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Editorial on the Research Topic

Dynamic functioning of resting state networks in physiological and

pathological conditions, volume II

1. Introduction

Advanced neuroimaging techniques represent a valid tool to study brain physiology and

neural mechanisms in several pathological conditions such as neuropsychiatric disorders

(Spinosa et al., 2022), allowing to examine brain structural and functional changes (Cieri

and Esposito, 2018; Esposito et al., 2018; Cieri et al., 2020). This Research Topic is a

second volume of a previous Research Topic, now convening nine research articles based

on the current understanding of brain neuroimaging technique addressing theoretical and

methodological questions.

2. Neurodegenerative diseases: Mild cognitive
impairment and Alzheimer’s disease

Wang et al. explored the clinical role of structural and functional MRI in early diagnose of

Alzheimer’s Disease (AD) and amnestic MCI (aMCI), where fMRI can identify brain functional

abnormalities in the early stages of the disease. Combining the textural features of the amplitude

of low frequency fluctuation (ALFF) in the slow-frequency band and structural images in the

hippocampus, the authors investigated diagnostic performance of their approach for AD and

aMCI, using multimodal radiomics technique. Radiomics models based on structural images

in the hippocampus had a better diagnostic performance for AD compared with the models

using ALFF, while the latest model exhibited better discriminant performance for aMCI than the

structural approach.

Frontiers inNeuroscience 01 frontiersin.org
45

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1134113
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1134113&domain=pdf&date_stamp=2023-01-18
mailto:resposito1979@gmail.com
https://doi.org/10.3389/fnins.2022.1134113
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1134113/full
https://www.frontiersin.org/research-topics/32716/dynamic-functioning-of-resting-state-networks-in-physiological-and-pathological-conditions---volume
https://doi.org/10.3389/fnins.2022.970245
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Esposito et al. 10.3389/fnins.2022.1134113

3. Emotional disturbances and
psychiatric diseases

Allen et al. examined whether psychopathic traits are

associated with aberrant inter-network connectivity, intra-

network connectivity, and amplitude of fluctuations across

limbic and surrounding paralimbic regions among incarcerated

women. PCL-R Factor 1 scores (interpersonal/affective

psychopathic traits) were associated with increased low-

frequency fluctuations in executive control and attentional

networks, decreased high-frequency fluctuations in executive

control and visual networks, and decreased intra-network

functional connectivity in default network (DN). PCL-R Factor

2 scores (lifestyle/antisocial psychopathic traits) were associated

with decreased high-frequency fluctuations and DN, and both

increased and decreased intra-network functional connectivity in

visual networks.

Zhang et al. explored neuropathological mechanisms of

postpartum depression (PPD) through voxel-based degree

centrality (DC) analysis to explore intrinsic dysconnectivity

pattern of whole-brain functional networks in this clinical

condition. DC image, clinical symptom correlation, and seed-

based functional connectivity (FC) analyses were performed to

reveal the abnormalities of the whole-brain functional network in

PPD. Compared with healthy controls (HCs), patients exhibited

significantly increased DC in the right hippocampus and left

inferior orbitofrontal gyrus. In the seed-based FC analyses,

the PPD showed significantly decreased FC between the right

hippocampus and right middle frontal gyrus, between the right

hippocampus and left median cingulate and paracingulate gyri,

and between the left inferior orbitofrontal gyrus and the left

fusiform (FFG.L) compared with HCs. The authors provided

evidence of aberrant voxel-based FC within brain regions in PDD,

potentially helpful to better understand neural circuitry dysfunction

in these patients.

4. Other clinical conditions

4.1. Epilepsy

Qin et al. explored idiopathic generalized epilepsy and

particularly the dynamics and the causal relationship among

3–6Hz generalized spike-wave discharges and extensive altered

interactions in subcortical-cortical circuit, using rs-fMRI.

Their results showed that thalamus and precuneus were key

regions representing abnormal FC in subcortical-cortical circuit.

Moreover, the connectivity between precuneus and adjacent

regions had causal effect on the widespread dysfunction of the

thalamocortical circuit, and the connection between the striatum and

thalamus indicated the modulation role on the cortical connection

in epilepsy.

Li et al. focused their attention on neural mechanisms

underlying the alterations of thalamus in children with

generalized tonic-clonic seizures. They explored the temporal

properties of functional pathways connecting thalamus in

these patients. The findings of both increased and decreased

connectivity variability in the thalamo-cortical network

imply a dynamic restructuring of the functional pathways

connecting the thalamus in children with generalized

tonic-clonic seizures. These results contribute to extend the

understanding of the neural mechanism underlying this disorder

in children.

4.2. Rheumatoid arthritis

Fanton et al. explored time-varying changes in brain network

integration and segregation during pain over a disease-affected

area (joint) compared to a neutral site (thumbnail) in patients

with rheumatoid arthritis (RA). The authors quantified measures

of integration and segregation at multiple spatial scales, both at

the level of single nodes and communities (clusters of nodes),

finding that Participation Coefficient (PC) at the community level

was generally higher in patients compared to HCs during and after

painful pressure over the inflamed joint and corresponding site in

controls. This shows that all brain communities integrate more in

patients than in HCs for time points following painful stimulation

to a disease-relevant body site. Moreover, there was no specific

nodal contribution to brain network integration or segregation.

Altogether, this evidence suggests widespread and persistent changes

in network interaction in RA patients compared to HCs in response

to painful stimulation.

4.3. Kallmann syndrome

Di Nardo et al. investigated the dynamic spectral changes of

the sensorimotor network FC in Kallmann syndrome (KS) patients

with and without mirror movement (MM) symptom. Compared

to KS patients without MM and HCs, the sensorimotor brain

network (SMN) of patients with MM displayed significantly larger

spectral power changes in the slow 3 canonical sub-band and

significantly fewer transitions between state 1 (less recurrent) and

state 2 (more recurrent). This study shows that the presence of mirror

movement in this syndrome is associated with reduced spontaneous

transitions of the SMN between dynamic FC states and a higher

recurrence and an increased spectral power change of the high-

frequency state.

4.4. Pathological fatigue

Skau et al. recruited individuals suffering from pathological

fatigue after mild traumatic brain injury (mTBI). They used

functional near-infrared spectroscopy to assess hemodynamic

changes in the frontal cortex. The participants underwent to a

session before and after an experiment involving cognitive tasks,

including the Digit Symbol Coding test. The authors have shown

a Group vs. Time interaction with a post-hoc test revealing

that patients developed higher modularity toward the end of

the cognitive test session. This work helps to identify how

functional networks differ under pathological fatigue compared

to HCs.
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5. Brain physiology and methodological
approaches

Vazquez-Trejo et al. have used connectotyping, which efficiently

models functional brain connectivity to reveal the progression

of temporal brain connectivity patterns in task fMRI. They

found significantly different dynamic connectivity patterns during

word vs. pseudoword processing between the Fronto-Parietal and

Cingulo-Parietal Systems, that are involved in cognitive task

control, memory retrieval, and semantic processing. The findings

support the presence of dynamic changes in functional connectivity

during task execution and that such changes can be characterized

using connectotyping.
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Causality Analysis to the Abnormal
Subcortical–Cortical Connections in
Idiopathic-Generalized Epilepsy
Yun Qin1,2†, Sipei Li3†, Dezhong Yao1,2 and Cheng Luo1*
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of Electronic Science and Technology of China, Chengdu, China, 2 Sichuan Institute for Brain Science and Brain-Inspired
Intelligence, Chengdu, China, 3 Glasgow College, University of Electronic Science and Technology of China, Chengdu, China

Idiopathic generalized epilepsy (IGE) was characterized by 3–6 Hz generalized spike-
wave discharges (GSWDs), and extensive altered interactions in subcortical-cortical
circuit. However, the dynamics and the causal relationship among these interactions
were less studied. Using resting-state functional magnetic resonance imaging (fMRI)
data, the abnormal connections in the subcortical-cortical pathway in IGE were
examined. Then, we proposed a novel method of granger causal analysis based on
the dynamic functional connectivity, and the predictive effects among these abnormal
connections were calculated. The results showed that the thalamus, and precuneus
were key regions representing abnormal functional network connectivity (FNC) in the
subcortical-cortical circuit. Moreover, the connectivity between precuneus and adjacent
regions had a causal effect on the widespread dysfunction of the thalamocortical circuit.
In addition, the connection between the striatum and thalamus indicated the modulation
role on the cortical connection in epilepsy. These results described the causality of the
widespread abnormality of the subcortical-cortical circuit in IGE in terms of the dynamics
of functional connections, which provided additional evidence for understanding the
potential modulation pattern of the abnormal epileptic pathway.

Keywords: idiopathic generalized epilepsy, dynamic functional networks, causal relationship, subcortical-cortical
circuit, modulation

INTRODUCTION

Idiopathic generalized epilepsy (IGE) was typically characterized by 3–6 Hz generalized spike-wave
discharges (GSWDs). The mainstream concept believed that the burst of GSWD was related to the
inter-regional interactions in the subcortical-cortical circuit (Blumenfeld, 2003, 2005), involving the
abnormal connectivity between the thalamus and cortex, and also the altered connectivity among
the prefrontal and sensorimotor area (Szaflarski et al., 2010; Qin et al., 2019). Invasive animal
studies have found that there was a large-scale burst of rhythmic oscillations in the thalamus during
epileptic discharge (Avanzini et al., 2000; Timofeev and Steriade, 2004). Moreover, it was found
that GSWDs were time-locked with BOLD activation of the thalamus and cortical deactivation,
especially in the frontal cortex (Salek-Haddadi et al., 2003). In addition, even in the resting-
state without GSWD, extensive abnormal functional networks and connections between networks
were found in IGE, such as the default mode network (DMN), basal ganglia, and sensorimotor
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network (SMN) (Luo et al., 2011, 2012; Jiang et al., 2020;
Parsons et al., 2020). However, the causal relationship among
these abnormal connections was less studied, which may provide
evidence for understanding the modulation mechanism within
the epileptic pathway.

Regarding the origin of generalized epileptic discharge,
previous studies have proposed some different discharge model
hypotheses, with two representative concepts of the cortical
focus theory and the thalamic pacemaker theory. The hypothesis
of cortical focus theory assumed that epileptic discharges
originated in a certain local area of the cortex and then
spread through the interaction of subcortical structures with
the cortex, thus recruiting specific neuronal networks into
typical oscillatory behavior (Meeren et al., 2005; Stefan and
Lopes da Silva, 2013). Under this concept, a general comment
about the thalamus burst, was that a sustained flow of GSWD
signals propagated from cortex to thalamus in a couple
of hundreds of milliseconds, and triggered the oscillation
entrainment in the cortical-thalamus-cortical loop. On other
hand, the hypothesis of thalamic pacemaker suggested the
reticular thalamic nucleus contained the pacemaker cells for
the thalamic clock, imposing its rhythm to the cortex, then
resulting to the spread of discharge activity in the cortex (Buzsaki,
1991; Avanzini et al., 1992). Moreover, studies have shown
that interference with thalamus activity through stimulation can
promote the termination of epileptic discharge (Berenyi et al.,
2012; Paz et al., 2013; Burdette et al., 2020), indicating that
the thalamus not only played an important role in epileptic
seizures and transmission, but also modulated the termination
of epileptic discharge. Besides the animal and model analysis,
we think investigating the predictive relationship among the
abnormal connections based on the dynamic functioning in the
resting-state in thalamocortical circuit can provide additional
evidence for understanding the origin and propagation the
epileptic activity.

Other structures under the cortex, such as the striatum
and cerebellum, also played an important role in regulating
epilepsy. Some animal studies have shown that the striatum,
whose fibers connected to the substantia nigra reticulum, was
involved in the regulation of epileptic discharges (Turski et al.,
1989; Deransart et al., 2000). Previous EEG–functional magnetic
resonance imaging (fMRI) studies have shown that the putamen
and caudate nucleus was closely related to epileptic discharges,
and that the increase of epileptic discharges was accompanied
by the enhancement of the internal connectivity within the basal
ganglia network (BGN) (Luo et al., 2012; Moeller et al., 2013;
Bartolini et al., 2014). It was generally assumed that the regulation
of the GSWD of epilepsy by the striatum was achieved through
its contribution to the thalamocortical circuit. On the other
hand, the cerebellum was considered to be a potential regulator
of epileptic discharge activity. It has been found that direct
stimulation of the cerebellar cortex could effectively destroy the
thalamus-cortex oscillations and thereby inhibit the activity of
GSWD (Berenyi et al., 2012). Therefore, probing how these
subcortical regions, i.e., striatum and cerebellum interacted with
the epileptic circuit would be helpful for the modulation strategy
of the potential clinical intervene.

In this study, we investigated the altered subcortical-
cortical pathway of IGE, and the causality relationship among
these abnormal connections was examined using the dynamic
functional of the resting-state network. The dynamic interactions
within the abnormal epileptic networks may provide evidence for
the origin and modulation of epileptic activity.

MATERIALS AND METHODS

Participants
In total, seventy-eight patients with IGE (40 women; mean age:
23.8 years) including 32 patients with juvenile myoclonic epilepsy
(JME) and 46 patients with generalized tonic–clonic seizures
(GTCSs) were recruited in this study. Diagnosis and classification
was made by neurologists in accordance with the International
League Against Epilepsy (ILAE) guidelines (Fisher et al., 2017;
Scheffer et al., 2017). Routine CT and MRI examinations were
conducted and no structural abnormality was found in all the
epilepsy patients. Clinical information was showed in Table 1. In
total, 60 healthy controls (29 women; mean age: 25.7 years) with
no history of psychiatric or neurologic disorders participated in
the study. Written informed consent according to the Declaration
of Helsinki was obtained from all the participants. This study was
approved by the Ethics Committee of the University of Electronic
Science and Technology of China (UESTC).

Magnetic Resonance Imaging
Acquisition
In this study, the MRI data of all the participants were
recorded from the 3T MRI scanner (Discovery MR750, GE)
with an eight channel-phased array head coil in UESTC.
Resting-state fMRI data were acquired using a gradient-echo
echo planar imaging sequences (FOV = 24 cm × 24 cm,
FA = 90◦, TR / TE = 2,000 ms/30 ms, matrix = 64 × 64,
slice thickness/gap = 4 mm/0.4 mm). A total of 255 volumes
were collected in the resting-state scan for each participant.
During fMRI scanning, all the participants were instructed to
keep still and close their eyes without sleeping. In addition,
high-resolution T1-weighted images were also acquired using
a 3D fast spoiled gradient echo (T1-3D FSPGR) sequence
(FOV = 25.6 cm × 25.6 cm, FA = 9◦, matrix = 256 × 256,
TR / TE = 5.936 ms/1.956 ms, slice thickness = 1 mm, no
gap, 152 slices).

TABLE 1 | Summary demographic of patients and healthy controls.

HC Patients χ2 t-test

n=60 n=78 p value

Gender (Male/Female) 31/29 38/40 0.12

Seizure type (JME/GTCS) − 32/46 −

Mean Std Mean Std

Age(year) 23.8 2.6 25.7 9.6 0.474

Seizure duration − − 6.75 6.45 − −

Age at seizure onset − − 18.95 10.4 − −
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Functional Magnetic Resonance Imaging
Data Pre-processing
fMRI data were pre-processed using SPM121 and NIT toolboxes2

(Dong et al., 2018). The first five volumes were discarded from
all fMRI scans for the magnetization equilibrium. The remaining
volumes were slice-timing corrected using the first slice as
reference, and spatially realigned to the mean of volumes within
subject to correct head motion. We checked the head motion
parameters after processing, the head motion of all participants
was less than 2 mm translation and less than 2◦rotation in
any direction. Individual T1 images were co-registered to the
functional images, and segmented into gray matter, white matter,
and cerebrospinal fluid, and then normalized to the Montreal
Neurologic Institute (MNI) space. Then, the functional images
were spatial normalized based on T1 transformation matrix,
resampled to 3 mm × 3 mm × 3 mm voxels, and spatially
smoothed using a 6 mm full-width half maximum (FWHM)
Gaussian kernel. Nuisance signals (12 motion parameters, linear
drift signal, and also mean white matter and cerebrospinal fluid
signals) were regressed out for the fMRI data to reduce the effect
of potential artifacts.

Causality Analysis to the
Subcortical–Cortical Pathways in
Idiopathic Generalized Epilepsy
This study aimed to investigate the alteration of subcortical–
cortical pathways in IGE and the causality among these
alterations. The main diagrams of this study was showed in
Figure 1, including the following parts: (1) the regions of interest
(ROIs) were extracted using ICA to the fMRI data, with the
independent spatial patterns and the temporal courses being
obtained; (2) we constructed the static and dynamic functional
network connectivity (FNC) among ROIs; (3) according to
the abnormal static FNC in IGE and their dynamic courses
across the slide time windows, granger causality analysis (GCA)
was performed to examine the causal relationship among these
abnormal connections.

Extraction of Regions of Interest in
Subcortical–Cortical Pathways
Spatial ICA was performed to the group fMRI, and the functional
networks identified by the ICs were obtained. Here, the number
of ICs was 100 and determined according to the previous studies.
In ICASSO,3 the infomax algorithm was repeated 30 times to
estimate the ICs. Then, dual regression approach was used in
the back reconstruction to get the individual spatial maps and
time courses. In this study, we focused on the subcortical and
some frontal regions according to the previous studies, therefore,
we selected the components of DMN, SMN, BGN, the salience
network (SN), and also cerebellum network, each of network
consisting of a few components, that is the ROIs. The MNI
coordinates for the selected ROIs were shown in Supplementary

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.neuro.uestc.edu.cn/NIT.html
3http://research.ics.tkk.fi/ica/icasso

Table 1. Then, the temporal coursed was band-pass filtered (0.01–
0.1 Hz).

Static and Dynamic Functional Network Connectivity
Analysis
The static FNC and dynamic FNC was constructed among ROIs.
Static FNC was computed by the Pearson’s correlation of the time
courses between any two selected components. Based on the static
FNC, we calculated the degree of FNC nodes by summarizing
the weights of the connections of each node. Dynamic FNC
was also computed using correlations between windowed time-
courses of different ROIs. Here, the length of the slide window
was 50TR, with the sliding step width 1TR. The selection of the
window length was constrained by the minimum frequency of
the BOLD signal (fmin = 0.01 Hz). Then, the variation of the
weights for the dynamic FNC in the time course was calculated,
representing the dynamics of the connections in the subcortical–
cortical circuit.

Causality Analysis of Functional Network
Connectivitys
To detect the abnormal connections in IGE, two-sample t-test
of the static FNC was performed. Based on the dynamic FNC
weights, GCA was conducted to examine the causal relationship
among these abnormal connections. Here, we used the residual-
based bivariate GCA, and the main calculations were as follows:

First, autoregression models were constructed for two time
series X and Y, which were the dynamic FNC weights of two
abnormal connections in IGE.

Xt =

p∑
k = 1

bkX(t−k) + εt Yt =

p∑
k = 1

b′kY(t−k) + ε′t (1)

Here, εt and ε′t were the residual of the autoregressive model,
p was the order of model. The variance of the two models can be
expressed as:

R1 = var(εt) T1 = var(ε′t) (2)

Then, the regression models of X and Y were combined, that
is:

Xt =

p∑
k = 1

AkX(t−k) +

p∑
k = 1

BkY(t−k) + ut

Yt =

p∑
k = 1

A′kY(t−k) +

p∑
k = 1

B′kX(t−k) + u′t (3)

Here, ut and u′t is the residual of the combined regression
model, and their variance can be expressed as:

R2 = var(ut) T2 = var(u′t) (4)

The influence of X on Y can be described as Fx→y = lnR1
R2

and Fy→x = lnT1
T2 . Therefore, when the past values of X has

a predictive effect on the current value of Y, Fx→y will be
significantly larger than zero, that is, the directed connection
from X to Y. Considering the non-normality of the distribution
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FIGURE 1 | The diagram of this study to the detect the causality in subcortical–cortical pathways in IGE. First, the regions of interest (ROIs) were extracted using
ICA, and then we constructed the static and dynamic functional network connectivity (FNC) among ROIs; furthermore, according to the abnormal static FNC in IGE
and their dynamic courses across the slide time windows, granger causality analysis (GCA) was performed to examine the causal relationship among these
abnormal connections.

of Fx→y, we used the transformed F′x→y, as the alternative
F′x→y and F′y→x representing an approximate normal distribution
according to the previous studies, and the order p here was
selected as 1 (Zang et al., 2012).

F′x→y =

[(
t − p

)
Fx→y −

(
p− 1

)
3

]1/2

F′y→x =

[
(t − p)Fy→x − (p− 1)

3

]1/2
(5)

Finally, F′x→y and F′y→x was z-scored at the individual level
and then statistically analyzed using one-sample t-test (statistical
threshold P < 0.01).

RESULTS

Alteration of Functional Network
Connectivity in Idiopathic Generalized
Epilepsy
According to the previous studies, we selected the components
in DMN, SMN, BGN, SN, and cerebellum from 100 ICs
obtained in ICA analysis. Thus, each network was constituted
of a few components, i.e., the ROIs. Here, DMN included the
frontal_sup_medial area, the angular, cingulum_post (PCC), and
two precuneus components. SMN included bilateral post-central
areas, pre-central, paracentral_lobule, and supp_motor_area
(SMA). BGN was comprised of the thalamus, putamen, and
caudate. SN involved the left and right frontal_mid area, the
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FIGURE 2 | The ROIs extracted from the ICA processing of fMRI data,
including precuneus, angular, PCC, frontal_sup_medial areas in DMN; bilateral
post_central, pre_central, paracentral_lobule, and SMA in SMN; thalamus,
putamen, and caudate in BGN; frontal_mid, ACC, MCC, and insula in SN; and
cerebellum regions.

cingulum_ant (ACC), cingulum_mid (MCC), and insula. The
cerebellum network included the cerebellum posterior lobe and
the declive. The maps of these five networks were illustrated in
Figure 2. The central coordinates of the ROIs were shown in
Supplementary Table 1.

After the ROIs of the five networks were selected, the static
FNC and dynamic FNC was constructed among ROIs. Then,
two-sample t-test was conducted to the static FNC, and the
difference of FNC between IGE and HC was shown in Figure 3
(P < 0.001). In between-group comparisons, age and gender
were regressed out as the covariates. The results showed that
thalamus, precuneus were the key nodes representing significant
alteration in the subcortical–cortical circuit in epilepsy. Increased
connectivity between thalamus and striatum, as well as the insula,
and increased connectivity between precuneus and motor area
was found in IGE comparing to HC. Decreased connectivity
between the thalamus and frontal area, between precuneus and
the frontal area, and also the thalamus/striatum was found in
IGE. In addition, striatum showed increased connectivity with
insula and cerebellum in epilepsy brain. Moreover, we compared

the degree of FNC nodes between IGE and HC, and the thalamus,
precuneus, ACC and post-central areas had decreased static FNC
in IGE (P < 0.05) (Figure 3B).

Besides, comparison of static FNC was also performed
between two epilepsy groups, i.e., JME and GTCS. Comparing
to GTCS, JME showed decreased connectivity in thalamus-
precuneus, and thalamus-frontal connections. The results may
be related to the longer epilepsy duration of these patients with
JME in this study.

Causality Among the Abnormal
Functional Network Connectivitys in
Idiopathic Generalized Epilepsy
After the abnormal connections of static FNC in the epilepsy
group were labeled, the dynamic changes of these connections
were extracted according to the weights of the dynamic FNC
matrices. The variation of the dynamic FNC showed that the
connections of thalamus-frontal_mid, thalamus-precuneus,
precuneus-frontal_mid, and frontal_mid-post_central had
increased dynamics in IGE (P < 0.05) (Figure 3C). Then,
the weights of the dynamic FNC were taken into the GCA
processing. The directed GCA connections with statistical
significance at the group level (P < 0.01) were shown in Figure 4.
Hierarchical causal relationship was demonstrated between
the connections. The connections between precuneus and
nearby cortex, i.e., SMA and MCC, had predictive effects on the
widespread connections between thalamus and frontal regions.
Moreover, these decreased connections between thalamus and
multiple cortexes also had predictive effects on the connectivity
between frontal and other cortex, such as the precuneus and
post-central area. The increased connectivity between thalamus
and caudate had bidirectional causal relationship with the
decreased frontal-precuneus connection.

To sum up, patients with epilepsy had increased cerebellum-
striatal-thalamic connections and widespread decrease in
thalamocortical circuits. The causal relationship between these
abnormal connections was summarized in Figure 5. Particularly,
connectivity between precuneus and adjacent regions can
predict the widespread dis-coupling in thalamocortical circuit.
Moreover, the coupling between thalamus and the striatum had
a two-way causal effect on the inter-cortical connectivity.

DISCUSSION

This study investigated the subcortical–cortical pathway in
IGE, and showed that thalamus, precuneus were key nodes
representing abnormal functional connectivity in subcortical–
cortical circuit. Furthermore, the causality relationship among
these abnormal connections in IGE was examined. It was
shown that the increased connections between precuneus and
the adjacent regions had the causal effect on the widespread
decreased connections in thalamocortical circuit. In addition, the
two-way causal effect of the connection between the thalamus
and the striatum on the cortical connection indicated the
modulation role of subcortical circuit in epilepsy.
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FIGURE 3 | (A) Abnormal FNCs in IGE. This figure contained regions with significant alteration of FNC. The red lines represented the enhancement of connections in
IGE and the blue lines represented the decrease of FNCs in IGE. (B) The degree of the static FNC nodes in IGE and HC, and significant decreased degree of
thalamus, precuneus, ACC and post_central area was found in IGE. (C) The variation of dynamic FNCs in IGE and HC, and increased variation was found in
thalamocortical and cortical–cortical circuit.

Numerous studies have shown that there were abnormalities
in a wide range of functional connections in IGE (Moeller
et al., 2008; Vollmar et al., 2011; Jiang et al., 2018). Altered
interactions in the subcortical–cortical and corticocortical
circuit were thought to play an important role in the origin
and propagation of epileptic activity (Luo et al., 2011;
Benuzzi et al., 2012; Conradsen et al., 2013). The present
study provided further evidence that the thalamus and
precuneus were the key nodes of the abnormal subcortical–
cortical circuit in IGE. A lot of decreased connections
were found between thalamus and the cortical areas,
involving the frontal and precuneus area. Meanwhile
the connectivity between the frontal and precuneus area
was also impaired. Moreover, the node degree of FNCs
gave further evidence that thalamus and precuneus were
important areas showing decreased connectivity in epilepsy.
Furthermore, in the temporal dimension, the time-varying
dynamics of the connections in thalamus-frontal_mid,
thalamus-precuneus, precuneus-frontal_mid, and also the
frontal_mid-post_central were significantly increased in
IGE. The spatial dysconnectivity and the altered FNC
dynamics in thalamocortical circuit in epileptic brain have
been reported in many studies (O’Muircheartaigh et al.,
2012; Kim et al., 2014; Zhang et al., 2018; Qin et al.,
2020b). Previous studies have demonstrated the role of
thalamus in leading in initiating and maintaining the

epileptic activity, which may be involved early or late in
the discharge (Tyvaert et al., 2009; Martin-Lopez et al.,
2017). In addition, the striatum-thalamic-cortical circuit
was considered to be the key circuit in the modulation of
epileptic discharges (Paz et al., 2013). In the current study,
intensive connectivity was found within BGN network, as
well as between BGN nuclei and other brain regions, which
implied the basal ganglia providing an endogenous control of
thalamocortical SWDs.

According to the hypothesis of generalized epileptic discharges
(Meeren et al., 2005), the epileptic discharge may originate
from the focal area and the propagation involved abnormal
cortical and subcortical interactions. In this study, the predictive
relationship among these abnormal connections in epileptic
brain was investigated using the mode-free granger causal
analysis, which did not depend on the assumptions about
the directions of the processes. The connections between
precuneus and nearby cortex, i.e., SMA and MCC, had predictive
effects on the widespread connections between thalamus and
frontal regions. The precuneus has been reported to be
involved in epileptic discharge network, with distinct activity
changing within seconds before the discharge onset (Vaudano
et al., 2009; Bai et al., 2010). Causal analysis showed that
the precuneus gated the discharge activity in thalamocortical
network, and was the region with the most occurrence of
initial spikes and slow waves comparing to the thalamus and

Frontiers in Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 9259681213

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-925968 June 25, 2022 Time: 14:15 # 7

Qin et al. Causal Connections in IGE

FIGURE 4 | Causality among the abnormal FNCs in IGE. Each bounded
sub-graph in the figure is one abnormal connection in IGE, with the yellow
sub-graph denoting the increased connection, and the blue sub-graph
denoting the decreased connection in IGE. The arrows denoted the predictive
directions among the connections.

FIGURE 5 | The summarization of the causality in epileptic circuit.

frontal area (Lee et al., 2014). Also, precuneus has been
shown the strongest connectivity strength before epileptic
discharges, and the increased connectivity between precuneus

and the nearby cortex was found before discharges (Qin et al.,
2020a). Therefore, this study demonstrated the contribution
of the connectivity between precuneus and the motor-related
area to the widespread dysfunction of thalamocortical circuit,
which implied that the hyperexcitability and hyperconnectivity
of precuneus may be one important trigger of epileptic
discharges, thus, resulting to the wide dysconnectivity in
thalamocortical circuit and the following altered connectivity
between cortical areas.

In one of our previous study, we detected the synchronous
network during the stage of epileptic discharges, and found the
connectivity within frontal areas and between frontal–parietal
areas was the main network pattern after the discharge onset
(Qin et al., 2020a). Also, extensive signal enhancement in bilateral
frontal regions was found both at discharge initiation and after
discharge in IGE (Bai et al., 2010). In this study, the frontal areas
were directly involved in the dysconnectivity of thalamocortical
circuit and corticocortical interaction, which indicated the role of
thalamus and frontal areas in propagation of epileptic discharges.
In addition, it was interesting that the increased connectivity
between thalamus and caudate had bidirectional causal effect
on the decreased frontal–precuneus connection. Previous studies
have shown that the circuit of striatum-thalamus modulated
the cortical interactions in epileptic brain (Deransart et al.,
2000). It was suggested that the modulation of BGN may be
associated with the enhanced integration within BGN regions,
i.e., the connectivity between striatum and thalamus, and this
modulation effect on the inter-cortical connectivity may uncover
the potential intervene mechanism of the deep brain stimulation
in epileptic brain.

To re-test the stability of the causal analysis, we also conducted
the multivariate GCA to describe the directed causal effect from
this seed connection to the other connections, as well as the
reverse impact intensities from other connections to this seed
connection. The results showed similar directed patterns with the
bivariate GCA, including the predictive effect from precuneus-
related connections to the thalamocortical connections, and then
to the cortical–cortical connections. Moreover, much extensive
effects were found from the striatum-thalamus to both the
thalamocortical and the cortical–cortical connections. The results
were shown in Supplementary Figure 1.

To sum up the results, we concluded the causal relationship
among the abnormal functional connectivity in epileptic brain,
which described the trigger role of precuneus with its extensive
hyperconnectivity, and the widely distributed dysconnectivity
of thalamocortical circuit, and also the following alteration
of frontal and motor-related connectivity. This causality in
epileptic circuit provided additional evidence for the theory
of epileptic origin and propagation on the level of macro
functional connectivity. However, the main limitation of
this study is that the causal relationship of the abnormal
connectivity was based on the resting-state data rather than the
discharging state. Therefore, the result provided the potential
modulation pattern in terms of the epileptic activity, and the
inference of the epileptic propagation circuit in this study
was urgently needed to test by the physical stimulation and
clinical evaluation.
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CONCLUSION

This study investigated the subcortical–cortical pathway in IGE,
and showed that thalamus, precuneus were key regions of the
abnormal FNC in epileptic brain. Furthermore, the causality
analysis among these abnormal connections demonstrated
the predictive effect of precuneus on the widely distributed
thalamocortical dysconnectivity. In addition, the increased
connectivity between thalamus and the striatum indicated the
modulation role of subcortical circuit on the cortical connection
in epilepsy. These results provided additional evidence for the
widespread abnormality in epilepsy brain based on the dynamics
of functional connections, and the predictive relationship in the
subcortical–cortical circuit enlightened the theory of epileptic
origin and propagation.
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Postpartum depression (PPD) is a major public health concern with significant
consequences for mothers, their children, and their families. However, less is
known about its underlying neuropathological mechanisms. The voxel-based degree
centrality (DC) analysis approach provides a new perspective for exploring the intrinsic
dysconnectivity pattern of whole-brain functional networks of PPD. Twenty-nine patients
with PPD and thirty healthy postpartum women were enrolled and received resting-
state functional magnetic resonance imaging (fMRI) scans in the fourth week after
delivery. DC image, clinical symptom correlation, and seed-based functional connectivity
(FC) analyses were performed to reveal the abnormalities of the whole-brain functional
network in PPD. Compared with healthy controls (HCs), patients with PPD exhibited
significantly increased DC in the right hippocampus (HIP.R) and left inferior frontal orbital
gyrus (ORBinf.L). The receiver operating characteristic (ROC) curve analysis showed that
the area under the curve (AUC) of the above two brain regions is all over 0.7. In the seed-
based FC analyses, the PPD showed significantly decreased FC between the HIP.R
and right middle frontal gyrus (MFG.R), between the HIP.R and left median cingulate
and paracingulate gyri (DCG.L), and between the ORBinf.L and the left fusiform (FFG.L)
compared with HCs. The PPD showed significantly increased FC between the ORBinf.L
and the right superior frontal gyrus, medial (SFGmed.R) compared with HCs. Mean FC
between the HIP.R and DCG.L positively correlated with EDPS scores in the PPD group.
This study provided evidence of aberrant DC and FC within brain regions in patients with
PPD, which was associated with the default mode network (DMN) and limbic system
(LIN). Identification of these above-altered brain areas may help physicians to better
understand neural circuitry dysfunction in PPD.

Keywords: postpartum depression, voxel-based degree centrality, seed-based functional connectivity, fMRI,
receiver operating characteristic (ROC) curve analysis
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INTRODUCTION

Postpartum depression (PPD) is a common but complex
condition that affects approximately 10–20% of new mothers and
has detrimental effects on mothers, infants, and their families
(Nguyen et al., 2019). The risk of maternal suicide, infant
abuse, and infanticide are all elevated among mothers with PPD
(Lee and Chung, 2007). PPD further has a long-term negative
impact on the cognitive, emotional, and behavioral development
of children (Halligan et al., 2007). Due to the risks posed to
the mother and the infant, the mother with PPD needs early
diagnosis and treatment. Understanding the changes of PPD in
brain structure, function and metabolism will help us to develop
early screening, diagnosis, and targeted treatment techniques.

Resting-state functional magnetic resonance imaging (rs-
fMRI) has been used to detect spontaneous neural brain
activity in PPD using the amplitude of low-frequency fluctuation
(ALFF) analysis (Deligiannidis et al., 2013, 2019; Chase et al.,
2014) or dynamic ALFF (Cheng et al., 2022b), regional
homogeneity (ReHo) analysis (Xiao-juan et al., 2011), voxel-
mirrored homotopic connectivity (Zhang et al., 2020), dynamic
or static functional connectivity (FC) (Cheng et al., 2022b),
functional connectivity density (FCD) (Cheng et al., 2021), and
functional connectivity strength (FCS) (Cheng et al., 2022a).
Compared with healthy controls (HCs), mothers with PPD
showed significantly increased ReHo in the posterior cingulate
and medial frontal gyrus and decreased ReHo in the temporal
gyrus (Xiao-juan et al., 2011). The depressed mothers also
showed reduced connectivity among the anterior cingulate cortex
(ACC), amygdala, hippocampus, and dorsolateral prefrontal
cortex, between the corticocortical and corticolimbic regions
(Deligiannidis et al., 2013), between the posterior cingulate
cortex (PCC) and amygdala (Chase et al., 2014), and between
the dorsomedial prefrontal cortex (dmPFC) and the precuneus,
posterior cingulate cortex, and supramarginal gyrus/angular
gyrus regions (Deligiannidis et al., 2019). However, they showed
increased connectivity between dmPFC and the rest of the
default mode network (DMN) (Deligiannidis et al., 2019).
Decreased voxel-mirrored homotopic connectivity values in the
bilateral dmPFC, dorsal anterior cingulate cortex (dACC), and
orbitofrontal cortex were observed in patients with PPD (Zhang
et al., 2020). Mothers with PPD exhibited increased static FC
(sFC) between the subgenual anterior cingulate cortex (sgACC)
and ventral anterior insula and disrupted sFC between the sgACC
and middle temporal gyrus. The changes in dynamic FC between
the sgACC and superior temporal gyrus could differentiate PPD
and HCs (Cheng et al., 2022b). Patients with PPD showed
specifically weaker long-range FCD in the right lingual gyrus
(LG.R), functional couplings between LG.R and dmPFC, and left
precentral gyrus, and specifically stronger functional coupling
between LG.R and right angular. Moreover, the altered FCD
and resting-state FC were closely associated with depression
and anxiety symptoms load (Cheng et al., 2021). The PPD
group showed specifically higher FCS in right parahippocampus,
and perceived social support mediated the influence of FCS in
the right cerebellum posterior lobe on depression and anxiety
symptoms (Cheng et al., 2022a). These studies can help clarify

how PPD may affect a mother’s baseline brain activity at rest and
provide a more comprehensive understanding of neural circuitry
dysfunction in mothers with PPD.

The above studies focus on regional functional connectivity or
analyze neural networks between selected brain regions based on
a prior assumption (Deligiannidis et al., 2013, 2019). To better
understand the changes in neural circuitry in PPD, we employed
degree centrality (DC) to measure the global connectivity at the
voxel level. DC is a new emerging reliable and compelling graph-
based analysis method (Xia and He, 2017), which can identify
that the voxels showed altered direct connections to all other
voxels with high sensitivity, specificity, and reproducibility. It
does not depend on the selection of brain regions based on prior
assumptions (Bullmore and Sporns, 2009). Degree centrality
(DC) has been applied to brain network research, and its
abnormalities have been found in various mental disorders, such
as schizophrenia (Li X. et al., 2019), major depressive disorder
(Sheng et al., 2018), bipolar disorder (Deng et al., 2019), multiple
sclerosis (Eijlers et al., 2017), Alzheimer’s disease (AD) (Guo
et al., 2016), epilepsy (Ren et al., 2019), and Parkinson’s disease
(Li M. et al., 2019). However, the DC analysis cannot provide
detailed information regarding the connectivity between a voxel
and the particular regions that were changed. In this study, we
further conducted a seed-based FC analysis using the regions with
high DC values as seeds to comprehensively explore the intrinsic
abnormal connectivity of the whole-brain functional network.
We tested the following hypotheses: (1) the PPD group showed
abnormal DC in several brain regions compared with HCs; (2)
the alterations of DC would be related to clinical symptoms; and
(3) the brain regions with abnormal DC showed the aberrant FC
with other brain regions.

MATERIALS AND METHODS

Participants
The ethics committee of the Shandong Second Provincial General
Hospital approved this study, and all participants provided
written informed consent. Twenty-nine right-handed patients
with PPD were recruited from the Department of Obstetrics
of Shandong Second Provincial General Hospital and the
Department of Obstetrics of the 960th Hospital of the PLA
Joint Logistics Support Force. Two experienced senior associate
chief physicians of neurology confirmed their diagnoses using
the Structured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition (DSM-V) and Chinese
Classification and Diagnostic Criteria of Mental Disorders, 3rd
edition (CCMD-3). Inclusion criteria for patients were as follows:
(a) their age ranged from 21 to 38 years, in the fourth week
after delivery; (b) they were current first-episode, treatment-
naive patients with PPD; (c) they had an Edinburgh postpartum
depression scale (EPDS) score =12; (d) they had no other medical
or mental illness history, (e) they were not substance abusers or
substance dependent; (f) there were no contraindications of an
MR examination; and (g) there were no organic abnormalities for
MRI routine series. The EPDS scale was assessed in 1 h before the
image acquisition.
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A total of thirty right-handed, age-matched healthy
postpartum women were recruited from the department of
obstetrics. Inclusion criteria for the healthy postpartum group
were as follows: (a) they were aged from 21 to 38 years and in
the fourth week after delivery; (b) they did not have a current
or previous history of depressive episodes; (c) their EDPS score
was<3; (d) they had no other medical or mental illness history;
(e) there were no substance abusers or substance dependent; (f)
there were no contraindications of the MR examination; and (g)
there were no organic abnormalities for the MRI routine series.

Image Acquisition
All brain imaging data were acquired on a 3.0 T MR
system (Discovery MR750, General Electric, Milwaukee, WI,
United States) with a standard eight-channel head coil. During
scanning, all subjects were instructed to lie still and awake, close
their eyes, and breathe steadily. Special nonmagnetic foam pads
were used to fix the head and minimize head movement.

High-resolution structural T1-weighted scan (Three-
dimensional Brain Volume, 3D BRAVO) was performed with
the following parameters: time repetition (TR) = 8.2 ms,
time echo (TE) = 3.2 ms, flip angle = 12◦, field of view
(FOV) = 240 mm × 240 mm, slices = 115, voxel size = 1 mm,
and thickness = 1.0 mm. Resting-state BOLD MR images
were acquired with the following parameters: TR = 2,000 ms,
TE = 30 ms, flip angle = 90◦, FOV = 240 mm × 240 mm,
resolution = 64 × 64, thickness = 4.0 mm, no interspace,
slices = 41, gradient echo-planar volumes = 200, and duration
was 6 min 40 s. In addition, T1 and T2-weighted images were
collected to exclude anatomic abnormality and brain diseases
for each subject.

Functional Image Preprocessing
The fMRI data preprocessing was conducted using the Data
Processing Assistant for Resting-State fMRI (DPARSF) and
RESTing-state fMRI data analysis toolkit (REST)1, which is based

1http://www.restfmri.net

on Statistical Parametric Mapping (SPM12).2 First, the first 10
time points of resting-state image data were discarded to ensure
steady-state longitudinal magnetization. Second, the slice-time
corrected images were realigned to the first volume for head
motion correction. Then, T1 images were coregistered to the
realigned functional images and segmented to gray matter, white
matter, and cerebrospinal fluid. We normalized the resulting
images to a standard Montreal Neurological Institute (MNI)
template in the Montreal Neurological Institute space by applying
the parameters of structural image normalization and resampling
the normalized images to 3 mm isotropic voxels. After linear
trend removal, the data were band-pass filtered (0.01–0.08 Hz)
to eliminate physiological noise. Several sources of spurious
covariates along with their temporal derivatives, including the
six head motion parameters, global mean, white matter, and
cerebrospinal fluid, were removed. Then, the time series of each
subject was used to compute the DC.

Degree Centrality Calculation
We computed voxel-wise DC using Pearson correlations with
the REST 1.8 toolbox. The time course of each voxel in the
gray matter (GM) mask was extracted and correlated with
every other voxel within the mask to generate a correlation
matrix (Supplementary Figure 1 and Table 1). The threshold
for the Pearson’s correlation coefficient was set at r > 0.25
(Supplementary Figure 2). DC was computed as the sum
of the weights of connections (weighted) for each voxel
(Supplementary Figure 3). The resulting DC maps were spatially
smoothed with a 4 mm × 4 mm × 4 mm FWHM Gaussian
kernel and were improved in normality using the Fisher-z
transformation. To validate the main results that did not depend
on the selection of correlation thresholds, we also computed the
DC maps using other different correlation thresholds (i.e., 0.1,
0.2, 0.3, and 0.4) and then reperformed statistical analysis. We
found that the choice of these thresholds did not have a significant
impact on the main results.

2http://www.fil.ion.ucl.ac.uk/spm

TABLE 1 | Demographic and clinical characteristics of participants.

Healthy control (HC, n = 30) Postpartum depressed (PPD, n = 29)

Characteristic Mean (SD) Percent (%) Mean (SD) Percent (%) P-value

Age (years) 27.33 (4.10) 27.24 (3.55) 0.99a

Primipara 26 86.66 25 86.21 0.96b

Caesarean 9 30.0 11 37.93 0.52b

Breastfeeding 30 100 29 100

Socioeconomic status

(Thousand RMB) 133.0 (2.47) 144.48 (2.20) 0.06a

Education (years) 12.23 (2.58) 13.00 (2.15) 0.68a

Neuropsychological tests

EPDS 0.50 (0.73) 15.79 (1.86) 0.00a

PSQI 6.52 (3.02) 15.17 (2.96) 0.00a

SD, standard deviation; RMB, Renminbi; EPDS, Edinburgh postpartum depression scale; PSQI, Pittsburgh sleep quality index.
aUnpaired t-test, bχ2.
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FIGURE 1 | Comparisons of degree centrality between patients with postpartum depression (PPD) and healthy controls (HCs). (A) Brain regions with different degree
centrality (DC) values between groups: HIP.R and ORBinf.L. (B,C) The distribution and comparison of DC values of brain regions in the PPD and HCs. (D,E) The
ROC curve evaluates the diagnostic value of the DC value of different brain regions to distinguish patients with PPD from healthy mothers. HIP.R, right hippocampus;
ORBinf.L, left inferior frontal orbital gyrus.

Functional Connectivity Analysis
The whole-brain cluster with significant abnormal DC in patients
with PDD (compared with control subjects) was selected as seeds.
We obtained FC maps by calculating the correlation coefficient

(r score) between the mean time series of each seed region and
the rest of the brain. Finally, FC maps were converted to z-score
maps using Fisher’s z transformation to improve the normality.
Correction for between-group FC comparisons was conducted
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TABLE 2 | Brain regions showing significant differences in the degree centrality
between postpartum depression (PPD) and healthy controls (HCs).

Brain region Peak MNI coordinates Cluster size Peak
T

value

x y z (mm3)

Right hippocampus 27 −21 −6 208 3.74

Frontal_Inf_Orb_L −24 27 −18 146 3.19

MNI, Montreal Neurological Institute.

using REST1.8 software via the Gaussian random field (GRF)
theory correction program (voxel p < 0.05, cluster p < 0.05, 2-
tailed).

Statistical Analysis
The variables, including age and clinical symptom scores
between the PPD and control group, were analyzed using the
Mann–Whitney U test using SPSS 18.0 (SPSS Inc., Chicago,
IL, United States). The differences in delivery method and
time were determined using chi-square tests. The threshold
was set at p < 0.05 (two-tailed). With age as covariates,
two sample t-tests were performed in REST1.8 software to
determine significant voxel-based differences in the DC value
between the two groups. Correction for multiple comparisons
was conducted using REST1.8 software via the GRF theory
correction program within the whole brain (voxel p < 0.001,
cluster p < 0.05, 2-tailed). Since DC calculation is very important
in this study, we increased the p-value (p < 0.001) when
doing GRF correction.

In addition, we performed Pearson correlation analyses
between the DC and neuropsychological test scores of patients
with PPD. We used the receiver operating characteristic (ROC)
curve analysis of DC values of brain regions showing differences
between the two groups to determine the brain regions’
diagnostic significance for PPD. The threshold was set at
p < 0.05. The peak voxel coordinates with the highest significance
within the brain areas of altered FC were described in terms
of standard Montreal Neurological Institute coordinates. The
software “BrainNet Viewer” in REST3 was used to draw a
3D brain figure.

RESULTS

Demographic and Clinical
Characteristics
The demographic and clinical characteristics of all subjects are
listed in Table 1. There were no significant differences in age,
delivery time, delivery method, feed options, socioeconomic
status, or education level between PPDs and controls
(p > 0.05). PPD groups had higher EPDS and PSQI scores
(p < 0.001) than the HCs.

3http://www.nitrc.org/projects/bnv/

FIGURE 2 | (A) Brain regions showing aberrant functional connectivity (FC)
with HIP.R (seed region) in the PPD group compared with the HCs. Cool color
represents significantly decreased FC. (B,C) Mean values of the abnormal
functional connectivity in these groups. (D,E) The ROC curve evaluates the
diagnostic value of the FC value of different brain regions to distinguish
patients with PPD from healthy mothers, in which HIP.R was as seeds.

(Continued)
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FIGURE 2 | (F) Scatter plots depicting a partial correlation between the
HIP.R-related functional connectivity in the DCG.L and the EDPS scores for
patients with PPD. (G) Brain regions showing aberrant FC with ORBinf.L (seed
region) in the PPD group compared with the HCs. Warm color represents
significantly increased FC, and cool color represents significantly decreased
FC. (H,I) Mean values of the abnormal functional connectivity in these groups.
(J,K) The ROC curve evaluates the diagnostic value of the FC value of
different brain regions to distinguish patients with PPD from healthy mothers,
in which ORBinf.L was as seeds. HIP.R, right hippocampus; ORBinf.L, left
inferior frontal orbital gyrus; MFG.R, right middle frontal gyrus; DCG.L, left
median cingulate and paracingulate gyri; FFG.L, left fusiform; SFGmed.R, right
superior frontal gyrus, medial. ***Significant at 0.001 level and
*significant at 0.05 level.

TABLE 3 | Significant differences in functional connectivity between postpartum
depression (PPD) and healthy controls (HCs).

Seed area Area with
altered FC

Peak MNI coordinates Cluster
size

Peak T
value

x y z (mm3)

Right Frontal_Mid_R 30 45 30 91 −2.98

hippocampus Cingulum_Mid_L −6 12 33 148 −3.17

Frontal_ Fusiform_L −45 −60 −18 172 −3.44

Inf_Orb_L Frontal_Sup_Medial_R 12 30 57 590 3.46

MNI, Montreal Neurological Institute.

Degree Centrality Analysis
Compared with the HCs, the PPD group showed increased
DC in the right hippocampus (HIP.R) and left inferior frontal
orbital gyrus (ORBinf.L) (Figures 1A–C and Table 2). The
brain areas with decreased DC were not found in PPDs
compared with the HCs.

The ROC curve analysis was used to test the diagnostic value
of two brain regions (cluster1: HIP.R; cluster 2: ORBinf.L) with
significantly altered DC between groups. The area under the
curve (AUC) includes the HIP.R 0.8374 and ORBinf.L 0.7764
(Figures 1D,E).

There were no significant correlations between the DC values
in the two brain regions (HIP.R and ORBinf.L) and any scores
(EPDS and PSQI) in the PPD group.

Seed-Based Functional Connectivity
Analysis
We used HIP.R and ORBinf.L as seeds in the functional
connectivity analysis of the whole brain. In the PDD
group, the HIP.R showed significantly decreased FC with
the right middle frontal gyrus (MFG.R) and the left median
cingulate and paracingulate gyri (DCG.L) compared with
HCs. Furthermore, in the PPD group, the ORBinf.L showed
increased FC with the right superior frontal gyrus, medial
(SFGmed.R), while decreased FC with the left fusiform
(FFG.L) compared with HCs (Figures 2A–C,G–I and
Table 3).

The ROC curve analysis was used to test the diagnostic
value of the four significant different FCs (HIP.R to MFG.R;
HIP.R to DCG.L; ORBinf.L to SFGMED.R; and ORBinf.L to
FFG.L) between groups. The area under the curve (AUC)

includes the HIP.R to MFG.R: 0.9397; HIP.R to DCG.L: 0.9816;
ORBinf.L to SFGMED.R:0.7920; and ORBinf.L to FFG.L:0.8241
(Figures 2D,E,J,K).

Correlation analysis revealed that FC intensity between HIP.R
and the DCG.L positively correlated with the score of EDPS in
patients with PPD (r = 0.384, p = 0.04; Figure 2F). There were no
significant correlations among the FC intensity among any other
regions and any other scores (EPDS and PSQI) in the PPD group.

DISCUSSION

This study observed voxel-level whole-brain FC abnormalities
in patients with PPD using both DC and seed-based FC
approaches. In this study, we found the following: (1)
compared with the HCs, the PDD group showed increased
DC in HIP.R and the ORBinf.L; the ROC curve analysis
showed that the AUCs of the above two brain regions are
all over 0.7. (2) In the seed-based FC analyses, the PPD
showed significantly decreased FC between the HIP.R and
MFG.R, between the HIP.R and DCG.L, and between the
ORBinf.L and FFG.L compared with HCs. The PPD showed
significantly increased FC between the ORBinf.L and SFGmed.R
compared with HCs. (3) In particular, the HIP.R-related FC
abnormalities in the DCG.L of patients with PPD were associated
with EDPS scores.

The hippocampus is the core region in the limbic system (LIN)
and plays a very important role in memory and cognitive function
as well as the regulation of motivation, stress, and emotion
(Eichenbaum, 2013). The hippocampus is highly sensitive to
stress (Thomas et al., 2007). Both normal sadness and depressive
illness were reported to be linked to increases in limbic areas
including the hippocampus (Fitzgerald et al., 2008; Delaveau
et al., 2011). It has been reported that MDD leads to an
increased nodal centrality (both degree and strength) for the
right hippocampus (Chu et al., 2018); patients with MDD
have impaired functional connections of the hippocampus
(Gray et al., 2020). In this study, we found that higher DC
in the right hippocampus in PPD, which means that the
right hippocampus had the increased centrality in PPD’s brain
network. However, the seed-based FC analysis showed that
the right hippocampus presented weaker connectivity with the
MFG.R and the DCG.L compared with HCs. It had already
been observed the attenuation of connectivity between the
dlPFC and hippocampus in PPD subjects (Deligiannidis et al.,
2013). The results suggested that a higher DC value is not
necessarily better; too high may indicate wrong connectivity
or invalid connectivity. The appearance of invalid connectivity
or wrong connectivity will lead to a decrease in brain
function. The abnormal DC and FC of the hippocampus might
explain memory deficits and the depression experienced by
patients with PDD.

The MFG plays an essential role in a variety of cognitive
functions, such as working memory, motor control, and
attentional reorientation (Japee et al., 2015). Decreased structural
and FC of MFG have been frequently reported in depressed
individuals (Korgaonkar et al., 2014; Sheng et al., 2018).
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DCG.L is the part of the cingulate gyrus and is involved
in behavior, motor, and somatosensory function, especially in
emotion, information transmission, and cognitive processing
(Oane et al., 2020). Aberrant activity of this brain region is
associated with negative emotions (Jiang et al., 2020), episodic
memory, and rumination processing of depressive symptoms
(Huang et al., 2021). We found that FC intensity between
HIP.R and DCG.L positively correlated with the score of
EDPS in patients with PPD. We used the original FC value
when doing the correlation analysis. There were 15 negative
values of FC between HIP.R and the DCG.L. The negative
values mean that the stronger the FC, the smaller the value,
so it was positively correlated with the score. This result
highlighted the importance of HIP.R and DCG.L in PPD, and
the abnormal FC between them might be a distinct feature
in the neurobiology of PPD. Integrative dysfunctions of these
regions may contribute to disturbances in mood, cognition,
and memory in PPD.

The ORBinf.L refers to one of the three parts of the
inferior frontal gyrus that plays an important role in the
regulation of emotion and attention (Cha et al., 2016). It
is involved in behaviors related to emotion and empathy
and shows increased functional activity when individuals
experience subjective feelings of guilt (Briggs et al., 2019). In
disease, the orbital part of the inferior frontal gyrus exhibits
abnormal functional connectivity in patients with depression
(Rolls et al., 2020) and anxiety (Cha et al., 2016). In this
study, we found that the PPD group showed increased DC
in ORBinf.L that showed increased FC with the SFGmed.R,
while decreased FC with the FFG.L compared with HCs. The
medial superior frontal gyrus, as an important part of the
superior prefrontal gyrus, is associated with self-consciousness,
self-referential processing, emotion regulation, and cognitive
processing (Yan et al., 2021). It played a partial mediating role
in the relationship between perceived stress and depression
(Wang et al., 2019). The fusiform gyrus is involved in many
aspects of cognition, especially emotion recognition in social-
cognitive processes (Jung et al., 2021). The abnormal neural
activity in the fusiform gyrus may be associated with the severity
of depression or susceptibility to depression (Huang et al.,
2021). The abnormal FC among these above regions might
explain depression, anxiety, stress, and social impairments among
patients with PPD.

In this study, we demonstrated that PPD-related integrative
disturbances were most commonly located in the DMN and
LIN. The HIP.R, MFG.R, DCG.L, ORBinf.L, and SFGmed.R
were suggested as key nodes of DMN. DMN is engaged in
a diverse array of functions, such as episodic memory, self-
referential activity, and monitoring the self and surrounding
environment (Raichle, 2015). LIN is mainly involved in memory,
regulation of negative cognition, and emotion (Rolls, 2015).
DMN and LIN exhibited abnormal neuro-activity and were
involved in the physiopathology of depression (Sheng et al.,
2018). Our results supported the preferential involvement of
hubs and the DMN/LIN in PPD and developed models of
network alterations in the disease, which might help better
understand the underlying neurobiology of PPD. The ROC

curve analysis showed that the AUC of the HIP.R and the
ORBinf.L and their altered FCs were all over 0.7. The range
of AUC between 0.7 and 0.9 indicates the ideal diagnostic
value. The brain regions with high DC values and the
abnormal FCs in PPD had appropriate diagnosis accuracy and
could be used as the imaging biomarkers of patients with
PPD for diagnosis.

However, this study has several limitations. First, the sample
size was relatively small, which may affect statistical power.
Second, DC can only identify brain regions with abnormal
functional connectivity and is unable to provide a clear causal
relationship. Third, this study lacks the comparison between the
pretreatment and posttreatment of patients with PPD and could
not provide the imaging change of the above brain areas after
treatment. Fourth, it is controversial about the time of onset of
PPD. We chose the fourth week, the time of the new mother’s
first postpartum follow-up in the hospital, to do the EPDS scale
and acquire the fMRI images. We will follow up with the mothers
and do the EPDS scale and acquire the fMRI images within the
first 6 weeks and 1 year after delivery in our following research
to further verify our results. Fifth, the cognitive functions of
the new mothers were not assessed in detail. In our following
research, we will use Beck’s Anxiety Inventory (BAI), Pittsburgh
Sleep Quality Index (PSQI), and SymptomChecklist90 (SCL-90)
to assess the new mothers thoroughly. There is still no complete
consensus on the orders between the temporal filtering and the
nuisance regression during data preprocessing. In this study,
linear regression was conducted after band-pass filtering the data
(0.01–0.08 Hz) according to the processing procedure of similar
studies (Zhang et al., 2020; Li et al., 2021; Wang et al., 2021)
and the default order DPARSF and REST software. We will
explore two data processing pipelines for PPD disease in future
studies. In conclusion, we found abnormal DC values and FCs
in a variety of brain regions in the PPD groups, which might
demonstrate the reorganization of the brain network in PPD
and provide imaging biomarkers for early screening and accurate
diagnosis of PPD.
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Objective: A number of studies in adults and children with generalized

tonic-clonic seizure (GTCS) have reported the alterations in morphometry,

functional activity, and functional connectivity (FC) in the thalamus. However,

the neural mechanisms underlying the alterations in the thalamus of patients

with GTCS are not well understood, particularly in children. The aim of the

current study was to explore the temporal properties of functional pathways

connecting thalamus in children with GTCS.

Methods: Here, we recruited 24 children with GTCS and 36 age-matched

healthy controls. Static and dynamic FC approaches were used to evaluate

alterations in the temporal variability of thalamo-cortical networks in children

with GTCS. The dynamic effective connectivity (dEC) method was also

used to evaluate the directions of the fluctuations in effective connectivity.

In addition, the relationships between the dynamic properties and clinical

features were assessed.

Results: The static FC analysis presented significantly decreased connectivity

patterns between the bilateral thalamus and between the thalamus and right

inferior temporal gyrus. The dynamic connectivity analysis found decreased

FC variability in the thalamo-cortical network of children with epilepsy.

Dynamic EC analyses identified increased connectivity variability from the

frontal gyrus to the bilateral thalamus, and decreased connectivity variability

from the right thalamus to the left thalamus and from the right thalamus to the

right superior parietal lobe. In addition, correlation analysis revealed that both

static FC and connectivity temporal variability in the thalamo-cortical network

related to the clinical features (epilepsy duration and epilepsy onset time).

Significance: Our findings of both increased and decreased connectivity

variability in the thalamo-cortical network imply a dynamic restructuring of
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the functional pathways connecting the thalamus in children with GTCS.

These alterations in static and temporal dynamic pathways connecting the

bilateral thalamus may extend our understanding of the neural mechanisms

underlying the GTCS in children.

KEYWORDS

generalized tonic-clonic seizure, epileptic children, resting-state fMRI, thalamus,
temporal variability, dynamic functional connectivity, dynamic effective connectivity

Introduction

Generalized tonic-clonic seizure (GTCS) is a subgroup of
idiopathic generalized epilepsy that is typically characterized by
generalized spike-wave discharges (2.5-5 Hz) (Ji et al., 2014). The
clinical symptoms of GTCS mainly include muscle contraction
of the body and complete loss of consciousness. Patients
with GTCS showed cognitive impairments in their attention,
memory, and executive function (Hommet et al., 2006). One of
the hallmarks of GTCS is the absence of visible abnormalities
on routine magnetic resonance imaging (MRI). Based on the
connectome view, the GTCS has been hypothesized as a disorder
of brain connectivity (Kim et al., 2014; Li et al., 2020a; Royer
et al., 2022). It has been widely accepted that generalized spike-
wave discharges might be caused by the imbalance of local
excitation and inhibition through thalamo-cortical network
(Wang et al., 2012; Lüttjohann and van Luijtelaar, 2022). As a
result, abnormal activity was detected in wide brain regions in
patients with epilepsy (Assenza et al., 2020).

As we know, the thalamus is globally connected with
distributed cortical regions. Previous studies have found that
the thalamus is a critical hub region that is involved in the
integration of information across the cortical networks (Hwang
et al., 2017; Elvsåshagen et al., 2021). The thalamus plays a
central role in ongoing cortical functioning, which is performed
by the thalamo-cortical network. Neuroimaging studies in
epilepsy have found that low volume of the thalamus is a
common pattern across epilepsy syndromes (Whelan et al.,
2018; Xu et al., 2021). Thalamic atrophy may be the effect of
seizure activity, such as thalamo-cortical network remodeling
or thalamic disconnection (Bernhardt et al., 2009; Li et al.,
2017b; Chen et al., 2019). Previous studies have also detected
that atrophy of the thalamic nuclei and resting-state functional
hyperconnectivity between the thalamus and cerebral cortex
can be considered as imaging markers in generalized patients
with refractory epilepsy (Wang et al., 2018; Chen et al., 2021).
Specific changes in the thalamus imply that this region plays
an important role in epilepsy. A recent study has detected
that abnormal functional and structural integration in the
cerebellum, basal ganglia, and thalamus could result in an
imbalance of inhibition and excitability in the brain system

of idiopathic generalized epilepsy (Gong et al., 2021). Patients
with GTCS showed a more constrained network embedding
of the thalamus and an increased functional diversity of the
frontocentral neocortical regions (Wang et al., 2019a). Graph
theory analysis of the structural covariance network of the gray
matter found that children with GTCS also showed significant
alterations in the nodal betweenness in the right thalamus,
bilateral temporal pole, and some regions of DMN (Li et al.,
2020b). These previous neuroimaging studies have provided
converging evidence for both intrinsic functional connectivity
(FC) and structural connectivity abnormalities of the thalamo-
cortical network in patients with GTCS (Kim et al., 2014; Lee
et al., 2014; Ji et al., 2015; Li et al., 2016; Wang et al., 2019a; Gong
et al., 2021). Focus on the functional and structural changes of
thalamo-cortical network would provide additional information
to understand the neural mechanism of GTCS.

Although these basic connectivity approaches are
widely used in previous epilepsy studies and improved our
understanding of GTCS, these methods may not be sufficient
to fully characterize the specific role of the thalamus in patients
with GTCS. How the organization of thalamo-cortical network
was interfered by the seizure and the temporality and causality
between the epilepsy-related regions were not fully understood.
Currently, there are two directions of studies trying to solve
the above concerns. One direction is based on the deep brain
stimulation that aims to verify the functional role of the
thalamus during the treatment process. Recent studies have
confirmed the satisfactory results of thalamic nucleus deep
brain stimulation in drug-resistant generalized epilepsy (Fasano
et al., 2021; Vetkas et al., 2022). This approach is effective in
clinical practice but is invasive. Another direction is based
on the dynamic connectivity methods that aim to explore
the spontaneous fluctuations in the activity and connectivity
with the thalamus in epilepsy. The conventional FC analysis
assumes that the communication between regions is relatively
stable during the entire scan. This method may not capture
the dynamic nature of communication. The human brain
is a complex dynamic system (Fox et al., 2005). Recently, a
dynamic FC (dFC) method was developed by measuring the
variability in the strength or spatial dynamic organization
of brain connectivity (Preti et al., 2017; Rolls et al., 2021).
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Previous studies in neurological disorders have proved that this
approach can sensitively capture the time-varying changes of
the ongoing activity over the whole scan time (Liao et al., 2018;
Kottaram et al., 2019; Guo et al., 2020). In epilepsy, compared
to the conventional FC analysis, dynamic techniques can be
used to identify additionally activated brain regions during the
course of interictal epileptic discharges (Kowalczyk et al., 2020).
Dynamic FC analyses have demonstrated that state transitions
and modular function of dissociable hippocampal networks
were altered in temporal lobe epilepsy, which can reflect
different memory phenotypes (Li et al., 2022a). Disruption of
this dynamic organization may be the neuroimaging expression
of the cognitive dysfunction in epilepsy patients. For adults
with GTCS, state-specific dFC disruptions and the majority
of aberrant functional connectivity were observed in DMN
(Liu et al., 2017). Recently, dFC approaches were also used
to evaluate alterations in the temporal variability of FC in
patients with GTCS at the region and network levels (Jia et al.,
2020; Li et al., 2022c). Patients with GTCS showed a dynamic
restructuring of the large-scale brain networks. Although
these previous studies offered evidence for the dynamic
interaction among whole-brain functional networks in adults
with GTCS, no study regarding GTCS has been performed to
investigate the temporal variability of FC with the thalamus
and their connectivity direction in thalamo-cortical network.
Investigation of brain dynamic FC network and dynamic
effective connectivity (dEC) in thalamo-cortical network could
allow us to understand the dynamic roles of the thalamus in the
brain with GTCS.

Additionally, most of these previous studies were performed
in adults with GTCS (Wang et al., 2011; Ji et al., 2014;
Li et al., 2016; Liu et al., 2017; Jia et al., 2020). Children
with GTCS have not received enough attention. Up to now,
only a few neuroimaging studies were conducted in children
with GTCS (Wang et al., 2018; Li et al., 2020a,b, 2022b). In
these previous studies in children with GTCS, brain activity,
gray matter volume, and the topological properties of the
brain network were analyzed. The consistent results among
these studies demonstrate that children with GTCS showed
both functional and structural abnormalities in the thalamus
and DMN. Although these previous studies indicate that the
thalamus also plays an important role in children with GTCS,
the dynamic exchange of information in the thalamo-cortical
network remains largely unknown. Recently, the temporal
variability in FC and EC has attracted increasing attention
in epilepsy to understand the dynamic role of the regions in
the brain system (Jia et al., 2020; Kowalczyk et al., 2020).
Thus, examining the temporal properties of the thalamo-
cortical network in children with GTCS would provide further
information for understanding this disease.

In the present study, we aim to explore the temporal
variability of the thalamo-cortical network connectivity in
children with GTCS. We first used the static FC based

on the bilateral thalamus to obtain the specific connectivity
changes in children with GTCS. Then, we conducted dFC
and dEC analysis to investigate the between-group differences
in temporal variability and connectivity direction in thalamo-
cortical network. Finally, the correlation between altered
connectivity and clinical variables was measured in children
with GTCS. On the basis of the previous studies in GTCS,
we hypothesized that dynamic FC and dynamic EC of the
thalamo-cortical network would be reconfigured in children
with GTCS compared with the healthy controls. Variability of
the connectivity in the thalamo-cortical networks should be
responsible for the clinical characteristics.

Methods

Subjects

This study recruited 24 children with GTCS (9 female,
mean age: 69.94 ± 46.36 months) from the Shenzhen
Children’s Hospital. All human procedures were approved by
the Ethical Committee of the Shenzhen Children’s Hospital.
All participants’ parents or their guardians provided written
informed assent and consent. Based on their clinical and seizure
semiology information, all patients were diagnosed to have
genetic associated epilepsy with GTCS by two experienced
neurologists (Fisher et al., 2017). The inclusion criteria for
patients were as follows: (1) symmetrical tonic and clonic
seizure, and loss of consciousness during seizure without any
other focal features; (2) typically showed generalized spike-
wave or poly-spike-wave without any other focal discharge on
EEG; (3) no focal abnormality was detected in all patients
on routine MRI; and (4) no other developmental disability.
The exclusion criteria included the following: (1) pathologic
abnormality on conventional MRI; (2) history of addition
or neurological diseases besides epilepsy; (3) subjects with
MRI contraindications; (4) age older than 13 years; and
(5) head motion exceeding 3 mm in translation or 3◦ in
rotation. All patients took at least one antiepileptic drug (AED:
topiramate, valproic acid, levetiracetam, or oxcarbazepine) to
control seizures before the image scanning. Eleven patients
took one AED, 10 patients took two AEDs, and 3 patients
took three AEDs. All patients were maintained seizure-free for
at least 2 days prior to the MRI scanning. Thirty-six healthy
controls (HCs, 11 female, mean age: 71.89 ± 31.13 months)
were enrolled. All control children did not have a history
of neurological disorders or psychiatric illnesses or gross
abnormalities on brain MRI. In order to reduce the head
movement during the MRI scanning, 18 children (9 controls
and 9 patients) under the age of 4 years were sedated with 10%
chloral hydrate (dosage: 50 mg/kg, the maximum dose was 1 g).
The demographic and clinical information of the two groups is
listed in Table 1.
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Scan acquisition

All MRI data were acquired with a 3.0T German
Siemens Trio Tim scanner (MAGNETOM, Germany, 8-channel
prototype quadrature birdcage head coil) at the Shenzhen
Children’s Hospital, Shenzhen, China. During the imaging
scanning, the head of all the participants was fixed with foam
padding to minimize head movements. Earplugs were also used
to reduce the impact of machine noise. All participants were
lying quietly, as motionless as possible. During the imaging
scanning, the participants over the age of 4 years were instructed
to keep still with their eyes closed, remain awake, and instructed
not to think about anything. We observed them throughout the
whole scanning process, and enquired about their conditions
after the test. They were asked whether they fell asleep or
moved their head during the scanning process. The acquisition
parameters for the resting-state fMRI data of all subjects
were as follows: repetition time (TR) = 2,000 ms, echo time
(TE) = 30 ms, flip angle = 90◦, field of view (FOV) = 220 × 220
mm2, 94 × 94 matrix, slice thickness = 3 mm, and 36 interleaved
axial slices. A total of 130 volumes were obtained in each
run. High-resolution 3D T1-weighted anatomical images were
acquired for all the subjects in the sagittal orientation using
a MPRAGE sequence: TR = 2,300 ms, TE = 2.26 ms, flip
angle = 8◦, FOV = 200 × 256 mm2, 200 × 256 matrix, slice
thickness = 1 mm, and 160 sagittal slices.

Image data preprocessing

Functional images were preprocessed using the data
assistant software DPABI (Yan et al., 2016). The following
steps were performed in preprocessing stage: (1) The first 10
scans were discarded to allow for magnetization equilibrium.
(2) We performed slice timing and motion correction for
the remaining images. The translations in each direction
and the rotations in angular motions were estimated in this
step. The participants with a head motion of >3 mm in
maximum displacement or >3◦ rotation during data acquisition
were excluded from the study. (4) The mean frame-wise
displacement (FD) was computed by averaging the FD of
each participant across the time points, which can determine
the comparability of head movement across groups. No
significant differences were found between the two groups (HCs:
mean FD = 0.145 ± 0.113 mm, children with GTCS: mean
FD = 0.131 ± 0.087 mm). (5) Individual 3D T1-weighted
images were co-registered to the mean functional images
by rigid body transformation after the motion correction.
The transformed structural images were then segmented into
gray matter, white matter, and cerebrospinal fluid by using
a unified segmentation algorithm. (6) The segmented images
were normalized to the Montreal Neurological Institute (MNI)
space by using a 12-parameter non-linear transformation. The

obtained transformation parameters were then applied to the
functional images, and these functional images were normalized
to the MNI space. (7) The normalized images were resampled
into a voxel size of 3 mm × 3 mm × 3 mm and spatially
smoothed with a half-maximum Gaussian kernel of 6 mm full
width. (8) Linear regression analysis was used to control for
confounding factors, including Friston-24 motion parameters,
white matter signals, and cerebrospinal fluid signals. (9) Finally,
band-pass temporal filtering (0.01–0.08 Hz) was used to remove
the effects of very-low-frequency drift and high-frequency noise
(Biswal et al., 1995; Lowe et al., 1998).

Static functional connectivity analysis

The FC maps were obtained using the voxel-wise approach
by computing FC between the region of interest (ROI) and
each voxel within the brain. The bilateral thalamus was used
as the seed ROIs, which were obtained from the Anatomical
Automatic Labeling atlas. The time series of the voxel in each
ROI was extracted and averaged, followed by a correlation
with the time series of each other voxel across the entire
brain. The correlation value was z-transformed for each sample.
The z-transformed FC maps were compared between the two
groups by a two-sample t-test (AlphaSim corrected for multiple
comparisons; p < 0.005)1. In this step, age and sex were
regressed as confounding covariates.

Dynamic functional network
connectivity

To identify the dFC variability of the thalamo-cortical
network, we used a sliding window dFC approach in the
Dynamic BC toolbox (Liao et al., 2014) 2. Currently, window
length is an open area of research in the sliding window-
based dFC analysis. This parameter is important for capturing
the rapidly shifting relationship between the windows. Here, a
rectangle window with a size of 60 s (30 TRs) was selected to
segment the resting-state time series by sliding across the whole
scan with a step of 1 TR, resulting in 90 overlapping windows per
subject. We chose the window length of 60 s because previous
studies have proven that the window size of around 30-60 s
could optimize the balance between the temporal resolution
and the quality of the functional network connectivity estimate
(Allen et al., 2014). We also tried other window lengths (20
TRs) to further examine the possible effects on dFC results. In
each sliding window, we computed the temporal correlation
coefficient between the truncated time course of the thalamus

1 https://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf

2 www.restfmri.net/forum/DynamicBC
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seeds and those of all the other voxels. After this step, a
set of sliding window correlation maps were created for each
participant. All the correlation maps were transformed by a
Fisher’s r-to-z transformation to improve the normality of the
correlation distribution. The variance in the time series of the
correlation coefficient was computed by calculating the standard
deviation of z-values at each voxel to assess the dFC variability.

To examine the difference in dFC variability patterns
between the two groups, a two-sample t-test analysis was
performed on the standard deviation in z-values at each voxel. In
this step, age and sex were regressed as confounding covariates.
The statistical significance level for the comparison analysis was
thresholded at p < 0.005, after AlphaSim correction.

Dynamic effective network
connectivity

Seed-based dEC analysis was obtained using time-varying
dynamic Granger causality. The time-varying strength and
direction of the connections were calculated between the
thalamus and each voxel within the brain. We used a sliding
window dEC approach in the Dynamic BC toolbox. Here, a
rectangle window with a size of 60 s (30 TRs) was selected
to segment the resting-state time series by sliding across the
whole scan with a step of 1 TR, resulting in 90 overlapping
windows per subject. We also tried other window lengths (20
TRs) to further examine the possible effects on dEC results. In
each sliding window, we computed the strength and direction
of the connections between the truncated time course of the
thalamus seeds and those of all the other voxels. After this step,
two sets of sliding window correlation maps were created for
each participant: one represents the input directions and the
other represents the output directions. All the correlation maps
were transformed by a Fisher’s r-to-z transformation to improve
the normality of the correlation distribution. The variance in
the time series of the correlation coefficient was computed by
calculating the standard deviation of z-values at each voxel to
assess the dEC variability.

To examine the difference in dEC variability patterns
between the two groups, a two-sample t-test analysis was
performed on the standard deviation in z-values at each voxel. In
this step, age and sex were regressed as confounding covariates.
The statistical significance level for the comparison analysis was
thresholded at p < 0.005, after AlphaSim correction.

Clinical correlation analysis

We then further explored the potential relationship between
the brain static FC and clinical characteristics (epilepsy duration
and epilepsy onset age) in children with GTCS. Partial
correlation analyses between the connectivity variability (dFC

variability and dEC variability) and clinical characteristics
(epilepsy duration and epilepsy onset age) were conducted in
children with GTCS after controlling for age and sex. The
statistical significance level for the correlation analysis was set
at p < 0.05.

Results

Demographic characteristics

The demographic and clinic characteristics of the children
with GTCS and controls are listed in Table 1. No significant
differences were found (p > 0.05) in age or sex distribution
between the two groups. The mean epilepsy duration
(32.58 ± 31.20 months) and disease onset age (37.35 ± 46.22)
of the children with GTCS were also collected and listed in
Table 1.

Differences in functional connectivity
analysis

Compared to controls, children with GTCS showed a
significant decrease in FC connecting the bilateral thalamus.
The connectivity pattern of the left thalamus was centered on
the right inferior temporal gyrus (ITG), right thalamus, bilateral
middle temporal gyrus (MTG), right orbital inferior frontal
gyrus (IFG), and right precuneus (Figure 1A). The connectivity
pattern of the right thalamus was centered on the right ITG
and left thalamus (Figure 1B). The details showing significant
differences between the groups are listed in Table 2.

Dynamic functional connectivity
variability results

Figure 2 and Table 3 illustrate the significant differences
in dFC variability between the two groups for the bilateral
thalamus seeds. Compared with the HCs, the patient group
exhibited a significantly less dFC variability between the left

TABLE 1 Demographic and clinical information data of the subjects.

Characteristics Patient group
(Mean ± SD)

Control group
(Mean ± SD)

Comparisons

Sex (female/male) 9/15 11/25 X2 = 0.31 (p = 0.58)

Age (month) 69.94 ± 46.36 71.89 ± 31.13 t = 0.20 (p = 0.85)

Disease onset age
(month)

37.35 ± 46.22 \

Epilepsy duration
(month)

32.58 ± 31.20 \
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FIGURE 1

Group differences in functional connectivity for bilateral thalamus seeds between two groups. (A) Brain regions showing significant differences
in FC for left thalamus seed. (B) Brain regions showing significant differences in FC for right thalamus seed. The comparison analysis was
thresholded at p < 0.005, AlphaSim corrected. R, right hemisphere; L, left hemisphere; FC, functional connectivity.

thalamus seed and regions of bilateral IFG, right middle
frontal gyrus (MFG), right angular gyrus, right inferior parietal
lobule (IPL), right fusiform, right ITG, right cerebellum,
left precentral gyrus, left supplementary motor area (SMA),
left superior parietal lobule (SPL), left precuneus, and left
paracentral gyrus (Figure 2A). Compared with the HCs, the
patient group exhibited significant less dFC variability between
the right thalamus seed and regions of bilateral MFG, bilateral
IPL, right superior frontal gyrus (SFG), right angular gyrus,
right SMA, right SPL, right fusiform, right ITG, right MTG,
right cerebellum, left precuneus, and left paracentral gyrus
(Figure 2B). No significant excessive dFC variability was found
in the patient group with the bilateral thalamus seeds.

TABLE 2 Significant group differences in FC analysis.

Cluster location Statistical values Peak (MNI)

Cluster size t-value x y z

Seed L thalamus Control > Patient

R inferior temporal gyrus 87 3.86 60 −33 −27

R middle temporal gyrus 3.46 66 −18 −21

R superior temporal gyrus 21 3.73 54 −27 3

L middle temporal gyrus 21 3.34 −66 −24 −6

R thalamus 23 3.28 6 −18 6

R orbital inferior frontal gyrus 25 3.25 36 30 −15

R precuneus# 11 3.2 6 −51 21

Seed R thalamus Control > Patient

R inferior temporal gyrus 22 3.28 60 −33 −27

L thalamus 15 3.35 −6 −9 12

The MNI coordinates and t-values for the FC results. Threshold for significant clusters
reported here was set at p < 0.005 (AlphaSim correction) and cluster size of 14.
#The result was uncorrected; MNI, Montreal Neurological Institute.

Dynamic effective connectivity
variability results

Figure 3 and Table 4 show the significant dEC variability
differences between the two groups for the bilateral thalamus
seeds. Compared with the HCs, the patient group exhibited
significantly excessive dEC variability from right MFG, right
triangular part of IFG, and right precentral gyrus to the seed
of the left thalamus (Figure 3A). Compared with the HCs, the
patient group exhibited significantly excessive dEC variability
from bilateral MFG and bilateral medial part of SFG to the
seed of the right thalamus (Figure 3B). It is interesting that we
observed a significantly low dEC variability from the seed of the
right thalamus to the left thalamus and right SPL (Figure 3C).

Partial correlation analysis between
connectivity properties and clinical
characteristics

We then further explored the potential relationship between
the connectivity properties and clinical characteristics in
children with GTCS. After controlling for age and sex, partial
correlation analyses showed that FC between the left thalamus
and right precuneus was positively correlated with the epilepsy
duration (r = 0.553, p = 0.008, Figure 4A). FC between the
left thalamus and the right orbital part of IFG was positively
correlated with the epilepsy duration (r = 0.547, p = 0.008,
Figure 4B).

The epilepsy duration of children with GTCS was positively
correlated with the dFC variability between the left thalamus
and left medial IFG (r = 0.585, p = 0.004, Figure 5A). The
epilepsy duration of children with GTCS was also positively
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FIGURE 2

Group differences in dFC variability for bilateral thalamus seeds between two groups. (A) Brain regions showing significant differences in dFC
variability for left thalamus seed. (B) Brain regions showing significant differences in dFC variability for right thalamus seed. The comparison
analysis was thresholded at p < 0.005, AlphaSim corrected. R, right hemisphere; L, left hemisphere; dFC, dynamic functional connectivity.

correlated with the dFC variability between the left thalamus and
left precuneus (r = 0.627, p = 0.002, Figure 5B). Furthermore,
the age of epilepsy onset in children with GTCS was positively
correlated with the dFC variability between the left thalamus and
right MFG (r = 0.436, p = 0.042, Figure 5C).

Discussion

Using a seed-based connectivity approach, the current study
provides a unique investigation of the static and dynamic FC of
thalamo-cortical network in children with GTCS. We observed
a significant decrease in static FC between bilateral thalamus
and between thalamus and right inferior temporal gyrus.
Dynamic FC analysis found that children with epilepsy showed
decreased FC variability in the thalamo-cortical network,
mostly correlated with the cortices of the frontal, motor,
cerebellum, and default mode network. We also characterized
the causal effect between the thalamus and the whole brain.
We found increased connectivity variability from frontal gyrus
to bilateral thalamus, and decreased connectivity variability
from right thalamus to left thalamus and from right thalamus
to right superior parietal lobe. Importantly, both static FC
and connectivity temporal variability in the thalamo-cortical
network showed significant correlations to the clinical features
(epilepsy duration and epilepsy onset time). These alterations in
static and temporal dynamic pathways connecting the bilateral

thalamus exhibited the dynamic exchange of information in
the thalamo-cortical network. The present findings characterize
the specific role of the thalamus in children with GTCS and
extend our understanding of the neural mechanism underlying
the GTCS in children.

Children with generalized tonic-clonic
seizure presented decreased
connection between bilateral thalamus
compared with the controls

Functional connectivity is suggested to describe the
relationship between the neuronal activation patterns of
anatomically separated brain regions. The analysis result of
this method is believed to reflect functional communication
between brain regions (van den Heuvel and Hulshoff Pol,
2010). Our results indicated that children with GTCS showed
a significant decrease in FC between the bilateral thalamus.
The neural connection between the bilateral thalamus may
also be disrupted. This view is supported by the previous
neuroimaging studies in epilepsy. Patients with generalized
epilepsy showed a widespread functional disruption throughout
the resting state (Kim et al., 2014; McGill et al., 2014).
Multiple interconnected brain systems were involved in this
process, resulting in functional impairments (McGill et al.,
2014; Wei et al., 2015). Previous studies in patients with
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TABLE 3 Significant group differences in dFC analysis.

Cluster location Statistical values Peak (MNI)

Cluster size t-value x y z

Seed L thalamus Control > Patient

R opercular inferior frontal
gyurs

270 5.1 54 12 21

R middle frontal gyrus 4.37 33 39 45

L paracentral lobe 261 4.93 −12 −15 66

L precentral gyrus 188 4.69 −54 12 39

L middle frontal gyrus 4.03 −39 21 45

L superior frontal gyrus 117 4.62 −15 54 42

R superior frontal gyrus 4 15 57 39

L superior parietal lobule 35 4.27 −24 −60 69

L orbital inferior frontal
gyrus

71 4.17 −12 42 −21

L superior occipital gyrus 116 4.1 −18 −90 33

R superior frontal gyrus 155 4.04 15 69 3

L medial superior frontal
gyrus

3.76 −6 63 −6

R inferior temporal gyrus 77 3.94 54 −24 −18

R middle temporal gyrus 3.54 66 −24 −18

R middle frontal gyrus 23 3.87 39 −3 57

supplementary motor area 28 3.74 0 −6 54

L superior parietal lobule 27 3.71 −33 −69 54

R angular 137 3.69 36 −66 51

R inferior parietal lobule 3.48 39 −51 39

R supramarginal gyrus 34 3.57 63 −24 33

L precuneus 28 3.48 −3 −66 54

R fusiform 35 3.44 27 −81 −9

Seed R thalamus Control > Patient

L paracentral lobule 249 5.04 −12 −15 66

R supplementary motor area 78 4.44 9 −9 54

R superior frontal gyrus 119 4.42 15 69 3

R superior parietal gyrus 213 4.29 36 −66 54

R inferior parietal lobule 4.15 48 −54 51

R middle temporal gyrus 89 4.27 69 −36 −9

L cerebellum 39 4.2 −9 −81 −21

R middle frontal gyrus 172 4.14 30 18 57

R superior frontal gyrus 4.04 15 24 54

L middle frontal gyrus 81 4.11 −36 30 48

R cerebellum 156 4.11 24 −63 −21

R fusiform 3.8 24 −72 −9

L inferior temporal gyrus 42 4.07 −57 −63 −12

L cuneus 44 3.99 −18 −78 33

R middle occipital gyrus 87 3.92 33 −69 21

R middle frontal gyrus 35 3.86 39 3 36

R precentral gyrus 2.95 39 −3 48

L precuneus 48 3.8 −9 −66 69

The MNI coordinates and t-values for the FC results. Threshold for significant clusters
reported here was set at p < 0.005 (AlphaSim correction) and cluster size of 14.
MNI, Montreal Neurological Institute.

GTCS found aberrant interhemispheric functional connectivity
(Wang et al., 2011; Ji et al., 2014; Li et al., 2022c). In line
with these findings, we observed decreased FC between the
bilateral thalamus, which may indicate functional disruption
between the two hemispheres. This result can reflect brain
network reorganization under frequent abnormal discharges in
children with GTCS.

Our study also extended results from static FC analysis
to a more subtle time scale. Using the dynamic Granger
causality method, we identified the flow direction and
magnitude of the connection between the bilateral thalamus.
This method can characterize the positive causality and
negative causality between the brain regions. Given that
epilepsy is a neurological disease caused by an imbalance
between excitation and inhibition in the central nervous system
(Goodman and Szaflarski, 2021), the causality results based on
the Granger causality method may represent inhibitory and
excitatory effects in physiology, which can further provide
a special advantage for investigating the neural mechanism
of epilepsy. Previous studies have used the Granger causality
method to investigate the causal effect in epilepsy (Ji et al.,
2013; Wu et al., 2015). Compared with the controls, children
with GTCS showed a significant decrease in the temporal
variability of the connectivity from the right thalamus to
the left thalamus. The abnormal causal effect between the
bilateral thalamus is unidirectional. This result is consistent
with our previous studies that children with GTCS showed
significant changes in spontaneous activity and gray matter
volume in the right thalamus (Wang et al., 2018; Li et al.,
2020b). These previous studies also found that significant
correlations between the neuroimaging index and the epilepsy
duration were detected in the right thalamus but not in
the left thalamus. Combined with these previous studies and
our present results, decreased dEC variability from the right
thalamus to the left thalamus reflects the chronic damaging
effect of GTCS in children. The chronic variability changes
and the decreased FC between the bilateral thalamus are
associated with the dysfunction of thalamo-cortical circuits
in epilepsy. The specific role of the right thalamus in
children with GTCS needs to be paid more attention
in future studies.

Children with generalized tonic-clonic
seizure presented significant
alterations in thalamo-cortical
networks compared with the controls

As we know, the human brain is a complex, interconnected
system with an optimal balance between functional
specialization and integration. In addition, the thalamus is
a cortical hub region that could integrate diverse information
that is being processed throughout the cerebral cortex
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FIGURE 3

Group differences in dEC variability for bilateral thalamus seeds between two groups. (A) Brain regions showing significant differences in dEC
variability from the whole brain to the seed of the left thalamus. (B) Brain regions showing significant differences in dEC variability from the
whole brain to the seed of the right thalamus. (C) Brain regions showing significant differences in dEC variability from the seed of the right
thalamus to the whole brain. The comparison analysis was thresholded at p < 0.005, AlphaSim corrected. R, right hemisphere; L, left
hemisphere. dEC, dynamic effective connectivity; HC, healthy controls; P, patients with generalized tonic-clonic seizures.

(Hwang et al., 2017). There is no doubt regarding the
participation of the thalamus in generalized epilepsy
(Lüttjohann and van Luijtelaar, 2022). Based on this prior
view, we selected the bilateral thalamus as a seed to build
the functional network in children with GTCS. Static and
dynamic functional connectivity methods were combined in
the present study. One main finding of our present study is
the detection of significant alteration in the static and dynamic

connections of thalamo-cortical networks in children with
GTCS. As expected, decreased static FC between the thalamus
and cortex (frontal and temporal cortex) was observed. This
result was consistent with a previous study that showed a
decreased correlation in thalamo-temporopolar connection
(Bernhardt et al., 2009; Gong et al., 2021). A recent review study
showed that there were overlapping findings in patients with
GTCS regarding deactivation in the middle/inferior temporal
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gyrus (Parsons et al., 2020). Decreased thalamo-cortical
connectivity was also detected between the left thalamus
and right frontal pole in patients with idiopathic generalized
epilepsy (Chen et al., 2021). Decreased FC between the thalamus
and cognitive-related cortex in children with GTCS may render
these networks less capacity to function and communicate
efficiently. In clinical settings, the phenomenon of cognitive
impairment in children with GTCS can be explained by these
disrupted connections.

The right precuneus belongs to the DMN and is regarded
as a pivotal node of the human brain network. Adults with
GTCS showed a disrupted FC related to DMN (Wang et al.,
2011; Kim et al., 2014). Graph theory studies showed that
patients with GTCS had aberrant core hub role of regions,
including precuneus and orbital frontal cortex (Li et al., 2016;
Li et al., 2020b). The present study showed a significant
decrease in FC between the thalamus and precuneus, which
was consistent with these previous studies. The reduced FC
between regions in resting-state networks may be a result
of seizures in children with GTCS. Extensive FC changes in
children with GTCS again verify the previous study results
that seizure signal in generalized epilepsy transmit through
the regions of thalamus and the bilaterally distributed brain
network (Berg et al., 2010). Thus, the decreased FC between
the thalamus and cortex (inferior/middle temporal gyrus, orbital
IFG, and precuneus) in the present study may result from
disruptions in neural connections and reflects the functional

TABLE 4 Significant group differences in dEC analysis.

Cluster location Statistical values Peak (MNI)

Cluster size t-value x y z

Seed L thalamus_in Patient > Control

R middle frontal gyrus 21 4.43 27 45 12

R inferior frontal gyrus 25 4.35 45 39 3

R precentral gyrus 34 3.94 30 −15 51

Seed R thalamus_in Patient > Control

R medial superior frontal
gryus

41 4.8 12 54 18

L medial superior frontal
gryus

30 3.9 −12 39 18

L middle frontal gyrus 3.85 −21 45 18

R middle frontal gyrus 42 3.68 27 45 18

L middle frontal gyrus 69 4.51 −30 36 18

L inferior frontal gyrus 4.51 −39 39 6

Seed R thalamus_out Control > Patient

L thalamus 14 3.84 −15 −9 6

R superior parietal lobule 16 3.49 24 −69 48

L thalamus # 8 3.23 −15 −27 9

The MNI coordinates and t-values for the FC results. Threshold for significant clusters
reported here was set at p < 0.005 (AlphaSim correction) and cluster size of 14.
#The result was uncorrected; MNI, Montreal Neurological Institute.

impairments of the thalamo-cortical network associated with
GTCS in children.

In addition, it is worth noting that significantly different
connections were found in dFC between the two groups. The
decreased FC temporal variability connecting the thalamus in
patients was found not only in the inferior/middle temporal
gyrus, IFG, and precuneus, but also in SMA, angular gyrus,
IPL, SPL, paracentral gyrus, and cerebellum. We can see that
most of these regions belong to the DMN, attention, and motor
network. The DMN is considered as a key network in integrating
information from cognition networks (Raichle et al., 2001).
Decreased static FC and dFC between the thalamus and the
regions of DMN may be associated with impaired consciousness
in GTCS. In addition, previous studies have detected both
increased and decreased connections between the DMN and
cognitive control network, which implied that deficits in self-
process are correlated with cognitive function impairment in
patients with generalized epilepsy (Li et al., 2017a). Despite
the clear reductions in FC and significant deactivation within
DMN, significantly decreased connections between DMN and
sensorimotor network were observed in adults with GTCS
(Liu et al., 2017; Li et al., 2022b). The findings of these
previous studies implied that functional abnormality of these
interconnections may influence information communication
and impair functional integrations. In the present study,
significant changes in the temporal variability between the
thalamus and cortical regions were also detected. This result
may imply that the interconnections of the brain network are
disrupted in children with GTCS. As a result, the function
and information communication efficiency in the thalamo-
cortical network was affected, leading to cognitive impairment
in patients with epilepsy.

However, the dFC results of the present study are not
entirely consistent with one previous study in adults with GTCS
using a similar method (Jia et al., 2020). In this previous
study, significantly increased temporal variability of FC was
observed both at the region level and at the between-network
level. No significant changes in the dFC results were detected
based on the thalamus at the region level or network level
in this previous study. In the present study, we used a seed-
based approach in children with GTCS to analyze the dFC
and dEC of the thalamus. A significantly decreased temporal
variability of FC in the thalamo-cortical network was detected
in children with GTCS. Although no significantly increased
temporal variability of FC was detected by the dFC method,
both increased and decreased temporal variability of causal
connectivity was detected by the dEC method. The temporal
variability of causal connectivity from the frontal cortex to
thalamus showed a significant increase in children with GTCS.
Moreover, the temporal variability of causal connectivity from
the right thalamus to the right SPL showed a significant decrease
in children with GTCS. One explanation for the inconsistent
results may be that the research subjects were different: the
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FIGURE 4

Partial correlation between static FC and the epilepsy duration in children with GTCS. (A) The FC values between the left thalamus and right
precuneus showed a significant correlation with the epilepsy duration (r = 0.553, p = 0.008). (B) The FC values between the left thalamus and
right orbital part of IFG showed a significant correlation with the epilepsy duration (r = 0.547, p = 0.008). FC, functional connectivity; IFG,
inferior frontal gyrus.

subjects of Jia et al. (2020) comprise adults with GTCS, while the
subjects of the present study are children with GTCS. Previous
studies have found that adults and children with GTCS showed a
different brain organization (Li et al., 2016; Wang et al., 2018; Li
et al., 2020a,b). A recent study considering the role of thalamo-
cortical interaction has shown that the normal aging process
can affect the interconnections between the thalamus and other
brain networks (Das et al., 2021). The connection strength
and direction of the thalamo-cortical networks were different
between the young and old groups. The difference in the view of
brain organization could also be approved by a previous study
that investigated the normal development of brain white matter
between healthy children and adults (Oyefiade et al., 2018). In
this previous study, the participants showed significant age-
related differences in diffusion index across the frontal, parietal,
and temporal lobes. These age-related changes reflect continued
myelination and axonal organization of short-range white
matter with increasing age. Thus, the age factor may affect the
connection architecture. Children with GTCS showed specific
changes in the temporal properties of the thalamo-cortical
network. Another explanation for this inconsistency may be
the combined effect of brain development and AED in children
with GTCS. Once a child has been diagnosed, AED treatment
is the first choice in most cases. Then, the influence of AED
on the brain is initiated. The generalized spike-wave discharge
burden is moderated by AED, and the effect of the disease
on normal brain development is suppressed. The combined
effects of these factors resulted in this inconsistency between the
children and adults with GTCS. Future studies should include
both children and adults with GTCS simultaneously to verify the
above explanation.

Besides, both increased and decreased temporal variabilities
of causal connectivity in children with GTCS were considered
to be of great interest and importance. The compensatory

mechanism can explain this result. We know that the MFG
and SPL belong to the central executive network (Uddin et al.,
2019). A previous study in normal individuals has detected
that the thalamus acts as a causal outflow hub (Das et al.,
2021). The frontal cortex and superior parietal cortex were
driven by the thalamus in normal individuals. In the present
study, we detected increased temporal variability of connectivity
from MFG to the thalamus. The increased temporal variability
of connectivity implicated hyper-integration of information in
the thalamus and over-interaction between the thalamus and
frontal gyrus. The original balance between inhibition and
excitation information through the thalamus was broken. In
order to maintain the balance in the transmission of information
through the thalamus, temporal variability of connectivity from
the right thalamus to the right SPL was suppressed. Consistent
with a previous study in idiopathic generalized epilepsy, a
decreased FC between the thalamus and SPL was observed
(Gong et al., 2021). Increased inhibition of this pathway may
help to produce a new balance. This dynamic balance between
the thalamus and regions of the central executive network can
also help to maintain the critical integrative hub of thalamus.
The abnormal connectivity temporal variability of thalamo-
cortical network might be associated with cognitive dysfunction
in children with GTCS.

Clinical relevance of the connectivity
properties in thalamus

Moreover, we observed that static FC values and dynamic
FC temporal properties were significantly correlated with
epilepsy duration. As shown in Figures 4, 5, epilepsy duration
positively correlated with the connectivity properties of the left
thalamus. Correlation analysis between the neuroimaging index
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FIGURE 5

Partial correlation between connectivity temporal variability and clinical characteristics (epilepsy duration or epilepsy onset age) in children with
GTCS. (A) The dFC temporal variability between left thalamus and left medial IFG showed significant correlation with the epilepsy duration
(r = 0.585, p = 0.004). (B) The dFC temporal variability between left thalamus and left precuneus showed significant correlation with the
epilepsy duration (r = 0.627, p = 0.002). (C) The dFC temporal variability between left thalamus and right MFG showed significant correlation
with the epilepsy onset age (r = 0.436, p = 0.042). dFC, dynamic functional connectivity; IFG, inferior frontal gyrus; MFG, medial frontal gyrus.
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and disease duration is the most popularly used method in
epilepsy. Previous studies have found that disease duration was
positively correlated with resting-state network abnormalities in
idiopathic generalized epilepsy (Luo et al., 2012; Parsons et al.,
2020; Gong et al., 2021). That is, the longer the patient had
the condition, the more abnormal connections between brain
regions were detected. Epilepsy duration presented negative
effects on the brain connectivity in patients with generalized
epilepsy (Li et al., 2016; Wang et al., 2019b; Jia et al., 2020;
Xu et al., 2021). In this study, we demonstrated decreased
static FC and dFC between the thalamus and brain cortex (IFG
and precuneus). In the children with long epilepsy duration,
their thalamo-cortical network (thalamus-IFG and thalamus-
precuneus) showed a high FC or high temporal variability.
That means the longer the children had the condition, the
more functional connections between the thalamus and cortex
regions were enhanced. This correlation result in the present
study may be inconsistent with the results reported by the
above previous studies. The reason for this inconsistency
might be that the patient’s screening criteria were different.
In the present study, all patients were diagnosed with GTCS,
and the subjects with focal epilepsy generalizing secondary
GTCS were excluded. Previous studies have found that these
two groups of patients with GTCS demonstrated different
relationships between the thalamo-cortical network connection
and the epilepsy duration (Xu et al., 2021; Hsieh et al.,
2022). FC between the somatosensory cortex and thalamus
was negatively correlated with the epilepsy duration of focal
epilepsy patients with bilateral tonic-clonic seizure, while it
was positively correlated with the epilepsy duration in genetic
generalized epilepsy patients (Hsieh et al., 2022). Our correlation
results were consistent with this previous study. The positive
correlations in the present study suggest that in the patients
with the longer conditions, the alteration of connectivity
between the thalamus and cortex may further serve to affect
synchrony. Another reason for this inconsistency may be
that the subjects of the present study were children. The
combined effects of brain development and AED would help
the children with GTCS to control seizures. The depressed
pathways or decreased temporal variability of connections
were enhanced by the effective drug treatment and normal
brain development.

The relationship between the epilepsy onset age and
functional properties was also calculated, as the epilepsy
onset age is another factor that is known to affect the brain
connectivity in epilepsy (Doucet et al., 2015). For children with
GTCS, the epilepsy onset age showed a positive correlation with
the dFC variability between the left thalamus and right MFG.
The relationship direction is consistent with a previous study
that the FC between the insular and thalamic projections was
significantly correlated with the onset of illness (Gong et al.,
2021). The relationship in this previous study showed that the
later the onset, the lower the abnormal FC changes. A recent

study also showed that the interhemispheric connectivity values
within the DMN were positively correlated with the onset age
of the children with GTCS (Li et al., 2022c). The brain of
children with long period for normal developing would have
great tolerate to the disease effect. In the present study, the
dFC variability between the left thalamus and right MFG was
decreased significantly. A significant correlation may imply
that the children with later onset of illness would show a less
decrease in the temporal variability between the left thalamus
and right MFG. However, this observation needs further
verification in the future.

Limitations

Several limitations in this work should be noted, which
lay the groundwork for additional important future studies.
First, although information about antiepileptic medications was
collected, the long-term treatment effects could not be obtained
for some patients. The contact information was no longer
valid. Hence, we could not combine the actual treatment effects
to verify our results. Second, the sample size was relatively
small, and the scanning time was short. In the future, a larger
number of subjects should be recruited. In addition, more
communication work with the subjects should be executed to
increase the scanning time and the imaging quality.

Conclusion

In this work, we used a combination of static and dynamic
functional analyses to explore the functional properties of the
thalamo-cortical network in children with GTCS. Importantly,
we have shown that static FC strength and FC variability
in the thalamo-cortical circuitry were decreased significantly
in children with GTCS. Both increased and decreased
temporal variability of causal connectivity in the thalamo-
cortical circuitry was also detected in children with GTCS. In
addition, the functional properties of some functional pathways
showed a significant correlation with the clinical characteristics.
Both increased and decreased connectivity variability in the
thalamo-cortical circuitry implies a dynamic restructuring of
the thalamo-cortical networks in children with GTCS. These
alterations in static and temporal dynamic pathways connecting
the thalamus may extend our understanding of the neural
mechanism underlying the GTCS in children.
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Background: Textural features of the hippocampus in structural magnetic

resonance imaging (sMRI) images can serve as potential diagnostic biomarkers

for Alzheimer’s disease (AD), while exhibiting a relatively poor discriminant

performance in detecting early AD, such as amnestic mild cognitive

impairment (aMCI). In contrast to sMRI, functional magnetic resonance

imaging (fMRI) can identify brain functional abnormalities in the early stages

of cerebral disorders. However, whether the textural features reflecting

local functional activity in the hippocampus can improve the diagnostic

performance for AD and aMCI remains unclear. In this study, we combined

the textural features of the amplitude of low frequency fluctuation (ALFF)

in the slow-5 frequency band and structural images in the hippocampus to

investigate their diagnostic performance for AD and aMCI using multimodal

radiomics technique.

Methods: Totally, 84 AD, 50 aMCI, and 44 normal controls (NCs) were

included in the current study. After feature extraction and feature selection,

the radiomics models incorporating sMRI images, ALFF values and their

combinations in the bilateral hippocampus were established for the diagnosis
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of AD and aMCI. The effectiveness of these models was evaluated by receiver

operating characteristic (ROC) analysis. The radiomics models were further

validated using the external data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database.

Results: The results of ROC analysis showed that the radiomics models based

on structural images in the hippocampus had a better diagnostic performance

for AD compared with the models using ALFF, while the ALFF-based model

exhibited better discriminant performance for aMCI than the models with

structural images. The radiomics models based on the combinations of

structural images and ALFF were found to exhibit the highest accuracy for

distinguishing AD from NCs and aMCI from NCs.

Conclusion: In this study, we found that the textural features reflecting local

functional activity could improve the diagnostic performance of traditional

structural models for both AD and aMCI. These findings may deepen

our understanding of the pathogenesis of AD, contributing to the early

diagnosis of AD.

KEYWORDS

Alzheimer’s disease, amnestic mild cognitive impairment, resting-state functional
magnetic resonance imaging, the amplitude of low frequency fluctuation, radiomics

Introduction

Alzheimer’s disease (AD) is an aging-related central nervous
system disease characterized by impaired memory function,
which severely affects the quality of life of the elderly (Masters
et al., 2015; Soria Lopez et al., 2019). Recent projection data
suggests that, by 2050, the prevalence of dementia will double
in Europe and triple globally, and the estimated number of
new dementia cases would be three times higher based on
the biological rather than clinical definition of Alzheimer’s
disease (Knopman et al., 2021; Scheltens et al., 2021). AD is
still incurable due to incomplete understanding of its etiology
and underlying neurological mechanisms (Sun et al., 2018).
However, recent studies have indicated that certain necessary
interventions such as statins in the early stages of the disease
may slow the progression of AD, prolonging the lifespan of
patients (Sperling et al., 2011; McDade and Bateman, 2017).
Amnestic Mild Cognitive Impairment (aMCI), characterized by
some degree of cognitive decline and memory impairment, is
generally considered an early AD (Bradfield et al., 2018). Dietary
intervention and alleviation of neuropsychiatric symptoms may
reduce the risk of conversion to dementia (Cooper et al., 2015).
However, the medical diagnosis of aMCI, which mainly relies
on neuropsychological tests, remains challenging due to the
lack of objective biological approaches (Murayama et al., 2013;
Alves et al., 2021). Therefore, our current research focused on
the identification of brain-imaging surrogate markers sensitive

to early disease that could distinguish AD from normal
cognition in the elderly, thus enabling an efficient effective
diagnosis of aMCI.

The hippocampus plays a crucial role in human cognition,
especially memory, and it is considered to be the most
vulnerable region during AD pathogenesis (Braak and Braak,
1997). Both amyloid-β and Tau proteins have been noted to
be selectively deposited in the hippocampal cortical layers of
AD patients (Braak and Braak, 1997). In addition, hippocampal
gray matter atrophy is an important indicator for assessing the
severity of dementia (Pini et al., 2016). Using structural MRI, a
previous study showed that a reduction in bilateral hippocampal
gray matter volume was associated with cognitive decline in
AD and aMCI patients (Feng F. et al., 2021). However, the
volumetric measures may overlook some specific morphological
features, such as the textural features of the hippocampus
(Dachena et al., 2019; Curado et al., 2020).

Radiomics, originally developed for tumor diagnosis, is a
computer-aided diagnostic approach used to mine and analyze
quantitative image characteristics such as intensity and textural
features (Feng Q. et al., 2021; Iancu et al., 2021). Radiomics have
been well-validated in the classification of AD and NC based
on textural features of the structural hippocampus in previous
studies (Rajeesh et al., 2017; Zhao et al., 2020). For example, a
previous study has indicated that the accuracy of discrimination
of Alzheimer’s disease patients is 93.6% using textural features
of the structural hippocampus (Rajeesh et al., 2017). In addition,
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the hippocampal texture was superior to volume reduction as a
predictor of MCI-to-AD conversion (Sørensen et al., 2016; Zhao
et al., 2020), though it has been reported that textural features
of the structural hippocampus are unsatisfactory in diagnosing
aMCI (Feng et al., 2019; Park et al., 2021). This may be because
the structural images could not capture all the changes in the
hippocampus in aMCI (Cai et al., 2017).

As an advanced non-invasive neuroimaging technique,
resting-state functional magnetic resonance imaging
(fMRI) is an important imaging modality to understand
the neurodegenerative course of aMCI and early AD (Wu
et al., 2022), because the memory dysfunction may occur
before the structural degeneration (Jin et al., 2012). The
amplitude of low frequency fluctuation (ALFF) is proposed
to characterize the local properties of rs-fMRI signals (Zang
et al., 2007), showing frequency-dependent pattern (Zuo
et al., 2010) and temporal variability (dynamics) (Liao et al.,
2019), and thus has been widely used to detect functional
abnormalities in brain disorders (Li et al., 2020; Wang et al.,
2021). As for AD and aMCI patients, previous studies have
consistently observed the alterations of ALFF value in the
hippocampus (Liu et al., 2014; Cha et al., 2015; Yang et al.,
2018; Yuan et al., 2021). For example, Liu and colleagues
have demonstrated increased ALFF values in the bilateral
hippocampus of AD patients compared with healthy controls
(Liu et al., 2014). Meta-analyses have also shown significant
alterations of ALFF in the left hippocampus/parahippocampal
gyrus in AD and aMCI patients (Cha et al., 2015; Yuan et al.,
2021). More importantly, these ALFF changes were found
to exhibit a frequency-dependent pattern (Han et al., 2011;
Liu et al., 2014). In our previous study, we observed the
difference in ALFF in the slow-5 frequency band between
groups, mainly corresponding to the bilateral hippocampus
as well as regions within the default mode network, with the
highest accuracy in discriminating the three groups (Wang
et al., 2021). Our findings indicated that ALFF in the slow-5
frequency band might serve as a promising functional indicator
to aid the diagnosis of AD and aMCI (Wang et al., 2021).
Recently, ALFF combined with structural features has been
investigated for the diagnosis of AD and aMCI (Khatri and
Kwon, 2022; Liu et al., 2022). Yet ALFF has not been used in the
analysis of radiomics and it is unclear whether incorporating
functional measures into radiomics analysis can improve the
effectiveness of traditional hippocampal structural models for
the diagnosis of AD and aMCI.

In this study, we combined the ALFF textural feature of the
hippocampus in the slow-5 frequency band with structural MRI
images to investigate their discriminative performance for AD
and aMCI using radiomics analysis. We hypothesized that the
inclusion of hippocampal functional metrics in radiomics could
improve the effectiveness of traditional hippocampal structural
models in distinguishing AD and aMCI patients from healthy
elderly, especially for the diagnosis of aMCI.

Materials and methods

Participants

From September 2016 to August 2020, 98 AD and
53 aMCI patients at Zhejiang Provincial Hospital and 50
normal controls (NCs) at the hospital’s health promotion
center were recruited. All participants signed the written
informed consent. This study was approved by the local
Ethics Committee of Zhejiang Provincial People’s Hospital (No.
2012KY002) and was conducted according to the Declaration
of Helsinki. The inclusion and exclusion criteria have been
described at our previous study (Wang et al., 2021). All
participants underwent medical history collection, physical
examinations, laboratory examinations, routine brain magnetic
resonance scans and the Mini-Mental State Test (MMSE).
AD patients were diagnosed based on the criteria of the
revised NINCDS-ADRDA (National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association) and the DSM-IV-R
(revised Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition) with MMSE score ≤ 24. The aMCI patients
were selected according to the following criteria: (1) complaint
of memory impairment; (2) normal clinical manifestations; (3)
24 < MMSE score ≤ 27; and (4) failure to meet the criteria
for dementia according to DSM-IV-R. The inclusion criteria for
NCs was as follows: (1) absence of neurological impairment,
such as visual loss or hearing and (2) MMSE score≥ 28. Patients
and participants with stroke, brain trauma, epilepsy, Parkinson’s
disease, hypertension, serious anemia, diabetes, brain tumor,
history of mental illness and signal alterations in the medial
temporal cortex caused by infectious or vascular factors on MRI
FLAIR and T2-weighted images were excluded. The summary
of subjects was illustrated in Table 1 and the flow chart of the
radiomic analysis was shown in Figure 1.

Image acquisition

MRI data were obtained using a 3.0T magnetic resonance
scanner (Discovery MR750; GE Healthcare, Waukesha,
WI, United States) at Zhejiang People’s Hospital and an
8-channel phased array coil was used for all the subjects.
Raw structural images were acquired using a high-resolution
3D T1-weighted magnetization-prepared rapid gradient
echo (MPRAGE) sagittal sequence with predefined direct
MR acquisition parameters [repetition time (TR) = 6.7 ms,
echo time (TE) = 2.9 ms, slice thickness = 1 mm, field
of view (FOV) = 256 × 256 mm2, flip angle = 12◦,
resolution = 256 × 256, and 192 slices]. Rs-fMRI images
were acquired using an echo-planar imaging sequence
(TR = 2,000 ms, TE = 30 ms, slice thickness = 3.2 mm,
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TABLE 1 Demographic data and clinical characteristics of the participants.

Sample size AD (N = 84) aMCI (N = 50) NC (N = 44) Statistic P-value

Gender (male: female) 37:47 27:23 21:23 1.244 0.537a

Age (years, mean± SD) 69.226± 9.303 65.840± 11.171 65.477± 9.690 2.847 0.061b

Education (years, mean± SD) 7.167± 4.412 7.120± 4.059 7.114± 3.356 0.003 0.997b

MMSE 17.512± 5.084 26.200± 0.881 29.023± 0.902 182.686 <0.001b

ap-values for sex distribution obtained by the chi-square test; bp-value obtained by analysis of variance. AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs,
normal controls.

FIGURE 1

The flow chart of radiomic analysis. ALFF, the amplitude of low frequency fluctuation; LASSO, the least absolute shrinkage and selection
operator; ROC, receiver operating characteristic.

FOV = 220 × 220 mm2, flip angle = 90◦, resolution = 64 × 64,
and 210 volumes and 44 slices).

Amplitude of low frequency
fluctuation calculation

Rs-fMRI data were mainly processed using SPM1 (Penny
et al., 2011) and DPABI (Yan et al., 2016) in the following
steps: (1) Due to the magnetic field inhomogeneity of the
MR machine during the initial scan, the first 10 time points
which recommended in DPABI (Chao-Gan and Yu-Feng, 2010)
were discarded to reduce the impact on data quality. (2)
A temporal layer correction was performed to rectify the

1 http://fil.ion.ucl.ac.uk/spm

differences in interlayer acquisition time using the middle
slice as the reference slice. The correction was performed
by lagging (shifting forward) the time series on each slice
using sinc interpolation. (3) A head motion correction was
performed to reduce the effect of the subject’s head motion
on data quality (Friston et al., 1995; Whitfield-Gabrieli and
Nieto-Castanon, 2012). (4) Linear trend of the time series was
regressed. (5) Regression of covariates including white matter,
cerebrospinal fluid and Friston 24 parameters was performed
(Friston et al., 1996). (6) According to our previous studies
(Wang et al., 2021), the ALFF in the slow-5 frequency band
(0.01–0.027 Hz) was calculated for each participant. The flow
chart for calculating the ALFF in the slow-5 frequency band was
shown in Supplementary Figure 1.

In this study, we first excluded patients with the criteria
of displacement > 3 mm and rotation > 3◦. To improve the
reliability of fMRI-based radiomics, we further removed the
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patients with FD > 0.5 (Power et al., 2015). A 25 subjects were
excluded, leaving 84 AD patients, 50 aMCI patients and 44 NCs
healthy controls in the follow-up analysis.

Hippocampus segment

To improve the segmentation efficiency while ensuring
the stability of the results, a deep learning-based hippocampal
segmentation toolkit hippodeep2 was used to automatically
segment the bilateral hippocampus (Thyreau et al., 2018).
Structural MRI was performed on all patients to obtain
bilateral structural image masks of the hippocampus. We
randomly selected five cases to compare the segmentation
mask of the algorithm and that of a highly qualified head
and neck radiologist using the dice coefficient. The mean dice
coefficient of the left hippocampus is 0.935 and that of the right
hippocampus is 0.967. The results showed the good consistency
and validity of the automatic segmentation adopted in our
study. Then the bilateral hippocampal masks for assessment of
ALFF were obtained by aligning the structural images with the
functional images.

Features extraction

Based on the segmentation results, radiomics features
of bilateral hippocampus extracted from two modalities
(sMRI and ALFF images) were compared to quantify tissue
spatial heterogeneity. The features were analyzed using
an open-source radiomics analysis package3 based on the
radiomics toolbox4, conforming to the Imaging Biomarker
Standardization Initiative (IBSI) (Xu et al., 2020; Zwanenburg
et al., 2020). In the current study, 101 features were extracted
from sMRI or ALFF images within each region of the bilateral
hippocampus, including 13 intensity features and 88 textural
features for each modality (Xu et al., 2020). The names of the
101 radiomic features were shown in Supplementary Table 1.

Feature selection and radiomic
signature building

Before data processing, the createDataPartition function
from the caret package was used to randomly split the data of 84
AD patients and 44 NCs, of which 70% of the data were classified
as the training set and 30% of the data were classified as the test
set and make the ratio of positive samples to negative samples
the same between the training and test set. To avoid sample bias

2 https://github.com/bthyreau/hippodeep_pytorch

3 https://github.com/WenbingLv/Subregional-Radiomics

4 https://github.com/mvallieres/radiomics

of grouping and get a steady result, 10 times repetition of the
validation in the present study was adopted. To remove the unit
limit of each feature before applying it to the machine learning
model for classification, z-normalization was performed on the
training set and applied to the test set and the external validation
set. Due to sample imbalance, the synthetic minority over-
sampling (SMOTE) algorithm (Chawla et al., 2002) was used to
balance the minority group in the training set.

Two feature selection methods, including the minimum
redundancy maximum relevance (mRMR) (Ding and Peng,
2005) and the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 2011), were used to select the most
valuable predictive features in the training cohort. Firstly,
using the mRMR method, the features were ranked by their
relevance-redundancy index, and the top 20 features with the
highest relevance were selected (Ding and Peng, 2005). Then,
LASSO regression was conducted on the training cohort using
10-fold cross-validation to choose the optimized subset of
features and build a radiomic signature (Tibshirani, 2011). The
corresponding coeficients were evaluated. As a simple score
developed to classify the patients and NCs using radiomics, the
radiomics score (radscore) was calculated by summing selected
textural features weighted by their respective coeficients (plus
a constant term) (Zheng et al., 2018). All rad-scores between
the AD and NCs groups were compared on the training and
validation sets, respectively.

The above process was carried out six times in total.
Using the same train-test split, six radiomics signatures were
created based on sMRI and ALFF in the slow-5 band
and their combination in the left and right hippocampus,
respectively. Then images from 50 aMCI patients and 44
NCs were similarly processed. The following 12 radiomics
signatures were constructed: AD diagnosis model based on
left hippocampal structural image, AD diagnosis model based
on left hippocampal ALFF, AD diagnosis model based on left
hippocampal structural and ALFF image, AD diagnosis model
based on right hippocampal structural image, AD diagnosis
model based on right hippocampal ALFF, AD diagnosis model
based on right hippocampal structural and ALFF images,
aMCI diagnosis model based on left hippocampal structural
image, aMCI diagnosis model based on left hippocampal ALFF,
aMCI diagnosis model based on left hippocampal structural
and ALFF images, aMCI diagnosis model based on right
hippocampal structural image, aMCI diagnosis model based on
right hippocampal ALFF, and aMCI diagnosis model based on
right hippocampal structural and ALFF images.

Statistical analysis

Wilcoxon test was performed on the rad-score for detecting
AD and aMCI in the train and test sets, respectively. As
recommended in previous study (Ge et al., 2022), P < 0.05
was considered to be statistically significant in accordance with
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statistical conventions. The area under the curve (AUC) of
the training and test set was used to assess the discriminative
accuracy of the Rad-score. This process was repeated 10 times
and the average AUC value was obtained as the final metric for
this study. Receiver operating characteristic (ROC) curves were
analyzed and visualized using the Matlab-based classification
model effectiveness analysis tool ROCA.5 To further assess the
classification effects of different models, this study used the
Delong test (DeLong et al., 1988) to compare the differences in
the AUCs of each classification model.

Correlation analyses were performed on the features
retained for AD and aMCI diagnosis. The textural features
selected in unimodality and retained in the combined model
were correlated with MMSE by the Spearman correlation
coefficient, and an α level of less than 0.05 was considered
statistically significant. The correlation coefficient was
calculated using the following formula:

ρ =

∑
i (R(xi)− R(x))

(
R(yi)− R(y)

)√∑
i(R(xi)−R(x))2

√∑
i(R(yi)−R(y))

2

Where, R(x) and R(y) are the rank order of x and
y, respectively.

External validation

The external validation dataset including 33 AD, 34 MCI
patients and 38 NCs was downloaded from the ADNI database.6

The searching criteria were as follows: (1) data containing
3.0 T Philips MRI scans; (2) scan sequences containing
high-definition T1 structural images; (3) scan sequences
containing resting-state functional MRI data (TR = 3.0 s,
layer thickness = 3.3 mm, resolution = 64 × 64, and 140
time points); and (4) the baseline data were collected from
the initial visit. ADNI was reviewed and approved by the
institutional review boards of all participating institutions7, and
written informed consent was obtained from all participants or
their guardians in accordance with the Declaration of Helsinki
(Petersen et al., 2010; Trojanowski et al., 2010; Weiner et al.,
2010). A total of 6 subjects with a maximum head movement
displacement > 3 mm, a rotation > 3◦ and an FD > 0.5 during
resting-state functional MRI scanning were excluded, and 32
AD, 32 MCI, and 35 NCs subjects were finally included in the
validation analyses. The summary of ADNI subjects were shown
in Supplementary Table 2.

The radiomics models obtained from the train set of our
data were applied to the ADNI dataset to validate the robustness
of the models in clinical practice. In addition, to further
validate our results, we performed a classification analysis with
a combination of the bilateral hippocampus.

5 https://github.com/Luoyu-Wang/ROCA

6 https://adni.loni.usc.edu

7 http://www.adni-info.org

Results

Demographic data and
neuropsychological tests

No significant differences in demographic information (i.e.,
sex, age, education) were noted (P > 0.05). A significant
difference in MMSE score was shown among the three groups.
Post hoc analyses were performed and the results indicated that
the NCs had the highest neuropsychological performance, aMCI
patients had intermediate performance, AD patients had the
worst performance (P< 0.001). Table 1 summarizes the detailed
demographic characteristics and MMSE scores of all subjects.

Receiver operating characteristic
analysis and delong tests

The processes of feature selection and rad-score calculation
for all 12 models are shown in Supplementary Figures 2–7.
The results of the ROC analyses are shown in Figure 2 and
Tables 2, 3.

When differentiating the AD from NCs, the AUC of the
left hippocampal structural model was 0.864, while that of the
model based on left hippocampal ALFF in the slow-5 frequency
band was 0.828. Delong test reflected the significant difference
in AUC between these two models (z = 3.087, P = 0.002). The
combined model based on the left hippocampal structural and
ALFF images exhibited the highest accuracy (AUC = 0.873). And
the AUC of the combined model was significantly higher than
that of the structural image model (z = 3.003, P = 0.003). In
addition, similar results were obtained for assessing the right
hippocampus. The AUC of the right hippocampal structural
model was 0.818, while that of the model based on right
hippocampal ALFF in the slow-5 frequency band was 0.780.
Delong test reflected the significant AUC difference between
these two models (z = 2.898, P = 0.004). The combined model
based on the right hippocampal structural and ALFF images
exhibited the highest accuracy (AUC = 0.830). Additionally, the
AUC of the combined model was significantly higher than that
of the structural image model (z = 2.361, P = 0.018).

Unlike AD, the model based on left hippocampal ALFF
in the slow-5 frequency (AUC = 0.764) showed better
discriminative performance than the left hippocampal structural
model (AUC = 0.729) when distinguishing aMCI from NCs.
There was a marginally significant difference in AUC between
these two models (z = 1.805, P < 0.071). The combined
model based on the left hippocampal structural and ALFF
image (AUC = 0.804) had better performance than the left
hippocampal structural model (z = 6.629, P < 0.001). The
combined model based on the right hippocampal structural
and ALFF images (AUC = 0.810) also had better performance
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FIGURE 2

The ROC curve of the hippocampal structural image, hippocampal ALFF in slow-5 frequency band and their combined model. (A) ROC curves
for AD and NCs in the training set based on left hippocampal images. (B) ROC curves for aMCI and NCs in the training set based on left
hippocampal images. (C) ROC curves for AD and NCs in the training set based on right hippocampal images. (D) ROC curves for aMCI and NCs
in the training set based on right hippocampal images. (E) ROC curves for AD and NCs in the test set based on left hippocampal images. (F) ROC
curves for aMCI and NCs in the test set based on left hippocampal images. (G) ROC curves for AD and NCs in the test set based on right
hippocampal images. (H) ROC curves for aMCI and NCs in the test set based on right hippocampal images. TPR, true positive rate; FPR, false
positive rate; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal controls; ROC, receiver operating characteristic;
ALFF, the amplitude of low frequency fluctuation.

(z = 1.763, P = 0.078) than the right hippocampal structural
model (AUC = 0.790).

The results of external validation suggested a consistent
trend between the validation and the train sets, as shown in
Table 4. In addition, we performed a classification analysis
with a combination of the bilateral hippocampus. The results
were consistent with the findings based on the unilateral
hippocampus and were shown in the Supplementary Table 3.

TABLE 2 The ROC curve of left hippocampal structural images, ALFF
in slow-5 frequency band and their combined model.

Classifier Model Data set AUC 95% CI Accuracy

AD vs. NCs T1 Training 0.864 0.841–0.887 0.778

Test 0.818 0.767–0.858 0.790

ALFF Training 0.828 0.801–0.853 0.767

Test 0.809 0.758–0.856 0.816

T1+ALFF Training 0.873 0.849–0.895 0.789

Test 0.837 0.792–0.872 0.763

aMCI vs. NCs T1 Training 0.729 0.689–0.766 0.682

Test 0.713 0.650–0.772 0.786

ALFF Training 0.764 0.725–0.800 0.788

Test 0.738 0.678–0.796 0.714

T1+ALFF Training 0.804 0.763–0.834 0.788

Test 0.718 0.657–0.774 0.714

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal
controls; ROC, area under the curve; ALFF, the amplitude of low frequency fluctuation.

Correlation analysis

The features subjected to unimodal selection and retained
in the combined model were correlated with the MMSE scores
in AD and aMCI diagnostic models, respectively, and the
results were shown in Figure 3. In the diagnostic model
for AD, the features significantly associated with MMSE
score were T1-w_GLRLM (gray-level run-length matrix) _RLN

TABLE 3 The ROC curve of right hippocampal structural images, ALFF
in slow-5 frequency band and their combined model.

Classifier Model Data set AUC 95% CI Accuracy

AD vs. NCs T1 Training 0.818 0.789–0.844 0.788

Test 0.797 0.750–0.838 0.710

ALFF Training 0.780 0.746–0.806 0.756

Test 0.763 0.708–0.816 0.789

T1+ALFF Training 0.830 0.802–0.856 0.778

Test 0.822 0.772–0.857 0.684

aMCI vs. NCs T1 Train 0.790 0.756–0.825 0.712

Test 0.708 0.643–0.772 0.714

ALFF Training 0.798 0757–0.830 0.803

Test 0.723 0.659–0.780 0.714

T1+ALFF Training 0.810 0.778–0.840 0.722

Test 0.733 0.666–0.793 0.714

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal
controls; ROC, area under the curve; ALFF, the amplitude of low frequency fluctuation.
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TABLE 4 External validation.

Classifier Model Hippocampus AUC 95% CI Accuracy

AD vs. NCs T1 left 0.829 0.794–0.859 0.791

right 0.738 0.700–0.773 0.731

ALFF left 0.757 0.719–0.790 0.731

right 0.678 0.638–0.717 0.657

T1+ALFF left 0.830 0.795–0.862 0.791

right 0.746 0.706–0.781 0.701

MCI vs. NCs T1 left 0.554 0.511–0.600 0.627

right 0.529 0.487–0.574 0.582

ALFF left 0.598 0.552–0.639 0.642

right 0.563 0.520–0.611 0.597

T1+ALFF left 0.634 0.589–0.676 0.642

right 0.558 0.512–0.603 0.582

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; NCs, normal
controls; ROC, area under the curve; ALFF, the amplitude of low frequency fluctuation.

(run-length non-uniformity) (r = 0.381, P < 0.001), T1-
w_GLRLM_RLV (run-length variance) (r = −0.281, P = 0.012),
ALFF_GLCM (gray level concurrence matrix)_Correlation
(r = 0.305, P = 0.005) from the left hippocampus and T1-
w_GLCM_Entropy (r = 0.245, P < 0.025), and ALFF_GLSZM
(gray-level size zone matrix)_GLN (gray-level non-uniformity)
from the right hippocampus (r = 0.274, P = 0.010). In
the diagnostic model for aMCI, significant MMSE-correlated
features included ALFF_GLCM_Correlation from the left
hippocampus (r = 0.445, P = 0.001).

Discussion

To the best of our knowledge, this was the first study to
explore the functional indicator ALFF calculated from rs-fMRI
as textural features. In the present study, the textural features
of the hippocampus in both ALFF map in the slow-5 frequency
band and structural MRI image were combined in the radiomics
model to explore their discriminant performance for detecting
AD and aMCI. We found that the radiomics model based
on hippocampal structural image had a better performance
than that based on ALFF in the slow-5 frequency band when
distinguishing AD from NCs. When differentiating the aMCI
from NCs, the model based on hippocampal ALFF in the slow-
5 frequency band showed better diagnostic ability than that
based on hippocampal structural images. More importantly,
the combined model exhibited the best performance for the
diagnosis of both AD and aMCI, which meant that the
multimodal radiomics models based on hippocampal structural
images and ALFF in the slow-5 frequency band had the potential
to become a new diagnostic tool for AD.

Using the radiomics approach, we found that the model
based on hippocampus structural images performed well in
diagnosing AD. This was consistent with the results of previous

radiomics studies on hippocampal structural MRI (Zhang et al.,
2012; Rajeesh et al., 2017). Moreover, the above model showed
better performance than the model based on hippocampal
ALFF in the slow-5 frequency band. On the contrary, the
model based on hippocampal ALFF in the slow-5 frequency
band instead had better performance than the radiomics model
based on radiomics studies of hippocampal structural MRI in
diagnosing aMCI. The structural image may not fully reflect
the changes in the hippocampus of aMCI patients, and ALFF
is generally considered to represent the local activity of the brain
(Zang et al., 2007). In the early stages of AD when structural
damage is not yet evident, local brain functional changes may
precede structural changes. The model based on hippocampal
structural images and ALFF in the slow-5 frequency band
showed better performance on AD (z = 3.003, P = 0.003, for
left hippocampus; z = 2.361, P = 0.018, for right hippocampus)
and aMCI (z = 6.629, P< 0.001, for left hippocampus; z = 1.763,
P = 0.078, for right hippocampus) than the classical model based
on structural images. The textural features of ALFF may provide
additional spatial textural information about the local activity of
the brain. In addition, consistent results were also obtained in
the external validation set. These results together suggest that
the textural features of hippocampal ALFF could improve the
diagnosis of traditional structural hippocampus models for AD
and aMCI. In contrast, the diagnostic power for aMCI in the
validation set was relatively lower than in our data. There are
differences in the inclusion criteria such as MMSE scores and
symptoms8 between the two datasets. In our data, the MMSE
score for aMCI patients is between 24 and 27, while in the
ADNI database, the MMSE score for aMCI is between 24 and 30.
Moreover, aMCI patients from our dataset have a complaint of
memory impairment and normal clinical manifestations, while
aMCI patients in ADNI suffer a subjective memory concern,
informant, or clinician and absence of significant levels of
impairment in other cognitive domains. Thus, we speculate that
the lower diagnostic power for aMCI in the validation set may
be due to the differences in the inclusion criteria. Future studies
to recruit the aMCI patients with the same inclusion criteria
as our data could be attained to test the radiomics models in
the current study.

The features retained in the combined model were
correlated with the MMSE score. Our results were consistent
with previous studies which showed significant correlations
between the run-length non-uniformity (RLN) based on
hippocampal structural images and MMSE score (Zhao et al.,
2020). In addition, correlation analysis further revealed that
the features that were significantly correlated with MMSE
scores were T1-w_GLRLM_RLN from the left hippocampus,
T1-w_GLRLM_RLV, ALFF_GLCM_Correlation and T1-
w_GLCM_Entropy and ALFF_GLSZM_GLN from the right

8 https://adni.loni.usc.edu/methods/documents/
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FIGURE 3

Correlation analysis between MMSE scales and textural features. (A) Correlation of T1-w_GLRLM_RLN in the left hippocampus with MMSE
scores of AD patients. (B) Correlation of T1-w_GLRLM_RLV in the left hippocampus with MMSE scores of AD patients. (C) Correlation of
ALFF_GLCM_Correlation in the left hippocampus with MMSE scores of AD patients. (D) Correlation between T1-w_GLCM_Entropy in the right
hippocampus and MMSE scores of AD patients. (E) Correlation of ALFF_GLSZM_GLN in the right hippocampus with MMSE scores of AD
patients. (F) Correlation of ALFF_GLCM_Correlation in the left hippocampus with MMSE scores of aMCI patients. MMSE, Mini Mental State Test;
ALFF, the amplitude of low frequency fluctuation.

hippocampus in diagnosing AD. Moreover, the feature
ALFF_GLCM_Correlation was significantly correlated with
MMSE score in detecting aMCI. The features mentioned
above may be associated with the cognitive decline of
AD or aMCI patients. Among the textural features,
ALFF_GLCM_Correlation preserved by feature selection
in both diagnosing AD and aMCI was positively correlated
with MMSE score (Figure 3). GLCM is generally defined
as the joint probability occurrence of pixel or voxel pairs,
and GLCM_Correlation is usually considered to reflect the
consistency of the image texture (Haralick et al., 1973). The
correlation is high if all matrix element values are consistent
and low if the values of matrix elements are not consistent.
The results of this study were obtained using the grayscale
distribution in all 13 directions, reflecting the joint probability
information of the image grayscale in the adjacent 26 voxels.
GLCM_Correlation may reflect the local texture consistency in
the image space (Haralick et al., 1973), and ALFF is generally
considered to represent the local activity of the brain (Zang
et al., 2007). Therefore, ALFF_GLCM_Correlation may reflect
the local coherence of the brain’s activity. This finding suggests
that AD and aMCI patients may show cognitive decline as the
local coherence decreases. The underlying mechanism is still

currently unclear, probably because Tau protein and amyloid-β
are selectively deposited in the hippocampal cortex of patients
during early onset of AD (Braak and Braak, 1997), resulting in a
coherent alteration in the local activity of brain function, which
is consistent with previous Regional Homogeneity (ReHo)
findings in AD and aMCI patients (Zang et al., 2004; Cha et al.,
2015; Wang et al., 2015).

This study had certain shortcomings and limitations.
First and foremost, we only used hippocampal ALFF in the
slow-5 frequency band, ignoring the consistency within the
hippocampus and the connectivity within the whole brain.
Future studies should make full use of the advantages of multiple
indicators from fMRI such as ALFF, Regional Homogeneity
and degree centrality for a comprehensive analysis. Second,
the patients with AD and aMCI suffered from cognitive
impairments in multiple domains (Stogmann et al., 2016), which
could not be fully evaluated by MMSE. However, we failed
to collect other cognitive scales and behavior data. Future
studies employing different cognitive and behavioral tests in
AD patients can aid the validation of the results. Third, the
altered hippocampal function may not be the most significant
alteration in AD. In future studies, texture features of other brain
regions with functional changes, such as the default network,
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should be employed to further explore their diagnostic effect.
Finally, recent studies which adopted a 3-class classification
model and exhibited better discriminative performance usually
included thousands of data samples (Elola et al., 2021; Katz et al.,
2021). We only have 178 MRI data and failed to build a 3-class
classification model in the current study. In future study, more
data should be acquired to classify AD and MCI simultaneously
by building a 3-class classification model.

Conclusion

In this study, we used the hippocampal radiomics technique
to establish predictive models incorporating structural image,
ALFF in slow-5 frequency band and their combinations for
diagnosis of AD and aMCI. We found that the radiomics
model based on hippocampal structural image had a better
diagnostic power for detecting AD compared with the model
using hippocampal ALFF in the slow-5 frequency band; while
the model based on ALFF in the slow-5 frequency band
had a higher diagnostic power for aMCI than that based on
the hippocampal structural image. The textural features of
hippocampal ALFF can improve the diagnostic accuracy of
traditional structural image models for detecting AD and aMCI,
which meant that multimodal radiomics models based on the
hippocampal structural images and the ALFF in the slow-5
frequency band can better diagnose AD and aMCI compared
with the traditional structural image model, having the potential
to become a new AD diagnostic tool. In future studies, we would
make full use of the advantages of multiple indicators from fMRI
such as ALFF and functional connectivity, to further examine
their diagnostic effect.
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Functional brain networks and the perception of pain can fluctuate over

time. However, how the time-dependent reconfiguration of functional

brain networks contributes to chronic pain remains largely unexplained.

Here, we explored time-varying changes in brain network integration and

segregation during pain over a disease-affected area (joint) compared to

a neutral site (thumbnail) in 28 patients with rheumatoid arthritis (RA) in

comparison with 22 healthy controls (HC). During functional magnetic

resonance imaging, all subjects received individually calibrated pain pressures

corresponding to visual analog scale 50 mm at joint and thumbnail. We

implemented a novel approach to track changes of task-based network

connectivity over time. Within this framework, we quantified measures of

integration (participation coefficient, PC) and segregation (within-module

degree z-score). Using these network measures at multiple spatial scales,

both at the level of single nodes (brain regions) and communities (clusters

of nodes), we found that PC at the community level was generally higher

in RA patients compared to HC during and after painful pressure over

the inflamed joint and corresponding site in HC. This shows that all brain

communities integrate more in RA patients than in HC for time points

following painful stimulation to a disease-relevant body site. However, the

elevated community-related integration seen in patients appeared to not

pertain uniquely to painful stimulation at the inflamed joint, but also at

the neutral thumbnail, as integration and segregation at the community

level did not differ across body sites in patients. Moreover, there was no
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specific nodal contribution to brain network integration or segregation.

Altogether, our findings indicate widespread and persistent changes in

network interaction in RA patients compared to HC in response to

painful stimulation.

KEYWORDS

fMRI, brain networks, time-varying functional connectivity, temporal network theory,
chronic pain, rheumatoid arthritis

Introduction

Alterations in the functional connectivity between brain
regions have been reported in patients with chronic pain
(Napadow et al., 2010; Tagliazucchi et al., 2010; Hemington et al.,
2016), bringing factual contribution to the consideration of
chronic pain as a condition that can be studied and understood
from a brain network modeling perspective (Apkarian et al.,
2009; Mano et al., 2018).

Within this framework, recent advances have been made
in the identification of an objective biomarker of chronic pain.
Notably, a recent study provided evidence for a neuroimaging
marker for tonic experimental pain predicting sustained clinical
pain (Lee et al., 2021). An interesting feature of this biomarker
signature is its largely distributed network-level representation
of the sustained pain state (Lee et al., 2021). Yet recently,
the organization of networks in the brain was proposed as
potential biomarker and further investigated, specifically, as the
assignment of nodes (brain regions) to different communities
(clusters of nodes) in the whole-network (brain) (Larkin et al.,
2021) and via the examination of brain hub topology (Kaplan
et al., 2019). Interestingly, the hub topology was altered (Kaplan
et al., 2019) and the allocation of nodes in communities more
variable (Larkin et al., 2021) in chronic pain patients compared
to healthy controls (HC), providing knowledge into both the
local and global functional resting-state network architecture of
chronic pain patients (Larkin et al., 2021).

Variables obtained from modeling functional magnetic
resonance imaging (fMRI) data in the context of time-varying
brain networks may act as more sensitive markers of acute
and chronic pain, given the dynamic nature of pain and the
brain itself. Specifically, there is evidence to suggest that the
organization of brain networks fluctuates between states of
integration and segregation (Shine et al., 2016) and, within a
time-varying functional connectivity (TVC) framework, these
measures have been proven to be critical in understanding
cognition (Cohen and D’Esposito, 2016; Shine et al., 2016;
Fransson et al., 2018).

However, the application of integration and segregation
measures to the investigation of pain-related patterns of network
reconfiguration is still in its infancy. Recent work from our

group assessed TVC changes in network integration/segregation
in HC during thermal pain, showing increased brain network
integration with increased pain (Kastrati et al., 2022). To
add specificity to the investigation of pain processing in
chronic pain patients, we used TVC to explore changes in
brain network integration and segregation that are time-
locked to pressure pain stimulations over a disease-affected
body site (i.e., inflamed joint) and a neutral body part (i.e.,
thumbnail) in chronic pain patients with rheumatoid arthritis
(RA) compared to HC. Notably, pain pressure stimuli were
individually calibrated across both groups and sites. When
comparing the same cohort of RA patients and HC, previous
work from our group showed: (1) increased intrinsic, static
FC between bilateral sensorimotor and frontal midline brain
regions in patients compared to HC (Flodin et al., 2016), (2)
reduced activation in brain regions associated to the processing
of pain and somatosensory information in patients compared
to HC when painful stimulation is delivered to the joint, and
not to the thumb (Sandström et al., 2019). When comparing
body sites within patients, Sandström et al. (2019) showed
that abnormalities in cerebral pain processing in patients were
confined uniquely to the joint (i.e., the disease-affected site)
and not generalizable to the thumb (i.e., the neutral area), with
patients exhibiting a reduced activation in somatosensory and
pain processing regions as well as in coupled right and left
dorsolateral prefrontal cortex.

Based on these premises, the objective of the present work
was to determine whether and how the degree of change in
integration and segregation between network communities and
nodes varies over time and is putatively influenced by pressure
pain stimuli across groups and stimulation sites in patients. This
might add more specificity to the understanding of cerebral pain
processing mechanisms in patients with RA.

Materials and methods

Participants and study description

The dataset used in the current study has previously been
described in Flodin et al. (2016) and in Sandström et al. (2019).
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A detailed account of participants and information regarding
exclusion and inclusion criteria can be found in Sandström
et al. (2019). Participants underwent two testing sessions, on
two consecutive days. Of relevance to the current study, on
day 1, sensitivity to evoked pressure pain was individually
calibrated and, on day 2, the individually calibrated painful
pressure and a non-painful pressure were delivered during
four runs of a functional magnetic resonance imaging (fMRI)
pressure pain paradigm. fMRI data (covering the whole brain)
from a total of 28 RA patients and 22 HC were included
in the analysis (mean age RA patients = 53.64 years; mean
age HC = 52.86 years; age range = 23–72 years). The minor
difference in the total number of subjects included in this study
compared to Sandström et al. (2019) is due to the need to
adhere to a specific pipeline tailored to time-resolved fMRI data.
All participants gave written informed consent in accordance
with the Declaration of Helsinki. The local ethical review board
approved the research.

Experimental procedure

The present study forms part of a larger project (referred to
as the PARADE study; https://www.clinicaltrials.gov; [identifier
NCT01197144, EudraCT 2009-017163-42]). Previously, we have
reported differences in spontaneous brain activation patterns
(Flodin et al., 2016) and brain activity recorded after painful
stimuli delivered to a disease-affected finger joint as well as to
the non-affected thumbnail area (Sandström et al., 2019). In
this work, we use time-varying functional connectivity (TVC),
which allows for a time point-by-time point assessment of
changes in brain network activity related to pain. Therefore, the
methodological section in this paper is focused on the procedure
used for assessing TVC.

Day 1: Individual calibration of pressure pain
One day prior to fMRI scanning, the degree of pain

pressures to be used during scanning was subjectively calibrated.
Pain sensitivity was assessed by applying pressure to the patient’s
clinically most affected proximal interphalangeal (PIP) joint
(PIP2 n = 21; PIP3 n = 7) of the left hand and to the non-
affected, left thumbnail via an automated, pneumatic, computer-
controlled stimulator with a 1 cm2-hard rubber probe (Jensen
et al., 2009). Corresponding anatomical sites were used in HC
(PIP2 n = 21; PIP3 n = 1). Each participant first received a series
of stimuli with a step-wise increase in pressure, then followed
by a series of stimuli that had a randomized order of different
pressure. The pressure stimuli, in both series, were delivered
for a duration of 2.5 s and with 30 s inter-stimulus intervals.
After each stimulus, participants were prompted to rate pain
intensity on a 0–100 mm visual analog scale (VAS), ranging from
“no pain” to “worst imaginable pain.” Stimuli in the ascending
series were presented in increasing pressure steps of 50 kPa,

which led to the identification of each participant’s pressure
pain threshold (PPT, first VAS rating > 0 mm) and stimulation
maximum (SM, first VAS rating > 60 mm). It is within this
subjectively calibrated range of PPT and SM that five pressure
pain intensities were obtained and delivered, each three times, in
a randomized series. A polynomial regression was applied to the
15 VAS ratings from the randomized series and, consequently,
used to determine each subjective representation of VAS 50 mm
(referred to as P50). Please refer to Jensen et al. (2009) for further
details regarding the calibration procedure.

Day 2: Functional magnetic resonance imaging
pressure pain paradigm

The subjectively calibrated painful pressure (P50) obtained
from day 1 and a standard non-painful pressure (50 kPA) were
presented during four pseudo-randomized fMRI runs. Two of
the four fMRI runs contained stimuli that were delivered to
the most affected joint in patients (equivalent anatomical site
in HC), while the remaining two fMRI runs included stimuli
applied to the thumbnail. Each run consisted of a total of
30 pressure stimuli events (15 painful and 15 non-painful)
presented in a pseudo-randomized fashion. The duration of
each stimulus was 2.5 s and all stimuli onsets were jittered over
time with a mean interval of 15 s (range 10–20 s) to ensure a fine-
grained sampling of the events. The total duration for all runs
was 8 min and 15 s. All participants were instructed, prior to
scanning, to concentrate on the pressures delivered to joint and
thumbnail and to refrain from invoking coping strategies. No
pain ratings were collected during the course of the fMRI runs.

Functional magnetic resonance
imaging data acquisition and
pre-processing

MRI data were acquired on a 3T General Electric 750 MR
scanner installed at the MR Research Center at Karolinska
Institutet (Stockholm) using a 32-channel head coil. Four task-
based fMRI scans, each consisting of 160 volumes, were acquired
for each subject using a T2∗-weighted single-shot gradient
echo planar sequence (TR/TE = 3000/30 ms; 90◦ flip angle;
96 × 96 matrix size; FOV = 288 × 288 mm; 56 slices; in-plane
resolution = 2.5 × 2.5 mm; slice thickness = 3 mm, interleaved
slice acquisition). Anatomical MRI data were obtained using
a high-resolution T1-weighted image sequence (3D BRAVO;
TR/TE = 7908/3.06 ms; 1 × 1 × 1 mm voxel size; 176 slices).
Additionally, T2-weighted images were acquired and assessed
for clinical abnormalities by a neuroradiologist.

The pre-processing of anatomical and functional data was
performed using fMRIPrep (pre-processing pipeline, version
20.1.1, Esteban et al., 2019). A detailed description of all the pre-
processing steps can be found in the Supplementary material.
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Analysis pipeline for time-varying
functional connectivity

All TVC analyses reported below (parcellation, denoising,
deriving TVC estimates, quantifying network measures of
participation coefficient and within-module degree z-score)
were carried out using teneto (version 0.5.3), a Python package
for temporal network analysis (Thompson et al., 2017a)1. Please
refer to Figure 1 for a schematic representation of the TVC
analysis steps undertaken in this work. The code used to set
up the teneto pipeline and to produce figures is available at
https://github.com/silviafan/TVC-RA.

Parcellation and functional magnetic
resonance imaging data denoising

The BOLD signal time-series from the pre-processed fMRI
data were extracted from brain areas defined using the 7-
network (community), 400-node Schaefer parcellation scheme
(Yeo et al., 2011; Schaefer et al., 2018). Subsequent to the
parcellation step, functional fMRI data underwent denoising,
with the following confounds being regressed out: six head
motion parameters and their respective derivatives, the first six
noise anatomical parameters derived from CompCor (Behzadi
et al., 2007), framewise displacement (FD, Power et al.,
2014), white matter, and cerebrospinal fluid. Additionally, we
employed the criteria that fMRI runs that had a mean FD > 0.5
were to be discarded from the analyses. No fMRI run met this
exclusion criteria.

Deriving parameter estimates for time-varying
functional connectivity

The time-varying changes in functional connectivity were
estimated via the application of the jackknife correlation (JC)
method (Richter et al., 2015). When applied to TVC, the JC
method calculates the Pearson’s correlations between two BOLD
time-series x and y over all the individual time points, excluding
data at time point t, and then multiplies the resulting correlation
value by –1 (Thompson et al., 2018).

JCt = −

( ∑T
i (xi− x̄t)

(
yi− ȳt

)∑T
i (xi− x̄t)2 ∑T

i
(
yi− ȳt

)2

)
i 6= t

This application of the JC method to compute time-varying
functional connectivity was first introduced by Thompson et al.
(2017b). Importantly, it has been previously shown that the
JC method is more sensitive to quicker temporal changes in
covariance compared to other methods (Thompson et al., 2018;
Xie et al., 2019). Here, JC values were standardized to have
mean of 0 and standard deviation of 1 creating flow TVC

1 https://github.com/wiheto/teneto

estimates (Fransson and Thompson, 2020). Note that the JC
method provides time point-by-time point estimates of pairwise
functional brain connectivity.

Quantifying time-varying parameters of
community integration and segregation

To answer the question of how the degree of integration
and segregation of the seven pre-defined communities and six
chosen nodes changes over time and is putatively influenced
by painful stimulation to the joint across groups and based on
the stimulation site, we chose to include network measures that
have been previously shown to be informative and relevant for
other qualia (Cohen and D’Esposito, 2016; Shine et al., 2016),
although never before used in the context of chronic pain.

First, we calculated the participation coefficient (PC), a
network metrics that quantifies the degree to which specific
nodes communicate across communities (Guimerà and Nunes
Amaral, 2005). As described in Guimerà and Nunes Amaral
(2005), PC is:

Pi = 1−
NM∑
s=1

(
kis
ki

)2

Where i = node, s = index of community (NM), kis = degree
of links within each community, ki = total degree of i. In the
computation of PC values, only positive edges were included
in the analysis. Next, we computed the within-module degree
z-score (z), a network metrics that measures the extent to which
specific nodes communicate within their own communities
(Guimerà and Nunes Amaral, 2005). As described in Guimerà
and Nunes Amaral (2005), z is:

zi =
ki − k̄si

σksi

Where i = node, ki = degree of links of i to other nodes in its
community si, k̄si = average of k across nodes in community si,
σksi = standard deviation of k in community si.

For all analyses, we used the same static parcellation for
all time points (Thompson et al., 2020). Taken together, these
two measures provide insights into the integration (PC) and
segregation (z) of nodes in the whole network.

After computing PC and z for all nodes, integration
and segregation were assessed both at community level (i.e.,
measures per community) and nodal level (i.e., measures per
node). The idea was to probe brain network organization
at multiple spatial scales (Sporns, 2015), by capturing the
temporal dynamics of pain processing in the whole-brain
(community level) and at the level of single pain-related brain
regions (nodal level).

On the community level, the median PC or z of all nodes
within each community was calculated. Note, while the mean
of z is always 0 for each community, the median denotes if the
majority of edges are skewed below or above the mean, making
the different community distributions comparable regarding
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FIGURE 1

A schematic representation of the time-varying functional connectivity (TVC) analysis steps undertaken in this work. (A) BOLD signal time-series
were extracted from brain regions defined using the 7-network, 400-node Schaefer parcellation scheme (Yeo et al., 2011; Schaefer et al., 2018)
and TVC was computed at the level of single time points using the jackknife correlation method (Richter et al., 2015). (B) Measures of integration
(participation coefficient, PC) and segregation (within-module degree z-score, z) were quantified and used at the level of single nodes (brain
areas, nodal level) and communities (clusters of nodes, community level). (C) Analyses were carried out at the community and nodal level,
separately. Within each level, we examined how the degree of integration (PC) and segregation (z) varies over time and whether this is
influenced by painful stimulation to the joint across groups (Contrasts 1, 3, 5, 7) and based on the stimulation site in patients (Contrasts 2, 4, 6, 8).

how the community as a whole is tightly connected. Thus, the
median PC or z can be interpreted as the degree of integration
or segregation a community as a whole has with respect to
the other communities in the whole network. For example, as
illustrated in Figure 1B, a community with high median PC has
more between-community edges for nodes in the community
(integration on the community level), whereas a community
with high median z has more within-community edges for nodes
in the community (segregation on the community level).

On the nodal level, node selection was informed by
overlapping (performed in MRIcron2) the brain activation
map produced by entering the text query “chronic pain” into
NeuroQuery, a recently developed tool for comprehensive meta-
analysis of the neuroimaging literature (Dockès et al., 2020),

2 https://www.nitrc.org/projects/mricron

onto the 7-network, 400-node Schaefer parcellation (Yeo et al.,
2011; Schaefer et al., 2018). This procedure resulted in the
selection of six brain areas (nodes): left anterior insula (L AIns),
right anterior insula (R AIns), left posterior insula (L PIns),
right posterior insula (R PIns), L anterior cingulate gyrus (L
ACgG), and right anterior cingulate gyrus (R ACgG). Please
refer to Figure 2 for a representation of the selected nodes and to
Supplementary Table 1 for their identification by templateflow
index (Ciric et al., 2021). Obviously, this approach necessitated
some degree of subjectivity in terms of the selection of nodes to
include but was, nevertheless, undertaken for the purpose of all
results (community and nodal level-related results) to be aligned
within the same whole-brain parcellation. The PC or z score for
each single node can be defined as the degree of integration or
segregation a node has with respect to the other nodes in the
whole network. For example, as illustrated in Figure 1B, a node
with high PC has more between-community edges (integration
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FIGURE 2

The six brain nodes selected to represent key chronic pain brain regions shown in a lateral, superior, and anterior brain view. L AIns, left anterior
insula; R AIns, right anterior insula; L PIns, left posterior insula; R PIns, right posterior insula; L ACgG, left anterior cingulate gyrus; R ACgG, right
anterior cingulate gyrus.

on the nodal level), whereas a node with high z has more within-
community edges for the community (segregation on the nodal
level).

In order to account for the temporal profile of brain
connectivity across the two spatial scales (community and
nodal), the 160 time point data series were broken down into
6 event-related bins, with bins representing the onset TR when
the stimulation was being delivered and until –2 TR pre- and + 3
TR after-stimulus onset, each averaged across participants. This
binning partition served as an indicator for the time-varying
changes in functional connectivity occurring before, during, and
after participants received the painful stimulation.

Statistical analyses

All analyses were carried out using Python version 3.7.2
and were performed: (1) separately for each community and
nodal level, (2) only for painful stimuli, (3) by averaging together
the two joint or the two thumb runs, respectively, and (4)
by focusing only on onset and after-onset time points, each
treated separately. Pre-onset time points were not included in
the analyses, as the pain pressure task used in the study had
not been designed to capture the cerebral processing involved
in anticipating pain. However, these pre-onset time points were
nonetheless plotted in the graphs, for completeness. Statistical
significance was set, conventionally, at p < 0.05, false discovery
rate (FDR) corrected for multiple comparisons.

Group differences in integration and
segregation at nodal and community level for
painful stimulation of the joint

A one-way analysis of covariance (ANCOVA) test was
performed using the ols function in the Python statsmodels
library (Seabold and Perktold, 2010) to test for differences

across groups in the degree of change in integration and
segregation over time at the community and nodal level in
response to painful stimulation of the affected joint in patients
compared to the corresponding site in HC (Contrasts 1, 3,
5, and 7 in Figure 1C). In the model, the network metric
under investigation (PC, z) was used as dependent variable,
the group variable was treated as independent variable with
two levels (RA, HC), and age was used as a covariate. Despite
the unbalanced design, Type II Sum of Squares was used, as
proposed by Langsrud (2003).

Differences in integration and segregation at
nodal and community level for painful
stimulation of the joint compared to thumb in
patients

Differences in the degree of change in integration and
segregation over time at the community and nodal level in
response to painful stimulation of the affected joint compared
to the neutral thumb in patients (Contrasts 2, 4, 6, and 8 in
Figure 1C) were tested by performing a linear mixed-effects
model with the statsmodels implementation (MixedLM). The
variable “site” (joint, thumb) was entered into the model as
fixed effect while controlling for age. A random intercept for
each subject and, by default, for each site (joint, thumb) were
also introduced to account for the variability of subjects and
sites (joint, thumb) at baseline. The model was adjusted, also by
default, by the Restricted Maximum Likelihood Estimation and
the Powell optimization method was used for model fitting.

Brain plots were generated using netplotbrain (Thompson
and Fanton, 20213).

3 https://github.com/wiheto/netplotbrain
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Results

Painful stimulation of the joint induces
higher community-wide integration,
but no difference in segregation, in
patients compared to controls

First, we investigated the degree of change over
time in integration (participation coefficient, PC) and
segregation (within-module degree z-score, z) at the
community level across groups when pain was delivered
to the diseased joint and corresponding site in HC
(Contrasts 1 and 3 in Figure 1C). Here, PC was found
to be generally higher in patients, compared to HC,
in all brain communities and for some time points
(Table 1 and Figure 3A). However, groups (patients
and HC) did not differ in the degree of community-
related segregation (z) change over time (Figure 3B and
Supplementary Table 2).

No significant group difference in
node-related integration or
segregation for painful stimulation of
the joint

Next, we analyzed the degree of change over
time in integration (participation coefficient, PC) and
segregation (within-module degree z-score, z) at the
nodal level across groups when pain was delivered
to the diseased joint and corresponding site in HC
(Contrasts 5 and 7 in Figure 1C). Contrarily to
integration at the community level, groups did not
differ in node-related integration (Supplementary
Figure 1A and Supplementary Table 3) nor segregation
(Supplementary Figure 1B and Supplementary
Table 4) over time.

No significant difference in integration
and segregation at nodal and
community level due to the different
stimulation site (joint vs. thumb) in
patients

Lastly, we examined the degree of change over time
in integration (participation coefficient, PC) and segregation
(within-module degree z-score, z) at the community and nodal
level in patients when pain was delivered to the diseased joint
compared to the neutral thumb (Contrasts 2, 4, 6, and 8).
None of the analyses showed any significant degree of change
(Supplementary Figures 2, 3 and Supplementary Tables 5–8).

Discussion

The present study capitalized on previously analyzed fMRI
data in order to detail the temporal profile of cerebral pain
processing in patients with RA, with the final objective to
track pain-related patterns of network reconfiguration at the
resolution of single data time points.

A major finding of this work is that the participation
coefficient was generally higher in RA patients compared to
HC during and following pressure pain over the inflamed joint
compared to the corresponding site in HC. This result shows
that all brain communities integrate to a relatively higher degree
in patients than in HC during some, but not all, time points
when painful stimulation is delivered to the disease-relevant
body site (Figure 3A). Interestingly, our finding of increased
community-level integration is in accordance with previous
research on pain and cognition, with the latter being a critical
component contributing to the multi-dimensionality of pain
experience. Regarding pain research, recent work has shown
that: (1) in HC, there is elevated integration of brain networks
in the presence of more intense pain (Kastrati et al., 2022),
(2) a tonic pain model, capable of predicting experimental
and clinical sustained low back pain, provides evidence for

TABLE 1 Results from the analysis of covariance (ANCOVA) computed at the community level on participation coefficient (PC) values per time point
across groups (patients and controls) when pain was delivered to the diseased joint in patients and corresponding site in controls.

PC
0 +1 +2 +3

F p FDRp F p FDRp F p FDRp F p FDRp
Cont 7.218 0.010 0.038 2.997 0.090 0.120 5.157 0.028 0.043 1.760 1.191 0.216

Default 0.567 0.455 0.455 5.047 0.029 0.043 5.188 0.027 0.043 1.084 0.303 0.317

DorsAttn 9.614 0.003 0.023 5.246 0.027 0.043 6.192 0.016 0.038 11.281 0.002 0.022

Limbic 1.742 0.194 0.216 6.169 0.017 0.038 1.071 0.306 0.317 5.207 0.027 0.043

SalVentAttn 8.593 0.005 0.029 6.261 0.016 0.038 6.627 0.013 0.038 6.139 0.017 0.038

SomMot 10.007 0.003 0.023 6.057 0.018 0.038 2.688 0.108 0.131 13.114 0.001 0.020

Vis 4.215 0.046 0.064 5.254 0.026 0.043 2.756 0.104 0.131 6.545 0.014 0.038

Time points are indicated as 0, +1, +2, +3 and represent, respectively, the onset TR (TR = 3 s) of painful stimulation, and +1, +2, and +3 TR after-stimulation. False discovery rate (FDR)
corrected p-values, significant at the conventional p < 0.05, are presented in bold.
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FIGURE 3

Degree of change in community-related integration (A) and segregation (B) per time point for rheumatoid arthritis (RA) patients and healthy
controls (HC), when pain was delivered to the diseased joint and corresponding site in HC. Displayed are the average parameter values (PC, z)
over trials per time point. Time points are indicated as –2, –1, 0, +1, +2, +3 on the x-axis, with 0 representing the onset TR (TR = 3 s) of painful
stimulation, –2 and –1 being the two TR pre-stimulation, whereas + 1, +2, and +3 the three TR after-stimulation. The brain plots on the left side
of the figure represent each of the seven Yeo communities (Yeo et al., 2011). The shaded areas contouring the lines represent the standard error
of the mean. The stars represent time points that differed significantly (p < 0.05, FDR corrected) between groups. PC, participation coefficient;
z, within-module degree z-score; RA, rheumatoid arthritis; HC, healthy controls.

the involvement of a number of highly distributed brain
networks during a sustained pain state (Lee et al., 2021), and
(3) the experience of pain is supported by comprehensive
multi-network interactions (Geuter et al., 2020). Regarding
the cognitive aspect, several studies have shown an increase
in or shift to a state of higher integration between brain
networks during the execution of demanding cognitive tasks
(Cohen and D’Esposito, 2016; Fransson et al., 2018). That being
said, in our work, the observation of an up-ramped degree
of integration among the canonical resting-state networks
as defined in the Schaefer atlas during and after painful
stimulation of the clinically affected area might be responsible

for an overly energetically demanding experience for the brain.
Indeed, although the brain has long been regarded as a
complex system where integration plays a key and decisive
role (Tononi, 1998), interactions between communities are
costly to maintain, thus occur in alternation with more highly
modular periods (Liégeois et al., 2016). Importantly, Shine
et al. (2016) have shown that states of integration allow for
a more effective and faster processing of information during
task execution. However, with reference to our finding and on
a speculative note, in the presence of painful information, a
sustained state of whole-brain integration, without intermitting
segregation, might accelerate the propagation of recursive
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noxious information. Consequently, this might lead to the
exacerbation of pain experience and, in turn, contribute to
pain chronicity in patients. Further, though this state of higher
integration in patients compared to HC concerns all brain
communities, it distributes differently over time (see Table 1
and Figure 3A). Indeed, the higher integration seen in patients
features onset and all after-onset time points in, specifically,
DorsAttn and SalVentAttn communities. As for the other tested
resting-state networks, group differences were less “durable.”
A plausible, although speculative, explanation might be that
the salience network seems to be relevant in regulating the
functional changes of other networks dynamically (Bonnelle
et al., 2012), as also pointed out in Borsook et al. (2013), and
has been shown to be associated with attention networks, given
the dependency between saliency and attention (Menon and
Uddin, 2010; Uddin, 2015). Thus, on a speculative level, it might
be that the constant high integration of the SalVentAttn and
DorsAttn communities is coordinating the functional role of
the other communities, thus reducing their integration at times
to favor the required high-level attention to salient, painful
stimuli. This finding might indicate that the brain of patients
enters a state of persistent high integration, not allowing the
brain to be in a more modular state at any time. Possibly, this
might be a contributing factor to the cognitive fatigue affecting
chronic pain patients and, relevant to this work, patients with
RA (Nikolaus et al., 2013).

When exploring whether this maladaptive brain network
configuration in patients was specific to when pain was delivered
to the inflamed joint or also to the non-clinically relevant
thumb, our results pointed to the latter. Indeed, there was
no difference in community-related integration over time
across body sites (Supplementary Figure 2A), which might be
interpreted as elevated integration not uniquely pertaining to
the inflamed area, but also to an area that appears “neutral”
when the peripheral nervous system is the focus. Thus, this
might be indicative of patients having a more generalized
and unspecific cerebral response to pain, unbound to the
clinical relevance of the stimulation site. This finding seems
to be in conflict, at first, with previous work published
from our group, in which it was shown that patients had
lower pain-related cerebral activation in response to painful
stimulation at the joint compared to the thumb (Sandström
et al., 2019). However, it is not surprising that a finding
reporting task-evoked BOLD response lacks direct translation
into a task-based TVC context. Indeed, although specific to the
default mode network and its regions, it has been previously
demonstrated that, for example, task-related negative BOLD
signal does not affect the temporal profile of task-related
FC networks (Razlighi, 2018), thus in accordance with the
disagreement in our previous (Sandström et al., 2019) and
current results.

Shifting focus from the organization of communities to the
role of single nodes in the whole network, all our results indicate

that there is no contribution from the six selected network nodes
to brain network integration or segregation, neither during
pain to joint across groups, nor during pain to joint compared
to thumb within patients only (Supplementary Figures 1, 3).
This might indicate that the community level may be more
informative than the nodal level in terms of revealing potential
differences in cerebral pain processing between patients and
HC. However, the lack of significant results at the nodal level
might be due to the fact that the robustness of the measures
applied at the nodal level might have been more easily affected
by the high number of multiple comparisons. While for PC
and z at the community level, we computed the median of all
nodes within each community, for PC and z at the nodal level,
we considered single nodes among the 400 nodes generated
by the Schaefer 400 node x 7 network parcellation. Further,
we note that, as also discussed by Kastrati et al. (2022), brain
communities were regarded as static clusters of nodes and
their integration and segregation profile was investigated over
time. Thus, allowing nodes to be dynamically assigned to
different communities via community detection might further
inform about local reconfigurations and their contribution to
the functional architecture of the network in a pain context, as
mentioned in Kastrati et al. (2022).

The balance between integration and segregation is crucial
for the brain (Shine, 2019). Whereas higher thermal pain has
been shown to already disrupt this balance in HC inducing a
shift from segregation to integration (Kastrati et al., 2022), in
patients with RA, we might speculatively argue that, based on
our results, this balance appears to be undergoing a constant
perturbation in favor of a permanent high integration state.

With the present study, we were able to track the temporal
profile of pain-related network changes in RA patients and HC.
From a clinical perspective, this is of great importance for the
understanding of the mechanisms involved in the perception
of pain and could possibly contribute to the identification of a
brain-based biomarker for chronic pain.
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In Kallmann syndrome (KS), the peculiar phenomenon of bimanual synkinesis

or mirror movement (MM) has been associated with a spectral shift, from

lower to higher frequencies, of the resting-state fMRI signal of the large-

scale sensorimotor brain network (SMN). To possibly determine whether a

similar frequency specificity exists across different functional connectivity

SMN states, and to capture spontaneous transitions between them, we

investigated the dynamic spectral changes of the SMN functional connectivity

in KS patients with and without MM symptom. Brain MRI data were acquired

at 3 Tesla in 39 KS patients (32 without MM, KSMM-, seven with MM,

KSMM+) and 26 age- and sex-matched healthy control (HC) individuals. The

imaging protocol included 20-min rs-fMRI scans enabling detailed spectro-

temporal analyses of large-scale functional connectivity brain networks.

Group independent component analysis was used to extract the SMN.

A sliding window approach was used to extract the dynamic spectral power of

the SMN functional connectivity within the canonical physiological frequency

range of slow rs-fMRI signal fluctuations (0.01–0.25 Hz). K-means clustering

was used to determine (and count) the most recurrent dynamic states of

the SMN and detect the number of transitions between them. Two most

recurrent states were identified, for which the spectral power peaked at a

relatively lower (state 1) and higher (state 2) frequency. Compared to KS

patients without MM and HC subjects, the SMN of KS patients with MM

displayed significantly larger spectral power changes in the slow 3 canonical

sub-band (0.073–0.198 Hz) and significantly fewer transitions between state 1

(less recurrent) and state 2 (more recurrent). These findings demonstrate that
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the presence of MM in KS patients is associated with reduced spontaneous

transitions of the SMN between dynamic functional connectivity states and

a higher recurrence and an increased spectral power change of the high-

frequency state. These results provide novel information about the large-scale

brain functional dynamics that could help to understand the pathologic

mechanisms of bimanual synkinesis in KS syndrome and, potentially, other

neurological disorders where MM may also occur.

KEYWORDS

Kallmann syndrome, mirror movements, dynamic functional connectivity,
sensorimotor network, K-means, connectivity states

Introduction

The occurrence of involuntary hand movements that
mirror a voluntary movement of the contralateral hand, a
neurological symptom referred to as bimanual synkinesis or
mirror movement (MM), is considered physiological only
during childhood (up to the age of 10) (Beaulé et al., 2012).
However, it could persist during adulthood in congenital
conditions like Kallmann syndrome (KS). An imbalance of the
developing brain motor circuit has been suggested as a possible
cause for reduced suppression of involuntary contralateral hand
movements (Mayston et al., 1997; Farmer et al., 2004).

In a previous resting-state fMRI (rs-fMRI) multi-center
study on KS (Manara et al., 2018), the presence of the MM
symptom was found to be associated with abnormal spectral
changes in the static functional connectivity (sFC) of the
large-scale sensorimotor network (SMN). More specifically,
a relatively lower contribution of the so called “slow-5”
frequency band (0.01–0.027 Hz) together with a relatively higher
contribution of the so called “slow-3” frequency band (0.073–
0.198 Hz), has been reported from the spectral analysis of
the spontaneous fluctuations of the SMN time-course, in KS
patients with MM (MM+) compared to KS patients without
MM (MM−). These effects were further characterized in terms
of imbalance between cortical-cortical functional connectivity
(more prevalent in the slow five band) and cortical-subcortical
functional connectivity (more prevalent in the slow three band)
to explain the reduced suppression of involuntary contra-lateral
hand movements systematically occurring in MM+ patients
when voluntary hand movement is requested.

However, as the human brain is a highly dynamic system,
the resting-state functional connectivity has been largely proven
to be temporally varying (Chang and Glover, 2010). That
is, temporal fluctuations in the functional connectivity of a
large-scale functional network, such as the SMN, may also
reflect dynamic changes in the corresponding domain-specific
functional connectivity with possible non-stationary switching
between two or more discrete recurrent patterns or states. This

has posed the natural question about whether the previously
highlighted spectral signature of the MM symptom in KS
patients constitutes an intrinsic stationary feature of the SMN
functional connectivity, most likely secondary to abnormal
anatomical structures within the motor circuitry, or, rather,
is itself subject to dynamic temporal fluctuations between
recurrent states, provided that a sufficiently long period of time
(e.g., 20 min or more) is used for the observation (Hindriks
et al., 2016). In other words, it is not known whether the
functional connectivity of SMN can exhibit more than one
recurrent (patho)physiological states, whose dynamic features,
such as, e.g., the different contributions to the dynamic spectral
changes in the canonical frequency bands, appear under- or
over-represented in KS subjects manifesting the MM symptom.

As previous results were obtained with a purely static FC
analytic approach, i.e., observing rs-fMRI signals from a large-
scale network over a typical, yet short, period of 5–10 min,
the current study aimed at verifying if a dynamic FC (dFC)
analysis, and more specifically a dynamic spectral power analysis
of the network-specific amplitude of low-frequency fluctuations,
would also disclose similar characteristic dFC features in KS
patients with MM.

The most common and straightforward way to investigate
dFC is using windowed FC (Hutchinson et al., 2013), which
consists of calculating a given FC measure over consecutive and
overlapping segments of the rs-fMRI time-course data (e.g., 1–
2 min), thus providing a time series of FC values, which can
subsequently be used to assess dynamic fluctuations in FC over a
substantially longer rs-fMRI session (e.g., 20–30 min). Such dFC
analysis would also allow to identify the presence of recurrent
spectral patterns for a given large-scale brain network, i.e., two
(or more) dFC states with different spectral characteristics of the
network time-course of activity, between pairs of which the same
network spontaneously fluctuates over time.

To the best of our knowledge, this would be the first rs-
fMRI study investigating, with such a spectral dFC approach,
the possible spectral dFC correlates of MM in KS patients,
thus potentially gathering new insights into the more dynamic

Frontiers in Neuroscience 02 frontiersin.org

6566

https://doi.org/10.3389/fnins.2022.971809
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-971809 September 1, 2022 Time: 14:5 # 3

Di Nardo et al. 10.3389/fnins.2022.971809

aspects of the cerebral motor circuitry derangement associated
with the clinical manifestation of the bimanual synkinesis.

Materials and methods

Subjects and experimental design

Thirty-nine patients with KS (38 male, mean age ± SD
32.53 ± 11.61 and one female, age 13) were enrolled for
this study. All patients met the diagnostic criteria for KS,
based on clinical findings and smell analysis (hypogonadotropic
hypogonadism and hypo/anosmia). The study was approved
in accordance with the requirements of the local Ethical
Committee at the University Hospital “San Giovanni Di Dio
e Ruggi D’Aragona” of Salerno and written informed consent
was obtained from patients or their parents. All KS patients
underwent a complete physical and neurological examination
including the evaluation of handedness and the evaluation
of MM according to Woods and Teuber (1978) criteria.
In particular MM were scored as follows: “0” absent; “1”
barely discernible but repetitive movements; “2” either slight
but sustained movement or stronger but briefer repetitive
movement; “3” strong and sustained repetitive movement;
“4” movement equal to that observed in the intended hand:
this phenomenon may be prevalent on the right hand or
on the left one. In this way, subjects were divided into two
groups: KS patients with MM (KSMM+, mean age ± SD:
34.86 ± 16.94) and KS patients without MM (KSMM–, mean
age ± SD: 31.41 ± 10.73). Thus, we have 7 KSMM + and
32 KSMM–. We also scanned 26 healthy age-matched control
subjects without MM.

Table 1 reports the full demographical and clinical profile
of all KS patients including type of olfactory dysfunction
(anosmia/hyposmia), handedness, clinical MRI abnormalities,
grade (0–4) of MM separately for right and left hand and with
side preference of MM.

Magnetic resonance imaging
acquisition

MRI image data sets were acquired on a 3T MRI scanner
(MAGNETOM Skyra, Siemens, Erlangen Germany) equipped
with a 20-channel radiofrequency receive head coil. The imaging
protocol consists of a volumetric anatomical scan, followed by
resting-state fMRI scan.

The anatomical scans were performed with a 3D T1-
weighted magnetization prepared rapid gradient echo sequence
(MPRAGE) with TR/TE: 2400/2.25 ms; resolution: 1 mm;
matrix size: 256 × 256. Resting-state fMRI scans consisted
of 1,800 volumes and 44 slices, performed with a gradient-
echo echo planar imaging (GRE-EPI) with a multiband factor

TABLE 1 Patients’ clinical profile.

Pat.# Olfactory
status

bOb
aplasia/
hypoplasia

MM
(R)

MM
(L)

MM
(R+L)

MM
(R vs.
L)

1 Anosmia Yes No MM No MM No MM n.a.

2 Anosmia Yes No MM No MM No MM n.a.

3 Anosmia Yes No MM No MM No MM n.a.

4 Anosmia Yes No MM No MM No MM n.a.

5 Anosmia Yes No MM No MM No MM n.a.

6 Anosmia Yes No MM No MM No MM n.a.

7 Anosmia Yes No MM No MM No MM n.a.

8 Anosmia Yes No MM No MM No MM n.a.

9 Anosmia Yes No MM No MM No MM n.a.

10 Anosmia Yes No MM No MM No MM n.a.

11 Anosmia Yes No MM No MM No MM n.a.

12 Anosmia Yes No MM No MM No MM n.a.

13 Anosmia Yes No MM No MM No MM n.a.

14 Anosmia Yes No MM No MM No MM n.a.

15 Anosmia Yes No MM No MM No MM n.a.

16 Anosmia Yes No MM No MM No MM n.a.

17 Anosmia Yes No MM No MM No MM n.a.

18 Anosmia Yes No MM No MM No MM n.a.

19 Anosmia Yes No MM No MM No MM n.a.

20 Anosmia Yes No MM No MM No MM n.a.

21 Anosmia Yes No MM No MM No MM n.a.

22 Anosmia Yes No MM No MM No MM n.a.

23 Anosmia Yes No MM No MM No MM n.a.

24 Anosmia Yes No MM No MM No MM n.a.

25 Anosmia Yes No MM No MM No MM n.a.

26 Anosmia Yes No MM No MM No MM n.a.

27 Anosmia Yes No MM No MM No MM n.a.

28 Anosmia Yes No MM No MM No MM n.a.

29 Anosmia Yes No MM No MM No MM n.a.

30 Anosmia Yes No MM No MM No MM n.a.

31 Anosmia Yes No MM No MM No MM n.a.

32 Anosmia Yes No MM No MM No MM n.a.

33 Anosmia Yes 4 3 7 Right

34 Anosmia Yes 2 1 3 Right

35 Anosmia Yes 2 3 5 Left

36 Anosmia Yes 2 0 2 Right

37 Anosmia Yes 3 3 6 No
prev.

38 Anosmia Yes 3 3 6 No
prev.

39 Anosmia Yes 3 2 5 Right

L, left; R, right; MM, grade of mirror movements according to Woods and Teuber criteria;
no prev., no R vs. L prevalence; bOBs, bilateral olfactory bulbs.

of 4 (Feinberg et al., 2010; Moeller et al., 2010; Xu et al.,
2013), TR/TE: 662/30 ms, matrix size: 64 × 64; voxel size:
3 × 3 × 3 mm3, direction of phase encoding acquisition
anterior-posterior. The same GRE-EPI series was repeated two
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more times with only five dynamic scans and opposite phase
encoding directions (anterior-posterior, posterior-anterior) for
the purpose to correct GRE-EPI image distortion (Andersson
et al., 2003; Smith et al., 2004). Each scanning acquisition was
about 25 min long: 20 min for functional imaging and 5 min for
anatomical imaging. During the functional scan, subjects were
asked to simply stay motionless and awake.

Functional magnetic resonance
imaging data preprocessing

Each individual resting-state fMRI time series was first
corrected for the different slice scan acquisition times (via cubic
spline interpolation) and for rigid head motion effects (via
realignment of all volumes to the first) using BrainVoyager
QX (Brain Innovation, Maastricht, Netherlands1). Subsequently,
the image time series were first exported to NIFTI format
for geometrical distortion correction via the TOPUP tool of
FSL (Andersson et al., 2003; Smith et al., 2004). Then, the
subsequent preprocessing steps were performed on distortion-
corrected NIFTI images using the Data Processing Assistant
for Resting-State fMRI (DPARSF) (Yan and Yu-Feng, 2010),2

which is based on Statistical Parametric Mapping (SPM)3 and on
the toolbox for Data Processing and Analysis of Brain Imaging
(DPABI) (Yan et al., 2016).4 The alignment of the first volume
of each subject resting-state fMRI series to the corresponding
anatomical 3D-T1w image was implemented with affine
transformation; then, all T1w images were normalized to
the MNI space with the non-linear diffeomorphic DARTEL
approach (Ashburner, 2007); lastly, the coregistered functional
data were normalized to the MNI space with the transformations
obtained during the DARTEL procedure.

To reduce the residual effects of head motion, as well as the
effects of respiratory and cardiac signals, second-order motion
and physiological nuisance correction were performed using a
linear regression approach: the regression model included 24
motion-related predictors (Friston et al., 1996), with six head
motion parameter time-series, their first-order derivatives and
the 12 corresponding squared parameter time-series; the mean
time-courses from a white matter mask and a cerebrospinal
fluid mask (as obtained from 3D-T1w spatial segmentation)
were added as two additional predictors. In order to account
for residual motion-related spikes, an additional spike-related
regressor was created from the frame wise displacement time-
series, i.e., a predictor with a value of 1 at the time points of
each detected spike and a value of 0 elsewhere (Lemieux et al.,
2007; Satterthwaite et al., 2013). Finally, the image time series

1 www.brainvoyager.com

2 http://rfmri.org/DPARSF

3 http://www.fil.ion.ucl.ac.uk/spm

4 http://rfmri.org/DPABI

were band-pass filtered between 0.01 and 0.5 Hz and spatially
smoothed with an isotropic 6-mm full width at half maximum
(FWHM) Gaussian kernel.

To minimize the potential effects of head motion and
possibly exclude subjects exhibiting excessive amounts of
motion, we applied severe inclusion criteria: the six estimated
head motion parameters (three translation and three rotation)
were considered and subjects exhibiting head translations
>3 mm and/or head rotations >3 degrees were excluded from
consecutive analyses. Then, the mean frame wise displacement
value (FD) was estimated as an additional measure of total
instantaneous head motion (Power et al., 2012; Kim et al.,
2017) and the percentage of spike-corrupted volumes in each
time-series was calculated. Potential spike-corrupted volumes
were identified where the FD value exceeded a threshold of
0.5 mm; at this stage, subjects for whom the percentage of
corrupted volumes exceeded 50% in the scan were also excluded
from the analyses.

Functional magnetic resonance
imaging data analysis

Data were decomposed into functional networks using a
group-level spatial ICA as implemented in the Group ICA
(GICA) of functional MRI Toolbox (GIFT)5 (Calhoun et al.,
2001; Correa et al., 2005). The number of components to be
extracted was estimated from the resting-state fMRI data using
the minimum description length (MDL) criterion (Li et al.,
2007a,b) applied to the concatenated data set of patients and
healthy controls, ensuring the same number of components for
all the patients and healthy controls. Prior to data reduction,
voxel-wise variance normalization was applied to the time
course of each voxel (Beckmann and Smith, 2004; Allen et al.,
2010). Then, two data reduction steps of Principal Component
Analysis (PCA) were performed (subject-specific and group-
level) using the expectation maximization algorithm and the
independent components were extracted using the Infomax
algorithm (Bell and Sejnowski, 1995; Esposito et al., 2002) and
repeated 20 times through ICASSO (Himberg et al., 2004);
finally, the GICA back reconstruction algorithm (Calhoun et al.,
2001; Erhardt et al., 2011) provided participant’s spatial maps
and their corresponding time courses.

For the dFC analysis, a sliding window approach was
performed through custom scripts written in MATLAB R2021a
(The MathWorks Inc., Natick, MA, United States6) to explore
time-varying changes of FC within the individual network
components during functional MRI acquisitions. More in
details, three hundred and thirty-one tapered sliding windows
were obtained by segmenting the time-course of each subject

5 https://github.com/trendscenter/gift

6 www.themathworks.com
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TABLE 2 Frequency range for the four canonical bands.

Bands Frequency interval (Hz)

Slow-5 0.01–0.027

Slow-4 0.027–0.073

Slow-3 0.073–0.198

Slow-2 0.198–0.25

into windows 150 volumes (150 TR = 99.3 s) with a step of five
volumes (5 TR = 3.31 s). In fact, a window size between 30 s and
1 min was shown to be a reasonable choice for capturing brain
dynamics (Shirer et al., 2012; Allen et al., 2014; Damaraju et al.,
2014; Rashid et al., 2014; de Lacy et al., 2017). Using the time-
series data of all selected independent component pairs within
each window, a pairwise covariance matrix was calculated.

Spectral power information was obtained using the time-
course of activity corresponding to the selected individual
independent component. Following Zuo et al. (2010), we
further subdivided the relative contribution of each independent
component time-course spectrum to the whole detectable
frequency range into four separate bands (Table 2). The
cross-spectrum was calculated in MATLAB over the entire
low-frequency range of interest (0.01–0.25 Hz) via the cross-
spectrogram function by specifying a Hamming sliding window.
As a result, a dynamic spectrum connectivity (DSC) matrix
was obtained, representing the changes in the amplitude of the
time-course of network activity as a function of time over the
entire duration of the scan. For the purposes of this study, only
the SMN component was selected and considered. However,
as the SMN connectivity may variably include the contribution
from the subcortical structures, an additional region of interest
(ROI) based analysis of the dynamic functional connectivity
was performed on the fMRI signals from the basal ganglia
and thalamus. Namely, using the Harvard–Oxford subcortical
structural atlas (with 2 mm resolution) distributed with the
FMRIB Software Library, we anatomically subdivided the basal
ganglia into caudate, putamen and pallidum (De Micco et al.,
2019) and downsampled the resulting mask to the size of
fMRI data (3 mm).

To assess recurrent dFC patterns over time, a k-means
clustering algorithm was performed to the windowed DSC
matrix (Allen et al., 2014; Fu et al., 2018, 2019; Espinoza et al.,
2019; Schumacher et al., 2019). The k-means clustering was
applied twice: first, to find the optimal number of clusters via
silhouette criterion, and second, to perform clustering analysis
with the obtained cluster optimal number (Rousseeuw, 1987;
Kim et al., 2017; Fiorenzato et al., 2019). The frequency of
each state was estimated for each subject as the proportion
of windows assigned to a state (cluster). The number of
transitions between different states was also calculated for each
subject. Then, a one-way ANOVA analysis of both frequency
and transitions was performed considering the group as a

between-subject factor with three levels: KSMM+, KSMM- and
healthy controls.

Results

No significant differences were found between HC subjects
and KS patients and between the two KS subgroups (MM−,
MM+) in age and gender. None of the enrolled subjects were
excluded from the analysis as all passed the inclusion criteria
used for the inter- and intra-voxel residual motion effects.

From the GICA analysis, 13 components were extracted
among which the SMN component was selected as the one
whose spatial map exhibited highest z values bilaterally in the
primary and supplementary motor areas and in the primary and
secondary sensory cortices (Figure 1 and Table 3).

The SMN dynamic spectral power data from all subjects and
time windows were used in the k-means clustering, resulting in
two clusters of most recurrent dFC states: state 1, state 2. For the
two states, the mean spectral power (vs. frequency) in the range
between 0.01 and 0.25 Hz and the box plot of the mean spectral
power in the four canonical frequency bands across all subjects
are displayed in Figure 2. According to the peak frequency of
the mean spectral power of each state, state 1 was descriptively
identified as a low-frequency dFC state, whereas state 2 was
descriptively identified as a high-frequency dFC state. Indeed,
across all subjects, the mean spectral power was significantly
higher for state 1 vs. state 2 in the lowest frequency canonical
band (slow 5: one-sample paired t-test, p < 0.0001) whereas the
opposite held true for the other canonical bands (slow 4 and
slow 3: one-sample paired t-test, p < 0.0001; slow 2: one-sample
t-test, p < 0.01).

For each canonical frequency band and each experimental
group (HC, MM−, MM+), the percent signal change in the
mean spectral power associated in average with any transition
between two dFC states across two adjacent time windows
was estimated. The corresponding boxplots are displayed in
Figure 3.

The percent spectral power change associated with the
transitions from state 1 to state 2 was negative for slow 5 and
positive for slow 4, slow 3, and slow 2. The percent spectral
power change for slow 3 band was significantly increased in the
group of MM + patients (and about double in size) compared
to both MM− patients (two-sample t-test, p = 0.0013) and HC
subjects (two-sample t-test, p = 0.0015).

For each subject, both the frequency of occurrence of
each state, i.e., independently of the mean spectral power
in predefined canonical bands, and the frequency of state
transitions between the two states were counted. The box plots
of these counts across experimental groups are displayed in
the Figure 4. While the number (count) of time windows
associated with each state did not significantly differ between
groups or between states, there was a significant group-by-state
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FIGURE 1

Results of GICA analysis. The SMN component was selected as the one with highest z values in the primary and supplementary motor areas and
in the primary and secondary sensory areas.

TABLE 3 Coordinates of the three peaks obtained from the
sensorimotor network map.

Regions MNI coordinates (x, y, z)

Supplementary motor area −1,−20, 67

Left primary motor cortex −18,−35, 70

Right primary motor cortex 17,−35, 74

interaction (2-way ANOVA, p = 0.04). Moreover, even if post hoc
t-test revealed no significant differences in the counts between
subgroups (in both states), there was a significant reduction
in the number of transitions between states in MM+ patients
compared to both HC subjects (two-sample t-test: p = 0.001) and
MM− patients (two-sample t-test, p = 0.013).

From the basal ganglia and thalamus ROI analysis, for each
frequency band, each group (HC, MM−, MM+) and each
ROI, the percent signal change in the mean spectral power
associated in average with any transition between two dFC states
across two adjacent time windows was also estimated but no
significant differences were revealed. Finally, for each subject
and each ROI, both the frequency of occurrence of each state
and the frequency of state transitions between the two states
were counted. One-way ANOVA analysis from basal ganglia
and thalamus ROI analyses revealed no significant differences
in the number of transitions between groups. In each state,
there were no significant differences in term of the frequency
of the occurrences (count of time windows associated with each
state). Moreover, in the same regions, there were no significant
group-by-state interactions (2-way ANOVA).

Discussion

This study explored the dynamic spectral changes of the
intrinsic functional connectivity of the large-scale sensori-motor
brain network in KS patients and HC subjects, demonstrating

that KS patients presenting at the clinical examination with the
phenomenon of bimanual synkinesis (or MM) may also exhibit
different spontaneous fluctuations of the spectral content of
SMN component over a 20 min period of observation between
two most recurrent oscillatory states.

First, we extracted a common group ICA component
for the SMN of the whole group of KS patients and HC
subjects with the purpose of extracting the most general spatial
pattern characterizing the whole-brain co-activation of the most
functionally connected motor regions. Starting from the SMN
group component, the subject-specific SMN time-courses of
activity were submitted to a sliding-window spectral analysis
and a cluster analysis of the spectral power identified two stable
and recurrent dFC states: a low-frequency state (state 1) and a
high-frequency state (state 2).

Many previous studies have supported the notion that
neural oscillations supporting the functional connectivity of the
human brain can exhibit frequency-dependent properties, even
within the small range of slow rs-fMRI signal fluctuations (Zuo
et al., 2010). In general, relatively higher frequency neuronal
oscillations (e.g., in the gamma band in the EEG signal) are
restricted to a relatively smaller spatial scale, whereas long-range
neuronal communications are supported by slower oscillations
(e.g., in delta band of the EEG signal) (Buzsáki and Draguhn,
2004). Accordingly, a general theory for brain oscillations,
regardless of the scale of spatio-temporal observation, would
prescribe that the longer the range of functional connectivity
(among remote brain regions), the lower the frequency of the
functional connectivity signal emerging from the integration of
brain functions, the physiological rationale being that remote
regions with different functional specialization most likely
oscillate at different frequencies (Wang et al., 2016) and several
rs-fMRI studies have shown how the strength of large-scale
networks decreases when the frequency increases (Wu et al.,
2008; Gohel and Biswal, 2015; Li et al., 2015). Particularly,
in the context of large-scale brain functional networks, the
functional processes supporting long-range connections among

Frontiers in Neuroscience 06 frontiersin.org

6970

https://doi.org/10.3389/fnins.2022.971809
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-971809 September 1, 2022 Time: 14:5 # 7

Di Nardo et al. 10.3389/fnins.2022.971809

FIGURE 2

Spectral analysis for two clusters of most recurrent dFC states: State 1, State 2. Left: for the two states, the mean logarithm of the spectral power
(vs. frequency) in the range between 0.01 and 0.25 Hz was calculated. According to the peak frequency, state 1 was descriptively identified as a
low-frequency dFC state, whereas state 2 was descriptively identified as a high-frequency dFC state. Right: Box plot of the mean log spectral
power in the four canonical frequency bands across all subjects.

spatially distributed cortical regions normally operate in a lower
frequency band compared to those supporting short-range
connections within more spatially compact subcortical regions
(Buzsáki and Draguhn, 2004). In line with this notion, we had
previously observed how slow 5 fluctuations of rs-fMRI signals
were more characteristic of a cortical-cortical static functional
connectivity, whereas slow 4 and slow 3 were more characteristic
of a cortical-subcortical static functional connectivity [see, e.g.,
Esposito et al. (2013) and Manara et al. (2018)]. Here, for the first
time, we were able to demonstrate that at least two distinct (i.e.,
stable and recurrent) dynamic functional connectivity states
may co-exist in the dynamic functional connectivity of the
SMN in terms of a different contribution of relatively lower-
and higher-frequency oscillatory components. This would imply
that (i) there are shorter windows of time (∼1.5 min) where the
slower cortical-cortical oscillations would prevail in the SMN
functional connectivity against the faster subcortical-cortical

oscillations and that (ii) the SMN network would spontaneously
(and randomly) fluctuate between such periods, the balance
between the occurrences of these two states becoming an
interesting new element for the neuroimaging assessment of
the motor circuitry functional integrity. In the more specific
context of the MM symptom, here we found that, not only
the relative spectral change in the switching between these two
states was in average significantly increased in the slow 3 band
in KS patients with MM (compared to HC subjects and KS
patients without MM), but also the number of such transitions
was significantly reduced in those patients that therefore appear
to persist in the high-frequency dFC state for much longer time
than needed or expected. This demonstrates how MM can be
seen as a clinical manifestation of a neural deficit in dynamic
flexibility of the SMN.

Importantly, the dynamic spectral analysis of the SMN
did not show significant differences between KSMM− patients
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FIGURE 3

Boxplots of the percent signal change in the mean log spectral power associated with transitions between two dFC states for each canonical
frequency band and each experimental group.

FIGURE 4

Left and middle: box plots of the frequency of occurrence in the state 1 and state 2 for each experimental group. Right: box plot of the
frequency of state transitions between the two states.
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and controls, indicating that the dynamic spectral shifts
observed in the motor circuit of KS MM+ patients may
not (primarily) depend on the general KS condition itself or
some specific (KS-related) hormone or treatment differences
between KS patients and controls. In addition, the absence
of regional spectral differences in subcortical ROIs (when
taken in isolation from the SMN) may suggest that the
dynamic functional changes primarily depend upon on long-
range connectivity changes affecting the resting-state cortical
activity. More specifically, following up our previous line of
interpretation (Manara et al., 2018), we could hypothesize
that the spontaneous synchronization of cortical motor areas
is abnormally attracted toward a high-frequency state due to
an abnormal functioning of the cortical-subcortical loop that
controls voluntary movements. On the other hand, the lack
of difference between MM+ patients and healthy controls in
the functional connectivity of basal ganglia and thalamus was
at least unexpected as the role of the interhemispheric control
in the case of unilateral movements is well-known. Thus, we
cannot exclude that this null finding was due to the lack of
statistical power implied by the small size of the MM + group
(including only three patients with right unilateral MM and
only one patient with left unilateral MM) and anyway future
studies (involving a larger sample of MM+ patients) are needed
to address the relation between the changes observed here in
the SMN functional connectivity and the left-right coupling
of the resting-state oscillations across cortical and subcortical
homotopic regions.

The analysis of time-varying brain activity and connectivity
using rs-fMRI has become an important topic of ongoing
neuroscience discussions. Indeed, significant changes in the
temporal dynamics of brain network connectivity (both in terms
of configuration and synchronization) have been reported in
different neurological diseases, thereby some researchers have
hypothesized that this type of analysis might eventually provide
some important biomarkers of disease [see, e.g., Hutchinson
et al. (2013) and Damaraju et al. (2014)].

A crucial point of this study is that KS is a genetic
disease in which we can see some functional aspects of a
neurological disease, including the presence of MMs, that
have originally suggested an involvement of the cerebral
motor circuit. However, in KS, structural data from previous
neuroimaging studies have provided conflicting results [see,
e.g., Krams et al. (1997, 1999), Leinsinger et al. (1997),
Koenigkam-Santos et al. (2008)Koenigkam-Santos et al. (2010),
and Manara et al. (2015)]. For example, abnormal values
of the magnetization transfer ratio at level of the pyramidal
decussation were observed in KS patients independently of the
presence of MM (Koenigkam-Santos et al., 2010), but diffusion
tensor imaging studies did not reveal structural changes of the
cortical-spinal tract in KS patients with or without MM (Manara
et al., 2014, 2015). At the cortical level, KS patients with MM
showed significant cortical thinning in small regions known to

be involved in the voluntary hand motor control and bilateral
volume decrease of the globus pallidum, compared with KS
patients without MM, thus suggesting a complex readjustment
of the motor circuitry associated with bimanual synkinesis
(Manara et al., 2015). Our results would thus confirm in a newly
designed rs-fMRI study on new KS patients, the observations of
a previous study (Manara et al., 2018) based a static functional
connectivity approach, in which the analysis also revealed
a significant group by frequency interaction pointing to a
frequency shift in the spectral content in KS patients. However,
as the present study was purposefully designed to perform a
dynamic functional connectivity analysis, we were here able to
pinpoint a more finally detailed aspect of KSMM+ functional
connectivity: namely that these patients tend to switch from a
lower frequency state of brain connectivity to a higher frequency
with significantly greater facility than healthy controls and
KSMM− patients and consequently tend to spend more time in
this high frequency state.

As mentioned above, a dFC approach similar to the
one presented here has been previously employed in other
psychiatric and neurological diseases, including Schizophrenia,
Parkinson’s Disease, Alzheimer’s Disease, autism or Huntington
disease. In these pathologies, k-means clustering procedures
have usually shown transitions among more than two brain
networks states and the changes between these transitions were
mostly related to cognitive (Rashid et al., 2014; Fiorenzato
et al., 2019; Schumacher et al., 2019) or motor (Kim et al.,
2017) impairments. On the other hand, most KS patients are
cognitively intact and only a small percentage of them develop
bimanual synkinesis, which therefore characterize a very rare
condition. Consequently, the neural underpinnings of MM
phenomenon remain unclear, albeit the dynamic point of view
on the functional connectivity addressed here seems promising
with respect to the need of better addressing this aspect
of the pathology. Of course, larger-sample studies, possibly
integrating dFC from other networks or regions remain needed
to better elucidate the pathogenic mechanism of MM in KS
and in other congenital or acquired conditions, as well as in
neurodegenerative diseases.

In conclusion, we have performed, to our knowledge,
the first dFC analysis of the SMN, determining two discrete
frequency-specific oscillatory states, in KS patients with and
without MM. Major limitations should be considered when
interpreting the results of this study: First, the relatively low
number of KSMM+ patients. We were able to enroll only seven
subjects with MM and this number was too small to address the
possible correlation between the extent of the mirror movement
and the extent of the changes of the network dynamics. Thus, the
precise connection of our findings to the mirror movements in
KS remains unclear. Fortunately, even with such a low number,
significant (albeit few) differences emerged, suggesting that, by
increasing the number of the sample, it will be possible to
gain more evidence about this phenomenon. Second, as KS is

Frontiers in Neuroscience 09 frontiersin.org

7273

https://doi.org/10.3389/fnins.2022.971809
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-971809 September 1, 2022 Time: 14:5 # 10

Di Nardo et al. 10.3389/fnins.2022.971809

a disease that mostly affects males, it would be interesting to
evaluate what happens to dFC with more female patients at
disposal, given that only one was included in our KS sample.
Third, little is known, and no data were available, about how
the highlighted transient resting-state connectivity states would
eventually affect the execution of a motor task. Thus, further
work is needed, including the possibility to address this issue
by administering motor tasks to the patients. Related to this,
an important issue to address would be the choice of window
sizes for the sliding-window dFC analysis. Sakoglu et al. (2010)
reported that only an ideal window size should be able to
estimate dFC variability (capturing the low frequency modes of
interest in the rs-fMRI signal) and concurrently detect short-
term task-related effects. In this study, functional dynamics were
estimated using a validated fixed sliding-window of 150 volumes
(about 100s), a measure considered more than reasonable for
a 20-min scan, to robustly capture at least two state and the
corresponding transition counts. Nonetheless, when attempting
to address the influence of the state on the motor response, it is
likely that a trade-off existed between the sensitivity for detecting
potentially interesting transients in dFC and the signal-to-noise
ratio of the task-related FC. Future work should thus evaluate
changes across several window lengths that would be then
combined in multi-scale approach, e.g., using wavelet transform
(Chang and Glover, 2010; Billings et al., 2018). It remains, that
the peculiar phenomenon of MM in KS seems to be a good
pathological model to investigate spectrally selective variations
in long resting-state fMRI sessions and further studies will
possibly confirm or better explain the highlighted dynamics
behind the pathogenic hypothesis of MM.
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Pathological fatigue is present when fatigue is perceived to continually

interfere with everyday life. Pathological fatigue has been linked with a

dysfunction in the cortico-striatal-thalamic circuits. Previous studies have

investigated measures of functional connectivity, such as modularity to

quantify levels of segregation. However, previous results have shown both

increases and decreases in segregation for pathological fatigue. There are

multiple factors why previous studies might have differing results, including:

(i) Does the functional connectivity of patients with pathological fatigue

display more segregation or integration compared to healthy controls? (ii) Do

network properties differ depending on whether patients with pathological

fatigue perform a task compared to periods of rest? (iii) Are the brain

networks of patients with pathological fatigue and healthy controls differently

affected by prolonged cognitive activity? We recruited individuals suffering

from pathological fatigue after mild traumatic brain injury (n = 20) and age-

matched healthy controls (n = 20) to perform cognitive tasks for 2.5 h. We

used functional near-infrared spectroscopy (fNIRS) to assess hemodynamic

changes in the frontal cortex. The participants had a resting state session

before and after the cognitive test session. Cognitive testing included the

Digit Symbol Coding test at the beginning and the end of the procedure to

measure processing speed. We conducted an exploratory network analysis

on these resting state and Digit Symbol Coding sessions with no a priori

hypothesis relating to how patients and controls differ in their functional

networks since previous research has found results in both directions. Our

result showed a Group vs. Time interaction (p = 0.026, ηp
2 = 0.137), with a

post hoc test revealing that the TBI patients developed higher modularity
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toward the end of the cognitive test session. This work helps to identify how

functional networks differ under pathological fatigue compared to healthy

controls. Further, it shows how the functional networks dynamically change

over time as the patient performs tasks over a time scale that affect their

fatigue level.

KEYWORDS

connectivity, modularity, fNIRS, pathological fatigue, fatigability, state fatigue

Introduction

Pathological fatigue is when the general tendency of
fatigability and the sensation of fatigue is perceived to interfere
with everyday life (Skau et al., 2021). Pathological fatigue is
often a consequence of trauma to, or disturbance in, the central
nervous system (Johansson and Rönnbäck, 2014; Berginström,
2019). The prevalence of pathological fatigue is estimated
to be between 36–77% after stroke, 45–73% after traumatic
brain injury (TBI), 38–83% in multiple sclerosis (MS), and
28–58% in Parkinson’s disease (Kluger et al., 2013). It is
also associated with conditions, such as exhaustion disorder
(Sandstrom et al., 2005; Krabbe et al., 2017), infection of the
central nervous system (Morris et al., 2015), or hormonal
imbalance (Möller et al., 2014), together with additional
symptoms such as sensitivity to light and sound and irritability.
Individuals suffering from pathological fatigue after mild TBI
often report an increased sensation of fatigue after mental
activity with an abnormally long recovery time (Johansson
and Ronnback, 2017). Studies of pathological fatigue after
moderate to severe TBI using functional magnetic resonance
imaging (fMRI) indicate a dysfunction within cortico-striatal-
thalamic circuits (Kohl et al., 2009; Nordin et al., 2016;
Berginstrom et al., 2017; Möller et al., 2017; Wylie et al.,
2017).

The interplay between integration and segregation within
brain networks is considered a critical property of brain
function and cognition (Sporns, 2013). Among the many
network measures, modularity is one of the more commonly
used when studying fatigue. It is a global measure that
quantifies the segregation of the entire network. Based
on the co-variation of functional brain activity among
different brain regions, groups of nodes get clustered
together into communities (note, in network theory, these
are called “communities,” which is analogous to “brain
networks” or “resting-state networks” often used in cognitive
neuroscience). Modularity quantifies how tight-knit these
communities are compared to chance. Modularity is high
if there are fewer between-community connections (see
Figure 1) which are interpreted as higher segregation
between communities. Contrarily, low modularity is

indicative of either low segregation or high integration in
the network.

Numerous neuroimaging studies on patient populations
with fatigue have used functional connectivity measures, but the
findings are inconclusive. Some studies have found increased
integration or connectivity in pathological fatigue. Messé et al.
(2013) investigated network properties for TBI patients, with
and without post-concussion symptoms (including fatigue). The
group with post-concussion symptoms had lower modularity,
i.e., a less segregated functional network. Similarly, higher self-
reported fatigue in chronic fatigue patients was associated with
a lower degree of connectivity for the medial frontal cortex with
the rest of the brain (Gay et al., 2016). On the other hand,
Høgestøl et al. (2019) found that connectivity in the default
modal network increased for MS patients with high severity of
depressive and fatigue symptoms. In contrast, Kim et al. (2015)
reported that patients with chronic fatigue syndrome displayed a
decrease in global efficiency, a measure for network integration.

In cohorts with healthy adults, previous research has found
that inducing fatigue results in an decrease in segregation
measured by decreased modularity (Ben Simon et al., 2017) and
an increase in path length, another measure of segregation (Sun
et al., 2014). Wylie et al. (2020) identified a network made up of
the dorsolateral prefrontal cortex (DLPFC), ventromedial PFC
(VMPFC), dorsal anterior cingulate cortex (dACC), anterior
insula, and the striatum, which showed less connectivity when
state fatigue increased after cognitive activity.

In sum, researchers have linked changes in connectivity,
through common topographical measures such as modularity,
to pathological fatigue and cognitive fatigability in healthy
adults. However, whether there is a change in integration or
segregation is unclear. Further, we do not know if different
factors in design and population impact the varying results.
For example, it is unclear if cognitive fatigability (i.e., the
decrement in cognitive performance over a consecutive time)
affects the modularity of networks differently for healthy adults
compared to individuals suffering from pathological fatigue.
Moreover, study design aspects, such as the duration of cognitive
activity for inducing cognitive fatigue, can vary [e.g., 20 min
in Sun et al. (2014), but 2.5 h in Skau et al. (2019)]. Further,
some studies above performed their network calculation from
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FIGURE 1

Conceptual overview of modularity in a network. (A) A schematic network of 10 nodes in two communities (red and blue) connected by binary
edges. On the left, the nodes are shown graphically, and on the right, the same schematic network is shown as a connectivity matrix.
(B) Examples of modularity as a measure. When there are fewer between-community edges, the modularity measure is higher, interpreted as
more segregation.

resting-state sessions, while others had participants perform a
task. In summary, the following three factors relating to network
theory and fatigue are still not fully understood:

1. Do the brain networks of patients with pathological
fatigue display more segregation or integration
compared to healthy controls?

2. Do network properties differ depending on whether
patients with pathological fatigue perform a task
compared to periods of rest?

3. Are the brain networks of patients with pathological
fatigue and healthy control differently affected by
prolonged cognitive activity?

In this study, we provide evidence relating to each of these
questions. We use the functional near-infrared spectroscopy
(fNIRS) data of pathological fatigue after mild TBI from Skau
et al. (2019). fNIRS is an optical imaging technique that applies
near-infrared light to measure the change in oxygenated and
deoxygenated hemoglobin a couple of centimeters down into
the neocortex. Twenty individuals suffering from pathological
fatigue after mild TBI and twenty healthy controls performed
cognitive tests for about 2.5 h. The test battery consisted of
6 neuropsychological tests done twice, intermediated with a
sustained attention task. Throughout the experiment, multiple
resting-state sessions were done (see Figure 2A).

We conducted an exploratory network analysis with no
a priori hypothesis related to how patients and controls
differ in their functional networks considering previous articles
have found results in both directions. We chose modularity
to evaluate segregation since modularity is an intuitive,
single global measure. Previous studies have used it, and it
circumnavigates specific problems relating to network measures
over time (see Thompson et al., 2020). We analyze the contrast
in modularity before and after performing a long battery of
tests in healthy adults and patients. Further, we analyze the
first and last resting-state session and the Digit Symbol Coding
(DSC) that measures processing speed. This work helps identify
how network analyses of pathological fatigue differ from healthy
controls and dynamically change over time as the patient
performs tasks over a time scale that affects their fatigue.

Materials and methods

Study participants and protocol

Details of the protocol and descriptions of the cognitive and
neuropsychological tests included in the test session but not
analyzed here are presented in Skau et al. (2019).

Twenty individuals with pathological fatigue after mild TBI
(minimum 5 months after injury) were recruited from the
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FIGURE 2

Overview of design and methodology. (A) Timeline of tasks performed by participants in this study. The blocks analyzed in this manuscript have
been highlighted: resting-state sessions (green) and digit symbol coding tasks (DSC, red). (B) The difference in self-reported state fatigue

following the resting-state session (lastŰfirst) for both groups. (C) Difference in task performance in the DSC task (last-first). Panels (C,D) show
data previously reported in Skau et al. (2019). (D) The 44 recording sites on the frontal cortex. These 44 recording sites become nodes in the
network. (E) An example connectivity matrix from one resting-state session showing three communities for the 44 nodes depicted in panel (B).
Similar to the connectivity matrix in 1A, but with weighted edges instead of binary edges. (F) Descriptive statistics of the community detection
properties. Histograms show the number of communities (top) and the number of nodes in the largest community (bottom) for rest (green) and
DSC task (red) and both patients and healthy controls.
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Department of Neurology, Sahlgrenska University Hospital,
Gothenburg. Inclusion criteria were as follows: diagnosed with
mild TBI according to the definition proposed by The World
Health Organization Collaborating Center for Neurotrauma
Task Force (Carroll et al., 2004); scoring above the cut-off
score of 10.5 on the Mental Fatigue Scale (MFS) (Johansson
and Rönnbäck, 2014); aged 20–65 years and not suffering from
any other psychiatric or neurological disorders. All participants
recovered well and were independent in their daily living,
except for their pathological fatigue. Six individuals received
methylphenidate drug treatment but suspended the treatment
1 week before the assessment. As reported in Skau et al. (2019),
no significant differences concerning the cognitive test results
and ratings on MFS were detected between these six individuals
compared to the other individuals with TBI. Twenty-one healthy
controls who neither suffered from pathological fatigue (below
10.5 points on MFS) nor had any psychiatric or neurological
disorders were recruited from the general community at
request. One control subject was excluded due to failure to
follow instructions. The Regional Ethical Review Board in
Gothenburg approved the study (reference number: 028-16).
The participants gave their informed written consent before
the assessment and were told they could withdraw at any
time.

Experimental design

Each participant was seated in a chair next to a table
with a computer screen. All tests were performed sitting
in the same location. Depending on the task requirements,
different responses from the participants, such as computer
input (via mouse, tablet, or game controller), pen and paper,
or verbal responses, were needed. The fNIRS cap with optodes
attached was carefully placed on the participant’s head and
worn throughout the experimental session. In order to minimize
ambient light reaching the optodes at the scalp, the fNIRS
cap was covered by another stretchable cap. The experiment
consisted of two identical test sessions with six individual
tests performed in the same sequence (Figure 2A). The two
sessions were separated by a sustained-attention test with an
8-min one-back task (OPATUS-CPTA) and completing the
MFS (Figure 2A). In total, the test procedure took 2 1/2 h.
Participants were allowed to take a short break where they could
drink water or stand up and stretch their legs between tests while
keeping the fNIRS cap on.

Before and after the experimental procedure, participants
rated their energy level on a visual analog scale (VAS). The VAS
scale was a continuous line (10 cm) between the two end-points:
“full of energy” and “totally exhausted, no energy left,” and was
used to evaluate state fatigue. Mean and SD were 3.13 ± 2.0
and 7.27 ± 1.7 (for the patients) and 2.66 ± 1.5 and 4.12 ± 1.6

(for the controls) for the first and second VAS, respectively (see
Figure 2B).

There were five separate occasions of 1-min resting-state
recordings where participants were asked to focus on a fixation
cross. These sessions were positioned: before the first task, after
the first Stroop-Simon test, before the second Stroop-Simon test,
after the second Stroop-Simon test, and right at the end of the
experiment (see Figure 2A).

Digit Symbol Coding (DSC) is a subtest within the
Processing Speed Index in WAIS-IV (Wechsler, 2010) that was
used to measure attention, mental and psychomotor operation
speed, and visual discrimination. Participants are asked to
perform as many symbols as possible for 2 min. The raw score
is the number of correct symbols performed. Mean and SD were
65.6 ± 11.7 and 67.0 ± 15.6 (for the patients) and 72.2 ± 10.9
and 80.4 ± 12.4 (for the controls) for the first and second test,
respectively (see Figure 2C).

Functional near-infrared spectroscopy
data acquisition

The fNIRS measurements were performed using a
continuous wave system (NTS) Optical Imaging System,
Gowerlabs Ltd., United Kingdom (Everdell et al., 2005),
using two wavelengths (780 and 850 nm) to measure changes
in the concentration of oxygenated hemoglobin (oxy-Hb),
deoxygenated hemoglobin (deoxy-Hb), and their total sum
hemoglobin (tot-Hb). The system has 16 dual-wavelength
sources and 16 detectors. The array consisted of 44 standard
fNIRS channels (i.e., source/detector pairs) with a source-
detector distance of 30, plus two short-separation channels with
a source-detector distance of 10 mm, as suggested in previous
studies (Gagnon et al., 2011; Brigadoi and Cooper, 2015).
Short separation channels are only sensitive to hemodynamics
in the scalp. Since the regular separation channels measure
signals originating in both the brain and the scalp, the use of
short-separation channels allowed us to regress the scalp signal
from regular-separation signals to improve the brain specificity
of the fNIRS measurement (Gagnon et al., 2011; Brigadoi and
Cooper, 2015). The placement of the optodes was designed
to encompass the frontal cortex, previously reported to be
involved in executive function and cognitive control tasks (see
Figure 2D; Roberts and Hall, 2008). Data were acquired at a
sampling frequency of 10 Hz.

Functional near-infrared spectroscopy
data analysis

The fNIRS data were preprocessed using MATLAB (2018)
and the MATLAB-based fNIRS-processing package HomER2
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(Huppert et al., 2009). The processing pipeline started with
pruning the raw data such that channels were rejected if their
mean intensity was below the instrument’s noise floor (1e-4
A.U.). The raw data was then converted to optical density.
A high band-pass filter of 0.05 was used to correct for drift
and a low band-pass 0.5 filter to remove pulse and respiration.
The HomER2 functions hmrMotionArtifactByChannel and
hmrMotionCorrectSpline were used to correct for motion
artifacts. Optical density was converted to hemoglobin
concentration with hmrOD2Conc with a default pathlength
factor of 6.0 for both wavelengths. Before hmrBlockAvg was
used, activity from short separation channels was regressed out
of the long 44 standard channels. The short channel selected
for regression was the one with the highest correlation to the
respective long channel.

Functional connectivity and network
analysis

To create the networks, we used the 44 fNIRS channels as
nodes in the network. To create the edges between the nodes,
the preprocessed and denoised time series of each node were
correlated with each other using Pearson correlations. This
process creates a 44 × 44 symmetrical weighted connectivity
matrix for each subject and session, representing the functional
connectivity for that session (Figure 2E).

Before the community detection, the negative edges were set
to 0. The Louvain community detection algorithm was used, as
implemented in the python-louvain package (V0.15). Through
the community detection algorithm, nodes are clustered into
non-overlapping communities. The modularity of the network
was calculated after the community detection. As there is
stochasticity within the Louvain algorithm, it was run 100
times with the modularity calculated each time and the average
modularity over all runs was used. The resolution parameter was
set to 1, but to demonstrate that this parameter has not induced
or influenced the results, Supplementary Figure 1 shows that
this parameter has little effect on the results when jittering
between 0.8 and 1.2.

One task or group could have varying community profiles
leading to problematic comparisons (e.g., if every node is
placed in a singleton community or all nodes belong to the
same community). To illustrate that this was not the case,
Figure 2F shows distributions of the number of communities
detected and the size of the largest community. While there is a
slight skewness difference between patients and controls at rest
regarding the number of communities, they both have the same
median (3). None of the distributions display extreme values
rendering modularity comparison problematic. We included the
number of nodes in the largest community to demonstrate that
the community sizes were not the majority of nodes followed by
1–2 singleton communities.

Statistics

We used the open-source program JASP version 0.13.1 for
statistical analysis (Marsman and Wagenmakers, 2017). We
conducted a repeated ANOVA with one between-group variable
Group (TBI, controls), and two within-group variables Time
(first, last) and Activity (rest, task), with Age as a covariate. Post
hoc t-tests were performed with the Holm method used for
multiple comparison correction. The datasets generated in the
current study are available from the corresponding author on
reasonable request.

Pearson’s correlations were used to evaluate if the change
in state fatigue was linearly associated with the change in task
performance and change in rest and task modularity. Delta
scores (last–first) were used for the self-reported state fatigue
measure (the VAS) and the delta DSC task performance, delta
rest modularity, and delta task modularity.

Results

When analyzing the modularity scores, the repeated three-
way ANOVA revealed a significant Group vs. Time interaction
[F(1,34) = 5.399, p = 0.026 ηp

2 = 0.137]. Post hoc test showed
higher modularity in TBI last > TBI first with t(19) = −2.812,
with a Holms corrected p-value of 0.049 and a Cohen’s d of
−0.653. This result suggests that no matter the activity (rest or
task), patients have higher modularity after 2.5 h of cognitive
activity (see Figure 3 and Supplementary Table 1 for the other
post hoc results).

Since there was a Group vs. Time interaction, the main
effect results of Group and Time need to be interpreted
accordingly. There were no main effect differences for Group
[F(1,34) = 0.127, p = 0.742 with a ηp

2 = 0.004], indicating no
overall difference in modularity between patients and control
when both time points are pooled together. There were no main
effect differences for Time [F(1,34) = 1.054, p = 0.312 with a
ηp

2 = 0.03], indicating that overall (when both groups are pooled
together) there was no difference over time, even though the
post hoc test showed that the TBI group had significantly higher
modularity. There were no main effect differences for Activity
[F(1,34) = 0.005, p = 0.947 with a ηp

2 = 1.337e-4], indicating that
overall, for both groups, there was no difference in modularity
between rest and task.

Finally, delta VAS (the changes in self-reported state fatigue)
correlated negatively with the DSC performance delta score
(r = −0.518, p < 0.001), indicating that the more change in
delta VAS, the less change in delta DSC. There was no significant
correlation between delta VAS and the delta modularity with
r = 0.201 and p = 0.226 for rest and r = 0.183 and p = 0.285
for DSC, indicating no linear correlation between the difference
in network measures and behavior.

Frontiers in Neuroscience 06 frontiersin.org

8182

https://doi.org/10.3389/fnins.2022.972720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-972720 September 3, 2022 Time: 16:23 # 7

Skau et al. 10.3389/fnins.2022.972720

FIGURE 3

Change in modularity over 2.5 h of cognitive activity. Panel (A) shows the change in modularity between the first and last resting-state session.
(B) The change in modularity during the first and last Digit Symbol Coding (DSC) task was done at the experiment’s beginning and end. Error
bars indicate the standard error of the mean.

Discussion

The debate about fatigue has led to the question whether
induced fatigue in healthy individuals (i.e., increased sensation
of fatigue after effort) is comparable with pathological fatigue.
This scenario would imply that pathological fatigue is only
a more intense form of fatigue compared to what healthy
individuals experience. It would also suggest a common
underlying neural mechanism, as discussed by Wylie et al.
(2020). In a second scenario, pathological fatigue would be
seen as qualitatively different from induced fatigue in healthy
individuals (which is both time-limited and alleviated by rest),
having a different underlying pathophysiological mechanism
and, consequently, should not be viewed as an extreme on
one single fatigue continuum, as discussed by Rönnbäck and
Johansson (2022). Under the first assumption, we would expect
some common brain network configuration to be impacted,
leading to fatigue (e.g., a similar change in network properties).
This change would occur regardless of whether the fatigue was
induced or pathological.

In the present study, we tried to bring some clarity to this
question by evaluating network modularity since it is a common
measure of the network topology which has been identified to
be associated with both pathological fatigue (Messé et al., 2013)
and induced sensation of fatigue by fatigability in healthy adults
(Ben Simon et al., 2017). We let healthy adults and individuals
suffering from pathological fatigue after mild TBI perform on a
2.5 h long, cognitively intense test battery.

Our results indicate that brain networks of patients
with pathological fatigue do not display more segregation
or integration compared to healthy controls, nor do we
find network properties that differ depending on whether

patients with pathological fatigue perform a task compared to
periods of rest. When looking over both timepoints, patients
and controls have a comparable level of modularity for rest
and task, and no significant difference is detected between
the groups (see Figure 3). These results contradict (Messé
et al., 2013), which reported lower modularity for individuals
with post-concussion symptoms. On the other hand, the
results from Gay et al. (2016) and Høgestøl et al. (2019),
that increased fatigue in chronic fatigue and MS patients is
associated with less connectivity in the frontal cortex, are in
line with our result. However, since we have used previously
analyzed data and had no specific hypothesis about how
the network properties would vary between conditions, these
results should be considered exploratory. Our results highlight
features that can guide hypothesis in future confirmatory
studies relating to both network analyses using fNIRS and
key issues in the experimental design when studying chronic
fatigue.

As for our third question: are the brain networks of patients
with pathological fatigue and healthy control differently affected
by prolonged cognitive activity? The answer is yes; the patients’
modularity increased for both rest and task due to the prolonged
activity, while the modularity stayed the same for the controls.
If we compare this to the behavioral data presented in Skau
et al. (2019), both groups reported increased state fatigue, and
no group performed worse on the second task—the controls
improved their performance. In contrast, patients performed
similarly in the first task (see Figures 2B,C). Together this
means that the prolonged cognitive activity increased state
fatigue since both groups reported increased state fatigue
(higher values on the VAS post-experiment). However, the
controls did not display any change in modularity, whereas
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the patients did, suggesting that the fatigue in patients has a
different underlying neural or network correlate. This increase
in segregation after prolonged mental activity for patients
with pathological fatigue could be part of an explanation
for the abnormally long recovery time and something future
investigation needs to determine.

Changes in modularity could be instantiated in several
ways by either within-community edges weakening (splitting
the community into two) or by strengthening between-
community edges. Further, modularity changes are identified
in several related pathological conditions. In their review
of the connectivity in stroke patients, Baldassarre et al.
(2016) highlight that stroke patients show more network
segregation and that the increased cognitive performance after
recovery correlated with an increase/restoration of functional
connectivity. Similarly, Fleischer and colleagues reviewed the
literature on MS that has used the graph theoretical approach
for network integration and found that increased modularity
was not only typical for MS, but the increase in modularity also
negatively correlated with cognitive ability and MS symptom
progression (Fleischer et al., 2019). For Parkinson’s disease, a
recent review found that the global efficiency, another graph
theoretical measure, was decreased in patients compared to
healthy controls (Tessitore et al., 2019). Community segregation
in these patient groups is often pathophysiologically interpreted
as a consequence of reorganization or adaptation to the
neurological disease or acute/chronic neural inflammation.
While all these issues may impact modularity, conversely,
pathological fatigue is a very common symptom in these patient
groups (stroke, MS, and Parkinson’s disease) (Kluger et al.,
2013), and research about the overlap between fatigue symptoms
and network modularity across different patient groups will be
important for our understanding of pathological fatigue.

In a recent paper, Rönnbäck and Johansson (2022) proposed
the theory that pathological fatigue after TBI is due to
neuro-inflammation in the CNS caused by the trauma. They
argue that neuro-inflammation would affect astroglial cells
and their ability to fine-tune the extracellular glutamate levels
and clearance of excessive glutamate from the extracellular
space. The prolonged mental activity would lead to increased
excitatory glutamate in the extracellular space, which would
cause swelling of astrocytes and shrinkage of the extracellular
space. Neural signaling would become less specific, and the
shrinking of extracellular space would result in the non-specific
activation of adjacent neurons (Rönnbäck and Johansson, 2022).
Our results would support such a hypothesis since a latent
neuro-inflammatory process could, after prolonged activity,
result in diffuse neuronal signaling, causing segregation of
functional networks. For controls, assuming the absence of
neuro-inflammation, neuronal signaling would not become
diffused after prolonged activity; consequently, no functional
network segregation would be detected. This interpretation
would also support the second scenario mentioned above, that

there is no true continuum between the fatigue of healthy
adults and the fatigue experienced by individuals suffering from
pathological fatigue. However, the leap from cellular events to
large-scale network activity is currently not warranted due to a
lack of sufficient data. It should be seen as a working hypothesis
until more studies become available.

Limitations

Due to the study’s design, there was a time difference
between the first resting state session and the first DSC,
whereas the last resting state session was right after the
last DSC. Digitizing the placement of the fNIRS optodes
was done, but the measurements were too noisy and were
concluded to be unreliable. Therefore, we do not have external
measurements confirming the channel localization. However,
head size measurements were taken before the experiment.
EasyCap sizes 54, 56, and 58 were used to fit the participants’
heads as accurately as possible using face and 10/20 head
landmarks to get measurements where intended.

Neither coffee intake during the day nor sleep quality of
the previous night were controlled for, which might also impact
network properties. Although the study was exploratory, the
small sample size is a limitation.

Since there was no additional time point after the end of the
experiment to evaluate whether the connectivity configurations
recovered for the patient group, we cannot rule out that
the observed Time vs. Group interaction is not driven by
fluctuations unrelated to the effort. Since the recovery time
for individuals with pathological fatigue is prolonged, it would
be fruitful in future research to investigate several time points
after a long and cognitively intense experiment to focus on the
recovery of the network properties.

Conclusion

This exploratory analysis suggests increased segregation in
the frontal cortex for patients with pathological fatigue after
prolonged mental activity but not for healthy controls. Future
research should determine if this pattern holds in other patient
groups suffering from pathological fatigue, how long and intense
the mental activity needs to be to generate segregation in the
frontal cortex, and how long the recovery time needs to be to
reach the baseline level of modularity.
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University of New Mexico, Albuquerque, NM, United States, 3Department of Electrical and

Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 4Tri-Institutional

Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of

Technology, Georgia State University, Emory University, Atlanta, GA, United States, 5Department of

Computer Science, Georgia State University, Atlanta, GA, United States

Previous work in incarcerated men suggests that individuals scoring high

on psychopathy exhibit aberrant resting-state paralimbic functional network

connectivity (FNC). However, it is unclear whether similar results extend

to women scoring high on psychopathy. This study examined whether

psychopathic traits [assessed via the Hare Psychopathy Checklist – Revised

(PCL-R)] were associated with aberrant inter-network connectivity, intra-

network connectivity (i.e., functional coherence within a network), and

amplitude of fluctuations across limbic and surrounding paralimbic regions

among incarcerated women (n = 297). Resting-state networks were identified

by applying group Independent Component Analysis to resting-state fMRI

scans. We tested the association of psychopathic traits (PCL-R Factor 1

measuring interpersonal/a�ective psychopathic traits and PCL-R Factor 2

assessing lifestyle/antisocial psychopathic traits) to the three FNC measures.

PCL-R Factor 1 scores were associated with increased low-frequency

fluctuations in executive control and attentional networks, decreased high-

frequency fluctuations in executive control and visual networks, and decreased

intra-network FNC in default mode network. PCL-R Factor 2 scores were

associated with decreased high-frequency fluctuations and default mode

networks, and both increased and decreased intra-network functional

connectivity in visual networks. Similar to previous analyses in incarcerated

men, our results suggest that psychopathic traits among incarcerated

women are associated with aberrant intra-network amplitude fluctuations

and connectivity across multiple networks including limbic and surrounding

paralimbic regions.
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psychopathy, functional connectivity, intra-network connectivity, spectra, antisocial
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Introduction

Individuals scoring high on psychopathy are characterized

by a constellation of traits including impulsivity, poor decision

making, callousness, and a lack of empathy (Hare, 2003). An

individual with psychopathy is 20–25 times more likely to be

arrested than a non-psychopathic individual, and once released,

is four to eight times as likely to recidivate violently 1-year

post-release (Hemphill et al., 1998; Kiehl and Hoffman, 2011).

Relatedly, the social costs due to elevated criminal activity that

can be attributed to individuals with psychopathy are estimated

to be nearly $460 billion per year (Anderson, 1999; Kiehl and

Hoffman, 2011). As such, great efforts have been made to

understand the sociological, psychological, and neurobiological

origins of the psychopathic phenotype.

Most theories suggest that individuals scoring high on

psychopathy exhibit deficits in limbic (e.g., amygdala, cingulate

gyrus, and parahippocampal gyrus) and surrounding paralimbic

brain regions (e.g., orbitofrontal cortex, insula, and temporal

pole) (Kiehl, 2006; Anderson and Kiehl, 2012; though see

Blair, 2006). Resting-state functional analyses suggest broadly

distributed psychopathy-related aberrations in inter-network

functional network connectivity (FNC). These aberrances span

across multiple networks but primarily occur in networks

associated with executive control, decision making, salience

detection, and motor control (Tang et al., 2013; Contreras-

Rodríguez et al., 2015; Del Casale et al., 2015; Philippi et al., 2015;

Leutgeb et al., 2016; Korponay et al., 2017; Espinoza et al., 2018;

Dotterer et al., 2020).

Psychometric analyses generally support dividing

psychopathic traits, assessed via the Hare Psychopathy

Checklist – Revised (PCL-R; Hare, 2003), into two clusters or

factors (Harpur et al., 1989; Hare and Neumann, 2010). Factor

1 contains items related to interpersonal and affective traits,

while Factor 2 assesses impulsive, life-course developmental,

and antisocial traits. Several studies have found interpersonal

and affective traits to be associated with localized disruption

between the DMN and central executive network (CEN)

(Espinoza et al., 2018; Dotterer et al., 2020). Lifestyle/behavioral

and antisocial/developmental psychopathic traits, on the other

hand, are associated with resting-state correlates ranging from

subcortical structures to sensorimotor networks (SEN), DMNs,

and visual networks (VIS) (Korponay et al., 2017). Overall, these

findings suggest that specific psychopathic traits may associate

differentially with resting-state measures.

The bulk of these previous studies have been conducted

on entirely male samples, leaving open the question of

sex-specific differences in the neurobiological correlates of

psychopathy (Verona and Vitale, 2018). Women scoring high

on psychopathy are characterized by similar neurobiological

deficits as men scoring high on psychopathy (Carré et al.,

2013; Cope et al., 2014; Harenski et al., 2014a; Crooks et al.,

2019; Maurer et al., 2022), but unique gender differences have

also been observed. For example, while men scoring high

on psychopathy are characterized by response perseveration

deficits, women scoring high on psychopathy are not (Vitale

and Newman, 2001b). As such, women scoring high on

psychopathy may be characterized by unique FNC patterns

compared to men scoring high on psychopathy. Despite

advances in our understanding of the relationship between

psychopathy and inter-network connectivity of RSNs, research

including analyses of amplitude of fluctuations (AFs)—that

is, the spectral power of RSN activational profiles—and

intra-network connectivity in their relationship to antisocial

traits are scant. Furthermore, these studies are largely group

comparison based rather dimensionality based (Liu et al.,

2014; Xu et al., 2014; Cao et al., 2018). Intra-network high-

frequency AFs are believed to contribute to higher-order

cognitive processes, and thus, may also differ dimensionally

with psychopathic traits (Baria et al., 2011; Craig et al.,

2018). These limitations of scope and study obscure functional

aberrances associated with psychopathy that may occur on a

local RSN specific level rather than an inter-RSN level, as well

as potential dimensional correlates associated with psychopathic

traits of interest that may be otherwise lost via traditional

group comparisons.

Here we examine resting-state measures and their

relationships to psychopathic traits (assessed via the PCL-R)

(Hare, 2003) in a large sample of incarcerated women (n

= 297). Functional connectivity was assessed using three

different measures [static functional network connectivity

(sFNC: inter-network connectivity), AFs, and intra-network

connectivity], to comprehensively evaluate the functional

characteristics of RSNs and their associations with psychopathic

traits in women. We hypothesized that the majority of aberrant

functional connectivity measures related to psychopathy

would occur in limbic and paralimbic regions of the brain

(Kiehl, 2006).

Methods

Participants

Participants included 308 adult female offenders recruited

from a medium- and maximum-security correctional facility

who previously participated as part of NIH-funded research

and treatment studies (R01 DA020870, R01 DA026964, and

R01 MH085010). While all offenders within the correctional

facility were offered the opportunity to participate in the current

study, the final sample included participants who completed

the relevant clinical assessments and resting-state functional

MRI scans and met further inclusion criteria. Inclusion criteria

included fluency in English at or above a fourth-grade reading

level; estimated IQ over 70 (n = 4 excluded); and no presence

of psychotic disorder (schizoaffective disorder, n= 1; delusional

Frontiers inNeuroimaging 02 frontiersin.org

8788

https://doi.org/10.3389/fnimg.2022.971201
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Allen et al. 10.3389/fnimg.2022.971201

TABLE 1 Participants demographic, PCL-R scores, and disorder rates.

Mean SD Min. Max. Overall

sample (%)

Age (years) 34.6 7.5 21 57

IQ 94.7 9.9 72 123

PCL-R total scores 18.8 6.2 2.2 34.0

Factor 1 scores 4.6 2.7 0 13.0

Factor 2 scores 12.2 3.8 0 20.0

Any mood disorder 36.4

Any anxiety disorder 12.5

PTSD 7.1

Any substance use disorder 96.0

Four participants were missing mood disorder data, 10 were missing anxiety disorder

data, eight were missing PTSD data, and two were missing substance use disorder data.

disorder, n = 1, excluded). An additional n = 5 participants

were excluded for MRI-related reasons, excessive head motion

(i.e., mean framewise displacement values > three standard

deviations above the mean or comprising more than 10% of

their total volume, n= 3; Power et al., 2014), large susceptibility

artifacts (n = 1), or an incomplete resting-state scan (n = 1).

In total, 11 (3.57%) participants were excluded from the study,

leaving a final sample of 297 adult female offenders.

Participants were between the ages of 21 and 57 (average

age = 34.6 years, SD = 7.5 years) at the time of their scan

and ∼10% were left-handed. Based on NIH racial and ethnic

classification, 78.5% of the sample self-identified as White,

9.1% as Black/African American, 9.1% as American Indian or

Alaskan Native, 3.4% as mixed/other, and 56.2% as Hispanic.

Participants’ demographics and PCL-R scores are shown in

Table 1. Participants provided written informed consent in

protocols approved by the institutional review board of the

University of New Mexico and by the Independent Review

(E&I) Services for the Mind Research Network and were paid

at a rate commensurate with institution compensation for work

assignments at their facility.

Psychopathy scores

Psychopathic traits were assessed using the PCL-R (Hare,

2003), which has been validated for use among women (Vitale

and Newman, 2001a; Vitale et al., 2002). The PCL-R consists

of 20 items which are scored on a three-point scale, 0 (does

not apply), 1 (applies somewhat), and 2 (definitely applies).

It is based on participants’ clinical interview and extensive

file review conducted by trained research staff. The resulting

PCL-R total scores range from 0 to 40. Factor analyses of the

20 PCL-R items have consistently revealed two factors: Factor

1 scores correspond to affective/interpersonal characteristics

(e.g., manipulativeness, deficient empathy, and a lack of

remorse), whereas Factor 2 scores, correspond to impulsive

and irresponsible behavior and early and persistent antisocial

behavior (Harpur et al., 1989; Hare and Neumann, 2010). While

the two-factor model of psychopathy was originally developed

and validated in men (Harpur et al., 1989; Hare and Neumann,

2010), research suggests similar validity in women (Kennealy

et al., 2007), including participants included in the current

sample (Eisenbarth et al., 2018).

Additional psychosocial data

Mood, anxiety, post-traumatic stress, and
substance use disorders

Participants were assessed for past or current presence of a

mood disorder, including major depressive disorder, dysthymic

disorder or persistent depressive disorder, depressive disorder

not otherwise specified (NOS), bipolar disorder, mood disorder

due to a general medical condition (GMC), and substance-

induced mood disorder using the Structured Clinical Interview

for DSM-IV-TR Axis I Disorders (SCID-I/P; First et al., 2002)

or Structured Clinical Interview for DSM-5–Research Version

(SCID-5-RV; First et al., 2015)1. Likewise, participants were

assessed for lifetime presence of an anxiety disorder (i.e., panic

disorder, agoraphobia, social phobia or social anxiety disorder,

specific phobia, generalized anxiety disorder, anxiety disorder

NOS or otherwise specified, anxiety disorder due to a GMC, and

substance-induced anxiety disorder). Finally, participants were

also assessed for lifetime posttraumatic stress disorder (PTSD).

PTSD assessment procedures differed across SCID versions,

and when the SCID-I/P was used, participants completed an

initial screening form to determine whether the PTSD interview

module would be administered in full. When the SCID-5-RV

version was used the PTSD interview module was administered

to all participants. Presence of any mood, anxiety, or traumatic

disorder was coded dichotomously, and participants meeting

past or current diagnostic criteria for any one of these disorders

were coded as having the respective disorder (see Table 1).

Alcohol and/or substance-related diagnoses were

assigned based on diagnostic criteria for the SCID version

administered (either the SCID-I/P or the SCID-5-RV).

Participants administered the SCID-I/P were assessed for

lifetime alcohol and drug abuse or dependence. A lifetime

diagnosis of abuse was defined as scoring at threshold on

at least one of four abuse criteria for alcohol and/or seven

drug categories (i.e., sedatives-hypnotics-anxiolytics, cannabis,

stimulants, opioids, cocaine, hallucinogens/PCP, and other).

A lifetime diagnosis of dependence was defined as scoring

at threshold in at least three of seven dependence criteria.

1 One participant in the sample was administered the SCID-5-RV,

whereas the rest were administered the SCID-I/P.
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Alternatively, for participants administered the SCID-5-RV,

a lifetime alcohol use disorder was obtained if at least two

of 11 alcohol criteria were scored at threshold, and lifetime

substance use disorder(s) were obtained if at least two of

11 criteria were scored at threshold for eight categories

(i.e., sedative-hypnotics-anxiolytics, cannabis, stimulants,

opioids, inhalants, PCP, hallucinogens, and other/unknown;

see Table 1).

Imaging parameters

Resting-state functional magnetic resonance images were

collected on the grounds of the correctional facility where

participants were housed using the Mind Research Network’s

mobile Siemens 1.5 T Avanto with advanced SQ gradients (max

slew rate 200 T/m/s, 346 T/m/s vector summation, rise time 200

us) equipped with a 12-element head coil. The EPI gradient echo

pulse sequence (TR = 2,000ms, TE = 39ms, flip angle = 75,

FOV = 24 x 24 cm, 64 x 64 matrix, 3.75 x 3.75 mm in-plane

resolution, 4mm slice thickness, 1mm gap, 27 slices) effectively

covered the entire brain (150mm) in 2.0 s. Head motion was

minimized using padding and restraint. The participants were

asked to lay still, look at the fixation cross and keep eyes

open during the 5-min rsfMRI scanning. Compliance with

instructions was monitored by eye tracking.

EPI preprocessing

Data were preprocessed using statistical parametric

mapping (SPM12) (Friston et al., 1994) (http://www.

fil.ion.ucl.ac.uk/spm) including image reorientation,

realignment [motion estimation using INRialign (Freire

and Mangin, 2001)], and spatial normalization to the

Montreal Neurological Institute standard space at a

resolution of a 3 x 3 x 3 mm3. A full width half maximum

Gaussian kernel of 6mm was then used for spatial

smoothing. Framewise displacement (FWD) was used to

assess motion quality control. For FWD, the translation

and rotation parameters were computed as the mean

of the sums of the absolute translation and rotation

frame displacements, yielding a single FWD value for

each participant.

Independent component analysis

Per Espinoza et al. (2018), we applied gICA on

the preprocessed rsfMRI data using the GIFT toolbox

(http://trendscenter.org/software/gift) (Calhoun et al., 2001).

The rsfMRI data was compressed using two stages of principal

component analysis (PCA) (Rachakonda et al., 2016). For the

first data reduction step, we retained 100 principal components

(PCs), and 75 independent components (ICs) for group

data reduction, consistent with previously published studies

(Kiviniemi et al., 2009; Smith et al., 2009; Ystad et al., 2010;

Allen et al., 2011a; Elseoud et al., 2011; Erhardt et al., 2011).

High-model order ICA (i.e., 75 components) results in more

refined components corresponding to known anatomical and

functional segmentations compared to low-model order ICA

(i.e., 25 or 50 components) (Allen et al., 2011a; Hu et al., 2020).

Individual specific spatial maps and their time-courses were

obtained using gICA. Out of the 75 ICs that were estimated,

48 components were identified as components of RSNs by

evaluating whether peak activation occurred in gray matter

and whether the peak AFs occurred in the low-frequency

power portion of the spectra of components (Meda et al.,

2008; Robinson et al., 2009; Allen et al., 2011a). The reliability

and stability of these extracted networks were evaluated via

ICASSO (Himberg and Hyvärinen, 2003), a process that

iteratively re-runs component estimations with differently

bootstrapped datasets. This analysis suggested high stability

across the 48 components (mean stability index = 0.89), well

above the threshold of 0.70 established in the literature (Ma

et al., 2011). The other 27 components were excluded, as

they appeared to be related to motion artifacts, spatial maps

including white matter, the ventricular system, or cerebrospinal

fluid, or having irregular time-course spectra power (Allen

et al., 2011a,b). Within GIFT, the time-courses of the RSNs

underwent despiking and bandpass by filtering with [0.01–0.15]

Hz cutoffs.

Functional connectivity measures

In order to assess various types of resting-state functional

connectivity measures, we calculated the sFNC between the

selected 48 RSNs as pairwise correlations between the RSNs

time-courses for each individual (inter-network connectivity),

pairwise correlations between individual voxels within the RNSs

to the overall RSN’s time-course (intra-network connectivity),

and the AFs within each RSN.

Statistical analyses

We performed regression analysis to identify associations

between individual sFNC values (inter-network connectivity),

spatial maps (intra-network connectivity), and AFs with

psychopathy measures: PCL-R Factor 1 and Factor 2 as

continuous variables (see Supplementary materials for analyses

of PCL-R total). The analyses were corrected for “nuisance”
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FIGURE 1

Spatial maps of the 48 independent components identified as RSNs categorized by domain [auditory (AUD), default mode network (DMN),

executive control (ECN), salience (SAL), sensorimotor (SEN), subcortical (SBC), attentional (ATT), and visual (VIS)] and component number.

covariates (age, IQ2, FWD3). The significance of the univariate

psychopathy results for each factor was determined using a

false discovery rate (FDR) (Genovese et al., 2002) threshold at

p < 0.05.

Results

Psychopathic traits

The PCL-R total scores for this sample ranged from 2.2 to

34.0 (mean = 18.8, SD = 6.2, Cronbach’s α = 0.79; see Table 1).

PCL-R Factor 1 scores ranged from 0.0 to 13.0 (mean = 4.6, SD

= 2.7; see Table 1), and PCL-R Factor 2 scores ranged from 0.0

to 20.0 (mean= 12.2, SD= 3.8; see Table 1).

2 As estimated by the vocabulary and matrix reasoning subscales of the

Wechsler Adult Intelligence Scale; see Ryan and Ward, 1999.

3 Note: The inclusion or exclusion of FWD in analyses did not alter

significant findings for any present analyses.

Group independent component analysis
and group level inter-network
connectivity

Figure 1 shows the spatial maps of the 48 selected RSNs.

The 48 RSNs listed in Table 2 were grouped into eight domains:

auditory (AUD), default mode network (DMN), executive

control (ECN), salience (SAL), sensorimotor (SEN), subcortical

(SBC), attentional (ATT), and visual (VIS) based on their peak

coordinate, functional properties, the automatic labeling tool

in GIFT, and confirmed by visual inspection (see Figure 2

for the estimated inter-network connectivity between domains

and RSNs)4. Consistent with prior literature, the inter-network

4 While the automatic labels and correlations to networks provided by

the GIFT toolbox (http://trendscenter.org/software/gift) (Calhoun et al.,

2001) were helpful in the initial network classification and description,

these network labels di�er from those commonly utilized in relevant

literature (i.e., Espinoza et al., 2018). Thus, a combination of the

correlational outputs/labeling, the peak coordinates, and functional

properties commonly ascribed to the regions were used to name regions

and assign those regions to relevant domains. The assignment of regions
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TABLE 2 Resting-state networks (RSNs) domain names, IC numbers,

and MNI peak coordinates.

RSNs and domain names IC number MNI peak (x,

y, z)

Auditory (AUD)

Left superior temporal gyrus 13 (−58,−22, 10)

Default mode network (DMN)

Anterior cingulate 8 (2, 14,−5)

Posterior cingulate 16 (14,−56, 5)

Right postcentral gyrus 27 (56,−32, 55)

Right inferior temporal gyrus 30 (54,−24,−20)

Precuneus 39 (0,−66, 60)

Precuneus 43 (0,−66, 35)

Posterior cingulate 47 (0,−60, 10)

Right angular gyrus 59 (38,−80, 30)

Right parahippocampal gyrus 63 (22,−28,−10)

Executive control network (ECN)

Left middle frontal gyrus 2 (−38, 44,−5)

Right inferior parietal lobule 12 (48,−58, 55)

Right inferior frontal gyrus 24 (48, 14, 30)

Superior frontal gyrus 41 (2, 14, 70)

Superior frontal gyrus 45 (0, 44, 55)

Left superior frontal gyrus 48 (−12,−4, 70)

Right superior frontal gyrus 52 (24, 36, 30)

Right middle frontal gyrus 58 (24, 20, 50)

Left superior parietal lobule 65 (−38,−64, 55)

Medial frontal gyrus 72 (0, 52,−5)

Medial frontal gyrus 73 (0, 62, 5)

Salience network (SAL)

Left superior temporal gyrus 4 (−42, 8,−15)

Left middle frontal gyrus 20 (−42, 52, 10)

Cingulate gyrus 35 (0, 10, 35)

Right inferior frontal gyrus 44 (44, 16, 5)

Medial frontal gyrus 61 (2, 0, 55)

Anterior cingulate 71 (0, 32, 35)

Sensorimotor (SEN)

Right precentral gyrus 1 (54,−8, 30)

Left precentral gyrus 9 (−48,−36, 60)

Postcentral gyrus 25 (10,−60, 70)

Medial frontal gyrus 26 (0,−22, 70)

Right precentral gyrus 33 (42,−22, 65)

Subcortical (SBC)

Basal ganglia 6 (0,−22,−5)

Left lentiform nucleus 18 (−18,−10, 0)

Left parahippocampal gyrus 19 (−18,−20,−20)

Left lentiform nucleus 50 (−24, 4, 0)

Right parahippocampal gyrus 66 (18,−4,−15)

Right lentiform nucleus 69 (18,−8, 0)

(Continued)

TABLE 2 (Continued)

RSNs and domain names IC number MNI peak (x,

y, z)

Attentional (ATT)

Left superior temporal gyrus 3 (−36, 10,−30)

Left middle temporal gyrus 21 (−60,−30, 0)

Precuneus 32 (4,−82, 45)

Left supramarginal gyrus 67 (−60,−48, 40)

Right middle temporal gyrus 70 (56,−66, 5)

Visual (VIS)

Cuneus 15 (2,−94, 25)

Right inferior occipital gyrus 34 (32,−94,−10)

Right fusiform gyrus 60 (38,−68,−20)

Left lingual gyrus 68 (−24,−66,−10)

Lingual gyrus 74 (0,−80,−5)

RSN network names were determined by peak MNI coordinates and gICA’s component

labeling function.

connectivity in Figure 2 suggests largely positive within domain

inter-network connectivity within the DMN, ECN, SAL, ATT,

and VIS networks (Espinoza et al., 2018; Du et al., 2020). Similar

to analyses in clinical populations, Figure 2 also suggests cases of

negative inter-network connectivity within SBC networks (Du

et al., 2020).

Time-course power spectra

PCL-R factor 1 scores

PCL-R Factor 1 scores were associated with increased

AF at low-frequency bands (0–0.05Hz) in the left middle

frontal gyrus (Component 2, ECN), the left superior

temporal gyrus (Component 3, ATT), and the right

superior frontal gyrus (Component 52, ECN), and

decreased AF at high-frequency spectra bands (0.09–

0.25Hz) in the cuneus (Component 15, VIS), left middle

frontal gyrus (Component 2, ECN), and the superior

frontal gyrus (Component 41, ECN) (see Figures 3, 5,

Table 3).

PCL-R factor 2 scores

PCL-R Factor 2 scores were associated with decreased AF at

high-frequency bands (0.10–0.25Hz) in the posterior cingulate

cortex (Component 47, DMN) and left middle frontal gyrus

(Component 2, ECN) (see Figures 4, 5, Table 3).

to a specific domain was performed independently by three authors and

the final domain classification was based upon unanimous agreements.
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FIGURE 2

Inter-network functional network connectivity matrix of the 48 RSNs.

Component spatial maps

PCL-R factor 1 scores

PCL-R Factor 1 scores were associated with functional

connectivity in a network primarily pertaining to the

parahippocampal gyrus (Component 63, DMN), such that

higher PCL-R Factor 1 scores were associated with decreased

intra-network functional connectivity of the left insula

and right thalamus within Component 63 (see Figure 6,

Table 4).

PCL-R factor 2 scores

PCL-R Factor 2 scores were associated with functional

connectivity in the right fusiform gyrus (Component

60, VIS), such that higher PCL-R Factor 2 scores were

associated with both increased and decreased intra-network

functional connectivity (see Figure 7). PCL-R Factor 2

scores were also associated with functional connectivity

in the left lingual gyrus (Component 68, VIS), such that

higher PCL-R Factor 2 scores were associated with an

increased intra-network functional connectivity (see Figure 7,

Table 4).

Functional network connectivity

There were no significant associations between PCL-R scores

and sFNC that survived FDR correction while controlling for

age, IQ, and FWD.

Discussion

Here we report that psychopathic traits (assessed

via the PCL-R) were associated with aberrant functional

connectivity measures during a resting-state fMRI experimental

paradigm in a sample of incarcerated women. Consistent
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FIGURE 3

Univariate associations between PCL-R Factor 1 score and power spectra of significant components, predominantly occurring in the ECN. Panel

depicts the significance and direction of PCL-R Factor 1 scores as a function of frequency for each significant component, displayed as–sign(t)

log10(p), FDR corrected p < 0.05.

TABLE 3 E�ects of psychopathic traits on AFs, FDR corrected.

Measure RSN IC, domain Beta range

PCL-R factor 1

Left middle frontal

gyrus

2, ECN −0.0433 to 0.0327

Left superior

temporal gyrus

3, ATT 0.0451 to 0.0543

Right superior

frontal gyrus

52, ECN 0.0468

Cuneus 15, VIS −0.0489 to−0.0459

Superior frontal

gyrus

41, ECN −0.0495 to−0.0443

PCL-R factor 2

Posterior cingulate

cortex

47, DMN −0.0459 to−0.0403

Left middle frontal

gyrus

2, ECN −0.0337 to−0.0317

Table shows all AF effects that survive FDR correction at p < 0.05 level and range of Beta

Values per component.

with previous research performed in men and our

hypotheses, PCL-R scores were associated with aberrant

functional connectivity across multiple domains among

incarcerated women.

PCL-R scores were associated with increased amplitude

fluctuations (AF) in low-frequency bands and reduced AF

in high-frequency bands across regions included within

the paralimbic system, including the PCC and superior

temporal gyrus, and additional regions, including the superior

frontal gyrus, middle frontal gyrus, and cuneus. Compared

to low-frequency AFs, high-frequency AFs are believed to

contribute to higher-order cognitive processes (Baria et al.,

2011; Craig et al., 2018). Reduced high-frequency AFs

may relate to some of the previously observed deficits

characteristic of women scoring high on psychopathy. For

example, successful error-related processing depends on the

collaboration of several higher-order brain regions, including

the middle/superior frontal gyrus, PCC, and cuneus (Steele

et al., 2014). Women scoring high on the PCL-R have been

previously characterized by error-related processing deficits,

including reduced amplitude of the error-related positivity
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FIGURE 4

Univariate associations between PCL-R Factor 2 score and power spectra of significant components. Panel depicts the significance and direction

of PCL-R Factor 2 scores as a function of frequency for the significant component, displayed as–sign(t) log10(p), FDR corrected p < 0.05.

event-related potential component (Maurer et al., 2016).

Furthermore, women scoring high on psychopathy have been

previously characterized by reduced reactivity to emotional

facial expressions (Eisenbarth et al., 2013); regions implicated

in the current study, including the middle frontal gyrus, have

been previously associated with processing of emotional faces

(Pessoa et al., 2002; Willis et al., 2010).

We also observed that women scoring high on psychopathy

were characterized by aberrant intra-network connectivity

within regions of the paralimbic system (e.g., parahippocampal

cortex) and additional regions, including the fusiform gyrus

and lingual gyrus. Women scoring high on psychopathy

were characterized by reduced intra-network functional

connectivity within Component 63 (parahippocampal gyrus),

Component 60 (right fusiform gyrus), and Component 68

(left lingual gyrus), and increased intra-network functional

connectivity in Component 60 (right fusiform gyrus). Reduced

intra-network functional connectivity in the fusiform and

parahippocampal gyrus is consistent with a previously

published study with incarcerated women, observing that

women scoring higher on the PCL-R were characterized

by reduced hemodynamic activity in the fusiform and

parahippocampal gyrus during the processing of moral

violations (Harenski et al., 2014b). Our finding of PCL-R Factor

2 relating to increases in intra-network functional connectivity

of the fusiform and lingual region is also consistent with

previously published studies suggesting relationships between

impulsivity and intra-visual network functional connectivity

(Davis et al., 2013; Pu et al., 2017).

Published studies investigating resting-state AFs and youth

psychopathic traits have reported different findings than those

obtained in the current study. For example, Thijssen and Kiehl

(2017) observed that youth scoring high on the Psychopathy

Checklist: Youth Version (PCL:YV; Forth and Kosson, 2003)

were largely characterized by decreased AFs in low-frequency

bands and increased AFs at high-frequency bands. While

differences between studies may have been observed, we believe

that the results obtained in the current study may relate to

specific deficits previously observed in women scoring high

on psychopathy. For example, increased low frequency AFs
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FIGURE 5

Spatial maps of the 7 independent components identified in Table 3 as exhibiting psychopathy related aberrant AFs, grouped by PCL-R Total

e�ects (see Supplementary materials), PCL-R Factor 1 e�ects, and PCL-R Factor 2 e�ects.

are believed to relate to improvements within neural efficiency

(Biswal et al., 1995). Compared to men scoring high on

psychopathy, women scoring high on psychopathy are not

characterized by the response perseveration deficits (Vitale and

Newman, 2001a). Important to note, response perseveration

is associated with dysfunction with several regions implicated

in the current study, including the middle frontal gyrus (Yang

et al., 2011), superior temporal gyrus (Ersche et al., 2011),

and superior frontal gyrus (De Ruiter et al., 2009; Camchong

et al., 2011). Therefore, women scoring high on psychopathy

may be characterized by increased neural efficiency (observed

via higher low-frequency AFs) in several paralimbic brain

regions, contributing to improved performance on response

perseveration tasks (Vitale et al., 2011). By exhibiting reduced

AFs in low-frequency bands, this may relate to youth scoring

high on psychopathy exhibiting response preservation deficits

(Vitale et al., 2005).

Importantly, and more broadly, our investigation into

the relationships between psychopathic traits in women and

multiple measurements of rsFNC (inter-network connectivity,

intra-network connectivity, and AFs) underscore three points.

First, neurobiological aberrances related to psychopathic traits in

women may best be accounted for on a local (i.e., intra-network

connectivity & AFs) neurobiological level rather than a global

level (i.e., inter-network connectivity). Second, while variability

in psychopathic traits may be accounted for by the relationships

between voxel and RSN time courses (e.g., Thijssen and Kiehl,

2017; Espinoza et al., 2018), additional variability can also be

explained by rates and amplitudes of individual RSN activational

profiles themselves (i.e., AFs; see Thijssen and Kiehl, 2017). And

finally, by exploring both local (i.e., intra-network connectivity

and AFs) and global (i.e., inter-network connectivity) rsFNC

measures in their relationships to antisocial traits, future

research stands to further explore and potentially differentiate

how antisocial phenotypes are represented neurobiologically

across various demographic groups.

Study limitations

A number of limitations must be considered for the

present study. Though all regions identified as being associated

with psychopathic traits in the present study were also

identified in Espinoza et al. (2018), here we did not find

any significant psychopathy related inter-network FNC results.

One potential explanation for this result is the size of the

sample analyzed. While the present sample is considered large

by neuroimaging standards (n = 297), Espinoza et al. (2018)
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FIGURE 6

Association between PCL-R Factor 1 score and intra-network connectivity within a network primarily pertaining to the parahippocampal gyrus,

FDR corrected p < 0.05.

TABLE 4 E�ects of psychopathic traits on intra-network connectivity, FDR corrected.

Measure RSN IC, domain Average beta

PCL-R factor 1

Right parahippocampal gyrus 63, DMN −0.4143

PCL-R factor 2

Right fusiform gyrus 60, VIS 0.2403,−0.2654

Left lingual gyrus 68, VIS 0.2688

Table shows all clusters that survive FDR correction at p < 0.05 level and average Beta effect size per component.
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FIGURE 7

Association between PCL-R Factor 2 score and intra-network connectivity within the lingual gyrus and fusiform gyrus, FDR corrected p < 0.05.

conducted inter-network connectivity analysis in a sample more

than three times as large (n = 985). Additionally, because

all FNC measures tested in the present analysis were static,

there are a number of assumptions being made regarding

the relationships between the consistency of network activity

across the 5-min resting-state scan. Similarly, because the

scans were resting-state rather than task-based, extrapolations

of RSN aberrances to specific functional domains are hard

to attribute. Finally, while our experimental design utilized

5-min resting-state scans, there is evidence suggesting that

longer scans are needed to ensure higher RSN stabilities (e.g.,

Birn et al., 2013; though see Allen et al., 2011a; Espinoza

et al., 2018, 2019; Duda et al., 2022). Thus, more work is

needed to probe the relationships between various inter- and

intra-network static and dynamic connectivity measures as

they relate to psychopathic traits and perhaps longer resting-

state and task-based measures in large samples of both men

and women.
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Conclusion

This study contributes to the current literature by examining

whole brain inter- and intra-network connectivity and AFs

across RSNs and their relationship to psychopathic traits

in women. We showed that psychopathy is associated with

increased low-frequency, decreased high-frequency AFs, and

both increased and decreased intra-network connectivity across

four brain domains (DMN, ECN, VIS, and ATT). Similar

to previous analyses in incarcerated men, our results suggest

that psychopathic traits among incarcerated women are

associated with aberrant intra-network AFs and connectivity

across multiple networks associated with executive control,

decision making, salience detection, and motor control. Our

results showcase aberrant intra-network FNC rather than

aberrant inter-network FNC underlying psychopathic traits in

women, suggesting the potential for sex-specific neurobiological

psychopathy related phenotypes. To our knowledge, this

represents the largest study to date on the association

of psychopathic traits and intrinsic RSN aberrances in

incarcerated women.
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Task-based functional MRI (fMRI) has greatly improved understanding of brain

functioning, enabling the identification of brain areas associated with specific

cognitive operations. Traditional analyses are limited to associating activation

patterns in particular regions with specific cognitive operation, largely ignoring

regional cross-talk or dynamic connectivity, which we propose is crucial

for characterization of brain function in the context of task fMRI. We use

connectotyping, which efficiently models functional brain connectivity to

reveal the progression of temporal brain connectivity patterns in task fMRI.

Connectotyping was employed on data from twenty-four participants (12

male, mean age 24.8 years, 2.57 std. dev) who performed a widely spaced

event-related fMRI word vs. pseudoword decision task, where stimuli were

presented every 20 s. After filtering for movement, we ended up with 15

participants that completed each trial and had enough usable data for our

analyses. Connectivity matrices were calculated per participant across time for

each stimuli type. A Repeated Measures ANOVA applied on the connectotypes

was used to characterize differences across time for words and pseudowords.

Our group level analyses found significantly different dynamic connectivity

patterns during word vs. pseudoword processing between the Fronto-

Parietal and Cingulo-Parietal Systems, areas involved in cognitive task control,

memory retrieval, and semantic processing. Our findings support the presence
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of dynamic changes in functional connectivity during task execution and

that such changes can be characterized using connectotyping but not with

traditional Pearson’s correlations.

KEYWORDS

fMRI, task fMRI, connectotyping, functional connectivity, cognition, dynamic
connectivity, widely spaced event-related fMRI, BOLD

Introduction

Task-based functional MRI (fMRI) has had a profound
impact on our understanding of brain functioning. Using
fMRI, it is possible to design experiments that target specific
sensorimotor, perceptual, and/or cognitive operations in
efforts to understand the brain’s basis of those functions.
Complementing neuroscientific findings based on other
methods (e.g., single cell or multiunit recording), and lesion
cases, task-based fMRI studies have identified functional
neuroanatomy underlying various sensorimotor and perceptual
systems. Examples include visual (Engel et al., 1994; Sereno
et al., 1995; Goebel et al., 1998) and auditory systems (Moerel
et al., 2014), as well as systems associated with higher-order
cognitive operations such as memory retrieval (Yonelinas and
Levy, 2002; Wheeler and Buckner, 2003; Dobbins and Wagner,
2005; Yonelinas et al., 2005; Cabeza et al., 2008; Nelson et al.,
2010; Rugg and Vilberg, 2013), semantic processing (Petersen
et al., 1988; Fiez, 1997; Thompson-Schill et al., 1997; Friederici
et al., 2000; Donaldson et al., 2001; Roskies et al., 2001; Wagner
et al., 2001; Badre et al., 2005; Gordon et al., 2014), and
cognitive control (Botvinick et al., 2001; Braver and Barch, 2006;
Dosenbach et al., 2006, 2007).

The primary measure in fMRI studies is the blood oxygen
level dependent (BOLD) signal. Although not a direct measure
of neural activity, it has been shown that the measured BOLD
signal is correlated with neural activity, particularly with local
field potentials (Logothetis et al., 2001; Logothetis, 2003). The
BOLD signal, however, is slow compared to neural activity.
After an initial stimulus, the BOLD signal peaks typically
after 6 s (Vazquez and Noll, 1998), returning to baseline in
approximately 20 s –this observed activation trend is known
as the hemodynamic response function. The signal delay in
returning to baseline needs to be considered in experimental
design (Logothetis, 2008). For example, in a typical task
experiment, participants are exposed to a given stimulus
(cognitive, visual, or auditory) or are asked to perform a task.
Given the knowledge of the delayed peak on activation, methods
are tuned to look for brain areas that respond specifically to the
experimental paradigm once peak response is achieved.

The subsequent development of resting state functional
connectivity MRI (rs-fcMRI) was another milestone in

neuroimaging. Biswal et al.’s seminal work (Biswal et al., 1995)
established that the low frequency (<0.1 Hz) resting BOLD
activity in brain regions that are typically coactivated during
task-states (or known to be members of a common brain
system e.g., left and right primary motor cortex) show a high
degree of temporal correlation. This high degree of correlation
is hypothesized to be a measure of functional connectivity
among the said regions. rs-fcMRI has since become a very
convenient technique to characterize brain function. Since it
does not require the presence of an overt cognitive task, it can
be employed in animals (Miranda-Dominguez et al., 2014b;
Stafford et al., 2014), developmental populations (Marek et al.,
2019), or in patients that may otherwise be unable to perform
intentional cognitive tasks.

There is a growing interest in characterizing dynamic
changes in brain connectivity (Chang and Glover, 2010), both
at rest and during tasks. Several groups have used different
techniques to characterize the cross-talking between brain
areas (Friston et al., 1997; Chang and Glover, 2010; Ginestet
and Simmons, 2011; Cribben et al., 2012; Lindquist et al.,
2014; Billings et al., 2021; Shappell et al., 2021) but there are
controversies in the field (Laumann et al., 2016). One of the
first methods to estimate dynamics in functional connectivity
is the use of “sliding windows” (Sakoğlu et al., 2010), where
the BOLD data is split in segments, connectivity is calculated
on each segment, then changes in functional connectivity are
tracked across time. This has been mostly used in resting
state data. Another approach is to assume that functional
connectivity is a dynamic process that can be characterized by
a multivariate gaussian distribution whose mean and covariance
matrix evolves on time and there are efficient algorithms that
can estimate those statistical properties (Xu and Lindquist,
2015). Dynamic Causal Modeling (DCM), (Friston et al., 2003,
2019), is another technique that models dynamic changes in
functional connectivity. DCM can be applied on resting state
and task data. In DCM, the user specifies the brain areas
that define “the circuit” involved in a task and then, by using
differential equations and non-linear dynamics, a predicted
hemodynamic response is modeled and compared against the
measured signal within the proposed circuit. An alternative
method is to use non-linear dynamics to identify transitions
among different states in timeseries (Zhang and Saggar, 2020).
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There have also been attempts to characterize dynamic changes
in connectivity in task-fMRI experiments. An approach that has
been used by some but not all studies, relies on averaging data
across participants to increase signal to noise ratio (intrasubject
correlation analysis). In this method, dynamic changes in
connectivity are estimated after calculating the correlation of
each brain area’s timeseries against each other across participants
and averaging correlations across participants (Hasson et al.,
2004; Najafi et al., 2017). There are also methods such as
Psychophysiological Interactions (PPI, McLaren et al., 2012) and
Rissman connectivity (Rissman et al., 2004) that do not rely
on averaging data across participants but need a brain area or
areas as seed(s) to estimate changes in connectivity in reference
to that seed. The most basic implementation of PPI (McLaren
et al., 2012) consists of defining 3 regressors, the timeseries
of a) the task, b) the BOLD response of the seed, and c) the
product of those 2 signals. The BOLD response of brain areas
that can be modeled by the product of the 2 signals considered
to be functionally connected to the seed and be involved in the
task. The other 2 regressors are used to control for areas that
respond to the task but are not connected to the seed and for
areas that are in close proximity to the seed but not functionally
involved in the task. In Rissman connectivity, the BOLD data
is aligned according to the timing of events and, using the
Generalized Linear Model framework, beta-weights associated
with those events are calculated for every voxel (Rissman et al.,
2004). Resulting event-related beta-weights are correlated across
voxels to identify connections associated with the task being
studied.

One may reasonably hypothesize that there are dynamic
functional connectivity changes on the networks supporting
any mental process that may occur on the order of seconds
during the instantiation, computation, and response frame of
a given task. Hence, there is a need for a method able to
utilize whole brain connectivity to identify the brain networks
that support a task. This could be done by aligning the BOLD
data according to the phase of a task, calculating instantaneous
connectivity at each phase and tracking changes on time across
networks. Unfortunately, one of the main problems in fMRI
is that the BOLD signal is highly susceptible to noise and
correlations. The traditional method used to characterize whole
brain connectivity, may not have the resolving power to unveil
dynamic changes in connectivity.

Connectotyping (Miranda-Dominguez et al., 2014a, 2018),
a model-based method used to calculate functional connectivity
has the potential to address the above limitations. We have
shown that connectotyping is able to identify personalized
patterns of brain connectivity with an improved signal-to-noise
ratio even when using limited amounts of data as demonstrated
in a recent study where this approach was used to characterize
heritable patterns of brain functional connectivity (Miranda-
Dominguez et al., 2018). Connectotyping is based on a linear
model that proposes that the activity of a given brain region can

be described by the weighted sum of all the other brain regions
(Figure 1). The coefficients (beta-weights) of the resulting model
correspond to a connectivity matrix that is capable of identifying
a functional fingerprint in individual participants using a small
amount of data (e.g., 5 min of rs-fcMRI), which is the typical
amount of movement-free data able to be acquired in most
studies.

The aim of this current study is to determine whether
connectotyping can be applied to a task fMRI dataset to track
changes in network-network functional connectivity during the
progression of a task. This study relies on the following three
assumptions: (1) A given task will activate specific brain areas
and networks tuned to respond to the different aspects of the
progression of such task. (2) As the task evolves, the balance –
or co-activation patterns— among brain areas will change,
reflecting dynamical tuning to different aspects of the task. (3)
There is a contrast in the task that enables the differentiation
of pure activation of brain areas versus task-specific changes in
brain connectivity. With connectotyping, the activity of each
brain area is modeled as the weighted contribution of all the
other brain areas. Therefore, we can use connectotyping to
capture instantaneous connectivity maps as the task evolves.
Then, dynamic changes in functional connectivity secondary to
the evolution of the task can be characterized using statistical
testing (repeated measures ANOVA tests).

For this analysis, we first identified a task-fMRI dataset
with stimuli presented in a widely spaced manner without

FIGURE 1

Connectotyping. Functional connectivity is calculated as the
weighted sum of activity from the remaining brain regions
(Miranda-Dominguez et al., 2014a). (A) Given 3 brain areas, each
timeseries is modeled as the weighted sum of the other
timeseries. (B) All the equations can be expressed as a matrix
and solved using linear algebra. (C) This approach can be
generalized to M brain regions.
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the confounding effect of BOLD activity overlap from past
stimuli. Again, one of the characteristics of the BOLD signal
that must be considered in this context is that it takes about
20 s for the hemodynamic response function to return to
baseline following stimulus presentation. However, we avoid
overlapping responses by using data from widely spaced event-
related fMRI experiment (at least 20 s between individual
stimuli) in which subjects were performing a visually presented
word vs. pronounceable non-word (hereafter pseudoword or
PW) lexical decision task (Nardos, 2015).

Specifically, we hypothesized that connections between
networks implicated in cognitive control (Botvinick et al., 2001;
Braver and Barch, 2006; Dosenbach et al., 2006, 2007), memory
retrieval (Iidaka et al., 2006), and semantic processing (Petersen
et al., 1988; Fiez, 1997; Thompson-Schill et al., 1997; Friederici
et al., 2000; Donaldson et al., 2001; Roskies et al., 2001; Wagner
et al., 2001; Badre et al., 2005) would have dynamic network-
network functional connectivity differences as a function of the
type of stimulus (word vs. PW) being processed.

In summary, our goal is to track changes in functional
connectivity between different functional networks. We
hypothesized that the distinction between word and PW
relies on the dynamic activation of higher order attention
networks and that connectotyping has enough resolving power
to characterize such changes and can do so better than using
connectivity matrices created via Pearson’s correlations.

Materials and methods

Participants

The original study sample consisted of 28 participants; after
excluding participants who had incomplete or compromised
data quality, the current study included 24 individuals.
Participants were 24 monolingual (English-speaking), right-
handed participants (12 male, mean age 24.8 years, 2.57 std.
dev) recruited from neighborhoods surrounding Washington
University in St. Louis as well as from the university student
body (Nardos, 2015). All participants had no history of
psychiatric or neurological illness and scored above the 50th
percentile on the Woodcock-Johnson III reading assessment
(Woodcock and Johnson, 2002). The Washington University
Human Studies Committee approved the study (IRB ID #
201202083) and all participants were reimbursed for their
participation.

Task

In a visually presented lexical decision task, individuals
identified words vs. PWs while in the MRI scanner via button
pressing. A set of words (50% animals; 50% artifacts; 3–9

letters; 1–3 syllables) and PWs (5 letters, 1 or 2 syllables)
were selected from the English Lexicon Project (Balota et al.,
2007; Nardos, 2015). Pseudowords were vetted by an expert,
ensuring that words and pseudowords were tightly matched
on lexical characteristics like number of letters, number of
syllables, bigram frequency, and orthographic neighborhood
size (Nardos, 2015). When in the scanner participants had two
buttons, one on each hand. Each button corresponded either
to words or PWs, participants pressed the buttons with the
thumb of either hand to identify the stimuli. Stimuli were
presented in a widely spaced manner, i.e., separated by ∼20 s,
to avoid hemodynamic response signal overlap across individual
stimuli and allow extraction of individual trial BOLD responses
(Nardos, 2015). In each trial, a word or PW stimulus was
presented for 2.5 s (1 TR or MR frame) with each letter
subtending 0.5◦ of horizontal visual angle, followed by 17.5 s
(7TRs or MR frames) of a black fixation screen with a white
cross. Participants underwent 10 functional MRI runs each with
24 stimuli (18 PWs and 6 words) per run. Out of 24 trials
within a run, 3 of those trials were catch trials, meaning that
the intertrial interval after those trials would randomly be 2,
3, or 4 times the duration of the TR (2.5 sec), i.e., 5, 7.5, or
10 s, respectively. Catch trials were run for both words and
pseudowords. While there were differences across participants
in reaction time, overall accuracy was very high (98%, see
(Nardos, 2015) for details).

Data acquisition

Structural and functional MRI data were collected
as described in Nardos (2015) from a Siemens 3 Tesla
MAGNETOM Trio system (Erlangen, Germany). The scanner
included total imaging matrix technology (TIM) and utilized
a 12-channel head matrix coil. A high resolution T1-weighted
MP-RAGE was acquired (TE = 3.08 ms, TR [partition] = 2.4 s,
TI = 1,000 ms, flip angle = 8′′, 176 slices with 1 × 1 × 1 mm
voxels). To improve atlas alignment a T2-weighted turbo
spin echo structural image (TE = 84 ms, TR = 6.8 s, 32
slices with 2 × 1 × 4 mm voxels) matching the acquisition
plane of the BOLD images were also collected. Alignment
to the anterior commissure-posterior commissure (AC-PC)
plane was performed by Siemens pulse sequence protocol.
BOLD contrast-sensitive gradient echo echo-planar sequence
(TE = 27 ms, flip angle = 90′′, in-plane resolution = 4 × 4 mm)
was used for functional data collection. Using a TR of 2.5 s, 32
contiguous, 4 mm- thick axial slices whole-brain EPI volumes
were collected. Communication with participants was facilitated
by MR- compatible headphones which were also used to reduce
noise from the scanner. Head movement was minimized by
using a molded thermoplastic mask. Stimuli were presented
using Psyscope (Cohen et al., 1993) installed on an iMAC
computer (Apple, Cupertino, CA) and projected via an LCD
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projector (Sharp model PG-C20XU) onto an MRI-compatible
rear-projection screen combined with a mirror attached to the
head coil (CinePlex).

MRI data preprocessing

Data were processed using surface-based registration
applying a modified version from the Human Connectome
Project pipeline (Glasser et al., 2013) plus in-house denoising
methods.1 Processing includes the use of FSL (Smith et al., 2004;
Woolrich et al., 2009; Jenkinson et al., 2012) and FreeSurfer
tools (Sereno et al., 1995; Fischl and Dale, 2000; Desikan
et al., 2006). Briefly, gradient distortion corrected T1-weighted
and T2-weighted volumes were first aligned to the MNI’s
AC-PC axis and then non-linearly normalized to the MNI
atlas. Later, the T1w and T2w volumes were re-registered
using boundary-based registration (Greve and Fischl, 2009) to
improve alignment. Individual brains were segmented using
recon-all from FreeSurfer. Segmentations were improved by
using the enhanced white matter-pial surface contrast of the
T2-weighted sequence. Additionally, the initial pial and white
matter surfaces were used to distinguish an initial cortical
ribbon. From these segmentations, a tailored 3D surface was
created for each participant and registered to the Conte 69
surface atlas of the Human Connectome Project.

The BOLD data were corrected for field distortions (using
FSL’s TOPUP) and processed by doing a preliminary 6 degrees
of freedom linear registration to the first frame. After this initial
alignment, the average frame was calculated and used as a final
reference. Next, the BOLD data were registered to this final
reference and to the T1-weighted volume, all in one single
step, by concatenating all the individual registrations into a
single registration. To allow steady state magnetization, the first
four volumes of each run were discarded. The cortical ribbon
defined by the structural T1-weighted and T2-weighted volumes
was used to define a high-resolution mesh used for surface
registration of the BOLD data. This cortical ribbon was also used
to quantify the partial contribution of each voxel in the BOLD
data in surface registration. Timecourses in the cortical mesh
were calculated by obtaining the weighted average of the voxels
neighboring each vertex within the grid, where the weights are
given by the average number of voxels wholly or partially within
the cortical ribbon. Voxels with a high coefficient of variation,
indicating difficulty with tissue assignment or containing large
blood vessels, were excluded. Next, the resulting timecourses
in this mesh were downsampled into a standard space of
91, 282 anchor points (grayordinates), which were defined
in the brain atlas and mapped uniquely to each participant’s
brain after smoothing them with a 2 mm full-width-half-max
Gaussian filter. Subcortical regions were treated and registered

1 https://github.com/DCAN-Labs

as volumes. Two-thirds of the grayordinates are vertices located
in the cortical ribbon while the remaining grayordinates are
subcortical voxels. Subsequently, resulting timecourses (surface
registration for cortex and volume registration for subcortical
gray matter) were detrended. The following steps involved
regression of (1) 6 degrees of freedom obtained by rigid-body
head motion correction, (2) whole brain signal, (3) ventricular
signal averaged from ventricular regions of interest (ROIs),
(4) white matter signal averaged from white matter ROIs, (5)
first-order derivative terms and the squares for whole brain,
ventricular and white matter signals to account for variance
between regressors. Finally, timecourses were filtered using a
first-order Butterworth band-pass filter with frequency range
from 9 to 80 mHz. This filter was applied in the forward and
backward direction to remove phase distortions.

Regions of interest and functional
networks

Collected BOLD data were parcellated using the Gordon
schema that has 333 regions of interest (ROIs) grouped into
12 networks (Gordon et al., 2014). Each grayordinate was
assigned to a region and network within this parcelation.
The networks, their abbreviation and the number of ROIs
included are: Auditory (Aud, n = 24), Cingulo-Opercular (CiO,
n = 40), Cingulo-Parietal (CiP, n = 5), Default (Def, n = 41),
Dorsal Attention (DoA, n = 32), Fronto-Parietal (FrP, n = 24),
Retrosplenial Temporal (ReT, n = 8), Somato-sensory hand
(Sml, n = 38), Somato-sensory mouth (SMm, n = 8), Salience
(Sal, n = 4), Ventral Attention (VeA, n = 23), and Visual (Vis,
n = 39). From the 333 ROIs, 47 ROIs were not assigned to any
network. The location of each functional network is shown in
Figure 2. Per our hypothesis, on this pilot study we excluded
primary somatosensory and unimodal networks and included
only the Cingulo-Parietal, Default, Dorsal Attention, Fronto-
Parietal, Salience, and Ventral Attention, ending up with 129
brain areas from 6 brain networks that were grouped into 36
functional network pairs (CiP-CiP, CiP-Def,. . .). Table 1 shows
all the functional network pairs including the count of unique
connectotyping’s beta-weights.

Motion censoring

Correction for head motion was completed by calculating
six parameters of head movement, movement and rotation
along the x, y, and z axes. The absolute sum of movement along
these parameters was evaluated after each change of frame and
termed “frame displacement” (FD). For our study, we set our
FD threshold at 0.3 mm and set the FD of the first frame at zero.
This measure was only used as a way to detect motion and was
not used for regression (Power et al., 2012; Siegel et al., 2014).
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FIGURE 2

Gordon parcelation schema. The (Left panel) displays a visual representation of the 13 defined cortical networks in the Gordon Parcelation.
Networks are color coded with the number of regions of interest shown in parentheses. The (Right panel) shows the average connectivity
matrix calculated as the average beta-weights of all the data included in this study. Each row and column correspond to a particular brain
region, and each cell is a connection. Connections are grouped by functional network pair.

Grouping data for connectotyping

We calculated instantaneous connectotypes for each
participant at each phase (Frame 1–8) of the progression
of each task (i.e., for words and PWs) ending up with 16
connectotypes per participant, as shown in Figure 3. Each
resulting connectotype captures the instantaneous cross-talking
among brain areas at each phase of the progression of each task.
To do this, for each participant, at each frame and stimulus
type, we concatenated the BOLD data from the same frame,
relative to the frame at which stimuli was presented for each
participant (as shown in Figure 3A). We did this because these
replica frames correspond to the same point in time in the
dynamic evolution of the task. This created a matrix with the
dimension 333 by the number of replica frames. The dimension
333 is due to the number or ROIs included in the Gordon
parcelation schema (Gordon et al., 2014). Next, we used that
stack of replica frames to calculate a connectotype that reflects
the crosstalking between ROIs at this phase of the task. This
approach was repeated for each phase of the experiment. We
only included trials that had a length of 8 TRs for a total of
20 s, with the additional constraint that the preceding trial
in the experiment took place at least 20 s prior, ensuring that
the timecourse for the current trial under consideration is not
adulterated by that previous trial. Frames were excluded if
head movement was higher than a given frame displacement

(FD) threshold of 0.3 mm (Power et al., 2014). Participants
were included only if they had enough data (40 replica frames
or more) to calculate personalized connectotypes on each of
the 16 conditions. Fifteen participants met this condition.
Each connectotype was calculated using 40 “replica” frames to
avoid the confounding factor that some connectotypes from
specific participants could be calculated with different numbers
of frames. For each condition and participant, we calculated
connectotypes using 40 frames selected randomly within
condition from the surviving frames with head movement
lower than the pre-selected threshold. We decided to select
frames randomly instead of the ones with the lowest FD to avoid
bias and batch effects secondary to head movement. We ended
up with 15 participants that successfully completed each trial
(word and PW) for 20 s and had at least 40 low head-movement
replica frames for each condition (16).

Connectotyping

As described in the original publication (Miranda-
Dominguez et al., 2014a), connectotyping mathematically
represents a brain region’s signal as the weighted sum of the
signal from every other brain region using values termed beta-
weights (β). Such weights are optimized by regularization and
cross-validation. The result is a directional connectivity map
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that calculates the interaction between brain regions, allowing
the identification of individual connectivity patterns among
brain areas and networks. Briefly, in an example application
on a hypothetical parcelation schema with only three brain
regions, “a,” “b,” and “c”; this technique models the functional
connectivity of region “a” as a weighted sum of regions “b”
and “c’s” connectivity. The model for the signal resulting from
region “a” would be: â = βa,bb+ βa,cc. This same model is
then applied to the remaining brain regions “b” and “c” until

TABLE 1 List of all 36 functional network pairs tested in the ANOVA
with the number of ROI connections between networks listed in the
third column. Grouping of connections per functional system pair.

# Name Number of connections

1 CiP and CiP 20

2 Def and CiP 205

3 DoA and CiP 160

4 FrP and CiP 120

5 Sal and CiP 20

6 VeA and CiP 115

7 CiP and Def 205

8 Def and Def 1640

9 DoA and Def 1312

10 FrP and Def 984

11 Sal and Def 164

12 VeA and Def 943

13 CiP and DoA 160

14 Def and DoA 1312

15 DoA and DoA 992

16 FrP and DoA 768

17 Sal and DoA 128

18 VeA and DoA 736

19 CiP and FrP 120

20 Def and FrP 984

21 DoA and FrP 768

22 FrP and FrP 552

23 Sal and FrP 96

24 VeA and FrP 552

25 CiP and Sal 20

26 Def and Sal 164

27 DoA and Sal 128

28 FrP and Sal 96

29 Sal and Sal 12

30 VeA and Sal 92

31 CiP and VeA 115

32 Def and VeA 943

33 DoA and VeA 736

34 FrP and VeA 552

35 Sal and VeA 92

36 VeA and VeA 506

Total 16,512

FIGURE 3

Experimental design. The widely spaced design of the word
versus pseudoword experiment allows us to characterize
dynamic changes in functional connectivity using
connectotyping. (A) The collected whole-brain BOLD data is
represented as the central colored strip. Each bar corresponds
to data acquired at each TR and is color-coded according to the
stimuli (Green for “Word” and purple for “PW”). A word or
pseudoword is displayed for 2.5 s with no new stimuli after 20 s.
The bars in black represent “catch” trials. Frames collected at the
same time, relative to the exposure to the stimuli, are
concatenated to create a stack of frames of size 333 times
replica frames. Those frames are used to calculate a
connectivity matrix. This approach generates 16 connectivity
matrices per participant. (B) Temporal evolution of the
theoretical hemodynamic response. (C) Resulting
connectotypes from each participant (A) are grouped according
to their phase and stacked with the connectotypes of all the
participants included in the study.

the signal for each region in the system is represented by an
equation (see a schematic representation of connectotyping in
Figure 1).
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FIGURE 4

Distribution of connectivity values per functional network pair and condition. Beta-weights were calculated for each condition as indicated in
our experimental design (Figure 3) and grouped by functional network pair. Each boxplot highlights the mean values using a circle and the
dispersion is indicated with a bar covering 1.15 times the standard deviation of the connectivity values. Data is color-coded by stimuli:
pseudoword (purple) and word (green). X-axis indicates the time, in frames (TR of 2.5 s each). In this study we included the following six
networks: Cingulo-Parietal (CiP, n = 5 Regions of Interest), Default (Def, n = 41), Dorsal Attention (DoA, n = 32), Fronto-Parietal (FrP, n = 24),
Salience (Sal, n = 4), and Ventral Attention (VeA, n = 23).

After applying the connectotyping approach to our filtered
and grouped and timely aligned task-fMRI data, we ended
up with 15 participants each with 16 connectotypes that
characterize the instantaneous connectivity map as each trial
evolved (word and PW).

To note, in the original manuscript (Miranda-Dominguez
et al., 2014a), which aimed to characterize functional
connectivity in resting state data, the first step was to account
for the spurious effect of autocorrelations. In contrast, in
task-based fMRI, autocorrelations are not spurious; they are
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part of the temporal evolution of the task. For this reason, in
this study we did not remove autocorrelations from the data.

Additionally, while connectotyping created individualized
connectivity patterns, our study performed analyses on
concatenated connectotypes from 15 participants resulting in a
group level analysis.

Statistical analysis

To identify dynamic changes in functional connectivity,
we ran independent repeated measures ANOVA tests for each
functional network pair (N = 36, as described before) testing for
changes in functional connectivity for the interaction of time
(frame 1 to 8) and stimulus type, (i.e., word/PW) using the 16
connectotypes from all the surviving participants (Figure 3).
All statistical analyses were performed in MATLAB. Before
statistical testing, connectivity values (i.e., connectotyping beta-
weights) were box-cox transformed to normalize distributions
(Montgomery, 2005) and the logarithmic base was optimized by
gradient descent. In MATLAB, the repeated measures ANOVA
tests are performed in two steps. First, a linear mixed effects
model is fit to predict outcome values (in this case connectivity
values) as a function of the repeated factors time (frames 1 to
8), stimulus type (word and PW) and the interaction between
the two of them. Next, the resulting corrected beta-weighted
values are grouped according to the factors time, stimulus,
and the interaction of time and stimulus type, to characterize
statistical differences using regular ANOVA tests (See Figure 4
for a visualization of the distribution of the marginal means
of the data per functional network pairs included in this
study). Mauchly’s test of sphericity was used to test for
differences in variance among the groups being compared, and
p-values were adjusted accordingly using the correction factor
epsilon. Epsilon-adjusted p-values were corrected for multiple
comparisons using the Tukey–Kramer method, and 0.05 was
used as threshold for significance (Rudolph et al., 2018; Kovacs-
Balint et al., 2019; Miranda-Domínguez et al., 2020).

Methods’ recap

We aimed to characterize dynamic changes in functional
connectivity in a task fMRI study where participants were asked
to identify whether they were exposed to a word or a PW. Stimuli
(word of PW) was shown for 2.5 s, and fMRI data was collected
every 2.5 s from the beginning of the exposure and for 20 s
in total. Trials were repeated several times. Each participant
included in the study was exposed to two types of stimuli and
we used the same amounts of trials to calculate personalized
connectivity maps via connectotyping at each time point of
each trial. Next, we used series of repeated measures ANOVA
tests on group level data to identify changes in functional

connectivity for each possible functional network pairs among
six networks of interest, the Cingulo-Parietal, Default, Dorsal
Attention, Fronto-Parietal, Salience, and Ventral Attention
networks from the Gordon parcelation (Gordon et al., 2014).
The ANOVA examined differences in functional connectivity
for the interaction of time (frames 1–8) and stimulus type, for
each network pair. Data are available from the corresponding
author upon reasonable request. Code is available in https://
fconn-anova.readthedocs.io/en/latest/

Results

Changes in functional connectivity for
the interaction of time and stimulus
type

The 8(time) × 2(condition) ANOVA showed a significant
interaction between the Cingulo-Parietal and Fronto-Parietal
Networks (F = 3.7155; p = 0.001, uncorrected; p = 0.047,
corrected), as shown in Figure 5. Post-hoc analysis revealed
that differences were driven by changes in connectivity values
at frames 3 (paired t-test word vs non-word, p = 2.65e−5)
and 4 (paired t-test word vs non-word, p = 2.68e−4). To note,
we repeated this analysis including the Visual Network and
found no significant results. The strongest effect was found for
connectivity values between the Cingulo-Parietal and Fronto-
Parietal networks (p = 0.06, corrected) but none of the functional
network pairs including the Visual network showed differences
for this interaction, as shown in Supplementary Figure 1.

Robustness of results at different
motion censoring thresholds

To test the robustness of our analysis using a more stringent
threshold, we repeated analyses calculating connectotypes using
a FD of 0.25. Only thirteen participants survived filtering
at this threshold. While results did not pass corrections for
multiple comparisons (p = 0.508, corrected) given the reduced
sample size, the Cingulo-Parietal and Fronto-Parietal networks
also exhibited the same temporal evolution in beta-weights
for the interaction of time and stimulus type, as shown in
Supplementary Figure 2A. In addition, we also recalculated our
analysis with an FD of 0.5, allowing data from 17 participants,
and found a similar difference in beta-weight response between
these two networks. However, when correcting for multiple
comparisons, the findings were not significant (p = 0.941,
corrected) (Supplementary Figure 2B). These similarities
in observed connectivity between the Cingulo-Parietal and
Fronto-Parietal networks at different thresholds displayed
a similar trend in temporal connectivity response as the
original finding above.
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FIGURE 5

Significant difference observed in how the Cingulo–Parietal and Fronto–Parietal networks interact due to both progression of task and stimulus
type. (Top panel) Shows the topological representation of cortical areas for both the Fronto-Parietal (yellow) and Cingulo Parietal (blue)
networks. (Middle panel) Shows the mean sub-connectivity matrices between all the Cingulo Parietal and Fronto-Parietal ROIs (5 × 24
matrices) across participants for each stimuli (Word vs. Pseudowords) and each frame. The (Bottom panel) shows the distribution of marginal
means of connectivity values for each frame and stimuli for connections belonging to the Fronto–Parietal and Cingulo–Parietal networks. Mean
values shown as a circle and the dispersion is indicated with a bar covering 1.15 times the standard error of the connectivity values. When testing
for how these values changed across frame and stimuli type, this functional system pair was found to be significant with a corrected p-value of
0.047.

Characterizing changes in connectivity
values in connectivity matrices
calculated using pearson-correlations

We repeated all the previous analysis using connectivity
matrices calculated via Pearson correlations instead of
connectotypes using the same frames used to calculate
connectotype. No FD threshold led to significant differences
in functional connectivity. Figure 6 shows the distribution
of marginal means of connectivity values when connectivity

matrices were calculated using an FD threshold of 0.3 (i.e., the
same threshold used for connectotyping). These data highlight
potential improvements in fMRI analyses using connectotyping.

Discussion

Recent advances in rs-fcMRI analysis approaches have
led to increased understanding of brain functioning – where
experimental designs have been able to identify brain areas
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FIGURE 6

Distribution of mean connectivity values calculated using Pearson correlations per functional network pair and condition. Same description as
in Figure 4.

supporting consciousness (Lloyd, 2002), moral judgment
(Greene et al., 2001), as well as heritable patterns of brain
connectivity (Miranda-Dominguez et al., 2018). Successful
execution of mental tasks might require the collaboration of
different brain networks in a timely manner. One approach
that has been used to characterize dynamic changes in brain

connectivity in task fMRI relies on correlations and averaging
signals across participants (Hasson et al., 2004). For example,
Najafi and colleagues used this approach to keep track of
the changes in connectivity during anxious anticipation and
found changes in connectivity between and within the Salience,
Executive and Default Mode Networks (Najafi et al., 2017).
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Given the noisy nature of functional MRI, some studies
average data from multiple participants to improve the signal
to noise ratio. While the result is a smoother signal, it
comes at the price of blurring individual differences and
dynamic changes in functional connectivity. In this study,
we aimed to track temporal changes in brain connectivity
during task performance using connectotyping, an efficient
way to calculate functional connectivity between brain regions.
Previously we showed that connectotyping can identify stable
fingerprints efficiently (Miranda-Dominguez et al., 2014a,
2018). Connectotyping models how the activity of each brain
area can be modeled as the weighted contribution of all the
other areas. Resulting beta-weights correspond to a functional
connectivity matrix. Changes in functional connectivity at
a particular functional network pair for the interaction of
time and stimulus might indicate that that specific functional
network responds differently to a given stimulus. Here we
tested the viability of connectotyping on task data from a
lexical decision-based fMRI study that used a widely spaced
event-related design (∼20 s trials). The use of this particular
dataset, capitalizing on the widely spaced design, allowed for
the hemodynamic response function corresponding to a single
stimulus to be detected without signal interference from the
next or preceding stimulus. Our approach has the potential
to reveal how functional connections between ROIs (i.e., here,
at the network level) progress during the performance of
a task not just at the peak of activation. As hypothesized,
application of connectotyping to the word vs PW dataset
revealed significant dynamic (i.e., across frames) connectivity
differences between the Cingulo-Parietal and Fronto-Parietal
networks, as a function of stimulus type (i.e., word vs. PW).
Our interpretation of these findings is further elaborated
below.

The significantly different dynamic temporal relation
occurring as a function of stimulus type between the Cingulo-
Parietal and Frontal-Parietal networks suggest that the evolving
contributions between the Fronto-Parietal and the Cingulo-
Parietal network are distinct in pattern depending on whether
participants were viewing something meaningful (i.e., word)
vs. meaningless (i.e., PW). It is important to mention that the
proposed approach is able to discriminate between areas that
respond specifically to the task because (a) the experimental
design includes a contrast (Word vs PW) and (b) the repeated
measures ANOVA is looking for differences in connectivity
for the interaction of time and stimulus type. While there
are other functional networks that also display dynamic
changes, they are not distinct across stimuli (see for example
Default and Cingulo-Parietal networks on Figure 4), hence
they are not related to this task. Importantly, repeating
analysis using connectivity matrices calculated via Pearson’s
correlations, as opposed to connectotyping, did not have
the resolving power to identify dynamic changes in brain
connectivity.

After further testing and creating connectotypes with both
more and less stringent movement thresholds (at 0.25 and
0.5 frame displacement thresholds), this observed Cingulo-
Parietal and Frontal-Parietal network pattern of differentiated
coactivation persisted, implying the stability of the findings
(Supplementary Figure 2). Although these additional analyses
did not withstand multiple-comparisons correction given the
reduced sample size or signal to noise ratio, respectively, the
presence of the same pattern of results supports the robustness
of our primary finding.

The presence of dynamic connectivity differences between
the Cingulo-Parietal and Fronto-Parietal networks support
our principal hypothesis that task dependent regional brain
communication changes during task progression; a finding
that to our knowledge is the first of its kind. Our findings
consequently also validate the use of connectotyping as a tool
for task fMRI analysis which can provide a novel depiction
of brain activity including dynamic temporal changes in
functional connectivity. Additionally, we believe our findings
are not simply a result of coactivation of networks. The
original work by Nardos (2015) on this same dataset reported
activation maps for the same contrast (Nardos, 2015). While
there is some overlap for the Cingulo-Parietal network,
most of the results. Nardos found that, in addition to
areas within the Cingulo-Parietal network, areas belonging to
the default, motor, ventral attention and Cingulo-Opercular
system are behind the discrimination between words and PW
(Nardos, 2015). In contrast, we found that dynamic changes
in connectivity between the Cingulo-Parietal and Fronto-
Parietal networks support discrimination between words
and PW. Importantly, the Fronto-Parietal network was not
identified as significant by Nardos. Since our findings do
not coincide with the activation map, we do not believe
that our analyses are a reflection of the activation of these
networks.

Although our current approach differs from prior
traditional task fMRI analyses, we did expect some overlap
with findings from similar studies. Exposure to words vs. PWs
resulted in significantly different temporal connectivity patterns
between areas known to have a role in cognitive control,
semantic processing, and memory retrieval. The Fronto-
Parietal network is characterized as a task control network
that has a particular role in the adaptive moment-to-moment
requirements of a cognitive task such as task instantiation and
dynamic feedback or error detection (Dosenbach et al., 2007).
Cole et al. published evidence suggesting that the Fronto-
Parietal network works as a cognitive hub by communicating
with other control and processing networks to allow cognitive
adaptation during tasks (Cole et al., 2013). This network also
initiates and adjusts cognitive control to produce higher-level
cognitive functions (Marek and Dosenbach, 2018). Here,
the fact that such an adaptive control network displays
distinct relations as a function of stimulus type is consistent
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with an expectation that resolution of the identity of a
word vs. non-word may have different cognitive control
demands.

The regions corresponding to the Cingulo-Parietal network
have previously been linked with memory retrieval processes
(Power et al., 2011). Parts of the Cingulo-Parietal network are
found in the precuneus and near the posterior cingulate, regions
that have previously been linked with semantic processing.
For instance, the regions have been shown to distinguish
between words and PWs in prior work using traditional fMRI
analysis (Binder et al., 2009). The same two regions have
also previously been associated with supporting word learning
in young adults (Nardos, 2015). In addition, there is ample
prior work that has associated those same two regions with
memory retrieval (Yonelinas and Levy, 2002; Wheeler and
Buckner, 2003; Dobbins and Wagner, 2005; Yonelinas et al.,
2005; Cabeza et al., 2008; Nelson et al., 2010; Rugg and Vilberg,
2013). In aggregate, the aforementioned findings linking regions
in the Cingulo-Parietal network with semantic processing
and memory retrieval is consistent with our finding that
dynamic functional connectivity between this network and the
Fronto-Parietal network supporting adaptive cognitive control
is what distinguishes meaningful words from meaningless
PWs.

The proposed approach is unique in the fact that it
tracks dynamic changes in whole brain functional connectivity
contrasting the response to different stimuli at each functional
network pair. This method does not require a priori knowledge
of potential brain areas (seeds) involved in the task. This is
made possible because we characterized functional connectivity
using connectotyping (Miranda-Dominguez et al., 2014a, 2018),
a method with an improved signal-to-noise ratio (compared
to traditional correlations) to characterize personalized maps
of functional connectivity. In addition, the experimental design
includes a contrast (word versus PW) enabling the identification
of networks that respond differentially to each stimuli type.
This contrast, we believe, makes possible the specificity to
identify connections as opposed to merely co-activation. In
other approaches, such as PPI, the distinction between co-
activation and connectivity is made possible by including a
regressor that is the product of the hypothesized hemodynamic
response of the task and the timeseries of a seed that is a priori
known to be involved in the task. It is important to mention
that the proposed method is similar to Rissman connectivity
(Rissman et al., 2004) in the fact that it aligns data according to
their temporal evolution. In Rissman connectivity, the aligned
data is used to estimate beta-weights associated with each event
for every voxel. Resulting beta-weights are correlated across
voxels to identify connections that respond to a given stimulus.
Our approach, however, is different since we align whole-
brain connectivity matrices and then characterize differences
at each network pair for the interaction of time and stimulus
type.

Limitations and future work

Because of our stringent motion censoring, our analyses
are based on the data of only 15 participants of a narrow age
range, which may limit the generalizability of our results. In
this exploratory study, due to our limited data and our focus
on higher order heteromodal networks, we decided to exclude
the primary sensory cortex in our analysis. Studies with a larger
number of participants and different tasks might allow the
inclusion of more networks and display additional significant
interactions among networks. Our additional analysis including
the visual network, however, supports our assumption that the
visual network might not be involved in this particular paradigm
of word discrimination. The usage of a widely spaced dataset
was ideal to test the feasibility of using connectotyping to track
dynamic changes in functional connectivity. A widely spaced
design, however, limits the number of contrasts that can be
performed and measured and might lead to fatigue in the
participants. Fortunately, participants succeeded in identifying
words and PW with an accuracy of 98% suggesting that this slow
paradigm did not lead to reduced attention in the participants
that could compromise our findings. As we succeed in using
a linear model to track dynamic changes, superposition and
convolution can be used in event-related experiments where
stimuli can be changed at each TR. By applying those validated
methods to deconvolve the beta-weights corresponding to each
frame and stimulus, the same statistical analysis (i.e., repeated
measures ANOVA) can be used to track dynamic changes in
functional connectivity. This approach is something we intend
to continue exploring using task data from the Adolescent
Brain Cognitive Development (ABCD) Study (Casey et al.,
2018).

Conclusion

Task execution requires the orchestrated involvement of
different brain networks. Here we showed that by calculating
connectivity matrices using connectotyping at each time
point during the execution of a task, we can identify
the changes in brain connectivity that support semantic
discrimination in a word versus PW paradigm using fMRI.
We showed that connectotyping has a resolving power
that cannot be achieved by using traditional correlations.
While limited by the constraints of our data and the
novelty of our approach, our group level findings serve
to expand on the roles and functions of the Cingulo-
Parietal and Fronto-Parietal networks as an incentive for
others to pursue analyses which account for patterns of
dynamic whole-brain connectivity and provide temporal
resolution. The application of connectotyping to additional
studies exploring other tasks and with differentially spaced
study designs will not only further validate the use of this
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approach but also has the potential to expand our understanding
of brain activity during the performance of a task.
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SUPPLEMENTARY FIGURE 1

Distribution of mean connectivity values per functional network pair and
condition including the visual network. Beta-weights were calculated
for each condition as indicated in our experimental design (Figure 3)
and grouped by functional network pair. Each boxplot highlights the
mean values using a circle and the dispersion is indicated with a bar
covering 1.15 times the standard deviation of the connectivity values.
Data is color-coded by stimuli: pseudoword (purple) and word (green).
X-axis indicates the time, in frames (TR of 2.5 s each). In this study we
included the following networks: Cingulo-Parietal (CiP, n = 5 Regions of
Interest), Default (Def, n = 41), Dorsal Attention (DoA, n = 32),
Fronto-Parietal (FrP, n = 24), Salience (Sal, n = 4), and Ventral Attention
(VeA, n = 23) Visual (Vis, n = 39).

SUPPLEMENTARY FIGURE 2

Difference of how the Cingulo-Parietal and Fronto-Parietal networks
interact over time at other thresholds of head-movement suggest
robust initial finding. The (A) shows the change in beta-weights between
the Fronto-Parietal and Cingulo-Parietal networks at a movement
threshold of 0.25 mm. After correcting for multiple comparisons, this
functional system pair was not found to be significant (p = 0.508). The
(B) shows the results from the same analysis as the left information
when the movement threshold was set at a higher value of 0.5mm.
When this data underwent corrections for multiple comparisons, this
functional system pair was not found to be significant (p = 0.941).
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