIV

pathogenesis, pathways for both cytokine production and

cytolytic activity, and the role of FasL on the surface of these

cells (for loss of CD4+ T cells – primarily Th17 cells) (Figure 1A)

all require further study (27).
NKB cells in liver pathologies

Role of NKB cells in alcoholic liver disease
The studies discussed above suggest that NKB cells play a

role in microbial infection and inflammation. A recent study on

alcohol-induced liver disease (ALD) and intestinal damage,

based on a chronic-binge alcohol abuse model, explored the

therapeutic mechanisms of pre-activated (with toll-like receptor

3; TLR3) bone marrow-derived mesenchymal stem cells (P-

BMMSCs) (29). Interestingly, elevated numbers of NKB cells in

the spleen and significantly higher IL-18 serum levels were

observed in alcohol-treated mice. These cells were shown to

activate NK cells and ILC1s, leading to the aggravation of ALD.

This was followed by chronic inflammation and increased lipid

deposition (Figure 1C). Treatment with BMMSCs resulted in a

reduction of NKB cell numbers and serum IL-18 levels (29).This

confirmed the pathogenic role of NKB cells in ALD, which may

be relevant to other inflammatory diseases. Additionally, P-

BMMSCs indicated the involvement of TLR ligands in the

immunosuppressive activities of NKB cells. However, the

mechanism of action and the immunosuppressive activity of

NKB cells are not fully understood. Nevertheless, NKB cells may

be used to target infectious and inflammatory diseases and to

develop therapeutic interventions (Figure 1).

NKB cells in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is one of the leading causes

of mortality in cancer patients. The reasons for an impaired

immunological network in HCC are not fully understood (30).

IL-35 has been studied for its immunosuppressive activity

towards both the hepatitis B virus (HBV) and HBV-associated

HCC (31). Upregulated/activated IL-35 restricts the anti-tumor

activity of CD8+ T cells in the tumor microenvironment.

Additionally, IL-35 produced by the regulatory T cells (Treg)

drives T cell exhaustion in the tumor microenvironment, as

indicated by the increased expression of inhibitory receptors

(PD-1, TIM-3, and LAG-3) (32). These interactions regulate

the activity of Th9 cells in HCC (33). Moreover, IL-35 also

regulates the tumor microenvironment in conjunction with

other negative regulators [IL-18-binding protein (IL-18BP-an

antagonist of IL-18)] (34, 35). This suggests that IL-35 may

play an immunomodulatory role for NKB cells in HCC. This
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hypothesis was tested by studying both the peripheral and liver

infiltrating NKB cells obtained from HCC patients (30). The

number of NKB cell (CD3-CD19+CD56+NKp46+) populations

that produced IL-18 in the peripheral and liver infiltrating sites

of HCC patients were downregulated.

IL-35, IL-12, and IL-18 serum levels were quantified,

revealing increased IL-35 and reduced IL-18 levels in HCC

patients and confirming the regulatory role of IL-35 (30).

Additionally, IL-35 serum levels were well correlated with the

frequencies of peripheral NKB cells, IL-18+ NKB cells, and IL-18

serum levels (Figure 1C). The effect of NKB cells on CD8+ T cells

was revealed using co-culture experiments (autologous CD8+ T

cells cultured with HepG2 cells in the presence/absence of NKB

cells or recombinant human IL-18BP). The cytotoxic activity of

CD8+ T cells in the control group was augmented, compared

with the HCC patient group. Human IL-18BP directly

suppressed the NKB cell-mediated cytotoxicity of CD8+ T

cells. Elevated levels of IFN-g and TNF-a were identified in

the supernatant of CD8+ T cells in the control group. Hence, the

NKB cells promoted the cytotoxic activity of CD8+ T cells via IL-

18 signaling.

Intrahepatic lymphocytes (IHLs) were stimulated with IL-35

(1 ng/ml) for 24 h and reduced frequencies of NKB and IL-18+

NKB cells were observed in both patients and healthy controls.

Reduced IL-18 supernatant levels confirmed these results, and no

changes were observed in IL-18BP secretion (30).The continuous

secretion of IL-18BP neutralizes IL-18, decreasing its levels.

Therefore, the regulatory effect of IL-35 towards NKB cells

does not appear to be associated with IL-18BP. In order to

study the role of IL-35 in regulating NKB cell activity,

autologous CD8+ T cells were co-cultured with HepG2 cells in

the presence/absence of NKB cells for 12 h and the cytotoxicity of

CD8+ T cells was determined. The results suggest that IL-35 plays

an immunoregulatory role in the NKB cells, mediating CD8+ T

cell cytotoxicity and inducing tumor progression. The observed

immunosuppressive activity of IL-35 in HCC patients raises

several questions for future studies. For example, a major focus

of this study was to determine the role of IL-18 on NKB and

CD8+ T cells present in HCC patients, with similar levels of IL-12

observed in both HCC patients and healthy controls. However,

the presence and functional activities of IL-12-producing NKB

cells in the livers of both healthy individuals and HCC patients

requires further in vitro and in vivo investigation.

Role of NKB cells in hepatitis B virus associated
liver injury

The hepatitis B virus (HBV) is one of the etiologic factors for

chronic liver disease, which can lead to acute-on-chronic liver

failure (ACLF). The change from low-grade inflammation to

chronic, pathogenic HBV-associated ACLF was studied (36).

The authors performed assays on HBV patients to evaluate the

regulatory properties of NKB cells and to determine the roles of

IL-12 and IL-18 in HBV-associated liver injury. A phenotypic
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characterization of different lymphocyte (B, T, NK, and NKB

cells) populations was performed on blood collected from

patients (36). The gating strategies utilized for B and T cells

were CD3-CD19+ and CD3+CD19-, respectively, while the

CD16+56+ gate within the double negative population of CD3-

CD19- cells was considered to be NK cells. NKB cells were gated

and differentiated using the phenotypic markers for CD3-

CD16+56+NKp46+CD19+ cells. The major lymphocyte

populations (primarily T, B, and NK cells) were largely

unaltered in all experimental groups. However, a significant

difference was observed in the peripheral NKB cells of HBV-

ACLF patients, compared with chronic hepatitis B (CHB)

patients, asymptomatic HBV carriers (AsC), and healthy

controls (HC). A significantly elevated level of IL-12p70 was

observed in the plasma of HBV-ACLF and CHB patients,

compared with the AsC and the HC, whereas IL-18 levels were

slightly altered in only the HBV-ACLF patients (36). The

frequency of NKB cells positively correlated with IL-18 levels,

but did not correlate with IL-12 levels in the HBV-ACLF

surviving patients. Following therapy, a significant reduction

in the number of NKB cells was observed in HBV-ACLF

patients. Surprisingly, there was neither a change in IL-12p70

and IL-18 plasma levels, nor a correlation between the frequency

of NKB cells and the liver injury index of HBV-ACLF patients.

Therefore, the role of NKB cells in HBV-ACLF pathogenesis was

not fully established.

IL-12 and IL-18, the signature cytokines of NKB cells, were

used to stimulate PBMCs that were isolated from HBV-ACLF

patients. Previous findings on infectious diseases and cancer (36)

provided evidence for the increased frequencies of T and NK

cells at two (1 and 10 ng/ml) IL-12 concentrations. No

differences in the B and NKB cell frequencies were observed

between unstimulated and IL-12-stimulated PBMCs (at 1 and 10

ng/ml). Nevertheless, a noticeable increase in the frequency of

NKB cells in HBV-ACLF patients upon stimulation with a high

concentration of IL-18 (10 ng/ml) was reported, but no changes

were observed at a low concentration (1 ng/ml). Minor changes

were observed in the T, B, and NK cell lineages when PBMCs

were stimulated with IL-18. IL-18 was continuously produced by

the NKB cells, and IL-12 production was monitored during the

early phases of microbial infection (21). The HBV-X protein

induced IL-18 expression in the liver which incurred hepatic

damage during HBV infection. IL-12 plays a vital role in

promoting central memory CD8+ T cells by reversing the

exhaustion of virus-specific CD8+ T cells. Furthermore,

in vitro stimulation assays using IL-12 and IL-18 suggested

that IL-18 plays a direct role (positive feedback) in the

signalling mechanism of NKB cells.

IL-18R signalling primarily activates two major pathways

(MyD88 and STAT/MAPK) via NF-kB (phosphorylation).

Reduced amounts of phosphorylated NF-kB p65 were

observed upon stimulation with 10 ng/ml IL-18, compared

with stimulation using 1 ng/ml (36). IL-18 levels were
Frontiers in Immunology 06
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significantly reduced in the supernatant of cells stimulated

with 10 ng/ml, while only a slight reduction was observed

when cells were stimulated with 1 ng/ml IL-18. Thus, a lower

IL-18 concentration did not allow complete neutralization of IL-

18 by IL-18BP, resulting in phosphorylation of NF-kB. This
directly enhanced the production of NKB cells in HBV-ACLF.

The signature cytokines IL-12 and IL-18, and their role in NKB

cell activation during microbial infections require further

investigation. Further studies that explore the impact of NKB

cells on B and T cells in different pathogenic settings may be

useful in developing next-generation therapeutics.
Pathogenic role of NKB cells in
periodontal infection

Detailed pathogen-host interaction studies are required to

better understand the role of cytokines and chemokines in the

progression of periodontitis (2). The accumulation of IL-18 has

been reported in patients with acute and chronic periodontitis

(Figure 1D) (37). IL-18 knock-out mice exhibited a loss in

periodontal bone during periodontitis caused by P. gingivalis

(38). The presence of NKB cells and the production of

inflammatory cytokines (IL-18) have been reported in patients

with periodontitis. The pathogenic nature of NKB cells was

confirmed in the P. gingivalis-induced periodontitis murine

model (37). CD3-CD19+NKp46+ NKB periodontium cells were

found to be the major source of IL-18 production in both the

serum and the gingival crevicular fluid (GSF) of periodontitis

patients; this was not the case in healthy individuals. No

physiological changes were observed in the periodontal

ligaments upon stimulation with recombinant IL-18. The

neutralization of IL-18 suppressed bone loss, the infiltration of

non-immune cells, and cytokine production (37). The

continuous expansion of NKB cells in both the circulation and

the periodontium of patients and mice with periodontitis

suggests that NKB cells play a pathogenic role in intraoral

infection. Following periodontal therapy, periodontal-

infiltrating NKB cells were not observed, raising the possibility

of a distinct lineage of lymphocytes (37). Due to the small sample

sizes and the unclear sources of IL-18 secretion in these studies,

the potential of NKB cells as a therapeutic regimen for

periodontitis remains to be established.
Role of NKB cells in
rheumatoid arthritis

Rheumatoid arthritis (RA) is a heterogeneous, systemic

autoimmune disease, characterized by synovitis, progressive

bone damage, loss of joint function, and extra-articular

manifestations (39, 40). Genetic analyses in experimental

animals with RA and clinical investigations have revealed the
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genetic and environmental risk factors associated with RA and

the ultimate propagation of chronic inflammation. The

unregulated production of inflammatory cytokines (IFN-g,
TNF-a, IL-1b, IL-6, IL-15, and IL-18) is responsible for

various disease complications (41) as well as the disruption of

immune homeostasis (42).

Our in vitro and in vivo findings (43, 44) suggest the therapeutic

potential of combination therapy using the anti-inflammatory drugs

aceclofenac (ACE) and methotrexate (MTX). The intravenous

delivery of MTX via lipid-polymer hybrid nanoparticles

(LPHNPs) (45, 46), together with the topical application of ACE

using nanostructured lipid carriers (NLCs) (44, 47), suggests that the

induction of apoptosis in proinflammatory RA cells was regulated by

NF-kB and FOXO1 transcription factors. Therefore, MTX+ACE-

loaded nanoscale carrier-based co-therapy approaches can modulate

RA-induced inflammation and can induce apoptosis in pathogenic

cells. Our group has been elucidating both the mechanism

underlying RA pathogenesis, as well as the capability of MTX

+ACE combination therapy to modulate RA-induced

inflammation and to establish immune homeostasis by

maintaining the immune cell Th1 phenotype.

Collagen-induced arthritis in mice possessing a humanized

immune system (CD34+ cells reconstituted immunodeficient

(NSG) mice repopulated with a human immune system; HIS)

may be employed to confirm the role of NKB cells during RA.

NKB cells can be adoptively transferred to these CIA-HIS mice,

followed by treatment with ACE+MTX (Figure 2A). This may

subsequently be followed by immunophenotyping for Th17 (IL-

6 and IL-23A) and Th1 (IFN-g, IL-2, IL-10, and TNF-a/b)
marker expressions using cells extracted from deep-seated

lymphoid organs (the spleen and the bone marrow). We
Frontiers in Immunology 07
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expect a skewed immunological balance towards an

immunoregulatory phenotype (Th1), as well as modulation of

RA-induced chronic inflammation. In another approach, CIA-

HIS mice may receive co-therapy treatment followed by adoptive

transfer of NKB cells (Figure 2B). Immune homeostasis may be

analyzed to determine whether the immunological balance is

tipped towards the Th1 cytokine expression profile. These

proposed future studies aim to confirm whether NKB cell

expansion is inhibited in the lymphoid organs of CIA-HIS

mice receiving co-therapy (Figure 2B) in order to maintain the

immunoregulatory phenotype (48–51).

The low expression of CD40 during stimulation fails to

activate Akt (a downstream effector of PI3K-Akt signaling), thus

limiting the translocation of NF-kB from the cytoplasm to the

nucleus due to its intact inhibitor IkB. We believe that human

THP-1 macrophages (phorbol myristate acetate (PMA)-

differentiated human THP-1 monocytes) receiving co-therapy

treatment are regulated by the FOXO1 transcription factor. We

also believe that they mediate the pro-apoptotic protein Bim

expression, which drives programmed death of LPS-stimulated

human macrophages (Figure 2C).

CIA-HIS mice may prove to be a viable preclinical tool to

confirm whether co-therapy can suppress the inflammation-

dependent conversion of Th1 to Th17 cells (Figures 2A, B). The

CIA-HIS mice that receive co-therapy may exhibit reduced

inflammation controlled by expanding NKB cells, inducing

programmed death of pathogenic RA cells. The maintenance of

an immunoregulatory phenotype by controlling the conversion of

Th1 to Th17 cells, using our proposed co-therapy regimen in CIA-

HISmice, should provide a better understanding of the role played

by NKB cells during RA.
A B C

FIGURE 2

Experimental humanized immune system mice (NSG mice reconstituted with hematopoietic stem cells (HSCs); CD34+ cells repopulating the
human immune effectors and referred to as HIS mice). Arthritis induced by collagen treatment (collagen-induced arthritis; CIA) in HIS mice
(CIA-HIS) to study the role of combined therapy in the modulation of arthritis-induced inflammation. (A) CIA-HIS mice may be adoptively
transferred with NKB cells followed by aceclofenac- and methotrexate-based combination therapy (co-therapy) to assess the
immunoregulatory (Th1) phenotype in immune cells, allowing the progression of RA to be determined, and (B) co-therapy treatment in CIA-HIS
mice followed by adoptive transfer of NKB cells. (C) CD40-mediated and NF-kB-controlled downstream effectors of the PI3K-Akt pathway
(Akt1) and pro-apoptotic protein (Bim) induction during the signaling pathway to drive programmed death in pathogenic effector RA cells.
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Conclusions

The proposed novel immune cell lineage, namely, NKB cells, is

of significant interest in the development of therapeutic

interventions for infectious and inflammatory diseases. The

protective role played by NKB cells during infectious diseases,

and their role in maintaining immune homeostasis by promoting

an immunoregulatory environment, suggests that they can critically

contribute to health and disease. The maintenance of an

immunoregulatory (Th1), rather than a pathogenic (Th17),

immune cell phenotype in HIS mice may provide an important

impetus to develop therapeutic interventions for systemic

inflammatory diseases. Finally, the interactions of NKB cells with

other immune cells may be further explored to expand the current

knowledge on host-pathogen interactions.
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JR, et al. Analyzing immune response to engineered hydrogels by hierarchical
clustering of inflammatory cell subsets. Sci Adv (2022) 8:eabd8056. doi: 10.1126/
sciadv.abd8056

11. Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S.
Natural killer T cells: An ecological evolutionary developmental biology
perspective. Front Immunol (2017) 8:1858. doi: 10.3389/fimmu.2017.01858

12. Ou L, Wang H, Liu Q, Zhang J, Lu H, Luo L, et al. Dichotomous and stable
gamma delta T-cell number and function in healthy individuals. J Immunother
Cancer (2021) 9:e002274. doi: 10.1136/jitc-2020-002274

13. Kumar A, Singh B, Tiwari R, Singh VK, Singh SS, Sundar S, et al.
Emerging role of gd T cells in protozoan infection and their potential clinical
application. Infect Genet Evol (2022) 98:105210. doi: 10.1016/j.meegid.2
022.105210

14. Rodriguez-Zhurbenko N, Quach TD, Hopkins TJ, Rothstein TL, Hernandez
AM. Human b-1 cells and b-1 cell antibodies change with advancing age. Front
Immunol (2019) 10:483. doi: 10.3389/fimmu.2019.00483
frontiersin.org

https://doi.org/10.1016/j.vaccine.2014.03.078
https://doi.org/10.1016/j.vaccine.2014.03.078
https://doi.org/10.1038/srep41083
https://doi.org/10.3390/cells10081847
https://doi.org/10.3389/fimmu.2021.630204
https://doi.org/10.3389/fimmu.2021.630204
https://doi.org/10.1080/14789450.2017.1319768
https://doi.org/10.3389/fimmu.2019.02657
https://doi.org/10.3389/fonc.2019.00415
https://doi.org/10.3389/fimmu.2020.559555
https://doi.org/10.3390/v12040383
https://doi.org/10.1126/sciadv.abd8056
https://doi.org/10.1126/sciadv.abd8056
https://doi.org/10.3389/fimmu.2017.01858
https://doi.org/10.1136/jitc-2020-002274
https://doi.org/10.1016/j.meegid.2022.105210
https://doi.org/10.1016/j.meegid.2022.105210
https://doi.org/10.3389/fimmu.2019.00483
https://doi.org/10.3389/fimmu.2022.972435
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tandel et al. 10.3389/fimmu.2022.972435
15. Aziz M, Brenner M, Wang P. Therapeutic potential of b-1a cells in COVID-
19. Shock (2020) 54:586–94. doi: 10.1097/shk.0000000000001610

16. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne-Steele M, et al. CTLA-4
expression by b-1a b cells is essential for immune tolerance. Nat Commun (2021)
12:525. doi: 10.1038/s41467-020-20874-x

17. Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al.
ILC1 confer early host protection at initial sites of viral infection. Cell (2017)
171:795–808.e712. doi: 10.1016/j.cell.2017.09.052

18. Nabekura T, Riggan L, Hildreth AD, O’sullivan TE, Shibuya A. Type 1
innate lymphoid cells protect mice from acute liver injury via interferon-g secretion
for upregulating bcl-xL expression in hepatocytes. Immunity (2020) 52:96–
108.e109. doi: 10.1016/j.immuni.2019.11.004

19. Ducimetière L, Lucchiari G, Litscher G, Nater M, Heeb L, Nuñez NG, et al.
Conventional NK cells and tissue-resident ILC1s join forces to control liver
metastasis. Proc Natl Acad Sci U.S.A. (2021) 118(27):118. doi: 10.1073/
pnas.2026271118
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Natural killer cells in sepsis:
Friends or foes?
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Sepsis is one of the major causes of death in the hospital worldwide. The pathology

of sepsis is tightly associated with dysregulation of innate immune responses. The

contribution of macrophages, neutrophils, and dendritic cells to sepsis is well

documented, whereas the role of natural killer (NK) cells, which are critical innate

lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells

has been reported as a risk factor leading to severe organ damage or death. In

sharp contrast, some other studies revealed that triggering NK cell activity

contributes to alleviating sepsis. In all, although there are several reports on NK

cells in sepsis, whether they exert detrimental or protective effects remains

unclear. Here, we will review the available experimental and clinical studies

about the opposing roles of NK cells in sepsis, and we will discuss the prospects

for NK cell-based immunotherapeutic strategies for sepsis.

KEYWORDS

natural killer cells, sepsis, immunotherapy, protective effect, detrimental effect
1 Introduction

Sepsis is a life-threatening multiple-organ dysfunction syndrome caused by localized or

systemic infections, which is one of the major causes of death to patients in the hospital

worldwide (1–3). It has been estimated that approximately 750,000 people suffer from sepsis

every year in the United States and an estimated 20-30% patients die from it (4, 5). However,

there is no specific, standardized treatment strategy for sepsis (6). Numerous studies have

shown that dysregulation of innate immune responses is a major contributing factor to the

incidence and development of sepsis (7, 8). For example, studies on monocytes, macrophages,

neutrophils, and dendritic cells have provided insight into their roles in both the

inflammatory and immunosuppressive phases of sepsis (9–14). Natural killer (NK) cells,

which were discovered in the early 1970’s (15, 16), are a heterogeneous group of innate

lymphocytes with the capacity to regulate both innate and adaptive immune responses. They

are best known for their roles in fighting infections and tumors, mainly relying on their

cytotoxicity and immune regulatory properties (17).

Recent studies have implicated NK cells in the pathological process of sepsis, suggesting

that they might be employed as prognostic biomarkers or therapeutic targets (2, 18).
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However, seemingly contradictory conclusions about NK cells playing

beneficial or harmful roles in sepsis have been obtained (19). Hence,

we will review these reports to discuss whether NK cells are friends or

foes in sepsis, and we will further discuss the prospects of NK cell-

based immunotherapy for sepsis.
2 The immunological characteristics of
sepsis

Sepsis has previously been used to describe severe disease caused

by infection (20). However, this definition cannot accurately describe

its complex pathological processes. Recently, a new definition has

been published, stating that sepsis refers to a life-threatening,

multiple-organ failure syndrome, caused by dysregulated responses
Frontiers in Immunology 0254
to infection (21, 22). It is generally believed that immunological

abnormalities are the pathological basis of sepsis (23), which is tightly

associated with microvascular injury, abnormal coagulation,

hemodynamic instability, multiple organ damage and other

conditions (24). The immunological abnormities exhibit distinct

d i s e a s e s t a g e - sp e c ifi c cha r a c t e r i s t i c s du r ing s ep s i s :

hyperinflammation at the initial stage and immunosuppression at

the late stage (25). A diagram illustrating this process is shown

in Figure 1.

After invading the body, pathogens will encounter the first line of

defense composed of innate immune cells, activating PAMP

(pathogen-associated molecular pattern)- or DAMP (damage-

associated molecular pattern)-associated signaling pathways in these

cells (26, 27). Once activated, these cells generate large amounts of

inflammatory cytokines, such as IL-1b, IL-6, IL-12, TNF-a and IFN-g
FIGURE 1

The immune changes during the pathological process of sepsis. The immunological abnormity exhibits two distinct stages accompanying with the sepsis
development: hyperinflammation and immunosuppression. During the hyperinflammatory phase at early, the increase of pro-inflammatory cytokines
(e.g., IL-1b/6/12, IFN-g, and TNF-a) leads to cytokine storm, resulting in the vascular system damage (e.g., endothelial cell damage), the abnormal
coagulation, finally multi-organ failure and death. Subsequently, the death of immune cells, the increase of negative costimulatory molecules (e.g., PD-1
and PD-L1) or anti-inflammatory cytokines (e.g., IL-4 and IL-10) induces immunosuppression, which leads to uncontrolled secondary infection and
death.
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(28, 29). These host responses are not limited to the infectious focus.

The cytokines may trigger additional immune cells at distant sites to

secrete inflammatory cytokines, and this cascading amplification

reaction may finally result in systemically uncontrolled over-

inflammation, which is termed a “cytokine storm” (30, 31). The

massively increased cytokine levels may potentially enhance the

elimination of pathogens by innate immune cells. However, they

also lead to a series of pathological changes, such as endothelial cell

damage, leukocyte infiltration, abnormal activation of the coagulation

system and other abnormalities, resulting in multi-organ failure and

even death (32–34). Consequently, the direct cause of death is not the

invasive pathogens themselves, but the over-activated immune

reactions. Therefore, the focus of clinical treatment at this

inflammatory stage of sepsis is on ameliorating the uncontrolled

inflammation (35).

The hyperinflammation at the early stage of sepsis will lead to

immunosuppression during the late stage of sepsis: on the one hand,

the cytokine storm directly induces cell death in various immune cells;

on the other hand, the functions of some effector cells will be

exhausted after their excessive activation (36, 37). Moreover,

upregulation of some negative costimulatory molecules and anti-

inflammatory cytokines has also been observed during this stage, and

includes programmed cell death 1 (PD-1) (38), programmed cell

death ligand 1 (PD-L1) (39), T-cell immunoglobulin and mucin

domain-containing protein-3 (TIM-3) (40), T cell Ig and ITIM

domain (TIGIT) (41), IL-4 (36), IL-10 (42, 43) and TGF-b (44, 45).

These factors are mainly related to exhaustion of immune cells or

inhibition of their effector functions (38, 46–48). As a result, the body

presents with a continuously immunosuppressive state, nearly losing

its capacity to clear pathogens (49). This will cause an extremely high

risk for secondary infections, such as those mediated by opportunistic

pathogens or iatrogenic infections caused by interventional therapy,

which eventually leads to death of sepsis patients (50). For example,

Huang et al. observed that the expression of TIM-3 on CD4 T cells in

patients with sepsis-induced immunosuppression was significantly

elevated, which impaired anti-infective responses and positively

correlated with mortality (51). Hou et al. also found that, in a

lipopolysaccharide (LPS)-induced murine sepsis model, TIM-3

expression on NK cells negatively regulated the production of IFN-

g, which caused death (40). Therefore, reestablishing immune

functions is critical to reduce mortality risk of sepsis patients

during the late immunosuppressive stage (52, 53).
3 NK cells play a role in antimicrobial
responses

NK cells, a group of large granular lymphocytes derived from the

bone marrow, are essential components of the innate immune

response and can directly kill tumors and other target cells without

prior activation (54–56). In humans, about 5-15% of lymphocytes are

defined as NK cells in peripheral blood, and tissue-specific

subpopulations are found in the spleen, liver, and lung (57–61).

Generally, human NK cells can be divided into two subpopulations
Frontiers in Immunology 0355
by the expression of CD56 and CD16 on the cell membrane (62, 63).

About 90% of all NK cells in human peripheral blood are

CD56dimCD16bright, whereas only 10% are CD56brightCD16-/dim

(64). Distinct human NK cell subpopulations found in different

tissues significantly differ in cytotoxicity and cytokine secreting

capacity (65, 66). The two main subpopulations possess distinct

functions: CD56dimCD16bright NK cells exhibit higher cytotoxicity

and express increased levels of killer immunoglobulin-like receptors

(KIR) or CD57 receptors; CD56brightCD16-/dim NK cells can secrete

more cytokines and possess greater proliferative capacity (67, 68).

NK cells can be activated in several ways. Most importantly, the

balance between signals from the inhibitory or activating receptors

expressed on the cell surface plays a critical role in regulating their

responses (69, 70). The activating receptors mainly include NCRs

(NKp30, NKp44, and NKp46), KIR-2Ds, KIR-3Ds, NKG2D, CD226,

2B4, and NKG2C, whereas the inhibitory receptors mainly include

NKG2A, TIGIT, KIR-2DL, and KIR-3DL (71). The biased expression

of these receptors or their ligands calibrates the activation status of

NK cells. For example, a clinical study reported that, in human

immunodeficiency virus (HIV)-infected patients, a subpopulation of

human NK cells that expresses NKG2C but not NKG2A has a

stronger ability to secrete IFN-g compared with other NK cells (72).

Another typical way of NK activation is via their pathogen

recognition receptors (PRRs), which bind with PAMPs on bacteria

(73). For example, a previous study reported that high-mobility group

box-1 (HMGB-1) up-regulated the levels of TLR-2/4, which belongs

to the group of classical PRRs (74), on murine NK cells, leading to

their activation in rotavirus-induced murine biliary atresia (75).

Additionally, NK cells can also be activated by several cytokines,

including type 1 interferon, IL-2, IL-12, IL-15, IL-18, IL-21, and IL-27

(76–80). For instance, IL-12 binding to IL-12Rb1/2 stimulates NK

cells through signal transducer and activator of transcription 4

(STAT4) phosphorylation, leading to abundant IFN-g and TNF-a
production (81).

During infection, activated NK cells perform their activity mainly

in two ways: cytotoxicity and immune regulation. First, NK cells can

directly lyse bacteria-infected cells with their cytotoxicity: on the one

hand, they can induce target cell apoptosis depending on the binding

of FAS-L to FAS death receptors (82); on the other hand, they directly

kill targets by secreting cytotoxic proteins, such as perforin, granzyme

and a-defensins (83–85). Specifically, some studies have reported that

these cytotoxic proteins could disrupt the membrane of some

bacteria, such as Mycobacterium, Salmonella typhimurium, Bacillus

anthracis, Escherichia coli, and Staphylococcus aureus (86–89), thus

causing their death. In addition to cytotoxicity, activated NK cells also

secrete several cytokines to undertake the roles of immune regulation

(90). IFN-g, which is the major cytokine released by NK cells, was

reported to play a critical role in fighting microbial infections (91). It

modulates the activation of other immune cells, such as macrophages

or dendritic cells, enabling them to perform comprehensive anti-

bacterial responses (92, 93). Moreover, IL-32, previously named as

NK cell transcript 4 (NK4), can be produced by NK cells when

activated by IL-2 (94, 95). It also stimulates inflammatory responses

by inducing monocytes or macrophages to secrete various cytokines,

including TNF-a, IL-1b, IL-6 or IL-8 (96). Thus, IL-32 has been
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reported to exacerbate sepsis in the cecal-ligation and puncture (CLP)

mouse model, via propagating vascular inflammation (97).

In addition to their positive regulatory roles, NK cells also possess

the ability to limit antimicrobial responses. A recent study uncovered

that NK cell-derived IFN-g worsened macrophage phagocytosis of

zymosan in mice and increased the susceptibility to secondary

Candida infection during post-sepsis immunosuppression (98).

However, whether this phenomenon exists in sepsis caused by other

pathogens needs further study. Furthermore, activated NK cells also

secrete IL-10, which is a well-known immunosuppressive cytokine

(99–101). In fact, NK cells are the main source of IL-10 in systemic

infection caused by some pathogens, such as Yersinia pestis, Listeria
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monocytogenes or Toxoplasma gondii (99). Interestingly, the NK cell-

derived IL-10 appears to play dual roles in different types of

infections. For example, in Listeria monocytogenes infection, the NK

cell-derived IL-10 shows detrimental effects on host resistance against

the invasive pathogen (102), whereas it can protect the host from

murine cytomegalovirus infection or CLP-induced sepsis by reducing

systemic inflammation (103, 104). The authors consider that the

beneficial or detrimental roles of IL-10 might depend on whether the

major cause of host death is pathogen overload or excessive

inflammation during infection.

Summarily, the patterns of NK cell activation and their roles in

antimicrobial responses are illustrated in Figure 2.
FIGURE 2

NK cell activation and their roles in the anti-infection responses. NK cells are mainly activated in three ways: 1) The activation of NK cells is governed by a
balance between signals delivered through activated and inhibitory receptors. When the activating signal dominates, NK cells will be activated, and vice
versa. 2) Activation of NK cells can also be achieved by stimulation with cytokines (e.g., IL-12 and IL-15). 3) NK cells are activated by pathogen-associated
molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Activated NK cells lysis infected cells and release pathogens via death receptor
ligand/death receptor (e.g., FAS-L/FAS) and secreting cytotoxic proteins (e.g., perforin and granzyme). Meanwhile, activated NK cells promote the
activation of macrophage-mediated microbial killing by the secretion of cytokines (e.g., IFN-g, IL-32). In contrast, activated NK cells also possess the
ability to limit the anti-infection responses. On one hand, NK cell-derived IFN-g especially worsened macrophage phagocytosis of zymosan.; on the
other hand, the activated NK cells also secrete IL-10, which can generally inhibit the anti-infection responses of monocytes, antigen-presenting cells
(APCs), macrophages, neutrophils, eosinophils or T cells.
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4 NK cells act as risk factors in sepsis

Accumulating studies have shown that NK cells play a

contributing role in the inflammatory responses caused by infection

(105, 106). In this context, they are considered a risk factor for

aggravating the septic process during the hyperinflammation stage

(107). At the early stage of sepsis, NK cells will be activated through

the ways discussed above, secreting abundant cytokines, such as IFN-

g, TNF-a or IL-32, which can trigger dramatic responses in

macrophages or dendritic cells (54, 96). Mutually, the activated

macrophages and dendritic cells secrete IL-2, IL-12 or IL-18 to

subsequently further activate NK cells, forming a positive feedback

loop (108, 109). This loop amplifies the pro-inflammatory responses,

resulting in a cytokine storm and finally causing multiple organ

failure (54). In addition, the cytotoxic proteins secreted from

activated NK cells, including perforin and granzyme, are also

reported to directly mediate tissue necrosis and damage (54)

(Figure 3). Therefore, several studies have shown that antagonizing
Frontiers in Immunology 0557
murine NK cells during sepsis significantly ameliorates multiorgan

damage caused by inflammation and enhanced tolerance in mice. For

example, in sepsis mouse models caused by CLP surgery,

Streptococcus pneumoniae, Escherichia coli or Streptococcus pyogenes

infection, NK cell clearance using anti-asialoGM1 and anti-NK1.1

antibodies can reduce systemic inflammation, stabilize acid-base

balance in the circulation, improve organ damage, reverse

physiological disorders and prolong overall survival (110–116).

Moreover, in a murine polytrauma model, which is a major

instigator of sepsis, murine NK cell depletion also attenuated

inflammatory responses and improved the outcomes (117).

IL-15 is an essential cytokine to maintain NK cell development

and maturation, which can also strongly activate NK cells at high

concentrations (118). It has been reported that excessive IL-15

stimulation leads to pathological inflammatory responses similar

to sepsis, resulting in the death of mice due to massive NK cell

proliferation and IFN-g production (119). Furthermore, IL-15

knockout mice, characterized by NK cell loss, also showed
FIGURE 3

The pathological roles of NK cell at the hyperinflammation and immunosuppression stage of sepsis. During sepsis hyperinflammation, NK cells activation
is dysregulated and NK cells secrete abundant cytokines, including IFN-g, TNF-a, IL-32 and so on. These cytokines subsequently facilitate secretion of
more cytokines (e.g., IL-12, IL-15, IL-1, IL-6, and so on) by dendritic cells and macrophages, establishing a positive feedback loop and amplifying cytokine
storm. Furthermore, cytotoxic proteins (e.g., perforin, granzyme) secreted by NK cells are increased and cause tissue necrosis. As a result, the cytokine
storm and tissue necrosis eventually lead to multiple organ failure and death. In contrast, the secretions of cytokines (e.g., IFN-g, TNF-a, IL-32, and so
on) and cytotoxic proteins (e.g., perforin, granzyme) of NK cells are impaired at the immunosuppression stage of sepsis, which contributes to the
immunoparalysis, causing secondary infection and even death.
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tolerance to sepsis due to CLP surgery (120). When bacterial

infection occurs, NK cells may rapidly migrate to the infection

site and promote inflammation (121, 122). It has been reported that

murine NK cells expressing CXCR3 can rapidly migrate to the

abdominal cavity within 4-6 h following severe abdominal infection

(123). These CXCR3-positive NK cells are similar to the human

CD56bright subpopulation in their ability to secrete more

proinflammatory cytokines and express more activation makers

(124). Blocking CXCR3 or its ligand, CXCL10, can significantly

reduce inflammation during sepsis in mice and increase their

survival rate (125). In addition to the organ damage caused by

massive inflammatory cytokine secretion, NK cell-mediated

cytotoxicity is also detrimental in sepsis. For example, mice

deficient in perforin or in granzymes A/M exhibit increased

tolerance to sepsis caused by LPS (126).

Additionally, significant changes in the number, phenotypes, and

functions of NK cells in sepsis patients have been observed in several

clinical studies. David Andaluz-Ojeda et al. showed that NK cell levels

were significantly increased in patients who died from sepsis and the cell

counts at day 1 were independently associated with increased risk of

death at 28 days (hazard ratio = 3.34, 95% CI = 1.29 to 8.64; P = 0.013).

Analysis of survival curves provided evidence that human NK cell levels

at day 1 (> 83 cells/mm³) were associated with early mortality (127). Palo

et al. also found that sepsis patients with the highest NK cell numbers

exhibit the lowest survival probability (128).

In all, during the hyperinflammation stage, the disturbance of

inflammatory factors leads to abnormal NK cell activation, which can

trigger a cytokine storm through a positive feedback loop, resulting in

severe organ damage (92, 109). Thus, neutralizing or inhibiting NK cell-

derived pro-inflammatory cytokines (e.g., IFN-g) or cytotoxic proteins

(e.g., perforin, granzyme) can alleviate systemic inflammatory responses

and protect against organ damage. Furthermore, using anti-

inflammatory cytokines, such as IL-10, to treat sepsis is also worth

considering. We have summarized the evidence showing the detrimental
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roles of NK cells from both animal and human sepsis in Table 1. These

findings implicate NK cells as risk factors during sepsis.
5 The protective roles of NK cells in
sepsis

Conversely, some other studies have provided evidence for a

protective role of NK cells in a variety of microbial infections. For

instance, murine NK cells are essential in coordinating host responses

against sepsis caused by Staphylococcus aureus infection (129, 130).

This may be due to their interactions with the anti-inflammatory

mechanisms of the host. Moreover, once the ability of NK cells to

secrete IFN-g is impaired, progressive immune disorders might be

induced. There is evidence showing that neutralization of IL-10 with

antibodies in mice improves the ability of NK cells to secrete IFN-g,
resulting in improved survival (131). Notably, in the Citrobacter

rodentium infection model, murine NK cells not only directly lyse

the bacteria but also recruit other intrinsic immune cells and activate

their antibacterial functions by secreting cytokines (132). Similarly,

during Pseudomonas aeruginosa infection, NK cells can recruit

neutrophils to the lungs, alleviating infection and improving animal

survival (133). In mice infected with pulmonary nontuberculous

mycobacteria, the bacterial load and mortality rate are increased by

NK cell clearance (134). Interestingly, it has also been reported that

IL-15 treatment after CLP surgery can reduce immune cell apoptosis,

improve immune disorders, and increase mouse survival (135, 136).

A protective role of NK cells in sepsis has also been documented

in several clinical studies. Some researchers reported a significant

increase in the number of human peripheral blood NK cells, their

expression of active biomarkers, and their ability to secrete granzyme

A/B, IFN-g or IL-12P40 (117, 137–139), which were considered to

provide a survival benefit for septic patients. Bourboulis et al. showed

that sepsis patients with increased levels of NK cells (>20% of all
TABLE 1 Summary of the detrimental roles of NK cells in sepsis.

Disease Animal/
Human Supporting evidence Reference

CLP
Animal Using anti-asialoGM1 and anti-NK1.1 antibodies to clear NK cells in vivo enhanced tolerance in

mice
(110–113)

E. coli infection
Animal NK cell-depleted and NK cell-deficient mice exhibited 80% survival after E. coli infection, whereas

control mice all died within 12 h.
(114)

S. pyogenes infection Animal NK cell-deficient mutant mice were more resistant to S. pyogenes than control mice (115)

S. pneumonia infection
Animal NK depletion by antibodies reduced systemic inflammation, stabilized acid-base balance in

circulation, and significantly improved the survival of mice
(116)

Murine polytrauma
Animal Depleting NK cells resulted in attenuated inflammatory responses and an overall improvement in

outcome
(117)

CLP Animal IL-15-deficient mice (lacking NK cells) exhibited improved survival, attenuated hypothermia, and
reduced proinflammatory cytokine production during sepsis

(120)

Patients within the first 1 d, 3 d, 10 d of
sepsis (50 patients)

Human Analysis of survival curves provided evidence that NK cell levels at day 1 (> 83 cells/mm³) were
associated with early mortality

(127)

Patients with sepsis during the first 28 d
in the ICU (52 patients)

Human Patients with the highest NK cell number may have the lowest probability to survive (128)
f

CLP, Cecal-ligation and puncture; E. coli, Escherichia coli; S. pyogenes, Streptococcus pyogenes; S. pneumonia, Streptococcus pneumoniae.
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lymphocytes) survived longer than those patients with lower levels of

NK cells (< or =20% of all lymphocytes) (140). Boomer et al. reported

that NK cells in peripheral blood of sepsis patients were significantly

reduced within 24 h, which may predispose some patients to

nosocomial infections and poor outcomes (141). Consistently,

Holub et al. found that human NK cells were decreased within the

first 48 h of sepsis, especially in patients with Gram-negative bacterial

infection, resulting in increased risk of septic complications (142).

Moreover, single-cell RNA-sequencing (scRNA-seq) analysis revealed

that various cytotoxic genes of NK cells were downregulated in

patients with late sepsis (n=4), which might be associated with the

re-occurrence of severe infections (143).

Under the conditions described in this section, replenishing

sub j e c t s w i t h f un c t i ona l NK ce l l s may h ind e r t h e

immunosuppressive stage of sepsis. Furthermore, blocking

inhibitory receptors, activating NK cells by cytokines (e.g., IL-15,

IL-2) or neutralizing suppressive cytokines (e.g., IL-4, IL-10) may also

be beneficial. In summary, the evidence supporting the protective

roles of NK cells in both animal and clinical studies are shown

in Table 2.

Taken together, the roles of NK cells in sepsis remain

controversial. Furthermore, animal and clinical studies have

revealed dual roles of NK cell activity on sepsis progression. The

impact on disease mainly depends on the pathological stage and the

initial infection focus. Although the functional changes of NK cells

and their influence on pathological progresses have been explored in

previous studies, they mainly focused on the early stages after sepsis.

During the sepsis process lasting several months from occurrence to

recovery, the impact of continuous changes in NK cell numbers and

characteristics remains unclear.
6 NK cells in COVID-19 infection

In late 2019, coronavirus disease 2019 (COVID-19) emerged and

rapidly spread throughout the world (144, 145). As of December

2022, the COVID-19 pandemic has resulted in approximately
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641,915,931 confirmed cases, including 6,622,760 deaths worldwide

(https://covid19.who.int/ ). A meta-analysis revealed that the overall

pooled sepsis prevalence estimates among 218,184 COVID-19

patients, irrespective of ICU or non-ICU admission, were 51.6%

(95% CI, 47.6-55.5, I2 = 100%) (146). Sepsis was one of the major

causes of death for COVID-19 patients. During acute COVID-19

infection, the number of the CD56bright and CD56dim human NK cells

dropped dramatically in the circulation (147, 148). However, this

drop was likely related to the homing of human NK cells from the

circulation to the lung because NK cells were increased in

bronchoalveolar lavage (BAL) (149, 150). Moreover, a clinical trial

discovered that a high frequency of NK cells was significantly

associated with asymptomatic COVID-19 infection (151). In

addition to lower circulating counts, NK cell dysfunction was also

observed. NK cell hyperactivation driven by IL-6, IL-15 and IL-18 has

been considered as one of the features of COVID-19 (152–154).

Furthermore, Maucourant et al. used high-dimensional flow

cytometry to reveal that NK cells in COVID-19 patients were at a

higher activation state containing high levels of cytotoxic proteins,

such as perforin (155). However, prolonged hyperactivation usually

leads to impaired NK cell function. Yao et al. reported that genes

involved in NK cell cytotoxicity were suppressed in severely ill

COVID-19 patients (156). Moreover, some studies also reported

that NK cell activity was impaired via over expression of the

inhibitory receptor NKG2A in COVID-19 patients (157, 158).

Due to their lower circulating counts and dysfunction, NK cell

adoptive transfer or reconstitution could be a possible treatment for

COVID-19 patients. In fact, some innovate clinical trials using human

NK cells to treat COVID-19 patients are active (ClinicalTrials.gov#

NCT04280224, NCT04578210). Additionally, a clinical trial to

determine the safety and efficacy of NK cells derived from human

placental hematopoietic stem cells in patients with moderate COVID-

19 is also ongoing (ClinicalTrials.gov# NCT04365101). Finally, an

NKG2D chimeric antigen receptor (CAR)-NK cell-based trial may

provide a safe and effective cell therapy for COVID-19

(ClinicalTrials.gov# NCT04324996). These studies are summarized

in Table 3.
TABLE 2 Summary of the protective roles of NK cells in sepsis.

Disease Animal/
Human Supporting evidence Reference

S. aureus infection Animal NK cell-depleted mice (using anti-NK1.1 antibodies) developed more frequent and severe arthritis (129, 130)

C. rodentium infection
Animal Depletion of NK cells led to higher bacterial load and developed disseminated systemic infection,

associated with reduced immune cell recruitment and lower cytokines
(132)

P. aeruginosa infection Animal NK cells can recruit neutrophils to the lungs, alleviate infection and improve the survival of mice (133)

NTM infection Animal NK1.1 cell depletion increased bacterial load and mortality in mouse model (134)

Patients within 12 h of the advent of
severe sepsis (49 patients)

Human
An increase in circulating NK cells increased the survival rate of patients

(140)

Patients within 24 h of the onset of
sepsis (24 patients)

Human The number of NK cells in the blood of patients was decreased, which may be necessary for
predisposing some patients to nosocomial infection and poor outcome

(141)

Patients within 48 h of sepsis (40
patients)

Human NK cells numbers steadily decreased within 48 hours after admission, associated with an increased
risk of septic complications

(142)

Patients with sepsis during 14-21 d (4
patients)

Human Various cytotoxic genes of NK cells were downregulated in patients with late sepsis, which might be
associated with the re-occurrence of severe infections

(143)
f

S. aureus, Staphylococcus aureus; C. rodentium, Citrobacter rodentium; P. aeruginosa, Pseudomonas aeruginosa; NTM, Nontuberculous mycobacteria.-
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7 The prospects of NK cell-based
immunotherapy for sepsis

Recently, NK cells have gained great attention in the field of

immunotherapy, especially in cancer treatment. The anti-tumor

activities of infused NK cells have been demonstrated widely in

mouse models of glioblastoma, ovarian cancer, and metastatic

colorectal cancer (165–167). For example, Veluchamy et al. showed

that adoptive transfer of NK cells into mice with metastatic colorectal

cancer inhibited tumor growth in vivo and prolonged survival time

(168). There has an explosion of NK cell-based cancer

immunotherapies in clinical trials on acute myeloid leukemia

(AML), non-Hodgkin lymphoma (NHL), neuroblastoma, multiple

myeloma (MM) and other cancers (159–164). In addition, a few
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clinical trials using NK cells to treat patients with ovarian carcinomas,

hematological cancer, B cell lymphoma, and glioblastoma are ongoing

(ClinicalTrials.gov# NCT03539406, NCT03841110, NCT04023071,

NCT03383978). We have summarized these completed and

ongoing clinical trials in Table 3. Recently, a variety of NK cell-

based immunotherapies were developed to treat viral infections such

as COVID-19 (as discussed above) and HIV (ClinicalTrials.gov#

NCT03899480, NCT03346499). Although these treatments have not

yet achieved the same degree of success as clinical T cell-based

therapies, the abundant pre-clinical or clinical studies with NK cell-

based immunotherapies have led to increasing enthusiasm in

exploring their potential to treat other diseases, including sepsis.

A variety of tissue sources for deriving NK cells for

immunotherapy have been developed, including autologous and
TABLE 3 Summary of the clinical trials on NK cell-based immunotherapy.

Disease
type

Patient
number

Cell source Supporting evidence Phase Reference
or identifier

COVID-19 30 − − I
(recruiting)

NCT04280224

COVID-19 58 Allogeneic − I/II
(recruiting)

NCT04578210

COVID-19 86 Human placental
hematopoietic stem

cell

− I/II (Active,
not
recruiting)

NCT04365101

COVID-19 90 CAR − I/II
(recruiting)

NCT04324996

AML 21 Haploidentical All patients but 1 had absolute neutrophil and platelet count recovery within 45 d
after NK cell infusion

II
(completed)

(159)

AML 10 UCB In vivo, hematopoietic stem and progenitor cell-NK cell maturation was observed,
indicated by the rapid acquisition of CD16 and most activating receptors

− (160)

NHL 16 Haploidentical Three responding patients with extensive bulky disease had robust tumor
regressions

II
(completed)

(161)

Neuroblastoma 35 Haploidentical Ten of thirty-five patients had complete or partial responses and had improved
progression free survival

I
(completed)

(162)

MM 8 Allogeneic After fresh NK cell infusion, dramatic in vivo expansion was observed and
circulating NK cells retained the ability to kill myeloma cells

− (163)

NHL and CLL 11 CAR 8 patients had an objective response, including 7 patients who had a complete
response

I/II (Active,
not
recruiting)

(164)

Ovarian
carcinomas

12 UCB − I
(recruiting)

NCT03539406

Hematological
cancer

37 iPSCs − I (Active,
not
recruiting)

NCT03841110

B cell
lymphoma

234 iPSCs − I
(recruiting)

NCT04023071

Glioblastoma 42 CAR − I
(recruiting)

NCT03383978

HIV 9 Haploidentical − I
(completed)

NCT03899480

HIV 4 Haploidentical − I
(completed)

NCT03346499
Identifier from ClinicalTrials.gov. COVID-19, Coronavirus disease 2019; AML, Acute myeloid leukemia; NHL, Non-Hodgkin lymphoma; MM, Multiple myeloma; CLL, Chronic lymphocytic
leukemia; HIV, Human immunodeficiency virus; CAR, Chimeric antigen receptors; UCB, Umbilical cord blood; iPSCs, Induced pluripotent stem cells.
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allogeneic NK cells (169). Autologous NK cell infusion using the

patient′s own blood as a source was the first focus in adoptive NK cell

therapy, which is associated with low risk of graft-versus-host disease

(169). However, this approach usually leads to exhausted NK cell

functions (170). Furthermore, patients must receive an extensive

preparative treatment regimen before infusion, which may cause

serious negative side effects (171). For allogeneic NK cells, the

requirement for a healthy donor as source of NK cells and

expanding them to clinically relevant doses is the most critical step

(172). Therefore, umbilical cord blood (UCB) (173) and induced

pluripotent stem cells (iPSCs) have been considered as optimal

sources (174). UCB NK cells are younger and more proliferative

(175), can be manufactured at multiple doses (176), and possess high

cytotoxicity to lyse target cells (177). However, UCB NK cells are

relatively unstable due to common delays in blood collection and

heterogeneity of leukocytes from different donors (169). Stem cells

represent a potentially unlimited source of NK cells for adoptive

immunotherapy, and iPSCs provide a universal cell source (174). NK

cells derived from iPSCs can be genetically modified and expanded to

a homogenous population on a large scale (178). Furthermore, NK

cells derived from iPSCs display increased cytotoxicity and greater

antitumor activity than UCB NK cells in models of leukemia (179).

However, more efficient strategies to generate NK cells from iPSCs are

still needed.

As discussed above, NK cells significantly impact the pathological

progression of sepsis. We postulate that NK cell-based

immunotherapies may be developed as an excellent therapeutic

option for sepsis, for the following reasons: 1. The adoptive transfer

of NK cells has been proven safe due to their short lifespan and the

low risk of triggering graft-versus-host reactions (180, 181); 2. NK

cells can kill targets without sensitization; therefore, developing NK

cells as “off-the-shelf” products has recently attracted great attention

in the field (182), which can overcome the challenging problem of the

narrow time window available for sepsis treatment; 3. The

pathological process of sepsis is characterized by distinct stages of

hyperinflammation and immunosuppression, and NK cells also have

dual roles in immune regulation. Therefore, we may envisage an “off-

the-shelf” NK cell product developed from editable iPSC-NK cells,

which can sense its immune microenvironment to program opposing

activities: in a hyperinflammatory environment, these NK cells may

be programmed to mainly exert anti-inflammatory properties,

whereas in an immunosuppressive environment, they are

programmed to promote immune activation. Although few studies

on NK cell-based immunotherapies for sepsis have been performed,

inspired by explorations on cancer and viral infection and with the

expanded knowledge on mechanisms of NK cell responses in sepsis,

we can make the bold prediction that the future of NK cell-based

immunotherapy for sepsis is bright.

In conclusion, developing NK cell-targeted immunotherapeutic

strategies for sepsis highly depends on the disease state. A dynamic

and more comprehensive understanding of the pathological process

of sepsis will be critically important. Therefore, we consider using

high-throughput sequencing technologies to dynamically monitor
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NK cell alterations during the early, middle, and late stages of

sepsis essential for an accurate and deep understanding of NK cells

in sepsis. Hopefully, with the growing understanding about NK cells

in sepsis, safer and more efficient immunotherapies for sepsis can

be developed.
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A single-cell atlas of the peripheral immune response in patients with severe COVID-19.
Nat Med (2020) 26(7):1070–6. doi: 10.1038/s41591-020-0944-y

148. Jiang Y, Wei X, Guan J, Qin S, Wang Z, Lu H, et al. Covid-19 pneumonia: CD8(+)
T and NK cells are decreased in number but compensatory increased in cytotoxic
potential. Clin Immunol (Orlando Fla) (2020) 218:108516. doi: 10.1016/
j.clim.2020.108516

149. Huang W, Li M, Luo G, Wu X, Su B, Zhao L, et al. The inflammatory factors
associated with disease severity to predict COVID-19 progression. J Immunol (Baltimore
Md 1950) (2021) 206(7):1597–608. doi: 10.4049/jimmunol.2001327

150. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of
bronchoalveolar immune cells in patients with COVID-19. Nat Med (2020) 26(6):842–4.
doi: 10.1038/s41591-020-0901-9

151. Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, et al.
Different innate and adaptive immune responses to sars-Cov-2 infection of asymptomatic,
mild, and severe cases. Front Immunol (2020) 11:610300. doi: 10.3389/
fimmu.2020.610300

152. Koutsakos M, Rowntree LC, Hensen L, Chua BY, van de Sandt CE, Habel JR, et al.
Integrated immune dynamics define correlates of COVID-19 severity and antibody
responses. Cell Rep Med (2021) 2(3):100208. doi: 10.1016/j.xcrm.2021.100208
frontiersin.org

https://doi.org/10.1016/j.cytogfr.2018.08.001
https://doi.org/10.3389/fimmu.2021.624687
https://doi.org/10.1371/journal.ppat.0020118
https://doi.org/10.1128/iai.70.3.1049-1055.2002
https://doi.org/10.1152/ajpregu.00678.2005
https://doi.org/10.1038/labinvest.3700184
https://doi.org/10.1164/rccm.200208-950OC
https://doi.org/10.1152/ajpregu.00470.2003
https://doi.org/10.1067/msy.2002.125311
https://doi.org/10.1086/428501
https://doi.org/10.1155/2015/532717
https://doi.org/10.1097/SHK.0b013e31816e2cda
https://doi.org/10.1016/j.intimp.2020.107318
https://doi.org/10.4049/jimmunol.1500300
https://doi.org/10.4049/jimmunol.1601486
https://doi.org/10.3389/fimmu.2019.03144
https://doi.org/10.3389/fimmu.2019.03144
https://doi.org/10.3389/fimmu.2018.02324
https://doi.org/10.1164/rccm.201108-1560OC
https://doi.org/10.1002/eji.200940056
https://doi.org/10.1186/cc11642
https://doi.org/10.4049/jimmunol.1000430
https://doi.org/10.1186/cc10501
https://doi.org/10.1186/cc11204
https://doi.org/10.1046/j.1365-2249.1999.00922.x
https://doi.org/10.4049/jimmunol.180.8.5558
https://doi.org/10.1097/SHK.0b013e31823f18ad
https://doi.org/10.1128/iai.00953-12
https://doi.org/10.1177/1753425913517274
https://doi.org/10.1177/1753425913517274
https://doi.org/10.4049/jimmunol.1800123
https://doi.org/10.4049/jimmunol.0902307
https://doi.org/10.4049/jimmunol.0902307
https://doi.org/10.12659/msm.914026
https://doi.org/10.1186/cc9031
https://doi.org/10.1111/apm.12002
https://doi.org/10.7150/thno.49288
https://doi.org/10.1186/cc5111
https://doi.org/10.1186/cc11404
https://doi.org/10.1046/j.1469-0691.2000.00175.x
https://doi.org/10.1046/j.1469-0691.2000.00175.x
https://doi.org/10.3389/fimmu.2021.696536
https://doi.org/10.1016/s0140-6736(20)30183-5
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1097/CCM.0000000000005195
https://doi.org/10.1097/CCM.0000000000005195
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1016/j.clim.2020.108516
https://doi.org/10.1016/j.clim.2020.108516
https://doi.org/10.4049/jimmunol.2001327
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.3389/fimmu.2020.610300
https://doi.org/10.3389/fimmu.2020.610300
https://doi.org/10.1016/j.xcrm.2021.100208
https://doi.org/10.3389/fimmu.2023.1101918
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1101918
153. Liu C, Martins AJ, Lau WW, Rachmaninoff N, Chen J, Imberti L, et al. Time-
resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell
(2021) 184(7):1836–57.e22. doi: 10.1016/j.cell.2021.02.018

154. Sahoo D, Katkar GD, Khandelwal S, Behroozikhah M, Claire A, Castillo V, et al.
Ai-guided discovery of the invariant host response to viral pandemics. EBioMedicine
(2021) 68:103390. doi: 10.1016/j.ebiom.2021.103390

155. Maucourant C, Filipovic I, Ponzetta A, Aleman S, Cornillet M, Hertwig L, et al.
Natural killer cell immunotypes related to COVID-19 disease severity. Sci Immunol
(2020) 5(50):eabd6832. doi: 10.1126/sciimmunol.abd6832

156. Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, et al. Cell-
Type-Specific immune dysregulation in severely ill COVID-19 patients. Cell Rep (2021) 34
(1):108590. doi: 10.1016/j.celrep.2020.108590

157. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of
antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol (2020) 17(5):533–5.
doi: 10.1038/s41423-020-0402-2

158. Yaqinuddin A, Kashir J. Innate immunity in covid-19 patients mediated by
NKG2A receptors, and potential treatment using monalizumab, cholroquine, and
antiviral agents. Med Hypotheses (2020) 140:109777. doi: 10.1016/j.mehy.2020.109777

159. Nguyen R, Wu H, Pounds S, Inaba H, Ribeiro RC, Cullins D, et al. A phase II
clinical trial of adoptive transfer of haploidentical natural killer cells for consolidation
therapy of pediatric acute myeloid leukemia. J immunotherapy Cancer (2019) 7(1):81.
doi: 10.1186/s40425-019-0564-6

160. Dolstra H, Roeven MWH, Spanholtz J, Hangalapura BN, Tordoir M, Maas F,
et al. Successful transfer of umbilical cord blood CD34(+) hematopoietic stem and
progenitor-derived NK cells in older acute myeloid leukemia patients. Clin Cancer Res an
Off J Am Assoc Cancer Res (2017) 23(15):4107–18. doi: 10.1158/1078-0432.Ccr-16-2981

161. Bachanova V, Sarhan D, DeFor TE, Cooley S, Panoskaltsis-Mortari A, Blazar BR,
et al. Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma
patients with low levels of immune-suppressor cells. Cancer immunology immunotherapy
CII (2018) 67(3):483–94. doi: 10.1007/s00262-017-2100-1

162. Modak S, Le Luduec JB, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E,
et al. Adoptive immunotherapy with haploidentical natural killer cells and anti-Gd2
monoclonal antibody M3f8 for resistant neuroblastoma: Results of a phase I study.
Oncoimmunology (2018) 7(8):e1461305. doi: 10.1080/2162402x.2018.1461305

163. Szmania S, Lapteva N, Garg T, Greenway A, Lingo J, Nair B, et al. Ex vivo-
expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed
multiple myeloma patients. J immunotherapy (Hagerstown Md 1997) (2015) 38(1):24–36.
doi: 10.1097/cji.0000000000000059

164. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of
CAR-transduced natural killer cells in CD19-positive lymphoid tumors. New Engl J Med
(2020) 382(6):545–53. doi: 10.1056/NEJMoa1910607

165. Gras Navarro A, Kmiecik J, Leiss L, Zelkowski M, Engelsen A, Bruserud Ø, et al.
NK cells with Kir2ds2 immunogenotype have a functional activation advantage to
efficiently kill glioblastoma and prolong animal survival. J Immunol (Baltimore Md
1950) (2014) 193(12):6192–206. doi: 10.4049/jimmunol.1400859

166. Lee SJ, Kang WY, Yoon Y, Jin JY, Song HJ, Her JH, et al. Natural killer (NK) cells
inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against
glioblastomas in the brain. BMC Cancer (2015) 15:1011. doi: 10.1186/s12885-015-2034-y

167. Geller MA, Knorr DA, Hermanson DA, Pribyl L, Bendzick L, McCullar V, et al.
Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a
Frontiers in Immunology 1365
mouse xenograft model. Cytotherapy (2013) 15(10):1297–306. doi: 10.1016/
j.jcyt.2013.05.022

168. Veluchamy JP, Lopez-Lastra S, Spanholtz J, Bohme F, Kok N, Heideman DA,
et al. In vivo efficacy of umbilical cord blood stem cell-derived NK cells in the treatment of
metastatic colorectal cancer. Front Immunol (2017) 8:87. doi: 10.3389/fimmu.2017.00087

169. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy.
Nat Rev Clin Oncol (2021) 18(2):85–100. doi: 10.1038/s41571-020-0426-7

170. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of
autologous natural killer cells leads to high levels of circulating natural killer cells but
does not mediate tumor regression. Clin Cancer Res an Off J Am Assoc Cancer Res (2011)
17(19):6287–97. doi: 10.1158/1078-0432.Ccr-11-1347

171. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz
J. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy:
Recent innovations and future developments. Front Immunol (2017) 8:631. doi: 10.3389/
fimmu.2017.00631

172. Heipertz EL, Zynda ER, Stav-Noraas TE, Hungler AD, Boucher SE, Kaur N, et al.
Current perspectives on "Off-the-Shelf" allogeneic nk and CAR-NK cell therapies. Front
Immunol (2021) 12:732135. doi: 10.3389/fimmu.2021.732135

173. Verneris MR, Miller JS. The phenotypic and functional characteristics of
umbilical cord blood and peripheral blood natural killer cells. Br J haematology (2009)
147(2):185–91. doi: 10.1111/j.1365-2141.2009.07768.x

174. Karagiannis P, Kim SI. Ipsc-derived natural killer cells for cancer
immunotherapy. Molecules Cells (2021) 44(8):541–8. doi: 10.14348/molcells.2021.0078

175. Herrera L, Santos S, Vesga MA, Anguita J, Martin-Ruiz I, Carrascosa T, et al.
Adult peripheral blood and umbilical cord blood nk cells are good sources for effective car
therapy against CD19 positive leukemic cells. Sci Rep (2019) 9(1):18729. doi: 10.1038/
s41598-019-55239-y

176. Kundu S, Gurney M, O'Dwyer M. Generating natural killer cells for adoptive
transfer: Expanding horizons. Cytotherapy (2021) 23(7):559–66. doi: 10.1016/
j.jcyt.2020.12.002

177. Condiotti R, Zakai YB, Barak V, Nagler A. Ex vivo expansion of CD56+ cytotoxic
cells from human umbilical cord blood. Exp Hematol (2001) 29(1):104–13. doi: 10.1016/
s0301-472x(00)00617-2

178. Zhu H, Kaufman DS. An improved method to produce clinical-scale natural killer
cells from human pluripotent stem cells. Methods Mol Biol (Clifton NJ) (2019) 2048:107–
19. doi: 10.1007/978-1-4939-9728-2_12

179. Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR, et al. Human
embryonic stem cells differentiate into a homogeneous population of natural killer cells
with potent in vivo antitumor activity. Blood (2009) 113(24):6094–101. doi: 10.1182/
blood-2008-06-165225

180. Ames E, MurphyWJ. Advantages and clinical applications of natural killer cells in
cancer immunotherapy. Cancer immunology immunotherapy CII (2014) 63(1):21–8.
doi: 10.1007/s00262-013-1469-8

181. Caruso S, De Angelis B, Carlomagno S, Del Bufalo F, Sivori S, Locatelli F, et al. NK
cells as adoptive cellular therapy for hematological malignancies: Advantages and hurdles.
Semin Hematol (2020) 57(4):175–84. doi: 10.1053/j.seminhematol.2020.10.004

182. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. Nk cell-based cancer
immunotherapy: From basic biology to clinical development. J Hematol Oncol (2021) 14
(1):7. doi: 10.1186/s13045-020-01014-w
frontiersin.org

https://doi.org/10.1016/j.cell.2021.02.018
https://doi.org/10.1016/j.ebiom.2021.103390
https://doi.org/10.1126/sciimmunol.abd6832
https://doi.org/10.1016/j.celrep.2020.108590
https://doi.org/10.1038/s41423-020-0402-2
https://doi.org/10.1016/j.mehy.2020.109777
https://doi.org/10.1186/s40425-019-0564-6
https://doi.org/10.1158/1078-0432.Ccr-16-2981
https://doi.org/10.1007/s00262-017-2100-1
https://doi.org/10.1080/2162402x.2018.1461305
https://doi.org/10.1097/cji.0000000000000059
https://doi.org/10.1056/NEJMoa1910607
https://doi.org/10.4049/jimmunol.1400859
https://doi.org/10.1186/s12885-015-2034-y
https://doi.org/10.1016/j.jcyt.2013.05.022
https://doi.org/10.1016/j.jcyt.2013.05.022
https://doi.org/10.3389/fimmu.2017.00087
https://doi.org/10.1038/s41571-020-0426-7
https://doi.org/10.1158/1078-0432.Ccr-11-1347
https://doi.org/10.3389/fimmu.2017.00631
https://doi.org/10.3389/fimmu.2017.00631
https://doi.org/10.3389/fimmu.2021.732135
https://doi.org/10.1111/j.1365-2141.2009.07768.x
https://doi.org/10.14348/molcells.2021.0078
https://doi.org/10.1038/s41598-019-55239-y
https://doi.org/10.1038/s41598-019-55239-y
https://doi.org/10.1016/j.jcyt.2020.12.002
https://doi.org/10.1016/j.jcyt.2020.12.002
https://doi.org/10.1016/s0301-472x(00)00617-2
https://doi.org/10.1016/s0301-472x(00)00617-2
https://doi.org/10.1007/978-1-4939-9728-2_12
https://doi.org/10.1182/blood-2008-06-165225
https://doi.org/10.1182/blood-2008-06-165225
https://doi.org/10.1007/s00262-013-1469-8
https://doi.org/10.1053/j.seminhematol.2020.10.004
https://doi.org/10.1186/s13045-020-01014-w
https://doi.org/10.3389/fimmu.2023.1101918
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lan Wu,
Vanderbilt University Medical Center,
United States

REVIEWED BY

Felipe Melo-Gonzalez,
Andres Bello University, Chile
Feiyue Xing,
Jinan University, China

*CORRESPONDENCE

Ze Mi

1961189949@qq.com

Pengfei Rong

rongpengfei66@163.com

SPECIALTY SECTION

This article was submitted to
NK and Innate Lymphoid Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 30 December 2022
ACCEPTED 13 March 2023

PUBLISHED 28 March 2023

CITATION

Zhang Y, Feng X, Chen J, Liu J, Wu J,
Tan H, Mi Z and Rong P (2023)
Controversial role of ILC3s in
intestinal diseases: A novelty
perspective on immunotherapy.
Front. Immunol. 14:1134636.
doi: 10.3389/fimmu.2023.1134636

COPYRIGHT

© 2023 Zhang, Feng, Chen, Liu, Wu, Tan, Mi
and Rong. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 28 March 2023

DOI 10.3389/fimmu.2023.1134636
Controversial role of ILC3s in
intestinal diseases: A novelty
perspective on immunotherapy

Yunshu Zhang1,2, Xuefei Feng3, Juan Chen1, Jiahao Liu1,
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1Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha,
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Kong SAR, China, 4Key Laboratory of Biological Nanotechnology of National Health Commission,
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ILC3s have been identified as crucial immune regulators that play a role in

maintaining host homeostasis andmodulating the antitumor response. Emerging

evidence supports the idea that LTi cells play an important role in initiating

lymphoid tissue development, while other ILC3s can promote host defense and

orchestrate adaptive immunity, mainly through the secretion of specific

cytokines and crosstalk with other immune cells or tissues. Additionally,

dysregulation of ILC3-mediated overexpression of cytokines, changes in

subset abundance, and conversion toward other ILC subsets are closely linked

with the occurrence of tumors and inflammatory diseases. Regulation of ILC3

cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for

treating tumors and intestinal or extraintestinal inflammatory diseases. Herein,

we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the

correlation of ILC3s and adaptive immunity, crosstalk with the intestinal

microenvironment, controversial roles of ILC3s in intestinal diseases and

potential applications for treatment.

KEYWORDS

innate lymphocyte cell, plasticity, secondary lymphoid organ, tertiary lymphoid tissue,
transcription factor, intestine homeostasis, inflammatory disease, cancer
Abbreviations: ILCs, innate lymphoid cells; LTi, lymphoid tissue inducer; DC, dendritic cell; RORgt, Retinoic

acid receptor-related orphan receptor g T; retinoic acid, RA; IBD, inflammatory bowel disease; CRC,

colorectal cancer; RBP-Jk, recombining binding protein suppressor of hairless k; SCA-1, stem cell antigen 1;

ILCP, ILC progenitors; LTiP, LTi progenitors; TLS, tertiary lymphoid structure; TF, transcription factor; SLO,

secondary lymphoid structure; HEVs, high endothelial venules; LTo, lymphoid tissue organizer; CP,

Cryptopatche; ILF, isolated lymphoid follicle; PP, Peyer’s Patche; GPR183, G-protein-coupled receptor

183, AMD antimicrobial peptides; ISL, intestinal stem cell; SFB, segmented filamentous bacteria; SCFAs short

chain fatty acids; UC, ulcerative colitis; CD, Crohn’s disease; GPCRs, G-protein-coupled receptors; TNF, anti-

tumor necrosis factor; XRE, canonical xenobiotic responsive; HIF, hypoxia-inducible transcription factors;

BATF, Basic leucine zipper ATF-like transcription factor.
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1 Introduction

Innate lymphoid cells (ILCs) are lymphoid-derived innate cells

that play a critical role in host defense and can be divided into the

following four subsets: NK cells, ILC1s, ILC2s, and ILC3s (including

lymphoid tissue inducer (LTi) or LTi-like cells) based on their

functions, cytokine profile, and transcription factor (TF) expression

during ILC development (1, 2).

ILC3s include three distinct lineages, NCR+ ILC3s (NKp46+

in mice and NKp44+ in humans), NCR- ILC3s and LTi/LTi-like

cells; ILC3s primarily reside in the mucosa of the gastrointestinal

tract, where they mediate the development of lymphoid tissue and

mucosal protection (3–5). LTi cells can express the ILC3-specific

TF RORgt and produce ILC3-specific cytokines, but they develop

from different progenitor lymphatic tissue inducer precursors,

while all other ILCs develop from precursors of innate lymphoid

cells (6). LTi cells develop embryonically and initiate the

formation of secondary lymphoid organs via LTbR signaling,

while the development of LTi-like cells is postnatal and cannot

induce the formation of secondary lymphoid organs (7). ILC3s are

crucial in response to bacterial infection in the gut, especially for

Citrobacter rodentium (8, 9). Once gut immune cells sense

bacterial antigens, tissue-resident dendritic cells (DCs) and

mononuclear cells produce numerous IL-23 and IL-1b-
stimulating ILC3s to produce IL-17 and IL-22 to maintain

intestinal homeostasis (4, 10–12). Furthermore, commensal

flora influences the functional characteristics of intestinal

NKp46+ cells. The levels of NKp46+ RORgt+ ILC3s are

significantly decreased in germ-free mice, indicating that

microenvironmental factors mediate these distinct effector cells

in the gut, and commensal organisms influence gut immunity via

a variety of sophisticated methods (13, 14). The development and

functions of NCR+ ILC3s are largely dependent on RORgt and IL-
7Ra (15–17). In addition, Notch acted on NCR- precursors. The

Notch intracellular domain translocates into the nucleus, where it

binds to recombining binding protein suppressor of hairless k
(RBP-Jk), eliciting the expression of RORgt, AHR, and T-bet;

thus, Notch is also an important signal for the generation of the

NCR+ ILC3 population (18). ILC3s and LTi cells are the first line

of defense in the response against pathogens. Thus, the deficit or

overactivation of their functions will result in gastrointestinal

disorders such as bacterial infection, inflammatory bowel disease

(IBD), and colorectal cancer (CRC) (19).

Recent studies have found that ILC3s and LTi cells are emerging

as an essential innate lymphocyte population for intestinal infection

and respond distinctly to different intestinal diseases (20). The

balance of ILC3s and LTi cells ensures host homeostasis, and their

regulation may contribute to the alleviation of both tumor and

inflammatory diseases. Here, we focus on recent encouraging

findings in the field of ILC3s and highlight the biological

mechanisms of ILC3s in intestinal diseases.
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2 Main transcription factors mediating
ILC3s and LTi/LTi-like cells
2.1 AHR

ILC3s express the specific TF aryl hydrocarbon receptor (AHR)

(16, 21). AHR is a cytosolic sensor of small polycyclic aromatic

compounds and can regulate Notch signaling in the formation of

isolated lymphoid follicles (ILFs). It has been observed that AHR

overexpression in NK cells could increase Notch2 expression, which

suggests that AHR could modulate the Notch pathway (22, 23).

TCDD, an AHR ligand, has also been found to induce the expression

of Notch transcripts in the gut through an AHR-dependent pathway.

AHR-/- mice exhibit significant RAR-related orphan receptor gt+
(RORgt) ILC deficiency, leading to a decrease in IL-22 production

and poor protection against intestinal bacterial infections (21).

Similarly, in a mouse model that lacks the expression of RBP-Jk,

which regulates the output of Notch signaling, the frequency of

RORgt+ ILCs was notably reduced, supporting the idea that Notch

signaling regulates RORgt+ ILCs. Interestingly, increased apoptosis in

RORgt+ ILCs is observed in the intestine of adult AHR-/- mice but

not in that of AHR-/- fetal mice (21).

Similarly, AHR-/- mice lack postnatally imprinted Cryptopatche

(CP) and ILFs but not embryonically imprinted Peyer’s Patche (PP),

indicating that RORgt+ LTi cells play an important role in the

generation of postnatal intestinal lymphoid tissues and that

heterogeneity in cell types plays a role in the organogenesis of

lymphoid tissue. The effects of AHR in inducing lymphoid

organogenesis are supposed to be related to its role in facilitating

LTi cell development, as LTi cells can recruit stromal cells and other

lymphoid cells to form the lymphoid structure. Moreover, the receptor

tyrosine kinase c-kit has also been identified as a downstream target of

AHR. AHR interacts with the canonical xenobiotic responsive (XRE)

element on c-kit, inducing the transcription of c-kit. Recent studies

have proven that c-kit can also regulate the frequency of postnatal

intestinal RORgt+ ILCs and lymphoid organogenesis. In mice that

express a receptor with impaired kinase activity, RORgt+ ILC

frequency diminished considerably, and the number of CPs and

ILFs decreased as well (24). These results suggest that AHR is

important for the maintenance and activity of postnatal RORgt-
ILCs, thereby mediating lymphoid organogenesis.

In addition, AHR activated by its ligands may result in Ncr1

fate-mapped ILC3s expressing higher levels of CD117 and IL-22,

leading to better protection against pathogens (25). Compared to

wild-type ILCs, AHR-deficient ILCs produce less IL-22, which is

closely associated with a high bacteria load (26). It has also been

found that AHR ligands that drive ILC3s are mostly endogenous

ligands, such as Kynurenine (tryptophan catabolite), and not

natural diet ligands (21, 27). These results suggest that intestinal

commensal bacteria that participate in the synthesis of endogenous

AHR ligands could play an important role in the AHR-Notch

pathway and influence the generation of ILCs and postnatal

lymphoid tissue.
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2.2 ROR

RORgt, with 495 amino acids encoded by the Rorc gene (28), is

mainly expressed in TH17 cells and thymocytes (28). RORgt is the
key TF for ILC3s and LTi cells, regulating their development (29).

The formation of ILC3s in RORgt-knockout mice was completely

suspended, suggesting the paramount role of RORgt in ILC3

formation, but the precise regulatory mechanisms are still unclear

(30). Recent studies have shown that ILCs do not require RORgt
and RORa, another crucial ROR TF, for survival, but the

continuous expression of RORgt and RORa is closely associated

with their metabolism, proliferation and functions (31). When

RORgt and RORa expression is lacking, the expression of crucial

metabolism regulators such as Arg-1 diminishes notably, and thus,

the cells lose their phenotype and functions. Meanwhile, RORgt-
RORa- T-bet+ NCR+ ILC3s also convert to ILC1s (31). The

expression of RORgt is a potential signature to recognize IL-17-

and IL-22-producing cells in both adaptive and innate immune

responses. RORgt is crucial in controlling ILC3s producing IL-17

and IL-22 and promoting the development of LTi cells (12). LTi

cells constitutively express RORgt, and IL-23 can upregulate the

expression of RORgt (12, 21). In addition, current studies have

confirmed that one of the most important functions of RORgt is
mediating the differentiation of proinflammatory TH17 cells (28,

32–34). Thus, RORgt is a promising therapeutic target in treating

gut inflammation and chronic autoimmune diseases (34). In the

context of temporary intestinal infection with Citrobacter

rodentium, inhibition of RORgt in mice reduced cytokine

production from TH17 cells but not ILCs, selectively preserving

innate immunity (34). Withers et al. found that the transient

inhibition of RORgt led to remarkably favorable results in mouse

models of intestinal inflammation and suggested that the inhibition

of RORgt is an effective strategy during intestinal inflammation. It

has been identified that ILCs expressing RORgt, Thy1 and stem cell

antigen 1 (SCA-1) accumulate in the inflamed gut, which is

triggered by IL-23, but RORgt- mice fail to develop innate colitis

under IL-23 stimulation. Thus, RORgt, a TF of IL-23, has a

functional role in IL-23-induced innate colitis (35).
2.3 T-bet

T-bet inhibits the transcription of Rorc, downregulating the

expression of RORgt (36). It has been confirmed that ex-ILC3s,

ILC3-to-ILC1 transitional subsets, upregulate the expression of T-

bet, which indicates that the balance between RORgt and T-bet

plays an important role in ILC3-ILC1 equilibrium. Fiancette et al.

observed that T-bet-/- RORgt-/- ILC3s failed to convert to ILC1s,

but a group of ILCs with unknown functions. They also failed to

produce IL-22 in response to IL-23 (31). This finding suggests that

in addition to RORgt, T-bet is indispensable for ILC3-to-ILC1

conversion. Similarly, Stehle et al. found that T-bet deficiency

could reverse the suppressive effect on lymphoid organogenesis

caused by RORgt deficiency in mouse model, and T-bet-RORgt-
innate lymphoid progenitors (ILCPs), instead of ILC3s, restored the

intestinal barrier via the secretion of IL-22 (37). Thus, the low
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expression of T-bet in ILC3s ensures the equilibrium of ILC

subgroups and the homeostasis of host immunity.
3 Connections and reversible
plasticity between ILC3s and
other subtypes of ILCs

ILCPs can differentiate into ILC1, ILC2 and ILC3 subtypes, and

the development of those ILCs depends on TFs, such as RORgt, T-
bet and GATA3. All ILC subgroups reserve other lineage-specific

genes and can be activated under stimulation. The activation of ILC

subset-associated signature cytokine loci allows ILC plasticity and

expression of specific cytokines that were initially expressed by

other ILC subgroups (38) (Figure 1).
3.1 Conversion between ILC1s and ILC3s

In the presence of IL-23, IL-12 and IL-1b, which are derived

from tissue-resident myeloid cells (3), CD127+ ILC1s differentiate

into ILC3s in a manner dependent on the TF RORgt. This process
can be accelerated in the presence of retinoic acid (RA) secreted by

DCs (30, 39). In contrast, DC-derived IL-12 could promote ILC3

differentiation to CD127+ ILC1 cells in vitro (39). Reversible

conversion between CD127+ ILC1s and ILC3s is a process reliant

on RORgt, RORa, T-bet, and other cytokines they are exposed to

(31). In response to bacterial infections or IL-1b and IL-12 (40),

NCR+ ILC3s convert into IFNg-producing ILC1s, following RORgt
downregulation and upregulation of T-bet (39). Similarly, Muraoka

et al. found that C. jejuni infection-induced IL-12, IL-15, and IL-18

could upregulate T-bet expression and downregulate RORgt
expression and therefore promote ILC3-to-ILC1 conversion and

inflammation progression. In addition, hypoxia-inducible
FIGURE 1

ILC plasticity. ILCs can be converted to each other through the
induction of cytokines, but the interconversion may induce diseases.
The types of ILC conversion are divided into the following four
types: 1) conversion between NK cells and ILC1s; 2) conversion
between ILC2s and ILC1s; 3) conversion between ILC3s and ILC1s;
and 4) conversion between ILC2s and ILC3s.
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transcription factor (HIF) 1a could upregulate the expression of T-

bet and support the conversion to ILC1s (41). It has also been

observed that ILC3s isolated from RORa-/- RORgt-/- mice acquire

more potent ILC1 types than those isolated from RORgt-/- mice. T-

bet-associated regulon activity was particularly predicted in

RORa-/- RORgt-/- ILC3s, while it was predicted in only one

cluster of RORgt-/- ILC3s (31). These results suggest that RORgt
deficiency initiates ILC3-to-ILC1 conversion and that T-bet-

associated regulon activity is fully activated in the absence of

RORa, which fully realizes conversion toward the ILC1 phenotype.
3.2 Conversion between ILC2s and ILC3s

Recent studies identified that the Notch transcriptional complex

binds to the Rorc gene locus and promotes RORgt expression,

conferring ILC3-like functions to ILC2s (42). Notch-induced ILC2s

can produce IL-17 (ILC3-characteristic cytokine) through Gata3

expression and increased RORgt expression (42). Therefore, Notch

may be a crucial driver in triggering ILC conversion. TGF-b
signaling also elicits ILC2s to differentiate into IL-17-producing

ILC3-like cells following the expression of IL-23R (43, 44). Ligands

of Toll-like receptor 2 activate ILC3s to produce IL-5 and IL-13,

which indicates that ILC3s could convert into ILC2s and that the

conversion between ILC3s and ILC2s is bidirectional (44).
3.3 Conversion between ILC2s and ILC1s

Under homeostatic conditions, the key TF GATA3 binds to the

Ifng-controlling element and restricts IFN-g production and ILC2-

to-ILC1 conversion (45). ILC2s can also differentiate into ILC1s.

Under the stimulation of IL-1b and IL-12, ILC2s enhanced the

expression of ILC1-related genes and acquired an ILC1 phenotype

with decreased expression of the TF GATA-3 (46). IL-1b could

induce this process. In contrast, only IL-12 stimulation could not

lead to conversion, which suggests that IL-12 may regulate

downstream signaling of the conversion process. IL-1b induces

IL-12 receptor B2 and upregulates the expression of ST2 and IL-17

receptor B, which are IL-33 and IL-25 receptor components on

ILC2s (45). Exposure to IL-4 could reverse this process (47).

However, IL-4 could not induce ILC1-to-ILC2 conversion. ILC2s

downregulate the expression of ILC2-specific GATA-3 and IL-33R

(ST3) in the presence of cigarette smoke and are gradually

converted into IFN-g-producing IL-12R+ IL-18R+ ILC1s (44).

The conversion of ILC2s to ILC1-like cells can be reversed by IL-

4; however, it has not been proven that ILC1s can convert to ILC2s

(43, 44).
3.4 Conversion between NK cells and ILC1s

It has been observed that NK-to-ILC1 conversion could be

induced by TGF-b and IL-12 in a mouse model, while subsets with

mixed NK and ILC1 features have been discovered in humans (48).

The TF TGF-b supports NK-to-ILC1 conversion by upregulating
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the expression of T-bet while repressing EOMES. Another TF,

SMAD4, binds to TGF-b receptor 1, suppressing the TGF-b
signaling pathway. In the SMAD4-deficient mouse model, NK

cells respond more strongly to TGF-b than those in normal mice,

and the abundance of ILC1s is higher than that in the control group

(49). However, the ILC1-to-NK conversion is still unclear.

In short, we suggest that the plasticity of ILCs is closely related

to transcriptional regulation and that conversions are highly related

to distinct pathological processes (50). In intestinal diseases (40),

IL-12 elicits ILC1s to switch into ILC3s, whereas IL-1 plus IL-12

collaboratively induces ILC2s to convert into ILC1s in respiratory

diseases, and overactivation of the IL-17 and IL-22 pathways results

in escalation of NCR+ ILC3s in patients with psoriasis (51–53). In

patients with COPD, the increase in ILC1s appears to be associated

with poor prognosis (44). Blockade of conversion-promoting

cytokines such as IL-1b and IL-12 or activation of IL-4 may help

to reverse ILC2-to-ILC1 conversion and alleviate chronic

inflammat ion . Thus , convert ing ILCs may resu l t in

autoimmunity, inflammation, and carcinoma (42). Therefore,

further exploration of conversion between ILCs is necessary, as

the conversions between distinct ILC subgroups may be useful

biomarkers or predictable signs (Figure 1).
4 ILC3s in initiating the secondary
lymphoid organ

ILC-driven TLSs are similar to secondary lymphoid organs (54–

56). The formation of TLSs is under the continuous stimulation of

ongoing chronic inflammation (54). Local activation of T cells and

B cells in TLSs results in faster immune responses and better efficacy

(57). LTi cells express integrin a4b7 that interacts with MAdCAM-

1 on high endothelial venules (HEVs), which allows them to

migrate toward lymph niches (future lymphoid organ sites) such

as the intestine, fetal spleen and thymus (58–60); the migration of

LTi cells leads to the expression of adhesion molecules and

chemokines that are involved in lymphoid organogenesis through

the lymphotoxin-a/b receptor (LTaR/LTbR) pathway (15, 61, 62).
In addition, TNF expressed by LTi cells binds to TNFR1 on LTo

cells and can facilitate SLO formation synergistically with the LTbR/
LTaR pathway, activate the noncanonical NF-kB pathway to

produce chemokines and adhesion molecules and enhance LTbR
engagement, thereby forming a positive feedback loop (63).

Consequently, LTi cells stimulate lymphoid tissue organizer (LTo)

cells to secrete CXCL13, CCL19, and CCL21 through the LTbR
pathway and consequently recruit hematopoietic cells via the

expression of CXCR5 and IL-7R (64). The activated LTo cells

could differentiate into fibroblastic cells, marginal reticular cells

and follicular DCs, providing a reticular structure for migrated

cells. In addition, activated LTo cells in turn recruit LTi cells via the

expression of CXCL12, CXCL13, CCL19 and CCL21. The crosstalk

between LTo and LTi cells and the increased LTa1b2 expression

induced by B cells and LTi cells via CXCR5 signals ensures

sustained LTo-LTi stimulation, which forms positive feedback

loops (64, 65). Those recruited T cells, B cells, DC cells, etc., then

form T or B-cell areas. Growth factors released by LTo cells, such as
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VEGF, FGF and HGF, contribute to the formation of HEVs and

lymphatic vessels, which consequently ensures mature SLO

formation (54) (Figure 2).

In mouse intestines, secondary lymphoid organ CPs,

approximately 1000 cell clusters, are mainly composed of LTi-like

cells, DCs. Stromal cell populations are situated at the bottom of

intestinal crypt structures (21, 58). In addition, as a site where B

cells are recruited, CPs can develop into ILFs, which resemble TLSs

in structure (66), and accumulate more lymphocytes and stromal

cells. Consequently, highly organized ILFs develop into mature

lymphoid structures after bacterial colonization in the gut (58). LTi

cells located in lymphoid niches trigger LTo cells to secrete

CXCL13, CCL19 and CCL21 to recruit B cells, T cells and DCs to

form ILFs via LTi cell-stromal gathering (16, 58, 67). The number

and size of CPs and ILFs are variable, depending on the microbiome

(68), while the number and size of location PPs are fixed

embryonically. Moreover, the development of ILFs partially

depends on Notch signaling induced by AHR, but when Notch

signaling is lost, LTi cells, CPs and ILFs are less impaired than AHR

deficits, indicating that there are different signaling pathways that

have similar functions to Notch (69). However, LTi cells in mature

mice failed to initiate the formation of SLOs; the specific regulatory

mechanism is still unclear, but current studies suggest that these

may be related to changes in biomarkers on LTi cells during

different life stages.

Oxysterols are ligands for LTi-expressed G-protein-coupled

receptor 183 (GPR183), which has been verified to regulate ILC3s

since GPR183 can modulate immune cell migration (70). GPR183-

LTi cells cause formation deficiency in CPs and ILFs, and in the

Ch25h-lacking mouse model, the same phenotype was also

observed. 7a,25-OHC (GPR183 ligand) produced by fibroblastic

stromal cells attracts GPR183+ LTi cells to CP formation sites. This

process stimulates the crosstalk of LTa1b2+ ILC3s and LTbR+
stromal cells, which facilitates GPR183+ B-cell recruitment to form

ILFs (71). When lacking the GPR183 pathway, microbiota, CXCL13
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and CCL20 could activate B-cell recruitment to form B-cell follicles

and ILFs in the small intestine (72). Thus, the 7a,25-OHC-GPR183

pathway is crucial for lymphoid tissue formation in the colon, but

this pathway is only an alternative in the small intestine (71–73).

LTi-induced TLS formation is linked with better survival and

better prognosis. Consistently, a recent study found that in NSCLC,

NCR+ ILC3s, similar to LTi cells, could induce the expression of

VCAM-1 and ICAM-1 on MSCs and lead to the formation of

lymphoid tissue (74). In addition, LTi cells or LTi-like ILCs also

promote the formation of TLSs in extraintestinal tissues. B cells

experienced more active effector differentiation, clonal proliferation

and isotype switching, and T cells also expressed more activation

markers in TLSs. Increasing evidence has shown that LTi-drived

TLSs contribute to a favorable prognosis in extraintestinal cancers,

such as lung cancer, pancreatic cancer and melanoma (54, 75).

Thus, inducing the formation of TLSs may be a promising strategy

for both intestinal and extraintestinal tumors.
5 Roles of different subtypes of ILC3s
in maintaining intestinal homeostasis

ILC3s mainly reside in intestinal mucous, participate in innate

responses and protect against pathogens (2). ILC3s are a large

RORgt+ ILC population that can be divided into the following three

distinct lineages: LTi cells, NCR+ ILC3s and NCR- ILC3s (30). NCR

+ ILC3s can produce IL-17, IL-22 and GM-CSF, and mouse Nkp46

+ ILC3s also express IFN-g (76). The pathogen defense role of ILC3s
predominantly relies on IL-22, and this function can be enhanced

by RA (3, 19). NCR- ILC3s primarily express IL-17, while NCR+

ILC3s mainly produce IL-22. In the presence of IL-1b plus IL-23,

mouse NCR- ILC3s could develop into NCR+ ILC3s in vitro (30).

LTi cells facilitate the formation of lymphoid tissue at the fetal stage.

It is difficult to identify LTi cells and NCR+ ILC3s based on

biomarkers, but they have different development paths. In the
FIGURE 2

The roles of LTi cells in the development of secondary lymphoid organs. The formation of SLOs in the mouse intestine strictly depends on LTi cells.
SLO development is highly reliant on the crosstalk between LTi cells and LTo cells and consequently immune cell recruitment, reticular scaffold
formation and HEV or lymphoid vessel formation. In addition, positive feedback loops between LTi and LTo cells sustain sufficient activation signals
for the development of SLOs. The location of PPs is fixed embryonically, and their formation cannot be induced by bacteria after birth, while CP and
ILF formation is more flexible; the initiation of CPs or ILFs can occur both prenatally and postnatally. In addition, the unevenly colonized ILFs indicate
that the gut microenvironment, which includes microbes and dietary metabolites, could exert a crucial role in ILF development.
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adult stage, LTi-like cells are similar to LTi cells in gene expression,

but they cannot initiate secondary lymphoid organ formation (7).
5.1 ILC3s

ILC3s play an important role in protecting against bacteria

through the secretion of IL-22. GPR183, an ILC3-expressed

chemotactic receptor, modulates the accumulation of ILC3s,

which is required for the production of IL-22 (69, 77). Chu et al.

confirmed that IL-22-producing ILC3s were reduced in GPR183-/-

mice, suggesting that the GPR183 pathway promoted IL-22

production by inducing the accumulation of IL-22-producing

ILC3s, and no other ILC3 subsets (77). IL-22 can induce the

release of antimicrobial peptides (AMPs), establishing a gradient

of bactericidal activity (78), facilitating antimicrobial defense and

maintaining the epithelial barrier by promoting epithelial cell

proliferation (79–81). Additionally, IL-22 has been proven to

alleviate gut inflammation by promoting the production of mucus

and then improving the epithelial barrier (82). It was observed that

IL-22-deficient mouse models infected with Citrobacter rodentium

developed UC (8, 19, 83). In addition, ILC3-derived IL-22 supports

Lgr5+ intestinal stem cells (ISLs) to protect against inflammation

(84). IL-22 acts directly on Lgr5+ ISLs, inducing phosphorylation of

STAT3, which is vital for IL-22-dependent epithelial regeneration,

especially after tissue damage (85). Moreover, IL-22-promoting

fucosylation of intestinal carbohydrates favors commensal

bacteria colonization but not pathogenic bacteria colonization

because most of them cannot utilize carbohydrate fucose as an

energy resource (86). Thus, IL-22 could prevent intestinal

inflammation by promoting beneficial commensal bacterial

colonization (43).

ILC3-derived IL-17 and GM-CSF also mediate pathogen

defense, but their efficacy is not as potent as that of IL-22. NCR-

ILC3-derived IL-17 expressed ROS and a-defensin to recruit

neutrophils, thereby enhancing the epithelial barrier (30). GM-

CSF can induce the generation of IL-10 and RA, inducing the

formation of oral tolerance via activation of DCs and macrophages

(30). Therefore, NCR+ ILC3s could protect homeostasis in the

intestine through the efficacy of cytokines they secrete. IL-22 is a key

ILC3-derived cytokine that protects the integrity of the epithelial

barrier, regulates the gut microbiota and defends against pathogens.

However, ILC3s also play an important role in extraintestinal host

defense. Similar to ILC3 protection against intestinal bacteria, ILC3s

also induce immune defense in lung diseases, especially

Mycobacterium tuberculosis. Upon host infection with

M.tuberculosis, ILC3s upregulate proinflammatory-expressing

genes and thereby recruit macrophages and neutrophils to fight

against the infection (87).
5.2 LTi/LTi-like cells

Both NCR+ ILC3s and LTi cells could produce IL-22 but in

different niches of intestinal lymphoid structures/lamina propria.

Deficiency of the ILC3 response results in expanding segmented
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filamentous bacteria (SFB). It increases the incidence of colitis (88–

90). Nevertheless, the expansion of SFB and homeostasis dysbiosis

were not observed in specific NCR+ ILC3-deficient mice, suggesting

that LTi cells may have particular functions in ILC3-induced

antimicrobial immunity (9). LTi cells, the first identified ILC

subgroup, produce IL-22, IL-17A and IL-17F, and they develop

from lymphatic tissue inducer precursors that differ from other

ILCs (7). Although the lineage development of LTi cells is different

from that of NCR+ ILC3s and all other ILC subtypes, both subtypes

of ILC3s play an important role in mucosal protection (7, 12, 91).

CCR6+ LTi cells locate in the intestine embryonically, develop

distinctly from other ILC populations and, more importantly,

promote lymphoid tissue development in the presence of

lymphotoxin-b and TNF during embryogenesis (30, 71, 92).

CCR6+ LTi cells, the majority of ILC3s in lymphoid organs,

internalize antigens and present antigens to CD4+ T cells, activating

the production of T-cell-dependent antibodies (7). In the presence

of IL-1b, LTi/LTi-like cells in lymphoid organs express CD80 and

CD86 and produce IL-2, TNF-a and IFN-g to fully activate T cells,

and a specific discussion about the effects of LTi/LTi-like cells in

antigen presentation and regulation of T cells will be presented in

Section 5.1 (93).

In the fetal stage, LTi cells play a critical role in secondary

organogenesis (94). As we mentioned above, LTo cells (95, 96), as a

specialized stromal cell group, produce CXCL13, which recruits LTi

cells to form the initial hematopoietic cell cluster (65, 95, 96).
6 ILC3s interaction with adaptive
immune cells

6.1 T-cell

ILC3s could convert to MHC-II+ ILC3s via Basic leucine zipper

ATF-like transcription factor (BATF)-induced enhanced chromatin

accessibility of MHC-II antigen processing and presentation genes

(97). MHC-II-expressing ILC3s present antigens to CD4+ T cells

and result in suppression of cellular immunity and humoral

immunity in the intestine (98). It has been demonstrated that

MHC-II+ CCR6+ ILC3s could downregulate CD4+ T-cell

abundance and TH17 cells while upregulating regulatory T cells

(Tregs) through antigen presentation in the intestine (99). MHC-

II+ CCR6+ ILC3-induced antigen presentation could result in the

upregulation of Nur77 and Bim, which have been verified to be

associated with negative selection in the thymus (99). Under

infection with SFB and H. hepaticus, TH17 cells were expanded,

and the differentiation of Tregs was impaired significantly in an

MHC-II-deficient mouse model (100). This indicates that MHC-II+

ILC3s are necessary to protect the intestinal microenvironment by

suppressing inflammatory T-cell expansion.

However, splenic ILC3s upregulate the expression of surface

MHC-II molecules, activate CD4+ T cells and upregulate the

expression of the costimulatory molecules CD80 and CD86 under

stimulation with IL-1b (101). It has also been reported that the

abundance of TH17 cells and IgG titers are significantly reduced in

MHC-II-deficient ILC3 mouse spleens (93). These inconsistent
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results also showed that the function of ILC3s is associated with

different microenvironments. In addition, the microbiota triggers

the production of IL-23 and consequently downregulates MHC-II+

ILC3s under steady conditions, while virus-induced IFN-g can

promote the expression of MHC-II and induce the proliferation

of CD4+ T cells under viral infection (101). Thus, alteration of the

microenvironment could be an effector that regulates the MHC-II+

ILC3-driven T-cell response.

IL-2 has been reported to exert protective effects that could play

a critical role in the generation and function of CD4+ T cells.

Recently, Zhou et al. found that the transcription level of IL-2 in

ILC3s is much higher than that in IL-2-producing CD4+ T cells

through RNA sequencing of the small intestine. IL-2 transcription

in ILC3s could be specifically induced by macrophage-derived IL-

1b. Consistent with a mouse model, patients with Crohn’s disease

have diminished IL-2+ ILC3s in the intestine but no remarkable

difference in other IL-2-producing cells compared to healthy

controls (102). However, MHC-II+ CCR6+ ILC3s could induce

IL-2 withdrawal through their combination with IL-2 and initiate

the TCR-induced apoptotic program, as the IL-2 requirement of T

cells is intrinsic, but T-cell apoptosis could be reduced when given

additional IL-2 (99). These results showed that a deficit in the IL-

1b-ILC3-IL-2 axis could lead to changes in the abundance of CD4+

T cells and Tregs and impaired immune regulation in the intestine.

Moreover, LTi-like cells induce T-memory and T-independent

antibody responses by expressing APRIL, BAFF, CD30L and

OX40L (88). Memory CD4+ T cells are RORgt dependent. A

marrow chimeric mouse model showed that LTi cells are crucial

RORgt-expressing cells, supporting memory CD4+ T-cell survival

in the absence of antigen stimulation (88).
6.2 B-cell

ILC3s could mediate IgA responses with or without interacting

with T cells. Human tonsillar NKp44p ILC3s secrete the B-cell

activation factor BAFF, indicating that ILC3s support B-cell

activation and survival in mucosal tissues to facilitate the

production of IgA antibodies (89). In addition, CCR6+ LTi cells

induce secondary lymphoid structure formation and contribute to

the accumulation of B cells, which is required to synthesize T-

independent IgA (90). Within PPs and ILFs generated by LTi cells,

B cells can also interact with CD40L+ CD4+ T cells and then

convert into IgA+ plasma cells, promoting intestinal immunity (66,

90). Strikingly, one recent study proved that ILC3s could suppress

the generation of IgA+ B cells to protect against both commensal

and pathogenic bacteria by presenting antigens to T follicular helper

cells (Tfhs) and suppressing the Tfh response, except in PPs or the

intestinal lamina propria (98). Tfh cells, a distinct lineage of CD4+

T cells, play an important role in assisting B-cell responses (103). In

mice that lack ILC3-intrinsic MHC-II expression (MHCIIDILC3),
the Tfh response increased in mesenteric lymph nodes, and IgA+ B

cells notably increased in the colon. A number of studies have

reported that mucosal bacteria such as Helicobacter and

Mucispirillum help to build up mucosal defense in the early

stages of life (104). However, mucosal bacteria fail to colonize
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colon niches due to dysregulation of the IgA response in the absence

of ILC3s (98). Thus, ILC3s could mediate intestinal bacterial

colonization to maintain homeostasis by regulating the IgA

response. Therefore, further studies examining the connections

between LTi cells and B-cell immunity for the important role of

LTi cells in adaptive immunity may be helpful for the treatment of

cancer, autoimmune diseases and inflammatory diseases.
7 Crosstalk between ILC3s, dietary
metabolites and the gut microbiota
alters the intestinal microenvironment

Trillions of microbes colonize the intestine; the crosstalk

between commensal microbes and ILC3s residing in the gut plays

a vital role in regulating the intestinal microenvironment and

intestinal health (105). Current studies have found that dietary

me tabo l i t e s can ind i r ec t l y modu la t e the in t e s t ina l

microenvironment by altering the gut microbiota. In this review,

we present the idea that the diet could mediate the intestinal

microenvironment through crosstalk between the gut microbiota

and ILC3s. Dietary metabolites impact the structure and activity of

intestinal microbes and then regulate intestinal immunity. Recent

studies have proposed that dietary metabolites modulate the

functions of ILC3s through TFs and thereby stimulate specific

transcription programs (71). A ketogenic diet, characterized by

low carbohydrate and high fat, could alleviate colitis by reducing

ILC3s by altering the gut microbiome. In addition, a ketogenic diet

increased the abundance of intestinal bacteria such as Akkermansia

and butyric acid-producing Roseburia, which are conducive to the

maintenance of intestinal health. It has been confirmed that the

microbiota plays an important role in the physiology of ILC3s and

that a ketogenic diet-altered intestinal microbiota alleviates

inflammation by reducing the frequency of ILC3s (106).

Consistently, the endogenous Trp catabolite kynurenine can also

modulate ILC3s by activating the intestinal microbiota (27).

Kynurenine activates the AHR-Notch pathway and consequently

promotes ILC3 production of IL-22 (107). ILC3-regulated immune

responses allow colonization of commensal microbiota while

providing resistance to C. albicans. These results suggest that

dietary metabolites could activate the ILC3-induced mucosal

innate response, which mainly relied on IL-22, with the

participation of gut microbiota. However, it is still unclear which

signals from the microbiota specifically induce IL-22 production.

Vitamin A, an important nutrient, is enriched in fruits,

vegetables, dairy products and so on. The metabolites of vitamin

A, RA, play a vital role in fetal LTi cell development and lymphoid

tissue formation (108). ID2+ RORgt+ CD4+ LTi cells differentiated

from ID2+ RORgt+ CD4- LTi cells initiate the formation of SLOs

(109). Blockade of the RA signal resulted in a decrease in ID2+

RORgt+ CD4- LTi cells and SLO density, while the frequency of

ID2+ RORgt+ CD4+ LTi cells increased after RA stimulation of

lymph node cells (109). In addition, a diet lacking RA hinders ILC3

proliferation and the development of a secondary lymphoid organ

(110). Moreover, mice fed a vitamin A-deprived diet had a notable
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decrease in ILC3s and ILC3-derived cytokines IL-22 and IL-17,

while ILC2s and ILC2-derived cytokines such as IL-4, IL-5 and IL-

13 were increased, suggesting that vitamin A may be related to the

equilibrium between ILC2s and ILC3s (111). Additionally, RA

secreted by DCs can accelerate the differentiation of ILC1s into

ILC3s (30, 39).

Short-chain fatty acids (SCFAs), metabolites of dietary fibers

(DF), are mainly produced by microbial fermentation (112). As the

most abundant microbial metabolites in the intestine, SCFAs,

combined with G-protein-coupled receptors (GPCRs), could

support antibody production, promote T-cell production of IL-10

and stimulate ILC2s and ILC3s (105). It has been observed that the

abundance of ILC3s in mice fed high DF (high SCFAs) was much

higher than that in mice fed low DF (high SCFAs), while ILC1s in

mice fed high DF were much higher; the expression of IL-17A, IL-

22 and Ffar2 (GPCR expressed by ILCs) in mice fed low DF was

obviously lower than that in mice fed high DF (113). SCFAs activate

the STAT3, STAT5, mTOR and PI3K pathways to support ILC

proliferation following Ffar2 activation. In addition, Chun et al.

found that Ffar2 could also regulate the expression of ILC3

apoptotic or survival factors (105). Notable decreases in gut

pathogens and inflammation remission in the high DF group

showed the positive role of SCFAs in improving enteric immunity

against intestinal infection. Taken together, these results show that

dietary metabolites could modulate ILC3-induced intestinal

responses through the activation of ILC3s or the regulation of

ILC3 conversion. In addition, as we mentioned above, 7a,25-OHC

binding to GPR183 could also contribute to host defense by

supporting SLO formation (71).

Considering the crosstalk between dietary metabolites that

exerts an eminent effect on ILC3s, understanding the mechanism

of crosstalk between enteric microbes and ILC3s through diet

metabolism helps to alleviate the progression of intestinal

inflammatory diseases (Figure 3).
8 ILC3s in intestinal disease: Foes
or friends?

8.1 Dysbiosis of ILC3s contributes to the
development of IBD

IBD, characterized by chronical gut inflammation, mainly

consists of ulcerative colitis (UC) and Crohn’s disease (CD) (114).

Recent studies found that ILC3s support the mucosal homeostasis

of intestine but the dysregulation of ILC3s population would result

in the formation and progression of IBD (30). Increased IFN-g-
producing ILC1s were also found in inflammatory intestine from

IBD patients (19). It has been proven that in gut inflammatory

tissue, the frequency of ILC3s was decreased in patients with IBD,

but the number of ILC1s was increased, which suggests that the

conversion of ILC3s to ILC1s could also contribute to the

deterioration of IBD (115). Moreover, the reduction in ILC3s are

also closely linked with the severity of IBD (115). The increased
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frequency of ILC2s is also related to the progression of IBD (19, 30).

ILC2s upregulate the plasticity toward ILC1s and ILC2s separated

from mucosa of CD patients also showed the IFN-g producing

capability, which significantly contributes to intestinal

inflammation. In addition, ILC2-derived IL-33 was found to be

increased in colitis mice model. IL-33 therapy and ILC2 removal

was identified to be helpful for inflammation alleviation (116).

The GPR183 pathway is closely related to IBD (69). Colonic

inflammation could activate GPR183 pathway by increasing 7a,25-

OHC production. In CD40-AB treated mice model, the amount of

7a,25-OHC in colon would increase, in response to inflammation

(71). Overexpressed 7a,25-OHC excessively activates GPR183,

promoting ILC3s migration toward 7a,25-OHC and thus

contributing to ILC3 population dysregulation which further

induces IL-22 overexpression (69). ILC3-derived IL-22 can help

to maintain the homeostasis in intestine but overexpression of IL-22

would recrui t excess ive neutrophi l ce l ls to produce

proinflammatory cytokines and thus lead to quick and swift

enhancement of epithelial barrier permeability (30). However,

DCs stimulated by IL-25 downregulate IL-22 production,

suggesting a complicated regulatory mechanism of the DCs-ILC3

axis (11).

Vonarbourg et al. found that NKR+ RORgt+ LTi cells release

IL-22 to activate the epithelial barrier, but NKR+ RORgt- LTi cells
(ex-ILC1s) could produce IFN-g, which can induce the progression

of colitis (117–119). Therefore, the RORgt gradient could mediate

the functions of NKR+ RORgt+ LTi cells. T-bet and RORgt act
reversely and negatively regulate each other (120, 121). Chronic

colitis triggers the release of IL-12, which promotes NKR+ RORgt+
ILC3 conversion into IFN-g-producing ILC1s. Accumulation of

ILC1s in inflammatory tissue and overexpression of IFN-g results in
epithelial barrier damage and aggravation of intestinal

inflammation (40).
FIGURE 3

The crosstalk between ILC3s, dietary metabolites and the gut
microbiota in maintenance of intestinal homeostasis. Dietary
metabolites derived from microbes can regulate the biology of
ILC3s: Including modulates the frequency of ILC3s, the conversion
between ILC3 and ILC1 or ILC2 and the development of SLO,
thereby affecting the balance of gut immunity and thus the biology
of gut microbes and the homeostasis of intestine.
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8.2 Promising immunotherapy
in IBD treatment

Current medical treatment of IBD mainly focused on anti-

inflammation drugs. The usage of them could alleviate

inflammation but cause a variety of side effects. Therefore, it is

urgent to study new drugs with better safety and higher efficiency.

Over the past decade, ILC3s have been recognized to highly

correlate with IBD pathogenesis, and thus drugs targeting ILC3-

regulation factors may provide a novel strategy for IBD

treatment (122).

TNF could result in intestinal epithelium cell death and chronic

inflammation in intestine. Blocking of TNF is widely used in IBD

treatment. Recent studies have found that ILC3s could protect

intestinal epithelium from TNF-related apoptosis through

production of heparin-binding epidermal growth factor–like

growth factor (HB-EGF). IL-1b induces ILC3 to produce PGE2.

Then, PGE2 significantly stimulates ILC3s to produce HB-EGF.

The abundance of HB-EGF+ ILC3s was found to be decreased in

inflammatory intestine tissue (123).

Hueber et al. found that the IL-17A inhibitor, secukinumab,

showed worse efficacy than placebo. CD persistent disease activity

was observed in patients treated with secukinumab, leading to

inflammation aggravation and severe adverse events in patients

with apparent inflammation (124). Compared with the satisfying

efficacy of secukinumab in psoriasis, unpleasant outcomes in CD

treatment may be related to different immune microenvironment in

these diseases. IL-17A participates as an important factor in innate

intestinal protection (19); therefore, inhibition of IL-17Amay leads to

homeostasis dysbiosis (20). Clinical remission can be observed in

patients with CD who were treated with ustekinumab, an antibody of

the shared p40 unit of IL-12 and IL-23 (30, 125). Ustekinumab

treatment partially restored the balance of ILC subsets with a decrease

in ILC1s and an increase in ILC3s (126). However, p40 antibody only

attenuates CD in the first two month since ustekinumab not only

inhibits IL-12-induced ILC3-ILC1 conversion but also suppresses IL-

23-induced IL-22 production, blocking the crucial anti-inflammation

responses (127). Thus, an antibody, specifically blocking IL-12 may

show better efficacy in IBD treatment than an anti-p40 antibody.

Unlike the favorable prognosis in CRC, the increased TLS in the

DSS-colitis mouse model is linked with inflammation progression.

Previous studies have demonstrated that in response to

dysregulation of intestinal commensal bacteria and immune

tolerance loss, TLS develops during chronic inflammation. TLS

formation is an important characteristic of UC, which is more likely

to develop into extraintestinal inflammation than CD (128). Unlike

the protective role in CAC, it has been found that intestinal TLSs

can produce antibodies aberrantly under immune dysregulation

and lead to IBD progression. Thus, site-directed delivery of LTbR
inhibitors may be a more viable modality for the treatment of IBD

with less harm to other lymphoid structures. However, how to

utilize the antimicrobial defense function of TLSs and avoid

dysbiosis-related disease progression and the detailed regulatory

mechanism of TLSs in IBD remain unclear.

As we mentioned above, MHC-II+ ILC3s could downregulate

the frequency of CD4+ T cells and other inflammatory cells to
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maintain intestinal homeostasis. Recent studies have observed that

MHC-II expression was obviously reduced on ILC3s from pediatric

patients with IBD. Thus, MHC-II+ may be a promising target for

IBD treatment considering their crucial role in inducing apoptosis

of CD4+ T cells (99).

Considering the complicated regulatory mechanism of

intestinal immune and biological functions of cytokines in IBD

pathogenesis, it is hard to choose appropriate inhibition therapy in

CD treatment. Hence, further study of ILC3s mechanisms in IBD

is necessary.
8.3 Roles of ILC3s in colorectal cancer

IBD is likely to develop to CRC since IBD often results in

chronic inflammation in gut mucosa (19). ILC3s was identified as

possessing both pro- and antitumor properties (129). The frequency

of ILC3s decreased while that of ILC1s increased in CRC tissue

compared to benign adjacent tissue, which is consistent with IBD.

CCR6+ LTi cells could restrict the TH17 response and gut

inflammation via MHC-II to limit the invasion and progression

of CRC (130). However, the level of CCR6+ MHC-II+ LTi cells was

lower in CRC tissue (131). The ratio of CD4+ T cells to MHC-II-

expressing LTi cells notably increased in CRC, which indicates that

the interaction between T cells and CCR6+ MHC-II+ LTi cells in

CRC tissue is interrupted due to the decrease in MHC-II+ LTi cells

(131). Consistently, transforming growth factor-b (TGF-b) in the

tumor microenvironment suppressed the upregulation of HLA-DR,

CD80 and CD86, and consequently inhibited antigen-presentation,

leading to diminished T-cell responses (132).

In contrast, many studies identified that ILC3-specfic IL-22

contribute to progression and metastasis of intestinal tumors (19).

In a bacteria-driven CRC mice model, ILC3s and IL-22 are closely

linked with the progression of metastatic CRC (133). Soluble IL-22

binding protein derived from DCs can neutralized IL-22 and then

suppress cancer progression by preventing the binding between IL-

22 and IL-22R (134). Huber et al. found that in an IBD mouse

model, IL-22BP-/- mice were more likely to develop CRC (135). IL-

22BP is highly expressed in the normal microenvironment and

downregulated when intestinal tissue are damaged (135). IL-22

could promote gut tissue repair and epithelial cell proliferation

during intestinal damage, but uncontrolled IL-22 production would

result in tumorigenesis (136).

Microbial dysbiosis contributes to the pathogenesis of CRC

through regulation of ILC3s (137). Previous studies confirmed that

the accumulation of IL-22 was postnatal. IL-22 frequency gradually

increased after birth. Moreover, it has been shown that the

complexity of the intestinal microbiome is consistent with IL-22

production (138). C. albicans could stimulate macrophage IL-7

production, elicited ILC3s to produce IL-22, and consequently

promote CRC formation. IL-7 combined with IL-23 and IL-1b
has a synergistic effect on IL-22 secretion and leads to CRC

progression (138, 139). However, IL-1b could also support the

capacity of ILC3s to produce CXCL10 and high expression of

CXCL10 is associated with better antitumor responses (129).

These results may suggest that the controversial role of cytokines
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may be attributed to the difference in the intensity of signaling and

the tumor microenvironment.
8.4 Novelty perspective on treatments of
colorectal cancer

Similar to IBD, the excessive expression of IL-22 and

dysregulation of ILC3s also contribute to the development of

CRC. It has been confirmed that treatments targeting ILC3

regulating factors also have encouraging efficacy in patients with

CRC. LTi-driven TLS was closely linked with favorable prognosis in

CRC patients (140). Consistently, high TLS was identified as a

sensitive marker of more prolonged survival in clinical trails (141).

It has been confirmed that ILFs recruited lymphocytes to the tumor

microenvironment (TME), facilitating the antitumor immune

responses (73). Vaccination treatment using engineered CCL21-

expressing DCs increase the formation of TLS in melanoma

through the recruitment of T cells. The crosstalk of immune cells

sited in TLS enhanced the antitumor response and contributed to

the regression (142).

Moreover, recent studies has reported that under the

stimulation of IL-1b, ILC3-like cells upregulated the expression of

MHC-II (HLA-DA), CD70, CD80 and CD89, while TGF-b could

suppress this process and the expression levels of MHC-II and

CD89 were comparable to that in professional antigen-presenting

cells (APC). Enhanced antigen-presenting function could facilitate

cytomegalovirus specific memory CD4+ T cells. These results

suggest ILC3-like cells could respond to specific cytokines,

increase antigen-presenting properties and consequently regulate

memory CD4+ T-cell responses. Thus, whether we could enhance

CD4+ T cells response in CAC treatment by using cytokines that

mediate the antigen-presenting role of ILC3-like cells may be a new

perspective for CAC treatment (132). Thus, we suggest that

treatment using engineered chemokine delivery cells that activate

TLS in CRC and facilitating antigen-presenting to prompt T-cell

responses in tumor milieu may contribute to the treatment of CRC.
9 Conclusion

While many regulatory mechanisms of Group 3 ILCs in

maintaining intestinal homeostasis and promoting or alleviating

autoimmune diseases have been identified, several transcriptional

pathways and functions of specific cytokines are still unclear. Previous

studies have reported the following findings: 1. dysregulation and

conversion of ILC3s could accelerate the progression of tumor and

autoimmune disease while ILC3s supports the immunity against

pathogens and help maintain gut homeostasis. 2. ILC3s play a

protective role by producing cytokines, inducing TLS formation

and supporting the adaptive immune response. 3. Autoimmune

diseases or tumors account for ILC3s decrease and the conversion

of ILC3s to other ILCs subsets; this could also lead to disease

progression and hence positive-feedback loops. 4. The crosstalk

between ILC3s and microbes plays crucial role in the immune
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environment via diet metabolites produced by microbes. Here, we

point to 5 critical questions about how to utilize ILC3s in controlling

autoimmune diseases and tumors. 1. Could we block the expression of

specific TF like T-bet to restrict ILC3s conversion to ILC2s or ILC1s

to alleviate disease progression? 2. What signals or pathways ensure

that LTi cells support SLO in the fetal stage and could we induce SLO

formation and enhance the intestine’s immune system? 3. Could we

promote anti-pathogen immunity through a specific diet? Further

understanding of ILC3s regulatory mechanism and the crosstalk of

ILC3s and other ILC subsets, adaptive immune cells, lymphoid tissues

and microbes will have a place in future inflammatory disease and

tumor treatment. 4. Can all ILC conversion be reversed and how can

ILC plasticity be regulated to alleviate inflammation or tumor

progression? 5. Why does TLS exert a different role in IBD and

cancer, and what is the detailed regulatory mechanism of IgA

production and host defense functions in TLS? Thus, further study

of ILC regulatory mechanismmay help to understand the roles of ILC

in cancer and inflammatory diseases and provide a novel perspective

for innovative and targeted therapies.
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Innate lymphoid cells in cancer. Cancer Immunol Res (2015) 3(10):1109–14. doi:
10.1158/2326-6066.CIR-15-0222

30. Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-
edged sword in inflammatory bowel diseases. Cell Death Dis (2019) 10(4):1–12. doi:
10.1038/s41419-019-1540-2

31. Fiancette R, Finlay CM, Willis C, Bevington SL, Soley J, Ng ST, et al. Reciprocal
transcription factor networks govern tissue-resident ILC3 subset function and identity.
Nat Immunol (2021) 22(10):1245–55. doi: 10.1038/s41590-021-01024-x

32. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The
orphan nuclear receptor RORgt directs the differentiation program of proinflammatory
IL-17+ T helper cells. Cell (2006) 126(6):1121–33. doi: 10.1016/j.cell.2006.07.035

33. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, et al. A validated
regulatory network for Th17 cell specification. Cell (2012) 151(2):289–303. doi:
10.1016/j.cell.2012.09.016

34. Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, et al.
Transient inhibition of ROR-gt therapeutically limits intestinal inflammation by
reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med (2016)
22(3):319–23. doi: 10.1038/nm.4046

35. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, et al.
Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology.
Nature (2010) 464(7293):1371–5. doi: 10.1038/nature08949
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142. Mulé JJ. Dendritic cell-based vaccines for pancreatic cancer and melanoma.
Ann New York Acad Sci (2009) 1174(1):33–40. doi: 10.1111/j.1749-6632.2009.04936.x
frontiersin.org

https://doi.org/10.1084/jem.20180871
https://doi.org/10.1126/science.aaa4812
https://doi.org/10.1038/s41586-022-05141-x
https://doi.org/10.1038/s41467-020-15612-2
https://doi.org/10.1038/s41586-019-1082-x
https://doi.org/10.1016/j.immuni.2019.04.011
https://doi.org/10.1016/j.immuni.2018.04.013
https://doi.org/10.1016/j.immuni.2019.09.014
https://doi.org/10.1038/s41392-021-00549-9
https://doi.org/10.1038/s41392-021-00549-9
https://doi.org/10.1038/nature10491
https://doi.org/10.1038/nature13158
https://doi.org/10.1084/jem.20111594
https://doi.org/10.4049/jimmunol.1501106
https://doi.org/10.4049/jimmunol.1501106
https://doi.org/10.1126/science.1247606
https://doi.org/10.1080/10408398.2010.512671
https://doi.org/10.1038/s41385-020-0312-8
https://doi.org/10.1038/s41385-020-0312-8
https://doi.org/10.1038/nature06005
https://doi.org/10.1093/ecco-jcc/jjy119
https://doi.org/10.3389/fimmu.2022.867351
https://doi.org/10.3389/fimmu.2022.867351
https://doi.org/10.1016/S1074-7613(00)80638-X
https://doi.org/10.1038/ni.1930
https://doi.org/10.1016/j.imlet.2010.11.008
https://doi.org/10.1016/j.immuni.2010.10.017
https://doi.org/10.1016/j.it.2022.04.009
https://doi.org/10.1038/s41575-018-0084-8
https://doi.org/10.1038/s41590-021-01110-0
https://doi.org/10.1038/s41590-021-01110-0
https://doi.org/10.1136/gutjnl-2011-301668
https://doi.org/10.1056/NEJMoa1602773
https://doi.org/10.3389/fimmu.2020.01847
https://doi.org/10.3389/fimmu.2020.01847
https://doi.org/10.1056/NEJMoa033402
https://doi.org/10.3389/fimmu.2016.00308
https://doi.org/10.1038/s41590-021-01120-y
https://doi.org/10.1038/nature12240
https://doi.org/10.1016/j.cell.2021.07.029
https://doi.org/10.1038/s41467-020-15695-x
https://doi.org/10.1038/s41467-020-15695-x
https://doi.org/10.1084/jem.20122308
https://doi.org/10.1038/sj.gene.6363947
https://doi.org/10.1038/sj.gene.6363947
https://doi.org/10.1038/nature11535
https://doi.org/10.1016/j.cytogfr.2010.08.002
https://doi.org/10.1053/j.gastro.2011.04.011
https://doi.org/10.1053/j.gastro.2011.04.011
https://doi.org/10.15252/embj.2020105320
https://doi.org/10.1172/JCI121668
https://doi.org/10.1172/JCI121668
https://doi.org/10.3389/fimmu.2019.01884
https://doi.org/10.1002/ijc.28533
https://doi.org/10.1111/j.1749-6632.2009.04936.x
https://doi.org/10.3389/fimmu.2023.1134636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Fu-Dong Shi,
Tianjin Medical University General Hospital,
China

REVIEWED BY

Seokmann Hong,
Sejong University, Republic of Korea
Kazuya Iwabuchi,
Kitasato University School of Medicine,
Japan

*CORRESPONDENCE

John P. Driver

driverjp@missouri.edu

Sebastian Joyce

sebastian.joyce@vumc.org

SPECIALTY SECTION

This article was submitted to
NK and Innate Lymphoid Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 06 December 2022

ACCEPTED 22 March 2023

PUBLISHED 24 April 2023

CITATION

Joyce S, Okoye GD and Driver JP (2023)
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The large majority of lymphocytes belong to the adaptive immune system, which

are made up of B2 B cells and the ab T cells; these are the effectors in an adaptive

immune response. A multitudinous group of lymphoid lineage cells does not fit

the conventional lymphocyte paradigm; it is the unconventional lymphocytes.

Unconventional lymphocytes—here called innate/innate-like lymphocytes,

include those that express rearranged antigen receptor genes and those that

do not. Even though the innate/innate-like lymphocytes express rearranged,

adaptive antigen-specific receptors, they behave like innate immune cells, which

allows them to integrate sensory signals from the innate immune system and

relay that umwelt to downstream innate and adaptive effector responses. Here,

we review natural killer T cells and mucosal-associated invariant T cells—two

prototypic innate-like T lymphocytes, which sense their local environment and

relay that umwelt to downstream innate and adaptive effector cells to actuate an

appropriate host response that confers immunity to infectious agents.

KEYWORDS

NKT (natural killer T) cell, MAIT (mucosal-associated invariant T) cell, innate-like effector
lymphocyte, symbionts, pathobiont
Introduction: ‘For a secret offence, a
secret revenge’

This subtitle ‘For a secret offence, a secret revenge’ (see Box 1) exemplifies the

metaphorical descriptions of fin-de-siècle—turn of the 19th century, scientific discoveries

written for the benefit of the general public; this style, quite common then and in the early

20th (3, 5), remains in textbooks and lectures in pathology, microbiology, and

immunology. By that time, many—Antony van Leeuwenhoek (6), Robert Hooke (7),

Theodor Schwann (8), and Matthias Schleiden (9), had independently peered down the

microscope, developing the ‘cell theory’—the cell as the fundamental unit of life. Now
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entered Rudolf Virchow (10) who espoused ‘omnis cellula e

cellula’—every living cell derives from another cell, the melodic

phrase coined by François-Vincent Raspail (11)—from

observations of leukocythemia—leukemic cells in the blood of a

50-year-old woman and formed the cellular basis of disease (10, 12).

Robert Koch and Louis Jean Pasteur independently developed the

microbial basis of infectious disease (13), and Élie Metchnikoff

(previously Ilya Ilyich Mechnikov) whose astute observations of

cells swarming toward the splinter prick in the starfish larva and

their attempts to eat it, voraciously gnawing at it—that is termed

phagocytosis, birthed cellular immunology (5, 14, 15), while from

the opposing and warring Paul Ehrlich school originated humoral

immunity (15–17).

Viewed against this historic backdrop, ‘for a secret offence, a

secret revenge’ refers to the body’s elegant defense system working

against agents that cause infectious diseases—the battles raged

between immune cells and bacteria. The immune system is

generally described as a warring system that oftentimes wins

battles yet may lose a war: the morbidity and mortality caused by

severe acute respiratory syndrome coronavirus 2 infection is a sorry

reminder of the perils of the warring immune system. While it is a

warring system indeed, it does not attack indiscriminately. The

immune system has learnt over eons to coexist with billions and

zillions of bacteria and other microbes in a symbiotic habit.

Amid kämpfe uńd schlaćhten with microbes and other forms of

external (irritants and allergens) and internal (mutant cells and

metabolic toxicants) dangers, in complex multicellular metazoans

arose a sensing-and-actuating system—the immune system. In

vertebrates, the initial response to aforementioned dangers is

actuated by the older innate immune system. In vertebrates, the

innate immune system, which arose in early metazoan faunas—the

simple invertebrates, is made entirely of the myeloid lineage of

hematopoietic cells such as macrophages, dendritic cells and mast

cells in tissues and by monocytes, neutrophils, basophils, and

eosinophils patrolling the blood and, on demand, tissues as well.

As the innate immune system responds to danger, it alerts the

adaptive immune system, which kicks into full gear should the

innate immune response not restore the host’s altered milieu

inteŕieur (homeostasis) to its original state—or close to it. The

adaptive system is slow in acting and is made entirely of lymphoid

lineage cells. These cells sense alterations in the homeostatic state

with the use of antigen-specific receptors encoded by somatically

rearranged gene segments, clonally expressed by B and T
Frontiers in Immunology 0280
lymphocytes—the B-cell receptor (BCR) and ab T-cell receptor

(TCR). Such B and T lymphocytes together constitute the

conventional lymphocytes. The clonal expression of BCR and

TCR requires the priming of the adaptive immune system by

either immunization with antigen or natural infection for the

clonal expansion of the low-frequency antigen-specific

lymphocytes to clear infections and to protect against infectious

diseases. This requirement for priming distinguishes the adaptive

immune system from the innate, which reacts quickly, without the

need for prepriming.

Circa 1973, a non-B, non-T—the ‘null’ killer lymphocyte, which

could kill tumor cells without prior priming of the immune system,

was discovered. Now called natural killer (NK) cells, their discovery

alerted to lymphocytes that behave like the cells of the innate

immune system and featured the quiet annunciation of

unconventional lymphocytes (18). Next, a decade later, the start

of the year 1983 unveiled with the discovery of B lymphocyte

subsets: one that secreted natural antibodies (B1a) and the other

that produced antibodies to bacterial polysaccharides and T

lymphocyte–independent antigens (B1b) in addition to the

conventional B2 B cells of the adaptive immune system (19).

Then in ca. 1986 came the discovery of gd T cells, which express

the gd TCR genes—a kin to the ab TCR (20). The ensuing decades

announced the discovery of many more unconventional

lymphocytes (Figure 1): e.g., natural killer T (NKT) cells,

mucosal-associated invariant T (MAIT) cells, mouse CD8aa
intraepithelial T lymphocytes, mouse H-2M3-restricted T cells,

mouse/human H-2Qa1/HLA-E-restricted T cells, and human

group 1 CD1-restricted T cells as well as lymphoid tissue inducer

cells and innate lymphoid cells [reviewed in refs (21, 22).]. This

collection of unconventional T lymphocytes we here call innate/

innate-like effector lymphocytes.

The multitudinous innate/innate-like effector lymphocytes

share several common features. In addition to being of lymphoid

origin, they act quickly as they display a memory phenotype similar

to antigen-experienced conventional lymphocytes yet, unalike

conventional lymphocytes, retain no memories of past pathogen

encounters. After development, innate/innate-like effector

lymphocytes become home to secondary lymphoid and/or

nonlymphoid tissues. They are stationed at barrier sites where the

microbial consortia are known to congregate (19, 23, 24). As

discussed below in the “Hygiene Hypothesis” section, products

from these consortia facilitate the development and/or maturation
BOX 1 Fin-de-siècle—a turn-of-the-19th-century metaphorical description of the defense system as a warring system of the body that restores
balance when tipped over by an infection.

The subtitle ‘For a secret offence, a secret revenge’ owes to the title of one of the fables in ‘Vacation Stories: Five Science Fiction Tales’ written by the 1906 Nobel Laurate
Santiago Ramón y Cajal, published originally in the Spanish language assuming the alias of ‘Dr. Bacteria’. These fables were written for Cajal’s scientific friends. Famed for
the ‘neuron doctrine’ and precise and beautiful drawings of the nervous system (1), Cajal is less known for his artistic and literary works because much of these cultural
contributions were poorly recorded and archived. Cajal “wrote a collection of twelve fables or semi-philosophical, pseudoscientific tales that [I]” he “never dared take to press,
both for the oddness of their ideas and the laxity and carelessness of their style (2).” Fortunately, the collection of five science fiction works have survived Cajal and time in
‘Vacation Stories’; the remaining seven “sleep the slumber… far deeper than the so-called sleep of slumber[.]” not as “failed artistic works” as Cajal’s Preface would make the
reader to believe (2) but rather because those manuscripts were never found (3, 4).
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of a subset of innate/innate-like effector lymphocytes (25–29).

Those innate-like lymphocytes that express rearranged BCRs or

ab/gd TCRs recognize their cognate ligands by germ-line encoded

portions of the antigen-specific receptors using an innate
Frontiers in Immunology 0381
recognition logic (30–34). Innate/innate-like lymphocytes react to

self- and nonself-ligands: Some recognize H-2Qa1/HLA-E-

restricted self and/or microbial peptides, H-2M3-restricted N-

formylated mitochondrial/microbial peptides, group I and group
FIGURE 1

Innate-like effector lymphocyte functions mirror type 1, type 2, and type 3 effector cells. Natural killer T (NKT), mucosal-associated invariant T (MAIT),
and gdT cells are characterized by semi-invariant T-cell receptor (TCR) expression by contrast to conventional T cells express a diverse TCR (IMGT
nomenclature) repertoire. By contrast, innate lymphoid cells and NK cells do not express rearranged antigen receptors. Type 1 effectors include the
cytotoxic NK and CD8+ T cells and T helper (Th) 1 cells, as well as NKT1, MAIT1, and gdT1 cells. They require IL-12 for induction, which is bolstered
by IFN-g. T-bet and the related eomesodermin transcription factors control the differentiation of type 1 effector cells, which are essential for
immunity against intracellular pathogens. Type 2 effector cells include Th2, NKT2, and gdT2 cells. These cells are activated by IL-4 and require
GATA3 for their effector differentiation. Their physiologic functions—e.g., parasite expulsion, and pathologic—e.g., airway hypersensitivity, are
mediated by IL-4, IL-5, and IL-13 secretions. RORgt—the lineage specific transcription factor program type 3 effectors, which include Th17 and
NKT17, MAIT17, and gdT17 cells. Lineage-specific inducive factors include IL-6, TGF-b, IL-1b, IL-23, and IL-7. Type 3 effector cells secrete IL-17 and
IL-22 upon activation, by which they mediate tissue repair and confer immunity to extracellular bacteria and fungi.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1117825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Joyce et al. 10.3389/fimmu.2023.1117825
II CD1-restricted lipids—e.g., ab and gd T cells and NKT cells, or

major histocompatibility complex (MHC)–related 1 (MR1)-

restricted metabolites—e.g., MAIT cells. Others recognize ligands

directly without the need for MHC/non-MHC restricted

presentat ion—e .g . , intact prote ins , smal l molecules/

phosphometabolites—e.g., gd T cells, or phospholipids—e.g., B1a

cells and gd T cells. Further, inflammatory cytokines alone—e.g.,

type I interferons (IFNs) or interleukin (IL)-12 and IL-18 by

themselves—without the need for antigenic or agonistic ligands,

can activate innate-like T lymphocytes. Innate/innate-like effector

lymphocytes are quick responders; they can act as quickly as cells of

innate immune system or faster [reviewed in refs (21, 22)]. This

feature in several innate/innate-like effector lymphocytes is

ingrained during development by a genome regulatory network

under the control of a promyelocytic leukemia zinc finger

transcription factor (encoded by Zbtb16; reviewed in ref (35, 36)].

Activated innate/innate-like effector lymphocytes secrete a wide

variety of cytokines and chemokines with which they can steer

downstream type I, II, and III immune responses (Figure 2).

Thereby, they integrate sensory output/s received from the innate

immune system to provide context to downstream innate and

adaptive immune responses (35, 42). Here we review how NKT

cells and MAIT cells—two prototypic innate-like T lymphocytes,

sense their local environment and relay that umwelt to downstream
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innate and adaptive effector cells to actuate an appropriate response

that confers protection from infectious diseases.
Natural killer T and mucosal-
associated invariant T cells—two
peas in a pod

There are multiple types of NKT and MAIT cells that are

distinguished by their ab TCR usage and, consequently, the ligands

they recognize (21). The focus in this review is on NKT and MAIT

cells that express an invariant TCR a-chain: semi-invariant NKT

cells begotten from the rearrangement of TRAV11*02 (mouse

Va14i) or TRAV10 (human Va24i) to TRAJ18 and MAIT cells

from TRAV1-2 (mouse and human Va9i and human TRAV12/

TRAV20) to TRAJ33 rearrangement [reviewed in refs (35, 43–45)].

A curious feature of these rearrangements is not only the conserved

TRAV to TRAJ usage but also that this rearrangement results in

conserved residues that make up the CDR3a (complementarity

determining region 3a) loop of the TCR a-chain. Furthermore,

invariant Va14i a-chain pairs with TRBV13-2*01 (Vb8.2),
TRBV29*02 (Vb7), or TRBV1 (Vb2) b-chain to form a functional

mouse semi-invariant NKT cell TCR. Additionally, the Va24i a-
FIGURE 2

Immune functions of mouse NKT cells. NKT cell activation is initiated by semi-invariant NKT cell receptor interactions with cognate antigen and
bolstered by costimulatory interactions between CD28 and CD40 and their cognate ligands CD80/86 (B7.1/7.2) and CD40L, respectively. The
resulting activated NKT cells crosstalk with members of the innate and the adaptive immune systems by deploying cytokine and chemokine
messengers. Upon activation in vivo, NKT cells rapidly secrete a variety of cytokines and chemokines, which influence the polarization of CD4+ T
cells toward Th1 or Th2 cells as well as the differentiation of precursor CD8+ T cells to effector lymphocytes, and B cells to antibody-secreting
plasma cells. Some of these mediators facilitate the recruitment, activation, and differentiation of macrophages and DCs, which results in the
production of interleukin (IL)-12 and possibly other factors. IL-12, in turn, stimulates NK cells to secrete IFN-g. Thus, activated NKT cells have the
potential to enhance as well as temper the immune response. This schematic rendition is an adaptation of past reviews (35, 37–41) and works cited
in the text.
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chain pairs with the mouse TRBV13-2*01 orthologue—TRBV25-1

(Vb11) to form a functional human semi–invariant NKT cell TCR.

Akin to the semi-invariant NKT cells, MAIT cells pair with a

limited set of b-chains to form a functional MAIT cell TCR. The

conserved nature of the functional NKT and MAIT cell TCRs allow

them to recognize their respective ligands—CD1d+lipid/s and MR1

+vitamin metabolites, respectively, by means of conserved

interactions—i.e., with an innate-like recognition logic (reviewed

elsewhere: refs (29, 30, 34)].

In a similar vein, the pig semi-invariant NKT cells use the

pTRAV10 TCR Va gene segment, which is highly homologous to

segments encoding human TRAV10, mouse TRAV11, and rat

TRAV14S1—the canonical Va segments used by the semi-

invariant NKT cells in these species. The best alignments for

pTRAJ18*01 were TRAJ18, TRAJ18, and TRAJ18, the Ja18 gene

segments used by the human, rat, and mouse invariant a-chain,
respectively. pTRBV25 is most similar to human TRBV25-1 (Vb11),
mouse TRBV13-2*01 (Vb8.2), and rat Vb8.2—the canonical Vb
segments used by the semi-invariant NKT cells in these species (46).

NKT cell functions are controlled by a variety of lipid agonists

presented by CD1d molecules. These agonists include

glycosphingolipids such as a-galactosylceramide (aGalCer) and

a-glucosyldiacylglycerols and related compounds—both of host/

self and microbial origins (see Table 1 and references therein).

MAIT cell functions are controlled by metabolites in the riboflavin

biosynthesis pathway when presented by MR1 (43, 44, 59–62). One

such MAIT cell agonist is a derivative of vitamin B2 metabolite 5-

(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU),

which is synthesized by both symbiotic and pathogenic bacteria

(43, 44, 59, 60). Consequently, infections with bacteria- harboring

mutations in the rib gene/s prevent MAIT cell activation, which in

some infections can prove fatal (62).

By the last fin-de-siècle, the roles for NKT cells were implicated in

steering immune responses to pathogens: to bacteria—Salmonella

choleraesuis, Listeria monocytogenes, Mycobacterium bovis, and M.

tuberculosis; to viruses—hepatitis B virus and lymphocytic

choriomeningitis virus; to parasites—Plasmodium spp., Leishmania

major, and Schistosoma mansonii; and to worms—Nippostrongylus

brasiliensis [refs (63–80); see also Supplemental Table 1]. How NKT

cells were activated by these pathogens was not understood. At that

time, the only known NKT cell agonist was aGalCer (49, 81, 82).

aGalCer (KRN7000) was isolated from the marine sponge—Agelas

mauritianus, whose potent antitumor activity is mediated by NKT cells

(47–49, 83) (see Box 2). In the ensuing two decades, much has been

learnt about how NKT and MAIT cells control immune responses to

infections with bacteria and viruses, many of which do not

biosynthesize agonistic ligands. There are three distinct ways to

activate NKT and MAIT cells (Figure 3): the first is termed TCR

agonist–dependent direct activation. In this mode, the presentation of

the agonist aGalCer by CD1d or 5-OP-RU by MR1 activates NKT or

MAIT cells, respectively (Tables 1–3), to initiate their effector function/

s (reviewed in ref (35). The second mode is termed TCR agonist–

dependent and cytokine-assisted activation. Weak ligands—e.g., a-
galacturonosylceramide (aGalUCer) biosynthesized by Sphingomonas

spp (50, 51, 87, 111), aGalCer-like asperamide B by Aspergillus

fumigatus (52), a-glycosyldiacylglycerols from Borrelia burgdorferi
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and Streptococcus pneumoniae (54, 55), or self aGalCer or

isogloboside 3 (iGb3) induced by certain bacterial infections or sterile

inflammation [ref (37, 56, 158–160); for structures, see Table 1]—that

poorly activate NKT or MAIT cells require an immune push. That

push is provided by inflammatory cytokines produced by the activation

of DCs—e.g., IL-1b, IL-12, IL-18, or type I IFNs (96, 103, 116, 131, 155,
161). Hence, the context of infection can influence the activation of

NKT andMAIT cells. The third mode of activation occurs in a manner

independent of TCR stimulation but is reliant on cytokine/s alone. This

mode of NKT and MAIT cell activation is termed TCR-independent

inflammatory cytokine–induced activation. Bacteria that do not

biosynthesize agonistic lipids but contain microbial pattern

recognition receptor ligands such as lipopolysaccharide result in a

TCR-independent inflammatory cytokine response frommyeloid cells.

These inflammatory cytokines can activate NKT cells. This mode of

NKT andMAIT cell activation plays a protective role during infectious

diseases, especially caused by virus infections (156, 157, 162–166).

Once activated, NKT cells produce a variety of cytokines and

chemokines that steer downstream innate and adaptive immune

responses. This response includes type I, II, and III cytokines, which

are secreted by NKT1, NKT2, and NKT17 cells, respectively.

Corresponding MAIT1 and MAIT17 cells and attendant cytokine

responses are similarly described. The three subsets emerge under

the transcriptional activity of factors similar to those established in

conventional CD4+ T cells (Figures 1, 2). Broadly, akin to

conventional CD4+ T cells, NKT and MAIT cells play roles in

immunity to infections and tumors and in autoimmune and allergic

reactions. These features of NKT and MAIT cells are reviewed in

detail elsewhere (35, 38). In addition to the three NKT cell subsets,

NKT10 cells—which secrete IL-10—play regulatory functions in

conjunction with T regulatory cells. NKTfh cells—which provide

cognate and noncognate help to conventional B cells to secrete

antibodies—may control immunity to human pathogens such as

Borrelia hermsii, S. pneumoniae, and P. falciparum (167–169).

These features of NKT and MAIT cells are reviewed in detail

elsewhere (35),

Human NKT cell responses are as diverse as the mouse NKT

cells (170). Two functional subsets were recognized that were

segregated by the lack of CD4 or CD8 coreceptor expression

(NKT1) or by CD4 expression (NKT2). Human NKT1 cells

produce IFN-g and TNF-a and, when activated under the

influence of inflammatory cytokines, upregulate NKG2D and

perforin expression priming them for cytotoxic response against

infected cells and cancer cells (171, 172). Akin to mouse, the human

NKT2 subset, which produces IL-4 and IL-13 and their

accumulation in the lungs, may underlie the pathology in chronic

asthmatic patients (173). Activated human NKT cells also produce

IL-17 (170), which may reflect the existence of an NKT17 subset in

humans. Further, NKT17 andMAIT17 subsets are present in higher

frequency when compared to NKT1 and MAIT1 subsets in liver

perfusates, which produce IL-17 and IFN-g, respectively (174).

Human NKT and MAIT subsets have some semblance to mouse

NKT and MAIT subsets, but further studies are necessary to

understand how similar they are in the two species.

The evolutionary origins of NKT and MAIT cell subsets have

not been traced yet. Both NKT and MAIT cells arose as eutherian
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TABLE 1 Natural, synthetic, microbial, and self natural killer T (NKT) cell agonists: structures and properties.

Lipid
(class1)
origin

Chain
length2 Structure Agonist

activity 3,4 Ref.

Natural and synthetic

Agel 9b
(GSL)

The sponge
Agelas

mauritianus

C17 (C16-
Me) phyto

C24

O
HO

HO

O
HO

OH

HN

OH

O

OH Antitumor
(47,
48)

KRN7000
aGalCer
(GSL)

synthetic
analogue of
Agel 9b

C18-phyto
C26

O
HO

HO

O
HO

OH

HN

OH

O

OH

Very strong;
robust IFN-g, IL-

4, and other
cytokines

(49)

Microbial

aGalUCer
(GSL)

C18-phyto
C14

O
HO

HO

O
HO

OH

HN

OH

O

OH

O

Weak;
Sphingomonas

spp.

(50,
51)

Asp B (GSL)
Aspergillus
fumigatus

C20:2-C9

Me C16-
C2 OH

O
HO

HO

O
HO

OH

HN

OH

O OH

Weak (52)

Acyl-
aGlcChol
Helicobacter

pylori

C14

O

OHO
HO

HO

O

O

Strong; binds a
small NKT cell
subset (mo)

(53)

aGalDAG
(GGL)
Borrelia

burgdorferi

sn1-C18:1
sn2-C16 O O

O

O
O

HO

HO
HO

OH

O

Weak (mo)-to-
none (hu)

(54)

aGlcDAG
(GGL)

Streptococcus
pneumoniae

sn1-C18:1
sn2-C16 O O

O

O
OHO

HO
HO

OH

O

Weak (55)

Self—mammalian cells

aGalCer
(GSL)

C18
C24:1

O
HO

HO

O
HO

OH

HN

OH

O

IFN-g, IL-4 (56)

iGb3
(GSL)

C18-
C24 O

HO
O

HO

OH
HN

OH

O

O
O

OH

HO

OHO
HO

HO
HO

OH

O

Weak (mo)-to-
none (hu)

(57)
F
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1Agel, agelasphin; Asp B, asperamide B; Chol, cholesterol; DAG, diacylglycerol; GalCer, galactosylceramide; GalUCer, galacturonosylceramide; GlcCer, glucosylceramide; sn, stereo nomenclature
for glycerolipids; GGL, glycoglycerolipid; GSL, glycosphingolipid.
2sphingosine/phytosphingosine chain length indicated first and N-acyl chain length second,
3agonist strength based on Ref (58).
4relative potencies in comparison to aGalCer; mo, mouse; hu, human.
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innovations approximately 125 million years ago in an ancestor

after the therian mammals split to metatherians and eutherians—

the true placental mammals (35, 175, 176). Among mammals other

than the mouse and human, the development and function of NKT

cells in pigs—Sus scrofa (var. domesticus)—are intensely studied.
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Pig NKT cell subsets were recently described using the single-cell

RNA sequencing analysis of more than 11,000 differentiating

thymic NKT cells (177). The vast majority of porcine NKT

thymocytes resemble mouse NKT2 cells. Surprisingly, these pig

NKT2-like cells do not differentiate into NKT1 or NKT17 subsets.

Instead, some develop into a population enriched for interferon-

stimulated genes that simultaneously maintain an NKT2-like gene

profile, as well as two very rare subsets, designated iNKT-swine (sw)

1 and iNKT-sw2. iNKT-sw1 and iNKT-sw2 cells are most similar to

two minor populations of innate-like CD8aa T cells present in pig

thymocytes, sharing the expression of FCGR3A, ZNF683, NKG7,

and MHC class II–encoding genes. They also downregulate tissue

emigration genes, suggesting that both are long-term thymus

residents. Similar thymus-resident populations of MAIT cells, gd
T cells, and CD8aa T cells have been described before and have

been speculated to modulate thymocyte differentiation to respond

to peripheral perturbations, such as infection (24, 174, 178, 179).

Interestingly, iNKT-sw2 cells are enriched for CD244 and CXCR6,

which are upregulated on a newly discovered population of NKT

cells found in mice and humans that are highly cytotoxic and

protect mice from melanoma metastasis and influenza

infection (180).

Although peripheral pig NKT cells can be stimulated

nonspecifically to secrete IFN-g and IL-17 (181, 182), thymus-

resident pig NKT cells appear to produce little if any IFN-g, IL-4,
or IL-17 under steady-state conditions (177). One explanation for

the surprisingly undifferentiated state of pig NKT thymocytes is that

they emerge from the thymus in a functionally immature state and

undergo further differentiation in the periphery. Since human NKT

thymocytes do not also produce IFN-g or IL-4 under steady-state

conditions, it is possible that the diversity of NKT thymocyte

subsets observed in mice is unusual and that it is more normal

for species with the NKT-CD1d system to express fewer and/or less

differentiated NKT thymocytes.

In comparison to NKT cells, relatively little is known about

porcine MAIT cells. However, MAIT cell TRAV1-TRAJ33 TCRa
sequences have been cloned from pig blood and tissues and found to

pair with a limited number of TCR b-chains (183). It was further
shown that pig MAIT cells can be CD4POSCD8POS, CD4POSCD8NEG,

and CD4NEGCD8POS T cells and express transcripts for the MAIT

cell–associated surface molecules IL-18Ra, IL-7Ra, CCR9, CCR5,
and/or CXCR6 and the transcription factors PLZF and T-bet

or RORgt.
BOX 2 A tale of a-galactosylceramides and its biosynthesis.

aGalCer/KRN7000 was first isolated from the marine sponge—Agelas mauritianus. As mammalian symbionts—e.g., Bacteroides fragilis, biosynthesize aGalCer-related
compounds (26, 28, 84), it remains open whether the aGalCer was isolated from A. mauritianus or was derived from bacteria living in a symbiotic relationship with those
sponges (85, 86). Bacteroidetes and a-Proteobacteria are the residents of sponges, members of which are known to biosynthesize a-anomeric glycosphingolipids that
activate NKT cells (26, 28, 50, 51, 87). Of note, however, aGalCer was isolated from an Agelas-related marine sponge species—Axinella corrugata whose symbionts include
a-Proteobacteria (88, 89). Nonetheless, current evidence suggests that the A. corrugata aGalCer was derived from the sponge itself and not its symbionts (88, 90).
Resolving the source of aGalCer can yield insights into the biosynthesis of aGalCer in mammals (56). One possible route to the biosynthesis of aGalCer and aGlcCer
might be the CGT1 (b-galactosylceramide synthase) and CGS (b-glucosylceramide synthase) themselves, which may have an a-linkage retention property. The two
hexosylceramide synthases use a-linked uridyldiphosphate-charged sugar donors to form b-linked monohexosylceramides by catalyzing a to bmutarotation prior to the
condensation reaction. The potential presence of aGlcCer/aGalCer in the absence of a-hexosylceramide synthase genes within mouse and human genomes poses a
quandary, however (56, 91). Biochemical evidence suggests that hexosylceramide synthases may contain a-linkage retention activity, which retains the a-linkage of the
charged sugar donor to generate a-linked monohexosylceramides (92–95). This a-anomer retaining activity may explain the synthesis of a-anomeric glycosphingolipids
in sponges and mammals, and, potentially, in bacterial species discussed in the text that biosynthesize such lipids.
FIGURE 3

Modes of NKT and MAIT cell activation by microbes. Potent agonists
—such as aGalCer, directly activate NKT cells, without the need for
a second signal, in a TCR signaling–dominated fashion (left panel).
Alternatively, microbes containing TLR ligands such as LPS activate
NKT cells by inducing IL-12 production by DCs, which amplifies
weak responses elicited upon the recognition of CD1d bound with
self-glycolipids by the NKT cell TCR. Several endogenous lipid
agonists have been identified and characterized (see Table 1). Some
microbes—such as Sphingomonas capsulata and Borrelia
burgdorferi—synthesize a-anomeric glycolipids for their cell walls.
These glycolipids, when presented by CD1d, weakly activate NKT
cells directly. In the presence of a second signal—generally a
proinflammatory cytokine such as IL-12, such weak agonists
strongly activate NKT cells (middle panel). By contrast, the mode of
MAIT cell activation appears to be agonist concentration dependent:
microbes that produce high levels of 5-OP-RU—a product of ribD-
controlled catalytic activity, directly activate MAIT cells, while those
that produce low levels of 5-OP-RU require a cytokine boost. Unlike
conventional T cells, cytokines alone can activate both NKT and
MAIT cells. Such cytokines, which include a combination of IL-12
and IL-18, activate NKT cells in a TCR-independent manner (right
panel). This diagram renders the different strategies for NKT cell
activation; they apply to MAIT cells as well. Similarities and
differences, if any, are described in the text. Adapted from past
reviews (35, 37, 38, 41) and works cited in the text.
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TABLE 2 Role of NKT cells in microbial infection and immunity.

Microbe Activation mechanism/s
(antigen)1 NKT cell role2 Model Infection

route
Reference

(s)

Gram-positive bacteria

S. pneumoniae
CD1d-dependent self and nonself (aGalDAG)

+ IL-12
Protective Ja18-/-, CD1d-/- i.n., i.t. (55, 96, 97)

S. aureus
Non-self
(lysyl-PG)

Not protective Ja18-/-, CD1d-/- i.v. (98, 99)

L. monocytogenes Self + IL-12
Protective
Detrimental

CD1d-/- i.v. (99–101)

Gram-negative bacteria

P. aeruginosa CD1d-dependent (unknown)
Protective CD1d-/- i.n.

(102)
Not protective Ja18-/-, CD1d-/- i.t.

S. typhimurium CD1d-dependent self (iGb3) Not protective CD1d-/- p.o.
(51, 99, 103,

104)

H. pylori CD1d-dependent nonself (aCgT) Protective Ja18-/- p.o. (105)

C. trachomatis (muridarum) CD1d-dependent nonself (GLXA)
Detrimental
Not protective

CD1d-/-
i.n.

intravaginal
(106–108)

C. pneumonia CD1d-dependent self and nonself (unknown) Protective Ja18-/-, CD1d-/- i.n. (109)

L. pnemophilla Cytokine dependent, IL-12 Detrimental Ja18-/- i.t. (106–108)

Francisella tularensis
subspp. tularensis SchuS4

CD1d dependent (unknown) Detrimental CD1d-/-4 i.n. (110)

Ft subspp. holarctica live vaccine
strain

CD1d dependent (unknown) Detrimental
CD1d-/- i.n. (110)

F. novicida CD1d dependent (unknown) Not protective CD1d-/- s.c., i.d. (110)

a-Proteobacteria

Sphingomonas spp. CD1d dependent nonself (aGlcACer) + IL-12

Protective (low
dose)

Detrimental (high
dose)

Ja18-/-, CD1d-/- i.v.
(50, 51, 96,

111)

N. aromaticivorans CD1d-dependent nonself (aGalUCer)
Primary biliary

cirrhosis
CD1d-/- i.v. (112)

Spirochetes

B. burgdorferi
CD1d-dependent, nonself (aGalDAG) + IL-

12
Protective 4CD1d-/- i.d.

(54, 96, 113,
114)

Mycobacteria

M. tuberculosis CD1d-dependent self
Not protective
Protective3

CD1d-/-

Cell transfer
i.v.

aerosol
(72, 115)

Fungi

A. fumigatus
CD1d-dependent non-self (asperamide-B)

and self + IL-12
Detrimental (AHR)3

Protective (early)
CD1d-/-

i.n.
i.t.

(52, 116)

C. neoformans CD1d-dependent self Protective CD1d-/- i.t. (117)

Parasites

P. berghei ND Detrimental CD1d-/- i.d. (118)

P. yoelii CD1d dependent Protective CD1d-/- i.v. (119)

T. gondii ND
Protective

Detrimental3

Ja18-/-, CD1d-/-

Ja18-/-, CD1d-/-;
Va14tg

p.o. (120, 121)

(Continued)
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Collectively, current evidence indicate that pig NKT and MAIT

cells have characteristics similar to their human and mouse

counterparts. Nonetheless, several key lineage-defining differences

in mouse and pig NKT cell subsets point toward the acquisition of

species-specific innate/innate-like T cell adaptations, perhaps for

different pathogens or may reflect the different niches in which the

two species evolved and the symbiotic microbes they live with.

Hence, the species-specific developmental aspects should be

considered, especially in the light of ecology and evolution, when

assessing the suitability of mice and pigs as biomedical models for

innate/innate-like T cell research.
The hygiene hypothesis: yes, you may
pick your nose and eat it

This subtitle was motivated by a burgeoning field of rhinotillexis

—yes, nose picking, a new area of scientific enquiry. Beneath this

otherwise aversive and socially inept and unacceptable behavior, yet

innate to primates, may lie a means to the periodic reinforcement of

disease tolerance [see Box 3; ref (184)].

The pervasive presence of microbes, flourishing at every nook

and cranny of the earth and on the surfaces and the insides of

metazoans, make them a formidable friend and foe. Hence, on being

birthed unto a dirty world, to gain fitness, metazoans found ways to

befriend and tame microbes, especially the beneficial, and ward off

unfriendly ones over eons of evolution. Symbiosis emerged, lending

to fitness in both directions—in the metazoan hosts and their

microbial partners. So much so, symbiosis has led to the

coevolution of the hosts with their microbiota, or vice versa, to

the point of codependence, wherein the immune system evolved to

manage the microbial consortium from going ‘wild’ and,
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reciprocally, the diversity of the consortium and its biosynthetic

products control the immune system from going ‘rouge’. Thus, the

hygiene hypothesis postulates that early life exposure to a full range

of diverse microbes (and worms) promotes the development and

maturation of an immune system—which reacts in a balanced

measure to prevent disease whether incited by external (infections

and allergens) or internal (autoinflammation) agencies of

inflammation (188).

For example, under sterile, germ-free conditions, the immune

system of the laboratory mouse develops and matures poorly,

rendering them susceptible to infectious diseases and

autoimmune disorders such as colitis (189–196). Conversely, the

equilibration of the gut microbiome of the laboratory mouse to that

of the ‘dirty’ pet store mouse by cohousing the two, altered, in the

former, the immune cell composition at the barrier sites, resistance

to infection, and T-cell differentiation in response to virus infection

(197). A similar equilibration of the gut microbiome of a laboratory

mouse raised under germ-free conditions by the transfer of the gut

microbiota from a feral relative of the laboratory mouse and its

maintenance over several generations by breeding increased disease

tolerance and fitness. Inflammatory responses in such mice to a

lethal influenza virus challenge was highly tempered and so was

mutagen- and inflammation-induced tumorigenesis (198). All of

these altered immune features acquired by the laboratory mouse

reflected those of the pet store or feral mouse and those of the adult

human (197, 198). The ability to approximate the human immune

system in the laboratory mouse by the transfer of the microbiome

indigenous of a feral mouse may facilitate and enhance preclinical

vaccine development and testing (198–201). Furthermore, the role

of the microbiota in the maturation of T cells may explain the

intriguing finding that, at steady state—in the absence of an

infection—DC emigrees from the barrier epithelium of

nonlymphoid tissues stochastically prime and program resting,
TABLE 2 Continued

Microbe Activation mechanism/s
(antigen)1 NKT cell role2 Model Infection

route
Reference

(s)

L. donovani CD1d dependent, lipophosphoglycan Protective CD1d-/- i.v. (122)

E. histolytica CD1d dependent, foreign antigen (EhLPPG) Protective CD1d-/- i.h. (123)

Viruses

HSV-1
CD1d dependent, nonself (glycoprotein B and

US3)
Protective

Not protective3
Ja18-/-, CD1d-/- Scarification (124–126)

HSV-2 ND Protective CD1d-/- Intravaginal (127)

Sendai virus ND Detrimental Ja18-/-, CD1d-/- i.n. (128)

RSV CD1d dependent, self Protective CD1d-/- i.n. (129, 130)

Influenza virus H1N1 and H3N2 ND Protective Ja18-/-, CD1d-/- i.n. (131–135)

HBV ND Protective Ja18-/-, CD1d-/- i.v. (136)
1see Table 1 for the structures of NKT cell agonists.
2differential outcomes in the different studies may have arisen from the use of different microbial/parasite strains.
3the outcome of infection in Ja18-/- mouse model may require additional validation as the deletion of this TRAJ gene segment by homologous recombination had resulted in the deletion of
additional TRAJ gene segments, including TRAJ33—the gene segment essential for the construction of MAIT cell TCR a-chain; additional TRAJ gene segment losses severely constricted the TCR
repertoire of conventional T cells as well [see ref (137)].
4BALB/c background of mouse strains used in these studies; others were in C57BL/6 background.
AHR, airway hyperreactivity; GLXA, chlamydial glycolipid exoantigen; ND, not determined; i.d., intradermal; i.h., intrahepatic; i.n., intranasal; i.p., intraperitoneal; i.v., intravenous; i.t.,
intratracheal; p.o., per oral; s.c. subcutaneous.
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naïve CD8+ T cells within the local draining lymph nodes for tissue

residency (202).

After development in the thymus, NKT and MAIT cells

emigrate and home to lymphoid and nonlymphoid tissues,
Frontiers in Immunology 1088
presumably to patrol and maintain the integrity of the tissue

borders. The NKT and MAIT cell content at these borders varies

by tissues and the mouse strain. Their tissue distribution and

functions are best studied in the mouse; only a bit is known of
TABLE 3 Role of mucosal-associated invariant T cells in microbial infection and immunity.

Microbe Activation mechanism/s MAIT cell
role1 Model Infection

route
Reference

(s)

Gram-positive bacteria

C. difficile MR1 and cytokine dependent Detrimental Human PBMC in vitro (138)

S. pneumoniae

MR1 dependent, SAgs Detrimental C57BL/6, CAST : EiJ in vitro (139)

MR1 dependent, Spn polysaccharide Protective Human PBMCs in vitro (140)

MR1 (SAgs) and cytokine dependent IL-12
and IL-18

Detrimental Human PBMCs in vitro (141)

S. aureus MR1 dependent, SAgs Detrimental C57BL/6, CAST : EiJ in vitro (139)

Gram-negative bacteria

K. pneumoniae ND Protective MR1-/- i.p. (142)

P. aeruginosa ND Protective Human PBMCs in vitro (143)

L. longbeachae MR1 dependent Protective MR1-/- i.n. (144)

H. pylori MR1 dependent Detrimental MR1-/- p.o. (145, 146)

E. coli MR1 dependent Protective Va19tg, MR1-/- i.p., i.v. (147)

S. enterica serovar Typhi MR1 dependent Detrimental Human PBMCs in vitro (148)

S. enterica serovar paratyphi A MR1 dependent Protective Human PBMCs in vitro (149)

S. typhimurium MR1 dependent Protective Human PBMCs in vitro (33)

F. tularensis subspp. holarctica
LVS

ND Protective MR1-/- i.v. (150)

MR1- and cytokine- dependent IL-12p40 Protective MR1-/- i.n. (151)

Mycobacteria

M. abscessus MR1 dependent Protective Va19tg, MR1-/- i.p., i.v. (147)

M. tuberculosis MR1 dependent, riboflavin derivatives Protective C57BL/6, Cast;EiJ i.n. (152)

Viruses

Dengue virus Cytokine dependent: IL-12 and IL-18 Protective Human PBMCs in vitro (153)

Zika virus Cytokine dependent: IL-12 and IL-18 Protective Human PBMCs in vitro (153)

HIV-1 Cytokine dependent: IL-12 and IL-18 Protective Human PBMCs in vitro (154)

Influenza A
MR1 and cytokine dependent Protective

Human PBMCs and
LDMCs

in vitro (155)

Cytokine dependent: IL-18 Protective Human PBMCs in vitro (156)

Influenza virus H1N1 Cytokine dependent: IL-12 and IL-18 Protective MR1-/- i.n. (157)
frontiersin.or
1differential outcomes in the different studies may have arisen from the use of different microbial/parasite strains.
ND, not determined; i.n., intranasal; i.p., intraperitoneal; i.v., intravenous; p.o., per oral.
BOX 3 Rhinotillexis—a new, burgeoning field of scientific enquiry.

It is so new and burgeoning that the National Public Radio felt compelled to interview Dr. Anne-Claire Fabre—a pioneer in the field at the Naturhistorisches Museum in
Bern, Switzerland, on the matter (npr.org/2022/11/15/1136423436/researchers-dig-into-why-nose-picking-is-a-common-behavior). It is so new that the word rhinotillexis
is neither in the Oxford English Dictionary nor the Merriam-Webster American English Dictionary yet but has appeared in Wikipedia, the free encyclopedia, however.
Unless careful, excessive rhinotillexis may cause self-induced ethmoidectomy, especially if one suffers from rhinotillexomania (see en.wikipedia.org/wiki/Nose-picking).
Rhinotillexis is not peculiar of repulsive men or their man cubs, but it is a primate thing [(184) and references therein]. Self-vaccination, per oral distribution of nasal
microflora, and dental hygiene are a few proposed immunologic attributes of rhinotillexis (185–187).
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their distribution in the human body (24, 172, 203–205). In mice,

thymic NKT cell development, after commitment to this lineage

and positive selection, progresses from stage 0 to stage 1 to stage 3—

the mature NK1.1POS NKT cells, known to consist largely of NKT1

cells. Of these, CD24NEG CCR7POS stage 1/2 NKT cells emigrate from

the thymus and seed both the lymphoid and non-lymphoid tissues,

where they undergo further maturation, largely driven by the local

cytokine milieu (206–208), and perhaps the microbiota.

Verily, the early life exposure of NKT and MAIT cells to the

host microbiota has profound, lifelong effect/s on these innate-like

lymphocytes (25, 27, 161). Their development itself is dependent on

positive selection by agonistic ligands—aGalCer in the case of NKT

cells and 5-OP-RU in the case of MAIT cells [reviewed in refs (44,

203), and references therein]. The origins of these agonists are less

clearly defined. Because CD4POSCD8POS thymocytes activate Va14i
NKT cell hybridomas, it is thought that an NKT cell agonist/s may

be of self origin. Thus, b-galactosylceramide synthase (CGT)-

deficient thymocytes foster NKT cell development; hence,

bGalCer or its derivatives are less likely the thymic NKT cell

agonist. Conversely, b-glucosylceramide synthase (CGT-1)–

deficient thymocytes poorly activate Va14i NKT cell hybridomas

and conditional CGT1-deficient thymocytes to not promote NKT

cell development (57, 209). As bGlcCer itself does not activate

Va14i NKT cell hybridomas, a bGlcCer derivative—iGb3 or a self

aGlcCer (Table 1)—is a potential NKT cell–activating self-agonist.

While iGb3 synthase deficiency does not alter NKT cell

development and function and no known mammalian enzyme/s

synthesize a-anomeric glucosylceramide or galactosylceramide,

how these agonists are biosynthesized is unclear [see Box 2 for

details, see ref (35)]. Alternatively, as several gut symbionts

common to many mammals biosynthesize a-anomeric

glycosylceramides, their transport by lipid transfer proteins such

as apolipoprotein E (210) could potentially deliver the agonist/s to

the thymus. This is less likely because NKT cells develop in germ-

free mice, but they are not without defects (25, 27, 211).

In a similar vein, mammalian cells do not biosynthesize vitamin

B2, whose precursor is a precursor to the MAIT cell agonist 5-OP-

RU (33, 59, 147, 212), but rather acquire it from symbionts (161,

203, 213). Consequently, MAIT cells develop poorly in germ-free

mice bred under sterile conditions (205, 214). By contrast, NKT

cells develop in such mice as noted above. It appears as though NKT

cells and MAIT cells compete for niche such that, mice, which have

more NKT cells than humans, have a low frequency of MAIT cells.

Reciprocally, humans have a high frequency of MAIT cells but are

low in NKT cell frequency (205, 214).

NKT cell numbers in the intestinal mucosa are controlled by the

neonatal colonization of bacterial symbionts. NKT cells accumulate

in significant numbers within the intestinal mucosa, lungs, and liver

but not the thymus or spleen of germ-free mice (25, 27). The

increased NKT cell number observed in germ-free mouse intestinal

mucosa perhaps owes to increased levels of CXCL16—the ligand of

CXCR6, the levels of which are controlled by the gut microbiota (25,

215). Moreover, NKT cells developing in germ-free mice do not

mature and are hyporesponsive to the glycolipid agonist aGalCer
(27). Colonization with NKT cell agonist–bearing bacteria—e.g.,

Sphingomonas yanoikuyae, during early life but not in adulthood
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restored NKT cell maturation and normoresponsiveness to

aGalCer (27). Nevertheless, aGalCer compounds synthesized by

different bacterial symbionts—e.g., Bacteriodes fragilis and S.

yanoikuyae (see Table 1), appear to exert differential effects on

developing NKT cells (26, 28, 84); why this is awaits resolution.

Early-life microbial ecology has implications for health. Thus,

consistent with increased NKT cell frequency in the gut and lungs,

germ-free mice are overly sensitive to oxazolone/dextran sodium

sulfate–induced inflammatory colitis and airway hypersensitivity

(25, 27, 215). This disease phenotype is reversed by early-life

exposure to B. fragilis–derived glycosphingolipid(s) (28). Whether

the normal development and functions of human NKT cells require

interactions with the gut microbiota awaits discovery. So also,

whether the microbiota—known to vary between individuals of

different genetic, ethnic, and geographic backgrounds (216)—

controls human peripheral NKT cell frequency, which varies

tremendously between individuals—from undetectable to 5%—

remains unknown.

Unlike the gut, which hosts swarms of thousands of microbial

species, it is generally assumed that the internal organs not exposed

to the outside—such as the liver, heart, and brain—are sterile,

devoid of resident microbes. Counter to this assumption, a recent

study found mouse and human liver hosts its own, unique microbial

consortium distinct from the gut as it was enriched in

Proteobacteria (217). This microbiome was seeded from the gut

microbiota in a selective manner that depended on the sex of the

mouse and the local environment. Moreover, the local immune

response was dependent on the liver microbiome, which was

influenced by Bacteroidetes species. The hepatic microbiome

controlled antigen-presenting cell maturation and adaptive

immunity through the mediation of NKT cells (217).

Bacteroidetes species biosynthesize aGalCer (26, 28, 84), which

activate NKT cells to secrete CCL5 chemokine, in turn, recruiting

immune cells to the liver and their activation, expansion, and

function (217). Hence, local tissue microbiomes influence local

immunity in an NKT cell—dependent mechanism.

NKT cell homeostasis described above requires intestinal

microbial lipid presentation by CD11c+ DCs and macrophages

(218). Reciprocally, NKT cells appear to control the bacterial

composition of the gut microbiota. Consequently, dysbiosis and

disruption in intestinal homeostasis ensue in mice deficient in NKT

cells—CD1d-/- (218–221) or Ja18-/- (222–224) mice —or mice that

lack CD1d expression by DCs, which thereby are unable to present

intestinal lipids to activate local (218), intestinal mucosal NKT cells.

This dysbiosis and altered intestinal homeostasis are consistent with

alterations in the IgA repertoire (223, 225) and the induction and

function of regulatory T cells within the gut (192, 222), which are

observed in these mice as well (218, 223).

By contrast to the above reports, a recent study found that there

are no differences in the composition of the gut microbial

consortium in CD1d−/− mice (226). Similarly, no differences were

observed in the consortium in Va14 transgenic mice, which carry

high numbers of NKT cells—largely the IL-4 producing NKT2

subset (227, 228). While NKT cell activation by peroral delivery of

aGalCer minimally, yet consistently, altered the diversity of the

consortium, this effect was only transient. However, the shift in
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microbiota composition was comparable to the natural drift found

in the colony. Critically, this report noted that the natural drift in

the microbial composition of individual vivarium over time and,

perhaps, the differences in the microbial composition between

vivaria, but not NKT cells, had significant influence on the

composition of the mouse gut microbial consortium even at

steady state (226). Because this is a report from a single center,

whether mouse and human NKT cells have an impact on the

microbial consortium of the gut will require a concerted,

multicenter study.

Mouse and human skin abound with MAIT cells. MAIT cell

frequency varies between individuals (229). MAIT cell frequency is

similar in genetically identical mice housed in the same cage but

varied between those housed in distinct cages. This suggested that

the microbiota may have a role in determining the frequency.

Studies in germ-free mice revealed that MAIT cells depended on

early-life exposure to gut microbial consortium (45, 161, 203, 213).

Hence, germ-free mice failed to develop MAIT cells that localize to

barrier tissues—such as the skin, when exposed to microbes later

in life.

The development of mouse MAIT cells in the thymus is

dependent on the presentation of a by-product of riboflavin

biosynthesis—5-OP-RU (33, 44, 59, 147, 203, 212). Even though

flavonoids are essential, mammalian cells are riboflavin auxotrophs.

They depend on external sources of riboflavin, which is

biosynthesized by several bacteria and fungi—both symbionts and

pathobionts, as well as plants. The microbial origin of riboflavin and

biosynthetic metabolites explains the intimate dependence of MAIT

cell development on the gut microbiota. 5-OP-RU is biosynthesized

in a ribD-dependent manner by the gut, and potentially the skin as

well, transported to the thymus, and made available to MR1-

expressing cells for assembly and display at the cell surface (213).

The mechanism by which 5-OP-RU is transported to the thymus

and how cells capture it to make available in the ER lumen for

assembly with MR1 are poorly, if at all, understood (203).

Thymic MAIT cell emigrees home to barrier tissues. Their

numbers at the barrier tissues depend on the local concentration of

microbial derivatives, which is emulated by the painting of skin with

varying concentrations of 5-OP-RU (161, 213). In the skin, they

surveil the dermal—epidermal interface. Cutaneous-resident cells are

the MAIT17 subset; their homeostasis is IL-23 dependent, and they

respond to skin commensals upon MR1-ligand recognition in an IL-

1- and IL-18-dependent manner. These MAIT17 cells are genetically

programmed for tissue repair and, hence, contribute to normal skin

physiology (161). Given the intimacies of NKT and MAIT cells with

the symbiotic consortium, one might wonder what roles innate-like

effector lymphocytes might have in precipitating erythema toxicum

neonatorum—which is perhaps an innate immune response to skin

microbiont/s that may have penetrated the newborn infant (230).

When van Leeuwenhoek peered down his microscope, curious

what might live on his teeth, and perhaps his gums, little did he

know he would find many ‘little animals’. In his Letter 39 to the

Royal Society, he claimed,

“For my part I judge, from myself (howbeit I clean my mouth…),

that all people living in our United Netherlands are not as many as

the living animals that I carry in my own mouth this very day: for I
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noticed one of my back teeth, up against the gum, was coated with the

said matter for about the width of a horse-hair, where, to all

appearance, it had not been scoured by the salt for a few days; and

there were such an enormous number of living animalcules here, that

I imagined I could see a good number of ‘em in a quantity of this

material that was no bigger than a hundredth part of a sand-grain”

(from a collection of surviving van Leeuwenhoek letters, translated

and compiled in ref (6). [see letter 39: Phil. Trans. XIV (231)

568, 1684)].

What those ‘little animals’ or ‘animalcules’ on man’s teeth

meant remained cloaked for over two centuries. Elie Metchnikoff

had a hunch to which, later in his career and life, he laid, to an

obsession, much attention to prolong his life, in futility

notwithstanding (232). The foregoing advances, which awaited

next-generation ‘omics’ technologies and platforms, vindicates

Metchnikoff’s hunch on beneficial and harmful gut microbes and

lends support to the physiologic functions of early-life exposure to a

diverse array of microbes—and, hence, the hygiene hypothesis.
Kämpfe únd schláchten of natural
killer T and mucosal-associated
invariant T cells with pathogens

NKT cells and MAIT cells perform specialized roles during

infections to confer immunity to the host as they struggle (kampf)

with and battle (schlacht) pathogens (see Tables 2, 3 and

Supplementary Tables 1, 2). While both possess the phenotype of

activated T cells, their induction differs from conventional T cells in

that they can be triggered during pathogen infections through

invariant receptors and cytokine signals in much the same

fashion as innate cells. This results in the rapid secretion of

multiple cytokines that are released with similar kinetics to innate

cell-derived cytokines—i.e., minutes to hours after stimulation.

Accordingly, NKT and MAIT cells can influence the behavior of

cells in the innate branch of the immune response while also

shaping downstream adaptive immune responses. Over the past

decades, it has become clear that the innate properties of NKT and

MAIT cells are shared by a wide variety of MHC class I–like

restricted innate-like ab T cells with invariant TCRs that are

widespread among jawed vertebrates [reviewed in Ref (233)].

These types of lymphocytes are specialized to allow the

recognition of common or particular pathogens with relatively

few T cells (231). A good example is Xenopus laevis (African

clawed frog) tadpoles, which are able to survive in antigen-rich

waters using 15,000–20,000 T cells exhibiting limited TCR

diversity (234).

As regard the role of NKT cells in immunity, mice deficient in

CD1d or TRAJ18 that lack invariant NKT cells have shown that

these cells play nonredundant roles in several models of infectious

disease (235); NKT cell–deficient mice are more susceptible to

several bacteria species (Table 2 and Supplemental Table 1),

including S. pneumoniae (97, 236), Borrelia burgdorferi (113),

Sphingomonas spp. (50, 51), Pseudomonas spp. (102), Chlamydia

pneumoniae (109), and M. tuberculosis (73). They also exhibit
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greater susceptibility to fungal infections with Cryptococcus

neoformans (117) and Aspergillus fumigatus (116); viral infections

with herpes simplex virus (124, 237), hepatitis B virus (80, 136), and

influenza A virus (131, 132, 238); and protozoan parasite infections

with Plasmodium spp (76) and L. donovani (239). A wide array of

microbes and microbial products can stimulate NKT cells, either by

direct TCR activation, cytokine-mediated activation, or a

combination of both and induce them to express activation

markers and cytokines, which have diverse effects on other

immune cells and the course of an infection (see Tables 1, 2 and

references therein). Indeed, microbially activated NKT cells

typically secrete a narrower range of cytokines than aGalCer-
stimulated NKT cells, which are usually predominated by IFN-g.
This is consistent with the paradigm that the microbial activation of

NKT cells is mediated, to a large extent, through innate cytokines

such as IL-12 and IL-18, with weak or no TCR stimulation (240). In

some infections, NKT17 cells play a significant role. NKT17 cells in

a granulocyte–monocyte colony-stimulating factor (CSF2)–

dependent manner plays a protective role against S. pneumoniae

infection of mouse lungs (236). While Csf2-deficient NKT cells are

impaired in aGalCer-induced cytokine secretion and the

transactivation of downstream innate and adaptive immune

responses (241), anti-CSF2 blocking experiments confirm the role

of NKT17 cell–derived CSF2 in immunity against S. pneumoniae

(236). Moreover, NKT cells activated by microbes do not usually

undergo systemic expansion in vivo even when they contain NKT

cell antigens. However, NKT cells have been found to congregate at

the sites of infection in mice infected with lymphocytic

choriomeningitis virus (79), malaria parasites (119), and C.

neoformans (117). They have also been shown to expand in the

lungs and draining lymph nodes of pigs infected with influenza and

in the peripheral blood, draining lymph nodes, and lungs of pigs

infected with African swine fever virus (182). An intriguing aspect

of NKT cell biology is that these cells are programmed to undergo

apoptosis and/or become functionally anergic after stimulation

(242–244). This reduces the risk of a cytokine storm or chronic

inflammation arising from the large efflux of proinflammatory

cytokines that activated NKT cells produce. Usually, the degree of

NKT cell deletion/dysfunction corresponds with the strength of

activation, with some microbes such as the lymphocytic

choriomeningitis virus capable of rendering NKT cells anergic for

up to 3 months after infection (79, 245). Nevertheless, the

overactivation of NKT cells does occur in some mouse models of

infection, especially in tissues where NKT cells are found at high

concentrations, such as the liver in mice (80, 246, 247).

Among the lessons learnt from studying NKT cells in mice is

that gene t i c background can strong ly influence the

immunomodulatory activities of NKT cells. For example, the

same aGalCer analog treatment protocols cause divergent effects

on disease between different mouse strains in the mouse models of

autoimmune diabetes (248), experimental autoimmune

encephalomyelitis (249), collagen-induced arthritis (250, 251),

and systemic lupus erythematosus (252). Such differing outcomes

are probably related to the diverse concentrations and functional

phenotypes of NKT cells that exist among inbred mouse strains. For

instance, in a survey of 38 inbred mouse strains, NKT cells as a
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percentage of ab T cells ranged from 3.2% to 0.01% in peripheral

blood, 4.12% to 0.02% in the spleen, and 9.39% to 0.02% in the

thymus (253). The proportion of CD4+ to CD4-CD8- double-

negative NKT cells showed similar profound strain variation.

Functional differences have been ascribed to these subsets, with

the CD4+ subset exerting immunological tolerance in several

disease models.

Humans present comparable levels of heterogeneity in NKT cell

frequency and cytokine secretion profiles (171, 172, 254–258),

which may result in distinct NKT cell responses to microbial

infections that vary between individuals. However, whether NKT

cells play nonredundant roles in human infectious diseases is largely

unknown. Infection with the human immunodeficiency virus,

dengue virus, and M. tuberculosis have been linked to reduced

NKT cell responses to subsequent aGalCer stimulation (259–261).

While these results suggest that at least some of the findings from

mouse NKT cell studies apply to human infections, there is little

evidence to indicate that humans with unusually high or low NKT

cell concentrations or effector responses have altered susceptibility

to microbial infections. Moreover, assessing this relationship is

complicated by the fact that circulating NKT cells are often a

poor reflection of NKT cells in organs and tissues (253, 254). In

due course, questions about the translatability of mouse model

studies may be partly addressed using CD1d knockout pigs as pig

and human immune systems share many similarities, and pigs can

be infected with a wide range of human pathogens (262–266).

MAIT cells are activated by microbial species that have an intact

riboflavin pathway (Table 3). Accordingly, mice deficient in MAIT

cells have an impaired ability to clear 5-OP-RU-producing bacteria,

such as Francisella tularensis (151, 267),M. bovis bacillus Calmette-

Guérin (268), M. abscesses (147), and Legionella longbeachae (144).

Furthermore, TRAV1-TRAJ33 TCR-transgenic mice that express

high concentrations of MAIT cells are more resistant to disease in a

mouse model of M. tuberculosis infection (147). The mechanisms

underlying MAIT cell antimicrobial immunity are not fully

understood (see Supplemental Table 2). However, MAIT cells can

lyse infected cells through perforin and granzymes (269, 270). They

also secrete a variety of effector cytokines, such as IFN-g, TNF-a,
GM-CSF, and IL-17, which potentiate bacterial killing through

myeloid cell activation (44, 196, 203, 205, 271, 272).

In addition to TCR-mediated activation, MAIT cells can

respond to microbial infections through a variety of cytokine

receptors that these cells express, including receptors for IL-1, IL-

7, IL-12, IL-15, IL-18, and IL-23 (203, 271). This capacity for TCR-

independent stimulation enables MAIT cells to participate in

immune responses against viruses that do not produce 5-A-RU

derivatives. For instance, in a mouse model of lethal influenza virus

infection, MR1-deficient mice had a significantly higher mortality

rate than MR1-intact mice (157). Similar results have been reported

for both CD1d and TRAJ18 knockout mice demonstrating that

NKT cells also play a nonredundant role in influenza virus

infections (131, 132, 238). However, while NKT cells were found

to be important for inhibiting virus replication, MR1-deficient mice

had a similar virus load to MR1-intact mice. Moreover, TCR-

dependent stimulation was found to be indispensable and

dispensable for NKT cells and MAIT cells, respectively, to control
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influenza virus infections (132, 157). These results suggest that there

exists significant overlap as well as cell type–specific differences in

the antiviral activity of NKT cells and MAIT cells.

The role of MAIT cells in human antimicrobial responses

remains largely uncertain. However, their high abundance in

humans suggests that they may play a more prominent role in

host defense and tissue homeostasis than they do in mice. MAIT cell

deficiencies have not been directly associated with susceptibility to a

particular pathogen in humans. Nevertheless, the frequency of

MAIT cells has been found to decrease in the blood of humans

infected with various types of bacteria. In some cases, this was

accompanied by an increase in MAIT cell frequency at the site of

infection (203, 272), suggesting that circulating MAIT cells migrate

from circulation to the infection site.

In addition to their contribution to antimicrobial immunity,

MAIT cells play a role in wound healing, including repairing host

tissues damaged by immune cells during pathogen clearance (203,

272). Activated MAIT cells express a variety of tissue repair factors,

including TGF-a, amphiregulin, vascular endothelial growth factor

A, IL-5, IL-13, and IL-22 (155, 273, 274). MAIT cells in barrier

tissues of the lung and skin are particularly enriched for tissue repair

genes, and MAIT cell–mediated wound healing has been

demonstrated in punch biopsy and Staphylococcus epidermis

infection models of skin damage (161). Together, these findings

indicate that MAIT cells play Janus-like opposing roles during

infection, on the one hand promoting cytotoxic and

proinflammatory responses that destroy infected cells while also

restoring tissue integrity after the resolution of the infection.
Stymied by microbial stealth

Unsurprisingly, pathogens have devised ways to stymie CD1d-

restricted antigen presentation. Most evade intracellular CD1d

trafficking. For example, the modulator of immune recognition

(MIR)-1 and MIR-2 proteins of Kaposi sarcoma–associated

herpesvirus (KSHV) are ubiquitin ligases. The two KSHV

proteins ubiquitinylate the cytoplasmic tail of human CD1d,

forcing the endocytosis of surface CD1d and, thereby, reducing

cell-surface CD1d expression (275). The human immunodeficiency

virus 1-encoded Nef protein mirrors the effects of MIR-1 and MIR-

2 proteins to reduce CD1d expression perhaps by increased

endocytosis coupled with the inhibition of the return transport of

CD1d to the cell surface (276, 277). Similarly, in herpes simplex

virus 1 (HSV-1)–infected cells, CD1d molecules accumulate in the

MHC class II–enriched compartment due to a defect in CD1d

recycling from endosomal compartments back to the cell surface

(278). HSV-1 also inhibits the upregulation of cell surface MR1 via

the US3 gene product to evade MAIT cell recognition (279).

Vaccinia virus and vesicular stomatitis virus also abrogate CD1d

antigen presentation, likely by impeding the intracellular trafficking

of CD1d molecules induced by mitogen-activated protein kinase

signaling (280). Some bacteria have also devised strategies to evade

CD1d-restricted antigen presentation. Notably, the infection of

monocytes by the human pathogen M. tuberculosis results in
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reduced CD1d mRNA expression, indicating the transcriptional

control of Cd1d expression by a mycobacterial product (281).

While pathogens evade NKT cell activation by way of

interference with intracellular CD1d trafficking and, thereby,

antigen presentation, pathogens induce MAIT cell dysfunction to

evade MAIT cell response. To that end, patients with S.

pneumoniae–induced sepsis show significantly reduced but more

active and dysfunctional MAIT cell responses compared to healthy

donors or paired 90-day samples (139). The hyperactive MAIT cells

stir up a pathological cytokine storm thought to be responsible for

mortality (141). Furthermore, the hyperactive MAIT cell response

poorly induces the differentiation of inflammatory monocytes to

dendritic cells during pulmonary infection (139). Similarly, studies

of C. difficile pathology indicate that these bacteria potently activate

MAIT cells in a combined TCR- and cytokine-dependent manner

inducing a pathological cytokine storm. The resultant runaway

inflammation perhaps enables C. difficile to overcome cellular

barriers to potentiate C. difficile–induced antibiotic-associated

colitis (138). In a similar vein, gastric H. pylori infections elicit a

hyperactive MAIT cell response, promoting an increased

recruitment of inflammatory immune cells to the gastric mucosa

exacerbating H. pylori gastritis (145). Thus, while some pathogens

evade NKT cell recognition, the effects on MAIT cells focus on

inducing MAIT cell hyperactivation and dysfunction as a means of

potentiating bacterial pathogenicity.
Sic parvis magna—greatness from
small things come

Some 50 years ago, Ivan Riott and John Playfair and their

respective groups, independently and a year or so apart, described a

small subset of lymphocytes that were neither B nor T cells yet killed

tumor cells without prior priming. While no small discovery in and

of itself, it was a small beginning considering the numerous

unconventional lymphocytes that were discovered in the ensuing

decades. Unbeknownst, the discovery of NK cells had silently

annunciated the existence of a grander system of cells whose

constituents played critical roles in immunity to infectious

diseases and cancer, as well as in precipitating autoimmune

disorders and allergic reactions. Multitudinous, they are yet

cluster together by several common phenotypic and functional

features. Their purpose is to process and integrate signals received

from the innate immune response to convey that umwelt to

downstream innate and adaptive effector responses. In this

manner, they appear to function in between, at the edges of the

innate and adaptive immune systems. Hence, innate/innate-like

effector lymphocytes are called in-betweeners—or, alternatively,

Latinate edge, and a ‘limbic immune system’ arises, perchance. In

this proposal for a triumvirate immune system, we do not insinuate

that the ‘limbic immune system’ is an evolutionary transition

between the innate and adaptive systems because the

independently acting modules that make up this system arise at

different times in evolution, repurposing loosely common genome

regulatory circuits to accomplish a common task. The ‘limbic
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immune system’ functions to integrate information relayed by the

innate sensory immune system about the local tissue environment

and to provide context to downstream effector innate and adaptive

immune responses. The multiple modules add robustness and

evolvability to this limbic system to keep abreast of the ever-

changing environment and the quick-evolving microbes,

especially of those members of an otherwise symbiont community

that turn pathobiont without much notice.
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The innate system constitutes a first-line defencemechanism against pathogens.

80% of the blood supply entering the human liver arrives from the splanchnic

circulation through the portal vein, so it is constantly exposed to

immunologically active substances and pathogens from the gastrointestinal

tract. Rapid neutralization of pathogens and toxins is an essential function of

the liver, but so too is avoidance of harmful and unnecessary immune reactions.

This delicate balance of reactivity and tolerance is orchestrated by a diverse

repertoire of hepatic immune cells. In particular, the human liver is enriched in

many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid

cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells –

namely Natural Killer T cells (NKT), gd T cells and Mucosal-associated Invariant T

cells (MAIT). These cells reside in the liver in a memory-effector state, so they

respond quickly to trigger appropriate responses. The contribution of aberrant

innate immunity to inflammatory liver diseases is now being better understood.

In particular, we are beginning to understand how specific innate immune

subsets trigger chronic liver inflammation, which ultimately results in hepatic

fibrosis. In this review, we consider the roles of specific innate immune cell

subsets in early inflammation in human liver disease.

KEYWORDS

Inflammation, Innate immnuity, Hepatitis (general), NK cells, MAIT cell, Gd T cell, NKT
(natural killer T) cell, kupffer cell (KC)
Introduction

Understanding the liver´s architecture and the niches formed by the different hepatic

immune cells is equally important to deciphering their immune roles. The liver is

subdivided into hepatic lobules, which consist of a portal triad (hepatic artery, portal

vein and bile duct), hepatocytes arranged in linear cords between a capillary network

(sinusoids) and a central vein (Figure 1). The blood flows from the portal triad to the

central vein. The vascular system connecting the portal triad to the central vein is mainly

constituted by liver sinusoidal endothelial cells (LSECs). Large fenestrae allow the exchange

of macromolecules and components from the sinusoids with hepatocytes (1, 2).

Interestingly, hepatocytes have different functions based on their zoning. Close to the

portal triad, hepatocytes are the first to interact with gut-derived antigens whereas

hepatocytes in proximity to the central vein are associated with detoxification (3). The
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gradual change in blood nutrients, oxygen and antigen load is

correlated with significant changes in hepatocytes´ gene expression

signature (3, 4). Immune cells could also perform different

functions according to their position within the liver. The

distribution of innate cells in the liver is based on different

chemokines, adhesion molecules and surface receptors (5). KCs

are located adherent in the sinusoids and emit extensions into the

Disse space. KCs along with LSECs constitute part of the

reticuloendothelial system, which clears debris and harmful

compounds in the blood. 65% of intrahepatic lymphocytes consist

of NK cells, NKT cells, MAIT cells and gd T cells (6–8) (Figures 2A,

B). NK cells are in close proximity to KCs in both mouse and

human models, suggesting a physical co-dependence (9, 10). NKT

cells are constantly surveilling the liver sinusoids and stop when

they detect inflammatory signals (9). CXCR6 was identified as a

receptor to regulate mouse intrahepatic NKT cell frequencies and its

ligand CXCL16 is overexpressed in macrophages and endothelium

near injury areas (10). Human gd T cells were identified in portal

sections and in association with biliary epithelium (11). Human

MAIT cells are reported to reside predominantly around bile ducts

(12). However, the distribution and frequency of innate cells during

inflammation are drastically changed with the recruitment of

immune cells to the site of inflammation (9).
Kupffer cells

KCs are liver-resident macrophages that constitute 15% of the

total human non-parenchymal liver cell count (13). They represent

the primary barrier against pathogens and toxic compounds

coming from portal circulation (14). KCs are antigen-presenting

cells (APC) and play a crucial role in inducing liver tolerance

through cell-to-cell contact, cytokines and other mechanisms such

as dioxygenase-dependent sequestration of tryptophan (15). Under

physiological conditions, KCs are the major reservoir of
Frontiers in Immunology 02101
macrophages in the liver and can self-renew independently from

the bone marrow (16). Upon activation, KCs secrete chemokine

ligand 2 (CCL2) which promotes the infiltration of human

circulating monocyte-derived macrophages. Increased frequency

of CCR2+ monocytes participates in liver fibrosis in mouse

models (17, 18) and is indicative of pathology in human

acetaminophen-induced acute liver injury (19). However, it is not

yet clear whether liver-resident and circulating macrophages are

two distinguished populations with different functions. The

majority of pathogens coming from portal circulation are trapped

in the liver by KCs phagocytosis. KCs cooperate with other non-

parenchymal liver cells to clear potential infections (20). KCs can

also sense damage-associated molecular patterns (DAMPs)

expressed in hepatocytes that induce the secretion of a variety of

cytokines and chemokines to efficiently restore homeostasis (20).

When liver diseases compromise KCs function, aggravation of the

diseases can be foreseen due to secondary infections (21).
Mucosal-associated invariant T cells

MAIT cells are an abundant subset of hepatic T lymphocytes.

They constitute up to 30-40% of human hepatic CD8+ T cells (6, 7).

Their roles in pathogen defense and tissue repair have been

previously reported (22–24). MAIT cells have an invariant T cell

receptor (TCR) that recognizes the nonpolymorphic class Ib major

histocompatibility (MHC) class I-related protein (MR1) when

loaded with antigens. MAIT cells recognize riboflavin derivatives

which are necessary for metabolism of many bacteria. These cells

are considered an evolutionary system to defend hosts from

pathogens since mammals do not produce these metabolites.

Under inflammatory conditions, hepatocytes present the

riboflavin derivative 5-A-RU to MAIT cells and also secrete IL-7

which is known to shape MAIT cells towards a pro-inflammatory

state (7, 25). Upon activation, MAIT cells secrete large amounts of
FIGURE 1

Diagrammatic representation of the liver architecture. The classical hexagonal lobule constitutes the anatomic unit of the liver. The lobule´s
parenchyma is mainly formed by hepatocytes that are distributed along the sinusoids. The portal triad, formed by the hepatic artery (HA), the portal
vein (PV) and the biliary duct (BD), carries the blood supply towards the centroid of the lobule where it is collected by the central vein (CV). Within
the sinusoids, Kupffer cells (K) and Natural Killer cells (NK) are located in close proximity to the endothelium (beige). Other ILC-like cells such as iNKT
cells and T2NKT cells are constantly surveying the sinusoids. Closer to the triad, especially near the BDs, there is a high frequency of MAIT cells and
gd T cells.
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pro-inflammatory and pro-fibrogenic cytokines such as IFN-g,
TNF-a and IL-17 (26). Studies in humans demonstrated that

triggering MAIT cells in the absence of co-stimulation with

cytokines induces wound repair and tissue regeneration (24).

These studies suggest that under physiological conditions, MAIT

cells probably contribute to tissue repair and regeneration since

there is a constant influx of 5-A-RU present in human sera (27) but

promote inflammation under acute inflammation. The high

sensitivity for cytokines indicates that MAIT cells might be one of

the first contributors to early inflammatory responses.
Gamma-delta T cells

gd T cells are non-conventional subset of T lymphocytes with a

limited non-MHC-restricted TCR repertoire. They constitute around

1-10% of human circulating T cells (28). They can recognize a wide

variety of antigens and can be activated via pathogen-associated

molecular patterns (PAMPs), DAMPs or cytokines alone. Upon

activation, cells can execute cytotoxic as well as effector functions.

Moreover, gd T cells also play a role in tissue homeostasis (29). In

humans, the stratification of gd T cells is based on the Vd gene

segments used to produce their TCR. Vd1+ T cells are abundant in

the epithelium (30) and protect tissues via recognition of non-
Frontiers in Immunology 03102
classical MHCs such as CD1a, CD1c and CD1d (31). Vd2+ T cells

are the most abundant subtype in circulation and can clear infections

in periphery organs (28, 32). They recognize phosphoantigens, which

are non-peptide low molecular weight antigens. Vd2+ T cells respond

rapidly in a Th1-like fashion to high amounts of self-

phosphoantigens (for example in tumor cells) or microbial

phosphoantigens (33, 34). The butyrophilin 3A (BTN3A) family

can trigger activation of Vd2+ T cells upon stimulation with

phosphoantigens (35). The heterodimer BTNL3/BTNL8 expressed

in APC was reported to mediate the TCR-dependent activation of

Vd2+ T cells by binding of the intracellular domain of BTNL3 with

phosphoantigens (36). Interestingly, the expression of BTNL8was not

detectable in human PBMC but it was highly expressed in regulatory

T cells after polyclonal stimulation (37). This suggests further

investigation into the role of the butyrophilin family in the

development of hepatitis and potential role in influencing Vd2+ T

cells. Vd3+ T cells are a heterogeneous group of T lymphocytes

enriched in the liver and also in some diseases such as leukaemia or

chronic viral infection (38). They recognize antigens presented by

CD1d molecules and respond by producing cytokines and killing of

CD1d+ cells (38). Recent evidences suggest that gd T cells may be

involved in liver diseases as previously shown in other autoimmune

diseases (28), especially due to the rapid and large secretion of

IL-17 (39).
A

B

FIGURE 2

(A) Diagram tree of the approximate frequency of liver-resident cells and a FACS-based gating strategy to identify each cell type. The liver is mainly
constituted by parenchyma (hepatocytes) and ILCs. Among ILCs, Kupffer cells and NK cells are the most abundant immune cells. The liver is also
characteristic for having a niche of unconventional T cells, namely iNKT cells, T2NKT cells, gd T cells and MAIT cells. (B) The main types of antigen
recognition by unconventional T cells through their T-cell receptors (TCRs), Kupffer cells and NK cells. Kupffer cells and NK cells are activated
through pattern recognition receptors. Additionally, NK cells have receptors that can sense healthy and stressed or dead cells.
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Natural killer T cells

NKT cells are a rare subset of T lymphocytes comprising less

than 1% of human peripheral blood T lymphocytes but enriched in

the liver (8, 40). NKT cells are known to express NK cell markers

like CD56, CD16 and CD161, and produce granzyme (40, 41). Their

restricted TCR repertoire recognizes antigenic lipids presented by

the MHC class I-like molecule CD1d (42, 43). Based on their TCR,

NKT cells have been divided into two subsets. Type I NKT, or

invariant (i)NKT cells, are the most studied group because they are

enriched in mouse liver and have a semi-invariant TCR. The

prototype ligand for iNKT cells is a-galactosylceramide (a-
GalCer) (44). Type II NKT cells (T2NKT) consist of a subset with

more diverse TCR. The major ligand recognized by T2NKT cells is

sulfatide, which is a glycolipid enriched in the myelin of the central

nervous system, pancreas, kidney and liver (45). It is difficult to

study T2NKT cells because there is a lack of tools to identify and

characterize them. Recently, we proposed a novel strategy to isolate

and characterize T2NKT cells in humans but the low number of

cells in blood is still a limitation (40). The role of iNKT cells and

T2NKT cells in liver diseases have been mainly studied using

transgenic mice models of CD1d-knockouts or TCRVa14-
knockouts, which lack iNKT cells. These studies suggest that, in

general, iNKT cells play a pro-inflammatory phenotype whereas

T2NKT cells suppress inflammation through direct and indirect

inhibition of inflammatory cells, including iNKT cells (46–49). We

described a novel subpopulation of T2NKT cells that expresses

regulatory T cell markers such as FoxP3 and CD25 (40). FoxP3+

T2NKT cells were found both in the periphery and in the liver and

may explain some of the regulatory functions reported previously.
Natural killer cells

NK cells are a major component of the liver’s innate immune

cell compartment. They account for almost 50% of human

intrahepatic lymphocytes (50). Human hepatic NK cells are

classified into three different subsets based upon their

transcriptional, phenotypical and functional features (50). Liver-

resident NK cells are CD56bright CD69+ CXCR6+ CCR5+ and highly

cytotoxic (51–54). These cells are long-lived tissue-resident subsets

(55). Interestingly, a subset of liver-resident CXCR6+ NK cells was

described as having a memory-like responsiveness against -

vesicular stomatitis virus (VSV), human immunodeficiency virus

(HIV) and influenza (56). Memory-like NK cells produce higher

amounts of IFN-g after rechallenge with the virus. The third NK cell

subset is transient circulating NK cells, which are CD56dim CD69-

CXCR6- CCR5- and show less cytotoxic activity. They can secrete

high amounts of pro-inflammatory cytokines such as TNF-a and

GM-CSF (57–59). The regulation of NK cell activity consist on a

balance between activating and inhibitory receptors displayed on

their surface (60). NK cells survey the liver and induce apoptosis in

infected or aberrant cells via different mechanisms such as FasL or

TRAIL (61, 62). Under inflammatory conditions, NK cells kill

hepatic stellate cells (HSCs) to resolve inflammation and limit
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liver fibrosis via granzyme-induced apoptosis and IFN-g secretion
(62, 63). NK cells are fundamental for the proper protection of the

liver and aberrant functions have been reported in several liver

diseases. Over the past decade, studies on NK cells suggest very

heterogeneous populations with distinctive transcriptomes and

cellular interactions (64).
Innate immune cell subsets and early
liver inflammation

Liver inflammation is the first step to resolving and healing

from different hepatocellular stress. When not effective,

inflammation can become pathogenic. Hepatitis is a hallmark of

liver disease (65) (Figure 3). It is important to identify which cells

are precursors of early liver inflammation to avoid unnecessary

harm. A recent report highlights the importance of the

inflammasome in early inflammation (66). KCs express a variety

of pathogen recognition receptors (PRRs) to cover a wide range of

dangers. Some of these dangers overactivate the inflammasome,

which triggers pyroptosis, a form of cell death accompanied by cell

membrane rupture and release of pro-inflammatory IL-1b and IL-

18 (67). These cytokines are responsible for the recruitment and

activation of innate immune cells (68, 69). The direct cytotoxic and

effector functions of innate immune cells can restore homeostasis.

However, innate immune cells can also have early involvement in

disease processes when the danger is not resolved (e.g. chronic viral

infection) or because of repeated insults (e.g. alcohol or drug abuse)

(Supplementary Table 1) . Innate immune cells can also recruit

other immune cells from the liver and peripheral circulation.

Overall, innate immune cells are suggested to be the precursors of

the inflammatory niche because of their optimal location,

preactivated state, enrichment in the liver and strong

effector functions.
FIGURE 3

Hepatitis is a hallmark of the majority of liver diseases.
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Viral hepatitis

Hepatotropic viruses such as hepatitis A, B, C, D and E (HAV,

HBV, HCV, HDV and HEV) possess mechanisms to escape from

the hosts´ antiviral immunity. When the viruses replicate, often the

innate immunity detects viral components, hence triggering an

acute inflammatory response resulting in the killing of infected

hepatocytes. Since the infection is not properly resolved, viruses

remain in a latent state and replicate opportunistically. This

progressively leads to chronic liver inflammation (70). In

particular, HBV and HCV are the main causes of chronic liver

disease and are estimated to affect 257 million (data from WHO

2015) and 115 million people (71), respectively. Together they

represent the most common cause of liver cirrhosis, liver cancer

and viral hepatitis-related deaths (72).

HBV is directly mutagenic and induces low-grade inflammation

progressing into HCC (73). HBV-infected hepatocytes release

PAMPs such as glycoproteins, secreted HBsAg or free viral

nucleic acids that are recognized by the innate immune system.

Human KCs release pro-inflammatory cytokines to orchestrate an

antiviral response which also arrests hepatocyte replication, hence

viral replication (74). Studies in mice demonstrated the antiviral

roles of NK cells and NKT cells (75, 76). HBV patients present

higher levels of NK cells in blood compared to HBV-negative

controls (77, 78) and are deemed as the major contributors to

HBV clearance (79). A positive correlation was found between NK

cell activation levels and HBV clearance (79). NK and NKT cell

numbers from peripheral blood correlated to the frequency of

HBcAg-specific cytotoxic T lymphocytes (CTLs) (80). However,

infiltration of circulating NK cells can contribute to liver injury (81).

NK cells from HBV patients produced higher levels of TNF-a and

induced in vitro expression of TRAIL in hepatocytes (82). This

study showed that infiltrated circulating NK cells could induce

apoptosis of non-infected hepatocytes via TRAIL (82). Additional

studies in mice and patients show that NK cells could also

exacerbate liver injury via TNF-a, Fas/FasL and NKG2D/

NKG2DL pathways (83, 84). NKT cells and KCs secrete induced

nitric oxide synthase (iNOS) as a viral eradication mechanism (85,

86). Moreover, the frequency of NKT cells was increased to normal

values with virus clearance (80). These results suggest that

circulating NK cells and NKT cells are recruited in the liver

causing a reduction in their frequencies in blood. In contrast,

peripheral MAIT cells were significantly decreased in HBV-

related liver failure patients compared with chronic HBV patients

(87). The study suggested that MAIT cells are recruited in the liver

and promote a strong inflammatory response damaging the liver.

MAIT cells were also reduced in patients with middle/late-stage

compared with early-stage liver failure (87). Similar to NK cells and

NKT cells, patients that showed disease improvement had an

increment in the frequency of MAIT cells (87). In another two

studies exploring changes in peripheral gd T cells in HBV patients,

gd T cells were less abundant in liver failure patients and correlated

with disease severity (88). Activation of gd T cells with PMA/

Ionomycin induced the greatest amount of pro-inflammatory TNF-

a and IL-17 in liver failure patients (89). However, another study

indicated that gd2 T cells exhibited impaired proliferation and
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chemotaxis (90). The same study showed in vitro that gd2 T cells

inhibit Th17 T cells through cell-to-cell contact and produce high

amounts of IFN-g (90). These results suggest that NK cells and NKT

cells are the first-line of defense against HBV infection. Failing to

clear the infection, MAIT cells and gd T cells contribute to chronic

inflammation. IFN-a therapy is effective in 20-30% of chronic HBV

patients (91). The low response rates may be attributed to the wide

spectrum of different clinical conditions. Based on the current

understanding of the role of NK cells in HBV clearance, IFN-a is

likely to improve the cytotoxic function of liver-resident NK cells by

targeting HSC cells and reduce fibrosis (92). It is necessary to

investigate whether IFN-a therapy response is subjected to the

frequency of circulating NK cell infiltration.

HCV-induced inflammation is partly triggered by non-structural

proteins of the virus (93) but the major contributor to HCV-hepatitis

are the inflammatory immune cells. In vitro studies show that HCV-

infected hepatocytes produce several pro-inflammatory cytokines

including IL-6, IL-8, MIP-1a and MIP-1b as a response to IL-1b
secreted by HSCs (94) or IL-1b and TNF-a by KCs (95). Similar to

HBV infection, human circulating MAIT cells were generally

reported to be depleted with markers of exhaustion and

hyperactivation (96–98). Additional studies suggest that hepatic

MAIT cells are major contributors to hepatitis and fibrosis given

the nature of the cells. Repetitive IL-12 stimulation or IL-7 secretion

by hepatocytes was a sufficient stimulus to induce secretion of the

pro-inflammatory cytokines IFN-g, TNF-a and IL-17 (7, 26).

Intrahepatic gd T cells were shown to be cytotoxic against human

hepatocytes in culture (99). We have recently identified a subset of

CD8+ gd T cells that were more abundant in baseline peripheral

blood of melanoma patients that had hepatitis after ICI therapy

versus non-hepatitis cohort. ICI therapy might induce gd T cells

cytotoxic activity against hepatocytes as observed in HCV infection.

NK cells were shown to be compromised in HCV patients allowing

the virus to replicate (78, 100). IFN-a therapy induced activation of

NK cells and further improved the clearance of the virus (101). NKT

cells were also reported to play a role in HCV resolution and

progression. The frequency of activated CD38+ or CD69+ iNKT

cells strongly correlated with alanine transaminase levels (102).

Increased levels of activated iNKT cells were observed during

acute inflammation and chronic HCV infection without apparent

functional differences (102). The frequency of activated iNKT cells

declined spontaneously in resolving patients (102). These data

suggest that HCV infection could be mainly managed by NK and

NKT cells. Viral clearance also involves other ILC-like cells such as

MAIT cells and gd T cells. Under inflammatory conditions, host

hepatocytes switch to an antiviral state to prevent further viral

replication. If the infection is not properly resolved, we propose a

model where NK cells and MAIT cells have an exhausted phenotype

while iNKT cells and gd T cells promote pathogenesis by targeting

infected hepatocytes.
Alcohol-induced hepatitis and drugs

The liver is vital for the detoxification of substances that are

harmful to the body. Liver detoxification consists mainly of
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converting ingested drugs into water-soluble metabolites via

xenobiotic biotransforming enzymes (103). This allows drugs to be

efficiently secreted through urine. However, in an attempt to

solubilize drugs, some compounds are converted into their active

form. Acetaminophen, also known as paracetamol, leads to reactive

metabolites causing apoptosis and necrosis of hepatocytes (104). In

the case of alcohol, free radicals and acetaldehyde are harmful by-

products that can lead to significant liver damage over time. Drugs

and alcohol can also damage the intestine barrier leading to more

bacteria translocation to the bloodstream (105, 106). The influx of

gut microbiota and its metabolites activate the immune system

through PAMPs and DAMPs (107–110). KCs were reported to be

major contributors to the development of alcohol-related liver

disease (ALD). Intestine permeability is directly associated with

KC activation (111, 112). Exposing mice to LPS and alcohol-

derived reactive oxygen species (ROS) has shown to induce TNF-a
secretion by KCs (113, 114). In a paracrine manner, IL-1ß secretion

by KCs had a significant effect on the pathological progression of

ALD (115). A rat model of ALD with depletion of KCs resulted in

impaired progression of the pathology suggesting a key role of KCs

(116). NK cells were less frequent in alcoholic patients (117) and

were less cytotoxic compared to healthy individuals (118). A reduced

expression of the activating receptor NKG2D and production of

IFN-g in mice suggests that NK cells cannot efficiently kill activated

HSCs (119). Chronic ethanol feeding in mice increased CD1d by

enterocytes (120). Similarly, patients affected by alcohol misuse also

show increased expression of CD1d in the small intestine (120). An

in vitro study showed that CD1d increased the loading of aGalCer
following increasing concentrations of ethanol and thus, could

increase stimulation of iNKT cells (121). Many studies in mice

suggest that iNKT cells have a pathogenic role in the development of

ALD. It was reported that iNKT cells crosstalk with KCs through IL-

1b, promote inflammation and recruit neutrophils (122, 123). CD1d

blocking antibodies could partially prevent liver injury (123).

Intestinal iNKT cells were observed to migrate to the liver and,

collectively with liver iNKT cells, showed a chronic activated

phenotype with downregulation of TCR, increased apoptosis and

FasL expression (120). In vitro experiments from the same study

confirmed that iNKT cells could kill hepatocytes via Fas-FasL

mechanism (120). Activation of T2NKT cells by sulfatide inhibited

iNKT cell hepatic damage (124, 125). In a concanavalin A-induced

hepatitis mouse model, injection of lysophosphatidylcholine (LPC)

activated T2NKT cells and prevented liver injury by iNKT cells

(125). Another study described the crosstalk of T2NKT cells with

plasmacytoid dendritic cells and recruitment of anergic iNKT cells to

the mouse liver via IL-12 andMIP-2 (126). As mentioned above, our

group recently identified a novel population of human FoxP3+

T2NKT cells that might exert immunoregulatory functions in this

scenario (40). Alcoholic-related cirrhosis and severe alcoholic

hepatitis patients had a dramatic depletion and hyperactivated

circulating MAIT cells (127, 128). Dysfunctional MAIT cells could

explain the susceptibility to infection of these patients (127, 128). In

another study, MAIT cells had an exhausted phenotype and partially

recovered with patient´s alcohol abstinence (129). MAIT cells may

contribute to the pathogenesis of ALD via IL-17 secretion (129).

Surprisingly, only a few reports have described the role of gd T cells
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in ALD. In a mouse study following binge ethanol drinking, gd T

cells were described to produce higher amounts of IL-17A than non-

binge ethanol-drinking mice (130). The activation of gd T cells was

IL-1ß-dependent, possibly by KCs (130). However, under acute-on-

chronic ethanol consumption, gd T cells did not produce further IL-

17A. Instead, CD4+ T cells were the major contributors. This

suggests that KCs could play a predominant role in the

development of ALD. KCs orchestrate an inflammatory response

that involves pro-inflammatory iNKT cells and gd T cells. Alcohol

could directly affect MAIT cells and NK cells causing depletion and

impaired functions such as the inactivation of HSCs by NK cells, and

tissue repair by MAIT cells.
Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD), characterized by an

excessive accumulation of fat in hepatocytes, is the most common

indication for liver transplant in Western countries and the leading

cause of liver transplantation in women (131, 132). It is estimated

that 23-25% of the global population have NAFLD to some degree

(133). Etiologically, it is suggested that the adipose tissue from

patients with NAFLD predisposition release free fatty acids (FFA)

and pro-inflammatory mediators into the circulation (134, 135). As

a result, an inflammatory response is triggered in the liver.

Lipotoxicity, mitochondrial dysfunction and endoplasmic

reticulum stress are key inducers of the inflammatory cascade

(136). Higher frequencies of KCs were observed in liver biopsies

of non-alcoholic steatohepatitis (NASH) patients (137). Depletion

of KCs in rats exposed to a high-fat diet (HFD) prevented the

development of steatosis (138). In vitro experiments showed that

TNF-a was responsible for the increased accumulation and the

reduced oxidation of fatty acids in hepatocytes (139).

Immunohistological stainings revealed a complex crown-like

structure consisting of KCs surrounding dying steatotic

hepatocytes. Cholesterol crystals are accumulated in the center of

these structures (140). Interestingly, previous exposure of KCs to

cholesterol crystals showed to precondition the cells towards a pro-

inflammatory innate memory-like state (141). Similar observations

were taken from macrophages cultured with oxidized low-density

lipoproteins (142). Likewise to the effect of alcohol, NK cells of

obese individuals had lower NKG2D expression (143) and impaired

cytotoxicity (144, 145). Another study showed that there were no

differences between NK cells from healthy individuals and NAFLD,

while higher expression of NKG2D in NK cells was found in NASH

patients (146). Data from mice and humans suggest that iNKT cells

have a dual role in NAFLD. More specifically, it is hypothesized that

iNKT cells have a protective role during early stages of simple

steatosis. In different mouse models of hepatosteatosis, like ob/ob

mice, animals fed with HFD or a choline-deficient diet, iNKT cells

were apoptotic and showed decreased intrahepatic frequency (147–

149). Adoptive transfer of hepatic mononuclear cells but not

CD1d-/- mononuclear cells regulated hepatic steatosis via IL-10

(150). However, in other instances, opposite results were reported.

Mice fed with HFD developed adipose tissue inflammation and

glucose intolerance (151). This was significantly exacerbated by
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aGalCer-dependent activation of iNKT cells (151). In the liver,

iNKT cells could be directly activated via hepatic CD1d molecules,

exacerbate steatosis and decrease insulin sensitivity by promoting a

pro-inflammatory cytokine environment (152). This could suggest

that iNKT cells play a protective role during early stages of simple

steatosis but exacerbate the disease in chronic steatosis. It would

also be interesting to study the potential effect of iNKT cell

migration from tissues like the intestines as discussed earlier.

T2NKT cells might also play dual roles. In HFD mice, T2NKT

cells initiate inflammation in the liver and adipose tissue and

promote obesity and insulin resistance (153). However, adoptive

transfer of T2NKT cells in HFD obese mice induced prolonged

weight loss and glucose tolerance (154). The heterogeneity and

impact of fat in intrahepatic T2NKT cell populations remains

unclear. The frequency of human NKT cells is decreased in

steatosis (155) but increased accordingly to the progression of

NAFLD, especially IFN-g+ and IL-4+ cells (156–158). NASH

patients had a 4-5 fold relative increase in liver NKT cells (158).

CD1d expression was reported to be increased in liver

immunohistochemical samples of NAFLD and correlated with

disease progression (156). Taken together, NKT cells are reduced

in the early stages of simple steatosis. A pro-inflammatory response

is protective against obesity. In advanced NAFLD, NKT cells are

increased and pathogenic. Circulating MAIT cell frequency was

reported to decrease while the number of intrahepatic MAIT cells

was increased in NAFLD patients’ livers and it tended to be greater

with disease progression (159). MAIT cells from NAFLD patients

had increased secretion of IL-4 and reduced expression of IFN-g
and TNF-a (159). The current knowledge about the role of gd T

cells in NAFLD is mostly based on mice models. gd T cells can

recognize molecules presented by CD1d and its differentiation is

dependent on hepatocyte CD1d (160). gd T cells are high producers

of IL-17A in steatohepatitis (161), a key cytokine known to induce

fibrosis and ROS production (162, 163). In HFD mice, IL-17+ gd T

cells are elevated (164). Additionally, adoptive transfer and gene

knockout experiments in HFD mice demonstrated that gd T cells

exacerbate steatohepatitis and liver damage (160, 161). In humans,

NAFLD patients showed decreased frequencies of Vd2+ T cells, but

elevated frequencies of Vd2- T cells compared to healthy controls

(143). Overall, the progression of NAFLD to NASH is a process

derived from the increased cellular oxidative stress that leads to the

activation of inflammatory pathways (165). Accumulation of ROS

induces the expression of TNF-a which can trigger necrotic cell

death (166). In line with these results, NK cells were suppressed by

ROS (167). KCs develop an apparent pro-inflammatory immune

memory state by contact with cholesterol crystals. gd T cells

promote pathogenesis through IL-17 secretion, while NKT cells

and MAIT cells exacerbate steatosis by secretion of Th2 cytokines

which also contributes to fibrosis (168).
Liver autoimmunity

The three main autoimmune liver diseases are autoimmune

hepatitis (AIH), primary biliary cirrhosis (PBC) and primary

sclerosing cholangitis (PSC). AIH affects portal tracts and liver
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lobules by lymphoplasmacytic infiltrates while PSC and PBC

mainly affect bile ducts. The etiologies of these diseases are yet

unknown, but several studies suggest a common immune-mediated

liver injury. The dysregulation of immune regulatory networks causes

the activation and expansion of autoreactive T cells and B cells (169,

170). The innate system plays an important role in the regulation of

the adaptive system. In AIH, an increased frequency of cytotoxic

circulating NK cells in the liver was observed in an experimental

mouse model of AIH (171). In humans, the frequency of circulating

CD56bright NK cells was higher in untreated AIH, while the frequency

of circulating CD56dim NK cells was reported to be reduced in active

AIH patients or while in remission (171, 172). Our knowledge about

NKT cells in liver autoimmunity is mainly based on mouse models.

In AIH, concanavalin-induced hepatitis is the preferred model. iNKT

cells were reported to upregulate FasL expression to mediate

cytotoxicity against hepatocytes (173). Activation of iNKT cells via

a-GalCer exacerbates the disease and is suggested to be carried out

via IL-4 and TNF-a secretion (174, 175). Inflammation was also

promoted via the secretion of IL-17 (176). MAIT cells were reported

to be depleted and exhausted in the periphery in patients (177).

Chronic stimulation of MAIT cells due to an increased influx of

bacteria antigens and chronic inflammation may lead to MAIT cell

function impairment. Induction of the exhausted state by repetitive

stimulation with IL-12 and IL-18 showed that MAIT cells reduced

IFN-g production but maintained expression of the proinflammatory

cytokine IL-17 (177). The frequency of circulating gd T cells was

increased in patients with AIH, PSC and PBC (8). Vd1+ T cells,

known to produce high levels of IFN-g and granzyme B, were

especially incremented in patients with AIH (178). Another study

showed that gd T cells with low expression of TOX were enriched in

AIH patients and had prediction potential (179). TOX deficiency was

suggested to promote the expression of IL-17A in gd T cells (179). In

general, IL-17 secretion was reported in iNKT cells, MAIT cells and

gd T cells. Although the clinical profile of the distinctive autoimmune

liver diseases is different, current studies support common

immunological pathways. Taking for instance the role of circulating

NK cells, the frequency of these cells was reported to be increased and

a higher expression of cytotoxic molecules such as perforin was found

in PBC and PSC patients compared to healthy individuals (180, 181).
Liver transplantation

Liver transplantation represents a major hepatic injury. One of

the unavoidable injuries is caused by oxygen deprivation. After liver

resection, blood flow is restricted for a period of time and the organ

becomes hypoxic. This leads to different forms of cell death like

apoptosis, ferroptosis, pyroptosis and necrosis (182). After

reperfusion, innate immune cells from the recipient migrate to the

liver and induce inflammation or tolerance (183). The degree of

ischemia-reperfusion injury (I/R) is correlated to the risk of liver

rejection (184, 185). I/R injury increased the expression of monocyte

chemoattractant protein-1 (MCP-1) and it was associated with

poorer graft function (186). This observation was correlated with

the increased recruitment of monocytes 2 hours after reperfusion

(186). The role of NK cells is dependent on activating and inhibitory
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1175147
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang Zhou 10.3389/fimmu.2023.1175147
receptors expressed in hepatocytes as well as cytokines secreted by

neighbour cells. In I/R injury, components of the inflammasome in

KCs like NLRP3 and AIM2 are hyper-activated (187, 188).

Inflammasome-derived IL-18 secretion can induce FasL (189) and

IFN-g production in NK cells (190). IFN-g was reported to induce

expression of Fas receptor in hepatocytes and neutralization of IFN-g
secretion by NK cells could protect mice from tissue damage (191).

Due to the increased demand for livers and the increasing prevalence

of NAFLD, the debate of using steatotic livers for transplant is on the

table (192). Steatosis is deemed to cause oxidative stress in the liver,

which worsens the graft´s condition with I/R injury. In a

retrospective, exploratory study, steatotic livers showing signs of I/

R had a significantly worse one-year survival rate, while the survival

rate was not conditioned in healthy livers´ by I/R injury (193). In this

study, gd T cells were suggested to exacerbate liver rejection in

steatotic livers (193). NKT cells were reported to promote I/R injury.

After reperfusion, NKT cells rapidly expand in the liver and produce

IFN-g (194, 195). Depletion of NKT cells with antibodies or both

NKT cells and NK cells significantly reduced I/R injury (196). The

role of MAIT cells in liver I/R injury remains to be elucidated. In

focal cerebral ischemia, MAIT cells were reported to play a pro-

inflammatory role (197).
Immunotherapy-associated liver
reactions

Cancer immunotherapies, especially immune checkpoint

inhibitor (ICI) therapy, have opened new clinical perspectives for

cancer patients and is fast becoming one of the main pillars of

cancer treatment. ICI therapy uses monoclonal antibodies blocking

T cell receptors that are used by cancer cells to evade the immune

system. Immune-related adverse events (irAEs) are the result of

immune activation derived from ICI therapy. The incidence of ICI-

derived hepatitis is approximately 1-3% for programmed cell death

1 (PD1) inhibitors and 3-9% in cytotoxic T-lymphocyte-associated

protein 4 (CTLA4) inhibitors (198). The combination of a-PD1/
CTLA4 increases the rate of hepatitis (198). CTLA4 plays an

important role in downregulating the immune response. The

expression of CTLA4 is upregulated in T cells after activation and

competes with the costimulatory receptor CD28 to bind to its ligand

CD80/CD86 on APC (199). PD-1 is expressed on T cells and B cells

and it promotes self-tolerance. Upon binding to its ligand PD-L1, it

drives T cell apoptosis or regulatory phenotype. Thus, ICI therapy

can arguably impair liver immunotolerance. In acute liver injury, a-
PD1 therapy improved the bacterial clearance function of KCs

(200). A study treating melanoma patients with a-PD1 showed that
NK cell frequency in blood was not affected while NKT frequency

was significantly increased (201). Another study observed no

changes in either the number or function of MAIT cells in

melanoma patients treated with a-PD1 therapy (202). gd T cells

showed no apparent functional changes upon PD-1 blockade in

vitro (203). The frequency of gd T cells in melanoma patients

treated with a combination of a-PD1/CTLA4 remained unchanged

(204). Overall, these data suggest that innate immune cells are not

drastically affected by ICI therapies, with the exception of KCs and
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NKT cells. Immune-suppressive KCs expresses PD-1 to suppress T

lymphocytes in acute liver injury (200). a-PD-1 therapy has shown
to invigorate bacteria clearance, but it also suggests that KCs may

have impaired tolerogenic function to self-antigens reactive T cells.

NKT cells also responded to a-PD-1 therapy and exert increased

anti-tumor functions by secretion of IFN- g secretion of

inflammatory cytokines (205).
Innate immune cells as diagnostic and
therapeutic targets

The innate immune system is also involved in immune

homeostasis and healthy tissue turnover. This is accomplished via

three steps consisting of early inflammation, amplification of the

inflammatory signal and resolution. Liver fibrosis is a consequence of

inflammation and inefficient resolution. Liver biopsy is the gold

standard for diagnosing cirrhotic liver disease, yet it is estimated to

miss 10-30% of cases (169). Additionally, biopsy is not ideal because

of invasiveness, pain, hypertension and bleeding (206). An optimal

approach would be to identify early inflammation before fibrosis

development. This could improve patient’s treatment and prognosis.

Blood markers bring promising perspectives to detect liver damage

and abnormal functions (207). The current scoring system for

diagnosis and prognosis of fibrosis includes serum proteins

(albumin), bilirubin, liver enzymes (aminotransferases, alkaline

phosphatase, g-glutamyl transferase) and direct markers of

extracellular matrix turnover (type IV collagen, matrix

metalloproteinases). However, there is room for improvement

regarding specificity (etiology) and sensitivity (disease stages) (206).

The immune system has emerged as an interesting diagnostic and

therapeutic target in liver inflammation. Innate immune cells are the

frontline defenders in the liver and participate in the initiation,

amplification and resolution of inflammation. Identifying immune

changes in innate immune cell´s surface expression markers and

frequencies can bring future perspective to the diagnosis of low-grade

inflammation and also novel therapies. As discussed in this review,

depletion of innate immune cells in mice models with hepatitis was

able to attenuate several liver diseases. Noteworthy, the close

relationship between innate immune cells with DAMPs and

cytokines signaling suggests taking into consideration all three

factors for the future of liver immunomonitoring and therapies.
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MR1 deficiency enhances
IL-17-mediated allergic
contact dermatitis

Naoya Imahashi1,2†, Masashi Satoh1,2†, Emanuela Clemente1,3,
Kazuhisa Yoshino4, Mario Di Gioacchino3,5

and Kazuya Iwabuchi1,2*

1Program in Cellular Immunology, Graduate School of Medical Sciences, Kitasato University,
Sagamihara, Japan, 2Department of Immunology, School of Medicine, Kitasato University,
Sagamihara, Japan, 3Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of
Chieti-Pescara, Chiete, Italy, 4Department of Anesthesiology, School of Medicine, Kitasato University,
Sagamihara, Japan, 5Institute of Clinical Immunotherapy and Advanced Biological Treatments,
Pescara, Italy
Major histocompatibility complex (MHC) class Ib molecules present antigens to

subsets of T cells primarily involved in host defense against pathogenic microbes

and influence the development of immune-mediated diseases. The MHC class Ib

molecule MHC-related protein 1 (MR1) functions as a platform to select MR1-

restricted T cells, including mucosal-associated invariant T (MAIT) cells in the

thymus, and presents ligands to them in the periphery. MAIT cells constitute an

innate-like T-cell subset that recognizes microbial vitamin B2 metabolites and

plays a defensive role against microbes. In this study, we investigated the

function of MR1 in allergic contact dermatitis (ACD) by examining wild-type

(WT) and MR1-deficient (MR1-/-) mice in which ACD was induced with 2,4-

dinitrofluorobenzene (DNFB). MR1-/- mice exhibited exaggerated ACD lesions

compared with WTmice. More neutrophils were recruited in the lesions in MR1-/-

mice than in WT mice. WT mice contained fewer MAIT cells in their skin lesions

following elicitation with DNFB, and MR1-/- mice lacking MAIT cells exhibited a

significant increase in IL-17-producing ab and gd T cells in the skin. Collectively,

MR1-/- mice displayed exacerbated ACD from an early phase with an enhanced

type 3 immune response, although the precise mechanism of this enhancement

remains elusive.

KEYWORDS

innate T cells, delayed-type hypersensitivity, neutrophils, gamma/delta T cells, allergy
Abbreviations: MHC, major histocompatibility complex; MR1, MHC-related protein 1; MAIT, mucosal-

associated invariant T; ACD, allergic contact dermatitis; DNFB, 2,4-dinitrofluorobenzene; DNBS,

dinitrobenzene sulfonic acid; dLN, draining lymph nodes; Mo/Mf, monocyte/macrophage; Der gd T,

dermal gamma-delta T; Epi gd T, epidermal gamma-delta T.
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1 Introduction

The skin is repeatedly exposed to various antigenic substances

of natural origin, cosmetics, metal accessories, and medical

products of artificial origins, in the broad context of the

environment (1), and the immunogenicity of these substances as

sensitizers has been investigated (2, 3). Antigen-presenting cells

(APC) in skin exposed to sensitizers migrate to the draining lymph

nodes (dLN) via lymphatic vessels and present them in the context

of gene products of self-major histocompatibility complex (MHC)

class Ia and II to antigen (Ag)-specific T cells (4). Thus, Ag-specific

CD8+ and CD4+ T cells are primed, and these Ag-specific T cells

within the memory fraction may be activated upon Ag re-exposure

and migrate to the site of Ag entry to induce allergic contact

dermatitis (ACD). ACD is transferable with T cells but not with

antibodies and is thus classified as T cell-mediated type IV

hypersensitivity according to the Gell and Coombs classification (4).

An experimental model of ACD is often employed in mice by

painting chemicals such as dinitrohalobenzene onto the skin to

study the sensitization and elicitation phases in detail (4). In

addition to T cells, various other immune and non-immune cells

in the skin are involved in the pathogenesis of ACD, and the

crosstalk among them has been studied (5–7). Keratinocytes are the

main type of non-immune cells in the skin, constituting a barrier

layer since they not only form a physical barrier against the entry of

foreign substances and pathogens but also secrete IL-1b when

sensing insults against the skin to transmit signals downstream to

immune cells (5). The cells of innate immunity include Langerhans

cells, dermal dendritic cells, macrophages, neutrophils, and mast

cells, which present Ag information and affect the intensity of ACD

(6). Natural killer (NK) cells and innate lymphoid cells (ILCs),

lymphocytes without rearranged Ag-specific receptors, potentiate

(NK and ILC1 in particular) or regulate (ILC2 in particular) the

immune and inflammatory responses at both the sensitization and

elicitation phases of ACD depending on the context (6, 7).

Innate-like lymphocytes with rearranged TCRs are also

important components in ACD. Murine skin is known to harbor

a special gd T-cell population referred to as dendritic epidermal T

cells (DETCs) expressing invariant Vg3Vd1 (in Garman

Nomenclature [GN], Vg5Vd1 in Heilig-Tonegawa Nomenclature

[H-TN]) TCR in the epidermis (8). However, humans do not have

an equivalent epidermal T-cell population, although they harbor

Vd1+ and Vd2+ T cells in the epidermis and dermis (9). Murine

DETCs express NKG2D, which recognizes stress molecules such as

RAE-1 induced in keratinocytes when sensitizing chemicals are

applied to the epidermis (10). Moreover, keratinocyte-derived IL-1b
induces IL-17 expression by DETCs (11) and Vg2+ (in GN, Vg4 in

H-TN) or Vg4+ (in GN, Vg6 in H−TN) gd T cell subsets, including

others (collectively referred to as Tgd17 cells) in the dermis (9),

where the latter appear to play a more important role in ACD.

The skin also harbors innate-type T cells with ab-type TCRs,

including natural killer T (NKT) cells (12), and mucosal-associated

invariant T (MAIT) cells (13), whose reactivities are restricted by

MHC class Ib molecules, cluster differentiation 1d (CD1d), and

MHC-like protein 1 (MR1), respectively. These T-cell subsets are
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also categorized as preset T cells and resemble each other in several

ways (14): 1) They recognize non-peptide antigens of microbial

origin in the context of the restricting class Ib (glycolipids/CD1d vs.

vitamin B2, 9 metabolite/MR1), 2) major subsets utilize invariant Va
chain (mouse Va14Ja18/human Va24Ja18 vs. mouse Va19/Ja33/
human Va7.2Ja33) with limited yet diverse Vb chains, respectively,

3) the invariant subsets of T cells exhibit effector/memory

phenotypes and may function as either effector or regulatory cells

in health and diseases (15). Studies of these invariant T cells may

provide insights as to controlling ACD with low-molecular-weight

ligands without concerns about MHC barriers because the

restriction molecule is homogenous in an allogeneic relationship

and highly conserved even in xenogeneic combinations (14).

The role of NKT cells in ACD has already been investigated by

employing gene knockout (-/-) mice, CD1d-/- (whole NKT cell-

deficient), or Ja18-/- (invariant NKT [iNKT] cell-deficient) mice

compared with wild-type (WT) mice with a C57BL/6 or BALB/c

background (16–18). Initial studies demonstrated that ear swelling

was reduced in both CD1d-/- and Ja18-/- mice, suggesting that iNKT

cells appear to function in the initiation and enhancement of ACD

through prompt induction of IL-4 after Ag exposure, with

involvement of IgM+ B-1 B cells and effector ab T cells (16, 17).

Subsequent studies revealed that the differential functions of iNKT

cells were dependent on the contact sensitizers employed in each

study, with iNKT cells playing either pathogenic or regulatory roles

(18, 19). Human studies have also demonstrated that iNKT cells are

detected in ACD lesions, implying some critical roles (20, 21).

The involvement of another innate ab type T cell, MAIT cells,

in ACD has been limited to date and has been reported for

palladium allergy in the foot pad lesions of BALB/c mice, where

MAIT TCR was detected with iNKT TCR and presumed to display

Ag-specificity (22). The role of MAIT cell accumulation in the

lesion remains elusive in the development of ACD as a player in

either inflammatory or regulatory responses. Thus, in the present

study, we examined the effect of MR1/MAIT deficiency on ACD by

comparing DNFB-induced ACD in WT versus MR1-/- mice to

probe for altered responses in MR1-/- mice. The involvement of

other subsets of innate-like T cells was also revealed in MR1-/- mice,

and their relevance in ACD is discussed.
2 Materials and methods

2.1 Mice

C57BL/6 (B6) mice were purchased from CLEA Japan, Inc.

(Tokyo, Japan) and B6.MR1-/- mice were kindly provided by Dr.

Susan Gilfillan (Department of Pathology and Immunology,

Washington University School of Medicine, St. Louis, MO, USA)

(23) and housed and maintained in an animal facility at the Analysis

Center for Integral Genomic Functions at Kitasato University

School of Medicine. The mice were provided food and water ad

libitum. All animals were humanely treated and housed under

pathogen-free conditions. All experimental procedures involving

mice conformed to the guidelines of the Animal Experimentation
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and Ethics Committee of Kitasato University School of Medicine

(#2017-143, 2018-119, 2019-025, and 2022-079).
2.2 Induction of allergic contact dermatitis
with 2,4-dinitrofluorobenzene

Mice were sensitized at shaved abdomen sites with 25 mL of

0.5% 2,4-dinitrofluorobenzene (DNFB) (Sigma-Aldrich, MO,

USA) dissolved in a 1:4 mixture of olive oil (Nacalai Tesque,

Inc., Kyoto, Japan): acetone (Fujifilm Wako Pure Chemical Co.

Ltd., Osaka, Japan), as previously described (24). Five days after

sensitization, the right pinna was painted with 20 mL of 0.3%

DNFB, and the left pinna was painted with 20 mL of vehicle

alone (elicitation/challenge). Each pinna was measured with a

digital micrometer (Mitutoyo Corp., Kawasaki, Japan), and the

net pinna thickness (Dthickness = thickness of right pinna –

thickness of left pinna) was calculated at 0 (before), 1, and 2

days after challenge.
2.3 Cell preparation from pinnae and
lymph nodes of treated mice

Right and left pinnae and inguinal lymph nodes (draining

lymph nodes [dLN]) on the right and left sides of the mice were

obtained after euthanasia using a confirmed procedure. The

pinnae were used for histology, flow cytometry, functional

analyses of infiltrated cells, and gene expression analyses. A

single-cell suspension was prepared according to the protocol

previously described with slight modifications (25). In brief,

the removed pinnae were cut into pieces and incubated with

100 mg/mL Liberase® and 400 ng/mL DNase I (both from

Roche Diagnostics, K.K., Tokyo, Japan) at 37°C with gentle

shaking for 1 h. The digestion was stopped by adding ice-cold

phosphate-buffered saline without Ca2+ and Mg2+ [PBS (-)],

and the solution was layered on Lympholyte®-M medium

(Cedarlane Laboratories Ltd., Ontario, Canada) followed by

centrifugation at 1,800 × g for 20 min. Cells at the interface

were collected, washed with medium, and used for flow

cytometry and cell culture. The lymph nodes were gently

dispersed using a frosted-glass homogenizer to obtain a

single-cell suspension, which was used for flow cytometry

and cell culture.
2.4 Flow cytometric analysis

A single-cell suspension prepared as above was incubated with

TruStain FcX™ anti-mouse CD16/32 antibody (BioLegend, CA,

USA) and stained with the following mAbs: anti-mouse Ly-6G

(1A8), CD11b (M1/70), TCRb (H57-597), CD3 (2C11), CD4

(GK1.5), gd TCR (GL3), Vg2 (in GN; UC3-10A6), B220 (RA3-

6B2), IL-17A (TC11-18H10.1), IFN-g (XMG1.2), and T-bet (4B10)

purchased from BioLegend, anti-mouse CD45.2 (104), RORgt
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(Q31-378BD) purchased from BD Biosciences, and anti-mouse

Foxp3 (FJK-16s) purchased from Invitrogen. 5-OP-RU loaded

MR1 tetramer was provided by the National Institute of Health

Tetramer Core Facility at Emory University (Atlanta, GA, USA).

Cells positive for 7-amino actinomycin D (BioLegend) were

electronically gated as dead cells and excluded from the analysis.

For transcription factor staining, the cells were initially stained with

surface markers, and then fixed and permeabilized with the True-

Nuclear™ Transcription Factor Buffer Set (BioLegend). For

intracellular cytokine staining, cells were stimulated with PMA

(50 ng/mL, Sigma-Aldrich) and ionomycin (500 ng/mL, Sigma-

Aldrich) for 4 h in the presence of brefeldin A (x1000; BioLegend)

before cell surface staining. The samples were washed and filtered

and then analyzed by FACS. After surface staining, the cells were

fixed and permeabilized with Fixation Buffer (BioLegend) and

Intracellular Staining Permeabilization Wash Buffer (BioLegend),

followed by staining with anti-cytokine mAbs. The stained cells

were subjected to flow cytometry (FACSVerse™, BD Biosciences)

and analyzed using FlowJo software (FlowJo, LLC, CA, USA). The

flow cytometry was performed as described previously (25).
2.5 Cell culture and stimulation with
dinitrobenzene sulfonic acid

At day 5 of DNFB sensitization, dLN cells were harvested in

RPMI-1640 medium (Sigma-Aldrich) containing 10% FCS, 50 mM
b-mercaptoethanol (GIBCO, MA, USA), 100 units/mL penicillin

and 100 mg/mL streptomycin (Sigma-Aldrich). One million (1 ×

106) cells were cultured in the presence of 100 mg/mL

dinitrobenzene sulfonic acid (DNBS) (Sigma-Aldrich) for 3 days

(24) and the supernatant was collected for cytokine measurement,

as described in section 2.6.
2.6 Quantification of cytokines

The concentration of Th1/Th2/Th17 cytokines in the culture

supernatant was quantified by flow cytometry using a BD CBA

Mouse Th1/Th2/Th17 Cytokine Kit (BD Biosciences, CA, USA)

according to the manufacturer’s protocol.
2.7 Quantitative real-time PCR

Total RNA was extracted using the TRIzol® reagent (Thermo

Fisher Scientific). cDNA was synthesized from the total RNA using

PrimeScript™ RTMaster Mix (TaKaRa Bio Inc., Kusatsu, Japan). Real-

time PCR was performed using TB Green® Premix Ex Taq™ II

(TaKaRa Bio Inc.) and a CFX96 real-time PCR detection system

(Bio-Rad, Hercules, CA, USA), according to the manufacturer’s

protocol. The target gene expression was normalized to b-actin and

calculated using the 2−DDCT method. The primers were as follows: Actb

(forward 5′-GGCTGTATTCCCCTCCATCG-3′; reverse 5′-CCAGT
TGGTAACAATGCCATGT-3′), Cxcl1 (forward 5′-TTGAAGGT
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GTTGCCCTCAGG-3′; reverse 5′-CCAGACAGGTGCCATCAGAG-
3′), Cxcl2 (forward 5′-GGCGGTCAAAAAGTTTGCCT-3′; reverse 5′-
CAGGTACGATCCAGGCTTCC-3′), Csf3 (forward 5′-GTTCCCCTG
GTCACTGTCAG-3′; reverse 5′-TGGCTTAGGCACTGTGTCTG-3′),
Il17 (forward 5′-TGAAGGCAGCAGCGATCA-3′; reverse 5′-
GGAAGTCCTTGGCCTCAGTGT-3′), Il1b (forward 5′-GCAACT
GTTCCTGAACTCAACT-3′; reverse 5′-ATCTTTTGGGGTCCG
TCAACT-3′) (Hokkaido System Science, Sapporo, Japan).
2.8 Histology and quantitative analyses of
microscopic images

The pinna tissue was fixed with buffered formaldehyde solution

(10%) (Fujifilm-Wako Pure Chemical), followed by the standard

protocol for paraffin-embedded sections and hematoxylin-eosin

(HE) staining. Images of the HE-stained tissue were captured

using a BIOREVO microscope (BZ-X800, KEYENCE Corp.,

Osaka, Japan), and the thickness of the pinna was quantified

using image analysis software (BZ-X) for the microscope, in

addition to manual measurement with a digital micrometer, as

described in Section 2.2.
2.9 Statistics

The results are presented as means ± standard deviation (s.d.).

Statistical analysis between two groups was performed using the

Mann–Whitney U test, and comparison among three groups was

performed using ANOVA followed by Tukey–Kramer tests. Values

with p < 0.05 were considered statistically significant.
3 Results

3.1 MR1-/- mice develop augmented ACD

To examine the role of MR1/MAIT cells in ACD, WT and

MR1-/- mice were sensitized with DNFB in an acetone/olive oil

solvent on the abdominal skin and challenged five days later on the

right pinna, and the increment in thickness of the pinna in each

mouse was calculated. MR1-/- mice exhibited a significantly greater

increase in ear swelling than WT mice on days 1 and 2 after DNFB

challenge (Figure 1A). MR1-/- mice exhibited thicker pinnae, with

severe intercellular edema and augmented infiltration of

inflammatory cells compared to WT mice, as shown by

histopathology (Figure 1B). The inflammatory cells in the DNFB-

painted pinnae appeared to consist mainly of polymorphic

neutrophils in both WT and MR1-/- mice. The mean ear

thickness of pinna painted with DNFB was also quantified using

histological images, and that of MR1-/- mice was greater than that in

WT mice (Figure 1C). Although the representative histology of the

vehicle control in MR1-/- mice was slightly thicker than that in WT

mice (Figure 1B), the mean ear thickness in the control group was

similar between the WT and MR1-/- mice.
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3.2 More neutrophils are recruited into the
ACD-induced pinna in MR1-/- mice

To analyze inflammatory cells infiltrating the pinna

challenged with control vehicle or DNFB, cells infiltrated into

the pinna were obtained by disintegration of the tissue and

analyzed by flow cytometry, as described in the Materials and

Methods. The acquired mononuclear cells were gated as

described (Supplementary Figure 1A). The neutrophils in the

pinnae were identified as Ly6G+CD11b+ cells (Figure 2A).

More neutrophils were recruited to the DNFB-challenged

pinnae in both WT and MR1-/- mice (Figure 2A, right panels)

than to the control pinnae (Figure 2A, left panels) .

Furthermore, the number and frequency of neutrophils in the

challenged pinnae of MR1-/- mice were significantly higher

than those in the pinnae of WT mice (Figure 2B). The

expression of genes related to neutrophil migration and

survival, such as Cxcl1, Cxcl2, and Csf3, was significantly

increased or tended to be increased in MR1-/- mice compared

to WT mice (Figure 2C). Il17, which stimulates the expression

of these genes, also tended to be increased in MR1-/- mice after

two days of DNFB challenge (Figure 2C).

The Ly6Glo-(-)CD11b+ population that appeared straight below

the neutrophil gate in Figure 2A was further separated into

Ly6ChiF4/80lo (monocyte/macrophage; Mo/Mf) and Ly6C-F4/80+

(macrophage; Mf) cells (Supplementary Figure 2A). Although

tissue-resident Mf appeared to be the main cell type in the

Ly6Glo-(-)CD11b+ population, Mo/Mf became dominant

presumably via migration and Mf appeared to be markedly

reduced by contrast (Supplementary Figure 2A, flow panels) and

as a percentage (Supplementary Figure 2B graphs) during the

elicitation phase.
3.3 Increased dermal gd T cells in the
pinnae of MR1-/- mice

To examine another major population of cells residing in

control pinnae or infiltrating inflamed pinnae, we analyzed ab-
and gd-type T cells of vehicle- and DNFB-treated pinnae by flow

cytometry based on gating, as shown in Supplementary Figure 1B.

Both ab and gd T cells were detected in vehicle control and DNFB-

painted pinnae, and gd T cells were clearly separated according to

the fluorescence intensity as epidermal (Epi: TCRhi) and dermal

(Der: TCRlo) gd T cells (Figure 3A) (25). Notably, in the pinnae of

the vehicle control group, the contour of ab T cells was more

evident in WT mice, whereas that of Der gd T cells was more

evident in MR1-/- mice (Figure 3A, upper and lower left panels).

Elicitation by DNFB caused a reduction (dense contour to scarce

one or dots) of Epi and Der gd T cells, whereas a clear population of

ab T cells was observed in both WT and MR1-/- mice (Figure 3A,

upper and lower right panels). When the number of T cells was

analyzed further, the ab T cells in the pinnae significantly increased

after challenge with DNFB in both WT and MR1-/- mice at similar

levels, suggesting that the sensitized population of ab T cells was
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vigorously recruited into the pinnae after painting in both strains of

mice (Figure 3B, lower right panels), although the percentage of ab
T cells of MR1-/- mice was significantly lower than that of WT mice

due to the increased Der gd T cells as described below (Figure 3B,

lower left panels). Accordingly, the percentage of Epi gd T cells was

markedly decreased in the DNFB-challenged pinnae compared to

the vehicle controls (Figure 3B, upper left panels). The number of

Epi gd T cells also appeared to be decreased in the DNFB-challenged

group, whereas the extent was not as marked as that of the

frequency, and MR1-/- mice exhibited higher numbers than WT

mice (Figure 3B, upper right panels). Another subset, Der gd T cells,

appeared to be decreased in frequency in WT and MR1-/- mice in

the DNFB-treated group under the influence of the dominant

recruitment of ab T cells, whereas the frequency was significantly

higher in MR1-/- mice than in WT mice in both the control and

DNFB groups (Figure 3B middle left panel). Moreover, the number

of Der gd T cells was not reduced, even in WT mice, and was

significantly increased in DNFB-challenged pinnae in MR1-/- mice

compared with WT mice (Figure 3B middle right panel). In

contrast, the cells of interest in the present study, MAIT cells

detected by 5-OP-RU/MR1 tetramer, were reduced in DNFB-

challenged pinnae in comparison with those in the vehicle

control, (Figure 3C) both in terms of frequency and cell number

(Figure 3D). Since MR1-/- mice lack MAIT cells due to the Mr1-

disruption, there was no difference between the control and

DNFB groups.

The increment and reduction of each T cell subset, as compared

with other immune cells among the different panels, are not evident,
Frontiers in Immunology 05117
because the cell numbers during the pre- and post-elicitation stages

of each cell number differ over several log scales. To better visualize

the relationship of each subset of cells in the pinnae of vehicle- and

DNFB-painted WT or MR1-/- mice, the cumulative graph of cells

for lymphocytic and phagocytic lineages is shown in Supplementary

Figure 3. The majority of cells infiltrating the pinnae consisted of

neutrophils, Mo/Mf, and ab T cells in both WT and MR1-/- mice,

although there was a difference in the composition betweenWT and

MR1-/- mice in the vehicle control and DNFB-challenged pinnae.
3.4 Enhanced Th17 immune responses in
MR1-/- mice

To examine the effect of MR1/MAIT cell deficiency on T-cell

cytokine production in ACD, the whole draining LN (dLNs;

inguinal) cells of abdominal skin from WT and MR1-/- mice were

stimulated with 2,4-dinitrobenzene sulfonic acid (DNBS) in vitro.

The level of IL-17A in the culture supernatant when stimulated with

DNBS was significantly higher for the LN cells of MR1-/- mice than

for those of WT mice (Figure 4). The production of other cytokines

such as IL-10, TNF-a, IFN-g, and IL-6 was comparable between

WT and MR1-/- mice (Figure 4), and IL-4 production was almost

undetectable (data not shown).

Next, we examined the frequency and number of T helper (Th)

subsets in the dLNs of WT and MR1-/- mice after 5 days of

sensitization. There were no differences in the frequencies or the

numbers of CD4+CD3+ (T) cells in dLNs between WT and MR1-/-
A B

C

FIGURE 1

MR1-/- mice develop augmented ACD compared with WT mice. (A) Wild-type (WT, C57BL/6; B6, closed circle) mice and B6.MR1-/- (MR1-/-, open
circle) mice were sensitized with 0.5% DNFB and challenged after five days on the left pinna with vehicle only or on the right pinna with 0.2% DNFB.
The thickness of the pinnae was then measured with a digital micrometer on day 0 (day of challenge), day 1, and day 2. The increment in thickness
of the sensitized pinna was presented as DEar swelling (mm), as described in the Materials and Methods. (B) Histology of vehicle-painted (control)
and DNFB-painted (experimental) pinnae obtained from WT and MR1-/- mice. (C) The net thickness of the pinnae including that of vehicle control
deduced from the measurements of morphometric analyses of histological specimens is presented as Ear thickness (mm). Representative data of at
least three experiments of four to five mice/experiment. Mann–Whitney U test. **p < 0.01.
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mice (Figure 5A). When T-bet+ cells (Th1) were analyzed among

CD4+CD3+ cells, the frequency of T-bet+ cells in the dLNs of MR-/-

mice was lower than that in WT mice, and the number of T-bet+

CD4+ T cells also exhibited a decreasing trend (Figure 5B). The

CD4+ T cells were analyzed for RORgt and Foxp3 expression

(Figure 5C). The frequencies and numbers of RORgt+Foxp3-

(Th17) cells were significantly higher in MR1-/- than in WT mice

(Figure 5D, upper left and lower left panels). There were no

differences in the frequency and number of RORgt-Foxp3+ (Treg)

cells between WT and MR1-/- mice (Figure 5D, upper and lower

middle panels). Of note, RORgt+Foxp3+ cells, which may represent

stable Treg effector cells (26), although a small population in

comparison with RORgt-Foxp3+ cells, appeared more frequently

(2×) in MR1-/- mice than in WT mice, as shown in Figure 5C.

However, there were no statistical differences in the mean

frequencies and cell numbers of the population between WT and

MR1-/- mice (Figure 5D, upper and lower right panels).

Additionally, there were no differences in each fraction of Th cells

in unsensitized mice (Supplementary Figures 4A, B). Consistent

with the above findings, staining for intracellular cytokines in CD4+

T cells treated in vitro with PMA and ionomycin for 4 h (Figure 5E)

demonstrated that the CD4+ T cells of MR1-/- mice exhibited a

higher frequency and number of IL-17A+ cells than those of WT

mice (Figure 5F, upper and lower left panels), whereas frequency

and number of IFN-g+ cells differed between WT and MR1-/- mice

(Figure 5F, upper and lower right panels). These cytokine profiles
Frontiers in Immunology 06118
are consistent with the data obtained from the culture experiments

in Figure 4. Comparable production of IFN-g protein was found in

the culture supernatant detected by CBA (Figure 4), as intracellular

protein detected by flow cytometry (Figure 5E), whereas T-bet+ T

cells were reduced in frequency (Figure 5B).
3.5 Increased IL-17A-producing dermal gd
T cells in MR1-/- mice

We then examined the population of T cells in the pinnae of

MR1-/- mice, because the source of IL-17A production was assumed

to be Th17 cells as well as Tgd17 cells (27). Notably, the pinnae of

the vehicle control mice contained dermal T cells at a higher

frequency in MR1-/- mice (Figures 3A, B). Der gd T cells,

especially Vg2+ gd T cells, contain the Tgd17 cell population in

the skin (26). Thus, we examined Der gd T cells for IL-17 expression

in pinnae of unsensitized WT or MR1-/- mice after stimulation with

PMA and ionomycin in vitro. Not only total T cells but also Der

Vg2+ T cells exhibited a high frequency of IL-17A+-T cells in the

pinnae of WT mice and an even higher frequency in MR1-/- mice

than in WT mice under unsensitized conditions (Figures 6A, B).

When Vg2- Epi gd and Der gd T cells were analyzed for IL-17A in

the same settings as in Figure 6A (gated as Vg2- for Supplementary

Figure 5A), Vg2- Der gd T cells in MR1-/- mice were also

significantly increased, but to a lesser extent than Vg2+ Der gd T
A B

C

FIGURE 2

More neutrophils are recruited into the ACD-induced pinnae in MR1-/- mice than WT mice. (A) Representative flow cytometric profiles of the cells
infiltrated into the pinnae prepared two days after challenge with enzymatic degradation, as described in the Materials and Methods and analyzed
according to the gating described for Supplementary Figure 1A. The square gate (CD11b+Ly6Ghi cells) indicates neutrophils. (B) Frequency of the
CD45+ fraction and cell number in MR1-/- mice compared with the fraction and cell number of WT mice represented by panel (A). (C) The
expression of Cxcl1, Cxcl2, Csf3, and Il17 related with neutrophil recruitment was examined with mRNA obtained from the left pinnae (vehicle
control) and the right pinnae (DNFB) two days after challenge. Representative data of at least three experiments of four to eight mice/experiment.
Mann–Whitney U test. *p < 0.05, **p < 0.01.
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cells, whereas the Vg2- Epi gd T cells exhibited a decreasing trend

(p = 0.05) in MR1-/- mice compared to WT mice in terms of the

frequency of IL-17A+-cells (Supplementary Figures 5B, C).

We next examined Der gd T cells for the expression of Vg2 in

DNFB-challenged pinnae two days after elicitation (Figure 6C). The

number of Der gd T cells that expressed the Vg2 chain increased,

even with a decreasing trend for the infiltration of ab T

cells (Figure 6D).
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To examine CD4+ T cells in DNFB-challenged pinnae, we analyzed

the cells obtained on day 2 of elicitation, and a similar frequency was

observed for WT and MR1-/- mice, although an increasing trend in the

number of Th cells was observed inMR1-/- mice compared toWTmice

(Figure 6E). The CD4+ T cells were also analyzed for the expression of

Foxp3 and RORgt (Figure 6F). Both the frequency and cell number of all

subsets, RORgt+Foxp3- (Th17; Figure 6G, left panels), RORgt-Foxp3+

(Treg; Figure 6G, middle panels), and RORgt+Foxp3+ (stable Treg
FIGURE 4

Cytokine production by antigen-specific T cells in draining lymph nodes. Lymph node T cells harvested from inguinal lymph nodes at day 5 in
vehicle- and DNFB-painted WT and MR1-/- mice were cultured for three days in the presence and absence of DNBS (100 mg/mL). Cytokines (IL-10,
IL-17A, TNF-a, IFN-g, IL-6) in the supernatant were quantified as described in the Materials and Methods. Representative data of two experiments of
three to four mice/experiment. Mann–Whitney U test. **p < 0.01.
D

A B

C

FIGURE 3

T-cell subsets in both vehicle control and DNFB-painted pinnae two days after challenge in WT and MR1-/- mice. (A) Representative flow cytometric
profiles of T-cell subsets in vehicle- and DNFB-painted pinnae. The cells were prepared as for Figure 2 and analyzed according to the gating of
Supplementary Figure 1B for gd T and ab T cells. The gdhi fraction is designated epidermal gd T cells (Epi gd) and the gdlo fraction as dermal gd T cells
(Der gd). (B) Graphs of the frequencies and cell numbers for the ab T, Epi gd T, and Der gd T cells represented in panel (A). (C) Representative flow
cytometric profiles of MAIT cells, analyzed with the gated fraction of lymphocyte CD45+ cells stained with 5-OP-RU/MR1-tetramer (kindly provided
by NTCF, Atlanta, GA, USA) and anti-TCRb mAb in vehicle control and DNFB-painted pinnae of WT mice two days after challenge. (D) Graphs of the
frequencies and cell numbers for MAIT cells for the WT mice represented in panel (C). MR1-/- mice lack MR1-restricted cells, including MAIT cells,
graphs were not demonstrated (n.d.), with no difference between control and DNFB groups in trace amounts. Representative data of at least three
experiments of three to four mice/experiment. Mann–Whitney U test. *p < 0.05, **p < 0.01.
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effector; Figure 6G, right panels), were increased in MR1-/- mice

compared with those in WT mice. To explain the upstream events

that led to the above differences, the relevant cytokine mRNAs were

analyzed 6 h after elicitation. Both Il17 and Il1b expression were

significantly increased in the pinnae of MR1-/- mice compared with

WT mice as early as 6 h (Figure 6H), suggesting that the expression of

IL-1b might enhance the responses of both Th17 and Tgd17 cells. The
ear swelling induced by DNFB challenge in MR1-/- mice was already

augmented at 6 h (Supplementary Figure 6A), and the expression of

genes relevant to neutrophils, such as Csf3, Cxcl1, and Cxcl2, was also

increased (Supplementary Figure 6B), although neutrophil recruitment

was comparable at this time point between WT and MR1-/- mice

(Supplementary Figure 6C).
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4 Discussion

In the present study, we demonstrated that ACD was

augmented in MR1-/- mice compared to WT mice because of the

increased numbers of Th17 and Tgd17 cells in MR1-/- mice. MAIT

cells were markedly reduced upon elicitation with DNFB in WT

mice. MAIT cells (5-OP-RU/MR1 tetramer+ cells) in the dLN on

day 3 of DNFB challenge expressed Nur77 in Nur77gfp mice (data

not shown), suggesting that MAIT cells were activated during the

elicitation phase. Furthermore, the deficiency of MAIT cells appears

to be related to an altered distribution and/or number of T cells and

a bias towards the type 3 immune response in a direct or indirect

manner, although the mechanism remains elusive.
D

A B

E F

C

FIGURE 5

T-helper (Th) cell subsets in draining lymph nodes from WT and MR1-/- mice. Cells in inguinal lymph nodes after five days of sensitization were
obtained and stained for analyses described in the Materials and Methods. (A) Frequency of the CD3+ population and number of CD3+CD4+ cells (Th
cells) in WT and MR1-/- mice. (B) Frequency and number of T-bet+ (Th1) cells (upper right panels) in the Th gate shown in (A). (C) Representative
flow cytometric profiles of CD3+CD4+ Foxp3+ and RORgt+ cell populations in WT or MR1-/- mice. (D) Frequencies and numbers of RORgt+Foxp3-

(Th17; left panels), RORgt-Foxp3+ (Treg; middle panels), and RORgt+Foxp3+ (stable Treg effector; right panels) cells in WT and MR1-/- mice
represented by panel (C). (E) Representative flow cytometric profiles of IL-17A or IFN-g intracellular staining in CD3+CD4+ cells. Intracellular staining
of IL-17A and IFN-g in Th cells following stimulation with PMA and ionomycin for 4 h. T cells were obtained from draining lymph nodes of WT or
MR1-/- mice five days after sensitization at shaved abdominal skin sites. (F) Frequencies and cell numbers of IL-17A+ (left panels) or IFN-g+ cell
populations (right panels) represented by panel (E) Representative data of at least three experiments of three mice/experiment. Mann–Whitney U
test. *p < 0.05.
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MR1 deficiency may cause wider defects in MR1-restricted T

cells (MR1T) (28) besides MAIT cells, as the diversity of MR1T

(including MAIT and MR1-reactive T) cells extends to six different

groups with unique modes of recognition, binding, and reactivity

(29), most of which are ab type but include a gd type, such as

Vd3Vg8 T cells that bind and recognize MR1 at its membrane

proximal region, similar to an a3 domain-recognizing antibody (30,

31). Notably, the significant role of MR1T cells have been shown to

play an important role in antitumor immunity (32) and have

already been implicated in infectious and autoimmune diseases

(33). It should be noted that T cells obtained from Va19Ja33TgCa-/-

mice that overexpress MAIT cells were previously tested for

suppression of delayed-type hypersensitivity (34). Transfer of

invariant Va19+ T cells but not control non-transgenic T cells

suppressed foot pad swelling induced by sheep red blood cells in B6

hosts prior to sensitization, accompanied by a reduction of serum

IL-17 and IFN-g. Nevertheless, further studies will be needed to

explore the mechanisms by which MR1T/MAIT cells interact with

other immune cells to suppress ACD response.

The significant increase and bias towards Tgd17 cells we

observed in the skin of MR1-/- mice is likely associated with the

enhanced ACD response, although the timing and site of the
Frontiers in Immunology 09121
developmental characteristics (35) in the biased distribution of

Vg2+ Tgd17 in MR1-/- mice remain to be determined.

Interestingly, MAIT cells and gd T cells have a reciprocal

relationship, similar to the expansion of MAIT cells in NKT cell-

deficient mice (36). For instance, a patient with a homologous MR1

mutation at position 31 Arg to His substitution (position 9 in

mature MR1 protein: MR1R9H/MR1R9H) was discovered to display

primary immunodeficiency due to functional MR1 deficiency, with

no circulating MAIT cells (37). Notably, the patient had increased

circulating T cells expressing Vg9Vd2 with the CD27-CD28-

phenotype. Conversely, MAIT cells have been reported to be

increased in gd-/- mice (38). These results indicate that there is an

equipoise among the three types (NKT, MAIT, and gd) of innate-
like T cells by competing with a homeostatic factor or niche (39).

Hence, it is tempting to speculate that NKT cells, MAIT cells and gd
T cells all contribute in a reciprocal manner, as a ménage à trois, to

various inflammatory diseases such as ACD. The present study

demonstrated that in MR1-/- mice, the dominant Vg2+ Tgd17 cells

in the skin (Figure 6) and increased Th17 cells (Figure 5) upon

sensitization in the dLN migrated to the skin and enhanced ACD. It

is intriguing that skin MAIT cells are biased towards IL-17

production (MAIT17) and promote tissue repair (38), and that
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FIGURE 6

T-cell subsets in pinnae of unsensitized or sensitized mice and gene expression in sensitized pinnae. (A) Flow cytometric profiles of Vg2+ gd T cells
(gated as the polygon; upper panels) in gd T cells and intracellular IL-17A in gated Vg2+ T cells (lower panels) in WT and MR1-/- mice. T cells obtained
from unsensitized pinnae were stimulated with PMA and ionomycin in vitro for 4 h. The expression of intracellular IL-17A was then analyzed in the
Vg2+ population in the total gd T cells by flow cytometry. (B) Frequency of IL-17A+ population in the total gd T cells (left panel) or in the Vg2+ cells
(right panel) in WT and MR1-/- mice represented by panel (A). (C) Representative flow cytometric profiles of dermal Vg2+ gd T cells (gated as the
polygon) in vehicle control and DNFB-painted pinnae in WT and MR1-/- mice two days after challenge. (D) Frequencies and numbers of Vg2+ gd T
cells in vehicle-painted (veh) and DNFB-painted (DNFB) pinnae. (E) Frequencies and numbers of CD4+CD3+ cells (Th) in DNFB-painted pinnae of WT
and MR1-/- mice. (F) Flow cytometric profiles of RORgt and Foxp3 staining for the Th cells exhibited in E for WT (left panel) and MR1-/- (right panel)
mice. (G) Frequencies and numbers of RORgt+Foxp3- (Th17; left panels) cells and RORgt-Foxp3+ (Treg; middle panels) cells represented in panel (F).
(H) Relative expression of Il17 (left panel) and Il1b (right panel) mRNA in pinnae 6 h after DNFB challenge in WT and MR1-/- mice. Representative data
of at least two experiments of three to five mice/experiment. Mann–Whitney U test. *p < 0.05, **p < 0.01.
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their deficiency appears to be compensated by the dominance of

Tgd17 cells in the skin. It is not known whether there are any direct

interactions between MAIT cells and gd T cells that limit each

other’s effector functions. However, one may speculate that MAIT

cells and gd T cells compete with each other for homing niches

within the dermis, where MAIT cells localize near the dermal-

epidermal interface (38) and gd T cells localize to also in superficial

regions (40). The most critical factor for MAIT cell tissue homing

and homeostasis is likely their early life exposure to and sustained

interaction with the microbiota that synthesize riboflavin (38).

Tgd17 cells are similarly influenced by microbes for their

expansion and functional activity (41), suggesting that skin

commensals affects the balance between MAIT cells and gd T

cells. Furthermore, cytokines such as IL-1b and IL23 (38) in the

environment are also thought to be important factors that affect the

balance between these T cell subsets.

The macroscopic and microscopic appearances of skin

pathology were markedly enhanced with edema and cellular

infiltration in MR1-/- mice compared with WT mice (Figure 1).

In severe cases in MR1-/- mice, the elicited pinnae were covered with

crustae by frequent scratching, and a large area of the inflammatory

lesion was sometimes lost, presumably due to necrosis or injury,

which was not observed in WT mice. Thus, the skin thickness data

for severe cases were inevitably unincorporated in the analyses. The

severity of dermatitis may permit use of ACD in MR1-/- mice as an

intractable model system to study disease pathogenesis and testing

immune therapies. Notably, MAIT cells have been reported to

display tissue repair functions, as wound healing by punch biopsy

was significantly delayed in the absence of MAIT cells (38). If the

keratinocytes injured during ACD by cytotoxic lymphocytes fail to

be replaced with newly proliferated cells, the epithelial defect may

cause infections and further damage the skin. A recent study also

revealed that amphiregulin, a member of the epidermal growth

factor family produced by MAIT cells, accelerated wound closure,

but in an MR1-independent manner (42). In experimental

autoimmune uveoretinitis, MAIT cells ameliorated disease, which

was associated with anti-inflammatory/neuroprotective activities of

IL-22 as well as IL-22-independent repair functions upon

stimulation with 5-OP-RU (43). Accordingly, the severity of ACD

response in MR1-/- mice observed in our study may result in part

from defective repair due to MR1T/MAIT cell deficiency.

In the absence of exogenous stimulation, MR1-/- mice exhibited

a similar pinna thickness compared to WT mice (Figure 1C),

suggesting that MR1-/- mice do not develop spontaneous

dermatitis. However, increased production of IL-1b in mutant

mice than WT mice was detected at pinnae after 6 h of elicitation

with DNFB (Figure 6H), since the barrier function of the skin was

presumably weakened in MR1-/- mice due to MAIT cell deficiency

(38, 44). The ear swelling in MR1-/- mice was more enhanced than

WT mice at 6 h of elicitation (Supplementary Figure 6A), whereas

the level of neutrophil migration was similar between the two

strains (Supplementary Figure 6C), suggesting that edematous

changes at the very early phase appeared to be different between

MR1-/- and WT mice.
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The cellular infiltrates consisted mainly of Mo/Mf, neutrophils,
and ab T cells in both MR1-/- and WT mice after DNFB elicitation

(Figure 2 and Supplementary Figures 2, 3). Notably, there were

significantly more neutrophils in terms of percentage and actual cell

numbers in MR1-/- mice than WT mice. The recruitment of

infiltrates was concordant with the enhanced expression of

cytokines and chemokines by Th17 and Tgd17 cells in the pinnae

stained with DNFB, which supported neutrophil generation,

recruitment, and activation (Figures 2C, 4). Resident Mf were

reduced in percentage due to, in part, dilution by the recruitment

of Mo/Mf and a reduction in the actual cell number in both WT

andMR1-/- mice (Supplementary Figures 2, 3). As for eosinophils in

pinnae, the cell number per 10 mg tissue was not significantly

increased in DNFB-challenged pinnae in MR1-/- mice compared

with WT mice (data not shown). Although these changes result

from the MR1T/MAIT cell deficiency, the underlying mechanisms

remain to be further investigated.

When the T cells were compared in MR1-/- and WT mice, a

large number of ab-type T cells specific for the sensitizer Ag in

pinnae was equally recruited in both MR1-/- and WT mice after

challenge with DNFB. Thus, the percentage of Epi and Der gd T-cell
fractions decreased accordingly after challenge (Figure 3B). The

apparent reduction was simply due to dilution by the migrated ab T
cells into the pinnae, whereas the number of gd T cells in each

fraction increased after challenge to enhance the ACD response via

production of cytokines and chemokines from Th17 and Tgd17
cells. Notably, MR1-/- mice harbored a significantly higher

percentage of Der gd T cells, even in unsensitized states, and

exhibited a higher percentage of IL-17A+ cells in both the Vg2+

and Vg2- fraction (Vg2+ > Vg2-) upon in vitro stimulation with

PMA and ionomycin (Figures 6C, D; Supplementary Figures 5B, C).

The abundance of Tgd17 cells in the skin of MR1-/- mice may result

in a robust type 3 immune response at the site of ACD since more

Tgd17 cells during the initiation phase in the dermis effectively

boosted the response compared with WT mice.

The frequency of MAIT cells in mouse skin is strikingly different

from that in human skin, with approximately 10% of ab T cells being

MAIT cells in mice and 0.5%-2% of ab T cells being MAIT cells in

humans, with the remainder being the conventional type and NKT

cells (38, 44). Therefore, the present results must be considered when

assessing whether they are readily applicable to human cases of ACD.

However, the involvement of innate T cells in ACD is not

compromised in humans, as iNKT cells presumably participate as

effectors (21) and the role of NKT cells in ACD may vary depending

on different sensitizers (19). MAIT cells were detected in palladium

allergy in a previous report (22), and the involvement of iNKT cells

has already been demonstrated in allergies to metals such as nickel,

cobalt, and chromium (21, 45–47) that are present in accessories,

biomedical devices, and food constituents (1). It is intriguing to

consider whether MAIT cells and iNKT cells adopt a common or

distinct pathway that affects the ACD response. Notably, MAIT cells

have been examined as promising targets for immunotherapy in the

skin for phototherapy of atopic dermatitis (48) and as effectors of a

major inflammatory disease, psoriasis (13). The utilization of MAIT
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ligands as therapeutic agents may be associated with low resistance by

patients, since they are vitamin B-related compounds with either

inhibitory (VB9 -folate) or stimulatory (VB2 -riboflavin) activities (14,

49). To examine whether MAIT cells can be modulated to protect

against ACD, further investigations that clarify their

immunoregulatory role will be required.
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SUPPLEMENTARY FIGURE 1

Gating strategy for the flow cytometric analyses performed in the present

study. A. Gating strategy for detecting granulocytes. The acquisition was
mostly ungated except for small particles (with very low FSC-A) and the

acquired cells were widely gated with FSC-A/SSC-A as shown to include

larger cells with intracellular granules. Cells were removed from doublets and
dead cells followed by gating for the CD45+ population as shown in

sequence. Finally, CD11b+Ly6G+ cells in the CD45+ cell population were
designated as neutrophils. B. Gating strategy for detecting T-cell subsets. The

acquired cells were lymphocyte-gated in tighter FSC-A/SSC-A than that of A,
as shown. The CD45+ population after removal of doublets and dead cells

was further analyzed with TCRb/TCRgd or TCRgd/Vg2 to discriminate ab T, gd
T, and Vg2+ T subsets in the gd T cell population.

SUPPLEMENTARY FIGURE 2

Monocytes (Mo) and macrophages (Mf) in the ACD-induced pinnae in WT

and MR1-/- mice. Cells infiltrated into the pinna were prepared two days after
challenge with enzymatic degradation as described in the Materials and

Methods and analyzed by flow cytometry as described for Supplementary
Figure 1A. Flow cytometric profiles of inflammatory cells in the vehicle- and

DNFB-painted pinnae in WT and MR1-/- mice, as shown in . The cells of the

CD11b+Ly-6Glo-(-) population were further separated into Ly-6ChiF4/80lo

(Mo/Mf) and Ly-6C-F4/80hi (Mf). B. Frequency of Mo/Mf (upper panel) or

Mf (lower panel) in vehicle- and DNFB-painted pinnae of WT andMR1-/-mice
at day 2 after elicitation represented by panel A. Representative data of at least

three experiments of three mice/experiment.

SUPPLEMENTARY FIGURE 3

Cellular composition of mononuclear cells obtained from vehicle- and
DNFB-painted pinnae of WT and MR1-/- mice. Each fraction of cells was

recapitulated from the results of flow cytometric analyses according to the
gating described for Supplementary Figure 1. Neu: neutrophil (CD11b+Ly-

6Ghi); Mf: macrophage (CD11b+Ly-6Glo-(-)Ly-6Clo/F4/80hi); Mo/Mf:
monocyte/macrophage lineage (CD11b+Ly-6Clo-(-)Ly-6Chi/F4/80lo); ab: ab
T cells (CD3+TCRb+TCRg/d-), gdhi: epidermal gd T cells (CD3+TCRb-TCRg/dhi);
and gdlo: dermal gd T cells (CD3+TCRb-TCRg/dlo). Representative data of at
least three experiments of three mice/experiment.

SUPPLEMENTARY FIGURE 4

T-helper (Th) cell subsets in draining lymph nodes from unsensitized WT and
MR1-/- mice. Cells in inguinal lymph nodes were obtained from each

unsensitized strain of mice and stained for the analyses according to the

Materials and Methods. A. Representative flow cytometric profiles of
CD3+CD4+ cells of the Foxp3+ and RORgt+ population in WT and MR1-/-

mice. B. Frequencies and cell numbers of RORgt+Foxp3- (Th17; left panels),
RORgt-Foxp3+ (Treg; middle panels), and RORgt+Foxp3+ (stable Treg effector;

right panels) cells in WT and MR1-/- mice represented in panel A.
Representative data of at least two experiments of four mice/experiment.

SUPPLEMENTARY FIGURE 5

IL-17A expression in epidermal gd T cells and Vg2- dermal gd T cells in

unsensitized mice. A. Gating of Vg2- epidermal and dermal gd T cells in flow
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panels of WT and MR1-/- mice. T cells obtained from unsensitized pinnae
were stimulated with PMA and ionomycin in vitro for 4 h. B. The expression of

intracellular IL-17A was analyzed in the Vg2- population in epidermal and

dermal gd T cells by flow cytometry. C. Frequency of the IL-17A+ population in
Vg2- epidermal (upper panel) and dermal gd T cells (lower panel) in WT and

MR1-/- mice represented in panel B. Representative data of at least three
experiments of four mice/experiment. Mann–Whitney U test. *p < 0.05.

SUPPLEMENTARY FIGURE 6

MR1-/- mice develop an augmented response at 6 h after DNFB challenge. A.
WT (closed circle) and MR1-/- (open circle) mice were sensitized and
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challenged on the left pinna with vehicle only or on the right pinna with
DNFB. The thickness of the pinnae was then measured with a digital

micrometer 6 h after challenge. The increment in thickness of the sensitized

pinna represented as DEar swelling in Figure 1A. B. The expression of Cxcl1,
Cxcl2, and Csf3 related with neutrophil recruitment and activation was

examined with mRNA obtained from the left pinnae (vehicle control) and the
right pinnae (DNFB) of either WT (closed bar) or MR1-/- mice (open bar) at 6 h

after challenge. C. Frequency of neutrophils in the CD45+ fraction in MR1-/-

mice comparedwith those ofWTmice as in 6 h after challenge (vehicle: closed

bar, DNFB: open bar). Representative data of at least two experiments of four

mice/experiment. Mann–Whitney U test. *p < 0.05
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5. Kaplan DH, Igyártó BZ, Gaspari AA. Early events in the induction of allergic
contact dermatitis. Nat Rev Immunol (2012) 12:114–24. doi: 10.1038/nri3150

6. Brys AK, Rodriguez-Homs LG, Suwanpradid J, Atwater AR, MacLeod AS.
Shifting paradigms in allergic contact dermatitis: the role of innate immunity. J
Invest Dermatol (2020) 140:21–8. doi: 10.1016/j.jid.2019.03.1133

7. Rafei-Shamsabadi DA, Klose CSN, Halim TYF, Tanriver Y, Jakob T. Context
dependent role of type 2 innate lymphoid cells in allergic skin inflammation. Front
Immunol (2019) 10:2591. doi: 10.3389/fimmu.2019.02591

8. Nielsen MM, Witherden DA, Havran WL. gd T cells in homeostasis and host
defense of epithelial barrier tissues. Nat Rev Immunol (2017) 17:733–45. doi: 10.1038/
nri.2017.101
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Background: Intraepithelial lymphocytes (IELs) are the first immune cells to

contact and fight intestinal pathogens such as Cryptosporidium, a widespread

parasite which infects the gut epithelium. IFN-g producing CD4+ T IELs provide an

efficient and a long-term protection against cryptosporidiosis while intraepithelial

type 1 innate lymphoid cells limits pathogen spreading during early stages of

infection in immunodeficient individuals. Yet, the role of T-cell like innate IELs, the

most frequent subset of innate lymphocytes in the gut, remains unknown.

Methods: To better define functions of innate IELs in cryptosporidiosis, we

developed a co-culture model with innate IELs isolated from Rag2-/- mice and

3D intestinal organoids infected with C. parvum using microinjection.

Results: Thanks to this original model, we demonstrated that innate IELs control

parasite proliferation. We further showed that although innate IELs secrete IFN-g
in response to C. parvum, the cytokine was not sufficient to inhibit parasite

proliferation at early stages of the infection. The rapid protective effect of innate

IELs was in fact mediated by a cytotoxic, granzyme-dependent mechanism.

Moreover, transcriptomic analysis of the Cryptosporidium-infected organoids

revealed that epithelial cells down regulated Serpinb9b, a granzyme inhibitor,

which may increase their sensitivity to cytolytic attack by innate IELs.

Conclusion: Based on these data we conclude that innate IELs, most likely T-cell-

like innate IELs, provide a rapid protection against C. parvum infection through a

perforin/granzymes-dependent mechanism. C. parvum infection. The infection

may also increase the sensitivity of intestinal epithelial cells to the innate IEL-

mediated cytotoxic attack by decreasing the expression of Serpin genes.
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1 Introduction

Intestinal intraepithelial lymphocytes (IELs) are tissue resident

memory cells which localize within the epithelial layer all along the

digestive tract. Owing to their strategic position, their effector and

regulatory functions, IELs are considered as the guardians of the

gut. Notably, IELs play a potent role in host defense as they can

respond rapidly and efficiently to a large variety of pathogens such

as viruses, bacteria, fungi, and parasites (1, 2). This property

certainly relies on the heterogeneity of the IEL population which

is mainly formed by two T cell subsets named conventional (CIEL)

and nonconventional (NCIEL) IELs. Conventional IELs are similar

to the effector/memory TCRab+ cells from the other

compartments and are stimulated by microbial peptides

presented by MHC. In contrast, in mice, NCIELs express the

homodimer CD8aa with either a TCRab or a TCRgd. Most of

them recognize self-antigens or proteins from pathogens

independently of a classical MHC (1, 2). The IEL compartment

also contains lymphoid cells which do not express a TCR. This sub-

population of IELs is mainly composed of type 1 innate lymphoid

cells (ILC1) expressing the natural cytotoxicity receptor NKp46 and

of peculiar innate lymphocytes with T cell features, named T-cell-

like innate IELs (3, 4). The latter population is dominant and

expresses intracellular CD3g and the integrin CD103 (aEb7).
Around half of them are CD8aa+ (iCD8a) (4, 5). While ILC1s

express high level of IFN-g, T-cell-like IELs produce granzymes and

are cytotoxic (4). ICD8a also have the capacity to produce

osteopontin encoded by Spp1 which sustains the homeostasis of

ILC1 (6), to phagocyte bacteria and to process and present antigens

to MHC class II-restricted T cells (5). Yet, the role of T-cell-like

innate IELs in infection remains poorly studied.

Cryptosporidium is an apicomplexan parasite and an

opportunistic pathogen that infects the gut epithelium. It is

recognized as one of the most important waterborne contaminants

in the world and a major cause of diarrhea in human and animals.

Since Cryptosporidium infects enterocytes by their apical side and

replicate within the epithelium, IELs are crucial to detect and fight the

parasite (7–9). Cryptosporidium specific CD4+ T CIELs are able to

eliminate the parasite by secreting IFN-g and thus provide an efficient
and a long-term protection (9). When the adaptive immune response

is impaired the infection is chronic and much more severe (10–13).

However, in immunodeficient individuals, innate mechanisms limit

the replication of the parasite. Notably, a number of studies have

pinpointed the protective roles of intestinal epithelial cells (iEC),

mononuclear phagocytes, neutrophils and conventional Natural

Killer (cNK) cells (14, 15). Yet, there are conflicting data about the

contribution of cNK cells in cryptosporidiosis since the depletion of

cNK cells using anti-asialoGM1 antibodies in immunodeficient SCID

or Rag2-/- mice does not impact the course of the infection (16–18).

Actually, ILC1s but not cNK cells seem to protect against

Cryptosporidium. Indeed, a recent work showed that ILC1s limit

the expansion of the parasite in Rag2-/- animals through their

secretion of IFN-g (18).Yet, the role of innate IELs in

cryptosporidiosis remains poorly studied. Herein, we developed an

in vitro model to specifically investigate their functions during the

infection. Themodel is based on the co-culture of innate IELs isolated
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from Rag2-/- mice with murine 3D intestinal organoids infected with

Cryptosporidium parvum. Using this original experimental assay, we

showed that innate IELs rapidly prevent the expansion of the parasite.

Interestingly, the protection mediated by IFN-g produced by ILC1s

was not essential during the very early stage of the infection. Instead,

we found that the protective effect mostly depends on perforin and

serine proteases such as granzymes. Moreover, we also found that

infected iEC down regulate the natural granzyme inhibitor serpinb9b

and thus could be more sensitive to IELs mediated cytotoxicity.
2 Material and methods

2.1 Mice

Females Rag2-/-C57BL/6 and C57BL/6 WT mice were obtained

from a colony bred at the Pasteur Institute of Lille (France) and

regularly controlled for microbial or parasitological pathogens.

Animals were housed in groups in covered cages and maintained

under aseptic conditions with standard laboratory food and water.

The animal experiment ethics committee approved the

experimental animal study protocol (APAFIS#30539).
2.2 In vivo infection of Rag2-/-

C57BL/6 mice

Eight-week-old Rag2-/-mice were infected by oral gavage with

5x104 C. parvum oocysts (Iowa strain) per mouse (n=15 infected

and n=14 controls). Twenty-four hours post infection (PI), mice

were euthanized and the small intestine from each mouse was

collected. Ileal sections were collected to quantify the number of

innate immune cells in the epithelium by immunohistochemistry

and to quantify the parasitic load and the expression of cytokines by

RT-qPCR. Innate IELs were isolated as described below and used to

quantify gene expression by RT-qPCR and to define their

phenotype by flow cytometry.
2.3 Isolation of intestinal crypts and culture
of intestinal organoids

Intestinal crypts were isolated from small intestine of female

C57BL/6 mice as described by Sato et al. (19). Briefly, small intestine

fragments were incubated with PBS 1X containing 8mM of EDTA

and shaked for 1h on ice using a rocking platform. Then, EDTA

buffer was removed, tissue fragments were vigorously resuspended

in cold PBS 1X and supernatant was collected to quantify the

number of crypts. One thousand crypts were cultured in 30ml of
Matrigel (Corning). The Matrigel was polymerized for 10 minutes

at 37°C, and 600µl/well of LWRN conditioned medium was added.

The Rho-associated kinase inhibitor Y-27632 (10 mmol/L; Tocris)

was included in the medium for the first 2 days to avoid anoikis.

Organoids were passed once a week by dissociating the Matrigel

for five minutes at 37°C with TrypLE Express (Gibco,

Life Technologies).
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2.4 Microinjection of intestinal organoids
with C. parvum oocysts

C. parvum IOWA oocysts were purchased fromWaterborneTM,

Inc. (New Orleans, Louisiana). Oocyst solution was stored in the

shipping medium (phosphate buffered saline or PBS with penicillin,

streptomycin, gentamycin, amphotericin B and 0.01% Tween 20) at

4°C until use. For microinjection, 250 oocysts/µl of the stock solution

were centrifuged at 2000 g for 10 minutes. After treatment with

0.025% of Trypsin pH=2.4 (Sigma) for 20 minutes at 37°C, oocysts

were resuspended with excystation medium containing RPMI 1640

with 2 mM of L-glutamine (Gibco), 1% of fetal calf serum, 100 mg/ml

of penicillin/streptomycin (Gibco), 0.25 mg/ml of Gentamycin

(Dutscher), 0.2mg/ml of Bovine Bile (Acros Organics), 1mg/ml of

glucose (BioXtra), 0.25µg/ml of folic acid (Alfa Aesar), 1µg/ml of 4-

aminobenzoic acid (VWR), 8.75µg/ml of L-Ascorbic acid (Sigma

Aldrich) and 0.5µg/ml Calcium Pantothenate (Acros Organics) (20).

A sterile glass capillary of 15mm diameter was used for

microinjection (Transfer tip eppendorf). The capillary was loaded

with oocysts (250 oocysts/µl) suspended in their excystation medium

containing 25 µg/ml of Fast green dye (Sigma) in order to visualize

micro-injected organoids. Approximately 200 nl of suspension was

injected into each organoid using the Leica DMI 4000B microinjector.

For each experiment 20 to 30 organoids were cultured in IbiTreat

microdish (Ibidi) and 50% of them were microinjected.
2.5 Isolation of innate IELs and co-culture
with intestinal organoids

Isolation of murine innate IELs was performed according to the

method described by Schulthess et al., 2012 (21). Briefly, small

intestines of 8 weeks old Rag2-/- mice were removed and washed

with cold PBS 1X. Mesenteric fat and Peyer’s patches were removed.

The intestine was then opened longitudinally and cut into 0.5 cm

fragments which were then incubated in 50 ml of RPMI (Gibco)

containing 10% FCS for 2h at 37°C with vigorous agitation. The

supernatant is passed through a glass wool column to remove part

of iECs. Cells were then separated on a gradient 40/80% of Percoll

(GE Healthcare). The innate IELs ring was then collected, washed

and taken up in 1ml RPMI-10% FCS. Then 105 innate IELs were co-

cultured with infected or non-infected organoids 24 hours PI. The

co-culture was stopped after 24h. To inhibit IFN-g or cytolytic

activities, anti-IFN-g Ab (10 µg/ml) (clone XMG1.2 Biolegend) or

granzyme B inhibitor I (10µM) (Merck) or aprotinin (2µg/ml)

(Sigma) was added in the co-culture simultaneously with IELs.

Concanamycin A treatment: innate IELs were isolated from Rag2-/-

mice and treated for 3h with 50nM of concanamycin A (CMA)

(Biotechne) at 37°C. Treated-innate IELs were then washed 2 times

and co-cultured with infected organoids for 24h.
2.6 RNA isolation and RT–qPCR

Total RNA was extracted from organoids using a Nucleospin®RNA

II kit (Macherey-Nagel) according to manufacturer’s protocol.
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Complementary DNA was synthesized from 1 mg total RNA using a

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).

Real time PCR was performed using Power SYBR Green PCR Master

Mix in a StepOne plus system (Applied Biosystems). Gene expression

was quantified using the DD Ct method for rRNA 18s. Cp18S forward,

5’- TGCCTTGAATACTCCAGCATGG-3’; Cp18S reverse, 5’-

TACAAATGCCCCCAACTGTCC-3’. The expression of other genes

was quantified usingDCtmethod. The gene coding formurine beta-actin

(b-actin) was used as housekeeping gene (Table 1).
2.7 Confocal microscopy

Innate IELs isolated from the Rag2-/- mice were labeled with 5

mM CellTrace CFSE (Invitrogen) for 20 min at 37° C. One hundred

thousand cells were co-cultured with organoids. After 24 h of

culture, organoids were fixed with 4% paraformaldehyde (Microm

microtech) for 30 min at RT. Organoids were then permeabilized

with PBS 1X containing 1% of triton 100X (Sigma) for 10 min at

RT. After washing, organoids were labeled with DAPI (Thermo

Fisher) and 1.65 mM of phalloidin Alexa Fluo 647 (Invitrogen) for 1

hour at RT. The co-culture was visualized under a Leica Sp8

confocal microscope.
2.8 Flow cytometry and Cell-sorting

Cells were first incubated with anti-mouse CD16/CD32 Ab (clone

2.4 G2, BD Biosciences) for 10 min at 4° C, then washed and labeled

with a cocktail of antibodies for 20 min at 4°C in dark (see Table 2).

Cells were washed and treated with BD FACS Lysing Solution (BD
TABLE 1 Forward and reverse primer sequences for RT-qPCR.

Gene Primer sequences

Actb F: CCTTCTTGGGTATGGAATCCT
R: CTTTACGGATGTCAACGTCAC

Ifng F: ATGAACGCTACACACTGCATC
R: CCATCCTTTTGCCAGTTCCTC

Spp1 F: TCTGATGAGACCGTCACTGC
R: AGGTCCTCATCTGTGGCATC

Serpinb9b F: GATGATTGCCAGCTAGATTG
R: TGACCACATAATGTCTGGTTTG

Ifna F: GTGCTGGCTGTGAGGACA
R:GGCTCTCCAGACTTCTGCTCT

Gzmb F: CAGCAAGTCATCCCTATGGT
R: TACTCTTCAGCTTTAGCAGCAT

Cd8a F: TTTACATCTGGGCACCCTTG
R: CTTTCGGCTCCTGTGGTAG

Itgae F: GACAAAGACTCAGGACCACAC
R: GGCCACGGTTACATTTTCTTT

Ncr1 F: GATCAACACTGAAAAGGAGACT
R: TGACACCAGATGTTCACCGA
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Biosciences) for 5 minutes at RT. After washing, cells were analyzed on

the LSR Fortessa X20 cytometer (Becton Dickinson).

For cell sorting, innate IELs were labeled with a cocktail of

antibodies (CD45 FITC (Sony), CD103 PeCy7 (Biolegend) and

NKp46 BV421 (Biolegend). Four populations (CD45+,

CD45+NKp46-, CD45+CD103-NKp46-, and CD45+CD103+)

were sorted using a BD FACSAria II SORP cell sorter

(Becton Dickinson).
2.9 Immunohistochemistry

Ileal samples from all mice of each group were fixed with 4%

paraformaldehyde and then embedded in paraffin. Four

micrometer-thick sections were incubated with citrate 1X antigen

repair solution (Skytec) at 95°C for 20 min after dewaxing and

hydration. Then endogenous peroxidase was blocked by Bloxall

blocking solution (Vector) for 10 min at RT. Nonspecific antigens

were blocked with 5% goat serum for 30 min. The sections were

exposed to primary anti-CD3g (Abcam) and anti -CD8a (Cell

Signaling Technology) Abs overnight at 4°C. After washing with

Tris-buffered saline solution containing 0.05% Tween, sections were

incubated for 30 min with the detection kit “Immpress peroxidase

Polymer anti rabbit IgG” (Vector). Negative controls were

incubated with irrelevant serum. The staining was revealed using

the peroxidase substrate, DAB (Cell Signaling Technology).

Hematoxylin counterstain was performed before mounting the

slides in an aqueous medium. Slides were analyzed using a

microscopy (Leica).
2.10 Quantification of IFN-g

The secretion of IFN-g was measured in supernatants of co-

cultures using “Mouse IFNg ELISA MAXTM Deluxe set”

kit (Biolegend).
2.11 LDH release assay

Cell death was determined using Cytotox96 non-radioactive

cytotoxicity assay (Promega) following the manufacturer’s protocol.

The colorimetric assay quantified lactate dehydrogenase (LDH)

activity released from the cytosol of damaged target cells into the

supernatants. Briefly, after 48h of infection, 50µl of co-culture

supernatant were incubated with 50 µl of CytoTox 96 reagent for
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30 min. The reaction was stopped and the absorbance was recorded

at 490nm on Fluostar Omega spectrophotometer (BMG Labtech).
2.12 RNA sequencing

Starting from 4µl of total RNA we add 1µl of ERCC spike-in

control. Library generation is then initiated by oligo dT priming,

from total RNA (between 50 and 200 ng). The primer already

contains Illumina- compatible linker sequences (Read 2). After first

strand synthesis the RNA is degraded and second strand synthesis is

initiated by random priming and a DNA polymerase. The random

primer also contains 5’ Illumina-compatible linker sequences (Read

1). At this step Unique Molecular Identifiers (UMIs) are introduced

allowing the elimination of PCR duplicates during the analysis.

After obtaining the double stranded cDNA library, the library is

purified with magnetics beads and amplified. During the library

amplification the barcodes and sequences required for cluster

generation (index i7 in 3’ and index i5 in 5’) are introduced due

to Illumina- compatible linker sequences. The number of cycles

depends on the starting quantity, between 14 cycles for 200ng of

total RNA and 16 cycle for 50ng of total RNA. If the quantity is less

than 50 ng, the number of cycles will be increase (for example for

17ng, 17 cycles). The final library is purified and deposed on High

sensitivity DNA chip to be controlled on Agilent bioanalyzer 2100.

The library concentration and the size distribution are checked.

Each library is pooled equimolarly and the final pool is also

controlled on Agilent bioanalyzer 2100 and sequenced on NovaSeq

6000 (Illumina) with 100 cycles chemistry. Different chips can be

used for sequencing, it depends on the number of libraries pooled,

the objective is to obtain a minimum of 20 M reads by sample.

To eliminate poor quality regions and poly(A) of the reads, we

used the fastp program. We used quality score threshold of 20 and

removed the read shorter than 25 pb. The read alignments were

performed using the STAR program with the genome reference

mouse (GRCm39) and the reference gene annotations (Ensembl).

The UMI (Unique Molecular Index) allowed to reduce errors and

quantitative PCR bias using fastp and umi-tools. Based on reads

alignments, we counted the numbers of molecules by gene using

FeatureCount. Other programs were performed for the quality

control of reads and for the workflow as qualimap, fastp, FastQC

and MultiQC. Differential Gene Expression of RNA-seq

was performed with R/Bioconductor package DESeq2. The cut-off

for differentially expressed gene was p-value padj (BH) < 0.1.

RNA sequencing data that support the findings of this study

have been deposited in sequence Read Archive (SRA) data

(https://dataview.ncbi.nlm.nih.gov/object) with the accession

code PRJNA98061.
2.12 Statistical analysis

Data were expressed as the mean ± SD or the median with

range. A Wilcoxon matched-pairs signed rank test was used for in

vitro experiments. Statistical analyses were performed using

StatXact software (Cytel Studio 7) and GraphPad Prism software
TABLE 2 Antibodies used for flow cytometry.

Manufacturer Cat# Antibodies Clone

Sony 1115540 FITC anti-mouse CD45 30-F11

Biolegend 100713 APC/Cyanine anti-mouse CD8a 53-6.7

Sony 1207125 Pe/Cy7 anti-mouse CD103 2E7

Biolegend 137611
Brilliant Violet 421 anti-mouse
CD335 (NKp46)

29A1.4
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(version 5.0, San Diego, CA, USA). The threshold for statistical

significance was set to p<0.05.
3 Results

3.1 IFN-g, osteopontin and granzyme B
expressions are up regulated at early
stages of Cryptosporidium infection in
Rag2-/- mice

To identify immune mechanisms activated during the very early

phase of C. parvum infection, we first analyzed the expression of

genes related to key effector functions of innate immune cells such

as interferons and granzymes in the small intestine of adult Rag2-/-

mice 24h post-infection (PI). We found that expression of IFN-g
(Ifng) and Osteopontin (Spp1), two molecules associated with the

type 1 immune response, as well as the cytolytic enzyme granzyme

B (Gzmb) were rapidly increased in the ileum of infected animals. In

contrast, the amount of IFN-amRNA which is mainly produced by

enterocytes and DC in infected mice (22) was decreased

(Figure 1A). Yet, only the expression of IFN-g was significantly

increased in cells isolated from the epithelium of Rag2-/- mice

infected with Cryptosporidium (Figure 1A). However, levels of

Spp1 and Gzmb mRNA were around 50 and 200 times higher in

the epithelium than in the whole intestine respectively, indicating

that cells expressing these genes are enriched (Figure 1B).
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In the intestinal epithelium, ILC1s secrete high amounts of IFN-

g while T-cell-like innate IELs, including iCD8a, are known to

produce osteopontin and granzyme B (23). We then studied

whether NKp46+CD103- ILC1s (3) and innate CD103+CD8a+/-

IELs (4, 5) expand in the epithelium upon infection. Frequencies

and absolute numbers of these subsets were identical in the gut

epithelium of infected and non-infected Rag2-/- mice (Figures 1C,

D; Supplementary Figures 1, 2).

Together, these data show that type 1 and cytolytic immune

responses are activated in few hours after C. parvum infection.
3.2 Innate IELs control C. parvum infection
in co-culture with intestinal organoids

To demonstrate the protective role of innate IELs during the

first stages of C. parvum infection, we developed an in vitro model

in which small intestinal organoids infected with the parasite were

co-cultured with innate IELs isolated from naïve Rag2-/- mice.

Oocysts and sporozoites were microinjected inside the lumen of

murine organoids in order to access to the apical side of iEC

(Supplementary Figure 3, Supplementary Movie 1). The parasitic

load increased gradually and was significantly up-regulated 2 days

after the microinjection demonstrating that C. parvum infects and

replicates within murine intestinal organoids (Figure 2A).

Moreover, analysis of organoids’ transcriptomes using 3’RNA

sequencing (RNA-seq) revealed that C. parvum infection
B C

D

A

FIGURE 1

Very early immune responses induced by C. parvum infection in the ileum of Rag2-/- mice. Rag2-/- mice were infected by oral gavage with C.
parvum for 24h. Quantitative RT-qPCR analysis was performed to compare expression of genes in the whole small intestine (WI) and in the
epithelium (E) (A) between non-infected (NI) (n=14) and infected (I) (n=15) mice and (B) between sites. Results were pooled from 3 independent
experiments. Medians and ranges are shown. (C) Frequencies of innate IELs subsets in the small intestine of NI (n=4) and I (n=5) Rag2-/-mice using
flow cytometry; representative dot plots and histograms of means values. (D) Immunohistochemistry, staining of CD3g and CD8a on ileal sections
from NI (n=5) and I (n=5) Rag2-/-mice. Scatter plots summarizes results and average values. ****p < 0.00005, **p < 0.005 and *p < 0.05.
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modified significantly the expression of 26 genes (Figure 2B;

Supplementary Figure 4). Most of them were involved in immune

responses such as C-X-C motif ligand 10 (Cxcl10) gene that

promotes the recruitment of immune cells (Figure 2B;

Supplementary Table 1). Yet, the number of innate IELs was not

significantly increased in infected organoids compared to non-

infected ones. In fact, innate IELs migrates spontaneously and

similarly into infected and non-infected organoids (Figure 2C;

Supplementary Figure 5). Moreover, the expression of gene

signatures of T-cell-like innate IELs (i.e. Cd3g, Cd8a) and of ILC1

(i.e. Ncr1) revealed that the two subsets were present in the same

proportion within infected and non-infected organoids (Figure 2D).

Importantly, the co-culture with innate IELs isolated from

Rag2-/- mice decreased strikingly the amount of C. parvum in

organoids (Figures 3A, B). To determine which subset protects

against C. parvum infection, innate IELs from Rag2-/- mice were

next sorted by FACS and co-cultured with infected organoids. As

expected, purified CD45+ innate IELs significantly decreased the

parasitic loads. This protective effect was not modified by the

depletion of NKp46+ ILC1s but it was completely abolished after

the removal of both ILC1s and CD103+ innate IELs. In addition, co-

culture with purified CD103+ innate IELs, also tended to decrease

the expansion of C. parvum within organoids (Figure 3B).

In keeping with the decrease of the parasitic load, the expression

of genes which were modified by C. parvum infection in organoids

was normalized by the presence of the innate IELs (Figure 4A). The

unsupervised hierarchical clustering analysis also showed that
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transcriptomes of infected co-cultures were closer from that of

non-infected organoids than from infected ones (Figure 4B).

Overall, these results showed that CD103+ innate IELs, themajority

of which are T-cell-like innate IELs (4), protected against C. parvum

infection in a co-culture model with intestinal organoids.
3.3 Co-culture revealed that the early
protection against C. parvum infection
does not depend on IFN-g

IFN-g plays a key role in controlling of Cryptosporidium infection

in both immunocompetent (9, 24, 25) and immunodeficient mice (16,

18). We also found a significant increase of Ifng expression in the gut of

Rag2-/- 24h after the infection with C. parvum (Figure 1A), suggesting

that the cytokine may also be involved in the early immune response

against the parasite. Intraepithelial ILC1 produces high amount of IFN-

g and thereby limits parasite spreading (18). However, those cells were

barely detectable in organoids (Figure 2D) and their depletion did not

affect the protective effect of innate IELs in co-culture (Figure 3B).

Nevertheless, CD103+ T-cell-like innate IELs were present in organoids

(Figure 2D) and these cells can also produce IFN-g, although in a

smaller amount than ILC1s (6) (Supplementary Figure 6). Thus, we

first seek the presence of IFN-g in co-cultures. IFN-g was detected in

co-cultures with innate IELs but not in organoids alone (Figure 5A).

The amount of IFN-g released by innate IELs in the medium was

however similar in co-cultures with organoids infected or not with C.
B

C

D

A

FIGURE 2

Innate IELs controls C. parvum infection in murine intestinal organoids. (A) The parasitic load was measured at 0, 24- and 48-hours PI in intestinal
organoids using RT-qPCR to quantify C. parvum 18S rRNA. Results were normalized to the b-actin transcript level and median with range are shown
in 4 independent experiments. (B) Volcano plot of differentially expressed genes (DEGs) between non-infected (n=4) and infected (n=4) organoids.
(blue dot padj ≤ 0.1; red dots FC ≥ 1.5 and padj ≤ 0.1). (C) Immunofluorescence of co-cultures with non-infected (NI) and organoids infected (I) for
24h with C. parvum. Nuclei are stained in blue (DAPI), the actin in red (phalloidin) and innate IELs in yellow (CFSE). The histogram shows the number
of innate IELs present in organoids. (D) Expression of innate IELs signature genes (Cd3g, Cd8a and Ncr1) in co-cultures (n=6) with NI and I organoids
using RT-qPCR. **p < 0.005 and *p < 0.05).
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parvum (Figure 5B). Moreover, blocking IFN-g with a neutralizing Ab

did not inhibit the protecting effect of innate IELs (Figure 5C).

Thus, very early protection mediated by innate IELs does not

seem to rely on IFN-g secretion.
3.4 Cytotoxic innate IELs provide rapid
protection against C. parvum

T-cell-like innate IELs are cytotoxic cells (4, 5) and thus,

they could reduce Cryptosporidium load by lysing infected iEC,
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alike cytotoxic NK (26, 27) and CD8 T cells (28, 29). In keeping

with this hypothesis, we observed that cell death, measured as

lactate dehydrogenase (LDH) release, was higher when innate

IELs were co-cultured with infected organoids than when they

were cultured with non-infected ones (Figure 6A). The level of

LDH was also increased in organoids alone upon infection

showing that C. parvum induces iEC death by itself. However,

the quantity of LDH was significantly more elevated in infected

organoids in presence of innate IELs indicating that the immune

cells are cytotoxic and promote the exclusion of infected

EC (Figure 6A).
BA

FIGURE 3

Innate IELs limit the development of C parvum in intestinal murine organoids. C parvum 18S rRNA expression was measured by RT-qPCR in infected
organoids co-cultured or not with innate IELs (n=8). Results were normalized to the condition without lymphocytes and histograms present medians
with interquartile range (A). Innate IELs were FACS-sorted and co-cultured with infected organoids (n=2); Results are represented using box and
whiskers show individual values (B). *p < 0.05; ***p < 0.0005.
BA

FIGURE 4

Innate IELs normalize expression of genes deregulated by C parvum in intestinal murine organoids. (A) Medians of log-fold changes of gene
expression between infected organoids alone (in blue) or co-cultured with innate IELs (in red) and non-infected organoids. Twenty-seven genes
differentially expressed between infected vs non-infected organoids are shown. (B) Heat map representing an unsupervised, hierarchical cluster
analysis of all experimental conditions (p-value adjusted ≤ 0.1 and FC ≥ 1.5). *p < 0.05.
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To further analyze the cytotoxic mechanism, we next pre-

treated innate IELs with the vacuolar type H+-ATPase inhibitor

concanamycin A (CMA) before the co-culture with infected

organoids. CMA inhibits cytotoxicity as it blocks perforin activity

(30, 31). Since CMA-treated innate IELs were unable to control C.

parvum infection (Figure 6B), we concluded that the immune

response against the parasite likely relies on a perforin-dependent

cytotoxic mechanism.

Alike perforin, granzyme B is a potent mediator of cytotoxicity

in T-cell-like innate IELs (4, 5). Moreover, its expression was

rapidly increased in the gut of Rag2-/- mice infected with C.

parvum (Figure 1A) and granzyme B mRNA was detected in co-

cultures within infected organoids (Figure 6C). To investigate the
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impact of granzyme B-mediated cytotoxicity on the infection, we

then compared the parasitic load in co-cultures treated or not with

the granzyme B specific inhibitor I. We found a small but not

significant increase of C. parvum 18S rRNA in infected samples

treated with the granzyme B inhibitor suggesting that other

protective mechanisms are involved (Figure 6D).

Innate IELs also express additional cytolytic granzymes such as

granzymes A (5). We then used aprotinin, a non-selective serine-

protease inhibitor, to inhibit the activity of all granzymes

expressed by innate IELs. Strikingly, aprotinin abolished the

protective effect of innate IELs in co-culture indicating that they

control the infection through a granzyme-dependent cytotoxic

mechanism (Figure 6E).
B CA

FIGURE 5

The anti-parasitic effect of innate IELs is independent of IFN-g in co-cultures. Quantification of IFN-g (Ifng) (A) using RT-qPCR (n=8) and (B) ELISA
(n=4) in infected organoids with or without innate IELs. (C) Amounts of C parvum 18S rRNA in infected organoids co-cultured with innate IELs
treated with a blocking anti-IFN-g mAb or an isotype control Ab. Results show individual points from 3 independent experiments.
B C

D E F

A

FIGURE 6

Innate IELs limit C parvum expansion in intestinal organoids through perforin and a serine-protease dependent mechanism. (A) Quantification of
LDH release (DO 490 nm) after 48h of infection in supernatant of organoids non-infected (NI), infected (I) alone or co-cultured with innate IELs.
(n=9). (B) Quantification of C parvum 18S rRNA using RT-qPCR in infected organoids co-cultured with innate IELs treated or not with the perforin
inhibitor Concanamycin A (CMA) (n=2 independent experiments). (C) Expression of Gzmb in infected organoids cultured with or without innate IELs
using RT-qPCR. Quantification of C parvum 18S rRNA using RT-qPCR in infected organoids co-cultured with innate IELs treated or not with (D) the
GZMB inhibitor I or (E) with Aprotinin (n=3 independent experiments). Box and whiskers show individual value. (F) Expression of Serpinb9b measure
by RT-qPCR in organoids infected or not for 24h with C parvum (n=10). **p < 0.005 and *p < 0.05.
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Interestingly, RNA-seq showed a significant decreased of

serpinb9b expression, a natural serine protease inhibitor, in

intestinal organoids infected with C. parvum (Figures 4A, B). This

result was further confirmed using RT-qPCR (Figure 6F). In

addition, the infection seems to down regulate the expression of

other serpins such as serpinb9 and b6b which inhibit the granzymes

B and A, respectively (32) (Supplementary Figure 7).

Altogether, our data indicated that innate IELs protect against

Cryptosporidium infection through a serine protease-dependent

mechanism and suggest that infected iEC may be more sensitive

to granzyme-mediated cytolysis.
4 Discussion

The intestinal epithelium contains many subsets of lymphocytes

including adaptive conventional and unconventional T cells and innate

IELs which maintains the homeostasis and ensure the protection of the

compartment against a wide range of pathogens. Innate lymphocytes

play a potent role in early stages of infection (16, 18) and they can also

compensate for an immature or an impaired adaptive immunity. These

properties are well shown in apicomplexan parasitosis in which NK

and ILCs limit parasites spreading and expansion through the secretion

of IFN-g and cytotoxic mechanisms inWT and immunodeficient mice

(33). Still, while intestinal Apicomplexa parasites (e.g. Toxoplasma

gondii, C. parvum) infect and replicate in the gut epithelium, the role of

innate IELs in these pathologies, which can be chronic and severe in

immunocompromised individuals, remains poorly studied.

Investigating functions of intestinal innate IELs is challenging

using in vivo experimental models since there is no efficient way to

specifically deplete or modulate their activity. Moreover, the

presence of cells with similar traits such as cNK, ILC3 and ILC1

in the lamina propria can hide their specific role. Thus, to dissect

functions of innate IELs in cryptosporidiosis, we developed a co-

culture system with murine small intestine organoids infected by C.

parvum. We showed that C. parvum replicated within murine

organoids like in human organoids (34) and stimulated immune

mechanisms. Notably, the amount of Cxcl10 mRNA, a chemokine

usually induced by IFN-g, was significantly increased in infected

organoids indicating that iECs are a primary source of the

chemokine and that the parasite directly stimulates its expression.

This mechanism which has been reported by Lacroix-Lamandé

et al. in murine intestinal epithelial cell lines (i.e. ICcl2, Mode-K) is

supposed to promote a rapid recruitment of immune effector cells

in the infected mucosa (35). However, in our co-culture system the

number of innate IELs was slightly but not significantly increased in

infected organoids compared to the non-infected ones. The

composition of the population of innate IELs which infiltrated the

organoids was also not modified by the infection. Likewise, no

accumulation of immune cells nor modification of the IEL

population was observed in the gut of Rag2-/- mice 1 day after the

infection by C. parvum. Altogether these data suggested that the

impact of immune cells recruitment was insignificant at this very

early stage of the infection.

Actually, innate IELs from naive Rag2-/- mice efficiently blocked

the expansion of C. parvum in infected organoids attesting that the
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immune cells which reside within the intestinal epithelium were

already armed to fight the parasite. Moreover, we showed that the

protection is mainly mediated by CD103+ T-cell-like innate IELs

which is a dominant subset in the gut epithelium of Rag2-/-mice (4).

Seeking for the underlying molecular mechanism, we first

investigated the contribution of IFN-g which plays a potent role

in cryptosporidiosis. Indeed, several studies have shown that

deletion or neutralization of the cytokine increased the parasite

burden and aggravate the infection in immunodeficient mice (16–

18, 36). In addition, we found that the cytokine was rapidly (i.e.

within 24h PI) up-regulated in the whole intestine and in innate

IELs isolated from Rag2-/- mice. However, the amount of IFN-g was
low and was not increased by C. parvum infection in co-cultures.

Besides, its neutralization with a blocking anti-IFN-g mAb did not

inhibit the antiparasitic effect of innate IELs. Thus, the protection

mechanism mediated by innate IELs in co-culture was independent

of IFN-g secretion. This result might be explained by the small

number of ILC1s in intestinal organoids as we detected low or no

expression of Ncr1 in co-cultures. The ILC1 subset represents only

around 5% of the IELs isolated from Rag2-/- and thus, the number of

ILC1s that colonize organoids may not be sufficient to see their

effect. Moreover, osteopontin (Spp1) which was shown to promote

the homeostasis of intraepithelial ILC1 (6) was not detected in co-

cultures (data not shown) and thus their survival could also be

impaired. Yet, iCD8a IELs which produce osteopontin were present

in co-cultures and Spp1 expression was significantly increased in the

gut of infected Rag2-/- mice. Further work is then needed to better

define the role of osteopontin and ILC1s in cryptosporidiosis.

Nonetheless, ILC1s were not involved in the protective effect

observed in co-cultures as their depletion did not affect the growth

of C. parvum in organoids.

Cytotoxic mechanisms are also involved in the defense against

Cryptosporidium infections (26–29), we then investigated the role of

perforin and granzymes in the protection mediated by innate IELs.

Perforin is one of the major effector molecules used by cytotoxic

cells to mediate cell lysis since it forms pores in the plasma

membrane of target cells that allow the entrance of toxic

molecules such as granzymes. Its inhibition impairs cytolytic

activity. Herein, we showed that the perforin inhibitor CMA

abolishes the protective effect of innate IELs in co-cultures. As

shown by others, CMA blocks the acidification of lytic granules and

thereby inactivates the cathepsin L required for the maturation of

perforin (30, 31). This result indicates that innate IELs can control

C. parvum growth through a cytotoxic-dependent mechanism. In

contrast, we observed a small but non-significant increase of the

parasitic burden in co-cultures with innate IELs treated with a

granzyme B inhibitor. Thus, Granzyme B has a minor role in this

cytotoxic mechanism mediated by innate IELs. Yet, we report a

rapid up-regulation of granzyme B expression in the small intestine

of infected Rag2-/-mice that might reflect the activation of cNK cells

of the lamina propria (26, 27).

Finally, using aprotinin, a non-selective serine-protease

inhibitor, we almost completely restore the expansion of the

parasite indicating that other granzymes contribute to the

protection mediated by innate IELs in the co-culture. T-cell-like

innate IELs are cytotoxic cells and they not only express high
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amounts of granzyme B but also of granzyme A (4, 5). Besides, the

transcriptomic analysis of the iCD8a subset suggest that those cells

express additional granzymes such as K and M (5). These proteases

could then participate to the cytolytic mechanism.

Interestingly, we also found that infected iEC down regulated

the expression of serpinb9b, a natural inhibitor of granzyme M (37),

and also that of other serpin b family members. Based on these data,

it is tempting to speculate that infected iECs decrease their

resistance to granzyme-mediated attacks in order to favor the

elimination of the parasite.
5 Conclusion

In conclusion, we have developed co-culture model to

specifically investigate the role of innate IELs during the very

early stages of cryptosporidiosis. This original approach revealed

that innate IELs, most likely T-cell-like innate IELs, provide a rapid

protection against C. parvum infection through a perforin/

granzymes-dependent mechanism. Moreover, we showed that the

infection modulates functions of iEC that favor the recruitment of

effector immune cells and may increase their sensitivity to the

cytotoxic attack. Still, further work is needed to detailed the

molecular mechanisms involved in these processes.
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Non-classical HLA-E
restricted CMV 15-mer
peptides are recognized by
adaptive NK cells and
induce memory responses

Nerea Martı́n Almazán1†, Benedetta Maria Sala2,3†,
Tatyana Sandalova2,3, Yizhe Sun1, Tom Resink2,3,
Frank Cichocki4, Cecilia Söderberg-Nauclér5,6,7,
Jeffrey S. Miller4, Adnane Achour2,3 and Dhifaf Sarhan1*

1Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden,
2Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden,
3Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden, 4Division of
Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center,
Minneapolis, MN, United States, 5Department of Medicine, Microbial Pathogenesis Unit, Karolinska
Institute, Stockholm, Sweden, 6Division of Neurology, Karolinska University Hospital,
Stockholm, Sweden, 7Institute of Biomedicine, Unit for Infection and immunology, MediCity Research
Laboratory, InFLAMES Flagship, University of Turku, Turku, Finland
Introduction: Human cytomegalovirus (HCMV) reactivation causes complications

in immunocompromised patients after hematopoietic stem cell transplantation

(HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer

(aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation;

however, the exact role of aNK cell memory in HCMV surveillance remains elusive.

Methods: We employed mass spectrometry and computational prediction

approaches to identify HLA-E-restricted HCMV peptides that can elucidate

aNK cell responses. We also used the K562 cell line transfected with HLA-

E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells

were cocultured with dendritic cells (DCs) loaded with each of the identified

peptides to examine aNK and conventional (c)NK cell responses.

Results: Here, we discovered three unconventional HLA-E-restricted 15-mer

peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR)

derived from the HCMV pp65-protein that elicit aNK cell memory responses

restricted to HCMV. aNK cells displayed memory responses towards HMCV-

infected cells and HCMV-seropositive individuals when primed by DCs loaded

with each of these peptides and predicted 9-mer versions. Blocking the

interaction between HLA-E and the activation NKG2C receptor but not the

inhibitory NKG2A receptor abolished these specific recall responses.
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Interestingly, compared to the HLA-E complex with the leader peptide

VMAPRTLIL, HLA-E complexes formed with each of the three identified

peptides significantly changed the surface electrostatic potential to highly

negative. Furthermore, these peptides do not comprise the classical HLA-E-

restriction motifs.

Discussion: These findings suggest a differential binding to NKG2C compared to

HLA-E complexes with classical leader peptides that may result in the specific

activation of aNK cells. We then designed six nonameric peptides based on the

three discovered peptides that could elicit aNK cell memory responses to HCMV

necessary for therapeutic inventions. The results provide novel insights into HLA-

E-mediated signaling networks that mediate aNK cell recall responses and

maximize their reactivity.
KEYWORDS

Adaptive NK cells, memory, dendritic cells, peptides, HLA-E
1 Introduction

Natural Killer (NK) cells are innate immune cells that mediate

immune responses against intracellular pathogens and cancer. NK

cells do not require prior activation or binding of a specific antigen.

Instead, their activation is regulated mainly by a range of inhibitory

and activating receptors (1, 2). Nevertheless, a growing number of

experimental and clinical studies support the unique role of a

subpopulation of NK cells termed adaptive (a)NK cells in

possessing an elevated specific response to viral peptides through

ligation of the non-polymorphic HLA-E to the activation receptor

NKG2C (3, 4). However, little is known concerning the antigen

presentation mechanisms underlying the recognition of viral

peptides by aNK cells.

It has been demonstrated during the last decade that aNK cells,

which have virus-specific immunological memory, accumulate in

human cytomegalovirus (HCMV)-infected individuals and

recognize peptides derived from HCMV-encoded proteins

through HLA-E. These include the UL40 molecule that contains a

nonameric epitope with an identical sequence to endogenous HLA-

E-binding peptides (3, 5, 6). HCMV is a widespread virus, a

member of the Beta-herpesviridae family, that infects 60-90% of

the adult population. After a primary infection, the virus establishes

life-long latency in its host (7). HCMV has developed multiple

immune evasion strategies to avoid and hamper immune responses

(8). HCMV has also profound effects on NK cell phenotype,

proliferation, and function (9). The unique aNK cell subset was

first described in association with the response to HCMV infection.

These aNK cells are similar to mature conventional (c) NK cell

populations and express CD57, the activating receptor NKG2C,

while also displaying downregulation of the inhibitory counterpart

NKG2A that binds to HLA-E. aNK cells have common epigenetic

signatures resulting in the downregulation of the transcription

factor PLZF and the proximal signaling molecules SYK, EAT-2,

and FceR1g (10, 11). These epigenetic changes have been shown to
02138
persist long-term in vivo (12). aNK cells have been hypothesized to

go through the same memory phases as T cells (clonal expansion,

contraction phase, and memory formation). Furthermore, similarly

to CD8+ T cells, aNK cells go through mitophagy, which is itself a

hallmark of immunological memory formation (13).

HCMV encodes a large number of different proteins, including

the tegument protein pp65 and the immediate early protein (IE),

that modulate immune responses of NK cells, as well as T and

dendritic cells (DC) (14, 15). Similar to T cells, NK cells may also be

primed by DCs and enhances NK cell responses (16, 17). Also, aNK

cell accumulation in HCMV-seropositive individuals indicates that

pp65 may not inhibit the proliferative capacity and the functional

activity of aNK cells (18).

HCMV reactivation is associated with adverse clinical outcomes

in immunosuppressed individuals, such as post hematopoietic stem

cell transplantation (HSCT) patients, and occurs in up to 70% of

such HCMV-seropositive recipients (19). HCMV reactivation takes

place in severely ill immunocompetent patients and is associated

with prolonged hospitalization or death (20). Effective HCMV

prophylaxis is warranted for both immunocompromised and

immunocompetent patients. We have previously shown that aNK

cell presence is associated with anti-tumor effects, reduced relapses,

and better clinical responses following HSCT, as well as resistance

to suppressive cells in the tumor microenvironment (21–24). Thus,

it is highly important to develop a long-lasting and efficient memory

response in aNK cells towards HCMV. This could represent one of

the best strategies to prevent graft rejection and relapse over time,

allowing us to control HCMV reactivation.

In this study, we hypothesized that, similar to T cells, DCs can

present pathogenic peptides to aNK cells. We refolded HLA-E with

an ensemble of 15-mer overlapping peptides that cover the entire

length of the HCMV protein pp65. Using mass-spectrometry, we e

discovered three HLA-E binding pp65-derived peptides that

provoke aNK cell memory responses specifically towards HCMV.

Our results demonstrate that aNK cells require recognition of HLA-
frontiersin.org
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E-restricted peptides presented by DCs that depends on NKG2C

and HLA-E interaction, resulting in a significant aNK cell

expansion with enhanced capacity to recognize and kill HCMV-

infected target cells. Our findings pave the way for new and novel

therapeutic inventions that could potentially limit the clinical severe

complications caused by HCMV reactivation.
2 Materials and methods

2.1 Blood donors

Peripheral blood mononuclear cells (PBMCs) from healthy

HCMV-seropositive or seronegative donors were obtained from

Memorial Blood Bank (Minneapolis, MN) and the Stockholm blood

bank. All participants gave informed consent to participate in the

study before taking part. All samples were de-identified before

receipt and approved for use by the university institutional review

board in accordance with the Declaration of Helsinki.
2.2 Cell isolation

PBMCs were isolated from buffy coats by density gradient

centrifugation using Ficoll-Paque Premium (GE Healthcare).

Monocytes were isolated by positive selection using anti-CD14
Frontiers in Immunology 03139
microbeads (Miltenyi Biotech). Untouched CD3-CD56+ NK cells

were isolated using negative selection kits (Miltenyi Biotech). NK

cell donors with ≥ 4% aNK cells were used for further analysis.
2.3 Identification of peptide sequences
through mass spectrometry

A pool of 138 different 15-mer peptides covering the sequence

of full-length pp65, kindly provided by the NIH AIDS reagent

program, was refolded with HLA-E and human b2-microglobulin

(hb2m) as previously described (25, 26). The obtained HLA-E/

hb2m/peptide complexes were isolated using size-exclusion

chromatography. Peptides were thereafter eluted from the

purified MHC/peptide complexes under acidic conditions (0.1%

trifluoroacetic acid, 10% CH3CN), further purified using a 5 Kd

Ultrafree-15 centrifugal filter device (Millipore) and concentrated

using speed vac (Labconco). All experiments were repeated

independently three times. The sequences of all eluted peptides

were analyzed using mass spectrometry. Peptide sequences detected

in at least two independent experimental replicates were further

sent for synthetization. Furthermore, a selection of nonameric

peptides predicted through the molecular modeling of the 15-mer

in complex with HLA epitopes identified by MS were also produced.

The 9-mer sequences were predicted based on each non-

conventional residue’s ability to fit the HLA-E peptide binding cleft.
TABLE 1 Peptides used in the study and melting temperature measured with nanoDSF.

Sequence Name Melting Temperature
(Tm)

RGPGRAFVTI P18-I10, H-2Dd-restricted control peptide

QMRPVSRVL hsp60, HLA-E-restricted control peptide

VMAPRTLIL UL40, HLA-E-restricted control peptide

The pool of 129 HIV overlapping
15mer-peptides

All 15mers are derived from the HIV-1 protein Gag

The pool of 138 overlapping 15mer-
peptides

All 15mers are derived from the HCMV protein pp65

SEVENVSVNVHNPTG1 pp6585-99 MS-identified 15mer 62.1°C

TSGSDSDEELVTTER2 pp65401-415 MS-identified 15mer 62.6°C

DSDEELVTTERKTPR3 pp65405-419 MS-identified 15mer 52.6°C

EVENVSVNV pp65402-410; 9-mer predicted from 1 62.1°C

SGSDSDEEL pp6586-94; 9-mer predicted from 2 61.9°C

VTTERKTPR pp65411-419; 9-mer predicted from 3 53.7°C

DSDEELVTT4 pp65405-413; 9-mer predicted from 2 and 3; Higher binding affinity to HLA-E 54.6°C

DMDEELVLL pp65405-413(p2M, p9L); Altered peptide ligand version from 4 with predicted higher
binding affinity to HLA-E

54.1°C

DQDEELVTL pp65405-413(p2Q, p9L); Altered peptide ligand version from 4 with predicted higher
binding affinity to HLA-E

54.9°C
Underlined: HLA-E restricted motif.
Superscript: The 15-mer peptides reference.
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2.4 Cell culture

CD14+ monocytes (M), purified from HCMV-seropositive and

-seronegative individuals, were differentiated into immature DC

(imDC) in GM-CSF (100 ng/ml) and IL-4 (20 ng/ml) for three days

(2x106/ml in 2 ml/well, 6-well plates). Later, imDC were washed,

counted and re-cultured (1x106/ml in 6-well plate) overnight in

DC-CellGro® medium (Cellgenix), supplemented with 2% human

AB-serum and differently conditioned; imDC: GM-CSF (100 ng/

ml) and IL-4 (20 ng/ml); mature DC (mDC): GM-CSF (final 100

ng/ml), IL-4 (final 20 ng/ml), IFNg (1000 IU/ml), TLR7/8 agonist

R848 (2.5 ug/ml), poly IC (20 ug/ml), LPS (10 ng/ml) (Peprotech

and Sigma Aldrich), and in the presence or absence of customized

HLA-E-binding peptides identified within this study, and other

control and a selection of previously known HLA-E-restricted

peptides (Table 1, Nordic Biosite, and NIH AIDS reagent

program IEDB). A control experiment was performed culturing

IL-15-activated NK cells with MRC-5 fibroblast cell line (ATCC) in

the presence or absence of pp65 and accessed for aNK

cell activities.

Following overnight maturation, DC were washed, counted,

and co-cultured with NK cells in 96-well plates at a concentration of

0.05-0.15 x 106 cells and 1:10 ratio per well in RPMI-1640 with 10

ng/ml IL-15 for 14 days. In further experiments, NK cells were

cultured with mDC+pp65-peptides for 14 days in addition (5 mg/
ml) of either a control isotype-matched antibody IgG (clone

Poly4053), anti-NKG2C (clone 134522), anti-NKG2A (clone

131411), or anti-HLA-E (clone 3D12), anti-MHC I (clone W6/

32), and MHC II (Tü39) blocking antibodies (27–30) (BioLegend,

R&D systems) at the primary phase (day 0 and 7) or at the

secondary restimulation phase (at day 14, during 6h stimulation).
2.5 Flow cytometry

Cells were stained with fluorochrome-conjugated antibodies

against the following antigens: CD14, CD80, CD83, HLA-E,

CD56, CD3, CD57, NKG2C, NKG2A, CD45RA, CD45RO,

FceRIg/Syk, IFN-g, Ki67 (proliferation), CD107a (degranulation),

and TNFa, all from Biolegend. All staining was performed in

combination with Live/Dead Fixable Dead Cell Stain (Thermo-

Fisher) to exclude dead cells. Detection of intracellular FceRIg/Syk,
IFN-g, Ki67 (proliferation), CD107a (degranulation), and TNFa
was performed following fixation and permeabilization

(eBioscience) according to the manufacturer’s instructions. Cells

were acquired on either an LSRII or Fortessa cytometer (BD

Biosciences) and data were analyzed using FlowJo (TreeStar) and

Cytobank Premium (Beckman Coulter) (31).
2.6 NK cell degranulation and cytokine
production assays

For determination of NK cell cytolytic activity (degranulation),

as well as IFN-g and TNFa production, cells were incubated at 37°C

for 6 hours at a 1:1 ratio with either the MRC-5 cells that were pre-
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infected with the HCMV strain VR1814 at MOI 1 for three days, or

with uninfected MRC-5 cells followed by flow cytometry analysis.

CD107a, GolgiPlug, and GolgiStop (BD Biosciences) were added to

the culture media during incubation. Intracellular staining and flow

cytometry analyses were then performed.
2.7 NK cell killing assays

To determine NK cell killing capacity, HCMV-infected or

uninfected MRC-5 cells were fluorescently labeled with CellTrace

Violet (5 uM, Invitrogen), and target killing was evaluated using

Live/Dead dye (Invitrogen) following a six-hour incubation at an

effector to target (E: T) ratio of 1:1. MRC-5 cell killing was assessed

by gating on CD45 negative populations, further gated on CellTrace

positive population and assessed for the proportion of Live/

Dead+ cells.
2.8 HLA-E/peptide production
and purification

The HLA-E*0101 heavy chain and hb2m were expressed

individually as inclusion bodies using the BL21 (DE3) E. coli

strain, following previously published protocols (25, 26).

Inclusion bodies were solubilized in 8 M Urea, 100 mM Tris HCl

pH 8, and 2 mM EDTA. The refolding of HLA-E/peptide complexes

was carried out by the following dilution: 3 mg of peptide and 8 mg

of hb2m were added firstly to the refolding buffer (100 mM Tris pH

8, 450 mM L-Arginine, 5 mM L-Glutathione reduced, 0.5 mM L-

Glutathione oxidized, 2 mM EDTA, 0.5 mM AEBSF) and the

solution was left at 4°C under stirring for half an hour. 4 mg of

unfolded HLA-E was then added in three steps. After 24 hours, the

refolding solution was concentrated to approximately 5 mL. The

sample was then purified by size exclusion chromatography using a

HiLoad 16/60 Superdex 200 pg column equilibrated with 20 mM

Tris HCl pH 8 and 150 mM NaCl. The eluted protein was analyzed

by SDS-PAGE, frozen in liquid nitrogen, and stored at -20°C.
2.9 Nano differential scanning
calorimetry (NanoDSF)

Thermal unfolding experiments were performed by nanoscale

differential scanning fluorimetry (nanoDSF) (32). The protein

intrinsic fluorescence during the thermal ramp was followed at

330 nm and 350 nm with a Prometheus NT.48 instrument from

NanoTemper Technologies with an excitation wavelength of 280

nm 28. Capillaries were loaded with 10 ul of protein at a

concentration of 1 mg/mL in 20 mM Tris-HCl, pH 8.0, and 150

mM Sodium Chloride. The temperature ramp measurements were

recorded from 20 to 95°C (temperature slope 60°C/hour). Three

independent measurements were carried out for each complex. The

fluorescence intensity ratio was recorded, and its first derivative was

calculated with the manufacturer’s software (PR.ThermControl,

version 2.1.2).
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2.10 Molecular modeling of
HLA-E/peptide complexes

The molecular modeling of the three-dimensional structures of

HLA-E/peptide complexes was performed using the crystal

structure of HLA-E/CD94/NKG2A (33) (PDB code 3CDG) as a

preliminary template and assuming that CD94/NKG2C similarly

interacts with HLA-E to CD94/NKG2A. The modeling was

performed manually in the program Coot (34), followed by

model regularization to improve the peptide chain’s geometry and

remove all possible sterical hindrances. Flanking peptide residues

were modeled in an arbitrary conformation to demonstrate that

HLA-E can present longer peptides and do not prevent CD94/

NKG2C binding. Peptide elongation at the C- and N-terminal of the

HLA-E peptide binding cleft was possible using different rotamers

for the side chains or residues K146 and W167, respectively. None

of the introduced flanking peptide residues interact with the CD94/

NKG2C heterodimer.
2.11 HLA-E binding assay

Peptide binding assay was performed in the HLA-E*0101

transfected K562 cell line (K562E*0101), kindly provided by Dr.

Jakob Michaelsson (Karolinska Institutet, Center for Infection

Medicine, Department of Medicine, Huddinge), and mycoplasma

tested before use. These K562E*0101 cells have a constitutive HLA-

E expression. Briefly, cells were re-suspended in a medium at 106

cells/ml, and indicated peptides were added at a concentration

titration of 0-100 µM. After an overnight incubation at 37°C, cells

were washed with PBS to remove free peptides. Next, HLA surface

expression was monitored after staining with anti-HLA-E

(BioLegend) and viability dye. Analysis was done using flow

cytometry as described above. Results are reported as flow

cytometry histograms or mean fluorescence intensity (MFI)

compared to Fluorescence Minus One (FMO) control.
2.12 Data management and
statistical analysis

All experiments were repeated independently at least three

times. One representative and accumulative data are presented.

All numeric data were subjected to a normal distribution test

before further statistical analysis. For the comparison within

groups, parametric or non-parametric multiple comparison two-

way ANOVA or one-way ANOVA tests were performed. Student’s

T-test was used when comparing two groups only. All statistical

tests were two-sided and ± SEM. All p-values or asterisks from

multiple comparisons were corrected using the FDR method

<0.05. No asterisk or p-values represent not significant data.

The Prism v9.2 software (GraphPad) was used for statistical

analyses. All dimensional reduction opt-SNE analyses based on

flow cytometry data were done utilizing the Cytobank 29 cloud-

based platform.
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3 Results

3.1 aNK cells expand significantly
following co-culture with mature
DCs that present a pool of HCMV
pp65-derived 15-mer peptides

A previous study revealed that NKG2C+ NK cells specifically

recognize distinct HCMV strains that encode a heterogeneous

repertoire of the classical UL40 peptides. These peptides control

the expansion and differentiation of NKG2C+ aNK cells (3).

However, that study did not reveal whether other HCMV-derived

peptides can control aNK cell recall responses. Neither did previous

studies investigate the involvement of professional antigen-

presenting cells (APCs), such as DCs, in priming human aNK

cells. Here, we first assessed the recognition specificity of aNK cells

towards a large array of overlapping HCMV 15-mer peptides

derived from the pp65 protein. Purified NK cells from HCMV-

seropositive individuals were co-incubated at a 10:1 ratio with

autologous monocytes or imDC representing poor APCs and

mDC as professional APC, either loaded with pools of 15-mer

peptides derived from the HCMV-associated pp65 protein or

unloaded. As a control, we used a control pool of peptides

derived from the HIV-associated Gag protein. This high-

throughput phenotypic screening allowed us to identify HCMV-

specific expansion of aNK cells. Interestingly, only the addition of

mDC loaded with the pp65-peptide pool (referred to as

mDC+pp65) to the NK cell culture led to a consistent increase in

the NKG2C+CD56+ aNK cell pool (CD3-CD56+CD57+FCeRg-) (p ≤
0.03). In contrast, cNK cell frequency (CD3-CD56+CD57+FCeRg+)
did not increase, relative to all other controls (Figures 1A, B).

Complementing this observation, we found a significant increase in

the proliferation index of aNK cells (% Ki67) compared to cNK cells

following the addition of mDC+pp65, which was not seen in the

other tested conditions (73.9 ± 12, p= 0.04) (Figure 1C). However,

we were unable to establish any functional difference, including

degranulation and cytokine production between cNK and aNK cells

following generic stimulation with an agonistic anti-CD16 antibody

combined with IL-12 and IL-18 recombinant cytokines, suggesting

a need for a specific secondary stimulation to induce functional

advantage in aNK cells. Further analysis revealed that compared to

NK cells cocultured with peptide unloaded control DC, NK cells co-

cultured with mDC+pp65 displayed a remarkable increase in the

CD45RO population, which has been shown to represent mature

and functional NK cells in hematological malignancies and identify

memory NK cells (35, 36) (Figure 1D). Our results suggest that

peptide priming stimulates and generates memory-like NK cells.
3.2 Peptide recognition by aNK cells is
dependent on both HLA-E and NKG2C

Earlier studies have demonstrated the importance of

interactions between NKG2C and HLA-E molecules in NK cell

responses to HCMV (3, 28). It is also well-established that NKG2A
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is an inhibitory receptor, expressed on both NK and T cells, that

competes with the activating receptor NKG2C for HLA-E binding

(37, 38). Our previous studies revealed that aNK cells have low or

no NKG2A expression, making them less susceptible to NKG2A-

mediated inhibition (10, 22). Here, we investigated whether aNK

cell responses to mDC+pp65 dependent on the interaction of HLA-

E with any of these two NK cell receptors. For this purpose, NK cells

were cultured with mDC+pp65 in the presence of blocking

antibodies specific to either HLA-E (39), NKG2C (40), NKG2A

(41), or a control IgG isotype. Our results demonstrated that

antibody blocking of HLA-E or NKG2C abolished the expansion

of aNK cell population, observed in response to stimulation by

mDC+pp65 and the presence of control IgG antibodies. In contrast,

we did not observe any difference in the expansion of aNK cells

when blocking the NKG2A receptor interaction, confirming that

aNK cell responses are independent of NKG2A, instead dependent

on the interaction between HLA-E- HCMV- peptide complexes and

NKG2C (Figures 2A, B). The reduction in expansion of aNK cells in

the presence of anti-HLA-E or anti-NKG2C antibodies was not due

to changes in cell viability, rather reflected a lack of specific
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proliferation (Figures 2C–F). In control experiments, we

confirmed the blocking capacity of these antibodies. Using the

K562 cell line transfected with HLA-E and loaded with pp65

peptide pool and cocultured with NK cells; we found that aNK

cell degranulation was reduced when blocking NKG2C and HLA-E.

On the other hand, assessing cNK cell degranulation, we found that

blocking NKG2A enhanced their degranulation capacity

(Supplementary Figures 1A, B). Thus, these results indicate

substantial participation of NKG2C and HLA-E in the aNK cell

antigen priming phase by DCs.
3.3 Identification of three pp65-derived
HLA-E-restricted 15-mer epitopes that do
not comprise the classical motif

Given the rate-limiting role of HLA-E for aNK cell recognition

of the pp65 peptide pool, we next sought to identify HLA-E-

restricted pp65-peptides. A total of 138 15-mers from the pp65-

derived peptide pool were refolded with HLA-E*0101 heavy chain
A B

DC

FIGURE 1

Co-culture of mDC loaded with an HCMV-associated pp65-derived peptide pool significantly expands the frequency of aNK cells. NK cells from
HCMV-seropositive donors were cultured for 14 days with mDC loaded with the pools of overlapping 15-mer peptides derived from either HCMV-
associated pp65 or HIV-1-associated Gag proteins, or left unloaded in the presence of 10 ng/ml IL-15 relative to cocultures with monocytes and
imDC. (A) Representative flow cytometry plots and gating strategy of CD56/NKG2C cNK and aNK cell expansion are shown. (B) Cumulative (n = 10)
data showing the percentages of cNK and aNK cells within the total CD57+ NK cell population. Results from five independent experiments are
presented as mean ± SEM. A One-way ANOVA test was used for statistical analyses. (C) Cumulative (n = 9) data showing the percentages of aNK
and cNK cell proliferation (Ki67), degranulation (CD107a), and IFNg production following co-culture with M, imDCs, mDCs, or mDCs+pp65. The
presented results are from three independent experiments. All the cumulative data are shown as mean ± SEM. A two-way ANOVA test was used for
statistical analyses. (D) Representative data from three independent experiments showing NK cell phenotype based on CD45RA and CD45RO
expression levels when in co-culture with mDC or mDC+pp65. * indicating p-values ≤ 0.05.
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A B
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C

FIGURE 2

aNK cell proliferation is dependent on HLA-E/NKG2C interactions. (A) Representative gating strategy of NK cells (n = 6-10) cultured with mDC+pp65
for 14 days in the presence of either a control isotype-matched antibody IgG, or anti-HLA-E, anti-NKG2C, or anti-NKG2A blocking antibodies (5 mg/
ml), thereafter assessed for their (B) (top panel) frequency and (bottom panel) number of cells, (C) viability, and (D, E) proliferation by flow cytometry.
All blood donors were HCMV seropositive. (F) Percentage change (blocking – IgG) from (E) is shown. The results from 2-5 independent experiments
are presented, and data are shown as representative plots or for each donor, where the donor in (A, C) is the same, and the donor in (D) is included
in accumulative data in (E). Student’s T-test and Two-way ANOVA were used for statistical analyses. * indicating p-values ≤ 0.05, ** indicating p-
values ≤ 0.001, *** indicating p-values ≤ 0.0001.
TABLE 2 MS identified HLA-E-restricted pp65 peptides.

Sequence -logP mass length ppm

TPRVTGGGAMAGAST 67.41 1348.641 15 -1.4

TSGSDSDEELVTTER 65.97 1624.706 15 2.1

KAESTVAPEEDTDED 62.97 1634.679 15 -3

SEVENVSVNVHNPTG 62.95 1580.743 15 0.7

TGGGAMAGASTSAGR 56.09 1250.567 15 -0.4

TPRVTGGGAMAGAST 55.71 1332.646 15 -0.5

TVAPEEDTDEDSDNE 55.19 1664.617 15 4.6

ARNLVPMVATVQGQN 50.07 1612.836 15 2.1

EEDTDEDSDNEIHNP 48.6 1757.65 15 1.1

TLGSDVEEDLTMTRN 41.34 1695.762 15 2.6

TGGGAMAGASTSAGR 36.73 1266.562 15 0.3

DSDEELVTTERKTPR 27.67 1774.87 15 3.8
F
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and hb2m, yielding a homogenous ensemble of HLA-E/peptide

complexes that were isolated using size exclusion chromatography

(Supplementary Figure 2A). All bound peptides were then eluted

through mild acetic acid treatment, and the sequence identity of all

bound epitopes was assessed using mass spectrometry. A total of

twelve 15-mers were identified in at least two out of a total of three

independent assays (Table 2). Later, three peptides were selected

based on sequence overlap with the pp65-derived peptides

identified from the HCMV strain AD169 (Inventor: Lewis L.

Lanier, Patent Application Number: 16/616,435, Publication

number: 20200171135). Interestingly, the sequences of pp6585-99
(SEVENVSVNVHNPTG), pp65401-415 (TSGSDSDEELVTTER),

and pp65405-419 (DSDEELVTTERKTPR) do not comprise the

classical HLA-E-restriction motifs. Instead, these three HLA-E-

restricted epitopes were heavily negatively charged and contained

polar residues. Molecular models of HLA-E in complex with the 15-

mer peptides, pp6585-99, pp65401-415, and pp65405-419, indicate that

the surfaces of these complexes are significantly more

electronegative compared to the surface of HLA-E in complex

with classical epitopes such as UL40 or hsp60 (Supplementary

Figures 2B, C). Molecular models of HLA-E in complex with all
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9-mer peptides that we identified and designed based on the

sequences and the molecular models from the three 15-mers also

display the same electronegative effects on the surface of these

pMHC complexes (data not shown). The capacity of each of the

three identified peptides to form a complex with HLA-E and hb2m
was demonstrated through the successful refolding of individual

HLA-E/peptide in complexes. All three obtained HLA-E/peptide

complexes displayed high overall stability as measured by nano

differential scanning calorimetry (nano-DSF), with melting

temperature (Tm) values stretching from 52.5 to 62°C

(Figure 3A, Table 1).

Since all three peptides induced very similar functional activities

and recall responses in aNK cells compared to the HLA-E binding

UL40 and Hsp60, we hypothesized that the recognition of these

specific HLA-E/pp65-peptide complexes could be due to a different

binding mode of NKG2C, and/or to specific properties intrinsic to

the core of these particular peptides, which would promote aNK cell

recall responses.

We next evaluated whether the 15-mer peptides pp6585-99,

pp65401-415, and pp65405-419 can bind to HLA-E*0101 on target

cells. The K562 cell line transfected with HLA-E*0101 was loaded
A B

DC

FIGURE 3

Identification of three 15-mer and 9-mer pp65-derived HLA-E-restricted epitopes. (A) NanoDSF studies to assess the thermal stability of HLA-E in
complex with the following peptides: SEVENVSVNVHNPTG, DSDEELVTTERKTPR, and TSGSDSDEELVTTER. The F350/F330 was plotted against
temperatures varying from 20°C to 95°C. Red dashed lines indicate the calculated melting temperatures (Table 1). (B) K562 cells transfected with
HLA-E*0101 were loaded with the indicated peptides overnight, washed, and analyzed for their HLA-E expression. Peptide titration from three
independent experiments and one representative overlay histogram and MFI are presented out of 3 independent experiments (10 µM). (C) NanoDSF
studies to assess the thermal stability of HLA-E in complex with the following peptides: SGSDSDEEL, DSDEELVTTERKTPR, VTTERKTPR, DSDEELVTT,
DMDEELVLL, and DQDEELVLL. The F350/F330 was plotted against temperature varying from 20°C to 95°C. Red dashed lines indicate the calculated
melting temperatures (Table 1). (D) K562 cells transfected with HLA-E*0101 were loaded with the indicated peptides overnight, washed, and
analyzed for their HLA-E expression. Peptide titration and one representative overlay histogram and MFI are presented out of 3 independent
experiments (10 µM). Positive (UL40) and negative (no peptide) peptide controls are included in (B). A Two-way ANOVA was used for statistical
analyses of cumulative data in (B, D). *Multiple comparisons were corrected by using the FDR method <0.05.
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overnight with the three identified peptides as well as other controls

including the non-HLA-E binding H-2Dd-restricted peptide P18-

I10 (RGPGRAFVTI) (42), the HLA-E binding hsp60 peptide

QMRPVSRVL, and the UL40-derived peptide VMAPRTLIL. We

found that all three 15-mer peptides were able to increase the

expression of HLA-E to similar levels compared to the classical

UL40 and the pp65 peptide pool and at higher levels compared to all

other controls (Figure 3B), which is well in line with the nano-

DSF results.

We next addressed whether we would be able to identify 9-mer

versions within the 15-mers. The three 9-mer peptides pp65402-410
(SGSDSDEEL), pp6586-94 (EVENVSVNV), and pp65411-419
(VTTERKTPR) were designed as potential candidates (Table 1),

following HLA-E binding prediction by the NetMHC server. These

predictions were complemented by a visual inspection of how these

peptides could fit within the HLA-E binding cleft. Furthermore, as

we observed a sequence overlap between pp65402-410 and pp65411-

419, we also designed a fourth epitope pp65405-413 (DSDEELVTT).

Finally, two altered peptide ligand (APL) variants, pp65405-413(p2Q,

p9L) were designed, in which we introduced components of the

HLA-E motif and therefore both predicted to bind HLA-E with a

higher affinity. Refolding with pp65402-410, pp6586-94, pp65411-419, or

with pp65405-413, pp65405-413(p2Q, p9L) and pp65405-413(p2M, p9L)

resulted in the production of HLA-E complexes with stability that

was very similar to their 15-mer counterparts as measured by nano-
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DSF, thus demonstrating that each nonamer could bind to HLA-E

(Figure 3C). Furthermore, our cellular peptide binding assay

revealed a similar increase in HLA-E expression levels on

K562E*0101 cells loaded with pp65402-410, pp6586-94 or pp65411-

419 as well as pp65405-413 and the APLs pp65405-413(p2Q, p9L),

pp65405-413(p2M, p9L) (Figure 3D).
3.4 Recognition of specific HLA-E/peptide
complexes by aNK cells provokes recall
responses

Having demonstrated enrichment of aNK cells when in culture

with mDC+pp65, we thereafter tested whether specific recognition

of the 15-mer pp6585-99, pp65401-415, and pp65405-419 epitopes could

provoke recall responses by aNK cells. Therefore, NK cells were co-

cultured with mDC loaded with each peptide or control peptides,

including P18-I10, UL40, and Gag, or hsp60 (Table 1). MRC-5 cells,

uninfected or infected with HCMV, were used as targets for

peptide-primed aNK cells. We observed a higher TNFa
production by aNK cells cultured with mDC loaded with pp6585-

99, pp65401-415, or pp65405-419 peptides compared to unloaded mDC

when restimulated with HCMV-infected MRC-5. Importantly,

TNFa production was higher in aNK cells from HCMV-

seropositive compared to HCMV-seronegative individuals
A

B

FIGURE 4

aNK cells recognize pp65-derived HLA-E-restricted 15-mer epitopes presented on mDC and perform recall responses. NK cells were cocultured with
mDC in the absence of peptides or pulsed with the indicated peptides (10 µM) in the presence of 10 ng/ml IL-15 for 14 days. Later, NK cells were
restimulated with HCMV-infected or uninfected MRC-5 cells before analysis of aNK cell function. Blood donors were either HCMV-seropositive (red
lines) or -seronegative (black lines). Data are shown from three independent experiments and individual donors (n = 9). Representative plots (A) and
cumulative data (B) are shown. A Two-way ANOVA test was used for statistical analyses and * indicating p-values ≤ 0.05.
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(Figure 4A). Notably, following the recognition of these 15-mer

peptides aNK cells displayed a marked increase in frequency,

degranulation (CD107a), and cytokine production (Figure 4B).

The observed increase in aNK cell activity was significantly higher

compared to the effects of other classical HLA-E-restricted leader

peptides such as UL40, and at least equal to the effects generated by

the pp65-derived pool of the 15-mer peptides. Interestingly, all

three pp65-derived 15-mer peptides also activated aNK cells from

HCMV-seronegative individuals, yet to a much lower extent

(Figure 4B). In contrast, the cNK cell population did not respond

to the identified peptides (Supplementary Figure 3A). To assess the

direct effect in eliciting an antigen-specific secondary response

against pp65, we cultured NK cells without DC but with MRC-5

loaded with the pp65 peptide pool and assessed aNK cell responses.

aNK cells displayed an increased expansion of NKG2C+ cells and

degranulation, demonstrating a direct recognition of the pp65-

derived peptides, however, to much lower levels compared to

when cultured with loaded mDC (Supplementary Figures 3B, C).

These results, suggesting that mDC are excellent presenters of these

negatively charged peptides. aNK cells were subsequently cultured

with mDC loaded with the nonameric peptides pp65402-410, pp6586-

94, and pp65411-419, and our results demonstrated that at least one of

these peptides elicited specific recall responses in aNK cells as

measured by expansion and cytokine production (Supplementary

Figure 3D). Hence, our results also demonstrate the equivalent
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capacity of 15-mer and 9-mer peptides that are heavily negatively

charged to elicit such NK cell memory responses. Altogether, these

results demonstrate that aNK cells can specifically recognize 15-mer

HLA-E-restricted peptides, resulting in memory recall responses.
3.5 aNK cell antigen priming is dependent
on HLA-E but not MHC class I or II

We sought to confirm that the defined 15-mer peptides are also

solely presented on HLA-E and to exclude the possibility that these

peptides are also presented by other MHC class I and II molecules.

NK-DC was, therefore co-cultured in the presence of each of the

three peptides and one of the blocking antibodies against HLA-E,

MHC I, or MHC II at the priming or the restimulation phase. We

found that at the priming phase, HLA-E was still the prominent

antigen-presenting molecule associated with aNK cell memory

(Figures 5A, B). On the other hand, blocking HLA-E, MHC class

I, or MHC II at the secondary stimulation phase with HCMV-

infected MRC-5 diminished aNK cell recall responses (Figure 5C).

Thus, our findings suggest that aNK cell memory formation is

dependent on HLA-E. However, long-term priming may result in

enhanced ability of the immune cells to attack multiple epitopes on

the infected cells associated with other MHC molecules than HLA-

E. This phenomenon can be implied by the broad effect of MHC I,
A B

C

FIGURE 5

aNK cells antigen priming is dependent on HLA-E and no other MHC molecules. NK cells (n = 3) were cultured with mDC+pp65 for 14 days in the
presence of either a control isotype-matched antibody IgG, or anti-HLA-E, anti-MHC I, or anti-MHC II blocking antibodies (5 mg/ml), at (A, B) the
priming phase (day 0 and 7) or at (C) the restimulation phase (day 14) and thereafter assessed for their frequency and proliferation by flow cytometry.
All blood donors were HCMV seropositive. The results from two independent experiments are presented, and data are shown as representative
histograms for each donor. A Two-way ANOVA was used for statistical analyses. * indicating p-values ≤ 0.05, ** indicating p-values ≤ 0.001, ***
indicating p-values ≤ 0.0001.
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II, and HLA-E blocking at the secondary stimulation phase, which

blocks the proliferation of aNK cells, giving rise to other possible

mechanistic ways to target and kill the infected cells.
3.6 Multidimensional investigations
of aNK cells confirm increased
activity in response to the identified
15-mer and 9-mer peptides

We next sought to investigate the dynamic change of NK cell

subsets following antigen priming and secondary stimulation. NK

cells cultured with mDC or mDC loaded with the selected pp65

peptides were restimulated with CMV-infected MRC-5 and

investigated for aNK cell identification (FceRIg, CD57, and

NKG2C) and functional (Ki67 and TNFa) marker expression by

flow cytometry. Flow cytometry data were subjected to dimensional

reduction opt-SNE analysis to identify live NK cell (CD56+CD3-

live/dead-) clusters potentially associated with specific peptide

recognition. The opt-SNE analysis identified six clusters based on

the markers’ expression density, including CD57, NKG2C, FceRIg,
CD107a, Ki67, and TNFa (Figure 6A). These six clusters had
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different expression levels of the selected markers dependent on

the loaded peptide (Supplementary Figures 4, 5A). Among these six

clusters, aNK cells and cNK cells were identified as clusters P1 and

P3, respectively, based on the following characteristics: low versus

high FceRIg, high CD57, high versus low NKG2C expression levels

(Figure 6B, Supplementary Figure 5A). We found that aNK,

compared to cNK cells, displayed a substantial increase in CD57

density and high expression levels of NKG2C in response to all the

15-mer and 9-mer pp65 peptides identified in this study.

Functionally, these aNK cells exhibited high proliferation

(presented as Ki67) and high TNFa production (Figure 6C), as

previously shown in the 2-dimensional analysis. In addition, HLA-

E-binding pp65-derived peptides, e.g., pp65401-415 and pp65405-413
(p2Q, p9L), enhanced the expression of aNK cell-associated

markers CD57 and NKG2C, even in HCMV-seronegative

individuals following two weeks co-culture with mDC

(Figure 6D). Importantly, priming NK cells with pp65405-419 or

pp65405-413(p2Q, p9L) resulted in specific killing of HCMV-infected

compared to HCMV-uninfected MRC-5 cells (Figure 6E,

Supplementary Figure 5B). In summary, our results demonstrate

that aNK cells, like T cells, can form memory against HCMV-

infected cells when primed with HCMV-pp65 peptide loaded DC.
A B

D E

C

FIGURE 6

Multidimensional investigations of aNK cells confirm their specific function in response to peptides. (A) Dimensional reduction opt-SNE analyses of
NK cells are shown following coculture with mDC loaded with pp65405-419 (DSDEELVTTERKTPR) peptide and assessed phenotypically distinct
clusters. One representative opt-SNE, out of three independent experiments is shown. (B–D) Dimensional reduction opt-SNE analyses of NK cells
are shown following coculture with mDC unloaded or loaded with different peptides and assessed for the phenotype (CD57 and NKG2C) and
function (Ki67 and TNFa) of aNK and cNK cell clusters. One representative out of three independent experiments is shown. (E) NK cells were
cultured with mDC peptide unloaded or loaded for 14 days and assessed for the killing capacity of infected or uninfected MRC-5 cells 6 hours prior
to staining. Pooled data are shown from two independent experiments (n=11). Data are shown in boxplots and statistical analysis was performed
using a Two-way ANOVA test * indicating p-values ≤ 0.05, ** indicating p-values ≤ 0.01.
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4 Discussion

In contrast to T and B cells, NK cells have been historically

regarded as phenotypically static cells with a short lifespan, unable

to provide immunological MHC/peptide-specific memory. This

view has been reevaluated considering more recent reports

describing the phenotypic, epigenetic, and functional

heterogeneity that exists among populations of NK cells,

particularly in response to viral infections (10, 43–45). In the

present study, we demonstrated that aNK cells can recognize 15-

mer HLA-E-restricted HCMV peptides with unconventional

sequences, and establish a memory response resulting in a clonal-

like expansion following a secondary stimulation. This peptide-

specific recognition elicited significant recall responses that led to

the killing of HCMV-infected targets, thus confirming their

unambiguous immunological memory of specific epitopes.

Recent discoveries established that aNK cells are able to respond

to specific viral antigens through interaction with antigen-loaded

non-polymorphic HLA-E (3). Cell-surface stabilization of HLA-E

requires loading with peptides, which can be derived from MHC

class I leader peptides or other proteins at steady state (46–48). In

addition to host peptides, the UL40 motif in HCMV has been found

to encode HLA-E-stabilizing peptides that are partially similar to

MHC class I leader sequences (49, 50). Here we show that none of

the three peptides comprised the classical HLA-E-restriction motifs,

which include a methionine residue that binds to the HLA-E B-

pocket or a leucine/valine residue at p9 that would fit in the

hydrophobic F-pocket of HLA-E (51, 52). Furthermore, none of

these three peptides contain glutamine or a lysine residue that could

be used as anchor positions for binding to the B-pocket, as

described in HLA-E epitope mapping studies (52, 53), or proline

residues at p3, p4, p6 or p7, all shown to enhance the binding

capacity of peptides to HLA-E (54). Instead, these three HLA-E-

restricted epitopes were all heavily negatively charged and

comprised polar residues. None of these three epitopes was

predicted to bind to HLA-E by the MHC peptide prediction

server NetMHC (55). However, it should be noted that parts of

these three peptide sequences have been previously described/

predicted in the literature mainly as targets for B cell recognition

(56, 57) or as epitopes restricted to classical MHC class I and class II

molecules (58–60). To our knowledge, all the previously determined

crystal structures of HLA-E present nonameric peptides, which

bind stably to HLA-E. However, recent MS analyses have

demonstrated that nonameric peptides constitute only 18% of the

whole HLA-E immunopeptidome and demonstrated the presence

of longer peptides with lengths ranging from 10 to 21 amino acids

(53, 61). Interestingly, although the identified peptide sequences do

not have homology with the traditional motif, they bind to HLA-

E*0101, as demonstrated by both molecular and cellular binding

assays. In addition, all three 15-metric peptides identified within the

present study induced recall responses in aNK cells that could be

due to specific molecular features, including their significant

electronegativity. Indeed, similar to our negatively charged 15-

mer HCMV peptides, some of the peptides derived from M.

tuberculosis proteins were acidic and were recognized by CD8 T

cells (61).
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HCMV-infected cells and several solid tumors overexpress

HLA-E as an escape mechanism of cNK and T cell killing

through ligation of the inhibitory receptor NKG2A (38, 50, 62).

Theoretically, inhibition of NKG2A will allow for the interaction of

the NKG2A counterpart, the activating receptor NKG2C with

HLA-E and may allow for specific targeting. A phase II clinical

trial in which anti-NKG2A was combined with an epidermal

growth factor receptor inhibitor in previously treated head and

neck carcinomas showed a 31% objective response rate (63).

Hypothetically, these clinical responses might be due to the NK

cell activation status or tumor-antigen recognition by aNK cells,

and whether the patient is an HCMV carrier. Here, we found that

inhibition of NKG2A in aNK cells interacting with mDC loaded

with HCMV-peptides did not change their activation state,

excluding the possibility that the identified peptides bind to

NKG2A. In contrast, antibody blocking of HLA-E and NKG2C

interactions significantly altered the activation state of aNK cells in

coculture with peptide-loaded mDC, indicating an antigen

recognition state through HLA-E/peptide/NKG2C complexes

rather than a co-stimulation boost.

Here, we hypothesized that similar to T cells, the activation of

aNK cells may involve both antigen recognition (signal 1) and co-

stimulatory signals combined with signaling from cytokines

provided by professional antigen-presenting cells (APC) (signal 2

and 3). We and others have previously demonstrated that both DC

and B cells can activate NK cells (64–67). However, whether APC

are also essential for aNK cells to display a secondary immune

response was unknown. Our results reveal that aNK cells depend on

at least signal 1. Further studies are needed to determine the specific

DC co-stimulatory receptors (signal 2) and cytokine stimulation for

aNK cell recall responses and memory persistence.

Our results have implications for strategies to expand aNK cells

with immunological memory ex vivo for immunotherapy. Several

transplantation studies have shown that NK cells are involved in

tumor rejection and protection from relapse, supporting the

therapeutic potential of NK cells in tumor eradication (68, 69).

Recently, it has been shown that aNK cells with single-KIR

+NKG2C+ expanded from selected HCMV infected donors with

feeder cells loaded with HLA-G leader-derived peptides have potent

reactivity towards HLA-mismatched acute myeloid leukemia cells (4).

Despite these encouraging findings, NK cell therapies are limited by

the lack of antigen specificity. Also, similar to T cells, resistance to NK

cell-mediated killing may also develop due to the recruitment and

differentiation of immune suppressive cells, including regulatory T

cells (Treg) and myeloid-derived suppressor cells (MDSC), as well as

overexpression of immune inhibitory checkpoint proteins in the

tumor microenvironment (TME). We discovered earlier that aNK

cells found in HCMV-seropositive individuals can resist TME-

induced suppression. We showed that the mechanisms sparing aNK

cells from immune suppression by MDSC and Treg involved the

downregulation of the checkpoint molecules T cell immunoglobulin

and ITIM domain (TIGIT), programmed death receptor (PD-1) and

IL-1R8 (22, 23). In agreement with these findings, we found that

reconstitution and expansion of aNK cells in individuals with HCMV

reactivation was associated with reduced leukemia relapse and better

clinical outcomes following hematopoietic stem cell transplantation
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(22, 24). Thus, our 15-mer identified peptides could potentially be

used as a therapeutic vaccine strategy to provoke antigen-specific aNK

cell responses with persistent memory, combined with the ability to

resist immunosuppression. Ongoing studies in our lab evaluate the

potential of this strategy in solid tumors.
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Charité University Medicine Berlin,
Germany
Justin Jacobse,
Leiden University Medical Center (LUMC),
Netherlands
Tetsuro Kobayashi,
RIKEN Yokohama, Japan

*CORRESPONDENCE

Dingding Zhang

zhangdd25@126.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 14 August 2023
ACCEPTED 25 September 2023

PUBLISHED 16 October 2023

CITATION

Jia H, Wan H and Zhang D (2023)
Innate lymphoid cells: a new key
player in atopic dermatitis.
Front. Immunol. 14:1277120.
doi: 10.3389/fimmu.2023.1277120

COPYRIGHT

© 2023 Jia, Wan and Zhang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 16 October 2023

DOI 10.3389/fimmu.2023.1277120
Innate lymphoid cells: a new key
player in atopic dermatitis

Haiping Jia1†, Huiying Wan2† and Dingding Zhang3*

1Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China,
2Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science
and Technology of China, Chengdu, China, 3Sichuan Provincial Key Laboratory for Genetic Disease,
Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China,
Chengdu, China
Atopic dermatitis (AD) is a common allergic inflammatory skin condition mainly

caused by gene variants, immune disorders, and environmental risk factors. The T

helper (Th) 2 immune response mediated by interleukin (IL)-4/13 is generally

believed to be central in the pathogenesis of AD. It has been shown that innate

lymphoid cells (ILCs) play a major effector cell role in the immune response in

tissue homeostasis and inflammation and fascinating details about the

interaction between innate and adaptive immunity. Changes in ILCs may

contribute to the onset and progression of AD, and ILC2s especially have

gained much attention. However, the role of ILCs in AD still needs to be

further elucidated. This review summarizes the role of ILCs in skin homeostasis

and highlights the signaling pathways in which ILCs may be involved in AD, thus

providing valuable insights into the behavior of ILCs in skin homeostasis and

inflammation, as well as new approaches to treating AD.

KEYWORDS

innate lymphoid cells, atopic dermatitis, inflammatory response, pathophysiology, cytokines
1 Introduction

Atopic dermatitis (AD) is a chronic skin disease characterized by a massive infiltration

of inflammatory cells, with intense pruritus, plasmacytic exudates, dry skin, and

erythematous papules as the predominant clinical symptoms (1). The onset of AD is not

limited by age or race. AD plays a significant role in the global burden of dermatologic

diseases and has a detrimental impact on the quality of life of patients and their families.

From 1990 to 2017, AD ranked 15th among all non-fatal diseases and the first among

dermatological diseases in disability-adjusted life years (DALYs) (2). Traditionally, the

pathogenesis of AD is highly complex, involving genetic predisposition, epidermal

dysfunction, and T-cell-driven inflammation. The T helper (Th) 2 cells dominate the

pathogenesis of AD by secreting pro-inflammatory cytokines such as interleukin (IL)-4 and

IL-13. Dupilumab is a monoclonal antibody that selectively blocks IL-4 and IL-13 signaling

and received the first global approval for AD treatment in March 2017, representing a

major advance in treating patients with moderate-to-severe AD (3, 4). However,
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dupilumab is ineffective in some AD patients and might induce new

regional dermatoses, ocular complications, alopecia, and other

adverse effects (5). Although there is no accurate cure for AD,

many novel and targeted therapies promise to slow the disease’s

progression considerably, especially in patients with refractory AD.

In recent years, the detection of innate lymphoid cells (ILCs) in the

context of skin homeostasis and inflammation has gained

increasing attention (6).

ILCs are a newly found lymphoid lineage component of the

innate immune system that differentiates from common lymphoid

progenitor cells (CLPs) (7, 8) and produce a range of cytokines

associated with subsets of T helper cells (9). Furthermore, ILCs are

characterized by the absence of antigen-specific receptors produced

by genetic recombination (8), and their growth is typically

dependent on the common gamma chain of the IL-2 receptor,

Notch, and the transcription factor inhibitor of DNA binding 2

(ID2) (7). ILCs are crucial in generating immune responses,

maintaining tissue integrity, and mediating inflammatory

responses (8). Recent studies have demonstrated that the

pathophysiology of AD is strongly connected to abnormal ILC

activation (10, 11).

This review presents the involvement and function of ILCs in

the skin, emphasizing the role of several subgroups of ILCs in the

pathogenesis of AD, and further discusses the possible associated

signaling pathways. The aim is to shed new light on the molecular

mechanisms of AD and imply the potential value of targeting ILCs

for therapy.
2 The subsets of the ILC family

The ILC family comprises a group of immune cells with

pleiotropic functions, which lack somatic rearrangements of

immune receptor genes characteristic of T and B cells (12). In the

early phases of the study, it was customary to group ILCs into three

major categories, with different functions for each subset, namely,

natural killer (NK) cells, RORgt+ ILCs, and type 2 ILCs (13).

Subsequently, the International Union of Immunological Societies

(IUIS) approved the classification of ILCs into five subpopulations,

namely, NK cells, ILC1s (group 1 ILCs), ILC2s (group 2 ILCs),

ILC3s (group 3 ILCs), and lymphoid tissue-inducing (LTi) cells,

based on the various developmental trajectories and transcription

factors expressed by ILCs (12, 14, 15) (Figure 1).

NK cells are cytotoxic lymphocytes with a shorter half-life than

B and T lymphocytes and occur more frequently in the circulatory

system (16). NK cells can directly induce the death of tumor and

virus-infected cells without specific immunization, thereby

controlling intracellular pathogens (17, 18). NK cells depend on

the IL-15 developmental pathway, with differential expression of

GATA binding protein 3 (GATA3) and IL-7 receptor a-chain
(CD127) (19, 20). Based on the relative expression of surface

markers CD16 and CD56, NK cells in human peripheral blood

could be subdivided into CD56bright CD16 − and CD56dim CD16+

NK cells (21). NK cell subpopulations differ in their cytolytic

activity and cytokine production capacity. Vosshenrich et al.

speculated that the two CD56 NK cell subsets in humans might
Frontiers in Immunology 02153
share characteristics with various NK cells generated by the bone

marrow and thymic NK cell pathways in mice (20).

The ILC1s monitor the immune system and defend the host,

and they are often non-cytotoxic or weakly cytotoxic (12). ILC1s

and NK cells differ in the production and dependence of

transcription factors (11, 22). Zhang et al. proposed that NK cells

are defined by high levels of co-expression of T-bet and

eomesdermin (Eomes), whereas ILC1s are defined by the single

expression of T-bet or Eomes (23). Similar to NK cells, ILC1s are

developmentally reliant on T-box transcription factor (T-bet) and

release type I cytokines such as interferon-gamma (IFN-g) and

tumor necrosis factor (TNF) (12). T-bet has been shown to bind to

the promoters of protein-coding genes in Th1 cells, activating many

critical genes in the Th1 cell response, suggesting that ILC1s may

contribute to the Th1 cell response (24). Unlike NK, ILC1s are the

first and primary producers of IFN-g in vivo during the early stages

of viral infection and do not require IL-18 signaling to optimize

IFN-g production (25). ILC1s produce optimal IFN-g in a signal

transducer and activator of transcription 4 (STAT4)-dependent

manner via tissue-resident X-C motif chemokine receptor 1-

positive conventional dendritic cells (XCR1+ cDC1), thereby

limiting viral replication at the initial site of infection (25).

Furthermore, RNA-sequencing analysis suggests that Itgb3

(encoding CD61) and Cd200r1 (encoding CD200r1) may be new,

reliable specific markers to distinguish peripheral tissue-resident

ILC1s from circulating NK cells, providing new insights for future

studies (25).

ILC2s are usually considered substantial members of the ILC

family involved in innate immune responses and regulation of

tissue homeostasis (26). RORa and GATA3 (27), which are ILC2-

specific transcription factors, are required for ILC2 formation.

ILC2s express IL-7Ra, CD45 (28), BCL11B, and GFI1 (29), and

their distinctive characteristic is the secretion of Th2-associated

cytokines such as IL-4, IL-5, IL-9, IL-13, and amphiregulin

(AREG) (10).

ILC3s depend on RORgt for their functional development,

expressing natural cytotoxicity receptors (NCRs) and the surface

marker IL-23R (12). According to the expression of NCR NKp44,

ILC3s could be categorized into two main subgroups: NCR − ILC3s

and NCR+ ILC3s. NCR − ILC3 equivalent Th17 cells express RORgt
and produce IL-17A/IL-22, and NCR+ ILC3 equivalent Th22 cells

express transcripts of RORgt and aryl hydrocarbon receptor (AHR)

and produce only IL-22 (30). ILC3s modulate adaptive Th17 cell

responses and produce Th17-related cytokines such as IL-17 and

IL-22 (31).

LTi cells are crucial for secondary lymphoid organ formation

during embryogenesis and act in T- and B- cells’ development,

activation, and function (32). It is essential for LTi cells to express

the chemokine receptors CXCR5 and CXCR6 in order to

differentiate to the next stage (33). Additionally, LTi cells are

similar to ILC3s, expressing RORgt markers and releasing

cytokines that overlap with ILC3, such as IL-17 and IL-22 (34).

As a crucial transcription factor for developing ILC3 progenitors,

the promyelocytic leukemia zinc finger (PLZF) has a defining role in

innate lymphocyte lineage differentiation (35). PLZF expression is

not required to form LTi cells, although ILC3s are (33, 36).
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3 ILCs in skin tissue

ILCs are widely distributed in various organs and tissue types in

the human body (37, 38). ILCs are usually preferentially enriched in

barrier tissues, such as the skin, intestine, and lung, which facilitate

the maintenance of barrier function and response to tissue-derived

signals (37). Our understanding of the functional features of skin

ILCs is still developing compared with those of the lung and gut

(11); thus, certain traits of skin ILCs will be discussed.

The skin is a mechanical and biological barrier for the body,

protecting epithelial integrity and maintaining homeostasis.

Anatomically, the skin consists of avascular epidermis, dermis,

and subcutaneous tissue (39), each layer with specific

morphological and physiological functions. Furthermore, the

presence of ILCs in the skin is related to the host species and the

skin layer’s location (Figure 2).

ILC subsets are differentially presented in various layers of mouse

and human skin. NKp46 is a receptor found on the surface of NK
Frontiers in Immunology 03154
cells from the early to late stages of differentiation. Luci et al.

employed tissue immunofluorescence assay to detect NKp46

expression and discovered that the distribution of NK cells in

mouse and human skin was identical at a steady state (40). This

work demonstrated that NKp46+ CD3 − NK cells were

predominantly present in the dermis and virtually absent from the

epithelium, indicating that the proliferating dermal NK cells may be

the source of NK cells recruited to inflamed skin during the allergic

phase. In contrast, Kobayashi et al. did not find genes associated with

NK cells and ILC1s by sorting and performing single-cell RNA

sequencing of Lin − Thy1.2+ ILCs from each skin layer of wild-type

(WT) C57BL/6 mice (14). Kobayashi et al. and Luci et al. used mice

with the same genetic background. Still, they were controversial about

the frequency of NK cells in the skin, probably related to the different

technical aspects of the assay. Kobayashi et al. also revealed that in

mice, the subcutaneous and epidermal layers were highly enriched in

genes characteristic of ILC2s and ILC3s, respectively, and the dermis

was characterized by both ILC2s and ILC3s (14).
FIGURE 1

Classification of innate lymphoid cells. ILCs are divided into three groups. ILC1s produce type 1 cytokines such as TNF and IFN-g and express T-bet
in response to IL-12, IL-15, and IL-18 stimulation. ILC2s are defined by the expression of RORgt and secretion of Th2-associated cytokines such as
IL-4, IL-5, and IL-13. ILC3s express GATA3 and produce IL-17A and IL-22 in the stimulation setting by IL-1b, IL-23, and AHR ligands. AHR, aryl
hydrocarbon receptor; Areg, amphiregulin; GM-CSF, granulocyte–macrophage colony-stimulating factor; IFN-g, interferon-gamma; IL, interleukin;
ILCs, innate lymphoid cells; LTD4, leukotriene D4; NK, natural killer; PGD2, prostaglandin D2; RANK, receptor activator of nuclear factor kappa B; Th,
T helper; TNF, tumor necrosis factor; TSLP, thymic stromal lymphopoietin.
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Alkon et al. reported that ILCs from AD skin frequently co-

expresses type 2 (GATA3 and IL13) and type 3/17 (RORC, IL22, and

IL26) molecular signatures at the single-cell level and can rapidly

change their molecular, immunophenotypic, and functional

characteristics upon cytokine stimulation, participating in host

defense or promotion of disease onset (41). Reynolds et al.

showed by single-cell RNA sequencing that ILCs in the epidermis

and dermis of AD patients and normal healthy subjects could be

classified into four subgroups, namely, ILC1/3, ILC2, ILC1/NK, and

NK, with ILC2s (IL7R, PTGDR2, and GATA3) having the most

distinct signature (42). Additionally, Brüggen et al. demonstrated

that very sparse ILCs are present in the upper dermis of normal

human skin with an algorithm-based in-situ analysis technique,

while the hypodermal areas and epidermis are almost devoid of

ILCs (43). Using immunofluorescence, they found that the ILC

population in the upper dermis was dominated by ILC1s, followed

by AHR+ ILC3s, and no GATA3+ ILC2s were observed (43).

Instead, flow cytometry analysis revealed the presence of ILC2s in
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normal human skin cell suspensions, accounting for approximately

10% of all ILCs (43). The controversial results of the two methods in

this study may be related to factors such as sample collection site,

cell migration, changes in cell phenotype during isolation and

purification, and the sensitivity of the assay.

Additionally, single-cell RNA-sequencing studies of wild-type

C57BL/6 mouse skin showed that ILCs in all skin layers expressed

Crlf2 [encoding the thymic stromal lymphopoietin (TSLP) receptor

subunit] and Tnfrsf25 [encoding death receptor 3 (DR3)] (14).

Dermal and epidermal ILCs highly express Il18r1 (encoding IL-18

receptor subunit) and Il17rb (encoding IL-25 receptor) (14). Il1rl1

(encoding IL-33 receptor subunit) and Il2ra (encoding IL-2

receptor subunit) were significantly expressed on subcutaneous

ILCs (14) (Figure 2). These findings suggest a layer-specific

receptor expression pattern in the skin, implying that cytokine

species may be different in skin layers (14), which contributes to a

better understanding of the mechanisms of localization of cytokine

signaling pathways in the skin.
B

A

FIGURE 2

Different distribution of ILCs and their related receptors in various layers of normal mouse and human skin. (A) In mice, the subcutaneous and
epidermal layers were highly enriched in genes characteristic of ILC2s and ILC3s, respectively, while ILC2s and ILC3s characterized the dermis.
Furthermore, mouse skin RNA sequencing studies showed that ILCs in all skin layers expressed Crlf2 (encoding the TSLPR subunit) and Tnfrsf25
(encoding DR3). Dermal ILCs and epidermal ILCs highly express Il18r1 (encoding IL-18R subunit) and Il17rb (encoding IL-25R). Il1rl1 (encoding IL-33R
subunit) and Il2ra (encoding IL-2R subunit) were significantly expressed on subcutaneous ILCs. (B) In humans, ILCs are only present in the dermis of
normal skin. ILCs in the dermis are mainly composed of ILC1s and ILC3s. Flow cytometry data showed that among all dermal ILCs, ILC1s accounted
for approximately 45%, ILC3s for approximately 55%, and ILC2s for approximately 11.6%. However, GATA3+ ILC2 was not detected in skin tissue
sections by immunofluorescence. DR3, death receptor 3; IL, interleukin; IL-2R, IL-2 receptor; IL-18R, IL-18 receptor; IL-25R, IL-25 receptor; IL-33R,
IL-33 receptor; ILC, innate lymphoid cell; T-bet, T-box transcription factor; TSLPR, thymic stromal lymphopoietin receptor; WT, wild type.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1277120
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2023.1277120
4 ILCs in atopic dermatitis

4.1 NK cells in atopic dermatitis

As one of the innate lymphocytes, NK cells are important

sentinels of the organism to operate the immune system. NK cells

exert immunomodulatory functions early in the inflammatory

response, mainly by forming crosstalk effects with other immune

cells and secreting a large variety of cytokines, such as TNF-a, IFN-
g, GM-CSF, IL-5, IL-6, and IL-10 (44–46). Significantly, NK cells

induce Th1 cells to initiate a protective reaction by releasing IFN-g,
which facilitates the maintenance or enhancement of the body’s

antiviral immunity (44, 47). NK cells have been detected in the

damaged skin of patients with atopic dermatitis and MC903-

induced AD-l ike mouse models (a systemic AD-l ike

inflammatory phenotype closely resembling human AD was

induced by the topical application of MC903 to the skin) (48). It

has been reported that peripheral NK cells were significantly

reduced in AD patients, possibly related to chemokine-dependent

NK cell recruitment from the periphery to the lesioned skin (45). C

motif chemokine receptor 2 (CCR2), C-C motif chemokine receptor

5 (CCR5), and C-X-C motif chemokine receptor 3 (CXCR3) are the

primary chemotactic receptors that regulate circulating NK cell

migration (49).
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Bi et al. demonstrated that NK cell activation inhibited ILC2

amplification and cytokine production in vitro and in vivo and that

this modulation was predominantly mediated by IFN-g (50).

Mature CD56dim NK cells were recovered in most AD patients

after dupilumab treatment, indicating that the NK cell deficiency in

AD patients was reversible by the blockade of type 2 cytokines (48).

Moreover, in a mouse model of NK cell-deficient AD (AD-like

disease induced in Il15 −/− mice by application of MC903), the

reduction in NK cell numbers was restored by dupilumab as a Th2

cytokine blocker, suggesting that NK cells may contribute to

suppressing the type 2 inflammation in AD (48). The

inflammatory effects of ILC2s may be inhibited by IFN-g released
by NK cells, although more validation in animal models and

patients at various illness stages is required. Mack et al.

demonstrated that NK cell deficiency in mice could lead to the

deterioration of pathogenic ILC2 responses in vivo, assuming that

the NK cell–ILC2 inhibition axis may be a potential regulatory

mechanism in the skin barrier (48) (Figure 3). This finding suggests

that defects in NK cell numbers or function lead to type 2

inflammation and skin damage, further suggesting that NK cells

may be closely associated with AD development.

Furthermore, NK cells also contribute to the body’s protective

immunity. As important antigen-presenting cells in the immune

response, NK cells can selectively edit dendritic cells (DCs) by
FIGURE 3

The roles of ILCs in atopic dermatitis. NK cells are stimulated by DC exposure or high TSLP levels to enhance Th1 responses, attenuate Th2
responses by producing IFN-g, and improve Th2-type immunity by promoting auto-apoptosis. The expression of TSLP, IL-33, and IL-25, released by
epithelial cells and serve as major ILC2 activators, is increased in AD patients. The interaction of ILC2s with other innate immune cells, such as mast
cells and basophils, is critical to the complex mechanics of AD. Also, ILC3s release IL-17A or IL-22, which contribute to the pathogenesis of AD.
Increased GzmB expression and FLG deficiency in AD patients both enhance E-cadherin cleavage, which inhibits the interaction between E-cadherin
and the KLRG1 receptor expressed on ILC2s, which would strengthen the body’s ILC2-related response. ILCs may trigger TSLP secretion by
producing TNF and lymphotoxin to downregulate Notch signaling. In addition, diosmin, coal tar, and tapinarof inhibit the action of ILC2s but
promote the function of ILC3s by activating the AHR signaling pathway. AHR, aryl hydrocarbon receptor; CRTH2, chemoattractant receptor-
homologous molecule expressed on Th2 cells; CysLts, cysteinyl leukotrienes; DCs, dendritic cells; FLG, filaggrin; GzmB, granzyme B; IFN-g,
interferon-gamma; IL, interleukin; ILCs, innate lymphoid cells; KLRG1, killer cell lectin-like receptor G1; NK, natural killer; PDG2, prostaglandin D2;
Th, T helper; TNF, tumor necrosis factor; TSLP, thymic stromal lymphopoietin.
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killing immature DCs while retaining mature ones, which is

required for adaptive immune responses to be initiated

successfully (51). NK cells undergo close contact with DCs in the

affected tissues of AD patients, suggesting that NK cells are induced

to become preferential targets for apoptosis after exposure to

activated monocytes, which also enhances the deviation of

immune response from Th1 toward Th2 type and contributes to

microbial infection (45, 52, 53). However, the activation signals that

trigger natural killer cell death in vivo are currently unknown. TSLP

is an epithelial cell-derived cytokine that is one of the key factors

driving the development of the vicious cycle of inflammation in AD

(54). TSLP could activate DCs to promote Th2 immune responses

and has been reported to act directly on NK cells expressing TSLPR

and IL-7Ra to produce IL-13, suggesting that TSLP may be a key

factor in the role of NK cells in AD development (55) (Figure 3).

Maintaining a relatively stable number and function of NK cells

in vivo is critical to the progression of AD, and a clearer

understanding of the specific pathways of NK cells in the

pathogenesis of AD may provide new strategies for AD.
4.2 ILC2s: the critical ILCs in
atopic dermatitis

Kim et al. first found the presence of skin-derived ILC2s in

healthy human skin (56). They observed a significant increase in the

frequency of ILC2s in lesional AD skin compared with healthy

control skin by flow cytometry, suggesting that ILC2s perform a

crucial function in developing skin inflammation. ILC2s, generally

considered to be the most important ILC subtype in AD

pathogenesis, promote the development of Th2 cells by producing

characteristic cytokines, such as IL-13 and IL-5, and it has been

demonstrated that ILC2 deficiency leads to severe defects in Th2 cell

immune responses (57). Interestingly, Alkon et al. showed that

cutaneous ILC2 in patients with AD can have cytokine transcripts

characteristic of type 17 and/or type 3 immunity that can co-

produce cytokines such as IL-5, IL-13, IL-22, and IL-17A (41).

4.2.1 Modulators of activated ILC2s
in atopic dermatitis

It is well known that TSLP, IL-33, and IL-25 are major

activators of ILC2s, and all of these cytokines have been reported

to be elevated in the skin of AD patients (29).

ILC2s express receptors for TSLP, IL-33, and IL-25, all of which

have a cascade of regulatory and recruitment effects on ILC2s in AD

(58). TSLP, IL-33, and IL-25 can activate ILC2s to secrete various

pro-inflammatory factors to induce the development of AD, and

this effect can be amplified by the stimulation of allergens such as

house dust mite (HDM) extraction (29, 58) (Figure 3). Studies have

shown that TSLP can interact directly with T cells from AD patients

to enhance Th2 responses by promoting the proliferation of IL-4-

producing cells and secretion of IL-4 (59). IL-33 facilitates the

survival and function of mast cells and basophils, which may be

related to disrupting the skin barrier in AD patients and

accumulating these innate immune cells in the skin lesions (60).
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Of note, the relative magnitude of the contribution of IL-33 and

TSLP in the inflammatory response in AD remains controversial.

Kim et al. showed that AD development in mice is heavily

dependent on TSLP but independent of IL-33 and IL-25 (56). In

the AD-like model of inflammation, deficiency of the TSLP receptor

gene in mice significantly reduced the frequency and absolute

number of ILC2s, while the IL-25 or IL-33 receptor gene

deficiency did not affect the ILC2 response (56). In contrast,

Salimi et al. suggested that adding IL-25 and IL-33 but not TSLP

increases ILC2s (58). In parallel experiments where the TSLP, IL-33,

and IL-25 receptor genes were each individually knocked out in

MC903-induced AD mice, the number of ILC2 was sequentially

reduced in skin lesions of these mice compared with wild-type mice

(58). One explanation for this contradictory finding could be related

to the differences in the genetic background of the mice in the

two laboratories.

Indeed, most skin ILC2s have low receptor expression for the

epithelial cytokines IL-33, IL-25, and TSLP and are primarily

activated by IL-18, which is highly expressed in skin ILC2s (61).

Ricardo-Gonzalez et al. showed that skin ILC2s can respond to IL-

18 to produce type 2 inflammatory cytokines. In AD-like skin

inflammation, IL-18-deficient mice had reduced amounts of IL-5-

and IL-13-producing ILC2 in skin tissues compared with WT mice

(61). Serum IL-18 was elevated in AD patients compared with

healthy controls and correlated with disease severity (62), implying

that targeting IL-18 may improve type 2 immune activation in AD.

4.2.2 Interaction of ILC2s with other innate
immune cells in atopic dermatitis

The interaction of ILC2s with other innate immune cells, such

as mast cells and basophils, is key to the etiology of complex AD

(Figure 3). Mast cells produce and release various pro-inflammatory

mediators such as histamine, chemokines, and cytokines, pivotal in

the IgE-mediated skin wheal reaction and its associated AD pruritus

(63). Studies have shown that the proportion of mast cells

containing TNF-a, IL-4, IL-6, and CD30 ligand immunoreactive

is higher in AD lesions than in non-lesioned skin (63). Intravital

multiphoton microscopy revealed that normal murine dermal

ILC2s (dILC2s) preferentially reacted with skin-resident mast

cells and had pro- and anti-inflammatory properties (64). The

almost exclusive production of IL-13 by dILC2 in the skin may be

associated with AD. The results of in-vitro experiments showed that

co-incubation of mast cells with recombinant IL-13 had a dose-

dependent inhibitory effect on the release of IgE-dependent

cytokines from mast cells, suggesting that dILC2 has the potential

to modulate mast cell function through IL-13 production (64).

However, once stimulated by inflammation, dILC2 exerted a pro-

inflammatory effect and was able to promote eosinophil infiltration

and mast cell activation in the skin (64). Additionally, a substantial

amount of human and mouse research data supports the idea that

IL-9 acts as a Th2 cytokine to stimulate type 2 immune responses

(65). IL-9 mRNA expression was significantly increased in AD

patients’ peripheral blood and skin lesions compared with normal

subjects (66), and polymorphisms in IL-9 and IL-9 receptor genes

were associated with the AD phenotype (67). IL-9 enhances mast
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cell proliferation and function and is produced mainly by T cells but

also by ILC2s, mast cells, and eosinophils (68). These findings

suggest that ILC2s and mast cells may crosstalk through IL-9 in

AD pathogenesis.

Flow cytometry data and fluorescence microscopy images

indicated that basophils and ILC2s were enriched and aggregated

near inflamed lesions of AD patients and AD mouse models (69,

70). Interestingly, Mashiko et al. found that the frequency of

basophils in skin lesions of AD patients was positively correlated

with cutaneous ILC2s and negatively correlated with circulating

ILC2s, suggesting that basophils may promote the migration of

circulating ILC2s to the skin of AD patients (71). Moreover, the

temporal analysis showed that on day 4 of MC903 treatment, the

frequency and the absolute number of basophils in mouse skin

lesions were significantly higher compared with controls but not

ILC2s, suggesting that the basophil response preceded the ILC2

response in the context of AD-like inflammation (69). Studies have

shown that IL-4 from basophils is required for the proliferation of

ILC2s and the development of related responses in skin

inflammation (69, 72). To determine the role of basophils, an

anti-FcϵRI monoclonal antibody (MAR-1) was used to deplete

basophils (73). Imai et al. systematically conditioned the clearance

of basophils using MAR-1 or Bas-TRECK mice [basophils in mice

are specifically depleted by a toxin receptor-mediated conditional

cell knockout (TRECK) system] and found that ILC2 responses

were suppressed along with relief of AD-like inflammation,

suggesting that ILC2s mediate the innate immune response in

conjunction with basophils in AD (72). The exact mechanism by

which cross-regulation between ILC2s and basophils occurs in AD

remains unclear, and other upstream innate cellular mechanisms

are largely unexplored.
4.3 Role of ILC3s in atopic dermatitis

Type 2 cytokines are usually considered to have a substantial

role in AD development, whereas evidence indicates that ILC3s

operate in a pathogenic function in AD through the secretion of IL-

17A and IL-22 (43, 74) (Figure 3). The percentage of IL-17+ T cells

in peripheral blood was significantly higher in AD patients

compared with healthy controls and correlated with the severity

of the disease (75). Furthermore, immunohistochemical results

revealed a significant infiltration of IL-17+ T cells in the dermis of

acute AD lesions, indicating that IL-17 is the mediator of AD

inflammation (75). Nakajima et al. found that IL-17A deficiency in

mice alleviated the development of AD-like lesions and attenuated

the expression levels of Th2 chemokines (76). IL-17A induces Th2-

type immune responses in the AD mouse model, but drawing

human conclusions from this model may be challenging.

Traditionally, Th17 cells are considered the primary source of

IL-17, but recent studies have shown that IL-17 produced by ILC3s

has a potentially important function in skin inflammation (11).

Using in-situ mapping, Bruggen et al. discovered that skin lesions

from AD patients had a significantly higher number of AHR+ ILC3s

than those of healthy human skin (43). Similarly, Kim et al.

employed flow cytometry to uncover higher levels of ILC3s in the
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peripheral blood of AD patients compared with healthy controls

and increased in HDM-treated C57BL/6 mice AD model (an

allergen-induced mouse model with phenotypes similar to human

AD) (77). These findings suggest the contribution of ILC3s to the

development of AD. Kim et al. sorted ILC3s from skin-draining

lymph nodes and spleens in HDM-induced AD mice and injected

them subcutaneously into recipient mice (C57BL/6 mice). The

results showed that the adoptive transfer of ILC3s in mice

accelerated the development of AD inflammation, as evidenced

by increased epidermal thickness and inflammatory granulocyte

infiltration, implying that ILC3s alone are sufficient to exacerbate

the symptoms of AD (77). Likewise, data from co-culture cell

experiments indicate that IL-17A secreted by ILC3s triggers the

synthesis of IL-33 by skin cells, promoting a type 2 response (77).

Healthy people’s blood and skin contain NCR − ILC3s, which

can develop into NCR+ ILC3s and release IL-22 (78–80). Unlike

psoriasis, IL-22 expression is more dominant than IL-17 in AD

lesions (74). Clinical and animal studies have shown that IL-22

expression is significantly upregulated in AD-like skin lesions, with

an important link between the skin barrier and adaptive immunity

(81, 82). In a randomized, double-blind, placebo-controlled trial,

fezakinumab (an anti-IL-22 monoclonal antibody) had good

efficacy and safety in treating adult patients with moderate-to-

severe AD, confirming IL-22 as a crucial driver of AD (83). In

addition, ustekinumab, a monoclonal antibody that binds to the p40

subunit of IL-12 and IL-23 and limits the progression of the Th17

inflammatory immune response, is controversial in the clinical

efficacy of AD patients (84). A patient with long-standing AD

showed remarkable improvement following ustekinumab treatment

(84). Contrarily, one case report indicated that AD was aggravated

in a patient with psoriasis who had a history of childhood atopy

while receiving ustekinumab medication, raising the possibility that

ustekinumab treatment may be linked to AD relapse (85). These

clinical trials indicate that biologics targeting ILC3-associated

cytokines may be a new approach to treating AD, but caution

and more trial data are still needed.
5 Possible ILC-related signaling
pathways in atopic dermatitis

The Notch signaling pathway has been reported to be an

important player in the biology of ILCs. Moreover, ILC2s and

ILC3s are significantly elevated in skin lesions of AD patients

compared with normal human skin. ILC2 cells express KLRG1

and CRTH2, and ILC3 cells express AHR. Therefore, four possible

signaling pathways related to ILCs in AD are discussed below.
5.1 The Notch signaling pathway

Skin ILCs are bona fide tissue-resident immune cells that

control barrier homeostasis and maintain a healthy microbial

ecology (14). During homeostasis, epidermal and dermal ILCs

inhibit sebocyte proliferation and enhance commensalism of
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Gram-positive cocci by expressing TNF and lymphotoxin

downregulating Notch signaling (14). ILCs may be upstream

signals of the Notch signaling pathway that regulate mucosal

barrier immunity and skin surface microbial homeostasis in

AD (Figure 3).

Notch signaling is one of the typical pathways of epithelial

differentiation and regulates the proliferation, differentiation,

migration, and apoptosis of epidermal cells together with other

cellular pathways in vivo (86). Notch signaling plays a pivotal role in

ensuring normal skin development and differentiation and

maintaining skin barrier function, and its abnormal disruption

will induce the development of inflammatory skin diseases (86,

87). Adult mice lacking Notch signaling produce large amounts of

TSLP, which caused an AD-like inflammatory response, suggesting

that enhanced Notch signaling may suppress TSLP production in

AD (88). Notch receptors were strongly expressed in skin tissues of

psoriasis and lichen planus patients; however, they were

significantly downregulated in skin lesions of AD patients as

compared with healthy controls, implying that the regulation and

signaling of Notch receptors are more closely related to AD than to

psoriasis and lichen planus (88).
5.2 The AHR signaling pathway

Substantial amounts of AHR+ ILC3s have been reported in skin

lesions of AD patients, suggesting that AHR expression may play an

important role in the pathogenesis of AD (43). AHR is a ligand-

dependent transcription factor that senses environmental changes.

AHR could be activated by a wide range of endogenous and

exogenous molecules, regulate gene expression in vivo, maintain

tissue barriers in barrier organs, and control commensal microbiota

(89–91). Growing evidence suggests that AHR can control ILCs in

vivo (Figure 3).

The maintenance, survival, and function of ILC3s depend on

AHR expression, which is also crucial for the defense and

homeostasis of the host intestinal tissues (92, 93). Studies have

shown that AHR deficiency reduces the number of intestinal

RORgt+ ILCs, and AHR is necessary for their survival and the

generation of IL-22 under homeostatic conditions (94). In addition,

the amount of AHR protein and mRNA expressed in ILC2s in the

mouse intestine is higher than both ILC progenitors and other

mature ILCs (95). In contrast to promoting the maintenance of

ILC3s, AHR inhibits the function of ILC2s, suggesting that the host

regulates intestinal ILC2–ILC3 homeostasis by engaging in the AHR

pathway (95). Craig et al. reported that multiple factors in the

pathogenesis of AD involve dysbiosis of the gut flora and increased

intestinal permeability (96), suggesting a communication

mechanism between the skin and the gut in AD patients. There

may be pathways in the gut of AD patients where AHR signaling

regulates ILC homeostasis, and the details of the molecular

mechanisms remain poorly understood.

AHR is also highly expressed on skin cells, especially in the

stratum corneum, and can maintain skin homeostasis by regulating

epidermal barrier protein genes (97). Diosmin is considered a

potential AHR agonist from a natural product that restores the
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skin barrier of human keratin-forming cells by upregulating the

AHR pathway to enhance the expression of skin barrier proteins

such as filoproteins and loricrin and their upstream regulators (98).

In addition, coal tar, an ancient topical treatment for dermatological

disorders, induces keratin-forming cell-derived antimicrobial

peptides by activating the AHR signaling pathway, which is

beneficial in restoring the damaged skin barrier in AD patients

(99). Tapinarof, a natural activator of AHR, has been considered

safe and effective in clinical trials to improve symptoms in AD

patients (100, 101). Malassezia generates cultured metabolites as

AHR ligands and may activate the AHR pathway, causing aberrant

keratinization and scaling frequently observed in dermatological

conditions (97).Malassezia is known to be one of the most common

fungi associated with AD (102), indicating that there may be a

mechanism for Malassezia activation of AHR signaling in AD

involved in skin barrier defects in patients.

Diosgenin, coal tar, and tapinarof have all been shown to

alleviate skin lesions in AD patients, while Malassezia metabolites

have been shown to worsen the skin barrier by stimulating the AHR

pathway. Clarifying the cell-intrinsic function of AHR in ILCs is

crucial to develop a potential therapeutic strategy for AD, given that

AHR and ILCs are closely linked and affect how AD develops.
5.3 The ILC2–KLRG1–E-cadherin axis

The killer cell lectin-like receptor G1 (KLRG1) is an inhibitory

receptor belonging to the C-type lectin family, mainly expressed in

NK cells and T cells, and its main ligands are E-cadherin and N-

cadherin (103). KLRG1 engagement inhibits protein kinase B

(AKT) phosphorylation, leading to proliferative dysfunction of T

cells and NK cells (104). Alkon et al. showed that most ILCs in the

skin lesions of AD patients belonged to the CRTH2+ ILC2 subgroup

(41). ILC2s were enriched in the skin of AD acute lesions, and

KLRG1 expression on these cells was markedly increased compared

with ILC2s in healthy and unaffected skin (58). Also, KLRG1

expression was further upregulated by IL-33 or TSLP as activators

of ILC2s (58), supporting the connection between the function of

ILC2s and KLRG1 expression. It was shown that activated skin-

resident ILC2s express high levels of KLRG1, which significantly

inhibit the function of ILC2s upon interaction with E-cadherin, as

evidenced by the downregulation of the expression of GATA3, as

well as reduced production of IL-13, IL-5, and AREG (58). This

indicated that downregulation of E-cadherin may interrupt this

inhibitory signal, prompting ILC2s to release more type 2 cytokines

through this new barrier-sensing mechanism and even unrestricted

ILC2 proliferation and cytokine expression (Figure 3).

E-cadherin, as one of the important ligands of KLRG1, is a

central adhesion molecule widely found in normal epithelial cells,

keratinocytes, and Langerhans cells and is pivotal for maintaining

epithelial cell integrity (105). E-cadherin has been reported to be

reduced in damaged skin of individuals with AD disease (58, 106),

indicating that the absence of this epidermal linker protein may

enhance the generation of more type 2 cytokines by ILC2s in AD.

After shRNA knockdown of the FLG gene, human keratin-forming

cells produce less E-cadherin, demonstrating that FLG gene
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abnormalities may be the reason for the decreased expression of E-

cadherin in lesional skin of AD patients (58).

Furthermore, granzyme B (GzmB) abnormalities are an

important factor in the decreased expression of E-cadherin in

patients with AD. GzmB is a serine protease that cleaves E-

cadherin, a key mediator of skin injury, inflammation, and repair

(107, 108). Plasma GzmB concentrations were significantly higher

in AD patients than in healthy controls and positively correlated

with pruritus and dermatitis severity (109). In contrast to non-

lesional AD and healthy skin, Turner et al. showed that cell-specific

GzmB immunological positivity was enhanced in the lesional AD

dermis and expressed primarily by mast cells (107). GzmB −/− mice

exhibited fewer mast cells, less severe dermatitis, and better skin

barrier function compared with wild controls in an oxazolone

(OXA)-induced mouse dermatitis model (OXA was repeatedly

applied as a hapten to the mouse ear to cause skin inflammation

similar to that of human AD), indicating that GzmB may be

a potential therapeutic target for AD (107). The findings

further showed that E-cadherin was reduced in the epidermis

of both GzmB −/− and WT mice with OXA dermatitis compared

with control skin, and the reduction was more pronounced in

WT mice compared to GzmB −/− mice (107). In addition,

immunohistochemical results showed that E-cadherin in living

human skin showed lower staining intensity with tissues

incubated with GzmB, and preincubation of GzmB with VTI-

1002, a potent and specific small-molecule inhibitor of GzmB,

followed by exposure of in-vitro skin lessened the effect of GzmB

on the detection of E-cadherin (107). The above experimental

results suggest that high expression of GzmB in AD patients may

lead to impaired barrier function in AD by cleaving E-cadherin.

The ILC2–KLRG1–E-cadherin axis is a novel skin barrier

sensing mechanism that contributes to a fuller understanding of

the pathogenesis of impaired skin barrier function in AD. Reducing

the expression of GzmB and promoting the binding of E-cadherin

to KLRG1 in AD patients may provide practical ideas for limiting

the inflammation caused by ILC2s.
5.4 The PGD2–CRTH2–ILC2 pathway

Prostaglandin D2 (PGD2) is the predominant prostaglandin

produced by activated mast cells. As reviewed by Honda et al., the

skin of AD patients produces several prostaglandins, including

PGD2 (110). Inagaki et al. reported that urinary levels of PGD2

metabolites in children AD patients were essentially the same as in

healthy control children, suggesting that PGD2metabolites may not

be a useful clinical indicator for assessing AD (111). Additionally,

cyclooxygenase inhibitors were unsuccessful in alleviating the

symptoms of AD, implying a weak association of prostaglandins

with AD pathogenesis (110). However, prostaglandin receptors, as

mediators of inflammation, have recently been found to play a

crucial regulatory function in AD development. PGD2 has two

central receptors, the D-prostanoid receptor (DP) and

chemoattractant receptor-homologous molecule expressed on Th2

cells (CRTH2), which exert opposite regulatory functions at

different stages of skin inflammation (112).
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On the one hand, PGD2–DP signaling reduces early skin

inflammation by promoting vascular endothelial barrier

formation and inhibiting skin DC migration to draining LNs

(112). On the other hand, CRTH2 was determined to be

expressed on human ILCs and is more critical in allergic

inflammation (28). PGD2–CRTH2 signaling exerts a pro-

inflammatory effect in the late stages of the disease by effectively

activating type 2 immune cells and the activation of ILC2s (110,

112) (Figure 3). The recruitment response of ILC2s to tissues is

enhanced following PGD2–CRTH2 pathway activation, and their

expression of the IL-33 receptor (ST2) and IL-25 receptor subunit

(IL-17RA) is upregulated, promoting the production of type 2

cytokines as well as other inflammatory cytokines (113, 114). The

relationship between mast cells and ILC2s in AD (110) suggests that

the PGD2–CRTH2–ILC2 axis controls Th2 cell-associated

inflammatory responses (113–115). In analogy to PGD2, cysteinyl

leukotrienes (CysLTs) are another lipid inflammatory mediator

secreted by IgE-mediated activated mast cells that exert biological

functions by binding to the G protein-coupled cysteinyl leukotriene

receptor 1 (CysLT1) and CysLT2 (116).

ILC2s have been demonstrated to express functional CysLT1 in

both humans and animals, and CysLT1 levels in ILC2s isolated

from AD patients were noticeably higher than those in healthy

control subjects at both the protein and mRNA levels (117, 118). In-

vitro experiments showed that CysLTs enhanced the activation of

human ILC2s by PGD2 and epithelial cytokines, promoted the

migration and survival of ILC2s, and induced the secretion of type 2

cytokines by ILC2s (118). This study further revealed that CysLTs,

endogenously synthesized by human-activated mast cells, also

induced IL-5 and IL-13 production by ILC2s, which was

considerably but only partially inhibited by CysLT1 receptor

antagonists such as montelukast (118).

Golub et al. summarized that the Notch signaling pathway

could be regarded as one of the key future strategic targets for

regulating the immune response of ILCs to inflammation (119). The

Notch pathway has been identified as an important feature driving

the KLRG1+ ILC2 subtype and a dominant pathway downstream of

the AHR during NCR+ ILC3 generation (119). The development of

novel AD therapeutic approaches may benefit from further research

on the upstream signals that stimulate Notch receptor protein

upregulation, the molecular mechanisms that activate the AHR

signaling pathway to inhibit the response of ILC2s, strategies to

effectively reduce the expression of GzmB or decrease the

degradation of E-cadherin in AD patients, and the role of

antagonizing the effect of CRTH2 on ILC2s.
6 Perspectives

ILCs are gradually recognized as modulators of tissue

homeostasis and inflammation and will undoubtedly become an

emerging key factor in AD belonging to Th2-type allergic diseases.

The data suggest the presence of ILCs in the normal skin of mice

and humans, and their expression varies with the skin layer. ILCs

accumulate in the skin of AD patients and AD mouse models, and

their function is related to the degree of inflammation. Currently,
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ILC2s are considered the critical subtype of pro-inflammatory ILCs

in AD, contributing mainly through the secretion of many pro-

inflammatory factors and crosstalk with other immune cells. As

discussed above, the part of ILC3s in AD is poorly explored, and

ILC3s have great potential in skin barrier function and tissue repair.

In addition, ILCs are pivotal in regulating the balance between the

skin surface and gut microbial bacteria in AD. The AHR signaling

pathway, a critical point in holding the balance of ILC2s and ILC3s

in vivo, can potentially become a new therapeutic target for AD.

In the last decade, numerous studies have revealed the critical

role of ILCs in lung and intestinal inflammation, but the

understanding of the biology of ILCs in the skin is only the “tip

of the iceberg.” ILCs in skin inflammation are carried out to provide

a way worthy of exploration. The following needs further study: 1)

Due to the absence of cell-specific surface markers and the limited

reagents available, it is still difficult to accurately differentiate ILCs

from T cells. 2) It is unclear how the kind and concentration of

cytokines in the microenvironment relate to the activity of ILCs and

whether ILCs secrete mixed cytokines like Th cells in AD. 3)

Although the upstream activation signals of ILCs are known to be

associated with signaling pathways in inflammatory diseases, the

precise mechanisms by which they interact with other immune or

non-immune cells remain to be explored in depth. 4) Since ILCs

contribute to wound healing and infection resistance, it remains

unclear whether treatment targeting ILC depletion disrupts the

mucosal homeostasis of the patient and the relationship between

the microbiota and ILCs of the skin and gut.

Strategies to address the above issues may focus on the

following areas. 1) To determine cell-specific surface markers and

the tissue distribution of each human ILC subpopulation, emerging

technologies such as mass spectrometry, flow cytometry, and single-

cell analysis methods could be used to analyze the proteomic,

transcriptional, and genomic changes in ILCs (120). 2) It will be

easier to induce and maintain ILCs in vitro with a better

understanding of their origin and maintenance, enabling the

execution of pertinent cellular experiments to further explore the

relationship between ILCs and cytokines. 3) The rational

application of dynamic in-vivo real-time imaging tools to study

the trafficking mechanisms of ILCs in various AD mouse models

will improve our understanding of the immune networks and

signaling pathways associated with human diseases (120). 4) To

explore the adverse effects of targeting depleted ILCs to treat AD

patients, detailed information on the mechanisms of ILCs in the

skin and intestinal mucosa of AD patients should be studied, which
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requires numerous animal experiments and clinical trials to gather

necessary scientific evidence.

Collectively, although much evidence suggests that alterations

in the phenotype and function of ILCs are inextricably linked to the

development of AD, the picture of the role of ILCs in AD remains

unclear. Understanding the biological and regulatory mechanisms

in the epithelial immune barrier of ILCs will pose a significant

research challenge in the future. The current review will provide

insight into the pathogenesis of AD and may help develop safe and

effective treatment strategies for patients with refractory AD.
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