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Recent advances in the understanding of the biological basis of pediatric soft-tissue and bone 
tumors, especially owing to the advent of “omics” technologies, have led to an exponential 
increase in the current knowledge on the genetic and cellular patho-mechanisms that 
drive these diseases. This offers the unprecedented opportunity to develop and implement 
targeted therapies such as monoclonal antibodies, small molecules, oncolytic viruses, and 
immunotherapies in standard and/or personalized treatment regimens. However, to date only 
a few examples document a successful translation of discoveries from the bench to the bedside. 
Recent international expert congresses further emphasize the urgent need for a more rapid and 
especially more successful translational process.

Hence, we strongly believe that a Frontiers Research Topic aiming at this aspect would fit just 
in time and be relevant for a broad readership.

This Frontiers Research Topic intended to provide a platform for active and interdisciplinary 
discussion, to summarize current state-of-the-art knowledge on all basic research and 
translational aspects in pediatric soft-tissue and bone tumors, and to offer new perspectives 
on how to further promote and accelerate the translational process. It comprises high-quality 
original articles and timely reviews.

Citation: Grünewald, T. G. P., Fulda, S., eds. (2016). Biology-Driven Targeted Therapy of Pediatric  
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The Editorial on the Research Topic

Biology-Driven Targeted Therapy of Pediatric Soft-Tissue and Bone Tumors: Current 
Opportunities and Future Challenges

Sarcomas constitute a large and diverse group of malignant neoplasias and the predominant group of 
non-CNS-related solid tumors in childhood and adolescence (1). Recent advances in the understand-
ing of the genetic and biological basis of pediatric soft tissue and bone tumors, especially owing to the 
advent of “omics” technologies, have led to an exponential increase in the current knowledge on the 
genetic and cellular pathomechanisms that drive these diseases (2).

This offers the unprecedented opportunity to develop and implement targeted therapies, such 
as monoclonal antibodies, small molecules, and immunotherapies in standard and/or personalized 
treatment regimens (2). However, to date, only a few examples document a successful translation 
of discoveries from the bench to the bedside, which significantly improved patient outcome while 
having little adverse effects (3, 4). Recent reviews (5) and international expert congresses further 
emphasize the urgent need for a more rapid and especially more successful translational process (6–8)  
(Kovar et al., Schäfer et al.).

This Frontiers Research Topic entitled “Biology-driven targeted therapy of pediatric soft-tissue and 
bone tumors: current opportunities and future challenges” was dedicated to this aspect and provided 
a transdisciplinary forum for researchers working at the interfaces between basic cell biology, tumo-
rigenesis, and personalized medicine. Many excellent researchers have contributed to this topic now 
covering the most common but also rare sarcoma entities of this age group, such as osteosarcoma, 
Ewing sarcoma, rhabdomyosarcoma, and epithelioid sarcoma.

In order to accelerate the development of novel targeted therapeutics, suitable genetically 
engineered animal models and xenograft models are required. In this regard, Geier et al. discuss 
preclinical human tumor xenograft models of pediatric sarcomas that may be used practically to 
identify novel agents and how “omics” approaches may be implemented for identification of novel 
biomarkers, which can discriminate sensitive and resistant tumors to these agents. Since the ultimate 
goal of anticancer therapy is to kill cancer cells, it is important to assess in detail the modes of cell 
death in preclinical models. Rello-Varona et al. survey different modes of cell death and propose 
standards of how to adequately assess them, which is especially important in such a heterogeneous 
group of tumor entities such as human sarcomas.
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Osteosarcoma is the most common pediatric bone cancer 
(1). Sampson et  al. discuss current knowledge on the role of 
micro RNAs (miRNAs) and their target genes in osteosarcoma 
and evaluate their potential use as therapeutic agents. They also 
summarize the efficacy of inhibition of oncogenic miRNAs or 
expression of tumor suppressor miRNAs in preclinical models of 
osteosarcoma (Sampson et al.).

Ewing sarcoma is the second most common pediatric bone-
associated sarcoma (1). Since its discovery in 1921 by James 
Ewing, the precise histogenesis of Ewing sarcoma remains enig-
matic (9). Despite this histogenetic uncertainty, Ewing sarcoma is 
genetically well characterized by the presence of pathognomonic 
EWSR1-ETS gene fusions (usually EWSR1-FLI1) (10), which 
drive this disease by acting as oncogenic transcription factors 
(10). In their review, Cidre-Aranaz and Alonso assess five major 
EWSR1-FLI1 target genes, their signaling pathways, and shed 
light on how these pathways could be exploited therapeutically. 
Indeed, earlier work showed that some EWSR1-FLI1 target genes 
are very specifically expressed in Ewing sarcoma relative to nor-
mal tissues (11), thus possibly constituting attractive targets for 
(immuno)-therapeutic intervention. In accordance, subsequent 
experiments showed that IL2 transgenic Ewing sarcoma cells 
elicit tumor-specific T and NK cell responses in vitro and in vivo 
(12). In a subsequent study, Reuter et al. now investigate the role 
of immunostimulation by OX40 ligand (also known as CD252 
or tumor necrosis factor ligand family member 4) transgenic 
Ewing sarcoma cells. The authors found that OX40L expression 
in Ewing sarcoma cells enhanced immune stimulation, suggest-
ing that the OX40/OX40L pathways should be considered in 
the design of immunotherapies against Ewing sarcoma (Reuter 
et  al.). However, immunotherapeutic advances are not limited 
to Ewing sarcoma. Roberts et al. provide exiting new insights in 
immunotherapy of Ewing sarcoma and other pediatric sarcomas 
and point out the concept of integrating antibody-based and 
cell-based immunotherapy into an overall treatment strategy of 
sarcoma.

An innovative alternative approach for treatment of Ewing 
sarcoma is targeting the tumor’s micro-environment, instead 
of targeting the tumor cells directly. In fact, bone lesions from 
primary or metastatic Ewing sarcoma are characterized by 
extensive bone remodeling and osteolysis. Redini and Heymann 
expand on this important aspect and propose targeting the bone 
tumor micro-environment in Ewing sarcoma using osteoclast 
inhibitors, such as bisphosphonates and antagonists of receptor 
activator of NF-kappa B ligand (RANKL). In addition to this, 
Deel et al. summarize the known molecular alterations within 
the Hippo pathway in sarcomas and highlight how several 
pharmacologic compounds have shown activity in modulating 
Hippo components, providing proof-of-principle that Hippo 
signaling may be harnessed for therapeutic application in 
sarcomas.

Rhabdomyosarcomas are the most common soft tissue 
tumors of childhood (1) and constitute a heterogeneous 

group of cancers with myogenic differentiation featuring 
diverse cytogenetic and mutational aberrations (7). Hettmer 
et  al. describe two disease-relevant mouse myogenic tumor 
models driven either by oncogenic Kras in p16p19null or by a 
mutant Smoothened allele. In line with this, Ridzewski et al. 
explore the therapeutic value of four Smoothened inhibitors in 
four different rhabdomyosarcoma cell lines. They found that 
some inhibitors induced strong proapoptotic and antiprolif-
erative effects in some rhabdomyosarcoma cell lines, while 
others paradoxically induced cellular proliferation at certain 
concentrations (Ridzewski et al.). Because of this heterogene-
ous response, the authors propose to conduct pretesting of 
Smoothened inhibitors in patient-derived short-term rhab-
domyosarcoma cultures or patient-derived xenograft mouse 
models before applying these drugs to patients (Ridzewski 
et  al.). In an accompanying article, Schott et  al. provide 
evidence that oncogenic RAS mutants confer resistance of 
RMS13 rhabdomyosarcoma cells to oxidative stress-induced 
ferroptotic cell death, which has important implications for 
the development of targeted therapies for rhabdomyosarcoma 
and which might at least partially explain heterogeneous 
responses on drug treatment depending on the RAS mutation 
status.

Noujaim et al. summarize clinically relevant biomarkers (e.g., 
SMARCB1, CA125, dysadherin, and others) with respect to tar-
geted therapeutic opportunities for epithelioid sarcoma, which 
is a soft tissue sarcoma of children and young adults for which 
the preferred treatment for localized disease is wide surgical 
resection. However, current treatment regimens for epithelioid 
sarcoma still lack systematic coherence, and medical management 
is to a great extent undefined, which is why especially for patients 
with regional and distal metastases, the development of targeted 
therapies is greatly desired (Noujaim et al.). Noujaim et al. also 
examine the role of EGFR, mTOR, and polykinase inhibitors (e.g., 
sunitinib) in the management of local and disseminated disease. 
The authors propose to build a consortium of pharmaceutical, 
academic, and non-profit collaborators so that a roadmap can be 
developed toward effective biology-driven therapies of epithelioid 
sarcoma (Noujaim et al.). We believe that this Frontiers Research 
Topic has provided an excellent platform on which such consortia 
can be built on.

We anticipate that the data presented in the aforementioned 
original and review articles will be of great value for the scientific 
community to ultimately improve patient care and outcome. The 
success of this Frontiers Research Topic would not have been pos-
sible without the outstanding contribution of excellent scientists 
that served either as peer reviewers or additional guest associate 
editors.
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Ewing sarcoma is an aggressive bone malignancy that affect children and young adults.
Ewing sarcoma is the second most common primary bone malignancy in pediatric
patients. Although significant progress has been made in the treatment of Ewing
sarcoma since it was first described in the 1920s, in the last decade survival rates
have remained unacceptably invariable, thus pointing to the need for new approaches
centered in the molecular basis of the disease. Ewing sarcoma driving mutation,
EWS–FLI1, which results from a chromosomal translocation, encodes an aberrant
transcription factor. Since its first characterization in 1990s, many molecular targets have
been described to be regulated by this chimeric transcription factor. Their contribution to
orchestrate Ewing sarcoma phenotype has been reported over the last decades. In this
work, we will focus on the description of a selection of EWS/FLI1 targets, their functional
role, and their potential clinical relevance. We will also discuss their role in other types
of cancer as well as the need for further studies to be performed in order to achieve a
broader understanding of their particular contribution to Ewing sarcoma development.

Keywords: Ewing sarcoma, EWS/FLI1, DAX-1, GLI1, FOXO1, FOXM1, CCK, LOX

Introduction

Ewing sarcoma is a rare tumor that arisesmainly in the bones of children and adolescents.Despite the
improvements in treatment achieved during the last decades, survival rates have remained unaccept-
ably low, even in patients with localized disease, since a great proportion of Ewing sarcoma tumors
are refractory to conventional treatment and relapses are frequent (1). In addition, approximately
25% of cases present disseminated disease at diagnosis, which have a very poor prognosis (2). Thus,
there is an urgent need for new targeted therapies that may offer a higher efficiency and less adverse
effects than the conventional chemo/radiotherapies that are used nowadays.

In this sense, understanding the molecular basis of Ewing sarcoma pathogenesis provides key
information that may help to design new targeted biological therapies. Ewing sarcomas are char-
acterized by chromosomal translocations that fuse the EWSR1 gene to some members of the ETS
family of transcription factors (3), being FLI1 the most frequently implicated [t(11;22)(q24;q12)]
(4). The EWS/FLI1 fusion protein is an aberrant transcription factor that is essential for Ewing
tumor development, since it regulates the expression of multiple target genes and governs the
oncogenic processes that lead to malignant transformation of a yet undefined cancer precursor
cell. Provided that the oncogenic properties of EWS/FLI1 rely on its capability to induce or repress
specific target genes, these target genes can likewise offer interesting opportunities to identify new
targeted therapies.
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In the past years, an important effort to identify EWS/FLI1
genes functionally relevant for Ewing sarcoma pathogenesis has
been carried out. As a consequence, many genes that play an
important role in Ewing sarcoma have been identified (5–17).
This has revealed some keymolecular pathways involved in Ewing
pathogenesis, and more importantly it has provided new molecu-
lar targets.

A comprehensive discussion of all EWS/FLI1 target genes iden-
tified to date and their implications in targeted therapy is beyond
the scope of this review. Thus, here we have focused on a selection
of six EWS/FLI1 target genes that, in our opinion, can represent
attractive opportunities for future studies that may lead to dis-
covering new therapeutic approaches. This selection takes into
account the presence of significant data – in Ewing or in other
systems – regarding potential therapeutic applications. Four genes
encode for transcriptional regulators while the other two encode
for secreted proteins.

Transcriptional Regulators

DAX-1 (NR0B1)
DAX-1 is a gene that belongs to the super family of nuclear
receptors (official name NR0B1, standing for Nuclear Receptor
Subfamily 0, Group B, Member 1). Nuclear receptors are tran-
scription factors that undergo activation upon binding of small
ligands such as retinoic acid or steroids. However, there is no
known ligand for DAX-1, and thus we refer to it as an orphan
nuclear receptor. Germline mutations in this gene are the cause
of dosage-sensitive sex reversal (DSS) in XY individuals and
adrenal hypoplasia congenital (AHC), which is characterized by
adrenal insufficiency, and hypogonadotropic hypogonadism in
males. DAX-1 is a master regulator of steroidogenesis that neg-
atively regulates the steroidogenic factor 1 (SF1), an important
transcriptional activator of genes involved in steroid hormone
production (18, 19). In addition, DAX-1 plays an important role in
several biological processes such as osteoblast differentiation (20),
ion homeostasis and transport, lipid transport, or skeletal develop-
ment (21) among others. More recently, DAX-1 has been involved
in the maintenance of mouse embryonic stem cell pluripotency
through regulation of stem cell genes like Oct-3/4 (22–24).

Given that DAX-1 function is mainly linked to steroidogenesis,
it was surprising to find this gene associated to Ewing sarcoma,
a tumor with no known relationship with steroidogenic tissues.
Gene expression profiles performed in two heterologous cellmod-
els ectopically expressing EWS/FLI1 (HEK293 and HeLa cells)
demonstrated that DAX-1 was specifically induced by EWS/FLI1,
but not by wildtype FLI1 (25). In addition, it was shown that
DAX-1 was highly expressed in Ewing sarcoma cell lines and
tumors, while it was not expressed in other pediatric tumors
such as rhabdomyosarcoma or neuroblastoma. Finally, DAX-1
expression was demonstrated to depend on EWS/FLI1 expression
in the A673 Ewing sarcoma cell line upon EWS/FLI1 knockdown.
An independent study showed similar findings, confirming that
DAX-1 is a target of the EWS/FLI1 oncoprotein (26).

Several functional studies have demonstrated that DAX-1 plays
a critical role in Ewing sarcoma pathogenesis: DAX-1 knockdown
impairs Ewing sarcoma cell proliferation, G1 cell arrest induction,

inhibits anchorage independent growth of colonies in soft agar,
and drastically inhibits growth of xenotransplanted tumor cells
in immunodeficient mice (9, 25, 26). These results are highly
consistent since they were obtained in independent laboratories,
using several Ewing sarcoma cell lines (TC71, EWS502, andA673)
and different gene knockdown technologies (i.e., transient retro-
virus infection or inducible expression of EWS/FLI1 shRNAs).
Interestingly, characterization of the gene expression profile reg-
ulated by DAX-1 in Ewing sarcoma cell lines has also provided
interesting findings regarding the function of DAX-1 in Ewing
sarcoma. These studies showed that a significant percentage of
the genes regulated by EWS/FLI1 in Ewing sarcoma cells are
also under the control of DAX-1, reinforcing the importance of
DAX-1 in Ewing sarcoma pathogenesis. In fact, two independent
works demonstrated that EWS/FLI1 and DAX-1 transcriptional
profiles share a significant number of genes, suggesting that DAX-
1 not only contributes to the EWS/FLI1 transcriptional signa-
ture but also that there is a hierarchy controlled by EWS/FLI1
and in which some genes, such as DAX-1, can play a more
prominent role (9, 27). The study of the mechanism through
which EWS/FLI1 upregulates DAX-1 expression in Ewing sar-
coma cells revealed an unexpected finding: EWS/FLI1 directly
interacts with DAX-1 promoter through binding to a GGAA-
rich sequence (9, 28). This motif resulted to be a polymor-
phic microsatellite located in the DAX-1 promoter. It has been
demonstrated that EWS/FLI1 binds similar sequences located
in the promoters of other EWS/FLI1 target genes, indicating
that this mechanism of gene transcriptional activation is fre-
quently used by EWS/FLI1 to regulate the expression of some
oncogenic genes (28) [i.e., Caveolin-1 (CAV1) (7), glutathione S-
transferase M4 (GSTM4) (29), FCGRT (Fc fragment of IgG, recep-
tor, transporter, alpha), FVT1/KDSR (3-ketodihydrosphingosine
reductase)or ABHD6 (Abhydrolase Domain-Containing Protein)
(30)]. The fact that DAX-1 expression is regulated through a
polymorphic repeat of the GGAA motif raised the question if
the number of repeats could be somehow linked to the level of
DAX-1 expression and, as a consequence, to themalignant pheno-
type of Ewing sarcoma. Several biochemical studies demonstrated
a relationship between the number of GGAA repeats and the
degree of promoter activation, indicating that it was necessary
a minimum of nine repeats to obtain a response to EWS/FLI1
(30). However, the attempts to establish a relationship between
the length of themicrosatellite located inDAX-1 promoter and the
clinical prognosis have raised contradictory results. For instance,
GGAA microsatellites were longer in African populations, which
are known to have a lower incidence of Ewing sarcoma but a
worse overall survival when compared to European populations
(31, 32). Conversely, in another study based on 112 patients, the
length of theDAX-1microsatellite showedno influence on clinical
outcomes (33).

Taking into account all these results, DAX-1 can be considered
as one of the most relevant EWS/FLI1 gene targets. The fact
that DAX-1 expression results essential for EWS/FLI1-mediated
oncogenesis opens the possibility, at least in theory, to consider
DAX-1 targeting as an attractive therapeutic approach in Ewing
sarcoma. As a consequence, a more profound understanding
of the functions that DAX-1 exerts in Ewing sarcoma and the
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molecular mechanism involved in them can provide new clues on
how to interfere with its expression or function in this cancer (34).

DAX-1 is located in the nucleus of Ewing sarcoma cells, where
it presumably interacts with other transcription factors and cofac-
tors to regulate downstream target genes that are important for
oncogenesis. Interestingly, a combination of biochemical and
gene expression profile experiments leads to the observation
that EWS/FLI1 and DAX-1 interact physically. Specifically, it
was found that both the amino- and carboxyl-termini of DAX-
1 interacted with EWS/FLI1 (27). This result opens the attractive
possibility that interfering EWS/FLI1-DAX-1 interaction could
lead to new therapeutic opportunities. To go forward in this line
of work, it would be necessary to finely map the regions involved
in this interaction in order to design small molecules with the
ability to block it. Since DAX-1 and EWS/FLI1 interaction could
be necessary for full EWS/FLI1-mediated oncogenesis, disturbing
it could be therapeutically valuable.

DAX-1 has been shown to interact in different cellular contexts
with a variety of transcriptional regulators, mainly corepressors.
For example, DAX-1 interacts with Alien corepressor through its
silencing domain and this interaction has been shown to be impor-
tant for AHC pathogenesis (35). DAX-1 has also been shown to
interact directly with the androgen receptor, NR3C4, inhibiting
its activation (36) and other partners such as NR5A1 (37) and
ESRRγ (38). To date, a systematic analysis of the protein–protein
interactions in which DAX-1 is involved in Ewing sarcoma cells
and the role that these interactions can play in Ewing sarcoma
pathogenesis has not been carried out. Experiments focused on
identifying and characterizing these interactions could provide
clues for designing synthetic drugs to target them. On the other
hand, it has been shown that DAX-1 C-terminal domain contains
a potent transcriptional repressor domain that, when altered by
mutations in AHC patients, impairs its nuclear localization, and
therefore its transcriptional activity (39), suggesting that there
is a potential field for developing drugs to modulate DAX-1
subcellular localization and consequently its function.

As with any new drug, the possible side effects of a new
therapeutic approach must be also taken into consideration. For
instance, prolonged DAX-1 blockage may lead to disequilibrium
in steroid hormones production, which could lead to Cushing-like
syndrome (40). These hypothetical complications, compared with
the severity of Ewing sarcoma itself, would be perfectly assum-
able. One theoretical advantage of using therapeutic approaches
targeting DAX-1 is that this gene is only expressed in a limited
number of tissues, mainly in adrenal gland and testis, and prob-
ably DAX-1 targeting will only affect these organs. In summary,
although there are currently no drugs able to target DAX-1 and
block its function, studies intended to understand its structure, its
mechanism of interaction with other transcriptional (co)factors,
and the identification of other protein–protein interactions in the
Ewing sarcoma context could provide new insights to design new
therapeutic molecules (Figure 1).

GLI1
GLI1 (Glioma-Associated Oncogene Homolog 1) is a transcription
factor belonging to the Kruper family of zinc finger proteins. GLI1
is a component of the canonical Hedgehog pathway: extracellular

Sonic Hedgehog (Shh) binds to the PTCH receptor causing the
liberation of Smooth (SMO) from the PTCH-SMO complex.
Subsequently, activated SMO releases GLI1 from the complex
that it forms with Suppressor of Fused (SUFU), which permits
GLI1 nuclear translocation where it regulates gene transcription
of genes involved in normal cell growth and differentiation such
as the embryonic pattern formation (41). Although this pathway
is mainly active during embryogenesis, it remains active in some
adult tissues, where it is involved in homeostasis and stem-cell
maintenance (42, 43).

Zwerner et al. described an association between EWS/FLI1 and
GLI1 in Ewing sarcoma cells. They showed that NIH3T3 cells
expressing EWS/FLI1 presented the expected malignant pheno-
type concomitantly with augmented levels of GLI1 (44). More-
over, when GLI1 expression was knocked-down by RNA inter-
ference, the transformed phenotype was reduced (demonstrated
by a decrease in the anchorage independent growth) indicating
that GLI1 plays an important role in the maintenance of the
malignant phenotype induced by EWS/FLI1. Interestingly, SUFU
overexpression, which is expected to inhibit GLI1, also produced
similar effects in NIH3T3 cells. In TC32 Ewing sarcoma cells,
EWS/FLI1 knocking down using RNA interference produced a
reduction in GLI1 expression levels. Also, ChIP studies demon-
strated that GLI1 is a direct target of EWS/FLI1 (45). Moreover,
when a shRNA against GLI1 was used in the Ewing sarcoma cell
line TC32, the transformedphenotypewas inhibited (measured by
reduction in anchorage independent growth) (44). Interestingly,
and in contrast with what it is usually observed in other types
of cancer, GLI1 deregulation in Ewing sarcoma is independent of
Shh since its activation did not produce phenotypic changes nor
did a pharmacological blockage of SMO using cyclopamine (an
inhibitor of Shh signaling by direct binding to SMO) (45).

Subsequently Joo et al. (46) showed that Ewing primary tumors
expressed high levels of GLI1. These authors also confirmed using
RNAi that the expression of GLI1 in Ewing sarcoma cells (TC71)
is dependent on EWS/FLI1 and that GLI1 expression was relevant
for the maintenance of the transformed phenotype. Strikingly,
re-analysis of gene expression profiles showed that genes that
were traditionally thought to be transcriptionally modulated by
EWS/FLI1, such as NKX2.2, Patched (PTCH) or GAS1, were
indeed dependent on GLI1 expression, meaning that the gene
expression network regulated by EWS/FLI1 holds a hierarchy in
which GLI1 has a prominent role.

Deregulation of the Shh–GLI1 pathway has been showed to
lead to tumorigenesis and aggressive phenotypes (progression,
metastasis and therapeutic resistance) of numerous cancer types
such as basal cell carcinomas (47), colorectal carcinoma (48),
breast cancer (49), and bone and soft tissue sarcomas (50).

Given the importance of Shh–GLI1 pathway in cancer, some
therapeutic approaches, focused on the blocking of this pathway,
have been developed over the years. One of these strategies con-
sisted in searching for small molecule inhibitors of the pathway.
Thus, Shh–GLI1 pathway inhibitors, such as cyclopamine, have
been successfully tested in some cancer types such asmedulloblas-
toma (51), pancreatic adenocarcinoma (52), small-cell lung can-
cer (SCLC) (53), gastric adenocarcinomas (54), and esophageal
cancer (55).
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FIGURE 1 | DAX-1 and therapeutic opportunities in Ewing sarcoma.
DAX-1 expression is upregulated by EWS/FLI1 in Ewing sarcoma cells through a
direct interaction with a polymorphic GGAA microsatellite located in the DAX-1
promoter. Since DAX-1 expression is essential for EWS/FLI1-mediated
oncogenesis, it is still necessary to ascertain if it interacts with other
transcription factors (1) and/or co-repressors (2) in the nucleus of Ewing
sarcoma cells. This could open new therapeutic approaches for designing

molecules to target these interactions. Potential therapeutic targets may be
molecules that prevent EWS/FLI1 binding to the GGAA-rich motifs in DAX-1
promoter (3) or drugs directed toward the EWS/FLI1-DAX-1 interaction, whose
concurrence could be necessary to regulate the expression of certain genes (4).
Finally, DAX-1 C-terminal domain can impair DAX-1 nuclear localization when
altered so it could be potentially targeted to modulate its subcellular localization
and thus its function (5).

The fact that GLI1 expression is constitutively induced by
EWS/FLI1 in Ewing sarcoma suggests that drugs acting upstream
GLI1 will be ineffective in blocking this pathway in this cancer.
In agreement with this, cyclopamine treatment of Ewing sarcoma
cells would have no effect on the malignant characteristics of
Ewing sarcoma cells. For this reason, efforts should be directed
toward developing and studying drugs targeting GLI1 expression
or function directly. In this sense, arsenic trioxide (ATO), an
old drug recently reintroduced in the repertoire of anticancer
drugs, has been found to inhibit cell growth by targeting GLI
proteins (56). In the specific case of Ewing sarcoma, ATO pre-
sented cytotoxicity in cell lines with upregulated GLI1 expres-
sion (TC-71, SKES and A4573), and curbed xenograft growth
performed with TC-71 cells (57). ATO was also found to inhibit
Ewing cells (RDES and A673) migration and invasiveness, thus
implying that it could also have a therapeutic effect on metastasis
(58). Of note, ATO has already been tested in combination with
other chemotherapeutic drugs (etoposide and paclitaxel) in a
preliminary study that included Ewing sarcoma and metastatic
osteosarcoma patients where tumor growth was controlled in 75%
of cases (59). However, since Ewing sarcoma is mainly a pediatric

cancer, it is necessary to further investigate its effects and to be
prudent when designing clinical studies given the roles of the
Shh–GLI1 pathway in development.

Finally, it has been described a correlation between GLI1
expression levels and/or prognosis and recurrence in some cancer
types. For instance, in a study comprising 25 clinical samples
of colorectal carcinoma, Shh expression was found upregulated
and, interestingly, when GLI1 expression was analyzed by in situ
hybridization, it was mainly found in the malignant crypts of
adenocarcinomas (48). Also, it has been described a positive
correlation between GLI1 expression and tumor grade and/or
lymph node status, pointing to a role of GLI1 in metastasis. Some
examples are breast cancer, where high GLI1 expressionmeasured
in a TMA containing 204 tumor samples was associated with
poor prognosis and progressive stages of disease (49) or bone
and soft tissue sarcomas, where higher GLI1 expression corre-
lated with more aggressive outcomes (50). In the specific case of
Ewing sarcoma, these studies remain to be performed, especially
considering that a deeper knowledge on this field could lead to
a more efficient patient stratification that could help improve
treatment.
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FIGURE 2 | GLI1 and therapeutic opportunities in Ewing sarcoma. GLI1
is an upregulated direct target gene of EWS/FLI1 in Ewing sarcoma cells.
Functional studies have demonstrated that GLI1 expression is relevant for the
maintenance of the transformed phenotype in this system. Moreover, some
genes transcriptionally modulated by EWS/FLI1 depend on GLI1 expression,
including NKX2.2, PATCH, and GAS1 (1). Therapeutic opportunities may

include the use of molecules capable of inhibiting GLI1-mediated
transcription, such as arsenic trioxide (As2O3) (2). Also it may be interesting to
ascertain the possible link between GLI1 expression pattern and prognosis in
Ewing sarcoma given that this correlation between GLI1 expression and bad
prognosis exists in other tumor types (breast cancer and bone and soft tissue
sarcomas) (3).

There is still an urgent need for further functional studies that
can ascertain the exact role of this pathway in Ewing sarcoma
development and progression. These studies could help to syn-
thesize new compounds or small molecules that could target GLI1
with better efficacies either alone or in combination with normal
chemotherapeutic treatments (Figure 2).

Forkhead Box (FOX) of Transcription Factors
Forkhead box proteins are an extensive family of transcriptional
regulators that share a common DNA binding domain (the
forkhead domain). There are 19 subgroups (FOXA to FOXS)
organized on the basis of sequence homology inside and out-
side the forkhead domain. FOX proteins regulate gene networks
that are involved in cell cycle progression, proliferation, differ-
entiation, metabolism, senescence, survival, or apoptosis (60).
Thus, it is not strange that these transcription factors have been
shown to have roles in cancer. Interestingly, some members of
this family have been shown to act as tumor suppressor genes,
while others have been shown to be pro-oncogenic. Examples
of both of these opposed functions have been identified in
Ewing sarcoma.

The FOXOsubgroup (consisting of FOXO1, FOXO3A, FOXO4,
and FOXO6) are key negative regulators of cell proliferation and

survival. They induce cell cycle arrest at G1 (61) and apopto-
sis and DNA repair (62). They are thus considered bona fide
tumor suppressors. For example, in prostate cancer, FOXO1 is
found transcriptionally downregulated and the induction of its
expression in prostate cancer cells inhibits cell proliferation and
survival (63). In addition, FOXO1 has been also shown to regulate
other hallmarks of cancer such as angiogenesis. Thus, FOXO1
loss of function increases blood vessel formation and promotes
endothelial cell proliferation and migration (64, 65).

FOXOs transcriptional activity is regulated by changes in their
cellular localization, which is mediated by protein kinases such
as the serum/glucocorticoid kinase (SGK) and the protein kinase
B (AKT) [reviewed in Ref. (66)]. These transcription factors can
also undergo different post-translational modifications that reg-
ulate their activity including deacetylation mediated by Sirt1 and
ubiquitination mediated by Skp2 and Mdm2 (67).

EWS/FLI1 binds to the FOXO1 promoter and represses its
expression in Ewing sarcoma cells (68). In accordance with this,
FOXO1 is expressed at lower levels in primary Ewing sarcoma
as compared to other tissues (16). Induction of FOXO1 in two
Ewing sarcoma cells (A673 and SKNMC) resulted in impaired
cell proliferation and reduced soft agar colony formation capa-
bility, confirming that FOXO1 is a tumor suppressor in Ewing
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sarcoma and that its inhibition is important for Ewing sarcoma
growth. Interestingly, EWS/FLI1 also indirectly regulates the sub-
cellular localization of FOXO1 and thus controls its transcrip-
tional activity. CDK2- (which is upregulated by EWS/FLI1 and
acts as a negative regulator of FOXO1 transcriptional activ-
ity) and AKT-mediated phosphorylation of FOXO1 cooperate
to block its transport to the nucleus thus inhibiting its tran-
scriptional activity. These findings demonstrate that EWS/FLI1
blocks FOXO1 activity at several different levels in Ewing sar-
coma cells.

Since FOXO1 acts as a tumor suppressor in Ewing sarcoma,
a valuable therapeutic approach can consist in the reactivation
of FOXO1 activity. In this regard, methylseleninic acid (MSA),
a chemical compound previously shown to reactivate FOXO1 in
prostate cancer, was tested in Ewing sarcoma cells (69). Treat-
ment of Ewing sarcoma cells with MSA induced FOXO1 expres-
sion in a concentration-dependent manner, which correlated
with apoptotic-mediated cell death. This effect was mediated at
least in part by FOXO1, since the knockdown of endogenously
induced FOXO1 significantly reduced the apoptotic effect of
MSA. Notably, administration of MSA in an orthotopic mouse
xenotransplantation model significantly reduced tumor growth,
suggesting that MSA could be a potential therapeutic approach
in Ewing sarcoma. However, it should be taken into account
that high concentrations of selenium are usually associated with
intoxication, which can make this approach problematic. This

means that any potential application of MSA should use effective,
low doses, which in combination with conventional chemother-
apeutic drugs can reach the desired anti-tumoral effects. Par-
ticularly, MSA has already been proved to synergize well with
some chemotherapeutic drugs that are frequently used in Ewing
sarcoma, such as etoposide or doxorubicin (70) (Figure 3). Since
reactivation of FOXO1 in Ewing sarcoma cells has shown to be
effective both in vitro and in vivo, more studies are necessary to
understand the mechanism involved in the regulation of FOXO1
expression and its transcriptional activity in order to identify new
therapeutic targets.

FOXM1 is another member of the FOX family of transcrip-
tion factors that contrary to FOXO displays a pro-oncogenic
role in cancer. In fact, FOXM1 is one of the most commonly
overexpressed genes in solid tumors (71). Initially, FOXM1 was
described as a proliferation-specific mammalian transcription
factor, expressed in proliferating cells but not in quiescent or
terminally differentiated cells. In addition to this, and over the
years, FOXM1has also been implicated in cellmigration, invasion,
angiogenesis, metastasis, or oxidative stress (72).

Christensen et al. showed that EWS/FLI1 upregulated the lev-
els of FOXM1 in four Ewing sarcoma cell lines, although the
mechanism appeared to be indirect (17). In agreement with this,
FOXM1 is expressed at high levels in Ewing sarcoma cell lines and
primary tumors. In order to characterize the relevance of FOXM1
in Ewing sarcoma pathogenesis, the authors performed FOXM1

FIGURE 3 | FOXO1 and therapeutic opportunities in Ewing sarcoma.
FOXO1 is a direct target gene of EWS/FLI1 and its expression is repressed by
EWS/FLI1 in Ewing sarcoma cells. Functional studies have shown that FOXO1
acts as a tumor suppressor in the Ewing sarcoma cell context. Therapeutically,
Methane Sulfonic Acid (MSA) may be used as a potential treatment in synergy

with other chemotherapeutic agents such as doxorubicin or etoposide.
However, its mechanism of action in Ewing sarcoma is still unknown (1). Also
there is still a need to clarify the FOXO1 activities mediated by kinases such as
CDK2 and AKT (2) together with the regulation of its subcellular localization (3),
and to determine if they may be mediated by EWS/FLI1.
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knockdown experiments demonstrating that FOXM1 downregu-
lation correlates with a significant reduction in anchorage inde-
pendent growth.

Interestingly, pharmacological approaches addressed to reduce
FOXM1 levels have also been tested in Ewing sarcoma cells with
notable results. Thiostrepton, a thiazole antibiotic, has been shown
to act as a proteosomal inhibitor (73) and also to physically
interact with FOXM1 consequently inhibiting FOXM1 binding
to target promoters (74). FOXM1 expression was inhibited by
treatment with thiostrepton, which paralleled with an increase in
apoptosis in a variety of Ewing sarcoma cell lines (17). Thiostrep-
ton was also shown to inhibit tumor growth in mouse xenograft
models (75). Strikingly, in this work, thiostrepton was able to con-
comitantly inhibit the expression of EWS/FLI1 both atmRNA and
protein levels in three Ewing cell lines and in tumors derived from
thiostrepton-treated mouse xenograft models (75). Although the
mechanism by which thiostrepton promotes EWS/FLI1 down-
regulation was not characterized, these results suggest that this
drug may show greater efficacy in Ewing sarcoma tumors in
comparison to other tumors.

As stated above, FOXM1 is frequently overexpressed in cancer
and takes part in each hallmark of cancer. Consequently it has
been argued that targeting FOXM1 could provide an opportunity
to treat cancer. It has also been proposed that FOXM1 could be
the “Achilles heel” of cancer (76). Taken together, these findings
suggest that targeting FOXM1 may be also an opportunity for
Ewing sarcoma treatment (Figure 4).

Secreted Proteins

Cholecystokinin
Cholecystokinin (CCK) is a neuropeptide that displays a diver-
sity of functions in the organism. It was originally discovered
in the gastrointestinal tract, where it mainly regulates pancreatic
secretion of digestive enzymes. In addition, CCK is one of the
most abundant and widely distributed neuropeptides in the brain,
where it modulates intrinsic neuronal excitability and synaptic
transmission. CCK is secreted as a prohormone (proCCK) that
subsequently undergoes post-translational processing (tyrosine
sulfatation, endoproteolytic cleavage, basic residue removal, and
C-terminal amidation), resulting in the production of CCK bio-
logically active forms, mainly CCK8 (77).

More than two decades ago, CCK was found to be specif-
ically expressed in a group of human cancer cell lines that
included Ewing sarcoma, neuroepithelioma and leiomyosarco-
mas, as opposed to other tumor cell lines derived from osteogenic
sarcomas, rhabdomyosarcoma, melanoma, and SCLC (78). Sub-
sequent studies carried out in tumor specimens confirmed that
CCK expression was high in the majority of Ewing sarco-
mas, whereas in other tumors, CCK-positive cases ranged from
50% in leiomyosarcomas to 0% in medulloblastomas, central
primitive neuroectodermal tumors (PNET), neuroblastomas, and
rhabdomyosarcomas (79). In agreement with this, a later study
demonstrated the presence of proCCK in the supernatant of Ewing
sarcoma cell lines in culture, indicating that CCK is actively

FIGURE 4 | FOXM1 and therapeutic opportunities in Ewing
sarcoma. FOXM1 is upregulated by EWS/FLI1 in Ewing sarcoma cells,
although it is unknown whether its regulation is direct or indirect (1).
Thiostrepton (TS) blocks FOXM1 in Ewing sarcoma cells decreasing
their neoplastic features (2). However, the exact mechanism underlying

these effects remains unexplained. In addition, FOXM1 has been shown
to be capable of inhibiting EWS/FLI1 probably by an indirect
mechanism that still needs to be clarified (3). Also TS has been proved
to inhibit EWS/FLI1 expression in Ewing cells, although the exact
mechanism is still unknown (4).
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secreted by Ewing sarcoma cells (80). Interestingly, these authors
found high concentrations of proCCK in the plasma of Ewing
sarcoma patients but not in patients with other pediatric tumors
such as osteosarcoma, neuroblastoma, nephroblastoma, rhab-
domyosarcoma or synovial sarcoma. Interestingly, the levels of
proCCK in plasma correlated with tumor size and recurrence. In
addition, proCCK levels in plasma decreased after chemother-
apeutic treatment, concurrently with a reduction in tumor size
and in one patient, proCCK levels increased again correlating
with tumor recurrence. All together, these results consistently
demonstrate that CCK is expressed and secreted at high levels in
Ewing sarcoma.

The first data demonstrating a relationship between CCK
expression and EWS/FLI1 came from studies performed in het-
erologous systems: ectopic expression of EWS/FLI1 in the RD
rhabdomyosarcoma cell line and in HeLa cells (81) upregulated
CCK mRNA levels. This relationship between EWS/FLI1 and
CCK was confirmed in Ewing sarcoma cells. Thus, EWS/FLI1
knockdown in A673 and SK-PN-DW Ewing sarcoma cell lines
downregulated CCK mRNA levels, demonstrating that CCK
expression is dependent on EWS/FLI1. Whether CCK is a direct
or indirect target of EWS/FLI1 is a question that yet remains to
be determined (8). Regarding the functional relevance of CCK in
Ewing sarcoma, it was shown that downregulation of CCK using
a shRNA inducible system, inhibited cell proliferation in vitro
and tumor growth in vivo. In addition, CCK-rich culture media
or exogenous CCK-8 was able to stimulate Ewing sarcoma cell
proliferation in vitro, suggesting that CCK is an autocrine growth
factor in Ewing sarcoma cells (8, 82). Unfortunately, to date no
studies have been carried out to decipher the mechanisms that
underlie this effect in Ewing sarcoma.

The fact that CCK is highly expressed in Ewing sarcoma and
the observation that it can act as an autocrine growth factor in vivo
suggest that blocking this autocrine loop, for example, using CCK
receptor antagonists, could be of therapeutic interest. CCK and
gastrin (a closely related hormone) share two G-protein coupled
receptors, named CCKAR and CCKBR that trigger numerous
pathways that transmit the mitogenic signal to the nucleus to
promote cell proliferation. Whereas CCKA receptors are spe-
cific for CCK, CCKB receptors can bind CCK and gastrin with
high affinity. Expression of CCK receptors in Ewing sarcoma has
been scantly studied with contradictory results. Schaer and Reubi
reported a lack of CCK receptors expression in a collection of
11 Ewing sarcoma tumors using autoradiography and 32P-labeled
CCK-8 as a probe (79). However, more recently it was demon-
strated the existence of both CCKA and B receptors mRNA in two
Ewing sarcoma cell lines (A673 and SK-PN-DW) and a cohort of
ten primary tumors (8).

Treatment of Ewing sarcoma cell lines with devazepide, a spe-
cific CCKAR antagonist derived from the benzodiazepine family,
induced apoptosis in vitro and significantly reduced the tumor
growth in a mouse xenograft model (83). However, these effects
were observed with IC50 values 10,000-fold higher that those
necessary to efficiently block the binding of CCK to its CCKA
receptor. In addition, one specific antagonist of the CCKB recep-
tor (L365 260) had no effect on Ewing sarcoma cell proliferation
or viability (83). These results suggest that in Ewing sarcoma cells

there could be an alternative mechanism of action that could
involve CCK receptors other than the standard ones, and open
the possibility that cell proliferation induced by CCK in Ewing
sarcoma cell lines could also be mediated through a yet unknown
mechanism.

Regardless of the possibility to block CCK-induced prolifera-
tion with specific antagonists, the expression of CCK receptors in
tumors can itself be therapeutically useful. In this sense, a model
of metastatic medullary thyroid cancer has been successfully used
to evaluate the diagnostic and therapeutic potential of radiola-
beled gastrin directed to target CCKB receptor-expressing tumors
in vivo (84). Using this approach, a collection of radiolabeled pep-
tides derived from gastrin and cholecystokinin families showed
anti-tumoral activity in xenograft models of medullary thyroid
cancer (85) [also extensively reviewed in Ref. (86)]. This means
that radiolabeled CCK or other compounds with high affinity for
CCK receptors could be useful for diagnosis (i.e., imaging) and
perhaps also for the treatment of Ewing sarcoma.

In summary, although high levels of CCK in Ewing sarcoma
tumorswere describedmore than twodecades ago, research in this
field has been scattered during the last years, and many questions
remain unresolved. For example, it is not clear enough what
type of CCK receptors are expressed in Ewing sarcoma tumors
or the mechanism and intracellular signaling pathways involved
in CCK-mediated cell proliferation. Any progress in this regard
would help to develop molecules capable of interfering with this
autocrine loop (Figure 5).

LOX
Lysyl oxidase (LOX) (protein lysine-6-oxidase; EC 1.4.3.13) is
a member of a family of lysyl oxidases that share the enzyme
catalytic domain. This family includes LOX and the LOX-like pro-
teins LOXL1 to 4. These enzymes catalyze lysine-derived covalent
crosslinking of collagen and elastin and therefore their function
is key for maintaining the structural integrity of the extracellular
matrix [extensively reviewed in (87–90)]. LOX is synthesized as a
50-KDa inactive proenzyme (preLOX), which is secreted to the
extracellular environment where it is proteolytically processed
into a functional 32-KDa LOX enzyme and an 18-KDa propep-
tide (LOX-PP). Together with the critical role that LOX plays in
maintaining the properties of the connective tissues, it has been
also shown to play important roles in cancer.

The first evidence of a relationship between LOX and can-
cer comes from experiments designed to identify genes involved
in Ras-mediated transformation of NIH-3T3 mouse fibroblasts
(91). Several functional experiments demonstrated that LOX had
properties that are characteristic of a suppressor gene. Thus, LOX
antisense cDNAwas able to retransformH-ras-transformed rever-
tants (92) and confer tumorigenic features to normal rat kidney
fibroblasts (NRK-49F) (93).

Since LOX is proteolytically processed into a fragment con-
taining the lysyl oxidase enzymatic activity and an N-terminal
propeptide (LOX-PP), experiments were conducted to determine
in which of these fragments resided the tumor suppressor activity.
Thus, Palamakumbura et al. described for the first time that
recombinant LOX-PP was able to inhibit neoplastic transfor-
mation features in Ras-transformed mouse fibroblasts such as
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FIGURE 5 | CCK and therapeutic opportunities in Ewing sarcoma. CCK is
an EWS/FLI1 target gene and its expression is elevated in Ewing sarcoma cells.
Functionally, inhibition of CCK expression impairs growth and migration in Ewing
sarcoma cells. It still remains to be addressed if CCK is a direct EWS/FLI1 target
or not (1) and which is the exact signaling pathway that takes place once CCK
binds to its receptors in the cells (2). Also it is still unknown whether CCK binds
exclusively to its canonical CCKRs or if there are other receptors (3) or even if it

can enter directly into the cell through some yet unknown mechanism (4).
Therapeutically, it may be interesting to further test receptor antagonists other
than devazepide (D) that could interfere with CCK binding to its receptors in
Ewing sarcoma cells (5). Also, from a diagnosis point of view, it could be useful
to test radiolabeled CCK derivatives (CCKd) to be used in imaging technologies
(6). All in all, more studies are needed to define the principal components and
pathways that are involved in the CCK-autocrine loop.

growth in anchorage independent conditions and Ras-dependent
induction of NFκB (94). Currently, numerous studies support
that the tumor suppressor activity of LOX resides in the 18-kDa
propeptide fragment LOX-PP and not in the lysyl oxidase enzyme.

In agreement with its tumor suppressor activity, LOX expres-
sion has been reported to be downregulated in many different
types of human cancer, such as fibrosarcoma, rhabdomyosar-
coma, and melanoma cells (95), lung (96), pancreatic cancer (97),
prostate (98), and colorectal cancers (99), which means that LOX
expression levels negatively correlate with malignant transfor-
mations. By contrast, LOX expression has been also reported
to be increased in a number of human cancers [i.e., breast and
colon carcinomas (100, 101)] particularly in the metastatic and
more aggressive forms of the disease. Interestingly, in these cases,
metastatic and invasive properties have been related to the lysyl
oxidase activity of LOX, rather than to LOX-PP (100, 101).

The anti-tumor activity of LOX-PP has been demonstrated in
various types of tumor cells although the mechanism underly-
ing the tumor suppressor activity of LOX-PP still needs to be

clarified. Data obtained until now indicate that LOX-PP can act
at different levels, and that the pathways and functions affected
can depend of the cancer or cell model studied. For example, in
Her-2/neu-transformedNF639 breast cancer cells, ectopic expres-
sion of LOX-PP interferes with fibronectin-stimulated tyrosine
phosphorylation of cellular proteins involved in integrin signal-
ing, inactivating the focal adhesion kinase (FAK), and conse-
quently diminishes the migratory response (102). In other breast
cancer cells driven by Her-2/neu (ERBB2), LOX-PP expression
suppressed AKT, ERK, and NFκB activation, as well as cell migra-
tion, growth in soft agar and tumor formation in nude mice
(103). Moreover, in cells derived from prostate cancer (DU145
and PC-3), LOX-PP blocks FGF-2 binding to the cell, inhibit-
ing MAPK/ERK and PI3K/Akt pathways and blocking serum-
stimulated DNA synthesis and cell proliferation (104). On the
other hand, LOX-PP decreased the levels of NF-κB and cyclin
D1 in Her-2/neu-transformed NF639 breast cancer cells and
MIA PaCa-2 pancreatic cancer cells, together with a reduction
in migration and growth in soft agar (105). Finally, in PANC-1
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pancreatic cancer cells, LOX-PP also impaired AKT and ERK
activity and growth in soft agar and cell migration (97).

Recently, a connection between LOX and Ewing sarcoma
pathogenesis has been also demonstrated. Thus, EWS/FLI1
knockdown in Ewing sarcoma cells induces the expression of LOX
indicating that this gene is strongly repressed by EWS/FLI1 in
these cells (15). An independent study showed that LOX is a direct
target of EWS/FLI1 by using ChIP assays (106). In agreement with
this, LOX expression was found to be low or undetectable in a
group of Ewing sarcoma cell lines and primary tumors (15). Since
these data suggested that LOX could act as a tumor suppressor
in Ewing sarcoma, functional studies were carried out. Thus,
ectopic expression of LOX-PP in the A673 Ewing sarcoma cell
line reduced cell proliferation, cell migration, anchorage inde-
pendent growth, and impaired tumor growth in vivo, indicating
that it had tumor suppressor activities in this cell, in line with
what was observed in other tumors. By contrast, the mature LOX
enzyme displayed the opposite effects. Interestingly, when full-
length LOX, including LOX enzyme and LOX-PP activities was
expressed in A673 cells, the anti-tumor effects prevailed (15).
Altogether, these studies indicate that LOXplays an important role
in Ewing pathogenesis by acting as a tumor suppressor gene.

The mechanisms involved in LOX-PP-mediated suppression in
Ewing sarcoma have only been partially studied. In one study,
ectopic expression of LOX-PP showed to impair ERK signaling
pathway, whereas the PI3K/AKT pathway remained unaffected
(15). Interestingly, in this work, an analysis of the gene expression
profile induced by LOX-PP expression in the A673 Ewing cell
line showed that a significant proportion of the genes affected
belonged to pathways involved in cell proliferation and cell cycle
control. Given the impact that LOX-PP expression has on tumori-
genesis, it is necessary to extend these studies in order to char-
acterize in more detail the pathways that may be affected by the
exposition of Ewing sarcoma cells to LOX-PP, and particularly
to determine which specific growth factor pathways could be
affected by LOX-PP.

Other interesting aspect that remains to be determined is the
identification of the proteins that interact with LOX-PP in Ewing
sarcoma cells. In other cell types, LOX-PP has been shown to
interact with a number of proteins such as Hsp70, c-Raf or CIN85
(107), so it would be interesting to identify and characterize LOX-
PP partners in the specific Ewing sarcoma cell context and to
elucidate their role in LOX-PP mediated tumor suppression.

The fact that LOX-PP acts as a tumor suppressor gene in
cancer, and specifically in Ewing sarcoma, invites to assess the
therapeutic value of LOX-PP. The easiest strategy is to evaluate
the effect of the administration of LOX-PP on tumor cells. Thus,
recombinant LOX-PP has been used to ascertain its therapeutic
potential in several cancer types both in vitro and in vivo (94,
97, 102–105, 108, 109). In all cases, exogenous LOX-PP reduced
tumor cells growth, supporting the therapeutic usefulness of this
strategy. Interestingly, in one study, the combination of LOX-
PP with the chemotherapeutic agent doxorubicin in breast and
pancreatic cancer cells in vitro showed an enhanced cytotoxic
effect of doxorubicin when the cells were first sensitize by incu-
bation with LOX-PP (105). These results mean that even if LOX-
PP is not capable of inducing complete cell death by itself, it
could potentially sensitize cancer cells to standard therapies thus

allowing to lower the doses and adverse side effects associated
to conventional chemotherapy and radiotherapy. At the moment,
there are no data about the effect of exogenous administration of
LOX-PP, alone or in combination with chemotherapeutic drugs,
on Ewing sarcoma cells. These preclinical studies are therefore
needed to test if this strategy can represent a promising line of
research in order to find new therapeutic approaches to treat
Ewing sarcoma patients.

Since LOX expression, and thus LOX-PP, is downregulated
in Ewing sarcoma cells by EWS/FLI1 (15, 106), other therapeu-
tic approach could be the induction of LOX expression, and
thus LOX-PP, in these cells. In this line, it has been proposed
that EWS/FLI1 binds to LOX promoter and downregulates LOX
expression by recruiting the NuRD transcriptional repressor com-
plex containing the HDACs and LSD1 associated proteins. Inter-
estingly, the use of HDACs inhibitors (vorinostat/SAHA) or LSD1
inhibitors (HCI-2509) induced an increase in the levels of LOX
mRNA in A673 Ewing sarcoma cells, which suggest that the anti-
tumor effect of these drugs could be mediated, at least in part,
by the upregulation of LOX (106). However, induction of LOX
expression to achieve an increased production of anti-tumorigenic
LOX-PP in Ewing sarcoma cells may not be as beneficial as
expected: while induction of LOX expression would cause an
increase in LOX-PP, it also would produce an increase in the
production of the LOX mature enzyme, which has been showed
to be pro-oncogenic in Ewing sarcoma cells and other tumors (15,
100, 101).

Other opportunities for therapeutic interventions could be
derived from the identification and characterization of LOX-
PP interactions with other proteins, mainly intracellular proteins
involved in cell signaling and regulation of tumorigenic processes.
Biochemical studies have shown that LOX-PP is an intrinsically
disordered protein (110). These proteins are expected to par-
ticipate in signaling processes due to their capability to adopt
interconverting structures and to interact with their partners, and
have been proposed to be potential drug targets (111). Thus,
characterization of the exact motifs that are involved in LOX-PP
interactions can open the door to the identification of targetable
proteins and the design of small molecules capable to reproduce
the effect of LOX-PP.

In summary, LOX, and more specifically LOX-PP, has been
showed to have anti-tumorigenic properties, which could be
exploited to treat cancer cells. Regarding Ewing sarcoma, it is
yet more than necessary to characterize the pathways involved in
LOX-PP mediated tumor-suppression, in particular the identifi-
cation of the protein interactions that mediate this response, in
order to identify key factors that could provide new therapeutic
targets (Figure 6).

Conclusion

Ewing sarcoma is driven by EWS/FLI1, which is a protein gener-
ated by a tumor-specific aberrant translocation. Although it may
seem like a perfect target for therapeutic applications, directed
therapies toward it have failed to reach the clinic (112). For this
reason, the identification of EWS–FLI target genes and their role
in tumor signaling networks have been addressed in the last years,
and some excellent reviews have assessed this topic (4, 113, 114).
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FIGURE 6 | LOX and therapeutic opportunities in Ewing sarcoma.
LOX expression is repressed by EWS/FLI1 in Ewing sarcoma cells.
Functional studies have demonstrated that LOX acts as a tumor suppressor
gene in Ewing sarcoma and that its activity resides in its propeptide domain
(LOX-PP). Therapeutic opportunities could include for example (1) LOX
de-repression by targeting repression complexes that interact with
EWS/FLI1 at the LOX promoter, (2) administration of LOX-PP or LOX-PP
active derived peptides to block ERK signaling alone or in combination with

traditional chemotherapy (3) or blocking the LOXenz fraction activity (4). The
mechanisms through which LOX-PP exerts its anti-tumor activity are largely
unknown, especially in Ewing sarcoma. For instance, it is currently unknown
if LOX-PP specific receptors (5) (intracellular or transmembrane) are
necessary to produce its anti-tumor activities or if the different
LOX-PP-interacting proteins may interfere with its activity in Ewing sarcoma
(6). Any advance in these aspects could provide new clues to design new
therapeutic tools.

This review is focused on the EWS/FLI1 downstream regula-
tory network, particularly on EWS/FLI1 up- and down-regulated
target genes on which the study of potential targeted therapies
could be of clinical interest. Also, we stated some current questions
regarding pathways and unknown mechanisms underlying the
functional effects of these genes in Ewing sarcoma that still remain
unresolved and could help find key clues for the future studies of
this disease. There are plenty of mechanisms regarding EWS/FLI1
target genes that are still unknown and a deeper knowledge on
them could potentially lead to the development of more specific
and less toxic therapies in Ewing sarcoma.
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Osteosarcoma is the most common bone cancer in children and young adults. Surgery 
and multi-agent chemotherapy are the standard treatment regimens for this disease. 
New therapies are being investigated to improve overall survival in patients. Molecular 
targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, 
metabolism, and apoptosis, have been studied, but it remains a challenge to develop 
novel, effective-targeted therapies to treat this heterogeneous and complex disease. 
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell 
processes including growth, development, and disease. miRNAs function as oncogenes 
or tumor suppressors to regulate gene and protein expression. Several studies have 
demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with 
the potential for development in disease diagnostics and therapeutics. In this review, we 
discuss the current knowledge on the role of miRNAs and their target genes and eval-
uate their potential use as therapeutic agents in osteosarcoma. We also summarize the 
efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs 
in preclinical models of osteosarcoma. Recent progress on systemic delivery as well 
as current applications for miRNAs as therapeutic agents has seen the advancement 
of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer 
or metastatic cancer with liver involvement. We suggest a global approach to the 
understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as 
promising biomarkers for this rare disease.

Keywords: osteosarcoma, microRNA, mutations, cell proliferation, apoptosis

introduction

Osteosarcoma (OS) is an aggressive bone cancer that affects children and adolescents. Approximately 
60% of cases are pediatric patients between 10 and 20 years of age (1). Several studies suggest that 
OS arises from primitive mesenchymal bone-forming cells that undergo aberrant alterations in the 
differentiation program. This results in a heterogenic cancer, with complex etiology, characterized 
by vast genomic instability, highly abnormal karyotypes, and multiple genomic aberrations with 
copy number gains and losses occurring at multiple chromosomes (2, 3). Patients with certain rare 
and inherited syndromes, such as Li–Fraumeni syndrome, hereditary retinoblastoma, Rothmund–
Thomson syndrome, Bloom syndrome, and Werner syndrome have a higher incidence of OS (4). 
Treatment involves standard chemotherapy administered before and after surgery, and may be 
followed by radiation, which achieves a 5-year survival rate of 60–70% of patients. However, the 
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survival of patients with locally advanced or metastatic tumors 
at diagnosis, and recurrent disease remains low (~20%), and the 
median survival time for these patients is only 23  months (5). 
Current clinical trials of cytotoxic chemotherapy and targeted 
agents may achieve an objective response in a subset of patients 
with OS, but have not increased overall survival in the recent 
treatment era. Further, constitutive and acquired resistance to 
these therapies remains a clinical challenge. Therefore, a global 
understanding of the underlying factors of tumor biology will 
assist in the identification of diagnostic and prognostic markers 
and therapeutic targets for the management of patients with OS.

MicroRNAs (miRNAs) belong to the group of small, non-
coding, regulatory RNA molecules, ranging between 18 and 
25 nucleotides in length (6). They recognize and bind specific 
target mRNAs by complete or partial base-pairing mostly at 
the 3′-untranslated region (UTR) of the target genes to post-
transcriptionally regulate gene expression. Since their discovery 
nearly 20  years ago, bioinformatics and biological studies 
have identified >1,000 miRNAs that regulate possibly 50% of 
human genes. Each miRNA likely controls hundreds of gene 
transcripts (7). The sequences of miRNAs are highly conserved 
among distantly related organisms, indicating their participation 
in essential biological processes as development, cellular differen-
tiation, metabolism, proliferation, and apoptosis. Moreover, they 
regulate biological systems as stemness, immunity, and cancer. 
Studies show that more than 50% of miRNA genes are located at 
fragile chromosomal sites and in proximity to regions of deletion 
or amplification that are altered in human cancer, implicating a 
direct involvement for miRNAs in tumorigenesis (8). Families 
of miRNAs that share similar “seed” sequences or are located in 
close proximity on a single genomic locus may be co-expressed 
to form miRNA regulatory networks in particular physiological 
or pathological contexts. miRNAs that are underexpressed in 
cancers are tumor suppressors (loss of miRNA contributes to the 
malignant phenotype), while highly expressed miRNAs function 
as oncogenes (gain of miRNA contributes to the malignant phe-
notype). These expression changes control many genes involved 
in cell proliferation or apoptosis. Therefore, expression profiles 
of miRNAs may be applied as biomarkers for cancer diagnosis.

The first study on miRNA expression in OS, published by Gao 
et al. (9), identified 182 miRNAs from a human OS cell line, indi-
cating that miRNAs may contribute to the pathogenesis of OS. 
Recently, whole genome analysis of DNA copy number, mRNA 
gene expression, and miRNA transcript profiling performed in 
seven OS patient tumors identified a signature of 38 differentially 
expressed miRNAs in OS tumors compared to normal osteoblasts 
(10). Of these, expression levels of 28 miRNAs were down-
regulated and 10 were upregulated ≥10-fold in tumors versus 
osteoblasts, providing likely candidates for further investigation. 
Other miRNA profiling studies have shown altered expression 
of several distinct miRNAs in OS tumors including miR-135b, 
miR-150, miR-542-5p, and miR-652 that were validated in a 
separate group of tumors (11). The analysis of common insertion 
site (CIS)-associated genes identified three miRNAs (miR-181, 
miR-17-5p, and miR-26a-5p) as significant upstream regula-
tors in human OS (12). Also, aberrant expression of individual 
miRNAs is well-recognized to play a role in the initiation and 

progression of various cancers. The oncogenic miR-17–92 cluster 
is overexpressed in several types of cancer and promotes cell 
proliferation (13). In contrast, downregulation of the miR-15/16 
family increases expression of anti-apoptotic proteins B-cell 
lymphoma 2 (Bcl-2) and myeloid leukemia cell differentiation 
protein (Mcl-1) (14) and loss of let-7a facilitates amplification 
of the c-myelocytomatosis virus (MYC) oncogene to promote 
B-cell tumorigenesis (15). Characterization of these miRNAs that 
display altered expression in OS may provide distinct miRNAs 
or miRNA signatures related to particular molecular patterns 
associated with this disease.

Unlike many other types of cancer, there are no traditional 
biomarkers for OS. The presence of metastatic disease and his-
tologic response assessed following adjuvant chemotherapy (i.e., 
the extent of necrosis) are the only generally accepted predictors 
of event-free survival (16). The identification of new diagnostic 
miRNA biomarkers has the potential to complement existing risk 
prediction models and could eventually have a prognostic value 
in this disease. miRNA expression signatures are undergoing 
clinical investigation in pediatric patients with central nervous 
system (CNS) tumors (NCT01595126, NCT01556178), CNS 
tumors along with leukemia and lymphoma (NCT01541800), 
acute myeloid leukemia (AML) (NCT01229124), and neurofi-
bromatosis Type 1 (NF-1) (NCT01595139). Also, the molecular 
analysis of solid tumors (MAST) clinical trial (NCT01050296) 
is designed to prospectively characterize the molecular, cellular, 
and genetic properties of primary and metastatic solid tumors in 
patients including OS. These studies present a novel opportunity 
to investigate the expression of miRNAs in the blood, body fluids, 
and tissue of patients as an early predictor of cancer as well as a 
marker of response to therapy. Of note, one Phase 1 clinical trial 
conducted by MiRNA Therapeutics Inc. is evaluating miR-34 as 
an miRNA replacement therapy in patients with non-resectable 
primary liver cancer, with liver metastasis from other cancers, 
and a cohort of patients with hematological malignancies 
(NCT01829971).

The various genomic and molecular alterations, which are 
linked to the development and progression of OS are well estab-
lished. These include germline mutations, gene amplifications 
and deletions, overexpression and activation of receptor tyrosine 
kinases (RTKs), enhanced cell proliferation, resistance to apoptosis, 
metastasis, drug resistance genes, and miRNAs [reviewed in Ref. 
(17); and available at http://osteosarcoma-db.uni-muenster.de]. 
These alterations mediate changes that affect the expression and 
function of several genes and gene regulatory networks. miRNA 
profiling and computational analyses have identified associations 
between miRNAs and many gene and gene products linked to 
these aberrant factors. This review discusses some of the promi-
nent pathological factors of OS that may be regulated by miRNAs 
and highlights miRNAs that are validated in preclinical OS models.

miRNAs in the Pathogenesis of OS

Germline Mutations
Osteosarcoma is characterized by complex, unbalanced karyo-
types, and the pattern of abnormalities varies among patients. 
Numerical and structural chromosome abnormalities are 
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detected in the majority of OS tumors (58%) (3, 17–19). Common 
numerical chromosomal abnormalities are polyploidy, caused 
by errors in mitosis, aneuploidy, germline mutations, deletions, 
duplications, and unbalanced translocations. These include gain 
of chromosome 1, loss of chromosomes 9, 10, 13, and/or 17, 
partial or complete loss of the long arm of chromosome 6 and 
ring chromosomes (7%) (19, 20). Characteristic reciprocal trans-
locations are absent in OS and rearrangements of chromosomes 
11, 19, and 20 are frequent structural abnormalities (21). Two 
of the most prominent genes that harbor germline mutations 
are the retinoblastoma tumor suppressor gene (RB1) and the 
TP53 tumor suppressor gene (2). These genes are important for 
mitotic checkpoints and are thought to be the underlying cause of 
chromosomal instabilities. Most OS tumors contain inactivation 
of both the retinoblastoma (Rb) and p53 pathways.

RB1
The retinoblastoma protein (pRb) was the first described tumor 
suppressor. pRb1 is a checkpoint protein that binds the E2F fam-
ily of transcription factors and inhibits cell-cycle progression. 
The activation of cyclin-dependent kinases (CDK) and cyclins 
by mitogenic signals phosphorylates pRb, which dissociates from 
E2F transcription factors. This leads to the activation of E2F tar-
get genes to facilitate the G1/S transition and S-phase progression 
(22). Thus, loss of function of the RB1 gene drives tumorigen-
esis in many adult and pediatric cancers including OS (23, 24), 
retinoblastoma (25), medulloblastoma, supratentorial primitive 
neuroectodermal tumor (sPNET) (26), and acute lymphoblastic 
leukemia (ALL) (27). Gene mutations occur in 20–40% of patients 
with sporadic OS (28) and loss of heterozygosity (LOH) at 13q, 
the site of location of the RB1 gene occurs in approximately 70% 
of OS cases (29). Germline mutations along with genetic loss or 
deletions of RB1 are associated with inactivation of pRb. These are 
considered as high risk factors for the development of OS and are 
linked to poor outcome (29).

An miRNA signature consisting of miR-9-5p, miR-138, 
and miR-214 was predicted to target mRNA genes that encode 
proteins involved in pRb-signaling in OS (30). However, the 
experimental validation of these miRNA:mRNA interactions 
has not been conducted. Other miRNAs including miR-449a, 
miR-449b, and the miR-17–92 locus have been described in 
the regulation of Rb/E2F (E2F transcription factor) pathway in 
many cancers (31). Mechanistically, miR-449a and miR-449b 
were direct transcriptional targets of the E2F transcription factor 
1 (E2F1) and negative modulators of pRb phosphorylation by 
inhibition of (cyclin-dependent kinase 6) CDK6 and cell division 
cycle 25A (CDC25A) (32). This was consistent with the previ-
ously identified regulation of CDK/pRb/E2F1 through an auto-
regulatory feedback mechanism by miR-449a (33). Interestingly, 
miR-449a was expressed in low levels in OS cell lines and tumors 
and directly targeted the binding site within the 3′-UTR of the 
BCL2 mRNA (34). In a separate study, restoration of miR-29a in 
osteoblastic cells using miRNA mimetics was shown to repress 
BCL2 mRNA and induce E2F3 and its transcriptional target, 
E2F1 (35). Collectively, these findings support a pro-apoptotic 
and tumor suppressor role for miR-29a that may participate with 
miR-449 to regulate the Rb/E2F signaling network in OS.

miR-17–92 is a well-studied polycistronic miRNA cluster in 
cancer. The miR-17–92 locus contains 15 miRNAs that form four 
“seed” families, miR-17, miR-18, miR-19, and miR-92. Many of 
these are reported to be amplified in diffuse B-cell lymphoma, 
lung, breast, and pancreatic cancers, as well as OS (13, 36, 37). 
Direct target genes of miR-17–92 include E2F1, phosphatase and 
tensin homolog (PTEN), and p21 (13). Two members of the miR-
17–92 cluster (miR-17-5p and miR-18a) were among five highly 
expressed oncogenic miRNAs in several OS cell lines that were 
suggested to be predictive of poor disease prognosis (36). In the 
Sleeping Beauty (SB) transposon-based forward genetic screen, 
miR-17-5p was one of the three enriched upstream regulators 
identified in an OS mouse model (12). Future studies to establish 
the function of miR-17–92 in OS are warranted.

TP53
The human p53 gene encodes the p53 tumor suppressor protein 
that plays a crucial role in maintaining genomic stability. The 
p53 tumor suppressor functions as a transcription factor that 
regulates the expression of various genes that are involved in cell-
cycle arrest, DNA repair, and apoptosis. In normal, unstressed 
cells, mouse double minute 2 (MDM2) binds and inhibits p53 
function to allow p53 degradation via the ubiquitin/proteasome 
pathway. In stressed cells, p53 is stabilized, and p53 transcrip-
tional activity is promoted. Alterations in the TP53 gene are 
associated with functional inactivation of p53 and less favorable 
prognosis in OS (38). Genetic abnormalities of p53, such as 
allelic loss (75–80%), gene rearrangements (10–20%), or point 
mutations (20–30%) are reported in 50% of OS patients (39). The 
MDM gene is also amplified in 16% of OS patients and is associ-
ated with aggressive disease (40). Patients with the Li–Fraumeni 
syndrome with a germline mutation of TP53 are predisposed to 
developing OS.

Studies involving various cancer types have validated several 
miRNAs that are components of the signaling cascades that regu-
late p53 expression. miR-125b, miR-504, miR-25, and miR-30d are 
reported to directly bind the p53 mRNA and negatively regulate 
p53 expression (41). In addition, miR-34a, miR-192, miR-194, 
miR-215, miR-605, and miR-29 regulate upstream components 
and indirectly activate p53 (41). Of these, miR-34a is a key tumor 
suppressor that regulates numerous genes that are involved in 
DNA damage and repair. A positive feedback loop mediated by p53 
target sites in the miR-34a promoter also controls transactivation 
of miR-34a by p53 (42, 43). Mutations in TP53, functional inhibi-
tion of p53, and hypermethylation of the miR-34a promoter are 
all associated with the loss of miR-34a expression in tumors (44). 
In a p53-expressing OS cell line, DNA damage-induced miR-34a 
expression was dependent on p53, which in turn led to the induc-
tion of cell-cycle arrest, promotion of apoptosis, and DNA repair 
(45). This was not observed with p53-deficient OS cells, illustrat-
ing that miR-34a was a downstream target of p53. Restoration 
of miR-34a with miRNA mimics in OS cells repressed p53 and 
runt-related transcription factor 2 (RUNX2) and suppressed 
tumor cell growth (46). Notably, miR-34a was demonstrated to 
be a target of C/EBPα CCAAT/enhancer-binding protein-alpha 
(C/EBPα, encoded by the gene CEBPA) during granulopoiesis, 
and low expression in leukemic blasts with CEBPA mutations 
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elevated levels of E2F3 and its transcriptional target, E2F1 (47). 
A clinical study of the role of miR-34a and miR-194 in pediatric 
patients with AML with mutated CEBPA was recently concluded 
by the Children’s Oncology Group and the results of this study are 
pending (NCT01057199).

p53 can transcriptionally induce miR-192 and miR-215 in 
several types of cancer (48). These miRNAs were markedly 
downregulated in OS (49), and transactivation of miR-192 and 
miR-215 by p53 was also reported in OS cell lines (48). The 
ratio of expression levels of miR-192 and miR-215 has been 
proposed to differentiate p53-negative and p53-expressing OS 
patient tumors (49). In addition, miR-215 has been implicated in 
p53-mediated chemoresistance to methotrexate and the thymi-
daylate synthase inhibitor, Tomudex, in OS cell lines. Resistance 
was mediated through repression of the denticleless protein 
homolog (DTL), a cell-cycle-regulated nuclear, and centrosome 
protein (50). Together, these findings support miR-34a, miR-192, 
and miR-215 as candidates for novel biomarkers of prognosis and 
drug response in OS.

Gene Amplifications
Several genetic deletions and amplification are considered pre-
disposing conditions to OS. Genomic amplifications (homogene-
ously staining regions) occur in approximately 30% of OS cases 
(20), which are associated with the action of oncogenes, such as 
apurinic/apyrimidinic exonuclease 1 (APEX1), cellular homolog 
of avian MYC, RecQ protein-like 4 (RECQL4), CDK4, MDM2, 
RUNX2, and vascular endothelial growth factor A (VEGFA) (51). 
Many of these amplified genes are involved in cellular prolifera-
tion, survival, and angiogenesis of OS. Amplification of the 12q13 
chromosomal region (containing MDM2 and CDK4) or INK4A 
deletion at location 9p21 can affect both the p53 and pRb path-
ways, and may sometimes occur simultaneously with RB or TP53 
alterations (14). Of these amplified genes, the miRNAs targeting 
MYC and RUNX2 have been well-characterized in OS.

MYC
The MYC oncogene encodes a transcription factor that regulates 
genes that control cell growth and cell-cycle progression (52). 
Genetic and epigenetic alterations associated with constitutive 
c-Myc activation promote oncogenesis in a variety of cancers 
(52). The MYC locus is amplified in ~30% of OS tumors (53), 
and c-Myc protein is overexpressed in the majority of OS cases 
(54). Thus, dysregulation of c-Myc is an important component of 
OS pathogenesis. The c-Myc transcription factor globally silences 
several miRNAs either by inhibition of tumor suppressor miRNAs 
(including miR-15a/16-1, miR-34 family, miR-23), or activation 
of oncogenic miRNAs (e.g., miR-17–92). In addition c-Myc forms 
a feedback regulatory loop involving direct or indirect repression 
of let-7, a well-recognized tumor suppressor miRNA, through the 
RNA-binding protein, LIN28 (15, 55). Thayanithy et al. (56) dem-
onstrated significant decreases in expression levels of miRNAs at 
the 14q32 locus (miR-369-3p, miR-544, miR-134, and miR-382) 
in OS cell lines and tumors compared to normal bone tissues. 
This correlated with c-Myc overexpression and enrichment of 
the miR-17–92 cluster. In addition, miR-135b (57) and miR-33b 
(58) were demonstrated to directly repress c-Myc in OS cells 

and restoration inhibited cell proliferation, migration, and inva-
sion. Interestingly, the expression of let-7 family members was 
attenuated in OS cell lines (59, 60). This was predicted to affect 
the regulation of oncogenes that influence cell-cycle progression 
and apoptosis. Since let-7 targets multiple oncogenes including 
MYC, RAS, CCND, BCL2 (61), this miRNA may be an interesting 
candidate for future investigation in this disease.

RUNX2
The RUNX2 gene located on chromosome 6p12–p21 is frequently 
amplified in OS and is associated with tumor growth (20). This 
gene encodes a transcription factor that is necessary for both 
osteoblast differentiation and chondrocyte maturation. RUNX2 
is linked to many human cancers including breast, prostate, and 
bone cancer and also cancer metastasis in bone (62). High expres-
sion levels often correlate with poor response to chemotherapy 
(63, 64). The RUNX2 protein has been shown to directly interact 
with p53 and pRb transcription factors (58), but the precise 
function of RUNX2 in OS pathogenesis is unclear. An inverse 
correlation of expression between miR-23a and RUNX2 mRNA 
levels in OS cells and tumors was demonstrated by He et al. (65). 
An association between miR-23a and RUNX2 and chemokine 
(C–X–C motif) ligand 12 (CXCL12) mRNA was demonstrated 
as enrichment of miR-23a suppressed transcriptional activity 
of RUNX2 and inhibited proliferation in OS cells and xenograft 
tumors (65). These studies indicate a tumor suppressor function 
for miR-23a in this disease. In addition, miR-103a was reported 
to play a role in the regulation of osteoblast differentiation by 
directly targeting the 3′-UTR of RUNX2 mRNA to inhibit matrix 
mineralization and bone formation (66). Other miRNAs, miR-
135 and miR-203, were identified to modulate RUNX2 in breast 
cancer cells (67). Inhibition of RUNX2 interacting proteins by 
miRNAs also affected RUNX2 stability and transactivation poten-
tial. Protein expression levels of RUNX2 and the co-transcription 
factor, SATB2, were regulated by miR-205 and overexpression 
of the special AT-rich sequence-binding protein 2 (SATB2) 
activated RUNX2 and reversed the inhibitory effects of miR-205 
on osteoblastic differentiation (68). These studies provide more 
comprehensive details on the involvement of miRNAs involved 
in osteoblast regulation and OS.

Receptor Tyrosine Kinase Activation
Aberrant activation of RTKs and their ligands promote malignant 
progression in OS. These RTKs include epidermal growth factor 
receptor (EGFR), insulin-like growth factor 1 receptor (IGF-1R), 
vascular endothelial cell growth factor receptor (VEGFR), 
platelet-derived growth factor receptor (PDGFR), and mesen-
chymal–epithelial transition factor (c-Met). RTK activation via 
gene mutations, gene amplifications, protein overexpression, 
and/or ligand-dependent autocrine/paracrine loops has been 
demonstrated in patient primary tumors, cell lines, and xeno-
graft tumors. This is generally associated with cell proliferation, 
cell survival and metastasis, and overall poor prognosis. In the 
past decade, several monoclonal antibodies and small molecule 
inhibitors targeted against RTKs have been evaluated in pediat-
ric patients with solid tumors including OS (69). These agents 
were well-tolerated but showed limited single-agent activity in 
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patients. Moreover, resistance to these therapies due to cross-talk 
between receptors resulted in the activation of compensatory 
RTK cell survival signaling to facilitate tumor progression (15). 
A more detailed understanding of biological mechanisms of drug 
response and resistance will assist in addressing the challenges 
of RTK inhibition. Recent experimental studies have investigated 
the role of several tumor suppressor miRNAs in the regulation of 
IGF-1R and MET in OS.

IGF-1R
IGF-1R is a transmembrane receptor that is activated by IGF-1 
and IGF-2 ligands and mediates signaling involved in processes, 
such as cell proliferation, migration, and differentiation (70). 
High expression levels of IGF-1R, IGF-1, and IGF-2 have been 
demonstrated in many cancers including breast, prostate, colon, 
and pediatric cancer (71, 72). IGF-1R is overexpressed in ~45% of 
OS patients (72). In 2013, Chen et al. demonstrated that miR-16 
expression levels were low in OS cell lines and inversely correlated 
with IGF-1R mRNA levels. miR-16 is a member of the mir-15/16 
family that functions as a tumor suppressor in a variety of cancers. 
These miRNAs target BCL2 and numerous genes involved in the 
G1/S transition, such as cyclin D1 (CCND1), cyclin D3 (CCND3), 
cyclin E1 (CCNE1), and CDK6 (14). The restoration of miR-16 
in OS cells suppressed proliferation by inhibition of IGF-1R and 
the Ras/Raf/mitogen-activated protein kinase (MAPK) path-
way. These findings were significant since MAPK activation is 
associated with the induction of proliferative and anti-apoptotic 
signaling in OS (73) and in resistance mechanisms to targeted 
therapies (74). Han et al. (75) demonstrated that miR-194 directly 
targeted CDH2 and IGF-1R mRNA to suppress OS cell prolifera-
tion and metastasis in vitro and in vivo. A tumor suppressor role 
of miR-194 was also described for gastric cancer (76) and lung 
cancer (77), though bone morphogenetic protein 1 (BMP1) and 
the cyclin-dependent kinase inhibitor p27(kip1) were the targets 
of miR-194 in these cancers. Furthermore, expression of miR-
133b correlated negatively with IGF-1R, Bcl2-like 2 (Bcl2L2), 
Mcl-1, and c-Met protein levels in OS cells (78). This suggests the 
potential of miR-133b to function as a master regulator of criti-
cal genes, which control cell survival in OS. These insights into 
the miRNA-mediated regulation of IGF-1R provide new details 
of biological mechanisms of response and resistance to IGF-1R 
inhibition in preclinical models of OS.

MET
The MET oncogene encodes the receptor for the hepatocyte 
growth factor (HGF), a cytokine that stimulates invasive growth of 
normal and neoplastic cells. The c-Met receptor is overexpressed 
in a variety of human malignancies, including sarcomas, and 
particularly in chordoma (94.4%), chondrosarcoma (54.2%), and 
OS (23.3%), determined in 122 cases of malignant bone tumors 
(79). Activation of c-Met increases phosphatidylinositol-3-kinase 
(PI3K)/Akt, Src, c-Jun N-terminal kinase, signal transducer 
and activator of transcription 3 (STAT3) and MAPK pathway 
signaling, and is implicated in acquired resistance to EGFR and 
angiogenesis inhibitors (80, 81). Two miRNAs that were found 
to directly target MET mRNA in OS were miR-34a (82) and 
miR-199a-3p (83). This was consistent with previous reports that 

c-Met is one of the common targets for the miR-34 family (42). 
The overexpression of c-Met in tumors of p53-deficient mice and 
in Li–Fraumeni patients (84) suggests that miR-34/p53/c-Met 
may form a gene regulatory network that cooperatively controls 
tumor progression in OS. Restoration of either miR-34a or 
miR-199a-3p with respective miRNA mimics in OS cell lines 
achieved a reduction of cell migration and invasion. In addition, 
the repression of miR-199a-3p was associated with inhibition 
of mechanistic target of rapamycin (mTOR) as well as STAT3. 
In an independent investigation, miR-199a-3p and let-7a were 
evaluated in OS cells using lipid-modified dextran-based poly-
meric nanoparticles as a delivery system (85). Studies of effective 
delivery methods for miRNAs are relevant to achieve optimal 
miRNA enrichment or gene silencing in OS cells and tumors. 
These studies demonstrated that a lipid-modified dextran-based 
polymeric nanoparticle platform may be an effective non-viral 
carrier for efficient and effective miRNA delivery in vivo.

Cell Proliferation
The PI3K/Akt and MAPK pathways are two of the most frequently 
activated signal transduction pathways associated with OS. They 
contribute to disease initiation and development, uncontrolled 
cell proliferation, tumor cell invasion and metastasis, cell-cycle 
progression, inhibition of apoptosis, angiogenesis, and chem-
oresistance. The PI3K/Akt pathway is activated by the binding 
of ligands to respective RTKs (including IGF-1R, c-Met, and 
EGFR). Downstream signals activate targets involved in cell sur-
vival and inactivate pro-apoptotic proteins. The MAPK pathway 
is also activated by IGF-1R and EGFR signals, which may lead to 
cross-talk with the PI3K/Akt pathway. Aberrant activation of the 
MAPK pathway is often linked to lung metastasis (86) and drug 
resistance in OS (74). The influence of miRNAs on components 
of these pathways has been studied in OS pathology.

PI3K/Akt
The PTEN protein functions as a tumor suppressor that negatively 
regulates activation of the Akt pathway to inhibit cell prolifera-
tion (87). Gene deletions at the PTEN locus account for loss of 
PTEN function in 15–33% of OS patients (88). Consequently, loss 
of PTEN is associated with tumor progression. PTEN mRNA was 
directly targeted by miR-221 in OS cell lines and high miR-221 
levels were shown to correlate with low PTEN mRNA and protein 
expression (89). Enrichment with miR-221 mimics induced OS 
cell survival while attenuation with antimiRs induced apoptosis, 
demonstrating that this is an oncogenic miRNA in OS. Notably, 
inhibition of miR-221 enhanced sensitivity to cisplatin (89), 
indicating the involvement of miR-221 in drug resistance mecha-
nisms. Other miRNAs including miR-92a and members of the 
miR-17 and miR-130/301 families were found to show an inverse 
correlation in expression levels with PTEN mRNA expression 
levels in OS tumors (37) to provide additional candidates for 
investigation. Of these, inhibition of miR-17 resulted in increased 
PTEN mRNA in OS, which was associated with suppression of 
tumor growth and metastasis (90).

Another critical component in the PI3K/Akt pathway is the 
mTOR protein kinase. The mTOR complex consists of mTOR 
complex-1 (mTORC1), which regulates cellular proliferation, 
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and mTOR complex-2 (mTORC2), which phosphorylates and 
activates Akt. Direct repression of mTOR by the miR-101 tumor 
suppressor was reported in OS (91), and inhibition of cell pro-
liferation and apoptosis were mediated through suppression of 
mTOR. Growth inhibition by miR-101 was also shown in hepa-
tocellular carcinoma cells (92), and miR-101 was also found to 
contribute to cisplatin-induced apoptosis. Thus, these miR-221/
miR-17/PTEN and miR-101/mTOR interactions provide new 
insight into the role of miRNAs as potential regulators of aberrant 
PI3K/Akt pathway signaling in OS. Further, the identification of 
miRNAs associated with resistance to cisplatin is promising for 
the development of biomarkers of chemoresistance in this disease.

MAPK
Epidermal growth factor receptor signaling with activation of 
the MAPK pathway occurs in 49% of OS cases and is linked 
to metastatic disease (93). Ras/Raf is upstream of MAPK/ERK 
kinase (MEK). Aberrant activation of the Ras/Raf/MAPK path-
way is known to be specifically associated with OS initiation, 
progression, and outcome. A direct interaction between miR-217 
and KRas was recently reported to participate in MAPK activa-
tion in OS (94). In a study evaluating miR-143 in OS tumors, 
a direct association of elevated EGFR phosphorylation and 
matrix metalloprotease-9 (MMP-9) levels and low miR-143 
expression was reported (95). The MMP family of proteolytic 
enzymes facilitates tumor cell invasion and metastasis through 
degradation of various components of the extracellular matrix 
(96). MMP-9 degrades collagen type IV, the major component of 
the basement membrane and overexpression is associated with 
tumor metastasis (96). In this study, EGF promoted activation of 
EGFR and induced MMP-9 to enhance the ability of OS cells to 
metastasize. Significantly, miR-143 was reported to inhibit EGFR 
signaling-dependent OS cell invasion.

Apoptosis
Apoptosis is a critical event in embryonic development and in 
maintenance of tissue homeostasis of multicellular organisms. 
The activation of anti-apoptotic signals facilitates uncontrolled 
cell growth in cancer cells. The major apoptotic pathways include 
both the intrinsic and extrinsic pathways. The intrinsic pathway is 
mediated by mitochondrial components and triggered by intracel-
lular stimuli, such as DNA damage, cytotoxic agents, growth fac-
tor suppression, and/or oxidative stress. The extrinsic pathway is 
initiated by the binding of death ligands, Fas ligand (FasL), tumor 
necrosis factor (TNF), TNF-related apoptosis-inducing ligand 
(TRAIL), and TNF-like weak inducer of apoptosis (TWEAK) to 
the TNF receptor (TNFR) superfamily of death receptors (97). 
Other key proteins in tumor cells that control apoptosis include 
the tumor suppressor p53 and PI3K/Akt activation that regulate 
downstream substrates that trigger or prevent apoptosis, respec-
tively (97). miRNAs directly targeting components of the basic 
apoptotic pathways in OS have been identified.

Intrinsic Apoptotic Pathway
Low levels of miR-133a in OS cell lines and tissues were found 
to correlate with tumor progression and poor prognosis (98). 
Restoration of miR-133a inhibited cell proliferation and induced 

apoptosis in OS cell lines. A similar tumor suppressor role for 
miR-133a was reported in colorectal cancer (99). The regulatory 
mechanism of miR-133a involved direct targeting and sup-
pression of B-cell lymphoma-extra large (Bcl-xL) and Mcl-1 
proteins. Both Bcl-xL and Mcl-1 are anti-apoptotic proteins 
that are highly expressed in OS and promote cell survival (100). 
The miR-29 family comprises three isoforms arranged in two 
clusters, miR-29b-1/miR-29a located on chromosome 7 and 
miR-29b-2/miR-29c on chromosome 1, and these miRNAs 
have been identified as tumor suppressors in chronic lymphatic 
leukemia (CLL), AML, lung cancer, and breast cancer (101). Low 
levels of miR-29a were observed in OS, which when restored, 
induced apoptosis leading to the silencing of BCL2 and MCL1 
and enrichment of the tumor suppressors E2F1 and E2F3 (35). 
miR-29 is currently being clinically evaluated as a biomarker 
for primary measure outcome of histone deacetylase inhibitor, 
AR-42, in adult and pediatric AML patients (NCT01798901). A 
clinical trial to evaluate the molecular mechanism and clinical 
significance of the interaction between Twist1 and other epithe-
lial-to-mesenchymal regulators through the miR-29 family is 
also underway (NCT01927354). Another study investigating the 
role of miR-29b in patients with oral squamous cell carcinoma 
has been proposed (NCT02009852). Collectively, these data 
support a tumor suppressor function of miR-29 and suggest that 
the use of synthetic miR-29 oligonucleotides or agents increasing 
miR-29 expression can be incorporated in the study of expres-
sion changes of critical genes in OS.

Extrinsic Apoptotic Pathway
Fas ligand (FasL or CD95L) is a type-II transmembrane protein 
that belongs to the TNF family (97). FasL binds the Fas receptor 
(Fas, also called apoptosis antigen 1, Apo1, or cluster of differ-
entiation 95, CD95) and induces apoptosis. Low Fas expression 
in OS tumor cells was associated with disease development and 
progression. Huang et  al. demonstrated that miR-20a encoded 
by the miR-17–92 cluster attenuated FAS levels and regulated 
Fas-mediated apoptosis in OS cells (102). Another miRNA, 
miR-106a, which was downregulated in OS cell lines and tumors, 
was associated with regulation of FAS (103). miR-106a is part of 
a miRNA cluster (miR-17, miR-18a, miR-92a, and miR-106b), 
and cross-talk between miRNAs was suggested to mediate FAS 
repression. Interestingly, the pro-apoptotic gene BH3-only (BIM) 
was suppressed by miR-17 only (103) to support the regulation of 
Fas-mediated apoptosis by this miRNA cluster in OS cells.

Metastasis
In general, OS patients with lung metastasis have a poor progno-
sis. The overall survival rate is low (~25%) for those patients who 
present with metastases (~20% of all cases) (104). The process 
of metastasis involves dissemination of cells from the primary 
tumor, invasion of the extracellular matrix, and proliferation of 
cells at distant sites (105). A number of factors, including Rho-
associated coiled-coil kinase 1 (ROCK1), MMPs, and c-Fos (the 
cellular homolog of v-fos), are involved in tumor metastasis. 
Recent studies have identified several miRNAs that directly 
target the mRNAs encoding these proteins. The identification 
of miRNAs associated with metastatic disease holds promise as 
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circulating miRNA biomarkers assessing disease characteristics 
that may be detected in serum and plasma of patients.

Rho-Associated Coiled-Coil Kinase 1
The ROCK1 protein serine/threonine kinase is a downstream 
effector of the small GTPase RhoA, and is a regulator of the 
actomyosin cytoskeleton. The RhoA/ROCK pathway participates 
in the process of tumorigenesis in numerous types of cancer. 
ROCK1 promotes contractile force generation and is involved in 
cell motility, metastasis, and angiogenesis in cancer cells (106). 
Several miRNA:ROCK1 mRNA associations have been described. 
Generally, ROCK1-associated miRNAs, miR-340 (107), miR-335 
(108), miR-145 (109), and miR-144 (110), were weakly expressed 
in OS cell lines and tissues and correlated inversely to ROCK1 
overexpression. In addition, low expression levels of these miR-
NAs were associated with OS progression and metastasis through 
mechanisms involving ROCK1 to provide initial evidence that 
supports these miRNAs as predictors of poor prognosis in OS.

MMP-13
Matrix metalloproteases are produced either by tumor cells or 
stromal cells. Overexpression of MMP proteins is an impor-
tant predictive factor for relapse or nodal metastasis of many 
carcinomas (111, 112). MMP-13 expression is common in lung 
metastasis (31). Recent evidence shows the emerging roles 
of miRNAs in direct repression of MMP through inhibition 
of gene transcription or (113) inhibition of MMP RNA levels 
(114). Osaki et al. showed that the expression of miR-143 was 
significantly downregulated in comparison to expression levels 
in parental (HOS) cell line and subclone (143B) human OS cell 
line, which shows lung metastasis in a mouse model (31). This 
finding correlated with MMP-13 upregulation, which implicated 
MMP-13 as a downstream mediator of miR-143 function in OS 
metastasis.

FOS
FBJ murine osteosarcoma viral oncogene homolog (FOS) is 
the transforming gene identified originally in the FBi and FBR 
murine sarcoma viruses (115). The c-Fos protein is part of a 
heterodimeric complex with JUN and is a major component 
of the Activator Protein-1 (AP-1) transcription factor complex. 
AP-1 regulates cell growth, differentiation, transformation, and 
bone metabolism (116). c-Fos is overexpressed in 61% of OS 
tumors compared to benign and normal tissue (117). It is also 
enriched in high-grade lesions and in patients with metastases 
(42%). c-Fos overexpression in transgenic mice was associated 
with OS development, suggesting a potential role in tumor initia-
tion (118). The correlation between low expression of miR-181b/
miR-21 signaling and FOS upregulation was made in malignant 
gliomas (119). miR-181b modulated FOS expression by directly 
targeting the binding site within the 3′-UTR. mir-221 was a pre-
dicted gene target of FOS (10), but the integrated analyses of FOS 
mRNA and regulatory miRNAs have not been experimentally 
studied in OS.

Drug-Resistant Genes
Drug resistance is often mediated through the activation of 
several molecular pathways that inhibit apoptosis and promote 

cell survival, to compensate for the effects of chemotherapy and 
targeted inhibition. In addition, increased DNA damage repair 
and ejection of the drug from the cell by drug efflux pumps reduce 
the efficacy of many cytotoxic agents. Experimental studies have 
demonstrated that the altered expression of specific miRNAs that 
regulate these cellular processes leads to drug resistance in differ-
ent cancers. In OS cells, overexpression of miR-221 and miR-101 
caused cisplatin resistance, mediated through the PTEN/Akt 
pathway (89, 92), while conversely, increased miR-217 expression 
levels were associated with reduction in KRas and enhanced sen-
sitivity to quercetin and/or cisplatin (50). In the study conducted 
by Song et al., miR-215 was shown to induce G2 arrest in OS and 
colon cancer cells leading to chemoresistance to methotrexate 
and Tomudex (50).

MDR1
An underlying cause of multi-drug resistance (MDR) in OS is the 
overexpression of one or more of the ATP-binding cassette (ABC) 
transporters. Many cytotoxic agents are substrates for the MDR1 
(ABCB1) gene, resulting in overexpression of P-glycoprotein 
(P-gp), a 170–190 kDa transmembrane glycoprotein that belongs 
to the ABC superfamily (120). MDR (in particular, ABCB1, 
ABCG2, and ABCC family members) mediates the efflux of many 
cytotoxic agents in OS to decrease drug efficacy (120). Zhu et al. 
(121) have demonstrated that MDR1/P-gp expression in human 
cancer cells was regulated by high levels of miR-27a and miR-451 
expression. miR-27a/miR-27a* is a miRNA pair derived from a 
single precursor. In this study, the sensitivity to and intracellular 
accumulation of cytotoxic drugs that were transported by P-gp 
were enhanced by treatment with antagomirs against miR-27a, 
demonstrating a role in MDR1-mediated chemoresistance in OS. 
miR-27a/miR-27a* was also shown to promote pulmonary OS 
metastases formation (122) to suggest this miRNA functions as 
an oncogene in this disease. In contrast, in head and neck squa-
mous cell carcinoma, miR-27a* was demonstrated as a tumor 
suppressor by targeting the EGFR signaling axis (123) to illustrate 
fundamental differences in miRNA expression between OS and 
other types of cancer.

Challenges and Future Perspectives
Recent studies have generated a vast amount of DNA sequenc-
ing and genomic data that have provided tremendous insight 
into the molecular pathology of OS (4). Several genetic and 
epigenetic alterations in OS have been established that are 
linked to the development, proliferation, and survival of tumor 
cells (17, 19). The mapping of human miRNA genes has also 
identified specific miRNAs in OS that modulate gene expression 
and cellular processes. This has provided new insight into the 
complex genetic mechanisms of OS tumorigenesis. Many of 
these miRNA genes are located in cancer-associated genomic 
regions or in fragile sites (8, 18) and are reportedly associated 
with the development, progression, and metastasis of OS tumors 
(represented in Figure 1 and summarized in Table 1). miRNAs 
are intriguing molecules, as the expression patterns appear to be 
tissue and cancer-type specific, and the small size is amenable 
to development for clinical applications. Of interest, circulat-
ing miRNAs from tumor cells that are detected in the blood of 
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patients with cancer present a novel opportunity to use miRNAs 
as an early predictor of cancer as well as a marker of response 
to therapy.

Research characterizing distinct OS-associated miRNAs is 
still in its infancy. The dysregulation of miRNAs in OS is likely 
influenced by a variety of factors, which are only starting to 
be understood. Since OS is a disease that is marked by genetic 
abnormalities including mutations, single-nucleotide poly-
morphisms (SNPs), and gene amplifications, it is expected that 
these alterations may also affect miRNA function. Mutations 
in the miRNA recognition sites of target mRNAs may affect 
miRNA binding, resulting in escape from regulation by a 
specific miRNA. Gene mutations and sequence variation muta-
tions affecting miRNA sequences can potentially affect either 
processing and/or expression of mature miRNAs to prevent 
recognition of mRNA targets. However, at present, there is no 
clear association between mutations and SNPs identified in 
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FiGURe 1 | Network of miRNAs and target genes in OS. The figure depicts 
altered miRNA genes that play a critical role in the development and progression 
of OS. The majority of miRNAs are downregulated (tumor suppressors) and target 
genes are overexpressed (oncogenes). Upregulated miRNAs (oncogenes) are 
depicted by upward arrows and target genes are repressed (tumor suppressors). 
Abbreviations: MDR1, multi-drug resistance 1; FasL, Fas ligand; IGF-1R, 
insulin-like growth factor 1 receptor; EGFR, epidermal growth factor receptor; 

ROCK1, Rho-associated coiled-coil kinase 1; Bcl2, B-cell lymphoma-2; Bcl-xL, 
B-cell lymphoma-extra large; Mcl-1, myeloid leukemia cell differentiation protein; 
PTEN, phosphatase and tensin homolog; MMP-13, matrix metalloprotease-13; 
N-Cad, N-Cadherin; SATB2, special AT-rich sequence-binding protein 2; RUNX2, 
runt-related transcription factor 2; DTL, denticleless protein homolog). Solid gray 
arrows represent activated signaling pathway; solid blunt lines represent inhibition 
of signals; dotted gray lines represent indirect signaling pathways.

miRNA precursors in tumors, and cancer cell lines. These are 
not generally attributed to tumorigenesis and do not alter the 
secondary structure or function of the mature miRNAs (125, 
126). Only few studies of this type have been conducted in OS 
specifically. Further screening for genetic variants in miRNA 
genes warrants investigation to determine whether genetic 
aberrations in miRNAs are integrated into the known cytoge-
netic abnormalities observed in OS.

Many of the miRNAs discussed in this review are preliminary 
findings based on in vitro studies using cell lines derived from OS 
tumors and are not fully validated in vivo or in functional studies. 
The robust confirmation of individual or miRNA signatures in 
preclinical disease models is important for potential applications 
to cancer treatment. Reduced levels of mature miRNAs in tumors 
may be a consequence of true absence (lack of inheritance), 
secondary loss (genetic loss, epigenetic silencing), or defects in 
biogenesis pathways or transcriptional repression. Quantitative 
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TABLe 1 | Prominent clinopathological factors associated with OS and regulatory miRNAs that are validated in preclinical OS models.

OS-associated factor Target gene/pathway miRNA Altered protein(s) miRNA function Reference

Germline mutation RB1 miR-17–92 Not verified in OS Oncogene (36, 37)
TP53 miR-34 p53 aTS (45)

bmiR-192 p53/RUNX2 TS (46)
bmiR-215 p53 TS (48)

Gene amplification MYC bmiR-369-3p c-Myc TS (56)
bmiR-544
bmiR-134
bmiR-382
miR-135b c-Myc TS (57)
miR-33b c-Myc TS (58)

RUNX2 miR-23a RUNX2/CXCL12 TS (65)
miR-205 RUNX2/SATB2 (66)

Receptor tyrosine kinase 
activation

IGF-1R miR-16 IGF-1R TS (124)
MET miR-194 IGF-1R/N-Cadherin TS (75)

miR-133b IGF-1R/Bcl2L2/Mcl-1/c-Met TS (78)
miR-34 c-Met TS (82)
miR-199a-3p c-Met TS (83)

Cell proliferation PI3K/Akt miR-221 PTEN Oncogene (89)
miR-17 PTEN Oncogene (37)

MAPK miR-143 pEGFR TS (95)
Apoptosis Intrinsic pathway miR-133a Bcl-xL/Mcl-1 TS (100)

miR-29 Bcl2/Mcl-1/MMP TS (35)
Extrinsic pathway miR-20a FasL TS (102)

miR-106a FasL TS (103)
miR-17 BIM TS (103)

Metastasis ROCK1 miR-340 ROCK1 TS (107)
miR-335 ROCK1 TS (108)

MMP-13 miR-145 ROCK1 TS (109)
miR-144 ROCK1 TS (110)

FAS miR-143 MMP-13 TS (31)
miR-20a FasL TS (102)

Drug resistance MDR1 miR-27a P-gp Oncogene (121)

aTS, tumor suppressor.
bmiRNA signature.
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real-time reverse transcription polymerase chain reaction (qRT-
PCR) and oligonucleotide microarray (microchip) analysis are 
the most common methods for measuring miRNA levels, but 
there is currently no standardized technique for evaluation of 
miRNA expression, which is critical for clinical translation. In 
addition, miRNA potential targets can be predicted using compu-
tational algorithms, such as TargetScan (127) and microRNA.org 
(128). By computer predictions and stable isotope labeling with 
amino acids in cell culture (SILAC), a single miRNA has multiple 
targets and is capable of inhibiting the translation of hundreds 
of proteins (129). These are valuable tools for the integrated and 
functional analyses of miRNA and mRNA targets, and miRNA 
gene networks, which are also essential for understanding global 
miRNA roles in OS tumors.

Importantly, miRNA targets are tissue specific and the regula-
tory roles are in particular physiological or pathological contexts. 
Approximately 60% of mRNAs have evolutionarily conserved 
sequences that are predicted to bind miRNAs (130). Thus, the 
expression of target genes may be controlled by several different 
miRNAs, and cross-talk between miRNA networks may affect 
an individual miRNA-based effect. Consequently, an individual 

miRNA may have oncogenic or tumor suppressor properties in 
different cell types. Finally, further research to develop strategies 
for effective and safe miRNA delivery systems is needed. Localized 
delivery or the use of polyethylene glycol (PEG) in PEGylated 
liposomes, lipidoids, and biodegradable polymers are being tested 
[reviewed in Ref. (131)]. Improvements in delivery formulations 
will reduce the risk of hepatotoxicity, organ failure, and death in 
preclinical mouse models (131). The design of miRNA precursor 
mimics (e.g., short hairpin RNAs) or true pre-miRNAs may also 
minimize toxic side effects while retaining targeted functions. 
Nonetheless, these small molecules have greatly enhanced our 
knowledge of the molecular mechanisms that regulate gene 
expression in OS, and it is hoped miRNAs will be successfully 
developed to improve the current management of OS.

Acknowledgments

The cost for publication of this article was supported by NIH 
COBRE Grant 8P20GM103464-8 to VS and Nemours Biomedical 
Research. This work was also supported by NIH (P20-GM103464 
and R21-NS085691 to SY).

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
www.frontiersin.org
http://microRNA.org


August 2015 | Volume 3 | Article 6932

Sampson et al. OS-associated miRNAs

Frontiers in Pediatrics | www.frontiersin.org

References

 1. Vander Griend RA. Osteosarcoma and its variants. Orthop Clin North Am 
(1996) 27(3):575–81. 

 2. Overholtzer M, Rao PH, Favis R, Lu XY, Elowitz MB, Barany F, et al. The 
presence of p53 mutations in human osteosarcomas correlates with high lev-
els of genomic instability. Proc Natl Acad Sci U S A (2003) 100(20):11547–52. 
doi:10.1073/pnas.1934852100 

 3. Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de Bruijn I, de 
Jong D, et  al. Osteosarcoma originates from mesenchymal stem cells in 
consequence of aneuploidization and genomic loss of Cdkn2. J Pathol (2009) 
219(3):294–305. doi:10.1002/path.2603 

 4. Ottaviani G, Jaffe N. The etiology of osteosarcoma. Cancer Treat Res (2009) 
152:15–32. doi:10.1007/978-1-4419-0284-9_2 

 5. Fagioli F, Aglietta M, Tienghi A, Ferrari S, Brach del Prever A, Vassallo E, 
et al. High-dose chemotherapy in the treatment of relapsed osteosarcoma: an 
Italian sarcoma group study. J Clin Oncol (2002) 20(8):2150–6. doi:10.1200/
JCO.2002.08.081 

 6. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and 
specific genetic interference by double-stranded RNA in Caenorhabditis 
elegans. Nature (1998) 391(6669):806–11. doi:10.1038/35888 

 7. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev (2015) 
87:3–14. doi:10.1016/j.addr.2015.05.001 

 8. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. 
Human microRNA genes are frequently located at fragile sites and genomic 
regions involved in cancers. Proc Natl Acad Sci U S A (2004) 101(9):2999–
3004. doi:10.1073/pnas.0307323101 

 9. Gao J, Yang TT, Qiu XC, Yu B, Han JW, Fan QY, et al. [Cloning and identifica-
tion of microRNA from human osteosarcoma cell line SOSP-9607]. Ai Zheng 
(2007) 26(6):561–5. 

 10. Maire G, Martin JW, Yoshimoto M, Chilton-MacNeill S, Zielenska M, Squire 
JA. Analysis of miRNA-gene expression-genomic profiles reveals complex 
mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet 
(2011) 204(3):138–46. doi:10.1016/j.cancergen.2010.12.012 

 11. Lulla RR, Costa FF, Bischof JM, Chou PM, de F Bonaldo M, Vanin EF, 
et al. Identification of differentially expressed microRNAs in osteosarcoma. 
Sarcoma (2011) 2011:732690. doi:10.1155/2011/732690 

 12. Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT, et al. 
A sleeping beauty forward genetic screen identifies new genes and pathways 
driving osteosarcoma development and metastasis. Nat Genet (2015) 
47(6):615–24. doi:10.1038/ng.3293 

 13. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update 
on its genomics, genetics, functions and increasingly important and numer-
ous roles in health and disease. Cell Death Differ (2013) 20(12):1603–14. 
doi:10.1038/cdd.2013.125 

 14. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discov-
ery, function and future perspectives. Cell Death Differ (2010) 17(2):215–20. 
doi:10.1038/cdd.2009.69 

 15. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, et al. MicroRNA 
let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt 
lymphoma cells. Cancer Res (2007) 67(20):9762–70. doi:10.1158/0008-5472.
CAN-07-2462 

 16. Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current chal-
lenges and future directions. Expert Rev Anticancer Ther (2006) 6(7):1075–85. 
doi:10.1586/14737140.6.7.1075 

 17. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Neumann A, et al. 
Structuring osteosarcoma knowledge: an osteosarcoma-gene association 
database based on literature mining and manual annotation. Database (Oxford)  
(2014) 2014:bau042. doi:10.1093/database/bau042 

 18. Sarver AL, Thayanithy V, Scott MC, Cleton-Jansen AM, Hogendoorn PC, Modiano 
JF, et al. MicroRNAs at the human 14q32 locus have prognostic significance in 
osteosarcoma. Orphanet J Rare Dis (2013) 8:7. doi:10.1186/1750-1172-8-7 

 19. Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, et al. High-resolution 
mapping of amplifications and deletions in pediatric osteosarcoma by use 
of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer (2003) 
38(3):215–25. doi:10.1002/gcc.10273 

 20. Lau CC, Harris CP, Lu XY, Perlaky L, Gogineni S, Chintagumpala M, 
et  al. Frequent amplification and rearrangement of chromosomal bands 

6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer (2004) 
39(1):11–21. doi:10.1002/gcc.10291 

 21. Bridge JA, Nelson M, McComb E, McGuire MH, Rosenthal H, Vergara G, 
et  al. Cytogenetic findings in 73 osteosarcoma specimens and a review of 
the literature. Cancer Genet Cytogenet (1997) 95(1):74–87. doi:10.1016/
S0165-4608(96)00306-8 

 22. Fang ZH, Han ZC. The transcription factor E2F: a crucial switch in the control 
of homeostasis and tumorigenesis. Histol Histopathol (2006) 21(4):403–13. 

 23. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, 
et al. A human DNA segment with properties of the gene that predisposes 
to retinoblastoma and osteosarcoma. Nature (1986) 323(6089):643–6. 
doi:10.1038/323643a0 

 24. Deshpande A, Hinds PW. The retinoblastoma protein in osteoblast differen-
tiation and osteosarcoma. Curr Mol Med (2006) 6(7):809–17. doi:10.2174/15
66524010606070809 

 25. Mahalingam D, Mita A, Sankhala K, Swords R, Kelly K, Giles F, et al. Targeting 
sarcomas: novel biological agents and future perspectives. Curr Drug Targets 
(2009) 10(10):937–49. doi:10.2174/138945009789577990 

 26. Li M, Lockwood W, Zielenska M, Northcott P, Ra YS, Bouffet E, et al. Multiple 
CDK/CYCLIND genes are amplified in medulloblastoma and supratentorial 
primitive neuroectodermal brain tumor. Cancer Genet (2012) 205(5):220–31. 
doi:10.1016/j.cancergen.2012.03.002 

 27. Okamoto R, Ogawa S, Nowak D, Kawamata N, Akagi T, Kato M, et al. Genomic 
profiling of adult acute lymphoblastic leukemia by single nucleotide poly-
morphism oligonucleotide microarray and comparison to pediatric acute 
lymphoblastic leukemia. Haematologica (2010) 95(9):1481–8. doi:10.3324/
haematol.2009.011114 

 28. Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki MS, Kotoura Y, et al. 
Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res 
(1994) 54(11):3042–8. 

 29. Toguchida J, Ishizaki K, Nakamura Y, Sasaki MS, Ikenaga M, Kato M, et al. 
Assignment of common allele loss in osteosarcoma to the subregion 17p13. 
Cancer Res (1989) 49(22):6247–51. 

 30. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Korsching E. How 
microRNA and transcription factor co-regulatory networks affect osteosar-
coma cell proliferation. PLoS Comput Biol (2013) 9(8):e1003210. doi:10.1371/
journal.pcbi.1003210 

 31. Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y, et al. 
MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix 
metalloprotease-13 expression. Mol Ther (2011) 19(6):1123–30. doi:10.1038/
mt.2011.53 

 32. Feng M, Yu Q. miR-449 regulates CDK-Rb-E2F1 through an auto-regulatory 
feedback circuit. Cell Cycle (2010) 9(2):213–4. doi:10.4161/cc.9.2.10502 

 33. Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, et al. miR-449a and miR-449b 
are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 
activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 
(2009) 23(20):2388–93. doi:10.1101/gad.1819009 

 34. Chen J, Zhou J, Chen X, Yang B, Wang D, Yang P, et  al. miRNA-449a is 
downregulated in osteosarcoma and promotes cell apoptosis by targeting 
BCL2. Tumour Biol (2015). doi:10.1007/s13277-015-3568-y

 35. Zhang W, Qian JX, Yi HL, Yang ZD, Wang CF, Chen JY, et al. The microRNA-29 
plays a central role in osteosarcoma pathogenesis and progression. Mol Biol 
(Mosk) (2012) 46(4):622–7. doi:10.1134/S0026893312040139 

 36. Baumhoer D, Zillmer S, Unger K, Rosemann M, Atkinson MJ, Irmler M, 
et al. MicroRNA profiling with correlation to gene expression revealed the 
oncogenic miR-17-92 cluster to be up-regulated in osteosarcoma. Cancer 
Genet (2012) 205(5):212–9. doi:10.1016/j.cancergen.2012.03.001 

 37. Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IH, Kresse SH, Kuijjer ML, 
et al. Modulation of the osteosarcoma expression phenotype by microRNAs. 
PLoS One (2012) 7(10):e48086. doi:10.1371/journal.pone.0048086 

 38. Mejia-Guerrero S, Quejada M, Gokgoz N, Gill M, Parkes RK, Wunder JS, 
et al. Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons 
and clinical correlations in osteosarcoma. Genes Chromosomes Cancer (2010) 
49(6):518–25. doi:10.1002/gcc.20761 

 39. Guo W, Wang X, Feng C. P53 gene abnormalities in osteosarcoma. Chin Med 
J (Engl) (1996) 109(10):752–5. 

 40. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification 
database. Nucleic Acids Res (1998) 26(15):3453–9. doi:10.1093/nar/26.15.3453 

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
www.frontiersin.org
http://dx.doi.org/10.1073/pnas.1934852100
http://dx.doi.org/10.1002/path.2603
http://dx.doi.org/10.1007/978-1-4419-0284-9_2
http://dx.doi.org/10.1200/JCO.2002.08.081
http://dx.doi.org/10.1200/JCO.2002.08.081
http://dx.doi.org/10.1038/35888
http://dx.doi.org/10.1016/j.addr.2015.05.001
http://dx.doi.org/10.1073/pnas.0307323101
http://dx.doi.org/10.1016/j.cancergen.2010.12.012
http://dx.doi.org/10.1155/2011/732690
http://dx.doi.org/10.1038/ng.3293
http://dx.doi.org/10.1038/cdd.2013.125
http://dx.doi.org/10.1038/cdd.2009.69
http://dx.doi.org/10.1158/0008-5472.CAN-07-2462
http://dx.doi.org/10.1158/0008-5472.CAN-07-2462
http://dx.doi.org/10.1586/14737140.6.7.1075
http://dx.doi.org/10.1093/database/bau042
http://dx.doi.org/10.1186/1750-1172-8-7
http://dx.doi.org/10.1002/gcc.10273
http://dx.doi.org/10.1002/gcc.10291
http://dx.doi.org/10.1016/S0165-4608(96)00306-8
http://dx.doi.org/10.1016/S0165-4608(96)00306-8
http://dx.doi.org/10.1038/323643a0
http://dx.doi.org/10.2174/1566524010606070809
http://dx.doi.org/10.2174/1566524010606070809
http://dx.doi.org/10.2174/138945009789577990
http://dx.doi.org/10.1016/j.cancergen.2012.03.002
http://dx.doi.org/10.3324/haematol.2009.011114
http://dx.doi.org/10.3324/haematol.2009.011114
http://dx.doi.org/10.1371/journal.pcbi.1003210
http://dx.doi.org/10.1371/journal.pcbi.1003210
http://dx.doi.org/10.1038/mt.2011.53
http://dx.doi.org/10.1038/mt.2011.53
http://dx.doi.org/10.4161/cc.9.2.10502
http://dx.doi.org/10.1101/gad.1819009
http://dx.doi.org/10.1007/s13277-015-3568-y
http://dx.doi.org/10.1134/S0026893312040139
http://dx.doi.org/10.1016/j.cancergen.2012.03.001
http://dx.doi.org/10.1371/journal.pone.0048086
http://dx.doi.org/10.1002/gcc.20761
http://dx.doi.org/10.1093/nar/26.15.3453


August 2015 | Volume 3 | Article 6933

Sampson et al. OS-associated miRNAs

Frontiers in Pediatrics | www.frontiersin.org

 41. Jones M, Lal A. MicroRNAs, wild-type and mutant p53: more questions than 
answers. RNA Biol (2012) 9(6):781–91. doi:10.4161/rna.20146 

 42. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA 
component of the p53 tumour suppressor network. Nature (2007) 
447(7148):1130–4. doi:10.1038/nature05939 

 43. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits 
N, et al. Transcriptional activation of miR-34a contributes to p53-mediated 
apoptosis. Mol Cell (2007) 26(5):731–43. doi:10.1016/j.molcel.2007.05.017 

 44. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, 
et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types 
of cancer. Cell Cycle (2008) 7(16):2591–600. doi:10.4161/cc.7.16.6533 

 45. He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, et al. Functional elucidation of 
MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys 
Res Commun (2009) 388(1):35–40. doi:10.1016/j.bbrc.2009.07.101 

 46. van der Deen M, Taipaleenmäki H, Zhang Y, Teplyuk NM, Gupta A, Cinghu S, 
et al. MicroRNA-34c inversely couples the biological functions of the runt-re-
lated transcription factor RUNX2 and the tumor suppressor p53 in osteosar-
coma. J Biol Chem (2013) 288(29):21307–19. doi:10.1074/jbc.M112.445890 

 47. Pulikkan JA, Peramangalam PS, Dengler V, Ho PA, Preudhomme C, 
Meshinchi S, et al. C/EBPalpha regulated microRNA-34a targets E2F3 during 
granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 
(2010) 116(25):5638–49. doi:10.1182/blood-2010-04-281600 

 48. Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, et al. p53-re-
sponsive micrornas 192 and 215 are capable of inducing cell cycle arrest. 
Cancer Res (2008) 68(24):10094–104. doi:10.1158/0008-5472.CAN-08-1569 

 49. Wang Y, Jia LS, Yuan W, Wu Z, Wang HB, Xu T, et  al. Low miR-34a and 
miR-192 are associated with unfavorable prognosis in patients suffering from 
osteosarcoma. Am J Transl Res (2015) 7(1):111–9. 

 50. Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, 
et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma 
and colon cancer cells. Mol Cancer (2010) 9:96. doi:10.1186/1476-4598-9-96 

 51. Martin JW, Chilton-MacNeill S, Koti M, van Wijnen AJ, Squire JA, Zielenska 
M. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, 
and CDK4 as potential predictive biomarkers for neo-adjuvant chemother-
apy response in paediatric osteosarcoma. PLoS One (2014) 9(5):e95843. 
doi:10.1371/journal.pone.0095843 

 52. Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target 
for cancer therapies. Adv Cancer Res (2010) 107:163–224. doi:10.1016/
S0065-230X(10)07006-5 

 53. Pompetti F, Rizzo P, Simon RM, Freidlin B, Mew DJ, Pass HI, et  al. 
Oncogene alterations in primary, recurrent, and metastatic human 
bone tumors. J Cell Biochem (1996) 63(1):37–50. doi:10.1002/
(SICI)1097-4644(199610)63:1<37::AID-JCB3>3.0.CO;2-0 

 54. Gamberi G, Benassi MS, Bohling T, Ragazzini P, Molendini L, Sollazzo MR, 
et al. C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and 
protein expression. Oncology (1998) 55(6):556–63. doi:10.1159/000011912 

 55. Thornton JE, Gregory RI. How does Lin28 let-7 control development and 
disease? Trends Cell Biol (2012) 22(9):474–82. doi:10.1016/j.tcb.2012.06.001 

 56. Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M, et  al. 
Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone 
(2012) 50(1):171–81. doi:10.1016/j.bone.2011.10.012 

 57. Liu Z, Zhang G, Li J, Liu J, Lv P. The tumor-suppressive microRNA-135b 
targets c-myc in osteoscarcoma. PLoS One (2014) 9(7):e102621. doi:10.1371/
journal.pone.0102621 

 58. Xu N, Li Z, Yu Z, Yan F, Liu Y, Lu X, et al. MicroRNA-33b suppresses migra-
tion and invasion by targeting c-Myc in osteosarcoma cells. PLoS One (2014) 
9(12):e115300. doi:10.1371/journal.pone.0115300 

 59. Liu JM, Long XH, Zhang GM, Zhou Y, Chen XY, Huang SH, et al. Let-7g 
reverses malignant phenotype of osteosarcoma cells by targeting aurora-B. 
Int J Clin Exp Pathol (2014) 7(8):4596–606. 

 60. Di Fiore R, Fanale D, Drago-Ferrante R, Chiaradonna F, Giuliano M, De Blasio 
A, et al. Genetic and molecular characterization of the human osteosarcoma 
3AB-OS cancer stem cell line: a possible model for studying osteosarcoma ori-
gin and stemness. J Cell Physiol (2013) 228(6):1189–201. doi:10.1002/jcp.24272 

 61. Wang X, Cao L, Wang Y, Wang X, Liu N, You Y. Regulation of let-7 and 
its target oncogenes (review). Oncol Lett (2012) 3(5):955–60. doi:10.3892/
ol.2012.609

 62. Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, et al. Regulatory 
roles of Runx2 in metastatic tumor and cancer cell interactions with bone. 
Cancer Metastasis Rev (2006) 25(4):589–600. doi:10.1007/s10555-006-9032-0 

 63. Nathan SS, Pereira BP, Zhou YF, Gupta A, Dombrowski C, Soong R, et al. 
Elevated expression of Runx2 as a key parameter in the etiology of osteosar-
coma. Mol Biol Rep (2009) 36(1):153–8. doi:10.1007/s11033-008-9378-1 

 64. Sadikovic B, Thorner P, Chilton-Macneill S, Martin JW, Cervigne NK, Squire 
J, et  al. Expression analysis of genes associated with human osteosarcoma 
tumors shows correlation of RUNX2 overexpression with poor response to 
chemotherapy. BMC Cancer (2010) 10:202. doi:10.1186/1471-2407-10-202 

 65. He Y, Meng C, Shao Z, Wang H, Yang S. MiR-23a functions as a tumor 
suppressor in osteosarcoma. Cell Physiol Biochem (2014) 34(5):1485–96. 
doi:10.1159/000366353 

 66. Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, et al. microRNA-103a functions as 
a mechanosensitive microRNA to inhibit bone formation through targeting 
Runx2. J Bone Miner Res (2015) 30(2):330–45. doi:10.1002/jbmr.2352 

 67. Taipaleenmäki H, Browne G, Akech J, Zustin J, van Wijnen AJ, Stein JL, 
et al. Targeting of Runx2 by miR-135 and miR-203 impairs progression of 
breast cancer and metastatic bone disease. Cancer Res (2015) 75(7):1433–44. 
doi:10.1158/0008-5472.CAN-14-1026 

 68. Hu N, Feng C, Jiang Y, Miao Q, Liu H. Regulative effect of Mir-205 on 
osteogenic differentiation of bone mesenchymal stem cells (BMSCs): pos-
sible role of SATB2/Runx2 and ERK/MAPK pathway. Int J Mol Sci (2015) 
16(5):10491–506. doi:10.3390/ijms160510491 

 69. Sampson VB, Gorlick R, Kamara D, Anders Kolb E. A review of targeted ther-
apies evaluated by the pediatric preclinical testing program for osteosarcoma. 
Front Oncol (2013) 3:132. doi:10.3389/fonc.2013.00132 

 70. Kolb EA, Gorlick R. Development of IGF-IR inhibitors in pediatric sarcomas. 
Curr Oncol Rep (2009) 11(4):307–13. doi:10.1007/s11912-009-0043-1 

 71. Durfort T, Tkach M, Meschaninova MI, Rivas MA, Elizalde PV, Venyaminova 
AG, et al. Small interfering RNA targeted to IGF-IR delays tumor growth and 
induces proinflammatory cytokines in a mouse breast cancer model. PLoS 
One (2012) 7(1):e29213. doi:10.1371/journal.pone.0029213 

 72. Burrow S, Andrulis IL, Pollak M, Bell RS. Expression of insulin-like 
growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteo-
sarcoma. J Surg Oncol (1998) 69(1):21–7. doi:10.1002/(SICI)1096-9098 
(199809)69:1<21::AID-JSO5>3.0.CO;2-M 

 73. Sasaki K, Hitora T, Nakamura O, Kono R, Yamamoto T. The role of MAPK 
pathway in bone and soft tissue tumors. Anticancer Res (2011) 31(2):549–53. 

 74. Chandhanayingyong C, Kim Y, Staples JR, Hahn C, Lee FY. MAPK/ERK 
signaling in osteosarcomas, Ewing sarcomas and chondrosarcomas: ther-
apeutic implications and future directions. Sarcoma (2012) 2012:404810. 
doi:10.1155/2012/404810 

 75. Han K, Zhao T, Chen X, Bian N, Yang T, Ma Q, et al. microRNA-194 sup-
presses osteosarcoma cell proliferation and metastasis in vitro and in vivo by 
targeting CDH2 and IGF1R. Int J Oncol (2014) 45(4):1437–49. doi:10.3892/
ijo.2014.2571 

 76. Song Y, Zhao F, Wang Z, Liu Z, Chiang Y, Xu Y, et al. Inverse association 
between miR-194 expression and tumor invasion in gastric cancer. Ann Surg 
Oncol (2012) 19(Suppl 3):S509–17. doi:10.1245/s10434-011-1999-2 

 77. Wu X, Liu T, Fang O, Leach LJ, Hu X, Luo Z. miR-194 suppresses metastasis 
of non-small cell lung cancer through regulating expression of BMP1 and 
p27(kip1). Oncogene (2014) 33(12):1506–14. doi:10.1038/onc.2013.108 

 78. Zhao H, Li M, Li L, Yang X, Lan G, Zhang Y. MiR-133b is down-regulated in 
human osteosarcoma and inhibits osteosarcoma cells proliferation, migra-
tion and invasion, and promotes apoptosis. PLoS One (2013) 8(12):e83571. 
doi:10.1371/journal.pone.0083571 

 79. Naka T, Iwamoto Y, Shinohara N, Ushijima M, Chuman H, Tsuneyoshi 
M. Expression of c-met proto-oncogene product (c-MET) in benign and 
malignant bone tumors. Mod Pathol (1997) 10(8):832–8. 

 80. Ebos JM, Lee CR, Kerbel RS. Tumor and host-mediated pathways of resis-
tance and disease progression in response to antiangiogenic therapy. Clin 
Cancer Res (2009) 15(16):5020–5. doi:10.1158/1078-0432.CCR-09-0095 

 81. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, 
et  al. MET amplification leads to gefitinib resistance in lung cancer by 
activating ERBB3 signaling. Science (2007) 316(5827):1039–43. doi:10.1126/
science.1141478 

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
www.frontiersin.org
http://dx.doi.org/10.4161/rna.20146
http://dx.doi.org/10.1038/nature05939
http://dx.doi.org/10.1016/j.molcel.2007.05.017
http://dx.doi.org/10.4161/cc.7.16.6533
http://dx.doi.org/10.1016/j.bbrc.2009.07.101
http://dx.doi.org/10.1074/jbc.M112.445890
http://dx.doi.org/10.1182/blood-2010-04-281600
http://dx.doi.org/10.1158/0008-5472.CAN-08-1569
http://dx.doi.org/10.1186/1476-4598-9-96
http://dx.doi.org/10.1371/journal.pone.0095843
http://dx.doi.org/10.1016/S0065-230X(10)07006-5
http://dx.doi.org/10.1016/S0065-230X(10)07006-5
http://dx.doi.org/10.1002/(SICI)1097-4644(199610)63:1<37::AID-JCB3>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-4644(199610)63:1<37::AID-JCB3>3.0.CO;2-0
http://dx.doi.org/10.1159/000011912
http://dx.doi.org/10.1016/j.tcb.2012.06.001
http://dx.doi.org/10.1016/j.bone.2011.10.012
http://dx.doi.org/10.1371/journal.pone.0102621
http://dx.doi.org/10.1371/journal.pone.0102621
http://dx.doi.org/10.1371/journal.pone.0115300
http://dx.doi.org/10.1002/jcp.24272
http://dx.doi.org/10.3892/ol.2012.609
http://dx.doi.org/10.3892/ol.2012.609
http://dx.doi.org/10.1007/s10555-006-9032-0
http://dx.doi.org/10.1007/s11033-008-9378-1
http://dx.doi.org/10.1186/1471-2407-10-202
http://dx.doi.org/10.1159/000366353
http://dx.doi.org/10.1002/jbmr.2352
http://dx.doi.org/10.1158/0008-5472.CAN-14-1026
http://dx.doi.org/10.3390/ijms160510491
http://dx.doi.org/10.3389/fonc.2013.00132
http://dx.doi.org/10.1007/s11912-009-0043-1
http://dx.doi.org/10.1371/journal.pone.0029213
http://dx.doi.org/10.1002/(SICI)1096-9098(199809)69:1<21::AID-JSO5>3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1096-9098(199809)69:1<21::AID-JSO5>3.0.CO;2-M
http://dx.doi.org/10.1155/2012/404810
http://dx.doi.org/10.3892/ijo.2014.2571
http://dx.doi.org/10.3892/ijo.2014.2571
http://dx.doi.org/10.1245/s10434-011-1999-2
http://dx.doi.org/10.1038/onc.2013.108
http://dx.doi.org/10.1371/journal.pone.0083571
http://dx.doi.org/10.1158/1078-0432.CCR-09-0095
http://dx.doi.org/10.1126/science.1141478
http://dx.doi.org/10.1126/science.1141478


August 2015 | Volume 3 | Article 6934

Sampson et al. OS-associated miRNAs

Frontiers in Pediatrics | www.frontiersin.org

 82. Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, et al. MicroRNA-34a inhibits the 
proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. 
PLoS One (2012) 7(3):e33778. doi:10.1371/journal.pone.0033778 

 83. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, et al. MicroRNA-
199a-3p is downregulated in human osteosarcoma and regulates cell 
proliferation and migration. Mol Cancer Ther (2011) 10(8):1337–45. 
doi:10.1158/1535-7163.MCT-11-0096 

 84. Rong S, Donehower LA, Hansen MF, Strong L, Tainsky M, Jeffers M, et al. Met 
proto-oncogene product is overexpressed in tumors of p53-deficient mice 
and tumors of Li-Fraumeni patients. Cancer Res (1995) 55(9):1963–70. 

 85. Zhang L, Lyer AK, Yang X, Kobayashi E, Guo Y, Mankin H, et al. Polymeric 
nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation 
and growth of osteosarcoma cells. Int J Nanomedicine (2015) 10:2913–24. 
doi:10.2147/IJN.S79143 

 86. Yu Y, Luk F, Yang JL, Walsh WR. Ras/Raf/MEK/ERK pathway is associated 
with lung metastasis of osteosarcoma in an orthotopic mouse model. 
Anticancer Res (2011) 31(4):1147–52. 

 87. Xi Y, Chen Y. Oncogenic and therapeutic targeting of PTEN loss in bone 
malignancies. J Cell Biochem (2015) 116(9):1837–47. doi:10.1002/jcb.25159 

 88. Freeman SS, Allen SW, Ganti R, Wu J, Ma J, Su X, et al. Copy number gains in 
EGFR and copy number losses in PTEN are common events in osteosarcoma 
tumors. Cancer (2008) 113(6):1453–61. doi:10.1002/cncr.23782 

 89. Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, et al. MicroRNA-221 induces cell 
survival and cisplatin resistance through PI3K/Akt pathway in human osteo-
sarcoma. PLoS One (2013) 8(1):e53906. doi:10.1371/journal.pone.0053906 

 90. Gao Y, Luo LH, Li S, Yang C. miR-17 inhibitor suppressed osteosarcoma 
tumor growth and metastasis via increasing PTEN expression. Biochem 
Biophys Res Commun (2014) 444(2):230–4. doi:10.1016/j.bbrc.2014.01.061 

 91. Lin S, Shao NN, Fan L, Ma XC, Pu FF, Shao ZW. Effect of microRNA-101 on 
proliferation and apoptosis of human osteosarcoma cells by targeting mTOR. 
J Huazhong Univ Sci Technolog Med Sci (2014) 34(6):889–95. doi:10.1007/
s11596-014-1369-y 

 92. Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C, et al. miR-101 inhibits 
autophagy and enhances cisplatin-induced apoptosis in hepatocellular 
carcinoma cells. Oncol Rep (2013) 29(5):2019–24. doi:10.3892/or.2013.2338 

 93. Na KY, Kim YW, Park YK. Mitogen-activated protein kinase pathway in 
osteosarcoma. Pathology (2012) 44(6):540–6. doi:10.1097/PAT.0b013e328 
35803bc 

 94. Zhang X, Guo Q, Chen J, Chen Z. Quercetin enhances cisplatin sensitivity 
of human osteosarcoma cells by modulating microRNA-217-KRAS axis. Mol 
Cells (2015) 38(7):638–42. doi:10.14348/molcells.2015.0037 

 95. Wang Q, Cai J, Wang J, Xiong C, Zhao J. MiR-143 inhibits EGFR-signaling-
dependent osteosarcoma invasion. Tumour Biol (2014) 35(12):12743–8. 
doi:10.1007/s13277-014-2600-y 

 96. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases 
in cancer progression and their pharmacological targeting. FEBS J (2011) 
278(1):16–27. doi:10.1111/j.1742-4658.2010.07919.x 

 97. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in 
anticancer chemotherapy. Oncogene (2006) 25(34):4798–811. doi:10.1038/
sj.onc.1209608 

 98. Ji F, Zhang H, Wang Y, Li M, Xu W, Kang Y, et al. MicroRNA-133a, down-
regulated in osteosarcoma, suppresses proliferation and promotes apoptosis 
by targeting Bcl-xL and Mcl-1. Bone (2013) 56(1):220–6. doi:10.1016/j.
bone.2013.05.020 

 99. Dong Y, Zhao J, Wu CW, Zhang L, Liu X, Kang W, et al. Tumor suppres-
sor functions of miR-133a in colorectal cancer. Mol Cancer Res (2013) 
11(9):1051–60. doi:10.1158/1541-7786.MCR-13-0061 

 100. Pignochino Y, Grignani G, Cavalloni G, Motta M, Tapparo M, Bruno S, et al. 
Sorafenib blocks tumour growth, angiogenesis and metastatic potential in 
preclinical models of osteosarcoma through a mechanism potentially involv-
ing the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer (2009) 
8:118. doi:10.1186/1476-4598-8-118 

 101. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, 
et al. Reprogramming of miRNA networks in cancer and leukemia. Genome 
Res (2010) 20(5):589–99. doi:10.1101/gr.098046.109 

 102. Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES. miR-20a 
encoded by the miR-17-92 cluster increases the metastatic potential of osteo-
sarcoma cells by regulating Fas expression. Cancer Res (2012) 72(4):908–16. 
doi:10.1158/0008-5472.CAN-11-1460 

 103. Arabi L, Gsponer JR, Smida J, Nathrath M, Perrina V, Jundt G, et  al. 
Upregulation of the miR-17-92 cluster and its two paralog in osteosar-
coma – reasons and consequences. Genes Cancer (2014) 5(1–2):56–63. 

 104. Meyers PA, Heller G, Healey JH, Huvos A, Applewhite A, Sun M, et  al. 
Osteogenic sarcoma with clinically detectable metastasis at initial presenta-
tion. J Clin Oncol (1993) 11(3):449–53. 

 105. Krishnan K, Khanna C, Helman LJ. The biology of metastases in pediatric sarco-
mas. Cancer J (2005) 11(4):306–13. doi:10.1097/00130404-200507000-00006 

 106. Rath N, Olson MF. Rho-associated kinases in tumorigenesis: re-considering 
ROCK inhibition for cancer therapy. EMBO Rep (2012) 13(10):900–8. 
doi:10.1038/embor.2012.127 

 107. Zhou X, Wei M, Wang W. MicroRNA-340 suppresses osteosarcoma tumor 
growth and metastasis by directly targeting ROCK1. Biochem Biophys Res 
Commun (2013) 437(4):653–8. doi:10.1016/j.bbrc.2013.07.033 

 108. Wang Y, Zhao W, Fu Q. miR-335 suppresses migration and invasion by target-
ing ROCK1 in osteosarcoma cells. Mol Cell Biochem (2013) 384(1–2):105–11. 
doi:10.1007/s11010-013-1786-4 

 109. Lei P, Xie J, Wang L, Yang X, Dai Z, Hu Y. microRNA-145 inhibits osteo-
sarcoma cell proliferation and invasion by targeting ROCK1. Mol Med Rep 
(2014) 10(1):155–60. doi:10.3892/mmr.2014.2195 

 110. Wang W, Zhou X, Wei M. MicroRNA-144 suppresses osteosarcoma growth 
and metastasis by targeting ROCK1 and ROCK2. Oncotarget (2015) 
6(12):10297–308. 

 111. Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, et al. Tumor-derived matrix 
metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive 
breast cancer. BMC Cancer (2008) 8:83. doi:10.1186/1471-2407-8-83 

 112. Yamada T, Oshima T, Yoshihara K, Tamura S, Kanazawa A, Inagaki D, et al. 
Overexpression of MMP-13 gene in colorectal cancer with liver metastasis. 
Anticancer Res (2010) 30(7):2693–9. 

 113. Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H, et al. miRNA-337-3p suppresses 
neuroblastoma progression by repressing the transcription of matrix metal-
loproteinase 14. Oncotarget (2015). 

 114. Jia LF, Wei SB, Mitchelson K, Gao Y, Zheng YF, Meng Z, et al. miR-34a inhib-
its migration and invasion of tongue squamous cell carcinoma via targeting 
MMP9 and MMP14. PLoS One (2014) 9(9):e108435. doi:10.1371/journal.
pone.0108435 

 115. Caubet JF, Bernaudin JF. Expression of the c-fos proto-oncogene in bone, 
cartilage and tooth forming tissues during mouse development. Biol Cell 
(1988) 64(1):101–4. doi:10.1016/0248-4900(88)90100-1 

 116. Schmidt J, Livne E, Erfle V, Gossner W, Silbermann M. Morphology and 
in  vivo growth characteristics of an atypical murine proliferative osseous 
lesion induced in vitro. Cancer Res (1986) 46(6):3090–8. 

 117. Wu JX, Carpenter PM, Gresens C, Keh R, Niman H, Morris JW, et al. The pro-
to-oncogene c-fos is over-expressed in the majority of human osteosarcomas. 
Oncogene (1990) 5(7):989–1000. 

 118. Wang ZQ, Liang J, Schellander K, Wagner EF, Grigoriadis AE. c-fos-induced 
osteosarcoma formation in transgenic mice: cooperativity with c-jun and the 
role of endogenous c-fos. Cancer Res (1995) 55(24):6244–51. 

 119. Tao T, Wang Y, Luo H, Yao L, Wang L, Wang J, et al. Involvement of FOS-
mediated miR-181b/miR-21 signalling in the progression of malignant 
gliomas. Eur J Cancer (2013) 49(14):3055–63. doi:10.1016/j.ejca.2013.05.010 

 120. Hornicek FJ, Gebhardt MC, Wolfe MW, Kharrazi FD, Takeshita 
H, Parekh SG, et  al. P-glycoprotein levels predict poor outcome in 
patients with osteosarcoma. Clin Orthop Relat Res (2000) (373):11–7. 
doi:10.1097/00003086-200004000-00003 

 121. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, et al. Role of microRNA 
miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression 
in human cancer cells. Biochem Pharmacol (2008) 76(5):582–8. doi:10.1016/j.
bcp.2008.06.007 

 122. Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, 
et al. miR-27a and miR-27a* contribute to metastatic properties of osteosar-
coma cells. Oncotarget (2015) 6(7):4920–35. 

 123. Wu X, Bhayani MK, Dodge CT, Nicoloso MS, Chen Y, Yan X, et al. Coordinated 
targeting of the EGFR signaling axis by microRNA-27a*. Oncotarget (2013) 
4(9):1388–98. 

 124. Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM, et  al. miR-16 
inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 
pathway in osteosarcoma. FEBS Lett (2013) 587(9):1366–72. doi:10.1016/j.
febslet.2013.03.007 

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
www.frontiersin.org
http://dx.doi.org/10.1371/journal.pone.0033778
http://dx.doi.org/10.1158/1535-7163.MCT-11-0096
http://dx.doi.org/10.2147/IJN.S79143
http://dx.doi.org/10.1002/jcb.25159
http://dx.doi.org/10.1002/cncr.23782
http://dx.doi.org/10.1371/journal.pone.0053906
http://dx.doi.org/10.1016/j.bbrc.2014.01.061
http://dx.doi.org/10.1007/s11596-014-1369-y
http://dx.doi.org/10.1007/s11596-014-1369-y
http://dx.doi.org/10.3892/or.2013.2338
http://dx.doi.org/10.1097/PAT.0b013e32835803bc
http://dx.doi.org/10.1097/PAT.0b013e32835803bc
http://dx.doi.org/10.14348/molcells.2015.0037
http://dx.doi.org/10.1007/s13277-014-2600-y
http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x
http://dx.doi.org/10.1038/sj.onc.1209608
http://dx.doi.org/10.1038/sj.onc.1209608
http://dx.doi.org/10.1016/j.bone.2013.05.020
http://dx.doi.org/10.1016/j.bone.2013.05.020
http://dx.doi.org/10.1158/1541-7786.MCR-13-0061
http://dx.doi.org/10.1186/1476-4598-8-118
http://dx.doi.org/10.1101/gr.098046.109
http://dx.doi.org/10.1158/0008-5472.CAN-11-1460
http://dx.doi.org/10.1097/00130404-200507000-00006
http://dx.doi.org/10.1038/embor.2012.127
http://dx.doi.org/10.1016/j.bbrc.2013.07.033
http://dx.doi.org/10.1007/s11010-013-1786-4
http://dx.doi.org/10.3892/mmr.2014.2195
http://dx.doi.org/10.1186/1471-2407-8-83
http://dx.doi.org/10.1371/journal.pone.0108435
http://dx.doi.org/10.1371/journal.pone.0108435
http://dx.doi.org/10.1016/0248-4900(88)90100-1
http://dx.doi.org/10.1016/j.ejca.2013.05.010
http://dx.doi.org/10.1097/00003086-200004000-00003
http://dx.doi.org/10.1016/j.bcp.2008.06.007
http://dx.doi.org/10.1016/j.bcp.2008.06.007
http://dx.doi.org/10.1016/j.febslet.2013.03.007
http://dx.doi.org/10.1016/j.febslet.2013.03.007


August 2015 | Volume 3 | Article 6935

Sampson et al. OS-associated miRNAs

Frontiers in Pediatrics | www.frontiersin.org

 125. Diederichs S, Haber DA. Sequence variations of microRNAs in human 
cancer: alterations in predicted secondary structure do not affect processing. 
Cancer Res (2006) 66(12):6097–104. doi:10.1158/0008-5472.CAN-06-0537 

 126. Wu M, Jolicoeur N, Li Z, Zhang L, Fortin Y, L’Abbe D, et al. Genetic variations 
of microRNAs in human cancer and their effects on the expression of miR-
NAs. Carcinogenesis (2008) 29(9):1710–6. doi:10.1093/carcin/bgn073 

 127. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak 
seed-pairing stability and high target-site abundance decrease the proficiency 
of lsy-6 and other microRNAs. Nat Struct Mol Biol (2011) 18(10):1139–46. 
doi:10.1038/nsmb.2115 

 128. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org 
resource: targets and expression. Nucleic Acids Res (2008) 36(Database 
issue):D149–53. doi:10.1093/nar/gkm995 

 129. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky 
N. Widespread changes in protein synthesis induced by microRNAs. Nature 
(2008) 455(7209):58–63. doi:10.1038/nature07228 

 130. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction 
of mammalian microRNA targets. Cell (2003) 115(7):787–98. doi:10.1016/
S0092-8674(03)01018-3 

 131. Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther (2011) 
18(12):1104–10. doi:10.1038/gt.2011.50 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Sampson, Yoo, Kumar, Vetter and Kolb. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics
www.frontiersin.org
http://dx.doi.org/10.1158/0008-5472.CAN-06-0537
http://dx.doi.org/10.1093/carcin/bgn073
http://dx.doi.org/10.1038/nsmb.2115
http://microRNA.org
http://dx.doi.org/10.1093/nar/gkm995
http://dx.doi.org/10.1038/nature07228
http://dx.doi.org/10.1016/S0092-8674(03)01018-3
http://dx.doi.org/10.1016/S0092-8674(03)01018-3
http://dx.doi.org/10.1038/gt.2011.50
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


September 2015 | Volume 5 | Article 19036

Review
published: 02 September 2015
doi: 10.3389/fonc.2015.00190

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Thomas Grunewald,  

Ludwig Maximilian University of 
Munich, Germany

Reviewed by: 
Rimas J. Orentas,  

Lenten Technology Inc., USA  
Simone Hettmer,  

Zentrum für Kinderheilkunde und 
Jugendmedizin, Germany

*Correspondence:
 Corinne M. Linardic,  

Division of Hematology-Oncology, 
Department of Pediatrics, Duke 

University School of Medicine, Box 
102382 DUMC, Durham,  

NC 27710, USA  
corinne.linardic@dm.duke.edu

Specialty section: 
This article was submitted to 

Pediatric Oncology, a section of the 
journal Frontiers in Oncology

Received: 22 May 2015
Accepted: 10 August 2015

Published: 02 September 2015

Citation: 
Deel MD, Li JJ, Crose LES and 

Linardic CM (2015) A review: 
molecular aberrations within Hippo 

signaling in bone and soft-tissue 
sarcomas.  

Front. Oncol. 5:190.  
doi: 10.3389/fonc.2015.00190

A review: molecular aberrations 
within Hippo signaling in bone and 
soft-tissue sarcomas
Michael D. Deel 1, Jenny J. Li 2, Lisa E. S. Crose 1 and Corinne M. Linardic 1,3*

1 Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA, 2 Duke 
University School of Medicine, Durham, NC, USA, 3 Department of Pharmacology and Cancer Biology, Duke University 
School of Medicine, Durham, NC, USA

The Hippo signaling pathway is an evolutionarily conserved developmental network vital 
for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. 
The Hippo pathway has also been shown to have tumor suppressor properties. Hippo 
transduction involves a series of kinases and scaffolding proteins that are intricately 
connected to proteins in developmental cascades and in the tissue microenvironment. 
This network governs the downstream Hippo transcriptional co-activators, YAP and 
TAZ, which bind to and activate the output of TEADs, as well as other transcription 
factors responsible for cellular proliferation, self-renewal, differentiation, and survival. 
Surprisingly, there are few oncogenic mutations within the core components of the Hippo 
pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly 
mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic 
signaling from other pathways, or serve as co-activators for classical oncogenes. 
Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal 
structural changes to morphogenic signals and conveys a mesenchymal phenotype. 
While much of Hippo biology has been described in epithelial cell systems, it is clear that 
dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. 
This review will summarize the known molecular alterations within the Hippo pathway in 
sarcomas and highlight how several pharmacologic compounds have shown activity in 
modulating Hippo components, providing proof-of-principle that Hippo signaling may be 
harnessed for therapeutic application in sarcomas.

Keywords: Hippo, sarcoma, osteosarcoma, ewing sarcoma, rhabdomyosarcoma, mesenchymal, targeted 
therapy, pediatric cancers

introduction

Overview of Pediatric Sarcomas
Sarcomas account for ~1% of all malignancies, but occur with higher frequency in children compared 
to adults, comprising ~15% of all childhood malignancies (1). The mainstay of treatment includes 
combining primary tumor control with surgery and/or radiation and systemic chemotherapy. While 
survival rates for localized sarcomas have improved to >70%, children with metastatic or recurrent 
disease continue to have dismal outcomes (2, 3).
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Malignant bone and soft-tissue sarcomas arise in connective 
tissues (including bone, fat, muscle, blood vessels, deep skin 
tissues, nerves, and cartilage) and represent a histologically 
and molecularly heterogeneous group of tumors. Although 
the precise cell of origin of most of these tumors is not 
known, sarcomas are thought to develop as a result of genetic 
alterations in mesenchymal progenitor cells. While older 
adult patients often develop sarcomas with complex genetic 
karyotypes, there are relatively few genetic mutations driving 
tumorigenesis for the majority of childhood sarcomas, with 
the exception of some characteristic chromosomal transloca-
tions. In cases where the underlying molecular pathogenesis 
has been identified, this has not translated into improvements 
in survival rates for those patients with advanced or aggressive 
tumors, as many of the molecular drivers have not been able to 
pharmacologically modulated (2, 3). Discovering therapeuti-
cally targetable proteins that may be collaborating with such 
tumorigenic drivers is a promising new frontier for molecular 
oncology.

Overview of Hippo Signaling
The delineation of the Hippo pathway began in 2003 with 
identification of the Drosophila hippo gene. Hippo loss-of-
function phenotypes were described concurrently by the Pan and 
Hariharan laboratories while screening for genes that negatively 
regulate tissue growth (4, 5). Subsequent studies unveiled Hippo 
signaling as an evolutionarily conserved cascade consisting of 
adaptor proteins and inhibitory kinases that regulate Yorkie, 
a pro-growth transcriptional regulator (6–8). Hippo signal-
ing is highly conserved between Drosophila and mammals, 
and homologous pathway components across species are well 
described (9, 10). For this review, focus will be on mammalian 
Hippo signaling.

As shown in Figure  1, the mammalian Hippo pathway 
relays plasma membrane and cytoplasmic signals into the 

nucleus, where it regulates the expression of a diverse group of 
target genes that control essential cellular processes, including 
proliferation, differentiation, and apoptosis. Canonical Hippo 
transduction involves serine/threonine kinases mammalian 
STE20-like protein kinase 1/2 (MST1/2, which are homologs 
of Drosophila Hippo) (4, 5, 11, 12) and large tumor suppressor 
homolog 1/2 (LATS1/2) (7, 13, 14), which, in conjunction with 
adaptor proteins Salvador homolog 1 (SAV1) (12) and Mob 
kinase activator 1 (MOB1) (15), phosphorylate and inhibit the 
transcriptional co-activators Yes-associated protein 1 (YAP, a 
homolog of Yorkie) and transcriptional co-activator with PDZ-
binding motif (TAZ) [also known as WW domain-containing 
transcription regulator 1, WWTR1] (16). The Hippo pathway is 
“ON” when MST1/2 and LATS1/2 kinases are active. Through 
an interaction between the PPxY (PY) motifs of LATS1/2 and 
the WW domains of YAP and TAZ, activated LATS1/2 lead 
to phosphorylation of YAP and TAZ, which results in YAP/
TAZ cytoplasmic retention and β-TRCP (β-transducin repeat-
containing E3 ubiquitin protein ligase)-dependent proteasomal 
degradation (9, 10). When Hippo signaling is inactive or “OFF”, 
YAP and TAZ are localized to the nucleus, where they serve 
as transcriptional co-activators for TEA domain-containing 
sequence-specific transcription factors (TEADs) (17–21) as well 
as other transcription factors (16).

Regulation of the Hippo Pathway

Much of our understanding of Hippo regulation comes from 
studies performed in epithelial tissue. In this context, the 
transcriptional activities of YAP and TAZ are regulated by four 
interconnected inputs: (1) plasma membrane proteins, which 
complex with YAP and TAZ directly to sequester them at cell–cell 
junctions; (2) upstream adaptor proteins, which activate core 
Hippo kinases to ultimately phosphorylate and repress YAP and 
TAZ; (3) regulatory cross-talk from other signaling pathways; 
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alveolar rhabdomyosarcoma; β-TRCP, β-transducin repeat-containing E3 ubiq-
uitin protein ligase; BMI-1, B-lymphoma Mo-MLV insertion region 1 homolog; 
BMP2, bone morphogenetic protein 2; BRAF, v-raf murine sarcoma viral oncogene 
homolog B; cAMP, adenylyl cyclase pathway; CD44, CD44 antigen; CDKN2A, 
cyclin-dependent kinase inhibitor 2A; ChIP-Seq, chromatin immunoprecipitation 
followed by high-throughput DNA sequencing; CRB, crumbs complex proteins; 
CTGF, connective tissue growth factor; dLats, large tumor suppressor (or warts); 
DMBA, 9,10-dimethyl-1,2-benzanthracene; DVL, disheveled; ECM, extracellular 
matrix; EGFR, epidermal growth factor receptor; EHE, epithelioid hemangioen-
dothelioma; ERK, extracellular signal-regulated kinases; ERMS, embryonal rhab-
domyosarcoma; EWS, Ewing sarcoma; FAT4, FAT tumor suppressor homolog 4; 
FOXM1, transcription factor forkhead box M1; GEMM, genetically engineered 
mouse model; GPCRs, G protein-coupled receptors; HMG-CoA, 3-hydroxy-
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myocyte enhancer factor 2; MEK, MAPK kinase; MMP-9, matrix metallopeptidase 
9; MOB1, Mob kinase activator 1; MRFs, myogenic regulatory factor family; MSC, 
mesenchymal stem cell; MST1/2, serine/threonine kinases mammalian STE20-
like protein kinase 1/2; mTOR, mechanistic target of rapamycin; MYCN, v-myc 
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sarcoma; NSCLC, non-small cell lung cancer; OCT4, octamer-binding transcrip-
tion factor-4; OS, osteosarcoma; p16INK4A, prototypic INK4 protein; PCNA, 
proliferating cell nuclear antigen; PDE, phosphodiesterase; PKA, protein kinase 
A; PKN1, protein kinase N1; PP1A, protein phosphatase 1, catalytic subunit, 
alpha isozyme; PP2A, protein phosphatase 2, regulatory subunit B, delta1; PPARγ, 
peroxisome proliferator-activated receptor gamma; RAF, v-raf murine sarcoma 
viral oncogene homolog; RAS, rat sarcoma viral oncogene homolog; RASSFs, 
Ras-association domain-containing family of proteins; RB1, retinoblastoma 1; 
RHO, rhodopsin; RMS, rhabdomyosarcoma; ROCK1, Rho-associated, coiled-coil 
containing protein kinase 1; RUNX2, runt-related transcription factor 2; SARAH 
domain, Salvador-Rassf-Hpo binding domain; SAV1, salvador homolog  1; 
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finger 1/2; SOX2, SRY (sex determining region Y)-box 2; STS, soft-tissue sarcoma; 
TAO-1, thousand and one amino acid protein 1; TAZ, transcriptional co-activator 
with PDZ-binding motif (or WWTR1); TCGA, The Cancer Genome Atlas; 
TEADs, TEA domain-containing sequence-specific transcription factors; TGFβ, 
transforming growth factor beta; TNF-α, tumor necrosis factor alpha; TP53, tumor 
protein p53; TP73, tumor protein p73; Twist1, twist family bHLH transcription 
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and (4) intrinsic and extrinsic mechanical forces within the cell, 
which exert local control over YAP and TAZ localization. An 
overview of Hippo regulation is summarized below. For more 
detail, see the review by Grusche and colleagues (22), as well as 
three recent proteomic analyses that identified key protein–pro-
tein interactions with Hippo kinases, and YAP and TAZ within 
the global signaling network (23–25).

Regulation Through Plasma Membrane Proteins
Growth control is signaled through plasma membrane proteins 
to upstream Hippo proteins, often in response to increased 
cell density. The Crumbs polarity complex, other polarity 
proteins, and adherens junctions, which all modulate each 
other, contribute inputs to various Hippo components (22, 26). 
E-cadherin and the junction-associated Ajuba protein family 
modulate MST and LATS kinases, respectively. The Crumbs 
complex involves transmembrane proteins that recruit scaf-
fold proteins that localize to apical junctions and mediate cell 
polarity (27, 28). G-protein-coupled receptor (GPCR) ligands 
have been identified as regulators of Hippo signaling (29). 
Depending on the coupled G-protein, LATS1/2 kinases can 
either be activated or inhibited. YAP and TAZ directly influence 
the GPCR transcriptional activity, as YAP/TAZ are required 
for the expression of many GPCR-mediated target genes (29). 
The transmembrane hyaluronate receptor CD44 interacts with 
neurofibromin 2 (NF2, also known as Merlin) and other scaffold 
proteins to recruit LATS to the cell membrane, where it is phos-
phorylated (9, 30–32). Finally, the atypical cadherin protein Fat 
(Drosophila) is required for localization of Expanded (FRMD6 
in mammals) to apical junctions, which results in activation of 
Hippo (MST1/2) (33). In avian cells, FAT4 has been shown to 
inhibit YAP1-mediated neuroprogenitor cell proliferation and 
differentiation (34).

Regulation Through Upstream intracellular 
Adaptor Proteins
The core Hippo pathway is controlled by a complex upstream 
regulatory network. MST and LATS kinase activity are regulated 
by several upstream proteins, including Ras-association domain-
containing family proteins (RASSFs1-10) (35, 36), kidney and 
brain protein (KIBRA) (37–39), thousand and one amino acid 
protein 1 (TAO-1) (40), MAP/microtubule affinity-regulating 
kinase 1 (MARK1) (41), and NF2. Via their interaction through 
a homologous SARAH (SAlvador–RAssf–Hpo) binding domain, 
RASSFs and SAV1 regulate MST activity (42). MST1/2 complexes 
with SAV1 to directly phosphorylate LATS1/2. MST1/2 bound to 
SAV1 can also bind to and phosphorylate MOB1, which binds 
LATS1/2 to promote autophosphorylation. While a growing 
inventory of functional interactions between upstream proteins 
and Hippo kinases are well described, the degree to which their 
binding is dependent on tissue type or cellular context, as well 
as their reliance on canonical Hippo signaling, requires further 
investigation. Several of the aforementioned proteins can also 
directly alter YAP activity in a manner independent of MST and/
or LATS kinases (31, 43).

The Hippo pathway plays a major role in arbitrating cell con-
tact inhibition, cell proliferation, and promoting apoptosis (44). 

FiGURe 1 | Schematic representation of the mammalian Hippo 
signaling cascade. Canonical Hippo transduction involves MST1/2 and 
LATS1/2 kinases, which, in conjunction with SAV1 and MOB1, 
phosphorylate, and inhibit the transcriptional co-activators YAP and TAZ. 
Regulation of YAP and TAZ are governed by plasma membrane proteins, 
cytoskeletal adaptor proteins, regulatory cross-talk from other signaling 
pathways, and intrinsic and extrinsic mechanical cues with the actin 

cytoskeleton. For simplicity, not all the known protein–protein interactions 
and regulators of Hippo signaling are represented. When Hippo signaling 
is “OFF”, YAP/TAZ translocate to the nucleus to serve as transcriptional 
co-activators for TEADs as well as other transcription factors (only a few 
of which are represented here) involved in cellular proliferation, 
differentiation, self-renewal, and apoptosis. See text for additional 
details.
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TABLe 1 | Pathway cross-talk with Hippo signaling.

Pathway cross-talk Reference

Developmental pathways
 Wnt/β-catenin (67–70)
 TGF-β (60, 61, 71–74)
 Notch (67, 75–77)
 Hedgehog (78–80)
MAP kinase related
 MAPK/Erk (81–83)
 GPCRs (29, 84, 85)
 SAPK/JNK (86, 87)
ErbB tyrosine kinases (88)
PI3K/mTOR/Akt (41, 89–91)
Jak/Stat (92, 93)
Ras (94–96)
Sox2 (97, 98)
MMP family (99)
Mevalonate pathway (100, 101)
Cellular metabolism (102, 103)
Epigenetic modification (104)
Cell cycle/CDK1 (105)
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and (4) intrinsic and extrinsic mechanical forces within the cell, 
which exert local control over YAP and TAZ localization. An 
overview of Hippo regulation is summarized below. For more 
detail, see the review by Grusche and colleagues (22), as well as 
three recent proteomic analyses that identified key protein–pro-
tein interactions with Hippo kinases, and YAP and TAZ within 
the global signaling network (23–25).

Regulation Through Plasma Membrane Proteins
Growth control is signaled through plasma membrane proteins 
to upstream Hippo proteins, often in response to increased 
cell density. The Crumbs polarity complex, other polarity 
proteins, and adherens junctions, which all modulate each 
other, contribute inputs to various Hippo components (22, 26). 
E-cadherin and the junction-associated Ajuba protein family 
modulate MST and LATS kinases, respectively. The Crumbs 
complex involves transmembrane proteins that recruit scaf-
fold proteins that localize to apical junctions and mediate cell 
polarity (27, 28). G-protein-coupled receptor (GPCR) ligands 
have been identified as regulators of Hippo signaling (29). 
Depending on the coupled G-protein, LATS1/2 kinases can 
either be activated or inhibited. YAP and TAZ directly influence 
the GPCR transcriptional activity, as YAP/TAZ are required 
for the expression of many GPCR-mediated target genes (29). 
The transmembrane hyaluronate receptor CD44 interacts with 
neurofibromin 2 (NF2, also known as Merlin) and other scaffold 
proteins to recruit LATS to the cell membrane, where it is phos-
phorylated (9, 30–32). Finally, the atypical cadherin protein Fat 
(Drosophila) is required for localization of Expanded (FRMD6 
in mammals) to apical junctions, which results in activation of 
Hippo (MST1/2) (33). In avian cells, FAT4 has been shown to 
inhibit YAP1-mediated neuroprogenitor cell proliferation and 
differentiation (34).

Regulation Through Upstream intracellular 
Adaptor Proteins
The core Hippo pathway is controlled by a complex upstream 
regulatory network. MST and LATS kinase activity are regulated 
by several upstream proteins, including Ras-association domain-
containing family proteins (RASSFs1-10) (35, 36), kidney and 
brain protein (KIBRA) (37–39), thousand and one amino acid 
protein 1 (TAO-1) (40), MAP/microtubule affinity-regulating 
kinase 1 (MARK1) (41), and NF2. Via their interaction through 
a homologous SARAH (SAlvador–RAssf–Hpo) binding domain, 
RASSFs and SAV1 regulate MST activity (42). MST1/2 complexes 
with SAV1 to directly phosphorylate LATS1/2. MST1/2 bound to 
SAV1 can also bind to and phosphorylate MOB1, which binds 
LATS1/2 to promote autophosphorylation. While a growing 
inventory of functional interactions between upstream proteins 
and Hippo kinases are well described, the degree to which their 
binding is dependent on tissue type or cellular context, as well 
as their reliance on canonical Hippo signaling, requires further 
investigation. Several of the aforementioned proteins can also 
directly alter YAP activity in a manner independent of MST and/
or LATS kinases (31, 43).

The Hippo pathway plays a major role in arbitrating cell con-
tact inhibition, cell proliferation, and promoting apoptosis (44). 

FiGURe 1 | Schematic representation of the mammalian Hippo 
signaling cascade. Canonical Hippo transduction involves MST1/2 and 
LATS1/2 kinases, which, in conjunction with SAV1 and MOB1, 
phosphorylate, and inhibit the transcriptional co-activators YAP and TAZ. 
Regulation of YAP and TAZ are governed by plasma membrane proteins, 
cytoskeletal adaptor proteins, regulatory cross-talk from other signaling 
pathways, and intrinsic and extrinsic mechanical cues with the actin 

cytoskeleton. For simplicity, not all the known protein–protein interactions 
and regulators of Hippo signaling are represented. When Hippo signaling 
is “OFF”, YAP/TAZ translocate to the nucleus to serve as transcriptional 
co-activators for TEADs as well as other transcription factors (only a few 
of which are represented here) involved in cellular proliferation, 
differentiation, self-renewal, and apoptosis. See text for additional 
details.

As cells increase in confluence, the tumor suppressor NF2 local-
izes near cell junctions to activate Hippo signaling (45, 46). YAP 
suppression has been shown to rescue the hyperproliferative 
phenotypes caused by NF2 inactivation in both mesothelioma 
(47) and meningioma (48). Furthermore, overexpression of a 
dominant-negative TEAD suppressed the tumor growth resulting 
from liver-specific NF2 deletion in mice (49). A negative feedback 
loop between YAP/TAZ and LATS2 has also been described. 
YAP and TAZ stimulation and TEAD binding induces LATS2 
expression, both directly and by inducing NF2 (50). In addition, 
YAP and TAZ may negatively regulate each other. For example, 
Taz accumulates in the livers of Yap knockout mice, while either 
in vitro suppression or overexpression of Yap results in inverse 
changes to Taz protein expression (50).

Regulation Through Cross-Talk with Other 
Pathways
Cell status and function, as well as overall tissue and organismal 
growth, is governed by an integrated network of morphogenic 
signals. Hippo transduction is proving to be a hub for such 
integration (51–53). Although studies are needed to clarify 
intra-pathway cross-talk in sarcomas, many of these pathways 
have been individually implicated in sarcomagenesis. YAP and 
TAZ are well recognized as co-activators for transcription fac-
tors of numerous signaling cascades. The specific ways in which 
signaling networks synergize or antagonize Hippo to coordinate 
biologic activity is only beginning to be understood. We highlight 
a few examples of regulatory cross-talk and refer to the studies 
referenced in Table 1 for additional details.

One example is illustrated by the relationship between the 
WNT and Hippo pathways. WNT activity is critical in myogen-
esis (54) and osteogenesis (55), and has recently been shown to 
be important in sarcomagenesis as well (56, 57). Rosenbluh et al. 
performed genome-scale loss-of-functions screens on 85 cancer 
cell lines (including osteosarcoma) and determined that WNT-
active cancers are dependent upon β-catenin forming a complex 
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with YAP and the transcription factor TBX5 to promote tran-
scription of anti-apoptotic genes that are essential for cancer cell 
transformation and survival (58). This relationship was validated 
in a β-catenin-derived orthotopic colon cancer murine model, 
where Yap was required for tumor formation (58). In another 
study using murine cardiac muscle, knockdown of Hippo compo-
nents Sav1, Mst1/2, or Lats2 results in increased Yap activity and 
cardiomyocyte proliferation with phenotypic cardiomegaly. Gene 
profiling from these mice reveal an elevated WNT signature, and 
the phenotypic effects could be offset by conditional loss of one 
β-catenin allele (59).

TGFβ and Hippo signaling also collaborate to direct cell 
behavior. YAP and TAZ associate with SMADs to promote 
transcription of TGFβ and BMP target genes (60–62). TGFβ 
signaling alters YAP/TAZ expression to drive mesenchymal stem 
cell (MSC) fate. For example, treatment of MSCs with BMP2 
leads to increased TAZ expression and enhanced interaction 
with RUNX2 to promote osteoblast differentiation (63). Notch 
and Hippo signaling provide another example of coordinated 
cross-talk. Notch has been shown to be a driver of both bone and 
soft-tissue sarcomas (64–66). While no studies have examined 
the interplay of Notch and Hippo in sarcomas, overexpression 
of Yap1 in mouse intestinal epithelia stimulates Notch signaling 
and the expansion of undifferentiated progenitor cells. However, 
treatment with γ-secretase inhibitors to block Notch signaling 
prevents the intestinal dysplasia caused by YAP (67). Together, 
these insights provide a deeper appreciation for the complex 
molecular circuitry that regulates Hippo activity in cell biology 
and malignancy.

Cytoskeletal Regulation Through Mechanical 
influences
To sustain proper function, from facilitating organ development 
during embryogenesis to maintain homeostasis postnatally, 
cells must perceive their microenvironment and respond 
appropriately to stimuli. In addition to transmitting biochemi-
cal signals, cells also extract information from mechanical cues. 
Mechanotransduction is the ability to perceive and translate 
physical stimuli [elasticity of the extracellular matrix (ECM) 
and forces exerted by cell–cell or cell–matrix interactions] into 
biochemical signals on a cellular level. Cells adapt to changes in 
tension through rapid cytoskeletal remodeling (106–108). YAP 
and TAZ have emerged as dynamic factors linking remodeling to 
nuclear transcriptional outputs that control cell behavior. Thus, 
by modulating YAP/TAZ activity, mechanical stimuli can direct 
cell fate and guide stem cell maintenance, proliferation, and 
differentiation (107, 109–111). For example, in Drosophila, the 
tension modulated within the cytoskeleton causes proportionate 
changes in wing growth through an Ajuba-Warts (homolog of 
LATS) complex (112).

In  situations of high mechanical stress and low cell conflu-
ence, YAP and TAZ are transcriptionally active, resulting in 
proliferation and tissue growth. However, with increasing cell 
contact, adhesion molecules stimulate LATS activity, result-
ing in YAP/TAZ phosphorylation and nuclear exclusion (44). 
Both F-actin polymerization and stress fiber formation lead to 
the nuclear localization and activation of YAP/TAZ, whereas 

disrupting F-actin inhibits YAP/TAZ transcriptional activity 
(113–116). As shown in Figure 2, ECM stiffness and cell shape/
spreading can also regulate YAP/TAZ localization by regulating 
the activity of Rho-GTPases and the formation of stress fibers 
and actin bundles (106, 110, 113). In MSCs, YAP and TAZ act as 
both sensors of mechanotransduction and mediators of cellular 
responses to mechanical signals (117, 118). YAP and TAZ remain 
inactive in the cytoplasm and direct MSCs to differentiate into 
adipocytes when human MSCs are exposed to low ECM stiffness, 
are cultured on a soft matrix, or are manipulated into a small 
round shape. However, YAP and TAZ are active in the nucleus 
and MSCs differentiate into osteoblasts when they are subjected 
to high ECM stiffness, are grown on a stiff matrix, or are stretched 
and manipulated into a “spread-out” morphology (119, 120). This 
mechanical control over YAP/TAZ activity supersedes density 
cues from cell–cell or cell–matrix contact (113, 115).

Interestingly, manipulation of YAP/TAZ expression can 
overrule mechanical influences to direct differentiation. When 
YAP/TAZ is suppressed, MSCs grown on a stiff ECM will 
undergo adipogenic differentiation. However, when activated 
YAP is overexpressed, MSCs grown on a soft ECM will undergo 
osteogenic differentiation (113). Knockdown of LATS1/2 has 
almost no effect on YAP/TAZ regulation by mechanical cues, 
and LATS-insensitive TAZ still responds to mechanical cues 
(113). Therefore, cellular mechanical stress can directly impact 
proliferation and tissue growth through YAP/TAZ, independent 
from Hippo signaling. Together, these studies emphasize the 
importance of cytoskeletal regulation of YAP and TAZ transcrip-
tional activity, and demonstrate that YAP and TAZ are required 
for mechanical signals to direct MSC fate.

Summary of Hippo Regulation
In summary, while the mechanistic and functional interactions 
between Hippo signaling and other regulatory pathways and 
cellular processes are not entirely understood, it is apparent that 
Hippo transduction links cell density and cell contact cues to 
morphogenic signals that regulate cell behavior. During develop-
ment and tissue regeneration, the tumor suppressor function of 
Hippo signaling serves to offset the proliferative effects of other 
pathways. However, during malignant transformation, Hippo 
transduction is suppressed as cells evade contact inhibition, 
allowing the downstream effectors, YAP and TAZ, to co-activate 
TEADs as well as other transcription factors, to promote pro-
proliferative and anti-apoptotic properties.

Hippo Signaling in Mesenchymal Stem 
Cell Fate

While the precise cellular origin for most sarcomas remains 
uncertain, they are presumed to arise from mesenchymal precur-
sors that fail to undergo terminal differentiation. These precursors 
have stem-like characteristics, including high proliferative and 
self-renewal potential. Therefore, insight into MSC regulation, 
lineage commitment, and differentiation (121), may shed light 
on sarcoma biology. As shown in Figure  2C, sarcoma subtypes 
are histologically described by the features of their presumed 
mesenchymal lineage. Summarized below are the known roles 
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FiGURe 2 | Mechanical and physical influences on MSC cell fate. Cell 
geometry and ECM stiffness regulate MSC lineage commitment into neurons, 
adipocytes, skeletal muscle cells, or osteoblasts. (A) Increasing ECM stiffness 
in vitro (by increasing type I collagen concentration and crosslinking) 
compromises tissue organization, inhibits apoptosis and lumen formation, and 
destabilizes adherens junctions. Through modeling different ECM elasticities 
in vitro, MSCs differentiate into the varying lineages at elasticities that 
recapitulate the physiological ECM stiffness of their corresponding natural niche 
(shown as colored lines, with peaks indicating maximal differentiation). Pa, 
Pascal. (B) When MSCs are either cultured on a soft matrix or are manipulated 

into a small round shape, YAP/TAZ remain inhibited in the cytoplasm and 
MSCs differentiate into adipocytes. However, when MSCs are either grown on 
a stiff matrix or stretched and manipulated into a “spread-out” morphology, 
YAP/TAZ localize to the nucleus as MSCs differentiate into osteoblasts. 
(C) Corresponding histologic sarcoma subtype [2013 WHO classification 
(230)], which may reflect varying lineage differentiation from mesenchymal 
progenitor cells. This represents only a theoretical link between 
mechanotransduction influencing mesenchymal progenitors and sarcoma, and 
not all sarcoma subtypes are represented. Figures (A,B) are modified with 
permission from Halder et al. (108) and Piccolo et al. (117).
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of Hippo signaling in modulating normal bone (osteogenic), fat 
(adipogenic), and muscle (myogenic) development, which are 
the origins of the most common sarcomas. YAP/TAZ are also 
critical mediators of cancer stem cell biology, a topic reviewed by 
others (122).

Hippo Signaling in Osteogenic Differentiation
Osteogenic differentiation is coordinated by the transcrip-
tion factor, RUNX2, and a host of co-regulators (123), which 
activate the expression of osteoblast-specific genes, including 
osteocalcin (63, 124, 125). Through direct binding of the TAZ 
WW domain to the PY motif on RUNX2, TAZ has been identi-
fied as a transcriptional co-activator of RUNX2. Expression of 
an active TAZ mutant enhances RUNX2-driven gene expression 
two to threefold (63, 126), while knockdown of TAZ in MSCs 
inhibits osteogenesis when the cells are cultured under conditions 

favoring osteoblast differentiation (63). Transgenic mice with 
osteoblast-specific overexpression of Taz have significantly higher 
whole body bone mineral density, increased bone formation, 
and higher expression of RUNX2, osteocalcin, ALP, and osterix 
(127). TAZ-mediated osteogenesis may also occur downstream 
of the WNT pathway, since WNT3A can cause PP1A-mediated 
TAZ dephosphorylation, leading to TAZ nuclear localization and 
induction of osteogenic differentiation (68).

While the role of TAZ in supporting osteogenesis is clear, the 
role of YAP is more complex. When an activated YAP mutant was 
overexpressed in MSCs, osteogenic differentiation was promoted 
over adipogenic differentiation, even under conditions favoring 
the latter (113). However, YAP can also act as repressor of RUNX2 
when it is regulated by non-canonical pathways (128). For exam-
ple, when Src/Yes tyrosine signaling is inhibited, Yap tyrosine 
phosphorylation is blocked, Yap dissociates from RUNX2, and 
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osteocalcin is induced (128, 129). Last, there is evidence that 
YAP is a direct target of SOX2, a transcription factor important 
for MSC cell fate; in situations of high SOX2 or YAP expression, 
osteogenesis is blocked, while depletion of either SOX2 or YAP 
enhances osteogenesis (98).

In addition to YAP/TAZ, there is evidence that upstream 
scaffold proteins influence osteogenesis. Rassf2 knockout mice 
develop bone-remodeling defects, and in vitro studies show that 
ablation of RASSF2 suppresses osteoblastogenesis while promot-
ing osteoclastogenesis (130).

Hippo Signaling in Adipogenic Differentiation
A key transcription factor orchestrating adipogenesis is per-
oxisome proliferator-activated receptor gamma (PPARγ), which 
contains a PY motif for binding the WW domains on YAP and 
TAZ (63). In this context, binding of TAZ has an inhibitory 
role, suppressing transcriptional activity. When cultured under 
conditions that promote adipogenic differentiation, knockdown 
of TAZ permits MSCs to differentiate toward this lineage (63). 
Similarly, treatment with the small molecule KR62980 (a ligand 
for PPARγ that antagonizes adipocyte differentiation) does so by 
promoting TAZ nuclear localization and enhanced interaction 
between TAZ and PPARγ (131).

Recent work has shed light on the role of YAP in adipogenesis. 
Similar to osteogenesis, YAP is downstream of SOX2. However, 
YAP levels must be fine-tuned; both over or under-expression 
of YAP inhibits adipogenesis. Mechanistically, YAP induces the 
Wnt antagonist Dkk1 to diminish osteogenic signaling in favor 
of adipogenesis. In addition to YAP and TAZ, upstream Hippo 
regulators have been implicated. The Hippo adaptor protein 
SAV1 contains WW domains that can interact with the PY motif 
within PPARγ (132). MST1/2 stimulated SAV1 to bind PPARγ, 
which stabilizes and increases PPARγ levels, ultimately leading 
to adipogenic differentiation. In addition, knockdown of MST1/2 
or SAV1 results in the inhibition of adipogenesis (132), though 
it is not known whether this effect is through canonical Hippo 
transduction or an alternate pathway.

Hippo Signaling in Myogenic Differentiation
Myogenic differentiation is driven by the myogenic regulatory 
factor family [MRFs: MyoD, myogenin, MRF4, and myogenic 
factor 5 (Myf5)]) (133–135) in coordination with myocyte-specific 
MEF2 enhancer factors (136, 137). In murine C2C12 skeletal 
muscle myoblasts, YAP supports an undifferentiated phenotype 
and promotes myoblast proliferation (138–140). Upon differentia-
tion, nuclear YAP is translocated to the cytoplasm, with a 20-fold 
increase in YAP phosphorylation. Overexpression of YAP S127A, a 
mutant that cannot be phosphorylated at the LATS-regulated site, 
impedes myotube formation, and alters the expression of MRFs 
(139). Activation of YAP causes upregulation of Myf5, which pro-
motes myoblast proliferation. Activated YAP also leads to down-
regulation of MyoD and MEF2, which are important in cell-cycle 
exit and differentiation, as well as upregulation of inhibitors of 
MyoD and MEF2, such as ID2, Twist1, and Snai1/2 (133, 138). 
In activated satellite cells, which are resident stem cells of skeletal 
muscle, high YAP activity prevents differentiation and promotes 
proliferation (138, 140). YAP suppression dramatically reduces 

satellite cell-derived myoblast proliferation (140). Additionally, 
muscle CAT (MCAT) elements, which are TEAD-binding sites, 
are found in the promoters of genes that are selectively expressed 
in terminally differentiated skeletal muscle (140, 141).

Interestingly, while YAP inhibits myogenic differentiation, 
some studies suggest TAZ may enhance myogenesis. TAZ 
physically binds MyoD to enhance binding to the myogenin gene 
promoter to activate MyoD-dependent gene transcription (142, 
143). Ectopic overexpression of TAZ in C2C12 myoblasts results 
in accelerated myofiber formation, whereas TAZ loss lessened 
myogenic differentiation (142).

Evidence of upstream Hippo pathway regulators in muscle 
differentiation is limited. However, MST was found to have a 
pro-differentiation role during an investigation of caspase 3 in 
myogenesis (144). While caspases are classically known for their 
role in apoptosis, non-apoptotic functions have been reported. 
This appears to be the case in myogenesis, as caspase 3 was 
robustly activated in differentiating myoblasts without inducing 
apoptosis. Caspase 3-deficient myoblasts or C2C12 cells treated 
with caspase inhibitors are less able to differentiate, in part due 
to caspase 3-mediated regulation of MST1. Additionally, MST1 
is a substrate for caspase 3, and cleaved MST1 was enriched in 
myoblasts undergoing differentiation. In caspase 3-deficient myo-
blasts, introduction of the cleaved MST1 induced myogenic dif-
ferentiation, proving a link between these two pathways. However, 
MST1 activation must be tightly controlled, as MST1 activation in 
wild-type myoblasts ultimately led to cell death (144). While this 
study suggests a role for MST1 in myogenic differentiation, con-
nections between MST1 activation by caspase 3 and the canonical 
Hippo pathway in muscle remain to be determined.

The Molecular Basis for Hippo Signaling in 
Sarcomas

Sarcomas comprise a group of clinically and histologically diverse 
tumors of mesenchymal origin. They can develop anywhere in the 
body, with about half arising in bone and half in soft tissues. In 
children and adolescents, osteosarcoma (OS) and Ewing sarcoma 
(EWS) are the two most common malignant bone sarcomas, 
while rhabdomyosarcoma (RMS) and non-rhabdomyosarcoma 
soft-tissue sarcomas (NRSTSs) are the major classes of malignant 
soft-tissue sarcomas (145).

As reviewed earlier, Hippo signaling is essential for proper organ 
growth, amplification of tissue-specific progenitor cells during tissue 
regeneration, and cellular proliferation (10, 146). In 2007, Dong and 
colleagues generated a liver-specific conditional Yap1 transgenic 
mouse model that develops hepatocellular carcinoma (10). This led 
to the understanding that YAP is important in cancer and identified 
Hippo signaling as a tumor suppressor pathway in mammals. In 
other genetically engineered mouse models (GEMMs), mutations 
or altered expression of Hippo pathway genes gives rise to sarco-
mas, substantiating Hippo pathway deregulation in sarcomagenesis 
(138, 147–149). The next section will review the molecular basis 
of dysregulated Hippo signaling in bone and soft-tissue sarcomas. 
Each subsection will highlight the pro-tumorigenic role of YAP/
TAZ, with subsequent cataloging of other Hippo pathway member 
involvement. Table 2 summarizes these alterations.
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Hippo Signaling in Osteosarcoma
Osteosarcoma is the most common primary malignancy of 
bone, with a 5-year overall survival of 60–70% (150). Given its 
decreased radiosensitivity compared to other sarcomas, surgical 
resection with chemotherapy is the mainstay of treatment. OS 
tumors are characterized by complex genomic rearrangements as 
well as copy number variations (151, 152). Mutations or loss-of-
function of tumor suppressors RB1 and TP53 are two of the most 
common genetic alterations and are reported in ~50 and ~30% 
of tumors, respectively (151). Aberrations in Hippo signaling are 
proving to be important in the biology of OS.

YAP
Human tissue microarray analyses have revealed high YAP1 pro-
tein expression in OS compared to surrounding non-cancerous 
tissue, and expression correlates with staging (153). These 
findings corroborate other studies which showed high YAP1 
expression in 78% of human OS samples and an increase in Hippo 
pathway target genes (80, 97, 154). Nuclear localization of Yap 
was found in Kios-5 murine OS cell lines, and Yap (and Taz, to a 
lesser extent) protein expression was also increased. In vitro sup-
pression of Yap was associated with decreased cell proliferation 
and invasion, as well as decreased expression of Runx2, CyclinD1, 
and MMP-9. Decreased tumor growth was observed with in vivo 
Yap suppression in murine xenografts (155), as well as transgenic 
mouse models (80).

The mechanism of YAP upregulation in OS is complex but 
appears to be due in part to the stem cell transcription factor 
SOX2. In murine OS cell lines, Sox2 was found to directly repress 
the Hippo pathway activators, Nf2 and Kibra, leading to increased 
YAP. When grown as osteospheres, where stem cells are enriched, 
YAP expression was higher (and Nf2 lower) compared to adher-
ent cells. In cells depleted of Sox2, either Yap overexpression or 
Nf2 suppression restored osteosphere formation. Conversely, 
suppressing Yap or overexpressing Nf2 promoted osteogenic 
differentiation and prevented osteosphere formation. The differ-
entiated phenotype of OS cells induced by Nf2 could be overcome 
by either overexpressing wild-type or constitutively active mutant 
Yap, but not mutant Yap with a deficient TEAD-binding site. 
This regulation of Yap by Sox2 occurs through canonical Hippo 
signaling, as suppression of either Mst1/2 or Lats1/2 abolished 
Nf2-induced osteogenic differentiation as well as changes in Yap 
expression and function (97).

YAP can also be upregulated by Hedgehog (Hh) pathway 
activation. Malignant OS occurs with high penetrance in 
Ptch1c/+;p53+/−;HOC-Cre mutant mice, in which Hh signaling 
is partially upregulated in a p53 heterozygous background. 
Resultant tumors have high Yap1 expression, which is significantly 
reduced with Hh inhibition, and suppression of Yap1 blocks 
tumor progression. This same study showed that the Hh-Yap axis 
may regulate the expression of H19, a maternally imprinted long 
non-coding RNA implicated in tumorigenesis (80).

RASSFs
Two RASSFs (RASSF5 and RASSF10) have been implicated as 
tumor suppressors in OS. Similar to other RASSF family mem-
bers, RASSF5 and RASSF10 are seen downregulated in human 

tumors (including OS) by CpG island promoter hypermeth-
ylation (156). In a human tissue microarray representing 45 OS 
samples, RASSF5 was significantly downregulated and expression 
negatively correlated with distant metastasis (157). In human 
U2OS cells, in vitro suppression of RASSF5 conveyed resistance 
to TNF-α-induced apoptosis, which is thought to occur through 
interaction and inactivation of the pro-apoptotic function of 
MST1 (158). Conversely, overexpression of RASSF5 in human 
OS cell lines decreases cell proliferation, increases apoptosis, and 
inhibits invasion.

NF2
In humans, germline or somatic mutations in one allele of NF2 
result in the disease neurofibromatosis type 2, which is associated 
with schwannomas, meningiomas, and ependymomas. However, 
mice heterozygous for Nf2 develop a variety of malignant tumors 
at high frequency, including OS (63%). Somatic mutations of the 
wild-type Nf2 allele were found in almost all of these tumors, 
implying that loss of heterozygosity of Nf2 may be required for 
sarcomagenesis (147).

CD44
CD44 is a cell-surface glycoprotein that transmits extracellular 
signals to the ERK, AKT, and Hippo pathways (82, 159). CD44 
was found to be suppressed by NF2, leading to decreased migra-
tion and invasion in OS cell lines in vitro, although an enhanced 
OS malignant phenotype was observed with knockdown of CD44 
in mice xenografts (160). Others have shown that NF2 mediates 
contact growth inhibition through ECM signals by complexing 
with CD44 (32).

MOB1
In vitro overexpression of MOB1A impairs cellular proliferation, 
while suppression of MOB1A leads to aberrant mitosis (15). In 
double-mutant mice lacking both Mob1A and Mob1B, complete 
loss of both alleles (Mob1AΔ/Δ1Btr/tr, null mutation of Mob1A, 
gene trap of Mob1B) is embryonically lethal. However, double-
mutant mice retaining one allele of either (Mob1AΔ/+1Btr/tr or 
Mob1AΔ/Δ1Btr/+) survive and spontaneously develop tumors with 
100% penetrance within 70 weeks. Extraskeletal OS arose in 24% 
(9/37) of mice, while benign exostosis occurred in 92% (34/37). 
All the tumors examined from either single heterozygote (Mob1
AΔ/+1Btr/tr or Mob1AΔ/Δ1Btr/+) group revealed loss of the wild-type 
Mob1 allele, suggesting loss of heterozygosity may be necessary 
for tumor growth (148).

Hippo Signaling in ewing Sarcoma
Ewing sarcoma is the second most common malignant bone 
tumor in children and young adults. Although the 5-year overall 
survival is about 70%, 30–40% of patients either present with 
metastatic disease or develop recurrence, where outcomes are 
worse (161). EWS is characterized by a t(11;22) chromosomal 
translocation, which generates a fusion gene encoding the EWS-
FLI1 chimeric protein that is thought to be the predominant 
driver of EWS tumorigenesis (162). The molecular basis for 
dysregulated Hippo signaling in EWS is beginning to be studied, 
as summarized below.
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TABLe 2 | Proposed involvement of Hippo pathway components in sarcoma biology.

Sarcoma type Component Summary of proposed pathologic role Reference

Osteosarcoma YAP YAP1 expression is elevated and correlates with tumor staging and an increase in Hippo target 
genes
Suppression of YAP promotes differentiation, and decreases cell proliferation and tumor growth
YAP is a direct target of SOX2 in osteoprogenitors and YAP1 expression is altered by SOX2 
abundance
OS transgenic mice with upregulated Hedgehog signaling display high YAP1 expression
The long non-coding RNA H19 is aberrantly induced by YAP1 overexpression

(80, 153, 155)

RASSFs RASSF5 is downregulated in human OS tumors and expression negatively correlates with 
metastasis
In vitro overexpression of RASSF5 leads to decreased cell proliferation and invasion
RASSF10 promoter is epigenetically silenced through hypermethylation

(156–158)

NF2 NF2 expression is decreased and NF2 is shown to be a direct target of SOX2 in 
osteoprogenitors
63% of Nf2+/− mice develop OS. Increased penetrance and decreased latency and survival with 
Nf2+/−p53+/− mice. Both groups show loss of wild-type Nf2 allele

(97, 147, 160,  
198, 199)

MOB1 24% of Mob1AΔ/+1Btr/tr or Mob1AΔ/Δ1Btr/+ mice develop extraskeletal OS in 25–70 weeks (148)

Ewing sarcoma YAP In vitro YAP suppression decreases proliferation in EWS cells
BMI-1 stabilization of YAP is proposed to be a means for EWS cells to overcome 
contact-inhibition

(163)

RASSFs Hypermethylation of RASSF1A and RASSF2 occurs at high frequency and correlates with worse 
outcomes

(165, 166)

ERMS YAP YAP1 is elevated in human tumors and correlates with increased proliferation and clinical outcomes
Copy number gains of the YAP1 locus are reported
YAP suppression results in decreased proliferation and increased differentiation
Myf5- or Myod1-hYap1 S127A mice generate ERMS tumors within 4–8 weeks after Yap1 
S127A expression
100% of Pax7-hYap1 S127A mice generate ERMS-like tumors within 10–11 weeks after injury

(138, 178)

ARMS YAP YAP1 expression is increased in human tumor samples
In vitro suppression of YAP results in decreased proliferation and increased senescence

(138, 178)

RASSF4 RASSF4 is a PAX3-FOXO1 target gene
Overexpression of RASSF4 promotes cell proliferation
In vitro loss of RASSF4 leads to decreased cell growth

(178)

NRSTS YAP STSs display gene amplification and overexpression of YAP1 with increased  
TEAD-associated genes
YAP complexes with TEAD and the cell cycle transcription factor FOXM1 to support STS 
tumorigenesis

(186, 191)

RASSF1A RASSF1A hypermethylation is reported in ~20% of adult STSs and correlates with clinical 
outcomes

(189)

MST1/2 Hypermethylation of MST1 and MST2 occurs in 37 and 20% of STS, respectively (187, 200)

LATS1/2 Hypermethylation of LATS1 is associated with poorer prognosis and shorter survival times in 
human STS

(149, 188, 189)

60% of Lats1−/− mice die in utero but 14.3% of surviving female Lats1−/− mice develop 
fibrosarcomas by 4–10 months. Adding carcinogen exposure decreases latency and increases 
penetrance to 83%

Fibrosarcoma MOB1 22% of Mob1AΔ/+1Btr/tr or Mob1AΔ/Δ1Btr/+ mice develop fibrosarcoma in 25–70 weeks (148)

NF2 7% of Nf2+/− mice develop fibrosarcoma. 32% of Nf2+/−p53+/− mice develop fibrosarcoma (147)

EHE TAZ-CAMTA1
YAP-TFE3

TAZ-CAMTA1 and YAP1-TFE3 fusion proteins are pathognomonic findings in EHE tumor 
samples

(193–195)
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YAP
YAP suppression in human EWS cell lines decreases prolif-
eration and anchorage-independent colony formation (163). 
A relationship between YAP and BMI-1, a Polycomb complex 
protein involved in chromatin remodeling (164), has been 

proposed. In studies examining the effect of cell density in 
cultured EWS cells, loss of BMI-1 had no effect in low-density, 
while it caused cell-cycle arrest and death under conditions of 
confluence. These findings may be due in part to the role of 
BMI-1 in stabilizing YAP expression and activity, and may serve 
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as a means for BMI-1-driven EWS cells to overcome contact 
inhibition (163).

RASSFs
Hypermethylation of the promoter regions of RASSF1A and 
RASSF2 has been described in EWS and is correlated with worse 
clinical outcome (165, 166). One study of 55 human EWS tumors 
reported methylation rates for RASSF1A and RASSF2 of ~52 and 
~42%, respectively (165). In in  vitro studies, overexpression of 
either RASSF1A or RASSF2 in EWS cells reduced their ability to 
form colonies (165). In a separate study, methylation of RASSF1A 
was observed in 75% (3/4) of EWS cell lines and 68% (21/31) 
of human tumors (166), though these studies are contradicted 
by other reports that did not demonstrate increased RASSF1A 
hypermethylation (167, 168). The EWS-FLI1 fusion protein has 
recently been shown to provoke widespread epigenetic changes, 
including altered DNA methylation, although it is not known 
whether there is a direct effect on RASSF expression (168, 169).

Hippo Signaling in Rhabdomyosarcoma
Rhabdomyosarcomas are soft-tissue sarcomas and account for 
approximately 8% of all pediatric solid tumors (170). The two 
major histological subtypes are termed embryonal (ERMS) 
and alveolar (ARMS) rhabdomyosarcoma. ERMS, which is 
more common, typically arises in the head and neck or retro-
peritoneum of younger children and conveys a better prognosis 
(localized tumors have >70% 5-year overall survival) (171, 172). 
ERMS tumors demonstrate numerous chromosomal aberrations, 
including genomic amplifications, loss of heterozygosity of spe-
cific chromosomal regions, frequent chromosomal gains in 2, 8, 
12, and 13, and loss-of-imprinting (171–174). ARMS make up 
about 25–30% of cases and usually arise in the extremities or trunk 
and occur more frequently in adolescents. ARMS is characterized 
by recurrent chromosomal translocations, principally t(2;13) 
and t(1;13), which result in the expression of PAX3-FOXO1 and 
PAX7-FOXO1 fusion proteins, respectively (175). These aberrant 
chimeric proteins are oncogenic transcription factors that confer 
a poor prognosis (5-year overall survival <15% for metastatic or 
recurrent tumors) (173, 175–177). Interestingly, fusion-negative 
histologic ARMS have a cytogenetic and molecular profile similar 
to ERMS, and correspondingly similar clinical behavior (177).

YAP
YAP protein is upregulated in both ERMS and ARMS tumors 
(138, 178). In ERMS and fusion-negative ARMS, this is due in 
part to increased YAP1 locus copy number. The importance of 
YAP in ERMS was confirmed by the remarkable finding that 
expression of YAP S127A is sufficient for ERMS tumorigenesis 
in a GEMM (138). This finding was particularly surprising given 
prior work showing YAP1 S127A expression in adult mouse 
muscle caused atrophy (179). Similar to this study, limb stiffness 
and gait defects were the initial phenotypes observed in Myf5/
MyoD-YAP1 S127A mice (138). However, analysis of their 
muscle beds found that within the muscle damage were sites 
of active muscle regeneration and expansion of mononucleated 
cells. These were confirmed to be ERMS lesions, as they stained 
positive for ERMS histological markers. Tumor cells from these 

mice were transplantable, leading to secondary ERMS tumors 
with short latency. Given the high proportion of mononucleated 
cells in the primary tumor, Tremblay and colleagues hypothesized 
that satellite cells could serve as an ERMS cell of origin in this 
model. While expression of YAP1 S127A in the Pax7 (satellite) 
cell lineage did not induce ERMS formation, YAP1 S127A did 
transform satellite cells in the context of muscle injury. This sug-
gests that hyperactive YAP signaling in activated satellite cells has 
transformative properties.

Using this GEMM model, hyperactive YAP signaling in 
ERMS tumors was found to induce a myogenic differentiation 
block. When YAP S127A expression was reduced, tumors rapidly 
regressed, and tumor cells spontaneously expressed markers 
of terminal muscle differentiation. Similarly, endogenous YAP 
suppression in ERMS RD cell xenografts caused myogenic dif-
ferentiation (138). These findings are in line with earlier work 
implicating a role for YAP signaling in regulating myogenic differ-
entiation. In proliferating C2C12 and satellite cells, YAP levels are 
high and localized in the nucleus. Upon differentiation stimulus, 
YAP mRNA expression is reduced and YAP becomes cytoplasmic 
(139, 140). This suggests an important role for YAP signaling in 
maintaining a high proliferative and anti-differentiation state. 
Similarly, YAP S127A can block C2C12 and satellite cell in vitro 
differentiation. This differentiation block is believed to be due 
to transcriptional changes induced by YAP-TEAD, particularly 
through upregulation of pro-proliferative genes and repression 
of MYOD1 and MEF2 regulation of terminal differentiation 
genes (138).

Additional studies have supported a role for YAP in RMS. 
A subset of ERMS tumors harbor mutations in the PKN1 gene 
(encoding a kinase of the protein kinase C superfamily), which 
imparts a gene expression signature associated with activated 
YAP (180). In ARMS cells, in vitro genetic suppression of YAP 
induces growth arrest and senescence (178).

RASSF4
A role for the Hippo pathway in ARMS began with the identi-
fication of RASSF4 as a PAX3-FOXO1 target gene (178). Using 
transcriptional profiling studies, PAX3-FOXO1-expressing 
myoblasts were found to upregulate RASSF4 expression. Further, 
PAX3-FOXO1-positive ARMS cell lines and human tumors had 
elevated RASSF4 levels, and high RASSF4 expression was associ-
ated with worse RMS clinical prognosis. Loss-of-function studies 
demonstrated that RASSF4 was promoting cell proliferation and 
senescence evasion in ARMS cells. These RASSF4 functions were 
due to inhibition of MST1 signaling to MOB1. While no changes 
in signaling to LATS1 were observed, RASSF4-deficient ARMS 
cells did express lower levels of YAP1 protein. However, cells 
expressing a hyperactive YAP1 (YAP S127A) could not reverse the 
phenotypes associated with RASSF4 loss, suggesting an indirect 
connection between RASSF4 and YAP signaling (178). Altogether, 
these studies suggest that suppression of MST1-MOB1 signaling 
is an important oncogenic function of RASSF4 in ARMS.

TEAD-NCOA2 Fusions
NCOA2 is a transcriptional co-activator for steroid and nuclear 
hormone receptors. Fusion of TEAD to NCOA2 was found in 
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tumor tissue removed from a 4-week-old child with spindle 
cell RMS (181), a rare variant of ERMS (182). While NCOA2 
gene rearrangements with other gene partners are seen in high 
frequency in congenital spindle cell RMS and mesenchymal 
chondrosarcomas (181, 183), the clinical and molecular 
significance of TEAD as a binding partner in this case is not 
known.

Hippo Signaling in Non-Rhabdomyosarcoma 
Soft-Tissue Sarcomas
Non-rhabdomyosarcoma soft-tissue sarcomas comprise the fifth 
most common group of solid tumors in children, accounting 
for 8–9% of childhood malignancies. These are histologically 
heterogeneous tumors that share some biologic characteristics. 
Surgical resection results in remission for about 80% of patients 
presenting with localized disease, though survival for those with 
unresected or metastatic disease remains poor (184). Many 
NRSTS, particularly those common in children, are character-
ized by disease-defining chromosomal translocations. Examples 
include synovial sarcoma t(X;18) and alveolar soft part sarcoma 
t(X;17), which result in the SYT-SSX and ASPL-TFE3 oncogenic 
fusion proteins, respectively (145). Other NRSTSs that are more 
common in adults, such as leiomyosarcoma or undifferentiated 
sarcoma, display multiple complex karyotypic abnormalities 
with frequent mutations in the TP53 and RB tumor suppressor 
pathways (185).

YAP
Nuclear staining for YAP is increased in a subset of human STS 
samples, compared to corresponding normal connective tissue 
(186). KRAS-based [LSLKrasG12D/+;Tp53fl/fl (KP)] GEMMs were 
used to further investigate the role of YAP in STS. Yap sup-
pression in allograft tumors generated from KP cells results in 
decreased cell proliferation and tumor growth, and treatment 
with verteporfin to block the YAP–TEAD interaction decreased 
transcription of Yap1 target genes. Many of the downregulated 
mRNAs in this model were noted to also be targets of Foxm1, a 
transcription factor involved in cell-cycle progression. FOXM1 
is ordinarily inhibited by direct interaction with members of 
the TP53 and RB tumor suppressor pathways, and it is often 
overexpressed in malignancies where these tumor suppressor 
functions have been lost (186). FOXM1 expression was found 
to be increased in a variety of human sarcoma samples. In xeno-
graft studies, FOXM1 suppression inhibited sarcoma growth. 
Co-immunoprecipitation and ChIP-seq experiments reveal 
that FOXM1 physically associates with a YAP/TEAD complex 
(186). YAP suppression in human sarcoma cell lines resulted in 
decreased proliferation and decreased FOXM1 expression, sug-
gesting a novel role for YAP in co-activating FOXM1-mediated 
transcription in STS.

MST1/2
Hypermethylation of MST1 and MST2 promoters occurs in 
37 and 20% of all STS (including RMS), respectively (187). In 
leiomyosarcoma samples, hypermethylation of RASSF1A and 
MST2 were mutually exclusive, implying a common signaling 
pathway may exist for both genes. Surprisingly, methylation of 

the MST1 promoter appears to correlate with a decreased risk of 
tumor-related mortality (187), albeit from a retrospective cohort 
with a small sample size.

LATS
Reduced LATS gene expression was observed in 14% (7/50) of 
human adult STS tumors (188). These findings correlate with 
subtype, as three of four myxoid liposarcomas, three of seven 
leiomyosarcomas, and one of nine malignant fibrous histiocyto-
mas showed reduced or no expression of LATS1. In one of those 
samples, an allelic loss of the LATS1 locus in chromosome 6q23-
25.1, resulting from a missense point mutation, was observed. 
The other six samples showed aberrant hypermethylation of the 
putative LATS1 promoter (188), corroborating another study 
showing hypermethylation of the LATS1 promoter in 7% (3/43) 
of human STS samples (187). Hypermethylation of LATS1 in 
STSs is associated with a worse prognosis and shorter survival 
times (189). It is not known whether epigenetic regulation of 
Hippo pathway kinases alters the expression of YAP and TAZ.

In transgenic mouse models, most mice (60/101) homozygous 
for a null mutation in Lats1 died in utero or within post-natal day 
1. However, ~14% of surviving female Lats1−/− mice developed 
large NRSTS by 4–10  months of age consistent with fibrosar-
comas. After exposure to the carcinogen DMBA and repeated 
exposure to UVB, 83% (10/12) of Lats1−/− mice developed STSs, 
whereas no wild-type or heterozygous Lats1+/− mice developed 
tumors (149).

RASSF1A
Epigenetic silencing of RASSF1A via hypermethylation of its 
promoter occurs in 20% (17/84) of adult STSs (189). (This 
study included six cases of RMS, which did not reveal RASSF1A 
hypermethylation.) RASSF1A silencing was especially common 
in leiomyosarcomas, and overall was associated with an increase 
in tumor-related death.

VGLL3
Like YAP, VGLL3 is a TEAD co-activator and has been identified 
as an inhibitor of terminal adipogenic differentiation, suggesting 
that it has a core role in mesenchymal cell fate (190). In a study of 
404 adult STSs, recurrent amplifications of chromosomes 11q22 
and 3p12, which contain genes for YAP1 and Vestigial-like 3 
(VGLL3), respectively, were identified in 10% of cases. Genomic 
amplification corresponded to overexpression of YAP1 and 
VGLL3 at the message level, and an increase in TEAD-associated 
genes. In vitro suppression of YAP1 or VGLL3 decreased cell pro-
liferation and in the case of VGLL3, decreased migration (191). 
In a smaller study, analysis of eight NRSTS tumors identified 
3p11-12 as a commonly amplified region of a ring chromosome 
3 that was associated with high expression of VGLL3 (192).

TAZ-CAMTA1 and YAP-TFE3 Fusions
Fusions between the WWTR1 (gene name for TAZ protein) and 
CAMTA1 genes were first noted in a NRSTS subtype termed 
epithelioid hemangioendothelioma (EHE) (193). EHEs are vas-
cular sarcomas that can develop in bone, soft tissue, or visceral 
organs, and they demonstrate a clinical behavior intermediate 
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between benign hemangiomas and high-grade angiosarcomas. 
Sequencing of two tumors identified the t(1;3) translocation 
between WWTR1 and CAMTA1, and showed the fusion product 
to be under transcriptional control of the TAZ promoter. A larger 
study investigating 17 EHE tumors confirmed the translocation 
in all samples. The translocation and resulting transcript were not 
seen in epithelioid hemangioma and epithelioid angiosarcoma, 
morphologic mimics of EHE (194).

Subsequently, a YAP1-TFE3 fusion product was identified in 
nine EHE samples that were morphologically different from the 
WWTR1-CAMTA1 fusion-positive tumors (195). These findings 
were corroborated by two additional studies, the largest of which 
included 35 tumors and used a combination of IHC, FISH, and 
RT-PCR to validate WWTR1-CAMTA1 fusion events in 33 cases 
and YAP1-TFE3 protein in two cases (196, 197). The oncogenic 
role of these signature fusions in EHE, or the role of Hippo signal-
ing in vascular sarcomas, has not yet been established.

Targeting Hippo Signaling for Therapy

Recognition of the importance of Hippo signaling in malignancy 
has led to preclinical studies aimed at targeting components of this 
pathway for anti-cancer therapy. Modeled genetic manipulation 
of Hippo components exhibit profound effects on tumorigenicity, 
which provides optimism that modulators of Hippo components 
could be effective in patients. Indeed, the Hippo cascade involves 
many protein–protein interactions that could serve as novel tar-
gets. For details on each potential modulator, see recent reviews 
in Ref. (201, 202).

TABLe 3 | Pharmacologic modulators of the Hippo pathway.

Key Compound Mechanism References

A Fostriecin derivative Inhibits PP2A (210)
B FTY720 Activates PP2A (211)
C 9E1 Inhibits MST1 activity (212)
D C19 Activates MST/LATS (213)
E TM-25659 Modulates TAZ localization (214)
F Pyrrolidone 1 14-3-3 protein stabilizer (215)
G Verteporfin Inhibits YAP-TEAD interaction (49)

Cyclic YAP-like peptide Inhibits YAP-TEAD interaction (205)
VGLL4-like peptide Inhibits YAP-TEAD interaction (216)
ABT-263, TW37 Inhibit BCL-xL (a YAP target) (208, 217)

H Dasatinib Inhibits β-catenin-YAP-TBX5 complex (58)
I Epinephrine Activates LATS through GPCRs (29, 218)

Dobutamine Causes YAP phosphorylation (219)
J Phenoxodiol SPHK1 inhibitor (220, 221)

BrP-LPA LPA analog that blocks LPA receptors (222)
Thrombin Acts on PARS to activate YAP (223)

K LT3015 Sphingomab Monoclonal antibodies to LPA, S1P (224–226)
L Ibudilast Inhibits PDE (218, 227, 228)
M Statins HMG-CoA reductase inhibitors (100, 101)
N Y27632 RHO/ROCK inhibitors (113, 116, 229)

HA1077
Botulinum toxin C3

O Blebbistatin F-actin destabilizers (113, 115, 116)
Cytochalasin D (114–116)
Latrunculin A/B (113, 115, 116)
ML7 (115)

P WNT (or other pathway) modulators (see Regulation Through Cross-Talk with Other Pathways and 
Hippo Modulation to Augment Other Pathway-Directed Therapies)

Small Molecule Modulators of the  
Hippo Pathway
As listed in Table 3 and highlighted in Figure 3, several pharma-
cologic compounds, that directly or indirectly modulate Hippo 
pathway activity, have been identified. However, a number of 
important challenges exist. First, while kinases are often excel-
lent targets for small molecule inhibitors, the majority of kinases 
in the Hippo pathway are tumor suppressors, and restoring lost 
tumor suppressive function is not easily achieved. Moreover, and 
as highlighted here, aberrant hyperactivity of oncogenic YAP 
and TAZ is often seen in malignancy as a result of mutations in 
proteins from other signaling networks, even in the presence of 
intact upstream Hippo kinase activity. However, small molecules 
aimed at increasing YAP/TAZ phosphorylation-induced nuclear 
export and proteosomal degradation could be effective at reduc-
ing their activity.

As such, inhibiting the activity of YAP/TAZ is the most obvi-
ous and presumably the most potent anti-cancer approach. Three 
porphyrin-related compounds were identified as top hits in a small 
molecule library screen of potential modulators for inhibiting the 
transcriptional activity of YAP in vitro. Verteporfin is a photosen-
sitizer used clinically to treat patients with macular degeneration 
(203). Verteporfin binding to YAP alters YAP conformation to 
prevent it from binding to TEAD transcription factors. In vivo 
experiments in murine systems show verteporfin inhibits YAP-
induced liver overgrowth by decreasing cell proliferation (49). 
In vitro treatment of retinoblastoma cells with verteporfin caused 
decreased cell proliferation and down-regulation of the pluripo-
tency marker OCT4 (204). Other small molecule inhibitors, such 
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FiGURe 3 | Pharmacologic modulators of the Hippo pathway. The 
Hippo cascade involves many protein–protein interactions that could serve 
as novel targets, and numerous pharmacologic compounds either directly or 
indirectly modulate Hippo activity. Some of the compounds activate Hippo 
components and others have an inhibitory role. While not all referenced 
studies have proven that modulation of upstream regulators result in 

concomitant changes in YAP or TAZ activity, these provide proof of principal 
that targeting Hippo signaling could be harnessed as a novel strategy to 
treat sarcomas. This is not an inclusive list, and other compounds are known 
to modulate Hippo components. Figure is modified with permission from 
Park et al. (202). Letters in Red correspond to the letters in the Key in 
Table 3.

as cyclic YAP-like peptides and TM-25659, have been developed 
to interfere with YAP/TAZ–TEAD interactions (205).

Another challenge is that the Hippo pathway is ubiquitously 
expressed and thus, systemic treatment may cause detrimental 
side effects. This is particularly important in the pediatric popu-
lation, where normal growth and development in most tissues 
likely rely on intact Hippo signaling. Similarly, GPCRs, although 

relatively accessible to inhibition, have broad physiological func-
tions. However, intestine-specific conditional Yap1 knockout 
mice develop normally (206), implying that in some instances, 
YAP/TAZ may be dispensable for tissue development. YAP and 
TAZ are responsive to tissue-specific regulatory elements, pre-
senting a theoretical possibility of targeting Hippo signaling in 
specific cells or tissues.
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Hippo Modulation to Augment Other  
Pathway-Directed Therapies
Evidence suggests Hippo-directed therapies may synergize with 
other targeted modulators. By serving as a parallel means of 
cancer cell survival, YAP promotes resistance to RAF and MEK 
inhibitors in BRAF/RAS-mutated tumors. YAP overexpression 
was observed in tumors harboring a BRAF mutation from patients 
with melanoma or NSCLC, and YAP expression levels inversely 
correlated to the patients’ initial response to RAF and MEK 
inhibition. Furthermore, YAP suppression enhanced MEK inhi-
bition in murine xenografts of human NSCLC, melanoma, and 
pancreatic adenocarcinoma with BRAF or KRAS mutations (207, 
208). Similarly, YAP upregulation of EGFR through a YAP–TEAD 
complex at the EGFR promoter has been shown to partly explain 
the reduced translational impact of EGFR inhibitors in cancer. 
Inhibition of the YAP–TEAD interaction using verteporfin results 
in decreased EGFR expression and enhanced chemosensitivity to 
5-fluorouracil and EGFR inhibitors in mouse xenografts of esopha-
geal cancer (209). Finally, mTOR inhibition with rapamycin results 
in decreased TAZ expression in hepatocellular carcinoma (90).

Conclusion

The Hippo signaling pathway is an evolutionarily conserved 
tumor suppressor network important not only for proper cell, 

tissue and organ development, homeostasis, and repair, but 
it is also found dysregulated in many human cancers. While 
much of the early investigation on Hippo signaling in cancer 
was performed in epithelial malignancies, dysregulation of the 
Hippo pathway also occurs in sarcomas, cancers of mesenchy-
mal origin. In a range of bone and soft-tissue sarcomas, Hippo 
signaling is commonly thwarted by upregulation of YAP or TAZ. 
However, genetic and epigenetic dysregulation of upstream core 
Hippo pathway members, and adaptor proteins has been noted. 
The role of Hippo signaling in mechanotransduction in both 
normal and cancerous mesenchymal cell behavior and fate pro-
vides additional insight into sarcoma biology. Further studies 
will be needed to clarify the underlying mechanisms of Hippo 
pathway dysregulation in specific sarcoma subtypes, providing 
a foundation upon which to develop successful therapeutic 
interventions.
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Cell death can occur through different mechanisms, defined by their nature and physiolog-
ical implications. Correct assessment of cell death is crucial for cancer therapy success.
Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among
cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promis-
ing in other fields, regulated necrosis and other cell death circumstances (as so-called
“autophagic cell death” or “mitotic catastrophe”) have not been yet properly addressed
in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most
cases the precise sequence of events remains poorly characterized. In this review, our
main objective is to put into context the most recent sarcoma cell death findings in the
more general landscape of different cell death modalities.

Keywords: cell death mechanisms, sarcoma, translocation-bearing sarcomas, apoptosis, necrosis, autophagic cell
death, mitotic catastrophe

INTRODUCTION
FACTS
• Sarcomas are a highly heterogeneous group of mesenchymal

tumors.
• Among cell death mechanisms, only apoptosis has been exten-

sively studied in sarcomas.
• Fusion proteins, actors of translocation-derived sarcomagenesis,

play an anti-apoptotic role in sarcomas.
• Proper and deeper assessment of cell death in sarcomas is

mandatory.

CHALLENGES
• Can we improve the current therapeutic protocols in sarcomas

through a better knowledge of cell death mechanisms?

Abbreviations: AIF, apoptosis inducing factor; Akt, protein kinase B; Apaf-
1, apoptotic protease activating factor 1; Bak, Bcl-2 homologous antago-
nist/killer; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; Bcl-
xL, B-cell lymphoma-extra large; BubR1, mitotic checkpoint serine/threonine-
protein kinase BUB1 beta protein; CD133, prominin-1; CD99, cluster of
differentiation 99 protein; cFLIP, cellular FLICE inhibitory protein; Chk1,
checkpoint kinase 1; c-Myc, cellular avian myelocytomatosis viral onco-
gene homolog; DAPI, 4′,6-diamidino-2-phenylindole; DRAL, downregulated
in rhabdomyosarcoma LIM protein; ERG, protein encoded by erythroblast
transformation-specific related gene; ERK, extracellular signal-regulated pro-
tein kinase; EWS, Ewing sarcoma RNA-binding protein; FasL, fas ligand pro-
tein; FLI1, Friend leukemia integration 1 transcription factor; FOXO1, fork-
head box protein O1; HDAC1, histone deacetylase 1; IGF-1R, insulin-like
growth factor 1 receptor; IHQ, immunohistochemistry; JAK, Janus kinase;
MC, mitotic catastrophe; MDM2, mouse double minute 2 homolog pro-
tein; MEK, mitogen-activated protein kinase kinase; miRNA, micro RNA;
MLKL, mixed lineage kinase domain-like protein; mTOR, mammalian target

• Can we assess more accurately the sequence of events of every
type of cell death?

• Which are the key molecules that determine tumor cell death
after therapy?

• Do translocation-bearing sarcomas have specific weaknesses in
their cell death signaling networks?

Cancer therapies are aimed to induce the specific destruc-
tion of tumor cells without compromising patient health. This
makes cell death mechanisms a central point of any therapeu-
tic approach (1, 2). However, no every death is equally desirable
in terms of therapy (3). The need of theoretical arrangement in
the field has become evident during the past years. Our knowl-
edge on cell death mechanisms has increased enormously and

of rapamycin protein; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells protein; NGFR, low-affinity nerve growth factor recep-
tor; Noxa, Phorbol-12-myristate-13-acetate-induced protein 1; oct4, octamer-
binding transcription factor 4; p21, cyclin-dependent kinase inhibitor 1;
PARP, poly (ADP-ribose) polymerase; PAX, protein encoded by paired box
gene; PD, progression disease; PDGFR, platelet-derived growth factor recep-
tor; PET-CT, positron emission tomography; PI, propidium iodide; PI3K,
phosphatidylinositol-4,5-bisphosphate 3-kinase; Plk1, polo-like kinase 1; PM,
plasma membrane; PR, partial response; pRb, retinoblastoma protein; puma, p53
upregulated modulator of apoptosis; RAF, raf proto-oncogene serine/threonine-
protein kinase; RANK, receptor activator of nuclear factor κB; ROS, reac-
tive oxygen species; sox2, sex determining region Y-box 2; SSX, protein
encoded by synovial sarcoma X breakpoint gene; STS, soft tissue sar-
coma; SYT, protein encoded by synovial sarcoma translocation on chro-
mosome 18 gene; TNFR, tumor necrosis factor receptor; TRAIL, TNF-
related apoptosis-inducing ligand; VEGFR-2, vascular endothelial growth factor
receptor 2.
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the available methodology has become more and more sophisti-
cated. Therefore, a clear nomenclature based on reliable markers
has been proposed (1, 4). Additionally, the growing number of
cell death participants have been organized in clear hierarchic
frameworks (5).

Sarcomas are a rare and heterogeneous group (more than 50
different clinical and molecular entities) of malignant tumors with
mesenchymal origin. Molecular biology of sarcomas has remained
elusive until recently, and a better knowledge remains as an unmet
need (6). New drugs against potential targets in tumor cells with
a crucial role in their metabolism or pro-survival fitness could
improve the prognosis of these patients. Indeed, the relatively high
rate of therapeutic failure and tumor relapse demands a better
assessment of cell death induction. But scientific efforts in this dis-
cipline are historically undermined by the relative low investments
and isolated work (7).

The scientific landscape involving cell death mechanisms in
sarcomas can be improved. The majority of articles included in
the present review focused on apoptosis (mostly) and necrosis,
whose morphological characters (Figure 1) and signaling play-
ers (Figure 2) are better described. Many studies about cell death
in sarcomas just describe the occurrence of cell death without
a proper characterization of the sequence-of-events leading to
a particular form of death. The aim of the present review is to
help sarcoma researchers to face new knowledge on cell death
mechanisms in order to routinely include it in their assessments.

CELL DEATH MECHANISMS
APOPTOSIS
Apoptosis involves a cellular controlled demolition process.
Signaling cascades are finely orchestrated and secured, to ensure

its perfect onset only when it is required (8). Caspases are
the major actors in cellular demolition; once triggered, cas-
pases can cross-activate each other and thus amplify the apop-
totic signal (8). Apoptosis is by far the most studied form
of cell death in sarcoma research. Nevertheless, researchers
either employ uninformative methods about the form of death
(i.e., Trypan Blue assay), or the mechanisms leading to such
death are not always fully analyzed. Apoptosis recognition is
easy by simple morphological features visible under the micro-
scope: nuclear condensation and fragmentation, blebbing etc.
(Figure 1). Other techniques (immunofluorescence or western
blotting of cleaved caspases and/or caspase substrates, etc.) can
be used to monitor specific mediators and executors of the
process (9–11). Based on their biochemical features, we can
describe two major pathways in apoptotic signaling: the intrin-
sic or mitochondrial pathway and the death receptor pathway
(Figure 2).

Mitochondrial apoptosis
The “intrinsic pathway” is defined by the role of the mitochon-
dria as encounter point of most of its initiators and mediators.
The Bcl-2 family of proteins controls this pathway by regulating
the formation of a pore in the mitochondrial outer membrane
(12). Several signaling pathways converge in the regulation of
Bcl-2 proteins, from DNA-damage sensor system to organelle
stress and malfunction or growth factor signaling (Figure 2) (13,
14). In order to demonstrate that a drug or physiological input
induces apoptosis through the mitochondrial pathway, exogenous
overexpression of anti-apoptotic Bcl-2 family members can be
performed; this should either prevent cell death or switch the
mechanism to necrosis.

FIGURE 1 | Graphical illustration of the most prominent morphological
features of apoptotic and necrotic cell death mechanisms. Nuclei changes
(karyorrhexis), cytoplasm shrinkage, and blebbing are the most evident

descriptors of apoptosis. On the other hand, necrosis is clearly recognizable
by cell swelling (loss of osmotic barrier) leading to the plasma membrane (PM)
breakage and final release of the inner soluble content and nuclei karyolysis.
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FIGURE 2 | Schematic representation of the better characterized signaling hubs of apoptotic and necrotic cell death mechanisms. Note that necrotic
processes are substantially worse described than apoptotic ones, being still controversial if the execution phase is protein-driven or result of a massive
metabolic failure.

Some sarcomas rely on the presence of specific aberrant fusion
proteins, generated after chromosomal rearrangements. Deregu-
lation of gene expression in sarcomas driven by these chimeric
oncoproteins can occur at different levels (epigenetic silencing,
transcription activity, messenger processing, etc.) affecting every
cellular process, including apoptosis (Figure 3). In the case of
Ewing Sarcoma (ES), the fusion proteins EWS-FLI1 or EWS-ERG
have an inhibitory effect on part of the apoptotic machinery (15,
16). This effect is mediated by direct or indirect interactions with
several signaling pathways modulating apoptosis repression and
inducing sustained growth (17–20). Alveolar rhabdomyosarcoma
(aRMS) is also dependent on fusion proteins involving different
PAX proteins with FOXO1, which also targets different signal-
ing networks in order to ensure evasion of apoptosis (21, 22).
SYT-SSX chimera proteins are present in the majority of synovial
sarcoma tumors. They are involved in resistance to pro-apoptotic
stimuli by modulating the levels and the activity of key apoptotic
players of the Bcl-2 family of proteins (23). Furthermore, certain
translocation-bearing sarcomas are also characterized by failure
to complete tissue differentiation (i.e., RMS to skeletal muscle,
liposarcoma to adipocytes) in a process mediated by their specific
fusion protein and linked to the inhibition of apoptosis induc-
tion (24–26). Several recent studies have linked miRNAs status
with apoptosis regulation in chromosome translocation-bearing
sarcomas. Hence, mitochondrial apoptotic resistance in ES corre-
lates with miR-125b upregulation through p53 and Bak (27) but
overexpression of miR-206 in RMS promotes proliferation arrest
and some sort of cell death (28). Overexpression of miR-145 and

FIGURE 3 | Fusion proteins in sarcomas disturb the natural
physiological balance between pro-survival and death signaling inputs
through different ways. The panoply of mechanisms and cellular targets
disturbed demonstrates the powerful tumorigenic effect of a single event of
genomic rearrangement.

miR-451 in liposarcoma cell lines decreases cellular proliferation,
impairs cell cycle progression, and boosts cell death (29), whereas
overexpression of miR-26a-2 has the opposite effects (30).

The levels and status of key pro- and anti-apoptotic proteins are
also crucial for understanding the differential sensitivity of cells
toward apoptosis. Most ES cells have both the p53 downstream
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pathway and the DNA-damage signaling pathway functionally
intact. The resistance of some ES cell lines to p53-induced apop-
tosis has been linked to a high Bcl-2/Bax ratio and low levels of
Apaf-1 (31). However, the influence of fusion proteins inacti-
vates p53 by deacetylation at Lys-382 driven by both EWS-FLI1
and HDAC1 (32), meaning that re-expression or re-activation
of p53 could be a good strategy against these tumors. Similar
phenomena occur in other fusion-positive sarcomas and accord-
ingly, histone deacetylase inhibitors have been successfully tested
as apoptotic inducers in different sarcoma types (33, 34). p53 re-
activator agents as Nutlin-3 and/or PRIMA-1 are able to induce
apoptosis successfully through Noxa, Puma, or p21 upregulation
in both mutant and wild-type p53 sarcoma cell lines (35–37).
Among downstream p53 targets p21, c-Myc, Bax, MDM2, DRAL,
Bcl-2, and Bcl-xL have been suggested as key apoptotic regulators
in different sarcoma models (38–43). Plasma membrane-anchored
growth receptors such as NGFR or IGF-1R have an anti-apoptotic
role (44, 45). In contrast, distinct behaviors have been suggested
for the closely related receptors PDGFR α and β (46). Thus,
PDGFR α favors cellular stemness and PDGFR β promotes angio-
genesis in the tumor stroma. Hepatocyte-growth-factor activator
inhibitors (HAI-1 and HAI-2) act as tumor suppressors leading
to apoptosis and necrosis in leiomyosarcoma (47). Also, inhibi-
tion of endogenous tyrosine kinase B (TrkB) signaling suppresses
cell proliferation and increases apoptosis in cultured leiomyosar-
coma cells (48). In this context, tyrosine kinase inhibitors like
Sorafenib induce apoptosis on many leiomyosarcoma or synovial
sarcoma cell lines by inhibiting the RAF/MEK/ERK signaling path-
way, among others (49, 50). Apoptotic cascades induced by other
kinase inhibitors like JAK1 and 2 have been analyzed in detail
in RMS and ES cells. These inhibitors lead to the alteration of
the balance between the pro-apoptotic Bax and the anti-apoptotic
proteins Bcl-2 and Bcl-xL, the release of cytochrome c, and the
activation of caspase-9, -8, and -3 (51, 52).

Many other different strategies have been used in sarcomas
to induce mitochondrial apoptosis. Betulinic acid is able to tar-
get the mitochondria in ES, promoting the permeabilization of
the outer membrane resulting in the release, from the mitochon-
dria to the cytosol, of soluble factors such as AIF and cytochrome
c, who ultimately leads to caspase activation (53). Direct target-
ing of mitochondrial physiology was also explored in RMS with
photodynamic therapy (54) and ROS-generation agents (55). Pro-
teasome inhibitors as Bortezomib generate a major stress in the
cell machinery, triggering a number of different reactions, many
of them aimed to induce apoptosis. Bortezomib has been success-
fully employed in different pre-clinical models (56, 57). Heat shock
proteins are among the most important actors against protein
stress in cells. Accordingly, Hsp-90 antagonists had been shown to
induce transient growth arrest and apoptosis in RMS cells (58).
Likewise, some metabolic disruptors like 2-deoxyglucose, Lovas-
tatin, and Catechins have been successfully tested as promoters
of mitochondrial apoptosis by unbalancing the equilibrium of
Bcl-2 family of proteins (59–61). Furthermore, down-regulation
of inhibitor of apoptosis proteins (IAPs) also leads to apoptosis,
identified by PARP cleavage, in pediatric sarcomas (62).

To keep their correct physiology, cells rely in their interaction
with neighbors and microenvironment, meaning that detachment

is a major apoptotic trigger. The process of detachment-induced
apoptosis is termed anoikis (4). The lack of attachment activates
signals from the plasma membrane, mostly by integrins and the
focal adhesion kinase (FAK) that regulate the BH3-only proteins
through the mitochondrial commitment to cell suicide (Figure 2)
(63). Cell culture in non-adherent conditions, like soft-agar, is the
better way to study this process. Suppression of anoikis cell death is
considered an important hallmark of transformed cells and thus,
a pre-metastatic key process (64).

Anoikis resistance in sarcomas has been described to be associ-
ated with integrins, Bcl-2 and caspase-8, CD99 isoforms, RANK,
and ERK (65–68). ES cells survival in non-adherent conditions is
mediated by E-cadherin dependent spheroid formation, avoiding
apoptotic triggering by means of the PI3K/Akt pathway (69). Scot-
landi et al. demonstrated the relevance of IGF-1R in the anoikis-
resistant ES cell line TC71. Impairment of IGF-1R signaling (by
neutralizing antibodies or siRNAs expression) led to a lower sur-
vival in anchorage-independent growth conditions and a decrease
on metastatic ability (70). In synovial sarcoma, the increased IGF-
2 synthesis protects cells from anoikis and is required for tumor
formation in vivo (71). Another trans-membrane growth fac-
tor receptor, the ErbB4 Tyrosine kinase, gets phosphorylated in
ES spheroids and its expression is linked to anoikis avoidance,
metastatic disease, and bad outcome (72). In RMS, spheroids
obtained after cell culture enrichment express stem cell gene mark-
ers such as oct4, pax3, sox2, c-myc, and nanog. It was also found
that CD133 was upregulated in these spheres, conferring cells
higher resistance to Cisplatin and Chlorambucil in vivo (73). In
osteosarcoma (OS) cells, anoikis can be induced by zoledronic
acid, DNA methylation inhibitors as decitabine or cyclooxygenase-
2 inhibitors via PI3K/Akt pathway inhibiting β-catenin, TrkB, and
E-cadherin (74–76).

Several of the aforementioned reports present indeed interest-
ing data for a number of plausible targets concerning mitochon-
drial apoptosis. However, it is worth noting that in most of these
cases, apoptotic analyses rely only in AnnexinV (AnnV) tests or
caspase-3 activation kits, being uninformative about the precise
processes involved. Although extended in the community, when
the end-points of AnnV-PI tests are not carefully selected, this
could lead to the misidentification of late apoptotic and necrotic
cells; similarly, caspase-3 is a common final step in apoptotic cell
death that does not imply a single precise activation pathway
(Figure 2) (11).

The death receptor pathway
Caspase-8 is the most characteristic mediator of the “death recep-
tor pathway” (Figure 2). In this case, the triggers of the apoptotic
process are extracellular signals (mostly from the TNF family) and
the initiators and mediators encounter not in the mitochondr-
ial outer membrane but rather close to the plasma membrane
(77). Besides direct stimulation of cell death, death receptors
can also induce specific protein synthesis by means of the NF-
κB pathway that balances and even counteracts the apoptotic
signaling (78).

TRAIL is a death ligand that has been studied in several sarco-
mas for therapeutic purposes (79–81). TRAIL-induced apoptosis
is regulated by other receptors and downstream effectors including
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cFLIP and the Bcl-2 family (82–84). The TRAIL receptor, death
receptor 5, has been identified as a mediator of chemically induced
apoptosis in RMS, synovial sarcoma and leiomyosarcoma, activat-
ing several apoptosis triggers (85–87). TNFα and FasL receptors
play also a significant role in the survival/apoptotic balance with
p21 as critical mediator of the anti-apoptotic effect of TNFα-
induced NF-κB (88, 89). Bad, a pro-apoptotic member of the Bcl-2
gene family, has been linked to FasL induced apoptosis in ES (90).
Activation of death receptors could be combined with other chal-
lenges like doxorubicin, interleukin-12, or immunotoxins (91–93).
Some other TNF receptor-related proteins, like NGFR, have been
proposed to be crucial in specific sarcomas (94). Thus, there is still
a need for a better understanding of the role of the other cell death
receptors in sarcomas.

Besides the death receptors themselves, the best strategy to
enhance extrinsic apoptosis is repressing NF-κB activation. This
rationale has been employed with success against ES and syn-
ovial sarcoma (95, 96). Sensitization to apoptosis has also been
achieved by re-expressing caspase-8 through demethylation or
gene transfer (97).

NECROSIS
Necrosis, in contrast to apoptosis, has been viewed classically as
a form of accidental death brought about by injury to the cell
by pathogens or toxins. Despite the extended pre-judice, necro-
sis is more than a mere accidental death (5). Loss of plasma
membrane integrity, the “cellular explosion”, is the major
morphological feature and characteristic element of necrosis
(Figure 1) (9, 98). Non-accidental or “regulated” necrosis has
attracted a growing interest in the scientific community in the
last years. Necroptosis is the best known phenotype in this group.
It is induced by either the activation of death receptors or spe-
cific injuries that are followed by the recruitment of the so-called
necrosome of which the principal participants are the receptor-
interacting protein kinases (RIPK1 and RIPK3), which finally
activate the executor MLKL (Figure 2) (99).

Necroptosis is just starting to be studied in sarcomas. It can
be distinguished from apoptosis by its distinct morphology and
the inability of caspase inhibitors to prevent it (10, 11). In an
OS model, RIPK1-mediated necroptosis was confirmed as the
main cell death mechanism involved in Shikonin therapy, as only
Necrostatin-1 (an inhibitor of RIPK1) was able to induce treat-
ment reversion (100). Basit et al. found that Obatoclax (a Bcl-2
inhibitor) treatment in RMS cell lines promoted necroptosis rather
than autophagic cell death, being autophagy only a necessary event
required for the necrosome assembly (101). So, it becomes clear
that there is still a big room for improvement in the accurate
characterization of regulated necrosis responses in anti-sarcoma
therapy.

OTHER SCENARIOS FOR THE CELL DEATH DRAMA
The long-standing dichotomy apoptosis-necrosis is in part noth-
ing but a classification artifact. Many times the exact nature of the
mechanism triggered relies simply on the intensity of the injury or
on the available energy (102). Furthermore, in the cell death land-
scape, there are other “circumstances” worth of some additional
explanation.

A classical example of “double-edged sword” is autophagy,
sometimes included as a cell death mechanism, although it usually
proceeds as a pro-survival process. Autophagy targets apoptotic-
signaling mitochondria for isolation and degradation, thus
interrupting the apoptotic outcome. Several proteins cross-link
autophagy and apoptosis signaling pathways, being mTOR one of
the most studied (103). As a process impacting the energy avail-
ability, autophagy also dialogs with necrotic signaling and some
reports point to a close relationship with necroptotic triggering
(101, 102). Again, it seems to be a question of threshold. In many
cases, an excessive autophagy can lead to cell death but this death
follows a mixed pattern with parallel apoptotic or necrotic pheno-
types. Only when inhibition of autophagy can impede cell death
and the final phenotype is considered non-apoptotic cell death,
we can classify it as “autophagic cell death” (4, 102). Among the
different techniques available, autophagy can be better followed by
microscopy assessment of autophagosome formation (11, 104).

To our knowledge, except for some interesting report showing
autophagic triggering of necroptosis in RMS (101), no instances
of true autophagic cell death have been described in sarcomas yet.
Indeed, its role in cancer therapy is still controversial (102). In
ES and OS, the protective role of autophagy was insufficient to
block apoptotic cell death when triggered by either the intrinsic
or the death receptor pathways (105, 106). Autophagy has also
been described to be actively removing micronuclei in OS cells,
generating an interesting connection with the stabilization of cells
recovering from failures during mitosis (107).

Mitotic catastrophe (MC), previously classified as a form of
cell death, constitutes a crossroad that could drive cells to die with
either apoptotic or necrotic features, go into senescence, or even
survive (108). Again, the precise features of the final death pheno-
type depend on cell context and energy availability (108, 109). The
clearest triggers of MC are the dysfunctions of the mitotic spin-
dle. Those dangers are monitored by specific checkpoint proteins
determining the final outcome. Thus, cells evading the mitotic
arrest have an increase in chromosome instability (110). MC can
be easily followed by means of microscopy observation, usually
aided with fluorescent markers, video-microscopy, and cell fate
imaging analysis.

Proper metaphase arrangement is required for mitosis and is a
key process monitored by several checkpoint regulators (Figure 2).
BubR1, involved in the mitotic spindle checkpoint, has been shown
to be necessary for survival in some RMS cell lines and its knock-
down promoted growth suppression and“mitotic catastrophe”but
the final outcome was not elucidated (111). Plk1 is another major
component of MC signaling: siRNA inhibition of Plk1 killed RMS
cells and the chemical inhibitor BI 2536 induced G2/M arrest and
cell death in OS cell lines (112, 113). Inhibitors of Aurora kinases
block the formation of the cleavage furrow, disrupting cytokinesis,
and killing leiomyosarcoma and synovial sarcoma cells (114, 115).
Chk1 blockade with CEP-3891 caused an abrogation of the S and
G2 checkpoints after ionizing radiation, giving rise to nuclear frag-
mentation as a consequence of defective chromosome segregation
and promoting cell death (116). Many active drugs tested in sar-
coma cells have been described to disrupt normal cell cycle. Those
compounds range from small molecules or plant derivatives, to cell
cycle kinase inhibitors, viral proteins etc. Several studies showed
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Table 1 | Summary of already published clinical trials that evaluate target therapies in sarcomas, classified regarding the mechanism of action.

Mechanism

of action

Drugs Trial

(reference)

Study population Benefits Common

severetoxicities

Apoptosis PARP

inhibitors

Olaparib Phase II

(127)

Recurrent/metastatic adult ES

(failure to prior CH), n = 12

patients

NO responses SD: 4

patients, TTP: 5.7 weeks

No significant

toxicities

Heat shock

protein

inhibitors

Retaspimycin

(Hsp-90 INH)

Phase I

(128)

Metastatic and/or unresectable

STS, n = 54 patients

PR: 2 patients (proof of

clinical activity)

Grade 3–4:

Fatigue

Nausea and vomiting

Headache

Artharalgia

Proteaseome

inhibitor

Bortezomib Phase II

(129)

Metastatic OS, ES, RMS, and

STS with no prior treatment for

advanced disease, n = 25

patients

Lack of benefit (trial

prematurely closed)

Grade 3–4:

Neuropathy

Asthenia

Myalgias

MDM2

inhibitor

RG7112 Proof of

mechanism

study (130)

WDLS or DDLS with MDM2

amplification receive RG7112

prior to surgery, n = 20 patients

SD: 14 patients,

IHQ: activation of p53

pathway

Grade 3–4

Neutropenia

Thrombocytopenia

Phase I

(131)

Phase I trial with extension

cohort for sarcoma patients,

n = 30 (sarcoma patients)

Metabolic responses

(PET-CT)

IHQ: activation of p53

(MDM2-independent)

Grade 3–4

Cytopenias

PI3K-AKT-

mTOR

pathway

inhibitors

Ridaforolimus

(mTOR INH)

Phase II

(132)

Pre-treated advanced bone and

STS, n = 212 patients

RR: 1.9%, clinical benefit:

28.8%

Grade 3–4

Fatigue

Stomatitis

Hypertriglyceridemia

Anemia

Thrombocytopenia

Phase III

(133)

Advanced bone and STS with

clinical benefit to previous CH

were randomized to

maintenance Ridaforolimus or

Placebo, n = 711 patients

Improvement in PFS

(17.7 weeks with

Ridaforolimus vs.

14.6 weeks with Placebo,

HR: 0.72, p: 0.001)

Similar to previous

study

Everolimus

(mTOR INH)

Phase II

(134)

Pre-treated advanced bone and

STS, n = 41 patients

Poor clinical activity Grade 3–4

Hyperglicemia

Stomatitis Pain

Asthenia

Anti-

angiogenic

therapy

Sorafenib

(VEGFR2,

VEGFR3,

PDGFR, and

c-Kit INH)

Phase II

(135)

Pre-treated advanced STS,

n = 101 patients

RR: 14.5%, SD: 32.9%

(leiomyosarcoma better

PFS)

Grade 3–4

Fatigue

Diarrhea

Hand–foot

Syndrome

Nausea and vomiting

Pazopanib

(VEGFR-1,

VEGFR-2,

VEGFR-3,

PDGFR, and

c-Kit INH)

Phase III

(136)

Pre-treated non-adipocytic STS

randomized to PAZOPANIB vs.

PLACEBO, n = 369 patients

Improvement in PFS

(4.6 months with

PAZOPANIB vs.

1.6 months with Placebo,

HR: 0.31, p < 0.0001)

Grade 3–4

Asthenia

Hypertension

Anorexia

Alteration of

transaminases

Mitotic

catastrophe

CDK

inhibitors

Palbociclib

(CDK4 and

CDK6 INH)

Phase II

(137)

WDLS or DDLS with CDK4

amplification and pRb expression

66% of patients free of PD

at 12 weeks

Grade 3–4

Anemia

Neutropenia

Thrombocytopenia

CH: chemotherapy, DDLS: dedifferentiated liposarcoma, HR: hazard ratio, INH: inhibitor, MPNST: malignant peripheral nerve sheath tumor, PFS: progression-free

survival, RR: response rate, SD: stabilization disease, STS: soft-tissues sarcoma, TTP: time to progression, WDLS: well-differentiated liposarcoma.
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Table 2 | Summary of clinical trials that are ongoing and evaluate target therapies in sarcomas, classified regarding the mechanism of action.

Ongoing trials specific for sarcomas Status

www.clinicaltrials.gov

Identifier

www.clinicaltrials.gov

Apoptosis PARP inhibitors ESP1/SARC025 global collaboration: a Phase I study of a

combination of the PARP inhibitor, niraparib, and

temozolomide in patients with previously treated,

incurable Ewing sarcoma

Ongoing, but not

recruiting

NCT02044120

Olaparib in adults with recurrent/metastatic Ewing’s

sarcoma.

Ongoing, but not

recruiting.

NCT01583543

Heat shock

protein inhibitor

A trial of ganetespib Plus sirolimus: phase 1 includes

multiple sarcoma subtypes and Phase 2 MPNST

Ongoing, but not

recruiting

NCT02008877

PI3K-AKT-mTOR

pathway

inhibitors

Phase II study of everolimus in children and adolescents

with refractory or relapsed osteosarcoma

Recruiting NCT01216826

Phase II open label, non-randomized study of Sorafenib

and everolimus in relapsed and non-resectable

osteosarcoma (SERIO)

Ongoing, but not

recruiting

NCT01804374

Study of everolimus with bevacizumab to treat refractory

malignant peripheral nerve sheath tumors

Ongoing, but not

recruiting

NCT01661283

Phase II study of everolimus in children and adolescents

with refractory or relapsed rhabdomyosarcoma and other

soft tissue sarcomas

Recruiting NCT01216839

Anti-angiogenic

therapy

Sorafenib tosylate, combination chemotherapy, radiation

therapy, and surgery in treating patients with high-risk

stage IIB–IV soft tissue sarcoma

Recruiting NCT02050919

Pazopanib hydrochloride followed by chemotherapy and

surgery in treating patients with soft tissue sarcoma

Recruiting NCT01446809

Activity and tolerability of pazopanib in advanced and/or

metastatic liposarcoma. a phase ii clinical trial

Recruiting NCT01692496

Study of pazopanib in the treatment of osteosarcoma

metastatic to the lung

Recruiting NCT01759303

Study of pre-operative therapy with pazopanib (votrient®)

to treat high-risk soft tissue sarcoma (NOPASS)

Recruiting NCT01543802

Mitotic

catastrophe

Aurora-kinase

inhibitors

Alisertib in treating patients with advanced or metastatic

sarcoma

Recruiting NCT01653028

CDK inhibitors PD0332991 in patients with advanced or metastatic

liposarcoma

Recruiting NCT01209598

cell cycle arrest and changes in the levels of MC mediators as
Survivin. For example, Keyomarsi’s group showed that combined
therapy with doxorubicin and roscovitine in synovial sarcoma and
leiomyosarcoma induced a synergistic increase in autophagy in
addition to a marked arrest in G2/M (117). Links between MC and
autophagy have also been commented previously for OS (107). In
any case, it would be desirable to perform an exhaustive mitotic
study or cell fate analysis together with the proper assessment of
the nature of cell cycle blockade (metaphase arrest, G2 stop, or
even senescence).

CELL DEATH MECHANISMS IN ANTI-SARCOMA CLINICAL
TRIALS
New targeted therapies linked to key cell death mechanisms are
continuously being developed (118). Preferred to cytostatic alter-
natives, cell death induction is the goal of the vast majority of

cancer treatments. And among the known mechanisms, apopto-
sis is the center of therapeutic developments (118). As a non-
inflammatory mechanism, apoptosis is traditionally considered
cleaner than necrosis, but its exact relevance in overall therapeu-
tic success is uncertain. Necrosis, due to its pro-inflammatory
nature, has been regarded as a back door for metastatic cells to
escape from the primary tumor (3, 119). But, depending on the
circumstances, necrosis could be effective enough to induce tumor
clearance (120). Conversely, a particular apoptotic phenotype with
the ability to trigger immune response against cancer cells has
been described (119). Moreover, classic chemotherapeutic agents
are shown to induce apoptosis by interfering with the normal cell
division processes and this could lead to the triggering of MC (108,
109, 121). Induction of MC vs. direct apoptosis triggering depends
of the effective drug concentration within the cells and thus, could
be different among the tumor mass (122). MC drives most of
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the cells to major death mechanisms but opens the gates for the
appearance of new stable karyotypes translating into perhaps new
resistant cancer clones (108, 123, 124).

The treatment of advanced sarcomas is based on classic
chemotherapeutic agents: anthracyclines and ifosfamide as first
option and, after progression, other agents like gemcitabine in
combination with docetaxel (or Dacarbazine) and trabectedin.
The benefit of chemotherapy is well-known, but limited, because a
high percentage of patients die due to the disease in approximately
1 year from diagnosis (125, 126).

In the past years, several sarcoma-focused clinical trials have
evaluated the activity in monotherapy of novel drugs with known
connections to a particular cell death mechanism (Table 1). So far,
only two phase III trials have been reported, reflecting that targeted
therapies have been mostly developed in recent years and remain
in a pre-clinical stage (127–137). The first trial was focused on the
mTOR signaling pathway, which links apoptosis with autophagy
(102, 103). The study evaluated the role of ridaforolimus as main-
tenance therapy after clinical benefit to chemotherapy (133). The
other trial analyzed the activity of Pazopanib (a multitargeted
kinase inhibitor) in pre-treated soft-tissue sarcoma patients (136).

It is easily noticeable that many of the targets mentioned above
have still not reached the clinical trial stage in sarcomas. Further
research should be aimed to fill that gap by a better description
of the pre-clinical effects in terms of quantity and quality (type,
characterization, assessment of resistant phenotypes, etc.) of the
induced cell death. A summary of the ongoing clinical trials in
sarcomas are included in Table 2.

CONCLUDING REMARKS
As often happens with research on rare diseases, sarcoma research
suffers from funding shortage and delayed implementation of
technical advances. But there is also an urgent need to improve
current therapeutic modalities in sarcomas and reduce their bur-
den. Additionally, due to their heterogeneity, sarcoma models are
very difficult to compare among them. Those constrains define
sarcoma research today. Cell death induction is the basis of cancer
therapy, but we are still far from understanding the mechanisms of
cell death signaling in sarcomas. The relatively low attention paid
to particular phenomena like autophagy or MC, with crucial roles
in therapy success, is symptomatic that we need to get back to the
laboratory benches and improve our methods (3, 118, 124). We
abuse too often of indirect tests, easy to read-out in flow cytome-
ters, or high-content analyzers. And perhaps, we rely too much in
bibliographic data, not looking for the actual connections between
our treatments and the specific cell death trigger.

Sarcoma research needs the implementation of a better deter-
mination of cell death mechanisms. The definition of the nature of
cell death is not a vain effort as the differences in mechanisms could
have tremendous consequences in terms of chemo-resistance or
in immunogenic potential (108, 119, 123, 124). We need to dedi-
cate more time to define cell death circumstances, but sometimes
it seems that this attention only happens when researchers are
faced with unusual/specific cell death signals (death receptors, MC,
necroptosis etc.) while relying in the bulk caspase-3 or AnnV-PI
kits for the rest of the occasions.

The extra work we are proposing is neither difficult nor
exhausting, as it requires only to spend a little time looking “what”
actually happens to our cells (and “when”). Cell death is evi-
dent to the trained eye by merely observing the cells in the cell
culture room’s inverted microscope (Figure 1). Then, there are
enough valuable tests, clear and easy to perform, for the major cell
death pathways (138). Performed in the correct set of end-points
a simple DAPI staining would serve to determine whether we are
facing apoptosis, necrosis, or MC (10, 11). Therefore, we encour-
age researchers to perform those tests and include their results in
their publications prior to embark themselves into more complex
analysis about the intimacy of cell physiology. Let’s concentrate on
describing better “what” is happening before moving on solving
“how” it is happening.
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Preclinical childhood sarcoma 
models: drug efficacy biomarker 
identification and validation
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1 Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA, 2 Greehey 
Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

Over the past 35 years, cure rates for pediatric cancers have increased dramatically. 
However, it is clear that further dose intensification using cytotoxic agents or radiation 
therapy is not possible without enhancing morbidity and long-term effects. Consequently, 
novel, less genotoxic, agents are being sought to complement existing treatments. Here, 
we discuss preclinical human tumor xenograft models of pediatric cancers that may be 
used practically to identify novel agents for soft tissue and bone sarcomas, and “omics” 
approaches to identifying biomarkers that may identify sensitive and resistant tumors to 
these agents.

Keywords: human tumor xenografts, drug sensitivity, expression profiling, copy number variation, preclinical 
pharmacology, bioinformatics, biomarkers, drug efficacy

Drug Development for Pediatric Cancer

Over the past 35  years, cure rates for children with hematologic and solid tumors have risen 
 dramatically. For acute lymphoblastic leukemia the 5-year event-free survival (EFS) is 85–90%, 
whereas one-half to two-thirds of children with Ewing Sarcoma, rhabdomyosarcoma, or osteosar-
coma (OS) are surviving disease-free for prolonged periods after aggressive treatment with surgery, 
radiation, and multiagent chemotherapy. For the remaining patients, it has been possible to slow 
 progression of disease with use of intensified therapy, but cure has remained elusive. Furthermore, 
dose intensification/compression and introduction of new agents continues to decrease cancer 
mortality in children (1), although the limits of cytotoxic therapy may be close to maximal. More 
problematic is that these therapeutic modalities are associated with significant mortality and often 
long-term debilitating sequellae (2). The overriding problem is treatment failure due to the develop-
ment of drug resistance. Whether this results from selection of a pre-existing clone, or through 
therapy-induced mutation remains to be extensively explored. A second major problem is the 
limited repertoire of active antineoplastic agents, targeted for childhood cancers, making it difficult 
to develop effective therapy for resistant tumor subtypes, even when they are identified early in 
the clinical course. As with recent advances in the management of adult cancers, the development 
of novel therapies for childhood solid tumors will require a more complete understanding of the 
biologic characteristics that confer the malignant phenotype that can be used to guide the integration 
of cytotoxic and molecularly targeted therapies most likely to confer clinical benefit.

Developing new therapies for childhood solid tumors presents certain constraints that are 
seldom encountered with the neoplastic diseases of adults. Childhood tumors are rare; hence, 
the numbers of children with a particular diagnosis restrict large-scale drug evaluation or 
randomized clinical trials. For example, relatively few agents receive testing in children, and 
from 1980 to 2003 only a single agent (teniposide) was labeled for use in children compared 
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to more than 50 anti-cancer agents approved for use in adult 
oncology; furthermore, <15% of anti-cancer drugs approved 
for use in adult indications have labeling for children (3). 
As most drug-screening strategies focus on the selection of 
new anti-cancer agents with specific activity against adult 
neoplastic diseases (e.g., colon, lung, breast, etc.), agents with 
specific activity against childhood malignancies might not be 
identified.

A further restriction on drug development is that many 
“common” cancers of childhood respond to drugs of estab-
lished efficacy, resulting in cure of a substantial number of 
patients. This ethically precludes the use of “experimental” 
agents at diagnosis. However, over the last decade, survival 
rates for patients with disseminated tumors at diagnosis have 
improved only slightly, if at all. This lack of progress is attrib-
uted, in part, to the slow rate at which most novel anti-cancer 
agents enter the clinical setting and the failure to optimally 
integrate laboratory and clinical efforts in a manner most 
likely to generate new therapeutic approaches with a high 
probability of success.

As heavily pretreated patients are most often the population 
recruited for Phase II trials, failure to identify a potentially 
useful agent could result from assessment against multi-drug 
resistant tumors. Thus, as we have demonstrated, an agent 
that shows marginal or no activity against recurrent tumors 
resistant to one or more drugs may have clear efficacy in 
advanced but previously untreated disease (4). Model systems 
by which such agents, or combinations of agents, can be identi-
fied, and their use optimized, are presented in this chapter. 
These models offer a unique resource for the development of 
new therapies for pediatric cancers, and offer the potential 
to identify biomarkers that may at some point allow patient 
stratification.

Tumor Xenograft Models

Selecting Models Based Upon Gene expression
To address some of the issues mentioned above, the NCI funded 
the Pediatric Preclinical Testing Program (PPTP), a consortium of 
groups with pediatric preclinical cancer models that could screen 
potential new agents and drug combinations (5, 6). Selection of 
suitable models for the PPTP screen involved solicitation of pedi-
atric xenograft and cell line models from laboratories in the U.S 
and elsewhere. Initial screening, using cDNA array technology 
(7), compared 95 models with 112 patient samples representing 
similar histologies. Tumor models that most closely clustered 
with the patient samples representing the same histology were 
selected. A second screen (Affymetrix U133 plus 2 arrays. CEL 
files available at: http://gccri.uthscsa.edu/pptp) further refined 
the models that were included in the final screening program 
(8). Sixty models representing most solid tumors and acute 
lymphoblastic leukemia were selected for primary and secondary 
screens. Of these 72% are from direct patient tumor transplants 
into mice (patient-derived xenografts, PDX), and 48% are from 
tumors at diagnosis. Twenty-seven cell lines were also character-
ized, and demographic data for all models are available at http://
gccri.uthscsa.edu/pptp.

Fidelity of DNA Copy Number Aberrations
Single nucleotide polymorphism (SNP) analysis demonstrated 
similar gains and losses of DNA copy number in model tumors 
as reported for the respective histotype (8), and revealed non-
random events that also were highly correlated with tumor type 
(8). All models were DNA fingerprinted using short tandem 
repeat (STR) assays, and profiles filed as a reference for determin-
ing fidelity of lines during passage. More recently, each model 
has been characterized using the Agilent’s SurePrint G3 Gene 
Expression microarray platform where four replicate tumors 
approximately 200–300 mm3 per tumor line were used to create 
a more robust expression profile dataset. Exome sequencing has 
been completed for approximately 90 cell line and xenograft 
models. Thus, it is now possible to test the sensitivity of a par-
ticular model based upon an “actionable” mutation (9, 10).

Long Non-Coding RNAs
The Agilent Sureprint G3 Gene Expression version 1 array is 
able to measure 34,809 unique mRNA variables, which is far 
more than previous Affymetrix platforms that currently domi-
nate the vast collection of arrays found in the Gene Expression 
Omnibus (GEO). A novel feature of this particular array is the 
measurement of long-intergenic non-coding RNAs (lincRNA). 
The lincRNAs provide an additional transcriptomic perspective 
that is valuable in understanding tumor biology (11) and may 
explain variation in response to drug treatment. In our analysis 
of pediatric solid tumors, we observed that lincRNA expression 
is able to discriminate cancer populations as accurately as protein 
coding gene expression. Such an observation is interesting and 
points to the relevance of lincRNA in studying malignant disease. 
Notwithstanding this interesting yet isolated molecular view, the 
real power of cancer genomic data lies in the ability to integrate 
different levels of molecular evidence to elucidate novel insights 
about cancer biology (12, 13).

establishing an In Vivo Screen

Response Criteria
One of the reasons that preclinical models have generally failed to 
predict clinical utility of agents is the different criteria for assess-
ing activity in the model compared to the clinic. For example, 
inhibition of tumor growth rate by 80% in the laboratory is 
regarded as biologically significant, whereas a similar effect in a 
patient is classified as progressive disease. For the PPTP screen, 
response criteria were “modeled” after clinical response criteria, 
and that an active agent should cause objective tumor regression. 
These criteria were based upon several preclinical studies that 
related regressions in mice to responses of agents in phase I clini-
cal trials. Notably regression of rhabdomyosarcoma xenografts 
to melphalan, topotecan, irinotecan, and camptothecin combi-
nations (14–17), as well as neuroblastoma xenografts (16, 18), 
correlated with activity in clinical trials (4, 19–22). Using these 
criteria to define activity, known clinically effective agents could 
be identified. Similarly, criteria for acute lymphoblastic leukemia 
models were developed that identify known clinically identified 
active agents (23). Preclinical models of medulloblastoma accu-
rately predicted the clinical activity of topotecan (24). Models 
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of Wilms tumor (nephroblastoma) also identified known active 
drugs (cyclophosphamide, vincristine) using these criteria as did 
Ewing sarcoma models (cyclophosphamide, cisplatin). Validation 
of other models is ongoing through a series of clinical trials being 
conducted through the Children’s Oncology Group (COG). The 
PPTP developed response criteria that resemble clinical response 
criteria, fully recognizing that both cytostatic as well as cytotoxic 
agents would be evaluated (6). Each tumor within a treatment 
group is given a score dependent on the response [progressive 
disease 1 (PD1)] where there is <50% growth inhibition scores 
0, whereas maintained complete response (25) scores 10. The 
group score is the median. This allows large datasets to be reduced 
to a “Heat Map” format, as shown in Figure  1A for standard 
cytotoxic agents screened against sarcoma models. The heat map 
format allows comparison of multiple drugs and shows that the 
objective response rate (ORR) for “known” actives (vincristine, 
cyclophosphamide, cisplatin, and topotecan) is approximately 
40%. Figure 1B shows a schematic of the median tumor response 
for each response classification.

evaluation of Standard Cytotoxic Agents

All solid tumor testing to date in the PPTP used subcutane-
ous models, whereas for acute lymphoblastic leukemias (ALL) 
disseminated models were used. This review will focus only 
on the responses of sarcomas. One way to validate preclinical 
models (“model” is defined as a panel of tumors having the same 
pathologic diagnosis) is to ascertain whether the model identifies 
agents of known utility against the disease in children. Standard 
agents such as vincristine showed activity (i.e., induced tumor 
regressions ≥50%) in RMS models but no activity against EWS 
xenografts. Cyclophosphamide showed activity in all three tumor 
types, whereas cisplatin was active in some EWS and RMS models. 
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FiGURe 1 | (A) Heat map representation of the standard cytotoxic drugs screened by the PPT. Xenograft tumor models are shown at the top, grouped by histotype. 
Agents tested are shown in the left column. (B) The graph shows a representation of tumor responses, and the designation of the response.

Topotecan also demonstrated activity against EWS and RMS 
models, with disease stabilization in two OS models. Thus, the 
models identify agents with known single agent activity in these 
pathologies. Overall, sarcoma models showed marked sensitivity 
to anti-mitotic agents with an ORR of 34.7% when tested in mice 
at the maximum tolerated dose/schedule (MTD). Temozolomide, 
used in combination treatment of relapse sarcoma, showed broad-
spectrum activity when tested at the MTD in mice. By contrast, 
a dose level in mice giving systemic exposure on the high side of 
that achievable in humans (66 mg/kg, Figure 1) showed activity 
only against Rh28 RMS that is deficient in MGMT required for 
repair of O6G adducts (26, 27).

The testing of experimental cytotoxic drugs against the OS, 
EWS, and RMS panels is presented in Figure 2 in “Heat Map” 
format (6). For eribulin (28) and abraxane (29), plasma exposures 
to these drugs in mice, at the doses tested, appear relevant for 
human exposure, whereas exposures to docetaxel and cabazitaxel 
substantially exceed those attainable in humans. As shown above, 
the models are responsive to anti-mitotic agents, perhaps reflect-
ing a high proliferative fraction in xenograft models. By contrast, 
the tubulin-binding agent, BAL101553, showed no significant 
antitumor activity against sarcoma models. Hence, tumor sensi-
tivity is not necessarily a consequence of increased proliferation.

The alkylating agent PR-104, a pre- pro-drug activated 
under hypoxia and by the aldoketo reductase AKR3C3 (30, 31), 
showed significant broad-spectrum activity when tested at the 
mouse maximum tolerated dose/schedule (MTD). However, 
at dose levels in mice that approximate human drug exposure, 
PR-104 was not active against solid tumor xenograft models. The 
non-camptothecin topoisomerase I inhibitor, GENZ644282, 
was active against SK-NEP-1 Ewing sarcoma, whereas topotecan 
was not. Other cytotoxic agents having novel mechanisms of 
action [aplidin, KPT-330 (selinexor, a CRM1/XPO1 inhibitor), 
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CX-5461 (RNA pol I inhibitor)] and the PARP1 inhibitor, BMN-
673, showed little or no antitumor activity against sarcoma 
models.

evaluation of Signaling inhibitors

Shown in Figure 3 are testing results for 25 “signaling” inhibi-
tors. These include classical inhibitors of the IGF–PI3K–TOR 
pathway including antibodies and drugs targeting IGF-1R 
(19D12, IMC-A12, BMS-754807), and small molecule drugs 
that selectively inhibit PI3K (XL-147), AKT (MK-2206), TOR 
(rapamycin, AZD8055, INK128), MEK (AZD6244) as well as 
multikinase inhibitors (sorafenib, SU11248, cabozantinib), 
and inhibitors of mitotic kinases (MLN8237, BI6727). In this 
dataset, there are 357 tumor/drug evaluations. The ORR was 
5.6% (20/357 tests). Of these, inhibitors of mitotic kinases 
[PLK1 (BI6727), Aurora kinase (MLN8237)], and the kinesin 
inhibitor (GSK923295A) showed the greatest activity, consist-
ent with the activity of other “non-signaling” anti-mitotic 
drugs (vincristine, eribulin). Excluding the responses to 

mitotic inhibitors in the “signaling” drug set, the ORR was a 
dismal 2.4% (9/291 tests).

Critical evaluation of PPTP Models

The PPTP used exclusively xenograft models, hence these preclini-
cal studies are useful for identifying agents that work predomi-
nantly via direct action on tumor cells. Xenograft models are, by 
definition, not suitable for evaluating immune-regulators, and the 
stromal elements are mouse. Despite these obvious limitations, 
these sarcoma xenografts identify each of the cytotoxic drugs 
known to be active, and have identified novel agents and combi-
nations that have advanced to clinical evaluation through COG. 
The ORR to signaling inhibitors is disappointingly low (2.4%), 
which is of concern. However, there is reason to consider that 
these results are going to be representative of the clinical activity 
of signaling agents when given individually. For example, notable 
exceptions are the response to selumetinib (MEK inhibitor) in 
an astrocytoma with a BRAFV600E mutation (9, 32), the complete 
response to dasatinib in the Ph+ ALL-4 xenograft (33), expected 
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based on the preclinical and clinical activity for dasatinib against 
Bcr-Abl expressing leukemias and responses in Ewing sarcoma 
and other sarcomas to IGF-1 receptor targeting antibodies (34, 
35). Although PPTP did not test crizotinib, ALK-mutant or 
ALK-amplified neuroblastoma xenografts included in the PPTP 
neuroblastoma panel were responsive to this agent (36, 37). These 
results suggest that subcutaneous xenografts can indeed identify 
both cytotoxic drugs and signaling inhibitors that have clinical 
utility against the appropriate cancers in children, and hence 
are an appropriate primary screening tool. However, if these 
preclinical results are relevant to clinical responses, it is clear that 
developing agents of this class will yield a very low response rate, 
and that matching inhibitor to patient tumor characteristics will 
be required.

From the PPTP experience, the major factor that prevents 
accurate translation of preclinical data to the clinic is the differ-
ence in drug exposures in mice compared to those achieved in 
children (38). If differential host tolerance is normalized, then 
the predictive value of the preclinical data appears to be good. 
Obviously, there will be exceptions. For example, drug access to 
brain may limit the use of a drug shown to be effective against 
brain tumors when grown subcutaneously in mice. However, 
secondary orthotopic models can relatively easily identify these 
“false positive” results.

Another issue is the site of growth – heterotopic (subcutaneous) 
or orthotopic? Clearly, the subcutaneous sarcoma models identify 
known active agents, and accurately predict for clinical activity 
(melphalan, camptothecins, etc.), thus fulfill the basic function 
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as set out by the PPTP. Whether drug activity dramatically differs 
in orthotopic models requires rigorous experimentation,  and 
use of endpoints that can be equated between subcutaneous 
and orthotopic models. One problem in comparing heterotopic 
and orthotopic models is that tumor volume at the start of therapy 
is often significantly smaller in orthotopic models, hence these 
tend to be more sensitive by virtue of size (drug access?).

Mining for Biomarkers of Drug Response

expression Profiling
As noted by the NCI-EORTC Working Group on Cancer 
Diagnostics, the number of markers that have emerged as 
clinically useful is very small. One of the problems has been small 
datasets, and initial promising results have not been validated in 
larger trials (39, 40). Fully realizing the limitation of relatively few 
preclinical models (~50) and within a tumor type very few models 
(5–10), thus, at best, our correlations derived from expression 
data and response data are hypothesis generating. Gene expres-
sion profiles have been established for both cell line panels and 
the xenograft models, as well as SNP profiles. Thus, potentially, 
sensitivity in vitro can be correlated with either expression pat-
terns or DNA copy number variation (CNV). Such profiles could 
then be tested for predictive value for response against the in vivo 
cancer models. Alternatively, expression or CNV profiles that 
correlate with sensitivity or resistance to an agent in the animal 
models may predict those patients who may benefit from this 
treatment. However, although data may be obtained on almost 
50 models, it is best to consider, at this time, such data as hypoth-
esis generating. For the analyses presented, we have used data 
from all models, and not just from soft tissue and bony sarcomas, 
as there are too few models for which data are available.

As was illustrated by Lander, the greatest challenge to reveal-
ing the fruit of nature by omic technology is in our ability to 
succinctly probe and dissect millions of read outs within the 
global scope of a sparse random realization (22). In general, the 
dimensionality digestion of genome-wide mRNA is complex 
in two-sample experiments and becomes even more so when 
considering large cohorts of diverse samples. For example, in 
preclinical drug evaluation, the biological diversity of samples 
within sensitive or resistant xenografts is likely heterogeneous 
and not sampled uniformly.

 
θ =

µ − µ
σ + σ

x y
x y
x y

,( ) ( ) ( )
( ) ( )  (1.1)

 
y x= β + β + ∈0

=
i

i

p

i
1

∑  (1.2)

 
E y x( ) ∑= +

=

β β 

0
1

i i
i

p

 (1.3)

equation Set 1: Measures of mRNA Association
Classically, the mRNA difference between two classes is evaluated 
by the so-called signal-to-noise or simply stated as the difference 

between means relative to the variances, see equation 1.1, where 
x is the log distribution of class A mRNA and y is the log dis-
tribution of class B mRNA, respectively. In this scenario, two 
classes are statistically different if the mean separation is large 
relative to the variance within each class, which is typically 
assessed by permuting the class labels several times to estimate 
an empirical probability of observing the realized statistic (24) 
or more elegantly by bootstrapping if sample size permits. Such 
an approach is useful when considering treatment-condition 
effects or lineage differences in biological experiments. However, 
when considering a diverse set of tumors whose preclinical drug 
outcome does not necessarily follow lineage trends, there is a 
lack of statistical difference between classes after compensating 
for multiple hypothesis testing. Additionally, a class label is likely 
not perfect to discriminate and to guide biomarker discovery 
unless the drug would tailor to specific cancer disease character-
istics. Furthermore, on a genome-wide scale we have found the 
mapping between mRNA and drug sensitivity to be problematic 
unless a continuous random variable is considered.

In cancer cell sensitivity modeling with microarrays, the 
linear relationship between basal mRNA measurements and 
drug sensitivity is a simplistic analytical approach to generate 
new hypotheses about a drug’s chemical biology (41–43). From 
a statistical perspective, the case of linearity is argued because 
microarray model inputs and sensitivity outputs are typically 
normally distributed and those examples that do not follow a 
normal trend can be discarded as outliers. Whether or not our 
variables are specifically tied to the pharmacodynamic action 
is an afterthought. Rather, large-scale microarray data mining 
is able to identify a set of concerted changes that are associated 
with drug sensitivity. The dissection of the molecular pattern with 
regard to drug sensitivity is not possible unless additional experi-
ments are performed; for example, RNA interference or preclini-
cal xenograft validation. As an alternative to experimentation, 
the molecular pattern or “hits” discovered are queried against 
public databases that integrate several molecular data levels to 
attest whether or not the pattern is associated with, for example, 
survival, or a specific cancer population. Moreover, any approach 
in machine learning or predictive inference involves training and 
validation using statistically independent realizations of a given 
process. Cross-validation, a statistical technique to estimate pre-
diction error, is absolutely necessary when selecting biomarkers 
but may still reveal poor predictors because such few samples are 
available or the underlying data are not representative. However, 
the coupling of cellular screening with preclinical xenograft stud-
ies may provide a reliable platform to identify robust biomarkers 
or de-prioritize the significance of cellular biomarkers. Those 
molecular features that are predictive in both model systems are 
likely indicative of sensitivity.

The dependent variable choice can vary by drug but usually 
involves the relative half maximal inhibitory concentration 
(rIC50) in vitro or relative tumor regression in vivo. In order to 
estimate linear coefficients between rIC50 and mRNA, we use a 
high-dimensional method introduced by Zou and Hastie coined 
the elastic net (44). The elastic net is a regression optimization 
that considers all probable model fits efficiently, which per-
forms variable or model selection in a continuous rather than 
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one-model-at-a-time discrete manner; those variables not influ-
ential in predicting y have linear coefficients, i.e., β’s, set to zero.
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equation Set 2: elastic Net Regression
The objective function and criteria for guiding the process are 
shown in equation set 2 and is easily executed using a software 
implementation provided by the Matlab® Statistics Toolbox. 
As a custom pre-processing step, only genes with a significant 
univariate correlation are considered initial inputs to the elastic 
net algorithm. The genes identified by univariate correlation are 
an associated subset of all possible genomic correlates and are 
dictated by an arbitrary local type I error rate that vastly under-
estimates the realized type I error. Whether or not we incur false 
positives is of no concern, as these will be removed by the elastic 
net regression. The α parameter, shown in equation 2.2, is able 
to pool several correlated features and eliminate those that are 
not informative. The α that results in the lowest mean squared 
error, based on 10-fold cross-validation, is selected as the best 
model and hence most predictive gene network. A critical and 
sometimes overlooked step in predictive model building is the 
correct utilization of cross-validation, as illustrated well by 
Hastie, Tibshirani, and Friedman (45). This includes any initial 
gene selection steps being in the cross-validated estimate of 
prediction error. In our approach, we pre-process the gene list by 
removing any genes that are not significantly correlated and this 
step is included in the cross-validated error estimate for different 
α values. On the other hand, our global pre-processing steps that 
exclude any information about our target function are performed 
prior to any modeling, which include z-score transformation of 
inputs and outputs as well as removal of training samples whose 
output is not consistent with a normal probability curve.

example, Anti-Mitotic Drugs for Biomarker 
Application in PPTP
The drugs, MLN8237 (alisertib) (46, 47) and BI6726 (volasertib) 
(48), are both somewhat effective anti-mitotic targeted therapies 
evaluated by the PPTP that inhibit Aurora kinase A (AURKA) and 
Polo-like kinase 1, respectively. The cellular sensitivity of these 
kinase inhibitors is quite striking and showed cell growth inhibi-
tion across most pediatric cell lines screened. The drugs, eribulin 
and vincristine, are both highly effective agents that target micro-
tubule dynamics in general. These two drugs were shown to be 
very active in the PPTP xenograft panel. Vincristine is a “known” 
active agent being used in many “standard-of-care” protocols, 
whereas eribulin has just entered phase I testing in children as 
a cancer therapeutic. Both drugs were potent cytotoxics in vitro 
with a median rIC50 concentration of 0.224 and 0.2 nM, respec-
tively. These drugs, in the examples that follow, show a range of 
predictability between in vitro and in vivo systems. Additionally, 

we are able to hypothesize global predictors of agents that target 
microtubule dynamics by comparing signatures (47, 49, 50).

In these examples, we are able to show whether or not in vitro 
drug sensitivity models are valid by applying receiver-operating 
characteristic (ROC) curve analysis to known xenograft out-
comes. For these analyses, we used a binary system dividing 
responses into disease progression [progress disease (PD)] or 
progression-free disease that included objective regression and 
stable disease (MCR, CR, PR, SD), and model predictions. As 
we noted before, the in vitro prediction is a continuous random 
variable that summarizes expected rIC50, y, given changes in 
mRNA, x. That is, a single xenograft has a composite score 
defined by the linear combination of mRNA features derived 
in vitro. In general, discriminatory power is defined as the trade 
off between sensitivity and specificity, respectively. A ROC curve 
measures the discriminatory power of a score when applying 
different score thresholds rather than measure performance at a 
single arbitrary cut off, i.e., positive predicted values are sensi-
tive while negative predicted values are resistant, and is reported 
overall as the area under the ROC curve (AUC); for more detail, 
see Ref. (51).

vincristine
To “calibrate” the PPTP tumor panels, we evaluated the standard 
chemotherapeutic agent, vincristine, an agent included in the 
backbone of most treatment regimens for solid tumors and acute 
lymphoblastic leukemia. Vincristine binds to tubulin dimers, the 
subunits of microtubules, inhibiting assembly of microtubule 
structures. Disruption of the microtubules prevents formation 
of the mitotic spindle required to segregate chromosomes and 
arrests mitosis in metaphase. Although the basis for selectivity 
for tumor vs. normal cells is not fully understood, vincristine is 
a component of most curative therapies used for treatment of 
pediatric cancers, although the proportion of patients who benefit 
from vincristine may be 30–50%. Thus, identifying biomarkers 
for response may assist in identifying patients whose tumors 
would be sensitive to this drug. As shown in Figure 1, vincristine 
was evaluated against five Ewing sarcomas (SK-NEP-1, EW5, 
EW8, TC-71, and CHLA258), six alveolar rhabdomyosarcomas 
(Rh10, Rh28, Rh30, Rh30R, Rh41, and Rh65), two embryonal 
rhabdomyosarcomas (Rh18 and Rh36), and six OSs (OS-1, OS-2, 
OS-9, OS-17, OS-31, and OS-33). Objective regressions were 
observed in four rhabdomyosarcoma models and two OS models. 
Additional regressions were observed in Wilms tumor, and all 
eight ALL models (not shown).

Limited single agent data on vincristine in OS are available 
from the 1960s (19, 20). Several subsequent single arm and ran-
domized trials combining vincristine with other conventional 
agents failed to clearly demonstrate a role for vincristine in neo-
adjuvant chemotherapy. There have been few recent clinical trials 
of microtubule-targeted therapies in OS (reviewed in (52)). In an 
Italian pediatric solid tumor phase 2 study, a response to vinorel-
bine was observed in one of five patients with OSs (53). However, 
OS is not generally considered to be sensitive to anti-mitotic 
agents. As the proliferative fraction of xenografts is greater than 
that in the patient tumors, it is probable that anti-mitotic agents 
show as more active in the models that they are in the clinic.

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


December 2015 | Volume 5 | Article 27975

Geier et al. Mining preclinical drug sensitivity data

Frontiers in Oncology | www.frontiersin.org

The elastic net regression algorithm selected 188 mRNA vari-
ables, 35 of which were lincRNAs, based upon the log rIC50 of 22 
PPTP cell lines. The in vitro linear model with these 188 mRNA 
inputs predicted 44 solid tumor xenograft outcomes (26 PD, 1 SD, 
3 PR, 2 CR, and 12 MCR) very well with an area under the curve of 
0.88. According to Ingenuity Pathway Analysis (IPA) (Ingenuity® 
Systems, www.ingenuity.com), MAPK9, MARK2, NEFL, PVRL3, 
and SHC1 biomarkers are involved in microtubule dynamics. 
Interestingly, MARK2, a sensitive correlate, is important for 
microtubule stability (41) and has been shown to slow micro-
tubule growth upon in vitro knockdown (54). Potentially, tumor 
cells that are rich with MARK2 indicate that they are more reliant 
on efficient microtubule dynamics to proliferate, and hence, are 
more reliably targeted by vincristine.

Of note, our analysis did not identify ABCB1 as a significant 
predictor, whereas there is an extensive literature that attests to 
vincristine being transported out of cells via this efflux pump. A 
primary caveat to our analysis approach is that we initially filter 
out genomic correlates at an arbitrarily chosen local type I error 
rate. Additionally, the linear regression approach dictates that the 
best predictors will be normally distributed; as this will produce 
the lowest mean squared error, given that a linear model is essen-
tially predicting the expected value. In total, there were 1,604 
possible genomic correlates when deriving our linear regression 
model. ABCB1 was not even considered because it was weakly 
correlated relative to other genomic correlates, and hence, did 
not pass our local type I error threshold. However, upon visual 
inspection of ABCB1 DNA copy number and mRNA across the 
panel of cells and xenografts tested, we see that a pattern does 
exist but is non-linear and ABCB1 mRNA is, in general, not 
normally distributed. This particular pattern is a good example 
of how a linear regression approach, robust as it may be, will 
overlook “interesting” dimensions whose activity is limited to 
only a subset of samples.

Vincristine is an established drug that is usually combined 
with actinomycin D, doxorubicin, or cyclophosphamide and has 
demonstrated success in pediatric cancer patients. Our signature 
may perhaps identify patients that have an increased likelihood 
of responding to vincristine treatment alone. Furthermore, the 
excellent validation performance and significance of discovered 
biomarkers prioritize this signature for additional validation 
and potential for clinical utilization as a companion diagnostic 
marker when treating with vincristine alone.

eribulin
Eribulin is probably the most active agent evaluated in the PPTP 
screen, causing tumor regressions of 18 of 35 (51%) of solid 
tumor models and all eight acute lymphoblastic leukemia models, 
Figure 4 (28). Of note, drug exposures in mice causing regres-
sions of tumors appear similar to patient exposures reported 
from adult clinical trials. Eribulin is a fully synthetic macrocyclic 
ketone analog of halichondrin B, a natural product derived from 
the marine sponge Halichondria okadai (55, 56). Halichondrin B 
and eribulin are capable of inducing irreversible mitotic blockade 
and apoptosis by inhibiting microtubule dynamic instability 
(57). Dynamic instability applies to the growth and shortening of 
microtubules required for mitosis. Eribulin inhibits microtubule 

growth by binding with high affinity at the plus ends (58). The 
mechanism of inhibition of microtubule dynamic instability by 
eribulin is distinctive from that of other tubulin-binding anti-
mitotic agents in that eribulin suppresses the growth parameters 
at microtubule plus ends without affecting microtubule shorten-
ing parameters (58, 59).

Analysis of the eribulin data with approximately equal num-
bers of responding and non-responding solid tumor xenograft 
models, thus provided an interesting test of the value of the 
“omics” database. The elastic net regression algorithm selected 
139 mRNA variables, 36 of which were lincRNAs, based upon the 
log rIC50 of 22 PPTP cell lines. The in vitro linear model with these 
139 mRNA inputs predicted 25 solid tumor xenograft outcomes 
(8 PD, 2 SD, 1 PR, 4 CR, and 10 MCR,) quite well with an area 
under the ROC curve of 0.7. According to IPA, ATXN2, BBS10, 
DLG4, EFNB2, KIF18A, NUSAP1, and PTPRM biomarkers are 
involved in microtubule dynamics. Interestingly, NUSAP1, a sen-
sitive correlate, is reportedly involved in several cellular processes 
relevant to eribulin mechanism that covers segregation of sister 
chromatids, condensation of mitotic chromosomes, mitosis, 
bundling of microtubules, and aberration of mitotic spindle 
(60) as well as morphology of mitotic spindle (61). KIF18A, 
another sensitive correlate, is also quite interesting. Kinesin 
family member 18A is reportedly involved in alignment and 
congression of chromosomes (62) as well as de-polymerization 
of microtubules (63). Another noteworthy biomarker is ABCB1, 
a protein that encodes a drug transporter MDR1b (also known 
as P-glycoprotein). ABCB1 transports a variety of hydrophobic 
drugs, including eribulin (64). Furthermore, the decent validation 
performance and significant relevance of discovered biomarkers 
prioritizes this signature for additional validation and potential 
clinical utilization as a companion diagnostic marker in the treat-
ment of pediatric cancer patients.

Alisertib (MLN8237): An inhibitor of Aurora 
Kinase A (AURKA)
The Aurora serine/threonine protein kinases are a family of 
three kinases (Aurora A–C) with different tissue and temporal 
expression profiles. These enzymes play key roles in mitosis and 
meiosis, defects in which can lead to abnormal mitotic events and 
induction of programed cell death (apoptosis) (65). AURKA is 
essential, as is highlighted by the fact that genetically engineered 
null mice are embryonic lethal (dying at the blastocyst stage) (66). 
AURKA activity is also required for centrosome duplication and 
separation, microtubule-kinetochore attachment, spindle check-
point, cytokinesis (67, 68), the G2/M transition (69), and phos-
phorylation of Polo-like kinase 1 (70). Furthermore, AURKA has 
been implicated as an oncogenic driver in human cancers (71). 
AURKA has been found to be over-expressed in cancer cells 
and the AURKA gene locus is amplified in selected adult tumors 
(72). When tested by the PPTP at the maximum tolerated dose/
schedule (MTD), alisertib exhibited good activity, notably against 
neuroblastoma and ALL models (46), Figure 5.

Analysis of this dataset using the elastic net regression algorithm 
selected 69 mRNA variables, 24 of which were lincRNAs, based 
upon the log rIC50 of 22 PPTP cell lines. Despite a strong training 
validation, the in vitro linear model with these 69 mRNA inputs 
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predicted 39 xenograft outcomes (20 PD, 4 SD, 1 PR, 4 CR, and 10 
MCR) poorly with an area under the curve of 0.48 or practically 
random discrimination. According to IPA, there were no bio-
markers that had a documented interaction with the drugs target, 
AURKA. Furthermore, the poor validation performance and insig-
nificance of discovered biomarkers with respect to the molecular 
target de-prioritizes any additional validation or clinical utilization 
of this signature. In this example and given the data at-hand, the 
spectrum of cellular sensitivity observed is not translatable to 
preclinical xenograft models with respect to messenger-RNA.

AURKA Copy Number
In contrast to expression profiling, gene copy number analysis 
for AURKA appears to support an inverse relationship between 
AURKA expression and sensitivity. Increased copy number was 
present 14 of the solid tumors. Loss of copy number was detected 
in seven solid tumors and one leukemia model. Furthermore, 
the correlation between gene expression variation and CNV was 
strong, placing this locus in the top 1.6% of all genes tested. While 
there is no absolute relationship between CNV and tumor sensitiv-
ity, of the 14 solid tumors with increased copy number, there were 
only two that showed sensitivity to alisertib. By contrast, five of the 
eight models demonstrating decreased copy number were sensitive 
models to alisertib (46). It is of note that at drug exposures achieved 
in patients, only the most sensitive preclinical models (ALL) are 
likely to respond to treatment. However, several rhabdoid tumor 
models were relatively sensitive to alisertib, and responses were 
observed in several patients with CNS rhabdoid tumors (73).

volasertib (Bi6727): An inhibitor of Polo-Like 
Kinase 1 (PLK1)
In vitro volasertib demonstrated cytotoxic activity (median rIC50 
value of 14.1 nM, range 6.0–135 nM), and at the MTD-induced 
significant differences in EFS in 19 of 32 (59%) of the evaluable 
solid tumor xenografts and in two of four of the evaluable ALL 
xenografts. Objective responses (CR’s) were observed for 4 of 
32 solid tumors (two neuroblastoma, one glioblastoma, and 
one rhabdomyosarcoma) and one of four ALL xenografts (48). 
Volasertib is a dihydropteridinone (Bl 6727) that targets the 
Polo-like kinase (Plk) family of proteins in an ATP-competitive 
manner at low nanomolar concentrations and thereby induces 
mitotic arrest and apoptosis (74). Plk1 is a serine/threonine-
specific kinase that regulates multiple steps in mitosis and that is 
essential for progression through mitosis (75). Numerous lines of 
evidence suggest that Plk1 is oncogenic through driving cell cycle 
progression, and overexpression of the gene transforms NIH 3T3 
cells (76). Plk1 is highly expressed in multiple cancers (75, 77, 78), 
and in some malignancies expression of Plk1 may be prognostic 
(77). Plk1 is over-expressed in several childhood cancers and cell 
lines. RNA interference and small molecule inhibitor screens 
suggest that Plk1 may be a relevant therapeutic target in a variety 
of pediatric malignancies including neuroblastoma, rhabdomyo-
sarcoma, and OS (79–81).

From the in vitro sensitivity dataset, the elastic net regression 
algorithm selected 121 mRNA variables, 17 of which were lincR-
NAs, based upon the log rIC50 of 22 PPTP cell lines. The in vitro 
linear model with these 121 mRNA inputs predicted 36 xenograft 
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outcomes (28 PD, 1 SD, 1 PR, and 6 CR) quite well with an area 
under the curve of 0.79. According to IPA, PKMYT1, DNHD1, 
KAT7, DDX39B, RASGRF1, and MAD2L1 biomarkers report-
edly have interactions with the drug target, PLK1. Specifically, 
KAT7 (82), DNHD1 (83), DDX39B (84), and RASGRF1 (85) are 
known to have protein–protein interactions with PLK1 while 
mutant PLK1 (51–356 AA deletion) increases MAD2L1 protein 
localization to kinetochores from misguided chromosomes 
of metaphase cells (86) and PLK1 protein increases inhibition 
of active PKMYT1 (87) as well as increase phosphorylation of 
a PKMYT1 protein fragment (88). MAD2L1 and PKMYT1, 
both negatively correlated with rIC50, may point to PLK1 targets 
over-expressed when PLK1 is mutated. Interestingly, PKMYT1 
is a protein kinase that plays an important role in mitosis by 
decreasing activation of CDK1 (89, 90) while increasing phos-
phorylation of CDK1 (89–91). The elevated PKMYT1 mRNA in 
sensitive cells is possibly indicating a cellular compensation for 
over active mitotic phase of the cell cycle due to mutated PLK1, 
and hence, these cell populations are ideal targets for PLK1 inhi-
bition by BI6727. Furthermore, the good validation performance 
and significant relevance of discovered biomarkers prioritize this 
signature for additional validation. Recently, PLK1 was reported 
to phosphorylate PAX3-FOXO1 in alveolar rhabdomyosarcoma, 
and inhibition triggered tumor regressions (92).

Glembatumumab vedotin
Glembatumumab vedotin is an antibody-drug conjugate (ADC) 
that combines an anti-GPNMB antibody with the anti-mitotic 
agent monomethyl auristatin E (vedotin) (93). When internal-
ized, vedotin is released and results in cell cycle arrest and cell 
death (94). Glembatumumab vedotin showed in vitro cytotoxicity 

that was related to GPNMB expression, and it induced complete 
regressions in GPNMB-expressing melanoma and breast cancer 
xenografts (93, 95, 96).

The transmembrane glycoprotein NMB (GPNMB or osteo-
activin), is primarily expressed in intracellular compartments 
(e.g., lysosomes and melanosomes) in non-malignant cell such 
as melanocytes, osteoclasts, and osteoblasts (97–99). GPNMB is 
also expressed on monocytes and dendritic cells, and its expres-
sion on the latter has been proposed to play a role in the inhibition 
of T-cell activation by antigen-presenting cells (APC) (100–102). 
Membrane GPNMP is over-expressed in hepatocellular car-
cinoma (103), breast cancer (95, 104), glioblastoma (105), and 
melanoma (93, 98), making it a reasonable candidate for targeted 
therapeutics. As shown in Figure 4, GPNMB is expressed highly 
in several OS xenografts [and also in one alveolar soft part sar-
coma (ASPS) examined]. In a limited screen using models with 
high-level expression glembatumumab vedotin demonstrated 
intermediate to high activity in five of six OS xenografts, with a 
maintained complete response in three of the lines (52). In each 
of the lines that demonstrated a maintained complete response to 
glembatumumab vedotin (OS-2, OS-17, and OS-33), there is 2+ to 
3+ staining for GPNMB by immunohistochemistry, although the 
percentage of cells positive is as low as 5% of tumor cells for one 
line. These observations support the position that while GPNMB 
expression may be necessary for tumor regression to glembatu-
mumab vedotin treatment, it is not sufficient for response to this 
agent (52). The value of the expression data is further emphasized 
by searching publically available databases. For example, the single 
ASPS xenograft model expressed very high levels of GPNMB. 
Reference to limited patient data available, confirms high-level 
expression in all samples, suggesting that GPNMB-directed 
therapy may be valuable. However, it is recognized that ASPS is a 
slow-growing indolent tumor (as is the xenograft), hence whether 
an anti-mitotic “warhead” on glembatumumab would be effective 
would have to be explored in preclinical models.

Seneca valley virus (NTX-010)
One of the agents evaluated through the PPTP was the replication 
competent picornavirus, Seneca Valley Virus (NTX-010) (106). 
NTX-010 is a newly discovered, naturally occurring picornavirus 
being developed as an oncolytic virus for human cancers. In a 
cell line screen of NTX-010, approximately half of cancer cells 
with one or more neuroendocrine properties were permissive 
and allowed selective infection (107). Notably, the most sensitive 
cell line, IMR-32, was derived from a childhood neuroblastoma. 
By contrast, only 3 of 80 non-endocrine cells were permissive to 
virus replication. The majority of non-permissive cancer cell lines 
do not bind and/or internalize NTX-010, suggesting that binding 
and entry through a productive internalization pathway is the 
primary determinant of viral tropism for neuroendocrine tumor 
cells. Neuroblastoma, Ewing sarcoma, as well as medulloblastoma 
and alveolar rhabdomyosarcoma demonstrate neuroendocrine 
markers. In  vitro NTX-010 demonstrated a marked cytotoxic 
effect in a subset of the cell lines from the neuroblastoma, Ewing 
sarcoma, and rhabdomyosarcoma panels. In  vivo the most 
consistent activity was observed for the rhabdomyosarcoma 
and the neuroblastoma panels, with all four of the alveolar 
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rhabdomyosarcoma xenografts and four of five neuroblastoma 
xenografts achieving CR or maintained CR (106).

An overlooked aspect of our analytical approach is normal-
ity of rIC50. As mentioned previously, linear correlation and 
regression methods require that the response variable, rIC50, 
be normally distributed. NTX-010 is the only agent considered 
herein that exhibits a non-normal rIC50 profile. On a natural scale, 
the rIC50 profile appears to be discrete while on a logarithmic 
scale we observe normality for sensitive lines, i.e., any cell growth 
inhibition within dose range, whereas resistant lines, i.e., no inhi-
bition at maximum dose, are saturated at the highest dose tested. 
Furthermore, measures of linear correlation in this context are 
likely highlighting differential sensitivity within sensitive popula-
tion but are likely informative nonetheless.

The elastic net regression algorithm selected only 29 mRNA 
variables, two being lincRNAs, based upon the log rIC50 of 22 
PPTP cell lines. The in vitro linear model did well when discrimi-
nating 22 xenograft outcomes (10 PD, 2 PR, 4 CR, and 6 MCR) 
given an area under the curve of 0.71. A notable mRNA feature 
is IFIH1 or interferon induced with helicase domain 1. IFIH1 is 
a picornavirus surveillance protein in innate antiviral response 
(108, 109). We speculate that a low level of IFIH1 is a marker of 
permissive replication in tumor cells. Taken together, high-level 
expression of CD56 (NCAM1) and low expression of IFIH1 accu-
rately identifies 24 of 26 cell lines and xenografts as being sensitive 
to NTX-010 (106), as shown in the boxed area of Figure 5.

We further interrogated both in vitro and in vivo data to deter-
mine if other IFIH1-like factors are associated with sensitivity. A 
genome-wide unpaired t-test assuming that unequal population 
variances was computed between responders and non-respond-
ers where responders were sensitive cells or xenografts with 
maintained complete response (25) and non-responders were 
resistant cells or xenograft with progressive disease 1 (PD1); 
multiple hypothesis testing was corrected by Storey q-value 
(110) and all computational analyses were performed with 
Matlab Bioinformatics and Statistics toolboxes. As biologists and 
also from a practical statistical perspective, we search to see if 
discovered gene changes are enriched in a meaningful biological 
category. The hypergeometric probability distribution is appro-
priate to calculate the chance of observing category overlap at 
random and is utilized in, for example, the Broad Institute 
Molecular Signature Database (111). An insightful method to 
then prioritize categories is to integrate domain knowledge by 
scoring sets according to gene change consistency with literature 
findings and is heavily utilized in, for example, IPA.

Overall, we detected 692 Agilent mRNA variables when 
controlling a false discovery rate of 5%, i.e., Storey q-value <0.05. 
From IPA, we were able to infer by right-tailed Fisher’s exact test 
that discovered differential mRNA is predictive of several inter-
esting functional categories related to virus attenuation as well as 
detecting highly elevated NCAM1, a receptor already speculated 
to be involved in NTX-010 cell entry (106). Notable categories of 
decreased activity in responders are infiltration by APC, antiviral 
response of cells, natural killer (NK) cell homeostasis, and activa-
tion of NK cells while a notable category of increased activity in 
responders is viral replication (vesicular stomatitis virus, replica-
tion of RNA virus, Murine herpesvirus 4).

The landscape of gene–gene correlations genome-wide that 
exists naturally either due to evolutionary redundancy or other 
factors is problematic when searching for mRNA correlates that 
are global and not confined to whatever cell lines happen to be 
in the training set. Interestingly, a NTX-010 lincRNA correlate 
(chr1:213453777–213480277; hg19) was upstream of RPS6KC1 
and a gene–gene mRNA correlation was significant between these 
two. This observation points to the inherit difficulty of modeling 
basal mRNA and drug response. In this particular example, we 
can infer from genomic proximity that this non-coding mRNA 
feature is likely acting as a promoter of RPS6KC1. RPS6KC1, a 
candidate oncogene in endometrial cancer (112), is a meaningful 
drug–gene correlation given observations that NTX-010 tends to 
show response in neuroendocrine tumors (113). By establishing 
this “link” we were drawn to a significant drug–gene correlation 
that was de-prioritized by the elastic net regression algorithm. 
However, for the vast majority of proteins that are modified epi-
genetically or in distant trans interactions, such direct hypotheses 
are not easily formulated.

Bioinformatics Tool Development and 
Availability

As new cancer genomic datasets come online, there is a need 
to rapidly develop tools, portal interfaces, and standards of 
analysis that robustly turn multiple sourced molecular data into 
an insightful axis of molecular relationships. The basic cancer 
dataset is a matrix of samples and genes with entries correspond-
ing to a molecular readout such as gene expression or DNA 
copy number. A standard set of statistical methods adopted in 
the bioinformatics community for analyzing such a matrix are 
hierarchical cluster analysis (114), gene set enrichment analysis 
(115), sample randomization statistics (114–116), regression 
analysis (41, 42, 44), and dimensionality reduction methods 
(117–119). Additionally, most software tools for analyzing cancer 
genomic data (120–123) are made publicly available at no cost to 
non-profits with the caveat that there is no free lunch; prospective 
users typically agree to terms of conditions that include limited 
liability on the part of the tool creator.

Critical evaluation of Bioinformatics 
Analysis of PPTP Data

The obvious limitation of the bioinformatics analyses presented 
here is the relatively small sample size used to identify correlates. 
We have derived sensitivity data and, based upon expression 
profile differences between cell lines, have attempted to predict 
sensitivity to drugs of xenograft models. In vitro, cell lines from 
different tumor types (including leukemias) have been used, 
thus potentially biasing analyses to profiles exhibited by leuke-
mia cells that tend to be more sensitive to many of the agents 
tested. To make correlations between in  vitro sensitivity and 
in vivo models, we have used only the solid and brain tumors, 
and have excluded the leukemia models, as these have very dif-
ferent expression profiles (8). Thus, it is likely that analyses may 
be biased when there is a preponderance of one type of tumor 
in the sensitive or resistant cohort. Additional weaknesses 
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include a failure to integrate exome mutation analysis, and 
changes in expression profiles subsequent to drug treatment 
(i.e., dynamic profiling). Despite these obvious weaknesses, the 
analyses do focus on specific genes/pathways that can be tested 
prospectively.

Future Directions

Within the PPTP consortium, approximately 150 patient-derived 
xenograft models have been established. Most have been char-
acterized by expression profiling and exome sequencing, hence 
a valuable omics database has been created against which new 
agents can be profiled. However, it is clear that to accurately 
represent molecular subtypes of different cancers additional 
models need to be established. Several novel agents identified in 
the PPTP screen are in phase I/II testing for treatment of child-
hood cancer. For sarcomas, the models identify some anti-mitotic 
agents as being highly active. Whether this reflects an increased 
rate of proliferation in models compared to patient tumor, or is 
revealing the Achilles Heel of these cancers, is open to debate. 
The activity of signaling inhibitors against the xenograft models 
has been somewhat disappointing, but this may reflect the lack 
of activity in human cancers overall. Certainly, in models with 
“actionable” mutations, specific inhibitors show impressive activ-
ity. However, it is clear that development of this type of targeted 
therapeutic must differ from the paradigm used for developing 
cytotoxic agents.

As was mentioned previously, the real power of cancer genom-
ics data lies in the ability to integrate multiple molecular data 
sources. Open web portals that provide access to publicly avail-
able multi-source cancer genomic data, largely from the Tumor 
Cancer Genome Atlas (TCGA), are advancing our understanding 
of cancer genomes (124) and their susceptibility to anti-cancer 
agents. Literally within a click or two an investigator can begin 
to hypothesize how their gene of interest or empirical pathway 
is active in specific cancer patient populations or associated with 
cancer cell drug sensitivity or resistance. Here, we have discussed 
the value and limitations of deriving relationships between in vitro 
cell line sensitivity and in vivo responsiveness to several agents. 
Potentially, identification of synergistic combinations in vitro can 
be tested in xenograft models to develop rational combination 
therapies. The examples were chosen to illustrate the value and 
limitations of this approach. Further refinement and validation of 
such “signatures” are required, possibly using a further test set of 
xenografts, or through modulation of genes by RNA interference 
approaches. Ultimately, it will be important to determine whether 
such approaches are relevant to patient responses to single agents 
or to complex therapeutic regimens.
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Rhabdomyosarcomas (RMS) are heterogeneous cancers with myogenic differentiation
features.The cytogenetic and mutational aberrations in RMS are diverse.This study exam-
ined differences in the malignant behavior of two genetically distinct and disease-relevant
mouse myogenic tumor models. Kras; p1619null myogenic tumors, initiated by expression
of oncogenic Kras in p16p19null mouse satellite cells, were metastatic to the lungs of
the majority of tumor-bearing animals and repopulated tumors in seven of nine secondary
recipients. In contrast, SmoM2 tumors, initiated by ubiquitous expression of a mutant
Smoothened allele, did not metastasize and repopulated tumors in 2 of 18 recipients only.
In summary, genetically distinct myogenic tumors in mice exhibit marked differences in
malignant behavior.
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INTRODUCTION
Rhabdomyosarcomas (RMS) are heterogeneous cancers with myo-
genic differentiation (1). Fusion-positive RMS tumors carry
exclusive chromosomal translocations at t(2;13)(q35;q14) or
t(1;13)(p36;q14) and exhibit aggressive clinical behavior (2, 3).
The remaining, fusion-negative spectrum of human RMS com-
prises a diverse group of tumors with frequent RAS pathway
activation (4, 5) and variable mutations, including loss of heterozy-
gosity at the PTCH1 locus (6,7) in a subset of fusion-negative RMS.
PTCH1 serves as a Hedgehog (Hh) receptor, and loss of PTCH1
function results in de-repression of downstream Hh pathway sig-
naling. The contributions of RMS-relevant oncogenic pathways,
including RAS and Hh signaling, to myogenic tumor formation
were previously tested in mice (8, 9). This report highlights the
distinct phenotypes of two mouse myogenic tumor models –
those initiated by combined Cdkn2a (p16p19) disruption and
Kras expression in transplanted mouse muscle satellite cells (10)
and those arising in the skeletal muscle of mice with activated
Hh signaling due to expression of a mutant, constitutively active
smoothened (SmoM2) allele (11, 12). We demonstrate signifi-
cant differences in tumor-repopulating activity and prevalence of
lung metastases between Kras-driven and Hh-driven myogenic
tumors in mice. These observations reveal marked differences in
malignant behavior between genetically distinct mouse myogenic
tumors, suggesting that an understanding of the distinct onco-
genetic underpinnings of tumors on the fusion-negative RMS
spectrum may be informative for clinical prognosis and treatment.

MATERIALS AND METHODS
MICE
R26-SmoM2 (mixed genetic background including 129/Sv and
Swiss Webster as main components) (11), CAGGS-CreER (11),

and NOD.CB17-Prkdcscid/J (NOD.SCID) mice were purchased
from The Jackson Laboratory. p16p19null mice (B6.129 back-
ground) were obtained from the NIH/Mouse Models of Human
Cancer Consortium. Mice were bred and maintained at the Joslin
Diabetes Center Animal Facility. All animal experiments were
approved by the Joslin Diabetes Center Institutional Animal Care
and Use Committee.

SARCOMA INDUCTION
Kras; p16p19null myogenic tumors were initiated by fluorescence-
activated cell sorting of p16p19null satellite cells, followed
by lentiviral transduction to introduce oncogenic Kras(G12v)
and implantation in the gastrocnemius muscles of NOD.SCID
mice as previously described (10). R26-SmoM2;CAGGS-CreER
were injected with Tamoxifen (1 mg/40 g) on postnatal day
10 to activate expression of CRE recombinase and SMOM2.
R26-SmoM2;CAGGS-CreER spontaneously developed multifocal
skeletal muscle tumors (SmoM2 tumors) as previously described
(11, 12).

HISTOPATHOLOGY
Tumor tissue was dissected, fixed in 4% paraformaldehyde for 2 h,
and embedded in paraffin. Standard H&E stained sections were
prepared. Staining for Actin (Dako, M0635, 1:200), Desmin (Dako,
M0760, 1:50), and Ki67 Ki67 (Vector Labs, VP-K451, 1:250) was
performed as previously described (10).

LUNG METASTASES
Tumor-bearing mice were monitored at least twice weekly for
health problems, and were sacrificed once tumors reached a vol-
ume of 1 cm3 or were ill. Lungs were dissected, fixed in 4%
paraformaldehyde for 2 h, and embedded in paraffin. Standard
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H&E stained sections were prepared and evaluated for the presence
of metastases by Roderick T. Bronson.

TUMOR TRANSPLANTATION
Tumors were harvested, digested in DMEM+ 0.2% collagenase
type II (Invitrogen)+ 0.05% dispase (Invitrogen) for 90 min at
37°C in a shaking waterbath, triturated to disrupt the remaining
tumor pieces, and filtered through a 70 mm cell strainer. Red blood
cells were lysed from tumor cell preparations by 3 min incubation
in 0.15 M ammonium chloride, 0.01 M potassium bicarbonate
solution on ice. Defined numbers of tumor cells were resus-
pended in 10–15 ml of HBSS with 2% FBS and injected into
the gastrocnemius muscles of 1- to 3-month-old, anesthetized
NOD.SCID mice using a transdermally inserted dental needle
attached to a Hamilton syringe via polyethylene tubing. Recipient
muscles were preinjured 24 h before cell implantation by injec-
tion of 25 ml of a 0.03 mg/ml solution of cardiotoxin (from Naja
mossambica, Sigma) in order to enhance cell engraftment. Mice
were screened once weekly for the development of tumors at the
injection sites.

STATISTICS
Differences between Kras; p16p19null and SmoM2 mouse myogenic
tumors were evaluated by T -test (Ki67 indices), Fisher’s Exact
test (prevalence of lung metastases), and Kaplan–Meier analysis
(tumor-repopulating activity).

RESULTS
Kras; p16p19null AND SmoM2 MOUSE TUMORS EXHIBIT A MYOGENIC
TUMOR PHENOTYPE
Kras; p16p19null mouse myogenic tumors were induced by intra-
muscular implantation of Kras(G12v)-expressing p16p19null mus-
cle satellite cells (10). In contrast, SmoM2 mouse myogenic tumors
were initiated by ubiquitous activation of a mutant, constitutively
active smoothened (SmoM2) allele in R26-SmoM2;CAGGS-CreER
mice (11, 12). The phenotypes of Kras; p16p19null and SmoM2
myogenic tumors were previously described (10–12). In brief,
Kras; p16p19null tumors contained bundles of cells with large,
atypical nuclei, frequent mitotic figures, and occasional multin-
ucleated giant cells. Subsets of cells (<50% of all tumor cells)
expressed terminal muscle differentiation markers such as desmin
and actin (Figure 1A), and the proliferative index as evidenced by
the percentage of Ki67-expressing nuclei was 41.6± 12.5% (range
30.5–59.3%; four tumors evaluated) (Table 1). SmoM2 tumors
contained many multinucleated, elongated cells with abundant
cytoplasm interspersed with small round cells. SmoM2 tumors
lacked cellular atypia and diffusely expressed desmin and actin in
many tumor cells (more than 75% of all tumor cells; Figure 1B).
As previously reported (12), the Ki67 index of SmoM2 tumors was
19.1± 15.9% (range 3.4–41.8%; six tumors evaluated) and lower
than that observed in Kras; p16p19null tumors (p= 0.05; Table 1).

Kras; p16p19null AND SmoM2 MOUSE MYOGENIC TUMORS HAVE
DIFFERENT METASTATIC POTENTIAL
The lung is the primary organ affected by distant sarcoma metas-
tases in humans. To assess the metastatic potential of Kras;
p16p19null and SmoM2 tumors, random lung sections obtained

FIGURE 1 |Terminal myogenic differentiation in Kras; p16p19null and
SmoM2 mouse tumors. (A) Subsets of Kras; p16p19null tumors cells
express terminal muscle differentiation markers, actin and desmin. (B) The
majority of SmoM2 tumor cells express actin and desmin. Images were
taken at 20× (scale bars indicate 100 µm).

from tumor-bearing animals were screened for the presence of
metastases. Six of seven mice with Kras; p16p19null myogenic
tumors were found to have lung metastases at the time of
death (mice were sacrificed 17–28 days after detection of palpable
tumors) (Figure 2). In contrast, 0 of 8 mice with SmoM2 myogenic
tumors had lung metastases at the time of death (mice were sacri-
ficed at 38–55 days of age and 5–21 days after detection of palpable
tumors). The prevalence of lung metastases in Kras; p16p19null and
SmoM2 myogenic tumor-bearing mice was significantly different
(p= 0.001).

Kras; p16p19null AND SmoM2 MOUSE MYOGENIC TUMORS DIFFER IN
TUMOR-REPOPULATING ACTIVITY
Most malignant tumors contain cells that have the capacity to
repopulate secondary tumors when transplanted into a suscepti-
ble secondary environment, and this assay has been used as a test of
the malignancy of distinct tumors and tumor cell subsets (13). To
evaluate the tumor-repopulating activity of Kras; p16p19null and
SmoM2 mouse myogenic tumors, viable tumor cells were trans-
planted into the cardiotoxin-pre-injured gastrocnemius muscles
of NOD.SCID mice. The Kras; p16p19null tumor cell pool contains
approximately 70% GFP+ cells and 30% GFP− cells (10). Because
tumor-repopulating activity in Kras; p16p19null tumors resides
within the Kras-expressing, GFP+ subset of tumor cells descended
from virally infected satellite cells (Figure S1 in Supplementary
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Table 1 | Differences in the malignant behavior of Kras; p16p19null and SmoM2 mouse tumors.

Kras; p16p19null tumors SmoM2 tumors

Terminal muscle differentiation Actin/desmin expression in <50% of tumor cells Actin/desmin expression in >75% of tumor cells

Ki67 index (p=0.05) 41.6±12.5% 19.1±15.9%

Metastases (p=0.001) 7 of 9 mice with lung metastases 0 of 10 mice with lung metastases

Transplantation (p < 0.001) 7 of 9 transplanted mice developed tumors (50 cells injected) 2 of 10 transplanted mice developed secondary

tumors (100–150 k cells injected)

Kras; p16p19null and SmoM2 mouse myogenic tumors exhibit profound differences in tumor-repopulating activity and metastatic behavior.

FIGURE 2 | Kras; p16p19null mouse myogenic tumors metastasize to
the lungs of tumor-bearing animals. Random lung sections from Kras;
p16p19null tumor-bearing mice show metastases. Tumor cells invade lung
capillaries (top panel). Similar to primary tumors arising from GFP+
Kras-expressing; p16p19null satellite cells, lung metastases are GFP+
(bottom right panel). Images were taken at 10× and 20× (scale bars
indicate 100 µm)

Material), Kras; p16p19null tumor cells were sorted for transplan-
tation from two Kras; p16p19null primary tumors as GFP+, Pi−,
Calcein+ cells. Seven of nine mice injected with only 50 GFP+,
Pi−, Calcein+ Kras; p16p19null tumor cells developed secondary
tumors at the injection site 26–39 days after tumor cell injec-
tion. For SmoM2 tumors, viable tumor cells were sorted as PI−
Calcein+ cells from primary tumors obtained from four mice. Sur-
prisingly, despite significantly higher numbers of cells transplanted

FIGURE 3 | Kras; p16p19null tumor cells repopulate tumors in secondary
recipients more effectively than SmoM2 mouse tumor cells.
Pi−Ca+GFP+ Kras; p16p19null tumor cells were sorted independently from
two primary tumors and injected into the cardiotoxin-pre-injured
gastrocnemius muscles of NOD.SCID mice (50 cells per injection). Pi-Ca+
SmoM2 tumor cells were sorted independently from four primary tumors
and injected into the cardiotoxin-pre-injured gastrocnemius muscles of
NOD.SCID mice (100,000–150,000 cells per injection). Recipient mice were
monitored for the occurrence of secondary tumors at the injection site for
up to 4 months.

(100,000 to 150,000 PI−, Calcein+ SmoM2 tumor cells per recip-
ient), only 2 of 18 recipient mice developed secondary tumors,
which were detected 71 and 127 days after cell injection. These
experiments indicate marked differences in tumor-repopulating
activity of Kras; p16p19null and SmoM2 tumors (p < 0.001,
Figure 3), in terms of both the frequency of tumor-repopulating
cells and the latency of secondary tumor formation.

DISCUSSION
Our findings highlight differences in the malignant phenotype and
behavior of mouse myogenic tumors driven by activation of dis-
tinct RMS-relevant oncogenic pathways. Kras; p1619null myogenic
tumors were metastatic to the lungs of the majority of tumor-
bearing animals and contained high tumor-repopulating activity.
In contrast, SmoM2 tumors did not metastasize and were substan-
tially less effective in repopulating tumors in secondary recipients.
These observations indicate that genetically distinct myogenic
tumors in mice display marked differences in their malignant
behavior.
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The two model systems described in this study were induced
by different experimental methods. SmoM2 tumors originated
from Cre-mediated activation of a conditionally expressed trans-
gene. Kras; p16p19null mouse tumors, on the other hand, were
initiated by viral transduction and intramuscular implantation of
target satellite cells. We note that Kras; Tp53−/− mouse myogenic
tumors (14, 15), induced by Cre-mediated activation of oncogenic
hits instead of viral transduction, exhibit a phenotype that closely
resembles the Kras; p16p19null mouse tumors described here. For
example, Kras; p16p19null share their propensity to metastasize to
the lungs of tumor-bearing animals with Kras; Tp53−/− mouse
tumors (14). Nevertheless, it is possible that differences in the
tumor induction strategy (such as off-target effects of viral trans-
duction) could contribute to the observed differences in malignant
behavior between SmoM2 and Kras; p16p19null mouse myogenic
tumors.

Similar to mouse myogenic tumors, human fusion-negative
RMS comprises a group of tumors with clear differences in histol-
ogy, myogenic differentiation state, oncogenic pathway activation,
and genetic background. In recent years, subsets of human RMS
tumors that exhibit a combination of specific genetic and phe-
notypic characteristics were distinguished. For example, a subset
of human fusion-negative RMS with spindle cell/sclerosing his-
tology was recently found to exhibit diffuse MyoD expression,
carry frequent somatic MyoD mutations, and portend a poor
prognosis (16, 17). Also, children with TP53 germline muta-
tions are predisposed to develop anaplastic RMS at a young
age (18), and germline mutations in DICER1 were linked to
a genetic susceptibility to develop RMS of the genitourinary
tract (19). Future extended (epi-)genotype/phenotype correla-
tions might pinpoint clinically/biologically distinct subgroups of
human fusion-negative RMS and identify biomarkers to facilitate
prognostication and/or stratification of therapy.
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Recent genomic studies revealed a high rate of recurrent mutations in the RAS pathway in
primary rhabdomyosarcoma (RMS) samples. In the present study, we therefore investi-
gated how oncogenic RAS mutants impinge on the regulation of cell death of RMS13
cells. Here, we report that ectopic expression of NRAS12V, KRAS12V, or HRAS12V
protects RMS13 cells from oxidative stress-induced cell death. RMS13 cells engineered
to express NRAS12V, KRAS12V, or HRAS12V were significantly less susceptible to
loss of cell viability upon treatment with several oxidative stress inducers including the
thioredoxin reductase inhibitor Auranofin, the glutathione (GSH) peroxidase 4 inhibitor
RSL3 or Erastin, an inhibitor of the cysteine/glutamate amino acid transporter system
xc− that blocks GSH synthesis. Notably, addition of Ferrostatin-1 confers protection
against Erastin- or RSL3-induced cytotoxicity, indicating that these compounds trigger
ferroptosis, an iron-dependent form of programed cell death. Furthermore, RMS13 cells
overexpressing oncogenic RAS mutants are significantly protected against the dual
PI3K/mTOR inhibitor PI103, whereas they are similarly sensitive to DNA-damaging drugs
such as Doxorubicin or Etoposide. This suggests that oncogenic RAS selectively mod-
ulates cell death pathways triggered by cytotoxic stimuli in RMS13 cells. In conclusion,
our discovery of an increased resistance to oxidative stress imposed by oncogenic RAS
mutants in RMS13 cells has important implications for the development of targeted
therapies for RMS.

Keywords: rhabdomyosarcoma, RAS, cell death, apoptosis, ROS

Introduction

Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and adolescence and
can be divided into two major histopathologies, i.e., alveolar (ARMS) and embryonal (ERMS)
(1, 2). Recent data obtained from two next-generation sequencing (NGS) studies revealed that
RMS harbor a high rate of recurrent mutations in the RAS pathway (3, 4).Whole-genome and
whole-exome sequencing of 147 tumor/normal pairs showed recurrent alterations in the RAS genes
predominantly in the ERMS subtype, i.e., NRAS in 11.7%, KRAS in 6.4%, andHRAS in 4.3% of cases
(4). In an independent study, genomic analysis of 13 primary RMS samples and matched normal
tissue revealed that the most common cancer consensus gene mutations in RMS were in the RAS
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pathway, including mutations in NRAS, KRAS, and HRAS (3).
In this study, 75% (6/8) of high-risk ERMS tumors harbored
RAS pathway mutations and these mutations were significantly
associatedwith risk-group assignment (3). Additional studies doc-
umented activation of the RAS pathway by oncogenic mutations
in HRAS, KRAS, or NRAS in RMS, i.e., in 42% [12/26] of RMS
(5) and in 35% (5/14), 22% (7/31) (6, 7), and 11.7% (8) of ERMS
tumors.

RAS proteins constitute key components of cellular signaling
pathways originating from cell surface receptors (9). Oncogenic
RAS proteins control a complex molecular network including
cell survival as well as cell death pathways (9). Also, oncogenic
RAS has been implicated in regulating the sensitivity of cancer
cells to oxidative stress (10). Depending on the cellular context,
e.g., on the sensitivity toward apoptotic stimuli and the status
of RAS effector pathways, oncogenic RAS proteins may exert
antiapoptotic and proapoptotic functions (9).

Despite the documented relevance of oncogenic RAS to drive
tumorigenesis of RMS, little is yet known about the impact on
cell death and survival signaling pathways. In the present study,
we therefore investigated the role of oncogenic RAS genes in the
control of cell death of RMS.

Materials and Methods

Cell Culture and Chemicals
RMS13 cells were obtained from the American Type Cul-
ture Collection (Manassas, VA, USA) and maintained in RPMI
1640 medium (Life Technologies, Eggenstein, Germany), sup-
plemented with 10% fetal calf serum (FCS) (Biochrom, Berlin,
Germany), 1mM glutamine, and 1% penicillin/streptomycin
(Invitrogen, Karlsruhe, Germany). PI3K/mTOR inhibitor PI103
(11) was purchased fromMerckMillipore (Darmstadt, Germany),
RSL3 from InterBIOScreen Ltd. (Moscow, Russia), Auranofin
from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). All
chemicals were purchased from Sigma (Deisenhofen, Germany)
unless indicated otherwise.

Transduction
For overexpression of RAS mutants, RMS13 cells were transduced
with pMSCV-puro vector containing oncogenic RAS mutants
(i.e., NRAS12V, KRAS12V, or HRAS12V; respective vectors were
sequenced to verify the identity of the individual mutant RAS) or
empty vector using the packaging cell line Platinum-E. Stable cell
lines were selected with puromycin.

Determination of Cell Viability, Cell Density,
Cell Count, Colony Formation, Apoptosis,
and Cell Death
Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay according to the
manufacturer’s instructions (Roche Diagnostics, Mannheim, Ger-
many). Cell density was assessed by crystal violet staining (0.75%
crystal violet, 50% ethanol, 0.25% NaCl, 1.57% formaldehyde).
Crystal violet dye was resolubilized in 1% sodium dodecyl sulfate
(SDS) and absorbance at 550 nM was measured by microplate
reader (Infinite M200, Tecan Group Ltd., Maennedorf, Switzer-
land). Cell counts were determined by CASY cell counter (OLS
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FIGURE 1 | Effects of oncogenic RAS genes on RAS/MEK/ERK and
PI3K/AKT/mTOR signaling of RMS13 cells. RMS13 cells expressing
empty vector (EV), HRAS12V, KRAS12V, or NRAS12V were analyzed for RAS
protein expression using a pan-RAS antibody (A), for expression and
phosphorylation of ERK (B), and for expression and phosphorylation of AKT
and S6 ribosomal protein (C) by Western blotting. Representative blots are
shown.

OMNI Life Science, Bremen, Germany). Apoptosis was deter-
mined by analysis of DNA fragmentation of propidium iodide
(PI)-stained nuclei using flow cytometry (FACSCanto II, BD
Biosciences, Heidelberg, Germany), as described previously (12).
Cell death was assessed by measuring loss of plasma membrane
integrity by PI-emitted fluorescence and flow cytometry. For
colony assay, cells were seeded as single cells (200 cells/well) in six-
well plates and cultured for 10 days before colonies were stained
with crystal violet (Roth, Karlsruhe, Germany) and counted.

Western Blot Analysis
Western blot analysis was performed as described previously
(12) using the following antibodies: mouse anti-AKT (BD
Biosciences), rabbit anti-pAKT, rabbit anti-p4E-BP1, rabbit
anti-4E-BP1, rabbit anti-pS6, mouse anti-S6, rabbit anti-pERK,
rabbit anti-ERK, rabbit anti-pan-RAS (Cell Signaling, Beverly,
MA, USA). Mouse anti-GAPDH (HyTest, Turku, Finland) or
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FIGURE 2 | Effects of oncogenic RAS genes on cell numbers and
clonogenic growth of RMS13 cells. RMS13 cells expressing EV, HRAS12V,
KRAS12V, or NRAS12V were incubated for 48 h and analyzed for cell counts
(A), cell viability using MTT assay (B), and cell density using crystal violet assay
(C); results are expressed as percentage of cells expressing EV. Clonogenic

survival was assessed by colony formation assay at day 10 (D). The number of
colonies was counted after crystal violet staining and is expressed as
percentage of cells expressing EV [(D), left panel]; representative images are
shown [(D), right panel]. Mean+SD of three independent experiments
performed in triplicate are shown; *p<0.05; **p<0.01; ***p<0.001.

mouse anti-β-Actin (Sigma) were used as loading controls. Goat
anti-mouse IgG, donkey anti-goat IgG, goat anti-rabbit IgG conju-
gated to horseradish peroxidase (Santa Cruz Biotechnology Inc.),
and goat anti-mouse IgG1 or goat anti-mouse IgG2b (Southern
Biotech, Birmingham, AL, USA) conjugated to horseradish per-
oxidase were used as secondary antibodies. Enhanced chemilumi-
nescence was used for detection (AmershamBioscience, Freiburg,
Germany). Also, donkey anti-mouse IgG or donkey anti-rabbit
(LI-COR Biotechnology, Bad Homburg, Germany) labeled with
IRDye infrared dyes were used for detection. Representative blots
of at least two independent experiments are shown.

Statistical Analysis
Statistical significance was assessed by Student’s t-test (two-tailed
distribution, two-sample, unequal variance).

Results

Effects of Oncogenic RAS Genes on
RAS/MEK/ERK and PI3K/AKT/mTOR Signaling
of RMS13 Cells
To investigate the impact of oncogenic mutant variants of RAS
in RMS, we ectopically expressed NRAS12V, KRAS12V, or
HRAS12V in the RMS cell line RMS13 that harbors wild-type
RAS. Ectopic expression of mutant RAS genes was confirmed by
Western blot analysis using a pan-RAS antibody (Figure 1A). To
determine whether overexpression of mutant RAS genes affects
activation of RAS/MEK/ERK and/or PI3K/AKT/mTOR path-
ways, we assessed in parallel the phosphorylation status of key
components of these pathways. Overexpression of mutant RAS
genes resulted in increased phosphorylation of ERK or AKT
(Figures 1B,C; Figure S1 in Supplementary Material), indicating
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FIGURE 3 | Effects of oncogenic RAS genes on spontaneous cell
death of RMS13 cells. RMS13 cells expressing EV, HRAS12V, KRAS12V, or
NRAS12V were incubated for 48 h. Apoptosis was determined by analysis of
DNA fragmentation of PI-stained nuclei (A), and cell death was determined by
PI staining (B) using flow cytometry. Mean+SD of three independent
experiments performed in triplicate are shown.

that overexpression of mutant RAS genes results in increased
activation of downstream signaling pathways.

Effects of Oncogenic RAS Genes on Cell
Numbers and Clonogenic Growth of RMS13 Cells
Next, we investigated the effects ofmutantRAS genes on cell num-
bers. Ectopic expression of NRAS12V, KRAS12V, and HRAS12V
all caused a significant increase in cell numbers compared to
cells expressing empty control vector (Figure 2A). In addition,
overexpression of mutant RAS genes significantly increased cell
viability as determined by MTT assay (Figure 2B). Besides MTT
assay, which relies on mitochondrial activity and may not reliably
assess cell viability under oxidative stress, we also used crystal
violet assay as another assay to determine cell viability, which
yielded similar results (Figure 2C). In addition to these short-term
assays, we also assessed long-term effects using colony assays
to determine clonogenic survival. Of note, ectopic expression of
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FIGURE 4 | Oncogenic RAS genes rescue dual PI3K/mTOR
inhibitor-mediated cytotoxicity. RMS13 cells expressing EV, HRAS12V,
KRAS12V, or NRAS12V were treated for 24–72 h (A,B) or 48 h (C) with
indicated concentrations of Doxorubicin (A), Etoposide (B), or PI103 (C).

Cell viability was determined by MTT assay and cell density by crystal violet
assay; results are expressed as percentage of untreated cells. Mean+SD of
three independent experiments performed in triplicate are shown; *p<0.05;
**p<0.01.

NRAS12V, KRAS12V, and HRAS12V resulted in a significant
increase in colony numbers compared to cells transduced with
empty control vector (Figure 2D). This set of experiments shows
that overexpression of mutant RAS genes increases cell numbers
and clonogenic survival of RMS13 cells.

Effects of Oncogenic RAS Genes on
Spontaneous Cell Death of RMS13 Cells
Since RAS has been implicated in the regulation of cell death in
addition to cell growth, we also determined spontaneous cell death
of untreated RMS13 cells in the absence of any cytotoxic stimulus.
Analysis of DNA fragmentation, used as a characteristic marker
of apoptotic cell death, showed no significant changes in DNA
fragmentation upon overexpression of NRAS12V, KRAS12V, or
HRAS12V compared to cells expressing empty control vector

(Figure 3A). Similarly, overexpression of mutant RAS genes did
not result in enhanced plasmamembrane permeability as assessed
by PI staining that was used as a marker of non-apoptotic cell
death (Figure 3B). Based on these results, we conclude that
ectopic expression of NRAS12V, KRAS12V, and HRAS12V does
not increase spontaneous cell death of RMS13 cells.

Oncogenic RAS Genes Rescue Dual PI3K/mTOR
Inhibitor-Mediated Cytotoxicity
Next, we investigated the question whether oncogenic RAS
mutants affect the sensitivity of RMS13 cells toward anticancer
agents. To this end, we tested the cytotoxicity of Doxoru-
bicin or Etoposide, two chemotherapeutic drugs that are com-
monly used in clinical protocols for the treatment of RMS.
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Dose response and kinetic analysis showed that Doxoru-
bicin and Etoposide reduced cell viability of RMS13 cells in
a concentration- and time-dependent manner irrespective of
whether or not NRAS12V, KRAS12V, or HRAS12V were ectopi-
cally expressed (Figures 4A,B). By contrast, overexpression of
NRAS12V, KRAS12V, or HRAS12V significantly rescued loss
of cell viability or cell density upon treatment with the dual
PI3K/mTOR inhibitor PI103 (Figure 4C).

Oncogenic RAS Genes Protect Against Oxidative
Stress Stimuli
Since oncogenic RAS has been implicated in regulating the sen-
sitivity of cancer cells to oxidative stress (10), we extended our
study to several agents that interfere with antioxidative defense

mechanisms and thereby increase reactive oxygen species (ROS)
levels. Interestingly, we found that overexpression of NRAS12V,
KRAS12V, or HRAS12V significantly protected RMS13 cells
against loss of cell viability and reduction of cell density upon
treatment with Auranofin (Figure 5A), an inhibitor of thiore-
doxin reductase (13). Also, RMS13 cells engineered to overex-
press NRAS12V, KRAS12V, or HRAS12V were significantly more
resistant to RSL3 (Figure 5B), a pharmacological inhibitor of
glutathione (GSH) peroxidase 4 (GPX4) (14). GPX4 is the only
GPX that specifically reduces hydroperoxides within membranes
(15). In addition, RMS13 cells exhibiting oncogenic RAS mutants
were significantly less susceptible against Erastin (Figure 5C).
Erastin is an inhibitor of system xc

−, a cysteine/glutamate amino
acid transporter at the plasma membrane (10), and inhibits
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FIGURE 5 | Oncogenic RAS genes protect against oxidative
stress stimuli. RMS13 cells expressing EV, HRAS12V, KRAS12V, or
NRAS12V were treated for 48 h with indicated concentrations of
Auranofin (A), RSL3 (B), or Erastin (C). Cell viability was determined by

MTT assay and cell density by crystal violet assay; results are
expressed as percentage of untreated cells. Mean+SD of three
independent experiments performed in triplicate are shown; *p<0.05;
**p<0.01; ***p<0.001.
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GSH synthesis by blocking cysteine uptake. Together, this set of
experiments demonstrates that oncogenic RAS mutants protect
RMS13 cells against several oxidative stress stimuli.

Oncogenic RAS Genes Protect Against
Ferroptotic Cell Death
We noted that oncogenic RAS mutants conferred protection
against both RSL3 and Erastin, which either directly (i.e., RSL3)
or indirectly through GSH depletion (i.e., Erastin) inhibit GPX4
(14). Since GPX4 has recently been identified as an essential reg-
ulator of ferroptosis (14), an iron-dependent non-apoptotic mode
of cell death (16), we asked whether RSL3 and Erastin trigger
ferroptotic cell death in RMS13 cells. To address this question,
we used Ferrostatin-1, which has been described to block ferrop-
tosis (10). Indeed, addition of Ferrostatin-1 significantly reduced
RSL3- or Erastin-induced loss of cell viability (Figures 6A,B). To
further test whether RSL3 and Erastin engage a non-apoptotic
form of cell death, we assessed in parallel plasma membrane per-
meability using PI-staining and DNA fragmentation as markers
of non-apoptotic and apoptotic cell death, respectively. Notably,
treatment with RSL3 or Erastin caused a significant increase in
plasma membrane permeability as reflected by increased PI pos-
itivity (Figures 6C,D), whereas only a minor increase in the rate
of DNA fragmentation was observed (Figures 6E,F), consistent
with a non-apoptotic mode of cell death. Together, this set of
experiments indicates that RSL3 and Erastin trigger ferroptotic
cell death in RMS13 cells.

Discussion

In the present study, we investigated the role of oncogenic RAS
genes in the regulation of cell death of RMS13 cells. A key
finding of our study is the increased resistance to oxidative
stress that is conferred by ectopic expression of oncogenic RAS
mutants. RMS13 cells engineered to expressNRAS12V, KRAS12V,
or HRAS12V proved to be significantly less vulnerable to several
redox-targeting agents that inhibit antioxidative defense systems
responsible for ROS detoxification. This increased resistance to
oxidative stress occurs upon inhibition of distinct antioxidative
defense pathways, including the GSH system (that is inhibited
by Erastin and RSL3) as well as the thioredoxin system (that is
inhibited by Auranofin), emphasizing the general relevance of
this finding. Interestingly, this form of oxidative stress-induced
cell death turned out to be ferroptosis, a recently defined iron-
dependent form of programed cell death involving ROS pro-
duction (16). Our rescue experiments showing that Ferrostatin-1
confers protection against Erastin- or RSL3-induced cytotoxicity
underscores that these compounds trigger ferroptotic cell death in
RMS13 cells that is attenuated by oncogenic RAS mutants.

Of note, our key finding showing that the RAS mutation status
imparts resistance toward treatment with ferroptosis-inducing
compounds such as Erastin and RSL3 is in line with recent
evidence documenting that the RAS mutation status does not
predict sensitivity to Erastin (14). A large analysis of more than
a hundred of different cancer cell lines recently documented no
selective lethality of Erastin in RAS-mutated cancer cell lines
over RAS wild-type counterparts (14). This comprehensive study
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FIGURE 6 | Oncogenic RAS genes protect against ferroptotic cell
death. (A,B) RMS13 cells expressing EV were treated for 48 h with indicated
concentrations of RSL3 (A) or Erastin (B) in the presence or absence of 5μM
Ferrostatin-1. Cell viability was determined by MTT assay; results are
expressed as percentage of untreated cells. Mean+SD of three independent
experiments performed in triplicate are shown; *p<0.05; **p<0.01;
***p<0.001. (C–F) RMS13 cells expressing EV were treated for 48 h with
indicated concentrations of RSL3 or Erastin. Apoptosis was determined by
analysis of DNA fragmentation of PI-stained nuclei (C,D) and cell death was
determined by PI staining (E,F) using flow cytometry. Mean+SD of three
independent experiments performed in triplicate are shown; *p<0.05;
**p<0.01; ***p<0.001.

indicates that oncogenic RAS does not confer sensitivity to Erastin
across cancers. By comparison, Erastin has been reported to
exhibit greater lethality in human tumor cells harboringmutations
in the oncogenesHRAS,KRAS, or BRAF (17) as well as in an indi-
vidual genetic context using isogenic cell lines with and without
oncogenic RAS genes (10). Thus, there are likely to be found other
more dominant determinants of sensitivity toward Erastin than
RASmutations when analyzing sensitivity across diverse contexts.

In addition to redox-targeting agents, oncogenic RAS mutants
also conferred resistance to the dual PI3K/mTOR inhibitor
PI103, while they did not alter the response to DNA-damaging
chemotherapeutics such as Etoposide and Doxorubicin. This sug-
gests that oncogenic RAS selectively modulates cell death path-
ways in response to cytotoxic stimuli in RMS13 cells.

Oncogenic forms of RAS have previously been implicated in
the control of both proliferation and cell death of cancer cells
(9). Consistent with the well-documented role of oncogenic RAS
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to drive cell cycle progression and clonogenic growth, RMS13
cells harboring NRAS12V, KRAS12V, or HRAS12V exhibited a
significant increase in proliferation and colony formation as com-
pared to cells with wild-type RAS. While oncogenic RAS has been
described to also promote cell death under certain circumstances
(9), we found no evidence of increased spontaneous cell death in
the absence of lethal insults in RMS13 cells, neither apoptotic nor
non-apoptotic cell death.

Several genomic studies of RMS samples have revealed a high
rate of recurrent mutations in the RAS pathway, which is associ-
ated with intermediate and high-risk disease (3). This underscores
that RAS signaling is a clinically relevant oncogenic pathway in
RMS. Our present study contributes to a better understanding
of the biology of oncogenic RAS in RMS. While RAS remains
one of the most elusive genes to target directly, RAS mutant
cells have been shown to depend on a number of oncogenic
signaling pathways that arise as a means of adaptation to RAS-
driven intracellular stresses and represent unique vulnerabilities
of mutant RAS cancers (18). In RMS, concomitant inhibition of
the RAS/MEK/ERK and PI3K/AKT/mTOR pathways has recently
been demonstrated in two independent studies to synergistically
trigger apoptosis and to inhibit tumor growth in vivo (19, 20).

Thus, therapeutic targeting of RAS effector pathways and the
search for synthetic lethal interactors of mutant RAS may offer
exiting opportunities for new therapeutic directions.
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Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and is
divided into two major histological subgroups, i.e., embryonal (ERMS) and alveolar RMS
(ARMS). RMS can show HEDGEHOG/SMOOTHENED (HH/SMO) signaling activity and
several clinical trials using HH inhibitors for therapy of RMS have been launched. We here
compared the antitumoral effects of the SMO inhibitors GDC-0449, LDE225, HhA, and
cyclopamine in two ERMS (RD, RUCH-2) and two ARMS (RMS-13, Rh41) cell lines. Our
data show that the antitumoral effects of these SMO inhibitors are highly divers and do not
necessarily correlate with inhibition of HH signaling. In addition, the responsiveness of the
RMS cell lines to the drugs is highly heterogeneous. Whereas some SMO inhibitors (i.e.,
LDE225 and HhA) induce strong proapoptotic and antiproliferative effects in some RMS
cell lines, others paradoxically induce cellular proliferation at certain concentrations (e.g.,
10μM GDC-0449 or 5μM cyclopamine in RUCH-2 and Rh41 cells) or can increase HH
signaling activity as judged by GLI1 expression (i.e., LDE225, HhA, and cyclopamine).
Similarly, some drugs (e.g., HhA) inhibit PI3K/AKT signaling or induce autophagy (e.g.,
LDE225) in some cell lines, whereas others cannot (e.g., GDC-0449). In addition, the
effects of SMO inhibitors are concentration-dependent (e.g., 1 and 10μM GDC-0449
decrease GLI1 expression in RD cells whereas 30μM GDC-0449 does not). Together
these data show that some SMO inhibitors can induce strong antitumoral effects in
some, but not all, RMS cell lines. Due to the highly heterogeneous response, we propose
to conduct thorough pretesting of SMO inhibitors in patient-derived short-term RMS
cultures or patient-derived xenograft mouse models before applying these drugs to RMS
patients.

Keywords: rhabdomyosarcoma, GDC-0449, LDE225, HhA, cyclopamine

Introduction

Of the major rhabdomyosarcoma (RMS) subtypes in children, embryonal RMS (ERMS) accounts
for approximately two-third of cases. It frequently shows loss of heterozygosity of 11p15.5 and
overexpression of IGF2. The other subtype is alveolar RMS (ARMS). Seventy-five percent of ARMS
harbor reciprocal chromosomal translocations resulting in fusion genes of PAX3 or PAX7 and of
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the forkhead transcription factor, FOXO1. Twenty-five percent
of ARMS are fusion-negative as are all ERMS. ARMS has a
very poor prognosis especially when metastatic (<20% long-
term survival) (1). Although the majority of ERMS patients expe-
rience more favorable outcomes, treatment failure and toxicity
remain substantial. Furthermore, long-term survival of patients
with metastatic ERMS is still merely 40% (1). The improvement
of treatment schemes is therefore important not only in the
combat against ARMS but also against ERMS. This can be only
assured if we increase our current knowledge of the basic biology
of RMS.

We and others recently showed that predominantly ERMS and
fusion-negative ARMS are characterized by high HEDGEHOG
(HH) signaling activity (2, 3). Thus, the major marker genes of
active HH signaling GLI1 and PATCHED1 (PTCH) are expressed
at significantly higher levels in both subgroups compared to
fusion-positive ARMS that however also show activation of the
pathway. These results implicate that RMS might be sensitive
toward a targeted therapy using smallmolecule inhibitors directed
against components of the HH signaling pathway.

The HH signaling pathway plays a critical role in development,
cell fate decisions, and tissue growth. Components of the canoni-
cal HH signaling cascade are the HH ligand, the transmembrane
protein PTCH that acts as a receptor for HH proteins, the seven-
pass transmembrane protein and signaling partner of PTCH,
SMOOTHENED (SMO), and the family of GLI transcription fac-
tors. In the absence of HH, PTCH inhibits SMO. Binding of HH to
PTCH suspends this inhibition. Through a series of poorly under-
stood events that involves SMO-trafficking to the primary cilia,
SMO activates the transcription factors GLI2 and GLI3 and the
expression of downstream target genes [reviewed in Ref. (4)]. The
HH signal also induces the expression of GLI1, which thus ampli-
fies the HH signal. Another downstream target of the pathway
is PTCH, which in contrast regulates HH signaling in a negative
feedback loop. Together GLI1 and PTCH mRNAs are considered
as reliablemarkers for the pathway’s activity [reviewed in Ref. (5)].
Finally, also IGF2 expression can be regulated by HH signaling (6,
7). Gene expression data revealed that IGF2 is frequently overex-
pressed in ERMS and ARMS and plays also a key role in the for-
mation, proliferation, growth, andmetastasis of RMS [reviewed in
Ref. (8)].

Several drugs targeting the HH pathway exist that already have
entered clinical phase I/II trials. The first inhibitor of the HH
pathway discovered was cyclopamine. Cyclopamine is a natural
product that can be isolated from corn lilies and that binds and
inhibits SMO (9). However, because of its limited potency and
poor oral solubility, it is not suitable for clinical development
(10). Recently, more potent derivatives of cyclopamine and small
molecule antagonists targeting SMO have been identified. One of
them, i.e., GDC-0449 (vismodegib) has already been approved for
advanced basal cell carcinoma (11) and is also used in clinical
trials for adult RMS patients. Another compound is LDE225
(sonidegib), which is well-tolerated by the patients and which is
currently evaluated in phase II clinical trials for medulloblastoma
and RMS. LDE225 also just met primary endpoint in a trial for
patients with advanced basal cell carcinoma. In addition, several

other compounds, such as BMS-833923 or PF04449913, are being
investigated in a range of advanced cancers (10). Table S1 in
Supplementary Material is providing a short overview of the four
SMO inhibitors used in this study.

SMOOTHENED inhibitors can vary in their capacity to block
canonical HH signaling as estimated by GLI1 expression. They
also can have variable potency in blocking the activity of SMO
mutational activating variants. Examples are GDC-0449 and
HhAntag (HhA). Whereas GDC-0449 has a robust potency
against the SMO-E518K variant, but is weakly active against
SMOD473H,HhA is essentially equipotent against all SMO alleles
(12). Interestingly, besides inhibiting canonical HH signaling,
several SMO inhibitors including cyclopamine and GDC-0449
activate a non-canonical SMO/Ca2+/AMPK-dependent signaling
cascade that may induce a Warburg-like effect, whereas other
SMO modulators such as LDE225 do not (13). Together, these
data show that SMO inhibitors differ substantially in their mode
of action.

Here, we compared the effects of GDC-0449, LDE225, HhA,
and cyclopamine with respect to HH pathway inhibition and
their potential to inhibit proliferation, to induce apoptosis and to
modulate the differentiation status of four different RMS cell lines.
We also compared their impact on the activity of other signaling
molecules including AKT and AMPK. Our data reveal that the
compounds differ extraordinarily in modulation of the above-
mentioned parameters and that the responsiveness of the RMS cell
lines is highly heterogeneous.

Materials and Methods

Reagents
HhA was from Genentech (San Francisco, CA, USA), GDC-0449
(Vismodegib) from Selleckchem (Munich, Germany) and LDE225
(NVP-LDE225) from Active Biochem (Bonn, Germany). For
in vitro assays, the drugs were dissolved in DMSO. Cyclopamine
was purchased from Sigma-Aldrich (St. Louis, MO, USA) and
was dissolved in Ethanol. All compounds were easy to solubilize
in the respective solvents. For proliferation assays, Annexin V/PI
staining andWestern blot the final DMSO/ethanol concentrations
were uniform in all samples, i.e., the medium contained 0.03%
(v/v) DMSO and 0.1% (v/v) ethanol, whereas for gene expression
analysis and WST-1 assay the solvent was DMSO for GDC-0449,
LDE225, and HhA and ethanol for cyclopamine. The final drug
concentrations used for in vitro analysis are indicated in the
respective experiments.

Cell Culture
The human ERMS cell lines RD and RUCH-2 and the ARMS
cell lines RMS-13 (also known as Rh30) and Rh41 (also called
Rh4) were obtained from ATCC [for cell lines see Ref. (14)].
The ERMS and ARMS cell lines were cultured in DMEM and
in RPMI, respectively, 10% FCS (20% FCS for Rh41), and 1%
penicillin/streptomycin.

For determination of apoptosis, 105 cells/well (ERMS) or
15× 104 cells/well (ARMS) were seeded in six-well-plates. After
treatment for 48 h with medium supplemented with drugs or
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solvent as indicated in the respective experiments, apoptosis
was determined by flow cytometry on a FACSCalibur (BD
Biosciences, Heidelberg, Germany) after staining of the cells
with Annexin V-FITC (BD Biosciences, Heidelberg, Germany)
and Propidium Iodide (PI, Miltenyi Biotec, Bergisch Gladbach,
Germany).

For BrdU incorporation and WST assay, 4000 cells/well were
seeded in 96-well-plates. For the BrdU assay, cells were incu-
bated for 24 h with the respective drugs in the presence of BrdU.
BrdU incorporationwasmeasured using a Cell Proliferation BrdU
ELISA (Roche Diagnostics GmbH, Mannheim, Germany). The
data are presented as the percentage of the incorporation mea-
sured in time-matched solvent-treated controls taken as 100%.
For WST-1 assay, cells were incubated for 24 h with the respective
drugs. Four hours before the end of incubation, WST-1 reagent
(Roche Diagnostics, Mannheim, Germany) was added as recom-
mended by the manufacturer. The amount of produced formazan
dye (quantitated by spectrophotometer at a wavelength of 450 nm)
correlates to metabolic active cells.

Data shown summarize three independent experiments per-
formed as duplicates (apoptosis assay) or triplicates (BrdU incor-
poration assay) or two independent experiments performed as
triplicates (WST-1 assay).

Real-Time Quantitative RT–PCR-Analyses
For gene expression analysis, 105 cells/well (ERMS) or 15× 104

cells/well (ARMS) were seeded in six-well-plates. After incuba-
tion of the cells for 24 h, total RNA was isolated using TRIzol
Reagent (Invitrogen GmbH, Karlsruhe, Germany) and cDNA was
synthesized using Superscript II and random hexamers (Invitro-
gen, Karlsruhe, Germany). Quantitative RT–PCR of target cDNAs
was performed using SYBR-green based assays on an ABI Prism
HT 7900 Detection System instrument and software (Applied
Biosystems, Darmstadt, Germany). The primers for amplification
of target transcripts are shown in the Table S2 in Supplementary
Material. All primers used in study were intron-flanking, except
of the primers for 18S and hMYOD. Expression levels of 18S
rRNA served to normalize the transcript levels. Each sample was
measured in triplicates. Expression of major components of the
HH signaling pathway was analyzed once. All other data shown
are the summary of two independent experiments performed in
duplicates. Graphs represent the mean value of all measurements
plus SEM.

Western Blot Analysis
Preparation of cell lysates and determination of protein concentra-
tions were done as described previously (15). Primary antibodies
used to detect the individual target proteins and corresponding
secondary antibodies are shown in Table S3 in Supplementary
Material. All Western blots shown are representative for at least
two independent experiments.

Statistical Analysis
When comparing two samples, statistical differences were ana-
lyzed using Student’s t-test. Data were considered significant when
p< 0.05.

Results

Effects of GDC-0449, LDE225, HhA, and
Cyclopamine on HH Signaling Activity and on the
Expression of IGF2 and of Muscle Differentiation
Markers
We first examined whether the two ERMS cell lines, RD and
RUCH-2, and the two ARMS cell lines, RMS-13 and Rh41, used
in the study express the major components of the HH signaling
cascade SHH, SMO, PTCH, and GLI1-3. Of these genes, GLI1 and
PTCH are regulated by the HH signal and thus are HH pathway
target genes. As shown in Figure S1 in Supplementary Material,
SHH, SMO, and PTCH and the transcriptional effectors GLI1,
GLI2, and GLI3 were expressed in all cell lines. Expression of
GLI1, GLI3, PTCH, and SMO was highest in RMS-13 cells that
show an amplification of GLI1 (16). Furthermore, we detected
SHH expression that was highest in RUCH-2 cells. In summary, all
RMS cell lines express the major components of the HH signaling
pathway. This is similar to data previously published by Graab
et al. (17).

BecauseGLI1 and PTCH expression were suggestive for canon-
ical HH signaling activity (i.e., via the HH/PTCH/SMO/GLI axis)
in the different cell lines, we examined whether it is possible
to inhibit HH signaling using the SMO inhibitors GDC-0449,
LDE225, HhA, and cyclopamine. For this purpose, we first deter-
mined the optimal conditions under which each inhibitor may
block HH signaling. In order to measure HH signaling activity,
the transcription of the HH pathway indicator GLI1 was analyzed
by qRT-PCR.

In the cell line RD, significant inhibition of GLI1 expression
was revealed for 1, 10, and 50 μM GDC-0449 and LDE225,
and for 1–50 μM HhA (Figure 1). Interestingly, we found that
30 μM of GDC-0449 or LDE225 did not further decrease HH
signaling activity but restored the activity to basal level or above
(Figure 1). Similarly, cyclopamine increased GLI1 expression and
the increase was significant at 1 μM (Figure 1).

In RUCH-2 cells, the dose-response analyses revealed that
GDC-0449 did not significantly modulate GLI1 expression at any
concentration, whereas LDE225 and HhA inhibited GLI1 expres-
sion at 30 and 50 μM, and 10 and 50 μM, respectively. In addition,
and similar to RD cells, cyclopamine increasedGLI1 expression at
concentrations of 0.1, 1, and 5 μM (Figure 1).

In RMS-13 cells, which show GLI1 amplification, the drugs
did not decrease GLI1 expression levels at any concentrations
used in the experiments. Rather GLI1 expression was increased,
which was particularly obvious for LDE225 and cyclopamine
(Figure 1).

In Rh41, we found that GDC-0449 moderately inhibited GLI1
expression at any concentration whereas LDE225 inhibited GLI1
expression only at 10 and 30 μM, and increased it at 50 μM.
HhA inhibited GLI1 expression at a concentration of 0.1 and
1 μM, whereas higher concentrations also resulted in restoration
or increase inGLI1 expression. Cyclopamine never inhibitedGLI1
expression but induced it for 1–10 μM (Figure 1).

Together, these data show that ERMS andARMS cell lines show
tumor-intrinsic HH signaling activity as estimated by modula-
tion of GLI1 expression after treatment with SMO – antagonists.
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FIGURE 1 | Relative quantification of GLI1 expression in RD, RUCH-2,
RMS-13, and Rh41 after treatment with GDC-0449, LDE225, HhA, and
cyclopamine (cp) at the concentration indicated. Gene expression
levels were normalized to 18S rRNA expression levels. The respective

solvent-controls (solv) for each experiment were set to 1. All data represent
at least two independent experiments performed in duplicates and
measured in triplicates. The data are represented as mean±SEM;
*p<0.05; **p<0.01; ***p<0.001.

Furthermore, our data demonstrate that SMO inhibitors – depen-
dent on the concentration – may paradoxically activate GLI1
transcription in some RMS cell lines.

We next measured the expression of IGF2 that plays an impor-
tant role in RMS pathology (8) and is regulated by HH signaling
in specific cellular settings (6, 7). Whereas RUCH-2 cells did not
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express IGF2, the levels of IGF2 were regulated by all drugs in the
remaining three cell lines, however to a variable extent (Figure S2
in Supplementary Material). In RD cells, IGF2 transcription was
inhibited by 0.1, 30, and 50 μM GDC-0449, by 50 μM LDE225
and by 10, 30, and 50 μM HhA. Cyclopamine had no effect and
0.1 μM HhA increased the IGF2 levels. In RMS-13, IGF2 expres-
sion was significantly inhibited upon treatment with 50 μM HhA
or LDE225 and with 0.1 and 1 μM GDC-0449. By contrast, 0.1
and 1 μM HhA as well as 1–10 μM cyclopamine resulted in a
significant up-regulation of the expression of this gene. This was
different in Rh41 cells. In this cell line, the IGF2 mRNA level was
significantly decreased only with 10 μM cyclopamine, whereas all
other drugs rather increased it. This was specifically obvious after
GDC-0449-treatment (Figure S2 in Supplementary Material).

Finally, we also examined the expression of the early and late
muscle differentiation markers MYOD and MYH1, respectively
(Figure S3 and S4 in Supplementary Material).

RUCH-2 cells neither expressed MYOD nor MYH1.
In RD cells, MYOD transcription was inhibited by 0.1 and

50 μM GDC-0449, whereas 1 μM GDC-0449 induced it. MYOD
expressionwas also inhibited by 0.1, 10, and 50 μMLDE225, by 10,
30, and 50 μM HhA and 0.1 and 1 μM cyclopamine. In RMS-13,
MYOD expressionwas significantly inhibited upon treatmentwith
1 and 30 μM GDC-0449, 30 and 50 μM LDE225 or HhA and with
0.1 and 1 μM cyclopamine. In Rh41 cells, GDC-0449 and LDE225
induced MYOD expression at any concentration. MYOD was also
induced by 10–50 μM HhA, whereas cyclopamine had no effect.

MYH1 transcription in RD cells was inhibited by 30 and 50 μM
GDC-0449, by 10–50 μM LDE225, by 1–50 μM HhA, whereas
it was induced by cyclopamine at any concentration. In RMS-
13, MYH1 expression was induced by GDC-0449 (significant
for 0.1 and 30 μM) and by LDE225 (significant for 1–30 μM).
HhA induced the expression at a concentration of 0.1 and 1 μM,
whereas 30 and 50 μM inhibited it. Inhibition of MYH1 expres-
sion was also seen with 5 μM cyclopamine. In Rh41, MYH1
expression was induced by GDC-0449 (significant for 0.1, 10, and
30 μM) and by 1 and 30 μM LDE225, whereas 50 μM inhibited it.
HhA induced the expression at a concentration of 0.1 and 1 μM,
whereas 30 and 50 μMinhibited it. Inhibition ofMYH1 expression
was also seen with 1–10 μM cyclopamine.

Together, SMO inhibitors may – dependent on the concen-
tration – activate or inhibit transcription of IGF2 and that of
muscle differentiation markers in some RMS cell lines. Further-
more, the responses of the cell lines are highly variable and differ
enormously from each other.

Effects of GDC-0449, LDE225, HhA, and
Cyclopamine on Cellular Proliferation and
Apoptosis
Next, we assessed the antiproliferative and proapoptotic effects
of SMO inhibitors. For this purpose, we used concentrations
that either have decreased or did not impact (10 and 30 μM,
respectively) on GLI1 expression in most experimental settings.
Cyclopamine was used only at a concentration of 5 μM.

As shown by BrdU assays, the antiproliferative effects of SMO
inhibitors dramatically varied between the cell lines: in RD
cells, 30 μM LDE225 and 10 μM and 30 μM HhA reduced the

proliferation rate of RD cells approximately by 55% and 30 and
50%, respectively (Figure 2). Thirty micromoles of GDC-0449,
10 μM LDE225 and cyclopamine did not show any antiprolifera-
tive effects, whereas 10 μM GDC-0449 significantly increased the
proliferation rate (Figure 2). This was similar in RUCH-2 cells,
in which the proliferation was significantly reduced by 30 μM
LDE225 and by 10 and 30 μM HhA (Figure 2). Ten micromoles
of LDE225 and 30 μM GDC-0449 had no effects, whereas 10 μM
GDC-0449 and 5 μM cyclopamine significantly increased it (by
approximately 50 and 100%, respectively) (Figure 2). In RMS-13,
proliferation was reduced by 30 μM GDC-0449, by 10 and 30 μM
LDE225 and by 30 μM HhA (Figure 2). In Rh41, none of the
drugs inhibited proliferation (Figure 2). However, proliferation-
inducing effects were seen for 10 and 30 μMGDC-0449, for 10 μM
LDE225 and for cyclopamine (Figure 2; for RD and Rh41 the
results were confirmed by simple cell counting; see Figure S5 in
Supplementary Material).

As far as apoptosis is concerned, 30 μM LDE225 significantly
increased the apoptosis rate (as estimated by increase of Annexin
V positive cells) of RD cells as did 30 μM HhA (Figure 3).
Ten micromoles of LDE225 or HhA as well as GDC-0449 and
cyclopamine did not trigger apoptosis (Figure 3). The substances
had similar effects in RMS-13 and Rh41 cells (Figure 3). Assess-
ment of apoptosis in RUCH-2 cells was not possible due to
unstable results obtained from three measurements.

Together, these data demonstrate that the responsiveness of the
cell lines to four distinct SMO inhibitors is very heterogeneous. In
general, the results show that cyclopamine at the used concentra-
tion neither induces apoptosis nor reduces proliferation of any of
the cell lines. It rather seems to increase the proliferation rate in
RUCH-2 and Rh41 cells. In addition, GDC-0449 is less effective
compared to LDE225 or HhA that have the capacity to induce
apoptosis and antiproliferative effects dependent on the cell line
and the applied drug concentration.

Effects of GDC-0449, LDE225, HhA, and
Cyclopamine on PI3K/AKT/mTOR Signaling
Activity and Activation of AMPK and LC3
HEDGEHOG signaling can influence the activation status of
PI3K/AKT signaling (18, 19, 20) and can inhibit autophagy
(21). In addition, HH inhibitors can impact on a non-canonical
SMO/Ca2+/AMPK-dependent signaling cascade (13). Therefore,
we examined the phosphorylation status of AKT and AMPK. We
also measured the phosphorylation status of S6 that can be taken
as surrogate readout for mTOR activity, and the activation status
of caspase 3. Autophagy was assessed by the expression levels of
the cytosolic 16 kDa large LC3-I and the 14 kDa large LC3-II, the
latter being the lipidated form of LC3-I and specifically associates
with autophagosome membranes and thus reflect autophagosome
numbers (22). In the following, the most important and clear-cut
findings from at least two independent Western blot analyses are
summarized.

In RD cells, GDC-0449, LDE225, and cyclopamine did not
influence the phosphorylation status of AKT or S6 in comparison
to the solvent (Figure 4). In contrast, treatment withHhA reduced
AKT/pAKT levels in RD cells (Figure 4). An induction of AMPK
phosphorylation was seen with 30 μM GDC-0449 and with 10
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FIGURE 2 | BrdU incorporation in RD, RUCH-2, RMS-13, and Rh41
cells after incubation with GDC-0449, LDE225, HhA, and
cyclopamine (cp) at the concentration indicated. BrdU-incorporation

is shown as percentage of respective solvent-controls (solv) that were set
to 100%. The data are represented as mean±SEM; *p<0.05; **p<0.01;
***p<0.001.

and 30 μM LDE225 (Figure 4). Caspase 3 activity was induced
by 30 μM LDE225 as was autophagy (Figure 4). Increased LC3-II
levels were also seen after treatment with HhA and cyclopamine
at any concentration (Figure 4).

In RUCH-2 cells and similar to RD cells, HhA reduced
AKT/pAKT levels and 30 μM LDE225 induced caspase 3 activ-
ity and autophagy (Figure 4). Furthermore, 30 μM LDE225
reduced pAMPK phosphorylation (Figure 4). An increase in
LC3-II expression was also detected with HhA and cyclopamine
(Figure 4).

In RMS-13 cells, we found a clear-cut effect of 30 μM LDE225
on caspase 3 activation and on LC3-II levels (Figure 4). LC3-
II was also increased by 30 μM HhA and by cyclopamine at any
concentration (Figure 4).

In Rh41 cells, GDC-0449 and HhA did not exert any obvious
effect (Figure 4). LDE225 at a concentration of 30 μM strongly
induced caspase 3 activity and increased LC3-II levels (Figure 4).
Increase in LC3-II was also detected after treatment of the cells
with cyclopamine (Figure 4).

In summary, these data show that the drugs exert highly het-
erogeneous effects on the cell lines and that the responsiveness of
the cell lines is very heterogeneous as well.

Discussion

The HH pathway controls cell proliferation, differentiation, and
tissue patterning. Thus, it is not surprising that a pathological

activation of the pathway results in tumor formation. The cancers
include those of the skin, brain, prostate, lungs, breast, and also
subgroups of RMS. Therefore, the HH pathway is considered
a good target for therapy. Several compounds exist and their
efficacies are currently tested in clinical studies.One of these drugs
is GDC-0449 that has already been approved for advanced and
metastasizing basal cell carcinoma (10).

Despite these promising trends, HH inhibitors can rapidly lead
to resistance. For example, GDC-0449 resistance has occurred
in medulloblastoma through a D473H mutation in SMO, which
prevented GDC-0449-SMO binding while maintaining aberrant
HH signaling (23, 24). It also has been reported that resistance
under LDE225 treatment include amplification of GLI2, aberrant
up-regulation of PI3K signaling, and SMO mutations (25). This
indicates that it is important to select those inhibitors for therapy
that instantly and very potently inhibit proliferation and/or induce
apoptosis of the tumor cells to circumvent the occurrence of these
resistance mechanisms.

Our data on RMS show that LDE225 and HhA meet these
criteria in RUCH-2, RD, and RMS-13 cell lines at concentrations
between 10 and 30 μM, whereas cyclopamine and also GDC-0449
do not. Instead the latter drugs rather increased BrdU incorpo-
ration and exerted no proapoptotic effects. The increase in BrdU
incorporation upon cyclopamine and GDC-0449 treatment are
hard to explain, especially because it was neither correlated with
induction of HH signaling nor IGF2 overexpression. Vice versa,
the antiproliferative and proapoptotic effects of LDE225 and HhA
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FIGURE 3 | Analysis of Annexin V/PI positivity of RD, RMS-13 and Rh41 cells after treatment with GDC-0449, LDE225, HhA, and cyclopamine (cp) at
the concentration indicated.

(Continued)
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FIGURE 3 | Continued
Apoptosis was analyzed by FACS after staining of the cells with Annexin V
and Propidium Iodide (PI). Vital cells are Annexin V−/PI−, early-apoptotic
(Annexin V+/PI−) and late-apoptotic cells (Annexin V+/PI+) were

summarized as Annexin V+ cells and Annexin V−/PI+ are necrotic cells,
respectively. All data represent at least three independent experiments
measured in duplicates. The data are represented as mean±SEM; solv,
solvent.

FIGURE 4 | Western blot analysis of RD, RUCH-2, RMS-13, and Rh41 after treatment with GDC-0449, LDE225, HhA, and cyclopamine (cp) at the
concentration indicated. solv, solvent.

not necessarily correlated with inhibition of HH signaling. By
contrast, we observed that these compounds (and also the other
used in the study) had the potency to increase GLI1 expression
levels. This was dependent on the cell line, on the applied drug,
and the respective drug concentration. For example, treatment of
RMS-13 cells with 30 μM HhA or LDE225 resulted in a strong
antiproliferative and proapoptotic effect but in an up-regulation
of GLI1. Curiously, the proapoptotic effects (as measured by
Annexin V labeling) were associated with caspase 3 activity in
LDE225-treated cells, but not inHhA-treated ones, indicating that
HhA may trigger caspase 3-independent apoptosis.

We are not aware of any study showing that SMO inhibitors
can induce GLI1 expression. Although it is possible that this effect
is specific for RMS cell lines, it is more likely that the inhibitors
influence other signaling molecules that in turn activate GLI1
expression in a dose-dependent manner. This scenario has been
demonstrated for the SMO agonist SAG (26). Thus, Chen and

colleagues showed that SAG induced HH signaling activity with
an EC50 of 3 nM, but inhibited the activity at concentrations
above 1 μM. The authors propose a model, in which SAG may
interact not only with SMO, but also with another cellular effec-
tor of SMO activation. According to their model, optimal SAG
concentrations induce HH pathway activation by facilitating the
association of SMO with the respective protein, whereas higher
SAG concentrations begin to inhibit this process, as the ago-
nist would independently bind both SMO and the effector (26).
Similar models may apply to SMO inhibitors.

It is also possible that the observed concentration-dependent
effects of the drugs on GLI1 expression are off-target effects
of the SMO inhibitors. Toxic effects can be rather excluded. A
good example are RD cells that show a triphasic GLI1 expression
profile, i.e., a decrease at 10 μM, an increase at 30 μM, and a
decrease at 50 μM upon GDC-0449, LDE225, or HhA treatment,
but no triphasic changes in metabolic activity that continuously
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decreases with increasing drug concentration (compare Figure 1
and Figure S6 in Supplementary Material). Thus, an increase of
GLI1 expression (at 30 μM) is not correlated with increased cell
viability (Figure S6 in Supplementary Material).

Furthermore, Dijkgraaf and colleagues (12) discussed a two-
step mechanism for SMO activation that not only requires the
transport to the cilia, but also an unidentified second activation
step that allows SMO to trigger downstream HH signaling. The
authors suggest that SMO antagonists can be subdivided in two
classes. Whereas one class of inhibitors influences trafficking of
SMO to cilia, the other class affects the activation step. They also
discuss the possibility that SMO antagonists can induce slightly
different SMO conformations that favor a particular subcellular
localization over another (12). This also could explain some of the
different effects of the inhibitors used in our study.

HEDGEHOG signaling also regulates the expression of muscle
differentiation markers. MYOD expression has been shown to
be inhibited by GLIs (27). In addition, HH signaling can inhibit
terminal muscle differentiation (28). We therefore hypothesized
that inhibition of HH signaling using SMO antagonists should
result in up-regulation of MYOD and MYH1 and thus in a more
differentiated RMS phenotype. However, our data show that this
only applied to some inhibitors at specific concentrations in spe-
cific cells lines (e.g., GDC-0449 at any concentration in Rh41
cells), whereas the genes were rather down-regulated in other cell
lines (e.g., by LDE225 in RD cells). This again indicates that the
drugs have heterogeneous effects.

It also has been demonstrated that SMO inhibitors (besides
inhibiting the canonical SMO-GLI axis) can activate a non-
canonical SMO/Ca2+/AMPK axis that triggers a rapid Warburg-
like catabolic reprograming. Induction of a Warburg-like effect
has been shown for cyclopamine and GDC-0449, but not for
LDE225, in mature 3T3-L1 adipocytes and the myoblast cell line
C2C12 (13). It has been suggested that the physiological effects
of these non-canonical endpoints, i.e., Ca2+ influx and AMPK-
mediated catabolism, are consistent with the two major reported
side effects of SMO inhibitors such asmuscle cramping andweight
loss. Although we did not measure Ca2+ influx our data shows
that the AMPK phosphorylation was indeed induced in RD cells
with 30 μM GDC-0449 and with 10 and 30 μM LDE225. This
indicates that also LDE225 can induce Warburg-like effect, which
apparently depends on the drug concentration and the cellular
context.

Recently, it has been demonstrated that HH signaling can
activate PI3K/AKT signaling and that, vice versa, AKT can sta-
bilize and thus activate GLI transcription factors (18, 19, 20).

In addition, mTOR, which is a downstream target of PI3K/AKT
signaling can also trigger GLI activation (29). Therefore, we ana-
lyzed whether SMO inhibitors modulate activation of AKT or
mTOR in RMS cell lines. Indeed, HhA, but none of the other
SMOantagonists, blocked phosphorylation of AKT in both ERMS
cell lines. Effects on S6 phosphorylation were not seen. Although
this suggests that there is a crosstalk between HH and AKT
signaling in at least some RMS, it is possible that HhA induces
HH-independent processes that trigger AKT inhibition.

Because HH signaling can inhibit autophagosome synthesis,
both in basal and in autophagy-induced conditions (21), we
finally investigated whether the applied drugs induced autophagy.
Indeed, our data show that HhA, LDE225, and cyclopamine can
strongly increase the levels of LC3-II. Induction of autophagy by
SMO inhibitors has also been shown in a variety of other cancer
cell lines. Examples are hepatocellular and pancreatic carcinoma,
in which the GLI inhibitor GANT61 induced autophagy that was
accompanied with reduced cell viability and increased apoptosis
both in vivo and in vitro (30, 31). The authors proposed that HH
signaling by regulating autophagy plays an important role in deter-
mining the cellular response toHH-targeted therapy in pancreatic
cancer. However, our data shows that induction of autophagy by
HH inhibitors is not necessarily accompanied by antiproliferative
or proapoptotic effects. For example, this is demonstrated in Rh41
cells that upon cyclopamine treatment showed increased LC3-II
levels, but also increased BrdU incorporation and no alteration in
the number of Annexin V positive cells.

Together, our study reveals that the mode of action of the
applied HH inhibitors differs substantially from each other.
Although HhA and LDE225 are probably the most universal HH
inhibitors and exert antitumoral effects in almost all RMS cell lines
used in our study, we propose to conduct thorough pretesting of
HH inhibitors before applying these drugs to RMS patients. This
could be done either in patient-derived short-term RMS cultures
or in patient-derived xenograft mouse models.
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Epithelioid sarcoma (ES) is a soft tissue sarcoma of children and young adults for which 
the preferred treatment for localized disease is wide surgical resection. Medical manage-
ment is to a great extent undefined, and therefore for patients with regional and distal 
metastases, the development of targeted therapies is greatly desired. In this review, we 
will summarize clinically relevant biomarkers (e.g., SMARCB1, CA125, dysadherin, and 
others) with respect to targeted therapeutic opportunities. We will also examine the role 
of EGFR, mTOR, and polykinase inhibitors (e.g., sunitinib) in the management of local 
and disseminated disease. Toward building a consortium of pharmaceutical, academic, 
and non-profit collaborators, we will discuss the state of resources for investigating ES 
with respect to cell line resources, tissue banks, and registries so that a roadmap can be 
developed toward effective biology-driven therapies.

Keywords: epithelioid sarcoma, SMARCB1, iNi1, BAF47, Swi/SNF complex

introduction

Epithelioid sarcoma (ES), first described by Enzinger over half a century ago (1), is a rare neo-
plasm accounting for <1% of adult soft tissue sarcomas and between 4 and 8% of pediatric non-
rhabdomyosarcomatous sarcomas (2, 3). ES is presumed to be a mesenchymal malignancy, but 
ES characteristically exhibits both mesenchymal and epithelial markers. The cell of origin and 
molecular drivers are still a matter of debate. ES is divided into two recognizable clinicopathologi-
cal entities, classic ES (also called distal-type ES), and proximal-type ES (Figures 1A–E). These two 
subtypes are thought be a continuum of disease rather than distinct entities (4). Distal-type ES is 
histologically identifiable by tumor nodules with central necrosis surrounded by large polygonal 
cells and spindle cells merging in the periphery (5) (Figures 1A,B). Described variants include 
angiomatoid variant, fibroma-like variant, and myxoid variant. Proximal-type ES is character-
ized by a multinodular pattern and sheet-like growth of large polygonal cells, often accompanied 
by a focal or predominant rhabdoid morphology (6) (Figures 1C,D). A specific marker has not 
yet been identified in ES. On immunohistochemistry (IHC), virtually all cases are positive for 
cytokeratin (CK) and epithelial membrane antigen (EMA) and most cases co-express vimentin. 
The marker CD34 is expressed in 60–70% of cases. IHC studies are typically negative for S-100, 
neurofilament protein, carcinoembryonic antigen, factor VIII-related antigen and CD-31, and 
INI-1 (SMARCB1) whose expression is lost in tumor nuclei (7). Establishing a diagnosis of ES can 
be difficult as tumors can present with a wide range of appearances and immunophenotypes. The 
differential diagnosis include fibrous histiocytoma, nodular fasciitis, other reactive proliferations, 
fibromatosis, giant cell tumor of tendon sheath, sclerosing epithelioid fibrosarcoma, and even 
some carcinomas and melanomas (7). IHC is helpful in differentiating these entities. Epithelioid 
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vascular tumors can resemble ES and efforts must be made 
to exclude a diagnosis of epithelioid hemangioendothelioma. 
In epithelioid hemangioendothelioma, the unique transloca-
tion t(1;3)(p36;q25), resulting in the fusion of WWTR1 with 
CAMTA1I establishes a firm diagnosis (8).

The reported overall peak incidence of ES is around 35 years of 
age (9, 10). Distal-type ES is more frequently diagnosed and tends 
to affect a younger (20–40 years of age) and more predominantly 
male population compared to proximal-type ES, which is usually 
found in an older population (20–65 years of age) (9, 11). Distal-
type ES can present itself as superficial, slow growing painless firm 

FiGURe 1 | (A,B) Distal-type ES. (A) Low power histology shows a nodule of 
tumor present in the dermis and subcutis, comprising a large area of central 
geographic necrosis, surrounded by sheets of relatively uniform polygonal 
neoplastic cells (hematoxylin and eosin, ×40). Scale bar, 500 μM. (B) At higher 
power, these are medium-sized, rounded cells, with ovoid vesicular nuclei with 
even chromatin, and small nucleoli. This example is cellular, but more sparsely 
cellular neoplasms can appear subtle, and the neoplastic cells may be 
confused with inflammatory cells. The characteristic necrosis is seen abutting 
the tumor cells (bottom left of field) (hematoxylin and eosin, ×200). Scale bar, 
50 μM. (C,D) Proximal-type ES. (C) At low power, proximal-type ES comprises 
sheets or lobules of medium-sized to large round cells, and is seen to lack the 
more defined architecture and geographic central necrosis of the distal-type 
variant (hematoxylin and eosin, ×40). Scale bar, 20 μM. (D) At higher power, this 
is characterized by a sheet-like growth of large polygonal cells, often with focal 

rhabdoid morphology, and which have ovoid vesicular nuclei, prominent large 
nucleoli, and relatively abundant eosinophilic cytoplasm. The cells are often 
more pleomorphic than those of the distal-type variant. On morphology alone, 
these cells are difficult to distinguish from other malignant epithelioid cells, such 
as those of carcinoma, melanoma, rhabdomyosarcoma, or epithelioid 
angiosarcoma, and therefore immunohistochemistry is crucial for establishing a 
correct diagnosis (hematoxylin and eosin, ×200). Scale bar, 50 μM. (e) 
Distributions of ES subytpes, adapted from the largest series reported by the 
French Sarcoma Group (9). (F) Vulnerabilities in the misassembled SWI\SNF 
complex when SMARCB1 is absent. Using epithelioid sarcoma as well as 
rhabdoid tumor as a basis for this model of SMARCB1 null tumors, the 
misassembled SWI/SNF complex has the potential to dysregulate target loci 
that may be co-regulated by other transcription factors (36, 38–40, 43) and 
thereby present indirect ways to drug target the misassembled complex.

nodules leading to chronic non-healing ulcers affecting mostly the 
hands and arms. Distal-type ES can also arise as deep-seated slow 
growing tumors in the extremities or in the tenosynovial tissues. 
Proximal-type ES is more often diagnosed as deep infiltrating soft 
tissue masses affecting axial proximal regions and is thought to be 
associated with a more aggressive course (6). Figure 1E illustrates 
the sites of involvement of disease. In the largest reported cohort, a 
majority of ES patients (47%) had localized disease at presentation 
(2). ES is one of the rare sarcomas that regularly spread to lymph 
nodes (2, 12, 13). The course of disease is characterized by mul-
tiple local recurrences and eventual metastatic spread in 30–50% 
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TABLe 1 | Potential actionable biomarkers in clinical epithelioid sarcoma samples.

Biomarker Clinical relevance and incidence of biomarker Available/potential 
diagnostic

Reference

p53 84% moderate-high nuclear expression by IHC IHC via TMA (73)

Cyclin D1 96% expression by IHC IHC, FISH (89)

0% amplification by FISH

EGFR 77%-93% expression by IHC; absence of  
amplification via FISH; absence of mutation by PCR

IHC, FISH, PCR (59, 66)

VEGF-A 73% by IHC IHC via TMA (73)

VEGF-C 96% by IHC IHC via TMA (73)

mTOR (via p4EBP1 and pSRP) 100% expression by IHC via TMA IHC via TMA (59)

PTEN Loss of expression in 40% by IHC via TMA IHC via TMA (59)

β-Catenin 31% nuclear expression by IHC; 81% cytoplasmic  
expression by IHC

IHC via TMA (73)

Interleukin2-Rβ 86% expression by IHC IHC (90)

SMARCB1 (INI1) Lost expression in 85–93% by IHC; 21% mutation  
by PCR

IHC, FISH, PCR (9, 49, 50, 91, 92)

SALL4 Expression in 24% of proximal-type by IHC IHC (93)

ERG Expression in 38–68% by IHC; no found rearrangement by FISH IHC, FISH (93–95)

FLI1 95% expression by IHC IHC (94)

PBRM1 Lost expression in 83% by IHC IHC (96)

GLUT1 Expression in 50% by IHC IHC (91)

NRAS Mutated in one case report by sequence assay Sequence assay (97)

Dysadherin 54% expression by IHC IHC (70)

E-cadherin Absent expression IHC via TMA (70, 73)

SYT-SSX1 Low expression by RT-PCR in one patient; negative by FISH RT-PCR (98)
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of cases with the lungs being the primary site of involvement (11). 
It might be said that local recurrence is the gateway to metastasis.

Management and Prognosis

Optimal management of this rare sarcoma remains to be defined. 
The cornerstone of treatment of localized disease is wide surgical 
resection (14). Neo-adjuvant or adjuvant radiation therapy is often 
administered in an attempt to reduce local relapses (15, 16). The 
role of adjuvant chemotherapy is unclear (13, 14, 17, 18). Despite 
multimodal management, the relapse rate remains high and recur-
rences tend to occur many years later following initial therapy. 
Reported local relapse rates are ~35% (11, 18, 19). Patients with 
localized disease fare better compared to regional disease [5-year 
overall survival (OS) of 75 vs. 49%]. Pediatric patients seem to 
have a favorable prognosis [5-year OS of 92.4%] as they are more 
likely to be diagnosed with localized distal-type ES and are less 
likely to have nodal or metastatic involvement at presentation (3).

Even though reasonable control of localized disease is possible, 
metastatic spread is seen in approximately half of patients (2). The 
available literature on palliative chemotherapy in ES is limited to 
case reports and small retrospectives studies. The most commonly 
administered chemotherapy regimens are single-agent anthracy-
cline therapy or the combination an anthracycline with ifosfamide 
(20). A single group reported activity of a regimen combining 
gemcitabine with docetaxel, but the experience is limited to a small 

number of patients (21). The activity of navelbine was raised in 
a case report and may warrant further investigation (22). Partial 
responses are rare. Most patients achieve stable disease at best with 
palliative chemotherapy. In one study, tumor regression was only 
seen in distal-type disease (20). However, another group reported 
high-response rates in proximal-type ES using doxorubicin-ifosfa-
mide combination (23). With the medical evidence being limited to 
small retrospectives studies, it is difficult to draw definitive conclu-
sions regarding the chemosensitivity of this histological subtype.

Despite the administration of palliative chemotherapy, patients 
with metastasis have a poor prognosis. The reported median sur-
vival is ~52 weeks and the 1- and 5-year survival rates are 46 and 
0%, respectively (2, 20). Therefore, a substantial unmet need exists 
to improve the medical management of ES patients by establishing 
novel systemic regimens and exploring novel targeted therapy. In 
this review, we will summarize our current understanding of the 
underlying biology of this rare disease by highlighting implicated 
signaling pathways and potential actionable biomarkers (Table 1). 
In order to establish a roadmap that can be developed toward 
effective biology-driven therapies, we will highlight therapeutics 
opportunities and drugs with promising activity.

Cytogenetic Analyses

Cytogenetic analyses were first attempted to better understand 
the biology of ES (24–29). The karyotype analysis on clinical 
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TABLe 2 | epithelioid sarcoma potential targets and corresponding 
experimental model systems.

Biomarker Human cell line(s) Reference

ALK YCUS-5 (31)

AKT VAESBJ, Epi544 (58, 59)

c-MET ASRA-EPS, VAESBJ (58)

Dysadherin HS-ES-1M, YCUS-5, 
ES-OMC-MN, SFT-8606

(70)

EGFR VAESBJ, Epi544, GRU-1 (59, 99)

HGFR/MET VAESBJ (44)

IL-6 and IL-6R ES-OMC-MN (100)

LRP ES-OMC-MN, SFT-8606 (85)

Metal free protoporphyrin IX Va-es-bj (101)

MMP-2, MMP-9, TIMP-1,  
TIMP-2, TIMP-4

GRU-1 (59, 102)

MUC gene FU-EPS-1, SFT-8606 (80)

mTOR VAESBJ, Epi544 (59)

PDGF GRU-1 (99)

RAR-α, RAR-β, and RAR-γ GRU-1 (103)

TGF-α GRU-1 (99)

TGF-β/Smad signaling and  
CD 109

ESX (99, 104)

TNF receptors GRU-1 (103)

Tyrosine hydroxylase gene (TH) YCUS-5 (31)
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samples or cells lines varied greatly and was mostly done in adult 
cases. A minority of samples were diploid, some polypoid, while 
a great majority had complex patterns consisting of multiple 
numerical and structural rearrangements (see Table 3). Pediatric 
cytogenetic analyses seem to indicate less complex genetic altera-
tions compared to adults and may therefore offer an explanation 
of their more favorable prognosis (30, 31). Translocations t(8;22)
(q22;q11) in distal-type ES and t(10;22) in proximal-type ES were 
found (24, 32). However, compared to other translocation-driven 
sarcomas, there is no unique identifiable reoccurring cytogenetic 
pattern in ES. The only identified recurrent breakpoints have 
been structural rearrangements involving 18q11 and 22q11. The 
observation that a substantial number of ES had either rearrange-
ments or deletions of 22q led to the hypothesis that this region 
may contain a tumor suppressor gene (32, 33). Further studies 
identified SMARCB1 as being involved in the tumorigenesis of 
ES (34).

SMARCB1
The SMARCB1 gene, located at 22q11, codes for BAF47, a core 
subunit of the SWI/SNF ATP-dependent chromatin remodeling 
complex and acts as a tumor suppressor gene (35). Components 
of the SWI/SNF complex are mutated in 20% of cancers, most 
notably rhabdoid tumor (36). This complex regulates genes 
by enabling the nucleosome to reposition itself in relation to 
the DNA sequence (37). Inactivation of SMARCB1 leads to 
neoplastic transformation by transcriptional deregulation of 
target genes implicated in regulating genomic stability, cell-cycle 
progression, and other signaling pathways in cooperation with 
transcriptional co-regulators (e.g., MyoD, Olig2) (36, 38, 39). 

SMARCB1 was shown to transcriptionally regulate p16INK4a 
and/or p21 and repress cyclin D1, thereby suppressing E2F 
activity and its target genes (40–42). SMARCB1-deficient cells 
have been implicated to have aberrant Hedgehog signaling path-
way activation (40, 43). Brenca et al. demonstrated that loss of 
SMARCB1 expression in the ES cell line VAESBJ was caused by 
homozygous deletion of SMARCB1 through mutations of exon 
1. They also identified equally prevalent homozygous deletion 
of CDKN2A and CDKN2B loci, responsible for encoding p16, 
p14, and p15 proteins. Restoration of SMARCB1 led to a reduc-
tion of cell proliferation and cell migration and to an increase 
in sensitivity to genotoxic stress, thereby providing evidence 
to support SMARCB1 inactivation in the tumorigenesis of ES 
(44). For rhabdoid tumor, SWI/SNF disruption is sufficient to 
cause neoplastic transformation (45). However, in the context 
of ES, loss of SMARCB1 by itself is not sufficient. Interestingly, 
knockout of SMARCB1 in primary fibroblast cells causes rapid 
growth arrest and p53-mediated programed cell death (46). 
However, when mutations of TP53 co-exist, tumor proliferation 
is dramatically increased (47). Brenca et al. demonstrated that 
the VAESBJ cell line retains wild-type TP53, but hypothesized 
that the homozygous loss of CDKN2A which leads to impaired 
p16/RB and p14/TP53 responses likely contributes to the 
genomic instability seen in this cell line (44). Hence, other 
signaling pathways may contribute to tumor progression in 
ES as witnessed by the complex genetic landscape reported in 
cytogenetic studies. Whether the SMARCB1-deficient SWI/SNF 
complex exists in a misassembled state as it does in rhabdoid 
tumor (48), and to what extent the misassembled complex aber-
rantly deregulates loci that are not normally associated with the 
SWI/SNF complex remains to be investigated. Most certainly, 
the milieu of transcriptional co-regulators in ES will be different 
than in rhabdoid tumor.

Targeting SMARCB1 is complicated by the different mecha-
nisms of loss of expression. IHC studies demonstrated that the 
loss of expression of SMARCB1 ranges from 85 to 93% of cases 
(9, 34, 49, 50). Allelic homozygous deletions varied from 5 to 
71%; however, the true value may be ~10% (51–53). Papp et al. 
identified different mechanisms to explain the loss of expression 
of SMARCB1: 13% of cases had biallelic deletions, 33% showed 
single-allelic deletion, and 4% had point mutations (52). In 59% of 
cases, both alleles were intact and no cases had promoter hyper-
methylation nor post-translational modification. The authors 
went on to show that loss of SMARCB1 protein expression in those 
cases is due to epigenetic gene silencing by oncomiRs. Three of 
the overexpressed miRNAs (miR-206, miR-381, and miR-671-5p) 
could silence the SMARCB1 mRNA expression in cell cultures 
(54). The role of oncomiRs was also validated by another group 
where miR193a-5p could equally inhibit the mRNA expression 
of SMARCB1 (55). Beyond targeting the misassembled SWI/SNF 
complex, transcriptional co-regulators are also theoretical targets 
(Figure 1F). In summary, loss of SMARCB1 has a crucial role in 
the pathogenesis of ES (along with other signaling pathways) and 
therefore is an interesting target to pursue for the development of 
new therapies. Acknowledging that the restoration of SMARCB1 
function is likely the primary therapeutic opportunity in ES, in the 
paragraphs to follow we discuss other therapeutic opportunities 
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TABLe 3 | Demographic and biological features of human epithelioid sarcoma cell lines.

Cell line 
name

Histology Age 
(years)

Sex Primary 
site

Metastatic Cell line 
source

Select chromosomal marker(s) Mutation(s) Primary 
reference 
(PMiD or 
other)

Related 
references 
(PMiD or 
other)

Originating investigator 
(and institution) or 
commercial source(s)

Reference

RM-HS1 37 M Left foot 2432306 Reeves (105)

HX 165 c 28 M Penile Local 
recurrence

3179184 Kelland (Institute of Cancer 
Research, UK)

(106)

GRU-I 32 F Left 
buttock

Yes Para-iliac 
lymph-node

1688830 7525493 Gerharz (University of 
Mainz)

(107)

SARCCR 2 33 F Knee Local 
recurrence

Chromosomes 13, 14, 16, 18, and 22 
were deleted in all cells

8099901 Roché (Centre Claudius 
Regaud)

(83)

HS-ES-1M Proximal-
type

60 M Right 
perineum 
nodule

Yes Local 
recurrence

All exhibited the identical abnormal 
karyotype of 46, XY, 1i(8)(q10),221, 
del(22)(q12)

9216728 Sonobe (Kochi Medical 
School)

(28)

ES020488 26 M Yes Cutaneous 
metastasis

39–83 chromosomes, with various 
abnormalities but no specific pattern

7685133 Sonobe (Kochi Medical 
School, Japan)

(108)

Va-es-bj 41 M Epidural 
tumor

Yes Bone 
marrow 
aspirate

Chromosomal triploidy with marker 
chromosomes

21552805 8572585 Helson (St Agnes Hospital) (109)

ES-OMC-
MN

Distal-type 44 F Right leg 
nodule

Yes Chest wall Modal chromosome number was 
45, X, in 74% of metaphases. Other 
chromosome numbers were 47, XXX, 
in 14% of metaphases, and 46, XX, in 
12% of metaphases

9143739 Kusakabe (Osaka Medical 
College)

(100)

Except for a number of sex 
chromosomes, the chromosomes had 
no chromosomal anomaly

YCUS-5 Proximal-
type

3 F Neck 
mass

no Neck mass  48, XX, t(2;7)(p23;q32 ~ 34), ?del(6)
(q2?5), +7, +8

expression 
tyrosine 
hydroxylase gene 
(TH) expression 
of ALK

10398195 Goto (Yokohama City 
University School of 
Medicine)

(31)

SFT-8606 Distal-type 75 M Left 
elbow

yes Primary 
tumor

Complex numerical and structural 
aberrations, including add(8)(p23), 
add(9)(p13), der(12)t(12;14)(p13;q22), 
+i(21)(q10), der(22)t(18;22)(q11;p11.2)

8908166 Iwasaki (Fukuoka 
University School of 
Medicine)

(26)

Stenman 
cell line

64 M Left 
forearm

yes Axillary 
lymph node

No <14 different marker chromosomes 
were found, of which all but four 
resulted from terminal deletions

Elevated p21 
expression was 
probably due to 
an overexpression 
of the N-ras gene

2196989 Stenman (Gothenburg 
University)

(110)

Most frequent del(1) (p21-22), found in 
about 25% of the cells karyotyped

(Continued)
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TABLe 3 | Continued

Cell line 
name

Histology Age 
(years)

Sex Primary 
site

Metastatic Cell line 
source

Select chromosomal marker(s) Mutation(s) Primary 
reference 
(PMiD or 
other)

Related 
references 
(PMiD or 
other)

Originating investigator 
(and institution) or 
commercial source(s)

Reference

FU-EPS-1 21 M Right 
upper 
arm

Yes Axillary 
node

Hyperdiploid karyotype with the 
following chromosomal abnormalities: 
+i(5)(p10), −8, +13, der(13)t(8;13)
(q?;p11), +der(19)t(9;19)(?;?), and 
del(22)(q13). Gains of 5p, 9q, 19q, and 
22q and a loss of 8p

16010416 Nishio (Fukuoka University 
Faculty of medicine)

(111)

NEPS Classical 32 M Forearm Primary 
tumor

19756736 Hoshino (Niigata University 
Graduate School of 
Medical and Dental 
Sciences)

(80)

Epi-544 Foot Modal chromosomal number of 
45 (range, 42–45), monosomy of 
chromosomes 2, 8, 13, and X, trisomy 
of chromosome 5, and the following 
structural abnormalities: del 7q, del 9q, 
del 12p, 16q, t(9q;14q), and t(2q;?)

21357725 Sakharpe (University 
of Texas MD Anderson 
Cancer Center)

(73)

ESX Proximal-
type

73 F Left thigh Yes Primary 
tumor

65 ~ 68, X, −X, or -Y, add (X)(q22), 
+1, add(1) (p32), add(1) (q21), add(1)
(q42), add(1)(q42), der(4;10)(q10;q10), 
add(8)(p11.2), −9, add(9)(p22), der(11)
t(11;14)(p13;q13), −13, add(13)(q22), 
−14, −15, add(16)(p13.1), −17, −18, 
add(18)(q21), +21, add(22)(q13), 
+4 ~ 6mar

CD109 mRNA 
expression

24376795 Emori (Sapporo Medical 
University School of 
Medicine)

(104)

Asra-EPS Angiomatoid 
ES

67 M Right 
elbow 
mass

No Primary 
tumor

Karyotype showed near-tetraploidy 
with some chromosomal translocations 
and fragments

23915498 Imura (Osaka University 
Graduate School of 
Medicine)

(112)

No recurrent chromosomal 
translocation was detected. 90, XXYY,  
−4, +5, +8, +9, −10, −13, t(13;15), 
+14, −15, −15, −20, −22, −22, 
+1mar
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related to consistent alterations in other signaling pathways that 
may also contribute to the pathogenesis of ES.

Pi3K–AKT–mTOR Signaling Pathway

The phosphatidylinositol 3-kinase/protein kinase-B/mammalian 
target of rapamycin (PI3K/AKT/mTOR) signaling pathway has 
been studied extensively and is activated in a myriad of cancers. 
This signaling pathway’s signaling regulates cell proliferation, 
differentiation, cellular metabolism, and cytoskeletal reor-
ganization leading to apoptosis and cancer cell survival (56). A 
previous study done on SMARCB1-deficient tumor cells revealed 
persistent AKT activation (57). This finding led Imura et al. to 
further investigate the importance of this signaling pathway in ES 
(58). By studying two SMARCB1-deficient cell lines (VAESBJ and 
Asra-EPS), this group has shown that AKT/mTOR pathway is 
constitutively hyperactivated. Results demonstrated that silencing 
mTOR by transfecting cell lines with anti-mTOR-specific  siRNAs 
suppressed cell proliferation. However, inhibition of mTOR 
with everolimus caused tumor growth delay without shrinkage. 
Blocking the mTOR signaling pathway with everolimus caused 
an increase in AKT and ERK activity, which was subsequently 
shown to be dependent of c-MET activation. Blocking c-MET 
activation had a variable effect on growth inhibition on studied 
cell lines. This variability could be partially explained by the degree 
of loss of PTEN, which is thought to contribute to resistance to 
c-MET inhibitors through sustained AKT activation upon mTOR 
blockade. Combining agents to block both AKT and c-MET were 
more effective in inducing tumor arrest compared to using either 
one alone. The importance of AKT and c-MET/HGF pathways 
was also highlighted through immunohistochemical analysis of 
random clinical samples. The variability of AKT activation and 
loss of PTEN expression in different cell lines were also confirmed 
by another group and thought to correlate with sensitivity of 
rapamycin (59). This heterogeneity could highlight the complex 
genetics of the disease as well as the variable importance of 
PI3K/AKT/mTOR signaling pathway in the tumorigenesis of ES. 
In vitro sensitivity to mTOR inhibitors is likely an imperfect sur-
rogate for clinical activity. Nonetheless, these preclinical data are 
interesting and may warrant additional studies before pursuing 
clinical trials. Resistance to single-agent mTOR inhibitors can 
not only be a potential issue but can also possibly be overcome 
by simultaneously targeting other pathways. These findings are 
consistent with the shortcomings of targeting mTOR signaling 
pathway in general and highlight the importance of patient selec-
tion and identification of putative biomarkers (60).

eGF Pathway

The human epidermal growth factor signaling pathway regroups 
four distinct receptor tyrosine kinases, HER1 (ErbB-1, EGFR), 
HER2 (ErbB-2), HER3 (ErbB-3), and HER4 (ErbB-4) and is 
implicated in cell proliferation, apoptosis, and angiogenesis (61). 
The role of EGFR in malignant transformation of carcinomas 
has been extensively studied. Recently, EGFR expression was 
revealed to be present in soft tissue and bone sarcomas (62, 
63). However, subsets of disease demonstrating tyrosine kinase 

domain mutations were rare (64, 65). These findings sparked 
an interest in studying EGFR in ES. Cascio et  al. showed that 
93% of clinical samples (including distal and proximal-type ES) 
expressed EGFR by IHC (66). This high level of expression of 
EGFR was also corroborated by Xie et  al. (59). Furthermore, 
Cascio et al. went on to show an absence of EGFR amplification 
via FISH studies. Sequencing of the EFGR gene tyrosine kinase 
domain revealed no point mutations, insertions, or deletions. 
Xie et al. further investigated the role of EGFR pathway in the 
tumorigenesis of ES. EGF-induction contributes to cell-cycle 
progression partly through upregulation of cyclin D1. EGFR 
activation also causes an increase in migration and invasion of ES 
cells where high levels of expression of MMP2 and MMP9 were 
found. Next, this group tested whether EGFR inhibition with 
erlotinib would be a viable therapy. Exposure to erlotinib caused 
tumor growth delay without causing tumor arrest. An explana-
tion for this incomplete response is given by the cooperation of 
HGFR/MET pathway with EGFR in sustaining AKT and ERK 
phosphorylation. Dual inhibition of both those pathways had a 
synergistic effect in decreasing cell proliferation (44). Combining 
inhibition of EGFR pathway with erlotinib and mTOR pathway 
with rapamycin also proved to be synergistic causing cell-cycle 
arrest as well as an increase in apoptosis (59). Targeting solely the 
EGFR pathway may not translate to a possible clinical benefit. 
However, combined inhibition of EFGR with either mTOR or 
HGFR\MET may worth investigating further through preclinical 
animal studies.

Other Possible Actionable Pathways and 
Targets

Dysadherin is a cancer-associated cell membrane glycoprotein 
shown to downregulate E-cadherin cell-mediated adhesion 
and to promote metastasis (67). Dysadherin contributes to 
metastatic progression through autocrine activation of CCL2 
expression in part through activation of the nuclear factor-kap-
paB pathway (68). Dysadherin also has the ability to attribute 
stem-cell like properties to cancer cells (68, 69). Higher mRNA 
expression levels of dysadherin were documented in cell lines 
derived from proximal-type ES compared to distal-type ES 
(70). This difference in expression in levels of dysadherin may 
offer a possible explanation to the poor prognosis associated 
with proximal-type ES. Interestingly, in breast cancer cell lines, 
dysadherin overexpression was shown to possibly enhance AKT 
activation. Subsequently, inhibiting AKT reduced dysadherin’s 
ability to promote cell mobility and tumor cell invasion (71). 
Targeting dysadherin could be potentially exploited to treat 
ES, but further work is needed. Agonists of the CCL2 recep-
tor, CCR2, such as PF-04634817, may be one area to begin 
investigation.

The role of Wnt/β-catenin signaling pathway in cancer is well 
documented. APC deficiency or β-catenin mutations preventing 
its degradation lead to constitutive activation of β-catenin signal-
ing, which in turn contribute to stem-cell renewal and prolifera-
tion (72). In ES, IHC studies revealed low expressions of nuclear 
β-catenin (73). Furthermore, no β-catenin gene mutations were 
found (74). Therefore, the proliferative abilities of ES cells are 
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probably related to other mechanisms than Wnt/β-catenin signal-
ing pathway. This finding is in contradistinction to the β-catenin 
activation seen in rhabdoid tumor (39). Interestingly, IHC studies 
identified a complete loss of E-cadherin (70, 73). E-cadherin is a 
calcium-dependent glycoprotein responsible for cell–cell adhe-
sion (75). E-cadherin/β-catenin protein complexes have an active 
role in epithelial-to-mesenchymal transition (EMT), an impor-
tant mechanism for the subsequent development of metastasis 
(76, 77). Further studies are needed to elucidate the importance 
of loss of adhesion molecules in tumor progression in ES.

CA125 was first identified and used as a serum marker for 
epithelial ovarian carcinoma (78). IHC studies revealed high 
positivity and specificity of CA125 in ES compared to other 
sarcomas (79). High expressions of the MUC16 gene were identi-
fied by RT-PCR in ES cell lines. Serum levels of CA125 also seem 
to correlate with disease progression (80). Measuring CA125 
serum levels is well-established and routinely available and could 
potentially be useful in monitoring disease status and evaluating 
response to therapy. Targeted immune strategies toward CA125 
and MUC16 are active areas of research in ovarian cancer and any 
potential breakthroughs could possibly be applicable in treating 
ES (81, 82).

Tyrosine Kinase inhibitors

As stated previously, chemotherapy has a limited role in the 
management of ES. Early studies explored the reasons underly-
ing chemotherapy resistance. A study of the SARCCR2 cell 
line showed overexpression of P-glycoprotein, an ATP-binding 
cassette (ABC) chemotherapy export pump. Using verapamil 
and cyclosporine A to reverse multidrug resistance, the authors 
showed increased sensitivity to doxorubicin and vincristine 
(83). For the GRU cell line, expression of P-glycoprotein and 
MRP could also be observed (84). However, one study identi-
fied an absence of expression of P-glycoprotein and MRP in the 
ES-OMC-MN and SFT-8606 cell lines (85). In contradistinction, 
these studies demonstrated the presence of lung resistant protein 
(LRP), which mediates multidrug resistance (MDR). Results 
showed that reversing MDR with cyclosporin A increased sensi-
tivity to actinomycin D, vincristine, and adriamycin. The use of 
tyrosine kinase inhibitors, the newest ABC inhibitors, to reverse 
multidrug resistance remains unexplored and may potentially 
enhance the efficacy of chemotherapy in ES.

The medical evidence for the utility of tyrosine kinase inhibi-
tors impacting ES is scarce. To our knowledge, only one case was 
reported in the medical literature. Sunitinib showed reasonable 
disease stabilization in a patient with metastatic ES (86). The 
underlying reasons why sunitinib was active in this patient are 

unknown and cannot be explained with what is currently known 
about the biology of this disease. Pazopanib, a recent oral tyrosine 
kinase inhibitor approved for the treatment of soft tissue sarcoma 
(87), is worth investigating prospectively as its activity is similar 
to sunitinib. Work is still needed in mapping out active signaling 
pathways and identifying actionable tyrosine kinase domain muta-
tions. Polykinase inhibitors remain therefore greatly unexplored 
in the management of ES and may one day improve outcome.

Future Perspectives

Researching and developing new treatment strategies in rare 
cancers is a challenge, but possible with technology and resources 
available today and regulatory agency incentives (88). ES is a 
perfect model to envision what personalized medicine promises 
for the future. The intent of this review was to draw a roadmap 
to develop efficient biology-driven therapy. Achieving this will 
start with the selection of representative cell lines and mouse 
models of ES (Available cell lines and potential actionable tar-
gets are summarized in Tables 2 and 3). Many of the potential 
targets highlighted in this article were based on IHC-expression 
or reverse-transcriptase PCR studies. DNA deep-sequencing 
projects may demonstrate underlying genomic amplification and 
mutations that can be targeted. Partnership with pharmaceutical 
companies would allow screening of thousands of compounds 
on selected cell lines presenting mutations or other actionable 
targets. Active drugs may then undergo preclinical testing. Those 
most promising can be prioritized for clinical trials. Drugs 
being developed in other cancers that share common signaling 
pathways aberrations with ES may also prove to be useful. It is 
possible to perform basket trials in rare cancers, and this could 
be a way of evaluating novel agents in this extremely rare disease. 
On the way of developing new therapies, possible pitfalls can be 
expected. As demonstrated on ES cell line models, targeting a 
single signaling pathway may be insufficient. The complexity of 
the genetic landscape and the crosstalk between multiple signal-
ing pathways contribute to resistance. This can be overcome 
by targeting multiple signaling pathways simultaneously. Only 
through international collaboration between pediatric and adult 
units, we can remain hopeful that targeted and immune therapy 
will have a major impact in the management of ES in the near 
future.
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Ewing sarcoma is the second most common pediatric bone tumor, with three cases per 
million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malig-
nancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft 
tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in 
the two latter cases. Bone lesions from primary or secondary (metastases) tumors are 
characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast 
activation and subsequent bone resorption are responsible for the clinical features of 
bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on 
the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target 
osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, 
including Ewing sarcoma. There is also increasing evidence that cellular and molecular 
protagonists present in the bone microenvironment play a part in establishing a favorable 
“niche” for tumor initiation and progression. The purpose of this review is to discuss the 
potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing 
sarcoma. The first part of the review will focus on targeting the bone resorbing function of 
osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine 
receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic micro-
environment will be discussed in the context of resistance to chemotherapy, escape 
from the immune system, or neo-angiogenesis. Therapeutic interventions based on 
these specificities could be then proposed in the context of Ewing sarcoma.

Keywords: ewing sarcoma, bone remodeling, bisphosphonate, RANKL, microenvironment, tumor bone niche, 3D 
models

iNTRODUCTiON

ewing Sarcoma: A Clinical Presentation
Ewing sarcoma was first described by James Ewing in 1921. It is a high-grade neoplasm, and it is the 
second most common primary bone malignancy in both children and adolescents (1). With peak 
incidence at 15 years, this disease accounts for 2% of childhood cancers (2). Ewing sarcoma is defined 
as a bone tumor, which may occur at any site within the skeleton but preferentially affects the trunk 
and the diaphysis of long bones (2). However, it may occur in extra-skeletal soft tissue in 15% of 
cases. It is characterized by rapid tumor growth and extensive bone destruction (Figure 1) that can 
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FiGURe 1 | X-ray of typical severe osteolytic lesions in a ewing 
sarcoma patient (arrows: severe osteolytic lesions).
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result in bone pain and pathological fracture (3). At the histologi-
cal level, Ewing sarcoma appears as small, poorly differentiated, 
round tumor cells positive for the transmembrane glycoprotein 
CD99 staining (4).

The molecular event that initiates the Ewing’s family of tumors 
is a typical chromosomal translocation that occurs in cells of mes-
enchymal origin and that fuses the EWS gene on chromosome 
22q12 to a member of the erythroblast transformation sequence 
(ETS) transcription gene family, most commonly FLI-1, on 11q24 
in 85% of cases (5–7). This translocation leads to the production 
of the oncogenic fusion gene EWS-FLI1, an aberrant transcrip-
tion factor that promotes tumorigenicity (8, 9). The presence of 
this fusion gene, which represents the Ewing sarcoma signature, 
is used as a specific diagnostic marker of the Ewing’s family of 
tumors thanks to fluorescence in situ hybridization and RT-qPCR 
(10). Numerous biological pathways, such as those involving 
insulin-like growth factor receptor (IGFR), platelet-derived 
growth factor receptor (PDGFR), vascular endothelial growth 
factor receptor (VEGFR), Sonic HedgeHog (SHH) pathway acti-
vation, Wnt, and transforming growth factor (TGF)-β receptor II 
pathway inhibition, are modulated by EWS-FLI1 activity, leading 
to proliferation, angiogenesis, immune system escape, metastatic 
potential, and treatment resistance that contribute to the Ewing 
sarcoma malignant phenotype (11).

Therapeutic Limits
The on-going treatments for Ewing sarcoma patients are effective 
in more than 70% of patients with localized disease. They elicit 
clinical responses in patients with metastatic disease but are not 
curative due to acquired resistance. Before the 1970s, amputation 
was the main therapeutic option, with 5-year survival of <20%. 
The introduction of first radiation and then chemotherapy 
in the 70s has modified the prognostic significantly, with the 
5-year event-free survival rate for localized tumors at around 
65%, and the overall survival rate close to 75%. However, the 
survival rates decrease to 15–25% when metastases are detected 
at diagnosis, or in patients presenting resistance to treatment or 
with relapsed disease. In the past three decades, conventional 
therapies seem to have attained a survival plateau for these 
metastatic patients (12).

Improved poly-chemotherapy has made it possible to limit 
surgery and salvage limb, but in about 20% of cases, bone sarcomas 
have already disseminated at the time of diagnosis. In most cases, 
the distant metastases are located in the lungs, followed by the skel-
eton. Although Ewing sarcoma patients with lung metastases have 
overall survival of 45% at 5 years, those with bone or bone marrow 
metastases have very poor prognosis, with <25% overall survival 
at 5 years. In the past, when therapy was limited to local control 
(surgery), nearly all patients who initially appeared to have a local-
ized tumor developed distant metastases (13). Ewing sarcoma thus 
needs to be considered as a systemic disease, requiring systemic 
treatment, i.e., combination chemotherapy, as a rule. However, 
systemic therapy can never replace definitive local control with 
surgery and/or radiotherapy. The therapy used for Ewing sarcoma 
therefore requires a combination of surgery or radiotherapy for 
localized control and high-intensity chemotherapy for localized 
and disseminated disease. The most recent protocol for Ewing 
tumors was the European Ewing tumor Working Initiative of 
National Groups 99 protocol (EuroEWING99, clinicaltrials.
gov no. NCT00020566), which tested the benefits of a different 
chemotherapy combination involving vincristine, ifosfamide, 
doxorubicin, and etoposide (VIDE). The protocol was composed 
of six sequences of VIDE treatment followed by surgery when 
possible. The histological response to chemotherapy was then 
evaluated and patients were divided into three arms depending 
on the localization of the tumor at diagnosis, the volume for 
unresected tumors, and the percentage of residual cells after treat-
ment. The R1 arm included patients with localized disease and a 
good response to chemotherapy (<10% of residual cells) or with 
a volume of <200  ml. The R2 arm included patients with lung 
metastases and patients with localized tumors and a poor response 
to chemotherapy, or with a volume of more than 200 ml. Finally, 
the R3 arm included patients with bone, bone marrow, or multifo-
cal metastases. The current survival rate for EuroEWING patients 
has attained 80% for localized disease of small volume (R1). 
Unfortunately, the 5-year survival rate for patients with metastases 
detected at diagnosis remains around 25% and even around 10% 
when relapse occurs within the first 2 years following treatment.

The current protocol for Ewing sarcoma patients is the 
EuroEWING2012 (clinicaltrials.gov no. NCT00987636), which 
started in December 2014 in Great Britain, with two randomiza-
tions: the first compares two chemotherapy protocols (with sur-
gery and/or radiotherapy) and the second randomizes patients 
with or without bisphosphonate zoledronate (zometa®).

Given that survival rates had not evolved in more than three 
decades, especially for metastatic patients with a very poor initial 
prognosis, there was an urgent need to define new therapeutic 
targets for Ewing sarcoma patients. In addition to the tumor cells 
themselves, targeting the bone tumor microenvironment appears 
to be promising.

The Bone Microenvironment is a 
Favorable “Niche” for Tumor Progression 
in Bone
Recently, there has been a dramatic increase in the importance 
given to the theory that the bone microenvironment participates 
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in determining the “bone niche” in the progression of bone 
tumors, and in establishing resistance processes to conventional 
therapies. The concept of “bone niche” is well-recognized in the 
context of hematological malignancies, such as leukemia (14) or 
multiple myeloma (15). The “niche” is a functional microenviron-
ment able to both promote the emergence of cancer stem cells and 
provide all factors required for their development. However, the 
bone niche is composed of numerous cell types (pre-osteoclasts, 
pre-osteoblasts, endothelial cells, macrophages, etc.) that are 
located in the bone matrix, and their functional coordination 
is a pre-requisite for maintaining the bone and bone niche 
microarchitecture.

Much research has been published on the role played by the 
bone microenvironment in establishing metastases in these 
organs, especially from breast or prostate carcinomas. The con-
cept of bone niche is also currently under discussion in the case of 
solid tumors, and strengthens the “seed and soil” theory proposed 
by Paget in 1887, in which tumor cells (“seeds”) colonize recep-
tive foci (“soil”) (16). These data are supported by the fact that 
specific molecules (such as cadherin and osteopontin) play a 
part in stabilizing cancer cells in bone niches, mimicking the cell 
interactions that take place during hemopoiesis, as identified in 
the pre-metastatic niche in breast carcinoma (17, 18). In addi-
tion, carcinoma cells grow well in bone, which stores a variety 
of cytokines and growth factors, and thus provides an extremely 
fertile environment for growing tumor cells (19, 20).

The “seed and soil” theory can be also envisaged for primary 
bone tumors, as tumor growth and metastasis often require 
constant interactions between tumor cells and their surrounding 
microenvironment (21–25). This hypothesis has been largely 
documented in the case of osteosarcoma (26, 27) and chondro-
sarcoma (28), but very little information is currently available for 
Ewing sarcoma.

The Concept of the vicious Cycle 
in ewing Sarcoma
Ewing sarcoma is characterized by extensive bone destruction, 
mainly due to osteolysis (Figure 1). Because Ewing sarcoma cells 
cannot directly degrade bone, osteoclast activation and subse-
quent bone resorption may be responsible for the clinical features 
of bone destruction in this pathology (3). Bone degradation is 
controlled by osteoclasts, whose differentiation and activation 
are mainly mediated by receptor activator of NF-kappa B ligand 
(RANKL), a member of the tumor necrosis factor (TNF) super-
family (TNFSF11) after it binds to its receptor RANK expressed 
at the surface of mature osteoclasts and osteoclast precursors 
(29) (Figure 2). Osteoprotegerin (OPG) acts as a decoy recep-
tor inhibiting osteoclast formation, function, and survival by 
preventing the binding of RANKL to its receptor RANK (26).

Interaction between tumor cells, tumor-derived humoral 
factors, and the bone marrow in the bone niche has been shown 
to be essential for bone tumor initiation and promotion (30, 
31). Targeting the bone microenvironment, and particularly 
osteoclast activation, may therefore be a promising adjuvant 
strategy for treating bone tumors, including Ewing sarcoma. The 
vicious cycle between osteoclasts, bone stromal cells/osteoblasts, 

and cancer cells has been hypothesized during the progression 
of primary bone tumors (32) (Figure  2). Tumor cells produce 
osteoclast activating factors, such as interleukin (IL)-6, TNF-α, or 
ParaThyroid Hormone-related Peptide (PTH-rP), which induce 
osteoclast differentiation and activation. When osteoclasts resorb 
bone, they allow the release of growth factors stored in the bone 
matrix (TGF-β, IGF-1, PDGF, etc.), which in turn activate tumor 
cell proliferation (32). Accordingly, inhibiting osteoclast activity 
is a promising approach for breaking the vicious cycle, and thus 
indirectly limiting local cancer growth.

In addition, new therapeutic options targeting hypoxia, 
angiogenesis, bone cells, or mediators in the particular bone 
microenvironment have been studied extensively at the preclini-
cal level, with the more promising now being proposed in clinical 
trials. This review will describe the most recent developments in 
such therapeutic options for Ewing sarcoma patients.

TARGeTiNG BONe CeLLS iN ewiNG 
SARCOMA

Therapeutic agents that target the bone environment and modu-
late bone metabolism have been studied in preclinical models of 
primary bone sarcomas, demonstrating a certain degree of efficacy 
in both osteosarcoma and Ewing sarcoma. Two main strategies 
are currently being developed: (i) the first directly targets osteo-
clasts (differentiation, activation, and functions), mainly using 
bisphosphonates (BPs), and (ii) the second targets the cytokine 
RANKL, the pivotal cytokine for regulating osteoclast activation.

Bisphosphonates
Bisphosphonates are the synthetic analogs of endogenous 
pyrophosphate, with a high resistance to protease degrada-
tion, and the ability to strongly inhibit bone resorption (33). 
They are composed of two phosphonate groups. The central 
oxygen atom in pyrophosphate is replaced by a carbon atom, 
which allows the substitution of two side groups, one of 
which is often an hydroxyl group, and the other defines the 
BP generation (Figure  3). Two main families can therefore 
be distinguished: nitrogen- and non-nitrogen-containing 
BPs, which act on osteoclasts by means of different molecular 
mechanisms. In both cases, the final result  –  common to 
both – is the induction of osteoclast apoptosis. BPs act either 
by inhibiting the recruitment, proliferation, and differentia-
tion of pre-osteoclasts or by impeding the resorptive activity 
of mature osteoclasts (34–37). Zoledronic acid (ZOL) belongs 
to the third generation of BPs, which is the most efficient 
for preventing bone lesions (38–40). As for other nitrogen-
containing BPs, ZOL inhibits the farnesyl diphosphate and 
geranylgeranyl diphosphate synthases, two enzymes involved 
in the mevalonate pathway necessary for the prenylation of 
small intracellular GTPases, such as Ras, Rho, or Rac (41). 
As the prenylation of these GTPases is essential for osteoclast 
function, their inhibition leads to osteoclast apoptosis as a result 
of the loss of the survival signal (42–44). Moreover, BPs may also 
inhibit bone resorption by increasing the production of OPG by 
human osteoblasts (45). OPG is the decoy receptor of RANKL, 
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FiGURe 3 | Schematic representation of the different bisphosphonate (BP) families: simple non-N-containing BPs (etidronate and clodronate) and 
N-containing BPs (pamidronate, alendronate, idandronate, risedronate, and zoledronate).

FiGURe 2 | vicious cycle between ewing sarcoma cell proliferation and osteoclast activation. Tumor cells produce osteoclast activating factors (IL-6, 
TNF-α, etc.) that will induce osteoclast differentiation and activation. When they resorb bone, osteoclasts allow the release of growth factors stored in the bone 
matrix, such as IGF-1, FGFs, and TGF-β, which in turn activate tumor cell proliferation. This is the theory of the so-called “vicious cycle.” The molecular OPG/
RANKL/RANK triad plays a pivotal role in the regulation of bone resorption. OPG and RANKL are produced by osteoblasts and/or stromal cells, whereas RANK is 
expressed at the surface of osteoclasts and their precursors. OPG, osteoprotegerin; IL-6, interleukin-6; TNF, tumor necrosis factor; RANK, receptor activator of 
NF-kB; RANKL, RANK-ligand; IGF1, insulin-like growth factor1; TGF-β, transforming growth factor-β; FGFs, fibroblast growth factors.
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which inhibits the RANK/RANKL interaction that is essential 
for osteoclast differentiation and activation. In addition to the 
antiresorptive effect of ZOL, it has been shown to induce the 
death of tumor cell lines, such as myeloma, and breast and 
prostate carcinoma cells in several preclinical studies (39). It 

also appears to exert an inhibitory effect on cancer cell invasion 
and angiogenesis (46).

Despite several side effects reported after long-term treatment 
with BPs, including osteonecrosis of the jaw, BPs are currently 
under investigation in postmenopausal bone loss and bone 
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lesions of tumoral origin, such as bone metastases from breast 
and prostate cancer with variable clinical benefits (47, 48). A 
significant decrease in bone resorption was observed in these 
studies but with no unequivocal effects on survival or the occur-
rence of metastases. The clinical effects of BPs on bone metastases 
from lung cancer are also discussed, as are their effects on visceral 
metastases (49–52). The encouraging results reported on bone 
remodeling, as well as the ability of BPs, and in particular ZOL, 
to induce tumor cell death in vitro, make them good candidates 
for a therapeutic strategy in primary bone tumors. ZOL may 
effectively inhibit both bone resorption and tumor proliferation 
in the vicious cycle, making it more efficient. With regard to 
primary bone tumors, several studies have already demonstrated 
the benefits of using ZOL in osteosarcoma (53–56), in particular, 
promising preclinical results have been reported on survival and 
tumor growth (56). In this context, ZOL has recently been com-
bined with conventional chemotherapy and surgery for adult and 
pediatric patients in the French OS2006 phase III randomized 
clinical trial for osteosarcoma treatment. Following these results, 
other preclinical and clinical studies demonstrated the beneficial 
effect of BP treatment in osteosarcoma (57–61).

In Ewing sarcoma, despite improvements to chemotherapy 
protocols, the survival rate for patients with bone metastases 
remains very low. In this context, combining ZOL with current 
conventional chemotherapy may be a promising therapeutic 
option for both limiting tumor-associated osteolysis and pre-
venting the development of bone metastases, which is currently 
the main factor for a bad prognosis for this pathology (62). Few 
fundamental and preclinical studies have demonstrated an anti-
tumoral effect for ZOL on Ewing sarcoma cell lines (63, 64). Of 
these studies, our team has recently shown that ZOL significantly 
inhibits tumor cell viability by blocking the cell cycle in S-G2M 
phase transition and by promoting caspase-3 activation (65). 
Using preclinical models of Ewing sarcoma induced in athymic 
mice by injecting human Ewing sarcoma cells either in bone 
site or in soft tissue, ZOL alone significantly inhibited tumor 
development in bone sites, decreasing osteolytic lesions and 
improving mouse survival (65). On the contrary, the same doses 
of ZOL had no effect on Ewing sarcoma progression in soft tissue. 
These results can be explained by the high tropism of BPs for the 
calcified bone matrix, leading to their elevated concentration in 
bone tissue and their rapid clearance from blood and soft tissue. 
These data correlate with other studies on soft tissue tumors or 
visceral metastases (39). On the other hand, we demonstrated 
the synergistic effect of a combination of ZOL and ifosfamide, a 
conventional drug used in Ewing sarcoma clinical protocols, on 
tumor progression in soft tissue (65). These results correlate with 
previous studies showing a synergistic effect between BPs and 
chemotherapeutical agents and demonstrate the great benefit of 
using ZOL in Ewing sarcoma treatments as a means of reducing 
the chemotherapy doses and as a consequence, their side effects 
(58, 66–68).

With regard to invasion and migration, we have already 
published that treatment with ZOL inhibits Ewing sarcoma 
cell migration in  vitro in Boyden chambers and diminishes 
MMP-2 activity as revealed by zymography (69). In addition, 
less pulmonary metastases were observed in mice treated with 

ZOL compared to untreated animals, in a model of spontaneous 
metastases disseminated from primary Ewing sarcoma induced 
in bone (69).

For the transfer to clinical practice, one phase II study 
evaluating the combination of chemotherapy and pamidronate 
in osteosarcoma patients has demonstrated little impact on 
patient survival, but has been shown to improve the durability of 
limb reconstruction (61). In a recently completed phase I study, 
ZOL combined with conventional multi-drug chemotherapy was 
safe, but failed to reveal any significant differences in event-free 
or overall survival in patients with newly diagnosed metastatic 
osteosarcoma (70). There are three phase II/III trials currently 
in progress, evaluating the efficacy of ZOL as a single agent or an 
adjuvant to chemotherapy in localized and metastatic osteosar-
coma (NCT00691236 and NCT00470223) and in Ewing sarcoma 
(NCT00987636).

However, long-term use of BPs may impact bone growth and 
tooth eruption in young patients. In our laboratory, we have 
carried out preclinical studies on newborn mice treated or not 
with ZOL, using a protocol that reproduces the frequency and 
doses administered in humans. ZOL induces a reversible arrest 
in bone growth that was also observed in young patients treated 
with zometa® (71). For tooth eruption, irreversible inhibition was 
observed (72).

As several side effects have been reported with the clinical use 
of BPs (49, 50), another approach to decrease bone resorption 
could therefore be to target RANKL, the main cytokine involved 
in osteoclast differentiation.

Anti-RANKL Strategies
Bone remodeling is strongly regulated thanks to the molecular 
triad OPG–RANKL–RANK (26). The binding of RANKL to its 
receptor RANK, expressed on the surface of osteoclast precur-
sors, induces osteoclast differentiation in  vitro in addition to 
macrophage-colony stimulating factor (M-CSF), suggesting that 
this differentiation plays an important role in bone biology. In the 
bone microenvironment, RANKL is produced by bone marrow 
stromal cells and osteoblasts, while in a bone tumor environ-
ment, it can be produced by other cell types, such as fibroblasts, 
epithelial cells, or T-lymphocytes, in which RANKL appears to 
be the final effector of osteoclast-mediated bone resorption (26). 
Cells from many tumor types, including multiple myeloma, 
prostate cancer, or even human neuroblastoma, can also express 
RANKL themselves (73–75). Moreover, many of the chemokines, 
cytokines, hormones, and growth factors produced by tumor cells 
are able to induce an increase in RANKL expression through 
PTH-rP, and a decrease in OPG production, thus aggravating the 
vicious cycle in bone metastases. RANK is one of the signaling 
molecules associated with worse outcomes in osteosarcoma. 
High expression of RANKL is associated with reduced survival 
in osteosarcoma, and it has been reported that osteosarcoma cell 
lines and biopsies show high expression of functional RANK, 
suggesting a potential autocrine stimulation of this pathway (76, 
77). Inhibition of RANKL using the shRNA strategy reduced 
motility and anoikis resistance in osteosarcoma cell lines, 
whereas overexpression of RANK increased OS cell motility 
without affecting cell proliferation (78). One study reported the 
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preventive effect of siRNA–RANKL on tumor progression when 
associated with the chemotherapeutic agent ifosfamide in a pre-
clinical model of osteosarcoma (79). For Ewing sarcoma, only a 
few studies are available, but it seems that these cells express only 
a low level of RANKL (3). In our case, preliminary preclinical 
studies evidenced localized but strong expression of RANKL in a 
paratibial model of Ewing sarcoma induced by an intramuscular 
injection of human A673 cells in Nude mice (80). The advantages 
of targeting RANKL have previously been reported in both bone 
metastases and primary bone tumors and might be a promis-
ing target in Ewing sarcoma (73, 74, 81, 82). Several molecules 
targeting RANKL have already proved their efficiency in other 
malignant bone pathologies, such as osteosarcoma, and might be 
a potent therapeutic agent in Ewing sarcoma.

Osteoprotegerin, a member of the TNF receptor super-family, 
is a ubiquitous secreted homodimeric cytokine able to bind 
RANKL and then inhibit the RANK/RANKL interaction, as well 
as any further osteoclast differentiation and activation (83–85). 
A disruption in the RANKL/OPG ratio in favor of RANKL has 
been shown to be responsible for severe osteolysis in a tumoral 
context (86). Accordingly, overexpressing OPG to restore this 
equilibrium between OPG and RANKL expression appears to be 
a promising approach for limiting tumor-associated bone lesions. 
For the first time, our team has shown significant therapeutic 
benefits of OPG in primary bone tumors. In a preclinical model 
of osteosarcoma, OPG delivered by non-viral gene transfer effec-
tively inhibited tumor growth and tumor-associated osteolysis, 
significantly increasing animal survival (81). Several studies have 
tested OPG overexpression in OS and Ewing sarcoma preclinical 
models with promising results, especially in osteosarcoma (81). 
Moreover, despite its clinical efficiency in preventing osteolytic 
lesions, a major issue for OPG-Fc administration as an adjuvant 
therapeutic agent in a tumor context is its ability to inhibit the 
apoptosis induced by TNF-related apoptosis inducing ligand 
(TRAIL) (87). The dual effect of OPG may inhibit TRAIL-
induced apoptosis of tumor cells, a natural mechanism for 
preventing tumor development (88). In addition, TRAIL’s ability 
to both induce apoptosis in sensitive Ewing Sarcoma cell lines 
and prevent tumor development has already been demonstrated 
in vitro by Wietzerbin’s team and in vivo by our team in a preclini-
cal model induced by intratibial injection of Ewing sarcoma cells 
in nude mice (89, 90). To avoid the potential protumoral effect 
of OPG, the recombinant protein RANK-Fc, the soluble form 
of RANK, could be used in Ewing sarcoma to block RANKL 
activity. RANK-Fc is unable to bind TRAIL, and its efficacy 
has already been demonstrated in preventing tumor-associated 
osteolysis and, indirectly, tumor growth in preclinical models 
of bone metastases, such as prostate, lung, and breast cancer 
(91–93). Our team also showed how RANK-Fc, when delivered 
by non-viral gene transfer, is able to prevent osteolytic lesions 
and tumor development, thus inducing an increase in animal 
survival in a preclinical rodent model of osteosarcoma (82). The 
same efficacy can be expected in Ewing sarcoma but remains 
to be tested. For clinical transfer, denosumab is a monoclonal 
antibody specific for human RANKL, which was initially devel-
oped to treat osteoporosis (94). It was then used for painful bone 
metastases with effective results (95–98). It was subsequently 

found to also be effective for giant cell tumor of bone, a benign 
but destructive neoplasm with severe osteolytic lesions, in which 
transformed mononuclear cells secrete high levels of RANKL, 
causing osteoclast hyperactivity (99).

TARGeTiNG OTHeR ASPeCTS OF THe 
BONe MiCROeNviRONMeNT iN ewiNG 
SARCOMA

Besides bone cells themselves, the tumor microenvironment 
of primary bone tumors provides factors that are favorable for 
tumor initiation, progression, therapy resistance, or metastatic 
dissemination. Of the different constituents or aspects of this 
peculiar microenvironment, special attention has been paid to 
hypoxia, escape from the immune system, angiogenesis, growth 
factors from the microenvironment, and modification of the 
microenvironment itself by therapeutic agents that may interfere 
with tumor progression (Figure 4).

Hypoxia is an important condition in the tumor cell microen-
vironment associated with a more aggressive phenotype and poor 
prognosis of many cancers in adults. For example, intratumoral 
hypoxia is a common finding in breast cancer associated with 
a significantly increased risk of metastasis and patient mortality 
(100). Hypoxia-inducible factors activate the transcription of a 
large battery of genes encoding proteins that promote primary 
tumor vascularization and growth, stromal cell recruitment, 
extracellular matrix remodeling, pre-metastatic niche forma-
tion, cell motility, local tissue invasion, extravasation at sites of 
metastasis, and maintenance of the cancer stem cell phenotype 
that is required to generate secondary tumors. It is also known 
that severe and long-lasting hypoxia results in necrosis, thus 
being correlated with unfavorable outcome. Concerning Ewing 
sarcoma, a clinical study previously reported a strong correlation 
between the presence and the amount of necrotic areas in the 
tumor with the risk of metastases (101). In addition, Aryee et al. 
reported that HIF-1α expression was detectable in 18/28 primary 
tumors from the Ewing sarcoma family and that EWS-FLI1 was 
up-regulated in a HIF-1α-dependent manner (102). In addition, 
this study revealed that hypoxia stimulated the invasiveness 
and soft agar colony formation of Ewing sarcoma cells in vitro. 
Further studies suggest that EWS-FLI1 regulation in an hypoxic 
environment may occur at the posttranscriptional level, which is 
supported by the observation that HIF-1α-activated genes, such 
as VEGF, Aldolase-C, GLUT-1, CA9, and IGFBP3, were increased 
under hypoxia, whereas EWS-FLI1 RNA expression remained 
unchanged (103). It is also suggested that hypoxia increases 
Ewing sarcoma malignancy through enhancing invasive and 
colony-formation capacities. Furthermore, it could be proposed 
that hypoxia may contribute to the aggressive metastatic behav-
ior of Ewing sarcoma, as HIF-1α and EWS-FLI1 may function 
together in both synergistic and antagonistic cross-talk under 
hypoxia conditions. Therefore, drugs that target hypoxia need to 
be tested in Ewing sarcoma models.

Crosstalk between the bone niche and the immune system, known 
as “osteoimmunology,” has been suggested as being a potential 
target for bone tumor treatment. There is a well-recognized link 
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FiGURe 4 | Particular bone microenvironment that may affect tumor initiation, progression, or dissemination. Bone microenvironment is characterized by 
high hypoxia, high acidity, OPG release, and the influence of the cytokines (IL-6, IL-8, IL-11, and TNF-α) produced by cells from the immune system. IL, interleukin; 
TNF, tumor necrosis factor; OPG, osteoprotegerin.

Redini and Heymann Bone Microenvironment in Ewing Sarcoma

between bone constituents and the immune system, leading to 
recent efforts to elucidate the functions of molecules expressed in 
both bone and immune cells. A recent review nicely describes the 
complexity of the interaction between the skeletal and immune 
systems, suggesting that their interdependency needs to be taken 
into consideration when designing therapeutic approaches for 
either of the two systems (31). For example, denosumab, which 
was originally used to specifically target bone resorption, is now 
under evaluation for its effect on the long-term immune response. 
As both the bone and immune systems are often disrupted in can-
cer, they may be crucial in regulating tumor growth and progres-
sion. Certain therapies, such as BPs and RANKL-targeted drugs 
that aim to reduce pathological osteolysis in cancer, may interact 
with the immune system, thus providing favorable effects on 
survival. Another interesting publication reported that dynamic 
tumor–host immune interactions within the tumor microenvi-
ronment may polarize immune responses in  situ, influencing 
tumor development and/or progression (104). They studied the 
nature of tumor–host immune interactions within the Ewing 
sarcoma microenvironment, analyzing the presence and spatial 
distribution of infiltrating CD8(+)(/)CD4+ T-lymphocytes 
in therapy-naive Ewing sarcoma. They observed that tumor-
infiltrating T-cells contained significantly higher percentages of 
CD8(+) T-lymphocytes than stroma-infiltrating cells, suggesting 
preferential migration of this type of T-cell into tumor areas. Their 
results indicated that an inflammatory immune microenviron-
ment with high expression of type 1-associated chemokines may 
be critical for the recruitment of CD8(+) T-lymphocytes express-
ing the corresponding chemokine receptors. The observed impact 
of tumor-infiltrating CD8(+) T-lymphocytes is consistent with 
there being a role for adaptive anti-tumor immunity in prevent-
ing Ewing sarcoma from progressing. Recognizing the merits and 
exploitation/induction of an inflammatory microenvironment 
may thus improve the efficacy of natural responses against, and 
(adoptive) immunotherapeutic approaches for, Ewing sarcoma.

With regard to angiogenesis, VEGF-165 expression in the 
tumor microenvironment has been shown to influence the differ-
entiation of bone marrow-derived pericytes, which play a part in 
the vasculature of Ewing sarcoma (105). One year later, the same 
team demonstrated that VEGF-165 contributed to the osteolytic 
process in Ewing sarcoma by upregulating RANKL (106). They 
showed that VEGF-165, together with EWS-FLI1, increased 
RANKL promoter activity. This increase in RANKL gene expres-
sion in the bone marrow microenvironment during the metastatic 
process may be involved in tumor-induced bone osteolysis.

Other growth factors present in the bone microenvironment, 
such as basic FGF, may play a part in tumor progression as they 
enhance cell motility and invasion of the Ewing sarcoma family of 
tumors by activating the FGFR1–PI3K–Rac1 pathway (107). The 
authors therefore conclude that the bFGF–FGFR1–PI3K–Rac1 
pathway in the bone microenvironment may have a significant 
role in the invasion and metastasis of the Ewing sarcoma family 
of tumors.

Conversely, therapeutic agents, such as ZOL, are able to modify 
the bone microenvironment surrounding primary or disseminated 
tumor cells, as has been reported in breast cancer recurrence in 
bone (108). Treatment of mice with ZOL induced a rapid increase 
in trabecular bone volume versus controls, which was reflected by 
a significant reduction in osteoclast and osteoblast numbers per 
millimeter in trabecular bone, and reduced bone marker levels 
in serum. Pre-treatment with ZOL caused an accumulation of 
extracellular matrix in the growth plate associated with a trend 
for preferential homing of tumor cells to osteoblast-rich areas of 
bone, but without affecting the total number of tumor cells. The 
number of circulating tumor cells was reduced in ZOL-treated 
animals. Although this study concerns breast cancer, osteoblasts 
may be key components in the bone metastasis/tumor niche, and 
therefore a potential therapeutic target, at least in breast cancer. 
This hypothesis therefore needs to be studied extensively in 
primary bone tumors, including Ewing sarcoma.
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BONe MiCROeNviRONMeNT MODeLiNG 
iN ewiNG SARCOMA

As the microenvironment, and especially the bone tumor micro-
environment, can both inhibit and facilitate tumor growth and 
metastatic dissemination, better modelization of the tumor bone 
niche is needed to characterize tumor cell–stroma interaction in 
depth. It has been shown that osteoblasts, osteoclasts, fibroblasts, 
myeloid cells, and mesenchymal stem cells (MSCs) play essen-
tial roles in primary tumor growth and metastasis (109, 110). 
However, current in  vitro approaches are far from replicating 
the native in vivo milieu in which tumors develop, a necessary 
condition for advancing cancer research and translating new 
therapies into clinical practice. Most preclinical anti-neoplastic 
drug testing is still carried out on conventional 2D cell culture 
systems. Although these systems mimic some of the phenotypic 
traits observed clinically, they are limited in their ability to 
model the full range of microenvironmental interactions, such 
as 3D cell–cell and cell–extracellular matrix interactions. Several 
teams have thus established ex vivo 3D bone tumor models that 
closely mimic the morphology, growth kinetics, and protein 
expression profile of human tumors, including Ewing sarcoma 
(111–113). For example, Ewing sarcoma cells cultured in porous 
3D electrospun poly(ϵ-caprolactone) scaffolds were not only 
more resistant to traditional cytotoxic drugs than cells in 2D 
monolayer cultures but also exhibited remarkable differences 
in the expression pattern of the IGF-1R/mTOR pathway (111). 
This 3D model of the bone microenvironment may therefore 
have broad applicability for mechanical studies of bone sarcomas 
and shows the potential for increasing preclinical evaluation of 
anti-neoplastic drug candidates for these malignancies. In the 
same way, Villasante et al. described a bioengineered model of 
human Ewing sarcoma that mimics the native bone tumor niche 
with high biological fidelity (113). In this model, cancer cells that 
have lost their transcriptional profiles after monolayer culture re-
express genes related to focal adhesion and cancer pathways. The 
bioengineered model recovers the original hypoxic and glycolytic 
tumor phenotype and makes possible re-expression of angiogenic 
and vasculogenic mimicry features that favor tumor adaptation. 
Differentially expressed genes between the monolayer cell culture 
and native tumor environment may thus be potential therapeutic 
targets that could be explored using the bioengineered tumor 
model.

In addition, Ludwig’s team has highlighted a number of 
innovative methods used to fabricate biomimetic Ewing sarcoma, 
including both the surrounding cellular milieu and the extracel-
lular matrix. These methods suggest potential applications for 
advancing our understanding of the biology of Ewing sarcoma, 
preclinical drug testing, and personalized medicine (112).

Finally, it appears that the bone microenvironment should 
be modelized in order to analyze the response of bone tumor 
cells to drug screening under optimal conditions. Currently, few 
preclinical models of bone cancer, and particularly Ewing sar-
coma, mirror the site of the disease in patients, as they are mostly 
subcutaneous or intramuscular xenografts (114).

For metastasis in Ewing sarcoma, intravenous models induced 
in non-obese diabetic/severe combined immunodeficient (NSG) 

mice showed a pattern of disease spread similar to that found in 
patients, but only 23% of the experimental mice developed assess-
able bone metastases (115). It is therefore preferable to develop 
orthotopic models that involve direct injection of Ewing sarcoma 
cells at the clinically relevant site, i.e., intrafemoral. This type of 
injection in immunocompromized mice provides a technically 
feasible and reproducible approach, resulting in tumors that 
are detectable by palpation or in vivo imaging, and that closely 
resemble those observed in patients (116). The importance of 
such orthotopic models for testing potential new drugs at the 
preclinical level was emphasized in the study by Odri et al. (65), 
comparing how tumor progression responds to ZOL in two 
models of Ewing sarcoma: one induced by tumor cell injection in 
the medullar cavity of tibia and the other with initial progression 
in soft tissue (65). ZOL significantly inhibited Ewing sarcoma cell 
progression only in the intratibial model and showed no effect in 
the soft tissue. These results strongly suggest the importance of 
considering the complete bone microenvironment when testing 
new drugs, especially in the case of bone tumors, such as Ewing 
sarcoma. Recently, Vormoor et al. also developed an interesting 
preclinical orthotopic model of Ewing sarcoma in NSG mice, 
reproducing the biology of the tumor–bone interactions observed 
in human disease (117). In this model, the Ewing sarcoma cells 
have been modified allowing in vivo monitoring of disease pro-
gression (115). The authors therefore demonstrated the utility of 
small animal bioimaging for tracking disease progression, mak-
ing this model a useful assay for preclinical drug testing.

CONCLUSiON – PeRSPeCTiveS

Despite improvements in poly-chemotherapy combinations 
and surgical approaches preserving limbs from amputation, one 
group of Ewing sarcoma patients still remains at high risk, with 
poor survival rates. These patients present with metastatic disease 
at diagnosis or respond poorly to chemotherapy due to acquired 
resistance. New therapeutic options are thus needed. Given the 
growing interest in the microenvironment and its recognized 
involvement in cancer initiation and progression, it is relevant 
to propose therapeutic strategies that target molecular and/or 
cellular protagonists of the bone tumor microenvironment in the 
case of Ewing sarcoma.

Most on-going studies focus on bone cells, especially osteo-
clasts, either by directly targeting them or inhibiting RANKL, the 
main cytokine involved in osteoclast activation. These strategies 
(BPs, anti-RANKL: denosumab) could be proposed not only to 
target the bone component of the primary tumor but also to tar-
get bone/bone marrow metastases, the worst prognosis factor for 
Ewing sarcoma patients, as confirmed in the R3 arm of the latest 
EuroEWING99 trial (survival rate of <20% at 5 years). However, 
as expected, these strategies have no effect in preclinical models of 
pulmonary metastases, which remains the main cause of mortal-
ity in Ewing sarcoma patients (the prognosis for patients with 
lung-only metastases is 30% survival at 5  years). However, the 
strategies could be proposed for pulmonary metastatic patients 
or patients with soft tissue Ewing sarcoma if they are in synergy 
with current or targeted therapies, as suggested by our preclini-
cal studies combining ZOL with ifosfamide (65).
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Interleukin-2 (IL-2) transgenic Ewing sarcoma cells can induce tumor specific T and NK 
cell responses and reduce tumor growth in vivo and in vitro. Nevertheless, the efficiency 
of this stimulation is not high enough to inhibit tumor growth completely. In addition to rec-
ognition of the cognate antigen, optimal T-cell stimulation requires signals from so-called 
co-stimulatory molecules. Several members of the tumor necrosis factor superfamily 
have been identified as co-stimulatory molecules that can augment antitumor immune 
responses. OX40 (CD134) and OX40 ligand (OX40L = CD252; also known as tumor 
necrosis factor ligand family member 4) is one example of such receptor/ligand pair with 
co-stimulatory function. In the present investigation, we generated OX40L transgenic 
Ewing sarcoma cells and tested their immunostimulatory activity in vitro. OX40L trans-
genic Ewing sarcoma cells showed preserved expression of Ewing sarcoma-associated 
(anti)gens including lipase member I, cyclin D1 (CCND1), cytochrome P450 family mem-
ber 26B1 (CYP26B1), and the Ewing sarcoma breakpoint region 1-friend leukemia virus 
integration 1 (EWSR1-FLI1) oncogene. OX40L-expressing tumor cells showed a trend 
for enhanced immune stimulation against Ewing sarcoma cells in combination with IL-2 
and stimulation of CD137. Our data suggest that inclusion of the OX40/OX40L pathway 
of co-stimulation might improve immunotherapy strategies for the treatment of Ewing 
sarcoma.

Keywords: ewing sarcoma, immunotherapy, co-stimulation, OX40/OX40l system, tumor necrosis factor (receptor) 
superfamily

inTrODUcTiOn

Ewing sarcomas (or “Ewing family tumors,” EFT) represent bone and/or soft-tissue tumors of 
uncertain histogenetic origin. The majority of the cases are observed in children and young adults. 
Today, more than half of the patients with localized EFT can be cured. However, the prognosis for 
patients with disseminated disease or early relapses remains poor with conventional therapy (1). 
EFTs are characterized by the expression of tumor-specific oncofusion proteins (2). These fusion 
proteins are highly tumor specific and might be interesting targets for immunological treatment 
strategies. However, peptides derived from these proteins have only low binding affinity to common 
human leukocyte antigen (HLA) class I molecules (3). Using high-density DNA microarrays, we 
identified additional potential tumor antigens expressed in EFT (4–7). The presence of such tumor-
specific antigens alone is not sufficient for the induction of efficient immune responses. Additional 
co-stimulatory signals are required. We demonstrated that interleukin-2 (IL-2) transgenic EFT cells 
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can induce immune responses against wild-type tumor cells 
in  vitro and in a xenotransplantation model (8–10). However, 
tumor growth was not completely inhibited in this model, sug-
gesting that additional co-stimulatory signals might be required. 
One group of such co-stimulatory molecules is represented by 
members of the tumor necrosis factor (TNF) superfamilies (SF) 
consisting of the superfamily of TNF receptors (TNFRSF) and the 
corresponding ligands (TNFSF). The eponymic member of the 
TNFSF has been initially characterized as a factor with antitumor 
activity in mice (11). TNF is the prototype of a large gene family, 
which has several immune-regulatory functions and can augment 
antitumor immune responses (12, 13). Members of the tumor 
necrosis factor receptor superfamily comprise a group of type I 
membrane glycoproteins consisting of more than 50 members 
that have been identified as co-stimulatory molecules that aug-
ment antitumor immune responses. Activation of these surface 
receptors by the natural ligands or by agonistic antibodies leads 
to different cellular responses ranging from cell differentiation, 
proliferation, apoptosis, and survival to enhanced production of 
cytokines and chemokines (13–16). The differential and unique 
expression of the TNFRSF molecules on cells of the immune 
system has made these molecules as ideal targets for new immune 
therapy strategies (13, 15). OX40 (CD134) and CD137 (4-1BB) 
and their ligands OX40L (CD252) and 4-1BBL are examples of 
such co-stimulatory molecules. CD137 (4-1BB) is an activation-
inducible TNFRSF member expressed on activated T cells 
(CD8-positive and CD4-positive T cells) and is also expressed 
on a variety of immune cell lineages including activated natural 
killer cells, human macrophages, eosinophils, and dendritic cells 
(17). The natural ligand for CD137 (4-1BBL) is mostly expressed 
on professional antigen-presenting cells or in inflamed non-
hematopoietic tissues (15).

Recently, we analyzed the effects of the CD137/4-1BBL system 
in our Ewing sarcoma immune-therapy model (10). 4-1BBL 
transgenic cells or agonistic antibodies against CD137 can 
induce rejection of varying tumors in vivo (18, 19). In our Ewing 
sarcoma model, we observed modulation of immunosuppressive 
indoleamine 2,3-dioxygenase 1 (IDO) expression by stimulation 
of the CD137/4-1BBL system (10). However, engagement of this 
co-stimulatory system had only limited efficacy for enhancing the 
immunostimulatory activity of EFT cells (10). The OX40/OX40L 
system represents another highly interesting co-stimulatory 
system. OX40 (CD134) was identified as cell surface molecule 
on activated T cells (20). OX40 is preferentially expressed on 
CD4-positive T cells (21–23). Optimal antigenic stimulation 
induces OX40 expression also on CD8-positive T cells (24). The 
human OX40 molecule has a molecular weight of 50 kDa and is 
encoded on chromosome 1p36. Murine and human OX40 have 
only approximately 62% sequence homology in the intracellular 
domain and <64% in the extracellular domain (25, 26). OX40 
is absent from unstimulated peripheral blood mononuclear cells 
(PBMCs) and most antigen-presenting cells (27). OX40 expres-
sion peaks 48 h after stimulation of naive T cells, whereas memory 
T cells express high levels 4 h after restimulation (28). In contrast 
to the OX40 receptor, the ligand OX40L (CD252, TNFSF4) is 
expressed on several professional antigen-presenting cell types, 
endothelial cells, and activated T cells (29–32). Human OX40L 

has a molecular weight of 34 kDa and is located on chromosome 
1q25 (25, 26). Activation of the OX40 receptor by OX40L or an 
agonistic antibody leads to increased expression of antiapoptotic 
molecules and reduced expression of the inhibitory cytotoxic 
T-lymphocyte antigen 4 (CTLA4) (25, 33, 34). An important 
aspect of OX40 for antitumor immune responses is the observa-
tion that the OX40/OX40L system favors the development of 
tumor-specific memory T cells and T cells expressing OX40 have 
been found in tumor-draining lymph node cells and in tumor-
infiltrating lymphocytes from patients with various tumors (15, 
35). In addition, direct enhancement of cytotoxic T cells by OX40 
stimulation has been proposed (36). Therefore, in the present 
investigation, we established OX40L overexpressing Ewing sar-
coma cells for analyzing the effects of OX40 stimulation in our 
immunotherapy model.

MaTerials anD MeThODs

gene expression analysis and cloning of 
OX40l
RNA from cell lines was isolated using TRIzol reagent (Invitrogen, 
Karlsruhe, Germany) following manufacturer’s protocol. Two 
micrograms of the RNA was transcribed into cDNA and used as 
template for polymerase chain reaction (PCR). Reverse transcrip-
tion of RNA was performed by using the following conditions: 
4  μL 5× buffer, 1  μL Oligo-dT12-18 primer, 1  μL dNTP mix 
(10  mM), 1  μL Revert Aid H-M-MuLV reverse transcriptase 
(Fermentas, St. Leon Rot, Germany); 37°C, 60  min; and 90°C, 
5 min. After reverse transcription, 2 μL cDNA was mixed with 
2.5 μL 10× buffer, 1.5 μL MgCl2 (25 mM), 0.2 μL Taq-polymerase 
(Promega, Mannheim, Germany), 0.5  μL dNTP mix (10  mM; 
Fermentas), 0.25 μL of sequence specific primers (MWG-Biotech 
AG, Ebersberg, Germany), and 17.8  μL water. The following 
primer combinations were used: actin beta (ACTB): 5′-GGC 
ATC GTG ATG GAC TCC G-3′ and 5′-GCT GGA AGG TGG 
ACA GCG A-3′; cyclin D1 (CCND1): 5′-AAC TAC CTG GAC 
CGC TTC CT-3′ and 5′-CCA CTT GAG CTT GTT CAC CA-3′; 
CD99: 5′-TCC TCC GGT AGC TTT TCA GA-3′ and 5′-TCC 
CCT TGT TCT GCA TTT TC-3′; OX40L (primer combination 
1): 5′-aac tcg agT ATC GCA CGT TCC CCT T-3′ (nucleotides 
in lower case: XhoI restriction site) and 5′-aac cgc ggC CAG 
GAT CTG CTT-3′ (nucleotides in lower case: SacII restriction 
site); OX40L (primer combination 2): 5′-GTG AAT GGC GGA 
GAA CTG AT-3′ and 5′-GCC AGG ATC TGC TTC TTG TC-3′; 
cytochrome P450 26B1 (CYP26B1): 5′-TGA CAG GAT CCC 
TGT GTT GT-3′ and 5′-CCA ACA TCG AAA GTG CTT CA-3′; 
enhanced green fluorescent protein (eGFP): 5′-ACG TAA ACG 
GCC ACA AGT TC-3′ and 5′-AAG TCG TGC TGC TTC ATG 
TG-3′; Janus kinase 1 (JAK1): 5′-TGT AAG GAG CTG GCT GAC 
CT-3′ and 5′-CAC CTG CTC CCC TGT ATT GT-3′; lipase H 
(LIPH): 5′-GAT GGC TGG GGA GAA TTA CA-3′ and 5′-TGG 
ATT CTG TGG TGT TTC CA-3′; lipase I (LIPI): 5′-TCC GAG 
AAT AGA GAC CAT TCT GA-3′ and 5′-GCT CTC TGG TGG 
TTG CAT TT-3′; neomycin resistance cassette (NeoR): 5′-AGA 
CAA TCG GCT GCT CTG AT-3′ and 5′-AGT GAC AAC GTC 
GAG CAC AG-3′. The PCR conditions were as follows: 94°C, 
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30 s; 60°C, 45 s; and 72°C, 45 s (35 cycles). Each PCR program 
started with a denaturation step (95°C, 5 min) and was finished 
with 72°C for 5 min followed by cooling down to 4°C. The PCR 
products were subjected to agarose gel (1.5%) electrophoresis in 
the presence of ethidium bromide. DNA microarray data were 
visualized by using Genesis (37). DNA microarray data from EFT 
cell lines (4, 38), human embryonic kidney 293 (HEK293) cells 
(39), neuroblastoma (NB) cell lines (4), acute lymphatic leukemia 
(ALL) cell lines (40, 41), acute myeloid leukemia (AML) cell lines 
(42), Hodgkin’s lymphoma (HL) cell lines (43), Epstein–Barr 
virus-immortalized lymphoblastoid cell lines (LCL) (44), and 
normal PBMCs (45) were used. For cloning of OX40L, cDNA 
was amplified by using the OX40L primer combination 1. PCR 
products and vector pIRES2-eGFP (Clontech, Mountain View, 
CA, USA) were digested with XhoI and SacII. After agarose gel 
purification, ligation, and transformation into Escherichia coli 
XL1-Blue, individual clones were sequenced by using primers 
5′-CAA GTC TCC ACC CCA TTG AC-3′, 5′-GTG AAG ATG 
GAA AGG GTC CA-3′, 5′-aac cgc ggC CAG GAT CTG CTT-3′, 
and 5′-CAG GGC ATG GAT TCT TCA TT-3′. For sequencing, 
a 10 μL sequencing mix was used that contained 0.5 μL gene-
specific sequencing primers (10 μM), 4.0 μL BigDyeTerminator 
Cycle Sequencing Kit mix (Applied Biosystems, Foster City, CA, 
USA), and 10–30  ng DNA. Sequence analysis was performed 
using ABI Prism™ 310 Genetic Analyzer (Applied Biosystems). 
A clone with complete error-free OX40L open reading frame was 
used for further analysis. This clone differs from the reference 
sequence by a T to C transition in the 3′-untranslated region (cor-
responding to residue 738 in reference sequence NM_003326).

cells and cell culture
A673 cells and HEK293 cells were obtained from the American 
Type Culture Collection (Manassas, VA, USA). SK-N-MC cells 
and SH-SY5Y cells were obtained from the Deutsche Sammlung 
für Mikroorganismen und Zellkulturen (Brunswick, Germany). 
4-1BBL transgenic A673 cells and stimulation of PBMCs with 
anti-CD137 antibodies (clone 26G6; a kind gift from R. Mittler) 
was described elsewhere (10). PBMCs were isolated from healthy 
donors with informed consent and approval by the local ethics 
committee as described (45). Cells were cultured in RPMI-1640 
medium supplemented with 10% fetal calf serum and penicillin 
and streptomycin. For selection of transgenic cells, medium was 
supplemented with 400  μg/mL geneticin sulfate. PBMCs from 
HLA-A1,A2 positive donors were isolated as described (44, 
45). Stimulation of PBMCs and enzyme-linked immunospot 
(ELISPOT) analysis was performed as described (7) by using an 
interferon gamma ELISPOT kit (Becton-Dickinson, Heidelberg, 
Germany). Transfection of cells was performed using jet PEI 
(Qbiogene, Carlsbad, CA, USA). MACS separation was per-
formed using anti-PE microbeads (Miltenyi, Bergisch Gladbach, 
Germany). Statistical analysis was performed with Microsoft 
Excel 2010 (Microsoft, Redmond, WA, USA).

Flow cytometry
Phycoerythrin (PE)-labeled mouse anti-human-OX40L antibod-
ies were purchased from Anzell (Bayport, USA). Mouse IgG1 
isotype control was purchased from Becton-Dickinson. Flow 

cytometry was performed as described (40), and cells were 
analyzed on a FACScan flow cytometer (Becton-Dickinson) 
equipped with CellQuest Pro software (Becton-Dickinson).

resUlTs

cloning of OX40l into a Mammalian 
expression Vector
We screened DNA microarray data of varying cell types for 
samples with high expression of OX40L. Highest expression 
was observed in lymphoblastoid B cell lines (LCL) (Figure 1A). 
High expression of OX40L in LCL was validated by RT-PCR 
(Figure 1B). All analyzed LCL expressed OX40L. In contrast, no 
expression of OX40L was detectable in the B-cell leukemia cell 
line NALM6 (Figure  1B). Primer combination 1 amplifies the 
complete open reading frame of OX40L. The amplificate from 
LCL with this primer combination was eluted from agarose 
gels and cloned into vector pIRES2-eGFP. Functionality of the 
vector was assessed by transient transfection of HEK293 cells 
(Figure  1C). Wild-type HEK293 cells are negative for OX40L 
(Figure  1A). After transfection with the OX40L-containing 
vector, HEK293 cells clearly expressed OX40L on the surface 
(Figure  1C). HEK293 cells that had been transfected with the 
empty vector were not stained with antibodies against OX40L. 
Green fluorescence of eGFP indicated that these cells were 
successfully transfected with similar efficiency as the OX40L 
transfected cells (Figure 1C).

generation of OX40l Transgenic ewing 
sarcoma cells
We transfected cells from the Ewing sarcoma cell lines A673 and 
SK-N-MC with OX40L in vector pIRES2-eGFP. Transfected cells 
were selected with geneticin sulfate and further enriched by stain-
ing with PE-labeled anti-OX40 antibodies and immunomagnetic 
beads directed at PE. After magnet-activated cell sorting 
(MACS), more than 80% of the cells expressed eGFP and OX40L 
(Figure 2A). For immunotherapy with transgenic tumor cells, it 
is necessary that the tumor cells can be irradiated without func-
tional impairments. Therefore, we tested the stability of OX40L 
after irradiation. As shown in Figure 2B, OX40L remained stable 
after irradiation for at least 5 days. Another prerequisite of trans-
genic tumor cells for immunotherapy is the stability of tumor 
antigen expression in these cells. We tested the presence of Ewing 
sarcoma-associated transcripts in the transgenic cells. OX40L 
transgenic Ewing sarcoma cells showed the same gene expression 
pattern as wild-type cells or mock-transfected cells (Figure 3). 
In contrast to wild-type cells, OX40L transgenic cells and mock 
transgenic cells expressed transcripts for the vector marker eGFP 
and the NeoR. Importantly, transgenic Ewing sarcoma cells 
stably expressed the Ewing sarcoma-specific oncofusion protein 
EWS-FLI1 (Figure 3). Other genes typically expressed in Ewing 
sarcoma cells that remained stably expressed after transfection 
included the putative cancer/testis antigen LIPI (4, 5), LIPH (46), 
the surface glycoprotein CD99 (47), cyclin D1 [CCND1 (4, 48)], 
janus kinase 1 [JAK1 (4)], and the retinoic acid metabolizing 
cytochrome P450 member 26B1 [CYP26B1 (4, 49)] (Figure 3).
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assessment of the immunostimulatory 
activity of OX40l Transgenic ewing 
sarcoma cells
For the following experiments, we used A673 Ewing sarcoma 
cells with the partial HLA type A1,A2 for which HLA-matched 
PBMCs are easily available (9, 10). HLA-matched (HLA-A1,A2 
positive) PBMCs were stimulated with A673 cells in the pres-
ence or absence of OX40L transgenic cells, interleukin 2, and 
antibodies against CD137 or 4-1BBL transgenic A673 cells. 
Reactivity of the primed cells against wild-type A673 cells was 
assessed by ELISPOT analysis (Figure  4). As expected (9, 10), 
the presence of interleukin 2 increased the number of cells that 
reacted with the sarcoma cells. In combination with interleukin 2, 

FigUre 1 | expression pattern and cloning of OX40l. (a) DNA microarray data from a panel of cell lines and normal PBMCs were analyzed for expression of 
OX40L. Presented is a heat map of OX40L signal intensities form EFT cell lines, HEK293 cells, neuroblastoma (NB) cell lines, acute lymphoid (ALL) and myeloid 
(AML) leukemia cell lines, Hodgkin’s lymphoma (HL) cell lines, lymphoblastoid cell lines (LCL), and normal PBMCs. Red and yellow correspond to high signal 
intensities and blue corresponds to low signal intensities. From left to right, the following cell lines are shown: A673 (two samples), SK-N-MC, SBSR-AKS (38) (two 
samples), HEK293 (two samples), CHP-126 (two samples), SiMa, SH-SY5Y (three samples), RPMI, Loucy, Karpas, CALL2, 697, NALM6, U937, Kasumi, KG1, 
HL60, SKNO, L-428, HD-MyZ, KM-H2, HDLM-2, L-1236 (three samples), L-540 (two samples), 11 independent LCL, and four independent PBMC samples. 
(B) Expression of OX40L was analyzed by RT-PCR in three LCL and NALM6 ALL cells. Two different primer combinations were used. ntc = no template control. 
(c) After amplification of OX40L with primer combination 1 (see Materials and Methods), PCR products from LCL were cloned into vector pIRES2-eGFP. 
Functionality of the vector was assessed by transfection of HEK293 cell. Empty pIRES2-eGFP without OX40L (Mock) served as control. Transfected cells were 
stained with anti-OX40L-PE antibodies and analyzed by flow cytometry. eGFP served as marker for transfected cells.

OX40L-transfected A673 cells marginally increased the reactivity 
of the primed cells compared to mock-transfected cells. Addition 
of antibodies against CD137 enhanced this effect significantly. 
In the presence of interleukin 2, the combination of anti-CD137 
stimulation and OX40L transfected cells showed significantly 
enhanced immune stimulation in comparison to anti-CD137 
antibodies or OX40L-transfected cells alone. The combination 
of OX40L transgenic cells with 4-1BBL transgenic cells showed 
a trend for higher stimulatory activity compared to 4-1BBL 
transgenic cells alone (Figure 4). After priming in the presence of 
OX40L transgenic A673 cells, the cells showed a higher specificity 
for A673 cells than for SK-N-MC cells or the neuroblastoma cell 
line SH-SY5Y (Figure 5).
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FigUre 2 | generation of OX40l transgenic eFT cells. (a) A673 EFT cells were transfected with OX40L in vector pIRES2-eGFP. Transfected cells were stained 
with anti-OX40L-PE antibodies and analyzed by flow cytometry. eGFP served as marker for transfected cells. Transgenic cells were enriched by using anti-PE-
microbeads. After enrichment, nearly all cells stained positive for OX40L (dark blue line) and eGFP (green line). (B) A673 EFT cells were irradiated with 30 Gy and 
cultured for 5 days. Stability of OX40L expression after irradiation was assessed by staining with anti-OX40L-PE antibodies and flow cytometry.
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DiscUssiOn

The role of cancer immunotherapy that boosts the extraordinary 
power of our immune system to detect and destroy cancer cells 
still remains unclear. Acquired adaptive cancer immunotherapy 
regimens represent the most promising new treatment strategies, 
which have the ability to detect and kill cancer cells specifically 
and which have the potential to achieve a long-lasting antitumor 
response. Although tumor cells express tumor-specific antigens 
that can be recognized and targeted by T cells, the tumor pro-
duces different molecular and cellular mechanisms that reduce 
the ability of the immune system to recognize or kill tumor cells 
(50). There are many different mechanisms in the tumor micro-
environment that suppress ongoing T-cell functions and enable 
tumor escape (51, 52). For instance, the tumor microenvironment 
can reduce activation of T cells, tumor cells can escape immune 
recognition by downregulation of tumor-associated antigens or 

antigen-presenting HLA molecules, tumor cells can produce 
antigen-loss variants, tumor cells can secrete immunosuppressive 
factors (e.g., indoleamine-2,3-dioxygenase), and co-stimulatory 
signals can be absent from antigen-presenting cells (53–57). 
Naive T cells require a strong interaction between the T-cell 
receptor and antigen-presenting HLA molecules (signal 1) and 
binding of co-stimulatory molecules expressed on the surface of 
antigen-presenting cells (signal 2) for optimal activation (58). In 
the absence of a co-stimulatory signal, T cells typically enter a 
state of anergy or paralysis (59). Some members of the TNFRSF 
have been identified as co-stimulatory molecules that augment 
antitumor immune responses. Activation of these surface recep-
tors by their natural ligands or by agonistic antibodies leads to 
different cellular responses ranged from cell differentiation, 
proliferation, apoptosis, and survival to enhanced production of 
cytokines and chemokines (11, 13, 15, 16). The expression of the 
TNFRSF molecules on cells of the immune system has made these 
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FigUre 4 | elisPOT analysis of PBMcs after stimulation with a673 
eFT cells. HLA-matched PBMCs were incubated together with A673 EFT 
cells in combination with the indicated immune stimuli. After 6 days, reactivity 
against A673 wild-type cells was assessed by interferon gamma ELISPOT 
analysis. The highest numbers of spots were obtained after stimulation with 
the combination of OX40L transgenic and 4-1BBL transgenic cells. 
Presented are means and standard deviations from triplicates from a 
representative experiment (N = 3). Asterisks indicate statistical significance 
(*p < 0.05; **p < 0.01; Student’s t-test).

FigUre 3 | stability of eFT makers in OX40l transgenic eFT cells. 
Expression of the indicated markers was assessed by RT-PCR in cells 
without transfection (1), after transfection with empty pIRES-eGFP vector (2), 
or after transfection with OX40L in vector pIRES-eGFP (3). Actin beta (ACTB) 
served as housekeeping control. The neomycin-resistance cassette (NeoR) 
and enhanced green fluorescent protein (eGFP) served as markers for the 
presence of the vector in the cells. Transfected and wild-type Ewing sarcoma 
cells expressed the Ewing sarcoma-specific EWS-FLI1 oncofusion transcripts 
as well as the Ewing sarcoma-associated factors lipase I (LIPI), lipase H 
(LIPH), CD99, cyclin D1 (CCND1), janus kinase 1 (JAK1), and cytochrome 
P450 family member 26B1 (CYP26B1).

October 2015 | Volume 5 | Article 242132

Reuter et al. OX40 ligand and Ewing sarcoma

Frontiers in Oncology | www.frontiersin.org

molecules as ideal targets for new immune therapy strategies (14, 
15). OX40 (CD134) and CD137 (4-1BB) and their ligands OX40L 
(CD252) and 4-1BBL are examples of such co-stimulatory effec-
tive molecules.

We have shown in previous studies that transgenic expression 
of IL-2 on EFT cells enhances the immunostimulatory activity 
but could not completely inhibit the growth of the tumor cells 
(8, 9). Addition of transgenically expressed co-stimulatory mol-
ecules on the surface of tumor cells or stimulation with agonistic 
antibody against the co-stimulatory receptor may enhance the 
cytotoxic effect of activated T cells (10, 60). In the present study, 
we present preliminary data that OX40L transgenic EFT cells not 
only preserve expression of typical Ewing sarcoma-associated 
antigens but also might enhance the immune response against 
EFT cells in combination with IL-2 and stimulation of CD137.

The presence of OX40-positive T cells at sites of tumor metasta-
ses suggests that engagement of OX40 by OX40L or agonistic anti-
bodies may enhance function of tumor-reactive T cells. In various 
studies, different tumor cells transfected with OX40L were used as 
vaccines to induce tumor-specific antitumor immunity [for review, 
see Ref. (14, 15, 61)]. Andarini et al. treated subcutaneous tumors 
of melanoma, Lewis lung carcinoma, and adenocarcinoma with 
intratumoral injection of tumor cells expressing mouse OX40L 

(62). It was shown that the treatment of tumor-bearing mice with 
tumor cells expressing OX40L induced significant suppression of 
tumor growth and enhanced survival of the treated mice (21). 
Similar results were found with EL4 lymphoma cells or with C26 
colon carcinoma cells in combination with stimulation of APC 
function with granulocyte–monocyte colony-stimulating factor 
[GM-CSF (15)]. In all these experiments, both CD4-positive 
and CD8-positive T cells were required for the induction of 
antitumor immunity and both CD4-positive and CD8-positive 
tumor-infiltrating T cells (TILs) expressed OX40. Nevertheless, it 
was unclear whether OX40-mediated signaling in CD8-positive 
T cells might have been required to induce their cytotoxic effector 
function (21). It is possible that activation of the OX40 receptor 
increases the function of tumor-specific CD4-positive T cell and 
allows more efficient effector function as well as the generation 
of CD8-positive T-cell memory (63, 64). Furthermore, in several 
preclinical models, treatment of tumor-bearing hosts with anti-
OX40 agonistic antibodies or OX40L-Fc fusion protein resulted 
in a significant tumor regression [for review, see Ref. (21)]. In 
these studies, it was suggested that activation of OX40 receptor 
by agonistic antibody or OX40L transgenic tumor cells pushes 
regulatory T cells (Treg) in suppressing or depletion depending 
on the context of simulation and the cytokine milieu (65). This 
activation of OX40 on different T cells with agonistic antibody 
or OX40L-expressing tumor cells may lead to decreased inhibi-
tory effects mediated by Treg cells and thereby might promote 
antitumor responses of CD8-positive T cell which is necessary 
to maintain long-term antitumor responses. It is possible that 
several different mechanisms are important for the antitumor 
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FigUre 5 | specificity of the induced immune response. HLA-matched 
PBMCs were incubated together with A673 EFT cells in combination with the 
indicated immune stimuli. After 6 days, reactivity against the indicated 
wild-type cell lines was assessed by interferon gamma ELISPOT analysis. 
The highest numbers of spots were obtained after restimulation of A673/
anti-CD137/OX40L-primed cells with A673 cells. Presented are means and 
standard deviations from triplicates from a representative experiment (N = 3). 
Asterisks indicate statistical significance (p < 0.05; Student’s t-test).
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effects mediated through the activation of the OX40 receptor on 
T cells (61).

It is unlikely that the use of only one co-stimulatory molecule 
will be sufficient for generating immunotherapy strategies to cure 
patients with different tumor types. However, the use of combina-
tions of several co-stimulatory molecules may be a more effective 
strategy for producing immunotherapy against cancer. In this 
context, Cuadros et al. showed a potential benefit of anti-CD137 
and anti-OX40 antibodies in enhancing the immune responses 
in combination with dendritic cell-based vaccines in a Her-2/neu 
tumor model. The authors showed that joint co-stimulation with 
anti-CD137 and anti-OX40 agonistic antibodies induce strong 
effector immune responses depending on both CD4-positive 
and CD8-positive T cells (66). The combination of activation of 

two co-stimulatory molecules induces a strong effector immune 
response by primary CD8-positive T cells that is sufficient to 
attack established tumors, induce CD4-positive T-cell responses, 
and generate tumor-specific T-cell memory (66). Furthermore, 
Pan et  al. successfully treated metastatic colon carcinomas 
with anti-CD137 agonistic antibodies together with IL-12 
transfected tumor cells (67). However, the success was limited 
to small tumors. The addition of anti-OX40 agonistic antibod-
ies to the immunotherapy protocol improved the success also 
to greater tumors on established colon carcinomas. This triple 
co-stimulatory combination therapy induced a high CTL activity 
in the TILs against parenteral tumors, and this effect was partly 
cell dependent on CD4-positive T cells. These observations sug-
gested that anti-OX40 antibodies enhanced the helper function 
of CD4-positive T cells that increased the number or activity of 
CD8-positive T cells against the tumors (67).

We have shown that OX40L-expressing Ewing sarcoma cells 
preserved the expression of typical Ewing sarcoma-associated 
antigens and are practicable for immunotherapy protocols with 
transgenic tumor cells. The stimulated PBMCs exerted some 
specificity for the tumor cells that were used for stimulation. It 
remains unclear which antigens are recognized and which cell 
types are responsible for the effects. In our previous investigations, 
we observed activation of T and NK cells by IL-2 transgenic Ewing 
sarcoma cells (9). The high sensitivity of Ewing sarcoma cells for NK 
cell-mediated lysis (68, 69) might also be responsible for the higher 
“specificity” of Ewing sarcoma-activated PBMCs for these stimula-
tory cells. Whether antigenic peptides in combination with major 
histocompatibility complex (MHC) molecules are recognized by T 
cells or whether activated NK cells are triggered by receptors like 
CD226 or CD314 requires further investigations. Our data sug-
gest that OX40L-expressing tumor cells might enhance immune 
response against Ewing sarcoma cells in combination with IL-2 
and activation of the CD137/4-1BBL co-stimulatory pathway. The 
inclusion of the OX40/OX40L pathway in co-stimulation immu-
notherapy protocols might improve the immunotherapy strategies 
against Ewing sarcoma or the development of tumor vaccines.

acKnOWleDgMenTs

We thank R. Mittler for the kind gift of anti-CD137 antibodies.

reFerences

1. Burdach S, van Kaick B, Laws HJ, Ahrens S, Haase R, Körholz D, et al. Allogeneic 
and autologous stem-cell transplantation in advanced Ewing tumors. An 
update after long-term follow-up from two centers of the European Intergroup 
study EICESS. Stem-Cell Transplant Programs at Düsseldorf University 
Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann 
Oncol (2000) 11:1451–62. 

2. Staege MS, Max D. Genetics and epigenetics of the TET-ETS translocation 
network. Genet Epigenet (2009) 2:1–15. 

3. Pfeifle C, Reinhardt K, Heins S, Burdach S, Staege MS. Development and 
characterization of HAT-sensitive Ewing tumour cells for immunotherapy. 
Anticancer Res (2009) 29:4489–96. 

4. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, et al. DNA 
microarrays reveal relationship of Ewing family tumors to both endothelial 

and fetal neural crest-derived cells and define novel targets. Cancer Res (2004) 
64:8213–21. doi:10.1158/0008-5472.CAN-03-4059 

5. Foell JL, Hesse M, Volkmer I, Schmiedel BJ, Neumann I, Staege MS. Membrane-
associated phospholipase A1 beta (LIPI) is an Ewing tumour-associated 
cancer/testis antigen. Pediatr Blood Cancer (2008) 51:228–34. doi:10.1002/
pbc.21602 

6. Max D, Hesse M, Volkmer I, Staege MS. High expression of the 
evolutionarily conserved alpha/beta hydrolase domain contain-
ing 6 (ABHD6) in Ewing tumors. Cancer Sci (2009) 100:2383–9. 
doi:10.1111/j.1349-7006.2009.01347.x 

7. Mahlendorf DE, Staege MS. Characterization of Ewing sarcoma associated 
cancer/testis antigens. Cancer Biol Ther (2013) 14:254–61. doi:10.4161/
cbt.23298 

8. Staege MS, Gorelov V, Bulankin A, Fischer U, Dumon K, Hohndorf L, et al. 
Stable transgenic expression of IL-2 and HSV1-tk by single and fusion tumor 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1158/0008-5472.CAN-03-4059
http://dx.doi.org/10.1002/pbc.21602
http://dx.doi.org/10.1002/pbc.21602
http://dx.doi.org/10.1111/j.1349-7006.2009.01347.x
http://dx.doi.org/10.4161/cbt.23298
http://dx.doi.org/10.4161/cbt.23298


October 2015 | Volume 5 | Article 242134

Reuter et al. OX40 ligand and Ewing sarcoma

Frontiers in Oncology | www.frontiersin.org

cell lines bearing EWS/FLI-1 chimeric genes. Pediatr Hematol Oncol (2003) 
20:119–40. doi:10.1080/0880010390158612 

9. Staege MS, Hansen G, Baersch G, Burdach S. Functional and molecular char-
acterization of interleukin-2 transgenic Ewing tumor cells for in vivo immu-
notherapy. Pediatr Blood Cancer (2004) 43:23–34. doi:10.1002/pbc.20013 

10. Max D, Kühnöl CD, Burdach S, Niu L, Staege MS, Föll JL. Indoleamine-2,3-
dioxygenase in an immunotherapy model for Ewing sarcoma. Anticancer Res 
(2014) 34:6431–41. 

11. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotox-
in-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U 
S A (1975) 72:3666–70. doi:10.1073/pnas.72.9.3666 

12. Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer 
research: a historical perspective. Pharmacol Ther (1994) 64:529–64. 
doi:10.1016/0163-7258(94)90023-X 

13. Croft M. The TNF family in T cell differentiation and function  –  unan-
swered questions and future directions. Semin Immunol (2014) 26:183–90. 
doi:10.1016/j.smim.2014.02.005 

14. Moran AE, Kovacsovics-Bankowski M, Weinberg AD. The TNFRs OX40, 
4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol 
(2013) 25:230–7. doi:10.1016/j.coi.2013.01.004 

15. Foell J, Hewes B, Mittler RS. T cell costimulatory and inhibitory receptors 
as therapeutic targets for inducing anti-tumor immunity. Curr Cancer Drug 
Targets (2007) 7:55–70. doi:10.2174/156800907780006841 

16. Mittler RS, Foell J, McCausland M, Strahotin S, Niu L, Bapat A, et al. Anti-
CD137antibodies in the treatment of autoimmune disease and cancer. 
Immunol Res (2004) 29:197–208. doi:10.1385/IR:29:1-3:197 

17. Watts TH. TNF/TNFR family members in costimulation of T cell 
responses. Annu Rev Immunol (2005) 23:23–68. doi:10.1146/annurev.
immunol.23.021704.115839 

18. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, et al. 
Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate 
established tumors. Nat Med (1997) 3:682–5. doi:10.1038/nm0697-682 

19. Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, et  al. 
Provision of antigen and CD137 signaling breaks immunological ignorance, 
promoting regression of poorly immunogenic tumors. J Clin Invest (2002) 
109:651–9. doi:10.1172/JCI0214184 

20. Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, 
et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 
Mr detected only on CD4 positive T blasts. Mol Immunol (1987) 24:1281–90. 
doi:10.1016/0161-5890(87)90122-2 

21. Sugamura K, Ishii N, Weinberg AD. Therapeutic targeting of the effector 
T-cell co-stimulatory molecule OX40. Nat Rev Immunol (2004) 4:420–31. 
doi:10.1038/nri1371 

22. Taraban VY, Rowley TF, O’Brien L, Chan HT, Haswell LE, Green MH, 
et al. Expression and costimulatory effects of the TNF receptor superfamily 
members CD134 (OX40) and CD137 (4-1BB), and their role in the gener-
ation of anti-tumor immune responses. Eur J Immunol (2002) 32:3617–27. 
doi:10.1002/1521-4141(200212)32:12<3617::AID-IMMU3617>3.0.CO;2-M 

23. Weinberg AD, Vella AT, Croft M. OX-40: life beyond the effector T cell stage. 
Semin Immunol (1998) 10:471–80. doi:10.1006/smim.1998.0146 

24. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M. Costimulation of 
CD8 T cell responses by OX40. J Immunol (2004) 172:4821–5. doi:10.4049/
jimmunol.172.8.4821 

25. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell 
immunity? Nat Rev Immunol (2003) 3:609–20. doi:10.1038/nri1148 

26. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement 
in the pathology of malignant lymphomas. Blood (1995) 85:3378–404. 

27. Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification 
of a human OX-40 ligand, a costimulator of CD4+ T cells with homology 
to tumor necrosis factor. J Exp Med (1994) 180:757–62. doi:10.1084/
jem.180.2.757 

28. Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent 
costimulatory molecule for sustaining primary CD4 T cell responses. 
J Immunol (1998) 161:6510–7. 

29. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. 
Expression and function of OX40 ligand on human dendritic cells. J Immunol 
(1997) 159:3838–48. 

30. Miura S, Ohtani K, Numata N, Niki M, Ohbo K, Ina Y, et al. Molecular cloning 
and characterization of a novel glycoprotein, gp34, that is specifically induced 

by the human T-cell leukemia virus type I transactivator p40 tax. Mol Cell Biol 
(1991) 11:1313–25. doi:10.1128/MCB.11.3.1313 

31. Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, et al. Impairment 
of antigen-presenting cell function in mice lacking expression of OX40 ligand. 
J Exp Med (2000) 191:365–74. doi:10.1084/jem.191.2.365 

32. Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, et  al. The 
human OX40/gp34 system directly mediates adhesion of activated T cells 
to vascular endothelial cells. J Exp Med (1996) 183:2185–95. doi:10.1084/
jem.183.5.2185 

33. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL 
and Bcl-2 expression and is essential for long-term survival of CD4 T cells. 
Immunity (2001) 15:445–55. doi:10.1016/S1074-7613(01)00191-1 

34. Prell RA, Evans DE, Thalhofer C, Shi T, Funatake C, Weinberg AD. OX40-
mediated memory T cell generation is TNF receptor-associated factor 2 depen-
dent. J Immunol (2003) 171:5997–6005. doi:10.4049/jimmunol.171.11.5997 

35. Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, et  al. 
Engagement of the OX-40 receptor in  vivo enhances antitumor immunity. 
J Immunol (2000) 164:2160–9. doi:10.4049/jimmunol.164.4.2160 

36. Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu S. Therapeutic 
efficacy of OX-40 receptor antibody depends on tumor immunogenicity and 
anatomic site of tumor growth. Cancer Res (2000) 60:5514–21. 

37. Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray 
data. Bioinformatics (2002) 18:207–8. doi:10.1093/bioinformatics/18.1.207 

38. Richter GH, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM, et al. 
EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis block-
ing endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci U S 
A (2009) 106:5324–9. doi:10.1073/pnas.0810759106 

39. Hutter C, Burdach S, Staege MS. Characterization of EWS/Fli-1 induced gene 
expression profiles in HEK293 cells. Klin Padiatr (2003) 215:193. 

40. Wernicke CM, Richter GH, Beinvogl BC, Plehm S, Schlitter AM, Bandapalli 
OR, et al. MondoA is highly overexpressed in acute lymphoblastic leukemia 
cells and modulates their metabolism, differentiation and survival. Leuk Res 
(2012) 36:1185–92. doi:10.1016/j.leukres.2012.05.009 

41. Metzler M, Staege MS, Harder L, Mendelova D, Zuna J, Fronkova E, et  al. 
Inv(11)(q21q23) fuses MLL to the Notch co-activator mastermind-like 2 in 
secondary T-cell acute lymphoblastic leukemia. Leukemia (2008) 22:1807–11. 
doi:10.1038/leu.2008.50 

42. Berg T, Fliegauf M, Burger J, Staege MS, Liu S, Martinez N, et al. Transcriptional 
upregulation of p21/WAF/Cip1 in myeloid leukemic blasts expressing AML1-
ETO. Haematologica (2008) 93:1728–33. doi:10.3324/haematol.13044 

43. Staege MS, Banning-Eichenseer U, Weissflog G, Volkmer I, Burdach S, 
Richter G, et al. Gene expression profiles of Hodgkin’s lymphoma cell lines 
with different sensitivity to cytotoxic drugs. Exp Hematol (2008) 36:886–96. 
doi:10.1016/j.exphem.2008.02.014 

44. Hoennscheidt C, Max D, Richter N, Staege MS. Expression of CD4 on 
Epstein-Barr virus-immortalized B cells. Scand J Immunol (2009) 70:216–25. 
doi:10.1111/j.1365-3083.2009.02286.x 

45. Foell JL, Volkmer I, Giersberg C, Kornhuber M, Horneff G, Staege MS. Loss of 
detectability of Charcot-Leyden crystal protein transcripts in blood cells after 
treatment with dimethyl sulfoxide. J Immunol Methods (2008) 339:99–103. 
doi:10.1016/j.jim.2008.08.006 

46. Hesse M, Willscher E, Schmiedel BJ, Posch S, Golbik RP, Staege MS. Sequence 
and expression of the chicken membrane-associated phospholipases A1 
alpha (LIPH) and beta (LIPI). Mol Biol Rep (2012) 39:761–9. doi:10.1007/
s11033-011-0796-0 

47. Kovar H, Dworzak M, Strehl S, Schnell E, Ambros IM, Ambros PF, et  al. 
Overexpression of the pseudoautosomal gene MIC2 in Ewing’s sarcoma and 
peripheral primitive neuroectodermal tumor. Oncogene (1990) 5:1067–70. 

48. Matsumoto Y, Tanaka K, Nakatani F, Matsunobu T, Matsuda S, Iwamoto 
Y. Downregulation and forced expression of EWS-Fli1 fusion gene results 
in changes in the expression of G(1)regulatory genes. Br J Cancer (2001) 
84:768–75. doi:10.1054/bjoc.2000.1652 

49. Staege MS, Hattenhorst UE, Neumann UE, Hutter C, Foja S, Burdach S. DNA-
microarrays as tools for the identification of tumor specific gene expression 
profiles: applications in tumor biology, diagnosis and therapy. Klin Padiatr 
(2003) 215:135–9. doi:10.1055/s-2003-39371 

50. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor 
antigens recognized by T lymphocytes. Annu Rev Immunol (1994) 12:337–65. 
doi:10.1146/annurev.iy.12.040194.002005 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1080/0880010390158612
http://dx.doi.org/10.1002/pbc.20013
http://dx.doi.org/10.1073/pnas.72.9.3666
http://dx.doi.org/10.1016/0163-7258(94)90023-X
http://dx.doi.org/10.1016/j.smim.2014.02.005
http://dx.doi.org/10.1016/j.coi.2013.01.004
http://dx.doi.org/10.2174/156800907780006841
http://dx.doi.org/10.1385/IR:29:1-3:197
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115839
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115839
http://dx.doi.org/10.1038/nm0697-682
http://dx.doi.org/10.1172/JCI0214184
http://dx.doi.org/10.1016/0161-5890(87)90122-2
http://dx.doi.org/10.1038/nri1371
http://dx.doi.org/10.1002/1521-4141(200212)32:12<3617::AID-IMMU3617>3.0.CO;2-M
http://dx.doi.org/10.1006/smim.1998.0146
http://dx.doi.org/10.4049/jimmunol.172.8.4821
http://dx.doi.org/10.4049/jimmunol.172.8.4821
http://dx.doi.org/10.1038/nri1148
http://dx.doi.org/10.1084/jem.180.2.757
http://dx.doi.org/10.1084/jem.180.2.757
http://dx.doi.org/10.1128/MCB.11.3.1313
http://dx.doi.org/10.1084/jem.191.2.365
http://dx.doi.org/10.1084/jem.183.5.2185
http://dx.doi.org/10.1084/jem.183.5.2185
http://dx.doi.org/10.1016/S1074-7613(01)00191-1
http://dx.doi.org/10.4049/jimmunol.171.11.5997
http://dx.doi.org/10.4049/jimmunol.164.4.2160
http://dx.doi.org/10.1093/bioinformatics/18.1.207
http://dx.doi.org/10.1073/pnas.0810759106
http://dx.doi.org/10.1016/j.leukres.2012.05.009
http://dx.doi.org/10.1038/leu.2008.50
http://dx.doi.org/10.3324/haematol.13044
http://dx.doi.org/10.1016/j.exphem.2008.02.014
http://dx.doi.org/10.1111/j.1365-3083.2009.02286.x
http://dx.doi.org/10.1016/j.jim.2008.08.006
http://dx.doi.org/10.1007/s11033-011-0796-0
http://dx.doi.org/10.1007/s11033-011-0796-0
http://dx.doi.org/10.1054/bjoc.2000.1652
http://dx.doi.org/10.1055/s-2003-39371
http://dx.doi.org/10.1146/annurev.iy.12.040194.002005


October 2015 | Volume 5 | Article 242135

Reuter et al. OX40 ligand and Ewing sarcoma

Frontiers in Oncology | www.frontiersin.org

51. Butt AQ, Mills KH. Immunosuppressive networks and checkpoints con-
trolling antitumor immunity and their blockade in the development of cancer 
immunotherapeutics and vaccines. Oncogene (2014) 33:4623–31. doi:10.1038/
onc.2013.432 

52. Crespo J, Sun H, Welling TH, Tian Z, Zou WT. Cell anergy, exhaustion, senes-
cence, and stemness in the tumor microenvironment. Curr Opin Immunol 
(2013) 25:214–21. doi:10.1016/j.coi.2012.12.003 

53. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated 
signaling costimulates murine T cells and prevents induction of anergy in 
T-cell clones. Nature (1992) 356:607–9. doi:10.1038/356607a0 

54. Davis ID. An overview of cancer immunotherapy. Immunol Cell Biol (2000) 
78:179–95. doi:10.1046/j.1440-1711.2000.00906.x 

55. Nanda NK, Sercarz EE. Induction of anti-self-immunity to cure cancer. Cell 
(1995) 82:13–7. doi:10.1016/0092-8674(95)90047-0 

56. Uyttenhove C, Maryanski J, Boon T. Escape of mouse mastocytoma P815 after 
nearly complete rejection is due to antigen-loss variants rather than immu-
nosuppression. J Exp Med (1983) 157:1040–52. doi:10.1084/jem.157.3.1040 

57. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-
Keen M, et  al. Implications for immunosurveillance of altered HLA class I 
phenotypes in human tumours. Immunol Today (1997) 18:89–95. doi:10.1016/
S0167-5699(96)10075-X 

58. Ochoa AC, Longo DL. Alteration of signal transduction in T cells from cancer 
patients. Important Adv Oncol (1995) 1995:43–54. 

59. Lafferty KJ, Gill RG. The maintenance of self-tolerance. Immunol Cell Biol 
(1993) 71:209–14. doi:10.1038/icb.1993.23 

60. Kühnöl C, Herbarth M, Föll J, Staege MS, Kramm C. CD137 stimulation 
and p38 MAPK inhibition improve reactivity in an in  vitro model of glio-
blastoma immunotherapy. Cancer Immunol Immunother (2013) 62:1797–809. 
doi:10.1007/s00262-013-1484-9 

61. Linch SN, McNamara MJ, Redmond LW. OX40 agonists and combination 
immunotherapy: putting the pedal to the metal. Front Oncol (2015) 5:34. 
doi:10.3389/fonc.2015.00034 

62. Andarini S, Kikuchi T, Nukiwa M, Pradono P, Suzuki T, Ohkouchi S, et al. 
Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor 
cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res (2004) 
64:3281–7. doi:10.1158/0008-5472.CAN-03-3911 

63. Weinberg AD. OX40: targeted immunotherapy – implications for tempering 
autoimmunity and enhancing vaccines. Trends Immunol (2002) 23:102–9. 
doi:10.1016/S1471-4906(01)02127-5 

64. Ali SA, Ahmad M, Lynam J, McLean CS, Entwisle C, Loudon P, et al. Anti-
tumour therapeutic efficacy of OX40L in murine tumour model. Vaccine 
(2004) 22:3585–94. doi:10.1016/j.vaccine.2004.03.041 

65. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression 
by regulatory T cells and facilitates tumor rejection. J Exp Med (2008) 
204:825–39. doi:10.1084/jem.20071341 

66. Cuadros C, Dominguez AL, Lollini PL, Croft M, Mittler RS, Borgstrom P, et al. 
Vaccination with dendritic cells pulsed with apoptotic tumors in combination 
with anti-OX40 and anti-4-1BB monoclonal antibodies induces T cell-medi-
ated protective immunity in Her-2/neu transgenic mice. Int J Cancer (2005) 
116:934–43. doi:10.1002/ijc.21098 

67. Pan PY, Zang Y, Weber K, Meseck ML, Chen SH. OX40 ligation enhances 
primary and memory cytotoxic T lymphocyte responses in an immunother-
apy for hepatic colon metastases. Mol Ther (2002) 6:528–36. doi:10.1006/
mthe.2002.0699 

68. Verhoeven DH, de Hooge AS, Mooiman EC, Santos SJ, ten Dam MM, 
Gelderblom H, et al. NK cells recognize and lyse Ewing sarcoma cells through 
NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol (2008) 
45:3917–25. doi:10.1016/j.molimm.2008.06.016 

69. Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D. 
Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin 
Cancer Res (2010) 16:3901–9. doi:10.1158/1078-0432.CCR-10-0735 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Reuter, Staege, Kühnöl and Föll. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1038/onc.2013.432
http://dx.doi.org/10.1038/onc.2013.432
http://dx.doi.org/10.1016/j.coi.2012.12.003
http://dx.doi.org/10.1038/356607a0
http://dx.doi.org/10.1046/j.1440-1711.2000.00906.x
http://dx.doi.org/10.1016/0092-8674(95)90047-0
http://dx.doi.org/10.1084/jem.157.3.1040
http://dx.doi.org/10.1016/S0167-5699(96)10075-X
http://dx.doi.org/10.1016/S0167-5699(96)10075-X
http://dx.doi.org/10.1038/icb.1993.23
http://dx.doi.org/10.1007/s00262-013-1484-9
http://dx.doi.org/10.3389/fonc.2015.00034
http://dx.doi.org/10.1158/0008-5472.CAN-03-3911
http://dx.doi.org/10.1016/S1471-4906(01)02127-5
http://dx.doi.org/10.1016/j.vaccine.2004.03.041
http://dx.doi.org/10.1084/jem.20071341
http://dx.doi.org/10.1002/ijc.21098
http://dx.doi.org/10.1006/mthe.2002.0699
http://dx.doi.org/10.1006/mthe.2002.0699
http://dx.doi.org/10.1016/j.molimm.2008.06.016
http://dx.doi.org/10.1158/1078-0432.CCR-10-0735
http://creativecommons.org/licenses/by/4.0/


August 2015 | Volume 5 | Article 181136

Review
published: 07 August 2015

doi: 10.3389/fonc.2015.00181

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Thomas Grunewald,  

Ludwig Maximilian University of 
Munich, Germany

Reviewed by: 
Francis Jay Mussai,  

Birmingham Children’s Hospital, UK  
David Anthony Rodeberg,  

Brody School of Medicine at East 
Carolina University, USA  

Stefan Burdach,  
Technische Universität München, 

Germany

*Correspondence:
 Stephen S. Roberts,  

Pediatrics, Memorial Sloan Kettering 
Cancer Center, 1275 York Avenue, 

New York, NY 10065, USA  
robertss@mskcc.org

Specialty section: 
This article was submitted to 

Pediatric Oncology, a section of the 
journal Frontiers in Oncology

Received: 18 May 2015
Accepted: 23 July 2015

Published: 07 August 2015

Citation: 
Roberts SS, Chou AJ and 

Cheung N-KV (2015) Immunotherapy 
of childhood Sarcomas.  

Front. Oncol. 5:181.  
doi: 10.3389/fonc.2015.00181

immunotherapy of childhood 
Sarcomas
Stephen S. Roberts*, Alexander J. Chou and Nai-Kong V. Cheung 

Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft 
tissue origin. Although more than 100 different histologic subtypes have been described, 
the majority of pediatric cases belong to the Ewing’s family of tumors, rhabdomyosar-
coma and osteosarcoma. Most patients that present with localized stage are curable 
with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis 
or those who experience a relapse continue to have a very poor prognosis. New thera-
pies for these patients are urgently needed. Immunotherapy is an established treatment 
modality for both liquid and solid tumors, and in pediatrics, most notably for neuro-
blastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, 
interleukin-2, and liposomal-muramyl tripeptide phosphatidyl-ethanolamine have been 
tried, with some activity seen in subsets of patients; additionally, various cancer vaccines 
have been studied with possible benefit. Monoclonal antibody therapies against tumor 
antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA-4 
and PD-1 are being actively explored in pediatric sarcomas. Building on the success of 
adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using 
chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for 
the treatment of sarcomas. This review will focus on recent preclinical and clinical devel-
opments in targeted agents for pediatric sarcomas with emphasis on the immunobiology 
of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, 
cell engineering, and tumor vaccines. The future integration of antibody-based and cell-
based therapies into an overall treatment strategy of sarcoma will be discussed.

Keywords: pediatric sarcoma, immunotherapy of cancer, antibodies, monoclonal, CAR T cells, tumor vaccines, 
natural killer cells, osteosarcoma

introduction

Sarcomas are a heterogeneous group of malignant tumors arising from bone or soft tissues. More 
than 100 different subtypes of sarcoma have been described in adults and pediatrics; the major-
ity of cases in children are rhabdomyosarcoma, Ewing’s family of tumors, osteosarcoma, and the 
non-rhabdomyosarcoma soft tissue sarcomas. Although these tumors are rare individually, as a 
group they account for 10–14% of all childhood cancers (1). While most patients who present with 
localized disease are highly curable with conventional therapies involving surgery and chemoradio-
therapy, those who present with metastatic disease or who relapse post-therapy have an extremely 
poor prognosis, with little to no improvements in survival seen over the past 20 years. Furthermore, 
current therapies are highly toxic and associated with significant long-term morbidity in survivors; 
thus, new and effective therapies are urgently needed for these patients.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00181
http://www.frontiersin.org/Oncology/
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:robertss@mskcc.org
http://dx.doi.org/10.3389/fonc.2015.00181
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00181/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00181/abstract
http://loop.frontiersin.org/people/192418/overview
http://loop.frontiersin.org/people/69641/overview
http://loop.frontiersin.org/people/43782/overview


August 2015 | Volume 5 | Article 181137

Roberts et al. Immunotherapy of childhood sarcomas

Frontiers in Oncology | www.frontiersin.org

History of immunotherapy for Sarcomas

That the immune system might be involved in cancer control 
was first observed in sarcoma patients when Wilhelm Busch 
in Germany reported in 1866 on tumor regressions in sarcoma 
patients who developed erysipelas infections (2). Immunotherapy 
for the treatment of sarcomas can be traced back at least as far 
as 1891, when William Coley, a prominent bone surgeon at 
Memorial Hospital in New York (now Memorial Sloan Kettering 
Cancer Center), published his report on the use of what came 
to be known as “Coley’s Toxin” to treat a series of sarcomas of 
the bone (3, 4). He found that injections with streptococcus 
organisms (originally live bacteria, later a heat-killed concoction 
that also included Serratia marcescens) could induce remissions 
in some patients with otherwise inoperable sarcomas. Though 
use of his toxins was highly controversial and eventually fell out 
of favor, they are considered by many to be the precursors of 
today’s modern anti-cancer immunotherapy (5). Perhaps the best 
conceptualization of what has become modern immunotherapy 
came from Paul Ehrlich in the early 1900s with his description of 
the “magischen kugeln” – the “Magic bullet” – specific medicines 
fashioned to attack and kill only the diseased cell while sparing 
the surrounding normal tissues (6). The increased frequency of 
lymphoid malignancies in patients with immunodeficiencies 
also suggests that the immune system plays an important role 
in carcinogenesis (7). In addition, development of sarcomas has 
been well described in allograft transplant recipients, with a risk 
more than double that of non-immunosuppressed patients (8).

immune System in the Non-Malignant 
State

Our immune system is a complex organization of immune cells 
and mediators that interact with each other and with other 
accessory cells to protect against infections; simultaneously, this 
system must maintain tolerance toward self. The immune system 
consists of two layers of defense: the innate and adaptive spheres. 
The innate immune system includes dendritic cells, mast cells, 
and macrophages, as well as natural killer (NK) cells, neutrophils, 
basophils, and eosinophils. Innate immune cells serve as the initial 
defense against foreign antigens. Once activated, macrophages 
and mast cells release cytokines that engage additional immune 
cells and initiate an inflammatory response. Dendritic cells serve 
as antigen-presenting cells, taking in foreign antigens and sub-
sequently presenting them for recognition by adaptive immune 
cells, thereby recruiting the second sphere of the immune system. 
NK cells can also interact with dendritic cells, either activating or 
eliminating them depending on context, thus they too can influ-
ence both the innate and adaptive immune systems.

The adaptive immune system includes B-lymphocytes, CD4+ 
T helper lymphocytes, and CD8+ cytotoxic T lymphocytes 
(CTLs). This arm of the immune system requires direct activa-
tion through antigen presentation by antigen-presenting cells. 
Upon antigen presentation and activation, antigen-specific T 
and B cells are generated. Together, the innate and adaptive 
pathways eliminate pathogens and remove damaged cells (7, 
9). Unlike the innate system, the adaptive immune response 

requires training, but, once established, is antigen specific, has 
a memory, and can be recalled to rapid action in the future.

immune Surveillance and 
immunoediting

One of the basic principles of cancer immunosurveillance is that 
cancer cells possess antigens that distinguish them [or set them 
apart] from non-transformed cells. These so-called tumor “neo-
antigens” can be recognized by the endogenous immune system 
and targeted for destruction. These tumor antigens are generally 
products of mutated genes, abnormally expressed normal genes, 
or genes coding for viral proteins. Unfortunately, transformed 
cells, under the selective pressure of the normal host response, 
are sometimes able to evolve evasive or immune-suppressive 
mechanisms and thus avoid detection and/or eradication. This 
concept that the immune system, while protecting against cancer, 
influences tumor immunogenicity and ultimately tumor escape 
was proposed as the framework for cancer immunoediting 
(10). This process can be divided into three phases: elimination, 
equilibrium, and escape. During the elimination phase both the 
innate and adaptive immune systems work to identify a devel-
oping neoplasm and eliminate it, through various mechanisms 
including activation of innate immune effector cells such as NK 
cells, and secretion of interferons (IFNs) and subsequent activa-
tion of dendritic cells, which in turn promote adaptive anti-
tumor immune responses. However, a subset of cancer cells may 
develop the ability to survive this elimination phase, and thus 
the developing neoplasm enters the equilibrium phase. Here, the 
immune system prevents tumor escape, yet fails to eradicate it 
completely and thus participates in influencing the immuno-
genicity of these remaining cells. Finally, in the escape phase, 
those tumor cells that evolved the ability to evade the immune 
system during the equilibrium phase progressively proliferate 
and present as clinically apparent tumors. Mechanisms by which 
this escape may occur include loss of tumor antigens, down 
regulation of histocompatibility locus antigens (HLA) from 
the tumor cell surface; altered tumor microenvironment that is 
immunosuppressive due to the recruitment of regulatory T cells 
(Tregs); myeloid-derived suppressor cells, tumor-associated M2 
macrophages, and others (11–13); upregulation of inhibitory 
receptors (e.g., PD-1) on T cells; or upregulation of inhibitory 
ligands (e.g., PD-L1 or B7-H3) on stromal cells or tumor cells.

immunomodulatory Agents

A variety of immunomodulatory agents have been investigated 
for the treatment of sarcomas, including cytokines such as inter-
leukin-2 (IL-2) and IFN. The majority of sarcoma studies have 
been conducted in adult patients with advances fueling interest 
in the pediatric patient population.

Cytokines
Stimulation of the immune system has been attempted using 
various cytokines. Cytokines are involved in a wide array of 
immune functions including modulation of antigen presentation 
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and T cell activation (14, 15). The list of cytokines continues to 
expand (15). Although the most widely studied clinically are IFN 
and IL-2, several other cytokines are also moving into the clinic.

Interleukin 2
Interleukin 2 stimulates T cells proliferation, induces generation 
of CTLs, and facilitates the maintenance of NK cells (16–18). IL-2 
is FDA approved for the treatment of metastatic renal cell carci-
noma and melanoma, and responses to IL-2 have been reported 
in several other cancers including lung and breast cancers (19, 
20). In pediatrics, IL-2 has been used most notably for the treat-
ment of high-risk neuroblastoma in combination with an anti-
GD2 monoclonal antibody (mAb) and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) (21). A study of high-dose 
IL-2 in relapsed pediatric patients included four patients with 
osteosarcoma and two patients with Ewing sarcoma. Two of 
the four osteosarcoma patients had complete responses, while 
the other two and both Ewing sarcoma patients had progressive 
disease (20). However, use of high-dose infusional IL-2 is greatly 
hampered by significant toxicity, including capillary leak syn-
drome; continued use in pediatric sarcoma as a single agent seems 
unlikely. Several studies are ongoing in pediatrics combining IL-2 
given in a variety of different routes and dosages with antibody 
therapy, vaccines, and adoptive cell therapy.

Interferon
Interferons are a complex family of molecules that bind to 
IFN receptors; IFNα and IFNβ activate type I receptors, while 
IFNγ activates type II receptors (15, 22). Both IFNα and IFNβ 
activate immune cells and increase antigen presentation to T 
cells. INFα is approved for use in melanoma and has also been 
studied in sarcomas. Most recently, the large EURAMOS study 
reported three-year follow-up data on 715 pediatric and adult 
osteosarcoma patients up to 40  years of age randomized to 
postoperative chemotherapy ± IFN; there was no survival benefit 
from IFNα when added to standard three-drug chemotherapy in 
osteosarcoma patients (74% chemotherapy alone vs. 77% chemo-
therapy + IFNα; EFS, p = 0.21) (23). Further development of IFN 
as a single agent in pediatric sarcoma seems unlikely; its role in 
pediatric sarcoma immunotherapy as an adjuvant combined with 
other immunotherapies such as adoptive cell therapy to increase 
antigen presentation remains to be defined.

Interleukin 15
Interleukin 15 (IL-15) (24, 25) is a 14–15 kDa glycoprotein that 
binds to a heterotrimeric receptor that shares the IL-2R/IL-15Rβ 
(CD122) and the common gamma (γc) chain (CD132) with the 
IL-2 receptor (26), as well as a unique α subunit (IL-15Rα) that 
confers receptor specificity. However, unlike IL-2, IL-15 is not 
required for the maintenance of Tregs (27); it does not induce 
activation-induced cell death (AICD) of CD8+ effector T cells 
(28); is required for the differentiation of NK, effector CD8+ and 
memory phenotype CD8+ T cells; and does not cause capillary 
leak syndrome (29). IL-15Rα binds to IL-15 with high affinity 
(Kd  <  10–11  M) and retains IL-15 on the cell surface. IL-15Rα 
trans-presents IL-15 to IL-2R/IL-15Rβ-γc on neighboring NK 
and T cells through immunological synapses (30, 31). IL-15 has 

diverse immunologic effects (26). It stimulates the proliferation 
of activated CD4−CD8−, CD4+CD8+) CD4+, CD8+ T cells, 
induces cytotoxic CTLs, and stimulates the generation, prolif-
eration, and activation of NK cells. Though not essential for the 
generation of memory CD8+ T cells, IL-15 is required for their 
homeostatic proliferation over long periods of time (32). IL-15 
protects neutrophils from apoptosis, modulates phagocytosis, 
stimulates mast cell growth, induces B cell proliferation and dif-
ferentiation partially independent of T cell help, and increases 
their immunoglobulin secretion, while stimulating secondary 
cytokine release from macrophages and maturing dendritic cells. 
When given as the IL15/IL15Rα complex, it is more effective 
and should be less toxic than the soluble IL15 (33–35). Several 
preclinical studies have shown that IL-15 may potentiate anti-
sarcoma immunotherapy in Ewing and osteosarcoma models 
(36–38). A clinical trial combining recombinant human IL15 
with NK cells for relapsed and refractory pediatric solid tumors, 
including sarcomas, is currently underway at the U.S. National 
Cancer Institute (NCT01875601). Although no clinical trial of 
IL-15 has been conducted specifically for sarcomas, this cytokine 
will likely play a major role in future immunotherapy strategies.

Liposomal-Muramyl Tripeptide  
Phosphatidyl-ethanolamine
The immune modulator liposomal-muramyl tripeptide 
phosphatidyl-ethanolamine (L-MTP or mifamurtide) has been 
extensively studied, primarily in osteosarcoma. This compound 
is a non-specific modulator of innate immunity and is a synthetic 
analog of muramyl dipeptide derived from bacterial cell walls. 
It activates monocytes and macrophages leading to an increase 
of a wide variety of immunomodulatory molecules including: 
tumor necrosis factor-alpha (TNF-a), interleukin (IL)-1, IL-6, 
IL-8, IL-12, nitric oxide, prostaglandin E2, lymphocyte function-
associated antigen 1 (LFA-1), and intercellular adhesion molecule 
1 (ICAM1) (39). Preclinical studies suggested that this inflam-
matory response triggered by L-MTP could potentially eliminate 
minimal residual disease. A small study conducted by the EORTC 
Soft Tissue and Bone Sarcoma Group in the 1990s treated 20 
adult patients with soft tissue sarcomas with MTP; there were 
no responses in that study (40). The largest clinical experience 
with combination chemotherapy and L-MTP derives from the 
Intergroup (INT-) 0133 osteosarcoma study. This prospective, 
double randomization, phase III trial tested first the utility of 
adding ifosfamide to the standard three-drug chemotherapy 
regimen (doxorubicin, cisplatin, and high-dose methotrexate); 
and second the impact on survival with the addition of L-MTP 
to either assigned chemotherapy arm. No difference in survival 
was found for patients who received ifosfamide in addition to 
the standard three-drug chemotherapy. The study did suggest 
that L-MTP had a beneficial impact on survival, improving 
the 5-year overall survival rate from 70 to 78% (p = 0.03) (41). 
However, when the 91 patients who had metastatic disease were 
analyzed separately, the difference in survival between those who 
did versus those who did not receive L-MTP, though suggesting 
improvement, did not reach statistical significance. The overall 
survival at 5  years was 53% for those randomized to receive 
L-MTP versus 40% for those who did not (p = 0.27) (42). Based, 
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in part, on the updated results of the non-metastatic cohort of 
INT-0133, the European Medicines Agency granted L-MTP an 
indication for the treatment of non-metastatic osteosarcoma in 
2009; the American Food and Drug Administration (FDA) did 
not. L-MTP is also approved for use in Turkey, Mexico, and Israel.

Antibody-Based immunotherapy

Monoclonal Antibodies
Unmodified antibodies specific for tumor-associated surface 
antigens can engage tumor cells while activating innate immune 
effector cells, primarily macrophages and NK cells via their Fc 
receptors (FcγR). Once activated, the effector cell releases cyto-
toxic granules to kill the target cell, a process known as antibody-
dependent cellular cytotoxicity (ADCC). It is important to 
note that T cells do not possess FcγR and have no affinity for 
conventional antibodies, and hence cannot be activated by these 
tumor selective antibodies.

Many mAbs have been developed for various cancer types. 
While there have been notable successes (for example, anti-CD20 
for hematologic malignancies, anti-human epidermal growth 
factor receptor 2 (HER2) for breast cancer, and anti-GD2 for 
neuroblastoma), most mAbs have failed to improve outcomes 
despite their initial promise, especially in pediatric sarcomas.

Approximately 50% of osteosarcomas overexpress HER2, and 
HER2 expression was shown to correlate with a poorer prognosis 
(43); a phase II study was conducted by the Children’s Oncology 
Group (COG) to evaluate if the addition of trastuzumab (anti-
HER2, Herceptin) to standard chemotherapy would improve 
survival in metastatic osteosarcoma patients. Ninety-six patients 
were enrolled, and 41 were found to have HER2 overexpression. 
Unfortunately, no significant difference in survival was seen in 
patients who received trastuzumab + chemotherapy compared 
to those who received chemotherapy alone {EFS of 32% in both 
arms, OS of 50% for chemotherapy alone compared to 59% for 
chemotherapy + trastuzumab, [p = 0.54 for EFS; p = 0.58 for 
OS] (44)}.

Instead of binding directly to tumors, antibodies can neutral-
ize growth factors (e.g., insulin-like growth factor 1 (IGF1) or 
IGF2) or their receptors (e.g., IGF-1R, -A12). A large body of 
preclinical and early clinical data suggested that IGF1 and 2 
might play an important role in the initiation and progression 
of a variety of cancers, including pediatric sarcomas (45–47). 
Several phase I and II studies were conducted evaluating anti-
IGF1 mAbs in relapsed and refractory solid tumors including 
sarcomas, the largest being a phase II study by the COG that 
enrolled 116 patients, including 20 with rhabdomyosarcoma, 11 
with osteosarcoma, and 10 with synovial sarcoma; there were 
no objective responses in any of the sarcoma patients (48, 49). 
Finally, a randomized phase II study of standard chemother-
apy ± the anti-IGF-1R mAb ganitumab is ongoing within COG 
for Ewing sarcoma (NCT02306161). However, this agent failed 
to show improved outcomes in a large randomized phase III trial 
of adult pancreatic cancer patients (50) and the manufacturer 
has announced that they will not be pursuing development of 
this agent. Thus, regardless of the results of the ongoing trial, its 
future for pediatric sarcoma is unclear.

Although both IGF-1 and IGF-2 activate IGF-1R, the latter 
shares a similar tetrameric α2β2 structure with insulin receptor 
(IR). The IR can be expressed in two isoforms (IR-A and IR-B). 
IR-A binds to IGF-2 with the same affinity as it binds to insulin. 
In addition, insulin and IGF-1 receptor subunits can form hybrid 
heterodimeric receptors (51). Antibodies against IGF-1R only 
partially inhibit IR-A activity by disrupting the IR-A/IGF-1R 
hybrid, but completely fail to inhibit IR-A homodimers. Failure 
of IGF-1R inhibition results from two compensatory mecha-
nisms: (1) IGF-2 is increased during treatment with IGF-1R mAb 
(52) which signals through IR-A, which is known to promote 
cancer survival (53). (2) Compensatory activation of the epi-
dermal growth factor receptor (EGFR) allowing the cancer to 
continue to progress despite blockade of the IGF pathway (54). 
One novel approach to overcome these limitations is to reduce 
the serum and tissue levels of the IGF ligands, using neutralizing 
mAbs specific for both IGF-1 and IGF-2. By removing IGF-2, 
the escape mechanism of IGF-2-mediated IR-A activation can be 
aborted, suggesting that newer mAbs that target both IGF-1 and 
IGF-2 may have more success than the first-generation mAbs 
tested (55, 56).

Several trials of mAbs against the EGFR and the VEGFR 
(57) alone and in combination with chemotherapy have been 
conducted in children and young adults with sarcomas. The COG 
conducted a randomized trial of bevacizumab (anti-VEGFR) 
combined with vincristine, topotecan and cyclophosphamide in 
patients with recurrent Ewing sarcoma, as well as a randomized 
trial of bevacizumab and temsirolimus in combination with 
vinorelbine and cyclophosphamide in recurrent/refractory 
rhabdomyosarcoma patients. In the rhabdomyosarcoma trial, the 
bevacizumab arm was significantly worse than the temsirolimus 
arm and the study was stopped early (58); results for the Ewing 
sarcoma trial have not yet been published. Despite preclinical 
rationale for these targets (59–61), overall, these studies have 
not shown many significant responses in sarcomas, though some 
studies are ongoing.

A phase I trial of the anti-tumor necrosis factor-related apop-
tosis-inducing ligand receptor 2 (TRAIL-2) mAb lexatumumab 
was conducted by the U.S. National Cancer Institute (NCI) in 
pediatric solid tumors. This study enrolled 24 patients, including 
21 with various sarcomas. No objective responses were seen and 
this mAb is no longer under clinical development (62).

Given the success of anti-GD2 mAb therapy in neuroblastoma 
(21, 63) and the expression of GD2 by many sarcomas (64, 65), 
studies exploring the use of these mAbs in sarcomas, particularly 
in osteosarcoma, are underway. Current trials include the anti-
GD2 mAbs humanized3F8 (NCT01419834 and NCT01662804) 
and hu14.18K322A (NCT00743496).

engineered Antibodies including Bispecific 
Antibodies
Bispecific antibodies are engineered antibodies linking a tumor 
antigen recognition domain to a second domain that activates a 
receptor on immune effector cells, typically T cells (Figure 1). 
The anti-CD19/anti-CD3 bispecific antibody blinatumomab was 
approved by the FDA for the treatment of precursor B cell acute 
lymphoblastic leukemia in 2014, making it the first in its class 
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to be approved in the US. Recently published preclinical data 
of an anti-GD2 T cell retargeting bispecific antibody showed 
excellent in vivo activity against GD2 expressing neuroblasto-
mas and melanomas (66). Currently, there are limited clinical 
data on bispecific antibodies in pediatric sarcomas; there is 
one study that recently began enrolling OS patients (Activated 
T Cells Armed with GD2 Bispecific Antibody in Children 
and Young Adults With Neuroblastoma and Osteosarcoma, 
NCT02173093).

immunologic Checkpoint Blockade or 
inhibitors
Recently, there has been much excitement about the potential 
of the immune checkpoint inhibitors in solid tumors includ-
ing pediatric sarcomas following their clinical successes and 
approvals for treatment of metastatic melanoma and metastatic 
squamous non-small cell lung cancer.

CTLA-4 Blockade
Ipilimumab is a human IgG4 monoclonal antibody that blocks the 
anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and 
was the first of the new generation of checkpoint inhibitors to gain 
FDA approval (68). CTLA-4 is a member of the immunoglobulin 
superfamily; after T cell activation, CTLA-4 is expressed on the 

plasma membrane of cells where it acts to inhibit T cell function 
through a variety of mechanisms, allowing tumor cells to escape 
immune surveillance (69, 70). The experience of ipilimumab in 
pediatric patients is limited; GI toxicity was the major concern. 
A small phase II study in adults with synovial sarcoma had no 
clinical or immunological responses (71).

PD-1 Blockade
Antibodies targeting the programed cell death protein 1 path-
way (PD-1/PD-L1) (nivolumab, pembrolizumab) function in a 
similar manner to ipilimumab by removing the brakes on T cells 
which then can perform active anti-tumor immune surveillance 
(69, 70). Preclinical studies have demonstrated expression of 
PD-1L in OS and suggest that high expression levels may cor-
relate with worse clinical outcomes (72); In  vivo studies using 
murine sarcoma models with anti-CTLA-4 antibodies have also 
shown promise for these agents (73). Currently, however, these 
agents have limited pediatric clinical data available; several trials 
with these agents for relapsed or refractory pediatric solid tumors 
are currently ongoing.

Despite the overall successes of checkpoint inhibitors, only 
subsets of patients with melanoma, lung cancer, ovarian cancer, 
NHL, and Hodgkin lymphoma have responded. Two important 
studies have examined the tumors of responders versus non-
responders, one in melanoma and one in non-small-cell lung 
cancer (74–76). In both cases, treatment efficacy was associated 
with a higher number of mutations in the tumors. In melanoma 
patients treated with ipilimumab, the investigators carefully 
examined the tumors of those who responded versus those who 
did not, and found that the responders had tumors with higher 
mutation rates and tumor antigens and in particular, those 
whose tumor neoantigens shared tetrapeptide sequences with 
viral antigens were most likely to be responders to checkpoint 
inhibition (75). To improve on the quality of response to immune 
checkpoint blockade, CTLA-4 and PD-1/PD-L1 antibodies are 
being tested in combination or when added to other anti-cancer 
agents such as chemotherapy, targeted therapy, radiotherapy, 
and other immunotherapy (19, 69, 77). Currently, the COG is 
conducting a phase I/II study (NCT02304458) of nivolimab alone 
or in combination with ipilimumab for relapsed and refractory 
solid tumors including sarcomas.

Although there is much excitement currently surround-
ing these new agents, caution seems warranted in pediatric 
sarcomas. In contrast to melanoma and lung cancer, pediatric 
cancers in general and pediatric sarcomas in particular have an 
extremely low rate of recurrent mutations (<1 mutation per Mb 
for pediatric cancers compared to 15 per Mb for melanomas) 
(78, 79). Furthermore, many sarcomas do not express major 
histocompatibility complex (MHC) which is required for both 
the afferent and efferent arms of T cell response (80). Taken 
together, it seems probable that checkpoint inhibitors may have 
less efficacy in pediatric sarcomas (especially as single agents) 
than in melanoma and lung cancer; careful consideration of 
ideal clinical trial design using these agents will be critical for 
defining their potential role in the immunotherapy of pediatric 
sarcomas.
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Tumor vaccines

Vaccines directed against specific tumor antigens were some of 
the earliest targeted immunotherapies tested. The aim of tumor 
vaccines is to induce an anti-tumor response through exposure 
to tumor antigens. Of the high value tumor targets among the 
75 candidates derived from the NCI consensus panel, only a few 
are directly adaptable to sarcoma (81). The most notable are the 
gangliosides GD2 and GD3, polysialic acid, and translocation 
breakpoints. In animal models and human clinical trials (9, 82), 
vaccines have shown efficacy in preventing tumor development or 
delaying progression, but have generally failed to mediate regres-
sions of established tumors. Single-arm trials have investigated 
vaccines targeting whole cells, lysates, proteins, and peptides in 
both adult and pediatric patients with sarcomas. Results from 
most studies in sarcomas (adult and pediatric) have been disap-
pointing, though some have shown potential benefit with either 
laboratory evidence of the development of an immune response, 
or prolonged stable disease or disease-free intervals (83–88). 
Several additional pediatric sarcoma studies remain ongoing 
(NCT01241162, NCT01803152, NCT01061840). Promising 
results of a recent phase I study of a bivalent GD2-GD3 gangliosides 
vaccine in combination with β-glucan in neuroblastoma patients 
in second remission (89) suggest that vaccines for sarcomas may 
be beneficial if given in the setting of minimal residual disease.

Adoptive Cell Therapy

Adoptive cell therapy is the term coined to describe the concept 
of giving a patient immune cells with cytolytic properties in 
sufficient numbers to cause an anti-tumor response. There are 
various strategies to accomplish this, including use of ex vivo 
expanded autologous cells and infusion of donor-derived alloge-
neic immune effector cells.

Natural Killer Cells
Natural Killer cells are lymphocytes of the innate immune system 
with both cytotoxic and regulatory functions and are important 
mediators of immune responses against infections and cancer. 
Unlike T and B cells, NK cells recognize their targets without prior 
sensitization and generally do not have the same memory system 
[with some exceptions (90)] as T or B cells. NK cells are activated 
through various receptors that recognize proteins that are upregu-
lated by cell stress or are foreign. In turn, NK cells are negatively 
regulated by inhibitory receptors that primarily bind HLA as a 
means of preventing self-recognition, thus preventing autoim-
munity. NK cell target cytotoxicity is triggered when the overall 
balance between the various activating and inhibitory signals is 
weighted toward activation (91). NK cells were initially identi-
fied through their ability to kill tumor cells (92); the anti-tumor 
actions of NK cells have subsequently been documented in many 
human and animal models. NK cells are neither HLA-restricted 
nor do they require activation via the adaptive immune system 
(93). These facts plus their ability to target and kill a wide variety 
of tumors has led to strong interest in their therapeutic potential 
(94). The first application of NK-cell-enriched cellular products 
to treat cancer was performed at the NCI using autologous cells 

in 1980 (95). Subsequently, clinical trials, primarily in acute 
myeloid leukemia, confirmed that haploidentical donor-derived 
NK cells can be expanded in vivo and can induce remissions (96). 
Preclinical data suggest that NK cell strategies may be of benefit in 
pediatric sarcomas (97). Specifically, various studies have shown 
that Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell 
lines, including highly chemoresistant lines, are all sensitive to 
NK cell killing and that cytokine activation greatly enhances 
this killing ability both in  vitro and in in  vivo models (36, 38, 
98). Several current NK-cell-based studies are open to pediatric 
sarcomas and apply various strategies, including post-allogeneic 
transplant and ex vivo expansion and/or cytokine stimulation; 
however, no results have yet been reported from these trials.

Cytotoxic T Lymphocytes
Cytotoxic T Lymphocytes are highly efficient at targeting and 
killing specific cells; thus, there has long been much interest in 
harnessing this ability for cancer immunotherapy. De novo T cells 
are generally of low frequency and incapacitated by the tumor 
microenvironment. Initial efforts to use T cells for cancer therapy 
involved ex vivo expansion of the so-called tumor infiltrating 
lymphocytes (TILs) freed from excised tumors. This approach is 
limited, however, by the fact that they cannot be reliably extracted 
or be expanded to sufficient numbers from most tumors. To date, 
there are no studies in pediatric cancer patients (9). Despite their 
limitations, TILs are an important proof-of-concept of the poten-
tial value of T-cell-based immunotherapy as they were the first 
immunotherapy to induce regressions of bulky tumors (99). To 
overcome these limitations, polyclonal T cells can be genetically 
modified to express T cell receptors (TCRs) that recognize tumor 
peptide antigens in the context of MHC. These transgenic TCRs 
function like their natural counterparts, but remain restricted by 
MHC, thus limiting the use of these cells to the patient’s specific 
individual HLA alleles. As approximately 50% of the Caucasian 
population in the U.S. express HLA A*0201, many studies have 
focused on associated antigens, particularly the cancer testis 
antigens. Among these, NY-ESO-1 is one of the most studied 
with expression found in 70–80% of synovial sarcomas, but only 
sporadically in other sarcomas (100, 101); in a pilot feasibility 
study, four of six patients with synovial sarcoma had an objective 
response (101, 102). Further studies using NY-ESO-1 CTLs in 
synovial sarcoma are ongoing (NCT01343043).

Chimeric Antigen Receptor-Modified T Cells
Because T cells do not carry Fcγ-receptors, these potent effec-
tor cells cannot recognize tumor-bound antibodies, and have 
therefore traditionally not been recruited by such antibodies 
to tumor sites. Furthermore, T cells need to recognize tumor 
peptides in the context of their own MHC antigens to be effective 
killers. However, many tumors down regulate or lose their HLA, 
or even tumor peptides, making them transparent to even the 
primed T cells. To overcome these issues of HLA and to broaden 
the selection of targets (e.g., to carbohydrates or lipids), chimeric 
antigen receptors (CARs) can be engineered into T cells. These 
receptors are not classic TCRs, but derived from conventional 
antibodies specific for any target. A chimeric molecule consist-
ing of an antibody in the form of single chain Fv (scFv) as the 
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ectodomain, and T cell signaling machinery as the intracellular 
domain, forms this artificial receptor through which T cells are 
activated when they come into contact with the specific antigen, 
without the necessity of MHC. These CARs are inserted into T 
cells using viral vectors, DNA transposons, or RNA transfection. 
In the early versions (so-called First generation) of CAR-modified 
T cells (CAR T cells), signaling was done through a single activa-
tion domain (either the CD3-ζ chain or FcϵRIγ). Second- and 
third-generation CAR T cells contain one or two additional 
co-stimulatory signaling domains such as CD28, 4-1BB, and 
OX40 (67) (Figure 1). The first-generation CAR T cells did not 
show significant activity in clinical trials presumably because 
many tumor cells lack co-stimulatory ligands (103), and because 
of poor persistence of the T cells, although a phase I study of 
anti-GD2 CAR T cells in relapsed neuroblastoma patients saw 
some objective clinical responses including complete remission 
in three patients (104, 105). Second-generation CAR T cells have 
shown improvements in T cell proliferation and survival (106) 
and have shown promising results in hematologic malignancies 
(107). Several studies with CAR T cells are underway that include 
pediatric sarcoma patients. Two of the open trials target HER2 
expressing sarcomas (NCT00902044, NCT00889954), while two 
more target GD2 expression (NCT01953900, NCT02107963); it 
remains to be seen whether similar successes seen in hematologic 
malignancies can be achieved in solid tumors. The death of a 
patient receiving third-generation anti-HER2 CAR T cells has 
raised concerns regarding the safety of highly activatable T cells 
even when the expression of the antigen in normal tissues was low 
(NCT00924287) (108).

Challenges

Toxicity
In general, although immunotherapy may have less long-term tox-
icity than chemotherapy or radiation therapy, which is particular 
appealing for pediatric cancer, major short-term toxicities can be 
daunting. These include immediate infusion-related allergic reac-
tions with mAbs, and autoimmune reactions to the checkpoint 
inhibitors, some of which were life threatening (109). In a recently 
completed phase I study of ipilimumab (NCT01445379) in pedi-
atric patients with refractory solid tumors including sarcomas, 
no objective responses were seen but significant autoimmune 
toxicity was observed, with up to 50% of patients experiencing 
symptoms (Personal communication, Dr. L. Wexler, 2015); how-
ever, no pediatric safety data for these agents are yet published. 
In adults, enterocolitis, hepatitis, and dermatitis were the most 
commonly seen toxicities, but autoimmune-related toxicities due 
to unregulated T cell activity have been reported in nearly every 
organ system (109). Adoptive cell transfer also carries the real 
potential for serious adverse events. T cell therapy is highly potent 
such that even normal tissues with low target antigen expression 
can become innocent bystanders. These unintended and unex-
pected toxicities to critical organs can be life threatening (110) 
and have limited the choice of certain targets for redirected T-cell-
based therapy (111). Additionally, T cells have been associated 
with severe, sometimes fatal, cytokine release. Cytokine release 
syndrome (CRS) occurs when extremely high levels of immune 

cells are activated thereby stimulating release of large amounts of 
inflammatory cytokines, leading to organ dysfunction and death. 
CRS is particularly seen with second- and third-generation CARs 
as well as bispecific antibodies (112), but can occur after antibody 
infusion as well as with other adoptive lymphocyte therapies. 
Corticosteroids are the mainstay of treatment, while anti-IL6R 
antibody can also be helpful (113).

Target Selection
Perhaps the most critical first step in designing cancer immu-
notherapy is identifying appropriate immunologic targets. A 
good immunotherapy target must be highly expressed on tumor 
tissues but not on normal tissues. Ideally, a good target will play 
a role in the underlying oncogenesis of the tumor, though this is 
not always required. Targets that meet these attributes are rare 
(81). An alternative approach has been to target markers that 
are highly expressed on cancers and expressed in the so-called 
non-vital tissues, such that targeting and loss of these normal 
cells are tolerated by the patient. Monoclonal antibody targeting 
of CD20, and CAR T cells and bispecific antibodies targeting 
CD19 are examples of this approach. Adding further difficulty 
to target selection is that they by necessity must be present on 
the surface of the cell for immune recognition, which limits the 
potential target list. In fact, of the 75 NCI consensus high value 
targets, two-thirds are internal antigens (81). The only way to 
target these internal antigens is through their peptides presented 
on the HLA; hence the description of such antibodies as TCR like. 
Less than 100 publications have been published on the discovery 
of such antibodies, but the best characterized are those against 
the RMFPNAPYL peptide of the Wilm’s tumor-1 (WT1) antigen 
presented on HLA0201 (114). However, this approach is limited 
by the restriction to specific HLA subtypes. Most pediatric sarco-
mas lack HLA expression (80), and among those that have it, only 
individuals with the specific restricted subtype would be sensitive 
to the immunotherapy. Efforts to mine gene expression databases 
for potential new antibody targets are promising but still in early 
stages; validation of these mRNA level exploratory analyses at the 
protein level will be critical (115, 116). Tables 1 and 2 list some of 
the pediatric sarcoma-specific targets, both MHC non-restricted 
(Table 1), and MHC restricted (Table 2), currently in preclinical 
and/or clinical development.

Future Directions

Sarcoma immunotherapy remains in its infancy. To date, while 
we have not seen the successes seen in other malignancies, there 
are glimpses of activity which suggest that immunotherapy could 
be an effective treatment modality. However, to fully realize that 
potential we believe that the following four areas must be care-
fully considered:

Target Discovery and validation
Given the narrow mutation landscape in sarcomas, and especially 
so among those with translocations, neoantigens derived from 
gene mutations are predicted to be rare. Translocation fusion 
sequences have remained difficult to target with T cells, or to be 
used as vaccines. Without neoantigens, even checkpoint blockades 
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TABLe 2 | MHC-restricted immunotherapy targets for pediatric sarcomas.

Target Tumor expression Comments Reference

NY-ESO-1 Synovial Sarcoma (70%) Cancer testis 
antigen, HLA-A1

(102, 117)

HER2/Neu Osteosarcoma (60%) (64)

STEAP (Six-
transmembrane 
epithelial antigen  
of prostate)

Ewing Sarcoma % expression  
data limited

(118, 119)

WT1 Rhabdomyosarcoma (100%) HLA-A1, A24,  
DP5, DR4

(120, 121)
Ewing sarcoma (50%)

PAX3-FKHR Alveolar rhabdomyosarcoma 
(90%)

HLA-B7 (122)

SYT-SSX1, 2 Synovial Sarcoma (100%) HLA-B7 (123)

Table adapted from Orentas et al. (116).

TABLe 1 | Cell surface targets for MHC non-restricted immunotherapy of 
pediatric sarcomas.

Target Tumor expression Normal  
expression

Comments

GD2 Osteosarcoma (90%) GD2+ neuronal 
tissue (peripheral 
sensory nerves)

Dinatuximab 
(Ch14.18) FDA 
approved for 
NB; trials in OS 
using hu3F8 and 
dinatuximab are 
planned.

Soft tissue sarcomas 
(varies)

HER2 Osteosarcoma DSRT Low-level lung 
expression

FGFR4 Rhabdomyosarcoma Expressed during 
muscle development

Glypican-3, -5 Rhabdomyosarcoma Rare outside 
embryonal tissues

FOLR1 Osteosarcoma, 
Rhabdomyosarcoma

Luminal cell  
mem-brane of some 
epithelial tissues

Table adapted from Orentas et al. (116).
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used at recommended dosage levels might not be effective. By 
default, differentiation antigens and tissue antigens deserve to 
be more carefully explored. These include the gangliosides GD2 
(124) and GD3 (65), ROR2 (125), HER2 (126, 127), B7-H3 (128), 
CSPG4 (129, 130), polysialic acid (131), and glypican 3 (132). All 
of these antigens have established antibodies ready for construc-
tion of CAR T cells or bispecific antibodies. Importantly, most of 
these antibodies have already been tested in humans with accept-
able toxicities. Considerations should also be given to novel engi-
neered forms such as bispecific antibodies to retarget T cells (66) 
or bispecific antibodies for multistep targeting to greatly improve 
therapeutic index (133). Given the early glimpses of response to 
IGF1R antibodies and a better understanding as to why tumors 
escape, the new generation of dual-specific antibodies for IGF1 
and IGF2 should be considered (56, 134).

Careful Patient Selection
The majority of clinical trials to date have shown that immuno-
therapy is generally not effective against large, bulky disease. Thus, 
it is imperative that the proper patient population is selected for 

clinical trials moving forward. For example, we are developing 
a phase II anti-GD2 immunotherapy protocol for osteosarcoma 
patients in second or greater remission, with the goal of target-
ing pulmonary minimal residual disease. This is based on our 
experience in OS patients treated on our phase I protocol where 
we found that patients with visible metastatic lesions progressed 
rapidly while those with minimal residual disease have shown 
increased time to progression compared to historical controls. 
It would appear that the clinical efficacy of immunotherapy for 
pediatric sarcoma can best be tested in clinical trials designed to 
treat patients after their overt disease burden has been reduced 
as much as possible.

Development of Combined Modality Regimens
To date, the majority of studies using single immunotherapy 
modalities have not demonstrated significant activity in solid 
tumors in general and in pediatric sarcomas in particular. 
However, rational combinations of new immunotherapies are 
being developed and will need to be carefully explored. Antibodies 
combined with immunomodulatory agents are the most mature 
of these combinatorial approaches. Anti-GD2 mAbs combined 
with GM-CSF or GM-CSF and IL-2 are effective against neuro-
blastoma (21, 63) with studies planned in osteosarcoma. While 
checkpoint inhibitors, for reasons described above, are unlikely 
to be of significant benefit when used alone in pediatric sarco-
mas, their combination with adoptive cell therapy or bispecific 
antibodies has the potential to enhance the efficacy of these T 
cell-based strategies. Additionally, preclinical studies suggest 
that prior radiotherapy can induce tumor neoantigen expression 
and increased effectiveness of checkpoint blockade, echoing the 
abscopal effect in the clinic (135). Studies exploring this strategy 
in adults are underway and may be warranted in children. T cells 
could also be combined with NK cells: MHC down regulation by 
the tumor cells as a means of escape from T cell killing should 
render these cells more susceptible to NK cell killing, which 
does not require MHC, but is instead inhibited by high MHC 
 expression (91).

Tolerance of increased Toxicity
This last point is perhaps the most controversial. However, 
historical precedent suggests that learning to manage toxicities 
associated with therapies can allow otherwise effective treat-
ments to be developed. Anti-GD2 immunotherapy is associated 
with significant infusional toxicities including severe pain; this 
pain side effect was completely unexpected when these mAbs 
were first used (136). Fortunately, rather than halting the 
development of these antibody treatments, ways to overcome 
the toxicities were developed and as a result, anti-GD2 immu-
notherapy is now proven effective in neuroblastoma and is in 
active trials in sarcoma patients. Similarly, it seems likely that 
newer immunotherapy treatments, especially combination 
therapies as suggested above, will have both predictable, as well 
as unexpected, and potentially severe side effects. However, an 
unwillingness to carefully explore and manage novel toxicities 
may limit the adoption of some potentially beneficial treat-
ments.  With checkpoint blockade, the autoimmune toxicity 
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seen shows that children do, in fact, have autoreactive T cells that 
will react with self if the “brakes” are sufficiently released. Since 
many tumors overexpress normal self antigens, it is plausible 
that “releasing the brakes” enough (by combining ipilimumab 
with nivolumab while pushing the dose of both) could allow an 
autoreactive T cell to target a protein on the tumor that would 
otherwise be tolerated by the immune system. The currently 
approved dose of ipilimumab for patients with melanoma, 
however, achieves the target trough concentration of 20  mcg/
mL, the level at which ipilimumab attains maximum CTLA-4 
blockade, in only 30% of patients (68), suggesting that increasing 
the dose could yield improved clinical benefit, if toxicities can be 
managed. Several clinical trials testing this hypothesis in adults 
are underway. Similarly, combination therapy with adoptive T 
cells and checkpoint blockade could have significantly increased 

toxicity, especially for on-target, off-tumor effects, such that 
appropriate target selection and clinical trial design to minimize 
these risks are critical.

Conclusion

Pediatric cancer immunotherapy continues to advance; we believe 
these advances will improve outcomes in patients who have not 
benefited from conventional therapy alone. Late toxicities remain 
a major challenge for those patients who underwent life saving 
chemotherapy and radiation therapy. Immunotherapy offers an 
opportunity to consolidate remission while reducing genotoxic 
therapy. We are cautiously optimistic that immunotherapy will 
improve not just survival but also the quality of life in children 
with sarcomas.
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