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Recent theoretical and experimental research on action and language processing in humans 
and animals clearly demonstrates the strict interaction and co-dependence between 
language and action. This has been demonstrated in neuroscientific investigations (e.g. 
Cappa&Perani, 2003; Pulvermuller 2003; Rizzolatti&Arbib, 1998), psychology experiments 
(e.g. Glenberg&Kaschak, 2002; Pecher&Zwaan 2005), evolutionary psychology (e.g. Corballis 
2002) and computational modelling (e.g. Cangelosi&Parisi 2004; Massera et al. 2008). All 
these studies have important implication both for the understanding of the action basis of 
cognition in natural and artificial cognitive systems, as well as for the design of cognitive and 
communicative capabilities in robots (Cangelosi et al. 2005). 

The journal “Frontiers in Neurorobotics” is seeking submissions of new articles in the topic of 
action and language integration both in natural cognitive systems (e.g. humans and animals) 
and in artificial cognitive agents (robots and simulated agents). Manuscripts can regard new 
theoretical and computational investigations, as well as new neuroscientific and psychological 
investigations. Review articles in this topic are also welcome.
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such as the characteristics of the agents implied by sentences. The 
authors also explicitly discuss the implications of these studies for 
embodied robotics.

Symes and colleagues present a cognitive psychology study on 
the integrating action and language through biased competition. 
This is based on previous psychological investigations that have 
demonstrated that planning an action biases visual processing, as 
in Symes et al.’s (2008) findings reporting faster target detection 
for a changing object amongst several non-changing objects. This 
new experimental study investigates how this effect might compare 
to, and indeed integrate with, effects of language cues. Using the 
same change-detection scenes as in Symes et al. (2008), two effective 
sources of bias are identified: (i) action primes, and (ii) language 
cues. For example, a sentence as “Start looking for a change in the 
larger objects” cues object size, and these successfully enhanced 
detection of size-congruent targets. Additional experiments explore 
the biases’ co-occurrence within the same task, such as action prime 
(participants plan a power or precision grasp) and a language (a 
sentence) cue preceding stimulus presentation. Experimental 
results support the authors’ predictions from the biased competi-
tion model by Desimone and Duncan (1995), in particular reliably 
stronger effects of language, and concurrent biasing effects that 
were mutually suppressive and additive.

Greco and Caneva (2010) focus on compositional symbol 
grounding for motor patterns. They propose a new comparative 
experimental/simulative paradigm to study the learning of com-
positional grounded representations for motor patterns. In a psy-
chology experiment, participants learn to associate non-sense arm 
motor patterns, performed in three different hand postures, with 
non-sense words. Two experimental conditions are carried out: (i) 
in the compositional condition, each pattern was associated with 
a two-word (verb–adverb) sentence; (ii) in the holistic condition, 
each pattern was associated with a unique word. Experimental 
results show that the compositional group achieved better results 
in naming motor patterns, especially for patterns where hand pos-
tures discrimination was relevant. In order to ascertain the differ-
ential effects of memory load and of systematic grounding, neural 
network simulations were also carried out. After a basic simula-
tion reproducing the default participants’ performance, in some 
simulations the number of stimuli (motor patterns and words) 
was increased and the systematic association between words and 
patterns was disrupted, while keeping the same number of words 
and compositionality. Simulation results show that in both condi-
tions the advantage for the compositional condition significantly 
increased. This indicates that the advantage for the compositional 
condition may be related to systematicity rather than to mere 
informational gain. Overall, both experimental and simulation 
data support the hypothesis of a shared action/language compo-
sitional motor representation.

Increasing theoretical and experimental research on action and 
language processing in humans and animals clearly demonstrates 
the strict interaction and co-dependence between language and 
action. This has been extensively demonstrated in neuroscientific 
investigations (e.g., Rizzolatti and Arbib, 1998; Cappa and Perani, 
2003; Pulvermuller, 2003), psychology experiments (e.g., Glenberg 
and Kaschak, 2002; Pecher and Zwaan, 2005; Barsalou, 2008), evo-
lutionary psychology (e.g., Corballis, 2002), and computational 
modeling (e.g., Cangelosi and Parisi, 2004; Massera et al., 2007; 
Cangelosi, 2010). All these studies have important implication both 
for the understanding of the action basis of cognition in natural 
and artificial cognitive systems, as well as for the design of cognitive 
and communicative capabilities in robots (Cangelosi et al., 2010).

The journal “Frontiers in Neurorobotics” published a collection 
of articles on the topic of action and language integration both in 
natural cognitive systems (e.g., humans and animals) and in arti-
ficial cognitive agents (robots and simulated agents). These articles 
are now collected in an e-book, for wider dissemination. This set 
of chapters provides an up to date overview of current advances in 
the grounding of language into sensorimotor knowledge. The first 
chapters primarily focus on experimental evidence from cogni-
tive psychology (Symes et al., 2010), cognitive neuroscience studies 
(Borghi et al., 2010), and comparative experimental/simulation 
studies (Greco and Caneva, 2010). Two chapters then use neu-
ral network simulation for motor chains for sentence processing 
(Chersi et al., 2010) and a computational model of gaze planning in 
word recognition and reading (Ferro et al., 2010). Finally, four chap-
ters use cognitive systems and robotics methodologies to investigate 
general principles of action–language grounding (Parisi, 2010), tel-
eological representations of action and language for human–robot 
interaction experiments (Lallee et al., 2010), verbal and non-verbal 
communication in neurorobotics models (Bicho et al., 2010), and 
action bases of action words (Marocco et al., 2010).

ExpErimEntal studiEs
Borghi et al. (2010) focus on language comprehension as an embod-
ied simulation of actions. This hypothesis is supported by embodied 
and grounded cognition theories (Barsalou, 2008; Pezzulo et al., 
2011) and the neural underpinnings in neural substrates involve 
canonical and mirror neurons (Rizzolatti et al., 1996). Borghi et al. 
review their recent behavioral and kinematic studies to characterize, 
and evidence, the relationship between language and the motor 
system. This review leads to three consistent findings: (i) the simu-
lation evoked during sentence comprehension is fine-grained, and 
shows sensitivity to the different effectors used to perform actions; 
(ii) linguistic comprehension also relies on the representation of 
actions in terms of goals and of the chains of motor acts necessary 
to accomplish them; and (iii) the goals are modulated by both the 
object features the sentence refers to, as well as by social aspects 
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nEural nEtwork studiEs
Chersi et al. (2010) investigate the relationship of language to motor 
chains for sentence processing. As in Borghi et al. (2010), they also 
start from embodied theories of language grounding in the sen-
sorimotor system, and language understanding as a process based 
on a mental simulation process (Jeannerod, 2007; Gallese, 2008; 
Barsalou, 2009). This hypothesizes that during action words and 
sentence comprehension the same perception, action, and emotion 
mechanisms implied during interaction with objects are recruited. 
Their aim is to identify the precise dynamics underlying the rela-
tion between language and action, e.g., to disentangle experimental 
evidence reporting both either facilitation or interference effects 
between language processing and action execution. This chapter 
presents a new neural network reproducing experimental data on 
the influence of action-related sentence processing on the execution 
of motor sequences. Chersi et al.’s modeling framework is based 
on three main principles: (i) the processing of action-related sen-
tences causes the resonance of motor and mirror neurons encoding 
the corresponding actions; (ii) a varying degree of crosstalk exists 
between neuronal populations depending on whether they encode 
the same motor act, the same effector, or the same action-goal; 
(iii) neuronal populations’ internal dynamics, which results from 
the combination of multiple processes taking place at different 
time scales, can facilitate or interfere with successive activations of 
the same or of partially overlapping pools. Interactions between 
sensory and motor modalities are modeled as a crosstalk between 
neuronal pools in motor and mirror chains. Results show also that 
the neural dynamics governing the activation of the pools can quali-
tatively reproduce the timings observed in behavioral experiments.

Ferro et al. (2010) propose a computational model of gaze 
planning in word recognition And the theory that reading is an 
active sensing process. Their computational model of gaze plan-
ning during reading consists of two main components: (i) a lexi-
cal representation network, acquiring lexical representations from 
input texts from the Italian CHILDES database; (ii) a gaze planner 
capable to recognize written words by mapping strings of characters 
onto lexical representations. Thus the model implements an active 
sensing strategy that selects which characters of the input string 
are to be fixated, depending on the predictions dynamically made 
by the lexical representation network. The analyses investigate the 
developmental trajectory of the system in performing the word rec-
ognition task as a function of both increasing lexical competence, 
and correspondingly increasing lexical prediction ability.

nEurorobotics studiEs
Parisi (2010) discusses a general neural modeling approach to 
language grounding in robots, consistent with the same literature 
on embodiment and grounding theories. The paper proposes a 
neural model of language according to which the robot’s behavior 
is controlled by a neural network composed of two sub-networks: 
(i) the network controlling non-linguistic interaction between the 
robot and its environment; and (ii) a network for the processing 
of linguistic comprehension and production. Parisi reviews results 
of a number of computational simulations and suggests that the 
model can be extended to account for variety of language-related 
phenomena such as disambiguation, the metaphorical use of words, 
the pervasive idiomaticity of multi-word expressions, and mental 

life as talking to oneself. This modeling approach implies a view of 
the meaning of words and multi-word expressions as a temporal 
process that takes place in the entire brain and has no clearly defined 
boundaries. This can be further extended to emotional words, con-
sidering that an embodied view of language should consider not 
only the interactions of the robot’s brain with the external environ-
ment, but also the interactions of the brain with what is inside the 
body such as motivational and emotional processes.

Lallee et al. (2010) link embodied and teleological representa-
tions of action and language for humanoid robotic experiments 
with the iCub platform. In this chapter the authors extend their 
framework for embodied language and action comprehension 
to include a teleological representation of goal-based reasoning 
for novel actions. Both from a theoretical perspective, and via 
human–robot interaction experiments with the iCub robot, they 
demonstrate the advantages of this hybrid, embodied–teleological 
approach to action–language interaction. Lallee et al. first demon-
strate how embodied language comprehension allows the system 
to develop a set of representations for processing goal-directed 
actions such as “take,” “cover,” and “give.” A crucial component of 
the new approach is the representation of the subcomponents of 
these actions, which includes state–action–state (SAS) relations 
between initial enabling states, and final resulting states for these 
actions. Robotic experiments demonstrate how grammatical cat-
egories including causal connectives (e.g., because, if–then) can 
allow spoken language to enrich the learned set of SAS representa-
tions. The study also examines how this enriched SAS repertoire 
enhances the iCub’s ability to represent perceived actions in which 
the environment inhibits goal achievement.

Bicho et al. (2010) employ a dynamic neural field architecture for 
human–robot interaction and the integration of verbal and non-
verbal communication. Specifically they investigate how a group 
of people coordinate their intentions, goals, and motor behav-
iors whilts performing joint action tasks. Their model is inspired 
by experimental evidence about the resonance processes in the 
observer’s motor system, and their involvement in our ability to 
understand actions of others and to infer their. Bicho et al. develop 
a control architecture for human–robot collaboration that exploits 
perception–action linkage as a means to achieve more natural and 
efficient communication grounded in sensorimotor experiences. 
The architecture consists of a coupled system of dynamic neural 
fields. These represent a distributed network of neural populations 
that encode in their activation patterns goals, actions, and shared 
task knowledge. Human–robot experiments consist of verbal and 
non-verbal communication for a joint assembly task in which the 
human–robot pair has to construct toy objects from their compo-
nents. This dynamic neural field architecture sustain the robot’s 
capacity to anticipate the user’s needs and goals and to detect and 
communicate unexpected events that may occur during joint task 
execution.

Marocco et al. (2010) presents new experiments with a simulated 
model of the humanoid robot iCub (Tikhanoff et al., 2011) to inves-
tigate the embodied representation of action words. The simulated 
iCub robot is trained to learn the meaning of action words (i.e., 
words that represent dynamical events that happen in time) such 
as “push,” “hit.” The words are learned by physically interacting 
with the environment and linking the robot’s effects of its own 
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language integration. The studies address different phenomena 
linked to language grounding, such as sentence processing and 
comprehension, reading and word recognition, action word 
learning, compositionality of action and language representa-
tions, and language acquisition through interaction with the 
environment. All studies offer further support the existing evi-
dence and theoretical stances of the grounding of language in 
action and perception, and the contribution of embodied cog-
nition and mental simulation in language processing. Moreover, 
the multi-methodological contributions proposed in the volume 
and the close link between experimental data and computational 
and robotic modeling allows the fine investigation of behavioral, 
cognitive, and embodiment factors in the grounding of language 
in sensorimotor knowledge.

actions (proprioception) with the behavior observed on the objects, 
before and after the action. The control system of the robot is an 
artificial neural network trained to manipulate an object through a 
Back-Propagation-Through-Time algorithm. Results show that the 
robot is able to extract the sensorimotor contingency of a particular 
interaction with an object and to reproduce its dynamics by acting 
on the environment. Moreover, in the absence of linguistic input, 
the robot is capable of associating a certain temporal sensorimotor 
dynamics to the learnt action words.

conclusion
The collection of chapters in this volume provides a variety of 
methodological approaches to the experimental investigation and 
the neural network and cognitive robotic modeling of action and 
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detection task used, an action is prepared but the target object itself 
is unknown!) All that is relevant therefore, is the prepared state of 
the motor system.

An overview of the biAsed competition model
According to the biased competition model, all visual inputs com-
pete for neuronal representation in multiple visual brain regions 
(Desimone and Duncan, 1995; Desimone, 1998; Duncan, 1998). 
Such competition occurs at all stages of visual processing, but most 
strongly at the level of the neuron’s receptive field (e.g., higher visual 
areas such as V4). Competition is automatic and ongoing, occurs 
with and without directed attention, and is characterized by suppres-
sive interactions between stimuli. Enhanced amplitude and duration 
of responses to one object are associated with decreased responses 
to others. Evidence of these suppressive interactions comes in part 
from single-cell monkey studies that demonstrate smaller responses 
for pairs of stimuli falling within a neuron’s receptive field, than for 
those stimuli presented alone (Luck et al., 1997; and see Beck and 
Kastner, 2009 for a recent review). Importantly, this competition 
can be resolved by spatially directed attention. Attending to one 
stimulus in a pair biases competition between objects. Reynolds et al. 
(1999) reported that monkey neuronal responses were weighted in 
favor of the attended stimulus of the pair, such that response levels 
resembled those evoked by that stimulus when it was presented 
alone (i.e., the suppressive influence of the non-attended stimulus 
was counteracted). Related findings have been reported in humans 
using fMRI; here, language instructions explicitly told participants 
where to direct their attention (Kastner et al., 1998).

Contrast gain control has been proposed as one possible mecha-
nism that can account for this attentional biasing (Reynolds et al., 
2000). Contrast gain control increases the effective salience of the 

introduction
“Indeed, the general point is that attention greatly reduces the 
processing load for animal and robot. The catch, of course, is that 
reducing computing load is a Pyrrhic victory unless the moving 
focus of attention captures those aspects of behavior relevant for 
the current task…” (Arbib et al., 2008, p. 1461).

The present paper examines how current behavioral targets 
that are defined explicitly through language, or implicitly through 
action intentions, might serve to bias object representations and 
ultimately selective attention. Moreover, the experimental work 
investigates how the biasing effects of these two different sources 
might integrate. The biased competition model (Desimone and 
Duncan, 1995) serves as the theoretical backdrop and is used 
to generate experimental predictions regarding the integration 
of language and action as sources of representational bias. The 
data reported later on support all of the predictions made by 
the model.

In the real world, action intentions or action plans typically 
refer to object-related goal states that can be broken down into 
various stages. For example, the specific intention to turn on a 
lamp may require planning to walk across the room and plan-
ning to reach toward and grasp its switch. At all of these stages, 
the relevant action plan depends to an extent on the goal object 
itself, whether it be its location (thus implicating walking direc-
tion), or its intrinsic properties (thus implicating grasp aperture, for 
instance). In the experimental world of the present studies however, 
we interchangeably use the terms action intentions or action plans 
to simply refer to a pre-activated motor system. Schütz-Bosbach 
et al. (2007) refer to similar states of preparedness between selecting 
and executing an action as “motor attention.” This pre-activation 
is not necessarily related to a target object (indeed in the change 
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small). Thus planning an action biased object representations and 
ultimately selective attention of action-appropriate object features. 
The experiments reported later adopted this same methodology to 
investigate the interacting influences of action intentions (“action 
primes”) and language-directed attention (“language cues”).

interActing influences in biAsed competition
Although they have almost exclusively been investigated in isola-
tion, in everyday life top-down and bottom-up influences on com-
petition are likely to interact (Beck and Kastner, 2009). Reynolds 
and Desimone (2003) report physiological data that captures 
an instance of top-down and bottom-up interaction, with the 
bottom-up bias coming from luminance contrast and the top-
down bias coming from directed attention. Neuronal responses 
were recorded to a stimulus pair consisting of a “good” grating 
(the neurons responded well to its horizontal orientation) and 
a “poor” grating (the neurons responded poorly to its vertical 
orientation). When attending to either stimulus in the pair, atten-
tion and contrast were additive influences. Attending to the lower 
contrast poor stimulus afforded a slight reduction in the response 
to the pair (i.e., the poor stimulus gained some control over the 
neural response). Attending to the higher contrast poor stimu-
lus afforded it almost complete control over the response to the 
pair (effectively eliminating the influence of the good, featurally 
preferred stimulus).

rAtionAle And predictions for the current study
Based on the above considerations of biased competition, we make 
the following observations and broad predictions regarding the 
current behavioral study, which explores the interaction of two 
top-down influences on visual object representation – one explicit 
(language cues) and the other implicit (action intentions).

1) As was the case when using action primes (e.g., Symes et al., 
2008, 2009), cuing “large” or “small” objects through a single 
source – this time language instructions – should bias com-
petition in favor of congruently sized objects (presumably by 
preactivating “large” or “small” feature coding neurons). We 
expected to find proxy evidence of this in faster detections on 
trials where the cue and target were size-congruent (i.e., trials 
with valid cues).

2) Since the language cues specified the targets of directed atten-
tion, they were expected to produce a strong biasing influence 
that is comparable to the influence of directed attention (e.g., 
Reynolds and Desimone, 2003). Relatedly, the biasing influence 
of action primes is expected to be weaker. This influence arises 
without directed attention (see Experiment 2a of Symes et al., 
2008), and in this sense is more comparable to the bottom-up 
influence of contrast, which also arises without directed atten-
tion (e.g., Reynolds and Desimone, 2003).

3) In line with the suppressive interactions predicted by the bia-
sed competition model, we expected that when there were 
multiple concurrent weighting sources their effects on object 
representations would compete.
a. Firstly we expected to find biasing effects for each source 

that reflected their different relative strengths as described 
in prediction 2 above.

attended stimulus. Monkey V4 neurons for example, responded 
to an attended stimulus with increased sensitivity, as if its physical 
contrast had increased (Reynolds et al., 2000). Directly adjusting 
the physical luminance contrast of a stimulus produced equivalent 
responses (in the absence of attention, V4 neurons were preferen-
tially driven by the higher contrast stimulus in a pair, Reynolds 
and Desimone, 2003). According to the contrast gain account, any 
effect that attention has on competition depends on where the 
stimulus falls on the contrast-response function; attention should 
not increase neuronal sensitivity, for instance, when a high contrast 
stimulus is at the saturation point on the contrast-response func-
tion (Reynolds et al., 2000).

Action intentions might Also Act As A biAsing signAl
As well as the biasing effects of spatially directed attention, the 
biased competition model also predicts that priming neurons 
responsive to current behavioral targets can bias competition. 
Actively searching for a red object, for instance, should bias com-
petition in favor of red objects by preactivating “red” feature cod-
ing neurons. These magnified signals suppress the signals from 
neurons that are selective for other colors (Duncan, 1998). Some 
authors have recently proposed that biased competition could be 
the mechanism that underlies cases of enhanced visual process-
ing following action planning (see Bekkering and Neggers, 2002; 
Hannus et al., 2005; Symes et al., 2008, 2009). Indeed, there is a 
steadily growing body of behavioral research that suggests that 
planning an action of some sort (an action intention) affects a 
range of visual processes. These include selection (e.g., Bekkering 
and Neggers, 2002; Fischer and Hoellen, 2004; Hannus et al., 2005; 
Linnell et al., 2005); attentional capture (Welsh and Pratt, 2008), 
motion perception (Lindemann and Bekkering, 2009); detection 
through feature weighting (Craighero et al., 1999; Symes et al., 2008, 
2009); and detection through dimensional weighting (Fagioli et al., 
2007; Wykowska et al., 2009). In such cases, action intentions may 
serve as the behaviorally relevant prime that preactivates neurons 
responsive to current behavioral targets.

One example of this that is of particular relevance to the cur-
rent study comes from Symes et al. (2008). The authors used a 
change detection paradigm as a tool for investigating visual process-
ing following action-based priming. Change detection provides 
an effective means of measuring the locus of focused attention 
(Simons and Rensink, 2005), and the flicker paradigm used can 
be conceived of as a spatiotemporal version of the static extended 
displays in visual search experiments (Rensink, 2005). In the flicker 
paradigm, two pictures that are identical in all but one respect (i.e., 
the change) cycle back and forth, separated by a blank “flicker” that 
eradicates visual transients associated with the change. Changes 
can be surprisingly hard to detect (so-called “change blindness”), 
often taking several cycles. In one experiment (Symes et al., 2008, 
Experiment 1b), participants searched for an unknown target 
amongst 12 graspable objects in a photographed array (the target 
was one object, such as an apple, being alternated with another size-
matched object such as an orange). Prior to the onset of the scene, 
participants prepared and maintained a grasp plan (either a whole 
hand “power grasp,” or a thumb and forefinger “precision grasp”). 
Target detection time was faster when the intended grasp (e.g., 
power or precision) was compatible with the target (e.g., large or 
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Action primes and language cues therefore provided quite different 
types of top-down bias, and how their effects might integrate (or not) 
when biasing competition between objects was at the heart of these 
investigations. Table 1 summarizes the methods for each experiment 
in terms of the different action primes and language cues used.

chAnge detection pArAdigm
Some of the following methodological details have been adapted 
from Symes et al. (2008). Change-blindness scenes consisted of an 
array of 12 grayscale photographs of fruit and vegetables (half were 
small objects congruent with a precision grasp, and half were large 
objects congruent with a power grasp). One random object in the 
scene changed back and forth into another object of a similar size 
(e.g., an apple changed into an orange), and this change coincided 
temporally with a visually disrupting screen flicker that provided 
the necessary conditions for change blindness. Participants were 
told that the identity of 1 of the 12 objects would change back and 
forth, and their basic task was to follow the screen instructions that 
appeared at the start of a trial, detect the change, indicate detection 
with a manual response, and then identify the change using the 
keyboard. Screen instructions typically included a language cue 
and instructions for planning a manual response (i.e., the action 
prime). The specific details of these instructions are described for 
each experiment. The stimuli described below however, were used 
in all four experiments (and Symes et al., 2008).

Change detection stimuli
Change detection scenes arose from cyclically presenting a screen 
“flicker” (F) between an “original” (O) and “modified” (M) 
 picture-pair in the order OFMFOFMF… This sequence cycled 
until a response was made, and a “change identification” picture 
was shown to establish that the correct change had been detected. 
Thus the stimulus set consisted of a flicker stimulus (a blank gray 
screen), and 60 “original,” “modified” and “change identification” 
grayscale pictures (1,024 × 768 pixels; 32.5 cm × 24.5 cm; visual 
angle (VA) ≈ 36.0° × 27.5°). As discernable from Figure 1 (top left 
panel), each original picture consisted of a 4 × 3 array of six large 
objects (e.g., an apple) and six small objects (e.g., a strawberry). 
These had been selected at random from a pool of 24 items of 
fruit and vegetables, again, half of which were large and half of 
which were small. The size of each individual object photograph 
was manipulated such that all small objects were of a similar size 
(mean VA ≈ 2.3° × 1.6°), and all large objects were of a similar size 
(mean VA ≈ 4.9° × 4.1°). These objects and their measurements 
are listed in the Appendix of Symes et al. (2008).

b. These concurrent effects should be smaller than when 
they are found independently (i.e., they are mutually 
suppressive).

c. However, when one weighting source is sufficiently stron-
ger than another, it may even suppress the effect of the wea-
ker source completely. Indeed, the findings of Symes et al. 
(2009) support this prediction – when bottom-up target 
saliency was high, action primes were ineffective (see also 
Wykowska et al., 2009).

4) Reynolds and Desimone’s (2003) data revealed that top-down 
and bottom-up biases produced similar cellular responses that 
were additive. It therefore follows that the biasing effects of two 
top-down signals (language and action) should also be addi-
tive. Thus we expected the best performance on trials when 
cue, prime, and target were all congruent.

generAl method
All experiments were approved by the University of Plymouth’s 
Human Ethics Committee, and informed consent was obtained 
from all participants.

lAnguAge cues And Action primes
Using a flicker paradigm, the experiments reported below 
attempted to enhance change detection by weighting size-related 
features of the target in a top-down manner. This weighting was 
achieved using language cues and action primes. The language cues 
actually specified overt searching behaviors. Partially valid cues 
(Experiments 1, 3, and 4), which were valid for half of the time, 
instructed participants how to start their search (e.g., “Start look-
ing for a change in the larger objects”). Participants were told that 
if they could not find the target easily, they should include non-
cued objects in their search (i.e., they only had to start their search 
based on the cue). Completely valid cues however (Experiment 
2), were always valid, and instructed participants how to conduct 
their search throughout (e.g., “Look for a change in the larger 
objects”). The association between the language cue and the 
object’s size was therefore explicit, whereas for the action prime 
it was implicit. Furthermore, the action primes did not specify 
any overt searching behavior. Partially valid (Experiments 2 and 
4) or completely valid primes (Experiment 3), simply instructed 
participants which response device to hold (thereby establishing 
an action intention for a particular grasp). It is assumed that 
relative to one another, partially and completely valid cues or 
primes constituted different weighting strengths (low and high 
strengths respectively).

Table 1 | Summary details of Language Cue and Action Prime conditions across experiments.

 Symes et al. (2008;  Experiment 1 Experiment 2 Experiment 3 Experiment 4 

 Experiment 1b)

Language Cues of target size – Partially valid Completely valid Partially valid Partially valid 

(“large/small”)

Action Primes of target size Partially valid – Partially valid Completely valid Partially valid 

(power/precision grasp intention)

In each experiment either a Language Cue and/or an Action Prime preceded the onset of a change-detection scene in which participants searched for an unknown 
changing target. See preceding text for descriptions of types of cues and primes used.
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exactly the same stimuli. In terms of the flicker paradigm itself, 
enhanced detection was expected in principle (explicitly cuing a 
change with partially valid language cues enhanced detection in a 
study by Rensink et al., 1997).

Preceding stimulus onset a partially valid language cue appeared 
on the screen (e.g., “Start looking for a change in the larger objects”). 
Participants were told to follow the text instructions, and that the 
identity of 1 of the 12 objects would change back and forth. Their 
basic task was to press the spacebar as soon they detected which 
object was changing. The first two predictions set out in the Section 
“Introduction” are relevant for this experiment, and are summa-
rized below:

1) We expected proxy evidence of language cues biasing competi-
tion between objects, with faster detections on trials where cue 
and target were size-congruent.

2) Since language cues told participants where to look, they should 
have a strong biasing influence like that of directed atten-
tion. Relatedly, the biasing effect of action primes (that arises 
without directed attention) was expected to be weaker. A cross-
experimental comparison of effect sizes tested this prediction.

The order of objects in the array resulted from a random shuffle 
of the 12 selected objects, and their positions on the screen varied 
within a loosely defined grid (thereby creating perceptually distinct-
looking scenes). An appropriately sized object (30 of each size were 
required) was selected at random from the 12 to be the changing 
object. An appropriately sized replacement object was selected at 
random from the pool (after object selection for the original pic-
ture, six large and six small objects remained in the pool). Thus in 
the modified picture, all objects remained the same as the original 
picture, except from a single changing object. This was removed 
and replaced by an object of a similar size (e.g., a strawberry was 
replaced with a cherry). Each original picture was also reproduced as 
a change identification picture, whereby each object in the array had 
an identification “F-number” (F1–F12) superimposed on it. These 
F-numbers corresponded to the 12 “F-keys” on a keyboard.

experiment 1
As mentioned earlier, Symes et al. (2008) demonstrated that par-
tially valid action primes enhanced change detection for prime-
congruent sized objects. This first experiment was simply designed 
to establish a similar effect of partially valid language cues using 

FigurE 1 | Schematic illustration of the sequence and timings of the displays in all four experiments (adapted from Symes et al., 2008). In Experiment 1, 
the instruction consisted of only a language cue, whereas in the remaining experiments it consisted of a language cue and an action prime.
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trials the correct object had been identified. 4.6% of the remaining 
trials were removed as outliers, reducing the maximum detection 
time from 21,065 to 13,113 ms (M = 4,848 ms; SD = 3,028).

The effect of language cues
The condition means of the remaining data were computed for 
each participant and subjected to a repeated measures analysis of 
variance (ANOVA) with the within-subjects factors of Language 
Cue (large or small) and Target Size (large or small). An interac-
tion between Language Cue and Target Size was observed, F(1, 
19) = 120.11, p < 0.001, that revealed the predicted biasing effect (see 
prediction 1 above). Mean detection times were faster for large tar-
gets following a large (3,622 ms) rather than small (6,131 ms) lan-
guage cue, and faster for small targets following a small (3,497 ms) 
rather than large (6,155 ms) language cue.

Comparison with the effect of action primes
In order to evaluate whether the biasing effect of language cues 
was significantly larger than that of action primes obtained in 
Experiment 1b of Symes et al. (2008) (see prediction 2 above), 
cropped correct RT data for each experiment were split by par-
ticipant and cue/prime–target congruent and incongruent trials. 
From this a mean effect size for each participant in each experiment 
was calculated (mean effect size = mean incongruent RTs − mean 
congruent RTs). These data were compared in a one-tailed inde-
pendent samples t test. This analysis revealed that the mean effect 
size associated with language cues was indeed significantly larger 
(current experiment: language cues = 2,579 ms, Experiment 1b: 
action primes = 372 ms), t(40) = 8.874, p < 0.001.

Distributional analyses
In order to see whether the biasing effect of language cues behaved 
consistently across different portions of the RT distribution, the 
Vincentization procedure (Ratcliff, 1979) was used to derive the 
mean RTs for a new ANOVA (Greenhouse–Geisser corrections for 
sphericity violations have been used where G is shown). Mean RTs 
were calculated for five equal bins of rank ordered raw data accord-
ing to each experimental condition. A statistically significant full 
interaction, F(1.249, 23.734) = 8.894, p = 0.004G, derived from the 
resulting 2 × 2 × 5 ANOVA (Language Cue – large or small; Target 
Size – large or small, and Bin – first to fifth). Unpacking this inter-
action in separate ANOVAS for each bin revealed that all bins had 
produced significant cue–target compatibility effects (p < 0.05). In 
accounting for the significant full interaction however, it is nota-
ble that the effect sizes were smaller in the first and last bins (Bin 
1 = 1,805 ms, Bin 5 = 1,151 ms) than in those in-between (Bins 2, 
3, and 4 = 2,645, 2,767, and 2,892 ms, respectively).

Overall, these results supported the two predictions generated 
by the biased competition model, and suggested that the partially 
valid language cues had successfully biased object representations 
and ultimately selective attention. This was the case when detection 
times were averaged across the whole distribution, and when they 
were divided into individual bins.

The remaining three experiments presented both cues and 
primes in a variety of validity combinations (return to Table 1 for 
an overview) to investigate how such different sources of intentional 
weighting might work together to bias object representations.

method
Participants
Twenty volunteers between 39 and 18 years of age [mean 
(M) = 21.8 years] were paid for their participation in a single ses-
sion that lasted approximately 20 min. Of these, 17 were females (1 
left-handed) and 3 were males (all right-handed). All self-reported 
normal or corrected-to-normal vision and normal motor control, 
and all were naïve as to the purpose of the study.

Apparatus and stimuli
Experimental sessions took place in a dimly lit room at a single 
computer workstation. Situated centrally at the back of the table 
was a RM Innovator desktop computer that supported a 16-inch 
RM color monitor (with a screen resolution of 1,024 × 768 pixels 
and a refresh frequency of 85 Hz). In front of the computer was 
a keyboard and mouse. The viewing distance was approximately 
50 cm, and the hand-to-screen distance was approximately 30 cm. 
See Section “General Method” for details of the change detection 
stimuli used.

Design and procedure
Four conditions arose from the orthogonal variation of two 
 within-subjects variables, each with two levels: Language Cue (large 
or small – specifically, “Start looking for a change in the larger/
smaller objects”) and Target Size (large or small). At the beginning 
of the experiment, participants were talked through some written 
instructions that explained the task. A short practice session of four 
trials was followed by 120 experimental trials. These consisted of 
two blocks of 60 trials (4 conditions × 15 replications), with each 
of the 60 change detection scenes being shown in a random order 
within each block.

Each trial followed three broad phases: search-and-response 
preparation, change detection and change identification. Preceding 
stimulus onset, the language cue appeared center screen and the 
participant rested the fingertips of both hands on the spacebar of 
the keyboard (search-and-response preparation phase). The change 
detection scene then appeared, and as it cycled the participant scru-
tinized the 12 objects for a change. Upon noticing the change, the 
participant immediately pressed the spacebar (change detection 
phase). This response caused the change identification picture to 
appear, and the participant pressed an F-key on the keyboard cor-
responding to the F-number of the object they thought they had 
seen change (change identification phase). Otherwise, it timed-out 
after 10 s. The sequence and timings for these three phases are 
illustrated in Figure 1.

Response times (RTs) and errors were recorded to a data file for 
off-line analysis, and the possible source of error related to an F-key 
response that timed-out or did not correspond to the changing 
object’s F-number.

results And discussion
Errors and RTs more than two standard deviations (SDs) from each 
participant’s condition means were excluded from this analysis and 
the analyses of all the other experiments reported. 1.8% of trials were 
removed as change identification errors (i.e., when an F-key identified 
the wrong object). No further analysis of errors was undertaken; the 
change identification error data revealed that on the vast majority of 
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grasp depressed a micro switch embedded in that device, and this 
response was registered with millisecond accuracy by the computer 
(micro switches were connected via an input/output box to the 
parallel interface of the computer).

Design and procedure
Four conditions arose from the orthogonal variation of two within-
subjects variables, each with two levels: Action Prime (power or 
precision) and Language-cued Target Size (large or small). At the 
beginning of the experiment, participants were talked through 
some written instructions that explained the task. A short practice 
session of four trials was followed by 120 experimental trials. These 
consisted of two blocks of 60 trials (4 conditions × 15 replications), 
with each of the 60 change detection scenes being shown in a ran-
dom order within each block.

The trial procedure was similar to Experiment 1 (refer back to 
Figure 1); with three broad phases of search-and-response prep-
aration, change detection and change identification. Preceding 
stimulus onset this time, the completely valid language cue (e.g., 
“Look for a change in the larger objects”) appeared above text 
instructions for the partially valid action prime (which warned 
participants to prepare a response using either the “Black device” 
or the “White device”). The participant reached to the instructed 
device, and held it lightly in their dominant hand (using the 
device-appropriate hand shape). When the participant detected 
a change, s/he executed the grasp by squeezing the device. The 
participant then identified the change as before, by pressing the 
appropriate F-key.

Response times and errors were recorded to a data file for off-line 
analysis, and there were two possible sources of error: violations of 
the response instruction (participants used the wrong device), and 
change identification errors (an F-key response that timed-out or 
did not correspond to the changing object’s F-number).

results And discussion
1.87% of trials were removed as errors (0.56% response errors, 
1.35% change identification errors, 0.04% both errors on same 
trial). No further analysis of errors was undertaken; response and 
change identification error data revealed that on the vast majority 
of trials the response instructions had been adhered to and the 
correct object had been identified. 3.92% of the remaining trials 
were removed as outliers, reducing the maximum detection time 
from 18,943 to 7,986 ms (M = 2,583 ms; SD = 1,152 ms).

The effect of language cues
Mean cropped experimental RTs for each participant were com-
pared for the current experiment and Experiment 1b of Symes 
et al., (2008) in order to establish whether completely valid language 
cues enhanced overall detection times (see prediction 3a above). 
The single methodological difference between the two experiments 
was the presence of a language cue in the current experiment. If 
this language cue enhanced detection, we should expect faster 
overall detection times for the current experiment. Indeed, mean 
experimental RTs were 2,102 ms faster (current experiment grand 
mean = 2,584 ms, Experiment 1b grand mean = 4,686 ms), and a 
one-tailed independent samples t test confirmed that this differ-
ence was statistically significant, t(41) = 10.156, p < 0.001. [In this 

experiment 2
In this second experiment, language cues were completely valid and 
action primes were only partially valid. On any given trial prior 
to stimulus presentation, a language cue instructed participants 
how to search for the target (e.g., “Look for a change in the larger 
objects”), and a separate instruction told participants which grasp-
simulating response device to hold and prepare to squeeze (this 
planned action was the action prime). Participants were told that 
the identity of 1 of the 12 objects would change back and forth, 
and their basic task was to search according to the language cue, 
and to execute their planned grasp as soon as they detected which 
object was changing.

Prediction 3 set out in the Section “Introduction” is relevant for 
this experiment, and is summarized below:

3) With two concurrent top-down weighting sources, we expected 
that their effects on object representations would compete.
a. We therefore expected to find biasing effects for each source 

that reflected their different relative strengths (i.e., language 
cue effects are bigger).

b. These effects should be smaller than when found indepen-
dently (i.e., they are mutually suppressive).

c. However, when one weighting source is sufficiently stron-
ger than another, it may completely suppress the effect of 
the weaker source.

Given that the already stronger bias of language cues was maxi-
mized in this experiment (i.e., they were completely valid cues), it 
was expected to dominate competition (prediction 3c).

method
Participants
Twenty-one volunteers between 52 and 18 years of age 
(M = 24.0 years) were paid for their participation in a single session 
that lasted approximately 20 min. Of these, 15 were right-handed 
females and 6 were males (1 left-handed). All self-reported normal 
or corrected-to-normal vision and normal motor control, and all 
were naïve as to the purpose of the study.

Apparatus and stimuli
As Experiment 1. In addition, the keyboard was moved closer to the 
screen (by 15 cm) to make room for the new response apparatus, 
which was affixed centrally (from left to right) and set in by 10.5 cm 
from the table’s leading edge. When holding this apparatus, the 
hand-to-screen distance was approximately 30 cm. The apparatus 
was fixed to the table top in a vertical position and consisted of 
two physically connected devices – a cylindrical “power device” 
(l = 10 cm; diameter = 3 cm), and a square “precision device” 
(l = 1.25 cm, w = 1.25 cm, h = 1.25 cm). A power grasp was required 
to hold the power device and a precision grasp was required to hold 
the precision device. In order to avoid establishing any semantic 
associations between the devices and their size or required grasp 
(i.e., ensuring the association between the action prime and the 
object’s size was implicit), the power device was neutrally referred 
to by the experimenter (and the on-screen instructions) as the 
“Black device” (it was colored black) and the precision device as 
the “White device” (it was colored white). Execution of a particular 
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participants find the change quickly). In this situation, the language 
cue weightings no longer dominate suppressive interactions, and 
hence the action prime is able to exert its influence.

Overall, these results supported the predictions generated by the 
biased competition model, and suggest that the completely valid 
language cue had enhanced detection (and dominated competition 
such that any effect of action primes was completely suppressed 
in most bins).

experiment 3
This third experiment continued to combine language cues and 
action primes to investigate how such different sources of intentional 
weighting might work together to bias object representations. In a 
reversal of the conditions of the previous experiment, now action 
primes were completely valid and language cues were only partially 
valid. On any given trial prior to stimulus presentation, a language 
cue instructed participants how to commence their search for the 
target (e.g., “Start looking for a change in the larger objects”), and a 
separate instruction told participants which response device to hold 
and prepare to squeeze on target detection (i.e., the action prime).

Prediction 3 set out in the Section “Introduction” is again rel-
evant for this experiment, and is summarized below:

3) With two concurrent top-down weighting sources, we expected 
that their effects on object representations would compete.
a. We therefore expected to find biasing effects for each source 

that reflected their different relative strengths (i.e., language 
cue effects are bigger).

b. These effects should be smaller than when found indepen-
dently (i.e., they are mutually suppressive).

c. However, when one weighting source is sufficiently stron-
ger than another, it may completely suppress the effect of 
the weaker source.

Even though action primes were completely valid here, they 
were not expected to dominate competition in the same way that 
completely valid language cues did in the previous experiment. This 
is because they are an inherently weaker source of bias (as formally 
established in the cross-experimental analysis of Experiment 1). 
Thus prediction 3c does not apply here.

method
Participants
Twenty-one volunteers between 51 and 18 years of age 
(M = 21.1 years) were paid for their participation in a single ses-
sion that lasted approximately 20 min. Of these, 19 were right-
handed females and 2 right-handed males. All self-reported normal 
or corrected-to-normal vision and normal motor control, and all 
were naïve as to the purpose of the study.

Apparatus and stimuli
As Experiment 2.

Design and procedure
As Experiment 2, differing only in that Action Primes were 
completely valid, and Language Cues were partially valid. The 
four conditions that arose from the orthogonal variation of two 

instance there is no comparison case to test prediction 3b (whether 
the effect is smaller than when completely valid cues are the only 
weighting source)].

The effect of action primes
The condition means of the cropped data were computed for each 
participant and subjected to a repeated measures ANOVA with the 
within-subjects factors of Action Prime (power or precision) and 
Language-cued Target Size (large or small). The crucial interaction 
between Action Prime and Language-cued Target Size failed to even 
approach statistical significance, F(1, 20) = 0.11, p > 0.5. Thus it 
seems that any biasing effect of action primes was completely sup-
pressed by the dominant completely valid language cues (thereby 
supporting prediction 3c above).

In order to establish that this (null) effect of action primes was 
smaller than the biasing effect of action primes in Experiment 1b of 
Symes et al. (2008) (according to prediction 3b above it should be 
smaller because it was in competition with another source of bias – a 
language cue, whereas in Experiment 1b it was not), cropped cor-
rect response data for each experiment was split by participant and 
prime–target congruent and incongruent trials. From this a mean 
effect size for each participant in each experiment was calculated, and 
these data were compared in a one-tailed independent samples t test. 
This analysis revealed that the mean effect size of prime–target com-
patibility was indeed significantly smaller when it was a shared rather 
than only source of bias (current experiment: shared source = 4 ms, 
Experiment 1b: single source = 372 ms), t(41) = 3.360, p = 0.001.

Furthermore, as expected from prediction 3a, the stronger bias-
ing source of Language Cue produced the larger biasing effect of the 
two (language cue effect = 2,012 ms; action prime effect = 4 ms).

Distributional analyses
In order to see whether the null effect of action primes in this 
experiment was consistent across different portions of the RT dis-
tribution, distributional analyses were performed (see Experiment 
1 for procedural details). A statistically significant full interaction, 
F(1.232, 24.645) = 4.454, p = 0.038G, derived from the resulting 
2 × 2 × 5 ANOVA (Action Prime – power or precision; Language-
cued Target Size – large or small, and Bin – first to fifth). Unpacking 
this interaction in separate ANOVAS for each bin revealed that no 
significant interactions between Action Prime and Language-cued 
Target Size were observed under Bins 1, 3, and 4 (p > 0.05). Under 
Bins 2 and 5 however, some interesting patterns emerged. Under 
the relatively fast RTs of Bin 2, an interaction resembling a reversed 
compatibility effect was found, F(1, 20) = 4.271, p = 0.052. Here, 
mean detection times were actually slower for large-cued targets 
following a power (1,975 ms) rather than precision (1,796 ms) 
action prime, and marginally slower for small-cued targets follow-
ing a small (1,886 ms) rather than large (1,894 ms) action prime. 
Contrastingly, under the relatively slow RTs of Bin 5, an interac-
tion resembling a compatibility effect was found, F(1, 20) = 3.438, 
p = 0.079. Here, mean detection times were faster for large-cued tar-
gets following a power (5,109 ms) rather than precision (5,299 ms) 
action prime, and faster for small-cued targets following a small 
(4,584 ms) rather than large (5,149 ms) action prime. It is plausi-
ble that this pattern reflects those longest detection-time cases in 
which the language cue has lost its potency (i.e., it has not helped 
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Furthermore, as expected from prediction 3a, the stronger 
biasing source of Language Cue produced the larger biasing 
effect of the two (language cue effect = 2,013 ms; action prime 
effect = 784 ms).

Distributional analyses
In order to see whether the significant biasing effect of language 
cues in this experiment was consistent across different portions of 
the RT distribution, distributional analyses were performed (see 
Experiment 1 for procedural details). A statistically significant full 
interaction, F(1.260, 25.196) = 12.302, p < 0.001G, derived from 
the resulting 2 × 2 × 5 ANOVA (Language Cue – large or small; 
Action-primed Target Size – large or small; and Bin – first to fifth). 
Unpacking this interaction in separate ANOVAS for each bin 
revealed that the first four bins had all produced highly significant 
cue–target compatibility effects (p < 0.001). The fifth bin revealed 
a similar, if diminished, pattern of compatibility (p = 0.103). 
Overall then, the effect of language cues seemed highly consistent 
across bins.

Overall, these results again supported the predictions generated 
by the biased competition model. The presence of a completely 
valid action prime enhanced detection, but it did not dominate 
competition (being an inherently weaker source of bias). Thus 
language cues exerted a consistent effect across the RT distribu-
tion, and as predicted, this was a smaller effect than the one gener-
ated in Experiment 1 (where languages cues were the only source 
of bias).

experiment 4
This last experiment combined partially valid language cues with 
partially valid action primes. The third and fourth predictions set 
out in the Section “Introduction” are relevant for this experiment, 
and are summarized below:

3) With two concurrent top-down weighting sources, we expected 
that their effects on object representations would compete.
a. We therefore expected to find biasing effects for each source 

that reflected their different relative strengths (i.e., language 
cue effects are bigger).

b. These effects should be smaller than when found indepen-
dently (i.e., they are mutually suppressive).

c. However, when one weighting source is sufficiently stron-
ger than another, it may completely suppress the effect of 
the weaker source.

4) Consistent with other sources of additive bias (Reynolds and 
Desimone, 2003), we expected that the effects of language 
cues and action primes would be additive. Thus on trials when 
cue, prime and target were all congruent, we expected the best 
performance.

Language cues were expected to continue to produce a larger 
effect than action primes. However, because they were only par-
tially valid they were not necessarily expected to dominate com-
petition. Thus prediction 3c does not apply here (although as it 
turns out, it does help to explain a later unforeseen result that 
appeared to arise from the additional influence of a bottom-up 
source of bias).

within-subjects variables, each with two levels were: Language 
Cue (large or small) and Action-primed Target Size (large 
or small).

results And discussion
3.29% of trials were removed as errors (0.44% response errors, 
2.90% change identification errors, 0.04% both errors on same 
trial). No further analysis of errors was undertaken. 5.50% of the 
remaining trials were removed as outliers, reducing the maxi-
mum detection time from 27,686 to 13,200 ms (M = 4,087 ms; 
SD = 2,213).

The effect of action primes
Mean cropped experimental RTs for each participant were com-
pared for the current experiment and Experiment 1, in order to 
establish whether completely valid action primes enhanced over-
all detection times (see prediction 3a above). The only methodo-
logical difference between the two experiments was the presence 
of an action prime in the current experiment (this, along with 
its associated grasp responses). If this action prime enhanced 
detection, we should expect faster overall detection times for the 
current experiment. Indeed, mean experimental RTs were 784 ms 
faster (current experiment grand mean = 4,082 ms, Experiment 1 
grand mean = 4,866 ms), and a one-tailed independent samples 
t test confirmed that this difference was statistically significant, 
t(39) = 2.901, p < 0.005. [In this instance there is no comparison 
case to test prediction 3b (whether the effect is smaller than when 
completely valid primes are the only weighting source)].

The effect of language cues
The condition means of the cropped data were computed for each 
participant and subjected to a repeated measures ANOVA with 
the within-subjects factors of Language Cue (large or small) and 
Action-primed Target Size (large or small).

An unexpected main effect of Language Cue, F(1, 20) = 7.041, 
p < 0.05, reflected faster mean detection times following “large” 
(3,972 ms) rather than “small” (4,191 ms) cues. The crucial inter-
action between Language Cue and Action-primed Target Size was 
also observed, F(1, 20) = 78.609, p < 0.001, revealing the predicted 
compatibility effect (see prediction 3a above). Mean detection 
times were faster for large action-primed targets following a large 
(2,964 ms) rather than small (5,197 ms) language cue, and faster 
for small action-primed targets following a small (3,186 ms) rather 
than large (4,980 ms) language cue.

In order to establish whether this biasing effect of language cues 
was smaller than the biasing effect of language cues in Experiment 
1 (according to prediction 3b above it should be smaller because it 
was in competition with another source of bias – an action prime, 
whereas in Experiment 1 it was not), cropped correct response data 
for each experiment was split by participant and prime–target con-
gruent and incongruent trials. From this a mean effect size for each 
participant in each experiment was calculated, and these data were 
compared in a one-tailed independent samples t test. This analy-
sis revealed that the mean effect size of cue–target compatibility 
was indeed significantly smaller when it was a shared rather than 
only source of bias (current experiment: shared source = 2,013 ms, 
Experiment 1: single source = 2,579 ms), t(39) = 1.723, p < 0.05.
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were the only source of bias) was split by participant and cue–
target congruent and incongruent trials. From this a mean effect 
size for each participant in each experiment was calculated, and 
these data were compared in a one-tailed independent samples 
t test. This analysis revealed that the mean effect size of lan-
guage cues was indeed significantly smaller when it was a shared 
rather than only source of bias (current experiment: shared 
source = 1,901 ms, Experiment 1: single source = 2,579 ms), 
t(38) = 2.100, p < 0.05. Similarly for action primes, the mean 
effect size was also significantly smaller when it was a shared 
rather than only source of bias (current experiment: shared 
source = 131 ms, Experiment 1b of Symes et al., 2008: single 
source = 372 ms), t(40) = 2.105, p < 0.05.

Additive effects of language cues and action primes. Finally, 
according to prediction 4 above, the biasing effects of language 
cue and action prime should be additive rather than interactive. 
The direction of means across the four conditions fully supported 
an additive model, with detections being driven by valid language 
cues whilst nevertheless benefiting from concurrently valid action 
primes (see “All targets” column of Table 2). The ANOVA output 
also supported an additive model, given that there was no sig-
nificant interaction between Language Cue and Action Prime, F(1, 
19) = 1.074, p > 0.10.

Finer-grained analysis
In keeping with the condition-specific analyses performed for 
previous experiments, in this finer-grained analysis the condition 
means of the cropped data were computed for each participant and 
subjected to a repeated measures ANOVA with the within-subjects 
factors of Language Cue (large or small); Action Prime (power or 
precision) and Target Size (large or small).

A main effect of target size. A main effect of Target Size, F(1, 
19) = 5.440, p < 0.05, revealed faster mean change detections 
for small (4,112 ms) rather than large (4,247 ms) targets. This 
is a somewhat counter-intuitive finding, since one might expect 
larger objects to be more salient. Indeed, in testing predictions 
from the biased competition model, Proulx and Egeth (2008) 
reported evidence from a singleton paradigm suggesting that 
similar to increased luminance contrast, increased size contrast 
also biased competition. Nevertheless, it does seem that smaller 
objects were genuinely more salient than larger ones in the specific 
context of the change detection scenes used here. Indeed, using 
the same scenes, Symes et al. (2008) found a robust and reliable 
advantage for small targets across several experiments –  including 

method
Participants
Twenty volunteers between 51 and 18 years of age (M = 22.4 years) 
were paid for their participation in a single session that lasted approx-
imately 20 min. All were right-handed, with 18 females and 2 males. 
All self-reported normal or corrected-to-normal vision and normal 
motor control, and all were naïve as to the purpose of the study.

Apparatus and stimuli
As Experiments 2 and 3.

Design and procedure
As Experiments 2 and 3, except that Action Primes and Language 
Cues were both partially valid. To accommodate this design, the 
experiment was twice as long, with 240 trials consisting of four 
blocks of 60 trials, with each of the 60 change detection scenes 
being shown in a random order within each block (overall, 8 condi-
tions × 30 replications). Eight conditions arose from the orthogonal 
variation of three within-subjects variables, each with two levels: a) 
Language Cue (1: large or 2: small), b) Action Prime (1: power or 
2: precision), and c) Target Size (1: large or 2: small). These were 
as follows: 1: a1, b1, c1; 2: a1, b1, c2; 3: a1, b2, c1; 4: a1, b2, c2; 5: 
a2, b1, c1; 6: a2, b1, c2; 7: a2, b2, c1; 8: a2, b2, c2.

results And discussion
3.6% of trials were removed as errors (0.38% response errors, 3.25% 
change identification errors, 0.02% both errors on same trial). No 
further analysis of errors was undertaken. 4.45% of the remaining 
trials were removed as outliers, reducing the maximum detection 
time from 56,635 to 16,975 ms (M = 4,203 ms; SD = 2,305).

Coarse-grained analysis
A coarse-grained analysis was performed as a first look at this more 
complex data set. Mean RTs were computed from the remain-
ing data for each participant in each of four conditions of target 
 congruence: valid cue + valid prime (e.g., both were target-con-
gruent); valid cue + not valid prime; not valid cue + valid prime; 
not valid cue + not valid prime. These means were subjected to 
a repeated measures ANOVA with the within-subjects factors of 
Cue–Target congruency (congruent or incongruent) and Prime–
Target congruency (congruent or incongruent).

Isolating the effects of language cues and action primes. In line 
with prediction 3a above, separate biasing effects were found 
for each source as expected, and the stronger biasing source of 
Language Cue produced the larger effect of the two (by a fac-
tor of 15). These biasing effects were reflected by main target-
congruency effects of Language Cue, F(1, 19) = 75.582, p < 0.001; 
and of Action Prime, F(1, 19) = 5.207, p < 0.05. Mean change 
detections were faster for cue-congruent targets (3,229 ms) than 
for cue-incongruent targets (5,131 ms); and they were faster for 
prime-congruent targets (4,122 ms) than for prime-incongruent 
targets (4,239 ms).

According to prediction 3b, each effect should be smaller here, 
than when it was found alone. In order to establish whether 
this was the case for language cues, cropped correct response 
data for this experiment and Experiment 1 (where language cues 

Table 2 | rank ordered rTs (ms) presented with details of their 

experimental conditions.

rank Language Action All targets Small Large 

 Cue Prime  targets targets

1 Valid Valid 3,143 3,198 3,088

2 Valid Not valid 3,316 3,243 3,388

3 Not valid Valid 5,101 4,954 5,246

4 Not valid Not valid 5,162 5,055 5,266
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ing this interaction, the biasing effect of action primes appeared 
stronger under one level of Language Cue – namely “large” cues. 
Thus with large language cues the effect size was 200 ms, with 
mean detection times that were faster for large targets following a 
large (3,088 ms) rather than small (3,388 ms) action prime, and 
faster for small targets following a small (4,954 ms) rather than 
large (5,055 ms) prime. However, with small language cues the 
effect size was only 33 ms, with mean detection times that were 
similar for large targets following large and small action primes 
(5,246 and 5,266 ms respectively), and similar for small targets 
following large and small action primes (3,243 and 3,198 ms 
respectively).

Interestingly, this finding makes good sense from the perspective 
of biased competition, and it does not contradict an additive model. 
We break down our explanation into two related parts:

1) Recall the main effect of Target Size reported earlier – salient 
small targets were detected faster overall. It was suggested that 
this bottom-up bias was able to exert a small influence in this 
experiment because the concurrent sources of top-down bias 
were relatively weak. This biasing effect of stimulus salience 
also appeared to be an additive effect. Indeed, the language 
cue biasing effect was 269 ms larger when cues were congruent 
rather than incongruent with this visually preferred small 
stimulus. Similarly, the prime–target effect was 87 ms larger 
when primes were congruent rather than incongruent with 
this visually preferred small stimulus.

2) When the effects of stimulus salience, language cues and 
action primes concurrently contribute to biasing competition 
between objects for neuronal representation, certain combi-
nations may result in the effects of one source being heavily 
suppressed – even to the point where it no longer has a biasing 
influence of its own (see prediction 3c above). Indeed, previous 
findings from Experiment 2 (and see also Symes et al., 2009) 
indicated that dominant biasing signals completely suppressed 
the weaker effect of action primes. This appears to have been 
the case here too. In particular, when the biasing influence of 
salient small objects co-occurred with the biasing influence of 
a specific language cue (“Small”), their combined influence 
dominated, such that action primes could no longer exert 
any real influence. Indeed, the three-way interaction reported 
above revealed exactly this pattern – the biasing effect of action 
primes barely arose under “Small” language cues (in fact as the 
distributional analysis below reveals, it was not significant in 
any bin).

Distributional analyses. In order to see whether the weaker bias-
ing effect of action primes was consistent across different portions 
of the RT distribution, distributional analyses were performed 
(see Experiment 1 for procedural details). Separate ANOVAS 
for each bin were performed under each level of Language Cue. 
Under “Small” language cues, no significant interactions between 
Action Prime and Language-cued Target Size were observed in 
any bins (p > 0.10). Under “Large” language cues, signs of an 
action prime biasing effect began in the first bin, and reached sta-
tistical significance in the second and third bins only (p < 0.05). 
By contrast, the more robust biasing effect of language cues was 

an eye-tracking experiment that revealed preferential fixating of 
smaller objects (see Symes et al., 2008, for a possible explanation 
for this). The crucial question here then, is why these apparently 
salient smaller objects exerted an influence on detection times in 
this current experiment (and repeatedly in Symes et al., 2008), 
and yet they did not do so in the preceding three experiments?

What each of the preceding three experiments shared in common 
were relatively stronger sources of top-down bias than were present in 
this experiment and those of Symes et al. (2008). In Experiment 1, the 
top-down bias came from partially valid language cues (which were at 
their most influential, being the only source of bias). In Experiment 2, 
sources of bias were completely valid language cues with partially valid 
action primes, and in Experiment 3, completely valid action primes 
with partially valid language cues. Relative to these three experiments, 
top-down sources of bias in the current experiment were at their 
weakest (two partially valid sources). Similarly, top-down sources 
of bias in Symes et al. (2008) were relatively weak too, always being 
partially valid action primes. With these cases of relatively weak top-
down biases, we argue that another source of bias (i.e., a bottom-up 
bias of small objects) was able to successfully compete for neuronal 
representation. In the previous three experiments, this relatively weak 
bottom-up bias had presumably been unable to exert an influence in 
the context of stronger concurrent top-down biases that dominated 
competition (see prediction 3c above).

Isolating the effects of language cues and action primes. As was 
the case with the earlier course-grained analysis, the effects of lan-
guage cues and action primes supported prediction 3a. Target Size 
interacted separately with both sources of top-down bias. Language 
Cue by Target Size, F(1, 19) = 75.341, p < 0.001, revealed that mean 
detection times were faster for large targets following a large 
(3,238 ms) rather than small (5,256 ms) cue, and faster for small 
targets following a small (3,220 ms) rather than large (5,005 ms) 
cue. As already reported above, this effect was significantly smaller 
as a shared rather than only source of bias (current experiment: 
shared source = 1,901 ms, Experiment 1: single source = 2,579 ms), 
t(38) = 2.100, p < 0.05.

Action Prime by Target Size, F(1, 19) = 5.108, p < 0.05, revealed 
that mean detection times were faster for large targets following 
a large (4,167 ms) rather than small (4,327 ms) prime, and faster 
for small targets following a small (4,076 ms) rather than large 
(4,149 ms) prime. As already reported above, this effect was also 
significantly smaller when it was a shared rather than only source 
of bias (current experiment: shared source = 131 ms, Experiment 
1b of Symes et al., 2008: single source = 372 ms), t(40) = 2.105, 
p < 0.05.

Additive effects of language cues and action primes. Finally, accord-
ing to prediction 4 above, the effects of language cue and action 
prime should be additive rather than interactive. The direction of 
means across the eight conditions supported an additive model, 
with detections again being driven by valid language cues whilst 
nevertheless benefiting from concurrently valid action primes (see 
“Small and Large targets” columns of Table 2).

The ANOVA output revealed a three-way interaction between 
Language Cue, Action Prime and Target Size that was statistically 
significant at the 10% level, F(1, 19) = 3.840, p = 0.065. In examin-
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viously established enhanced detections following partially valid 
action primes, and in the current study, four experiments tested a 
further variety of cue/prime/validity combinations (Experiment 1: 
partially valid language cues; Experiment 2: completely valid lan-
guage cues + partially valid action primes; Experiment 3: partially 
valid language cues + completely valid action primes; Experiment 
4: partially valid language cues + partially valid action primes). The 
predictions derived from the biased competition model, and their 
related results, are summarized below (and effect sizes across all 
experiments are displayed graphically in Figure 2).

1) We expected proxy evidence of the single top-down source of 
language cues biasing competition, with faster detections on 
trials where cue and target were size-congruent (i.e., valid trials).
•	 Experiment	 1	 (partially	 valid	 language	 cues)	 found	

faster detections on trials where cue and target were size-
congruent.

2) Since language cues tell participants where to look, they 
should have a strong biasing influence (like directed attention 
does). Relatedly, the biasing effect of action primes (that arises 
without directed attention) is expected to be weaker.
•	 A	cross-experimental	comparison	of	the	effects	of	partially	

valid action primes (Experiment 1b of Symes et al., 2008) 
and the effects of partially valid language cues (Experiment 
1) revealed that language cues had a significantly larger bia-
sing effect than action primes.

3) With two concurrent top-down weighting sources, we expected 
that their effects on object representations would compete.
a. We therefore expected to find biasing effects for each source 

that reflected their relative strengths (i.e., stronger language 
cue effects).
•	 Experiments	2–4:	Language	cues	had	a	larger	effect	than	

action primes.

statistically significant (p < 0.001) in each bin under each level 
of Action Prime (except for the fifth bin under precision primes, 
p = 0.063).

Overall, these results comprehensively supported the predictions 
generated by the biased competition model. Firstly, each source 
of top-down bias produced its own biasing effect, with language 
cues producing the larger effect (prediction 3a). Through the sup-
pressive interactions of biased competition, each of these effects 
was significantly smaller than when found alone (prediction 3b). 
Furthermore, the two biasing effects of language cues and action 
primes seemed to be additive (prediction 4). This was transpar-
ently the case in the initial course-grained analysis, and it was also 
the case following a more careful examination in the finer-grained 
analysis. Here, it was found that a third source of bias (visually sali-
ent small objects) had exerted its own bottom-up influence. The 
combined influence of this bottom-up bias (which also seemed to 
be an additive effect) and “Small” language cues dominated com-
petition, such that action primes could no longer exert much of 
an influence (prediction 3c).

generAl discussion
Relatively little is known about how multiple sources of bias might 
interact. It is known that language cues presented with objects 
can influence the kinematics of actions directed to those objects 
(e.g., Gentilucci et al., 2000; Gentilucci, 2003; Lindemann et al., 
2006). Superimposing the word “large” on an object, for instance, 
results in increased maximum grip aperture (Glover and Dixon, 
2002). Relatedly, sentence comprehension appears to evoke motor 
 representations – Glenberg and Kaschak (2002) reported that sen-
tence judgments were faster when the required action response 
(e.g., moving the hand away from or toward the body) matched 
the actions implied by the sentence. These insights fit well with 
broader accounts of embodied cognition that suggest that various 
sources of activation (whether semantic, visual, motoric) may trig-
ger perceptuo-motor simulations (e.g., Barsalou, 2008, 2009).

The biased competition model is an influential theory of  attention 
proposing that objects compete for neuronal representation via 
mutually suppressive interactions (Desimone and Duncan, 1995). 
Various top-down and bottom-up factors can bias competition, and 
some authors have recently suggested that one such top-down fac-
tor might be action intentions (e.g., Bekkering and Neggers, 2002). 
The current study explored the effects of two sources of top-down 
bias on visual object representation – one explicit (language cues) 
and the other implicit (action intentions).

overview of results
Using a change-detection flicker paradigm, participants searched 
for an unknown identity-changing target amongst 12 graspable 
objects in a photographed array (half were small objects like cher-
ries, half were larger objects like apples). Prior to the onset of the 
scene, participants received a language cue that advised them to 
search for the change in “larger” or “smaller” objects, and an action 
prime that established an action intention to make a power or pre-
cision grip (grips that were congruent with large and small objects 
respectively). Language cues and action primes were either relatively 
weak sources of bias (partially valid) or stronger sources of bias 
(completely valid). Experiment 1b of Symes et al. (2008) has pre-

FigurE 2 | A summary graph of mean effect sizes (mean incongruent 
rTs − mean congruent rTs) across all experiments. PV, partially valid cue/
prime; CV, completely valid cue/prime; * refers to Symes et al. (2008, 
Experiment 1b).
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strong weighting signal will dominate  competition between objects 
and completely suppress the effects of other weaker signals (e.g., 
action signals). Nevertheless, the nature of biased competition is 
such that any weighting signal, whether top-down or bottom-up, 
action-based or language-based, competes to influence perceptual 
processing (indeed, top-down and  bottom-up signals seem to pro-
duce very similar neuronal responses, Reynolds and Desimone, 
2003; Reynolds and Chelazzi, 2004). Thus action-based sources of 
bias are not assumed to be “special cases” that only have a modula-
tory influence that is conditional on higher-order goals (such as a 
task-relevance bias). To qualify this further, in line with the findings 
of Reynolds and Desimone (2003) the current results suggested 
that the various biasing effects were additive, and action-related 
effects in Experiment 4 for example, were not dependant on task-
relevance. Instead they occurred with and without a task-relevance 
bias (i.e., alongside valid and non-valid language cues).

conclusions
Itti (2007, p. 93) captures the essence of the demands that the visual 
world places on animals (and robots), when he writes;

“Visual processing of complex natural environments requires 
animals to combine, in a highly dynamic and adaptive manner, 
sensory signals that originate from the environment (bottom-up) 
with behavioral goals and priorities dictated by the task at hand 
(top-down).”

In examining the influences of differently weighted bottom-up 
and top-down signals, the current series of behavioral experiments 
revealed a sensitive hierarchy of predicted attentional effects. Such 
findings serve a “proof-of-principle” role for scientists interested 
in modeling an embodied neuro-robotic system:

Firstly, the behavioral data suggest that selective perceptual 
enhancement may be initiated by manual action plans, such as 
grasping. Although it is perhaps surprising that simply intending 
to perform an action (even when it is not directed to a known 
target) might have such diverse influences on an embodied sys-
tem, complementary neurological evidence does exist. Electrical 
stimulation of premotor sites within monkey frontal eye fields 
for example, initiated a bias in the strength of visual signals in 
corresponding sites of extrastriate visual cortex (Moore and 
Armstrong, 2003). Recent advances in fMRI methods too, shed 
further light on the role of different brain areas such as pre-frontal 
cortex, involved in modulating visual signals (Grill-Spector and 
Sayres, 2008).

Secondly, the modulatory influence of action planning appeared 
to integrate with other sources of bias (such as language) through 
biased competition – a neural mechanism that is sufficiently well-
defined for modeling. Indeed, various neural implementations of 
biased competition have already simulated a wide range of atten-
tional effects that accommodate both top-down and bottom-up 
influences (e.g., Sun and Fisher, 2003; Lanyon and Denham, 
2004a,b; Deco and Rolls, 2005; see also Spratling, 2008a for a 
review). While sharing similarities with other influential models of 
visual processing, the physiologically plausible neural architecture 
of the biased competition model does recommend it (Spratling, 
2008a,b). Indeed, it may be more parsimonious than the influen-
tial class of saliency map models (e.g., Wolfe, 1994; Itti and Koch, 
2001) in three key areas – it does not require a single map for 

b. These effects should be smaller than when found indepen-
dently (i.e., than when there is only weighting source).
•	 Experiments	 2–4:	The	biasing	 effects	of	partially	 valid	

cues and primes were significantly smaller than when 
found alone. [There were no available experimen-
tal comparison cases for completely valid cues and 
primes].

c. However, when one weighting source is sufficiently stron-
ger than another, it may completely suppress the effect of 
the weaker source.
•	 Experiments	1–3:	The	additive	effects	of	language	cues	

and action primes completely suppressed a weaker 
 bottom-up effect of small object saliency.

•	 Experiment	2:	Completely	valid	language	cues	comple-
tely suppressed a weaker effect of action primes.

•	 Experiment	 4:	 The	 additive	 effects	 of	 small	 language	
cues and small object saliency completely suppressed a 
weaker effect of action primes.

4) Consistent with other sources of additive bias (Reynolds and 
Desimone, 2003), we expected that the effects of language cues 
and action primes would be additive.

•	 Experiment	 4:	 Both	 course-grained	 and	 finer-grained	
analyses supported an additive model (see Table 2).

theoreticAl implicAtions
As the above summary makes clear, the various tenets of the biased 
competition model accounted for all degrees of biasing influence 
derived from action intentions, including when they produced no 
effect. While some authors have similarly proposed that biased com-
petition may be the mechanism that underlies cases of enhanced 
visual processing following action intentions (e.g., Bekkering 
and Neggers, 2002; Hannus et al., 2005; Symes et al., 2008, 2009), 
other authors have proposed alternative models. Most recently, 
Wykowska et al. (2009) have suggested combining an intentional 
weighting mechanism (e.g., Hommel et al., 2001) with the guided 
search model (e.g., Wolfe, 1994) and the dimensional weighting 
account (e.g., Müller et al., 1995). In explaining the absence of 
an action-related biasing effect when selection could be based on 
bottom-up saliency signals alone (cf. similar results of Symes et al., 
2009), Wykowska et al. (2009, p. 1767) suggested that,

“Only if a task-relevance bias occurs, will the action-related 
weighting also influence perceptual processing. In such a case, 
bottom-up processing will be modulated by the common weight 
combining task-relevance and action relevance.”

Given the results of the current study, we suggest that the mecha-
nism of biased competition is a sufficient and simpler means of 
explaining a null-effect of action when stimulus salience is high. We 
argue this is the case for feature weighting, which our data apply 
to, although it may also apply to dimension weighting (indeed, 
Wykowska et al., 2009 suggest that the mechanism underlying 
dimension weighting may be the same one hypothesized to account 
for other top-down effects on visual selection). Under our preferred 
account of this mechanism, there is no common weight that inputs 
to a master map of activation; rather, ongoing suppressive interac-
tions between objects take place across the various brain regions 
that represent visual information, (sensory, motor, cortical, and 
subcortical), Beck and Kastner (2009). Sometimes a particularly 
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of the biased  competition model in robots, and that these consider 
including action intentions as a form of top-down bias that reflects 
the behavioral goals of the robot.
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 competition to ultimately be resolved, since ongoing competition 
occurs across a distributed network of interacting brain regions; 
it does not assume separate preattentive and attentive stages of 
perceptual processing; and it does not require separate neural 
pathways for processing saliency and featural information (see 
Spratling, 2008b for a discussion of these differences). The current 
behavioral findings therefore recommend future  implementations 
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The experimenTs
senTence comprehension, simulaTion and effecTors
Several recent studies have provided evidence of the involvement 
of the premotor cortex in reading and hearing action words and 
action sentences (Aziz-Zadeh and Damasio, 2008). Tettamanti et al. 
(2005) conducted an fMRI study illustrating that a complex fronto-
parietal circuit is activated when presenting sentences describing 
actions performed with the mouth, the hand or the foot. Within this 
circuit a critical role seems to be assumed by Broca’s area, but in a 
way that extends the traditional linguistic role of this area. In fact, 
Broca’s area is found to be crucially involved in language processing, 
as well as in action observation. Pulvermüller et al. (2001) found 
topographical differences in the brain activity patterns generated 
by verbs referring to different effectors (mouth, legs, arms: e.g. lick, 
kick, pick); these differences emerged quite early, starting 250 ms 
after word onset. This very fast activation, its automaticity and its 
somatotopic organization render it unlikely that information is first 
transduced in an abstract format and later influences the motor 
system, as claimed by critiques of the embodied view. In particular, 
the early activation of the motor system strongly suggests that this 
activation is an integrant part of the comprehension process rather 
than only a by-product of it, or an effect of late motor imagery. 
Further studies utilising a variety of techniques (fMRI, MEG, etc.) 
support the hypothesis that action verb processing quickly produces 
a somatotopic activation of the motor and premotor cortices (e.g. 
Hauk et al., 2004; Pulvermüller et al., 2005). In line with these results, 
Buccino et al. (2005) designed a TMS study that showed an ampli-
tude decrease of MEPs recorded from hand muscles when listen-
ing to hand-action related sentences, and from foot muscles when 
listening to foot related sentences. This confirms a  somatotopic 

inTroducTion
According to theories of embodied and grounded cognition (from 
here on EC theories), language is grounded in the sensorimotor sys-
tem. In this sense, the same sensorimotor and emotional systems 
are supposed to be involved during perception, action and language 
comprehension. More specifically, language comprehension would 
involve an embodied simulation, whose neural underpinnings are to 
be found in wide neural circuits, crucially involving canonical and 
mirror neurons (Rizzolatti et al., 1996; Gallese, 2008). In cognitive 
neuroscience the notion of simulation has been defined differently 
(for a more detailed analysis of this, see Borghi and Cimatti, 2010; 
for a review, see Decety and Grezes, 2006). Here we define simula-
tion, with Jeannerod (2007), as the offline recruitment (for instance, 
during language processing) of the same neural networks involved 
in perception and action. In addition, we qualify it, as did Gallese 
(2009), as an embodied and automatic mechanism, which allows us 
to understand others’ behaviors. The automaticity of this process 
does not imply an intentional strategy to understand intentions and 
mental states. In keeping with these views, the underlying assumption 
of our work is that the activation of motor and sensorimotor cortices 
is not just a side-effect but effectively contributes to language compre-
hension. In this paper we review behavioral and kinematics studies 
conducted in our lab which help to characterize the relationship exist-
ing between language and the motor system (see also Scorolli et al., 
2009). We will focus on studies utilising simple sentences composed 
for example by a verb and a noun. In the final part of the paper we 
discuss why we believe these studies have implications for embodied 
robotics. Further, we will claim that embodied robotics can contrib-
ute critically to psychology and neuroscience and can promote more 
detailed predictions on some critical issues.

Sentence comprehension: effectors and goals, self and others. 
An overview of experiments and implications for robotics

Anna M. Borghi1,2*, Claudia Gianelli1 and Claudia Scorolli 1

1 Department of Psychology, University of Bologna, Bologna, Italy
2 Institute of Sciences and Technologies of Cognition, National Research Council, Rome, Italy

According to theories referring to embodied and grounded cognition (Barsalou, 2008), language 
comprehension encompasses an embodied simulation of actions. The neural underpinnings of 
this simulation could be found in wide neural circuits that involve canonical and mirror neurons 
(Rizzolatti et al., 1996). In keeping with this view, we review behavioral and kinematic studies 
conducted in our lab which help characterize the relationship existing between language and 
the motor system. Overall, our results reveal that the simulation evoked during sentence 
comprehension is fine-grained, primarily in its sensitivity to the different effectors we employ 
to perform actions. In addition, they suggest that linguistic comprehension also relies on 
the representation of actions in terms of goals and of the chains of motor acts necessary to 
accomplish them. Finally, they indicate that these goals are modulated by both the object 
features the sentence refers to as well as by social aspects such as the characteristics of the 
agents implied by sentences. We will discuss the implications of these studies for embodied 
robotics.
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were required to produce the first five nouns they associated with 
each verb; no difference in production means was present between 
“mouth sentences” and “hand sentences”, p = 0.65, and between 
“foot sentences” and “hand sentences”, p = 1. The timer started 
after the noun presentation, and participants were required to 
respond whether the verb–noun combination made sense or not. 
Yes responses were recorded either with the microphone or with 
a pedal. We found a facilitation effect in responses to “mouth sen-
tences” and “foot sentences” compared with “hand sentences” when 
the effectors – mouth and foot – involved in the motor response 
and in the sentence were congruent (Figure 1). More specifically, 
participants responding with the microphone were faster with 
mouth than with hand sentences, p < 0.01 (Figure 1A), whereas 
the difference between foot and hand reached significance but 
was far less marked, p < 0.05 (Figure 1B). Participants using the 
pedal responded faster to foot than to hand sentences, p < 0.0005 
(Figure 1B), whereas the difference between hand and mouth sen-
tences was not significant, p < 0.8 (Figure 1A). These results suggest, 
in line with the literature, that the simulation activated during 
sentence comprehension is sensitive to the kind of effector implied 
by the sentence. In previous behavioral studies only foot and hand 
sentences were compared; our study extends previous results as we 
found a difference between mouth and hand sentences as well.

In a further study (Borghi and Scorolli, 2009) we found that the 
simulation is sensitive not only to the kind of effector (mouth vs. 
hand, foot vs. hand), but also to the specific effector (right vs. left 
hand) used to respond. We performed five experiments with the 
same sentence presentation modality and task used in Scorolli and 
Borghi (2007); 97 right-handed participants were asked to decide 
whether verb–noun combinations made sense or not. We analyzed 
both combinations which made sense (e.g. “to kick the ball”) and 
combinations which did not make sense (e.g. “to melt the chair”). 
Here we will focus on Experiments 1, 2, and 3, as Experiment 4 was 

recruitment of motor areas. As reported in the meta-analysis per-
formed by Jirak, Menz, Borghi and Binkofski (under review), the 
involvement of motor areas in language processing is consistent 
over tasks and subjects (for a more critical view, see Willems and 
Hagoort, 2007). In particular, word and sentence processing involves 
a variety of brain regions, including parietal, temporal, and fron-
tal, but also cerebellar activity, and, even if the right hemisphere is 
also activated, there is a clear predominance of activations in the 
(language and motor areas of the) left hemisphere. In addition, the 
results of the meta-analysis highlight areas presumably containing 
mirror neurons in humans, more specifically Broca’s region, which 
may be described as the human homolog of the monkey premotor 
cortex (Rizzolatti and Craighero, 2004).

We will now describe studies performed in our lab, as they 
extend the previous behavioral evidence. Here we have illustrated 
that during language comprehension we are sensitive to the distinc-
tion between hand and mouth sentences, and between foot and 
mouth sentences as well.

In the first study we performed two experiments in which 40 
participants read simple sentences from a computer screen that 
were composed of a verb in the infinitive form followed by an object 
noun (Scorolli and Borghi, 2007). The sentences referred to either 
hand, mouth or foot actions. The hand sentences represented the 
baseline: thus, the same noun was presented after either a foot or 
hand verb (e.g. “to kick the ball”, vs. “to throw the ball”) or either 
after a mouth or hand verb (e.g. “to suck the sweet”, vs. “to unwrap 
the sweet”). Overall, we had 24 object nouns, each preceded by two 
different verbs, for a total of 48 critical pairs. Presenting the same 
noun after the verb allowed us to be sure that no frequency effect 
took place. We did not control for the verb frequency, because the 
verb was presented before we started recording. However, in a pre-
test we controlled for the association rate between the verb and the 
noun, as this might influence performance. Eighteen participants 

Figure 1 | Participants using the microphone responded with greater speed to “mouth sentences” than to “hand sentences” (A), p < 0.01. Symmetrically, 
participants who used the pedal as responding device were significantly faster for “foot sentences” than for “hand sentences” (B), p < 0. 0005.
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actions entail. However, further studies are needed, to deepen 
the role played by action goals (for a recent study focusing on the 
importance of goals in action organization in monkeys, see Umiltà 
et al., 2008. The issue of goals will be discussed later). The results 
described so far report a facilitation effect in case of congruency 
between the effector implied by the verb/sentence and the effector 
used to respond. Even if the evidence we found supports the idea 
that the different effectors (mouth and foot) are activated during 
language processing, our behavioral results contrast with the results 
by Buccino et al. (2005), who found an interference effect between 
the effector involved in the sentence (hand, foot) and the effector 
involved in the motor response (hand, foot).

Certainly, in both cases there is clear evidence of a modulation 
of the motor system during sentence comprehension, thus this 
evidence is certainly in favor of an embodied cognition perspec-
tive. However, knowing more precisely the specific timing of this 
modulation (Boulenger et al., 2006), as well as the details of this 
modulation, would be crucial for solving a lot of issues. The first 
issue is that, even if the somatotopic activation of the motor sys-
tem suggests that the motor system is involved during language 
comprehension, we do not yet fully understand if the activation 
of the motor system is necessary for comprehension or whether it 
is just a by-product of it (Mahon and Caramazza, 2008). A better 
understanding of the relationships between the comprehension 
process and motor system activation, both in terms of time-course 
and processes, would be crucial as it would allow researchers to 
formulate clearer predictions.

Many interpretations of the discrepancies between the results 
have been proposed. One possibility is that these discrepancies 
are due to timing between linguistic stimulus, motor instruc-
tions and motor response. It is possible that, when the motor 
system is activated both for preparing an action with a given 
effector and for processing action words referring to the same 
effector, an interference effect takes place due to the contempo-
rary recruitment of the same resources. Later, a facilitation effect 
might occur (see Chersi et al., 2010). This explanation is in line 
with evidence on language and motor resonance that has shown 
that the compatibility effect between action and sentence (ACE, 
that is the facilitation effect) was present only when the motor 

a control one. In Experiments 1a,b we used only manual sentences, 
in Experiment 2 hand and mouth sentences, in Experiment 3 hand 
and foot sentences. Responses to hand sentences (Experiment 1) 
were faster than responses to non-sense sentences with the right 
hand, but not with the left hand (Figure 2A), as it appeared in the 
subject analyses and on materials (we will report the p-values for 
both analyses in sequence): p < 0.05; p < 0.0000001. Importantly, 
such an advantage of the right over the left hand was not present 
when sensible sentences were not action ones: p = 0.99; p = 0.75. 
The same advantage of the right over the left hand with sensible 
sentences was present in Experiment 2 (Figure 2B), in which both 
hand and mouth sentences were presented, even if it reached sig-
nificance only in the analysis on items, p < 0.0000001. This suggests 
that participants simulated performing the action with the domi-
nant hand. Crucially the advantage of the right hand for sensible 
sentences was not present with foot sentences, with which, probably 
due to an inhibitory mechanism, the effect was exactly the oppo-
site, as left hand responses were faster than right hand ones with 
sensible sentences, p = 0.055; p < 0.0000001 (Figure 2C). These 
results complement the previous findings as they suggest that the 
motor simulation formed is not only sensitive to different effectors 
(mouth, hand, foot), but also to the different action capability of 
the two hands, the left and the right one. The similarity between the 
responses with hand and mouth sentences can be due to the fact that 
different effectors can be involved in single actions, and the simi-
larity of the performance obtained by hand and mouth sentences 
could be due to the fact that hands and mouth are represented corti-
cally in contiguous areas. However, it may also suggest that not only 
proximal aspects, such as the kind of effector, modulate the motor 
responses, but also distal aspects, such as the action goal. Consider 
an action such as sucking a sweet: it probably also activates manual 
actions such as the action of grasping the sweet and bringing it to 
the mouth. In sum: it is possible that the similar modulation of the 
motor response is due to the common goal evoked by hand and 
mouth sentences (see also Gentilucci et al., 2008).

Overall, the results of these two studies indicate that language 
processing activates an action simulation that is sensitive to the 
effector involved. In addition, they suggest that understanding 
action sentences implies comprehension of the goals that the 

Figure 2 | When pairs referred to manual and mouth actions (A, B), participants responded faster with the dominant than with the left hand in case of 
sensible sentences. When pairs referred to manual and foot actions (C) the results were opposite.
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instruction was presented simultaneously to the beginning of 
the sentence rather than after sentence presentation (Borreggine 
and Kaschak, 2006; Zwaan and Taylor, 2006). In the study by 
Buccino et al. (2005) participants on presentation of a “go” sig-
nal had to respond to the second syllable of a verb preceding a 
noun; time was measured from this point. Instead in our experi-
ments we didn’t use a “go” signal: we first presented a verb, then 
a noun, and started measuring after the appearance of the noun. 
Concerning the temporal relationship between language and the 
motor task, the linguistic stimulus appearance seems to affect 
not only the movement’s speed (reactions times) but also the 
overt motor behavior, as revealed by detailed analyses of move-
ment kinematics (Boulenger et al. 2006; Dalla Volta et al., 2009). 
Boulenger et al. (2006) found that when contemporaneously 
processing language and executing motor tasks, action verbs 
hinder reaching movements. An interference effect occurred as 
early as 160–180 ms after word onset when participants started 
the response movement before word presentation (Experiment 
1). On the contrary a priming effect became evident at about 
550–580 ms after word onset when the word acted as go-signal 
for the response movement. Along this line, Dalla Volta et al. 
(2009) found that there is an early interference effect on the 
effective movement (kinematics measures) and a late facilitation, 
detectable through RTs analyses.

Another possibility is that the interference effect is not only 
aroused by timing but by the interaction between two factors: 
the temporal overlap and the so called “integrability”, that is the 
degree to which the perceptual input could be integrated into the 
simulation activated by language. For example, in studies where 
both sentences and perceptual stimuli were presented, when the 
perceptual stimuli were abstract and difficult to integrate, an inter-
ference effect occurred; otherwise a facilitation effect took place. 
The difficulty seems to rest on the shared contents between the 
percept and the simulation of the sentence, and on the tempo-
ral overlap (Kaschak et al., 2005; Borreggine and Kaschak, 2006). 
However, due to the difficulty of integration between perceptual 
and linguistic stimuli this explanation may be contradicted when 
accounting for the interference and facilitation effects occurring 
when using linguistic stimuli.

A further possibility is that these discrepancies are due to 
the varying paradigms and stimuli used. For example, in some 
cases tasks requiring superficial processing (e.g. lexical decision 
tasks) are employed, whereas in other cases tasks requiring deeper 
semantic processing are used (this position is supported by Sato 
et al., 2008). More specifically, even in the case of deep semantic 
processing, results may differ depending on the task at hand. For 
instance, whether the task requires evaluating the whole sentence 
(e.g. Scorolli and Borghi, 2007; Borghi and Scorolli, 2009, asked 
participants to evaluate the sensibility of the verb–noun combina-
tion) or the verb (e.g. Buccino et al. required participants to evaluate 
whether the action verb was abstract or concrete).

A final possibility which should be explored is that the effect 
emerges differently depending on the type of pronoun used to 
indicate the agent of the action. In this sense pronouns induce a spe-
cific perspective on action, which modulates the motor system. For 
example, we found that the simulation triggered by the pronouns 
“I” and “you” have a different effect on kinematics parameters of 

action. In addition, it is possible that the third person pronoun 
(see Buccino et al., 2005) may partially activate a simulation, thus 
relying on more abstract processes.

Overall, further research is necessary to disentangle which 
mechanisms are underlying interference and facilitation effects. 
However, we believe that further experimental data are not suffi-
cient. Namely, modeling could help to understand how the process 
might occur, and might be helpful to propose more detailed and 
clearer predictions for new experiments. Modeling could help us 
to understand whether interference and facilitation are two sides of 
the same coin, or whether they rely on different mechanisms (for 
an attempt to model interference and facilitation effects, Chersi 
et al., 2010).

senTence comprehension, simulaTion, goals and 
social aspecTs
In the previous studies we have seen that during language process-
ing we form a simulation sensitive not only to the specific effector, 
but also to the goal conveyed by the sentence.

Consider for example giving somebody an object: how and to 
what extent is the action of “giving” represented differently from 
the action of, say, holding the object? These two actions imply two 
different goals, and these different goals imply a different chain of 
motor acts. Namely, in order to hold an object we need to reach 
and then grasp it, whereas in order to give an object to someone 
else we need to reach and grasp it, as well as to give it to the other 
agent involved in the interaction. Thus, in order to pursue the goal 
it conveys, this “interactive” action implies a longer sequence of 
chained motor acts.

Goal-relatedness of action has recently received much atten-
tion, in particular since Fogassi et al. (2005) demonstrated study-
ing the monkey parietal cortex that motor acts, such as “grasping”, 
are coded according to the specific action (e.g. “grasping for eat-
ing” vs. “grasping for placing”) in which these acts are embedded. 
Moreover, this coding is present both when the action is performed 
and when it is observed, that is a mirror mechanism is involved. The 
idea that actions have a chained organization has been extended to 
humans, in particular for what concerns action observation and 
understanding. Iacoboni et al. (2005) used fMRI to demonstrate 
the presence of a chained organization that differs depending on 
the intention of the agent. Other studies have been conducted, 
showing that impairment of chain organization might be linked to 
autism spectrum disorder (Cattaneo et al., 2007; Boria et al., 2009; 
Fabbri-Destro et al., 2009). However, no behavioral task has yet 
been conducted, demonstrating the importance of chained organi-
zation in the normal adult population. Additionally, to our knowl-
edge the only study investigating the extent to which this chained 
organization is encoded in language was a kinematics study recently 
performed in our lab, by Gianelli and Borghi (Gianelli and Borghi: 
I grasp, You give: when language translates actions, submitted), in 
which we identified different components of verbs (for a similar 
approach, see Kemmerer, et al., 2008) and distinguished between 
action verbs (e.g. “to grasp”) and interaction verbs (e.g. “to give”). 
These two kinds of verbs, which differ both for their chained organi-
zation and for their goal (acting with an object vs. interacting with 
another agent), had a different impact on kinematics parameters. 
That is, participants’ response (e.g. reaching–grasping an object) 
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ugly) and by an action part (bring it towards you/give it to another 
person). Their task consisted of deciding whether the sentence made 
sense or not by moving the mouse towards or away from their body. 
In three experiments we manipulated the recipient of the action, 
which could be “another person”, “a table”, or “a friend”.

Results showed that the direction (away or towards the body) of 
the movement performed to respond was influenced by the direc-
tion of the motion implied by the sentence and the stimuli valence. 
Crucially, stimulus valence had a different impact depending on the 
relational context the sentence evoked (action involving another 
agent or just oneself). We found that, whereas participants tended to 
move the mouse towards their body when they had to judge actions 
referring to positive objects, with negative objects the movement 
varied depending on the action recipient. Namely, when dealing 
with negative objects participants tended to treat friends as them-
selves, being equally slow to attract negative objects and to offer 
them to friends. This was not the case for the recipient “table” and 
for indistinct “another person”. In Table 1 we compare the effect on 
RTs of different recipients, “another person”, “a table” or “a friend” 
in the two conditions of giving positive or negative objects.

A further result is worth noting. The paradigm we used in 
this study allowed us to disentangle information provided by the 
verb and kinematics information related to the real movement 
participants were required to produce to respond. Namely, given 
the experimental design we used, in half of the cases there was a 
mismatch between the information conveyed by the verb (bring 
vs. give) and the movement to perform (towards or away from 
participant’s body). Our results showed that the role played by the 
verb, which defines the action goal, was more important than the 
role played by the kinematics of the movement. This is in line with 
the Theory of Event Coding (Hommel et al., 2001), according to 
which actions are represented in terms of distal aspects, an overall 
goal, rather than in terms of the proximal ones, and with neuro-
physiological studies showing that actions are represented in the 
brain primarily in terms of goals (e.g. Umiltà et al., 2008).

discussion
Overall, our results suggest that the simulation evoked during sen-
tence comprehension is fine-grained, as it is sensitive both to proxi-
mal and to distal information (effectors and goals). Additionally, 
the results show that actions are represented in terms of goals and 
of the motor acts necessary to reach them. Finally, they indicate 
that these goals are modulated by the characteristics of both objects 
and agents implied by sentences: this is observed due to the dif-
ference between actions involving only the self in comparison to 
those involving others.

was modulated according to the typical kinematics involved by the 
actions described by action and interaction verbs. Namely, since 
interaction verbs describe the interaction with another person, the 
kinematics in response to interaction verbs is modulated according 
to an increased requirement for accuracy and precision. That is, 
the same act of reaching and grasping an object needs to be more 
accurate when performed in order to give the object to another 
person, hence performing an additional motor act. Specifically, 
the deceleration phase is longer. The same effect is found during 
processing of verbs referring to the same action. This suggests that 
the chained organization of actions according to more or less inter-
actional goals is translated by language. This chained organization 
can be reactivated when the motor system is activated, thus similarly 
contributing to language processing.

The results of this study suggest that sentences referring to 
actions involving other people (e.g. giving something) are repre-
sented differently in comparison to sentences referring to actions 
involving a relationship between an agent and an object (e.g. hold-
ing something). However, this study did not allow us to disentangle 
whether the difference was due to the different chain of motor 
events involved in the two actions, or whether it was due to a dif-
ference in the social framework the two sentences referred to. To 
elaborate, do “grasp” and “give” differ at a motor level because of 
the chain they imply, and the different motor acts used, or do they 
differ because their “goal”, as defined not only by a sequence of 
motor acts but also by the social dimension in which the action is 
performed? Namely, in the case of “give” the presence of another 
person is implied, while in the case of grasp it is not. Hence, their 
goal and their value differ. Even if the action chain organization 
characterizes both the canonical and the mirror neuron system, it 
is possible that, depending on the social framework the sentence 
describes, there is a different involvement of these two systems. Now 
consider words referring to objects which differ in valence, to take 
an example, words such as “nice” or “ugly”. Literature on approach/
avoidance movements has used a variety of behavioral studies to 
demonstrate that when we read positive words we are faster in 
producing a movement with our body; the opposite is true when 
we read negative words (e.g. Chen and Bargh, 1999; Niedenthal 
et al., 2005; van Dantzig et al., 2008; Freina et al., 2009).

We conducted three experiments to explore whether the triadic 
relation between objects, ourselves and other natural and artifi-
cial agents modulates the motor system activation during sentence 
comprehension. We used sentences that referred to nice/ugly objects 
and to different kinds of recipients (Lugli, Baroni, Gianelli, Borghi 
and Nicoletti (under review)). Participants were presented with 
sentences formed by a descriptive part (e.g. the object is attractive/

Table 1 | Mean response times (rTs, in milliseconds) in the “another person” – “table” – “friend” target/negative object condition and “another 

person” – “table” – “friend” target/positive object condition.

experiment “Another person” – “table” –  “Another person” – “table” – “ difference 

 “friend” target/negative “friend” target/positive 

 Objects objects

Exp. 1 “Another” 1645 1634 11

Exp. 2 – “Table” 1834 1834 0

Exp. 3 – “Friend” 1662 1609 53
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system, embodied robotics models cannot contribute to provide an 
adequate account of human linguistic comprehension capabilities. 
We prefer to adopt a weaker embodied view. We propose that robotic 
models can strongly represent embodied theories of cognition. To 
elaborate, robotics could be a powerful instrument to explore the 
extent to which the similarity between the sensorimotor system of 
different organisms, artificial and natural, constrains the emergence 
of cognition, and the emergence of language comprehension abili-
ties. In this respect, it might be critical to use robotic models of the 
sensorimotor system that differ at different degrees from the human 
one. This could contribute to determine the importance of embodi-
ment theories: namely, it would allow researchers to better under-
stand which aspects of humans’ neural and sensorimotor system are 
critical and determine modifications in humans’ behavior.

The third type of constraints, which are referred to as “behavio-
ral constraints”, are directly linked with the capability of the model 
to reproduce and replicate the behaviors produced during the 
experiments. Having a model which respects the three constraints 
we outlined would facilitate formulating a synthetic and general 
theory of the relationships between language and the motor system. 
Namely, it could contribute to a synthesis effort thus identifying 
the crucial underpinnings of our behavior.

We believe a model that accounts for the constraints we have 
illustrated should be able to individuate general principles that 
combine important characteristics of the relationship between lan-
guage and the motor system. In the behavioral studies we reported, 
the critical points which are worth modeling are the following:

The fact that

– during language comprehension the underlying motor and 
premotor cortices are activated;

– the motor system has a chained organization, and that this 
organization is encoded in language;

– actions, as well as words and sentences referring to actions, are 
encoded firstly in terms of distal aspects (overall goal), then of 
proximal ones (e.g. effectors);

– the different social framework in which the actions are inscri-
bed can change the way in which the action is represented.

On this basis, a model should contribute in detail and explain:

– the time-course as well as the mechanisms underlying the inter-
ference and the facilitation effects occurring between effectors 
implied by action verbs/action sentences and the effectors used 
to provide a response;

– the mechanisms according to which the different number of 
motor acts involved in an action chain constrain the compre-
hension of different action verbs and action sentences;

– the mechanisms according to which, even if the length of a 
motor chain does not differ, action goals have influences on 
the comprehension of action verbs/action sentences and how 
this influences movement;

– the mechanisms according to which, even if the length of a 
motor chain does not differ the language referring to the pre-
sence of objects and/or of other organisms implies the activa-
tion of different neural mechanisms (e.g. canonical vs. mirror 
neurons) which differently affect behavior.

We believe that realizing a model of these experiments would be 
important for understanding the relationships between language and 
motor system. Namely, modeling could contribute to create a theory of 
their relationship, which is detailed and advances clear predictions. In 
this direction, models can help to integrate a variety of different empiri-
cal results, obtained with different paradigms and different techniques, 
within a common framework. However, it is important that models 
do not only replicate experimental studies, but rather provide general 
principles and generate predictions to be tested empirically.

One could ask which kinds of models can help to interpret 
experimental results as the described ones, and help to formulate 
novel predictions.

Simple feed-forward models are probably not sufficient, as they 
may not provide an adequate formalization for embodied theories. 
Namely, feed-forward models are endowed with an input and an 
output lawyer which strongly resembles the traditional sandwich 
of dis-embodied theories of cognition. A recurrent network would 
probably be more suitable to detect the reciprocal influence of 
perception and action.

On a general level, modeling should respect a variety of con-
straints (see Caligiore et al., 2009; Caligiore, Borghi, Parisi and 
Baldassarre (accepted)).

The first kind of constraints are the neurobiological ones. Namely, 
the model’s neural system should be endowed with at least some 
crucial characteristics of the human neural system. In particular, the 
neural underpinnings of motor simulations formed during language 
comprehension are represented by wide neural circuits that – cru-
cially – involve canonical and mirror neurons (Gallese et al., 1996; 
Rizzolatti and Craighero, 2004). Therefore, the model should be 
endowed with a simulated neural system which reproduces both 
canonical and mirror neurons. More specifically, the motor sys-
tem of the model should be organized in such a way that chains of 
actions are implemented so that each sequence includes different 
motor acts, and is organized around goals. One exemplar model, 
that clearly describes this phenomenon, was presented by Chersi 
et al. (2005, 2006), who modeled the study by Fogassi et al. (2005) 
using a chain model. Additionally, the model has been extended to 
explain how intention understanding and mental simulation take 
place. We believe that this model could be extended to study whether 
a chained organization explains the differences between verbs and 
sentences, for example between action and interaction verbs. Other 
hierarchical action schemas have been suggested in the literature, 
for example by Botvinick et al. (2009), adopted a reinforcement 
learning hierarchical model. Botvinick (2008) reviews how hier-
archical models of action are being more frequently referred to. 
This is probably due to the fact that the way in which how general 
and abstract action representation emerges from action compo-
nents, and the role of prefrontal cortex in this process, is becoming 
an important issue for neuroscientific research. The second kind 
of constraints are “embodiment constraints”. Namely, it would be 
important to replicate the experiments using embodied models, 
i.e. models endowed not only with a brain which is similar to that 
of humans, but also with a body which is similar to ours. In sum: 
robots should be endowed with a sensorimotor system similar, at 
least in some respects, to a humans’ sensorimotor system. Consider 
that assuming a strong embodied view would lead to the claim 
that, given the differences between robots and humans sensorimotor 
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conclusion
In conclusion: we believe that embodied robotics can greatly 
contribute to a better understanding of the mechanisms under-
lying the relationship between language and the motor system. 
We argue that roboticists and modelers should work along-
side empirical scientists in order to improve abilities to con-
strue models which do not only account for empirical results, 
but also formulate predictions that constrain and guide new 
 experimental research.
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 representations. These approaches stress the point that cognition 
cannot be explained solely by abstract symbolic processing, because 
human beings have a body interacting with environment (embodi-
ment: e.g., Glenberg and Kaschak, 2002), and because a sensorimo-
tor ground is needed for symbols. This is the symbol grounding 
issue (Harnad, 1990; Cangelosi et al., 2000).

Such new stances have influenced also the way of considering 
language. The question of how actions are internally represented 
is of general importance because words for action (predicates or 
verbs) are the essential ingredients of propositions, and actions are 
also fundamental for understanding, like predicates are essential 
in logic. In addition, representation of actions and of words could 
be tightly linked since, according to some theories, linguistic com-
prehension would be a sort of internal simulation (re- enactment) 
of actions expressed by linguistic symbols (Barsalou, 1999; 
Pulvermueller, 2005). Many other recent approaches have made 
similar points, like the “experiential view of language comprehen-
sion” (Zwaan, 2004). In the same vein is the finding that motor verbs 
activate brain regions associated with action (Ruschemeyer et al., 
2007). Barsalou comes to considering perceptual non-symbolic 
representations as a system having the same features of symbolic 
ones, including compositionality. In this sense, Barsalou’s approach 
implies supposing analog representations working compositionally 
(Wu and Barsalou, 2009).

IntroductIon
Compositionality and symbol grounding are two fundamental 
questions that have gained considerable theoretical attention in 
the last decades. Compositionality consists in the possibility of 
drawing the meaning of a complex linguistic expression from the 
systematic combination of meaningful components according to 
syntactical rules. It is considered one of the key features of human 
language, differently from animal communication or human ances-
tor protolanguage, fundamentally holistic and conveying meaning 
only through single gestaltic expressions (Jeannerod, 1988; Arbib, 
2005). Compositionality has been called into play for explaining the 
ability of producing an indefinite number of linguistic expressions 
(what is known as productivity), and is relevant in formal languages 
of mathematics, logic, and computer science. The principle of com-
positionality, in fact, is a general key concept in all the cognitive sci-
ences, since it has gained interest in philosophy, linguistics, artificial 
intelligence, robotics, psychology, and neuroscience.

As is well known, compositionality was an essential part of the 
traditional cognitivist “language of thought” hypothesis (Fodor 
and Pylyshyn, 1988), positing that human representations acquire 
their structure by the combination of distinct symbolic parts 
according to formal rules. This view was first challenged by con-
nectionist theories (Smolensky, 1988; van Gelder, 1990) and more 
recently by new approaches that accept the idea of non-symbolic 
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The motivation for the present study then comes from the fact 
that, although compositionality has been traditionally considered 
as concerning the abstract combination of symbols that already 
must have a grounded meaning, the possibility of an analogical 
compositionality, and in particular of a motor compositionality, 
is a still open empirical question.

The hypothesis of a motor compositionality has obtained a 
substantial interest in current cognitive neuroscience research 
(Bizzi and Mussa-Ivaldi, 2004, p.415). There are several reasons for 
hypothesizing compositional motor representations: human motor 
control has a hierarchical nature, complex motor programs result 
from motor subroutines, elementary operation of body parts (i.e., 
joints, muscles, etc.) for action can be identified (Allott, 2003). In 
robotics, such a system has also obtained significant attention (e.g., 
Thoroughman and Shadmehr, 2000; Amit and Mataric, 2002; or 
the “Human Activity Language” primitives for segmenting human 
motor patterns as a language: Guerra-Filho and Aloimonos, 2006). 
The theoretical relevance of this issue is clear also since a compo-
sitional motor representation would entail that motor primitive 
elements could be distinguished that keep the same meaning in 
different contexts, like their possible verbal counterparts.

Some additional clarification seems convenient here about the 
expression “motor representation.” It is obviously possible to con-
sider either symbolic (conceptual, verbal) or analog motor rep-
resentations; grounding is, of course, just the establishing of an 
association between these two kinds of representations. But the 
notion of analog motor representations seems to oscillate between 
psychological and neural senses (Greco, 1995; Peschl, 1997), 
ambiguously referring to different processes such as: (a) prepar-
ing motor action: motor schemata or motor imagery (Jeannerod, 
1994; see also the symposium “Mental representations of motor 
acts” of the European Neurosciences Association: Deecke, 1996); 
(b) kinesthetic self-perception of motor action during execution; 
(c) visuospatial perception of motor action executed by others. 
Such senses evidently refer to different motor tasks that may be 
related to a more basic distinction between visuospatial and motor 
aspects (respectively implying perception and execution of motor 
patterns). The strength of this distinction, however, seems weak-
ened by the celebrated and well-established mirror neuron theory, 
showing that perception and execution of motor patterns acti-
vate the same brain areas (Gallese et al., 1996). The mirror neuron 
hypothesis is compatible with the assumption that, even if evidence 
can be found that motor tasks are controlled by different systems 
at lower levels, at some higher level they should converge into a 
unique representation. This unique representation is responsible 
for the uniqueness of meaning, the one that normally is expressed 
verbally (e.g., when we speak of “walking” we mean the same thing 
either referring to what we see when someone else is walking or 
what we ourselves do when walking).

In any case, whatever the exact nature of analog motor rep-
resentations is (as a form of imagery, or of mental simulation, 
or re-enactment), the point is how structured these representa-
tions are. Do they include primitive “images” for components of 
motor performance, or codes for individual features, that are then 
somehow assembled, or do they work as a whole? The question is 
relevant also for motor concepts and words that are associated to 
motor memories.

Framework
The present study was aimed at an empirical investigation about 
the nature, compositional or holistic, of motor representations that 
provide analog ground for meaningless verbal labels.

The most obvious and ecological way of analyzing the rela-
tion between language and motor behavior is considering when 
a meaningful association is established. This is obvious because 
motor activities are normally goal-directed, and meaningful 
words are used to describe them. We choose, however, to start 
from meaningless words and motor patterns, a rather extreme 
situation, because when studying the establishing of symbol 
grounding the interference of already-known motor patterns 
and words should be minimized. We needed to study how new 
symbols are associated and eventually combined for representing 
new motor patterns, eventually becoming meaningful. Thus we 
used non-sense words as arbitrary symbols that would acquire 
a meaning only (or as much as possible) from grounded sensory 
experience, namely in connection with perceived visuomotor 
stimuli. Similarly, we used non-sense motor patterns because 
if they already had a sense they would also had been already 
connected with a corresponding linguistic representation and 
the new word would only consist in a sort of “translation” or 
a synonym of this existing representation. We actually use the 
term “motor patterns” and not “gestures” just to stress that we 
are referring to meaningless motor behavior. We are obviously 
aware of limits of this perspective, since any stimulus (either 
verbal or not) is normally put in relation with semantic memory 
contents; this situation of artificial “semantic vacuum,” however, 
seemed suitable as a starting condition for a study of symbol 
grounding establishment.

The present work continues a previous one (Greco and Caneva, 
2005) where we already associated an artificial language with mean-
ingless motor patterns in holistic and compositional conditions. In 
the experimental paradigm described in the present paper, there 
were two conditions. In the first condition one word acquired a 
grounding for an arm trajectory (irrespective of how it was exe-
cuted) and a second word was grounded for denoting a particular 
way of executing it (how to put hands while executing it). In the 
second condition a single word was grounded for each motor pat-
tern execution taken as a whole.

The main hypothesis tested was that when different verbal labels 
are learned in association with different aspects of visuomotor 
patterns in arm motor patterns (namely, in our case, arm trajec-
tory and hand posture), a separate grounding is established for 
these symbols, based on compositional analog representations, 
that allows a facilitation in a subsequent naming task for the 
same patterns.

The rationale is that the ability of correctly naming visuomo-
tor patterns, in our experimental conditions, is a true grounding 
test (Cangelosi et al., 2000), because this would reveal that labels, 
that were meaningless at the start, became meaningful symbols 
for these patterns as a result of an analog grounding. This kind of 
grounding may be ascribed an analog nature even if it does not 
necessarily involve really performed motor patterns. This idea is 
supported by the mirror neuron theory, that strengthens the idea 
that analogic patterns can be established on observed visuomotor 
patterns without a direct bodily execution.

29

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org


Frontiers in Neurorobotics www.frontiersin.org November 2010 | Volume 4 | Article 111 | 

Greco and Caneva Compositional symbol grounding

(corresponding to never seen trajectories), the other 6 (*PD) were 
hand posture distractors (corresponding to seen postures but per-
formed in a different hand posture).

Linguistic stimuli. For group A, a two-word sentence was used to 
name patterns, resulting from the combination of the word for the 
trajectory and the word for hand posture (words for group A are in 
italic in Table 1). For group B, a single word (in bold in Table 1) was 
used to define each pattern as a whole. For example, the first pattern 
was named “baspi nole” for group A and “terpesova” for group B.

As in natural languages syntactical roles are marked by particu-
lar morphemes, some constraints were established for pseudow-
ords that had to assume a syntactical role. The six pseudowords 
denoting verbs were 5-letter and bisyllabic, constructed by adding 
a consonant-vowel pattern to a fixed ending (–SPI). Pseudowords 
denoting adverbs were 4-letter and bisyllabic, constructed by the 
pattern consonant-O-consonant-E. Single pseudowords standing 
for full motor patterns had 9-letter and 4 syllables (resulting like 
the sum of the other two words) and all ended in -A.

Participants
Twenty students, volunteers, individually participated in the experi-
ment for course credit. Informed consent was obtained prior to 
participation in the study. Half of them were randomly assigned 
to group A, half to group B.

Procedure
Participants seated in front of a 14″ computer monitor, in a differ-
ent room than experimenter’s; in the table in front of the screen 
a rectangular area measuring cm 77 × 53, including two reference 

If participants in the compositional condition were favored in 
this task, then, this outcome would show that a separate analog 
grounding was established for arm trajectory and hand posture, 
connected with the corresponding two labels. On the contrary, if 
patterns tended to be better represented by analog holistic codes, 
a naming task in the condition where each pattern as a whole was 
learned in association with a single word should be advantaged.

A further account for a possible advantage resulting in com-
positional condition is that memory load is reduced when the 
amount of information needed to name stimuli is smaller, as in 
the case when some words can be reused for recalling the same 
motor referents. However, not only informational load but also 
a reliable grounding system must be taken into account in this 
case: this involves a consistent association between symbols and 
their analog referents. We shall tackle this question with the help 
of neural network simulations.

We addressed also the question whether the visuospatial analog 
coding, on which recognition is based, might be affected by ground-
ing as well. In fact, it is reasonable to suppose that naming implies 
first some pattern recognition process and after that – if grounding 
has been established – the retrieval of the corresponding label. We 
tested this possibility by introducing in our first experiment also 
a recognition test, in order to assess a possible difference between 
compositional and holistic groups.

experIment 1
method
The task consisted in associating visuomotor patterns, presented 
as videoclips, with corresponding words, uttered aloud. There were 
two conditions: in the compositional condition (group A) motor 
patterns were associated with two words, whereas in the holistic 
condition (group B) with a single word. The two-word sentence 
presented in the compositional condition can be considered as a 
“verb–adverb” structure: what motor pattern is performed, how it is 
performed (i.e., using what posture). In this experiment a recogni-
tion test was performed prior to the naming test. The dependent 
variables were: (a) recognition of target motor patterns presented 
along with distractors; (b) naming (retrieving the name corre-
sponding to each target motor pattern).

Stimuli
The structure of stimuli is shown in Table 1; some examples are 
given in Figure 1.

Motor stimuli. Consisted in arbitrary arm trajectories (as an exam-
ple: moving arms toward oneself and then lifting them). Eighteen 
stimuli were constructed by combining six basic motor patterns, 
performed in three different hand postures (up, down, fist); four 
other motor patterns were added, performed in the hand up (called 
“nole”) posture only. All motor patterns were performed by a sit-
ting person, framed half-length, in front of the camera; only the 
chest and the arms were visible; in the starting position the hands 
(already in the palm, back or fist posture) rested on two reference 
circles marked on the table. Only 12 combinations (the ones with 
a bold name in Table 1) were presented during learning. The other 
10, indicated with an asterisk, acted as distractors for recognition 
testing purpose; 4 of them (*TD) were arm trajectory distractors 

Table 1 | Stimuli.

Basic motor Hands up Hands down Fist 

patterns

 Nole Bote Sove

Baspi Terpesova *PD Utrimosta

Gispi Sertamina Mutiralda *PD

Respi Tupifasta *PD Mertogala

Tispi Volsicoda Feltorana *PD

Faspi Patrasina *PD Luticanza

Cuspi Rispaguna Dortamana *PD

(mov.#7) *TD  

(mov.#8) *TD  

(mov.#9) *TD  

(mov.#10) *TD  

*TD indicates trajectory distractors, *PD posture distractors.

Figure 1 | Snapshots from some videoclips of different patterns in the 
three hand postures.
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We also analyzed recognition scores for distractors only (Table 2, 
PD = posture distractors, TD = trajectory distractors). Recognition 
was almost fully correct (M = 0.92) for MD, i.e., different trajecto-
ries, but recognition scores were lower (M = 0.71) for PD, i.e., same 
trajectories with different hand postures. This difference is highly 
significant (t = −4.41, p < 0.0001) and depends on the fact that 
differences between motor patterns resulted very salient, whereas 
it was more difficult to distinguish hand postures. This result shows 
that, in a pure recognition test, motor stimuli were not processed at 
the hand posture detail level, characterized by more confusability, 
but only at the motor pattern level, more macroscopic, where a 
more immediate holistic representation seems sufficient for rec-
ognition. Retrieval in this case was based on perceptual similarities 
and not on the symbolic association with arbitrary labels.

Naming test
Naming task results were completely opposite to recognition ones, 
as very low scores resulted in both groups (condition A, M = 0.16, 
SD = 0.37; condition B, M = 0.17, SD = 0.37).

A difference between recognition and naming in our task is not 
surprising, because it is consistent with the well-established finding 
that performance is generally better in recognition memory than in 
retrieval memory, and that these are based on substantially differ-
ent processes (Yonelinas, 2002). This difference holds in many areas 
of cognition, from words (Peynircioglu, 1990), to pictures (Langley 
et al., 2008), to faces (Cleary and Specker, 2007), to melodies (Kostic 
and Cleary, 2009). This effect was found also with pseudowords and 
even non-words (Arndt et al., 2008). Our result matches such theo-
retical premises, and seems to suggest that the recognition-retrieval 
difference could be extended also to motor memory. The dramatic 
extent of this difference in our task, however, suggests some caution 
in reaching this conclusion. Our outcome evidently indicates that 
name-pattern association was too a difficult learning task in these 
conditions and this could have amplified the recognition-naming 
difference. This issue would have deserved a deeper investigation in 
different learning conditions. We strived, in the course of our study, to 
remedy such learning difficulties, but, since the recognition-retrieval 
issue was not the main concern of our current research, this result was 
not further analyzed and the recognition task was abandoned.

experIment 2
The main outstanding question from results of Experiment 
1 was the floor effect we found for naming, clearly denoting 
that learning conditions were inadequate for grounding. This 

circles identical to ones shown in the videoclips, was traced; this 
allowed participants to repeat motor patterns when requested. Only 
a mouse (no keyboard) was available for responses. All instructions 
and stimuli were presented on the monitor screen. The procedure 
included the following stages.

Verbal learning. The first stage was aimed at making participants 
familiar with words. All the words were presented in a panel with 
9 (group A) or 12 (group B) buttons, where each single word was 
printed as a button label. Labels were disposed in alphabetical order. 
Participants were instructed to click with the mouse on each but-
ton to listen to a recorded male human voice that read the cor-
responding word aloud; the order of presentation was chosen by 
participants themselves. Only when all words had been listened, a 
closing button was enabled to proceed to the next step.

Associative learning. This was the main stage of the experiment. 
Twelve training clips were presented. For each clip, the voice utter-
ing the sentence (gr. A) or word (gr. B) corresponding to the motor 
pattern was presented at the start, along with a blank screen; the 
videoclip was then shown immediately. Patterns were presented 
randomly but paired so that the same pattern was first presented 
in the “nole” (hands up) posture and then in one of the other two 
postures, like shown in Table 1. Participants were also instructed 
to repeat each pattern after having seen it while uttering its name 
aloud, in order to learn it better. It was stressed that the correctness 
of this performance would have not been assessed in any way. The 
full set of stimuli was repeated three times.

Integrated test. In the testing phase, recognition test and naming test 
were integrated. All 22 stimuli clips (12 target and 10 distractors) were 
presented in random order. For each stimulus, participants were first 
asked if they had already seen it; if they answered yes, then they were 
also asked to say the corresponding sentence/name. Motor perform-
ance was not requested. A final debriefing was conducted in order to 
assess possible task difficulties and hints for improvement.

Post-experimental debriefing. After completion of the experiment, 
a structured interview was conducted in order to assess task dif-
ficulty, the use of associations with known words or gestures, and 
above all to verify whether participants in group A had been able to 
identify the syntactic role of the two words. Almost all participants 
found the task difficult or very difficult, but the syntactical roles 
were identified without uncertainty by participants in group A, 
with the exception of only two subjects. Associations reported by 
participants were somewhat subjective and not consistently related 
to particular stimuli.

results and dIscussIon
Recognition test
Very high recognition scores resulted without any difference in both 
groups (condition A, M = 0.81, SD = 0.39; condition B, M = 0.82, 
SD = 0.38). This outcome shows that motor recognition, at least 
in our experimental conditions, is not related with the availabil-
ity of a specific verbal label for components. Motor patterns were 
presumably not recognized using a verbal code but accessing to a 
specific visuomotor representation.

Table 2 | Mean recognition proportion for distractors and target stimuli 

in experiment 1.

 Distractor type

 PD TD Target Total

group M SD M SD M SD M SD

A 0.74 0.44 0.91 0.29 0.87 0.34 0.81 0.39

B 0.66 0.48 0.94 0.24 0.88 0.32 0.82 0.38

Total 0.71 0.46 0.92 0.27 0.88 0.32 0.82 0.39
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Target pattern learning. The purpose of this stage was to make 
participants learn motor patterns irrespective of hand postures. 
As in Experiment 1, clips started with a blank screen while a male 
human voice uttered the corresponding word, then the motor pat-
tern performance was shown on the screen. Only six clips were 
presented, in random order, and only one word, referring to the 
pattern, was used. The only difference between groups A and B 
was the word used (e.g., “baspi” for gr. A and “terpesova” for gr. 
B). Subsequently, the word panel was shown, where word labels 
appeared, transformed into the infinitive form (e.g., “baspare” or 
“terpesovare”), and the participant was requested to mouseclick the 
corresponding button. It was possible to correct mistaken choices 
before confirming. Then, the pattern was shown again without 
audio and the participant had the opportunity of performing it 
while uttering the verb aloud. In instructions it had been explained 
that the purpose of this procedure was to help participants “learn 
better” motor patterns; it had been also stated clearly the absolute 
irrelevance of correct performance. The series of six stimuli was 
repeated three times.

Target pattern test. At this stage, learning of six previously pre-
sented names was tested. A minimum learning threshold of 4/6 was 
required for passing this test, otherwise the first learning stage was 
repeated (up to two times, after that the protocol was discarded).

Posture learning. After a new warm-up example trial, at this stage 
all 12 stimuli, in different hand postures, were presented with the 
same procedure as in Target Pattern Learning. For participants in 
group A, motor patterns were described using a sentence where the 
first word was the same word for the trajectory previously learned, 
and the second was the word for the posture (e.g., “baspi nole,” 
“baspi sove”); for group B the word uniquely denoting the motor 
pattern was used (e.g., “terpesova,” “utrimosta”). Participants in 
group A could compose the corresponding sentence by clicking on 
two-word buttons (in group B just one button); all could correct 
mistakes before confirming. In the word panel all words denot-
ing motor patterns were put into the infinitive Italian form (e.g., 
“baspare,” “terpesovare”) and this was the form that participants 
had to use when repeating aloud the verbal part. The presentation 
sequence was random, but, to make learning easier, motor patterns 
were paired so that each randomly selected trajectory was always 
followed by the same trajectory performed in the other sched-
uled posture. As in the previous Target Pattern Learning, the full 
set of stimuli was repeated three times, so that 36 stimuli were 
presented overall.

Final test. All 12 videoclips showing motor patterns without 
audio were randomly presented, each followed by the word panel. 
Participants in group A were requested to click on two words to 
compose the corresponding sentence; in group B they had just to 
click on the corresponding word. It was always possible to correct 
mistakes before confirming.

Post-experimental debriefing. A final debriefing was conducted 
following the same procedure used for Experiment 1. The task 
was still perceived as difficult but, as in the previous experiment, 
the syntactical role of words in group A was easily identified by 

motivated a revision of experimental setup in order to make 
learning easier. We must make clear that our interest is cur-
rently focused on differences between compositional and holis-
tic conditions in comparable learning conditions, sufficiently 
adjusted as to difficulty, and not on learning conditions or 
mechanisms per se.

A new paradigm for Experiment 2 was then planned. In order 
to make learning easier, method and procedure were simplified. 
Instructions were improved by introducing an interactive example 
of task execution. A different stimuli presentation system was also 
adopted: in the first learning stage, all patterns were presented 
only in a single hand posture (upwards); in a second learning 
stage, after having tested that at least four of six stimuli had been 
learned, the same trajectories were paired with a second posture. 
As a further change, it was required that verbal stimuli be trans-
formed into an infinitive verb, by adding the (Italian) ending 
“-are” (e.g., “baspi” into “baspare”). This helps categorizing such 
words as verbs reducing the cognitive load. An additional reason 
that motivated this change was that the task resulted rather pas-
sive, since names were still in echoic memory when repeated just 
after having being heard. This change was then aimed also at 
encouraging an active stimulus processing, so that echoic memory 
effect be removed or reduced, and participants be less passive 
and more attentive.

method
The independent variables and the main task (i.e., learning to asso-
ciate motor patterns with sentences or words) were the same as in 
Experiment 1. Naming was the only dependent variable.

Stimuli
The conceptual universe was the same as in Experiment 1 (Table 1), 
but only 12 target clips were used (no distractors were needed since 
no recognition test was performed).

Participants
28 students, volunteers, individually participated in the experi-
ment for course credit; informed consent was obtained prior to 
participation in the study. Half of them were randomly assigned 
to group A, half to group B. As in Experiment 1, in group A each 
motor pattern was associated with a two-word sentence (one for 
trajectory, one for hand posture), in group B each motor pattern 
performance as a whole, i.e., regardless of hand posture, was associ-
ated with only one word.

Procedure
Instructions and stimuli were presented in the same conditions as 
in Experiment 1. Learning was split up into two stages. In the first 
phase (target pattern learning) only six patterns in the “hands up” 
posture were learned. This stage was followed by a first test (target 
pattern test, TPT). In the next learning stage (posture learning), each 
learned pattern was paired with the same pattern in a different hand 
posture. The procedure included the following stages.

Verbal learning. This stage was exactly as in Experiment 1. The 
same word panel was used; it included the full set of words for the 
group (9 A, 12 B), arranged in alphabetical order.
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that in the present experimental conditions verbal descriptions for 
motor patterns were better learned when a compositional verbal 
system was available.

In our experimental setup, in the FT, naming was influenced by 
having seen a pattern before. The effect of a verbal system could only 
be revealed by considering trajectories with a new hand posture. In 
fact, the compositional group (A) had better results than the holistic 
one (B) in naming new stimuli. If we compare the outcomes of 
the experiments 1 and 2, we find that there was no compositional 
representation in recognition (Experiment1) and a sort of compo-
sitional representation in naming (Experiment 2). The procedure in 
Experiment 2 presented two main differences from Experiment 1: 
(a) having splitted learning of trajectories and of postures; (b) having 
introduced the addition of the Italian suffix for verbal conjugation 
(“-are”). The first change may have helped participants identify more 
easily stimulus features. The second change may have helped group 
A (where an elementary syntactical system was needed) by giving a 
hint about the syntactical role of the first word.

all participants (only one failed). Very few verbal or visuomotor 
associations were reported, that were not commonly shared but 
rather had a personal character. In any case, there is no reason to 
suppose that particular associations could favor one group over 
the other.

results and dIscussIon
We first analyzed learning progress in different experimental stages. 
Figure 2 shows the learning curve (mean proportion of correct 
responses) from the first to the final phase. At the first TPT there 
were no significant differences between the two groups (A = 0.47, 
SD = 0.50; B = 0.41, SD = 0.49; t = 0.82, p = 0.41). This shows 
that there were no differences between subjects at the start and, 
importantly, that stimuli used for the two groups were equivalent. 
Mean values of correct responses at the final test (FT), instead, were 
significantly different (A = 0.60, SD = 0.49; B = 0.46, SD = 0.50; 
t = 2.51, p = 0.01).

As it is clear from our experimental set up, two kinds of stimuli 
were tested in the FT phase, i.e., motor patterns presented in both 
Target Pattern and Posture Learning phases (all with hands up 
posture) and motor patterns only presented in the latter, differing 
from previous ones because they had different hand postures. It 
seems obvious to expect that motor patterns seen in both learning 
phases (hands up posture) are considerably easier than others; in 
fact, there is no difference between groups for such stimuli learned 
during both training phases (see Table 3, 0.68 vs.0.62, t = 0.83, 
p = 0.41). If we consider other motor patterns, however, the dif-
ference between the two groups is dramatic (A = 0.51, B = 0.29) 
and statistically highly significant (t = 2.83, p = 0.005). Since new 
stimuli differed from previous ones only for hand posture, this sup-
ports the hypothesis that the compositional task was easier because 
a specific word denoting posture was available. We can say, then, 

Figure 2 | Learning curve in experiment 2.

Table 3 | Mean correct naming proportion in experiment 2 (final test).

group Stimuli Correct

  M SD

A  0.60 0.49

 Hands up posture 0.68 0.47

 Other posture 0.51 0.50

B  0.46 0.50

 Hands up posture 0.62 0.49

 Other posture 0.29 0.46

Total  0.53 0.50
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We then performed three simulations:

•	 basic simulation, that faithfully reproduced the Experiment 2 
conditions;

•	 extended simulation, where the basic simulation was augmen-
ted using an increased number of inputs;

•	 non-systematic simulation, similar to the extended simu-
lation, where verbal inputs were modified in order to be 
informationally equivalent to original ones, but without any 
systematicity.

General method and basIc sImulatIon
General neural network architecture and I/O encoding
For all our simulations we used a set of 50 neural networks that 
implemented three modules of hidden units, with the function of 
processing motor and verbal information, and of establishing an 
associative grounding between the two kinds of data.

The architecture (shown in Figure 3) included an input layer, 
divided into two distinct modules (12 motor units and 9 verbal 
units), two hidden layers, and only one (verbal) output layer. The 
first hidden layer was divided into two distinct (not interconnected) 
modules, each including six units, with the purpose of independ-
ently processing motor and verbal inputs. The second hidden layer 
(including 15 units) had an “associative” function, that is to relate 
the two kinds of inputs and to generate the output. Each layer was 
connected in a recurrent way with its lower layer.

neural network sImulatIons
As we have mentioned previously, a possible account for the advan-
tage resulting in the compositional group is that in this condi-
tion more motor stimuli can be coded using a fewer number of 
words. This implies an informational gain, that would be maximally 
exploited with all theoretically expressible stimuli: using the nine 
available words in condition A, 18 motor patterns can be named 
combining six trajectories with three postures (type-token ratio 
9/18 = 0.50). Even if in our actual condition only 12 patterns were 
learnt (type-token ratio = 9/12 = 0.75), anyway a consistent reduced 
memory load results. In this account, however, two aspects are not 
clearly distinguished, i.e., the informational-syntactic aspect (i.e., 
the mere number of alternatives and word positions) and the need 
for consistent and systematic semantic associations.

In order to test some different possible changes to our paradigm 
without having to engage a number of new human participants, we 
reproduced and modified the task using neural network models. 
Considering that grounding analog information in symbolic codes 
is tantamount to use more compact representations, we can expect 
a still greater advantage for the compositional condition respect to a 
condition where the number of words is equal to the number of stim-
uli to be distinguished and remembered (type-token ratio = 1.00). 
To take into account the role of systematic correspondence between 
words and analog patterns, upon which syntax and grounding are 
based, we also devised a simulation where such correspondence was 
disrupted, while maintaining an equivalent informational load.

Figure 3 | Neural network architecture.
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2. In the Basic simulation, the conceptual universe was exactly the 
same used in Experiment 2 (referred as “standard” in Figure 5 that 
summarizes all simulations), including 12 stimuli.

Basic simulation results
Networks learning in both conditions was very close to human 
participants performance. The learning curve from the TPT and 
the FT is shown in Figure 4. As for human subjects, there were 
no significant differences between the two conditions at the TPT 
(A = 0.41, SD = 0.26; B = 0.38, SD = 0.31; t = 0.41, p = 0.98), while 
significant differences were found at the FT (A = 0.53, SD = 0.34; 
B = 0.40, SD = 0.31; t = 1.80, p < 0.05).

addItIonal sImulatIons
Extended simulation procedure
This simulation differed from the Basic simulation only because a 
larger number of input (motor and verbal) stimuli was used. 48 new 
motor patterns were created using a custom program for generating 
random 3-D trajectories, using a procedure based on random point 
generation and spline interpolation; some constraints were included 
in this procedure to avoid trajectories impossible to be performed by 
human-like arms; each trajectory was also planned to be performed 
in 3 + / − 1 s by virtual hands moving at constant velocity. When the 
final spline system defining a new trajectory was completed, a new set 
of 25 coordinates was calculated getting points at regular intervals.

Correspondingly, 24 new words were introduced for denoting 
patterns in condition A and 48 for condition B. New words were also 
generated using a custom software that reproduced the structure of 
original words. The constraint was established that each new word be 
different from previously generated ones, by computing the number 
of repeated letters (for condition A) or syllables (for condition B). The 
three original motor and verbal codes were kept for hand  postures. 
The total number of stimuli was then augmented to 60.

Since motor and verbal data flows had a different length, we 
introduced a parametric bias to synchronize the data flow. This 
bias was computed during a pre-training stage by a set of four 
“timing” units (not shown in figure) supervisioned by a back-
propagation algorithm. In this pre-training, networks were given 
10 motor pseudo-inputs that had the same streaming structure 
of real inputs, but that did not represent points fitting on the 
same curve. During this stage, the supervision algorithm acted 
uniquely on timing units, while weights of all other connec-
tions were not modified. At the simulation start, all timing units 
were set up the same way in all networks; weights of other units 
were generated randomly. Parameters of timing units were never 
modified during simulations. Thus our networks can be con-
sidered as discrete-time RNNPB (Recurrent Neural Networks 
with Parametric Bias) with a dynamic input. During simulation 
learning was achieved by a supervised Bayesian algorithm using 
Gibbs sampling.

The basic conceptual universe consisted of a number of inputs 
equal to the number of stimuli used for the Experiment 2. Verbal 
and motor input were given as data streamings. Words or sentences 
were input as a flow of four consecutive strings (corresponding 
to the 4-syllable verbal inputs, e.g., ba-spi-no-le or ter-pe-so-va). 
Motor patterns were encoded in a pseudo-analog way, i.e., input as 
25 consecutive sets of spatial coordinates of the two hand postures 
in different time moments (frames) during pattern execution; such 
coordinates were obtained through the analysis of motor patterns of 
a virtual dummy (Poser 7.0). Each stream also included information 
about the hand posture, encoded using three binary units.

General procedure
Each simulation was composed of two sets of 50 nets and they 
followed the same steps considered in the corresponding experi-
ment. Simulations followed the same steps as in the Experiment 

Figure 4 | Learning curve in basic simulation.
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Once generated, such composed sentences were obviously used 
consistently throughout the experiment. Since word combinations 
predicted the same referent as if they were single words, condition 
C was somewhat similar to condition B, but from the informational 
quantity aspect (number of different words, type-token ratio) it 
was equivalent to condition A (0.75).

Non-systematic simulation results
Performance in condition C (Figure 5) was always very scarce 
and smaller than other conditions, and comparable to condition 
B (even if the type-token ratio in this case was more favorable than 
in condition B). Already at the standard 12 stimuli level, there was 
no significant difference between B and C conditions performance 
(B = 0.40, C = 0.22; t = 1.78, p = 0.10) and, as the curve shows, the 
distance between the two conditions becomes shorter and shorter 
when the number of stimuli increases.

Additional simulations discussion
Results of additional (Extended and Non-systematic) simulations, 
taken together, suggest that the better performance in condition A 
may be explained by an informational advantage only when this is 
joined with a systematic and consistent association between words 
and their referents.

As we have seen, the main advantage of symbol grounding is 
its ability to offer more compact representations than analog ones, 
but even if representations exhibiting one-to-one correspondences 
between symbols and referents are still more compact than original 

Extended simulation results
Even if the simulation was run using all 60 stimuli, only 30 can 
be considered in results since this number is already sufficient for 
significant differences between conditions A and B. As shown in 
Figure 5, when extending the simulation with an increasing number 
of stimuli the advantage for condition A persisted and was even 
more robust. When 30 stimuli were used, correct performance was 
0.30 in condition A and 0.07 in condition B (t =  2.04; p < 0.05).

Non-systematic simulation procedure
In this simulation the same data and procedure of previous ones 
were replicated, with the exception that a new condition was intro-
duced. In this condition C, the set of verbal inputs included the 
same bisyllable words used for condition A. The original syntactic 
structure was kept (5-letter words first and 4-letter words follow-
ing), but words were associated with randomly selected trajectories 
and postures. The association was arbitrary when sentences were 
generated: the first word was chosen randomly in the list of words 
used for trajectories (e.g., baspi), the second word similarly chosen 
randomly in the list of words used for hand posture (e.g., nole). For 
example, “baspi bote” and “baspi nole” in condition A were referred 
to the same trajectory performed in two different hand postures, 
while in condition C these word combinations were referred to 
different trajectories and hand postures. So there was no consistent 
association between single words and single components of motor 
patterns: there was only a formal compositional-like structure but 
without any true compositional meaning.

Figure 5 | Summary of three simulations.
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matical word categories was established without explicit teaching, 
showing that syntax and semantics acquisition cannot be clear-cut 
separated, much like in the experiments of Sugita and Tani (2004) 
where a robot learned from scratch the compositional meaning 
of simple sentences from correspondences between sentences and 
sensory-motor patterns.

Several studies have stressed the role of verbal labels in motor 
learning. Helstrup (2000) findings support the hypotheses that 
motor sequences are coded as verbal strings rather than motori-
cally or visuospatially; Frencham et al. (2004) found a better recall 
of hand movement sequences associated with verbal labels congru-
ent with hand postures, still supporting the hypothesis that motor 
sequences are coded as verbal strings. These authors explain such 
results with a greater familiarity of verbal codes, easier to rehearse 
than actions. In our conditions, where two kinds of unfamiliar 
stimuli (verbal and motor) were associated, we can hypothesize 
that, assuming independent symbolic and analog representations, 
this coupling may rather reinforce a sort of mutual grounding. 
In fact, our findings support the idea that when an association 
is established between meaningless analog patterns and verbal 
symbols, grounding may work in a two-way direction: symbols 
become meaningful on the sensorimotor grounds, but also analog 
representations aspects (e.g., in our case, trajectories and postures) 
become more distinguishable when a specific label is available 
for them.

These remarks address also a possible issue stating that the use of 
two linguistic labels (words) in the compositional condition could 
have been a hint to look for two different components of the shown 
motor patterns1. Even if this turned out to be true, however, it could 
only be a demonstration that grounding can work bidirectionally, 
since in this case words had the power of facilitating the perceptual 
discriminations that in turn must necessarily be considered part of 
the grounding representations for the same words. This would also 
be evidence that grounding representations do not depend only on 
the visuomotor information, but language is fundamental. In any 
case, this does not cancel the fact that a compositional grounding 
was established but rather provide a further explanation of how 
it was obtained.

This somewhat Whorfian hypothesis, obviously, would deserve 
some deeper investigation, but is compatible with an interpretation 
of compositionality as a function of cognitive economy. If we take, 
as a baseline condition, that a single word for each motor pattern 
(group B, holistic condition) is matched with one fixed correspond-
ing composite sentence (group A, compositional condition), then 
if group A performs worst than B, this indicates the cost of com-
positionality. On the other hand, if group A performs better than 
B, this indicates the gain of compositionality. Our results indicate 
that condition A led to a gain especially for patterns where hand 
postures discrimination was relevant. Some computational studies 
on language evolution (Kirby, 2002; Vogt, 2005; Smith et al., 2003) 
have claimed that compositional language has emerged in the cul-
tural evolution as a consequence of the fact that examples actually 
encountered during verbal learning are necessarily limited (what 
has been called a bottleneck in cultural transmission); in this view, 
the advantage of compositionality is maximized in more  structured 

analog representations, they do not work efficiently in a world 
where there are regularities and redundancies. We can speculate 
that the most important reason why compositional systems work 
better is not their ability of reducing cognitive load but, instead, 
their ability of making possible a systematic reusing of correspond-
ing grounded analog representations.

General dIscussIon
In this paper we described an empirical paradigm aimed at study-
ing the possible compositional nature of grounded analog motor 
representations. The question asked was whether a compositional 
internal representation, for arm trajectories that could be executed 
in different hand postures, can help recognition and naming of 
such patterns when associated with symbolic (verbal) labels. We 
performed two experiments and simulations with neural networks, 
using meaningless stimuli, in two conditions, i.e., when labels were 
single words, corresponding to motor patterns regardless of hand 
postures (holistic condition), and when two-word sentences (the 
first word for the arm trajectory, the second for the hand posture) 
acted as labels (compositional condition).

In the first experiment, a good performance in pattern recog-
nition was generally achieved regardless of verbal compositional-
ity, but was poorer when distractors differed from targets just in 
hand postures. This showed that verbal labels did not help reduc-
ing the main source of confusability in this task, concerning hand 
postures, because recognition was only based on perceptual, not 
symbolic, cues. The mediating representation in this case was a 
purely analog and holistic code. Nothing could be drawn from 
this experiment as to the naming task, because of difficulties of 
the learning procedure.

In the second experiment, as a result of substantial changes to the 
learning procedure, we obtained acceptable learning performances 
in the naming task for all participants. In this task, that as we have 
noted above is a true grounding test, we found a significant differ-
ence between the compositional and holistic groups after having 
introduced a condition where the hand posture was relevant for 
differentiating between stimuli. Since in the compositional condi-
tion the second word had been consistently associated with the hand 
posture aspect, we can say that a separate grounding representation 
was established for it, different from the one acting as a ground for 
the word denoting the arm trajectory. This means that different 
analog (visuomotor) representations worked compositionally as a 
ground for the corresponding symbols, similarly to what happens 
with symbolic composition. The full representation of each new 
concept that we have tried to construct, on this view, includes both 
verbal and sensorimotor information corresponding, in different 
conditions, either to the whole pattern or to aspects of it.

In both our experiments, but notably in the first one, where no 
grammatical cues were present, almost all (99.9%) responses of 
participants in the compositional condition were syntactically cor-
rect: the first word denoted a trajectory, the second a posture. This 
happened even when participants, during the post-experimental 
debriefing, did not show to be aware of the syntactical functions 
of words. This is not surprising, because the automatic emerging 
of syntax is a well known fact, evident also from natural language 
acquisition in infancy. However, we would like to stress here that the 
correct binding between perceived patterns and appropriate gram- 1We thank an anonymous referee for pointing out this issue.
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focused on such aspects, and this mutual grounding can further 
explain the cognitive gain of the compositional condition.

Results from our simulations clarify that such cognitive gain is 
not just the effect of a reduced memory load in a compositional 
symbol system. In fact, the environmental structure of meaning 
space is not important just because when the number of stimuli 
increases more information can be tackled with a smaller number 
of symbols, but because some symbols, by virtue of their ground-
ing, can be reused as far as they are able to reinstantiate the same 
analog representations.

Our research can be continued in several directions. Our tasks 
only required that participants recognized or named visually pre-
sented (in videoclips) motor patterns. Interesting additional infor-
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Here we first review the relevant behavioral and brain imaging 
studies and emphasize the differences in results. We then present 
a computational model of the underlying neural circuits (based 
on the Chain model, see Chersi et al., 2006, 2007) which is able to 
account for the different findings. The model has been chosen as 
it is strongly motivated by neurophysiological findings which are 
relevant for the behavioral data discussed below. The fact that a 
single model can reproduce all results (in particular controversial 
and apparently conflicting data on timing in sentence comprehen-
sion) is a strong indication that they are not intrinsically in conflict 
but have rather captured different aspects of a single system.

Review: StudieS on woRdS and effectoRS
neuRophySiological and bRain imaging ReSultS
A number of neurophysiological and brain imaging studies have 
demonstrated that during action words and sentence comprehen-
sion different areas of the brain are activated depending on the 
effector (arm/hand, mouth, leg/foot) involved. The first study 
showing this was performed by Pulvermüller et al. (2001), who 
recorded neurophysiological data (specifically, they calculated 
event-related current source densities from EEG) pertaining to the 
processing of verbs referring to actions performed with the face, 
the arm/hand and the leg/foot. They found topographical differ-
ences in the brain activity patterns generated by the different verbs 

intRoduction
In recent years an increasing number of studies have adopted an 
embodied approach. According to embodied cognition theories 
(Barsalou, 2008), language is grounded in the sensorimotor system 
and language processing enhances previous sensorimotor experi-
ences with objects or situations language refers to. Within the embod-
ied approach, many studies focused on the role of motor simulation 
in language comprehension (e.g., Decety and Grèzes, 2006; Gallese, 
2008). In particular, it has been highlighted that the comprehension 
of action verbs and action sentences involves the same sensorimotor 
and emotional brain circuits that are also activated during the actual 
interaction with the objects, situations and events the sentences refer 
to (for reviews, see Barsalou, 2008; Fischer and Zwaan, 2008; Toni 
et al., 2008). In particular, studies show that the simulation formed 
during language comprehension is sensitive to the involved effector 
(e.g., mouth, hand, leg). Although there is thus increasing evidence 
for a relation between action and language, the precise nature of 
this relation is still poorly understood. At the same time, an attrac-
tive aspect of this area of research is that both behavioral and neu-
roscientific data is available. In a sense, these are ideal conditions 
for carrying out computational modeling work that furthers our 
understanding of observed behavior. It is therefore our intention to 
use such an approach to elucidate the relationship between the neural 
mechanisms underlying language and the motor system.

Sentence processing: linking language to motor chains
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A growing body of evidence in cognitive science and neuroscience points towards the existence 
of a deep interconnection between cognition, perception and action. According to this embodied 
perspective language is grounded in the sensorimotor system and language understanding is 
based on a mental simulation process (Jeannerod, 2007; Gallese, 2008; Barsalou, 2009). This 
means that during action words and sentence comprehension the same perception, action, 
and emotion mechanisms implied during interaction with objects are recruited. Among the 
neural underpinnings of this simulation process an important role is played by a sensorimotor 
matching system known as the mirror neuron system (Rizzolatti and Craighero, 2004). Despite 
a growing number of studies, the precise dynamics underlying the relation between language 
and action are not yet well understood. In fact, experimental studies are not always coherent 
as some report that language processing interferes with action execution while others find 
facilitation. In this work we present a detailed neural network model capable of reproducing 
experimentally observed influences of the processing of action-related sentences on the 
execution of motor sequences. The proposed model is based on three main points. The first 
is that the processing of action-related sentences causes the resonance of motor and mirror 
neurons encoding the corresponding actions. The second is that there exists a varying degree 
of crosstalk between neuronal populations depending on whether they encode the same motor 
act, the same effector or the same action-goal. The third is the fact that neuronal populations’ 
internal dynamics, which results from the combination of multiple processes taking place at 
different time scales, can facilitate or interfere with successive activations of the same or of 
partially overlapping pools.
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(e.g., to “lick”, “pick”, “kick”) in a lexical decision task, starting at 
250 ms after word onset. Hauk et al. (2004) confirmed the result 
with functional magnetic resonance imaging (fMRI). They found 
that during a passive reading task, words referring to face, arm, or 
leg actions differentially activated areas along the motor strip that 
were contiguous or overlapped with areas where that particular 
effector is represented. Tettamanti et al. (2005) showed with fMRI 
that passive listening to sentences expressing actions performed 
with the mouth, the hand or the foot led to signal increase in regions 
of the premotor cortex that are related to the effector involved in 
that sentence.

Overall, these studies thus reveal that during processing of 
words and sentences part of the brain is activated in a somato-
topic way. Importantly, this early activation suggests that the acti-
vation of motor and premotor cortices is not simply a by-product. 
Rather, it appears to play an important functional role in action 
word comprehension even in tasks which require a rather shal-
low processing (such as lexical decision or even passive listening 
tasks). The hypothesis that the motor system is activated in a direct 
and straightforward way is much more plausible and economical 
compared to the idea that information is first translated into an 
abstract format which then influences the motor system (Mahon 
and Caramazza, 2008).

tRanScRanial magnetic Stimulation ReSultS
Results like those reported above strongly suggest that the motor 
system activation is a fundamental part of the word and sentence 
comprehension process. However, it is still a matter of debate 
whether or not the activation of the motor system plays a causal 
role for sentence comprehension (for a position different from the 
one presented here, see Mahon and Caramazza, 2008). In addition, 
as we will show in this section, the actual effect the motor sys-
tem activation can have on the comprehension process is not well 
understood. Results obtained in studies with Transcranial magnetic 
stimulation (TMS) are controversial, as some report facilitation 
while others find interference during the processing and execution 
of combinations of actions, verbs and action sentences.

Interference
In a recent study, Buccino et al. (2005) found an interference effect 
when the effector stimulated through TMS and the stimulus were 
congruent. More specifically, they acoustically presented three kinds 
of action sentences, referring to either hand action (e.g., he/she 
sewed the skirt), foot action (e.g., he/she kicked the door) or abstract 
content (e.g., he/she loved his land) related sentences. Participants 
were simply required to listen to the sentences. A TMS pulse was 
delivered at the end of the second syllable of the verb and motor 
evoked potentials (MEPs) were recorded from hand and foot mus-
cles. Results showed a decrease in amplitude of MEPs recorded from 
hand muscles while listening to hand-action-related sentences, and 
from foot muscles when listening to foot-related sentences.

Facilitation
In contrast to the previous results, Pulvermüller et al. (2005) used a 
lexical decision task in which participants had to respond with a lip 
movement to arm- and leg-related words (e.g., “pick” vs. “kick”), and 
to refrain from responding to pseudowords. Transcranial magnetic 

stimulation pulses were delivered 150 ms after stimulus onset. Arm 
area TMS led to faster lexical decision times with arm words, whereas 
leg area TMS led to faster RTs with leg words; no facilitation was found 
in control conditions. A similar facilitation effect was found by Oliveri 
et al. (2004), who applied TMS to the left motor cortex when partici-
pants produced action-related and non-action verbs (e.g., “pour” vs. 
“detest”) and nouns (e.g., “key” vs. “hill”). The motor cortex activation 
increased for action words (verbs and nouns) compared to non-action 
words during paired-pulse TMS at 10 ms ISI, no difference was present 
at 1 ms ISI. Recently, Papeo et al. (2009) recorded TMS-induced MEPs 
from right hand muscles. They found an increase of M1-activity only 
at 500 ms, while no increase was present when they delivered single 
pulse TMS at 170 and 350 ms after action verbs appearance.

behavioRal ReSultS
Interference
In a behavioral experiment performed by Buccino et al. (2005), par-
ticipants were required to respond with either the hand or the foot 
if a presented verb was concrete and had to refrain from responding 
if the verb was abstract. Results showed that, if subjects responded 
with the same effector necessary for executing the action described 
by the sentence, response times were slower than if participants had 
to respond with the other effector. Sato et al. (2008) performed 
three experiments using a go-no go paradigm; participants had to 
answer with the right hand to verbs referring to hand actions (e.g., 
to applaud), foot actions (e.g., to walk) or abstract content (e.g., 
to love). Stimuli were presented both in the acoustic and visual 
modality. The authors manipulated both the task and the delivery 
of the go signal. More specifically, they used both a task implying 
shallower processing (a lexical decision task) and one implying 
deeper processing (a semantic decision task). In the semantic deci-
sion task, response times were slower with hand-related compared 
to foot-related verbs when the go signal was delivered early (at the 
isolation point). No effect was found with a late delivery of the go 
signal. In the lexical decision task no effect was found independ-
ently of the delivery of the go signal. This result suggests that the 
interference effect occurred only with deep semantic processing of 
sentences, and that it was confined to early delivery of the go-signal. 
In a kinematics study by Boulenger et al. (2006) participants were 
required to reach and grasp a cylindrical object. In the first experi-
ment they had to start reaching when a fixation cross appeared, and 
continue moving when words appeared but stop for pseudowords. 
Words could either be verbs referring to hand, leg or mouth actions, 
or nouns representing non-manipulable objects. Results showed 
a modulation of kinematics parameters: processing action verbs 
interfered with concurrent early reaching movements.

Facilitation
Scorolli and Borghi (2007) extended the results of Buccino et al. (2005) 
using combination of nouns and verbs referring to hand, mouth and 
foot actions. Participants were presented with pairs of nouns and verbs 
that could refer to either hand and mouth actions (e.g., to unwrap 
vs. to suck the sweet) or to hand and foot actions (e.g., to throw vs. 
kick the ball). An equal number of non sensible pairs were presented. 
The participants’ task consisted in deciding whether or not the com-
bination made sense. Half of them were asked to respond by saying 
yes loudly into a microphone whereas the other half responded by 
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action sequences (Chersi et al., 2006, 2007). According to this view, 
for example, the action of taking a piece of food is encoded as the 
concatenation of neurons that represent the reaching, the grasping 
and the retrieving motor act (see Figure 1). The execution and the 
comprehension of motor sequences correspond to the propagation 
of activity within specific chains. This chained organization allows 
a smooth and automatic execution of action sequences, and can 
be used to mentally simulate action sequences by “running” chains 
decoupled from the overt motor output.

Due to the dual property of mirror neurons (i.e., the fact that 
they are active both during execution and observation of action 
sequences executed by others) mirror chains can be used to under-
stand others’ actions and intentions by mapping the observed acts 
on one’s own motor repertoire.

ouR hypotheSiS
Taken together, the reviewed results strongly support the notion that 
the processing of language stimuli, at least for sentences express-
ing a motor content, modulates the activity of the motor system 
and that this modulation specifically concerns those sectors of the 
motor system where the effector involved in the processed sentence 
is represented. Interestingly, depending on the temporal relation 
between language and motor tasks, processing action words can 
facilitate or interfere with overt motor behavior.

The model we propose to explain these observations is based on 
three main points. First, the processing of action-related sentences 
involves the chained activation of specific pools of mirror neurons 
that encode the motor acts referred to in the sentences (Chersi et al., 
2006). This is the same mechanism as the one taking place during 
the recognition of actions done by other individuals.

Second, as shown by recent experiments (Fogassi et al., 2005; 
Bonini et al., 2009), part of the neurons representing a motor act 
(e.g., reaching) embedded in a sequence dedicated to a specific 
goal (e.g., grasping an object) respond also when the same act is 
embedded in another sequence (e.g., pressing a button).

pressing a pedal. If the combination did not make sense, they were 
invited to refrain from responding. The authors found a facilitation 
in response to “mouth” and “foot” sentences compared to “hand” 
sentences in case of congruency between the effectors – mouth and 
foot – involved in the motor response and in the sentence. It should 
be noted that the task, although different from the one by Buccino 
et al. (2005) and Sato et al. (2008), required deep semantic process-
ing as well. Importantly, however, the presentation modality of the 
stimuli differed: the stimuli were presented visually and the noun was 
presented when the verb was processed. Given that Sato et al. (2008) 
did not find any difference in the stimulus modality (visual vs. audi-
tory), and that both tasks require deep semantic processing, we have 
reason to believe that the most influential difference between the two 
studies is related to different timing.

Borghi and Scorolli (2009) performed experiments where, 
instead of using a go-no go paradigm, participants used both hands 
to choose between two possible answers. When pairs of words were 
presented that referred to manual and mouth actions, participants 
responded faster with the dominant hand. The advantage of the 
dominant hand was limited to sensible sentences.

Finally, in a second experiment of the same study by Boulenger 
et al. (2006) reported above, participants had to start reaching when 
a string of letters appeared on the screen. It was found that action 
verbs assisted the reaching movement when processed before move-
ment onset. Despite the interest of this study, the results obtained 
are only partially relevant for our model, as a rather different para-
digm was used, and kinematics measures were recorded, while our 
model focuses on RTs (see below).

a ReaSon of the diScRepancy: timing?
The discrepancies in TMS and behavioral results support the 
hypothesis that the precise task timings play a fundamental role 
in determining the type of interaction between language processing 
and action execution. For a similar interpretation see Boulenger 
et al. (2006), and, although not related to the role played by effec-
tors during sentence comprehension, see Borreggine and Kaschak 
(2006) and De Vega et al. (2004).

All results support embodied theories as they demonstrate that 
there is a modulation of the motor system during sentence process-
ing. However, the precise mechanisms underlying the conflicting 
data presented above are still poorly understood. In this respect, the 
detailed modeling of the possible processes could help to shed a new 
light on these phenomena. The model we will describe in the follow-
ing section addresses this issue and leads to novel predictions.

mateRialS and methodS
the chain model
Recent neurophysiological experiments (Fogassi et al., 2005; Bonini 
et al., 2009) have shown that in the parietal and premotor cortices, the 
great majority of motor and mirror neurons coding a specific motor 
act (e.g., reaching, grasping, etc.) show markedly different activation 
patterns according to the final goal of the action sequence in which 
the act is embedded. More specifically, a neuron that is highly active 
during the grasping phase in a “grasping to eat” sequence may fire 
very little during a “grasping to place” sequence. These results have led 
to the hypothesis that motor and mirror neurons in the parietal and 
premotor cortices are organized in chains that encode short habitual 

Figure 1 | Schematic representation of the chain model derived from 
Chersi et al. (2007). Colored ellipses represent pools of neurons that encode 
specific motor acts in the parietal cortex (IPL) or intentions in the prefrontal 
cortex (PFC). Lines indicate the connections between different pools. Sensory 
areas provide information about the ongoing action and pre/motor areas 
interpret abstract commands to generate motor output.
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We suppose that the first of the two sentences is represented as 
the concatenation of a “reaching with the hand” and a “grasping” 
motor act; the second as a “reaching with the foot” followed by a 
“hitting” motor act. The action that the subject has to perform 
consists in a “reaching with the hand” and “pressing” motor act. 
Each action is encoded by a neuronal chain composed of pools 
that represent the different motor acts. When the subject reads the 
displayed sentences, neurons that encode the described motor acts 
start to fire due to a mirror resonance process. More precisely, if 
the participant reads the first sentence, initially the “reaching (with 
the hand)”, then the “grasping” pools are activated. If the subject 
reads the second sentence, first the “reaching (with the foot)” then 
the “kicking” pool is activated. When the subject has to respond 
by pressing a button, the “reaching-pressing” chain is run, i.e., the 
“reaching” pool is activated first and this in turn activates the “press-
ing” pool.

One important characteristics of our model is that neuronal 
pools encoding the same motor act (involving the same effector) 
but being part of different chains share a small fraction of neurons 
and axonal projections. In our case, the common part between 
the action described in the first sentence and the subject’s motor 
response is the “reaching” motor act. Consequently, the pool encod-
ing “reaching” in the “reaching-pressing” chain is partially activated 
when the sentence is read. If the “reaching-pressing” chain is then 
executed shortly afterwards, the previously activated sub-threshold 
dynamics affect the firing rate of the pool in either a positive or 
negative way.

In our simulated experiment the elaboration of the sentence is 
assumed to last around 300 ms, with the peak to peak time interval 
between two pools being around 150 ms. We would like to empha-
size that the motor content of each sentence is independent of the 
agent (here impersonal) and of the target objects (“the apple”, “the 
ball”, “the button”), all of which are not explicitly encoded in the 
chain but rather considered as parameters of the action. Note that 
this is possible because mirror neurons do not explicitly encode 
the agent of an action nor the objects involved.

netwoRk configuRation
The neural network we used in our simulations was composed of six 
pools of neurons, each one coding a specific motor act. The pools 
were arranged in three chains of two pools each (see Figure 2).

model detailS
The behavior of each neuronal pool is described by a firing rate 
model with time-dependent synaptic currents (Dayan and Abbott, 
2001). This allows us to both compactly represent complex interac-
tions between excitatory and inhibitory neurons within the pools 
and explicitly take into account the dynamics of ionic currents and 
neurotransmitters. The set of equations is the following:
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The third point concerns the dynamics of neuronal pools. The 
detailed analysis of the experiments reported above has revealed that 
interference occurs between 160 and 500 ms after stimulus presenta-
tion, whereas facilitation becomes evident between 550 and 800 ms 
after sentence appearance (Boulenger et al., 2006). These time scales 
suggest that short term neural dynamics may be the cause underly-
ing these phenomena. In vitro recordings have shown that neuronal 
responses result from the combination of several dynamic processes 
occurring at different time scales. In general it is possible to distin-
guish two main components that determine the neuronal response: 
(1) an early but brief buildup of ionic currents (typically potassium) 
that causes an adaptation of the firing rates; (2) a slow but long 
lasting accumulation of neurotransmitters (NMDA, GABA, AMPA) 
and other ions (e.g., calcium) that facilitate neuronal firing. More 
precisely, for high enough spike frequencies a calcium- dependent 
potassium current (see e.g., McCormick et al., 1985; Sah, 1996) 
builds up lasting up to a few hundred milliseconds and reducing 
the firing frequency of neurons. Simultaneously, due to incoming 
spikes the concentration of neurotransmitters increases rapidly and 
fades away slowly after the input has ceased (this is especially true 
for NMDA). Additionally, the accumulation of calcium (Powers 
et al., 1999) produces a spiking facilitation effect that can last up 
to more than a second. Taken together these effects produce a time 
window (up to half a second after stimulation) during which neu-
rons decrease their firing rate and thus reach their maximum activity 
more slowly, and a facilitation time window (from half a second to 
about a second) during which pools react more rapidly.

The general mechanism proposed in our study is therefore the 
following. During the processing of an action-related sentence, 
pools of mirror neurons that encode the single phases (motor 
acts) of the expressed action are activated due to a motor reso-
nance mechanism. Neuronal activity propagates along the chain 
and sequentially activates the motor neurons connected down-
stream. Although pools fire only for a short interval of time (around 
200–300 ms) synaptic currents decay at a much slower rate due to 
their slower internal dynamics. The firing rate adaptation current 
is active shortly after the firing of the pool causing a momentary 
activity slowdown. When a response action has to be produced, 
the prefrontal cortex (PFC) activates the corresponding neuronal 
chain. The precise activation profile of each pool in the chain will 
depend on the degree of overlap it has with any previously activated 
pools of other chains and on how big the time interval between the 
activations is. More precisely, the larger the overlap, the stronger the 
influence. Furthermore, pools will respond faster or more slowly 
depending on whether their activation falls within the adaptation 
or the facilitation phase of previous pools.

Simulated expeRiment
In order to test our hypothesis, we simulated an experiment by 
virtually combining those by Buccino et al. (2005) and Scorolli and 
Borghi (2007) previously discussed. In our experiment, a hypotheti-
cal subject has to watch a screen where one of two short sentences 
can appear. The first sentence is “to grasp the apple”, while the 
second one is “to kick the ball”. The subject has to read the sentence 
and, when the “Go” signal is given, reach and press a button. The 
delay between the sentence presentation and the “Go” signal varied 
between 200 and 1200 ms.

43

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org


Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 4 | 

Chersi et al. Sentence processing and motor chains

where g
0
 determines the maximum firing rate, γ determines the 

steepness of the response and I
thr

 is the firing threshold. In this 
implementation we have chosen g

0
 = 150 Hz, γ = 1.5 cm2/nA, and 

I
thr

 = 0.25 nA/cm2. All the parameters in this model have been 
chosen in order to reproduce as close as possible biological data. 
Figure 3 shows the currents and the firing rate of a single pool in 
response to an external stimulus.

The parameters α and β determine the shape of the firing rate 
adaptation current curve I

fra
. Increasing α, for instance, increases 

the influence of the firing rate on the growth of I
fra

, which in turn 
decreases the firing rate (Figure 4A). Decreasing β instead causes 
a slower deactivation of I

fra
 thus shifting the inhibitory phase of I

tot
 

further in time (Figure 4B).

ReSultS
The results of the simulated experiment are reported in Figure 5. 
Figure 5A shows the activity profile of the “reaching” pool (green 
curve) of the “reaching-grasping” chain activated by the presenta-
tion of the sentence “to grasp the apple” (gray curve). In our imple-
mentation this input (I

ext
) is simulated as a bell shaped activation 

of the duration of 200 ms. Note that both in the experiments and 
in the model each sentence is considered as a whole. The detailed 
modeling of single words comprehension is beyond the scope of this 
paper. The pool reaches its maximum activity 254 ms after stimulus 
onset. Figure 5B shows the response of the “reaching” pool of the 
“reaching-pressing” chain. The first bump is due to the crosstalk 
between the first chain and the second chain. The Go signal (gray 
curve) is given 350 ms after the stimulus presentation. The activity 
peak is reached 276 ms after the Go signal.

Figure 5C shows the response of the same pool to the presenta-
tion of the same sentence and below the response of “reaching” pool 
of the “reaching-pressing” chain when the Go signal is given 650 ms 
after the sentence presentation. In order to remove the reaction 
time component due solely to the physical execution of the action 
(executed only virtually in our case), we calculate the “facilitation 
factor” (∆t

D
 − ∆t

C
) and the “interference factor” (∆t

B
 − ∆t

A
) as the 

decrease or increase of the reaction time of the specific task com-
pared to the control task.

where ν
i
 is the mean firing rate of the i-th pool and τν = 70 ms the 

corresponding time constant, g() is the I–f pools’ response function 
(see below), η is an additional term that simulates spontaneous 
activity, I

syn,i
 is the total synaptic current and τ

I
 = 260 ms the cor-

responding time constant, I
fra,i

 is the firing rate adaptation current, 
W

hi
 is the connection strength from unit h to unit i, and I

ext,i
 is the 

external input current arriving from areas that are active while 
reading the sentence or executing an action. This signal has been 
modeled as a bell shaped activity peak lasting 200 ms.

In the present implementation a fitting procedure has been used in 
order to determine the synaptic weights that produce the activation 
of pools encoding subsequent motor acts in each chain with the cor-
rect timing and amplitude (yielding W

i,i + 1
 ≈ 0.03). Furthermore, the 

connectivity (i.e., the overlap) between the first pool of the “reaching-
grasping” chain and the first pool of the “reaching-pressing” chain 
(both pools encoding “reaching”) has been set to a value that pro-
duces an activation of 30% of the maximum firing rate when the 
other chain is activated (W

hi
 ≈ 0.02). All other connections (including 

self connections) have been set to zero. Note that the “reaching with 
the hand” pools have no overlap with the “reaching with the foot” 
pool because the effectors involved are not the same.

The firing rate adaptation has been modeled as a current, that, 
when activated, will hyperpolarize the neurons of a pool, slowing 
down any spiking that may be occurring. We assume that this cur-
rent is proportional (through α) to the firing rate and relaxes to zero 
at a rate of β. In our implementation α ≈ 0.09 nA and β ≈ 3 nA/s.

In order to reproduce more faithfully the behavior of real 
neurons (in particular the fact that there is a minimum value for 
the injected current below which no firing takes place) the pools’ 
response function has been modeled in the following way:

g I g I I I I

g I I I

( ) tanh (

( )

= ⋅ −[ ]
=






0

0

γ >

≤
thr thr

thr

) for  

for   
(2)

Figure 3 | Time course of each variable of a pool after stimulation (gray 
peak). The green curve represents the response of the pool (scale on the left), 
the blue curve is the synaptic current, the yellow curve is the firing rate 
adaptation current, and the dashed line is the resultant total current (current 
scale on the right).

Figure 2 | Schematic representation of the chained organization of the 
network. Each large circle represents a pool of neurons (small spheres) 
encoding a specific motor act. Lines represent the connections between 
neurons. Lines on the left represent external inputs that start the chains.
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sentence that contains a motor act present also in the response 
motor sequence produces an overall decrease in the reaction 
time of 25 ms.

Figure 7 shows the modulation of the reaction times of the simu-
lated “reaching” pool as a function of the time interval between the 
presentation of the hand-related sentence and the “Go” signal. The 
reaction time data shows that there is a first phase in which inter-
ference dominates (up to 500 ms) and a phase in which facilitation 
dominates. This effect eventually fades to zero. In our model, for time 
intervals below 200-ms input signals overlap and pools’ responses 
merge thus not allowing a clear interpretation of the results.

In our simulations, we obtain a facilitation factor of −25 ms, and 
an interference factor of 20 ms, which is comparable to the results 
found by Buccino et al. (2005).

Figure 6 shows the time course of the activation of the “reach-
ing-pressing” chain after the presentation of the two sentences in 
the late Go signal condition. Figure 6A represents the sequential 
activation of the “reaching” (green curve) and the “grasping” 
pool (red curve) after the presentation of the sentence “to grasp 
the apple” and a late Go signal. Figure 6B represents the acti-
vation of the same pools after the presentation of the sentence 
“to kick the ball” and a late Go signal. As can be seen reading a 

Figure 4 | effect of the parameters α and β on the shape of the firing rate 
adaptation current. (A) A decrease of β (from 3.0 to 1.9 nA/s) produces a 
slower deactivation of Ifra, thus shifting the inhibitory phase further in time.  

(B) An increase of α (from 0.09 to 0.13 nA) produces a more intense Ifra  
and thus a stronger inhibition in case of re-activation of the same pool  
within 700 ms.

Figure 5 | (A,C) Time course of the activation of the “reaching” pool in the “reaching-grasping” chain after the presentation of the hand-related sentence. (B,D) 
Time course of the activation of the “reaching” pool in the “reaching-pressing” chain after the appearance of the “Go” signal.
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observation literature (e.g., Brass et al., 2001). In the present 
work, however, we focused on the controversial results related 
to language processing.

Recently, Sato et al. (2008) postulated that the cause may be the 
nature and the deepness of the involvement of the motor system 
determined by the different difficulty of the single tasks. Boulenger 
et al. (2006) hypothesized that facilitation could result from side or 
after-effects of linguistic processes while competition for common 
resources, for instance, could give rise to interference.

In this work we proposed a simple neural mechanism that is 
capable of explaining both the facilitatory and the inhibitory 
interactions between language and action. Our model is based on 
a chain structured organization of the parietal and premotor cortex 
(Fogassi et al., 2005; Chersi et al., 2007) in which action sequences are 
encoded as concatenations of neuronal pools representing specific 
motor acts. Interactions between sensory and motor modalities have 
been modeled in the present work as a crosstalk between neuronal 
pools in motor and mirror chains and we have shown that the neural 
dynamics governing the activation of the pools can qualitatively 
reproduce the timings observed in behavioral experiments well.

Taken together, these results allow us to draw the following con-
clusions. First, the fact that our simple model can reproduce differ-
ent experimental results by exploiting only “low level” properties 
of neurons supports the idea that these interaction effects might 
be principally due to neurodynamical factors within the mirror 
neuron circuit rather than to high-level cognitive processes. Second, 
this unifying theory suggests that seemingly conflicting behavioral 

diScuSSion and concluSion
As reviewed in the first part of the paper, both interference 
and facilitation are widely observed in TMS and behavioral 
experiments on language comprehension and motor system 
activation. The underlying mechanisms, however, are a topic 
of ongoing debate. It is interesting to note that one can find 
similar facilitation and interference effects also in the action 

Figure 6 | Activation profile of the “reaching-pressing” chain after the 
presentation of the two sentences in the simulated task. The dashed vertical 
lines indicate the sentence presentation onset (left), the Go signal presentation 
(middle), and moment of maximal activity (right). In case of early “Go” 

presentation, the “reaching-pressing” chain responds slower when the hand 
sentence was presented (A) compared to when the foot sentence was 
presented (B). In case of late “Go” presentation, the effect is the opposite 
[(C) vs. (D)].

Figure 7 | Modulation of the reaction times of the simulated “reaching” 
pool as a function of the time interval between the presentation of the 
“hand” sentence and the “go” signal. Reported below are the timings of 
the experiments of Buccino et al. (2005), Sato et al. (2008), Boulenger et al. 
(2006) (Exp. 2) and Scorolli and Borghi (2007).
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(6) If the neurodynamical and the embodiment hypotheses are 
true then we expect to find a mixture of interference and faci-
litation patterns also in tasks that involve, for example, object 
affordances (AIP-F5 circuit) and interpersonal interactions 
(PG-F4 circuit).

(7) Using more sophisticated experimental and/or data analysis 
techniques, such as for example signal correlation studies, it 
should be possible to discover weak or very late interactions.

Notwithstanding these interesting results, we are perfectly aware 
that the mechanisms coming into play during the elaboration of 
stimuli and decision making are much more complex than depicted 
here, so our proposal should be considered as a first attempt to 
model such a complex system. We believe that this computational 
modeling work may also prove useful in building a biologically 
inspired robotic model for use in human–humanoid interaction, 
which is the longer-term goal of this work. From this perspec-
tive it is important that embodiment is taken into account at an 
appropriate level of abstraction that allows computational models 
of human biological mechanisms to be transferred to a robotic 
context. Furthermore, from a scientific perspective, it is clear that 
additional targeted experimental and modeling work is necessary 
to better understand the mechanisms underlying the relationship 
between sentence comprehension and motor system activation. As 
a first step, however, we believe it was important to show in this 
paper that interference and facilitation may well be two sides of 
the same coin.
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experiments may have observed different time windows of the same 
mechanism rather than different mechanisms,. This has important 
theoretical implications because, as previously discussed, it is cur-
rently debated in the literature whether the activation of motor 
and premotor cortices is essential for language understanding or 
just a by-product of the process. The early activation of the motor 
system is typically considered a strong point in support for the first 
thesis. Showing that interference and facilitation are actually two 
manifestations of the same process greatly strengthens the embod-
ied view according to which the recruitment of the motor system 
is fundamental for sentence comprehension.

Finally, on the basis of our model we can formulate a variety of 
predictions that could guide future experimental research.

(1) It should be possible to produce precise interference and faci-
litation profiles by carefully designing experiments.

(2) If language processing produces a modulation of action exe-
cution timings due to the overlap of neural representations, 
it is reasonable to expect that action execution has the same 
effect on language processing because overlaps are most pro-
bably bidirectional.

(3) Since timing variations are supposed to be caused by the re-
activation of neuronal pools, it should be possible to obtain 
a similar or even greater interaction effect if the tasks were 
“language following language” or “action following action”.

(4) The fact that modeling results support the idea that all the 
interaction effects between language and action might be due 
principally to neurodynamical processes taking place within 
the mirror neuron circuit rather than to high-level cognitive 
processes, leads us to think this might be a general principle 
valid for other sensorimotor interactions as well.

(5) If more perceptual modalities exploit the same motor 
representations it should be possible to observe interac-
tions between these modalities mediated by the common 
motor substrate.
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Word processing has recently been conceptualized as the out-
come of simultaneously activating patterns of cortical connectivity, 
reflecting (possibly redundant) distributional regularities in the 
input at the graphemic, morpho-syntactic and morpho- semantic 
levels (Burzio, 2004; Baayen, 2007; Post et al., 2008). This view 
argues for a more complex and differentiated neurobiologi-
cal substrate for human language than both classical dual-route 
(Pinker and Prince, 1988; Prasada and Pinker, 1993; Pinker and 
Ullman, 2002; Ullman, 2004) and connectionist one-route mod-
els (McClelland and Patterson, 2002; Westermann and Plunkett, 
2007) can posit. Brain areas devoted to word processing appear 
to maximize the opportunity of using both general and specific 
information simultaneously (Libben, 2006), rather than maximize 
processing efficiency and economy of storage.

Topological models of lexical self-organization can shed light 
on such a dynamic view of word processing from a computational 
perspective (Pirrelli, 2007; Pirrelli et al., in press). In these mod-
els, lexical storage and learning is based on the concurrent self-
organization of “spatial” word-based information (e.g. segmental 
or graphemic patterns) and temporal (i.e. sequential) information, 
accounting for concomitant effects of redundant morphological 
structure and predictive parsing, as well as for short-term and long-
term memory effects in the encoding and processing of symbolic 
sequences. This makes spatio-temporal self-organizing networks 
of this kind ideally suitable for investigating anticipatory processes 
in word recognition and reading.

Experimental studies based on ERP (event-related potentials) 
and eye-movement evidence show that people use prior (lexi-
cal and semantic) contextual knowledge to anticipate upcoming 
words (Altmann and Kamide, 1999; Federmeier, 2007). DeLong 
et al. (2005) demonstrate that expected words are pre-activated in 
subjects’ brain in a graded fashion, reflecting their expected prob-
ability. This body of evidence provides a solid empirical ground to 
the probabilistic approach to lexical prediction and gaze  planning 

IntroductIon
The human visual system is essentially active, its processing strate-
gies being tightly coupled with the specific demands of an ongoing 
task (Yarbus, 1967; Ballard, 1991; Johansson et al., 2001; O’Regan 
and Nöe, 2001). There is ample evidence that in everyday activities, 
such as driving, walking or reading, gaze shifts are used to gather 
task-relevant information (Triesch et al., 2003; Hayhoe and Ballard, 
2005; Land, 2006). Whenever possible, this is done through efficient, 
timely selection of the specific information required for a given 
stage of the task to be carried out, with no need to store informa-
tion (Ballard et al., 1995). In most tasks, since visual information 
is required at the very early stages of action planning, the strategy 
gives rise to anticipatory saccades (e.g., by fixating objects that are 
manipulated shortly later, or even seconds later).

One visual task that has been the focus of intense investiga-
tion is text reading. Somewhat contrary to commonsense, it does 
not consist in the serial fixation of written words from left-to-
right, but it is a truly active task. In reading a text, some words are 
skipped, and occasionally a gaze regression is made to words that 
were either already fixated, or skipped. Patterns of eye movements 
(including, among other things, the time spent on each fixation 
and the average distance the eyes move along while scanning a 
text) are complex and depend on a number of factors, including 
word frequency, lexical predictability and ambiguity, complexity 
in the syntactic structure of input text etc. (see Rayner, 2009 for 
a recent review).

In line with this evidence, the present paper intends to investi-
gate the interlocked relationship between processes of self-organizing 
lexical storage and learning on the one hand, and, on the other 
hand, active sensing strategies for reading that exploit expectations 
on stored lexical representations to drive gaze planning. For this 
purpose, we shall capitalize on currently emerging views on mor-
phological processing and on the role of anticipatory processes 
in reading.
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of classes of sensory data. Processing in such neural aggregations 
(called brain maps) consists in the activation (or firing) of one or 
more neurons, each time a particular stimulus is presented. A crucial 
feature of brain maps is their topological organization (Penfield and 
Rasmussen, 1950; Penfield and Roberts, 1959): nearby neurons in 
the map are fired by similar stimuli. Although some brain maps are 
taken to be genetically pre-programmed, there is evidence that at least 
some aspects of such global neural organization emerge as a function 
of the sensory experience accumulated through learning (Kaas et al. 
1983; Jenkins et al. 1984). Functionally, brain maps are thus dynamic 
memory stores, directly involved in input processing, and exhibiting 
effects of dedicated long-term topological organization.

A THSOM is a SOM augmented with a temporal connection layer 
(Figure 1). Classical components of a SOM are parallel process-
ing nodes (or receptors) arranged in a grid or map. Each node in 
the map is synaptically connected with all elements of the input 
layer, where input vectors are encoded. Each connection is treated 
as a communication channel with no time delay, whose synaptic 
strength is modeled by a weight value. Each receptor is thus associ-
ated with one space weight vector defined on the spatial connection 
layer. We distinguish here the input space, staked out by the defining 
dimensions of the input layer, from the map space, i.e. the (usually 
two-dimensional) grid where receptors are spatially located.

proposed here. In our model, the probability distribution of stored 
lexical representations is the main input to the gaze planner, since 
(parts of) words predicted with high accuracy can be skipped 
safely during reading (as demonstrated empirically by Ehrlich and 
Rayner, 1981; Rayner and Well, 1996). Moreover, new information 
that is (retrospectively) judged as unpredictable and surprising 
can determine longer fixations, regressions, or revision of lexical 
representations.

The aforementioned evidence provides the foundations of our 
modeling approach to gaze planning, in which two components 
interact: a lexical representation network, and a gaze planner 
proper. We offer a model of how lexical representations and lexical 
predictions can be exploited as a basis for an active reading strategy, 
and analyze the developmental trajectory of the system in a word 
recognition task as a function of increasing lexical competence and 
lexical prediction ability. It is worth noting that the interactions 
between (predictive) learning of task representations and active 
sensing strategies during task learning and execution are not con-
fined to the linguistic domain, addressed here, but are characteristic 
of a wide variety of sensorimotor tasks: hence the interest of our 
approach in developmental robotics studies in general.

MaterIals and Methods
Model archItecture and coMponents
Our gaze planning model consists of a lexical representation network, 
and the gaze planner proper. The lexical representation network is 
implemented as a Temporal Hebbian Self-Organizing Map (THSOM; 
Koutnik, 2007), an extension of Kohonen’s Self-Organizing Maps 
(SOMs; Kohonen, 2001) that, in addition to developing topologi-
cal patterns of input data, models their temporal sequences and 
supports prediction.

Based on the input provided by a THSOM trained on written 
words, the gaze planner implements an active sensing strategy for 
reading. The model actively selects where the next fixation should 
be placed, rather than passively scanning all text input, from left-
to-right at an even pace. We model the problem of planning gaze 
sequences in reading as a Bayesian sequential decision process. The 
eye/gaze controller plans an optimal active sensing strategy (under 
uncertainty) by weighting up future (lexical) information gain and 
costs. In particular, our target function is to maximize the (expected) 
information gain (i.e., how much new lexical information is gained 
through each gaze), minimize the amount of uncertainty in lexical 
representations (i.e., disambiguate between competing words, say, 
“house” and “horse”), and minimize costs (i.e., time spent, effort 
required for short and long saccades). We tested the gaze planner 
at different stages of lexical acquisition and analyzed the devel-
opmental trajectories of eye-movement patterns as a function of 
(i) the growing lexical complexity of input text, and (ii) the level 
of reader’s lexical competence modeled by a THSOM. Our gaze 
planning algorithm was eventually compared with two (Bayesian) 
strategies that use complete information on word statistics.

the lexIcal network
(Topological) Temporal Hebbian Self-Organizing Map (T(2)HSOM)
SOMs define a class of unsupervised clustering algorithms that 
mimic the behavior of medium to small aggregations of neurons in 
the cortical area of the brain, involved in the specialized processing 

Figure 1 | Architecture of a THSOM.
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Connections on this layer (referred to in Figure 1 as the temporal 
connection layer) are treated as communication channels whose 
synaptic strength is modeled by a weight value updated with a fixed 
one-step time delay. Weights on the temporal layer are adjusted 
with a Hebbian learning strategy (Hebb, 1949) based on activity 
synchronization of BMU at time t−1 and BMU at time t.

During training, the temporal connection between the two 
BMUs is potentiated (Figure 2A), while the temporal connec-
tions between all other nodes and BMU at time t are depressed 
(Figure 2B). Logically, this amounts to enforcing the entailment 
BMU

t
 → BMU

t−1
. Finally, unlike classical SOMs, the level of activa-

tion of a THSOM node at time t is determined by the summation 
of two vector distances: the distance between the current input 
vector and the node’s space weight vector (as in traditional SOMs), 
and the distance between the node’s time weight vector and the state 
of activation of the whole map at time t−1.

When trained on time series of input vectors, a THSOM devel-
ops (i) a topological organization of receptors by their sensitivity 
to similar input vectors (or spatial similarity) and (ii) a first-order 
time-bound correlation between BMUs activated at two consecu-
tive time steps.

Knowledge of a trained THSOM is stored in the synaptic weights 
of its nodes. We can calibrate the map by assigning a label to each 
map node. A label is the input symbol which the node is most 
sensitive to, that is whose input vector matches the node’s space 
vector best. Labeling reveals the topological coherence of the result-
ing organization (Figure 4). Receptors that are fired by similar 

In a classical SOM, learning is measured in time steps, with 
each step corresponding to exposure to a single stimulus token. 
A time step includes three phases: input encoding, input activation 
and input learning. When a stimulus is encoded on the input layer, 
all map nodes are activated in parallel as a function of how close 
their weights are to values of the current input vector. Learning 
consists in adjusting weights on the spatial connection layer for 
them to get closer to the corresponding values on the input layer. 
Weight adjustment does not apply evenly across map nodes and 
time steps, but depends on similarity to the input vector, learning 
rate and space topology. At each time step, the most strongly adjusted 
node is the most highly firing one, or Best Matching Unit (BMU). 
All other nodes are adjusted as a function of their distance from 
BMU on the map (or neighborhood function). Weights of nodes 
that lie close to BMU are made more similar to input values than 
weights of nodes lying further away from BMU. After adjustment, 
the time step counter is increased by one tick, the map activation 
is reset and another input stimulus is encoded. Both learning rate 
(α) and neighborhood function (ν) vary through time to simulate 
the behavior of a brain map losing its plasticity.

A THSOM models synchronization between two BMUs firing at 
consecutive time steps. This means that a THSOM can remember, at 
time t, its state of activation at time t−1 and can make an association 
between the two states. This is possible by augmenting traditional 
SOMs with an additional layer of synaptic connections between 
each single node and all other nodes on the map (Figure 1). For each 
node, this defines a further association with a time weight vector. 

Figure 2 | THSOM temporal layer plasticity. (A) potentiation; (B) depression.

51

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org


Frontiers in Neurorobotics www.frontiersin.org June 2010 | Volume 4 | Article 6 | 

Ferro et al. Reading as active sensing

resources (i.e. the number of available nodes). Moreover, lack of 
topological organization makes it difficult for a large map to con-
verge on learning simple tasks, as the map has no pressure to treat 
identical input tokens as instances of the same type.

Pirrelli et al. (in press) originally extend Koutnik’s THSOM 
architecture by using the neighborhood function as a principle 
of organization of connections on the temporal connection layer 
(Figures 3A,B). An additional depressant Hebbian rule penalizes 
the temporal connections between BMU at time t−1 and all nodes 
lying outside the neighborhood of BMU at time t (Figure 3C). 
This is equivalent to the logical entailment BMU

t−1
 → BMU

t
. Taken 

together, the temporal connections depicted in Figure 3 enforce 
a bi-directional entailment between BMU

t−1
 and BMU

t
 inducing 

a bias for biunique first-order Hebbian connections. THSOMs 
that are augmented with this bias are called Topological Temporal 
Hebbian Self-Organizing Map (T 2HSOM).

In T2HSOM, input vectors can be similar for two independent 
and potentially conflicting reasons: (i) they have vector representa-
tions that are close in the input space; (ii) they distribute similarly, 
i.e. they tend to be found in similar sequences. Unlike a THSOM, 
which is sensitive to space similarity only, a T2HSOM tries to opti-
mize topological clustering according to both criteria for similarity 
at the same time. Pirrelli and colleagues show that the dynamic 
cooperation/competition between the two criteria for similarity is 
instrumental in capturing paradigmatic effects in the topological 
organization of the morphological lexicon.

To sum up this long excursus, the overall organization of a  
T(2)HSOM1 after training can be characterized as follows: (1) if 
space allows, one topologically connected cluster is present for each 

input vectors tend to stick together in the map space. Large areas 
of receptors are recruited for frequently occurring input vectors. In 
particular, if the same input vector occurs in different contexts, the 
map tends to recruit specialized receptors that are sensitive to the 
specific contexts where the input vector is found. The more varied 
the distributional behavior of an input vector, the larger the area 
of dedicated receptors (space allowing).

This dynamics is coherent with a learning strategy that mini-
mizes entropy over inter-node connections. For each map node n

j
, 

we transform connection weights into transition probabilities by 
simply normalizing the weight of a single outgoing (post-synaptic) 
connection by the summation of the weights over all outgoing con-
nections from n

j
. The resulting transition matrix is used to analyze 

the performance of the model at recall and in particular: (1) the 
entropy level of each node according to Shannon and Weaver’s 
equation; (2) variation in the entropy of an input sequence as it 
unfolds its activation over the map; (3) the ability of the map to 
predict an input sequence, expressed in terms of average (un)cer-
tainty in guessing the next transition.

We shall return to a detailed analysis of these aspects later in 
the paper. Suffice it to say at this juncture that the topological 
dynamics of a map constrains the degree of freedom to recruit 
dedicated receptors, as all receptors compete for space on the map. 
As a result, low-frequency input vectors may lack dedicated recep-
tors after training. By the same token, dedicated receptors may 
generalize over many instances of the same input vector, gaining 
in generality but losing in modeling their distributional behavior. 
The main consequence of a poor modeling of the time-bound 
distribution of input vectors is an increasing level of entropy, as 
more context-free nodes present more post-synaptic connections. 
However, topological generalization is essential for a map to learn 
symbolic sequences whose complexity exceeds the map’s memory 

Figure 3 | T2HSOM temporal layer plasticity. (A) potentiation; (B,C) depression.

1Hereafter, we shall use the acronym T(2)HSOM when we want to say things that 
apply to both temporal variants of SOMs illustrated in the present section.
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Gaze plannInG In readInG: a BayesIan  
Ideal-oBserver perspectIve
The second component of our model is the gaze planner. A gaze 
planner can be conceptualized as a Bayesian ideal-observer, i.e. “a 
theoretical device that performs a given task in an optimal fashion, 
given the available information and some specified constraints” 
(Geisler, 2003, p. 825) spelled out in the framework of Bayesian 
statistical decision theory. In this framework, one typically assumes 
that in vision tasks humans behave as (approximate) optimal 
Bayesian decision makers. Alternatively, one can use the ideal-ob-
server perspective to derive an optimal strategy, without assuming 
that humans use it, and compare human performance against it 
with the objective to discover analogies and differences.

In Bayesian analysis, one important aspect of information acqui-
sition is the reduction of uncertainty over the variables that are 
relevant to the task at hand (e.g., location of objects in space, and/
or their orientation, etc.). Reduction of uncertainty is not only 
valuable per se, but also in connection with action execution and 
behavioral decisions to be taken in the task. This aspect is captured 
by the notion of value of information (Howard, 1966): information 
has a value, which depends on the extent to which it is expected to 
disambiguate alternative beliefs and (particularly) make behavio-
ral choice effective. That is, new information that could prompt 
a decision change is more valuable. By estimating the expected 
value of gazes, a system can select the gaze planning strategy that 
maximizes the value of acquired information (Sprague and Ballard, 
2003; Nelson and Cottrell, 2007 among others).

To design our gaze planning algorithms, we drew inspiration 
from the Bayesian ideal-observer analysis. Here ‘task knowledge’ 
consists in lexical representations, and the task to be performed is 
recognizing written words in a text by reading a variable number of 
characters from left-to-right. Note that word recognition is simpler 
than reading, as only the latter requires a grapheme-to-phoneme 
mapping function. In word recognition, a Bayesian ideal-observer 
strategy makes use of lexical predictions to estimate the expected 
value gain of prospective gazes. This is conducive to gaze plans 

 symbol; for lack of space, receptors can act as abstract states, fired 
by a class of similar symbols; (2) receptors that are sensitive to 
similar symbols are close on the map; (3) the temporal distribu-
tion of a symbol may carve out hierarchical sub-clusters within the 
main cluster for that symbol; (4) the size of a cluster depends on 
both frequency and the temporal distribution of the corresponding 
symbol. In the following section we illustrate how T(2)HSOM can 
be used to develop lexical representations.

Building a Lexical Network with a T(2)HSOM
A T(2)HSOM can learn word forms as time series of alphabetic 
characters flanked on either side by a start-of-word symbol (‘#’) 
and an end-of-word symbol (‘$’), as in “#,F,A,C,C,I,O,$”.

At each time step, the map is exposed to one single character in 
its left-to-right order of appearance. Upon exposure to the end-
of-word symbol ‘$’, the map resets its Hebbian connections thus 
losing memory of the correlation between two consecutive word 
forms. In fact, word forms are repeatedly presented to the map in a 
random order as a function of their frequency in the training data 
set. Such a deliberately simplified version of the language learning 
task helps the map to focus on aspects of word-internal structure, 
abstracting away from other potentially confounding factors.

By being trained on several lexical sequences of this kind, a  
T(2)HSOM (i) develops internal representations of alphabetic 
characters, (ii) connects them through first-order Hebbian links, 
(iii) clusters developed representations topologically. The three 
steps are not taken one after the other but dynamically interact in 
non trivial ways. From a logical view point, step (i) corresponds 
to learning individual symbols by recruiting specialized recep-
tors that are increasingly more sensitive to one symbol or class of 
symbols. Generally speaking, low-frequency symbols are slower in 
recruiting dedicated receptors than high-frequency symbols are. 
Step (ii) allows the map to develop selective paths through consecu-
tively activated BMUs. This corresponds to learning word forms 
or recurrent parts of them. Once more, this is a function of the 
frequency with which symbol sequences are presented to the map. 
Finally, step (iii) uses either spatial information only (THSOMs) 
or both spatial and temporal information (T2HSOMs) to cluster 
nodes topologically. Accordingly, nodes that compete for the same 
symbol stick together on the map. Moreover, they tend to form sub-
clusters to reflect distributionally different instances of the same 
symbol. For example, the symbol A in “#,F,A,C,C,I,O,$” (faccio, ‘I 
do’) will fire, if space allows, a different node than the same symbol 
in “#,S,E,M,B,R,A,$” (sembra, ‘it seems’).

An example of a trained lexical map is shown in Figure 4. The map 
is calibrated, with each node being labeled by the alphabetic character 
that most strongly activates it. Arrows pictorially represent synaptic 
connections between consecutively activated BMUs. In the figure, 
shades of grey represent different transition probabilities (connection 
weights), from black (high values) to light grey (low values).

In some cases, it is possible to follow a continuous path of con-
nections going from ‘#’ (start-of-word) to ‘$’ (end-of-word). Only 
high-frequency word forms, however, are associated with a full path 
of inter-node connections after training. In the vast majority of 
cases, only recurring subsequences of activated nodes show strong 
connection patterns. These may correspond to inflectional endings 
(such as “I,A,M,O,$” in the figure), verb stems or parts of them.

Figure 4 | Sample map during learning. Darker edges represent more 
probable transitions, and lighter edges represent less probable ones.
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Algorithm 3 makes no full left-to-right scanning of the input 
text and tries to minimize the number of reading steps required to 
identify the full word correctly. At each reading step, it places the 
gaze upon that position in the input string associated with the lowest 
possible entropy score. Entropy here is defined as a function of the 
number (and frequency) of outstanding word candidates that remain 
to be evaluated once the character in the selected position is read off. 
Suppose, for the sake of concreteness, that the lexicon is made up 
out of two strings only, say ABC and ABD. In this case, to establish 
which of the two words is currently input, reading either the first 
or the second character would not minimize entropy, as it does not 
reduce the number of possible candidates. Only the character in third 
position would reduce uncertainty to zero and thus represents the 
optimal character to be gazed at. In realistic scenarios, at each reading 
step new entropic scores are estimated on the basis of a shrinking set 
of candidate words, until one candidate word only is left.

results and dIscussIon
The three algorithms were tested in two different experiments. For 
all of them, we used the same set of training data. Training data and 
testing data were identical in all reported simulations.

experIMent 1
We tested the Algorithm 1 from Section “Gaze planning in reading: 
a Bayesian ideal-observer perspective”, where gaze planning is based 
on the capacity of a trained T(2)HSOM to predict written lexical 
representations. A THSOM and a T2HSOM were independently 
trained on the same set of Italian written verb forms and results 
on both trials were compared. Both SOMs were bi-dimensional 
square grids of 25 × 25 nodes.

Training materials
The training data set contained distinct present indicative forms 
of 10 Italian verbs, for a total of 66 different forms, whose fre-
quency distributions were sampled from the Calambrone section 
of the Italian CHILDES sub-corpus (MacWhinney, 2000), of about 
110,000 token words. The average word length was 6.5 characters 
(see the frequency distribution in Figure 7A). Forms were mostly 
selected from regular, formally transparent morphological para-
digms. Nonetheless, some subregular high-frequency forms were 
introduced in the training set to monitor their representational 
trajectories during learning.

Written forms were represented as sequences of alphabetic char-
acters between ‘#’ and ‘$’. To train the lexical network, alphabetic 
characters were encoded through a distributed, grapheme-based 
representation consisting of a 20-element vector, with each element 
encoding a specific feature of the graphical rendering of ortho-
graphic symbols cast into the grid of Figure 5.

Training protocol
Lexical network. Both maps were trained over 100 epochs. For 
each epoch, the training data set was treated as an urn containing 
verb forms. In the urn, the number of (identical) verb forms of the 
same type reflected the frequency of the verb type in our reference 
corpus. One verb form at a time was drawn from the urn, and its 
spelling retrieved. Each character in the spelling was converted 
into a distributed grapheme-based input vector and was shown to 

that aim to maximize such gain under time constraints and in the 
presence of uncertainty. On the basis on this general idea, we tested 
three gaze planning algorithms.

Algorithm 1
The first algorithm implements a simplified prediction-based pro-
cedure, which consists in skipping all characters that can be pre-
dicted reliably (i.e., above a given threshold) by a T(2)HSOM.

All characters (with the exception of the start-of-word symbol 
‘#’) making up a written input word are initially masked by ‘*’. For 
example, at the outset, the word “#,F,A,C,C,I,O,$” is shown to the 
gaze planner as the string ‘#,*,*,*,*,*,*,*’. The algorithm starts from 
the first unmasked character ‘#’ and looks into a trained T(2)HSOM 
for a set of (probabilistic) predictions over all ‘#’-ensuing characters. 
This is done by looking at the most highly activated node (BMU) 
when the input symbol ‘#’ is shown to the map, and by inspect-
ing the set of current BMU’s post-synaptic connections (i.e. its 
outgoing transitions). The gaze planner then decides whether the 
coming written character(s) should be skipped or not depending 
on how accurate the T(2)HSOM’s prediction(s) are. If the high-
est weight of a BMU’s post-synaptic connection (say ‘#’ →  ‘C’) is 
above a set threshold, then an input character is skipped in reading 
and the gaze planner takes ‘C’ as the next input character. If no 
post-synaptic weight exceeds the threshold, control is returned to 
reading and the ensuing written character is unmasked. When the 
system reaches the end-of-word symbol ‘$’, then the sequence of 
guessed/read symbols is returned and evaluated against the cur-
rent input word.

Note that the gaze planner is provided with a fovea that fix-
ates only one character at a time (there being no periphery). In 
other terms, each landing position provides information about one 
character at a time. Due to the absence of periphery, the system 
cannot use the strategy that appears to be the most widely used by 
human readers, i.e., planning the landing positions around the word 
center (with an additional systematic error, which might derive 
from Bayesian estimation; see Engbert and Krügel, 2010). For the 
sake of simplicity, we further assume here that there are no land-
ing errors, and that gazed characters are perfectly recognized. The 
algorithm, intended to focus on the importance of prediction, is 
not only (computationally) simpler than minimizing vocabulary 
entropy (as in Algorithm 3 below), but takes into account at the 
same time reduction of uncertainty and sequential nature of the 
reading task, without introducing motor costs for planning saccades 
of different amplitude (i.e. longer saccades are more costly for the 
motor system to execute, and more noisy on average).

Algorithms 2 and 3
Like Algorithm 1, Algorithm 2 scans an input word from left-to-
right, starting from the first symbol and trying to make predictions 
about the upcoming characters on the basis of information on their 
immediate predecessor. Transition probabilities are estimated here 
through complete statistical information about the distribution 
of characters in the full training lexicon. If transition probabilities 
exceed a set threshold, a prediction is made and the corresponding 
letter in the input word is skipped. If the guessed character is not 
‘$’, then a novel belief about another upcoming character is enter-
tained, based on the previously guessed information.
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Observe the different developmental stages the two networks 
go through (Figure 6). Both maps converge on full scale accuracy 
rates (i.e. 100%) and comparable prediction rates, with Koutnik’s 
THSOM averaging 44.7% per word prediction at a 0.93 level of con-
fidence, and the T2HSOM scoring 40.6% per word prediction at 0.89, 
after 100 learning epochs. Note, however, that Koutnik’s THSOM 
converges remarkably more quickly than T2HSOM. THSOM exhibits 
a tendency to retain longer stretches of input words at a faster pace 
than T2HSOM, as shown by the overall number of saccades of vary-
ing length in the two models (Figures 7B,C respectively). The reason 
for this behavior lies in the capacity of THSOMs to “pack” more 
nodes that are competing for the same symbol in a comparatively 
smaller area of the map. Recall that, in T2HSOMs, competing recep-
tors strongly inhibit each other and can coexist only at a distance. 
The same constraint does not hold for THSOMs, where context-
sensitive receptors of the same symbol do not fight for short-range 
survival. A wider range of context-sensitive receptors minimizes the 
number of post-synaptic connections, thereby minimizing per node 
entropy and facilitating memorization of longer symbol chains.

On the other hand, strong competition between symbol tokens 
in complementary distribution is helpful in learning morphological 
structure. Tested on the task of identifying morpheme boundaries 
within inflected forms, the two maps show a reversed accuracy pat-
tern: T2HSOMs are consistently better at finding morpheme transi-
tions than THSOMs are. A 15 × 15 nodes T2HSOM is able to identify 
morpheme boundaries with 71% accuracy, while a THSOM of the 
same size has an accuracy of 64% on the same task and test data. 
Once more, when map size increases, accuracy scores of the two 
maps level out. Figure 8 shows transition probabilities at morpheme 
boundaries in the present indicative forms of the verb CREDERE 
(‘believe’), plotted against learning epochs. In a THSOM (Figure 8A) 
lack of inhibition between complementarily distributed endings 
blots out the difference in frequency distribution among them. On 
the other hand, a T2HSOM proves to be sensitive to the uneven 
distribution of forms in the paradigm (Figure 8B). This is shown to 
have important consequences in learning and access of lexical rep-
resentations in human speakers (Baayen, 2007) and is demonstrably 
related to levels of difficulty in reading morphologically complex 
words by dyslexic and non dyslexic subjects (Burani et al., 2008).

experIMent 2
In this experiment we tested the results of the two Bayesian models 
of gaze planning informally described in Section “Gaze planning 
in reading: a Bayesian ideal-observer perspective”. Like our T(2)

HSOM-based models, Algorithm 2 skips upcoming characters 
that are predicted reliably, but operates on complete word statis-
tics and uses Bayes rules to update transition probabilities. Results 
are illustrated in Figure 9, plotted against levels of confidence. 
Unsurprisingly, the performance of the system is better; in par-
ticular, with a threshold of 0.85, the system reaches 100% per-
formance and predicts 54% of the characters. In addition, even 
with lower thresholds the correctness rate is high; this is due to 
the high prediction accuracy of the system. Therefore, the main 
lesson learned from this comparison is that the lexical represen-
tation network is still limited in its prediction ability, due to its 
local learning steps and its incrementality. We argue that this is 
the price we have to pay for modeling human behavior in a more 

a T(2)HSOM in its order of appearance. When the ‘$’ symbol of the 
current input word form was shown, the internal clock of the map 
was reset and the word discarded. Another word was then drawn 
from the lexical urn and the whole training process was repeated 
over again until the urn was emptied.

Gaze planner. The same set of verb forms used for training 
the SOMs was then used for testing the gaze planner. Word 
forms are presented as dynamically unmasked sequences of 
characters (see “Gaze planning in reading: a Bayesian ideal-
observer perspective”).

Figure 6 shows the results of the two networks in the word 
 recognition task, broken down by learning epochs (which is also an 
indirect evaluation of the topological organization of the trained 
SOMs, see Pirrelli et al., in press). The values reported in Figure 6 
are averaged over repeated (10) experiments for each network. In 
particular, we measured the algorithm’s accuracy rate (the percentage 
of words that were identified correctly) and prediction rate (the per-
centage of characters that were predicted, not necessarily correctly, and 
thus skipped in reading) over 100 learning epochs, by plotting them 
against increasing levels of confidence (x axis). Low levels of confi-
dence indicate that the gaze planner has a tendency to skip characters 
even though they are not strongly predicted by the network connec-
tions. Higher confidence thresholds correspond to a more conserva-
tive attitude towards reading, whereby only highly predictable ensuing 
characters are skipped. Clearly, lower thresholds yield less accurate 
results (the ascending solid line in the panels) and higher percentages 
of guessed symbols (descending dashed line in the panels).

Careful analysis of the developmental trajectories of both models 
throws some notable phenomena in relief. Both models increase their 
overall accuracy rate as learning progresses. At the beginning, there 
are no specialized receptors for each character in the alphabet. Hence, 
networks are not able to recognize every single character. For instance, 
it might happen that a ‘C’ is presented to a network, but the corre-
sponding BMU is labeled as a ‘G’. This explains the poor performance 
in the first 20 epochs, even when almost all characters are read. In 
addition, over the first 30 epochs, transition probabilities are too low 
to be used effectively, and nearly every character has to be read.

Figure 5 | representation of a capital “A” in the graphical grid.
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tion gain (i.e., difference between future and present entropy) 
of each possible character, and gazes the one with the highest 
information gain, independently of its position in the word. 
This is done again until the word is identified with 100% prob-
ability. This algorithm is optimal in Bayesian terms, with 2.42 
gazes on average per word (from 2 to 4 gazes), corresponding to 
30.1% read characters only, with a variance of 0.09. Recognition 
is 100% accurate. As expected, its performance is significantly 
better than the other algorithms presented here, at the cost of 
stronger assumptions (complete knowledge and indifference to 
the order of characters in words). The comparison sheds light on 
the difficulty of the task we designed. Indeed, our results show 
that the number of characters that could be skipped while pre-
serving optimal performance is limited (consider however that 
in human reading and comprehension, predictions can be done 
at multiple levels, e.g., lexical, syntactic, semantic; see Pickering 
and Garrod, 2007).

realistic way. In fact, it is dubious that children can  supposedly be 
engaged in a search for global optimization strategies in learning 
word reading.

Algorithm 3 (also adopted in the design of Mr. Chips, Legge 
et al., 1997, 2002) implements the Bayesian ideal-observer pro-
cedure described above2. It calculates the expected informa-

Figure 6 | results of the word identification experiment for 66 words in the corpus. The vertical dotted line indicates the optimal confidence threshold. (A) 
THSOM model; (B) T2HSOM model.

2The algorithms we present here were selected as benchmarks for their simplicity, 
and many others could be adopted that implement similar ideal-observer strategy, 
with the addition of extra constraints. First, note that the strategy implemented 
here is myopic, in that the information gain is calculated only for the next saccade, 
and not (cumulatively) for whole sequences of saccades. Although the latter stra-
tegy is optimal in principle, it is however extremely demanding in computational 
terms. In addition, one could take into consideration extra factors, such as (motor) 
costs for the saccades, so that longer saccades are dispreferred, or costs for errors 
in the word recognition, so that system must find the minimum cumulative loss 
instead of simply minimizing the number of saccades. Note also that alternative 
Bayesian strategies have been proposed such as the “optimal ambiguity resolution” 
procedure of (Chater et al., 1998), which introduces a bias to choose interpretations 
which make specific predictions, and which might be falsified quickly.
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patterns with chains of first-order weighted Hebbian connections. 
From a cognitive perspective, this novel network architecture has 
two interesting implications.

A trained temporal map behaves like a first-order stochastic 
Markov chain, with inter-node connections building expectations 
about possible word forms on the basis of a global topological 
organization of already known forms. The model prompts a reap-
praisal of the traditional melee between one-route and dual-route 
models of morphology processing and learning, as it contextu-
ally represents lexical memory patterns and rule-like predictions. 
Furthermore, the architecture has something to say about the rep-
resentation of serial order information in short-term and long-term 
memory structures.

Botvinick and Plaut (2006) contrast two general computational 
approaches to modeling short-term memory for serial order: 
weight-based models and activation-based models. In weight-based 
approaches (see, e.g., Grossberg, 1986; Houghton, 1990; Burgess 
and Hitch, 1992, 1999; Houghton and Hartley, 1996; Hartley and 
Houghton, 1996; Henson, 1996, 1998; Brown et al., 2000), serial 
encoding and recall depend on transient associative links between 
item and context representations, with associative links being 

Our experimental results, on the other hand, cannot be com-
pared directly to human reading data. Not only human reading 
skills are considerably more sophisticated compared to our algo-
rithm, but there are differences in the task requirements too. The 
human fovea can see about four or five characters around the 
fixation point with 100% acuity, and up to 10 times more with 
increasingly less acuity. On the contrary, we used a ‘fovea’ that 
only extracts 1 character per time. For this reason, it is reason-
able that human saccades are on average 2–3 times longer (7–9 
characters) than those obtained in our experiments (2–3 char-
acters on average). In addition, the task we used was simplified 
compared to reading. For instance, humans ‘backtrack’ while 
reading (probably for correcting implausible interpretations). 
Our system was not allowed to backtrack, instead; wrong inter-
pretations counted as errors.

dIscussIon and concludInG reMarks
We have implemented a computational model of eye movements in 
language reading that integrates two components: a lexical represen-
tation network and a gaze planner. The lexical representation network 
is a temporal self-organizing map, combining overlaying memory 

Figure 7 | Training corpus word frequency histogram (A) and saccade frequency histogram test results; (B) THSOM model; (C) T2HSOM model.
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entirely depend on long-term memory mechanisms. In a devel-
opmental perspective, the causal relationship is in fact reversed 
(although reciprocal effects are also observed). For example, 
problems with short-term memory processing are known to 
cause delays in child vocabulary acquisition (Shallice and Vallar, 
1990; Papagno et al., 1991; Service, 1992 to mention a few). As 
observed by Baddeley (2007), children with higher short-term 
memory capacity are able to hold on to new words for longer, 
increasing the likelihood of long-term lexical learning. Finally, 
Botvinick and Plaut’s (2006) approach makes the paradoxical 
suggestion that human performance on immediate serial recall 
develops through direct practice on the task, rather than using 
the task to probe short-term memory capacities.

In T(2)HSOMs, the learning regime is unsupervised and memory 
effects are not based upon recall performance. Moreover, short-
term memory and long-term memory work according to two 
different dynamics. Serial encoding in a temporal map requires 
sustained activation of BMUs and their one-way associative con-
nections. Sustained activation chains of this kind are triggered upon 
presentation of an input sequence (see Building a Lexical Network 
with a T(2)HSOM above). We further argue here that, by smoothing 
the decay function over consecutive time steps, activation chains 
can also simulate effects of immediate serial recall. Serial learn-
ing, on the other hand, adjusts connection weights gradually, for 
them to keep track of the most frequently activated connections. 
Hence long-term entrenchment of one-way Hebbian connections 
is the result of repeated exposure to frequent time series of symbols. 
When long-term entrenchment sets in, it can affect immediate recall 
through anticipatory activation of the most frequently activated 
connection chains. In fact, this is the same mechanism we used in 
this paper to predict upcoming words. Temporal maps thus point 
to a profound continuity between word prediction, repetition and 
learning. Nonetheless they assume that short-term memory and 
long-term memory are based on different temporal dynamics, in 
line with neurobiological approaches (Pulvermüller, 2003) accord-
ing to which long-term memory refers to consolidation of associa-
tive networks and short-term memory is (transient) activation of 
the same networks.

The gaze planner is motivated by a Bayesian ideal-observer per-
spective. It bears resemblances to Mr. Chips (Legge et al., 1997, 2002), 
the first computational model based on an ideal-observer analysis, 
to the Bayesian reader (Norris, 2006), and to other Bayesian compu-
tational models of reading (Sprague and Ballard, 2003; Nelson and 
Cottrell, 2007). In all these systems, lexical predictions drive atten-
tion in such a way that uncertainty about environmental variables 
that are task relevant is reduced. This is done either by minimizing 
entropy, or by minimizing a combination of entropy and move-
ment (i.e. saccade amplitude) costs. Compared to these models, our 
system adopts the simpler principle of gazing at the next character 
that cannot be reliably predicted, and works on top of learned (self-
organized) lexical representations and lexical predictions.

Since a T(2)HSOM modifies its lexical representations and 
predictions during learning, our computational model allows 
us to analyze how gaze planning varies during reading, depend-
ing on the system’s lexical knowledge. In particular, it offers a 
framework to study the interrelated developmental trajectories 
of (lexical) knowledge acquisition and gaze planning during 

Figure 8 | Transition probabilities over morpheme boundaries in 
CreDere (‘believe’). (A) THSOM model; (B) T2HSOM model.

established by changing the connection weights between process-
ing units, upon presentation of a sequence to be recalled. Weight-
based models may differ in the nature of the context representation 
they use, but they all agree that serial recall does not involve incre-
mental learning. Thus, although they prove to be able to repli-
cate a wide range of detailed behavioral findings about human 
subjects, they have so far failed to simulate effects of background 
long-term knowledge (e.g. Baddeley’s so-called bigram frequency 
effect, Baddeley, 1964).

Unlike weight-based approaches, activation-based memory 
mechanisms (such as recurrent neural networks and the T(2)

HSOMs presented here) adjust weights gradually, over many 
learning trials, but performance of network recall is evaluated 
by holding weights constant and using sustained activation pat-
terns. Botvinick and Plaut (2006) show that recurrent neural 
networks can account for long-term memory effects, while, at the 
same time, replicating several behavioral facts of human recall. 
However, this is achieved by accounting for short-term effects 
of serial recall on the basis of long-term memory effects. This 
is somewhat questionable. First, it makes short-term memory 
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addition, as pointed out above, there is substantial evidence that 
anticipatory processes drive visual strategies in many visuomo-
tor tasks (Hayhoe and Ballard, 2005). Therefore, by using T(2)

HSOMs to encode sensorimotor rather than linguistic predic-
tions, our methodology could be adopted for the visual guidance 
of actions, with attention going where (task) relevant informa-
tion is expected to be.

Future work
We rapidly mention here two aspects of our model that are particu-
larly promising for future work. The predictive nature of our model 
makes room for novelty detection (Bishop, 1994), i.e. identification 
of novel data from on the basis of marginal density. In particular, 
the model could classify words or sentences as novel. In turn, nov-
elty detection is a fundamental precondition for active learning 
based on adaptive curiosity, which consists in focusing learning on 
novel but still predictable parts of the data, for which the system 
can actually improve its predictions (Schmidhuber, 1991). In our 
current model, the two sub-tasks of lexical acquisition and word 
recognition are carried out independently. However, they could be 
combined so that the gaze planning mechanism is active during 
learning and the novelty detection mechanism can affect learn-
ing lexical representations in the T(2)HSOM. In the first learning 
stages, when lexical representations in the T(2)HSOMs are not fully 
developed and reliable, most input text contributes novel infor-
mation, with few characters being skipped and lexical representa-
tions being frequently revised. When lexical representations in the  
T(2)HSOMs get more deeply entrenched and dependable, novel-
ties become more rare, more characters are skipped, and lexical 
representations get revised only occasionally.

Another possible extension of our model is using a cascaded 
asynchronous T(2)HSOM architecture, with higher-level maps 
sampling the activation state of lower-level maps at increasingly 
larger time intervals. In this architecture, short-range (i.e., pho-
nological and morphological) serial correlations are captured 
through low-level maps, and long-range serial correlations (i.e., 
word sequences) are represented on top-level maps. Although 
a single T(2)HSOM could in principle capture correlations at all 
levels (size allowing), with the benefit of the hindsight (Calderone 
et al., 2007) we conjecture that cascaded architectures of this 
type can encode correlations more efficiently, avoiding informa-
tion overload/interference and effectively simulating the inter-
action of short-term and long-term memory effects in human 
serial recall.

reading. To the best of our knowledge, there is no extensive 
empirical study of this aspect in reading, whereas relevant data 
exist related to other tasks. For instance, a recent study has inves-
tigated how visual strategies change when the subject learns a 
novel visuomotor task (Sailer et al., 2005). The authors found 
that better performance correlated with changes in gaze plan-
ning. At a first stage, hit rate was low and gaze was reactive, 
whereas in the second and third stages hit rate was higher and 
gaze become increasingly more predictive. In our experiments, 
we observed the same pattern of behavior, with the develop-
ment of increasingly reliable predictions that were conducive 
to planning anticipatory strategies.

Surely, this developmental pattern is not confined to the domain 
of reading or vision. Several studies in other fields, such as motor 
development (von Hofsten, 2004), have revealed that the devel-
opment of predictive abilities determines an increasing reliance 
on prospective behavior and is a necessary precondition for the 
rise of more and more complex cognitive abilities (for a discus-
sion of this topic, see Pezzulo and Castelfranchi, 2007; Butz, 2008; 
Pezzulo, 2008).

relevance oF our study For (developMental) roBotIcs
Our approach to reading as an active sensing process is based 
on representations and predictions that are increasingly refined 
through learning. This makes our model particular fit for devel-
opmental robotic implementations. Through our methodology, 
lexical representations can be acquired and further exploited to 
engage in both linguistic and extra-linguistic tasks in human-
robot, or robot-robot scenarios. In addition, the model can be 
extended to study the acquisition of referential capabilities in 
robots. This could be done, for instance, by coupling many T(2)

HSOMs, one for each domain (visuomotor, linguistic, etc.), for 
acquiring a combined lexical representation of a word such as 
ball, a visual representation of balls, and a set of actions to be 
performed on balls, so that the robot can use language to refer to 
objects and actions in the world, along the lines of recent compu-
tational studies that combine linguistic and sensorimotor proc-
esses (Cangelosi and Harnad, 2001; Roy, 2005; Sugita and Tani, 
2005; Wermter et al., 2005).

It is worth noting that our active sensing methodology is 
applicable outside the linguistic domain. In general, the problem 
of how, during development, task representations are acquired 
and determine increasingly sophisticated active sensing strate-
gies, is characteristic of any form of sensorimotor learning. In 

Figure 9 | results of the first algorithm having complete knowledge of the word statistics.
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where n is 2 when the map is two-dimensional. The topological 
neighborhood function of the i-th neuron is defined as a Gaussian 
function with a cut-off threshold:

c t e t t

t t
S i

t

t
i S E

i S E

i

S E

,

( )

( )
( ) ( ) ( )

( ) ( )
= ≤

>







−
d

if d

if d

2

22

0

σ ν
ν

where σ
S
(t

E
) is the topological neighborhood shape coefficient at 

epoch time t
E
, and ν

S
(t

E
) is the topological neighborhood cut-off 

coefficient at epoch time t
E
.

The synaptic weight of the j-th topological connection of 
the i-th node at time t + 1 and epoch t

E
, is finally modified as 

follows:
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Temporal learning
On the basis of BMU at time t−1 and BMU at time t, three learn-
ing steps are taken:

•	 temporal	connections	from	BMU	at	time	t−1 (the j-th neuron) 
to the neighborhood of BMU at time t (the i-th neurons) are 
strengthened:
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•	 temporal	 connections	 from	all	neurons	except	BMU	at	 time	
t−1 (the j-th neurons) to the neighborhood of BMU at time t 
(the i-th neurons) are depressed as well:
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•	 temporal	connections	from	BMU	at	time	t−1 (the j-th neuron) 
to outside the neighborhood of BMU at time t (the i-th neu-
rons) are depressed as well:
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appendIx
the T(2)HSOM Model
Short-term dynamics: activation and filtering
In the topological processing phase, activation of each node is a 
function of the Euclidean distance in the input space between its 
weight vector and the input vector. The resulting topological activa-
tion of the i-th node at time t is:

y t D x t w tS i j i j
j

D

, ,( ) [ ( ) ( )]= − −
=

∑ 2

1

where D is the number of components of the input vector 
X(t) = [x

1
(t),…,x

D
(t)], and w

i,j
(t) is the synaptic weight of the 

topological connection between the i-th node and the j-th input 
component.

In the temporal processing phase, activation of each neuron is a 
function of the correlation between its temporal synaptic connec-
tions and the overall activation state at the previous time step. The 
resulting temporal activation of the i-th node at time t is:

y t y t m tT i h i h
h

N

, ,( ) [ ( ) ( )]= − ⋅
=

∑ 1
1

where N is the number of node of the map, Y(t−1) = [y
1
(t−1),…, 

y
N
(t−1)] is the output of the T(2)HSOM at the previous time step, 

and m
i,h

(t) is the synaptic weight of the temporal connection 
from the h-th pre-synaptic neuron to the i-th post-synaptic 
neuron.

The resulting two activation values are summed up, so that the 
resulting activation value of the i-th neuron at time t is:

y t y t y ti S i T i′ = +( ) ( ) ( ), ,

The filtering module identifies BMU at time t by looking for the 
maximum activation level:

y t y ti i′ ′bmu( ) max ( )= { }
The output is subsequently normalized to ensure the network 

stability over time:
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Long-term dynamics: learning
In T(2)HSOM learning consists in topological and temporal 
co-organization.

Topological learning. In classical SOMs, this effect is taken into 
account by a neighborhood function centered around BMU. Nodes 
that lie close to BMU on the map will be strengthened as a function 
of BMU’s neighborhood. The distance between BMU and the i-th 
node on the map is calculated through the following Euclidean 
metrics:

d t i bmu ti c c
c

n

( ) [ ( )]= −
=

∑ 2

1
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•	 temporal	cut-off	distance	starting	from	the	maximum	distance	
between two nodes in the map, exponentially decaying over 
epochs with a time-constant equal to 25 epochs

•	 offset	of	the	Hebbian	rule	within	the	temporal	learning	pro-
cess starting from 0.01), exponentially decaying over epochs 
with a time-constant equal to 25 epochs

The THSOM version of the model was tested by using ν
T
 = 0 

and σ
T
 = ∞.

alGorIthM 1
The performance of the T(2)HSOM model is evaluated in terms of 
accuracy and prediction rate during the execution of the reading 
task of single words. During this stage the learning algorithm of the 
model is turned off. The algorithm takes into account all the words 
contained in the dictionary, and all the symbols contained in each 
word. With the aim to identify the optimal confidence threshold 
θ, the corresponding domain (0 ≤ θ ≤ 1) is sampled in 100 steps 
and the performance rates are evaluated at each step.

For each word in dictionary, assuming s
i,j 

represents the j-th 
symbol of the i-th word, the algorithm starts from the left-most 
symbol (i.e. j ←  1) and performs the following steps:

(1) the j-th symbol of the i-th input word is collected:

c ← s
i,j

(2) the symbol c is queued in the output word:

 s’
i,j
 ← c

(3)  a look-up table provides the D-element vector V representing 
the grapheme-based coding belonging to the symbol c:

 
V x x xc c c D← ( , ,..., ), , ,1 2

(4)  the input vector V is propagated into the model and, as a 
result, a new BMU gets activated:

 k ← BMU

(5)  the algorithm looks for the highest transition probability 
among all the outgoing (post-synaptic) connections from 
the k-th node of the network:

 
q P h Nh k h← = …arg max ( ) ( ),      1

(6)  if P
k,q 

is above the confidence threshold θ, then the next 
symbol can be directly obtained (i.e., predicted) as the label 
of the q-th node of the network:

 c ← L
q

(7)  if this the case, the algorithm returns to step (2). Otherwise, 
the next symbol must be collected (i.e., read) from the 
input word, returning to step (1). In both cases, the algo-
rithm continues with the next symbol (j ←  j + 1) of the 
current word. If the end-of-word is reached, the next word 
is processed (j ←  1; i ←  i + 1) until the end-of-dictionary is 
reached.

During the previous steps, the algorithm evaluates the follow-
ing scores:

Learning decay. As an epoch ends, an exponential decay process 
applies to each learning parameter so that the generic parameter p 
at t

E
 is calculated according to the following equation:

p t p eE

tE

p( ) ( )= ⋅
−

0
τ

A complete list of the learning parameters is shown below:

•	 α
S
: learning rate of the topological learning process

•	 σ
S
: shape parameter of the neighborhood Gaussian function 

for the topological learning process
•	 ν

S
: cut-off distance of the neighborhood Gaussian function for 

the topological learning process
•	 α

T
: learning rate of the temporal learning process

•	 σ
T
: shape parameter of the neighborhood Gaussian function 

for the temporal learning process
•	 ν

T
: cut-off distance of the neighborhood Gaussian function for 

the temporal learning process
•	 β

T
: offset of the Hebbian rule within the temporal learning 

process

Post processing. At a given epoch t
E
, the transition matrix is 

extracted from the temporal connection weights m
i,j
(t

E
), so that 

P
i,j
(t

E
) is the probability to have a transition from the i-th node to 

the j-th node of the network (i.e., the j-th node will be the BMU at 
time t + 1, given the i-th node is the BMU at time t):

P m

m
i j j i

h i
h

N, ,

,

= ⋅

=
∑

1

1

At the same time the labeling procedure is applied. A label L
i
 

(i.e., an input symbol) is assigned to each node, so that the graph-
eme-base coding of the c-th symbol matches the i-th node’s space 
vector best:

L x t w t i Ni c c j i j
j

D

= − =
=

∑arg min [ ( ) ( )], ,
2

1

    ( 1 )

Parameter configuration
The experiments shown in the present work were performed using 
the following parameter configuration:

•	 25	× 25 map nodes
•	 20	 elements	 in	 the	 input	 vector	 (grapheme-based	 orthogra-

phic character coding)
•	 100	learning	epochs
•	 learning	rates	starting	 from	maximum	value	(i.e.	1.0),	expo-

nentially decaying over epochs with a time-constant equal to 
25 epochs

•	 shape	parameters	 starting	 from	a	value	 so	 that	 the	Gaussian	
function has a gain equal to 30% at the maximum cut-off 
distance, with no decay over epochs

•	 spatial	cut-off	distance	 starting	 from	the	maximum	distance	
between two nodes in the map, exponentially decaying over 
epochs with a time-constant equal to 12.5 epochs
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•	 for	 each	 word,	 the	 ratio	 between	 the	 number	 of	 predicted	
symbols and the number of total symbols of the word (the 
start-of-word symbol is excluded)

•	 the	prediction rate, which is obtained averaging the above men-
tioned ratio over all the words

•	 for	 each	 word,	 the	 Boolean	 comparison	 between	 the	 input	
word s

i
 and the output word s’

i

•	 the	accuracy rate, which is obtained as the ratio between the 
number of words predicted correctly (i.e., there is no diffe-
rence between the input and output word) and the total num-
ber of words in the dictionary

alGorIthM 2
The first algorithm described in Section “Experiment 2” operates 
with complete knowledge (of the order/probability of the characters 
in the words) and skips predictable characters. Given the current 
belief state [i.e. a vector b

t
(w

i
) that describes the probability that 

the already gazed characters belong to one of the words in the 
 dictionary (w

i
)] and the current position a

t
, the algorithm selects 

the character o
m
 that has the maximum probability P

m
 to be the 

next character (at position a
t + 1

) in the word being read.

next step only (not of the entire sequence of gazes). In general, there 
is no guarantee that a sequence of myopic actions achieves the same 
decrease of entropy as an optimal non-myopic sequence.

The initial probability of word w
i
 is b

0
(w

i
), and corresponds to 

the frequency of the word in the corpus. The vector b
0
 is the belief 

state of the agent. The following formulas describes how beliefs 
(b

t + 1
) are updated based on (i) the previous belief state (b

t
), (ii) the 

new observation (o
t + 1

), and (iii) the executed action (a
t
).

b w = P w  | b w a o =

b w

b w
t+ i i t i t t+

t i

t j
w : w a =oj j t t+

1 1( ) ( ) ]

( )

( )
( )

[ , ,
11

1

10

∑
≠










if w a = o

if w a  o

i t t+

i t t+

( )

( )

When the algorithm gets the character o
t + 1

 at position a
t
, the 

probability distribution of words is updated as follows: (i) it 
becomes zero for all words that have a different character in that 
position, (ii) for all the other words, the previous probability is 
divided by the sum of the previous probability of all the words that 
have the character in the right position. Expected entropy (EH), 
given the current belief and the position gazed (a

t
), is calculated 

as indicated by the next formula:

3The notation used, (action a, belief b and observation o) is typical of POMDP, 
which is a formalization of the problem of choosing sequences of actions under 
uncertainty in order to achieve an optimal total reward.

EH( , ) ( , , ) ( ) [ (
’ { ( , , ), }

b a b a b H b H SEt t t t
b b SE b a o o Ot t

= ⋅[ ] =
∈ = ∈

∑ τ ′ ′ bb a o g b a o

H b a o b w

t t t t
o

O

t t t j
w w aj j t

, , )] ( , , )

[ ( , , )] ( )
: ( )

⋅{ }

= ⋅

∑

=

SE
ooo

O
t i

t j
w w a o

t i

t j
w w

b w

b w

b w

b w
j j t j j

∑∑ ∑






= ⋅

=

( )

( )
log

( )
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a o
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t j
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o O
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i i t
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=

=

∈ + =
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1

1 ==
∑

o

If the maximum probability is more than a threshold θ, the 
algorithm assumes that o

m 
has been read (or can be skipped), oth-

erwise it reads the character at position a
t
 + 1. Then, it updates the 

belief state b
t + 1

(w
i
) and sets the new initial position (a

t + 1
← a

t
 + 1). 

This procedure continues until the end of the word.

alGorIthM 3
The second algorithm described in Section “Experiment 2” uses the 
probability distribution of the words in the dictionary, given the 
characters already read and the priors (of which it has complete 
knowledge). The aim of the algorithm is selecting the action (i.e., 
gaze position) that results in an observation (i.e. a read character), 
which, in turn, minimizes (on average) the expected entropy, or the 
entropy of the resulting probability distribution of the words in the 
entire dictionary, given the current belief state (i.e. word probability)3. 
Note that this approach is myopic, since it minimizes entropy of the 

Function τ(b
t
,a

t
,b’) gives the probability of obtaining the 

belief state b’ given current belief state b
t
 and gazing at position 

a
t
, while H(b’) is the entropy of the belief state b’ correspond-

ing to the distribution of probability over the dictionary {w
i
}. 

SE(b
t
,a

t
,o) is the belief state that, starting from belief state b

t
 is 

obtained after the execution of action a
t
 resulting in the obser-

vation o. g(b
t
,a

t
,o) is the probability of getting observation o by 

executing action a
t
 in belief state b

t
 (i.e., the sum of probabilities 

of all words matching all read characters and with character o 
at position a

t
).

It is worth noting that the use of this computational approach 
in realistic reading tasks is hindered by its computational cost 
(which grows quadratically with the length of the word/text to 
be read), and by its huge demands in terms of knowledge (it 
implicitly assumes that all the possible words/texts are already 
known, and the  current task consist in recognizing which word/
text one is currently reading). For text reading, a more feasi-
ble computational approach could be adopted that uses this 
method at two or more levels in parallel, for instance at the 
level of single words and at the same time at the level of whole 
sentences (using words and not characters as observations, and 
changing the priors on words). Another limit of this algorithm 

62

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org


Frontiers in Neurorobotics www.frontiersin.org June 2010 | Volume 4 | Article 6 | 

Ferro et al. Reading as active sensing

Houghton, G. (1990). “The problem of 
serial order: a neural network model 
of sequence learning and recall,” in 
Current Research in Natural Language 
Generation, eds R. Dale, C. Nellish and 
M. Zock (San Diego: Academic Press), 
287–318.

Houghton, G., and Hartley, T. (1996). 
Parallel models of serial behaviour: 
Lashley revisited. Psyche 2, 2–25.

Howard, R. A. (1966). Information value 
theory. IEEE Trans. Syst. Sci. Cybern. 
2, 22–26.

Jenkins, W., Merzenich, M. M., and Ochs, 
M. (1984). Behaviorally controlled 
differential use of restricted hand 
surfaces induces changes in the corti-
cal representation of the hand in area 
3b of adult owl monkeys. Abstr. - Soc. 
Neurosci. 10, 665.

Johansson, R. S., Westling, G., Bäckström, 
A., and Flanagan, J. R. (2001). Eye-hand 
coordination in object manipulation. 
J. Neurosci. 21, 6917–6932.

Kaas, J. H., Merzenich, M. M., and 
Killackey, H. (1983). The reorganiza-
tion of somatosensory cortex follow-
ing peripheral nerve damage in adult 
and developing mammals. Annu. Rev. 
Neurosci. 6, 325–356.

Kohonen, T. (2001). Self-Organizing Maps. 
Heidelberg: Springer-Verlag.

Koutnik, J. (2007). “Inductive modelling of 
temporal sequences by means of self-or-
ganization,” in Proceeding of International 
Workshop on Inductive Modelling (IWIM 
2007), Prague, 269–277.

Land, M. F. (2006). Eye movements 
and the control of actions in eve-
ryday life. Prog Retin Eye Res 25, 
296–324.

Legge, G. E., Hooven, T. A., Klitz, T. S., 
Mansfield, J. S., and Tjan, B. S. (2002). 
Mr. Chips 2002: New insights from 
an ideal-observer model of reading. 
Vision Res. 42, 2219–2234.

Legge, G. E., Klitz, T. S., and Tjan, B. S. 
(1997). Mr. Chips: An ideal-observer 
model of reading. Psychol. Rev. 104, 
524–553.

Libben, G. (2006). “Why studying com-
pound processing? An overview of 
the issues,” in The Representation and 
Processing of Compound Words, eds G. 
Libben and G. Jarema (Oxford: Oxford 
University Press), 1–22.

MacWhinney, B. (2000). The CHILDES 
Project: Tools for Analyzing Talk, vol-
ume 2: The Database. Hillsdale, NJ: 
Lawrence Erlbaum.

McClelland, J., and Patterson, K. (2002). 
Rules or connections in past-tense 
inflections: what does the evi-
dence rule out? Trends Cogn. Sci. 6, 
465–472.

Nelson, J. D., and Cottrell, G. W. (2007). A 
probabilistic model of eye movements 
in concept formation. Neurocomputing 
70, 2256–2272.

Norris, D. (2006). The Bayesian reader: 
explaining word recognition as an 
optimal Bayesian decision process. 
Psychol. Rev. 113, 327–357.

O’Regan, J., and Nöe, A. (2001). A senso-
rimotor account of vision and visual 
consciousness. Behav. Brain Sci. 24, 
883–917.

Papagno, C., Valentine, T., and Baddeley, 
A. (1991). Phonological short-term 
memory and foreign-language learn-
ing. J. Mem. Lang. 30, 331–347.

Penfield, W., and Rasmussen, T. (1950). 
The Cerebral Cortex of Man. New York: 
Macmillan.

Penfield, W., and Roberts, L. (1959). Speech 
and Brain Mechanisms. Princeton: 
Princeton University Press.

Pezzulo, G. (2008). Coordinating with 
the future: the anticipatory nature 
of representation. Minds Machine 18, 
179–225.

Pezzulo, G., and Castelfranchi, C. (2007). 
The symbol detachment problem. 
Cogn. Process. 8, 115–131.

Pickering, M. J., and Garrod, S. (2007). 
Do people use language  production 
to make predict ions during 
 comprehension? Trends Cogn. Sci. 
(Regul. Ed.) 11, 105–110.

Pinker, S., and Prince, A. (1988). On lan-
guage and connectionism: analysis of 
a parallel distributed processing model 
of language acquisition. Cognition 29, 
195–247.

Pinker, S., and Ullman, M. T. (2002). 
The past and future of the past tense. 
Trends Cogn. Sci. 6, 456–463.

Pirrelli, V. (2007). Psychocomputational 
issues in morphology learning and 
processing: an ouverture. Lingue 
Linguaggio 2, 131–138.

Pirrelli, V., Ferro, M., and Calderone, B. 
(in press). “Learning paradigms in 
time and space. Computational evi-
dence from Romance languages,” in 
Morphological Autonomy: Perspectives 
from Romance Inflectional Morphology, 
eds M. Goldbach, M. O. Hinzelin, M. 
Maiden and J. C. Smith (Oxford: 
Oxford University Press).

importance of starting big. Lingue e 
Linguaggio 2, 175–200.

Cangelosi, A., and Harnad, S. (2001). The 
adaptive advantage of symbolic theft 
over sensorimotor toil: grounding lan-
guage in perceptual categories. Evol. 
Commun. 4, 117–142.

Chater, N., Crocker, M. J., and Pickering, 
M. J. (1998). “The rational analysis 
of inquiry: the case of parsing” in 
Rational Models of Cognition, eds M. 
Oaksford and N. Chater (Oxford: 
Oxford University Press), 441–469.

DeLong, K. A., Urbach, T. P., and Kutas, M. 
(2005). Probabilistic word pre-activa-
tion during language comprehension 
inferred from electrical brain activity. 
Nat. Neurosci. 8, 1117–1121.

Ehrlich, S. E, and Rayner, K. (1981). 
Contextual effects on word percep-
tion and eye movements during read-
ing. J. Verbal Learn. Verbal Behav. 20, 
641–655.

Engbert, R., and Krügel, A. (2010). 
Readers use Bayesian estimation for 
eye-movement control. Psychol. Sci. 
21, 366–371.

Federmeier, K. D. (2007). Thinking 
ahead: the role and roots of predic-
tion in language comprehension. 
Psychophysiology 44, 491–505.

Geisler, W. S. (2003). “Ideal observer 
analysis,” in The Visual Neurosciences, 
eds L. Chalupa and J. Werner (Boston: 
MIT press) 825–837.

Grossberg, S. (1986). “The adaptive self-
organization of serial order in behavior: 
speech, language, and motor control,” 
in Pattern Recognition by Humans and 
Machines Vol. 1: Speech Perception, eds 
E. C. Schwab and H. C. Nusbaum. (New 
York: Academic Press), 187–294.

Hartley, T., and Houghton, G. (1996). A 
linguistically constrained model of 
short-term memory for nonwords. J. 
Mem. Lang. 35, 1–31.

Hayhoe, M., and Ballard, D. H. (2005). Eye 
movements in natural behavior. Trends 
Cogn. Sci. (Regul. Ed.) 9, 188–193.

Hebb, D. O. (1949). The Organisation of 
Behaviour. New York: Wiley.

Henson, R. N. A. (1996). Short-term 
memory for serial order. Unpublished 
doctoral dissertation, MRC Applied 
Psycholog y Unit . Cambridge: 
University of Cambridge.

Henson, R. N. A. (1998). Short-term 
memory for serial order: The 
start-end model. Cogn. Psychol. 36, 
73–137.

reFerences
Altmann, G. T. M., and Kamide, Y. (1999). 

Incremental interpretation at verbs: 
restricting the domain of subsequent 
reference. Cognition 73, 247–264.

Baayen, H. (2007). “Storage and compu-
tation in the mental lexicon,” In The 
Mental Lexicon: Core Perspectives, eds 
G. Jarema and G. Libben (Amsterdam: 
Elsevier), 81–104.

Baddeley, A. D. (1964). Immediate 
memory and the “perception” of let-
ter sequences. Q. J. Exp. Psychol. 16, 
364–367.

Baddeley, A. D. (2007). Working Memory, 
Thought, and Action. Oxford: Oxford 
University Press.

Ballard, D. H. (1991). Animate vision. 
Artif. Intell. 48, 1–27.

Ballard, D. H., Hayhoe, M. M., and Pelz, 
J. B. (1995). Memory representations 
in natural tasks. J. Cogn. Neurosci. 7, 
66–80.

Bishop, C. M. (1994). Novelty detec-
tion and neural network validation. 
IEE Proc., Vis. Image Process 141, 
217–222.

Botvinick, M. M., and Plaut, D. C. (2006). 
Short-term memory for serial order: 
a recurrent neural network model. 
Psychol. Rev. 113, 201–233.

Brown, G., Preece, T., and Hulme, C. 
(2000). Oscillator-based memory 
for serial order. Psychol. Rev. 107, 
127–181.

Burani, C., Marcolini, S., De Luca, M., 
and Zoccolotti, P. (2008). Morpheme-
based reading aloud: evidence from 
dyslexic and skilled Italian readers. 
Cognition 108, 1, 243–262.

Burgess, N., and Hitch, G. J. (1992). Toward 
a network model of the articulatory 
loop. J. Mem. Lang. 21, 429–460.

Burgess, N., and Hitch, G. J. (1999). 
Memory for serial order: a network 
model of the phonological loop 
and its timing. Psychol. Rev. 106, 
551–581.

Burzio, L. (2004). “Paradigmatic and 
syntagmatic relations in Italian ver-
bal inflection,” in Contemporary 
Approaches to Romance Linguistics, 
eds J. Auger, J. C. Clements and B. 
Vance (Amsterdam: John Benjamins), 
17–44.

Butz, M. V. (2008). How and why the brain 
lays the foundations for a conscious 
self. Constructivist Found. 4, 1–42.

Calderone, B., Herreros, I., and Pirrelli, 
V. (2007). Learning Inflection: the 

acknowledGMents
The research leading to these results has received funding from the 
European’s Community Seventh Framework Programme under 
grant agreement no FP7-231453 (HUMANOBS, Humanoids That 
Learn Socio-Communicative Skills Through Observation).

is that it doesn’t model noise in action (e.g., one can believe 
to be reading the 5th character, but actually read the 6th) and 
observation (e.g., one can mistake an “l” for a “i”). Modeling 
noise would result in more complex algorithms like those for 
planning in POMDP.

63

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org


Frontiers in Neurorobotics www.frontiersin.org June 2010 | Volume 4 | Article 6 | 

Ferro et al. Reading as active sensing

Yarbus, A. (1967). Eye Movements and 
Vision. New York: Plenum Press.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial or 
financial relationships that could be con-
strued as a potential conflict of interest.

Received: 18 December 2009; paper pend-
ing published: 28 January 2010; accepted: 
28 April 2010; published online: 03 June 
2010.
Citation: Ferro M, Ognibene D, Pezzulo G 
and Pirrelli V (2010) Reading as active sens-
ing: a computational model of gaze planning 
in word recognition. Front. Neurorobot. 4:6. 
doi: 10.3389/fnbot.2010.00006
Copyright © 2010 Ferro, Ognibene, Pezzulo 
and Pirrelli. This is an open-access article 
subject to an exclusive license agreement 
between the authors and the Frontiers 
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original 
authors and source are credited.

Sugita, Y., and Tani, J. (2005). Learning 
semantic combinatoriality from the 
interaction between linguistic and 
behavioral processes. Adapt. Behav. 
13, 33–52.

Triesch, J. J., Ballard, D. H., Hayhoe, M., 
and Sullivan, B. (2003). What you see is 
what you need. J. Vis. 3, 86–94.

Ullman, M. T. (2004). Contributions 
of memory circuits to language: 
the declarative/procedural model. 
Cognition 92, 231–270.

von Hofsten, C. (2004). An action per-
spective on motor development. 
Trends Cogn. Sci. 8, 266–272.

Wermter, S., Weber, C., and Elshaw, M. 
(2005). “Associative neural models for 
biomimetic multi-modal learning in a 
mirror neuron-based robot,” in Modeling 
Language, Cognition and Action, eds A. 
Cangelosi, G. Bugmann and R. Borisyuk 
(Singapore: World Scientific), 31–46.

Westermann, G., and Plunkett, K. (2007). 
Connectionist models of inflection 
processing. Lingue Linguaggio 2, 
291–311.

Sailer, U., Flanagan, J. R., and Johansson, 
R. S. (2005). Eye-hand coordination 
during learning of a novel visuomotor 
task. J. Neurosci. 25, 8833–8842.

Schmidhuber, J. (1991). Adaptive 
Confidence and Adaptive Curiosity. 
Institut für Informatik, Technische 
Universitat, Munchen.

Service, L. (1992). Phonology, work-
ing memory and foreign-language 
learning. Q. J. Exp. Psychol. A. 45, 
21–50.

Shallice, T., and Vallar, G. (1990). “The 
impairment of auditory-verbal short-
term storage,” in Neuropsychological 
Impairments of Short-Term Memory, 
eds G. Vallar and T. Shallice 
(Cambridge: Cambridge University 
Press), 121–141.

Sprague, N., and Ballard, D. H. (2003). 
“Eye movements for reward maximi-
zation,” in Proceedings of Advances in 
Neural Information Processing Systems 
16 (NIPS’03), eds S. Thrun, L. Saul and 
B. Schölkopf (Cambridge: MIT Press), 
1467–1474.

Post, B., Marslen-Wilson, W., Randall, 
B., and Tyler, L. K. (2008). The 
processing of  English regular 
inflections: Phonological cues to 
morphological structure. Cognition 
109, 1–17.

Prasada, S., and Pinker, S. (1993). 
Generalization of regular and irregular 
morphological patterns. Lang. Cogn. 
Process. 8, 1–56.

Pulvermüller, F. (2003). Sequence detec-
tors as a basis of grammar in the brain. 
Theory Biosci. 122, 87–103.

Rayner, K. (2009). Eye movements and 
attention in reading, scene perception, 
and visual search. Q. J. Exp. Psychol. 
62, 1457–1506.

Rayner, K., and Well, A. D. (1996). 
Effects of contextual constraint on 
eye movements in reading: A further 
examination. Psychon. Bull. Rev. 3, 
504–509.

Roy, D. (2005). Semiotic schemas: a 
framework for grounding language 
in action and perception. Artif. Intell, 
167, 170–205.

64

http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org


Frontiers in Neurorobotics www.frontiersin.org November 2010 | Volume 4 | Article 10 | 

NEUROROBOTICS
PersPective Article

published: 19 November 2010
doi: 10.3389/fnbot.2010.00010

Robots with language

Domenico Parisi*

Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy

Trying to understand human language by constructing robots that have language necessarily 
implies an embodied view of language, where the meaning of linguistic expressions is derived 
from the physical interactions of the organism with the environment. The paper describes a 
neural model of language according to which the robot’s behaviour is controlled by a neural 
network composed of two sub-networks, one dedicated to the non-linguistic interactions of 
the robot with the environment and the other one to processing linguistic input and producing 
linguistic output. We present the results of a number of simulations using the model and we 
suggest how the model can be used to account for various language-related phenomena such 
as disambiguation, the metaphorical use of words, the pervasive idiomaticity of multi-word 
expressions, and mental life as talking to oneself. The model implies a view of the meaning of 
words and multi-word expressions as a temporal process that takes place in the entire brain 
and has no clearly defined boundaries. The model can also be extended to emotional words 
if we assume that an embodied view of language includes not only the interactions of the 
robot’s brain with the external environment but also the interactions of the brain with what is 
inside the body.

Keywords: emotional words, language, robots

Studying language by conStructing robotS that 
have language
If we want to construct human robots rather than just humanoid 
robots, that is, if we want to construct robots which actually behave 
like human beings rather than robots which only resemble human 
beings in their external morphology, it will be necessary for our 
robots to possess language because language is such a prominent 
feature of human beings. Some robots give us the impression of being 
able to use language but they do not actually understand the language 
they hear or produce. They are programmed to respond with specific 
actions to specific acoustic inputs and to generate specific sounds in 
specific circumstances but human language is much more than that. 
Of course, human language is a very complicated behavior and it 
will not be easy to construct robots that can be said to really possess 
language. But we can make some steps in that direction.

Studying language by constructing robots that have language 
implies a specific conceptual framework with which to look at 
human language. Robots are real or simulated physical artifacts. 
They have a body, they have sensors and effectors with which they 
interact with the physical environment, their behavior is con-
trolled by a simulated “brain” (an artificial neural network), and 
their body contains (or should contain; cf. Parisi, 2004) not only 
a “brain” but also other internal organs and systems. Therefore, 
robots necessarily imply an “embodied” conception of cognition 
according to which cognition depends on, and is shaped by, the 
possession of a body and the movements of the body’s different 
parts. Cognitive representations have been traditionally thought 
of as based on perception or as abstract representations that do 

not contain sensory-motor information. However, recent empirical 
findings and theoretical developments favor a different conception 
of cognitive representations according to which the body of the 
organism and the movements of the body’s effectors play a critical 
role in shaping the organism’s cognitive representations (Gibson, 
1979; Clark, 1999; Barsalou, 2008a,b). Furthermore, if the robot’s 
behavior is controlled by a neural network (as it should be since 
the brain is part of the body and, to be consistent, robots should be 
neurorobots), cognitive representations become neural representa-
tions, that is, patterns of activation or successions of patterns of 
activation in a set of units that simulate the brain’s neurons. This 
usefully operationalizes the rather vague concept of cognitive or 
mental representation since, unlike cognitive or mental representa-
tions, artificial neural representations can be observed, measured, 
and compared with empirical data on the brain.

Constructing robots that have language necessarily extends the 
embodied conception of cognition to language. Empirical evidence 
in favor of an embodied conception of cognition has accumu-
lated not only in experiments in which participants respond to the 
sight of objects but also when they respond to words that refer to 
those objects (for a recent review, see Fischer and Zwaan, 2008). In 
both cases, the sensory input activates the neural representation of 
the action with which participants usually respond to the object. 
However, a well-developed embodied theory of language should 
be able to answer many questions that remain still open, and con-
structing robots that have language should help us to answer these 
questions. Here are some examples. Are there differences in what 
happens in the brain when a participant responds to the sight of 
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circular object, again independently of the object’s color, we find 
that the four objects are represented in the internal units of the 
robot’s neural network in terms of the action that the robot has to 
do in response to the objects (go to the button on the right, go to 
the button on the left) rather than in terms of the perceptual prop-
erties of the objects as such. In fact we observe only two activation 
patterns in the neural network’s internal units, one which controls 
the action of reaching the button on the right and the other one 
which controls the action of reaching the button on the left. The 
object’s perceptual property which is critical to decide which action 
to do, in our case shape, determines the internal representation of 
the object, while the other property, color, is ignored. Notice that 
the internal representation of an action is abstract in the sense that 
it needs to be translated into a succession of specific movements of 
the robot’s arm which vary as a function of the starting position of 
the arm. In fact, the robot’s neural network includes an additional 
set of proprioceptive input units encoding the current position of 
the robot’s arm which project directly to the motor units. The two 
activation patterns that constitute the internal representations of 
the two actions interact with this proprioceptive information from 
the arm so that, for any starting position of the arm, each of the two 
abstractly represented action can be translated in the appropriate 
succession of movements.

a neural network’S architecture for 
language‑uSing robotS
The robots we have described in the preceding Section do not have 
language but they only respond to objects with the appropriate 
non-linguistic action. We now ask: What is the basic architecture of 
the neural network that controls the behavior of a language-using 
robot? The robot’s overall neural network is made up of two sub-
networks, the non-linguistic sub-network (NL) and the linguistic 
sub-network (L) (Mirolli and Parisi, 2005). Both sub-networks 
include three layers of units: a sensory layer, a motor layer, and 
an intermediate layer of internal units. The sensory units of NL 
encode perceived objects and its motor units encode movements 
of the robot’s effectors such as the robot’s arm. The sensory units 
of L encode heard linguistic sounds and its motor units encode 
movements of the robot’s phono-articulatory organs that result 
in the production of linguistic sounds. NL maps non-linguistic 
sensory input into non-linguistic actions. In fact, NL is identical 
to the neural network of our robots that had to reach with their 
arm one of two different buttons in response to a visually perceived 
object. L maps heard linguistic sounds into phono-articulatory 
movements. This is the network that controls the behavior of a 
robot which is able to imitate (repeat) heard sounds without asso-
ciating any meaning to them. The robot hears a linguistic sound 
and it responds with movements of its phono-articulatory organs 
that reproduce the sound.

The two sub-networks remain functionally or perhaps even ana-
tomically separate during an initial period of the robot’s existence 
which corresponds to children’s first year of life. During this period 
the robot learns to respond to non-linguistic sensory input (say, 
perceived objects) with movements of its non-linguistic effectors 
(arm, hands, legs, eyes) using its NL sub-network. In addition the 
robot uses its L sub-network to produce linguistic sounds with its 
phono-articulatory organs, either spontaneously or in response 

an object and when he/she responds to a word which refers to the 
object? Do nouns evoke what are called the stable affordances of 
an object, i.e., the action with which one responds to the object 
and which is represented in the brain independently of the actual 
movements with which the action is physically realized in different 
circumstances, while seeing an object in a particular orientation 
also evokes the variable affordances of the object which specify at 
least some aspects of the movements one has to produce to physi-
cally realize the action (Borghi and Riggio, 2009)? Do verbs that 
refer to actions only or mainly activate the neural representation of 
the state of the environment which is produced by the movements 
of the effectors, i.e., the effect of the action, while the sight of an 
action activates a neural representation of both this state and the 
movements of the effectors that will produce it? Does possession 
of a language change how the brain responds to perceived objects 
and actions in that an individual tend to internally label those 
objects and actions and therefore he or she responds to both the 
perceived object and action and the self-produced linguistic signal? 
Are there differences between the neural representations evoked 
by verbs and by nouns, or by nouns that refer to tools (e.g., ham-
mer) and nouns that refer to natural objects (tree) (Cangelosi and 
Parisi, 2001)? How can an embodied theory of language account 
for abstract words? Do abstract words imply going back and forth 
between the part of the brain that processes words as sounds and 
the part which constructs a meaning for the sound, while this is 
less true for concrete words? How is an embodied meaning for 
combinations of words (phrases and sentences) constructed? How 
can an embodied theory account for emotional words and for the 
emotional component of non-emotional words?

In this paper we describe a simple neural network architecture 
for language-using simulated robots living in simulated environ-
ments and we try to show how this architecture may explain a 
(very limited) number of linguistic behaviors, where to explain a 
behavior is to construct a robot that reproduces the behavior. We 
will refer to robots that have been actually constructed and we will 
indicate how these robots could be modified to account for other 
linguistic phenomena.

objectS are internally repreSented in termS of the 
actionS with which we reSpond to them
Neurorobots develop internal (neural) representations of per-
ceived objects which are based on the motor actions with which 
they respond to the objects rather than on the objects’ perceptual 
 properties. Imagine a robot whose neural network has sensory units 
encoding the visual properties of objects, motor units encoding 
the movements of the robot’s arm, and an intermediate layer of 
internal units. The robot lives in an environment in which it may 
be exposed to one of four possible objects possessing two proper-
ties, color and shape, both with two values, blue and red, square 
and circle. The robot sees one object at a time and it has to respond 
by reaching with its arm one of two buttons, one on the right and 
the other on the left (Borghi et al., 2003, 2005; Di Ferdinando and 
Parisi, 2004). (The connection weights of the neural network of 
all the robots described in this paper are evolved using a genetic 
algorithm. See Mitchell, 1998). If the button on the right has to 
be reached when the robot sees a square object, independently of 
the object’s color, and the button on the left when the robot sees a 
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reaching perceptually different edible mushrooms) and a variety 
of different objects which have to be responded to with another 
action (avoiding perceptually different poisonous mushrooms) 
(Cangelosi and Parisi, 1998). In these circumstances, we cannot 
expect that all the mushrooms that have to be responded to with 
the same action will evoke an identical activation pattern in the 
internal units of the robot’s neural network, completely eliminating 
the differences among the individual mushrooms that have to be 
responded to with the same action. In fact, if we evolve a population 
of robots in this new environment and we examine the activation 
patterns elicited by the mushrooms in the internal units of the 
robot’s neural network, we find that even perceptually different 
mushrooms that have to be responded to with the same action 
tend to elicit somewhat different activation patterns in the internal 
units. However, we can still maintain the basic assumption of the 
action-based conception of cognition, i.e., that different objects 
tend to be internally represented on the basis of the action with 
which they have to be responded to, rather than in terms of their 
purely perceptual characteristics. When the robots have (evolu-
tionarily) learned to respond appropriately to the mushrooms, i.e., 
they eat the edible ones and avoid the poisonous ones, we discover 
that the mushrooms of one category do not evoke exactly the same 
internal activation pattern in the internal units of the robots’ neu-
ral network. However, the internal activation patterns evoked by 
the mushrooms belonging to one action-defined category resem-
ble each other and are very different from the activation patterns 
evoked by the mushrooms belonging to the other category. The 
two categories of mushrooms can be formally represented as two 
“clouds” of points in the abstract hyperspace of the internal units, 
where each point represents the internal activation pattern of an 
individual mushroom, each dimension of the space corresponds 
to one internal unit, and the position of the point on that dimen-
sion corresponds to the activation level of the unit. The points that 
correspond to one category of mushrooms form one cloud, and 
they are close to one another, and the points corresponding to the 
other category form another, separate, cloud.

What if when the robot encounters a mushroom, it does not 
only visually perceive the mushroom but it also hears the word that 
describes the category of the mushroom, for example the words 
“edible” and “poisonous”? Now the neural network that controls 
the robot’s behavior includes both a NL sub-network and L sub-
network. When the robot encounters an edible mushroom and it 
visually perceives the mushroom with its NL sub-network, it also 
hears the sound “edible” with its L sub-network, while when it 
encounters a poisonous mushroom it hears the sound “poisonous”. 
(Notice that these two sounds can be produced by another robot 
or they can be self-produced by the robot. For the self-production 
of language as an important component of what we can call a 
robot’s mental life, see Section “Robot That Talk to Themselves”). 
If we examine the clouds of points representing the two categories 
of mushrooms in the internal units of a robot’s NL sub-network, 
we find that, compared to the robots without language, the two 
clouds have a smaller size and there in a greater distance between 
the centers of the two clouds. As a consequence, we find that the 
robots are better able to distinguish between the two categories 
of mushrooms and to avoid making errors by eating a poisonous 
mushroom or avoiding an edible mushroom (Mirolli and Parisi, 

of its own heard sounds (babbling) and, later on, by imitating the 
linguistic sounds produced by already speaking robots.

At the end of this period the two sub-networks begin to be con-
nected together by two-way connections that go from the internal 
units of NL to the internal units of L, and vice versa, and the syn-
aptic weights of these two-way connections are learned based on 
the co-variation of specific linguistic sounds with specific objects 
and actions in the robot’s experience. From this point on our robot 
becomes a language-using robot. The robot still uses NL to produce 
non-linguistic actions in response to non-linguistic sensory input 
but, in addition, it begins to understand and to produce language. 
Language understanding consists in responding to heard linguis-
tic sounds with the appropriate movements of the non-linguistic 
effectors while language production consists in responding to non-
 linguistic input with phono-articulatory movements that produce 
the appropriate linguistic sounds. In language understanding neu-
ral activation spreads from the sensory layer of L (heard words) to 
the internal units of L and from there to the internal units and to the 
motor layer of NL (non-linguistic actions). In language production 
activation spreads from the sensory layer of NL (perceived objects 
and actions) to the internal units of NL and from there to the inter-
nal units and to the motor layer of L (phono-articulatory move-
ments that produce words). (We are talking here of overt responses 
to sensory input but activation can stop at the internal layer of the 
two sub-networks, where non-linguistic and linguistic actions are 
neurally represented, without producing overt responses, that is, 
without translating these actions into actual physical movements 
of either the non-linguistic or linguistic effectors).

influence of language on the robot’S categorieS
The network architecture described in the preceding Section allows 
us to (begin to) answer the question of what are the consequences 
of possessing a language for a robot’s cognition, that is, for the 
functioning of the robot’s NL sub-network. More specifically, in 
this Section we will see what are the consequences of possessing a 
language for the robot’s categories.

As we have seen in Section “Objects are Internally Represented 
in Terms of the Actions with Which We Respond to Them”, per-
ceived objects that have to be responded to with the same action 
elicit an identical activation pattern in the network’s internal units 
even if they are perceptually different, while perceived objects that 
have to be responded to with different actions elicit different activa-
tion patterns in the internal units. This is the basis for defining an 
 action-based notion of categories. A category is an internal activation 
pattern elicited by different objects that have to be responded to with 
the same action. For the robots of Section “Objects are Internally 
Represented in Terms of the Actions with Which We Respond to 
Them”, two objects with different color elicit the same activation 
pattern in the robot’s internal units if they have to be responded to 
with the same action. Hence, for those robots square objects form 
one category and circular object form another category.

In the robots we have described categories correspond to a sin-
gle activation pattern in the robot’s internal units. As we consider 
more complex environments, however, we have to qualify this claim. 
Imagine a mobile (and armless) robot living in an environment 
that contains a large variety of perceptually different objects that 
have to be responded to with the same action (say, approaching and 
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and the other one which specifies the action of grasping small edible 
mushrooms with a precision grip or the action of grasping large 
edible mushrooms with a power grip.

These robots would make it possible to ask some interesting 
questions about the neural representation of language. As we 
know, the internal units of L are bi-directionally connected with 
the internal units of NL. But now NL has two layers of internal 
units, one specifying the actions of approaching and reaching the 
edible mushrooms and avoiding the poisonous ones, and the other 
one specifying the actions of producing a precision grip of the 
hand for small edible mushrooms and a power grip for large edible 
mushrooms. With which of these two different internal layers of 
NL will the internal layer of L be bi-directionally connected? Would 
the internal layer of L be bi-directionally connected with both the 
first and the second internal layers of NL, or would it be preferen-
tially connected with the more perceptually abstract second layer? 
Notice that the answer to this question might depend on the robots’ 
language. Small and large edible mushrooms might co-vary with 
two different sounds, i.e., two different nouns, that is, there might 
be one sound (name) for small edible mushrooms and a different 
sound (a different name) for large edible mushrooms. Or the robots’ 
language might include a sound which co-varies with both small 
and large edible mushrooms and two other sounds which co-vary, 
respectively, with small and large mushrooms (and probably with 
other things that require a precision or a power grip). This would 
make it possible to being to recognize different types of words in 
our robots’ language (say, nouns and adjectives).

a more SophiSticated model of the internal layer of 
both the nl and n Sub‑networkS
We have assumed so far that external input, from within the net-
work or from the outside environment, evokes one single pattern 
of activation in the internal units of NL and L. But let us change the 
model and imagine that the internal units of both NL and L have 
internal (horizontal) connections that allow one activation pattern 
to elicit another activation pattern in the same set of units. In this 
manner, an external input will evoke not a single (static) activation 
pattern but a succession of activation patterns in the internal units 
of both NL and L. This is just one particular instance of a general 
property of brain activity which is not well captured in most neural 
network models: brain activity is made up of continuous processes, 
not states. Time is a crucial property of brain activity but it is not 
well captured by neural network models that conceive network 
activity as a succession of discrete time cycles. Objects and words 
should elicit processes in a neural network which at some point 
or another cause a response in the network’s motor units, and this 
response will in turn cause other processes in the neural network. 
(We do not address here how this could be implemented in our 
language-using robots).

This new type of neural network for our language-using robots 
may help us explain one type of word associations, i.e., word-word 
associations. The sound of a word, represented as an action of the 
phono-articulatory effectors of the robot in the internal units of 
L, will evoke the sound of another word in the same internal units 
of L. Another type of word associations, based on the meaning of 
words and not just on their sound, can be reproduced with our 
robots if an activation pattern in the L internal units evokes an 

2005). The linguistic labeling of categories of objects makes these 
categories better able to support effective behavior. This appears 
to be an important consequence of possessing a language and may 
have had a crucial role in its evolutionary emergence.

Notice that in many neural network models of “semantic knowl-
edge” (e.g., Rogers and McClelland, 2004), word meanings are iden-
tified with categories or concepts and therefore it is in principle 
impossible to ask the question of what might be the influence of 
language on categories. The neural network of our language-using 
robots is made up of two parts, one which is non-linguistic and the 
other one which is linguistic, and categories emerge in the non-
linguistic part as a consequence of the non-linguistic interactions 
of the robot with the non-linguistic environment. Only when the 
linguistic part becomes operational (in children at around 1 year 
of age) one may pose the question of what are the consequences 
of possessing a language for the non-linguistic functioning of 
the organism.

the emergence of different typeS of wordS in the 
robotS’ language
In the robots described so far the NL sub-network has a single layer 
of internal units that receive activation from the sensory units and 
send activation to the motor units, and we have seen that the pat-
tern of activation appearing in the NL internal units encodes the 
action with which the robot has to respond to the sensory input and 
ignores the properties of the sensory input which are not relevant 
to decide the action. The edible mushrooms are all different from 
each other but this variation tends to be ignored (or minimized) 
by the internal units because all edible mushrooms, independently 
of their differences, have to be responded to with the same action: 
approaching and reaching the mushroom. What if NL has not one 
but two successive layers of internal units, with the sensory units 
sending their activation to the first layer, this layer sending its activa-
tion to the second layer, and the second layer sending its activation 
to the motor units? If we construct a robot with this type of NL, 
we find that, while the second layer of internal units specifies the 
action to be executed and ignores the properties of the perceived 
object which are irrelevant for the action (like in our robots with a 
single layer of units), the first layer of internal units preserve more 
of the properties of the perceived object, even if they appear not 
to be relevant for the action (Borghi et al., 2003).

Why might it be useful for our robots to have two layers of 
internal units and not only one? The robots described so far have 
only to approach and reach the edible mushrooms in order to eat 
them. But imagine another robot which has an arm and a hand and 
which to eat an edible mushroom has first to grasp the mushroom 
with its hand. The robots lives in an environment in which the 
edible mushrooms are of two sizes: small and large. The robot has 
to approach and reach both small and large mushrooms but then 
it has to grasp the mushrooms with its hand in order to bring them 
to the mouth. There are two actions of grasping. To grasp small 
mushrooms the robot has to produce a precision grip by using the 
thumb and index finger of its hand while to grasp large mushrooms 
the action has to be a power grip which uses all the fingers of the 
hand. This robot would find it useful to have two layers of internal 
units, one which specifies the action of approaching and reaching 
edible mushrooms or the action of avoiding poisonous mushrooms 
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word “water”, which is not normally considered to be an ambi-
guous word, may elicit different activation patterns in the NL 
sub-network as a function of the particular context in which 
the word is used. This may be extended to the metaphorical 
use of words and to words that have both a literal meaning and 
a metaphorical meaning, such as the verb “to grasp”.

(c) All multi-word expressions are idiomatic
 Not only there is no clear separation between ambiguous words 

and non-ambiguous words but there is no clear separation 
between idiomatic expressions and non-idiomatic expressions. 
Idioms are defined as multi-word expressions whose meaning 
cannot be derived from the meanings of the component words 
(Cacciari and Tabossi, 1993). Idiomatic expressions are consi-
dered as different from non-idiomatic expressions in that non-
idiomatic expressions are sequences of words which elicit an 
overall pattern of activation in the NL sub-network which is 
made up of the activation patterns elicited by the words that 
make up the sequence (phrase or sentence) according to some 
general rules (syntax). We claim that all multiple-word expres-
sions, when they are actually used, are to some extent idioma-
tic, that is, they elicit an activation pattern in the NL internal 
units is something more than, and more specific, than the sum 
of the component words. (This applies even to what appear 
to be the simplest multi-word expressions, i.e., verb-noun 
expressions). Our model can provide an explanation both for 
idioms and for the fact that all multi-word expressions possess 
some degree of idiomaticity (Wray, 2002). The model should 
explain these different degrees (and types; cf. Wray, 2002) of 
idiomaticity because the overall activation pattern which is 
activated in the internal units of the NL sub-network when the 
robot arrives to the end of the sequence of heard words may be 
related to the activation patterns elicited by the single words of 
the sequence in a variety of different and unique ways.

robot that talk to themSelveS
The neural network of our language-using robots allows us to 
(begin to) explain an important aspect of mental life, that is, 
mental life as talking to oneself (Parisi, 2007). The simple network 
architecture described in Section “A Neural Network’s Architecture 
for Language-Using Robots” appears to be generally appropriate 
to capture how language can influence cognition, providing the 
basis for a Vygotskyan robotics (Mirolli and Parisi, 2009, 2010). 
But if we assume that the internal units of the robots’ neural 
network have horizontal connections and these connections can 
produce a succession of activation patterns in both the NL and L 
internal units, we can see how the reciprocal connections linking 
the NL and L internal units can explain mental life as talking to 
oneself. We have seen the role of these reciprocal connections in 
explaining language understanding and language production. But 
when a non-linguistic input arrives to the sensory units of NL, 
for example the robot sees a cat, and the activation spreads to 
the internal units of NL and then to the internal units of L, two 
different things can happen. One is that the activation reaches 
the motor units of L and the robots pronounces the word “cat”. 
The other is that the activation pattern in the internal units of 
L elicits another activation pattern in the same set of units, for 

activation pattern in the NL internal units which evokes a second 
activation pattern in the same NL internal units which in turn 
evokes an activation pattern in the L internal units. The first type 
of word associations requires a succession of activation patterns 
within the L internal units while this second type requires going 
back and forth between the internal layers of L and NL.

This more sophisticated (and, we believe, more realistic) neural 
network model may lead to a number of interesting conclusions 
concerning the nature of language, with particular reference to 
three issues: (a) how the meaning of words is represented in the 
brain; (b) the ambiguity of all words (and not only of ambiguous 
words); and (c) the idiomatic character of all multi-word expres-
sions (and not only idiomatic expressions). Let us consider these 
three issues.

(a) There is no such thing as the meaning of a word in the brain
 If an activation pattern in the L internal units evokes an acti-

vation pattern in the NL internal units which in turn evokes 
another activation pattern in the same NL internal units, and 
so on, one is led to the conclusion that there is nothing like the 
meaning of a word in the brain. Heard words are specific entry 
points to the NL sub-network but they elicit in the NL sub-
network not a single activation pattern but a succession of acti-
vation patterns in many possible directions as a function of the 
current context and many other factors, and it is difficult to say 
where the process ends. The existence of a “semantic module” 
is assumed in many symbolic models and in many traditio-
nal, i.e., non-embodied, neural network models of language. 
But in the neural network that controls the behavior of our 
language-using robots there is no special “semantic module” 
which contains the “meanings” of words. The NL sub-network 
is the “rest of the brain” which is activated in many possible 
directions when one hears a word. Words do not have well-
defined meanings but they are just entry points for activating 
the entire brain.

(b) All words are ambiguous
 The more sophisticated neural network of our language-using 

robots should help us to explain the role of context in language 
understanding. We define context as any additional input, lin-
guistic or non-linguistic, arriving from outside the brain or 
self-generated inside the brain, that may influence what acti-
vation patterns are sequentially elicited in the internal units 
of the NL sub-network. Among other things, context explains 
how the brain disambiguates ambiguous words. The context 
is an additional input that directs the activation process in the 
NL internal units in one direction or another. The ambiguous 
word “club” activates one activation pattern in the internal 
units of the NL sub-network in the context of golf and ano-
ther activation pattern in the context of the social behavior of 
some people.

 What is more interesting is that our model can explain the less 
well-recognized fact that all words are to some extent ambi-
guous and there is no clear dividing line between ambiguous 
and non-ambiguous words. For all words, the context in which 
a word is used directs the understanding of the word, i.e., the 
succession of activation patterns in the internal units of the 
NL sub-network, in one or another direction. For example the 
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As we have said at the beginning of the paper, robots indicate 
the importance of the body and its movements in determining 
cognition so that robotics naturally converges with theories of 
cognition as embodied and as action-based. But both current 
robots and these theories have two related limitations that need 
to be overcome if we want to construct a more complete theory 
of the human mind. The first limitation is due to the fact that an 
organism’s body does not only have an external morphology and 
sensory and motor organs but it also includes internal organs 
and systems which exist inside the body beyond the brain. The 
second limitation is that the mind is not only cognition but also 
motivation and emotion. The two limitations are related because 
while cognition mainly results from the interactions of the brain 
with the external environment, motivations and emotions mainly 
result from the interactions of the brain with the other organs and 
systems that exist inside the body.

An embodied conception of the entire mind (not just cogni-
tion) assumes two levels of functioning of the behavioral system 
of an animal, a strategic or motivational level and a tactical or 
cognitive level. All animals have many different motivations that 
are generally impossible to satisfy at the same time. Therefore these 
different motivations necessarily compete with one another for the 
control of the animal’s behavior and at any given time the strategic 
level of functioning of the animal has to decide which motivation 
the animal should pursue with its behavior. The decision is taken 
on the basis of the current intensity of the different motivations, 
which is determined by many different factors, both intrinsic (the 
overall adaptive pattern of the animal and the specific environment 
in which the animal lives) and contextual (sensory input from the 
body and from the external environment). Once a decision is taken 
at the strategic level, the cognitive level executes the activity which 
will hopefully satisfy the motivation decided at the strategic level. 
Emotions operate at the strategic or motivational level by increas-
ing the current intensity of one or another motivation so that the 
strategic level may function more effectively (fewer errors, faster 
decisions, increasing the persistence of important motivations, 
etc.). The tactical level is mostly implemented through the interac-
tions of the animal’s brain with the external environment, while 
the strategic level is mostly implemented through the interactions 
of the brain with what is inside the body. If robots should help 
us to develop a complete embodied theory of the mind, what is 
needed is an internal robotics, that is, the construction of robots 
that do not have only the external morphology of an animal’s 
body and a “brain” which interacts only with the external environ-
ment but also have internal (artificial) organs and systems and a 
“brain” which interacts with these internal organs and systems 
(Parisi, 2004).

How are this more complete conception of the mind and this 
more complete robotics related to the construction of robots that 
have language? Not only so-called emotional words but all words 
have an emotional component that plays a role in their use and, 
unless we are able to endow the words used by a robot with this 
emotional component, we are not authorized to say that we have 
constructed robots that have language.

How should we proceed? The first step is to construct robots 
that have many different motivations and have to choose which 

example the activation pattern corresponding to word “dog”. This 
activation pattern in turn will elicit in the internal units of NL the 
activation pattern (or rather the succession of activation patterns) 
that gives a meaning to the word “dog”. This is already talking 
to oneself. The robots hears the self-produced word “dog” and 
understands the word. But what is interesting is that the process 
can go back and forth between NL and L. An activation pattern 
in the internal units of NL can elicit another activation pattern 
in the same units and this other activation pattern can elicit an 
activation pattern in the internal units of L. The process can go 
on an indefinite number of times, as when one is immersed in 
his or her thoughts.

Talking to oneself really takes off when the process of going back 
and forth between the L and NL internal units interacts with the 
process of generating a succession of activation patterns in many 
possible directions in the NL internal units. The result of the inter-
action between these two processes is that the activation patterns 
evoked in the L internal units (words) influence and control the 
succession of activation pattern evoked in the NL units. This is an 
important component of talking to oneself as thinking.

language production deteriorateS more than 
language underStanding with age
A robot that has language must also be able to exhibit the rich 
phenomenology of pathological linguistic behaviors. By lesion-
ing in different places and in different ways the neural network 
that controls both the non-linguistic and the linguistic behavior 
of the robot, we should be able to reproduce a variety of linguistic 
disorders. We will only mention here a phenomenon which is not 
considered as really pathological but still involves some malfunc-
tioning of language. With old age many people find it difficult to 
find the word that expresses something they appear to have in 
their mind. This difficulty in producing the word is not normally 
accompanied by a parallel difficulty in understanding the word. 
Our model of language might be able to reproduce this asymme-
try if we assume that in old age there is a gradual but diffuse loss 
of neurons or of connections between neurons. The model can 
explain both facts if we make the very reasonable assumption that 
the internal layer of the NL sub-network contains many more units 
(neurons) than the internal layer of the L sub-network. If there is 
a diffuse loss of units or of connections between units (includ-
ing the two-way connections between the two layers of units) it 
might be easier for the network to go from a pattern of activation 
in the L sub-network (internal representation of the heard word) 
to the appropriate  pattern of activation in the NL sub-network 
( understanding the word) than to go from a pattern of activation 
in the NL sub-network to the appropriate pattern of activation in 
the L sub-network (finding the word to express something one has 
in mind) simply because the larger sub-network is more robust 
than the smaller sub-network (Mirolli et al., 2007).

the emotional meaning of wordS
Words do not only have a cognitive or informational meaning but 
they also have an emotional meaning. Can the neural network of 
our language-using robots be modified so that our robots might 
be able to appreciate the emotional meaning of words?
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one manner or other and to a greater or smaller degree activate 
the circuit. Adding an emotional circuit to the NL sub-network of 
our language-using robots will be necessary if the motivational/
emotional level of behavior of our robots should be influenced by 
hearing both words produced by other robots and self-produced 
words. If we further assume that exercising our emotions in safe 
conditions such as those implied in exposing oneself to artistic 
artifacts leads to a more sophisticated motivational/emotional 
functioning, our emotional language-using robots might also be 
able to understand and enjoy poetry and other forms of verbal art 
as humans do. Poems and novels are verbal stimuli that to be really 
understood and enjoyed should activate the emotional circuit of 
the NL sub-network of our language-using robots.

concluSion
A crucial step toward the construction of really human, and not 
simply humanoid, robots is to construct robots that have language. 
In this paper we have described a simple neural network archi-
tecture that controls the behavior of a language-using robot and 
we have illustrated a number of language-related phenomena that 
can be explained (reproduced) with our language-using robot. 
However, most of the work to construct robots that can be said to 
have language has still to be done since human language is such a 
complex and multi-faceted phenomenon. Language has emerged 
from animal-like non-linguistic communication systems, is cultur-
ally transmitted, and it changes historically. Language is learned 
through a succession of specific stages. Linguistic expressions are 
made up of simpler expressions, from morphemes to words, from 
phrases to sentences. Language is a crucial ingredient of human 
social life and it is used to accomplish a large number of differ-
ent social goals. We think that all these aspects of language which 
are studied by a variety of scientific disciplines might be illumi-
nated by a well-developed linguistic robotics. (For a description 
of the different goals of such a linguistic robotics, see Parisi and 
Cangelosi, 2002).

one of these different motivations will control the robot’s behav-
ior at any given time. Current robots tend to have just one single 
motivation, and this motivation is not chosen by them but by 
their users, that is, by us. The second step is to endow our robots 
with emotions (not just with the capacity to express emotions that 
they do not actually have, as in most current “emotional” robots). 
This can be done by adding an “emotional circuit” to the neural 
network that controls the robot’s behavior, where the function of 
this emotional circuit is to enable the robot to make more effective 
and more efficient motivational choices. The emotional (neural) 
circuit can be activated by input from the body (e.g., hunger or 
thirst) or from the external environment (e.g., a predator or a 
possible mate) and it sends activation to the rest of the robot’s 
neural network, influencing the motivational decision taken by 
the neural network and therefore the actual behavior exhibited 
by the robot. The emotional circuit also interacts with the rest 
of the robot’s body, sending and receiving activation to and from 
internal organs (e.g., heart and gut) and systems (e.g., endocrine 
and immunological systems).

The first steps in this direction have already been made by con-
structing robots that to survive and reproduce have to both eat 
and drink, or to both eat and avoid being killed by a predator, or to 
both eat and approach a mate. The results indicate that in all cases 
adding an emotional circuit to the neural network that controls the 
robot’s behavior leads to more effective behaviors and, therefore, 
to longer lives and more offspring. (For a detailed description of 
these robots, see Parisi and Petrosino, in press).

How can we extend our model of language-using robots so that 
our robots can understand and produce words that have an emo-
tional component? The answer is to add an emotional circuit to 
the NL sub-network of our robots so that the emotional circuit 
can also be activated when the robot understands or produces a 
word. The use (understanding and production) of some words 
will more directly and more extensively involve the activation of 
the emotional circuit of the NL sub-network but all words will in 
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this approach is that it is not so much the details of spatial trajec-
tories of actions, but more their resulting states which characterize 
action in the context of perception and recognition (Bekkering 
et al., 2000). The resulting system provided predicate–argument 
representations of visually perceived events, which could then be 
used in order to learn the mapping between sentences and meaning. 
We demonstrated that naïve humans could narrate their actions 
which were perceived by the event recognition system, thus pro-
viding sentence-meaning inputs to the grammatical construction 
model, which was able to learn a set of grammatical constructions 
that could then be used to describe new instances of the same types 
of events (Dominey and Boucher, 2005).

We subsequently extended the grammatical construction frame-
work to robot action control. We demonstrated that the robot could 
learn new behaviors (e.g., Give me the object, where object could 
be any one of a number of objects that the robot could see) by 
exploiting grammatical constructions that define the mapping from 
sentences to predicate–argument representations of action com-
mands. This work also began to extend the language–action frame-
work to multiple-action sequences, corresponding to more complex 
behaviors involved in cooperative activity (Dominey et al., 2009b). 
Cooperation – a hallmark of human cognition (see Tomasello et al., 
2005) – crucially involves the construction of action plans that 
specify the respective contribution of both agents, and the represen-
tation of this shared plan by both agents. Dominey and Warneken 
(in press) provided the Cooperator – a 6DOF arm and monocular 

IntroductIon – A frAmework for lAnguAge And 
ActIon
One of the central functions of language is to coordinate coopera-
tive activity (Tomasello, 2008). In this sense, much of language is 
about coordinating action. Indeed, language constructions themselves 
become linked to useful actions in our experience, as emphasized 
by Goldberg (1995, p. 5) “constructions involving basic argument 
structure are shown to be associated with dynamic scenes: experien-
tially grounded gestalts, such as that of someone volitionally trans-
ferring something to someone else, someone causing something to 
move or change state…” Interestingly, this characterization is highly 
compatible with the embodied language comprehension framework, 
which holds that understanding language involves activation of expe-
riential sensorimotor representations (Barsalou, 1999; Bergen and 
Chang, 2005; Zwaan and Madden, 2005; Fischer and Zwaan, 2008; 
Pulvermüller et al., 2009). We have pursued this approach in develop-
ing neurally inspired systems that make this link between language and 
action. We introduce this approach in the remainder of this section, 
describing the path we have taken to arrive at our present work.

In this context of linking language and action, we first devel-
oped an action recognition system that extracted simple percep-
tual primitives from the visual scene, including contact or collision 
(Kotovsky and Baillargeon, 1998), and composed these primitives 
into templates for recognizing events like give, take, touch and push. 
Siskind and colleagues (Fern et al., 2002) developed a related action 
learning capability in the context of force dynamics. A premise of 
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vision robot – with this capability, and demonstrated that the result-
ing system could engage in cooperative activity, help the human, 
and perform role reversal, indicating indeed that it had a “bird’s eye 
view” of the cooperative activity. More recently, Lallee et al. (2009) 
extended this work so that the robot could acquire shared plans by 
observing two humans perform a cooperative activity.

An important aspect of this area of research is that the source 
of meaning in language is derived directly from sensory-motor 
experience, consistent with embodied language processing theories 
(Barsalou, 1999; Bergen and Chang, 2005; Zwaan and Madden, 
2005). For instance, Fontanari et al. (2009) have demonstrated 
that artificial systems can learn to map word names to objects in a 
visual scene in a manner that is consistent with embodied theories. 
However, we also postulated that some aspects of language compre-
hension must rely on a form of “hybrid” system in which meaning 
might not be expanded completely into its sensory-motor mani-
festation (Madden et al., 2010). This would be particularly useful 
when performing goal-based inferencing and reasoning. Indeed, 
Hauser and Wood (2010) argue that understanding action likely 
involves goal-based teleological reasoning processes that are distinct 
from the embodied simulation mechanisms for action perception. 
These authors state that, “Integrating insights from both motor-rich 
(simulation, embodiment) and motor-poor (teleological) theo-
ries of action comprehension is attractive as they provide different 
angles on the same problem, a set of different predictions about the 
psychological components of action comprehension, and enable 
a broad comparative approach to understanding how organisms 
interpret and predict the actions of others” (Hauser and Wood, 
2010, p. 4). This is consistent with a hybrid approach to action 
understanding that we have recently proposed (Madden et al., 2010; 
for other dual-representation approaches see: Barsalou et al., 2008; 
Dove, 2009). In that model, action perception and execution take 
place in an embodied sensorimotor context, while certain aspects 
of planning of cooperative activities are implemented in an amodal 
system that does not rely on embodied simulation.

A fundamental limitation of this approach to date is that the 
system has no sense of the underlying goals for the individual or 
joint actions. This is related to the emphasis that we have placed 
on recognition and performance of actions, and shared action 
sequences, without deeply addressing the enabling and resulting 
states linked to these actions. In the current research, we extend 
our hybrid comprehension model to address aspects of goal-based 
reasoning, thus taking a first step toward the type of teleological 
reasoning advocated by Hauser and Wood (2010). The following 
section describes how this new framework addresses the limitations 
of the current approach.

A new frAmework for ActIon And lAnguAge – 
combInIng teleologIcAl And embodIed mechAnIsms
In Lallee et al. (2009) the iCub robot could observe two human 
agents perform a cooperative task, and then create a coopera-
tive plan, which includes the interleaved temporal sequence of 
coordinated actions. It could then use that plan to take the role 
of either of the two agents in the learned cooperative task. This 
is illustrated in Figure 1. A limitation of this work is that the 
task is represented as a sequence of actions, but without explicit 
knowledge of the results of those actions, and the link between 
them. In the current work, this limitation is addressed by allow-
ing the robot to learn for each action, what is the enabling state 
of the world which must hold for that action to be possible, and 
what is the resulting state that holds once the action has been per-
formed. We will refer to this as the S

E
AS

R
 state-action-state (SAS) 

representation of action. This is consistent with our knowledge 
that humans tend to represent actions in terms of goals – states 
that result from performance of the action (Woodward, 1998). 
Furthermore, neurophysiological evidence of such a goal specific 
encoding of actions has been observed in monkeys (Fogassi et al., 
2005) whereby the same action (grasping) can be encoded in 
different manners according to intentions or goals (grasping for 
eating/grasping for placing).

Figure 1 | On-line learning of a cooperative task. (A,B) Larry (left of robot) lifts the box that covers the toy. (C,D) This allows Robert (right of robot) to take the toy. 
(e) Larry replaces the box. (F) Robot now participates. (g) Human takes box, so Robot can take the toy. (H) Robot takes box so human can take the toy.
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forces, in order to represent causal relationships between entities. 
That is, to understand causality, one must have a body, and thus 
any implementation model of causal understanding necessitates 
an embodied system, to sense physical forces.

Dynamic forces are often invisible, such as the difference in the 
feeling of contact when an object is moving fast or slow, and how a 
pan feels when it is hot or cold. Because invisible dynamic forces map 
so well onto our experience of kinematic forces, or visual experience of 
forces (shape, size, position, direction, velocity, accelerations), humans 
often rely solely on visual information when attributing causal rela-
tionships in the world. In the same vein, causal understanding in non-
human systems can be implemented through the use of kinematics 
as perceived via vision (e.g. Michotte, 1963). Thus, in our current 
work, we capitalize on this aspect of visual perception and restrict 
our representation of events to perceptual primitives that fall out of 
the visual input, leaving other perceptual modalities as well as motor 
actions for future implementation. Fern et al. (2002) and Siskind et al. 
(2001, 2003) have exploited the mapping of force dynamic properties 
into the visual domain, for primitives including contact, support and 
attachment. This results in robust systems in which event definitions 
are prespecified or learned, and then used for real-time event clas-
sification. Dominey and Boucher (2005) employed a related method 
for the recognition of events including give, take, push, touch in the 
context of grounded language acquisition.

In the context of development, once a toddler is able to sense 
and understand physical forces in the environment, he has the tools 
to understand causal relationships. Pioneering studies have shown 
that this understanding of causality and causal language is acquired 
very early in development, as infants may already perceive cause-
effect relationships at only 27 weeks (Leslie and Keeble, 1987), and 
toddlers can already express many types of causal language by the 
age of 2–3 years (Bowerman, 1974; Hood et al., 1979). At this stage, 
exposure to language may help to accelerate the development of 
causal understanding. One study has shown that when toddlers are 
exposed to a causal relationship between two events accompanied 
by a causal description, they are more likely to initiate the first event 
to generate the second, and expect that the predictive relations will 
involve physical contact, compared to when they are exposed to 
the causal situation in the absence of causal language (Bonawitz 
et al., 2009). That is, though the toddler associates the two events 
in either case, this association might not be recognized as a causal 
link, and causal language, such as “the block makes the light turn 
on,” can help to explicitly establish this link.

In this way, language is used as a tool to further conceptual under-
standing of goal-directed events and actions by helping toddlers 
more quickly integrate information about prediction, intervention, 
and contact causality. Thus, we can exploit language in our current 
system as a vector for establishing causal links between actions and 
their resulting states. In particular we are interested in the states 
that result from the “cover” and “give” actions which involve states 
related to the covered object being present, but invisible in the first 
case, and notions of change of possession in the second.

cortIcAl networks for lAnguAge comprehensIon
In our effort to develop a system that can represent events and the 
state-transition relations between events, we can exploit knowledge 
of how language and event comprehension are implemented in 

Interestingly, we quickly encountered limitations of the percep-
tual system, in the sense that when an action causes an object to be 
occluded, the visual disappearance of that object is quite different 
from the physical disappearance of the object, yet both result in a 
visual disappearance. The ability to keep track of objects when they 
are hidden during a perceived action, and the more general notion 
of object constancy is one of the signatures of core object cogni-
tion (Spelke, 1990; see Carey, 2009). This introduces the notion that 
human cognition is built around a limited set of “core systems” for 
representing objects, actions, number and space (Spelke and Kinzler, 
2007). Robot cognition clearly provides a testing ground for debates 
in this domain, and the current study uses this platform to investigate 
the nature of the core system for agency. Embodied theories hold that 
actions are interpreted by mental simulation of the observed action, 
while teleological theories hold that this is not sufficient, and that 
a generative, rationality-based inferential process is also at work in 
action understanding (Gergely and Csibra, 2003). In our work, we 
employ both embodied learning of actions as well as a higher-level 
symbolic processing of these actions to yield a better understanding 
of the causes and consequences of events in the world. There are 
several research teams conducting very important and interesting 
work in scaling up from the primary perceptual layers (e.g., Fontanari 
et al., 2009; Tikhanoff et al., 2009). Our aim is to use the output of 
these layers in a more abstract and symbolic reasoning mainly driven 
by language, combining two approaches that are not antagonistic 
but rather complementary. This dual approach is consistent with 
Mandler’s (2008) ideas of developmental concepts, as well as the role 
of amodal lexical associations in embodied language theories (e.g., 
Glaser, 1992; Kan et al., 2003), and several representational theories 
of meaning (Borghi and Cimatti, 2009; Dove, 2009).

As event understanding often involves inferences of links between 
intentions, actions, and outcomes, language can play an important 
role in helping children learn about relations between actions and 
their consequences (Bonawitz et al., 2009). The following section 
provides an overview of how language is used to enrich perceptual 
representations of action, and some of the corresponding neuro-
physiological mechanisms that provide some of these capabilities, 
based largely on data from humans. It is our belief that under-
standing these behavioral and neurophysiological mechanisms can 
provide strong guidelines in constructing a system for robot event 
cognition in the context of human–robot cooperation.

Aspects of lAnguAge And cAusAlIty
One of the hallmarks of human cognition is the ability to understand 
goal-directed events. This ability surely entails the representation of 
events in terms of their causes and effects or goals (Bekkering et al., 
2000; Sommerville and Woodward, 2005), but how does it work? 
Although some theorists have postulated that causality itself is a 
conceptual primitive, it has become evident that causality can be 
decomposed into constituent elements (see Carey, 2009 for discus-
sion). According to physicalist models of causality, causes and effects 
are understood in terms of transfer or exchange of physical quanti-
ties in the world, such as energy, momentum, impact forces, chemi-
cal and electrical forces (Talmy, 1988; Wolff, 2007). Furthermore, 
nonphysical causation (e.g., forcing someone to decide) is under-
stood by analogy to these physical forces. In this sense, physicalist 
models necessitate the ability to perceive  kinematics, and dynamic 
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leads to complex mental representations of complex events. Our 
initial computational models predicted dual structure-content 
pathway distinction (Dominey et al., 2003), which was subse-
quently confirmed in neuroimaging studies demonstrating the 
existence and functional implication of these two systems (Hoen 
et al., 2006), leading to further specification of the model (Dominey 
et al., 2006, 2009a).

towArd A neurophysIologIcAl model of embodIed And 
teleologIcAl event comprehensIon
More recently, we extended this to a hybrid system in which sen-
tence processing interacts both with a widespread embodied sen-
sory-motor system, and with a more amodal system to account 
for complex event representation and scenario constructions 
operating on symbolic information (Madden et al., 2010). This 
second network, seems to engage bilateral parietal–prefrontal con-
nections including bilateral activations in the parietal lobule for 
the perception and monitoring of event boundaries (Speer et al., 
2007) as well as dorsal prefrontal regions seemingly implicated 
in the global coherence monitoring of the ongoing mental rep-
resentation elaboration (Mason and Just, 2006). The monitoring 
of complex event representation includes the ability of deciding 
if ongoing linguistic information can be inserted in the current 
representation and how it modifies the global meaning of this rep-
resentation. These aspects rely on information and knowledge that 
are not primary characteristics of the language system per se but 
rather include general knowledge about causal relations between 
events, intentionality and agency judgments etc. These properties 
are sometimes called teleological reasoning and different authors 
have now shown that processes involving teleological reasoning are 
sustained by a distributed neural network, referred to as a “social 
perception” cognitive network that is closely related to the language 
system (Wible et al., 2009).

This social perception network is implicated in teleological 
reasoning as determining agency or intentionality relations and 
involves regions as the right inferior parietal lobule (IP), the supe-
rior temporal sulcus (STS) and ventral premotor regions. All these 
regions are part of the well-known mirror system (Decety and 
Grèzes, 2006). The TPJ or IP and STS regions, in addition to being 
part of the mirror system, are also heavily involved in other social 
cognition functions. Decety and Grèzes (2006), in an extensive 
review, have designated the right TPJ as the “social” brain region. 
Theory of mind is the ability to attribute and represent other’s 
mental states or beliefs and intentions or to “read their mind” 
(“predict the goal of the observed action and, thus, to “read” the 
intention of the acting individual” – from Decety and Grèzes, 2006, 
p. 6). Therefore, it seems that regions that are implicated in social-
cognition, that is to say regions implicated in agency, intentionality 
judgments on others are also implicated in the same judgments 
on a simulation/representation of mental simulations triggered 
by language.

Figure 2 illustrates a summary representation of the corti-
cal areas involved in the hybrid, embodied-teleological model of 
language and event processing. The language circuit involves the 
frontal language system including BA 44 and 45 with a link to 
embodied representations in the premotor areas, and in the more 
posterior parietal areas – both of which include mirror neuron 

the human nervous system. Language comprehension involves a 
cascade of computational operations starting from the decoding of 
speech in sensory areas to the emergence of embodied representa-
tions of the meaning of events corresponding to sensory-motor 
simulations (Barsalou, 1999; Bergen and Chang, 2005; Zwaan 
and Madden, 2005; see Rizzolatti and Fabbri-Destro, 2008 for 
review). These representations are triggered via: observation of 
others engaged in sensory-motor events; imagination of events and 
the evocation of these experiences through language. Therefore, 
we consider the existence of two parallel but interacting systems: 
one system for language processing, ultimately feeding informa-
tion processes into a second system, dedicated to the processing 
of sensory-motor events. These systems are highly interconnected 
and their parallel and cooperative work can ultimately bootstrap 
meaning representations. The second system will also accommodate 
the representation of elaborated events that implicates processes 
derived from a system sometimes referred to as a “social percep-
tion” network (Decety and Grèzes, 2006; see Wible et al., 2009 for 
review). This second network is directly involved in teleological 
aspects of reasoning, including agency judgments, attributing goals 
and intentions to agents, inferring rationality about ongoing events 
and predicting outcomes of the ongoing simulation (Hauser and 
Wood, 2010). We will present these two systems and show how 
they interact to form complex meaning representations through 
language comprehension.

One central view in the recent models of the cortical process-
ing of language is that it occurs along two main pathways, mostly 
lateralized to the left cortical hemisphere (Ullman, 2004; Hickok 
and Poeppel, 2007; see also Saur et al., 2008). The first route is 
referred to as the ventral-stream. It is dedicated to the recognition 
of complex auditory (or visual) objects involving different locations 
along the temporal lobe and the ventralmost part of the prefrontal 
cortex (BA 45/46). The second one is named the dorsal-stream and 
is dedicated to the connection between the language system and 
the sensory-motor system, that is both implicated in the transfor-
mation of phonetic codes into speech gestures for speech produc-
tion, but also in the temporal and structural decoding of complex 
sentences (Hoen et al., 2006; Meltzer et al., in press). It implicates 
regions in the posterior part of the temporo-parietal junction (TPJ), 
parietal and premotor regions and reaches the dorsal part of the 
prefrontal cortex (BA 44).

In the ventral pathway, speech sounds are decoded in or nearby 
primary auditory regions of the dorsal superior temporal gyrus (BA 
41/42), before phonological codes can be retrieved from the middle 
posterior superior temporal sulcus (mp-STS – BA 22), and words 
recognized in regions located in the posterior middle temporal 
gyrus (pMTG – BA 22/37; see Hickok and Poeppel, 2007 for review; 
Scott et al., 2006; Obleser et al., 2007). Then, these lexical symbols 
can trigger the reactivation of long-term stored sensory-motor 
experiences, either via implications of long-term autobiographic 
memory systems in the middle temporal gyrus or in long-term 
sensory-motor memories, with a widespread storage inside the 
sensory-motor system. Therefore, complex meaning representa-
tion can actually engage locations from the ventral pathway but also 
memories stored inside the dorsal pathway (Hauk et al., 2008; e.g., 
Tettamanti et al., 2005). This primary network feeds representation 
into a secondary-extended cortical network,  whenever language 
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given to the system in advance, so it will be able to recognize them 
from speech. It is possible to have the speech recognition behaviors 
emerge (e.g., Fontanari et al., 2009), but as mentioned above, that 
was not the goal of this work. The ability to recognize this innate 
vocabulary and use it in recognition grammars is provided by the 
CSLU toolkit which deals with HHM processing of the sound sig-
nal. The grammars that parse the speech signal both for input and 
output are hard coded into the system, however the system learns 
to associate a parsed sentence (verb, subject, object) with the visual 
perception of the corresponding action. Vision is provided by a 
template-matching system (Spikenet™) based on large spiking neu-
rons networks, here again we use this tool to make a bridge between 
the raw sensory images, and the symbols of recognized objects. 
We developed state and action management in C#. Interprocess 
communication is realized via the YARP protocol.

experImentAl scenArIos
In this section we describe the experimental human–robot inter-
action scenarios that define the functional requirements for the 
system. The current scenarios concentrate on action representation 
in the embodied and teleological frameworks. They demonstrate 
how language can be used (1) to enrich the representation of action 
and its consequences, and (2) to provide access to the structured 
representation of action definitions, and current knowledge of the 
robot. An embodied artificial system should incorporate both per-
ceptual and motor representations in action comprehension, and 
current work is underway on this issue. However, in the current 
demonstrations we focus solely on perceptual (visual) representa-
tions of actions.

First we put the emphasis on the robot’s ability to learn from 
the human when the human performs physical actions with a 
set of visible objects in the robot’s field of view. Typical actions 

activity in the context of action representation. This corresponds 
to the embodied component of the hybrid system. The teleological 
reasoning functions are implemented in a complimentary network 
that includes STS and TPJ/IP. In the current research, while we do 
not model this hybrid system directly in terms of neural networks, 
we directly incorporate this hybrid architecture into the cognitive 
system for the robot.

mAterIAls And methods
This section will present in three parts the physical platform, the 
behavioral scenarios, and the system architecture.

the icub humAnoId And system InfrAstructure
The current research is performed with the iCub, a humanoid robot 
developed as part of the RobotCub project (Tsagarakis et al., 2007). 
The iCub is approximately 1 m tall, roughly the size and shape of 
a 3-year-old child, and its kinematic structure has a total of 53 
degrees of freedom controlled by electric motors, primarily located 
in the upper torso. The robot hands are extremely dexterous and 
allow manipulation of objects thanks to their 18 degrees of freedom 
in total. The robot head is equipped with cameras, microphones, 
gyroscopes and linear accelerometers. The iCub is illustrated in 
Figures 1 and 4.

Our research focuses on cognitive functions that operate on 
refined sensory data. We use off the shelf systems for both visual 
object and word recognition because they handle this raw sensory 
information quite well. Spoken language processing and overall 
system coordination is implemented in the CSLU Rad toolkit. The 
system is provided with an “innate” recognition vocabulary includ-
ing a set of action names (give, take, touch, cover, uncover), derived 
predicates (on, has), object names (block, star, sign), and causal 
language connectives (if–then, because). That is, a list of words is 

Figure 2 | Cortical networks for language processing (simplified). Ventral 
stream areas (green) are part of a first network dedicated to speech decoding and 
phonological/lexical processing along the superior temporal sulcus (STS), middle 
temporal gyrus (MTG) and ventral prefrontal cortex (Pfc). Dorsal stream areas 
(blue) constitute a sensory-motor interface implicated both in the transcription of 
phonological codes into articulatory codes (adapted from Hickok and Poeppel, 
2007) but also in the temporal/structural organization of complex sentence 
comprehension, and engage the left temporo-parietal junction, the parietal lobule 

and dorsal prefrontal regions (Hoen et al., 2006; Meltzer et al., in press). The 
social perception or teleological cognition network (oranges) is implicated in 
complex event representation and the attribution of agency, theory of mind in the 
right TPG (orange, from Decety and Lamm, 2007), causality and intentionality in 
the posterior STS (dark orange, from Saxe et al., 2004; Brass et al., 2007), and 
also comprises areas implicated in the global monitoring of the coherence of 
event representation (light orange, from Mason and Just, 2006). Networks are 
shown in their specialized hemispheres but most contributions are bilateral.
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training configuration, and transfer configuration, in each of the 
five phases. This experiment is detailed in Section “Usage Study” 
and in Figure 5.

cognItIve system ArchItecture
We developed a cognitive system architecture to respond to the 
requirements implied in Section “Experimental Scenarios,” guided 
by knowledge of the cognitive linguistic mechanism in humans and 
their functional neurophysiology, and by our previous work in this 
area (See Figure 3). The resulting system is not neuro-mimetic, but 
its architecture is consistent with and inspired by our knowledge of 
the corresponding human system and on neural correlates found in 
the monkey (Fogassi et al., 2005). We describe the architecture in the 
context of processing a new action, and illustrated in Figure 4.

The human picks up the block and places it on the sign. Vision 
provides the front end of the perceptual system. Video data from 
the eyes of the iCub are processed by the Spikenet vision software 
which provides robust recognition for pretrained templates that 
recognize all objects in the scene. Each template is associated with 
a name and the camera coordinates of the recognized location. One 
to four templates were required per object.

Based on our previous work, inspired by human developmental 
studies, we identified three perceptual primitives to be extracted 
from the object recognition, which would form the basis for 
generic action recognition – these are visible(object, true/false), 
moving(object, true/false), and contact(obj1,obj2, true/false). These 
primitives are easily extracted from the Spikenet output based 
on position and its first derivative, and are provided as input to 
Temporal Segmentation. The temporal segmentation function 
returns the most recent set of segmented primitives that occurred 
within specified time window. This corresponds to our hypothesis 
that a given complex action will be constituted by a pattern of 
primitives that occur in a limited time window, separated in time 
by periods with no action. The resulting pattern of primitives for 
contact is illustrated in Figure 4C.

When the robot detects changes in the visual scene, the above 
processing is initiated. The Action Management function matches 
the resulting segmented perceptual primitives with currently defined 
action in the Knowledge Base. Each action in the Knowledge Base is 
defined by its pattern of action primitives, its name, the arguments it 
takes, any preconditions (i.e., the enabling state S

E
 in the S

E
AS

R
 rep-

resentation), and the resulting state. Thus, during action recognition, 
the Action Management function compares this set of segmented 
primitives with existing action patterns in the Knowledge Base. If no 
match is found then the system prompts the human to specify the 
action and its arguments, e.g., “I cover the sign with the block.”

The State Management determines that as a result of the action, 
the World State has changed, and interrogates the user about this. 
The user then has the opportunity to describe any new relations 
that result from this action but that are not directly perceptible. 
When the block covers the sign, the sign is no longer visible, but 
still present. The State Management asks “Why is the sign no longer 
visible?” Thus the human can explain this loss of vision by say-
ing “Because the block is on the sign.” The action manager binds 
this relation in a generic way (i.e., it generalizes to new objects 
when the event “cover” is perceived) to the definition of “cover” 
(see Figure 4D).

include  covering (and uncovering) one object with another, 
putting one object next to another, and briefly touching one 
object with another. For actions that the robot has not seen 
before, the robot should ask the human to describe the action. 
The robot should learn the action description (e.g., “The block 
covered the star”), and be capable of generalizing this knowledge 
to examples of the same action performed on different objects. 
For learned actions, the robot should be able to report on what 
it has seen. This should take place in a real-time, on-line manner. 
Knowledge thus acquired should be available for future use, and 
in future work, the robot will also be able to learn its own motor 
representations of actions.

Another element that has to be learned is the causal relation 
between an action and the resulting state, which is not always trivial. 
When one object covers another, the second object “disappears” 
but is still physically present, beneath the covering object. In this 
scenario actions are performed that cause state changes, in terms 
of the appearance and disappearance of objects. The robot should 
detect these changes and attempt to determine their cause. The 
cause may be known, based on prior experience. If not, then the 
robot should ask the human, who will use speech for clarification 
about this causal relation.

The links between actions and their enabling and resulting states 
correspond directly to grammatical expressions with the if–then 
construction. The sentence “If you want to take the block then the 
block must be visible” expresses an enabling relation, where the 
state “block visible” enables the action “take the block.” In contrast, 
the sentence “If you cover the star with the block, then the star is 
under the block,” or “If you cover the star with the block then the 
star is not visible” expresses a causal relation. This scenario should 
demonstrate how by using these forms of grammatical construc-
tions, we can interrogate the system related to these enabling and 
causal relations.

Once the robot has learned about new actions in one context, 
we want it to use this knowledge in another context. Concretely, 
in the cooperative task where Larry uncovers the toy so that Robot 
can pick it up, the robot should be able to begin to make the link 
between the resulting state of the “uncover” action as the enabling 
state of the subsequent “take” action. In this experiment, through a 
process of interrogation we will demonstrate that the robot has the 
knowledge necessary to form a plan for getting access to a covered 
object, by linking goals with resulting states of actions, and then 
establishing the enabling state as a new goal. After each learning ses-
sion, the robot knowledge is stored in a long-term memory which 
we call Knowledge Base. It stores all the action definitions and their 
causes and consequences in term of states in an XML file that can 
be loaded on the robot.

We monitor the evolution of the Knowledge Base in order to 
analyze the performance of the recognition capabilities of the sys-
tem under extended use. We start with a naïve system (i.e., an empty 
Knowledge Base), and then for the five actions cover, uncover, give, 
take, and touch, we expose the robot to each action with the block 
and the sign, and then in the transfer condition test the ability to 
recognize these actions with a new configuration (i.e., with the 
block and the star). We repeat this exhaustive exposure five times 
(one for each action). The dependant measure will be the number 
of presentations required for the five actions to be recognized in the 
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the physical redundancy that is expressed in the observations made 
by the system. The result is that when any of the appropriate pat-
terns for an action are recognized, the action is recognized.

A total of five distinct actions were learned and validated in 
this manner. The resulting definitions are summarized in Table 2. 
Figure 5 provides some performance statistics for learning these 
actions and then using the learned definitions to recognize 
new actions.

use of cAusAl constructIons to InterrogAte seAsr 
representAtIons
This experiment demonstrates how the “if–then” construction can 
be used to extract the link between actions, the required enabling 
states, and the resulting states. Results are presented in Table 3.

use of cAusAl knowledge In teleologIcAl reAsonIng
Here we consider a scenario similar to “uncover the block” scenario 
introduced in Section “Introduction – A Framework for Language 
and Action,” and Figure 1. In this context, an object is covered by 
another, and the user’s goal is to use the first object in a new task. The 
goal then is to find out how to gain access to the first object that is 
currently covered. The robot observes one human put the toy on the 
table, and another human cover the toy with the box. The objective 
is to begin to perform teleological reasoning about action sequences 
that have never been observed. Results are presented in Table 4.

This experiment demonstrates how the SAS (S
E
AS

R
) representa-

tion provides the required information for goal-based reasoning.

usAge study
We performed six additional experiments, which involved 
processing of 111 separate actions, to begin to evaluate the robust-
ness of the system. Experiments 1–4 each started with an empty 
Knowledge Base, and examined the ability to learn the five actions, 
and then transfer this knowledge to new object configurations. 

If a match is found, then the system maps the concrete argu-
ments in the current action segment with the abstract arguments 
in the action pattern. It can then describe what happened. For 
a recognized action, State Management updates the World State 
with any resulting states associated with that action. In the case 
of cover, this includes encoding of the derived predicate on 
(block, star).

results
leArnIng new ActIons And theIr derIved consequences
Here we present results from an interaction scenario in which the 
user teaches the robot four new actions: cover, uncover, give and 
take. In order to explain the system level functionality, details for 
learning are illustrated in Figure 4 for the action “cover.” The cor-
responding dialog is presented in Table 1.

For new actions (that have not yet been defined in the Knowledge 
Base) the system uses the set of observed primitives from Temporal 
Segmentation to generate a generic pattern of primitives to define 
the action (Figure 4C). If any unexpected perceptual changes occur, 
the system asks the human why this is the case, and the human can 
respond by describing any new relation that holds. For example, 
when the block covers the sign, the sign becomes not visible. The 
system asks the human why, and the human responds that this is 
“because the block is on the sign.” This new relation on (block, 
sign) is added as part of the generic definition of the cover action, 
illustrated in Figure 4D.

Table 1 provides a record of the interaction in which the robot 
learns the meaning of “cover” and then displays this knowledge by 
recognizing cover in a new example. We observed that executing a 
given action like cover may sometimes lead to a different ordering 
of the segmented primitive events, e.g., detecting of the end of the 
block’s movement may occur before or after the sign being visually 
obstructed. This is accommodated by encoding multiple patterns 
for a given action in the database. This redundant coding captures 

Figure 3 | Cognitive system architecture. See text for description.
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of learned action patterns (p < 0.05). Closer investigation revealed 
that in Experiment 2 the vision system was generating false move-
ment recognition which lead to a number of irrelevant patterns 
being learned. When only Experiments 1, 3 and 4 are consid-
ered, an average of 1.13 trials are required for learning, and the 
knowledge transfers to 100% of the new trials with no additional 
learning.

In Experiments 5 and 6 we retained the Knowledge Base from 
Experiment 4, and then tested it with a new user, and examined 
the evolution over two complete tests with the five actions and 
the two object configurations. In Experiment 5, a total of six 
additional demonstrations were required to recognize the five 
actions in the two different object configurations. In Experiment 
6 only one additional demonstration was required during the 
recognition of the 10 distinct actions. Overall these tests indi-
cate that when the vision system is properly calibrated, the 
system is quite robust in the ability to learn generalized action 
 recognition patterns.

The key performance indices are (1) how many trials are required 
to learn an action with one set of objects, and (2) how well does 
this learning transfer to recognition of the same actions with dif-
ferent objects? Over the four experiments, a given action required 
1.35 demonstrations to be learned accurately. This learning then 
transferred to new conditions on 70% of the new trials. Thirty 
percent of the trials required additional learning before the actions 
were recognized under new conditions. To quantify learning we 
performed an ANOVA on this data with three independent vari-
ables corresponding to Experiments (1–4), Experience (Naive, 
Experienced), and Condition (Training, Transfer). The dependant 
variable was the number of trials performed. The main observa-
tion was that once the system had learned the actions with one set 
of objects, it could transfer this knowledge to recognize the same 
actions with new object with little or no additional training. This 
was revealed by the significant interaction between Experience 
and Condition, independent of Experiment. Thus there is a sig-
nificant effect of training on the ability to  recognize new instances 

Figure 4 | Learning and generalizing “cover Arg1 with Arg2.” (A) Robot 
setup and visual scene before the action. (B) Vision: Robot’s view of scene 
after the block is put on the sign. (C) Temporal Segmentation: Time ordered 
sequence of perceptual events observed during the action. (D) Knowledge 

Base: Abstract pattern template for cover, along with the resulting state 
changes, and required initial state. (e) Relations encoded in the World  
State after the “cover” is recognized in a new action “covers the star  
with the block.”
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dIscussIon
Part of the stated objective of this work has been to implement, 
and demonstrate the advantages of, a hybrid embodied-teleological 
approach to action–language interaction, both from a theoretical 
perspective and via results from human–robot interaction experi-
ments with the iCub robot. This objective was motivated by our 
observation that true cooperation requires not only that the robot 
can learn shared action sequences, but that it represents how those 
actions are linked in a chain of state changes that lead to the goal. 
This means that the robot must be able to represent actions in 

Figure 5 | Performance effects for learning and transfer. Interaction 
times were recorded for the learning of four novel actions, learning the 
derived predicates for those actions, and then using the resulting definitions 
to recognize new instances of the five actions (Action, Predicate, and 
Transfer, respectively). We compared interaction time for these three 
conditions in a single factor ANOVA. Recognition in transfer to new actions 
(15.5 s) was significantly faster than initial action learning time (29.25), 
p < 0.05.

Table 1 | interaction fragment as robot learns meaning of “cover.” 

Completion time (seconds).

LeArNiNg “COver” (0:42)

12:22:22 User : watch <user then places the block on the sign>

12:22:31 Robot : Need to Learn this one

12:22:58 User : cover the sign with the block

12:23:00 Robot : Did you say cover sign block ?

12:23:02 User : yes

12:23:04 Robot : Adding cover sign block

LeArNiNg resuLTiNg PreDiCATe “ON” (0:17)

12:23:08 Robot : Why are the sign and the block close one each other ?

12:23:12 User : because the block is on the sign

12:23:15 Robot : Did you say because block on sign ?

12:23:17 User : yes

12:23:25 Robot : What should I do now ?

TrANsFer “COver” TO New siTuATiON (0:16)

12:24:07 Robot : What should I do now ?

12:24:09 User : watch

12:24:21 Robot : Recognized cover star block

12:24:23 Robot : What should I do now ?

user CAN iNTerrOgATe THe wOrLD sTATe:

12:24:26 User : Tell about star

12:24:28 Robot : I will query info about the star

12:24:30 Robot : star contact block

12:24:33 Robot : block on star

Table 2 | enabling state – Action – resulting state (seAsr) 

representation for the learned actions.

enabling state Action resulting state

Visible Arg1 Cover Arg1 with Arg2 Contact Arg1 Arg2

Visible Arg2  Visible Arg2

  On Arg2 Arg1

Visible Arg2 True Uncover Arg1 with Arg2 Visible Arg1

On Arg2 Arg1  Visible Arg2

  

Visible Arg1 Give Arg1 to Arg2 Contact Arg1 Arg2

Visible Arg2   Visible Arg1

  Visible Arg2

  Has Arg2 Arg1

Contact Arg1 Arg2 Take Arg1 from Arg2 Visible Arg1

Visible Arg1  Visible Arg2

Visible Arg2  

On Arg2 Arg1  

Table 3 | interaction fragment as robot explains the preconditions and 

results of the cover action.

13:43:10  User : What are the conditions for cover the sign with the block?

13:43:12 Robot : If you want to cover the block with the sign then

13:43:14 Robot : sign need to be visible

13:43:16 Robot : block need to be visible

13:43:23  User : What are the consequences of cover the sign with the block?

13:43:26 Robot : If you cover the sign with the block then

13:43:28 Robot : block will be contact with sign

13:43:30 Robot : sign will be contact with block

13:43:32 Robot : sign will no longer be visible

13:43:34 Robot : block will be on sign

THe BLOCK is CurreNTLy ON THe sigN.

13:43:40 User : How can I make the sign visible?

13:43:43 Robot : If you want to make the sign visible then

13:43:45 Robot : You can uncover the sign

terms of the states that allow them to be performed, the states that 
result from their performance including the “unseen” predicates, 
for example, related to object permanence.

We developed a perceptual system that extracts patterns of 
 spatio-temporal visual properties in order to encode actions in 
terms of these patterns. We re-discovered that action and mean-
ing are not purely perceptual (Carey, 2009), and that additional 
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mentioned above, we demonstrate how grammatical construc-
tions that exploit causal connectives (e.g., because) can allow 
spoken language to enrich the learned set of SAS representa-
tions, by inserting derived predicates into the action definition. 
We also demonstrated how the causal connective “if–then” can be 
employed by the robot to inform the user about the links between 
enabling states and actions, and between actions and resulting 
states. Again, this extends the language–action interface beyond 
veridical action descriptions (or commands) to transmit more 
subtle knowledge about enabling and resulting states of actions, 
how to reach goals etc.

Indeed, in the context of the “hybrid” embodied and teleologi-
cal system, we demonstrated how representations of enabling and 
resulting states provides the system with the knowledge necessary 
to make the link between goals as the resulting states of actions, 
and the intervening actions that are required. This is part of the 
basis of a teleological reasoning capability (Csibra, 2003). In the 
current system, we have not implemented a full blown reasoning 
capability, that can perform forward and backward chaining on 
the states and action representations. This is part of our ongoing 
research.

In Foundations of Language, Jackendoff (2002) indicates that 
while languages may vary in their surface structure, the organiza-
tion of the conceptual structure that they express appears more 
universal (see Fadiga et al., 2009 for a review of common syntac-
tic structure in language, action and music). We extended this 
notion to consider that indeed, the compositional structure of 
syntax is derived from that of the conceptual system (Dominey, 
2003), and Jackendoff (2003) agreed. In this context, one of the 
most promising results of the current research is the continued 
observation that language reflects the structure of conceptual 
representations. We have previously demonstrated this in situa-
tions where multiple actions are linked by shared states, resulting 
in descriptions such as “Larry took the toy that Robert uncovered 
with the box” (Dominey and Boucher, 2005). The current work 
extends this to include functional and causal links between ele-
ments in the SAS representations (e.g., the if–then constructions 
in Tables 3 and 4).

The experiments described here have focused on perception 
of events. We realize that action is crucial to event understand-
ing, and we are currently working to integrate this S

E
AS

R
 frame-

work into our existing cooperative action framework (Dominey 
et al., 2009b; Dominey and Warneken, in press). We will first 
demonstrate that the mechanism presented here for learning 

 properties related to object permanence and physical possession 
also form part of the meaning of action. Based on studies indicating 
that language can be used by toddlers to accelerate the acquisition of 
such knowledge (Bonawitz et al., 2009), when our cognitive system 
encounters unexpected results from an action, it interrogates the 
user, much like a developing child (Hood et al., 1979). This allows 
the user to explain, for example, that when the block covers the 
star, the star is not visible (but still there) because the block is on 
the star. We refer to these additional predicates (on, has) as derived 
predicates. This demonstrates that language can play an essential 
role in refining the representation of the meaning of action which 
is first approximated purely from the perceptual stream, by intro-
ducing derived predicates that become part of the meaning of the 
action. These predicates are encoded in the state changes that are 
to be introduced whenever the action is recognized. Thus, when 
the give and take actions are recognized, the derived predicate has 
(indicating possession) will be appropriately updated.

We believe that this is a fundamental development in the link 
between language and action, because it goes beyond a pure iden-
tity mapping between sentences and meaning, and instead uses 
language to change and enrich forever the meaning of action as 
part of a developmental/learning process. In this way, the use of 
language by the iCub to transfer knowledge to new trials is simi-
lar to the causal learning of toddlers observed by Bonawitz et al. 
(2009), as in both cases language is a symbolic processing tool for 
memory and cognition. This is consistent with theories of language 
in which words are not only considered as markers for referents in 
the world, but also as tools that allow us to reason and operate in 
the world (Borghi and Cimatti, 2009; Mirolli and Parisi, in press) as 
well as current ideas of how language evolved in humans through 
sensory-motor and social interaction, as well as possible simula-
tions of these ideas in artificial systems (see Parisi, 2006; Parisi and 
Mirolli, 2006). These theories explain that language is used not only 
within the individual for reasoning and memory but also within 
a broader social network for communicative purposes. Therefore, 
our ongoing research on cooperative action (Dominey et al., 2009b; 
Dominey and Warneken, in press) is an important step in better 
understanding how language acts as a tool to facilitate goal-directed 
action between two or more agents.

A crucial component of the new system is the representation 
of actions which includes the link to initial enabling states, and 
final resulting states. The resulting system produces a Knowledge 
Base that encodes the representation of action meanings, and 
a World State that encodes the current state of the world. As 

Table 4 | interaction fragment where the robot performs basic goal-based reasoning about how to solve the task of getting the star when it is 

covered by the block, and then uses it to cover the sign.

18:03:50 Robot : Recognized cover star with block

18:04:05 User : What are the conditions to cover the sign with star

18:04:07 Robot : If you want to cover the sign with the star then

18:04:09 Robot : sign needs to be visible

18:04:11 Robot : star needs to be visible

The sign is visible, but the star is covered with the block, so the user asks the robot how to make the sign visible:

18:04:18 User : How can I see the star

18:04:23 Robot : You can uncover the star

The user can now uncover the star by removing the block, and then achieve the final goal which is to cover the sign with the star
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expressions and/or eye gaze for more natural interactions with 
human users (for a recent overview see Schaal, 2007). Different 
control architectures for multi-modal communication have been 
proposed that address specifi c research topics in the domain of 
human-centered robotics. It has been shown for instance that 
integrating multiple information channels supports a more intui-
tive teaching within the learning by demonstration framework 
(McGuire et al., 2002; Steil et al., 2004; Pardowitz et al., 2007; 
Calinon and Billard, 2008), allows the robot to establish and main-
tain a face-to-face interaction in crowded environments (Spexard 
et al., 2007; Koenig et al., 2008), or can be exploited to guaran-
tee a more intelligent and robust robot behavior in cooperative 
human–robot tasks (Breazeal et al., 2004; Alami et al., 2005; Foster 
et al., 2008; Gast et al., 2009). Although the proposed multi-mo-
dal architectures differ signifi cantly in the type of control scheme 
applied (e.g., hybrid or deliberative) and theoretical frameworks 
used (e.g., neural networks, graphical or probabilistic models) they 
also have an important aspect in common. Typically, the integra-
tion of verbal and nonverbal information and the coordination of 
actions and decisions between robot and human are performed in 
dedicated fusion and planning modules that do not contain sen-
sorimotor representations for the control of the robot actuators. A 
representative example are control  architectures for HRI based on 
the theoretical framework of joint intention theory (e.g., Breazeal 
et al., 2004; Alami et al., 2005) that has been originally proposed 
for cooperative problem solving in distributed artifi cial intelligence 
systems (Cohen and Levesque, 1990). In these architectures a joint 
intention interpreter and a reasoner about beliefs and communica-
tive acts can feed a central executive that is responsible for joint 
action planning and coordination on a symbolic level. A different 
approach to more natural and effi cient HRI followed by our and 

INTRODUCTION
New generations of robotic systems are starting to share the same 
workspace with humans. They are supposed to play a benefi cial role 
in the life of ordinary people by directly collaborating with them 
on common tasks. The role as co-worker and assistant in human 
environments leads to new challenges in the design process of robot 
behaviors (Fong et al., 2003). In order to guarantee user acceptance, 
the robot should be endowed with social and cognitive skills that 
makes the communication and interaction with the robot natural 
and effi cient. Humans are experts in coordinating their actions with 
others to reach a shared goal (Sebanz et al., 2006). In collaborative 
tasks we continuously monitor the actions of our partners, interpret 
them effortlessly in terms of their outcomes and use these predic-
tions to select an adequate complementary behavior. Think for 
instance about two people assembling a piece of furniture from 
its components. One person reaches toward a screw. The co-actor 
immediately grasps a screw-driver to hand it over and subsequently 
holds the components that are to be attached with the screw. In 
familiar tasks, such fl uent team performance is very often achieved 
with little or no direct communication. Humans are very good in 
combining motion and contextual information to anticipate the 
ultimate goal of others’ actions (Sebanz et al., 2006). Referring to 
objects or events through the use of language and communicative 
gestures is essential, however, whenever the observed behavior is 
ambiguous or a confl ict in the alignment of intentions between 
partners has been detected. Ideally, not only the fact that some-
thing might go wrong in the joint action but also the reason for 
the confl ict should be communicated to the co-actor.

The last decade has seen enormous progress in designing 
human-centered robots that are able to perceive, understand and 
use different modalities like speech, communicative gestures, facial 
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other groups is inspired by fundamental fi ndings in behavioral and 
neurophysiological experiments  analyzing perception and action 
in a social context (Wermter et al., 2004; Erlhagen et al., 2006b; 
Bicho et al., 2009; Breazeal et al., 2009). These fi ndings suggest that 
automatic resonance processes in the observer’s motor system are 
crucially involved in the ability to recognize and understand actions 
and communicative acts of others’, to infer their goals and even to 
comprehend their action-related utterances. The basic idea is that 
people gain an embodied understanding of the observed person’s 
behavior by internally simulating action consequences through the 
covert use of their own action repertoire (Barsalou et al., 2003). 
In joint action, the predicted sensory consequences of observed 
actions together with prior task knowledge may then directly drive 
the motor representation of an adequate complementary behavior. 
Such shared representations for perception, action and language are 
believed to constitute a neural substrate for the remarkable fl uency 
of human joint action in familiar tasks (Sebanz et al., 2006).

Many of the experiments on action observation were inspired 
by the discovery of mirror neurons (MNs) fi rst in premotor 
cortex and later in the parietal cortex of macaque monkey (di 
Pellegrino et al., 1992, for a review see Rizzolatti and Craighero, 
2004). Mirror neurons fi re both when the monkey executes an 
object-directed motor act like grasping and when it observes or 
hears a similar motor act performed by another individual. They 
constitute a neural substrate of an abstract concept of grasping, 
holding or placing that generalizes over agents and the modality of 
action-related sensory input. Many MNs require the observation 
of exactly the same action that they encode motorically in order 
to be triggered. The majority of MNs however falls in the broadly 
congruent category for which the match between observed and 
executed actions is not strict (e.g., independent of the kinematic 
parameters or the effector). Important for HRI, broadly congruent 
MNs may support an action understanding capacity across agents 
with very different embodiment and motor skills like human and 
robot. The fact that the full vision of an action is not necessary 
for eliciting a MN response whenever additional contextual cues 
may explain the meaning of the action has been interpreted as 
evidence for the important role of MNs in action understanding. It 
has been shown for instance that grasping MNs respond to a hand 
disappearing behind a screen when the monkey knew that there 
is an object behind the occluding surface (Umiltà et al., 2001). A 
grasping behavior is normally executed with an ultimate goal in 
mind. By training monkeys to perform different action sequences 
Fogassi et al. (2005) have recently tested whether MNs are not only 
involved in the coding of a proximate goal (the grasping) but also 
in the coding of the ultimate goal or motor intention (what to do 
with the object). The fundamental fi nding was that specifi c neural 
populations represent the identical grasping act in dependence of 
the outcome of the whole action sequence in which the grasping 
is embedded (e.g., grasping for placing versus grasping for eating). 
This fi nding has been interpreted as supporting the hypothesis 
that neural representations of motor primitives are organized in 
chains (e.g., reaching–grasping–placing) generating specifi c per-
ceptual outcomes (Chersi et al., 2007, see also Erlhagen et al., 2007). 
On this view, the activation of a particular chain during action 
observation is a means to anticipate the associated outcomes of 
others’ actions.

More recently, brain imaging studies of joint action revealed 
compelling evidence that the mirror system is also crucially involved 
in complementary action selection. People performing identical 
or complementary motor behaviors as those they had observed 
showed a stronger activation of the human mirror system in the 
complementary condition compared to the condition when the 
participants imitated the observed action (Newman-Norlund et al., 
2007). This fi nding can be explained if one assumes a central role 
of the mirror system in linking two different but logically related 
actions that together constitute a goal-directed sequence involving 
two actors (e.g. receiving an object from a co-actor).

It has been suggested that the abstract semantic equivalence of 
actions encoded by MNs is related to aspects of linguistic com-
munication (Rizzolatti and Arbib, 1998). Although the exact role 
of the mirror mechanism for the evolution of a full-blown syntax 
and computational semantics is still matter of debate (Arbib, 2005), 
there is now ample experimental evidence for motor resonance dur-
ing verbal descriptions of actions. Language studies have shown that 
action words or action sentences automatically activate corresponding 
action representations in the motor system of the listener (Hauk et al., 
2004; Aziz-Zadeh et al., 2006; Zwann and Taylor, 2006). Following the 
general idea of embodied simulation (Barsalou et al., 2003) this sug-
gests that the comprehension of speech acts related to object-directed 
actions does not involve abstract mental representations but rather the 
activation of memorized sensorimotor experiences. The association 
between a grasping behavior or a communicative gesture like pointing 
and an arbitrary linguistic symbol may be learned when during prac-
tice the utterance and the matching hand movement occur correlated 
in time (Billard, 2002; Cangelosi, 2004; Sugita and Tani, 2005).

In this paper we present and validate a dynamic control architec-
ture that exploits the idea of a close perception–action linkage as a 
means to endow a robot with nonverbal and verbal communication 
skills for natural and effi cient HRI. Ultimately, the architecture 
implements a fl exible mapping from an observed or simulated 
action of the co-actor onto a to-be-executed complementary behav-
ior which consist of speech output and/or a goal-directed action. 
The mapping takes into account the inferred goal of the partner, 
shared task knowledge and contextual cues. In addition, an action 
monitoring system may detect a mismatch between predicted and 
perceived action outcomes. Its direct link to the motor represen-
tations of complementary behaviors guarantees the alignment of 
actions and decisions between the co-actors also in trials in which 
the human shows unexpected behavior.

The architecture is formalized by a coupled system of dynamic 
neural fi elds (DNFs) representing a distributed network of local 
neural populations that encode in their activation patterns task-
relevant information (Erlhagen and Bicho, 2006). Due to strong 
recurrent interactions within the local populations the patterns may 
become self-stabilized. Such attractor states of the fi eld dynamics 
allow one to model cognitive capacities like decision making and 
working memory necessary to implement complex joint action 
behavior that goes beyond a simple input–output mapping. To 
validate the architecture we have used a joint assembly task in which 
the robot has to construct together with a user different toy objects 
from their components. Different to our previous study in a sym-
metric construction task (Bicho et al., 2008, 2009), the robot does 
not directly participate in the construction work. The focus of the 
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the task. The human performs the assembly steps following a given 
plan which explains the way how different pieces have to be attached 
to each other. He or she can directly request from the robot a specifi c 
component by using speech commands (e.g., Give me component X) 
and/or communicative hand gestures (e.g., pointing, requesting). The 
role of the robot is to hand over pieces in response to such requests or 
in anticipation of the user’s needs, to monitor the user’s actions and 
to communicate potential confl icts and unexpected behaviors dur-
ing task execution to the user. Confl icts may result from a mismatch 
between expected and perceived goal-directed actions either because 
the action should have been performed later (sequence error) or the 
action is not compatible with any of the available construction plans 
defi ning possible target objects (wrong component).

The fact that the robot does not perform assembly steps itself 
simplifi es the task representation that the robot needs to serve the 
user (for a symmetric construction scenario see Bicho et al., 2009). 
What the robot has to memorize is the serial order of the use of the 
different components rather than a sequence of subgoals (e.g., attach 
components A and B in a specifi c way) that have to be achieved 

present study is on anticipating the needs of the user (e.g.,  handing 
over pieces the user will need next) and on the detection and com-
munication of unexpected events that may occur on the plan and 
the execution level. The robot reasons aloud to indicate in conjunc-
tion with hand gestures the outcome of its action simulation or 
action monitoring to the user. The robot is able to react to speech 
input confi rming or not the prediction of the internal simulation 
process. It also understands object-directed speech commands (e.g., 
Give me object X) through motor simulation. The results show that 
the integration of verbal and nonverbal communication greatly 
improves the fl uency and success of the team performance.

JOINT CONSTRUCTION TASK
For the human–robot experiments we modifi ed a joint construction 
scenario introduced in our previous work (Bicho et al., 2009). The goal 
of the team is to assemble different toy objects from a set of compo-
nents (Figure 1). Since these components are initially distributed in the 
separate working areas of the two teammates, the coordination of their 
actions in space and time is necessary in order to successfully achieve 

FIGURE 1 | Human–robot joint construction of different toy objects. The robot has fi rst to infer what toy object the human partner intends to build. Subsequently, 
the team constructs the target object from its components following an assembly plan.
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ROBOT CONTROL ARCHITECTURE
The multistage control architecture refl ects empirical fi ndings accu-
mulated in cognitive and neurophysiological research suggesting a 
joint hierarchical model of action execution and action observa-
tion (van Schie et al., 2006; Hamilton and Grafton, 2008, see also 
Wolpert et al., 2003 for a modeling approach). The basic idea is 
that motor resonance mechanism may support social interactions 
on different but closely coupled levels: an intention level, a level 
describing the immediate goals necessary to realize the intention, 
and the kinematics level defi ning the movements of actions in space 
and time (Figure 2A).

Effi cient action coordination between individuals in cooperative 
tasks requires that each individual is able to anticipate goals and motor 
intentions underlying the partner’s unfolding behavior. As discussed 
in the introduction, most MNs represent actions on an abstract level 
sensitive to goals and intentions. For a human–robot team this is of 
particular importance since it allows us to exploit the motor resonance 
mechanism across teammates with very different embodiment.

In the following we briefl y describe the main functionalities of 
the layered control architecture for joint action. It is implemented 
as a distributed network of DNFs representing different reciprocally 
connected neural populations. In their activation patterns the pools 
encode action means, action goals and intentions (or their associ-
ated perceptual states), contextual cues and shared task information 
(c.f. ‘Model Details’ for details on DNFs). In the joint construction 
task the robot has fi rst to realize which target object the user intends 
to build. When observing the user reaching toward a particular 
piece, the automatic simulation of a reach-to-grasp action allows 
the robot to predict future perceptual states linked to the reaching 
act. The immediate prediction that the user will hold the piece in 
his/her hand is associated with the representation of one or more 
target objects that contain this particular part. In case that there 
is a one-to-one match, the respective representation of the target 
object becomes fully activated. Otherwise the robot may ask for 
clarifi cation (Are you going to assemble object A or object B?) or may 
wait until another goal-directed action of the user and the internal 
simulation of action effects disambiguate the situation.

 during the course of the assembly work. Importantly, since for each 
of the target objects the serial order of task execution is not unique, 
the robot has to simultaneously memorize several sequences of com-
ponent-directed grasping actions in order to cope with different 
user preferences. To facilitate the coordination of actions and plans 
between the teammates, the robot speaks aloud and uses gestures to 
communicate the outcome of its goal inference and action monitor-
ing processes to the user. For instance, the robot may respond to a 
request by saying You have it there and simultaneously points to 
the specifi c piece in the user’s workspace. Although the integra-
tion of language and communicative gestures in the human–robot 
interactions will normally promote a more fl uent task performance, 
this integration may also give rise to new types of confl ict that the 
team has to resolve. From studies with humans it is well known 
for instance that if the verbally expressed meaning of an action or 
gesture does not match the accompanying hand movement (e.g., 
pointing to an object other than the object referred to) decision 
processes in the observer/listener appear to be delayed compared to 
a matching situation. This fi nding has been taken as direct evidence 
for the important role of motor representations in the comprehen-
sion of action-related language (Glenbach and Kaschak, 2002).

For the experiments we used the robot ARoS built in our lab. 
It consists of a stationary torus on which a 7 DOFs AMTEC arm 
(Schunk GmbH) with a two fi nger gripper and a stereo camera head 
are mounted. A speech synthesizer/recognizer (Microsoft Speech 
SDK 5.1) allows the robot to verbally communicate with the user. 
The information about object type, position and pose is provided 
by the camera system. The object recognition combines color-based 
segmentation with template matching derived from earlier learn-
ing examples (Westphal et al., 2008). The same technique is also 
used for the classifi cation of object-directed, static hand postures 
such as grasping and communicative gestures such as pointing or 
demanding an object. For the control of the arm-hand system we 
applied a global planning method in posture space that allows us to 
generate smooth and natural movements by integrating optimiza-
tion principles obtained from experiments with humans (Costa e 
Silva et al., submitted).

FIGURE 2 | Multistage robot control architecture. (A) Joint hierarchical model 
of action execution and action observation. (B) Mapping from observed actions 
(layer AOL) onto complementary actions (layer AEL) taking into account the 

inferred action goal of the partner (layer GL), detected errors (layer AML), 
contextual cues (layer OML) and shared task knowledge (layer STKL). The goal 
inference capacity is based on motor simulation (layer ASL).
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request verbally or by pointing a valid part located in the robot’s 
 workspace, the robot should not automatically start a handing 
over procedure. The user may have for instance overlooked that 
he has an identical object in his own working area. In this case, a 
more effi cient complementary behavior for the team performance 
would be to use a pointing gesture to attract the user’s atten-
tion to this fact. Different populations in the action monitoring 
layer (AML) are sensitive to a mismatch on the goal level (e.g., 
requesting a wrong part) or on the level of action means (e.g., 
handing over versus grasping directly). In the example, input from 
OML (representing the part in the user’s workspace) and from 
ASL (representing the simulated action means) activate a specifi c 
neural population in AML that is in turn directly connected to the 
motor representation in AEL controlling the pointing gesture. As 
a result, two possible complementary actions, handing over and 
pointing, compete for expression in overt behavior. Normally, 
the pointing population has a computational advantage since the 
neural representations in AML evolve with a slightly faster time 
scale compared to the representations driving the handing over 
population. In the next section we explain in some more detail the 
mechanisms underlying decision making in DNFs. It is important 
to stress that the direct link between action monitoring and action 
execution avoids the problem of a coordination of reactive and 
deliberative components that in hybrid control architectures for 
HRI typically requires an intermediate layer (e.g., Spexard et al., 
2007; Foster et al., 2008).

MODEL DETAILS
Dynamic neural fi elds provide a theoretical framework to endow 
artifi cial agents with cognitive capacities like memory, decision mak-
ing or prediction based on sub-symbolic dynamic representations 
that are consistent with fundamental principles of cortical informa-
tion processing. The basic units in DNF-models are local neural 
populations with strong recurrent interactions that cause non-
trivial dynamic behavior of the population activity. Most impor-
tantly, population activity which is initiated by time- dependent 
external signals may become self-sustained in the absence of any 
external input. Such attractor states of the population dynamics 
are thought to be essential for organizing goal-directed behavior 
in complex dynamic situations since they allow the nervous system 
to compensate for temporally missing sensory information or to 
anticipate future environmental inputs.

The DNF-architecture for joint action thus constitutes a com-
plex dynamical system in which activation patterns of neural popu-
lations in the various layers appear and disappear continuously in 
time as a consequence of input from connected populations and 
sources external to the network (e.g., vision, speech).

For the modeling we employed a particular form of a DNF 
fi rst analyzed by Amari (1977). In each model layer i, the activity 
u

i
(x,t) at time t of a neuron at fi eld location x is described by the 

following integro-differential equation (for mathematical details 
see Erlhagen and Bicho, 2006):
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Once the team has agreed on a specifi c target object, the align-
ment of goals and associated goal-directed actions between the 
teammates have to be controlled during joint task execution. 
Figure 2B presents a sketch of the highly context-sensitive map-
ping of observed onto executed actions implemented by the 
DNF-architecture. The three-layered architecture extends a previ-
ous model of the STS-PF-F5 mirror circuit of monkey (Erlhagen 
et al., 2006a) that is believed to represent the neural basis for a 
matching between the visual description of an action in area STS 
and its motor representation in area F5 (Rizzolatti and Craighero, 
2004). This circuit supports a direct and automatic imitation of the 
observed action. Importantly for joint action, however, the model 
allows also for a fl exible perception–action coupling by exploit-
ing the existence of action chains in the middle layer PF that are 
linked to goal representations in prefrontal cortex. The automatic 
activation of a particular chain during action observation (e.g., 
reaching–grasping–placing) drives the connected representation 
of the co-actor’s goal which in turn may bias the decision proc-
esses in layer F5 towards the selection of a complementary rather 
than an imitative action. Consistent with this model prediction, a 
specifi c class of MNs has been reported in F5 for which the effective 
observed and effective executed actions are logically related (e.g., 
implementing a matching between placing an object on the table 
and bringing the object to the mouth, di Pellegrino et al., 1992). 
For the robotics work we refer to the three layers of the matching 
system as the action observation (AOL), action simulation (ASL) 
and action execution layer (AEL), respectively. The integration of 
verbal communication in the architecture is represented by the 
fact that the internal simulation process in ASL may not only be 
activated by observed object-directed actions but also by action 
related speech input. Moreover, the set of complementary behaviors 
represented in AEL consists of goal-directed action sequences like 
holding out an object for the user but also contains communicative 
gestures (e.g., pointing) and speech output.

For an effi cient team behavior, the selection of the most ade-
quate complementary action should take into account not only 
the inferred goal of the partner (represented in GL) but also the 
working memory about the location of relevant parts in the sepa-
rate working areas of the teammates (represented in OML), and 
shared knowledge about the sequential execution of the assembly 
task (represented in STKL). To guarantee proactive behavior of 
the robot, layer STKL is organized in two connected DNFs with 
representation of all relevant parts for the assembly work. Feedback 
from the vision system about the state of the construction and the 
observed or predicted current goal of the user will activate the 
population encoding the respective part in the fi rst layer. Through 
synaptic links this activation pattern automatically drives the rep-
resentations of one or more future components as possible goals in 
the second layer. Based on this information and in anticipation of 
the user’s future needs the robot may already prepare the transfer 
of a part that is currently in its workspace.

In line with the reported fi ndings in cognitive neuroscience 
the dynamic fi eld architecture stresses that the perception of a 
co-actor’s action may immediately and effortlessly guide behav-
ior. However, even in familiar joint action tasks there are situ-
ations that require some level of cognitive control to override 
prepotent responses. For instance, even if the user would directly 
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. Inputs from external sources (speech, vision) are also modeled 

as Gaussians for simplicity.

RESULTS
In the following we discuss results of real-time human–robot inter-
actions in the joint construction scenario. The snapshots of video 
sequences shall illustrate the processing mechanisms underlying the 
robot’s capacity to anticipate the user’s need and to deal with unex-
pected events. To allow for a direct comparison between different joint 
action situations, the examples all show the team performance during 
the construction of a single target object called L-shape (Figure 3). 
Details on the connection scheme for the neural pools in the layered 
architecture and numerical values for the DNF parameters and inter-
fi eld synaptic weights may be found in the Supplementary Material.

The initial communication between the teammates that lead to 
the alignment of their intentions and plans is included in the videos. 
They can be found at http://dei-s1.dei.uminho.pt/pessoas/estela/
JASTVideosFneurorobotics.htm. The plan describing how and in 
which serial order to assemble the different components is given to 
the user at the beginning of the trials. We focus the discussion of 
results on the ASL and AEL. Figures 4, 5 and 7 illustrate the experi-
mental results. In each Figure, panel A shows a sequence of video 
snapshots, panel B and C refer to the ASL and AEL, respectively. For 
both layers, the total input (top) and the fi eld activation (bottom) 
are compared for the whole duration of the joint assembly work. 
Tables 1 and 2 summarize the component-directed actions and 
communicative gestures that are represented by different popula-
tions in each of the two layers. Since the robot does not perform 
assembly steps itself, AEL only contains two types of overt motor 
behavior: pointing towards a specifi c component in the user’s work-
space or grasping a piece for holding it out for the user.

It is important to stress that the dynamic decision making proc-
ess in AEL also works in more complex situations with a larger 
number of possible complementary action sequences linked to each 
component (Erlhagen and Bicho, 2006).

Figure 4 shows the fi rst example in which the humans starts 
the assembly work by asking for a medium slat (S1). The initial 
distribution of components in the two workplaces can be seen 
in Figure 1. The fact that the user simultaneously points towards 
a short slat creates a confl ict that is represented in the bi-modal 
input pattern to ASL centered over A6 and A7 at time T0. As can 
be seen in the bottom layer of Figure 4B, the fi eld dynamics of 
ASL resolves this confl ict by evolving a self-sustained activation 
pattern. It represents a simulated pointing act towards the short 
slat. The decision is the result of a slight difference in input strength 
which favors communicative gestures over verbal statements. This 
bias can be seen as refl ecting an interaction history with different 
users. Our human–robot experiments revealed that naive users are 
usually better in pointing than verbally referring to (unfamiliar) 
objects. The robot directly communicates the inferred goal to the 

where the parameters τ
i
 > 0 and h

i
 > 0 defi ne the time scale and the 

resting level of the fi eld dynamics, respectively. The integral term 
describes the intra-fi eld interactions which are chosen of lateral-
inhibition type:

2

inhib,2
( ) exp

2i i i
i

x
w x A w
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(2)

where A
i
 > 0 and σ

i
 > 0 describe the amplitude and the standard 

deviation of a Gaussian, respectively. For simplicity, the inhibi-
tion is assumed to be constant, w

inhib,i
 > 0. Only suffi ciently acti-

vated neurons contribute to interaction. The threshold function 
f

i
(u) is chosen of sigmoidal shape with slope parameter β and 

threshold u
0
:

0

1
( ) .

1 exp[ ( )]i i
i

f u
u u

=
+ − β −  

(3)

The model parameters are adjusted to guarantee that the fi eld 
dynamics is bi-stable (Amari, 1977), that is, the attractor state of 
a self-stabilized activation pattern coexists with a stable homog-
enous activation distribution that represents the absence of specifi c 
information (resting level). If the summed input, S

i
(x,t), to a local 

population is suffi ciently strong, the homogeneous state loses sta-
bility and a localized pattern in the dynamic fi eld evolves. Weaker 
external signals lead to a subthreshold, input-driven activation pat-
tern in which the contribution of the interactions is negligible. This 
preshaping by weak input brings populations closer to the threshold 
for triggering the self-sustaining interactions and thus biases the 
decision processes linked to behavior. Much like prior distribu-
tions in the Bayesian sense, multi-modal patterns of subthreshold 
activation may for instance model user preferences (e.g., preferred 
target object) or the probability of different complementary actions 
(Erlhagen and Bicho, 2006).

The existence of self-stabilized activation pattern allows us to 
implement a working memory function. Since multiple potential 
goals may exist and should be represented at the same time and 
all relevant components for the construction have to be memo-
rized simultaneously, the fi eld dynamics in the respective lay-
ers (STKL and ML) must support multi-peak solutions. Their 
existence can be ensured by choosing weight functions (Eq. 2) 
with limited spatial ranges. The principle of lateral inhibition 
can be exploited on the other hand to force and stabilize deci-
sions whenever multiple hypothesis about the user’s goal (ASL, 
GL) or adequate complementary actions (AEL) are supported by 
sensory or other evidence. The inhibitory interaction causes the 
suppression of activity below resting level in competing neural 
pools whenever a certain subpopulation becomes activated above 
threshold. The summed input from connected fi elds u

l
 is given 

as ( , ) ( , )i l lS x t k S x t= Σ . The parameter k scales the total input to a 
certain population relative to the threshold for triggering a self-
sustained pattern. This guarantees that the inter-fi eld couplings 
are weak compared to the recurrent interactions that dominate 
the fi eld dynamics (for details see Erlhagen and Bicho, 2006). The 
scaling also ensures that missing or delayed input from one or 
more connected populations will lead to a subthreshold activity 
distribution only. The input from each connected fi eld u

l
 is mod-

eled by Gaussian functions:
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slat, that is, well ahead of the time when the robot predicts the nut 
as the user’s next goal. This early preparation refl ects the fact that 
handing over the medium slat automatically activates the repre-
sentations of all possible future goals in STKL that are compatible 
with stored sequential orders. Since a yellow bolt and an orange nut 
represent both possible next assembly steps, the combined input 
from STKL and OML (bolt in robot’s workspace) explains this early 
onset of subthreshold motor preparation in AEL.

In the second example (Figure 5) the initial distribution of 
components in the two working areas is identical to the situa-
tion in the fi rst example. However, this time the meaning of the 
verbal request and the pointing act are congruent. Consequently, 
the input converges on the motor representation in ASL repre-
senting the pointing (A6) and a suprathreshold activity pattern 
quickly evolves. This in turn activates the population encoding 
the complementary behavior of handing over the short slat in 
AEL. Compared to the dynamics of the input and the fi eld activ-
ity in the previous case (Figure 4C) one can clearly see that in 
the congruent condition the input arrives earlier in time and the 
decision process is faster. Note that in both cases the alternative 
complementary behavior representing the transfer of a medium 
slat (A3) appears to be activated below threshold at time T0. This 
pre-activation is caused by the input from STKL that supports both 
the short and the medium slat as possible goals at the beginning 
of the assembly work.

user (S2). Figure 4C shows that the input to AEL supports two 
different complementary actions, A1 and A2. However, since the 
total input from connected layers is stronger for alternative A1, 
the robot decides to hand over the short slat (S3). Subsequently, 
the robot interprets the user’s request gesture (empty hand, S4) as 
demanding a medium slat (S5). The observed unspecifi c gesture 
activates to some extent all motor representations in ASL linked 
to components of the L-shape in the robot’s workspace (compare 
the input layer). Goal inference is nevertheless possible due to the 
input from STKL that contains populations encoding the sequential 
order of task execution. The fi eld activation of AEL (Figure 4C) 
shows at time T1 the evolution of an activation peak representing 
the decision to give the medium slat to the user (S6). At time T2 
the robot observes the human reaching towards an orange nut 
(S7). The visual input from AOL activates the motor representa-
tion A4 in ASL which enables the robot to predict that the human 
is going to grasp the nut (S7). Since according to the plan the nut 
is followed by a yellow bolt and the bolt is in its workspace, the 
robot immediately starts to prepare the handing over procedure and 
communicates the anticipated need to the user (S8–S9). Note that 
the activation patterns representing the inferred current goal of the 
user (A4 in ASL) and the complementary action (A3 in AEL) evolve 
nearly simultaneously in time. An additional observation is worth 
mentioning. The input supporting the complementary behavior A3 
starts to increase shortly after the decision to hand over the medium 

FIGURE 3 | Toy object L-shape. (A) Pieces used to build the L-shape. (B) Different serial orders to assemble the L-shape.
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In the third example (Figures 6 and 7) the robot’s action moni-
toring system detects a sequence error and the robot reacts in an 
appropriate manner before the failure becomes manifested. The 
robot observes a reaching towards the short slat (S1) and commu-
nicates to the user that it infers the short slat as the user’s goal (S2). 
The input to the AEL (Figure 7C) triggers at time T0 the evolution 
of an activation pattern at A6 representing the preparation of a 

pointing to the medium slat in the user’s workspace. However, this 
pattern does not become suprathreshold since at time T1 the user 
request the yellow bolt in the robot’s workspace (S3). By internally 
simulating a pointing gesture the robot understands the request 
(S4) which in turn causes an activity burst of the population in AEL 
representing the corresponding complementary behavior (A3). 
However, also this pattern does not reach the decision level due to 

FIGURE 4 | First example: (1) goal inference when gesture and speech contain incongruent information (ASL), and (2) anticipatory action selection (AEL). (A) 
Video snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) Temporal evolutions of input to AEL (top) and activity in AEL (bottom).
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Table 1 | Goal-directed sequences and communicative gestures in ASL.

Action Sequence of motor primitives Short description

A1 Reach short slat → grasp Use short slat

A2 Reach medium slat → grasp Use medium slat

A3 Reach yellow bolt → grasp Use yellow bolt

A4 Reach orange nut → grasp Use orange nut

A5 Reach other piece → grasp Use other part

A6 Point to short slat Request short slat

A7 Point to medium slat Request medium slat

A8 Point to yellow bolt Request yellow bolt

A9 Point to orange nut Request orange nut

A10 Point to other part Request other part

Table 2 | Goal-directed sequences and communicative gestures in AEL.

Action Sequence of motor primitives Short description

A1 Reach short slat → grasp Give short slat

A2 Reach medium slat → grasp Give medium slat

A3 Reach yellow bolt → grasp Give yellow bolt

A4 Reach orange nut → grasp Give orange nut

A5 Point to short slat Attend to short slat

A6 Point to medium slat Attend to medium slat

A7 Point to yellow bolt Attend to yellow bolt

A8 Point to orange nut Attend to orange nut

A9 Point to other part Attend to other part

FIGURE 5 | Second example: faster goal inference and speeded decision making due to congruent information from gesture and speech. (A) Video 
snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) Temporal evolutions of input to AEL (top) and activity in AEL (bottom).
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inhibitory input from a population in the AML. This population 
integrates the confl icting information from STKL (possible goals) 
and the input from the action simulation (yellow bolt). The robot 
informs the user about the sequence error (S5) and suggests the 
correction by pointing towards the medium slat and speaking to 
the user (S6). The pointing gesture is triggered by converging input 
from STKL, OML and the population in AML representing the 
confl ict. The user reacts by reaching towards the correct piece (S7). 
The internal simulation of this action triggers the updating of the 
goals in STKL which allows the robot to anticipate what component 
the user will need next. As shown by the suprathreshold activation 
pattern of population A3 in AEL, the robot immediately prepares 
the transfer of the yellow bolt (S8–S9).

DISCUSSION AND SUMMARY
The main aim of the present study was to experimentally test the 
hypothesis that shared circuits for the processing of perception, 
action and action-related language may lead to more effi cient and 
natural human–robot interaction. Humans are remarkably skilled 
in coordinating their own behavior with the behavior of others to 
achieve common goals. In known tasks, fl uent action coordination 
and alignment of goals may occur in the absence of a full-blown 
human conscious awareness (Hassin et al., 2005). The proposed 
DNF-architecture for HRI is deeply inspired by converging evidence 
from a large number of cognitive and neurophysiological studies 
suggesting an automatic but highly context-sensitive mapping 
from observed on to-be-executed actions as underlying mechanism 
(Sebanz et al., 2006). Our low-level sensorimotor approach is in 
contrast with most HRI research that employ symbolic manipula-
tion and high-level planning techniques (e.g., Breazeal et al., 2004; 

Alami et al., 2005; Spexard et al., 2007; Gast et al., 2009). Although 
it is certainly possible to encode the rules for the team performance 
in a logic-based framework, the logical manipulations will reduce 
the effectiveness that a direct decoding of others’ goals and inten-
tions through sensorimotor knowledge offers. At fi rst glance, the 
motor resonance mechanism for nonverbal communication seems 
to be incompatible with the classical view of language as an inten-
tional exchange of symbolic, amodal information between sender 
and receiver. However, assuming that like the gestural description 
of another person’s action also a verbal description of that action 
has direct access to the same sensorimotor circuits allows one to 
bridge the two domains. In the robot ARoS, a verbal command 
like Give me the short slat fi rst activates the representation of a 
corresponding motor act in ASL (e.g., pointing towards that slat) 
and subsequently the representation of a complementary behavior 
in AEL (e.g., transferring the short slat). We have introduced this 
direct language–action link into the control architecture not only 
to ground the understanding of simple commands or actions in 
sensorimotor experience but also to allow the robot to transmit 
information about its cognitive skills to the user. Verbally commu-
nicating the results of its internal action simulation and monitoring 
processes greatly facilitates the interaction with naive users since 
it helps a human to quickly adjust his/her expectations about the 
capacities the robot might have (Fong et al., 2003).

Our approach to more natural HRI differs not only on the level of 
the control architecture from more traditional approaches but also on 
the level of the theoretical framework used. Compared with for instance 
probabilistic models of cognition that have been employed in the past 
in similar joint construction tasks (Cuijpers et al., 2006; Hoffman and 
Breazeal, 2007), a dynamic approach to cognition (Schöner, 2008) 

FIGURE 6 | Third example: initial distribution of components in the two working areas.
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represented by the dynamic fi eld framework allows one to directly 
address the important temporal aspects of action coordination (Sebanz 
et al., 2006). As all activity patterns in the interconnected network of 
neural populations evolve continuously in time with a proper time 
scale, a change in the time course of population activity in any layer 
may cause a change in the robot’s behavior. For instance, converging 
input from vision and speech will speed up  decision processes in ASL 

and AEL compared to the situation when only one input signal is avail-
able. Confl icting signals to ASL on the other hand will slow down the 
processing due to intra-fi eld competition (compare Figures 4 and 5). 
This in turn opens a time window in which input from the AML 
may override a prepotent complementary behavior (Figure 7). We 
are currently exploring adaptation mechanisms of model parameters 
that will allow the robot to adapt to the preferences of different users. 

FIGURE 7 | Third example: Error detection and correction. (A) Video snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) 
Temporal evolutions of input to AEL (top) and activity in AEL (bottom).
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and Karmiloff-Smith, 2001; Veneziano, 2001). Word meanings are 
therefore directly related to the child’s experience, and the amount 
of situationally detached information presented to children by their 
caregivers only gradually increases over time (Veneziano, 2001).

While word meanings are partly acquired based on salient per-
ceptual properties (cf. Clark, 1973; Smith et al. 1996), other word 
meanings are rather based on the role of functional affordances of 
objects in interaction (Nelson, 1973; Mandler, 1992). Nelson (1973), 
for instance, shows that 3-years-old children use their sensorimotor 
experiences about the function of a given object for categorization. 
But also linguistic information is taken into account in word mean-
ing learning (cf. Gelman and Heyman, 1999; Bowerman and Choi, 
2001; Bowerman, 2005), That is, children understand objects and 
events that share a linguistic label to share underlying characteristics 
as well (cf. Gelman, 2009).

But also for adult speakers, word meanings are grounded in 
embodied experience to a considerable extent (Bergen, 2005; 
Glenberg, 2007). For instance, distinctions between verbs of grasp-
ing are motivated by different hand postures and subtle differences 
in motor control involved in the actions denoted by a particular 
motion verb (Bailey et al., 1997). Different motor patterns associ-
ated with different action verbs were also found to be reflected in 
differences in location in the motor cortex (Pulvermüller et al., 
2001). Furthermore, language understanding was found to interfere 
with motor actions if the meaning of the respective sentence evokes 
a motion in the opposite direction than necessary to carry out the 
action (Glenberg and Kaschak, 2002).

Further evidence for the embodiment of word meanings in 
adult language comes from the study of cognitive metaphor and 
image schemata (e.g. Lakoff and Johnson, 1999) and lexical seman-
tics (Wierzbicka, 1985). These studies draw attention to mean-
ings that are shaped by an implicit understanding of dimensions 
and functions of the human body. To address word learning from 

IntroductIon
Human language is a formidable communication system. It allows 
us to describe the world around us and exchange our thoughts. 
Nevertheless, despite many decades of studies and research, a com-
plete description of its functions and operations is still missing. 
In particular, the fundamental mechanisms that allow humans to 
associate meanings to words are still a matter of ongoing debate 
among scientists.

For instance, Siskind (2001) suggests three major language 
functions allowing humans: (i) to describe what they perceive, (ii) 
to ask others to perform a certain action and (iii) to engage in 
conversation. At the core of all three functions there is our ability 
to understand the meanings that words represent. Especially the 
first two language functions require that language be grounded 
in perception and action processes. Especially in the description 
of dynamic processes and specific relations between objects and 
object properties, the process of grounding language in perception 
and actions means that, when we describe a given scene or we ask 
someone to perform a certain action, the words used must be linked 
with physical entities in the scene or in actions that can be either 
observed or desired.

In order to understand the link by means of which words are 
connected with objects and actions, it may be useful to look into 
studies on child language acquisition.

Children acquire word meanings in direct interaction with the 
environment. Before they begin to learn words, they go through 
a long phase of perceptual (visual, haptical, motor, interactional, 
etc.) exploration of objects in their environment. Interactions with 
preverbal infants and young children are furthermore anchored in 
the immediate context; that is, interactions are highly situated in 
the here and now and allow the child to make direct connections 
between perceptually available objects and events and linguistic 
utterances (e.g. Snow, 1977; Hatch, 1983; Sachs, 1983; Karmiloff 
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a grounded language learning perspective is thus supported by 
research from both child language acquisition and human language 
understanding.

Several computational models have been proposed to study 
communication and language in cognitive systems, such as robots 
and simulated agents (Cangelosi and Parisi, 2002; Lyon et al., 2007). 
On the one hand there are models of language focusing on the 
internal characteristics of the individual agent in which the lexi-
con is constructed based on a self-referential symbolic system. The 
cognitive agents only possess a series of abstract symbols used for 
both communication and for representing meanings (e.g. Kirby, 
2001). These models are subject to the symbol grounding problem 
(Harnad, 1990). That is, symbols are self-referential entities that 
require the interpretation of an external experimenter to identify 
the referential meaning of the lexical items.

On the other hand, there are grounded approaches to modeling 
language, in which linguistic abilities are developed through the 
direct interaction between the cognitive agents and the physical 
world they interact with. In these models, the external world plays 
an essential role in shaping the language used by these cognitive 
systems. Language is therefore grounded in the cognitive and 
sensorimotor knowledge of the agents (Steels, 2003). As pointed 
out by Cangelosi and Riga (2006), the grounding of language in 
autonomous cognitive systems requires a direct grounding of the 
agent’s basic lexicon. This assumes the ability to link perceptual 
(and internal) representations to symbols.

In this modeling paradigm, artificial agents are usually asked 
to associate features of objects to words, where this association is 
self-organized by the agents itself. An agent discovers autonomously 
certain features that are peculiar to a given object and learns from a 
model, which is usually another agent’s, to associate the feature to an 
arbitrary word. Some of these models aim to study the emergence 
of shared lexicons through biological and cultural evolution mecha-
nisms (Cangelosi and Parisi, 2002). In these models, a population 
of cognitive agents that are able to interact with the physical entities 
in the environment and to construct a sensorimotor representation 
of it, is initialized to use random languages. Within this population, 
agents converge toward the use of a shared lexicon after an iterative 
process of communication and language games.

The paradigm of language games for language evolution and 
acquisition has been used extensively by Luc Steels (Steels, 2001). 
For example, Steels and collaborators (Steels et al., 2002; Steels, 
2003) use hybrid population of robots, internet agents and humans 
engaged in language games. Agents are in turn embodied into 
two “talking head” robots to play language games. In this experi-
ment it has been demonstrated that a shared lexicon gradually 
emerges to describe a world made of colored shapes. This model 
has been also extended to study the emergence of communication 
between humans and robots using the SONY AIBO robot (Steels 
and Kaplan, 2000). Steels’s approach is characterized by his focus 
on the naming of perceptual categories and by his emphasis on 
the importance of social mechanisms in the grounding and emer-
gence of language.

Other models focus on the developmental factors that favor the 
acquisition of language by investigating the role of internal motiva-
tion and active exploratory behavior. Oudeyer and Kaplan (2006) 
show that an intrinsic motivation toward the experience of novel 

situations (i.e. situations that increase the chance of an agent to 
learn new environmental and communicational features) lead the 
agent to autonomously focus the attention toward vocal commu-
nicative and language features (see also Oudeyer et al. (2007), on a 
related topic, and Kaplan et al. (2008) for a compelling review and 
discussion of computational models of language acquisition).

From a different perspective, Marocco et al. (2003) use evolu-
tionary robotics for the self-organization of simple lexicons in a 
group of simulated robots. Agents first acquire an ability to manipu-
late objects (e.g. to touch spheres or to avoid cubes). Subsequently, 
they are allowed to communicate with each other. Populations of 
agents are able to evolve a shared lexicon to name the objects and 
the actions being performed on them.

In other robotics models of language grounding, robotic 
agents acquire a lexicon through interaction with human users. 
For example, Roy et al. (2003) have developed an architecture that 
provides perceptual, procedural and affordance representations 
for grounding the meaning of words in conversational robots. 
Sugita and Tani (2005) use a mobile robot that follows human 
instructions based on combinations of five basic commands.  
Yu (2005) focuses on the combination of word learning and cat-
egory acquisition to show improvements in both word-to-world 
mapping and perceptual categorization. This suggests a unified 
view of lexical and category learning in an integrative framework. 
Another experiment on human-robot communication has been 
carried out by Dominey (2005). This particular study provides 
insight into a developmental and evolutionary transition from 
idiom-like holophrases to progressively more abstract grammati-
cal constructions.

All of the models presented before adopt the general and wide-
spread assumption that tends to define nouns as words associated to 
physical (or even abstract) entities, and verbs as words that represent 
actions (or, in general, events that happen in time). This practice 
reflects findings in cognitive (e.g. Langacker, 2008) and functional 
(e.g. Halliday, 1985) linguistics that nouns are prototypically asso-
ciated with objects and verbs prototypically correspond to events 
and actions. Grounded computational models so far mainly focus 
on grounding nouns on sensorimotor object representations and 
verbs on actions that are directly performed by the agent (e.g. Sugita 
and Tani, 2005). In Marocco et al. (2003), for example, a simulated 
robotic arm was evolved for the ability to discriminate between a 
sphere and a cube and then to associate different words (nouns) 
to the two objects. The discrimination was based on a physical 
exploration of the characteristics of the two shapes. Therefore, the 
meaning of the nouns was entirely grounded in the sensorimotor 
dynamic that allowed the discrimination of the two objects. The 
same procedure has been applied to evolve two different words 
associated to two different actions performed by the agents. The 
actions were “avoid” the cube and “touch” the sphere. In this case, 
the agents were asked to discriminate the objects and perform one 
of the two actions with respect to the shape. Given the action-word 
association, these types of words were defined as verbs.

In a different experiment, Cangelosi and Riga (2006) developed 
a robot able to imitate the actions of another robot (the teacher). 
The robot was also able to learn from the model an association 
between actions and words, such as close or open arms. Actions 
were related to motor patterns performed by the robot and words 
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represent distances between two interacting physical entities, their 
velocity, and the observed transfer of energy after the interaction. 
Bodies are represented as circles of different colors that interact in 
various ways. Also in this case, as before, the system is purely based 
on the passive elaboration of a visual scene.

Following the same path, the aim of the present research is to 
study how a humanoid robot can learn to understand the mean-
ing of action words (i.e. words that represent dynamical events 
that happen in time) by physically acting on the environment and 
linking the effects of its own actions with the behavior observed on 
the objects before and after the action. This will allow the agent to 
give an interpretation of a given scene that develops in time, and is 
grounded on its own bodily actions and sensorimotor coordination. 
Object manipulation, therefore, is the central concept behind the 
research. We believe that an active manipulation of the object is an 
opportunity to test the reaction of that object. Imagine the robot 
hits a ball. As an effect of the hit, the ball will move. Therefore, the 
dynamics of this event can be characterized by the action performed 
by the robot and by the sequence of the activation of its sensors 
during the movement and the physical interaction with the ball. The 
movement of the ball can be viewed as an instantaneous contact 
between the ball and the hand of the robot followed by a displace-
ment of the same ball in the space, away from the hand. In such a 
case, the integration of the contact sensors with vision information 
can easily characterize this situation as different from another situ-
ation in which, e.g., the robot moves a cube by sliding it over the 
surface of the desk. In this case, although there is movement, i.e. the 
object displaces in space, the event is characterized by a continuous 
contact of the hand with the cube. On the other hand, the fact that 
different objects react differently to the same movement can also 
characterize a particular property of the object itself. Therefore, 
rolling and sliding are action words that pertain to objects that can 
be understood by the agent on the basis of the same sensorimotor 
information used to characterize its own actions.

Such types of interactions can be easily regarded as affordances 
of the objects for the robot. In fact, the robot learns the effects of 
its own movement on a given object. Several studies have already 
addressed affordances on robotics models in a similar way, where 
a robot learns a specific type of affordances using information 
provided by sensory states. These models have been mainly used 
in relation with imitation tasks. For example, in Fitzpatrick et al. 
(2003) a robot learns the motion dynamics of different objects 
after having pushed them. Subsequently, it uses the sensorimotor 
information to recognize actions performed by others and to rep-
licate the observed motion. Similarly, Kozima et al. (2002) created 
a system that enables a robot to imitate actions driven by the effects 
of that actions (a more general solution on learning affordances is 
presented in Stoytchev, 2005; Fritz et al., 2006; Dogar et al., 2007). 
Montesano et al. (2008) created a humanoid robot controller that 
uses a Bayesian network for learning object affordances and showed 
the benefit of the model in imitation games. The model presented 
here, although inspired by a similar approach, does not have an 
explicit interest in imitation, and also the actions repertoire is sim-
plified in comparison to those models. However, we believe that 
this simplification helps to better highlight and understand the 
sensorimotor grounding of action words, which is the primarily 
scientific question behind this work. This consideration, of course, 

were directly associated to those motor patterns. Also in this case, 
therefore, the grounding of a verb is strictly related to an action 
that is entirely under the motor control of the agent.

Actions, however, are not restricted to agents. Actions can also 
be produced by physical objects in the environment, for example. 
Only few studies focus on the acquisition of actions words that are 
connected to properties of objects, such as rolling for a ball, or on 
the acquisition of words that express a dynamic and force-varied 
interaction with objects, such as hit or move. The application range 
of these two words can be extremely complex and may vary con-
siderably depending on the physical properties of the object. In the 
case of the rolling ball, moving the ball can be “similar” to hitting 
the ball, because the ball has the property to roll after being hit; 
therefore it will move by itself. On the contrary, hitting a solid cube 
can produce a different effect from moving the cube by sliding it 
on the surface of a desk.

Other research in this area has mostly focused on disembod-
ied models that aim to ground the meaning of action words by 
the elaboration of a visual scene acquired by a fixed camera that 
observes that scene. In Siskind (2001) the computational model 
is a computer program called LEONARD that analyzes a visual 
scene and is able to recognize different events, such as pick-up, 
put-down, move or assemble. As pointed out before, these actions 
are not directly performed by an agent, but it is the computational 
system that observes a visual scene through a fixed camera that is 
able to reconstruct the meaning. The visual scene typically includes 
a human hand that perform actions on objects of different colors. 
For instance, the pick-up scene is represented by a hand that picks 
up a red cube originally positioned on top of a green cube. The 
model is based on the principle of force dynamics (Talmy, 1988) and 
on a specifically designed event logic system, to which in later work 
(Fern et al., 2002) a learning system has been added. This enabled 
the computational model to learn and describe events based on a 
general temporal logic.

A similar approach to the identification of dynamic events has 
been taken by Steels and Baillie (2003). In their models, two arti-
ficial agents embedded in two movable cameras negotiate a self-
organized lexicon based on dynamical events observed through 
the cameras. However, the ability of the agents to recognize and 
communicate about dynamic events is provided by the interaction 
between two different ways of using information: A bottom-up and 
a top-down direction of information flow. The bottom-up system, 
based on vision, provides information about the actual visual scene 
and a set of layered software detectors that allow to detect changes 
in the scene, such as movements of contacts between objects at 
a lower level, and series of changes at a upper level in order to 
identify complex dynamics. The top-down system, on the other 
hand, provides a sort of internal guidance for the vision system 
that allows, for example, to focus on particular aspects of the visual 
scene. Thus, the agent’s representation of the world is constituted 
by the interaction between the two processes, encoded in a kind 
of lisp-type logic, and by sharing its communicative interaction 
with the other agent.

Cannon and Cohen (2010) and Cohen et al. (2005) ground the 
meaning of action words on the physical interactions between two 
bodies. In their system, verbs like push, hit and chase are represented 
as pathways through a metric space, defined as maps for verbs, that 
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the robot has been specifically designed to act in a cognitive robot-
ics domain, where the robotic platform is a physical entity that 
allows researchers to test hypothetic cognitive models in the real 
world. The robot is 90-cm tall and has a weight of 23 kg. iCub 
has 53 degrees of freedom distributed as follow: seven for each 
arm, six for each leg, three on the waist, three dedicated to eyes 
movements and three for the neck. In addition, it has two complex 
hands with 9 degrees of freedom each. For its size, the iCub is the 
most complete humanoid robot currently being designed, in terms 
of kinematic complexity. In contrast to similarly sized humanoid 
platforms, the eyes can also move. All motors and sensors are 
accessible through a centralized control system that provides an 
interface between the robot the and the external world. The inter-
face is implemented on a PC104 board located in the head of the 
robot. For vision, the robot is equipped with two cameras with 
VGA resolution and 30-fps speed that provide color images (for 
additional technical details about the robot body and head see 
Beira et al., 2006; Tsagarakis et al., 2007). Every communication 
with the robots uses an Ethernet network protocol. The integrated 
software platform to control all the sensors and actuators is called 
YARP (Metta et al., 2006).

In our experiment we used a carefully designed software simula-
tion of the iCub robot that uses ODE (Open Dynamic Engine) to 
simulate the dynamics of the physical interactions (for details about 
the simulator see Tikhanoff et al., 2008). The YARP platform is used 
as the main communication tool for both the simulator and the real 
robot. The simulator has been designed to test the robot’s software 
application in a safe, yet realistic, environment. In particular, the 
simulator can be used to safely test potentially dangerous motor 
commands that might damage the physical structure of the robot. 
Moreover, for the specific requirement of the model, we had to use 
tactile sensors in the hand that are currently not implemented on 
the real robot available to us.

For the present study we used a sub-set of all the degrees 
of freedom and only one of the two cameras. In particular, for 
manipulation purpose we only use a single joint on the shoulder 
that allows the robot to reach and move an object placed on a desk 
in front of it. The encoder value of this joint is also used as prop-
rioceptive sensory feedback. When the hand gets in contact with 
an object, a binary tactile sensor placed on the hand is activated. 
Its activation value provides a coarse tactile sensory feedback. 
This tactile sensor is activated whatever part of the hand gets in 
contact with the object. The vision of the robot is provided by a 
vision system that acts on the left camera of the robot that auto-
matically fixate the object in the environment, regardless of the 
action currently performed by the robot. The encoder values of 
two neck joints, that represent the position of the head, express the 
position of the object in the visual field relative to the robot. The 
position of the head is then treated as visual input of the system 
(Yamashita and Tani, 2008). The vision system, in addition to the 
object relative position in the visual field, also provides coarse 
information about the shape of the object. A parameter of the 
shape, which we call roundness, is calculated from the image of 
the object acquired by the robot and its value is added as input 
to the neural network controller. The robot automatically gener-
ates a movement when it receives a target joint angle as input. 
The movement corresponds to the target angle and is generated 

does not prevent possible extensions of the model towards more 
applied scenarios that involve imitation tasks, as well as tasks that 
involve a form of linguistic instruction provided by another agent, 
which might be a human or another robot.

To approach the research issue related to the grounding of action 
words in sensorimotor coordination, we present a simulated robotic 
model equipped with a neural control system. By manipulating the 
environment, the robot can learn the association between certain 
objects, located on a desk in front of him, and some physical prop-
erty of such objects. In the next section, a description of the robot 
used in the experiment, the environment and the neural control 
system will be described. Subsequently, the results of the experiment 
will be present and discussed.

MaterIals and Methods
The robotic model used for the experiments is a simulation of 
the iCub humanoid robot (Tikhanoff et al., 2008) controlled by 
a recurrent artificial neural network. The robot can interact with 
objects located on a desk in front of it, and its neural control system 
is trained through a supervised learning algorithm, namely the 
“Back-Propagation-Through-Time” algorithm (Rumelhart and 
McClelland, 1986). In the following sections we provide details 
on the robotic platform utilized, the environment and on the robot-
object interaction. Moreover, a description of the neural network 
that acts as a control system and of the training procedure will 
be presented.

the sIMulated huManoId robots and the envIronMent
For the experiments a simulated model of the iCub (Figure 1) has 
been used, a small-size humanoid robot, designed and produced by 
the European project “Robotcub” (robotcub.org; Metta et al. 2008). 
The iCub dimensions are similar to that of 2.5-year-old child and 

Figure 1 | The humanoid robot iCub.
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by means a pre-programmed proportional-integral-derivative 
(PID) controller. The sensorimotor state of the robot is updated 
every 500 ms.

The environment of the experiment consists in a desk placed 
in front of the robot. On the desk, one out of three objects is posi-
tioned on a given location. These objects are a sphere, a box, and a 
cylinder placed vertically on the desk. The sphere has a diameter of 
12 cm. The three dimensions of the cube are 12 cm on a side and 
7 cm on the other two sides. The cylinder has a diameter of 4 cm 
and 25 cm tall. Roundness values calculated for the three object are 
∼0.87, ∼0.71, and ∼0.43 for the sphere, the cube, and the cylinder 
respectively. Each of these objects has different physical properties 
associated to the shape and the physical connection to the desk. 
The sphere, when touched by the robot hand, will roll away on a 
direction that directly depends on the hand direction and on the 
applied force. The cube, when touched with the same force and 
direction as the ball, will slide on the desk while in contact with the 
robot hand. The cylinder, which was tightly attached to the desk, 
will not move and will prevent the robot to accomplish its desired 
movement. Therefore, the three objects represent three different 
properties, namely, the property to roll, to slide and to resist.

structure and traInIng of the neural control systeM
The neural system that controls the robot is a fully connected recur-
rent neural network with 10 hidden units (Figure 2), eight input 
units and eight output units. Activations of input units are divided 
into five sensory units and three linguistic units. Three of the five 
sensory units are set to the encoder values of the three corresponding 
joints (shoulder, pan-neck and tilt-neck), scaled between 0 and 1. 
Those input units provide information about joints current angles. 
The fourth sensory unit encodes the value of the binary tactile sen-
sor. This is set to either 0 or 1, depending on the contact of the hand 
with the object. The fifth sensory unit encodes the value of the 
roundness. The three linguistic input units represent a local binary 
encoding of the three objects. The activation value of those units 
can vary with respect to the experimental phase, that is, training or 
testing phase, respectively. Activations of hidden and output units 
y

i
 are calculated at a discrete time, by passing the net input u

i
 to the 

logistic function, as it is described in Eqs 1 and 2:

u y w ki j ij i
j

n

= ⋅ −∑
 

(1)

y
ei ui

=
− −

1

1  
(2)

where w
ij
 is the synaptic weight that connects unit i with unit j and 

k
i
 is the bias of unit i. The output units encode the values of the 

input at the time step t + 1. That is, the output state corresponds 
to the next input state of the network. The network is trained to 
predict its own input. As we will see in the next section, during the 
testing phase, the predicted input state is also used to provide target 
angles for the actuators.

The structure of the experiment is divided into two phases: in 
the first phase the network is trained to predict its own subsequent 
sensorimotor state. In the second phase the network is tested on 
the robot, in interaction with the environment.

Figure 2 | The neural network that acts as a control system for the robot. 
(A) Network activation structure during the training phase (closed-loop condition). 
The output at time t with a small portion of the recorded input is used for setting 
the input at time t + 1. See the text for details. (B) Network activation structure 
during the testing phase (open-loop condition). The input is taken by the state of 
the sensors and the output is used to set the target angle of the actuators.
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where w
ij
 is the synaptic weight that connects unit i with unit j, 

y
i
 is the activation of unit j, η is the learning rate and α is the 

momentum.
The sequences to learn, in our case, are the sensorimotor contin-

gencies produced by the robot’s manipulation of the object present 
in the environment. In order to produce those sequences, the robot 
is placed in front of the desk together with one of the three objects 
placed on the desk, at a given position. At this point, the shoulder 
joint of the robot is activated so as to move the right arm from the 
side of the robot to the front. By performing this movement, the 
hand of the robot moves towards the object and gets in contact 
with it. At the same time, the automatic vision routing turns the 
head in the direction of the object and keeps the object in the visual 
field by moving the neck joints (Figure 3). During this activity, we 
recorded the values of shoulder and neck joint encoders, as well as 
the state of the tactile sensors and the roundness value calculated by 
the image processing system. Each sequence consists of 30 recorded 
patterns that represent 15 s of activity by the robot. The graphs in 
Figure 4 show the activations of the sensory units when the robot is 
interacting with the three objects. The information provided to the 
robot, although extremely simple, is sufficient to allow the neural 
controller to correctly separate the three conditions.

The input pattern of every sequence is completed by adding 
the linguistic input in the following form: [1 0 0] when the robot 
is interacting with the sphere, [0 1 0] when the robot is  interacting 
with the cube, and [0 0 1] when the robot is interacting with the 
cylinder. The linguistic input is explicitly presented only at the 
beginning of the sequence. For the rest of the 30 patterns that 
form the training sequence, the linguistic input is self-generated 
by the network. It should be noted that at this time we deliberately 
avoid to give a semantic interpretation of the linguistic input and 
output. So far the “words” chosen as input and, consequently, as 
output simply correlate with the interaction with different objects. 

Training phase
For training the neural network we used the Back-Propagation-
Through-Time-algorithm (BPTT), which is typically used to train 
neural network with recurrent nodes (Rumelhart and McClelland, 
1986). This algorithm allows a neural network to learn the dynami-
cal sequences of input-output patterns as they develop in time. 
Since we are interested in the dynamic and time dependent proc-
esses of the robot-object interaction, an algorithm that allows to 
take into account dynamic events is more suitable than the standard 
Back-Propagation algorithm (Rumelhart and McClelland, 1986). 
For a detailed description of the BPTT algorithm, in addition to 
Rumelhart and McClelland (1986) see also Werbos (1990). The 
main difference between a standard Back-Propagation algorithm 
and the BPTT is that, in the latter case the training set consists in 
a series of input-output sequences, rather than in a single input-
output pattern. The BPTT allows the robot to learn sequences of 
actions. The goal of the learning process is to find optimal values 
of synaptic weights that minimize the error E, defined as the error 
between the teaching sequences and the output sequences produced 
by the network. The error function E is calculated as follows:

E y y y y
S

i t s i t s i t s i t s
it

= − − −∑ ∑∑
∈

(( )( ( ))), , , , , , , ,∗ 1 2

output  
(3)

where y
i,t,s*

 is the desired activation value of the output unit i at 
time t for the sequence s and y

i,t,s
 is the actual activation of the 

same unit produced by the neural network, calculated using Eqs 
1 and 2.

During the training phase, synaptic weights at learning step n + 1 
are updated using the error δ

i
 (Rumelhart and McClelland, 1986) 

calculated at the previous learning step (n), that in turn depend on 
the error E, according to the following equation:

∆ ∆w n y w nij i j ij( ) ( )+ = +1 ηδ α  
(4)

Figure 3 | From left to right, a small sample of the 30 step sequences 
produced for training the network. (A) An example sequence produced by the 
manipulation of a sphere and (B) the same movement towards a cube. The two 
objects produce different interactions because of their different physical 

properties. The sequence produced by the interaction with the fixed cylinder is 
not shown, given the fact that the robot, after the contact with the cylinder does 
not move anymore. The tracking behavior is due to the automatic visual routine 
embedded in the control system.
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a problem, the real input s fed to the network (i.e. the input actually 
used to calculate the performance), is produced by adding to the 
self-generated input s+ a small fraction of the recorded input s*, 
which represents the real input the network should receive. The 
same is done for the linguistic input m, with the only difference that 
m* is the linguistic activation fixed by the experimenter:

s s s= ⋅ + ⋅ +0 1 0 9. .∗

m m m= ⋅ + ⋅ +0 1 0 9. .∗

The parameters used for training the network used in the fol-
lowing experiments are: Learning rate 0.2; momentum 0.3; initial 
synaptic weights value between −0.01 and 0.01.

To assure the robustness of the results obtained, 10 replications 
with different initial random synaptic weights were carried out.

Testing phase

The second part of the experiment is the phase in which the net-
work is tested in open-loop. That is, the network is connected to 
the robot and the input is directly produced by the actual values 
of its encoders (Figure 2B), while the output is used to determine 
the target angles of the joint for moving the arm. During this phase 
the robot is placed in front of the desk as before and an object is 
placed on the desk in front of the robot. By activating the robot, this 
time the movement of the arm is commanded by the output of the 
neural network, while the other outputs represent the prediction 
of the next sensory state.

In this set-up, the only joint that can be directly actuated by 
the network is the joint on the shoulder, which causes the move-
ment of the arm toward the object. The joints controlling the neck 
are still commanded by the visual routine that tracks the object 
in the environment. However, the most interesting part in this 
experiment is the behavior of the linguistic output. As we will show 
and discuss in the next session, the interaction between action 
and language exploited during the training, allows us to better 
understand what type of sensorimotor contingencies are associ-
ated with certain linguistic patterns and how certain categories 
of action words might be directly grounded in the sensorimotor 
states of an agent.

Their semantic referent, i.e., whether they refer to objects (sphere, 
cube, cylinder) or to actions associated with the objects (roll, 
slide, fix), will be discussed later on. For this reason we refer to 
the linguistic output of the neural network as linguistic_output_1 
[1 0 0], linguistic_output_2 [0 1 0] and linguistic_output_3 [0 0 1], 
corresponding to interactions with the sphere, the cube and the 
cylinder, respectively.

From these values we produce the sequences, one for each 
object, by setting the sequence element t + 1 as target output for 
the previous element t. In this way, starting from the first pattern, 
the network has to produce the next pattern. Then, the produced 
pattern is given as input to the network, which produces the next 
pattern and so on. This iteration is executed until the end of the 
sequence is reached.

The complete training set for the present work includes six 
sequences. Three of these are created in the way just described 
above, while the other three use the same set of data as before except 
for the roundness values which is set to 0. The linguistic input is 
presents in both cases.

During this process, the error produced by the network with 
respect to the target outputs is accumulated for all three sequences. 
The synaptic weights are updated according to the global error 
only after all the sequences have been presented. Therefore, accord-
ing to the traditional back-propagation notation, the neural net-
work is trained in “batch” mode and not “on-line” (for technical 
details about the algorithm adopted in this paper and a discus-
sion about computational differences between “batch” and “on-
line” training mode in recurrent neural networks see Williams and 
Zipser, 1995).

To facilitate the training process and to produce a neural net-
work capable of better predicting the sequences, we used a training 
modality known as closed-loop training (Yamashita and Tani, 2008) 
depicted in Figure 2A. In this type of training procedure the input 
given to the network is the actual output produced by the network 
itself at the previous time cycle. However, by doing this, the error 
can accumulate on the input, especially at the beginning of the 
training process, given that the input is self-generated by a network 
with random synaptic weights. For this reason, the effect on the 
learning performance can be heavily affected and can prevent the 
algorithm to converge to a close to optimal solution. To avoid such 

Figure 4 | Sensor activations recorded during the 15-s interactions 
between the robot and the object on the desk. Curves represent activations 
of the shoulder joint, the pan and tilt movements of the neck, the touch sensors 

and the roundness of the object calculated by the vision system over time. Refer 
to the legend on the graph. The thin dashed vertical line in the three graphs 
represents the moment in which the robot’s arm touches the object.
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generalIzatIon under dIfferent condItIons
For this analysis each of the 10 controllers were tested under four 
different conditions for 100 trials. The number of successful trials 
was recorded, i.e. the cases in which, at the end of 30 sensorimotor 
cycles of the neural network controlling the robot, the activation 
of the output units were the same as the desired output. Given the 
variation of the initial condition, a deviation of ±0.1 was allowed 
for every output unit. It should be noted that, given a certain degree 
of the error, the robot is not able to accomplish the task at all. The 
four testing conditions are as follows:

Ling. A condition identical to that of the training process, with the 
linguistic input provided at the beginning of the trial.

No Ling – In this condition the linguistic input is set to zero during 
the whole duration of the trial. The other parameters are the 
same of the training process.

No Ling – Pos variation. A condition in which the linguistic input 
is set to zero during the whole duration of the trial. In addi-
tion, at every trial the position of the object randomly varies 
within a range of ±10 cm.

During the testing phase some parameters of the set-up used 
for the training have been changed, such as the presence of the 
linguistic input and the size and position of objects on the desk. 
In the next section we will describe the tests performed and the 
results obtained.

results
After the training of all the 10 neural networks, we obtained 10 
controllers that were able to predict the next sensory input state 
on the basis of the current input state. Previous tests shown that 
an error E smaller that 0.001 produces neural controllers capable 
of performing the task with a good degree of generalization. To 
avoid the overtraining of the network, we decided to set the learn-
ing threshold to 0.001. Below this threshold the training process is 
considered completed. Given this threshold, the 10 replications have 
been carried out by stopping the training as soon as E was smaller 
than the threshold. Figure 5, left, shows the average error calculated 
for the 10 replications during the training process. Figure 5, right, 
shows the average epochs that occurred until an error smaller than 
0.001 for the 10 replications was reached. From the integration of 
the two data sets we can see that after about 28.000 epochs the error 
is already smaller than 0.001 for the majority of the replications, 
while for some of them additional epochs are required. The fastest 
replication reached the error threshold in 22695 epochs and the 
slowest reached the threshold in 42254 epochs.

The trained neural controllers were tested systematically using 
the open-loop procedure connecting the controller with the sim-
ulated robot. A test of the robot under the same conditions as 
experienced during the training process (i.e. with linguistic input 
and with/without roundness information) showed that the neural 
controllers were perfectly trained and were able to move the robot 
and emit the correct outputs in all training conditions (see condi-
tion Ling in Figure 6 for a similar test performed with roundness 
information. Results without roundness are not shown since the 
networks were able to reproduce the recorded sequence with a 
negligible error). After this first test, more comprehensive gener-
alization tests were performed in order to estimate the capability 
of the controller to cope with different conditions.

Figure 5 | Left: error graph of the average of 10 replications during the training process. The x axis shows the number of epochs and the y axis shows the 
mean error. Right: Average epochs required to reach the error threshold, which was set to 0.001 (E < 0.001). Error bar represents Standard deviation.

Figure 6 | results of 100 trials from four different testing conditions. 
Standard deviation is represented as error bar. See text for details.
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As we stated above, so far we cannot properly link an observed 
linguistic activation with a particular word. In fact, we still ignore 
the specific relation between words and meanings created by the 
controller. Therefore, in the following tests and analyzes we will 
refer to the linguistic output in very general terms. We will apply 
a specific word associated to the linguistic output only when the 
relation between them and their referents will be clarified. The 
notation for linguistic output identification, already introduced 
in Section “Training phase”, is the following:

linguistic_output_1: correlates with the robot-sphere interaction;
linguistic_output_2: correlates with the robot-cube interaction;
linguistic_output_3, correlates with the robot-cylinder interaction.

Given the differences among the neural controllers in terms of 
synaptic weights and overall dynamics, the following additional 
analyzes were carried out using a single controller. The controller 
of replication 2 was chosen because it demonstrated to be the best 
one in the previous generalisation tests.

Tests on linguistic outputs
In this test, the robot was placed in front of an object without pro-
viding any linguistic input yet with roundness information. During 
the interaction of the robot with the object, the activations of the 
linguistic output have been recorded for the usual 30 sensorimo-
tor cycles allowed (15 s). As it is shown in Figure 7 (left column), 
linguistic activations vary greatly as the interaction unfolds in time, 
depending on the object. In the case of the sphere, the roundness 
provides information that immediately permits linguistic_output_1 
activation, as correctly required by the task. However, after about 
3 s, the hand of the robot gets in contact with the object, and 
for a while the linguistic output changes by activating linguistic_
output_2, which correlates with robot interacting with the cube. 
However, as the interaction continues and the sphere rolls away, the 
robot is then able to produce again the right output pattern after 
some time. In the graph we can also observe the time dynamics 
of the roundness prediction, which is affected, like the linguistic 
output, by the overall sensorimotor state of the robot. The perceived 
roundness for the sphere is about 0.9, which is correctly predicted 
by the robot at the beginning. Nevertheless, after the activation of 
the touch sensor, the prediction switches from “sphere” (∼0.87) to 
“cube” (∼0.71), although in input the robot still receive the correct 
roundness. Finally, the roundness measure returns to the right value 
after the sphere begins to roll away from the hand.

The dynamics that we observe while the robot is interacting with 
the cube and the cylinder is very similar. Roundness information, 
in fact, allows an early recognition of the type of object and the 
production of the correct linguistic output pattern, i.e., linguis-
tic_output_2 for the robot-cube interaction and linguistic_output_3 
for the robot-cylinder interaction. In case of the cube, after the 
contact of the robot with the object, the correct linguistic_output_2 
is triggered and it remains active for the rest of the time. Only a 
minor activation of the linguistic_output_3, related to the cylinder, 
is observed just after the contact. As for the cylinder, the correct 
output is emitted by the star and after a brief interference of the 
linguistic_output_1, the correct output, i.e. linguistic_output_3, is 
activated and maintained.

No Ling – Size variation. A condition in which the linguistic input 
is set to zero during the whole duration of the trial. In addi-
tion, at every trial the global size of the object is randomly sca-
led within a range of ±20%. For instance, the diameter of the 
sphere can vary at each trial between a minimum of 9.6 cm 
and maximum of 14.4 cm.

Information about the roundness was available in all 
conditions.

Results of the tests are depicted in Figure 6. The conditions 
Ling and No Ling interestingly are exactly the same for all 10 rep-
lications. It should be noted that the neural networks have been 
trained always with linguistic input. This means that the natural 
generalization capability of the network is able the reconstruct the 
input pattern, including the linguistic input, without any loss in 
terms of performance. In the No Ling condition, the robot is placed 
in front of the object and performs its movement toward it without 
any linguistic input; still, it is able to produce the correct linguistic 
pattern after the interaction with the object. This result indicates 
that the controller can recall and produce the appropriate linguistic 
output only on the basis of its overall sensory state. Pos variation 
produces slightly worse results and we observe a certain variation 
among the replications, as indicated by the standard deviation on 
the graph. It is interesting to note that the worst replication is the 
one which took more epochs to converge, whilst the best is the 
one that converged in the fewer number of epochs. Besides the 
performance decrement, the majority of the replications shows 
a very high generalization capability, even though in the allowed 
range of the variation. The same can be observed for the Size vari-
ation condition, although the results appear slightly better. This 
can be explained by the fact that the roundness information is, 
to a certain extent, independent from size variations. Therefore, 
roundness provides a reliable source of information even in cases 
of unexpected sensory-motor input in comparison with that expe-
rienced during training. This effect has been observed in connec-
tion with larger objects.

The tests presented above demonstrate that the neural controller 
is capable to produce the correct behavior in terms of joint activa-
tions and prediction of sensorimotor states, as well as in terms of 
linguistic activations. Moreover, the correct behavior is performed 
also without providing a linguistic input. This is also true when the 
set-up is manipulated to a certain extent.

Nevertheless, this kind of test does not allow us to understand 
what exactly the information is that is used by the controller to 
connect an object with its corresponding linguistic label. In order 
to clarify this issue, additional tests have been performed.

understandIng the MeanIng of words
Further tests and analyzes were carried out in order to better under-
stand the meaning associated to the linguistic labels, which we can 
imagine as a kind of simplified words, and the relation between 
the sensorimotor processes triggered by robot-object interactions 
and these arbitrarily provided words. To analyse the word–meaning 
mappings that emerge from the current experimental set-up, the 
dynamics of the activations of the linguistic units and the roundness 
prediction have been analysed under several conditions in which 
additional input modifications are explored.
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above, the correct output is suppressed and the one correspond-
ing to the cube is activated. During the following interaction, lin-
guistic_output_2 is active to a smaller extent than in the case with 
roundness in the input (see corresponding graph on the left col-
umn). This effect is probably due to a kind of interaction between 
the roundness value provided in the input and the linguistic output 
activation. Roundness values for “sphere” and “cube” are indeed 
very close. When the robot is interacting with the cube, given the 
stereotypic behavior of the controller at the beginning, it activates 
linguistic_output_1. However, after the contact the cube slides on 
the surface and the correct output is produced. For the cylinder, 

Figure 7 (right column) shows the same type of analysis as above 
for a condition in which neither linguistic input nor roundness 
information are available. This case is much more complex than 
before because at the beginning of the movement no external infor-
mation is available. Not surprisingly, the dynamics is also different. 
When the robot is interacting with the sphere, a presumably stere-
otypic behavior of the chosen neural controller produces, at the 
beginning of the movement and without any other information 
about the object available, a default linguistic output activation, 
which is the correct one by chance, that is, linguistic_output_1. 
After the robot touches the sphere, similar to what we observed 

Figure 7 | Activations of linguistic output units during the 15-s 
interaction between the robot and the object on the desk. The graph 
shows linguistic_output_1 (interaction with the sphere), linguistic_output_2 
(interaction with the cube), linguistic_output_3 (interaction with the fixed 

cylinder), and the roundness prediction. Refer to the legend on the graph. The 
thin dashed vertical line in the three graphs represents the moment in which 
the robot’s arm touches the object. Left: Condition with roundness information 
in the input. Right: condition without roundness information in the input.
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These additional results suggest that the linguistic label are 
grounded in complex sensorimotor dynamics instead of in the vis-
ual features provided by the roundness parameter, despite the fact 
that roundness information is provided. Specifically, the grounding 
of the linguistic output can be identified with the dynamics associ-
ated to the physical properties of an object.

dIscussIon and conclusIon
What has been shown so far indicates that the robot is able to extract 
the sensorimotor contingency of a particular interaction with an 
object and to reproduce its dynamics by acting on the environment. 
Moreover, in the absence of linguistic input, the robot is capable of 
associating a certain temporal sensorimotor dynamics to the learnt 
linguistic labels. Thus, in the lights of the results provided by the 
tests, it is now time to ask whether the linguistic label learnt are 
associated to the objects themselves or whether the label refers to 
the physical properties of the objects.

The results presented in Section “Tests on linguistic outputs” 
on the activation of the linguistic output during robot-object 
interaction, clearly show that the robot is able to correctly cat-
egorize and produce the correct label for a given object both 
in absence of the corresponding linguistic input and round-
ness information. Moreover, the generalization tests presented 
in Section “Generalization tests on linguistic outputs” indicate 
that, irrespective of the roundness information provided and in 
absence of linguistic input, the linguistic output correlates with 
the sensorimotor dynamics produced by the specific physical 
property of the object. Therefore, such results suggest that the 
linguistic labels are based on an entire sensorimotor dynamics, 
and not on the visual features provided by the roundness param-
eter. Specifically, the grounding is exactly the dynamics associated 
to that physical property.

This interpretation is corroborated by other works that con-
nect active perception with language emergence. For example, in 
Marocco et al. (2003) (a study based on the previous work on 
active perception by Nolfi and Marocco, 2002) the evolved robot 
showed a stereotypic behavior towards the object, which allowed 
the robot to discover the physical properties of that object and then 
to categorize it to apply the correct linguistic label. The case we are 
presenting here is similar to Marocco et al. (2003) in many respects. 
The iCub robot interacts with the objects in a very stereotypic way 
and the stratagem by means of which the typology of the object is 
discovered is based on an active sensorimotor strategy which, given 
the same exploratory behavior, produces different outcomes. We 
can therefore speculate that the grounding of the linguistic label is 
not the actual object, but rather the physical property that allows 
the object (the patient in this case), when manipulated in a certain 
way, to produce a specific sensorimotor contingency in the agent.

At this point of the discussion we can definitely affirm that, 
given the present experimental set-up, the meaning of the labels 
are not associated to a static representation of the object, but to 
its dynamical properties. It seems, therefore, that the label that we 
called linguistic_output_1 ([1 0 0]), is related to the rolling of an 
object, or in general, to those objects that, when touched, move 
away from the agent. A corresponding tentative word for this can be 
“the rolling one”, more than “sphere”. Similarly, linguistic_output_2 
([0 1 0]) seems to be connected with the affordance of an object 

the same interference as before between linguistic_output_2 and 
linguistic_output_3 is observed, but after few seconds the robot 
produces the correct output.

Generalization tests on linguistic outputs
Results presented so far clearly show that the linguistic input is 
tightly connected with the sensorimotor dynamics produced by 
the interaction with the object. The tests demonstrate the ability of 
the robot to correctly categorize the objects, also in the absence of 
direct linguist input, and to produce the corresponding linguistic 
label only on the bases of its sensorimotor state. From this point 
of view, the observed interaction between the flow of the senso-
rimotor states and the activations of the linguistic units leads to 
the hypothesis that the whole sensorimotor state, rather than a 
single elements such as, e.g., the roundness, is at the core of the 
controller’s ability to categorize the events correctly. In this section, 
therefore, we performed an additional test to verify this hypothesis 
and to investigate what the real meaning is on which the linguistic 
labels are based.

The test consists of three different conditions in which the robot 
was tested. Again, no linguistic input is provided. The three condi-
tions are the following:

(a) A cylinder very similar to the one used throughout the trai-
ning process is placed in front of the robot. This time the 
cylinder is not attached to the table and is free to move. Its 
starting orientation is parallel to the starting position of the 
robot arm. Thus, it can roll away when the robot touches it 
(Figure 8A right). The roundness perceived by the robot is the 
same as for the cylinder.

(b) The same cylinder is placed on the table and free to move. The 
starting orientation is perpendicular to the robot arm. That is, 
it is rotated 90° with respect to the previous condition. In this 
position it can easily slide but not roll (Figure 8B right).

(c)  A cube is fixed to the table. The perceived roundness is the 
same of the cube, as during the training, but the cube cannot 
move if touched (Figure 8C right).

Results are shown in Figure 8. Figure 8A (left) represents the 
interaction with rolling cylinder, showing that when the cylinder 
is touched, it starts to roll away. Given the specific sensorimotor 
dynamics produced by the cylinder, the related pattern dynam-
ics of the linguistic output are very similar to that already seen 
for the robot-sphere interaction. We may thus conclude that the 
robot categorizes and labels the rolling cylinder as it catego-
rizes the sphere by activating linguistic_input_1. Similarly, the 
interaction with the sliding cylinder (Figure 8B left), given the 
fact that it slides and produces the same sensorimotor patterns 
previously seen for the cube, induces the controller to activate 
linguistic_input_2. Finally, Figure 8C (left) depicts the linguistic 
output activations while the robot interacts with the fixed cube. 
Even though its dimension and perceived roundness are exactly 
the same as for the cube used during training, the sensorimo-
tor contingency produced by the interaction is identical to that 
experienced with the cylinder in the training. Not surprisingly, 
the linguistic activation is the same observed for the cylinder in 
the previous test: linguistic_input_3.
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these properties are represented by the control system in terms of 
the effects produced by the robot itself and dependent on a self-
generated movement.

Thus, it appears that in the interpretation of a given dynamic, 
the robot learns some property related to the force dynamics 
between objects. This is consistent with Talmy’s (1988) cogni-
tive linguistic analysis of the grounding of language in tempo-
ral events and, implicitly, of the grounding of action words that 
describe those events. This concept was explicitly used by Siskind 
in its software model LEONARD, briefly described in the intro-
duction. However, the main difference between our model and 
Siskind’s work is that in Siskind (2001) the force dynamic rules 

that can be moved by the agent, for instance, sliding on a surface. 
Therefore, an appropriate word for this can be “the sliding one” or 
“the one that slides”, rather than “cube”. This, indeed, is activated 
by an object that needs a continuous force applied to it in order 
to move. Linguistic_output_3 ([0 0 1]), on the other hand, is con-
nected to a fixed object, that is, to an object that does not change its 
position in space when touched. A word counterpart for this can be 
“the fixed one”. It is interesting to note that “fixed” is not an action. 
However, it is exactly the property of being fixed (not movable) 
that, by preventing the robot to accomplish its intended movement, 
produces the specific sensorimotor contingency that allows the 
robot controller to identify that particular physical  property. All 

Figure 8 | right column: The three novel conditions used for testing the 
generalization of the linguistic output units. In the case depicted in (A) the 
cylinder can roll away after being touched by the robot arm. In (B) the cylinder 
tends to slide while in contact with the arm, and in (C) the cube is fixed on 
the table and cannot be moved by the robot. Left column: Activations of 
linguistic output units during the 15-s interaction between the robot and the 

object on the desk. The graph shows linguistic_output_1 (interaction with the 
rolling cylinder), linguistic_output_2 (interaction with the sliding cylinder), 
linguistic_output_3 (interaction with the fixed cube), and the roundness 
prediction. Refer to the legend in the graph. The thin dashed vertical line in the 
three graphs represents the moment in which the robot’s arm begins to touch 
the object.
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capacity to generalize across them. It appears, however, that this 
kind of generalization is more abstract than seeing the common-
alities among cats or chairs. It involves generalizing the common 
roles that different categories of objects play (for example, animals 
pick-up objects, artifacts get picked up) and this rather abstract 
understanding forms the basis on which more detailed, concrete 
understanding of who does what to whom will develop. (Mandler, 
1999, p. 305)

Moreover, the research presented is also in line with the body 
of theoretical and empirical evidence grown in the past years in 
support of the role of embodiment and sensorimotor factors in 
language use (e.g. Barsalou, 1999; Glenberg and Robertson, 2000; 
Feldman and Narayanan, 2004; Gallese and Lakoff, 2005; Pecher and 
Zwaan, 2005), yet with different perspective. Barsalou (1999), for 
example, focuses on modality-specific perceptual and simulation 
processes within the Perceptual Symbol System hypothesis, based 
on experiences of sensorimotor, proprioceptive and introspective 
events, and also dynamic mental representations of object inter-
action. Glenberg and collaborators (e.g. Glenberg and Kaschak, 
2002) focus on the action and embodiment component of language 
by demonstrating the existence of action-sentence compatibility 
effects that support an embodied theory of meaning that relates 
the meaning of sentences to human action and motor affordances. 
The shared aim of these studies is to demonstrate that language 
processes cannot be fully understood without taking into account 
an embodied perspective.

Thus, the principal contribution of the results presented with 
respect to the current literature concerns the computational fea-
sibility of grounding of action words directly in the way in which 
an agent interacts with the environment and manipulates it. The 
dynamical properties of external objects, such as being movable, 
or being fixed, are embodied and directly represented in the way in 
which the agent experiences the reactions produced from its own, 
self-generated, active manipulation of the world on its perceptual 
system. This mechanism has two related, desired side-effects: (a) a 
word in the input produces the activation of a whole sensorimotor 
process and, conversely, (b) the experience of a given sensorimotor 
contingency recalls in the robot controller the associated word. 
Therefore, the model shows that meanings related to dynami-
cal properties of external objects, such as roll or fix, can be fully 
grounded in the embodied experience of the robot. From this 
perspective the activity performed by the robot itself is the key 
that allows to uncover the properties of the objects by means of 
physical interactions.

These findings confirm and extend the large body of work on 
computational and robotics models that focuses on the senso-
rimotor bases of language acquisition. In particular, as we have 
highlighted in the introduction, this is partly due to shifting the 
attention from actions that are performed by the agent, or the robot, 
to actions or properties that relate to external objects.

We conclude by acknowledging that this work, as we have already 
mentioned in the Section “Materials and Methods”, has been car-
ried out in simulation. We do not claim here that all the work done 
can be easily transferred onto the real robot, as we are aware of 
the difference between simulation and reality. There are, indeed, 
many reasons that justify this choice. The most important of them 
concerns the practical difficulties of carrying out a large number of 

are explicitly embedded in the perceptual system, as well as the 
events that the system can recognize, e.g. PICK-UP or MOVE. In 
a later work (Fern et al., 2002), Siskind added a learning rule to 
his system that allows LEONARD to learn any kind of dynamic 
events that are shown to the camera. It should be noted, however, 
that basic force dynamics rules, called states by the authors, such 
as CONTACTS, SUPPORTS or ATTACHED are still predefined 
by the experimenter. This new model allows LEONARD to learn 
the temporal sequences of states observed in a dynamic event. 
Therefore, any kind of events can be recognized on the basis of 
predefined force dynamics states.

A similar consideration can be raised with respect to the work 
by Baillie and Steels (2003). In their model, events are based on a 
set of predefined detectors in interaction with a kind of top-down 
reasoning system that allows an agent to create an internal repre-
sentation of the external world. This internal world, in turn, is the 
actual grounding of the utterance produced.

In contrast, in our model the robot is able to capture the essence 
of certain interactions between objects (i.e. its hand and the object 
of the desk) and to create an embodied representation of those 
interactions autonomously. Moreover, the embodied knowledge 
is implemented in the neural control system as specific dynamical 
patterns of sensorimotor contingencies and does not require an 
explicit internal representation of the external word.

Yet the results presented here are in line with the work by Cohen 
et al. (2005) and Cannon and Cohen (2010) on the grounding of 
action words. In their work, they refer to the concept of energy 
transfer between agents, which is to some extent connected to the 
idea of the force dynamics. In our model, we can analyse the way 
in which the robot categorizes the events in terms of Cannon and 
Cohen concepts. However, the main difference is that in their work 
they only refer to visual stimuli, while in our model the grounding 
of the action words we discovered is deeply rooted in the integration 
of many sensor stimuli, both visual and proprioceptive.

From a linguistic perspective, the results obtained are also use-
ful for understanding the acquisition of word meanings by young 
children. That is, the sensorimotor experience of the robot, rather 
than visual properties of the objects or the linguistic labels used, 
constitutes the basis for categorization. The word learning by the 
robot, therefore, depends on the way in which an object behaves 
when it is manipulated under certain conditions, rather than on 
its appearance. The results obtained thus support approaches to 
word meaning that focus on the role of functional affordances of 
objects in interaction (Clark, 1973; Nelson, 1973; Mandler, 1992). 
In particular, the meaning of “ball” is not defined on the basis of 
its perceptual appearance (its roundness in our case) but on its 
property to roll. “Sphere” and “cylinder”, in contrast, are grouped 
into the same category because of the action-based sensorimotor 
categories created by the robot during the training. Thus, what we 
found the robot to do corresponds to what Mandler (1999, p. 305) 
suggests for infant word learning:

Infants are attracted by and interested in moving objects from 
birth. Moving objects are the basis of events, which is what infants 
attend to, and, according to my theory, it is attended events that 
get analysed into the first conceptual meanings (Mandler, 1992). 
Understanding events is absolutely central to conceptual life, and 
it would be surprising indeed if even infants did not have the 
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