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Editorial on the Research Topic
Diagnosis, monitoring, and treatment of heart rhythm: new insights and
novel computational methods

1 Introduction

The human heart, a marvel of precision and complexity, is governed by rhythmic
electrical impulses that orchestrate its regular contractions, propelling life-sustaining blood
throughout the body. However, disruptions to this intricate electrical system can lead to
arrhythmias (i.e., heart rhythm disorders), which can have serious consequences for an
individual’s health and wellbeing. Heart rhythm disorders encompass a wide range of
conditions that affect the heart’s electrical system, leading to irregular heartbeats, either too
fast (tachycardia) or too slow (bradycardia), or chaotic rhythms. These disorders can cause
symptoms and predispose to conditions ranging from palpitations, dizziness, and shortness
of breath to more severe consequences, such as heart failure, stroke, or sudden cardiac death
(Conti, 2019). As a leading cause of morbidity and mortality worldwide, heart rhythm
disorders pose a substantial burden on healthcare systems and society at large (Nabel, 2003).

Arrhythmias remain a complex and challenging area in medicine. While significant
progress has been made in understanding and treating arrhythmias, there are several reasons
that contribute to the ongoing challenges in diagnosing and treating these conditions
effectively (Offerhaus et al., 2020): 1) The cardiac electrical system is intricate, and
arrhythmias can arise from various mechanisms, making their diagnosis and treatment
challenging (Zeppenfeld et al., 2022); 2) Despite advancements in cardiac electrophysiology,
substantial gaps still exist in our understanding of the precise mechanisms that lead to certain
arrhythmias (Dobrev et al., 2019); 3) Arrhythmias can present in different forms and affect
different regions of the heart, making it challenging to develop a one-size-fits-all treatment
approach; 4) Some forms of arrhythmias may be intermittent and thus difficult to capture
during routine clinical evaluation, leading to underdiagnosis or delayed diagnosis (Kirchhof,
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2017); 5) Each patient’s response to treatment can vary substantially
due to differences in their physiology, genetics, and co-existing
medical conditions (Ni et al., 2018); 6) Anti-arrhythmic
medications may even cause or worsen arrhythmias, requiring a
carefully balanced evaluation between risk and benefit (Vicente
et al., 2018); 7) While invasive procedures like catheter ablation
can be effective, they come with inherent risks and may not be
suitable for all patients (Ramanathan et al., 2004); 8) The current
treatment strategies often rely on a trial-and-error approach, and
there is a need for more personalized and targeted therapies; 9) Some
arrhythmias are caused by scar tissue in the heart, which can be
challenging to treat and manage effectively; and 10) Detecting and
diagnosing arrhythmias can be challenging if patients are not aware
of their symptoms or do not seek medical attention promptly.
Therefore, this Research Topic collected a series of reviews and
original research articles presenting recent advances toward a better
understanding, diagnosis and treatment of cardiac arrhythmias,
including: 1) structure-detailed computer modelling; 2)
biophysics-based computer modelling; 3) biosignal-based
diagnostic and monitoring; and 4) population-based statistics and
new therapeutic frameworks. A total of 28 accepted articles were
published under this Research Topic. Here in this editorial, we
summarize the new knowledge and approaches generated, and
discuss how these can contribute to an improved understanding
of heart rhythm and clinical treatment, as well as how they may
provide insights into future research directions.

2 Structure-detailed computer
modelling

The heart’s complex structure and function play a central role
in maintaining blood circulation, making it crucial to understand
its mechanisms and potential dysfunctions (Hansen et al., 2015).
Over the years, advancements in technology have paved the way
for sophisticated computer modelling techniques, enabling
researchers to create detailed simulations of the heart’s
structure and function. Structure-detailed computer modelling
allows for the creation of highly accurate representations of the
heart’s anatomy. By combining medical imaging data, such as
magnetic resonance imaging (MRI) and computed tomography
scans, with computational techniques, researchers can build
three-dimensional models that precisely mimic the heart’s
architecture (Bai et al., 2023). These models provide a valuable
tool for visualizing and analyzing the intricate organization of
cardiac tissues (Zhao et al., 2012), including the ventricles, atria,
valves, and the conduction system (Xiong et al., 2021). In order to
accurately obtain the anatomical structure of human heart from
MRI, researchers proposed deep learning models. For example,
Xiong et al. proposed a novel deep learning framework for 3D
surface reconstruction of the left atrium directly from point
clouds acquired through clinical mapping systems during
cardiac ablation. In contrast, Chen et al. focused on accurate
segmentation of the ventricle and myocardium in cardiac MRI
proposed a dilated convolution network with an edge fusion
block and directional feature maps. This is a critical step in
evaluating cardiac function. It is important to note that while
artificial intelligence (AI) holds great promise in cardiac imaging,

its integration into clinical practice requires rigorous validation
and regulatory approval to ensure safety and efficacy.
Collaborative efforts between AI developers, medical
professionals, and regulatory bodies are crucial to harness the
full potential of AI in cardiac imaging and other medical
domains.

3 Biophysics-based computer
modelling

Biophysics-based modelling of the heart represents an
innovative approach that combines principles from physics,
mathematics, and biology to create comprehensive simulations of
the heart’s behavior (Clayton et al., 2020). By leveraging biophysical
data and computational techniques, researchers can gain a deeper
understanding of the heart’s intricate dynamics at various scales.
Many researchers conducted multi-scale cardiac electrophysiology
modeling, providing valuable insights into the underlying
physiological processes and helping guide the development of
new therapeutic approaches for cardiac arrhythmias and other
related conditions (Colman et al., 2017; Ni et al., 2020; Morotti
et al., 2021). For example, Jin et al. used computational modeling to
explore the effects of ablation and antiarrhythmic drugs on patients
with PITX2 gene deficiencies in atrial fibrillation (AF) (Bai et al.,
2019; 2020b; Bai et al., 2021a; Zhu et al., 2021). Virtual simulations
demonstrate that certain antiarrhythmic drugs havemore significant
effects in patients with PITX2 deficiencies (Bai et al., 2021b),
providing insights into tailored treatment strategies (Bai et al.,
2020a). Jiang et al. also evaluated the efficacy of common
antiarrhythmic drugs and specific IKr activators for treating
arrhythmias induced by carbon monoxide (CO) in healthy and
failing hearts. Simulation results indicate that the tested
antiarrhythmic drugs are not effective against CO-induced
arrhythmias, whereas IKr activators show promise for treatment.
In a study by Li et al., a mathematical model was developed to
simulate the effect of arsenic trioxide (ATO) on ventricular electrical
excitation at cellular and tissue levels. The study revealed how ATO-
induced alterations in ion channels lead to prolonged action
potential duration and increased risk of arrhythmias, providing
insights into potential pharmacological intervention.

Some studies aimed to develop powerful tools for researchers
and clinicians to gain insights into the complex electrical behavior of
the heart from cellular level to the organ level. For instance, Yang
et al. proposed a WebGL-based framework to visualize the three-
dimensional synergetic biological modality of the heart, combining
physical volume data and electrophysiological modality.
Galappaththige et al. developed a computational modeling
framework to rigorously evaluate the performance of cardiac
mapping systems. The framework provides a quantitative analysis
of mapping system performance, aiding in system accuracy
estimation. In personalized medicine, Bai et al. discussed the role
of digital twin techniques, combining mechanistic and statistical
models, in advancing research on atrial fibrillation. It highlighted
their applications in understanding AF mechanisms, screening anti-
AF drugs, and optimizing ablation strategies, emphasizing the
potential transition from AF description to response prediction.
Aside from focusing on the electrical properties of the heart,
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Sanatkhani et al. used computational fluid dynamics to examine the
effects of subject-specific factors on the residence time distribution
of blood particles in the left atrial appendage in atrial fibrillation.
These modeling studies showcase the power of computational
techniques in improving our understanding of cardiac
arrhythmias and their treatment, potentially paving the way for
more personalized and effective therapeutic approaches in the
future.

4 Biosignal-based diagnostic and
monitoring

With the advent of advanced signal processing techniques,
researchers have been able to extract valuable insights from
electrocardiogram (ECG) data and other cardiac signals. Several
studies of this Research Topic developed AI-powered algorithms
for detecting arrhythmias using ECG data. For example, Wu et al.
presented an automatic system combining denoising and
segmentation modules to detect ST-segment and J-point
deviation from Holter ECG data. The ECG Bidirectional
Transformer network was used for denoising and segmentation
tasks, achieving high precision in detecting subtle ST-segment
changes in noisy ECG signals. Different from the feature extraction
of ECG, Huang et al. developed diagnostic models to identify
individuals with AF using amplified sinus-P-wave analysis. Zhang
et al. designed a screening algorithm to distinguish different types
of premature beats from paroxysmal AF in ECG segments. The
proposed method effectively eliminates single and other types of
premature beats to improve the accuracy of paroxysmal AF
detection. The algorithm was validated on different databases
and achieved high accuracy, providing potential for real-time
analysis using wearable devices. Based on ECG data, different
perdition models based on deep learning also were proposed
(Zhang et al.; Zhang et al.). Recently, internet of things (IoT)-
based ECG monitoring shows a great potential for patient-centric,
connected, and data-driven cardiac care. However, signal quality is
a critical factor that can significantly impact the overall
performance and functionality of the IoT system. Therefore, Liu
et al. introduce a new method for assessing the quality of wearable
ECG signals using wavelet scattering and long short-term memory
network. Different from ECG signals, signals of arterial blood
pressure Chou et al., pulsed ultrasound (Xiao et al.; Deng et al.),
skin sympathetic nerve activity Cai et al., impulse radio ultra-
wideband radar Qiao et al. and photoplethysmogram Sološenko
et al. were also used to improve the understanding the function of
the heart and diagnosing abnormal heart rhythms. These new
monitoring and diagnostic methods continued to advance, offering
more efficient and powerful techniques to extract valuable
information from cardiac signals.

5 Meta-analysis and clinical studies

Meta-analysis and clinical studies in heart rhythm have been
pivotal in advancing our understanding of cardiac arrhythmias
(Wang et al., 2021) and guiding evidence-based clinical decision-
making. Several novel key findings on arrhythmias were noted in

this Research Topic. Hashimoto et al. investigated the incidence
of arrhythmias in healthy volunteers of varying ages using
ambulatory electrocardiography. Their study revealed that
ventricular and supraventricular ectopy increased with age,
and aging significantly influenced the frequency of ventricular
ectopy. Additionally, age, body mass index, and heart rate
variability were associated with supraventricular ectopy,
providing age-specific reference intervals for ectopy in healthy
individuals. Wei et al. conducted a retrospective analysis on post-
cryoballoon ablation (CBA) patients and developed a machine
learning-based nomogram to predict the risk of atrial fibrillation
(AF) recurrence. Their predictive model outperformed
conventional risk scores, offering a valuable tool for
personalized treatment decisions and improved patient
outcomes. A meta-analysis by Liu et al. evaluated the effect of
sacubitril/valsartan therapy on cardiac arrhythmias and the risk
of sudden cardiac death in heart failure patients. The analysis
demonstrated a promising reduction in the risk of sudden cardiac
death compared to the control group, suggesting potential anti-
arrhythmic properties of sacubitril/valsartan in heart failure
management. Li et al. developed a nomogram to predict the
risk of new-onset atrial fibrillation in septic patients. The model,
which incorporated various clinical risk factors, demonstrated
excellent predictive accuracy, particularly in septic shock
patients, aiding early risk assessment and individualized
treatment strategies. Han et al. developed the HASBLP score,
a predictive model to identify AF patients at higher risk of
recurrence after catheter ablation. The score outperformed
existing risk scores and provides clinicians with a valuable
tool for predicting AF recurrence and guiding personalized
follow-up and treatment plans. Liu et al. investigated the role
of I-κB kinase-ε (IKKε) in doxorubicin-induced dilated
cardiomyopathy (DCM). Their experiments showed that IKKε
deficiency improved cardiac function, suggesting IKKε as a
potential therapeutic target for managing this condition.
Finally, Wang et al. provided a systematic review of scTdP
(short-coupled variant of torsade de pointes), exploring its
clinical features, diagnosis, and management. Further large-
scale studies are needed to clarify existing arrhythmogenic
entities. Overall, these studies collectively advance our
knowledge of heart rhythm disorders, enhancing patient
outcomes, and guiding clinical guidelines and practice in the
field of cardiology.

6 Conclusions and future directions

The research presented in this Research Topic has
contributed significantly to our understanding of cardiac
arrhythmias and has shed new lights on potential
improvements in diagnosis and treatment. Continued efforts
in multidisciplinary research, technology integration, and
personalized approaches hold the potential to revolutionize
arrhythmia care and improve the quality of life for millions of
patients worldwide. Through collaboration and continued
exploration, we can look forward to a future where arrhythmia
diagnosis and treatment are more accurate, effective, and
accessible to all individuals in need.
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Premature Beats Rejection Strategy
on Paroxysmal Atrial Fibrillation
Detection
Xiangyu Zhang, Jianqing Li*, Zhipeng Cai, Lina Zhao and Chengyu Liu*

State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China

Paroxysmal atrial fibrillation (PAF) may related to the risk of thromboembolism and is the
most common cardiac risk factor of cryptogenic stroke (CS). Due to its paroxysmal
characteristics, it is usually diagnosed by continuous long-term ECG. Patients with
paroxysmal atrial fibrillation usually have premature beats at the same time which is
easy to be confused with the rhythm of atrial fibrillation. Therefore, in this article, we
designed a screening algorithm for single premature beat, multi premature beats, bigeminy
and trigeminy premature beats, according to their rhythm characteristics to reduce false
detection caused by premature beats during the PAF detection process. The proposed
elimination method was verified on ECG segments with different types of premature beats,
and tested on long-term ECG data of PAF patients. ECG segments of different kinds of
premature beats were selected from MIT Atrial Fibrillation database (MIT-AFDB), MIT-BIH
Arrhythmia database (MIT-AR) and wearable ECG data from the China Physiological Signal
Challenge 2021 (CPSC 2021). The proposed method can effectively eliminate single
premature beat segments with 99.5% accuracy, and it also can eliminate more than 95%
of ECG segments with other types of premature beats. We designed PAF-score as a new
index to evaluate the accuracy of detection, and we also calculate the misjudged and
missed segments to comprehensively evaluate the PAF detection algorithm. The
proposed method get a PAF-score of 0.912 on MIT-AFDB. The proposed method
also has the potential to implant low computing power wearable devices for real-time
analysis.

Keywords: paroxysmal atrial fibrillation, paroxysmal atrial fibrillation detection, premature beats, ECG, low
complexity

1 INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice and is associated
with increased morbidity and mortality that primarily occur as a result of complications (1). AF may
lead to stroke and congestive heart failure (CHF) and increase the death rate for AF patients (Gillis
et al., 2013; Odutayo et al., 2016). For instance, up to a third of strokes have no known cause—so-
called embolic stroke of undetermined source (ESUS) (Attia et al., 2019). Many of these strokes are
related to atrial fibrillation, which can be under detected due to its paroxysmal and often
asymptomatic nature. Paroxysmal atrial fibrillation (PAF) may be associated with risks of stroke
and thromboembolism similar to those for sustained AF, and many patients suffer significant
morbidity (Attia et al., 2019). The hazards of Paroxysmal atrial fibrillation are large, and because their
own characteristics need to perform multiple long-term electrocardiography (ECG), qualitative
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parity atrial fibrillation for patients. The occurrence of PAF often
cannot be detected within the first 48 h of ambulatory ECG
monitoring (Solomon et al., 2016). Therefore, it is necessary to
design an accurate paroxysmal atrial fibrillation detection
algorithm and eliminate the false alarms caused by other
arrhythmia to reduce the workload of doctors.

The ECG in AF duration has two main characteristics: 1) the
absence of p waves and presence of undulating atrial activity, also
known as fibrillatory waves or f waves. 2) highly irregular
variation of RR intervals (Clifford et al., 2017; Platonov and
Corino, 2018; Hayano et al., 2019). Most AF detection methods in
previous literature was designed based on these two aspects. RR-
intervals based classification method usually extracted features
from RR intervals and use machine learning methods as
classifiers, or use deep-learning based classification model and
use RR interval sequences as input data directly (Lee et al., 2012;
Zhou et al., 2014; Xiong et al., 2017; Dharmaprani et al., 2018;
Kumar et al., 2018; Liu et al., 2018). Lake (Lake and Randall
Moorman, 2011) verified that the coefficient of sample entropy
(COSEn) of 12 RR intevals can accurately distinguish atrial
fibrillation from normal ECG. Dash (Dash et al., 2009)
calculate the randomness, variability and complexity of the RR
intervals and use turning points ratio combination with the root
mean square of successive RR differences and Shannon entropy to
characterize AF. Faust used LSTM based deep learningmodel and
used RR interval as input data to detect AF (Faust et al., 2018).
Some deep-learning based methods also convert the ECG signal
to a 2D representation. Xia et al. applied short-term Fourier
transform (STFT) and stationary wavelet transform (SWT) to
obtain the 2D matrix input suitable for deep 2D CNN models
(Xia et al., 2018). Qayyum et al. converted ECG signals into 2D
images by STFT, and used pre-trained CNN models for transfer
learning (Qayyum et al., 2018). Lorenz plot imaging of ECG RR
intervals was also used as input images to training a 2D CNN
based model for AF classification (Hayano et al., 2019).

However, these method in previous literature usually
divides the ECG signal into segments according to a certain
length of time or certain length of RR intervlas (Kiranyaz et al.,
2016; Chang et al., 2018; Tan et al., 2018; Kim and Pan, 2019;
Yildirim et al., 2019). And then these segments are detected
and classified as atrial fibrillation and non-atrial fibrillation.
Most AF detection based on deep learning must require a fixed
length of input data (Qayyum et al., 2018; Xia et al., 2018).
Some AF detection devices are also designed to collect ECG
signals for a specific length of time. Haberman (Haberman
et al., 2015) detects atrial fibrillation by collecting a patient’s
30-s lead I ECG waveform using an iPhone case or iPad.
Brasier acquire 1 min or 5 min ECG recordings for AF
detection by smart-phones (Brasier et al., 2019). All of these
methods are effective in detecting patients with permanent
atrial fibrillation. However, there were usually premature beats
in the ECG segments of PAF patients, which may result in
some non-AF segments containing premature beats being
misidentified as premature beats. These methods need to be
further test of their ability to accurate classify the ECG
segments containing premature rhythms.

In this paper, we designed a screening algorithm for single
premature beat, frequent premature beats, bigeminy and
trigeminy premature beats, according to their rhythm
characteristics to reduce false alarms caused by premature
beats during the PAF detection process. And we also selected
ECG segments with these different types of premature beats from
MIT-BIH Arrhythmia database (Moody and Mark, 2001), to
verify the accuracy of the designed premature beat elimination
algorithm. We designed PAF-score as a new index to evaluate the
accuracy of detection and test the proposed PAF screening
algorithm on MIT-BIH atrial fibrillation database (Moody and
Mark, 1983).

2 DATA

2.1 Definition of Different Premature Beats
Types
In this paper, the proposed screening algorithm was designed for
the rhythm characteristics of single premature beat, frequent
premature beat, double premature beat, and triple premature
beat. The definition of the four different premature beats types is
as follow:

1) Single-PB: as shown in the sub-figure 1A of Figure 1, there
was Only one premature beat in the ECG segment;

2) multi-PB: as shown in the sub-figure 1B of Figure 1, there
were more than one premature beats in the ECG segment and
the distribution of different premature beats is irregular;

3) Bigeminy: as shown in the sub-figure 1C of Figure 1, there
were normal beats and premature beats appear alternately
with more than six consecutive beats;

4) Trigeminy: as shown in the sub-figure 1D of Figure 1, there
were two normal beats and premature beats appear alternately
with more than six consecutive beats.

2.2 Database
2.2.1 MIT-BIH Arrhythmia Database
The MIT-BIH Arrhythmia database (Moody and Mark, 2001)
contains 48 half-hour excerpts of two-channel ambulatory ECG
recordings, obtained from 47 subjects. The recordings were
digitized at 360 samples per second per channel with 11-bit
resolution over a 10 mV range. Two or more cardiologists
independently annotated each record; disagreements were
resolved to obtain the computer-readable reference
annotations for each beat (approximately 110,000 annotations
in all) included with the database. In this work, the ECG segments
with heart beats marked as premature beats in the database was
selected as test data to verify the accuracy of the designed
premature beat elimination algorithm((Asgari et al., 2015;
Ladavich and Ghoraani, 2015; García et al., 2016; Andersen
et al., 2019))

The heart beats which was marked as premature beat (PB) in
the annotation of the database and its surrounding heart beats
were extracted as ECG segments with 31 beats (30 RR). Then the
extracted segments were divided into four categories: Single
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premature beat (single-PB), multi premature beats (multi-PB),
Bigeminy and Trigeminy.

1) Single-PB: Only one beat in the ECG segment is marked
as PB;

2) multi-PB: The number of heart beats marked as PB in the
ECG segment is more than 2;

3) Bigeminy: The ECG fragment contains the sequence
“*N*N*N″ or “N*N*N*”;

4) Trigeminy: The ECG fragment contains the sequence
“*NN*NN”, “N*NN*N″ or “NN*NN*“, where “*” indicates
that the heartbeat is marked as PB, and the “N” mark means
that the heartbeat is a normal heartbeat or other rhythms except
PB and AF.

2.2.2 MIT-BIH Atrial Fibrillation Database
In this study, we selected the MIT-AFDB as database which
consists of 25 long term ECG recordings of human subjects with
AF (mostly paroxysmal) (Moody and Mark, 1983). Each
recording is 10-h duration, and contains two leads of ECG
signals sampled at 250 Hz. The rhythm annotation files were
prepared manually; they contain rhythm annotations of the
following types, i.e., “AFIB” (atrial fibrillation), “AFL” (atrial
flutter), “J” (AV junctional rhythm), and “N” (all other
rhythms). In order to detect the start and end points of atrial
fibrillation segments, the signals labeled as “AFIB” were used as
the AF ECG samples and ECG signals labeled as other rhythm
were referring to the non-AF ECG data. After this, these ECG
recordings can be regarded as long-term ECG recordings
composed of non-atrial fibrillation segments and atrial
fibrillation segments connected to each other. The QRS

detection method was performed on all recordings, and the
detected beats were labeled to AF/non-AF according to the
rhythm annotation. Thus, each segment of AF or non-AF can
be composed of consecutive QRS waves of the same type, and the
start and end points of each rhythm segment can be located on a
certain QRS wave.

2.2.3 China Physiological Signal Challenge 2021
(CPSC 2021)
The ECG data of CPSC 2021 are recorded from 12-lead Holter or
3-lead wearable ECG monitoring devices. The challenge ECG
data provides variable-length ECG records fragments extracted
from lead I and lead II of the long-term dynamic ECGs, each
sampled at 200 Hz.

3 METHODS

As shown in Figure 2, the proposed PAF screening method is
composed of three parts: pre-processing, suspicious AF segment
screening, and premature beat screening method.

3.1 Pre-processing Method
In this study, ECG recordings were firstly remove their baseline
drift through a sliding median filter. And QRS detection method
was performed on the filtered ECG data. Then signal quality
assessment method was utilized to remove the ECG segments
with poor signal quality. The ECG segments with poor signal
quality means that these ECG segments only contained noise
without any ECG information. And the detected QRS locations in

FIGURE 1 | The definition of different premature beats types. (A) single premature beat; (B) multi premature beats; (C) Bigeminy; (D) Trigeminy.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8901393

Zhang et al. Premature Beats Rejection Strategy

12

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


these bad quality were removed from the QRS sequences of the
ECG recordings. Then, we fine-tune the detected QRS wave to
ensure that the QRS wave is at the position of the maximum
absolute value of the waveform in the neighboring area.

3.2 Suspicious AF Segment Screening
Method
Threshold-based suspicious segment screening method was used
to define the rhythm changes of the ECG segment. In order to
assess the rhythm changes in a short period of time, we used the
ratio of short-term RR interval’s standard deviation to its average
value. For each QRS wave, we use six adjacent RR intervals to
evaluate it is rhythm change. And the calculation method is
shown in expression (Ogawa et al., 2018).

Rc � std RR1, RR2, . . . , RR6[ ]( )
mean RR1, RR2, . . . , RR6[ ]( ) (1)

where Rc refers to the rhythm change feature of the QRS. [RR1,
RR2, . . . , RR6] refers to the array of 6 adjacent RR intervals after
each QRS.

When the value of Rc exceeds the threshold, representing the
difference between these RR intervals was large. Therefore, it is
considered to have large rhythm changes. QRS segments which
contained few rhythm changes in a short time were regard as
non-AF segments and the QRS segments which contained large
rhythm changes were regard as suspected AF segments. In this
step, we remove the low rhythm change parts in the detected QRS
sequence and the remaining QRS fragments will be further
screened.

3.3 Premature Beats Reject Method
In this step, we mainly screen for ECG segments with premature
beats that were easily confused with the atrial fibrillation rhythm.
The rhythm recheck contains three screening aspects: single-PB
recheck, multi-PB recheck, and premature beats recheck of
bigeminy or trigeminy.

3.3.1 Single Premature Beat Recheck
The effect of single-PB on the RR interval sequence is as follows:
one smaller RR interval appears in the normal RR interval
sequence, followed by one larger RR interval. Therefore, its
impact on rhythm changes was relatively limited. From the
first appearance of the small RR interval to the last appearance
of the larger RR interval, the screening window with a length of 6
RRs slides Seven times. So theoretically, a single-PB usually only
affects Rhythm assessment result for 7 Rc values of the
consecutive RR intervals. Therefore, it is easy to filter out all
single-PB by verifying whether the duration of continuous
rhythm changes exceeds 10 beats.

For ECG segments passed single-PB recheck, their RR interval
sequences were clustered into three categories by K-Medoids
clustering algorithm. Each RR and the ratio of its first-order
difference value to the RR were used as clustering features. And
fine-tune the clustering results to reduce the standard deviation of
the RR intervals within each group.

3.3.2 Multi Premature Beats Recheck
Compared with single-PB, multi-PB have a higher probability
of occurring in a short time, so the rhythm screening results
will show continuous long-term large rhythm changes.
However, when premature beats occur frequently, the
proportion of normal heart beats is still the largest.
Therefore, in order to reduce the influence of the abnormal
RRs on the rhythm screening result, we selected the RR interval
group with the closest mean RR interval to the median of the
entire segment signal among the three categories, and then
performed rhythm screening again. If the rechecked rhythm
change screening result drops below the threshold, it means
that the ECG segment being detected was with frequent
premature beats.

3.3.3 Premature Beat Recheck of Bigeminy and
Trigeminy
Bigeminy and trigeminy are two special premature beats rhythm.
Among them, the RR interval of bigeminy usually with one
alternate change of long and short RR intervals, while
trigeminy usually with one alternate change of three length RR
intervals: short, long and normal. Therefore, when the number of
larger and smaller RR intervals is consistent and both occurs
more than two times in any 6 consecutive RRs, we believe that the
ECG segments was with bigeminy or trigeminy rhythm. It is
worth noting that, there was only little difference between the
larger RR intervals in the ECG segments of bigeminy and
trigeminy, so as the smaller RR intervals. Thus, we selected
the larger RR intervals group of the clustering results, and
then performed rhythm screening on the selected RR intervals.
Then, the bigeminy and trigeminy premature beats can be
removed from the suspected AF segments.

4 RESULT

4.1 Classification Result of ECG Segments
With Premature Beats
The four different premature beat rhythm ECG segments were
classified by the proposed elimination method, and the classify
accuracy (Acc), error rate (Er) of the proposed method was
showed in Table 1. The proposed method can eliminate
96.83% of the ECG segments with premature beat.
Although the rigorous screening method resulted in 2.83%
of the 3,000 test af ECG segments being erroneously

TABLE 1 | Result of ECG segments with four different kinds of premature beats.

Type Total number Classified Acc(%) Er (%)

Single-PB 1,000 995 99.50 0.50
Multi-PB 1,000 957 95.70 4.30
Trigeminy 500 476 95.20 4.80
Bigeminy 500 477 95.40 4.60
AF segments 3,000 2,915 97.17 2.83

total 6,000 5,820 97.00 3.00
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eliminated, the overall accuracy of the proposed method in the
6,000 fragments also reached 97.00%. Moreover, the proposed
method can eliminate ECG segments with single-PB with
99.5% accuracy.

4.2 Result of PAF Detection
To evaluate the PAF detection capability of the proposed method,
we designed an PAF evaluation score (PAF-score) based on the
annotated PAF time and the detected PAF time.We evaluate each
PAF segment in the ECG records and give evalution score
between 0 and 1. For each recording, its PAF-score was
calculated as the average score of the annotated paf segments.
As shown in Figure 3, only the difference between the labeled
PAF time and the detected PAF time less than three heart-beats, it
was considered that the detection result is consistent with the
annotation and get the maximum score 1. Otherwise, it is
considered that there is a non-negligible difference between

the detection result and the annotated PAF time. And the
score of these segments was calculated by the intersection and
the union of the detected PAF time and the annotated PAF time.
As shown in Table 2, the proposed method get a average PAF-
score 0.912 on MIT-AFDB.

This PAF-score is intended to reflect the accuracy of the
algorithm for PAF segments detection. In order to
comprehensively evaluate the performance of the algorithm,
we have also counted the misjudgment segments and missing
segments of the detection algorithm. The error segments in
Table 2 means that the detected segments whithout QRS
which were annotated as PAF rhythm. The missed segments
refer to the labeled PAF segments which was completely detected
as non-af rhythm. The proposed PAF detection method get an
accuracy of 96.87% on the 23 recordings of MIT-AFDB. And the
sensitivity and specificity of the proposed method were 96.43 and
97.24%, respectively.

FIGURE 2 | The flow chart of RR-interval based premature rhythms elimination method from PAF detection

TABLE 2 | Result of the proposed method test on MIT-AFDB.

Patients Labeled PAF
Segments

Detected
Segments

Error
Segments

Missed
Segments

Min
Score

Max
Score

Average
Score

04,043 82 90 6 4 0.352 0.999 0.856
08,219 39 34 2 3 0.531 0.996 0.863
04,936 36 82 5 1 0.267 0.998 0.832
06,426 26 25 0 2 0.673 1 0.904

Total 278 356 33 21 - - 0.912
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FIGURE 3 | The evaluation scheme of PAF detection result. L: labeled PAF duration; D: detected PAF duration; L⋂D: the intersection of L and D; L⋃D: the union of L
and D; L⊕D: the exclusive-OR of L and D.

FIGURE 4 | The feature value distribution in ECG segments with PB and AF. (A) CosEn; (B) Rc.
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5 DISCUSSION

5.1 Suspicious AF Segment Screening
Method
In order to verify the ability of Rc on rejecting premature beats in
atrial fibrillation detection, we selected CosEn (15), a common
atrial fibrillation monitoring function, for comparative analysis.
We tested the Rc and CosEn on the selected 3,000 ECG segments
with PB and 3,000 AF segments from MIT-BIH Arrhythmia
database. Since the Rc was calculated by 6 RR and there were 30
RR in the test segments, we used the median Rc value of each ECG
segments. As shown in Figure 4, the CosEn value distributions of
the four types of premature beats and AF segments are
approximately the same. While the distribution of Rc values of
the four types of premature beats and AF segments was different.
Therefore, compared with CosEN, the proposed Rc value is more
conducive to eliminating false detections caused by
premature beats.

5.2 RR-Interval Based Cluster Analysis
Figure 5 shows the RR-interval-based cluster analysis results for
four different rhythms. After cluster analysis, the RR interval
sequences of ECG segments with multi-PB or trigeminy rhythm

were divided mainly according to the numerical value of the RR
interval. The mean values of the three types of RR after clustering
are quite different. Although the smaller RR interval in the RR
sequences of ECG segments with bigeminy were divided into to
two classes, the difference between the mean value of the larger
RR intervals and the other two categories is sufficiently
significant. However, the AF RR intervals of 3 cluster analysis
categories did not have clear classification boundaries, and the
mean RR of the three categories were nearly equal. Therefore, the
possibility of ECG with AF rhythms entering subsequent
premature beat reject analysis steps through cluster analysis is
negligible.

5.3 Premature Beat Reject Method
5.3.1 Single Premature Beat Recheck
As shown in Figure 6, the RR intervals and suspicious segment
screening result were shown in sub-figure 6B. The blue straight line
represents the threshold, and the black triangle corresponds to the
result of the rhythm screen. If the rhythm screen result exceeded
threshold, it is considered to be a suspected atrial fibrillation rhythm.
It can be concluded that suspicious AF segments screen method
indeed consider the rhythm change caused by a single-PB as
suspicious AF. However, the duration of the short-term rhythm

FIGURE 5 | The RR-interval based cluster analysis result of four different rhythm. (A): multi-PB, (B): trigeminy, (C): bigeminy, (D): AF.
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FIGURE 6 | The rhythm recheck result of ECGwith single PVC. (A) ECG segment with single PVC beats; (B) RR intervals and suspicious segment screening result.

FIGURE 7 | The rhythm recheck result of ECG with multi premature beats. (A) ECG segment with multi PAC beats; (B) RR intervals and suspicious segment
screening result. (C) the rechecked RR intervals and suspicious segment screening result
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changes caused by single premature no longer than 10 beats. Thus,
the proposed single-PB recheck method can accurate remove the
single premature from suspect AF segments.

5.3.2 Multi Premature Beats Recheck
As shown in sub-figure 7A of Figure 7 , there are 4 PAC beats in the
29 beats. In sub-figure 7B, the ECG segment with multi-PB was
classified as suspicious AF by the proposed screen method and the
duration of rhythm change exceeds 10 beats. As shown in sub-figure
7C the RR intervals aroundmedian value of the RR interval sequence
were reselected for rhythm screen and were marked as “red *”. The
rhythm screen result of the re-selected RR intervals were all below the
threshold. Thus, the ECG segments with multi-PB can also be
removed by the multi-PB recheck method.

5.3.3 Premature Beat Recheck of Bigeminy and
Trigeminy
As shown in Figure 8, the ECG segments in sub-figure 8A was
ECG with trigeminy premature rhythm. The RR intervals of the
ECG segments, which was shown in sub-figure 8B, marked as red
and black triangles represent the rhythm scan results of each QRS.
The blue line in the sub-figure 8B was the threshold of the rhythm
screen method. As shown in sub-figure 8C, the red points refer to
the selected larger RR intervals for further recheck while the blue
points are the RR intervals with small value and were filtered. The
black triangles represent the recheck rhythm screen results of the
selected larger RR intervals. It can be concluded that after
selecting larger RR intervals, the rechecking rhythm screen
result of the trigeminy ECG has been less than the threshold

FIGURE 8 | The rhythm recheck result of ECGwith trigeminy PVC. (A) ECG segment with trigeminy PVC; (B)RR intervals and suspicious segment screening result.
(C) the rechecked RR intervals and suspicious segment screening result

FIGURE 9 | The rhythm recheck result of wearable ECG segments in CPSC 2021
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value. Thus, the proposed method can reduce the influence of
bigeminy and trigeminy on PAF detection.

5.4 PAF Rhythms Detection
The ECG segments with premature beats, which is common in
patients with PAF,which is easy to bemisjudged asAF. The proposed
method is dedicated to eliminating the false alarms caused by ECG
with premature beats being misjudged as AF rhythms. Compared
with traditional machine learning algorithms, the proposed method
does not divide the ECG signal into segments, but evaluates each
heartbeat. And finally, we determine the continuous heartbeat
segment for PAF. Therefore, even if the proposed method has
false alarms, it will behave as a continuous ECG segment, which
is convenient for doctors to recheck. The PAF-score was designed to
test the overlap ratio of the detection result and the labeled PAF time.
Compared with sensitivity and specificity, PAF-score scores each
PAF segment, and short paf segment have the same effect on the final
score with the long paf segment. As shown in Table 2, the rule-based
detection method was utilized to locate the paroxysmal AF of 23
recordings from MIT-AFDB and the average PAF-score was 0.912.
The PAF-score of the four recording with most PAF segments were
lower than the average score. This is mainly because some of the PAF
segments in these recordings only have a short duration, but the
duration of detected results are longer, which is resulting in the PAF-
scores of these segments lower than 0.5.

In addition, we also count the missed segments and misjudged
segments to comprehensively evaluate the performance of PAF
detection method. The total number of PAF segments detected
was 356, of which 90.73% had PAF ECG. This means that the
detectedAF segment will increase theworkload of the re-examiner by
about 10%. Nevertheless, the proposedmethod achieved 96.43% cove
rate (sensitivity) and 97.24% specificity on the 23 records of MIT-
AFDB. Thus, although there were some misjudged segments, they
only account for 2.76% of non-AF heartbeats. Compared with
misjudged segments, the missed segments are relatively fewer, and
they are all short duration PAF segments. Therefore, the detection of
short duration PAF segments poses a greater challenge to the PAF
detection algorithm.

We also test on wearable ECG recordings, and five PAF patients
from CPSC 2021 were selected as test ECG recordings. However, the
complex noise in the wearable ECG signal which can easily lead to
QRS location errors. Therefore, the result of wearable ECG has more
misjudgement, and the proposed method obtained an accuracy of
95.74% on the wearable ECG. As shown in Figure 9, the ECG
waveform with blue color was normal ECGs and the red ECG
waveform were the labeled PAF ECGs. The short line with green
color were detected PAF result of the proposed method while the red
line was the annotated PAF time. The ECG recording, shown in
Figure 8, is one 30-min ECG recording with six PAF segments. There

was only very few beats difference between detected PAF results and
the labeled result, which indicated that the proposed detection
method can effectively locate PAF segment. However, the decrease
in accuracy also shows that the proposedmethod has relatively higher
requirements for signal quality.

5.5 Limitation
Although thismethod shows a good performance in detecting PAF, it
has certain shortcomings and needs subsequent improvement. The
main defects include: 1) This method relies on the accuracy of the
QRS detection algorithm. 2) This method may not be suitable for
analyzing wearable ECGs with poor signal quality.

6 CONCLUSION

The present study shows that although the proposed PAF detection
method is simple, it has good performance in the PAF detection of
long-term ECGs. The proposed detection method can effectively
eliminate arrhythmias that are easily confused with atrial fibrillation,
such as single-PB, multi-PB, premature beat recheck of bigeminy
and trigeminy. The proposed model with low computational
complexity, and has great potential in the low-complexity
analysis of wearable ECG devices.
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Point clouds are a widely used format for storing information in a memory-efficient and
easily manipulatable representation. However, research in the application of point cloud
mapping and subsequent organ reconstruction with deep learning, is limited. In particular,
current methods for left atrium (LA) visualization using point clouds recorded from clinical
mapping during cardiac ablation are proprietary and remain difficult to validate. Many
clinics rely on additional imaging such as MRIs/CTs to improve the accuracy of LA
mapping. In this study, for the first time, we proposed a novel deep learning
framework for the automatic 3D surface reconstruction of the LA directly from point
clouds acquired viawidely used clinical mapping systems. The backbone of our framework
consists of a 30-layer 3D fully convolutional neural network (CNN). The architecture
contains skip connections that perform multi-resolution processing to maximize
information extraction from the point clouds and ensure a high-resolution prediction by
combining features at different receptive levels. We used large kernels with increased
receptive fields to address the sparsity of the point clouds. Residual blocks and activation
normalization were further implemented to improve the feature learning on sparse inputs.
By utilizing a light-weight design with low-depth layers, our CNN took approximately 10 s
per patient. Independent testing on two cross-modality clinical datasets showed excellent
dice scores of 93% and surface-to-surface distances below 1 pixel. Overall, our study may
provide a more efficient, cost-effective 3D LA reconstruction approach during ablation
procedures, and potentially lead to improved treatment of cardiac diseases.

Keywords: convolutional neural network, left atrium, point cloud, sparse data, 3D surface reconstruction

1 INTRODUCTION

Point clouds are a widely used method of storing information acquired in the ever-growing world of
data (Rusu et al., 2008; Guo et al., 2020). Current advancements in 3D acquisition technology in the
form of sensors, scanners, and imaging capture high-quality data to allow for more refined research
of their components and properties (Pomerleau et al., 2015). In particular, the acquisition of 3D data
in the medical field is an increasingly important area of study in terms of visualizing organ structures,
recording real-time anatomical information during surgery, and physiological mapping (Ptaszek
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et al., 2018; Kim et al., 2020). Compared to 3D imaging, point
clouds are significantly more memory-efficient by storing
information in a compact and vectorized form. This data
format also enables efficient manipulation using simple
mathematical operations with low computational costs.

In recent years, medical recording technology, particularly
devices in cardiology, has integrated point clouds into the systems
for various applications. Catheter ablation is one of the most
common clinical procedures for treating complex cardiac diseases
such as arrhythmia. During the procedure, an estimated geometry
of the cardiac chamber is initially constructed using point-by-
point catheter recordings on the endocardial surface (Rolf et al.,
2014). The geometry formed from the point cloud is then used to
guide and target specific regions containing diseased heart tissue
for ablation (Hansen et al., 2015). Therefore, accurate
reconstruction of cardiac chambers from point clouds is vitally
important for the effectiveness of the procedure. This is especially
the case for atrial chamber reconstruction during catheter
ablation of atrial fibrillation, the most common cardiac
arrhythmia (Xiong et al., 2018; Xiong et al., 2021).

Current methods of point cloud to atrial chamber
reconstruction, particularly left atrium (LA), are heavily
commercialized and not openly accessible. The two most
widely used commercial anatomical mapping systems are the
EnsiteNavX (St Jude Medical, Minnesota, United States) and
CARTO 3 (Biosense Webster, California, United States). To
ensure accurate LA models are produced, clinicians further
merge the point cloud with anatomical LA segmentations
obtained from magnetic resonance imaging (MRI) or
computed tomography (CT) in advance of the procedure.
There is limited research aiming to improve the efficiency and
accuracy of LA reconstruction algorithms. The only notable study
is Baram et al. who proposed an auto-encoder to perform LA
reconstruction from simulated catheter points and LA geometries
(Baram et al., 2018). The methods proposed were not tested
directly on real data and lacked rigorous validation. Therefore,
there is a need for a more accurate and robust algorithm capable
of fully automatic LA reconstruction directly from point clouds.

Convolutional neural networks (CNNs) are currently the main
driver of modern analytical methods for structured data (Zhang
et al., 2019). The major differences when implementing CNNs for
point clouds as opposed to traditional pixels or voxels are the
variable lengths and unordered structure of point cloud vectors.
This has led many studies to design specialized approaches that
adapt CNNs to their respective task, as they have already been
proven to be extremely robust in imaging analysis (Ronneberger
et al., 2015; Milletari et al., 2016). As the point cloud data is
required to be standardized into a consistent shape for the CNN,
approaches mainly focus on normalizing the data with pre-
processing. Projection-based methods involve mapping 3D
point clouds onto 2D surfaces at different angles (Yu et al.,
2018), or onto standardized spherical representations (Lawin
et al., 2017), which can be then analyzed directly. These
studies have focused on selecting the best projection approach,
such as using CNNs to analyze multiple projections of the same
set of points and aggregating the results to obtain a more robust
prediction (Audebert et al., 2016). Some studies also use CNNs to

perform predictions on projections of local points due to the
more consistent geometry in a regional area, followed by
aggregation of the local outputs into a global prediction
(Tatarchenko et al., 2018). Spherical projections have been
more commonly used as more information can be retained in
a single 2D representation, although this results in a loss of local
details (Milioto et al., 2019). A more straightforward method is
discretization, in which the 3D point clouds are converted into
volumetric images which can be directly analyzed by CNN
(Tchapmi et al., 2017). Studies have investigated ways to
optimize methods of discretization due to the computationally
expensive nature of this type of volume-based analysis. Some
approaches have partitioned point clouds into a lattice of voxels,
in which each voxel is processed differently depending on the
number of points present (Meng et al., 2019). To improve
accuracy, studies have used adaptive voxel sizes to target
regions of high point density and ignore low-density regions
(Graham et al., 2018). This increases the resolution of the
discretized representation of the point set in the regions
containing interest without increasing the computational burden.

The recent advancements in CNNs for point cloud analysis
have provided a solid baseline for developing a LA point cloud
analysis approach. Despite these studies, there still lacks research
progress for converting sparse point clouds to volumetric
geometries, especially in the medical field. Potential solutions
for this complex task could involve state-of-the-art CNNs for 3D
medical image segmentation, which specialize in the image
reconstruction of extremely fine structures (Ronneberger et al.,
2015; Milletari et al., 2016). The popular 3D U-Net architecture
(Ronneberger et al., 2015) has been implemented for a wide range
of tasks including heart segmentation (Zhuang et al., 2019), and
its enhanced version, V-Net (Milletari et al., 2016), achieves
further performance improvements. A recent global
benchmarking study has also experimentally deduced the most
optimal U-Net CNN configuration for LA segmentation from 3D
MRIs (Xiong et al., 2021), surpassing traditional and other CNN
methods. A 2019 benchmarking study for ventricular
segmentation also demonstrated the highest-scoring team
utilizing an enhanced U-Net approach (Wu et al., 2021).
Furthermore, a recent review by Wu et al. outlined the
advantages of CNNs, particularly those with U-Net backbones,
over conventional atlas and registration-based methods for LA
and scar segmentation (Yang et al., 2020). A Multi-view attention
CNN was further developed to improve accuracies over standard
CNNs (Kingma and Ba, 2014). Thus, we believe an approach
which leverages both leading point cloud analytical techniques
and medical imaging CNNs is the best strategy for tackling the
task in this study.

In this study, we proposed the first deep learning pipeline for
fully automatic surface reconstruction of the LA from point cloud
data. Our method achieved anatomically accurate LA predictions
directly from point clouds without the need for additional
imaging. We tested the framework on independent clinical
datasets acquired using the two most widely used commercial
mapping systems. Our study may potentially be used to improve
current mapping systems for guiding ablation procedures to treat
cardiac diseases.
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2 METHODS

2.1 CNN for LA Reconstruction
A CNN was developed to predict the 3D surface LA geometry given
the point-cloud recording of the LA during clinical mapping. The
architecture is shown in Figure 1, and the full summaries of
parameters are shown in Table 1. The point cloud was first pre-
processed into a fixed input volume. All inputs were then cropped to
a standard size of 128 × 208 × 88 pixels, removing background pixels
to alleviate class imbalance. The CNN architecture consisted of a
modified 3DU-Net architecture with additional residual connections
to improve the convergence. We used a fully convolutional network
to decrease computational costs and ensure the CNN operates
independent of input size. The CNN was relatively light-weight as
the maximum number of convolutional kernels per layer was 128.
This further ensured faster training and convergence, as well as being
significantly less memory intensive.

The first half of the CNN was an encoder to learn dense
features from the input through several convolutional layers of
increasing depth. The convolutional layers contained 5 × 5 × 5
kernels and a stride of 1 for an increased receptive field over
traditional 3 × 3 × 3 kernels, and the number of feature maps
increased from 8 to 128. At every 1 to 3 convolutional layers,
residual connections were added to improve feature learning and
2 × 2 × 2 convolutions with a stride of 2 were used to progressively
down-sample the input by a factor of 2. The additional residual
connections did not contribute to an increase in parameters but
greatly increased information flow throughout the network,
allowing important features to be retained as the input is

down-sampled. The use of convolutions to down-sample the
input as opposed to traditional pooling also implicitly enabled the
CNN to learn the important features while removing
unimportant information during compression.

The second half of the CNN was a decoder used to reconstruct
the input back to the original resolution through several 5 × 5 × 5
convolutional layers of decreasing depth. This was done to
facilitate subsequent segmentation. The number of feature
maps of the convolutions in this part of the network decreased
from 64 to 16. The input was progressively up-sampled by a factor
of 2 with 2 × 2 × 2 deconvolutional, or transpose convolutional,
layers with stride of 2. Residual connections were added at every
1–3 convolutional layers. In order to directly preserve high-
resolution features from the input, feature forwarding
connections were also used to concatenate the outputs of the
convolutional layers in the encoder path to those in the decoder
path at four different points along the CNN. This allowed the
CNN to learn from both raw high-level features as well as
condensed low-level features. This also greatly improved the
consistency of reconstruction by essentially guiding the output
to be representative of the input information. Overall, apart from
the final output layer, batch normalization and parametric
rectified linear units (PReLU) were used after every
convolutional layer along with the entire CNN for
normalization, and 50% dropout was used at every layer for
regularization to decrease overfitting. The final output layer of the
CNN contained a 1 × 1 × 1 convolution with a stride of 1 and a
softmax activation function to predict for zeros (background) and
ones (LA pixel).

FIGURE 1 | The architecture of the proposed 3D convolutional neural network (CNN) for predicting the left atrial (LA) geometry from a point cloud obtained during
clinical mapping. The number of kernels in each convolutional layer is shown, along with the type of convolution. The flow of the gradients between layers is also shown,
with different operations for merging two layers. The legend shows the exact operations of each layer labelled with different colors. All parameters can be found in
Table 1. BN, batch normalization; conv, convolution; PReLU, parametric rectified linear unit.
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The hyper-parameters in the CNN were selected through
controlled experimentation to determine the optimal
configuration for the task. The number of convolutional
kernels was tuned using 4, 8, and 16 kernels for the first layer,
with the remaining layers doubling as described. Experiments
showed that using four kernels did not provide the network with
sufficient depth to predict the LA accurately while 16 kernels were
too computationally intensive with minimal improvement over
eight kernels. The number of steps in the encoder and decoder
paths was also adjusted to find the degree of compression needed.
Similar with the number of kernels, CNNs without sufficient
down-sampling steps were too shallow for the task, while the
number of down-sampling steps above the optimal four steps did
not contribute to an increase in accuracy. We implemented a
CNNwith 3 × 3 × 3 kernels and compared the results with the 5 ×
5 × 5 kernels. Surprisingly, the network had difficulty converging
when using size 3 kernels, potentially due to the lack of receptive
field which could not effectively process the sparse inputs
provided. We found PReLU activations worked more
harmoniously with the network architecture compared with
ReLU and leaky ReLU as it produced the best performances.

The percentage of the dropout was also tuned with dropout rates
of 25%, 50%, and 75%. While the performance did not
significantly vary, a drop out of 50% provided sufficient
regularization without reducing the training time as when
applying 75% dropout.

To alleviate class imbalance, a dice loss function was used
during training to assign higher priorities to the pixels containing
the atria during prediction. The dice loss also increased the speed
of convergence, significantly reducing computational costs. The
formulation of the dice loss, Fdice(p, g), where p and g represents
the predicted and ground truth 3D binary masks, was

Fdice(p, g) � 2∑x∑ypg + 1∑xp
2 +∑yg

2 + 1
(1)

where p and g were of dimensions of x and y.
The adaptive moment estimation (ADAM) gradient descent

optimizer (McGann et al., 2014) was used to minimize the loss
function during training with a constant learning rate of 0.0001
and the exponential decay rates of the 1st and 2nd moment
estimates were set to 0.9 and 0.999, respectively. To reduce the

TABLE 1 | The configurations of the convolutional neural network.

Encoder path layers Kernel size Stride Feature maps Number of parameters

Input 3D - - 1 -
Conv/8 5 × 5 × 5 1 8 5 × 5 × 5 × 1 × 8
Down Conv/16 2 × 2 × 2 2 16 5 × 5 × 5 × 8 × 8
Conv/16 5 × 5 × 5 1 16 5 × 5 × 5 × 16 × 16
Conv/16 5 × 5 × 5 1 16 5 × 5 × 5 × 16 × 32
Down Conv/32 2 × 2 × 2 2 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 2 × 2 × 2 × 32 × 64
Down Conv/64 2 × 2 × 2 2 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 2 × 2 × 2 × 64 × 128
Down Conv/128 2 × 2 × 2 2 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128

Decoder path layers Kernel size Stride Feature maps Number of parameters

Up Conv/64 2 × 2 × 2 2 64 2 × 2 × 2 × 128 × 64
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Up Conv/32 2 × 2 × 2 2 32 2 × 2 × 2 × 128 × 32
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Up Conv/16 2 × 2 × 2 2 16 2 × 2 × 2 × 64 × 16
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Up Conv/8 2 × 2 × 2 2 8 2 × 2 × 2 × 32 × 8
Conv/16 5 × 5 × 5 1 16 5 × 5 × 5 × 16 × 16
Classifier 1 × 1 × 1 1 2 1 × 1 × 1 × 16 × 2
Output 3D - - 2 -

Total Parameters ˜32.5 Million

Conv, convolution.
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computational burden of the large images that needed to be
processed, all data was stored in the hierarchical data format after
pre-processing. The CNN was trained with a maximum limit of
1,000 epochs, with a criterion to stop training if the accuracy on
the validation set did not improve after 50 epochs. A batch size of
1 was used due to the high memory costs associated with 3D
volumes. The training set was also shuffled for each epoch to
increase randomness. After every epoch, the performance of the
CNN was evaluated on the validation set with the dice score. The
parameter set of the CNN which achieved the highest validation
accuracy was saved and used on the testing set. The CNN was
developed in TensorFlow, an open-source Python deep learning
library, and TFLearn, a high-level Python API for Tensorflow.
The training step was performed on an Nvidia Titan V GPU with
5120 CUDA cores and 12 GB RAM. The training phase took
approximately 10 hours. Predictions took approximately 10 s for
each partial shell input.

3 EXPERIMENTAL SETUP

3.1 Data and Pre-Processing
A summary of the three datasets (paired training data, test #1, test
#2) used in this study is shown in Table 2. The CNN was initially
trained on a generated dataset (paired training data) and tested
on two clinical datasets (test #1 and test #2). The generated dataset
was simulated to provide sufficient samples to train the CNN, as
clinical data is time-consuming and expensive to acquire. The two
clinical datasets both contained LA surface geometries segmented
from MRIs or CTs and point clouds acquired with the most
widely used commercial mapping systems merged into the same
coordinates as the imaging. This providedmatching pairs of input
point clouds and output LA for testing the CNN. The following
sub-sections describe the generation and acquisition of the three
datasets in detail.

The Waikato clinical study was approved by New Zealand
Health and Disability Ethics Committees (Ref: 16/STH/130) and
the ethics approval for the studies at other centers at Utah (Xiong
et al., 2018; Yang et al., 2020), Beijing (Kingma and Ba, 2014) and
Melbourne (Edelsbrunner and Mücke, 1994) were already
obtained.

3.1.1 Paired Training Data
The paired training dataset was generated by merging two
separate datasets: 154 LA surface geometries manually
segmented from MRIs (Yao et al., 2007) and 10 sets of point
clouds of the LA recorded with clinical mapping (Edelsbrunner
and Mücke, 1994). The point clouds were transformed to fit the

same spatial coordinates as the LA segmentations, forming
matching pairs of point cloud and LA geometries available for
the CNN. Overall, 1,540 data samples were generated by
exhausting all pairing combinations of the two datasets.

The 154 3D MRIs with a spatial resolution of 0.625 mm ×
0.625 mm × 0.625 mm were acquired from patients with atrial
fibrillation at the University of Utah, United States (Yao et al.,
2007). The LA geometries were manually segmented in
agreement with three expert observers for each scan.
Segmentations were initially performed by one observer and
modified by a second observer in agreement with the first
observer to ensure accuracy and consistency. Where there was
a disagreement between the first two observers, a third observer
was consulted to mediate and further refined the segmentation.
The LA was defined as the pixels contained within the LA
endocardial surface, including the four pulmonary veins (PVs).
The 3D coordinates of each PV in each LA were also recorded for
landmark registration.

The 10 point cloud data were created with clinical mapping
during catheter ablation to treat patients with atrial fibrillation in
Beijing, China (Edelsbrunner and Mücke, 1994). Similar to the
MRIs, the coordinates of the four PVs were annotated in the
maps. The average number of coordinates recorded for the point
clouds were 3,703 ± 1,043.

The two datasets were merged by transforming the point
cloud data using three stages: registration, projection, and
discretization. For illustrative purposes, the three stages of
the data generation process have been further outlined in
Figure 2. As the coordinates of the PVs were labelled in
both datasets, they were first used to register the point cloud
through a series of translational, rotational and scaling matrix
operations, obtaining the closest possible match of the
landmarks. Since the aim of this initial step was to generate
an approximate match between the two geometries, only rigid
registration was performed. The registered point cloud was then
spherically projected onto the surface of the 3D LA geometry
using its center-of-mass as a reference point to produce an exact
match between the two geometries. Finally, the projected point
cloud was discretized using the alpha-concave hull algorithm
(Foo et al., 2020) to generate a dense mesh of the point cloud.
An alpha value of 5 was manually selected to produce an output
which maintained the natural curvature of the LA. The concave
hull algorithm was then iteratively applied three times such that
in each iteration, points along all edges of the generated concave
hull were added to the point cloud and inputted into the next
iteration. This resulted in an exponential increase in the
number of points after each iteration, transforming a point
cloud vector of ~4,000 samples to over 250,000 samples.
Ultimately, this produced a dense mesh which was then
discretized into integers forming a 3D image representing a
partial shell of the LA.

The paired training dataset was split into training (N = 1,000),
validation (N = 240), and testing (N = 300). The input data and
labels were the point clouds and the LA segmented from the MRI
dataset, respectively. The data was split such that an LA geometry
from a given MRI was only present in one of the three datasets to
avoid repeating labels.

TABLE 2 | Summary of the data used in this study.

Dataset Training Validation Testing

Paired training data 1,000 240 300
Test#1: clinical MRI + point cloud — — 4
Test#2: clinical CT + point cloud — — 2

CT, computed tomography; MRI, magnetic resonance imaging.
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3.1.2 Test #1: Clinically Paired MRI and Point Cloud
Data
MRIs with a resolution of 0.625 mm × 0.625 mm × 0.625 mm
were acquired from 4 patients at Waikato Hospital,
New Zealand, undergoing catheter ablation with the
CARTO 3 mapping system (Prabhu et al., 2018). The
average number of points recorded for the patients was
2,230 ± 790. Prior to the ablation procedure, the
corresponding MRI scans were manually annotated by a
team of experts to define the LA geometries. During
clinical assessment, the LA was merged with the point
clouds recorded during ablation mapping to spatially
match the two data. For pre-processing, the point clouds
were discretized using the method described above to
create a 3D input LA shell for the CNN. The
corresponding LA geometries from the MRIs were used as
the ground truth for evaluation.

3.1.3 Test #2: Clinically Paired CT and Point Cloud
Data
CTs were obtained from 2 patients at The Royal Hospital Melbourne,
Australia, undergoing catheter ablationwith the EnsiteNavXmapping
system (Njoku et al., 2018). The average number of mapped points
was 2,818 ± 206. Similar to the test #1 dataset above, the LA were
manually segmented from the CTs and merged in the clinic with the
point clouds. The point clouds were then discretized to create a 3D
input LA shell for the CNN, and the respective LA geometries from
the CTs were used as the ground truth for evaluation.

3.2 Evaluation
Several evaluation metrics were used to determine the accuracy of
the CNN predictions. Evaluation was performed on all three of
the paired training, test #1, and test #2 datasets. The technical
analysis included the dice score, surface-to-surface distance
(STSD), sensitivity, and specificity. The dice score was defined

FIGURE 2 | Illustration of the (A) registration, (B) projection, and (C) discretization stages for data generation from pairs of 3D left atrial (LA) geometry segmented
frommagnetic resonance imaging (MRI) and point clouds of the LA recorded during clinical mapping. Landmark registration was first performed to approximately match
the pulmonary veins (PV) of the two LA geometries. This was performed by centering the center of mass (COM) of the point cloud PVs to the MRI. The point cloud was
then rotated such that the PVs was able to closely match that of the MRI. The point cloud was lastly scaled for further refinement. The registered point cloud was
spherically projected radially from the COM to the LA wall of the MRI to simulate a surface-point cloud recording on the MRI. The point cloud was lastly converted into a
dense mesh using the concave hull.
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similarly to the loss function in Eq. 1. STSD between the
prediction, A, and ground truth, B, was defined as

STSD(A, B) � 1
np + ng

(∑np

p′�1

������
p′ − p

√
+∑ng

g′�1

�����
g′ − g

√ ) (2)

where a and b are all the pixels locations within A and B, nA is the
number of pixels in A, nB is the number of pixels in B. The
sensitivity was defined as the number of true positives divided by
the sum of the number of true positives and false negatives. The
specificity was defined as the number of true negatives divided by
the sum of the number of true negatives and false positives.

To measure the biological accuracy of the CNN
predictions, we used the error in the LA diameter and
volume. These are important biomarkers which have been
shown to provide reliable information during clinical
diagnosis and treatment stratification of atrial fibrillation
(Zhuang et al., 2011; Njoku et al., 2018; Chen et al., 2022).
The LA diameter was defined as

ØLA(M) � max
i∈I

⎛⎝∑J

j�1Mij
⎞⎠ (3)

for a 2D slice of the 3D LA geometry with the maximum 2Dwidth
to obtain the overall maximum LA diameter,M, with dimensions
I × J, where J was the anterior-posterior axis of the LA chamber.
The atrial volume, VLA, was calculated by

VLA(M) � ∑X

i�1∑Y

j�1∑Z

k�1Mijk (4)

for a 3D mask, M, with dimensions X × Y× Z. The diameter and
volume errors were then calculated by simply comparing the
measures in the predictions with those from the ground truths.
We also evaluated the coverage of the point cloud in the LA to
measure its impact on the technical and biological accuracies.
This was computed by

Coverage � ∑n
i PTi∑m

j LAsurface
(5)

given the point cloud, PT, with a length of n, and the outer surface
of the LA, LAsurface, with m pixels, and n < m.

4 RESULTS

4.1 Accuracy for Predicting the LA From
Point Clouds
Tables 3, 4 show the complete evaluation results for the 3D LA
reconstruction from point clouds in generated paired training

dataset, and clinical test #1 and test #2 datasets. Overall, the
proposed CNN achieved excellent accuracies for LA prediction,
with dice scores of 93.2% for the paired training set, 92.4% for the
test #1 set, and 93.4% for the test #2 set. These high accuracies
showed that the CNN was able to successfully reconstruct the LA
from the sparse inputs provided. The relatively low standard
deviation of 2.3% on the 300 testing samples in the paired training
set showed that the predictions were also very consistent. This
was particularly seen in the two test sets with standard deviations
of below 1% for the dice score. The CNN achieved an STSD of 1.1
pixels on the paired training set, and a more impressive 0.8 and
0.7 pixels on the test #1 and test #2 sets, showing the predicted LA
was on average within 1 pixel of the ground truth. The high
sensitivity of above 90% and the specificities of 99% showed that
the CNN was able to distinguish between the positive and
negative pixels with high certainties. Surprisingly, the
approximately 4% higher sensitivity on the two clinical test
sets indicated the CNN was able to capture the LA pixels
much more effectively than in the paired training set.

The predicted LA were also biologically accurate on average,
obtaining low diameter and volume errors of 4.4% and 5.9%,
respectively (Table 4). The higher sensitivities in the two test sets
also resulted in lower diameter and volume errors with 2.6% and
3.0% errors for the diameter, and 5.2% and 3.3% for the volume in
the test #1 and test #2 sets, respectively. We also compared the
biological measurements between the ground truth and predicted
LA to determine the error source. We found that the mean
predicted diameter of 39.9 mm and volume of 49.0 cm3 were
lower when compared to the 41.5 mm and 52.4 cm3 ground truth
measurements. This revealed the CNN had a tendency to slightly
underestimate the LA when analyzing point clouds.

4.2 Visualization and Error Analysis
3D visualizations of the ground truth and predictions
produced by the CNN were produced for further error
analysis. Figure 3 shows five samples of predictions made
by the CNN in order of increasing accuracy, representing the

TABLE 3 | Technical evaluation for left atrium reconstruction from point clouds in the 300 generated (Paired training), 4 clinical MRI (Test #1), and 2 clinical CT (Test #2) data.

Dataset Dice STSD Sensitivity Specificity

Paired training data 93.2 ± 2.3% 1.16 ± 0.48px 90.6 ± 3.7% 99.7 ± 0.1%
Test#1 92.4 ± 0.8% 0.76 ± 0.05px 94.9 ± 0.6% 99.2 ± 0.2%
Test#2 93.4 ± 0.6% 0.66 ± 0.05px 95.0 ± 0.3% 99.2 ± 0.1%

CT, computed tomography; MRI, magnetic resonance imaging.

TABLE 4 | Biological evaluation for left atrium reconstruction from point clouds in
the 300 generated (Paired training), 4 clinical MRI (Test #1), and 2 clinical CT
(Test #2) data.

Dataset Diameter error Volume error

Paired training data 4.4 ± 5.2% 5.9 ± 4.1%
Test#1 2.6 ± 1.2% 5.2 ± 1.0%
Test#2 3.0 ± 1.0% 3.3 ± 1.9%

CT, computed tomography; MRI, magnetic resonance imaging.
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range of accuracies obtained in the paired training set. The
input point cloud was also shown with the corresponding
ground truth LA geometry. From the samples shown, it was
observed that the degree of coverage depicted by the input data
had a significant impact on the accuracy of prediction. This
was clearly visible in the first row where the input point cloud
had low coverage. The CNN was therefore forced to generate
many anatomical features without guidance, based only on the
shape of the existing input. The fifth row showed an input
containing extremely good coverages, naturally making the
prediction much more accurate. However, rows one to four
also revealed the power of the CNN for data generation, as the
outputs, regardless of dice score, were all anatomically similar
to the ground truths. This also showed that the CNN would be
effective on clinically recorded point clouds which do not fully
cover the entire LA surface. Expectedly, the most erroneous
regions were the PVs when a distance-error map was
computed between the predictions and ground truths. This

was due to the PVs having a thin and inconsistent shape
compared to the rest of the LA, creating difficulties for the
CNN to consistently define.

To demonstrate our method is adaptable and feasible on the
two real clinical datasets (test #1 and test #2). we displayed the
prediction and ground truth of one sample from each dataset in
Figure 4. In general, it can be seen the point cloud in these
datasets covered a significantly larger proportion of the LA
compared to the paired training dataset. This led to the CNN
performing better given the more complete LA shells which were
generated from the point clouds. Furthermore, the adaptability of
our CNN can be seen in the results for the test #2 data. The LA
was acquired from CTs, as opposed to MRIs which were used in
both the paired training and test #1 datasets, leading to a
significantly different geometry. Nevertheless, our CNN
effectively predicted the CT geometry although it was only
trained on MRIs geometries, showing our approach was
independent of the mapping system and image modality.

FIGURE 3 | 3D visualizations of the left atrial (LA) reconstructions of five samples in the paired training dataset. The reconstructions with the highest dice scores are
in the bottom row and the top row contains the reconstructions with the lowest dice scores. The point-clouds inputs are shown in the first column. The ground truths
obtained by manually segmenting the LGE-MRIs are shown in the second column. The reconstructions predicted by the convolutional neural network (CNN) are shown
in the third column. The surface-to-surface distance (STSD) error maps between the ground truths and the predictions are shown in the fourth column, with the
colors being normalized between 0 and 7 mm for the five samples. LAA, left atrial appendage; PV, pulmonary vein.
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4.3 Impact of Point Cloud Coverage on the
Accuracy
We analyzed the impact of the coverage of the point cloud
over the target output LA on the evaluation scores obtained in
our results (Table 5). The average coverage across the paired
training dataset was 30%, while the test #1 and test #2 sets had
coverages of 40% and 44%, respectively. The standard
deviation of the coverage on the paired training set was
5.4% and contained a range of 19%–40%. This indicated
there was a wide range of point cloud coverages for the

CNN during training, allowing it to be applicable to a
range of distributions during prediction. Interestingly, the
mean coverages of the two test sets were above and outside the
range of the paired training set, showing the point clouds
acquired in the clinical sets were of higher quality. This was a
potential explanation for the increased sensitivities on the two
clinical sets, as the higher coverage allowed the CNN to
predict the entire LA geometry with slightly greater
precision compared to the training set. Although this did
not result in an increased dice score as the specificities of the
two clinical datasets were lower compared to that of the
training set. This was also visible in Figures 3 vs. Figure 4
which showed a smoother point cloud distribution for the test
#1 and test #2 data. The 5% higher coverage in test #2
compared to test #1 was also a potential reason for the 1%
higher dice score between the two clinical testing sets.

We then computed the Pearson’s correlation between the
point cloud coverage in all data and the accuracies obtained
by our CNN (Figure 5). Overall, the coverage was
significantly and strongly correlated to both the dice score
and sensitivity, with correlations of 0.7. This was a potential
explanation for the increased sensitivity on the two clinical
sets, as the higher coverage allowed the CNN to predict the
entire LA geometry with greater precision. The coverage was
also moderately correlated to the STSD with a value of 0.6 and
statistical significance. Expectedly, the errors for the diameter
and volume were both negatively correlated with the
coverage, as higher coverages resulted in better predictions
of the biological measurements, and thus lower errors. While
the diameter error had a low correlation of −0.1, the volume
error had a moderate negative correlation of −0.6. This was
due to the diameter only being measured in one dimension,

FIGURE 4 | 3D Visualizations of the left atrial (LA) reconstruction for one
sample each from test #1 (left column) and test #2 (right column) clinical
datasets. The point cloud recorded with the commercial mapping systems are
shown in the first row, along with the LA geometry obtained from
segmenting magnetic resonance imaging (MRI) and computed tomography
(CT) in the second row. The predicted LA are shown in the third row, and the
surface-to-surface distance (STSD) error maps between the ground truths
and the predictions are shown in the fourth row. The individual dice and STSD
scores are shown for each sample. PV, pulmonary vein.

TABLE 5 | The point cloud coverage over the left atrium for the generated (Paired
training), clinical MRI (Test #1), and clinical CT (Test #2) datasets.

Dataset Coverage

Paired training data 30.3 ± 5.4%
Test#1 39.5 ± 1.5%
Test#2 44.4 ± 2.6%

CT, computed tomography; MRI, magnetic resonance imaging.

FIGURE 5 |Correlation of the point cloud coverage with the dice score in
the testing datasets. The line of best fit is shown, along with the Pearson’s
correlation value and p-value. The band shows the standard deviation of the
points along the line.
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and thus being impacted less by the overall LA reconstruction
accuracy, while the volume was influenced by all three
dimensions.

5 DISCUSSION

Direct surface reconstruction of organs, such as the LA, from
point clouds is a challenging task. Prevailing methods of
analysis primarily focus on the application of CNNs for the
classification and segmentation of point cloud representations
of 3D objects or scenery. Well-established research into the
reconstruction of 3D surface geometries directly from sparse
inputs such as point cloud is therefore limited. Furthermore,
the current commercial software used to perform clinical
mapping and the subsequent LA reconstruction from the
point clouds recorded is inefficient by requiring additional
imaging prior to the procedure. The efficacy of the proprietary
software also remains difficult to validate, and open research
in the area is lacking.

To address the current issues, our study is one of the first to
propose a fully automated framework for the reconstruction
of the LA geometry directly from point clouds. Our study is
also one of few to develop a CNN for the surface
reconstruction of 3D geometries given a set of partially
complete information such as the sparse point clouds data
described. Overall, the proposed CNN produced LA
predictions with high-performance accuracies across
multiple metrics for both technical and biological
evaluation. The CNN obtained dice scores surpassing a
prior study which investigated a similar task with over 7%
accuracy improvements (Baram et al., 2018). The low surface-
to-surface distance, LA diameter, and LA volume errors
showed our approach produced anatomically accurate
predictions, which is a highly important feature for clinical
applications. The clinical applicability of our approach was
further demonstrated on the two clinical point cloud datasets
acquired with the most commonly used CARTO and
EnSiteNavX mapping systems. Experimental results showed
the CNN achieved similarly accurate and consistent
predictions when compared to LA geometries segmented
from the MRIs and CTs in the clinical datasets. By
conducting the first study which utilized real patient data
for both training and testing, this study would ideally establish
a solid benchmark in this under-investigated field.

An important component of CNN pipelines for point cloud
analysis involves the pre-processing of the point clouds data
into fixed-sized inputs. Similar to prior studies, we retained
the original dimensionality and important spatial information
of the inputs by directly discretizing the 3D point cloud
into an image volume (Tchapmi et al., 2017). However, the
pre-processing step in our study was significantly enhanced by
the proposed iterative concave-hull algorithm, which
exponentially increased the number of data points with low
computational costs. The increased number of points resulted
in smooth image volumes after discretization. This was an
improvement on past methods which attempted to directly

discretize low-density point clouds to produce sparse images
which were difficult and computationally expensive to analyze
by the CNN. As the pre-processed volumes contained a high
density of information, this also benefited the performance of
the CNN by providing concentrated data with a relatively low
memory cost, leading to more precise predictions with greater
efficiency. A further step for ensuring effective feature
learning on the pre-processed point clouds involved the
utilization of larger convolutional kernels to increase the
receptive field of the CNN. The CNN was also enhanced
with the use of feature forwarding connections, allowing it
to retain and combine features at multiple receptive levels,
maximizing the information extracted from the relatively
sparse input information provided. Due to the high class-
imbalance of the point clouds which often induces CNNs to
produce completely empty predictions, we implemented a
dice loss to prioritize non-background pixels. Residual
blocks and batch normalization were also included to
increase the ease of convergence and decrease the
likelihood that the parameter optimization process does not
stall at an undesirable local minimum during training.

Our study contains several limitations, which can
potentially be addressed in future studies. Experiments on
our CNN showed that although it performed excellently
overall, its accuracy was directly dependent on the coverage
of the point cloud. While most clinical point cloud recordings
nowadays maintain good coverage over the entire LA chamber
as seen in the samples in this study, future methods should
specifically be aimed to address low coverage maps. Such
methods could involve statistical shape models which
artificially enhance the coverage by using aggregated
anatomical features from past data to estimate the location
of potential landmarks. Future research should also
investigate changes to the CNN architecture to improve its
accuracy in general, such as introducing adversarial pathways
or auxiliary outputs which are commonly used for image
reconstruction. The loss function could be improved by
introducing anatomical constraints to ensure the outputs
contain all key anatomical landmarks which would be very
beneficial in clinical applications. Methods for directly
analysing point clouds would also be explored in future
studies including graph convolutional networks which
would save computational time during the data preparation
and remove the need for the points to be converted into image
volumes. Direct learning on the point cloud data may also
decrease potential biases introduced during the current
discretization step, as well as provide more flexibility when
handling different datasets in the future. Such methods may
also be used in conjunction with our current pipeline as an
additional pathway to further strengthen our approach.
Finally, future studies should ideally utilize larger samples
of clinical data through more extensive collaborations with
international clinical centers to further validate the robustness
of the framework. Such clinical trials would ideally involve
both LGE-MRI scanning and anatomical mapping in every
patient, with further processing using EnsiteNavX or CARTO
3 to merge and match the geometries of the atrium in both
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acquisitions. Generative neural networks could also
potentially mitigate these issues by allowing semi-
supervised learning on unlabeled datasets which are more
widely available (Chen et al., 2021) and providing greater
learning capacities when training on limited labelled
data [36].

6 CONCLUSION

In this study, we have developed and evaluated a 3D CNN for
robust automatic LA reconstruction from point clouds recorded
with clinical mapping during ablation. Our algorithm enables the
reconstruction of the LA in 3D with a dice accuracy of 93%, STSD
of approximately 1 pixel, and accurate estimations of clinical
measures. The framework was further tested on two independent
cross-modality clinical datasets, and produced similarly
impressive evaluation results. Our study may lead to the
development of a more accurate and efficient real-time LA
reconstruction approach, which can potentially be used to
improve clinical guidance during ablation procedures for the
treatment of cardiac diseases.
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Using Multi-Task Learning-Based
Framework to Detect ST-Segment and
J-Point Deviation From Holter
Shuang Wu1†, Qing Cao1†, Qiaoran Chen2, Qi Jin1, Zizhu Liu1, Lingfang Zhuang1,
Jingsheng Lin3, Gang Lv3, Ruiyan Zhang1* and Kang Chen1*

1Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
2Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China, 3Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Artificial intelligence is increasingly being used on the clinical electrocardiogram workflows.
Few electrocardiograms based on artificial intelligence algorithms have focused on
detecting myocardial ischemia using long-term electrocardiogram data. A main reason
for this is that interference signals generated from daily activities while wearing the Holter
monitor lowered the ability of artificial intelligence to detect myocardial ischemia. In this
study, an automatic system combining denoising and segmentation modules was
developed to detect the deviation of the ST-segment and J point. We proposed a
ECG Bidirectional Transformer network that applied in both denoising and
segmentation tasks. The denoising model achieved RMSEde, SNRimp, and PRD values
of 0.074, 10.006, and 16.327, respectively. The segmentation model achieved precision,
sensitivity (recall), and F1-score of 96.00, 93.06, and 94.51%, respectively. The system’s
ability to distinguish the depression and elevation of the ST-segment and J point was also
verified by cardiologists as well. From our ECG dataset, 103 patients with ST-segment
depression and 10 patients with ST-segment elevation were detected with positive
predictive values of 80.6 and 60% respectively. Using Holter ECG and transformer-
based deep neural networks, we can detect subtle ST-segment changes in noisy ECG
signals. This system has the potential to improve the efficacy of daily medicine and to
provide a broader population-level screening for asymptomatic myocardial ischemia.

Keywords: holter, electrocardiogram, ST-Segment, deep learning, multi-task learning

1 INTRODUCTION

Cardiovascular disease management is becoming increasingly standardized, such as by establishing
chest pain centers and improving regional collaborative treatment networks. However, at least 290
million Chinese people are suffering from cardiovascular diseases, particularly ischemic heart disease
(IHD), and the morbidity and mortality of cardiovascular diseases are increasing annually (Du et al.,
2019;Ma et al., 2020). There are two points that cannot be ignored. The awareness rate of IHD risks is
lower than the prevalence rate (Garrido et al., 2020; Daponte-Codina et al., 2022), and the difficulty
in treating ischemia comes from poor regeneration of cardiomyocytes after IHD and myocardial
infarction (MI). Although the myocardium of the patients with chronic coronary syndrome has been
damaged, the tolerance of myocardial cells to ischemia increases due to the formation of coronary
collateral circulation. ST-segment changes of chronic coronary syndrome usually appear on the ECG
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when the patients have increased oxygen consumption of the
body, such as during exercise, while ST-segment changes of acute
myocardial infarction can appear when patients are at rest.
However standard ECG records myocardial electrical activity
when patients are in a calm state, such that an abnormal ECG
is less likely to be identified. Holter has the advantage of recording
heart electrical activity for longer periods, and the ischemic
alterations seen on Holter simultaneously during chest pain
bouts can assist in the diagnosis of angina. It also offers
higher diagnostic performances for painless myocardial
ischemia as well. Therefore, long-term monitoring and early
detection are critical.

Artificial intelligence (AI) has presented its ability to solve
complex and time-consuming problems, freeing cardiologists
from their heavy lifting. Our previous research (Du et al.,
2021) had proposed an FM-ECG AI-based model to identify
various cardiac abnormalities in 12-lead standard ECG data.
Furthermore, we believe that large-capacity long-term dynamic
electrocardiograms, Holter, are better suited to AI algorithms for
precisely analyzing every heartbeat to manually interpreting IHD
from such a large volume of ECG data, which is a time-
consuming task. Various automated algorithms for identifying
IHD and MI have been advocated because of the in-depth
integration of AI in medicine. Tadesse et al. (2021) proposed
an end-to-end algorithm for identifying the time occurrence of
MI using a 10 s 12-lead ECG. Their model could classify normal,
acute, recent, and old onset cases of MI, with AUROCs of 96.7,
82.9, 68.6, and 73.8%, respectively. Cho et al. (2020) developed an
algorithm to classify MI and non-MI using 12-lead and 6-limb
lead ECG data (500 Hz, 10s) with AUROCs of 0.902 and 0.880,
respectively. Zhao et al. (2020) developed an algorithm to detect
ST-segment elevated myocardial infarction (STEMI) using 667
STEMI ECG data. In the comparison test, their model
outperformed cardiologists. Martin et al. (2021) used lead II
ECG data from the PTB-XL database to develop a Deep-
LSTM network for detecting real-time MI. The proposed
model achieved an accuracy, recall, and specificity of 77.12,
75.85, and 83.02%, respectively. Makimoto et al. (2020)
developed a CNN to recognize MI using 289 ECG data from
the PTB database. They then examined the abilities of the model
and physicians to identify MI and non-MI. The CNN achieved a
higher f1 and accuracy. In cardiovascular diseases, changes in the
ST-segment on ECG are closely related to myocardial ischemia.
Xiao et al. (2018) proposed a CNNmodel to detect ST changes for
examining ischemia using ECG data selected from the long-term
ST Database that contains 65 24 h two-and fifteen three-lead
ambulatory records. Their CNN model achieved an AUC,
sensitivity, and specificity of 89.6, 84.4, and 84.9%, respectively.

The studies mentioned above have contributed to AI-enabled
ECG analysis. Some studies included coronary angiography as the
gold standard for myocardial infarction (Cho et al., 2020; Zhao
et al., 2020), which makes the MI training data more reliable.
Moreover, we also found that most of the duration of the ECG
data used for analysis was 10s. Long-term ECG can help capture
discontinuous ECG abnormalities, such as the ST-segment
deviation of unstable angina and other myocardial lesions.
However, some challenges arise when analyzing ST-segment

changes on long-term ECG. First, although detecting subtle
changes in ECG waves early and with great precision is
necessary to reduce the risk of acute myocardial ischemia, a
significant amount of research has concentrated on arrhythmia
classification rather than on MI detection (Hong et al., 2020). A
main reason for this, we assume, is that interfered signals from
daily activities while wearing the Holter reduced the AI’s capacity
to diagnose IHD. Second, 12-lead ECG data should be used to
diagnose myocardial ischemia andMI, but some researchers have
only used the single-lead ECG data. Third, although public
datasets have ready-labeled and less noisy ECG signal, public
data are sometimes too clean to apply to the real world owing to
individual differences and the diversity and complexity of
diseases. Moreover, existing publicly accepted public datasets
for long-term ECG have been collected from abroad. Regional
differences may affect model results.

To alleviate the problems mentioned, we collected real-world
Holter ECG data, and the ECG Bidirectional Transoformer
network (EBTnet), which is a transformer-based structure, was
proposed to precisely detect the location and deviation of the ST-
segment and J point on 12-lead Holter ECG data at the beat level
and provide cardiologists with more accurate information about
myocardial ischemia.

To the best of our knowledge, this is the first study to examine
the prospect of combining ECG signal denoising and wave
segmentation in the same model structure with exceptional
accuracy to determine the position and the degree of IHD.

2 MATERIALS AND METHODS

2.1 Model
2.1.1 Overall Workflow
Figure 1 presents a schematic of the systemworkflow. The system
starts by cropping the long-term ECG signal into patches of 7168
sampling points. In every patch, each lead is processed using the
following procedures. Noises in the ECG signal is first eliminated
using a denoising model, followed by a segmentation model to
detect the QRS complex of the denoised ECG signal. Then, the
filtered denoised QRS complex was segmented from every beat.
The ST-segment and J point amplitude of deviation of each
denoised QRS complex were calculated to determine any
abnormal results. Abnormal results were recorded once all
leads were evaluated. The pre-setting rules are used to
determine the location and deviation of the ST-segment
depression and elevation and J point elevation. The frequency
and last times of the prediction were calculated in a
straightforward manner.

2.1.2 EBTnet Network Structure
In this section, we proposed EBTnet for both ECG denoising and
segmentation tasks. ECG classification models usually need to
capture the subtle changes in both rhythmic and waveform
characteristics to improve performance. The results of ECG
denoising and segmentation models are more dependent on
the learning of local waveform attributes (e.g., P-waves, QRS
complexes, and T waves) and less sensitive to rhythmic attributes.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9127392

Wu et al. Detecting ST-Segment and J-Point Deviation

34

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Inspired by a swin transformer, a shifted window attention
mechanism was applied, which exhibited a strong capacity to
capture feature representations in images. Our network applies
one-dimensional (1D) bidireciton-shifted window-based
transformer blocks (1D bidirectional SWT Blocks) to enhance
the learning of ECG characteristic waveform representations.

As shown in Figure 2, EBTnet comprised an encoder, a
decoder, and skip connections following a U-Net design
(Ronneberger et al., 2015). Given an input ECG signal, a patch
embedding layer with a stride of 2 was used to downsample the
input and learn low-level features. The encoder contained a series
of 1D bidirectional SWT Blocks and downsampling layers. The
1D bidirectional SWT Blocks were used to learn the relative local
morphological characteristics from the ECG representational
features. Downsampling layers reduced the length of ECG
features, resulting in two benefits: increasing the attention field
of each ECG feature patch because the window size was fixed for
the entire network, and improving computational efficiency. The
symmetric decoder was built with 1D bidirectional SWT Blocks,
upsampling layers, and skip connections. The length of the ECG
featureswas doubled by an upsampling layer, which aimed to
restore the spatial information. The 1D bidirectional SWT Block
in the decoder mainly fuses the upsampling features and
representational features from the corresponding encoder layer

through a skip connection. Eventually, the decode would restore
the size of the ECG representational features from the encoder to
the original input size. The last layer was a linear projection to
either the denoising ECG signal task or QRS complex semantic
segmentation task.

2.1.3 1D Bidirectional SWT Block
A 1D SWT bidirectional block was built by extending the one-
way window-partitioning strategy of the shifted window-based
multi-head self-attention (SW-MSA) module from a swin
transformer block using a bidirectional strategy. This shifted
operation was designed to add information connections
between neighboring ECG patches. However, we noticed that
this connection was not fully utilized because the shift was only
forward. Therefore, we added a backward shift to further increase
the number of neighboring connections. The combination of the
forward and backward shift directions in succession was called
bidirectional.

Figure 3 shows three successive 1D bidirectional SWT
blocks, each block built by SW-MSA, followed by two
multilayer perceptron (MLP) layers with GELU non-
linearity. A residual connection was applied, and
LayerNorm (LN) layer was used before each MSA and MLP
layer. The SW-MSA was configurated with unshifted, forward-

FIGURE 1 | Schematic workflow of diagnosing ST-segment depression and elevation, and J point elevation from Holter electrocardiogram signal.

FIGURE 2 | The architecture of the EBTnet.
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shifted, and backward-shifted directions respectively. The
transformer block can be formulated as follows:

ẑ1 � W −MSA(LN(ẑl−1)) + zl−1,

zl � MLP(LN(ẑl)) + ẑl,

ẑl+1 � SW −MSA(LN(zl)) + zl,

zl+1 � MLP(LN(ẑl+1)) + ẑl+1,

where ẑl and zl are the outputs of the SW-MSAmodule and MLP
module of block l, respectively. Self-attention was defined
similarly as in previous study (Vaswani et al., 2017), which is:

Attention(Q,K, V) � SoftMax(QKT��
d

√ + B)V,
Where Q,K,V ∈ RM×d represent the query, key, and value
matrices, respectively.

FIGURE 3 | Three successive 1D bidirectional SWT blocks. Each SW-MSA is configured with unshifted, forward-shifted, backward-shifted, respectively.

FIGURE 4 | The illustration of SW-MSA module with (A) unshifted (B) forward-shifted, and (C) backward-shifted.
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The unshifted SW-MSA is a regular window-based multihead
self-attention. As shown in Figure 4A, the input feature with
length L was evenly partitioned into 112 windows of size L

112 in a
nonoverlapping manner. The forward-shifted SW-MSA is shown
in Figure 4B, where each ECG patch was shifted forward by half
of one window length, which is 56 � 112

2 . This operation was
implemented by arranging 56 lengths from the beginning to
appending the ending of the feature. This was followed by regular
window partitioning. Figure 4C shows the backward-shifted SW-
MSA. Each ECG patch was shifted backward by half of the
window. This operation is implemented by arranging 56
lengths from the end to appending the beginning of the
feature. The window size parameter chosen was purely result-
oriented, which details are shown in Supplementary Table S1.
And the comparison between our 1D Bidirectional SWT Block
and the regular SWT Block in denoising and segmentation tasks
are shown in Supplementary Table S2.

2.1.4 Multitask Inheritance Training Scheme
Although the denoising and segmentation tasks shared the same
architecture, training was performed separately. To enhance
connections between the two tasks, we applied a multitask
inheritance training scheme. First, the two tasks were trained
from scratch, where both the encoder and decoder use a random
weight initialization. Next stage, we repeated the training task.
The difference was that the weights of the encoder from each task
were initialized from the weights of another task encoder in stage
one. For example, the encoder weights of the model trained from
the denoising task in first stage were used as the initialization
encoder weights of the segmentation task model in the next stage.
We believed that both denoising and segmentation models
required a strong encoder to capture deeper ECG
characteristic waveform representations. Thus, the encoder of
each model was learned from the current task and inherits the
knowledge of another task. As for the data corruption concern
between the two tasks, when splitting the training, validation, and
testing datasets for the two tasks, we ensured that the training set
from one task will not be corrupted by another task’s validation
and test set.

2.2 Data Collection and Processing
2.2.1 Development Data Preparation
In this study, our ECG data comprised retrospective data from
adult patients (age ≥18 years). We collected two Holter ECG
(paper speed, 25 mm/s; amplification, 10 mm/mV; sampling
rate, 500 Hz) datasets: the R-ECG and the E-ECG. The R-ECG
dataset was used to develop the entire system, involving

276 12-lead Holter ECG records from the Department of
Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine. The E-ECG dataset, as
the external test dataset, was collected from the Department of
Cardiovascular Medicine Ruijin Hospital Yuanyang Brunch,
involving 155 12-lead Holter ECG records. All the Holter data
were recorded using the same Holter electrocardiograph
device. All subjects wore the Holter monitoring device for
at least 12 h. The age distribution of the R-ECG dataset was
62.79 ± 14.78 years, with female and male percentages of 50.86
and 49.14%, respectively, in the R-ECG dataset. In the E-ECG
dataset, the age distribution of 155 subjects was 63.43 ±
14.06 years, with female and male percentages of 43.87 and
56.13%, respectively (Table 1). Figure 5 provides the structure
of our dataset.

Anonymized data were used to ensure patient confidentiality.
The algorithm team received anonymized data with only patients’
age and sex information for the subsequent model development.
Informed consent was not required, because the ECG data were
anonymized and deidentified.

2.2.1.1 Denoising Dataset
We built a mixed noise dataset to eliminate the various noise
types in the Holter ECG, which included the following:

i. The MIT-BIH Noise Stress Test Database (NSTDB) contains
two noisy leads with a length of 650,000 sampling points and
360 Hz with three common nose types: muscle artifacts,
electrode motion, and baseline wander (Moody et al., 1984;
Goldberger et al., 2000). The data were resampled to 500 Hz
to match our dataset standard.

ii. The Holter noise dataset was selected from 107 subjects,
including clean and noisy signals. Each period of the
signals lasted approximately 5 min.

iii. Holter noise signals were collected from daily exercise such as
jogging, climbing stairs, sitting, walking etc. These data lasted
approximately 2 h and were recorded from one subject. This
dataset (recorded in 12 leads with 500 Hz sampling rate)
represents noise types produced from daily exercise to some
extent.

The generation of noisy signals is as follows:

Synthesized noise ECG � clean ECG + α1 × noise ECG1

+ α2 × noise ECG2

where clean ECG and noise ECG were cropped from clean and
noise period signals separately under the same lengths; the period
was randomly cropped during training and fixed cropped during
validation and testing. In addition, α1 and α2 were randomly
generated between 0–0.5 during training, using a fixed random
seed during the validation and test stages. The synthesized noise
ECG was used as the input and the clean ECG was the ground
truth of the model.

The de-noising dataset contains 1626 clean samples and 678
noise samples from 108 subjects, the length of a sample is 7168
sampling points (14.336 s). In the inter-analysis, the data of the

TABLE 1 | Characteristics of R-ECG and E-ECG

Characteristics R-ECG E-ECG

Number of subjects 276 155
Age, mean ± SD 62.79 ± 14.78 63.43 ± 14.06
Male (%) 50.86% 43.87%
Female (%) 49.14% 56.13%
Heart rate, mean ± SD 73.54 ± 11.74 74.13 ± 11.55
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107 subjects were randomly grouped by a 7:1:2 ratio into training
set (n = 75), validation set (n = 10), and testing set (n = 22). And
in the intra-analysis, the data of 1626 clean samples and 678 noise
samples were randomly grouped by a 7:1:2 ratio into training set
(1138 clean, 474 noise), validation set (163 clean, 68 noise), and
testing set (136 clean, 325 noise).

2.2.1.2 QRS Complex Segmentation Dataset and Annotation
Creation
The QRS complex segmentation dataset contains 276 samples
from 116 subjects, with a sample length of 7168 sampling points
(14.336 s). In the inter-analysis, the data of the 116 subjects were
randomly grouped in a 7:1:2 ratio into the training set (n = 80),
validation set (n = 12), and testing set (n = 24). In the intra-
analysis, the data of 276 samples were randomly grouped in a 7:1:
2 ratio into a training set (n = 193), validation set (n = 27), and
testing set (n = 56).

This dataset was labeled by a primary cardiologist and a
post-graduate student and then reviewed by two senior
cardiologists. Two labels were created to annotate the QRS
complex: Calculated-QRS (CQRS) and Noised-QRS (NQRS).
CQRS denotes that the ECG signal quality of the currently
labeled heartbeat is sufficient to calculate the amplitude of the
ST-segment. In contrast, NQRS indicates that the current
heartbeat will be culled from the calculation process because
noise inference around the currently labeled heartbeat will
influence the calculation of the ST-segment and J point
amplitude. Further, Not-QRS (NOQRS) is used to mark
points that do not belong to the QRS complex.

2.2.2 Prediction Post-processing
To determine the position of the J point to confirm the location of
the ST segment and isoelectric reference line (IRL), to then
calculate the ST-segment and J point amplitude of deviation,
we labeled QRS complexes beats by beats. The ST segment was
defined from the J point to 60–80 ms after the J point. And We
used the position of the Q-Q interval of each heartbeat as the IRL:

IRL(i,l) � (Q(i,l) + Q(i+1,l))
2

where i denotes the heart beat number, l the lead number, and Q
the onset point of the QRS complex.

The position of the ST segment changes with the heart rate
(HR). As the heart rate increases, the ST-segment shortens. The
position of the ST-segment should be adjusted by the HR, as
follows (Smrdel and Jager, 2008; Sharma et al., 2017):

STi �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

J(i) + 80ms, ifHR(i) < 100 bpm
J(i) + 72ms, if 100 bpm≤HR(i) < 110 bpm
J(i) + 64ms, if 110 bpm≤HR(i) < 120 bpm
J(i) + 60ms, if 120 bpm≤HR(i)

According to the anatomy of the heart, leads I, aVL, and -aVR are
lateral limb leads; leads II, III, and aVF are inferior limb leads; leads
V1 and V2 are septal leads; leads V3 and V4 are anterior leads; and
leads V5 and V6 are anterolateral leads. On this basis, we divided
them into six groups; lead aVR was divided into one group
separately, while the other groups remained unchanged. Outliers
are defined as follows (Crawford et al., 1999; Ibanez et al., 2018):

FIGURE 5 | The structure of our datasets.
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i. ST-segment elevation (STE): At least two adjacent leads with
ST-segment elevation at J point ≥0.25 mV when a male is
younger than 40 years old, ≥0.2 mV in males aged ≥40 years
or ≥ 0.15 mV in females in leads V2–V3 and/or ≥0.1 mV in
the other leads.

ii. ST-segment depression (STD): At least two contiguous leads
in each group with ST-segment depression ≥0.05 mV.

iii. J point elevation: Compared with the earlier
electrocardiogram, new J point elevation ≥0.1 mV in all
leads (in the absence of V2 and V3 leads).

All outliers should last for a minimum period of 1 min after
the first outlier appeared.

2.2.3 Model Comparison and Validation on Public
Databases
We further validated the performance of the proposed models.
We chose DENS-ECG (Peimankar and Puthusserypady, 2021),
FCN (Chiang et al., 2019), Unet_LUDB (Moskalenko et al., 2020),
1D CNN Unet and DRnet (Qiu et al., 2021) to compare the
models’ performance on denoising and segmentation tasks. We
further validated the performance of our proposed system on
Long-term ST database (LTST DB) (Jager et al., 2003). The Long-
term ST database contains 20–24-h ambulatory 2- or 3- lead ECG
recordings sampled at 250 Hz from 80 subjects. Each record
includes beat-by-beat QRS complex annotations and ST-segment
measurements. In our study, the outliers were defined in line with
guideline and the standards differed across leads. Therefore, the
data without lead name were excluded. 46 2-lead and 3 3-lead
ECG recordings were chosen as external validation. To match our
standard and model input size, we chose the protocol C (Vmin =
100 μV and Tmin = 60 s) as annotation information and all data
were resampled to 500 Hz.

2.2.4 Statistical Analysis
The difference between the denoised and original groups before
and after denoising was assessed using a paired t-test. The
difference in segmentation model performance between the
test dataset from R-ECG and E-ECG was assessed using an
independent-samples t-test. The two-sided statistical
significance was set at p < 0.05. All data were analyzed using
IBM-SPSS® version 26.0 (IBMCorp., Armonk, NY, United States,
2019).

2.3 Performance Evaluation
In denoising task, we chose the AdamW optimizer for 300 epochs
under a cosine decay learning rate scheduler (Kingma and Ba,
2014). An initial learning rate of 0.0001, and batch size of 64 were
used. The mean absolute error (MAE) was selected as the loss
function. The evaluation metrics included the root mean square
error decrease (RMSEde), improvement of signal-to-noise ratio
(SNRimp), and percentage root mean square difference (PRD).
RMSEde is calculated using RMSEin to reduce RMSEout, and a
larger RMSEde indicates a better noise reduction performance.
RMSEde was obtained using the following expression:

RMSE de � RMSEin − RMSEout

RMSEin �

���������������
1
N

× ∑N
n�1

(xi − x̂i)2
√√

RMSE out �

���������������
1
N

× ∑N
n�1

(xi − ~xi)2
√√

SNRimp is calculated using SNRout to reduce SNRouint, and a large
SNRimp indicates better noise reduction performance. SNRimp

was obtained using the following expression:

SNRimp � SNRout − SNRin

SNR in � 10 × log10( ΣN
n�1x

2
i

ΣN
n�1(xi − x̂i)2)

SNR out � 10 × log10
⎛⎝ ∑N

n�1x
2
i

ΣN
n�1(xi − ~xi)2

⎞⎠
The RPD measures the quality of recovery from the noise

signal. A lower PRD value indicates better design quality. The
RPD is expressed as follows:

PRD �
�����������
ΣN
n�1(xi − ~xi)2
ΣN
n�1x

2
i

√
× 100,

where xi is the value of sampling point i in the clean signal, and x̂i

is the value of sampling point i in the input noise signal. ~xi is the
value of sampling point i in the output denoised signal, and N is
the length of the ECG signal.

In the segmentation task, the optimizer was AdamW for 300
epochs using a cosine decay learning rate scheduler. And initial
learning rate of 0.0001 and batch size of 64 were used. The loss
function chosen was cross-entropy loss function. This study used
precision, recall, and F1 are defined as follows:

Precision � True Positive

True Postive + False Postive

Recall � True Postive

True Postive + False Negative

F1 � 2 ×
Precision × Recall

Precision + Recall

where each sampling point is calculated individually.

3 RESULTS

3.1 Denoising Model
We compared the performance between our model and the
comparison models in inter- and intra-analyses, as well as in
one-stage and two-stage (shown in Table 2). All four encoder and
decoder models gain a better performance on multitask
inheritance training scheme than training from scrath in both
inter- and intra-analyses. All models gained better performance
of RMSE de, SNRimp, and PRD on intra-analysis than inter-
analysis in both training schemes. In inter-analysis, compared
with other models, our model achieved better performances in
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both one- and two-stage training schemes with RMSE de,
SNRimp, and PRD values of 0.074, 9.851, and 16.550 and
0.078, 10.903, and 14.726, respectively. Figure 6 shows the
inter-analysis denoising results of different methods on
multitask inheritance training scheme. The Five-fold Cross
validation of inter-analysis in denoising task is shown in
Supplementary Tables S3, S4.

We then compared the distribution of NQRS and CQRS
between original ECG signals (original group) and denoised
ECG signals (denoised group) in the same dataset
(Figure 7). The denoised group showed significantly more
CQRS labels and less NQRS lables than the original group
(p < 0.0001). In this work, we demonstrated that the great
performance of our denoising model and the impact of
signals quality on the segmentation model results. Good
signal quality is essential to improve the performance of
segmentation model.

3.2 QRS Complex Segmentation Model
Tables 3, 4 present the segmentation performances between
our model and the comparison models in inter- and intra-
analyses, as well as training from scratch and multitask
inheritance training schemes. All four encoder and decoder
models performed better in the multitask inheritance training
scheme than in the training from scratch in both inter- and
intra-analyses. Our model achieved better performances than
the other models in both inter- and intra-analyses. The
precision, recall, and F1 of CQRS in the inter-analysis were
96.00, 93.06, and 93.17%, respectively. The precision, recall,
and F1 of CQRS in the intra-analysis were 95.68, 96.04, and
95.86%, respectively. Figure 8 shows the inter-analysis
segmentation results of different methods on multitask
inheritance training scheme. The results showed that our
model was sufficiently accurate in distinguishing the QRS
complex, which laid the foundation for our subsequent
processing. The Five-fold Cross validation of inter-analysis in
segmentation task is shown in Supplementary Tables S3, S4.

3.3 Model’s Prediction Result
Table 5 presents the statistical outcome of our model’s
prediction of STD and STE in every lead group of the-ECG
and R-ECG test datasets. From the R-ECG dataset, our model
detected STD in 2 patients in the lateral limb leads (I, aVL),
100 patients in the inferior limb leads (II, III, aVF), 11 patients
in the aVR lead, 6 patients in the septal leads (V1, V2), 19
patients in the anterior leads (V3, V4), and 97 patients in the
anterolateral leads (V5,V6). Four patients had inferior leads
(II, III, aVF),3 patients had aVR lead, 3 patients had septal
leads (V1, V2), 4 patients had anterior leads (V3, V4), and 1
patients had anterolateral leads (V5,V6) with STE. In the
E-ECG dataset, our model detected STD in 2 patients in the
lateral limb leads (I, aVL), 23 patients in the inferior limb
leads (II, III, aVF),1 patients in the aVR lead, 2 patients in the
septal leads (V1, V2), 4 patients in the anterior leads (V3, V4),
and 20 patients in the anterolateral leads (V5,V6). One
patients had inferior leads (II, III, aVF), 1 patient had
septal leads (V1, V2), 2 patient had anterior leads (V3, V4)
with STE.

The prediction of the model was then double-checked to
ensure that the outliers were correct (Table 6). In the R-ECG
dataset, 103 patients with STD and 10 patients with STE were
detected with positive predictive values of 80.6 and 60%,
respectively. In the E-ECG dataset, 68 patients with STD and
4 patients with STE were detected with positive predictive values
of 76.5 and 50%, respectively. The performance of our model on
LTST DB is shown in Supplementary Table S5. And our model
achieved positive predictive values (precision) of STD and STE
with 97.37 and 82.35%, respectively. This result shows the
robustness and generalization of our model.

4 DISCUSSION

With the rapid development of computer vision and its in-depth
application in the medical field, we discovered that AI can capture
higher-dimensional information that is different from human

TABLE 2 | The comparison results of denoising models.

Model Training from scratch Multitask inheritance training

RMSEde SNRimp PRD RMSEde SNRimp PRD

Inter-analysis DENS_ECG 0.028 2.546 38.541 - - -
FCN 0.045 4.689 30.117 0.068(+0.022) 5.079(+0.390) 28.791(-1.326)
Unet_LUDB 0.058 6.625 24.099 0.062(+0.004) 7.323(+0.698) 22.236(-1.863)
1D CNN Unet 0.065 7.959 20.668 0.069(+0.004) 8.775(+0.816) 18.814(-1.854)
1D CNN Unet + DRnet 0.067 0.353 19.844 - - -
EBTnet 0.071 9.269 17.774 0.074(+0.003) 10.006(+0.737) 16.327(-1.447)

Intra-analysis DENS_ECG 0.058 6.541 35.842 - - -
FCN 0.068 8.409 28.908 0.070(+0.002) 9.049(+0.640) 26.852(-2.056)
Unet_LUDB 0.062 7.255 22.322 0.066(+0.004) 8.072(+0.817) 20.400(-1.922)
1D CNN Unet 0.068 8.790 18.363 0.073(+0.005) 9.672(+0.882) 16.967(-1.396)
1D CNN Unet + DRnet 0.072 0.369 17.599 - - -
EBTnet 0.074 9.851 16.550 0.078(+0.004) 10.903(+1.052) 14.726(-1.824)

Inter-analysis: The training, validation, and testing set were divided based on subjects.
Intra-analysis: The training, validation, and testing set were divided based on samples.
The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the results of multi-task inheritance training are better than the
results of training from scratch.
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thinking habits. A medical student must study for several years
before becoming a physician. Qualified cardiologists require
substantial professional training and experience to develop the
ability to identify complicated ECG information independently.
Furthermore, objective issues such as the unequal distribution of
medical resources may affect the diagnosis quality. In contrast to
doctors’ traditional learning methods, AI shows excellent
homogeneity and accuracy, potentially narrowing the gap
between outstanding physicians and rural doctors. Our
previous research (Du et al., 2021) proposed an FM-ECG AI-
based model to identify various cardiac abnormalities using 12-
lead standard ECG data, with ECG images as the model input. It
can also prove that AI can discover more information hidden in

subtle ECG waveform changes, or that AI is a microscope in the
world of data.

Some studies divided their datasets based on samples (Zhao
et al., 2020), while others based on subjects (Xiao et al., 2018; Cho
et al., 2020; Makimoto et al., 2020; Martin et al., 2021). In our
study, we compared inter- and intra-analyses. Our models
achieved impressive performances in both inter- and intra-
analyses. The models’ performance on the intra-analysis of
denoising and segmentation was better than inter-analysis.
However, splitting datasets based on samples may have cross-
contaminated the training, validation, and testing datasets,
particularly in standard 10s 12-lead ECG. Therefore, we
preferred the inter-analysis results.

FIGURE 6 | The inter-analysis denoising results of different methods on multitask inheritance training scheme. (A) Ground-truth ECG. (B) Noise-convolved ECG.
(C) Denoised ECG by 1D CNN Unet. (D) Denoised ECG by FCN. (E) Denoised ECG by Unet_LUDB. (F) Denoised ECG by EBTnet.
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Based on our research, we wanted to further explore the
application value of AI algorithms in Holter ECG, thus, we
developed an automatic system to detect ST-segment and J
point using Holter ECG data. To learn characteristic waveform
representations from ECG signals, we proposed a 1D
bidirectional SWT Block that employs a window-based
transformer mechanism for signal data. We discovered that
using only one time-series dimension is sufficient for position
embedding in a 1D bidirectional SWT Block, which preserves the
properties of the ECG signal and brings it closer to the
transformer’s native input. According to the results, our

models outperformed the other models in both denoise and
segmentation tasks. The denoising model achieved RMSE de,
SNRimp, and PRD values of 0.074, 10.006, and 16.327,
respectively. Our segmentation model achieved precision,
recall, and F1 scores of 94.51, 96.00, and 93.06%, respectively.
These result reveals that developing a high specificity model to
detect ST-segment deviation and J point elevation is possible.
Hypothesizing that AI explores higher-dimension information
that humans cannot paraphrase and AI can provide more novel
ECG digital labels that are different from our knowledge systems
to diagnose cardiac disease are reasonable.

The Holter ECG is recorded for a long time, and dividing it
into a image every 10 s as model input would require a lot of
computing resources. Therefore, we chose a 1D original ECG
signal as the model input. Another advantage for using a 1D
signal is that it contains the most primitive unprocessed
information, whereas 12-lead ECG images are pre-processed
by its ECG recording machine.

Prior deep learning studies have achieved strong performances in
clinical medicine (Hamet and Tremblay, 2017). With the rapid
development of mobile and wearable ECG technologies, several
excellent ECG algorithms have emerged (Attia et al., 2019). Most
existing AI-based ECG studies use public data sets to train their
models. Unexpectedly, when applied in the clinical environment, the
performance of the model still cannot satisfy clinical demands. To a
certain extent, this can be attributed to the quality of real-world ECG
data, which are more complex and variable than public datasets.
Caused by daily activities such as body movement and clothing
friction while wearing the ECG recorder, particularly the Holter
recorder, more interfered signals would be in the 1D original ECG
data. However, it requires high-quality signal data to precisely detect

FIGURE 7 | The distribution of NQRS and CQRS before and after
denoising in R-ECG and E-ECG datasets. Data are expressed as mean ± SD.
The difference between un-denoise and denoise groups was analyzed by
paired t-test, and the difference between R-ECG and E-ECG was
analyzed by independent-samples t-test. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, and ns denoted no significance difference.

TABLE 3 | The comparison results of segmentation models in the inter-analysis.

Model Label Training from scratch Multitask inheritance training

F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)

DENS_ECG NOQRS 95.41 96.46 94.37 - - -
CQRS 60.99 53.23 71.40 - - -
NQRS 0.00 0.00 0.00 - - -

DRNET NOQRS 99.21 99.44 98.97 - - -
CQRS 89.64 87.00 92.44 - - -
NQRS 42.35 45.61 39.53 - - -

FCN NOQRS 99.33 99.29 99.38 99.30 98.96 99.65
CQRS 90.04 88.53 91.61 91.55 94.76 88.55
NQRS 42.08 51.68 35.49 45.38 43.95 46.91

Unet_LUDB NOQRS 99.41 99.33 99.49 99.36 99.13 99.58
CQRS 93.79 91.74 95.93 94.06 92.96 95.19
NQRS 22.24 70.33 13.21 24.59 77.56 14.61

1D CNN Unet NOQRS 99.50 99.56 99.44 99.51 99.45 99.56
CQRS 93.22 93.13 93.31 94.48 95.17 93.80
NQRS 62.45 60.36 64.70 64.16 62.33 66.11

EBTnet NOQRS 99.47 99.53 99.40 99.52 99.44 99.61
CQRS 93.83 94.50 93.17 94.51 96.00 93.06
NQRS 69.62 64.07 76.24 71.85 68.50 75.54

The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the results of multi-task inheritance training are better than the
results of training from scratch.
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subtle changes in J point and ST-segment deviation. Therefore, we
collected Holter ECG from the Ruijin Hospital, Shanghai Jiao Tong
University School ofMedicine. Then, we proposed a denoisingmodel
to reduce the disturbance of the interfered signals. We compared the
distribution of NQRS and CQRS before and after denoising using the
same dataset (Figure 7). A significant difference was observed
between the two groups. The denoised group showed more CQRS
and less NQRS labels than the original group (p < 0.0001). These
results suggest that our denoising model has sufficient capacity to
handle noisy signals and is conducive to the subsequent detection
accuracy. There is no significant difference between R-ECG and
E-ECG in each group, indicating that our model is sufficiently robust
enough to handle different datasets.

Since AI has been applied to ECG diagnosis in recent years,
arrhythmia has attracted the attention of several research teams.
Andrew et al. (Hannun et al., 2019) used a deep neural network to
analyze ECG data collected by a single lead ambulatory ECG
monitoring device, and the performance of their model was better
than that of professional physicians. Some researchers have
developed a CNN deep learning algorithm to classify AF, I-AVB,
left and right bundle branch blocks, atrial premature beats, and
premature ventricular contraction on standard 12-lead ECG records
(Oh et al., 2018; Jeong and Lim, 2021). However, in terms of shifting
the detection yield to myocardial ischemia and MI, however, certain
flaws have been encountered. Arrhythmia can be diagnosed with two
or three leads, whereas myocardial ischemia requires at least 12 leads
to affirm that the myocardial damaged position, as ECG waveforms
can be different in each lead when coronary artery damage occurs in
different locations. Moreover, the dynamic change of the ST-segment
in myocardial ischemia andMI is difficult to be captured by standard
12 leads ECG continuously, particularly in unstable angina.

To precisely identify the IHD, the proposed model is designed to
recognize the QRS complex to calculate the ST-segment and J point
deviation on 12 leads Holter ECG. Table 5 presents the statistical
results of our model. The J point masks the end of the ventricular
depolarization and the start of repolarization. The deviation of the J
point generally does not exceed 0.1mV, itmight suggest cardiac injury
otherwise. The precise positioning of the J point is also of great
significance. For example, it can be used to calculate PJ interval, which
indicates the conduction abnormalities when it is prolonged more
than 0.27 s. Althoughwe did not find patients with J point elevation in
our dataset, we found patients with STE and STD, which proves that
our system can positioning J point with excellent ability. Inferior wall
myocardial injuries are more common in patients with myocardial
injuries (Warner and Tivakaran, 2021). More STDs were detected in
the inferior leads (II, III, aVF) (Shah et al., 1983). Although inferior
myocardial infarction has a better prognosis than other cardiac
locations, we should note that it can be associated with right
ventricular infarction, which portends a worse outcome. STE was
always detected during the super-acute and acute periods of STEMI;
therefore, we captured less STE in our dataset than STD. We double-
checked the model’s prediction to confirm whether the outliers were
correct (Table 6). In the R-ECG dataset, STD and STE were detected
with positive predictive values of 76.9 and 64%, respectively. In the
E-ECG dataset, STD and STE were detected with positive predictive
values of 85.7 and 55.5%, respectively. STEMI accounts for 30% of
acute coronary syndromes, whereas acute coronary syndromewithout
significant STE accounts for 70%. Patients with STD accounted for
approximately 31% of acute coronary syndromes without significant
STE, whereas STD combined with T-wave inversions accounted for
16% (Bhatt et al., 2022). Our results are consistent with the
distribution of disease characteristics. STE can present as MI, acute

TABLE 4 | The comparison results of segmentation models in the intra-analysis.

Model Label Training from scratch Multitask inheritance training

F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)

DENS_ECG NOQRS 90.87 97.39 85.18 - - -
CQRS 48.57 34.78 80.45 - - -
NQRS 0.00 0.00 0.00 - - -

DRNET NOQRS 99.21 98.93 99.48 - - -
CQRS 89.59 91.58 87.69 - - -
NQRS 45.99 47.65 44.45 - - -

FCN NOQRS 99.34 99.18 99.50 99.29 99.30 99.29
CQRS 91.52 89.83 93.29 93.56 92.07 95.11
NQRS 45.90 68.50 34.52 49.98 69.41 39.05

Unet_LUDB NOQRS 99.35 99.47 99.23 99.25 99.14 99.35
CQRS 91.36 86.93 96.27 93.23 91.52 95.00
NQRS 27.81 49.94 19.27 30.07 72.04 19.00

1D CNN Unet NOQRS 99.50 99.54 94.63 99.54 99.58 99.51
CQRS 94.63 94.31 94.96 95.21 94.15 96.29
NQRS 71.23 74.43 68.31 73.59 80.37 67.87

EBTnet NOQRS 99.57 99.52 99.63 99.61 99.53 99.70
CQRS 95.38 95.43 95.34 95.86 95.68 96.04
NQRS 76.76 79.75 73.99 78.75 85.70 72.84

The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the results of multi-task inheritance training are better than the
results of training from scratch.
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pericarditis, myocarditis, vasculitis, and hyperkalemia. However, the
cases presenting with STE were assumed to be STEMI. STEMI is the
primary cause of STE and is a medical emergency that requires
prompt recognition and treatment (Chandra et al., 2011). Therefore,
fewer STEswere found amongHolter-wearing patients. In our dataset,
the number of patients with STE was small, and the results may have
improved if the dataset had a larger positive sample size.

For unstable angina and stable angina pectoris, approximately
half of the 12-lead standard ECG is normal when the diseases is
resting. Holter can record ECG for at least 24 h, and the ischemic

changes shown on ECG at a corresponding time during chest
pain attacks can determine the diagnosis of angina. In addition,
painless myocardial ischemia can be detected using a Holter ECG
recorder. Moreover, it would benefit patients with slight
myocardial ischemic symptoms who have a high risk of
cardiovascular or sudden cardiac death. Although Holter has
the above advantages for detecting myocardial ischemia, it is
rarely applied to automated myocardial ischemia monitoring.
Owing to the existing Holter equipment failure to detect ST-
segment with high precision, the result of the deviation of the ST-
segment does not help in diagnosis. That is, diagnosing silent

TABLE 5 | The distribution of the ST-segment depression and elevation in every
lead group.

Datasets Type I, aVL II, III, aVF aVR V1, V2 V3, V4 V5, V6

R-ECG STD 2 100 11 6 19 97
STE 0 4 3 3 4 1

E-ECG STD 1 23 1 2 4 20
STE 0 1 0 1 2 0

TABLE 6 | The result of cardiologist’s manual verification to validate the result of
our model.

STD STE

Our system Cardiologist Our system Cardiologist

R-ECG 103 83 10 6
E-ECG 68 52 4 2

FIGURE 8 | The inter-analysis segmentation results of different methods on multitask inheritance training scheme. (A) Ground-truth ECG. (B) 1D CNN Unet. (C)
FCN. (D) Unet_LUDB. (E) EBTnet.
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myocardial ischemia is still challenging since physicians cannot
analyze each heartbeat from 24 h of Holter ECG data.

The proposed system can provide more accurate information
with an excellent ability to handle large amounts of data to
cardiovascular system regarding whether the patients suffer
from myocardial ischemia while wearing Holter ECG recorders.
Furthermore, the accurate detection of the ST-segment and J point
may be a powerful force in resolving the excessive false alarms that
afflict current ST monitoring software.

4.1 Limitation
Several limitations of this study should be noted. First, it was
performed at a single center in Shanghai, China. Using external
real-word data sets from other regions is necessary for further
verification and analysis to ensure the validity of our AI model
worldwide. Second, the proposed model trained with ECG data only
incorporated age, sex, with biomarkers, medicines, or other history
information. Additional patient data may have further improved the
diagnostic value of our model and led to the discovery of previously
unknown conscious ECG information. Third, rather than using the
gold standard of coronary heart disease, such as coronary
angiography, our system’s conclusions were confirmed only by
cardiologists. In terms of models, the proposed denoising model
performes well in some inferred signals, but it is powerless with
severe noise signals, such as part of the lead falling off or vigorous
clothing friction. Moreover, to a certain degree, our model’s
diagnostic result may lack continuity and the period of STD is
discontinuous. This is because of our model judgment rules: an
abnormal condition is assessed as the associated abnormal label and
noted on the table only if it lasts for at least 1 min. The present QRS
complex is not be included in the computation if the model deems a
QRS complex as NQRS. Therefore, once an NQRS label appears in a
segment of the ST-segment abnormal ECG signal, our results show
the characteristics of the discontinuous distribution.

4.2 Future Study
We have investigated the possibility of applying AI to analyze ECG
images and 1D signals. Future directions are related to improving
the establishment of the Holter ECG dataset and merging of illness
information in more dimensions. First, more information about
the patient history and various inspection results will be recorded.
Patients who have a gold standard for CHD will be chosen as the
control group to verify our results. Other information such as
echocardiogram, electrolyte, blood lipid level, blood pressure, and
blood sugar can provide model more dimensional information to
diagnose and further predict potential diseases. Second, in the
current study, we failed to find patients with J point elevation, but
we expect that with additional Holter ECG data, we can screen
patients with J point elevation and follow them for years. We may
then look for a link between J point elevation and heart diseases end
events, as well as predict critical events such as ventricular

fibrillation and SCD. Third, in terms of AI models, we will
build a multi-label AI model to classify arrhythmia, MI, and
other disorders such as myocarditis and hyperkalemia using
long-term ECG data. Finally, future studies, particularly large
multicenter prospective cohort studies, would be conducted to
assess the prediction level of the AI model.

5 CONCLUSION

In conclusion, we proposed a transformer-structure-based
automatic system combining denoising and segmentation
modules, which can be applied to identify ST-segment and J
point abnormalities in patients from long-term Holter ECG data.
The proposed system has the potential to assist in clinical decisions
while reducing the burden on doctors with fewer medical resources.
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As the fast development of wearable devices and Internet of things technologies, real-time
monitoring of ECG signals is quite critical for cardiovascular diseases. However, dynamic
ECG signals recorded in free-living conditions suffered from extremely serious noise
pollution. Presently, most algorithms for ECG signal evaluation were designed to divide
signals into acceptable and unacceptable. Such classifications were not enough for real-
time cardiovascular disease monitoring. In the study, a wearable ECG quality database
with 50,085 recordings was built, including A/B/C (or high quality/medium quality/low
quality) three quality grades (A: high quality signals can be used for CVD detection; B: slight
contaminated signals can be used for heart rate extracting; C: heavily polluted signals need
to be abandoned). A new SQA classification method based on a three-layer wavelet
scattering network and transfer learning LSTM was proposed in this study, which can
extract more systematic and comprehensive characteristics by analyzing the signals
thoroughly and deeply. Experimental results (mACC = 98.56%, mF1 = 98.55%, SeA =
97.90%, SeB = 98.16%, SeC = 99.60%, +PA = 98.52%, +PB = 97.60%, +PC = 99.54%,
F1A = 98.20%, F1B = 97.90%, F1C = 99.60%) and real data validations proved that this
proposed method showed the high accuracy, robustness, and computationally efficiency.
It has the ability to evaluate the long-term dynamic ECG signal quality. It is advantageous to
promoting cardiovascular disease monitoring by removing contaminating signals and
selecting high-quality signal segments for further analysis.

Keywords: dynamic electrocardiogram, signal-quality assessment, wavelet scattering, signal-quality index, long
short-term memory network

INTRODUCTION

Cardiovascular diseases (CVDs) are the most common non-communicable diseases globally,
responsible for an estimated 17.8 million deaths in 2017, accounting for 31% of all global
deaths, of which more than three quarters were in low income and middle-income countries
(Liu et al., 2018; Roth et al., 2018). Therefore, early continuous monitoring and prevention for CVDs
are very urgent. The recent commercial availability of wearable devices and Internet of things (IoT)
technologies with cardiovascular disease detection capabilities has revolutionized the diagnosis and
management of these commonmedical issues, as it has placed the power of arrhythmia detection into
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the hands of the patient (Liu et al., 2019b). However, the dynamic
long-term ECG signals suffer from extremely serious noise
pollution due to the dynamic long-term unsupervised free-

living monitoring environment (Huerta et al., 2019). A recent
study of 100 patients undergoing cardioversion for atrial
fibrillation showed that 34% of wearable devices’ ECG

FIGURE 1 | Flowchart of the proposed method.
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recordings were categorized as “unclassified” by the device
algorithm due to unclear reasons or baseline artifacts and low
amplitude recordings (Kaptoge et al., 2019). Poor
electrocardiographic signal quality can result in
misinterpretation and inappropriate results, hazard the correct
diagnosis information (Andrea et al., 2018), increases the risk of
false alerts (Liu et al., 2011), which may lead to unnecessary
medical referrals and testing (Ip, 2019), and increase the
workload of physicians (Zhao and Zhang, 2018).
Consequently, it is quite urgent to evaluate the quality of
wearable dynamic ECG signals, to eliminate signals with
serious noise pollution, to distinguish between clean signals
that can be used for disease diagnosis and mildly
contaminated signals that can only be used for heart rate
extraction, which can effectively reduce false alarm and avoid
interference with CVD diagnosis (Xu et al., 2021).

The quality evaluation of wearable dynamic ECG signals has
aroused the researchers’ extensive attention (Satija et al., 2018; Liu
et al., 2019a; Huerta et al., 2019; Liu F. et al., 2020). As early as in
2011, the PhysioNet Cardiology Challenge addressed the issue of
developing an efficient algorithm being able to run in real-time on
a mobile phone, which can be able to indicate within a few
seconds, while the patient is still present, if the ECG is of adequate
quality for interpretation, or if another recording should be made
(Silva et al., 2011). From then on, many wearable ECG signal-
quality assessment (SQA) methods have been developed, and a
variety of signal-quality indexes (SQI) have been explored based
on the extraction of statistical, morphological, nonlinear, or time-
frequency domain features etc. from the signals (Smital et al.,
2020). For instance, Li et al. (2008) proposed a bSQI index based
on the principle that different R-wave detectors should be nearly
the same for clean ECG signals, while they should have different
results for ECG signals polluted by noises, and got a good grade in
the 2011 PhysioNet/CinC Challenge (Clifford and Moody, 2012).
Based on this index, Liu et al. (2018) proposed the generalized
bSQI index, generalized the two QRS detector–based bSQI to
multiple QRS detector–based bSQI, and mainly studied the
effects of type and number of R wave detectors on signal-
quality assessment performances. Smital et al. (2020) proposed
continuous signal-to-noise ratio curve using the time-frequency
domain approach, including the Wavelet Wiener Filtering
method and short-time Fourier transform frequency approach,
to estimate real-time quality assessment of long-term ECG signals
recorded by wearables in free-living conditions. He et al. (2020)

proposed a fuzzy comprehensive evaluation algorithm based on
characteristics of ECG waveform and each band, to
comprehensively evaluate the quality of ECG signals.

However, existing SQA methods highly demand robust
methods for accurate and reliable detection and measurement
of morphological and RR-interval features from noise-free and
noisy ECG signals. Although the ECGmorphology feature–based
methods have shown promising results in noise-free ECG
recordings, accuracy and robustness of QRS complex detection
and waveform delineation methods are significantly degraded in
the presence of severe muscle artifacts and other external noise
(Satija et al., 2017). Also, most SQA methods graded the dynamic
ECG signal quality into two groups: acceptable versus
unacceptable (or good versus bad). In fact, in some wearable
ECG signals only R wave could be detected, other waves such as P
or ST were drowned out by the noise (Xu et al., 2021). These
signals cannot be used for some CVD detection, but they also
cannot be abandoned as heart rate information can be obtained.
Therefore, these signals could not be simply divided into
acceptable or unacceptable. In this study, a wearable ECG
quality database with 50,085 recordings was built, which
included A/B/C (or high quality/medium quality/low quality)
three quality grades (A: high-quality signals can be used for CVD
detection; B: slightly contaminated signals can be used for heart
rate extracting; C: heavily polluted signals need to be abandoned).
The research has revealed that traditional indexes merely based
on morphological, nonlinear, or time-frequency domain features
did not perform well on this database, as class B signals were
easily confused with class A signals. It is essential to extract more
systematic and comprehensive characteristics by analyzing the
signals thoroughly and deeply.

The wavelet scattering algorithm, proposed by Mallat (2012),
Bruna and Mallat (2013), and Anden and Mallat (2014) using the
deep convolutional network architecture, iterated over wavelet
convolution, nonlinear modulus, and averaging operators to
compute higher-order scattering coefficients, which can build
the translation invariant, stable and informative signal
representation. The wavelet transform method provided
stability under the action of small diffeomorphism, while the
nonlinear operation and the integration over time give translation
invariance (Tang et al., 2015). Cascading wavelet transforms
allowed the recovery of high frequencies lost when averaging
the absolute values of coefficients of previous wavelet transforms
(Destouet et al., 2021). These preprocessing methods provided an

TABLE 1 | Five signal quality scores for the 10-s ECG segments.

Score Description for signal
quality scoring

1 ECGs have a clear QRS complex and T wave. Baseline wander does not influence the identification for QRS.
0.75 Transient high amplitude impulse exists, but not more than three episodes. The majority of QRS complexes can be visually

clearly identified.
0.5 Both large baseline wander and transient high amplitude impulse exist. It is challenging to visually clearly identify the QRS

complexes in a 2–3 s time window.
0.25 More serious lager noises exist, such as strong Gaussian noise and signal saturation and others. In these noise episodes, it is

impossible to identify the QRS complex. But at least 4–5 s continuous identifiable heart beats are visible.
0 Strong noises occupy in the more than 5 s episode. It is very hard to identify the heart beat for the most signal.
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in-depth analysis of signals. First-order scattering coefficients
characterize persistent phenomena such as tendency and
envelope, while second-order scattering coefficients
characterize transient phenomena such as shock signals and
amplitude modulation (Anden and Mallat, 2014). The wavelet
scattering method has been wildly used for acoustic scene
classification (Li et al., 2019), speech recognition (Fousek
et al., 2015; Joy et al., 2020), and heart sound classification
(Mei et al., 2021), which yielded efficient representations for
audio processing. However, wavelet scattering currently was
seldom used in ECG analysis and application. Sepúlveda et al.
(2021)extracted features of the signal at different time scales using
the wavelet scattering algorithm for emotion recognition. Also,
Liu Z. et al. (2020) employed wavelet scattering transform for
ECG beat classification.

In this study, in order to address the classification issue of A/B/
C three quality levels wearable ECG signals, a new SQA
classification model was proposed based on a three-layer
wavelet scattering network and transfer learning long short-
term memory (LSTM) method. As the result shows, it
performed very well on the quality assessment of wearable
dynamic ECGs.

MATERIALS AND METHODS

Figure 1 displays the flowchart of the proposed method. It first
established a wearable ECG quality database with
50,085 recordings from two public databases. Then, a quality
pre-assessment was established, to delete the lead-fall signals and
pure noise, and to avoid the adverse impact of invalid samples on
the training models. Also then, the scattering characteristic
matrix was extracted by applying a three-layer wavelet
scattering network. Finally, a bi-directional long short-term
memory (Bi-LSTM) network was employed to train the
classification model.

Database
A total of 50,085 recordings of wearable ECGs were used in this
study, which were from the Brno University of Technology ECG
Quality Database (BUTQDB) (Nemcova et al., 2020) and the
2011 PhysioNet/CinC Challenge (Goldberger et al., 2000; Silva
et al., 2011). In the Brno University of Technology ECG Quality
Database, the data comprise 18 long-term recordings of single-
lead ECGs, collected from 15 subjects (9 females, six males) aged
between 21 and 83 years. The signals are longer than 24 h which
were detected using the Bittium Faros 180 device (mobile ECG
recorder) under free-living conditions. All patients on the
datasets did not have any diagnostics. The database contains
signal-quality labels for partly data provided by three ECG
experts, as well as the consensus of these experts, who
grouped the signals into three quality classes.

Class A (high quality): all significant waveforms (P\QRS\ST\T
waves) are clearly visible and the onsets and offsets of these
waveforms can be detected reliably. The recording with no
obvious noise can be used for the diagnosis of cardiovascular
disease.

Class B (medium quality): the noise level is increased and
significant points in the ECG are unclear (for example, PR
interval and/or QRS duration cannot be measured reliably),
but QRS complexes are clearly visible and the signal enables
reliable QRS detection. Heart rate can be measured correctly.

Class C (low quality): QRS complexes cannot be detected
reliably and the signal is unsuitable for any analysis. Heart rate
cannot bemeasured correctly. These signals will interfere with the
diagnosis of the cardiovascular disease and need to be removed.

In this study, the annotated recordings and segments have
been divided into many fragments of unequal length based on the
signal-quality labels provided by ECG experts. Each fragment has
an independent label. Also, we segmented the annotated
fragments into 10-s fragments with no overlap. Also, a sample
of 10-s is the input data to the classificationmodel. The number of
class A is 11,708, class B is 7,860, and class C is only 657. It was
obvious that data distribution was unbalanced. As we know,
imbalanced classes will greatly reduce the generalization ability of
the classification model (Clifford et al., 2012). Balancing the
database classes can overcome this problem. In this study, we
balanced the dataset by expanding the class C data using two
ways: one is importing same class data from other databases, and
the other is adding noise to clean data.

A total of 1,000 recordings of standard 12-lead ECGs were
provided by the 2011 PhysioNet/CinC Challenge (Silva et al.,
2011). In 1,000 12-lead ECGs, 773 were labeled as “acceptable,”
225 were “unacceptable,” and two were “intermediate.” Each
signal had a length of 10 s. All patients on the datasets did not
have any diagnostics. In Liu et al. (2018), every single channel of
ECGs had been scored and re-labeled by five researchers, and a
total of 9,941 acceptable and a total of 2,059 unacceptable 10-s
ECG segments were obtained. In this study, based on the scores in
the Liu et al. (2018) and Liu et al. (2019b), we annotated all the
leads (10 s segments) individually. For every single channel of
ECGs, five scores Si, i � 1/5 were given by five researchers as
presented in Table 1. Also, the average score �S(�S � 1

5∑5
i�1Si) was

used as a threshold. The signals were re-labeled as “class A” if it
was higher than 0.75, as “class B” if it was higher than 0.25 and
lower than 0.75. Otherwise, the signal was labeled as “class C”. We
obtained a total of 4,455 “class A,” a total of 5,486 “class B,” and a
total of 2,059 “class C” 10-s ECG segments.

If all signals from these two databases were used together
simply, the number of class A would be 16,163, class B would be
13,346, and class C would be only 2,716. It was obvious that data
distribution was also extremely unbalanced. In this way, class B
7860 signals from the Brno University of Technology ECG
Quality Database were employed to expand the class C data
by adding noise from the PhysioNet noise stress test database
(NSTDB) (Moody et al., 1984). Also, 10,000 recordings chosen
randomly form class A were also used to expand the class B
database (3,000) and class C database (7,000) by adding noise
from NSTDB, for class B; the signal-to-noise ratio (SNR) was
equal to 10db, for class C was -10bd. In the NSTDB database,
three types of noise were exiting, record bw contains baseline
wander noise, record em contains electrode motion artifact with a
significant amount of baseline wander and muscle noise as well,
and record ma contains mainly muscle noise (Clifford et al.,
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2012). Because the baseline wander (bw) has little effect on signal
quality, Gaussian noises were added to this type of noise to
generate new noisy records gbw. Table 2 shows the details of
dynamic ECG quality assessment database composition.

Signal-Quality Pre-assessment
Signals from different databases need to be preprocessed. First,
each ECG signal was down-sampled to 250 Hz. Then, the
min–max standardization method was used to map the
original ECG signal data to [0–1]. Lead fall is very common in
wearable dynamic ECG signals. Lead fall detection was an
important way to decrease data storage costs and computing
overhead for wearable devices. Figure 2 shows several typical
cases of lead-fall signals. In this study, if one ECG signal was
present with a constant voltage of more than 80% of the
recording, it was defined as lead falling. Occasionally, detached
electrodes were adhered to clothing and received Gaussian noise
signals. If the signal was pure noise, it was needed to be
eliminated. Based on the spectrum range of ECG signal, that
is, 0–40 Hz, if the ratio of power spectrum energy of the signal in
the range of 0–40 Hz to the total energy is less than 30%, it
indicates that the main component of the signal is not the ECG
signal but the noise signal, which can be directly discarded. By
pre-assessment, 1,029 lead off and pure noise signals were
eliminated, which belong to the class C. The calculation
formula is as follows:

MPSQI � ∫40Hz

0Hz
p(f)df

∫500Hz

0Hz
p(f)df (1)

PNSQI � { 1 pure noise if MPSQI< 30%
0 otherwise

. (2)

Wavelet Scattering Analysis
The wavelet scattering network has the characteristics of
translation invariance, deformation stability, and high
frequency preservation (Bruna and Mallat, 2013), and it is
very sensitive to the deformation of wearable dynamic ECG
signals. In this study, the scale function ϕI and Morlet wavelet
function ψλ were employed to construct a three-layer wavelet
scattering network. Through this network, ECG signals generate
scattering coefficients of order 0, 1, and 2, which can cover the

whole frequency domain of the signal. The network constructing
steps are as follows:

1) ECG signal X(t) was convoluted with the scale function ϕI to
obtain the 0-order wavelet scattering coefficient S0.

S0X(t) � X(t)pϕI (3)

2) ECG signal X(t) were convoluted with the first-order wavelet
functions, ψλ1,i

, and the first-order scattering propagation
operators Uλ1,i were generated by nonlinear modulus
operation.

Uλ1,i �
∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣, i � 1/n. (4)

3) The first-order wavelet scattering coefficients S1,i are obtained
by the convolution of propagatorsUλ1,i and scaling function ϕI.

S1,iX(t) �
∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣pϕI , i � 1/n. (5)

4) The first-order scattering propagator Uλ1,i were convoluted
with the second-order wavelet functions ψλ2,j

, and the second-
order scattering propagators Uλ2,i,j were generated by the
nonlinear modulus operation.

U λ2,i,j �
∣∣∣∣∣∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣pψλ2,j

∣∣∣∣∣, i � 1/n, j � 1/m. (6)

5) The second-order wavelet scattering coefficients S2,i,j are
obtained by the convolution of the second-order scattering
propagators Uλ2,i,j and scaling function ϕI.

S2,i,jX(t) �
∣∣∣∣∣∣∣∣∣∣X(t)pψλ1,i

∣∣∣∣∣pψλ2,j

∣∣∣∣∣pϕI , i � 1/n, j � 1/m. (7)
The scattering network can contain more than three layers, but

in practice, energy is dissipated with each iteration. Therefore, in
this study, three layers were employed. The zero-order wavelet
scattering coefficient S0 mainly average the input ECG signal. The
first-order wavelet scattering coefficient S1 captures details lost in
the first step, similar to the scale-invariant feature transformation
function. The second-order wavelet scattering coefficient S2
provides supplementary information that improves
classification. The scattering characteristic matrix is composed
of these three-layer scattering coefficients S0, S1, S2. Figure 3

TABLE 2 | Dynamic ECG quality assessment database composition.

Quality class # Record Source Sampling frequency (Hz) Record length (second)

A 16,163 11,708 BUTQDB 1,000 10
4,455 2011 PhysioNet/CinC 500 10

B 16,346 7,860 BUTQDB 1,000 10
5,486 2011 PhysioNet/CinC 500 10
3,000 Class A signal set randomly + NSTDB — 10

C 17,576 657 BUTQDB 1,000 10
2,059 2011 PhysioNet/CinC 500 10
7,860 Class B signal form BUTQDB + NSTDB — 10
7,000 Class A signal set randomly + NSTDB — 10

Total 50,085 — 250 10
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displayed the three-layer wavelet scattering network, and three
classes of signals.

Figure 4(A) shows that time-domain plots of the scale function
ϕI and Morlet wavelet function ψλ were employed in the study.
Invariance scale I in the scale function needs to be confirmed based
on the length of data and sampling frequency. A total of 41 first-
order wavelet functions and 7 second-order wavelet functions were
used to build this wavelet scattering network, as shown in Figures 4
(C) and (D). Also, Figure 4 (B) described the Littlewood–Paley
sums for these scattering filter banks. Wavelet scattering networks
could automatically extract feature extraction and could also
reduce the signal dimension. The scattering characteristic matrix
with dimension 81 − by − 20 was generated by this wavelet
scattering network for one ECG signal with a length of
2,500 samples. For scattering coefficients of order 0, an input
signal was first averaged using the scale function, which was the

first matrix 1 × 20. For scattering coefficients of order 1, performing
a continuous wavelet on the input signal yield a set of scalogram
coefficients. Also, a modulus was applied to these coefficients and
then the outputs were filtered with the wavelet low-pass filter
yielding a set of order-1 scattering coefficients. It was the second
matrix 41 × 20. For scattering coefficients of order 2, the same
process was applied to the scalogram coefficients to obtain the third
matrix 39 × 20. These three matrixes formed a scattering
characteristic matrix with a dimension of 81 × 20. The columns
(20) can be considered as the time dimension and 81 can be
considered as the scale dimension. But this time dimension was
after processed by average operation. Also, this scale dimension
was also after processed by nonlinear modulus and averaging
operators. It was different from the time-frequency map
generated by the wavelet transform. A long short-term memory
(LSTM) classifier with ADAM solver was used for classification.

FIGURE 2 | Typical cases of lead-fall signals.
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EVALUATION METHOD

The evaluation indexes used in this study are sensitivity (Se),
precision (+P), comprehensive index F1measure for A\B\C three
quality grades, and modified accuracy (mACC). Se is the
proportion of a certain class that has correctly predicted the
total number of all real classes in the test dataset, including
SeA, SeB, SeC . +P is the proportion of the certain class that has
correctly predicted the total number of predicted to be this class
in the test set, including +PA,+PB,+PC. F1 measure includes
F1A, F1B, F1C for class A/B/C, respectively. mF1 is an average
value of these three indexes.

F1A � 2 × TNA

NA + TA
, F1B � 2 × TNB

NB + TB
, F1C � 2 × TNC

NC + TC
, (8)

mF1 � 1
3
(F1A + F1B + F1C), (9)

mACC � TNA + TNB + TNC

N(the number of all the samples in the test set). (10)

where TNA, TNB, and TNC are the number of signals accurately
predicted as classes A, B, and C, respectively. NA, NB, and NC are
the number of all real class A, B, and C signals in the test set,
respectively. TA, TB, and TC are the number of all predicted to be
class A, B, and C signals in the test set, respectively.

Classification Model
The total number of signals in the database was 50,085. By pre-
assessment, 1,029 lead-off and pure noise signals were eliminated.
Remaining 49,056 signals were used to study the classification
performance of the wavelet scattering network. In this study, a bi-
directional long short-termmemory (Bi-LSTM) network with the
adaptive moment estimation (ADAM) solver was employed to
train the classification model. The maximum number of epochs
was 1,000. To reduce the amount of padding in the mini-batches,
choose a mini-batch size of 490. The 10-fold cross-validation was
employed to evaluate the classification performance of the model.
All the segments were randomly divided into 10 groups. Also, the
number of signals for each fold was 4,905.

FIGURE 3 | Three-layer wavelet scattering network.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9054477

Liu et al. Wearable Electrocardiogram Quality Assessment

53

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Real-Time Validation
For real-time SQA performance analysis, the reliability of the
whole wavelet scattering network method on real wearable
dynamic ECG signals was tested. A Lenovo H3 dynamic ECG
device was used for this experiment. Figure 5 shows the
schematic diagram of device wearing. There were 60 subjects
(24 females, 36 males) aged between 19 and 24 years in this
experiment. For each subject, a 10-min duration of dynamic ECG
signals was recorded under different physical activity conditions.
The subjects wearing Lenovo H3 dynamic ECG devices were
asked to perform different activities for 10-min duration,
including sitting, walking, jogging, sitting, running, sitting,
jumping, and sitting. In order to eliminate the interaction
between two different physical activities, the subject was asked
to sit and rest after strenuous exercise, such as running and
jumping. The continuous wearable ECG signals collected by the

Lenovo H3 device were transmitted to the phone via Bluetooth.
The ECG signal was segmented with a frame length of 10 s and a
hop-size of 1 s. The proposed wavelet scattering network SQA
classifier evaluated the quality of the whole signal. The scattering
characteristic matrix of the segment signals was generated by the
proposed three-layer wavelet scattering network. A classification
model was trained by all the signals (a total of 49,056) in the
constructed database. By this classifier, the segmented signal was
classified into different quality levels.

RESULT

Tables 3 shows the confusion matrices of the classification results
for an independent test set, and table 4 displays 11 evaluation
indexes (mACC,mF1, SeA, SeB, SeC,+PA,+PB,+PC, F1A, F1B, F1C)

FIGURE 4 | (A) Time-domain plots of the scale function andMorlet wavelet function; (B) Littlewood–Paley sums; (C) 41 first-order wavelet functions; (D) 7 second-
order wavelet functions.

FIGURE 5 | Schematic diagram of device wearing.
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of the average classification results for 10 cross-validation. As it
turns out, the classification performance of the wavelet
scattering network classifier was very great. The mean values
of 11 evaluation indexes were nearly all greater than 98%
(mACC = 98.56%, mF1 = 98.55%, SeA = 97.90%, SeB =
98.16%, SeC = 99.60%, +PA = 98.52%, +PB = 97.60%, +PC =
99.54%, F1A = 98.20%, F1B = 97.90%, F1C = 99.60%), only
97.90% for SeAand F1B, 97.6% for +PB. Particularly for class
C, SeC,+PC, F1C were all greater than 99%.

For classification performance comparisons, 27 typical SQA
methods were selected (picaSQI (Li et al., 2014), tSQI (Liu F. et al.,
2020), kSQI (Clifford et al., 2012), ELZ_compl_SQI (Zhang et al.,
2014), sSQI (Clifford et al., 2012), bSQI_4 (Liu et al., 2018),
DisEn_SQI (Li et al., 2015), pSQI (Li et al., 2008), bsSQI (Li et al.,
2014), iSQI (Liu et al., 2019b), basSQI (Li et al., 2014), ApEn_SQI
(Pincus et al., 1991), bSQI_2 (Li et al., 2008), HpSQI (Liu F. et al.,
2020), FuzzyEn_SQI (Di Marco et al., 2012), SampEn_SQI (Chen
et al., 2009), SDN_SQI (Everss-Villalba et al., 2017), eSQI (Li
et al., 2014), MSQI (Tobon Vallejo et al., 2014), MpSQI, LpSQI
(Liu F. et al., 2020), rsdSQI (Li et al., 2014), purSQI (Nemati et al.,
2010), pcaSQI (Behar et al., 2013), PLI_SQI (Everss-Villalba et al.,
2017), LZ_compl_SQI (Zhang et al., 2016), and hfSQI (Li et al.,
2014)). These SQA methods were mainly based on the SQI
indexes extracted from the time domain, frequency domain
features, QRS waves, nonlinear characteristic, and others. The
support vector machine (SVM) classifier was employed to train
the classification model. As shown in Table 4, the classification
accuracy of multi SQIs for 10-fold cross-validation was 85.33%.

Considering the overfitting influence of deep learning, cross-
database validation was carried out to verify the generalization
ability of this proposed method. All signals from BUTQDB were
used as training data, while all signals from the 2011 PhysioNet/
CinC were used as testing data, and vice versa, all signals from the
2011 PhysioNet/CinC were used as training data, while all signals
from BUTQDB were used as testing data. Table 4 also displays
the results of cross-database validation. For these two classifiers,
classification accuracies were all greater than 80%. It was not as
good as 10-fold cross-validation. The classification accuracy of
multi SQIs for cross-database validation was about 75%.

DISCUSSION

In this study, we proposed a new SQA classification method based
on a three-layer wavelet scattering network and built a wearable

ECG quality database with 50,085 recordings for A/B/C three
quality levels. The proposed SQA classifier had an excellent
performance on this database (mACC � 98.56%,mF1 � 98.55%)
for 10 cross-validation after all signals mixing. Particularly for class
C signals, the proposed approach worked very well and the
evaluation indexes were all greater than 99%. For class A and B
signals, the results were slightly worse, but all greater than 97%. The
wavelet scattering network used the deep convolution network
architecture, but filter parameters were predefined. In this study,
only the influence of the invariance scale was considered.
Meanwhile, for performance comparisons, 27 typical SQA
methods were selected to test the performance of this new
database. Considering the overfitting influence of deep learning,
cross-database validation and real-time validation were also carried
out. The classification performance of cross-database validation
was also admissible (mACC,mF1 ≥ 80%).

Influence of Invariance Scale
In this study, the proposed three-layer wavelet scattering network
was a deep learning framework which could extract
complementary compact information automatically. The
wavelet scattering network used the deep convolutional
network architecture iterates over wavelet convolution,
nonlinear modulus, and averaging (pooling) operators to
compute higher-order scattering coefficients, which build
translation invariant, stable, and informative signal
representations. But the filters of the wavelet scattering
network were predefined Morlet wavelets (Bruna and Mallat,
2013), which did not need to be learned from data. The Morlet
wavelets were a localized waveform, having a better frequency
resolution and stability to deformations, which could impose the
separation of the different quality signals. The nonlinear modulus
propagator recombines real and imaginary parts of complex
wavelet coefficients, which could keep the low frequency
averaging and obtain the translation invariant representation.
Although the modulus operator removed the complex phase and
lost information about the high frequencies, it kept the temporal
variation of the multiscale envelopes. Also, the high frequencies
information lost by the pooling can be recovered as wavelet
coefficients in the next layers as the wavelet transform was a
redundant representation. High order scattering coefficients
could characterize transient phenomena of the different noises
from free living. To recover this high-frequency information, a
new wavelet transform was implemented to the signal in the next
layers before the nonlinear modulus and pooling were performed.

The invariance scale was also termed as the interval of time-
shift invariance, which was defined by the size of the time
averaging window. The influence of this parameter was also
considered in this study. Also, the scattering coefficients were
computed at scales I � 1s, 2s,/8s, 9s, 10s. Figure 6 displayed the
classification results. As shown in Figure 6, the invariance scale I
changing had less influence on the accuracy. All 11 evaluating
indexes were above 93%. But obviously, when the invariance scale
was set to be 2s, the classification performance was best. The scale
I controlled the amount of translation invariance. When it was
too small, noises produced by gross movements, such as severe
drifting baselines, would miss some. When it was too large, the

TABLE 3 | Confusion matrices of the classification results for an independent
test set.

Confusion
matrix

Pred Sensitivity (Se)

A B C

Actual A 1,578 37 1 97.65%
B 23 1,597 8 98.10%
C 2 8 1,645 99.40%

Precision (+P) 98.44% 97.26% 99.46% 98.39%
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TABLE 4 | Classified results of 27 SQI-based SVM classifiers and proposed method.

SQA method SeA/% SeB/% SeC/% +PA/% +PB/% +PC/% F1A/% F1B/% F1C/% mF1/% mAcc/%

27 SQIs
+ SVM

10-fold cross-
validation

87.79 ± 0.97 72.75 ± 1.47 96.06 ± 0.51 77.9 ± 1.09 83.17 ± 0.76 96.2 ± 0.46 82.52 ± 0.69 77.6 ± 0.69 96.1 ± 0.53 85.4 ± 0.44 85.33 ± 0.34

Cross database
validation, BUTQDB
signals as training
data, 2011 PhysioNet/
CinC signals as testing
data

61.06 ± 0.45 74.26 ± 0.61 90.74 ± 0.39 65.46 ± 0.87 68.47 ± 0.44 94.38 ± 0.56 63.18 ± 1.02 71.25 ± 0.98 92.53 ± 0.65 75.65 ± 0.33 75.06 ± 0.25

Cross database
validation,
2011 PhysioNet/CinC
signals as training
data, BUTQDB signals
as testing data

63.48 ± 0.69 65.75 ± 0.94 98.03 ± 0.26 75.22 ± 0.47 62.06 ± 0.68 90.62 ± 0.67 68.85 ± 0.81 63.85 ± 0.78 94.18 ± 0.31 75.63 ± 0.84 77.65 ± 0.41

Wavelet
scattering
+ LSTM

10-fold cross
validation

97.90 ± 0.54 98.16 ± 0.58 99.60 ± 0.39 98.52 ± 0.81 97.60 ± 0.94 99.54 ± 0.16 98.20 ± 0.85 97.90 ± 0.84 99.60 ± 0.29 98.55 ± 0.40 98.56 ± 0.39

Cross database
validation, BUTQDB
signals as training
data, 2011 PhysioNet/
CinC signals as testing
data

79.26 ± 1.50 83.32 ± 0.84 92.33 ± 0.67 80.38 ± 0.77 82.17 ± 1.39 92.82 ± 0.92 79.81 ± 1.01 82.74 ± 1.39 92.58 ± 0.87 85.04 ± 1.48 85.32 ± 0.99

Cross database
validation,
2011 PhysioNet/CinC
signals as training
data, BUTQDB signals
as testing data

79.93 ± 1.03 75.68 ± 0.96 91.59 ± 0.84 84.44 ± 1.01 72.43 ± 0.99 90.11 ± 0.73 82.12 ± 0.88 74.02 ± 1.27 90.85 ± 0.65 82.32 ± 1.23 82.73 ± 1.11

The bold values were the results of the proposed method.
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convolution would lose partly high frequency information. In this
study, 2s was the best choice for the invariance scale. The
classification performances showed small differences in the
changing of the invariance scale. The variability within each
class A/B/C was not due to translation, but due to time-
domain deformations and spectrum noise.

Comparing With Other SQA Methods
At present, most studies about the signal-quality assessment
divided the ECG signals into acceptable and unacceptable.
There are fewer public databases with three quality levels. For
performance comparisons, 27 typical SQAmethods were selected
to test the performance of this new database. These methods
mostly had better performance on the database including two
classes of ECG signals. Multiple SQI feature–based classifiers
were lower than the proposed novel classification method. In
order to analyze the performances of these SQIs better, Figure 7
displays the distribution of these SQIs on the A/B/C quality levels
signals. Green, orange, and blue dots represent class A/B/C
signals, respectively. The SQIs, which are only based on the
QRS waves, such as bSQI-4 and bSQI-2, were defined by the
comparison of four or two QRS wave detectors on a single-lead
signal. They had good performance on the database with two
classes of ECG signals (mACC > 93% ) (Liu et al., 2018), but class
A signals are mixed up with class B signals, as shown in Figure 7.
It is because that QRS wave of class B signals also could be
detected accurately. The performance of tSQI and picaSQI was
slightly better. These two SQIs were computed not only based on
the QRS wave but also based on morphology consistency and
nonlinear characteristic (Li et al., 2014; Liu F. et al., 2020). The
tSQI was defined as the morphology consistency of any two ECG
beats within a fixed time window (Li et al., 2014), and the picaSQI
was defined as a periodicity measure of the ECG waveform
nonlinear characteristic (Liu F. et al., 2020). For other SQIs
based on time and frequency domain features, the distribution
ranges for A/B/C quality level signals had a large overlap region.

The class B signals were mostly contaminated by the noise with
high frequency and low amplitude, which can make partly class B
signals detected to be class A or C.

It should be noted that all these 27 SQIs that we selected were
unlikely to be the optimal indexes. We tried to pick as many
quality metrics as possible, but it is impossible to pick all of them.
Meanwhile, because some SQIs were published in a theoretical
way without the executable program, and some literature works
lacked detailed necessary preprocessing operations, some SQIs
were coded by us. Thus, the classing results in this study could be
different from those in the other studies, but the differences are
unimportant.

In this study, all the programs were implemented using
MATLAB 2020a. Table 5 illustrates the mean time costs and
standard deviation values of the 12 SQIs and the proposed
method by analyzing 49,056 10-s ECG segments in the
database. As shown in Table 5, the proposed method was the
most time-efficient compared with 12 SQIs. Also, 18.25 ms was
not a long-time cost for 10-s ECG segments.

Real-Time Validation and Cross-Database
Validation Analysis
For real-time SQA performance analysis, the reliability of the
whole wavelet scattering networks method on real wearable
ECG signals was tested. Figure 8 displays two segments of 10-
min duration of dynamical ECG signals, physical activities, and
evaluation results. As it turns out, under the sitting and walking
conditions, the quality of the ECG signal was very good and all
signals are assessed as class A, which can be used for the
cardiovascular disease diagnosis. In the jogging condition, some
signals were contaminated by weak artifacts and assessed as class B.
But they could not affect the R wave identification, which can be
used for the heart rate measure. In the running and jumping
conditions, most of the signals were contaminated by seriously
large noises caused by violentmotion and assessed as class C. These
signals will interfere with the diagnosis of the cardiovascular
disease and need to be removed. Also, the proposed SQA
method could identify the changing of the position. During the
changing stage, there were some fluctuations in the signal. These
signals were assessed as class B. The evaluation results show that
the proposed wavelet scattering network SQA classifier framework
has capability to assess wearable dynamic ECG signal quality.

In this study, cross-database testing was also carried out to
verify the generalization ability of this proposed method. As the
results show, classification accuracy was greater than 80%. The
performance of cross-database validation was not good as 10-fold
cross-validation. But for class C, SeC,+PC, F1C were all greater than
90%. The reason for this phenomenon is the great difference
between these two databases. The signals from BUTQDB were
single-lead ECGs with three quality classes, while the signals from
the 2011 PhysioNet/CinC Challenge were 12-lead ECGs with two
quality classes. Although we, based on the scores in Liu et al.
(2018), annotated all the leads individually, there are still
differences in the re-annotating. The morphological
characteristics of class C signals are obvious, and the evaluation
of experts is relatively consistent. However, the difference in

FIGURE 6 | Classification results for invariance scale I � 1s, 2s,/8s,
9s, 10s.
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morphological characteristics between class A and class B signals is
not particularly obvious, the evaluations between different experts
are different. If all the signals from the 2011 PhysioNet/CinC

Challenge were re-annotated based on the criteria of BUTQDB
strictly, the performance of cross-database validation will be better.
However, it will need more time cost.

FIGURE 7 | Distribution of 27 SQIs on the A/B/C quality levels signals. Green, orange, and blue dots represent class A/B/C signals, respectively.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 90544712

Liu et al. Wearable Electrocardiogram Quality Assessment

58

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


In this study, the approach adding noise to clean data was used
to balance the database classes. Also, those clear recordings from
classes A and B used to upsample class C, were put back into the
original classes. It needs to be considered if this synthetic noise is
going to play a role in the classification results. If one clear
recording from class A is in the training set and it was also
corrupted by noises used to upsample the class C in the test set. If
this recording includes some information on the test set, this
information will tend to judge this recording as class A. However,
it was a contaminated recording and labeled as class C. Therefore,
if there is some information generated by balancing the dataset on
the test set, classification accuracy will be reduced. However, the
classification performance of this method was very good.
Therefore, the approach used to balance the dataset did not
influence the classification results. The testing of real signals
without synthetic addition was also carried out to consider the
influence of this balancing data approach. A new database was
built with 5,687 recordings without any synthetic noise added,

class A: 2,000, class B: 2,000, and class C: 1,687. We used 30% of
the data for testing and the remaining 70% of the data for
training. The values of 11 evaluation indexes were nearly all
greater than 90%,mACC = 94.05%,mF1 = 94.03%, SeA = 93.35%,
SeB = 91.25%, SeC = 97.55%, +PA = 94.44%, +PB = 92.73%, +PC =
94.94%, F1A = 93.89%, F1B = 91.98%, and F1C = 96.23%. The
reduction in the data volume reduced the accuracy of the model,
which was also acceptable. The approach of adding noise to clean
data to balance the database classes was also used in Clifford et al.
(2012).

Most notably, there is no unified evaluation criterion to
determine the quality levels of wearable ECG at present.
Different databases provide different evaluation methods. For
example, the data in the 2011 PhysioNet/CinC Challenge are 12-
lead recordings, having a length of 10 s 3–18 annotators marking
each signal, and each record was assigned to one of the three
groups (acceptable 773, indeterminate 2, and unacceptable 225)
based on the average score. Some studies considered that the label
of “acceptable” or “unacceptable” was for the whole 12 channels,
not for the single channel. Therefore, they re-labeled each channel
(Clifford et al., 2012; Liu et al., 2018), and balanced the classes by
adding noise to some of the clean data. However, in the BUTQDB
database, 18 single-lead signals longer than 24 h were recorded
using the Bittium Faros 180 device. The parts of signals were
selected to be grouped into three quality levels based on the labels
annotated by three experts. Also, some studies constructed a
manually annotated gold standard, collected and annotated ECG
recordings by themselves (Redmond et al., 2012; Satija et al., 2017;
Liu et al., 2019b; Smital et al., 2020). Different classification
standards and annotating methods could have great influence
on the SQA performance.

Limitations and Prospects
Wearable electrocardiogram quality assessment is quite crucial
for cardiovascular disease prevention and diagnosis. It is also an

TABLE 5 | Mean time costs and standard deviation values of 12 SQIs and
proposed method.

Method Mean time/ms SD/ms

picaSQI (Li et al., 2014) 4.04 0.41
tSQI (Liu et al., 2020a) 1.20 0.20
kSQI (Clifford et al., 2012) 1.14 0.13
ELZ_compl_SQI (Zhang et al., 2014) 31.74 6.55
sSQI (Clifford et al., 2012) 1.05 0.23
bSQI_4 (Liu et al., 2018) 6.83 0.65
DisEn_SQI (Li et al., 2015) 25.28 8.31
pSQI (Li et al., 2008) 2.15 0.25
bsSQI (Li et al., 2014) 2.01 0.30
iSQI (Liu et al., 2019b) 1.08 0.26
basSQI (Li et al., 2014) 3.31 0.43
ApEn_SQI (Pincus et al., 1991) 30.41 3.60
Proposed method 18.25 1.38

The bold values were the time cost and standard deviation of the proposed method.

FIGURE 8 | Two records about 10-min duration of dynamical ECG signals, physical activities, and evaluation results.
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important issue for wearable device development. Although the
proposed new method had great performance on the quality
assessment, it was not very well for cross-database validation. The
main reason is the difference between annotation methods and
classification grades. For future work, uniform and standardized
evaluation criterion is quite crucial for the wearable ECG quality
assessment.

CONCLUSION

This study aimed to provide amethod to classify wearable dynamic
ECG signals into three grades: high quality (A), medium quality
(B), and low quality (C). A new SQA classification method based
on a three-layer wavelet scattering network and transfer learning
LSTM was proposed, and a wearable ECG quality database with
50,085 recordings for three quality grades was built. In order to
avoid the adverse impact of invalid samples on the trainingmodels,
the quality pre-assessment was used to delete the lead-fall signals
and pure noise. A three-layer wavelet scattering network was
performed on the selected 10-s-long signal segments, which can
extract more systematic and comprehensive characteristics by
analyzing the signals thoroughly and deeply. The Bi-LSTM
network with ADAM solver was employed to train the
classification model. The 11 evaluating indexes
(mACC,mF1, SeA, SeB, SeC,+PA,+PB,+PC, F1A, F1B, F1C) were
98.56%, 98.55%, 98.52%, 97.60%, 99.54%, 98.20%, 97.90%,
99.60%, 97.90%, 98.16%, and 99.60%, respectively, suggesting
that the proposed method can effectively separate three quality
grades of wearable ECG signals. For efficacy validation, this
method was applied on the real-world data collected using the
Lenovo H3 dynamic ECG device. This method had the ability to
detect noise signals produced by vigorous activities. With the high
computational efficiency, it will have a good application on
wearable ECG devices, including removing contaminating
signals and selecting high-quality signal segments for CVD
diagnosis and analysis. This study verified the feasibility of
applying the wavelet scattering network model to wearable

ECG signal-quality assessment. Also, the general framework of
this classification method proposed in this study was sufficiently
flexible to be used in any given situation.
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Tachycardia Detection
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Objective: To develop a method for detection of bradycardia and ventricular tachycardia
using the photoplethysmogram (PPG).

Approach: The detector is based on a dual-branch convolutional neural network (CNN),
whose input is the scalograms of the continuous wavelet transform computed in 5-s
segments. Training and validation of the CNN is accomplished using simulated PPG
signals generated from RR interval series extracted from public ECG databases. Manually
annotated real PPG signals from the PhysioNet/CinC 2015 Challenge Database are used
for performance evaluation. The performance is compared to that of a pulse-based
reference detector.

Results: The sensitivity/specificity were found to be 98.1%/97.9 and 76.6%/96.8% for the
CNN-based detector, respectively, whereas the corresponding results for the pulse-based
detector were 94.7%/99.8 and 67.1%/93.8%, respectively.

Significance: The proposed detector may be useful for continuous, long-term monitoring
of bradycardia and tachycardia using wearable devices, e.g., wrist-worn devices,
especially in situations where sensitivity is favored over specificity. The study
demonstrates that simulated PPG signals are suitable for training and validation of a CNN.

Keywords: photoplethysmogram, bradycardia, tachycardia, convolutional neural networks, detection, simulated
signals

1 INTRODUCTION

Continuous, long-term monitoring of atrial fibrillation using the photoplethysmogram (PPG) has
received considerable attention in recent years, with early detection and prevention of serious health
consequences, e.g., stroke, as main motivations Freedman et al. (2017); Pereira et al. (2020). Thanks
to its simplicity, noninvasive PPG technology can be easily incorporated at a low cost in wearable
digital devices for use in daily life. Among these devices, the wrist-worn is particularly attractive for
continuous long-term monitoring Eerikäinen et al. (2020), relying on either traditional machine
learning or deep learning for detection, e.g., Corino et al. (2017); Harju et al. (2018); Eerikäinen et al.
(2018); Sološenko et al. (2019); Fallet et al. (2019); Selder et al. (2020); Väliaho et al. (2021). However,
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performance has so far only been established on short-term data
due to the lack of public, annotated databases with long-term
PPG recordings Eerikäinen et al. (2020).

While most research has focused on developing methods for
PPG-based detection of atrial fibrillation, just a handful of studies has
dealt with detection of other arrhythmias, notably premature atrial
and/or ventricular beats Gil et al. (2013); Sološenko et al. (2015); Han
et al. (2020) and bradycardia and ventricular tachycardia Bonomi
et al. (2017). While neither bradycardia nor ventricular tachycardia
are life-threatening arrhythmias, their extreme manifestations are
known to be risk factors of serious conditions such as sudden cardiac
death Harris and Lysitsas (2016). Using a wrist-worn device for
continuous, long-term monitoring of bradycardia and tachycardia,
valuable information may be acquired on initiating factors such as
stress, medication, physical activity, and sleep Bonomi et al. (2017).
Patients suffering from end-stage kidney disease undergoing
hemodialysis treatment is a group of particular interest for such
monitoring. Most studies point to that bradycardia, rather than
tachycardia, is the pre-eminent pattern of serious arrhythmias and
sudden cardiac death, with the highest incidence occurring during
the interdialytic periods of conventional thrice-weekly hemodialysis
Kalra et al. (2018); Foley et al. (2011); Boriani et al. (2015); Wong
et al. (2015); Roy-Chaudhury et al. (2018). Continuous, long-term
monitoring of extreme bradycardia in hemodialysis patients was
recently established as an important procedure, accomplished using
an implantable loop recorder Kalra et al. (2018). However, as an
alternative, a wrist-worn device may be preferred as it offers the
important advantages of low cost, low risk of infection, and
avoidance of discomfort often experienced after insertion of the
implantable loop recorder.

To detect bradycardia and tachycardia may seem like a simple
problem solved by testing whether the heart rate is below/above a
certain fixed limit for a certainminimumnumber of beats. However,
such an approach tends to favor specificity over sensitivity Bonomi
et al. (2017), without any means to alter the balance between the two
performance measures. Irrespective of the approach taken to
detection, the problem is made complicated by noise causing
false detections. In addition, tachycardia with decreased
hemodynamics is manifested in the PPG signal as much reduced
or no pulsations, leading to missed beats when pulse-based detection
is employed. These observations represent important incentives to
explore new approaches to detection.

The present paper investigates the use of a dual-branch
convolutional neural network (CNN) for PPG-based detection
of bradycardia and tachycardia. The scalograms of successive
signal segments, accounting for temporal and spectral
information, constitute input to the network. To reduce the
number of false alarms due to motion artifacts, a simple signal
quality assessment is included in the detection process.

The main novelties of the present study are that, for the first
time, a CNN is used to detect bradycardia and tachycardia, and
that simulated PPG signals are employed for network training
and validation. The performance of the CNN-based detector is
also compared to that of a reference pulse-based detector.

The paper is organized as follows: Section 2 describes the
datasets used for training, validation, and testing, Section 3
describes the proposed detector and the reference detector,

Section 4 presents the results obtained on a clinical dataset,
followed by a discussion in Section 5.

2 DATASETS

Due to the lack of public PPG databases with annotated episodes
of bradycardia and tachycardia, an unconventional approach is
adopted in which simulated PPG signals are used for training and
validation, whereas real, manually annotated PPG signals are
used for testing. In the following, since the study focuses on
ventricular tachycardia, tachycardia refers to ventricular
tachycardia.

2.1 Datasets for Training and Validation
The simulator, originally developed to model PPG signals in
paroxysmal atrial fibrillation using RR intervals alone as input
Sološenko et al. (2017); Paliakaitė et al. (2019), is equally well-
suited to model PPG signals with episodes of bradycardia or
tachycardia; the simulator is freely available at Physionet
Sološenko et al. (2021). The model signal is created by
placing individual pulses according to the RR intervals so
that a connected signal is formed, where each pulse is
defined by a linear combination of a log-normal and two
Gaussian waveforms. Stationary simulated noise, described
in Sološenko et al. (2017), was added.

Different RR interval series with one episode of extreme
bradycardia were created by concatenating three subseries of
RR intervals, i.e., normal sinus rhythm, bradycardia, and normal
sinus rhythm. The two subseries with normal sinus rhythm were
randomly selected from the MIT–BIH Normal Sinus Rhythm
Database Goldberger et al. (2000) so that 50–100 RR intervals
appeared before the episode and 1–100 RR intervals after (the
actual number of intervals before and after were selected
randomly); in all subseries of sinus rhythm, the heart rate was
above 60 beats per minute (bpm). In total, 147 RR interval
subseries with bradycardia were selected from the PhysioNet/
Computing in Cardiology (CinC) 2017 Challenge Database
Clifford et al. (2017). Each series was approved by visual
inspection to ensure that no aberrant RR intervals were included.

On the other hand, RR interval series with one episode, and in a
few cases a handful of episodes, of tachycardia are contained in the
Spontaneous Ventricular Tachyarrhythmia Database Goldberger
et al. (2000). Since this database is not annotated, episode onset
and end were determined manually, assuming a minimum episode
length of three beats. In all recordings, tachycardia was surrounded
by sinus rhythm, and, therefore, concatenation was superfluous.
From the 135 recordings, a total of 94 RR interval series were selected
with episodes having a heart rate of at least 120 bpm. The definitions
of tachycardia and bradycardia are discussed in Section 5.

Table 1 summarizes the main characteristics of the dataset of
simulated signals containing episodes of bradycardia and
tachycardia.

2.2 Dataset for Testing
The PhysioNet/CinC 2015 Challenge Database Clifford et al.
(2015); Goldberger et al. (2000) is one of the very few PPG
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databases containing episodes of bradycardia and tachycardia
and therefore used for testing. While each 5-min recording
was originally assigned a rhythm label, indicating whether the
recording contains bradycardia or tachycardia, episode onset
and end was not annotated. Therefore, in the present study,
episodes have been annotated using the simultaneously
recorded ECG signals by relying on information on heart
rate and beat morphology, assuming a minimum episode
length of 3 beats. Figures 1A,B shows two excerpts from
PPG and ECG recordings with bradycardia and tachycardia.
In total, 15 recordings with bradycardia and 39 with

tachycardia are used for testing, referred to as test set I; the
Supplementary Table S1 lists all recordings. The total episode
lengths of bradycardia and tachycardia are 79 and 204 min,
respectively.

Due to decreased hemodynamics during tachycardia, much
reduced or no periodic pulsations were observed in 10 of the 39
recordings, illustrated in Figure 2. Therefore, a subset of test
set I is defined excluding these 10 recordings, referred to as test
set II.

Table 1 summarizes the main characteristics of the two test
sets containing episodes of bradycardia and tachycardia.

TABLE 1 | Main characteristics of the datasets used for training, validation, and testing.

Set Characteristic Bradycardia Tachycardia

Training, validation #RR interval series 147 94
Total duration (h) 10 20
#5-s segments 7,200 14,400
#5-s segments with arrhythmia 1,092 437
Min, median, max length (beats) 8, 23, 51 4, 14, 528
Median heart rate (bpm) 36 164

Test set I #recordings 15 39
Total duration (min) 79 204
#5-s segments 948 2,448
#5-s segments with arrhythmia 52 64
Min, median, max length (beats) 3, 4, 21 3, 6, 58
Median heart rate (bpm) 38 142

Test set II #recordings 15 29
Total duration (min) 79 153
#5-s segments 948 1836
#5-s segments with arrhythmia 52 45
Min, median, max length (beats) 3, 4, 21 3, 7, 58
Median heart rate (bpm) 38 142

FIGURE 1 | Synchronous ECG and PPG signals together with heart rate during (A) bradycardia (< 40 bpm) and (B) tachycardia (>120 bpm). The ECG-based
annotation is marked with a red dashed line. The signals are extracted from the PhysioNet/CinC Challenge 2015 Database.
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3 METHODS

The method proposed for detecting bradycardia and tachycardia
is composed of signal preprocessing and segmentation, signal

quality assessment, and computation of the scalogram serving as
input to the CNN-based detector. The block diagram in Figure 3
summarizes the detector structure as well as the datasets for
training, validation and testing of the CNN-based detector.

FIGURE 2 | ECG and PPG signals with much reduced or no periodic pulsations during tachycardia. The ECG-based annotation is marked with a red dashed line.
The signals are extracted from the PhysioNet/CinC Challenge 2015 Database.

FIGURE 3 |Block diagram of the method proposed for detection of bradycardia and tachycardia, including information on the datasets used for training, validation,
and testing.
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3.1 Signal Preprocessing and Segmentation
The PPG signals, sampled at a rate of 100 Hz, are preprocessed
using a bandpass filter with cut-off frequencies at 0.5 and
40 Hz. To further reduce the influence of baseline wander, an

adaptive, normalized least mean squares filter is employed,
with the reference input set to 1 Sološenko et al. (2019).
Subsequent analysis is performed in non-overlapping 5-s
segments.

FIGURE 4 | Examples of poor-quality PPG segments excluded after signal quality assessment, with the largest spectral peak at (A) 0.4 Hz and (B) 5 Hz, i.e., both
frequencies outside the 0.6–3 Hz range.

FIGURE 5 | Examples of PPG signal segments and related scalograms: (A) real and (B) simulated signals in bradycardia, (C) real and (D) simulated signals in
tachycardia. Since most of the power of a PPG signal is confined to lower frequencies, the vertical scale of the displayed scalograms is upper limited to 10 Hz. The
annotation is marked with a red dashed line. The real signals are extracted from b124s and v837l of the Physionet/CinC 2017 Challenge Database, whereas the
simulated signals are generated using A07531 of the Physionet/CinC 2017 Challenge Database and RRt3 of the Spontaneous Ventricular Tachyarrhythmia
Database 1.0. The PPG signals have been normalized to [0,1] to facilitate comparison.
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3.2 Signal Quality Assessment
To reduce the number of false alarms due to motion artifacts,
signal quality is assessed by performing spectral analysis of the
PPG signal. The location of the largest spectral peak within
each 5-s segment is determined. If the peak is outside 0.6–3 Hz
range, equivalent to 3–15 beats, which is a reasonable number
of beats to occurs within a 5-s segment, the segment is assessed
to be of poor quality and excluded from further analysis.
Figure 4 shows examples of PPG segments excluded after
signal quality assessment.

3.3 CNN-Based Detection
The continuous wavelet transform (CWT), offering good
resolution in both time and frequency, is computed in each
5-s segment assessed to be of good quality. Using the
generalized Morse wavelets, the resulting scalograms are
treated as images with a size of 500, ×, 61 pixels, i.e., 500
samples and 61 scales. The minimum and maximum scales are
determined by the distribution of the energy across the
different scales. Figure 5 presents two examples of
simulated and real PPG signals whose scalograms exhibit
similar characteristics.

The detection of bradycardia and tachycardia relies on two
CNNs (Supplementary Figure S1), where each arrhythmia is
handled by its own particular model. Each model consists of
two 2D convolutional layers with 32 kernels, where each
kernel is followed by average pooling layers (size of 2 × 2
and a stride of 2) and two fully connected layers (input layer
with 256 neurons and output layer with 2 neurons for
segment classification). The kernel size of the two CNN
models differ since bradycardia is composed of lower
frequencies than tachycardia and therefore calls for a
larger kernel size, here set to 13 × 13 (bradycardia) and 5
× 5 (tachycardia). The stride of the convolutional kernels is
set to 1. All layers, except the output layer, are activated using
rectified linear unit (ReLU) functions followed by a dropout
rate of 0.5 to minimize overfitting; the output layer is softmax
activated.

Before training the CNNs, the dataset of simulated signals is
balanced by under-sampling the majority class, i.e., by
randomly removing non-bradycardia (non-tachycardia)
segments to match the number of bradycardia (tachycardia)
segments. Then the dataset is split so that 70% is used for
training and 30% for validation. The CNNs are trained using
the Adam optimizer described in Kingma and Ba (2014) with a
learning rate of 0.01. Training is stopped when the
classification accuracy on the validation set stops improving.

Whenever the output of the bradycardia-trained CNN
exceeds a certain threshold, the segment is classified as
bradycardia, otherwise as other rhythm; the same applies to
the output of the tachycardia-trained CNN except that another
threshold is used. Both thresholds are chosen so that sensitivity
is favored over specificity.

3.4 Reference Detector
For comparison, the pulse-based bradycardia and tachycardia
detector described in Paliakaitė et al. (2021) was chosen. The PPG

signal is bandpass filtered with cut-off frequencies at 0.5 and 6 Hz
(instead of 40 Hz) to suppress high-frequency noise. The heart
rate is obtained from the pulse-to-pulse intervals, where the
occurrence times of the pulses are determined using a
threshold-based detector similar to the one described in Aboy
et al. (2005). The signal quality of each pulse is assessed by
correlating it to a pulse template using the sample correlation
coefficient. The quality is assessed as acceptable when the
maximum correlation coefficient exceeds the threshold ηc =
0.6; for more details, see Sološenko et al. (2019); Paliakaitė
et al. (2021). An episode of bradycardia is detected if the heart
rate drops below 40 bpm for at least 3 high-quality beats, and an
episode of tachycardia is detected if pulse rate exceeds 120 bpm
for at least 3 high-quality beats. The output of the reference
detector is divided into 5-s segments to facilitate a comparison of
performance with the CNN-based detector.

3.5 Labeling of PPG Segments
Based on the annotation, each 5-s segment is labeled as either
bradycardia, tachycardia, or other rhythm. Bradycardia is
assigned if the episode lasts for at least 50% of the 5-s
segment. Since tachycardia is characterized by higher
frequencies, tachycardia is assigned if the episode lasts for at
least 25% of the 5-s segment. The lower percentage reflects the
obvious fact that more beats are contained in an episode of
tachycardia than in an episode of bradycardia when both episodes
have the same length in seconds.

3.6 Performance Measures
Detection performance is evaluated in terms of sensitivity and
specificity by segmentwise comparison of the detector output to
the labeling of the annotation described above. Sensitivity is
defined by the number of correctly detected bradycardia
(tachycardia) segments divided by the total number of
bradycardia (tachycardia) segments, whereas specificity is
defined by the number of correctly detected non-bradycardia
(non-tachycardia) segments divided the total number of non-
bradycardia (non-tachycardia) segments. These twomeasures are
computed from the entire recordings, not just from segments
assessed to be of good quality. The agreement between the CNN-
based and reference detectors is evaluated in terms of Cohen’s
kappa coefficient McHugh (2012).

4 RESULTS

4.1 Performance as a Function of SNR
Figure 6 shows detection performance when the CNN was
trained with simulated PPGs at different SNRs. For each SNR,
50 training sessions were performed and the average sensitivity
ans specificity were obtained. Lowering the SNR of the training
signals results in a decrease in sensitivity and an increase in
specificity irrespective of whether bradycardia or tachycardia is
detected. Since the best performance in terms of both sensitivity
and specificity were obtained for noise-free PPGs when training
the CNN, the CNN was trained with noise-free simulated PPGs
before analyzing test sets I and II, see below.
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FIGURE 6 | (A) Bradycardia and (B) tachycardia detection performance for a CNN trained with simulated PPGs at different SNRs. The results are based on test
set II.

FIGURE 7 | ROCs of CNN-based detection of (A) bradycardia and (B) tachycardia using test sets I and II.

TABLE 2 | Performance and agreement of the CNN-based and reference detectors on test set I, without and with signal quality assessment (SQA).

Test set 1 Bradycardia Tachycardia

No SQA SQA No SQA SQA

CNN Sensitivity,% 98.1 [89.3, 100] 98.1 [88.7, 100] 79.7 [68.2, 88.5] 76.6 [65.0, 86.1]
Specificity,% 96.7 [96.0, 97.2] 97.9 [97.4, 98.4] 95.6 [94.9, 96.3] 96.6 [96.0, 97.2]

Reference Sensitivity,% 96.1 [89.0, 98.8] 94.7 [87.2, 98.6] 68.5 [57.1, 78.6] 67.1 [55.6, 77.2]
Specificity,% 99.7 [99.5, 99.9] 99.8 [99.6, 99.9] 93.0 [92.1, 93.9] 93.8 [92.9, 94.5]

Cohen’s kappa 0.42 [0.32, 0.51] 0.49 [0.39, 0.59] 0.39 [0.32, 0.46] 0.39 [0.31, 0.46]

Square brackets indicate 95% confidence interval.
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4.2 Detection Performance on Test set I
Figure 7 presents the receiver operating characteristics (ROCs) of
CNN-based detection of bradycardia and tachycardia, obtained
by varying the two detection thresholds. No ROC is presented for
the reference detector as its structure does not embrace a
detection threshold.

Table 2 presents the performance of the CNN-based
detector, using thresholds that put more emphasis on
sensitivity, and the reference detector. Without signal
quality assessment, the CNN-based detector offers higher
sensitivity for both bradycardia and tachycardia and
considerably higher specificity for tachycardia than does the
reference detector. The exception is bradycardia specificity
which is better for the reference detector.

With signal quality assessment, the specificity increases for
both detectors, although the increase is somewhat larger for
CNN-based detection. The sensitivity decreases slightly for
both detectors and arrhythmias, except for CNN-based
bradycardia detection. This decrease is primarily due to the
segments in which tachycardia is either contaminated with

artifacts or the signal quality is low because of decreased
cardiac output and perfusion leading to lack of periodic
pulsations.

4.3 Detection Performance on Test set II
Table 3 presents the performance on test set II, i.e., test set I
but excluding 10 problematic tachycardia recordings with
much reduced or no periodic pulsations. As expected, the
exclusion leads to improved sensitivity and specificity of both
detectors. However, the increase in sensitivity of CNN-based
detection is substantially larger than that of the reference
detector. This is likely due to that the reference detector relies
on pulse detection rather than on analysis of the whole 5-s
PPG segment as does the CNN-based detector. For both
detectors, signal quality assessment has only a minor effect
on performance.

Figure 8 illustrates the outputs of the CNN-based and
reference detectors together with correct labels. The Cohen’s
kappa coefficient sheds some light on the disagreement
between the detector outputs, mostly dictated by a small

TABLE 3 | Performance and agreement of the CNN-based and the reference detectors on test set II, without and with signal quality assessment (SQA).

Test set II Bradycardia Tachycardia

No SQA SQA No SQA SQA

CNN Sensitivity,% 98.1 [88.6, 100] 98.1 [89.1, 100] 97.8 [87.7, 100] 97.8 [87.6, 100]
Specificity,% 96.2 [95.4, 96.9] 97.7 [97.1, 98.2] 97.8 [97.2, 98.3] 98.4 [97.9, 98.8]

Reference Sensitivity,% 96.1 [89.0, 98.8] 94.7 [87.3, 98.6] 74.5 [61.0, 85.3] 72.6 [58.8, 83.9]
Specificity,% 99.7 [99.4, 99.9] 99.7 [99.5, 99.9] 96.8 [96.1, 97.4] 97.6 [97.0, 98.2]

Cohen’s kappa 0.43 [0.33, 0.52] 0.50 [0.40, 0.60] 0.39 [0.29, 0.49] 0.40 [0.29, 0.51]

Square brackets indicate 95% confidence interval.

FIGURE 8 | Outputs of the CNN-based and reference detectors for (A) bradycardia and (B) tachycardia detection on test set II, with signal quality assessment.

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9280988

Sološenko et al. PPG-Based Bradycardia and Tachycardia Detection

69

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


number of 5-s segments with arrhythmias in the two test sets, and
different patterns of false alarms in either of the detectors.

5 DISCUSSION

The present study shows that simulated PPG signals, based on
real RR interval series, are practicable for training and validation
of the CNN-based detector. Although the simulator offers the
option to generate signals with realistic noise, noise-free signals
were used for training and validation as this choice was found to
produce better performance on the test set consisting of real PPG
signals with occasional artifacts. However, if specificity is to be
favored, noise should be added to the signals used for training and
validation. On the other hand, randomly distributed noise
episodes (i.e., nonstationary noise) may bias the training of the
CNN-based detector, resulting in reduced performance.

A large bandwidth (0.5–40 Hz) of the bandpass filter was
chosen so as to provide the CNN with rich training information.
While a reduced bandwidth, e.g., 0.5–6 Hz used in the reference
detector, may be motivated from a noise suppression standpoint,
initial trials showed that the training and validation performance
did not improve.

Thanks to the input segmentation, the CNN-based
tachycardia detector is less sensitive to situations with
reduced-amplitude pulsations than is the pulse-based reference
detector since the scalogram carries additional information on
tachycardia which helps to improve performance. This
improvement is supported by the results in Table 2 which
show that the sensitivity of the CNN-based tachycardia
detector on test set I is superior to that of the reference
detector, combined with better specificity of the CNN-based
detector. The advantage of the CNN-based tachycardia
detector becomes even more pronounced on test set II, see
Table 3. Still, the CNN-based detector is susceptible to
pulseless episodes as indicated by low sensitivity of tachycardia
detection on test set I (see Table 2), which contained 10
recordings with much reduced or no periodic pulsations
during tachycardia. Since these recordings are excluded from
test set II, the sensitivity of the CNN-based tachycardia detector
reported in Table 3 is considerably higher.

Pairs of pulses with a rate below 40 bpm or above 120 bpm are
not considered an arrhythmia. However, the CNN-based detector
may falsely detect bradycardia/tachycardia in segments where a
single or a slow/fast pulse pair appears, resulting in lower
specificity for bradycardia. Such behavior of the CNN may be
the source of disagreement between the two bradycardia
detectors, resulting in Cohen’s kappa values of 0.42–0.50.
When detecting tachycardia, the CNN-based and reference
detectors also exhibit different detection patterns as illustrated
in Figure 8. Apparently, sensitivity of the reference detector is
highly affected by the tachycardia-caused decrease in pulse
amplitude resulting in missed beats. Even though the
specificity for tachycardia detection is comparable, the sources
of false alarms of the two detectors are different, and thus, the
agreement in terms of Cohen’s kappa is low. Noise mimicking
tachycardia misleads the reference pulse-based detector, whereas
frequent premature beats might trick the CNN-based detector.

When reporting on detection performance, it is essential to
state whether performance is computed using the annotations of
all segments of the recordings or only the annotations of the
segments which remain after signal quality assessment; the latter
alternative tends to exaggerate the performance by ignoring false
negatives corresponding to arrhythmia segments excluded due to
poor quality Paliakaitė et al. (2021). In the present study, the
performance measures are computed independently of segment
exclusion since the annotations were determined from good-
quality ECG signals, not from the PPG signals.

Several architectures of neural networks, including 1D
CNNs, 2D CNNs, long short-term memory networks, and
their combinations using either raw PPG signal or
scalograms were investigated as a first step of the study.
However, the best performance was achieved by using
scalograms as input to the 2D CNNs. A rather basic CNN
architecture was adopted in this study because its major
objective was to demonstrate that a machine learning
algorithm, trained on simulated data, can be employed to
detect bradycardia and tachycardia in PPG signals. Thus,
the comparison of different machine learning architectures
and extensive testing of hyper-parameters were outside the
scope of this study. Even though the proposed CNN-based
detector is not complex, feasibility to implement and run it on
a portable device should be investigated in the future.

A dual-branch CNN was selected for detection of tachycardia
and bradycardia. Initial efforts showed that separate training of
shallow network branches resulted in better performance than
did one deep CNN. This result agrees with other studies
proposing multi-branch structures of multi-class classifiers,
e.g., Zhao et al. (2019). It has been argued that such structures
are more robust in mitigating overfitting issues due to a small
training dataset. Another advantage is that two parallel branches
of the classifier allow parallel execution on separate kernels of the
CPU or different threads in the software, resulting in reduced
time to decision. Moreover, each branch of a dual-branch
detector can function as an independent detector adapted to
tachycardia or bradycardia detection.

In the present study, the output labels of the CNN branches
were not merged, and the performance was reported separately
for bradycardia and tachycardia detection. In no case was a
segment labeled both tachycardia and bradycardia. However,
in the extremely unlikely case when the same segment is
labeled both bradycardia and tachycardia, the arrhythmia
corresponding to the largest output should be selected.

CNN training with different segment lengths was not
performed due to that bradycardia and tachycardia episodes
are very brief. Segment labelling was defined so that
bradycardia should occupy at least 50% of 5 s segment, while
tachycardia should occupy at least 25% of 5 s segment. Therefore,
using a different length, a segment containing bradycardia or
tachycardia may not be labelled as an arrhythmia.

The prevailing clinical definition of bradycardia and tachycardia is a
heart rate lower than 60 bpm and higher than 100 bpm, respectively,
whereas no minimum duration is specified, see, e.g., Wagner and
Strauss (2016). In the context of automated ECG analysis, various
definitions can be found relating to the extreme manifestations of
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these two arrhythmias: extreme bradycardia is defined by a heart rate
lower than 40 bpm with fewer than five beats within a period of 6 s,
and extreme tachycardia is defined by a heart rate higher than 140
bpm with at least 18 beats within a period of 6.85 s Clifford et al.
(2016). Yet another definition of extreme tachycardia can be found
in Paliakaitė et al. (2021), replacing 18 with 5 beats, whereas the
definition of extreme bradycardia remains unchanged; episodes has
to be separated by at least 3 non-arrhythmic beats.

In the present study, the following definition is used to
annotate the Spontaneous Ventricular Tachyarrhythmia
Database and to evaluate the performance of the reference
detector: bradycardia is defined by a heart rate lower than 40
bpm for at least 3 beats and tachycardia is defined by a heart rate
higher than 120 bpm for at least 3 beats. One reason for using 120
bpm is due to that tachycardia slower than 140 bpm can still be
life-threatening Roy-Chaudhury et al. (2018). It should be noted
that none of these criteria apply to CNN-based detection as the
scalogram serves as the basis for making informed decisions.

Tachycardia can have ventricular or supraventricular origin. In
the present study, only ventricular tachycardia was investigated as it
is more serious. Whether the PPG can be used to distinguish
ventricular from supraventricular tachycardia remains to be
demonstrated. Since the hemodynamics is more compromised by
fast ventricular pacing, the amplitude of PPG pulses should in theory
be less affected during supraventricular tachycardia. Still, the
difference in PPG characteristics during ventricular and
supraventricular tachycardia deserves to be investigated in future
studies. The CNN-based detector may be trained to use such
information, while the pulse-based reference detector is poorly
suited for this purpose as it relies on heart rate only.

In the pioneering study on PPG-based detection of bradycardia
and tachycardia Bonomi et al. (2017), only 3-min episodes and longer
were detected. However, when the aim is to detect life-threatening
episodes of extreme bradycardia and tachycardia, as is the goal of the
present study, the minimum duration needs to be much shorter to
ensure that an episode is composed of just a few beats. As a
consequence, it is not meaningful to compare the present results
to those in Bonomi et al. (2017). Of course, the intention to detect
shorter arrhythmia episodes leads to increased number of false alarms
or missed cases. However, since PPG-based detection is better suited
for long-termmonitoring outside the clinical setting, it could serve as a
screening tool to initiate a clinical investigation of those at risk for life-
threatening arrhythmias.

Using the arterial blood pressure signal as input, the problem
of detecting bradycardia and tachycardia has been addressed by
synthesis-by-analysis modeling Chou et al. (2019)—a technique
closely related to the mixture models proposed in Liu et al. (2013);
Sološenko et al. (2017); He et al. (2017). Such modeling results in
a feature vector describing each pulse used for the classifier
training [probabilistic neural network and random forest were
investigated in Chou et al. (2019)]. This approach was found
useful to the arterial blood pressure signal, however, it may be
equally useful when applied to a PPG signal.

A limitation of the present study is the relatively small subset of
short recordings from the PhysioNet/CinC 2015 Challenge Database
used for the testing. Also, this subset does not include clinical data,
and thus, it is unclear if some confounding factors can influence the

performance of the CNN-based detector. However, to our
knowledge, it is the only publicly available database with
synchronous ECG and PPG signals with labeling of extreme
bradycardia and tachycardia. Since the CNN-based detector was
tested on recordings containing baseline sinus rhythm with episodes
of bradycardia and tachycardia, it is unclear how the network
generalizes to discriminate other arrythmias, e.g., atrial
fibrillation. This issue deserves to be investigated in a future study.

6 CONCLUSION

A PPG-based bradycardia and tachycardia detector based on a
dual-branch CNN is proposed, trained and validated on
simulated PPG signals while tested on a dataset of real PPG
signals. The results suggest that the proposed detector can be used
for continuous, long-term monitoring, especially in situations
where sensitivity is favored over specificity. In contrast to the
reference detector, the CNN-based detector makes it possible to
chose different operating points on the ROC. The study
demonstrates that the use of simulated PPG signals is
practicable for training and validation of a CNN.
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Ablation and antiarrhythmic
drug e�ects on PITX2

+/−

deficient atrial fibrillation: A
computational modeling study
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Je-Wook Park, Hee-Tae Yu, Tae-Hoon Kim, Boyoung Joung,

Moon-Hyoung Lee and Hui-Nam Pak*

Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea

Introduction: Atrial fibrillation (AF) is a heritable disease, and the paired-like

homeodomain transcription factor 2 (PITX2) gene is highly associated with AF.

We explored the di�erences in the circumferential pulmonary vein isolation

(CPVI), which is the cornerstone procedure for AF catheter ablation, additional

high dominant frequency (DF) site ablation, and antiarrhythmic drug (AAD)

e�ects according to the patient genotype (wild-type and PITX2+/− deficient)

using computational modeling.

Methods: We included 25 patients with AF (68% men, 59.8 ± 9.8 years of age,

32% paroxysmal AF) who underwent AF catheter ablation to develop a realistic

computational AFmodel. The ion currents for baseline AF and the amiodarone,

dronedarone, and flecainide AADs according to the patient genotype (wild type

and PITX2+/− deficient) were defined by relevant publications. We tested the

virtual CPVI (V-CPVI) with and without DF ablation (±DFA) and three virtual

AADs (V-AADs, amiodarone, dronedarone, and flecainide) and evaluated the AF

defragmentation rates (AF termination or changes to regular atrial tachycardia

(AT), DF, and maximal slope of the action potential duration restitution curves

(Smax), which indicates the vulnerability of wave-breaks.

Results: At the baseline AF, mean DF (p = 0.003), and Smax (p < 0.001) were

significantly lower in PITX2+/− deficient patients thanwild-type patients. In the

overall AF episodes, V-CPVI (±DFA) resulted in a higher AF defragmentation

relative to V-AADs (65 vs. 42%, p < 0.001) without changing the DF or Smax.

Although a PITX2+/− deficiency did not a�ect the AF defragmentation rate

after the V-CPVI (±DFA), V-AADs had a higher AF defragmentation rate (p =

0.014), lower DF (p < 0.001), and lower Smax (p = 0.001) in PITX2+/− deficient

AF than in wild-type patients. In the clinical setting, the PITX2+/− genetic risk

score did not a�ect the AF ablation rhythm outcome (Log-rank p = 0.273).

Conclusion: Consistent with previous clinical studies, the V-CPVI had e�ective

anti-AF e�ects regardless of the PITX2 genotype, whereas V-AADs exhibited

more significant defragmentation or wave-dynamic change in the PITX2+/−

deficient patients.

KEYWORDS

atrial fibrillation, computational modeling, PITX2, dominant frequency,
antiarrhythmic drug
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GRAPHICAL ABSTRACT | AF, atrial fibrillation; ECG, electrocardiogram; CPVI, complete pulmonary vein isolation; AAD, antiarrhythmic drug; AT,

atrial tachycardia.

Main discoveries

• Compared with wild-type, the PITX2+/− deficient AF

model exhibited different electrophysiology and AF

wave dynamics.

• Ablation resulted in a higher AF defragmentation rate than

AADs in human AF computational modeling.

• AF defragmentation rate did not differ depending on the

PITX2 genotype after a virtual AF ablation.

• Virtual AADs exhibited more significant defragmentation

in the PITX2+/− deficient genotype with a lower mean DF

and Smax than wild type.

Introduction

Atrial fibrillation (AF) is a common arrhythmia disease

with a prevalence of 1.7% in the Korean population. AF

numbers are expected to increase; therefore, AF is considered

a major health care issue in Korea (1). Recently, the EAST-

AFNET4 trial demonstrated that active AF rhythm control

reduced morbidity and mortality risk (2). Multiple randomized

clinical trials documented the superior efficacy of AF rhythm

control by AF catheter ablation (AFCA) relative to the treatment

with antiarrhythmic drugs (AADs) (3). Nevertheless, about

40% of patients with AF achieve effective rhythm control with

AADs (4).

Atrial fibrillation is a heritable disease, and the paired-

like homeodomain transcription factor 2 (PITX2) gene is

Abbreviations: AAD, antiarrhythmic drug; AF, atrial fibrillation; AFCA, atrial

fibrillation catheter ablation; AFCL, atrial fibrillation cycle length; APD90,

action potential duration at 90% repolarization; AT, atrial tachycardia;

CPVI, circumferential pulmonary vein isolation; CV, conduction velocity;

DF, dominant frequency; IRQ, interquartile range; PITX2, paired-like

homeodomain transcription factor 2; LA, left atrium; LAT, local activation

time; Smax, maximal slope of action potential duration restitution curve;

SR, sinus rhythm.

highly associated with AF (5). Several clinical studies have

reported the difference in the efficacy of AF rhythm control

treatment according to the PITX2 genotype, but those were

small retrospective studies, and the underlying mechanism

is still not understood (6–13). AF computational modeling

is useful for AF mechanism research, which is difficult to

reveal through clinical or experimental studies (14). With

recent improvements in computational technology and power,

sophisticated AF computation modeling has become possible.

Virtual ablation or virtual AAD responses can be tested on a

virtual twin that reflects the anatomy, fibrosis, fiber orientation,

and electrophysiological characteristics of patients with AF, and

the wave dynamics generated from hundreds of thousands of

nodes can also be evaluated (15–18).

In this study, we explored the response and mechanism of

AFCA and AADs according to the patient PITX2 genotype.

We used AF computational modeling integrated with clinical

electroanatomical maps of 25 AAD-resistant or intolerable

patients with AF who underwent AFCA, and the effects of

various virtual interventions (AFCA and three different AADs)

attempted under the same conditions were compared and

evaluated. The ion currents associated with baseline AF and

AADs (amiodarone, dronedarone, and flecainide) according to

the genotype (wild type and PITX2+/− deficient) were defined

by the relevant publications.

Methods

Ethical approval

This study protocol adhered to the Declaration of Helsinki

and was approved by the Institutional Review Board of

Severance Cardiovascular Hospital, Yonsei University Health

System. All patients included in the Yonsei AF Ablation

Cohort Database (ClinicalTrials.gov Identifier: NCT02138695)

provided written informed consent for use of their clinical data

for computational modeling studies.
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A 3D computational model of the left
atrium

Figures 1A,B illustrate the protocol for computational atrial

modeling. To obtain the clinical electroanatomical data, we

collected the bipolar electrogram data on the LA surface to

produce clinical voltage data of 25 patients who underwent

AFCA. The interpolated voltage data were generated from

bipolar electrograms recorded from >500 points on the atrial

surface using a circular mapping catheter and CT images

(Figure 1A). The coordinates of the electroanatomical map

(NavX, Abbott, Inc., Chicago, IL, USA; CARTO System,

Biosense Webster, Diamond Bar, CA, USA) were precisely

aligned with patient clinical heart CT images, followed by

registration between the electroanatomical maps and clinical CT

data (Figure 1A).

To reflect the tissue characteristics in the 3D left atrium (LA)

model, we performed electroanatomical modeling and fibrosis

and fiber orientation modeling. Electroanatomical modeling

combining personalized CT images with the clinical voltage

data was used to obtain a personalized 3D LA model of

each patient. The surface of the 3D LA model was composed

of triangular meshes containing 400,000–500,000 geometric

elements, and the mean distance between the adjacent elements

was 235.1 ± 32.1µm. Interpolation of the clinical voltage

data was used to create the virtual voltage data. We used

the inverse distance weighting method (19) to represent the

interpolation of the electroanatomical map values during the

simulation procedures.

Integrating the electroanatomical maps containing the

clinical voltage data and 3D LA maps onto the CT-based mesh

models was conducted over four steps: geometry, trimming,

field scaling, and alignment (15). The geometry was generated

during the electroanatomical map creation using a catheter.

After the geometry step, unnecessary artifact was removed,

and the ostial position was used for the separation of the

LA appendage and pulmonary vein (PV) regions during the

trimming step. The field scaling step indicated the optimal

scaling of the inter-electrode spacing and CT images. Lastly,

the alignment step involved the registration of the alignment

points through a coordinate transformation using an accurately

defined ostium, along with the integration of CT images and

anatomical maps. We used the Courtemanche-Ramirez-Nattel

model (20–22) for the wild-type sinus rhythm (SR) status. All

ion currents for the wild-type SR status were set to 100%.

For the wild-type AF atrial ionic remodeling, the sodium

current (INa), transient outward potassium current (Ito), L-

type calcium current (ICaL), ultrarapid outward current (IKur),

and calcium current concentration in the uptake compartment

(ICaup) decreased by 10, 70, 70, 50, and 20% respectively, and the

inwardly rectifying potassium current (IK1) increased by 110%

as compared to the Courtemanche-Ramirez-Nattel model (23).

We simulated the clinical local activation data using the

3D LA model, which reflected the cardiac structural and fiber

orientation (Figure 1B). To achieve each personalized virtual

LA model, synchronization of the clinical local activation time

(LAT) map and the virtual LATmap was performed (Figure 1B).

The virtual LAT map diffusion coefficient was adjusted to

accurately match the conduction velocity (CV) of the clinical

LAT map (15). Bipolar voltage data obtained from catheter

ablation mapping were matched onto the computational nodes

of the 3D LA model, and the fibrotic area locations were

determined using the map (Figure 1B). The fibrosis status of

each node was numerically defined and determined using the

relationship between the probability of fibrosis and bipolar

voltage (24, 25). The fiber orientation was defined in the meshes

of each patient geometry and adjusted based on the clinical local

activation time map (26, 27). Parallel tasking was used for the

fiber tracking step and a visual display of the fiber orientation

onto the 3D LA map was conducted during the visualization

step (Figure 1B). For the ion currents of the fibrotic cells, the IK1,

ICaL, and INa were decreased by 50, 50, and 40%, respectively, as

compared to normal cells (25). The conductivity of the model

was based on the status and shape of the fibrosis (25). The

reaction-diffusion equation for the cardiac wave propagation

was solved numerically and adjusted based on the specific

conduction velocity in each case to represent personalized AF

simulations (23).

PITX2
+/− deficient incorporation

The Syeda et al. model (13) was used for the PITX2+/−

deficiency status. The IK1 was decreased by 25% and the

rapidly activating delayed rectifying potassium current (IKr)

was increased by 100% as compared to the wild-type status.

Therefore, for the PITX2+/− deficiency AF baseline status, the

INa, Ito, ICaL, IKur, ICaup were decreased by 10, 70, 70, 50, 20%,

respectively, whereas the IK1 and IKr, were increased by 58 and

100%, respectively, as compared to the Courtemanche-Ramirez-

Nattel model.

AF simulation

Our graphical user interface software (Model:SH01, CUVIA;

Laonmed Inc., Seoul, Korea) integrated the fibrosis formation

and fiber orientation into the LA surface and enabled virtual

AF induction and AF wave-dynamic changes (28). Figure 1C

shows the process used in the study protocol. We induced

AF in each case using AF pacing from 200 to 120ms with

eight beats per cycle lasting a total of 11,520ms, based on the

appropriate ion current settings. Each virtual pacing location

corresponded to the clinical activation time map for realistic
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FIGURE 1

Study protocol of the computational atrial modeling, AF simulation, and virtual interventions. (A) Integration of the CT imaging and

electroanatomical map. (B) Computational modeling integrating the anatomy, fibrosis, fiber orientation, and LAT map. (C) Protocol of the AF

simulation and wave-dynamic analysis. AF was induced in each case using AF pacing from 200 to 120ms with eight beats per cycle lasting a

total of 11,520ms based on the wild-type PITX2+/− deficient AF baseline ion current settings. AF maintenance was observed for 20,480ms after

induction (overall 32 s including pacing), and the wave dynamics of the DF and Smax were analyzed from 17,000 to 23,000ms. (D) Baseline AF

induction under wild-type and PITX2+/− deficient backgrounds. The voltage maps and ECGs indicate a successful AF induction during the

wild-type and PITX2+/− deficient baselines. (E) 3D DF map of the baseline AF under wild-type and PITX2+/− deficient backgrounds. The black

arrows indicate the locations of the high DF sites on the 3D DF map. (F) Virtual CPVI with a high DF site ablation. The green lines indicate the

CPVI and yellow arrows indicate the ablated regions of the high DF sites. The pink sites indicate the pacing site. (G) Ion current changes with the

high and low doses of the three types of AADs. Ion current changes with the high and low doses of the three types of AADs under the wild-type

and PITX2+/− deficient backgrounds. For PITX2+/− deficiency, the IK1 decreased by 25% and the IKr increased by 100% as compared to that with

the wild-type status, while the other ion currents remain the same as the wild-type. (H) Smax and DF analysis after AADs and the CPVI. The ECGs

indicate AF was maintained after AADs, and AF converted to AT after the CPVI. CT, computed tomography; EP, electrophysiology; LAT, local

activation time; PITX2, paired-like homeodomain transcription factor 2; CPVI, complete pulmonary vein isolation; DF, dominant frequency;

Smax, the Maximal slope of the restitution curves; AF, atrial fibrillation; AT, atrial tachycardia; ECG, electrocardiogram; AAD, antiarrhythmic drug.

LA modeling, and the pacing sites were matched precisely

to reflect each personalized LA model. AF maintenance was

observed for 20.48 s after the induction (overall 32 s including

pacing). Figure 1D indicates the successful AF induction

during the baseline status under wild type and PITX2+/−

deficient backgrounds. We defined a successful AF induction

according to the electrograms in each LA model, and AF

defragmentation involved AF termination and AF conversion to

atrial tachycardia (AT).

Virtual ablations

We applied virtual ablation and virtual AADs to our realistic

AF model. For the virtual ablation, the membrane potential of

the ablated regions was set at zero to produce a permanent

conduction block interrupting the cardiac wave propagation.

First, we performed a virtual circumferential pulmonary vein

isolation (CPVI; V-CPVI). Under conditions of a CPVI alone,

we initiated the AF induction as described in Figure 1C under

wild type and PITX2+/− deficient backgrounds. Then, we

applied a virtual high dominant frequency (DF) site ablation to

failed AF defragmentation episodes after the CPVI alone and

initiated AF induction again. High DF sites were targeted based

on the 3D DF map during baseline AF under wild-type and

PITX2+/− deficient backgrounds (Figures 1E,F).

Virtual AADs

Three types of AADs were used for the study: amiodarone,

dronedarone, and flecainide. We tested the high and low dose
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effects of each AAD; 5 and 10µM amiodarone, 3 and 10µM

dronedarone, and 5 and 15µM flecainide. All ionic changes

for each drug were derived from previously reported references

(Supplementary Table 3) and the AADs were designed by

changing them relative to the AF baselinemodel under wild-type

or PITX2+/− deficient backgrounds (Figure 1G). The degree of

change in the value varied within each AAD to resemble low

and high dosage. Supplementary Table 2 shows the complete

list of ion currents for the baseline AF status and AADs

under wild type and PITX2+/− deficient backgrounds, and

the references for each AAD ion current setting are listed in

Supplementary Table 3.

Analysis of the spatial changes in the AF
wave-dynamics

Our graphic processing unit (GPU)-based customized

software (CUVIA, Model: SH01; Laonmed Inc., Seoul, Korea)

was used virtually to define the ablated regions and apply

appropriate ion current settings for the baseline AF and AADs.

The DF and Smax were analyzed using this same GPU-

based software (Figure 1H). During baseline AF, we additionally

analyzed the action potential duration at 90% repolarization

(APD90), conduction velocity (CV), and AF cycle length. A

pacing cycle length of 600ms was used to measure the APD90

(29) and CV. The region of interest for the APD90 and

CV was from the LA high septum (pacing sites) to the LA

appendage. The action potential duration (90%) was measured

in the single-cell environment. However, at the tissue level,

the APD90 values were heterogeneous among patients due to

electroanatomical characteristics and LA tissue curvature (29).

The APD90 and CV were measured using the SR ion currents

while the mean Smax, DF, and AFCL were calculated using AF

ion currents.

Statistical analysis

Categorical variables are reported as numbers (percentages).

To investigate the normal distribution, continuous variables

were tested using the Shapiro-Wilk or Kolmogorov-Smirnov

tests. Continuous variables without a normal distribution are

expressed as medians with interquartile range (IQR), while

those with a normal distribution are expressed as means ±

standard deviations. The proportion of categorical variables

was compared among the groups using a Chi-square or

Fisher’s exact test. Continuous variables without a normal

distribution were analyzed using the Mann-Whitney U test

between two groups and the Kruskal-Wallis test among three

groups. Continuous variables with a normal distribution were

tested using ANOVA tests among three groups. A p-value

<0.05 was considered statistically significant. All statistical

analyses were performed using SPSS (Statistical Package for

FIGURE 2

Characteristics of wild-type and PITX2+/− deficient baseline AF. Genotype-dependent comparisons of the APD90, CV, mean Smax, mean DF, and

AFCL depend on the baseline AF. Every group includes an identical number of samples (n = 25). APD90, action potential duration 90%; CV,

Conduction velocity; Smax, the Maximal slope of the restitution curves; AFCL, AF cycle length; DF, Dominant frequency; PITX2, paired-like

homeodomain transcription factor 2.
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TABLE 1 Defragmentation rate and wave-dynamic changes in the overall AF episodes (Wild type and PITX2
+/− deficient).

AF defragmentation, %(n) AF termination, %(n) Mean DF, (Hz) Mean Smax

Baseline (n= 50) 0% (0/50) 0% (0/50) 6.625 [5.880, 7.045] 0.644[0.491, 0.831]

CPVI(±DFA) (n= 100) 65.0% (65/100) 25.0% (25/100) 6.788 [5.200, 7.688] 0.739[0.519, 1.030]

Overall AADs (n= 300) 42.0% (126/300) 21.3% (64/300) 5.903 [5.109, 6.388] 0.739[0.537, 0.996]

p-value <0.001 0.488 <0.001 0.958

CPVI 58.0% (29/50) * 24.0% (12/50) 7.138 0.798

(n= 50) [5.349, 7.716] [0.523, 1.073]

CPVI+DF ablation (n= 50) 72.0% (36/50) 26.0% (13/50) 6.343 [5.200, 7.484] 0.696[0.515, 0.975]

p-value 0.208 1 0.344 0.291

Amiodarone (n= 100) 45.0% (45/100) 23.0% (23/100) 5.886 [5.089, 6.351] 0.803[0.591, 1.053]

Dronedarone (n= 100) 46.0% (46/100) 22.0% (22/100) 6.062 [5.250, 6.727] 0.661[0.510, 0.975]

Flecainide (n= 100) 35.0% (35/100) 19.0% (19/100) 5.818 [5.187, 6.290] 0.738[0.524, 0.939]

p-value 0.239 0.822 0.234 0.075

AAD, antiarrhythmic drug; AF, atrial fibrillation; DF, dominant frequency; Smax, the maximal slope of action potential duration restitution curves; CPVI, complete pulmonary

vein isolation.

*p= 0.045 vs. overall AADs.

Social Sciences, Chicago, IL, USA) software for Windows

(version 26).

Results

Characteristics of PITX2+/− deficient AF

We applied two different genotypes (wild type and

PITX2+/− deficient) to the realistic AF computational modeling

of 25 patients who underwent AFCA (68% men, 59.8 ± 9.8

years of age, 32% paroxysmal AF; Supplementary Table 1). We

evaluated the effects of two different ablation protocols (CPVI

and CPVI+DF ablation) and two different doses of three AADs

(amiodarone, dronedarone, and flecainide). After measuring the

APD90, we induced AF by virtual ramp pacing and there was no

AF defragmentation of the baseline AF during the 32 s waiting

period. In the PITX2+/− deficient AF condition, the APD90

was shorter (233ms [231, 240] to 179ms [177, 183], p < 0.001),

AF cycle length longer (135.62ms [130.13, 154.04] to 152.62ms

[148.36, 182.41], p = 0.001), DF (7.025Hz [6.085, 7.478] to

6.411Hz [5.744, 6.693], p= 0.003) and Smax (0.785 [.644,0.973]

to.531 [.411,0.646], p < 0.001) significantly lower than that in

the wild-type AF condition (Figure 2).

Anti-AF e�ects of virtual ablation and
AADs

Table 1 summarizes the AF defragmentation or termination

rates and wave-dynamics changes after 100 virtual ablations

(CPVI with or without DF ablation) and 300 virtual AAD

interventions. Overall interventions including a CPVI ± DF

ablation and AADs significantly increased the AF termination

(22.3%, p < 0.001) and defragmentation (47.8%) rates as

compared to the baseline AF (0%). When we compared the

overall virtual interventions and overall AADs, CPVI±DF

ablations resulted in a significantly higher AF defragmentation

rate than AADs (65 vs. 42%, p < 0.001, Figure 3) without

changing the DF or Smax (Table 1). In contrast, AADs

significantly reduced the mean DF (6.625Hz [5.88, 7.045] to

5.903Hz [5.109, 6.388], p < 0.001). There were no significant

differences in the AF defragmentation or termination rates, or

the DF or Smax between the CPVI and CPVI+DF ablation or

among amiodarone, dronedarone, and flecainide (Table 1).

PITX2
+/− genotype-dependent

responsiveness to anti-AF interventions

We summarize the PITX2+/− genotype-dependent changes

after a virtual intervention or AADs in Table 2. Overall, the

virtual ablation (72%, p < 0.001) or CPVI alone (68%, p =

0.003) exhibited better AF defragmentation rates than the overall

AADs (34.7%) in the wild-type AF, but not the PITX2+/−

deficient AF. Virtual ablation did not exhibit any difference in

the defragmentation rate (p = 0.208) or changes in the DF (p =

0.965) depending on the genotype but resulted in a lower Smax

in the PITX2+/− deficient genotype than wild-type control (p

= 0.023). After the overall AADs, PITX2+/− deficient AF was

more easily defragmented (49.3 vs. 34.7%, p = 0.014) and had

a greater significant reduction in the mean DF (p < 0.001) and

mean Smax (p = 0.001) as compared to the wild type (Table 2;

Figure 3).
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FIGURE 3

Wave-dynamic change after a virtual CPVI and AADs. (A) The ECGs were obtained at the black * sites in the DF maps and indicate that AF

converted to AT after the CPVI during a wild-type condition was still maintained during a PITX2+/− deficient condition. (B) The ECGs were

obtained at the black * sites in the 3D DF maps and indicate that AF was still maintained after high dose amiodarone under both wild-type and

PITX2+/− deficient backgrounds. (C) The ECGs were obtained at the black * sites in the DF maps and indicate that the AF was still maintained

after high dose flecainide under both wild-type and PITX2+/− deficient backgrounds. DF, dominant frequency; Smax, the maximal slope of the

restitution curves; CPVI, complete pulmonary vein isolation; AF, atrial fibrillation; AT, atrial tachycardia; ECG, electrocardiogram; PITX2,

paired-like homeodomain transcription factor 2.

We compared the genotype-dependent comparisons of the

AF defragmentation and termination rates and mean DF and

Smax depending on the AADs and their dosages (Figure 4).

There was a significant difference in the genotype-dependent

AF defragmentation rate with low dose dronedarone (p= 0.038,

Figures 4A,B). The post-AAD mean DF was significantly lower

under the PITX2+/− deficient condition than in the wild type (p

< 0.001, Table 2). The post-amiodarone Smax was significantly

lower in the PITX2+/− deficient condition than wild type (low

dose p = 0.024; high dose p = 0.02), but not with dronedarone

or flecainide (Figure 4C).

PITX2
+/− genotype-dependent clinical

outcomes

We calculated the weighted genetic risk score (wGRS)

in all 25 patients by multiplying the number of AF risk

alleles by the beta coefficient for each single nucleotide

polymorphism (SNP) and adding them (rs2595107, rs2200733,

rs6843082, and rs10033464) together (Table 3). The 1- and 2-

year clinical AF recurrence rates were compared depending

on the PITX2+/− wGRS. Although the patients with a higher

wGRS tended to have a higher one-year AF recurrence, it

was not statistically significant (p = 0.342, Log-rank p= 0.273,

Supplementary Figure 1A). All 25 patients were one-AAD

resistant (n = 22), two-AAD resistant (n = 1), or AAD-

intolerable (n = 2) patients (Supplementary Table 1). We could

not compare the genetic effects on the AAD responsiveness

because of an AAD selection bias in the clinical setting.

Discussions

Main findings

In this study, we explored the anti-AF effects of virtual AF

ablation and AADs according to the genotypes using realistic

human AF computational modeling. Virtual AF ablations

resulted in a higher AF defragmentation rate than virtual

AADs in the overall AF episodes. Comparing the PITX2+/−

deficient and wild-type AF types, the AF defragmentation

rate did not differ depending on the genotype after a virtual

AF ablation. With consistency, the genetic risk score of the

PITX2+/− patients did not affect the rhythm outcome of the

AF ablation in the clinical condition. However, PITX2+/−

deficient AF was more easily defragmented with a lower mean

DF and Smax than the wild type after virtual AADs. Therefore,

consistent with the previous clinical studies, virtual AF ablation

exhibited an effective anti-AF effect regardless of the PITX2

genotype, whereas virtual AADs exhibited more significant

defragmentation or wave-dynamics change in the PITX2+/−

deficient genotype.
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TABLE 2 Defragmentation rate and wave-dynamic changes after virtual interventions according to the genotype.

AF defragmentation, %(n) p-value AF termination, %(n) p-value Mean DF, (Hz) p-value Mean Smax p-value

Wild type PITX2+/−

Deficiency

Wild type PITX2+/−

Deficiency

Wild type PITX2+/−

Deficiency

Wild type PITX2+/−

Deficiency

Baseline AF

(n= 25)

0%

(0/25)

0%

(0/25)

NA 0%

(0/25)

0%

(0/25)

NA 7.025

[6.085, 7.478]

6.411

[5.744, 6.693]

0.003 0.785

[0.644, 0.973]

0.531

[0.411, 0.646]

< 0.001

CPVI(±DFA) 72.0% 58.0% 0.208 28.0% 22.0% 0.645 6.595 6.788 0.965 0.831 0.704 0.023

(n= 50) (36/50) (29/50) (14/50) (11/50) [5.084, 7.820] [5.202, 7.685] [0.566, 1.143] [0.403, 0.965]

Overall AADs

(n= 150)

34.70%

(52/150)

49.30%

(74/150)

0.014 23.30%

(35/150)

19.30%

(29/150)

0.481 6.188

[5.584, 6.766]

5.481

[4.920, 6.040]

<0.001 0.799

[0.582, 1.100]

0.668

[0.474, 0.910]

0.001

p-value <0.001 0.329 NA 0.57 0.839 NA 0.143 <0.001 NA 0.729 0.729 NA

CPVI

(n= 25)

68.0%*

(17/25)

48.0%

(12/25)

0.252 28.0%

(7/25)

20.0% (5/25) 0.742 6.804

[4.969, 7.965]

7.192

[6.223, 7.688]

0.897 0.956

[0.582, 1.272]

0.739

[0.465, 0.973]

0.067

CPVI+DF

ablation

76.0% 68.0% 0.754 28.0% 24.0% 1 6.386 6.225 0.976 0.75 0.676 0.16

(n= 25) (19/25) (17/25) (7/25) (6/25) [4.969, 7.476] [5.201, 7.615] [0.560, 1.087] [0.369, 0.927]

p-value 0.754 0.252 NA 1 1 NA 0.617 0.402 NA 0.362 0.449 NA

Amiodarone

(n= 50)

38.0%

(19/50)

52.0%

(26/50)

0.228 22.0%

(11/50)

24.0%

(12/50)

1 6.188

[5.321, 6.749]

5.457

[4.920, 5.988]

0.001 0.926

[0.682, 1.208]

0.681

[0.477, 0.914]

0.001

Dronedarone

(n= 50)

36.0% (18/50) 56.0%

(28/50)

0.07 28.0%

(14/50)

16.0%

(8/50)

0.227 6.358

[5.558, 7.141]

5.445

[5.100, 6.341]

0.003 0.724

[0.534, 1.049]

0.626

[0.474, 0.950]

0.138

Flecainide

(n= 50)

30.0%

(15/50)

40.0%

(20/50)

0.402 20.0%

(10/50)

22.50% (9/50) 1 6.06

[5.634, 6.627]

5.596

[4.758, 5.910]

< 0.001 0.743

[0.574, 0.993]

0.713

[0.444, 0.846]

0.16

p-value 0.748 0.253 NA 0.694 0.658 NA 0.279 0.504 NA 0.037 0.781 NA

AF, atrial fibrillation; DF, dominant frequency; Smax, the maximal slope of action potential duration restitution curves; CPVI, complete pulmonary vein isolation; AAD, antiarrhythmia drug; PITX2, paired-like homeodomain transcription factor 2.

*p= 0.003 vs. wild-type overall AADs.
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FIGURE 4

Genotype-dependent comparisons of the AF defragmentation (A) and AF termination (B) rates, mean Smax (C), and DF (D) depending on the

high and low doses of the three types of AADs. Every group includes identical number of samples (n = 25). Smax indicates the maximal slope of

the restitution curves; DF, Dominant frequency; PITX2, paired-like homeodomain transcription factor 2.

Electrophysiological characteristics of
PITX2

+/− deficient AF

Genome-wide association studies (GWASs) have identified

a number of SNPs that are associated with AF (5). Some

SNPs located on chromosome 4q25 specifically increase

AF susceptibility by modulating the activity of paired-

like homeodomain transcription factor 2 (PITX2) in

European, Japanese, Korean, and multi-ethnic populations

with consistency (30). In the experimental models, variants

in the PITX2 gene create AF vulnerable conditions by

changing the electrophysiological characteristics. The

PITX2+/− deficient murine atrial model exhibited a slightly

depolarized resting membrane potential, reduced APD and

AP amplitude (13), and low-voltage P waves and irregular

beats, which indicated an impaired atrial conduction (31).

The PITX2+/− deficiency is related to triggered activity

caused by abnormal calcium management (32) and provokes

AF by causing a modification of the calcium handling

and cell-cell communication. In this study, we applied the

electrophysiological characteristics of the PITX2 variant known

by previous experimental studies to realistic computational

modeling and generated a tissue or organ level PITX2+/−

deficient condition. In addition, we tested multiple virtual

interventions under the same conditions with very high-

resolution wave-dynamics parameters that are difficult

to compare with clinical or experimental studies using

computational modeling (33).
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TABLE 3 Clinical AF recurrence based on the PITX2
+/− risk score.

PITX2+/− risk

score

PITX2+/− risk

score

PITX2+/− risk

score

PITX2+/− risk

score

P-value Log rank P

(0∼6, n= 25) (0∼3, n= 7) (4, n= 8) (5∼6, n= 10)

1 year recurrence 36.00% 14.30% 37.50% 50.00% 0.342 0.273

(9/25) (1/7) (3/8) (5/10)

2 year recurrence 48.00% 42.90% 37.50% 60.00% 0.687 0.441

(12/25) (3/7) (3/8) (6/10)

AF, atrial fibrillation; PITX2+/− risk score: Paired-like homeodomain transcription factor 2 (PITX2) gene risk score, calculated by multiplying the number of AF risk alleles by the beta

coefficient for each single nucleotide polymorphism (SNP), and adding them (rs2595107, rs2200733, rs6843082, and rs10033464) together.

Comparisons of the clinical studies and
modeling studies on PITX2

+/−

deficient AF

There have been multiple clinical studies regarding the

genotype-specific responsiveness of AF treatment. In particular,

there is controversy about the effect of the PITX2 variant on

AF recurrence after AFCA. Husser et al. and Shoemaker et al.

reported that the recurrence rate after AFCA was significantly

higher in PITX2 variants, especially rs2200733 (6–8), but the

Korean AF Network registry study, which includes the highest

number of patients, did not show any genotype-dependent

differences after AFCA (9). Although the reason is not clear,

ethnic differences may exist in the frequency of AF-related SNPs.

Parvez et al. reported a higher recurrence of AF after

electrical cardioversion in patients with PITX2 rs2200733

variants and 55% of the included patients were under AADs

(11). They also reported that variants of rs10033464 at the PITX2

gene were independent predictors of a successful AF rhythm

control by AADs (12). Bai et al. and Syeda et al. reported that

the class I AAD flecainide was more effective in suppressing

atrial arrhythmias in PITX2 variants than in the wild type

(13, 17). In contrast, Holmes et al. reported that the class III

AAD dronedarone offered amore prominent anti-AF effect than

flecainide or propafenone in a murine PITX2+/− heart model

than in the wild type (10). In this study, we confirmed that class

I AAD was more effective in PITX2 variants, consistent with the

previous studies by Bai or Syeda (13, 17). In addition, we found

the differences in AF wave dynamics and effects under class III

AADs according to the PITX2 genotype. However, there was no

significant difference after AF ablation.

In this modeling study, virtual AF ablation tended to

have a lower defragmentation rate in the PITX2+/− deficient

condition than in the wild type without a statistical significance.

With consistency, clinical recurrence of AF after clinical AF

ablation tended to be higher in patients with a high genetic risk

score of the PITX2+/− without statistical significance. The AF

defragmentation rate was significantly higher in the PITX2+/−

deficient patients than in the wild-type patients after a virtual

AAD administration.

Potential role of computational modeling
in AF management

SinceMoe et al. presented the first human AF computational

modeling (34), various atrial modeling approaches have been

developed, with advancements in both higher-dimensional

and realistic geometry models (14). The advantages of AF

computational modeling include a high-density entire chamber

map, reproducible condition control, virtual intervention

trials, and prediction of the clinical outcome (33). With the

development of computational technology, AF modeling has

come to a point where it can be used in clinical AF treatment

based on precision medicine. Boyle et al. have presented a

clinically applicable rotor map as a proof of concept study

by applying fibrosis reflected by cardiac MRI late gadolinium

enhancement to AF computational modeling (35). We also

developed realistic AF computational modeling (36) while

considering the patient anatomy (cardiac computed tomogram),

electrophysiology (3D-electroanatomical map), fibrosis (voltage

map), and fiber orientation (LAT map) (16). By utilizing this

realistic AF modeling (CUVIA, Laon Med Inc.), Kim et al. (37)

and Baek et al. (38, 39) reported an improved rhythm outcome

after modeling-guided linear ablation or DF ablation compared

to an empirical AF ablation by multi-center randomized clinical

trials. In this study, we showed that the effects of virtual ablation

or virtual AADs according to the genotype can be evaluated by

utilizing AF computational modeling based on the AF wave-

dynamics mechanism.

Limitations

This study had some limitations in the computational

simulations. First, the right atrium was not incorporated
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in the personalized modeling because it is not possible

to define interatrial connections using the current image

resolution. Second, the LA wall thickness was not implemented

in the 3D LA model. Third, it was not clear whether

the atrial fibrosis area obtained using a bipolar voltage

map reflected the pathological replacement fibrosis. Fourth,

we utilized the monolayer in the 3D LA model, but

not multi-layers that could perform as endocardial and

epicardial layers.

Conclusion

Consistent with the previous clinical studies, the virtual

CPVI had effective anti-AF effects regardless of the PITX2

genotype, whereas virtual AADs exhibited more significant

defragmentation or wave-dynamic changes in the PITX2+/−

deficient genotype.
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Artificial intelligence (AI) aided cardiac arrhythmia (CA) classification has been an

emerging research topic. Existing AI-based classification methods commonly

analyze electrocardiogram (ECG) signals in lower dimensions, using one-

dimensional (1D) temporal signals or two-dimensional (2D) images, which,

however, may have limited capability in characterizing lead-wise

spatiotemporal correlations, which are critical to the classification accuracy.

In addition, existing methods mostly assume that the ECG data are linear

temporal signals. This assumption may not accurately represent the

nonlinear, nonstationary nature of the cardiac electrophysiological process.

In this work, we have developed a three-dimensional (3D) recurrence plot (RP)-

based deep learning algorithm to explore the nonlinear recurrent features of

ECG and Vectorcardiography (VCG) signals, aiming to improve the arrhythmia

classification performance. The 3D ECG/VCG images are generated from

standard 12 lead ECG and 3 lead VCG signals for neural network training,

validation, and testing. The superiority and effectiveness of the proposed

method are validated by various experiments. Based on the PTB-XL dataset,

the proposed method achieved an average F1 score of 0.9254 for the 3D ECG-

based case and 0.9350 for the 3D VCG-based case. In contrast, recently

published 1D and 2D ECG-based CA classification methods yielded lower

average F1 scores of 0.843 and 0.9015, respectively. Thus, the improved

performance and visual interpretability make the proposed 3D RP-based

method appealing for practical CA classification.

KEYWORDS

cardiac arrhythmia classification, electrocardiogram, recurrence plot,
vectorcardiography, deep learning
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Introduction

Cardiovascular Diseases (CVD) are a leading cause of death

globally (Sahin and Ilgun, 2020; Amini et al., 2021). Cardiac

arrhythmia is a common CVD associated with disorganized

electrical activities of the heart. Several main types of arrhythmias

include Atrial Fibrillation (AF), First-degree Atrioventricular Block

(I-AVB), Bundle Branch Block (BBB), and so on. Some arrhythmias

can significantly impact the patient’s health, such as AF, which can

pose a significant risk for stroke (Ye et al., 2012; Siontis et al., 2021),

while others are common and relatively harmless. It is essential to

classify the risk types as early as possible to manage and treat

arrhythmia-associated heart diseases. Manual interpretation of the

electrocardiogram (ECG) is an effective and non-invasive way for

arrhythmia classification and diagnosis. Traditional ECG-based

arrhythmia diagnostics require considerable expertise; recently,

computer-aided ECG diagnosis for arrhythmia based on machine

learning and deep learning has become an active research area

(Siontis et al., 2021).

In traditional machine learning methods, a set of timing and

morphology features of ECG signals were extracted and

discriminated by learning-based classifiers (De Chazal et al.,

2004; De Chazal and Reilly, 2006; Ince et al., 2009; Ye et al.,

2012). (Asl et al., 2008) extracted the R-R interval features from the

raw ECG signals and then employed a support vector machine

classifier to discriminate six types of arrhythmias. (Llamedo and

Martinez, 2011). used features extracted from the R-R series and

computed from different scales of the wavelet transform for

arrhythmia classification by a linear classifier. In general, these

methods heavily rely on in-depth domain knowledge.

Furthermore, the extracted hand-crafted features from the ECG

signals can vary among patients, making it challenging tomaintain

both the accuracy and generalization of arrhythmia classification.

Deep learning networks have been widely utilized to perform

automated feature extraction based on raw or low-level processed

ECG data and achieve end-to-end arrhythmia classification

(Siontis et al., 2021). Existing studies have demonstrated the

effectiveness of ECG feature detection in predicting arrhythmia.

Most of them focus on features of ECG signals, including one-

dimensional (1D) time-domain features (e.g., directly taking ECG

series as input signals), frequency and time-frequency domain

features (e.g., Fourier transform, wavelets transform), and ECG

morphology-based image features (e.g., using 2D grayscale

images). For the 1D time-domain features, Hannun et al.

developed a deep neural network to classify 12 types of

arrhythmias based on single-lead ECG time signals. The

prediction performance exceeds that of the average cardiologist

(Hannun et al., 2019). Some other studies combined a recurrent

neural network, such as the long-short termmemory (LSTM), with

a convolution neural network (CNN) to capture the historical

information of the ECG (He et al., 2019; Chen et al., 2020; Yao

et al., 2020; Rahul and Sharma, 2022b). For the frequency and

time-frequency domain features of ECG, researchers attempted to

convert the 1D ECG signals into 2D images to predict different

types of CA. Huang et al. transferred the 1D ECG time signals to

2D time-frequency spectrograms, then transformed the

arrhythmia identify task into an image classification task based

on a 2D CNN(Huang et al., 2019). Jagdeep Rahul et al.

transformed the 1D ECG into 2D time-frequency

representation as the input, then fed it into the Bi-directional

LSTM model for AF prediction (Rahul and Sharma, 2022a). (Li

et al., 2019) developed an approach based on three types of

wavelets transform and the 2D CNN to detect Ventricular

ectopic beat in the image domain. For the ECG morphology-

based image features, 1D ECG signals were converted into 2D

grayscale images and then fed into 2D CNN to classify different

arrhythmia types (Izci et al., 2019). Most of these classification

methods have been designed for detecting linear, time-frequency

features of ECG signals. However, the human heart is a complex,

dynamic system (Zbilut et al., 2002), generating ECG signals

naturally nonstationary and nonlinear (Acharya et al., 2011).

Therefore, the methods mentioned above might be incapable of

fully characterizing the dynamical nature of the ECG signals.

To study nonlinear dynamic spatial features of the cardiac

system for arrhythmia classification, the recurrence plot (RP)

technique has been used to discover the recurrence pattern

buried in the time series of ECG signals and then successfully

applied to the detection of ventricular fibrillation, as well as the

prediction of premature atrial complex, premature ventricular

complex, and AF (Mathunjwa et al., 2021). In our recent work

(Zhang et al., 2021), we successfully utilized the 2D RPs to

distinguish various arrhythmias, leading to better solutions

than linear approaches.

This work aims to develop further the RP technique into a 3D

framework for improved arrhythmia classification. In our recent

study (Zhang et al., 2021), the 2DRP images offer a unique feature

detection mechanism for arrhythmia classification compared with

conventional approaches. However, those 2DRP maps are directly

fed into the neural network in a decoupled manner, without

sorting and directly analyzing shared features and nonlinear

alterations between these 2D images in the training process.

The new 3DRP maps-based deep learning training process

allows the neural network to extract the correlation between the

ECG leads, thus explicitly offeringmore comprehensive recurrence

features in the phase space that help identify the uniqueness of

each type. In implementing 3D RP-based arrhythmia

classification, we compared two 3D transforms, namely the

ECG-based and VCG-based methods.

The contributions of this work include: 1) this is the first study

using the RP technique for mapping 12 lead ECG signals to 3DRP

texture images and performing deep learning-based arrhythmia

classification; 2) the 3 lead VCG was introduced into the RP

method to efficiently extract the nonlinear features of the ECG

signals for optimized arrhythmia prediction; 3) the proposed 3D

Inception Resnet model was used to extract the spatial pattern

features and textural alternations from the 3D RP images.
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The rest of the paper is organized as follows: the approach

and the network architecture are described in Methodology

Section, the experiments are detailed in Experiment Section,

the discussion on results is provided in Discussion Section,

and conclusions are drawn in Conclusion Section.

Methodology

In this section, the arrhythmia classification task is treated as

a 3D ECG image classification problem using the proposed 3D

RP technique and the 3D Inception Resnet model.

Recurrence plot

Recurrence is one of the fundamental properties of a dynamic

system, such as the electrical signals generated by the human

heart, and is difficult to detect in serial time-domain signals

(Marwan et al., 2007; Debayle et al., 2018). The Recurrence Plot

(RP) approach was proposed to explore the phase space

trajectory in a higher-dimensional space and to show the

recurrent behaviors of the time series (Eckmann et al., 1987;

Eckmann et al., 1995).

An RP can be formulated as follows:

Ri,j � θ(ε − ����xi − xj
����), i, j � 1, ....,N (1)

where N is the number of time series xi, ε is a predefined distance,
‖ · ‖ is an L2 norm, and θ(.) is the Heaviside function.

θ(.) is defined as:

θ(Z) � { 0, if z< 0
1, otherwise

(2)

Eq. 1 is considered binary because of the predefined distance.

For this study, an un-threshold approach (Faria et al., 2016) was

applied to obtain more information contained in the RP images.

Specifically, The R-matrix can be defined as:

Ri,j�
����xi − xj

����, i, j � 1, ....,N (3)

Vectorcardiography

To reduce the data size for neural network training, we

consider converting the standard 12-lead ECG signals into

VCG signals for deep learning-based arrhythmia classification.

VCGwas introduced by (Frank, 1956). Since the human body is a

3D structure, the basic idea of VCG is to construct three

orthogonal leads containing all the electric information of the

human heart. The three leads are represented by the right-left

axis (Vx), head-to-feet axis (Vy), and front-back

(anteroposterior) axis (Vz). Based on the standard 12-lead

system, the following expressions are used to calculate Frank’s

leads Vx, Vy, and Vz (Daniel et al., 2007).

Vx � −( − 0.172V1 − 0.074V2 + 0.122V3 + 0.231V4 + 0.239V5

+ 0.194V6 + 0.156DΙ − 0.010DΙΙ)
(4)

Vy � (0.057V1 − 0.019V2 − 0.106V3 − 0.022V4 + 0.041V5

+ 0.048V6 − 227DΙ + 0.887DΙΙ)
(5)

Vz � −( − 0.229V1 − 0.310V2 − 0.246V3 − 0.063V4

+ 0.055V5 + 0.108V6 + 0.022DΙ + 0.102DΙΙ) (6)

where DΙ and DΙΙ are the leads I and II, and V1-V6 are the chest

leads (V1, V2, V3, V4, V5, V6) of 12-lead ECG. Even though the

converted VCG is not widely used as the ECG, it records essential

features of cardiac electrical excitation changes over time. It has

been shown that over 90% of ECG energy can be reserved by the

3-lead VCG (Hasan et al., 2012). As illustrated in Figure 1, VCG

signals reflect the heart’s electrical activities in both spatial and

temporal domains through three orthogonal planes of the body

(Yang et al., 2012). The dynamic differences between the VCG

signals can thus be used for arrhythmia classification.

3DRP Inception Resnet architecture

The proposed 3DRP Inception Resnet network was designed

based on the Inception-ResNet-v2 (Szegedy et al., 2017). In this

study, we expanded the network from 2D to 3D and improved

the Inception Resnet models, as shown in Figure 2. It contains the

3D Stem, the 3D Inception Resnet models, and the 3D prediction

part. In the first part, the 3D Stem model contains deep

convolutional layers with 1 × 1 × 1, 3 × 3 × 3, 1 × 1 × 7, 1 ×

7 × 1 convolutions, and two max-pooling layers, which are used

to pre-process the original data before entering the 3D Inception

Resnet blocks. The following part has the 3D Inception Resnet

models, including 3D Inception Resnet A and 3D Reduction A

with 1 × 1 × 1, 3 × 3 × 3 convolution layers; 3D Inception ResNet

B and 3D Reduction B with 1 × 1 × 1, 3 × 3 × 3 convolutions, and

1 × 1 × 7, 1 × 7 × 1 asymmetric filter; 3D Inception ResNet C with

1 × 1 × 1 convolutions, 1 × 1 × 3 and 1 × 3 × 1 asymmetric filter.

The network enhances the diversity of the filter patterns by

asymmetric convolution splitting. The last part is the prediction

layer, including 3D Global Average pooling and SoftMax layers.

Experiment

Experimental setup

ECG database
The dataset Physikalisch-Technische Bundesanstalt (PTB-XL)

(Wagner et al., 2020) from the PhysioNet/Computing in Cardiology

Challenge 2020 (Alday et al., 2021) was used in this study. It was

Frontiers in Physiology frontiersin.org03

Zhang et al. 10.3389/fphys.2022.956320

88

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.956320


illustrated in Table 1, which is composed of four typical CA types

labelled as Sinus rhythm (NSR), Atrial fibrillation (AF), 1st degree

AV block (I-AVB), and Left bundle branch block (LBBB). Each data

contains 12-lead ECG recordings with a sampling frequency of

500 Hz and a mean duration of 10 s. NSR is a normal heart rhythm;

AF is related to irregular heart rate, which can lead to an increase in

the risk of strokes; I-AVB is a condition of abnormally slow

conduction through the atrioventricular node; LBBB is a

condition of delay or blockage of electrical impulses along the

left side pathway of the heart ventricles bottom.

Data splitting and augmentation
The data from the PTB-XL database were pre-processed and

augmented. The raw ECG data were downsampled to 200 Hz. In the

first phase, the data with multi-labels were removed initially because

we mainly focused on single-labelled arrhythmia classification in this

study. After then, the number is 16801 for NSR, 1396 for AF, 370 for

LBBB, and 689 for I-AVB. The number of four types of arrhythmias

is unbalanced, which brings challenges to the arrhythmia

classification. In the second phase, we randomly picked up

1200 data on Sinus rhythm and 1200 data on AF. Four in five of

each type of data were used as the training and validation dataset, and

one in five was used as the test dataset. Thus, the training set is

independent of the testing set, usually called inter-patient

classification (Huang et al., 2014). In the third phase, to balance

the data in different types, the data was split into a set of 5 s

(1000 samples) recordings. Regarding the NSR and AF, we picked

up the data from 1st to 1000th; for the LBBB, the data was split into

1st to 1000th, 500th to 1500th, and 1001th to 2000th three segments;

for the I-AVB, the data were split into 1st to 1000th and 1001th to

2000th two segments. Thus, 1200 segments of NSR, 1200 of AF,

1100 of LBBB, and 1378 of I-AVB were obtained for experiments.

The details of the training, validation and test datasets are provided in

Table 1.

Classification computing environment
The experiments were performed on the University of

Queensland’s computer cluster with 4 × Nvidia Volta

V100 SXM2 connected GPUs per node. Each node contains

5,120 CUDA cores, 640 TensorFlow hardware cores, and 32 GB

of HBM2 class memory. This model was implemented using the

TensorFlow 3.6 and Karas DL framework.

FIGURE 1
Frank’s three leads signal Vx, Vy, and Vz of four types of VCG waveforms (top) and corresponding 3D dynamic feature plots (bottom).
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Performance of experiments
To assess the effectiveness of the proposed method, several

parameters, including Precision, Recall, and F1-score, are defined

as follows, respectively.

Precision � TP
TP + FP

(7)

Recall � TP
TP + FN

(8)

F1 � 2(Precision × Recall)
Precision + Recall

(9)

where TP is the number of true positives data; FP is the number

of false positives data; FN is the number of false-negative data.

Here, Precision is the fraction of all predicted data that are real

labeled data, whereas Recall is the fraction of all real labeled data

that are successfully detected. The average F1-score among

classes is computed to evaluate the final performance of the

model. Arrhythmia classification experiments based on ECG and

VCG 3DRP methods.

Arrhythmia classification experiments
based on ECG and VCG 3DRP methods

Experimental design
This study aims to investigate the ability of 3DRP to identify

pattern differences between various arrhythmia groups. As

shown in Figure 3, firstly, the raw ECG data were pre-

processed via two steps. In step one, the multi-label data were

filtered and divided into four in five for training and validation

and one in five for testing. In step two, the data were resampled to

200 Hz and then was augmented by splitting into 5-s recordings

to balance the four types of arrhythmias (see section A: Data

splitting and augmentation). Then, to explore nonlinear and

channel correlation features from the 3D RP images for the

arrhythmia classification, ECG-based and VCG-based 3DRP

experiments were designed.

Regarding the ECG-based experiments, the 12-lead ECG

signals were transformed into 2DRP images and stacked

together to form 3D images, as illustrated in Figure 4. The

method of converting 1D ECG signals into the corresponding

2DRP images is reported in our previous work (Zhang et al.,

2021). Then we applied with (min-max and z-score

normalization) and without normalization to pre-process the

2D RPs, respectively, which are defined as follows.

RPmin−max � RP −min
max − min

(10)

RPz−score � RP − �μ

σ
(11)

where RP is the original data, and min and max are the minima

and maximum values of the data. �μ and σ refer to its mean value

FIGURE 2
The architecture of 3DRP Inception ResNet (Stem, Inception
ResNet models A-C, Reduction models A and B, and Prediction
layers).
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TABLE 1 Data profile for the ECG dataset.

CA types Number of
data

Single-label data Experiment segments 80% 20%

Training Validation Test

NSR 18092 16801 1200 768 192 240

AF 1514 1396 1200 768 192 240

LBBB 536 370 1110 710 178 222

I-AVB 797 689 1378 883 221 274

FIGURE 3
The flow chart of CA classification experiments.

FIGURE 4
The 3DRP image reconstructed based on ECG.
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and standard deviation. After normalization, these 12 leads

images were placed with the lead-index order of limb leads

(lead I, II, III, aVR, aVL, aVF) followed by the chest leads

(V1, V2, V3, V4, V5, V6) to form as a 3DRP image. In our

previous work (Zhang et al., 2021), we used those 2D RP plots

(see Figure 4) to train the network and detect 2D RP features for

classification. The relationship between the leads is implicitly

investigated by the network, which is essential to explore but less

obvious to learn from the 2D textures. In contrast, by setting the

3D RP images as input signals, one can more explicitly discover

the inherent signal correlations between the leads in addition to

the 2D features within each lead, thus providing higher

dimensional, visually interpretable information for prediction.

As depicted in Figure 5, significantly different RP patterns can be

observed in those 3DRP images obtained from 12-lead ECG data

of different arrhythmia types. The texture variations occur within

the RP plots and between the leads, which the 3D neural network

can easily learn and discriminate the arrhythmia types.

Regarding the VCG-based experiments, we investigated VCG-

based arrhythmia classification. As shown in Figure 6, we first

FIGURE 5
The 3DRP images of NSR/AF/LBBB/I-AVB based on ECG.

FIGURE 6
The 3DRP image reconstructed based on VCG.

Frontiers in Physiology frontiersin.org07

Zhang et al. 10.3389/fphys.2022.956320

92

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.956320


transformed the pre-processed 1D 12-lead ECG signals to 3-lead

VCG signals (Vx, Vy, Vz). Then VCG signals were converted into

2D RP images with no-normalization, min-max normalization, and

z-scores normalization, respectively. These 2D RP maps were used

to build 3DRP images, which were considered as the input data of

the 3D neural network for training. As shown in Figure 7, it can be

demonstrated apparent pattern differences between the VCG-based

3DRP images. The 3D networks learned feature maps embedded

within these RP plots and between the leads, which contain

arrhythmia type-dependent signatures, thus facilitating disease

classification. The five-fold cross-validation was introduced in the

training and validation processing, with the default parameters of

Adam optimizer, a learning rate of 0.001, and a batch size of 64.

Experimental results
The classification results of ECG-based and VCG-based

3DRP experiments are presented in Table 2. In this table, the

method with z-score normalization achieved an Avg F1 score of

0.9254 for the ECG-based experiment and 0.9350 for the VCG-

based experiment, outperforming other schemes. As shown in

Table 3, the ECG-based experiment with z-score normalization

obtained 0.9246 of the average Precision and 0.9269 of the

FIGURE 7
The 3DRP images of NSR/AF/LBBB/I-AVB based on VCG.

TABLE 2 Classification performance based on ECG and VCG 3DRP methods with No/Min-max/Z-score normalization datasets.

Experiments RP normalization Avg F1-score Classification of types of F1 score

NSR AF LBBB I-AVB

ECG-based No 0.9228 0.8847 0.9565 0.9775 0.8723

Min-max 0.9247 0.8986 0.9407 0.9795 0.8799

Z-score 0.9254 0.8954 0.9472 0.9843 0.8748

VCG-based No 0.9301 0.9049 0.9610 0.9736 0.8810

Min-max 0.9262 0.8946 0.9560 0.9692 0.8849

Z-score 0.9350 0.9030 0.9668 0.9712 0.8991

TABLE 3 Classification Precision/Recall/F1-score of experiments.

Experiments CA types Precision Recall F1 score

ECG-based NSR 0.8992 0.8917 0.8954

AF 0.9246 0.9708 0.9472

LBBB 0.9778 0.9910 0.9843

I-AVB 0.8966 0.8540 0.8748

Avg 0.9246 0.9269 0.9254

VCG-based NSR 0.9145 0.8917 0.9030

AF 0.9628 0.9708 0.9668

LBBB 0.9563 0.9865 0.9712

I-AVB 0.9041 0.8942 0.8991

Avg 0.9344 0.9358 0.9350
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average Recall. Besides, the highest F1-score was obtained for

LBBB (0.9843), followed by AF (0.9472). In the VCG-based

experiment with z-score normalization, the proposed method

achieved the avg F1 score of 0.9350, the average Precision of

0.9344, and the average Recall of 0.9358. Besides, the highest

F1 score was obtained for LBBB (0.9712), followed by AF

(0.9668). Figure 8 is the arrhythmia classification confusion

matrix of these two methods with z-score normalization. It

outlines the data number of predicted and true labels. Note

that there is a relatively small error between AF and LBBB,

implying that the proposed method better predicts AF and LBBB.

Comparison of ECG-based and VCG-based
3DRP methods

This section compared the ECG-based experiment with the

VCG-based experiment, focusing on network training and

classification performance. Table 4 presents details of the training

processing of each experiment. As indicated in the table, an equal

number of trainable parameters were used in both methods.

However, the training time of the 3-lead VCG-based method is

93 min, which is less than half of the 12-lead ECG method. The

following columns show the fivefold cross-validation processing in

terms of time and epochs used. Once the network is trained, it takes

only 7ms and 16 ms for each prediction using the VCG-based and

ECG-based methods, respectively. Table 3 compares the arrhythmia

classification performances of these two methods. The optimal avg

F1 score with VCG-based method is 0.9350, slightly better than the

optimal ECG-based method (0.9254). The results highlight that the

VCG-based method achieved a superior classification performance

with less training time.

Comparison with different reference
models

To study the reliability and effectiveness of the proposed

method, we compared the performance of different reference

models, including Resnet 50 (He et al., 2016), Inception-v3, and

Inception-v4 (Szegedy et al., 2017). For a fair comparison, the same

3D VCG-based RP images were taken as the input of different

models. The data were divided into training, validation, and testing

sub-datasets using the same rule. Then, the same hyperparameters,

FIGURE 8
The confusion matrix of CA classification based on 3DRP ECG-based, and VCG-based.

TABLE 4 Training information of the ECG-based and the VCG-based 3DRP methods.

Experiments Trainable
parameters

Training
time

Five-fold validation

fold 1 fold 2 fold 3 fold 4 fold 5

ECG-based 27,038,708 262 Min 149 Min 56 Epochs 34 Min 11 Epochs 28 Min 11 Epochs 26 Min 11Epochs 25 Min 11Epochs

VCG-based 27,038,708 93 Min 33 Min 26 Epochs 21 Min 19 Epochs 13 Min 11 Epochs 13 Min 11Epochs 13 Min 11Epochs
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including learning rate and batch size, were used to train and test

the models separately. The average F1 score, Precision, and Recall

of each class were calculated for comparison.

As illustrated in Table 5, the proposed method achieved the

average F1 score of 0.9350, the average Precision of 0.9344, and the

average Recall of 0.9358, which were all higher than those of other

referencemodels.Moreover, it was shown that the proposedmethod

outperformed the Resnet50, Inception V3, and Inception V4 in the

F1 score of all classes. Interestingly, in the case of identifying the

LBBB class, almost all the models achieved significantly higher

F1 scores compared with other classes. Table 6 illustrates the

computational costs of compared models. In five-fold cross-

validation experiments, the training time of the proposed method

is 93 min, which is less than that of other models except for the

Inception V3 (71 min). And the number of trainable parameters of

the proposed method is comparable with the Resnet 50 and the

Inception V3, and less than the Inception V4 model.

Comparison of the proposed 3D method
with recently published 1D and 2D
methods

In this section, we compared the 3DRPVCG-basedmethodwith

some recent CA classification studies, including the 1D raw ECG-

basedmethod (Hannun et al., 2019) and the 2D image-basedmethod

(Zhang et al., 2021), all are based on the same dataset PTB-XL. In the

1D case, the rawECG time serieswere taken as the input to themodel

with 33 convolutional layers, and it outputs a prediction of one out of

4 possible rhythm classes every 256 input samples. In the 2D case, the

1D ECG data were converted into a set of 2DRP images fed into the

2D classification networks as the input, and the output was the

prediction rhythm.

Table 7 and Table 8 show the comparison results, including

the input, performance, and computing cost based on the five-

fold cross-validation experiments. The 3D method obtained the

highest average F1 score than the 1D and 2D approaches, with

slightly longer training time than the 2D method and more

complex networks than the 1D method. The proposed 3D

method achieved better prediction performance for AF, LBBB,

and I-AVB arrhythmia than the compared methods. At the same

time, the 1Dmethod achieved better performance for NSR, while

the performance of the F1 score for the I-AVB (0.5833) is

relatively low compared with the 2D approach (0.8503) and

3D method (0.8991), and the LBBB (0.8658) compared with the

2D approach (0.9267) and 3D method (0.9712), respectively.

Testing the generalization of the proposed
3D method

In this section, we evaluated the generalization of the

proposed approach by studying two more ECG datasets of the

PhysioNet/Computing in Cardiology Challenge 2020. The

detailed information of these two datasets is listed in Table 9.

The data source CPSC (Liu et al., 2018) is the public training

TABLE 5 Comparison of different reference models for CA Classification.

Models Classification of F1 score Avg F1 score Avg precision Avg recall

NSR AF LBBB I-AVB

RestNet50 (He et al., 2016) 0.8889 0.9339 0.9515 0.8791 0.9134 0.9116 0.9119

Inception V3 (Szegedy et al., 2017) 0.8683 0.9434 0.9556 0.8683 0.9089 0.9068 0.9068

Inception V4 (Szegedy et al., 2017) 0.8714 0.9263 0.9471 0.8355 0.8951 0.8920 0.8924

Proposed method 0.9030 0.9668 0.9712 0.8991 0.9350 0.9344 0.9358

TABLE 6 Comparison of the computational cost of the proposed 3D method VS. reference models.

Methods Trainable
parameters

Training
time

Five-fold validation

fold 1 fold 2 fold 3 fold 4 fold 5

RestNet50
(He et al., 2016)

26,641,796 127 Min 55 Min 42 Epochs 27 Min 21 Epochs 16 Min 12 Epochs 14 Min 11 Epochs 15 Min 11 Epochs

Inception V3
(Szegedy et al., 2017)

21,831,844 71 Min 32 Min 32 Epochs 10 Min 11 Epochs 10 Min 11 Epochs 9 Min 11 Epochs 10 Min 11 Epochs

Inception V4
(Szegedy et al., 2017)

52,049,092 148 Min 72 Min 41 Epochs 17 Min 11 Epochs 25 Min 16 Epochs 17 Min 11 Epochs 17 Min 11 Epochs

Proposed method 27,038,708 93 Min 33 Min 26 Epochs 21 Min 19 Epochs 13 Min 11 Epochs 13 Min 11 Epochs 13 Min 11 Epochs
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dataset from the China Physiological Signal Challenge (CPSC

2018). Georgia is a 12-lead ECG Challenge Database, Emory

University, Atlanta, Georgia, United States, representing a large

(Alday et al., 2021) population from the South-eastern

United States.

In this experiment, raw ECG datasets were pre-processed and

transformed into 3 lead VCG signals with the z-score

normalization. As shown in Table 9, the proposed method

achieved an average F1 score of 0.9412 on CPSC and 0.8881 on

Georgia. The F1 score of each classification in CPSC is higher than

in Georgia. The best prediction was obtained with an AF of

0.9497 on CPSC. For these two datasets, the proposed 3DRP

method can effectively predict the AF, I-AVB, LBBB, and NSR.

These testing results indicate that the 3DRP method has a good

generalization for arrhythmia classification.

Discussion

This work proposed a 3Dmethod via extracting ECG signals’

dynamic, nonlinear recurrence features for deep learning-based

arrhythmia classification. Instead of using 1D ECG and 2D ECG-

based images, the 3D RP maps were reconstructed from 12 leads

ECG and 3 leads VCG and then fed into the 3D CNN model for

neural network training, validation, and testing. The superiority

and effectiveness of the proposed method are validated by

various experiments.

The advantage of using the 3Dmethod for
CA classification

In 1D temporal ECG signals, dynamic nonlinear features and

space-time characteristics are not directly observable. In our

previous work (Zhang et al., 2021), the 2DRP method has

demonstrated that recurrence plots help identify the nonlinear

dynamic recurrent features hidden in the 1D ECG signal for

better arrhythmia classification. We explore the feature

differences between arrhythmia types from a novel 3D

perspective, beyond the standard 1D ECG time series-based

TABLE 7 Comparison of performance of the proposed 3D method VS. 2D and 1D classification methods.

Methods Input signals Avg F1 score Classification of subjects’ F1 score

NSR AF LBBB I-AVB

1D (Hannun et al., 2019) 1D raw ECG 0.8483 0.9812 0.9627 0.8658 0.5833

2D (Zhang et al., 2021) 2D images 0.9015 0.8917 0.9365 0.9276 0.8503

Proposed method 3D images 0.9350 0.9030 0.9668 0.9712 0.8991

TABLE 8 Comparison of the computational costs of the proposed 3D method VS. 2D and 1D classification methods.

Methods Trainable
parameters

Training
time

Five-fold validation

fold 1 fold 2 fold 3 fold 4 fold 5

1D (Hannun et al.,
2019)

10,466,148 107 Min 36 Min 20 Epochs 16 Min 9 Epochs 16 Min 9 Epochs 21 Min 12Epochs 18 Min 10Epochs

2D (Zhang et al.,
2021)

29,141,450 79 Min 46 Min 56 Epochs 9 Min 12 Epochs 8 Min 11 Epochs 8 Min 11 Epochs 8 Min 11Epochs

Proposed method 27,038,708 93 Min 33 Min 26 Epochs 21 Min 19 Epochs 13 Min 11 Epochs 13 Min 11Epochs 13 Min 11Epochs

TABLE 9 Generalization ability of the proposed method for CA
classification on extra datasets.

Database Mean duration Number of subjects

NSR AF LBBB I-AVB

CPSC 16.2s 918 1000 567 1422

Georgia 10.0s 1000 1054 438 1284

Database Avg F1 score Classification of subjects
F1 score

NSR AF LBBB I-AVB

CPSC 0.9412 0.9474 0.9497 0.9296 0.9381

Georgia 0.8881 0.9260 0.8723 0.8590 0.8950
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approach and the 2D images-based method. In this work, we

compared the proposed 3D method with recently published

studies based on the 1D raw ECG and 2D ECG-based images

for CA classification in terms of the F1 score. The 3DRP method

outperformed both the 1D method and the 2DRP approach

considering both avg F1 score and the prediction for each type of

arrhythmia (see Table 7). The avg F1-score is 0.9350 for the

3DRPmethod, significantly better than 0.8483 for the 1Dmethod

and 0.9015 for the 2D approach. The 3DRP method better

characterizes the dynamic cardiac system in spatial/lead and

temporal domains by exploiting higher-dimensional image

information. They effectively identify the latent features of

each arrhythmia type in the training processing. This working

mechanism has effectively boosted the arrhythmia prediction

performance.

The use of VCG-based 3DRP plots for
deep learning-based CA classification

As mentioned in Vectocardiography Section, VCG possesses

several advantages over the standard ECG in representing

spatiotemporal information of cardiac electrical activities

(Meyers et al., 2020). Also, the 3 lead VCG based 3DRP

image dataset is much smaller than the 12 lead ECG-based

one. Our experiment (see Table 4) shows that the VCG-based

3DRP method achieved optimal performance with an average

F1-score of 0.9350 over that of 0.9254 in ECG-based 3D method

with less training time (93 min) than the ECG-based (262 min).

In addition, the confusion matrix in Figure 8 illustrates that the

VCG-based method can accurately classify AF and LBBB.

Further investigation is required to study arrhythmia-specific

prediction/classification.

Two extra ECG datasets of the PhysioNet/Computing in

Cardiology Challenge 2020 were adopted to study the

generalization of the proposed method. It achieved an average

F1 score of 0.8881 on Georgia, and 0.9412 on CPSC, respectively.

The results demonstrated that the 3D method has excellent

generalization ability. In addition, the comparison among

several neural networks is shown in Table 5 and Table 6; the

proposed 3D Inception ResNet model offers better solutions with

comparable computational cost over others, as measured by

major assessment indicators.

Computational cost

The 3D image-based learning scheme implemented in this

work may lead to a concern of computational cost. The 3D

model has fewer trainable parameters than 2D Inception-

ResNet V2 models, as it practically improves the model

structure and decreases the depth of layers. On the other

hand, the 3D model has more trainable parameters than the

1D network. As demonstrated in Table 8, based on 3DRP

reconstructed with 3 leads VCG, the five-fold cross-validation

training time is 93 min, which is longer than the 2DRP-based

method (79 min), but less than the 1D method (107 min).

Thus, the computational cost is comparable among these 1D,

2D, and 3Dmethods. Moreover, as shown in the result section,

3DRP-based solutions offered significantly improved average

F1 score and visual interpretability and boosted the prediction

of types of arrhythmias (see Table 7). In particular, the VCG-

based 3DRP solution provides the best performance in

balancing accuracy and efficiency, making it appealing for

clinical aid diagnosis.

Conclusion

In this work, a 3D recurrence plot-based method was

proposed for arrhythmia classification, achieving promising

prediction performance with an inter-patient scheme.

Compared with lower-dimensional classification methods, the

proposed approach allows the learning algorithm to detect richer,

nonlinear spatial-time features for better arrhythmia

discrimination. Our simulation study confirmed that the 3D

method offers superior performance to 1D/2D solutions and has

a comparable computational cost.
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I-κB kinase-ε deficiency improves
doxorubicin-induced dilated
cardiomyopathy by inhibiting the
NF-κB pathway

Yafeng Liu†, Yueyue Xu†, Yiwei Yao, Yide Cao, Ganyi Chen,
Yuchen Cai, Wen Chen, Xin Chen* and Zhibing Qiu*

Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, NanjingMedical University,
Nanjing, JS, China

Dilated cardiomyopathy (DCM) can lead to heart expansion and severe heart

failure, but its specific pathogenesis is still elusive. In many cardiovascular

diseases, I-κB kinase-ε (IKKε) has been recognized as a pro-inflammatory

molecule. In this study, wild-type mice (WT, n = 14) and IKKε knockout mice

(IKKε-KO, n = 14) were intraperitoneally injected with a cumulative dose of

25 mg/kg with Dox or Saline five times in 30 days. Finally, the experimental

mice were divided into WT + Saline group、WT + DOX group、IKKε-KO +

Saline group and IKKε-KO + Dox group. Echocardiography was performed to

assess cardiac structure and function. Moreover, the mechanism was

validated by immunohistochemistry and western blotting. Our results

demonstrated that compared to WT + Dox mice, IKKε-KO + Dox mice

exhibited attenuation of dilated cardiomyopathy-related morphological

changes and alleviation of heart failure. Additionally, compared to the WT

mice after Dox-injected, the expression of fibrosis and proinflammatory

were decreased in IKKε-KO mice, and the expression of cardiac gap junction

proteins was much higher in IKKε-KO mice. Further testing found that

pyroptosis and apoptosis in the myocardium were also ameliorated in

IKKε-KO mice compared to WT mice after Dox was injected.

Mechanistically, our results showed that deficiency of IKKε might inhibit

the phosphorylation of IκBα, p65, RelB, and p100 in mouse heart tissues after

Dox stimulation. In summary, our research suggests that IKKε might play an

essential role in the development of Dox-induced dilated cardiomyopathy

and may be a potential target for the treatment of dilated cardiomyopathy in

the future.
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1 Introduction

Dilated cardiomyopathy (DCM) is one of the most common

causes of heart failure and the most number of heart transplants

(Maron et al., 2006; Weintraub et al., 2017). Its etiology includes

gene mutation, drugs, poisons, and alcohol, and the pathogenesis

of dilated cardiomyopathy is unexplained. Although the causes of

DCM vary, the phenotype and pathological characteristics of

DCM are consistent (Schultheiss et al., 2019). Doxorubicin is a

cancer chemotherapy agent whose dose-dependent

cardiotoxicity has limited clinical use (Chang H. M. et al.,

2017). This toxicity is of particular concern in patients with

cancer susceptible to anthracyclines, such as breast cancer, many

of whom die from heart failure (Singal and Iliskovic, 1998;

Carvalho et al., 2009; Mehta et al., 2018). Moreover, an

increasing number of studies have shown that Dox-induced

cardiac pathology is similar to that of DCM (Kankeu et al.,

2016; Wu et al., 2016; Xia et al., 2017).

IKKε (also known as IKK-inducible or IKK-i) was known as a

non-canonical IKKs (Peters et al., 2000), which was involved in the

regulation of many biological events including inflammatory

responses, fibrosis, oncogenesis, apoptosis, and autophagy

(Baldwin, 2012; Hsu et al., 2012; Patel et al., 2015; Zhou et al.,

2019). Evidence has shown that IKKε can promote the

phosphorylation of IκBα to activate the NF-κB signaling pathway

(Shimada et al., 1999; Kravchenko et al., 2003; Solt and May, 2008).

A previous study has suggested that IKKε can be activated by pro-

inflammatory cytokines such as TNF-α(Tumor necrosis factor-α),
IL-1β(Interleukin-1β), and IL-6(Interleukin-). Inhibiting IKKε could
enhance the immunity of T cells to thwart tumor development and

metastasis (Zhang et al., 2016). IKKε deficiency attenuated

inflammation in Inflammatory Hyperalgesia by regulating the

NF-κB pathway (Moser et al., 2011).

Activation of NF-κB–dependent transcription has been found in
numerous heart diseases, including hypertrophic cardiomyopathy,

myocardial infarction, ischemia/reperfusion injury, and so on (Jones

et al., 2005; Hall et al., 2006; Baldwin, 2012; Kumar et al., 2012; Maier

et al., 2012; Cao et al., 2021). In our previous studies, the role of IKKε
in atherosclerotic lesions and aortic stenosis has been suggested (Cao

et al., 2013; He et al., 2019). The IKKε-KO could attenuate mice’s

pathological progression in Angiotensin II-Induced Myocardial

Hypertrophy and aortic valve thickening (He et al., 2019; Cao

et al., 2021). However, the role of IKKε in dilated cardiomyopathy

is unclear. Herein, we aimed to investigate the potential role and

molecular basis of IKKε in DOX-induced cardiotoxicity.

2 Materials and methods

2.1 Animals

The experiments on animals were performed to comply with the

Institute of Laboratory Animal Research Guide for the Care andUse

Laboratory Animals of the National Institutes of Health and

approved by the Institutional Animal Care and Use Committee

of Nanjing Medical University (Ethics Committee of Nanjing First

Hospital). IKKε knockout mice (B6. Cg-Ikbketm1Tman/J (male;

8 weeks old; 22–27 g; n = 14) were obtained from the Jackson

Laboratory (Bar Harbor, ME, United States) and rederived to

achieve pathogen-free status in the Model Animal Research

Center of Nanjing University (Nanjing, China). C57BL/6 mice

(male; 8 weeks old; 22–27 g; n = 14) were netted from the

Institutional Animal Care and Use Committee of Nanjing

Medical University (Nanjing, China). All the mice were housed

in specific pathogen-free box cages at room temperature, on a 12-h

light/12-h dark cycle with free access to a regular diet and water.

2.2 Dox-induced mouse model of
cardiotoxicity

As described in previous studies (Liu et al., 2020), the mice were

intraperitoneally injected with a cumulative dose of 25 mg/kg

doxorubicin (25316-40-9, Sigma-Aldrich) or saline via five times

intraperitoneal injections (5 mg/kg i. p.) in 30 days. All the mice

were divided into four groups, including theWT+ Saline group, The

WT+Dox group, the IKKε-KO + Saline group, and the IKKε-KO +

Dox group. All the mice were housed in specific pathogen-free box

cages at room temperature, on a 12-h light/12- h dark cycle with free

access to a regular diet and water. The cardiac function was detected

by echocardiography after the Dox injection. After the

echocardiographic assessment, all mice were weighed and

sacrificed under anesthesia, hearts were harvested immediately

and heart weights were measured. Immediately after rinsing the

heart in saline, protein and RNA sample extraction and dehydrated

paraffin embedding were performed on another heart sample. The

sample of protein and RNA was stored at −80°C.

2.3 Echocardiography evaluation

Mice were anesthetized with 1.5–2% isoflurane by inhalation

and placed in supine position. Then, echocardiography was

performed using a Vevo2100 ultrasound with a 30-MHz

linear array ultrasound transducer (VisualSonic Inc., Toronto,

Canada). Echocardiographic measurements were taken on

M-mode to determine the left ventricular ejection fraction

(LVEF), fractional shortening (FS), left ventricular end-

diastolic diameter (LVEDd), and left ventricular end-systolic

diameter (LVEDs) of each animal.

2.4 Western blotting analysis

Total protein samples were extracted from left ventricular

tissue and 30 ug of protein separated by SDS-PAGE. Nuclear
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and cytoplasmic proteins were prepared from the cells using

nuclear and cytoplasmic extraction reagent kits (Cayman

Chemical, Ann Harbor, MI, United States) according to the

manufacturer’s instructions. The proteins were transferred to

polyvinylidene fluoride (PVDF) membranes (Millipore),

washed third in Tris-buffered saline (TBS) with Tween

diluted 1:1000 (TBST; Promega), for 10 min each time,

then blocked with TBST containing 5% BSA for 1 h. The

membranes were incubated with the following primary

antibodies in TBST with Tween plus 5% BSA overnight at

4°C: anti-phosphorylated IKKε (1:1000, 3,416, CST), anti-

Connexin43 (1:1000, ab11370, Abcam), anti-Bax (1:1000,

2772S, CST), anti-Caspase1 (1:1000, 2225T, CST), anti-

Cleaved-Caspase3 (1:1000, 9661S, CST), anti-Caspase6 (1:

1000, 9762T, CST), anti-Caspase9 (1:1000, 9508T, CST),

anti-GSDMD (1:1000, ab219800, Abcam), anti-

phosphorylated p65 (1:1000, cs3033, CST), anti-p65 (1:200;

sc8008, Santa Cruz), anti-phosphorylated IκBα (1:1000,

2859s, CST), anti-IκBα (1:200; sc371, Santa Cruz), anti-

phosphorylated p100/p52 (1:500, ab31474, Abcam), anti-

p100/p52 (1:500, ab109440, Abcam), anti-phosphorylated

RelB (1:500, ab47366, Abcam), anti-RelB (1:1000,

ab180127, Abcam), HRP-conjugated Monoclonal Mouse

Anti-glyceraldehyde-3-phosphate Dehydrogenase (GAPDH)

(1:5000, KC-5G5, Kang Chen) and anti-Histone H3 (1:1000,

ab1791, Abcam). The next day, the PVDF membranes were

washed for 10 min each time with TBST three times.

whereafter, the PVDF membranes were incubated with

Goat Anti-Mouse IgG/HRP (1:5000, bs-0296G-HRP, Bioss)

or anti-rabbit IgG, HRP-linked Antibody (1:5000, 7074P2, cell

signaling technology) for 1 h at room temperature. Specific

proteins were detected using an Immobilon Western

chemiluminescent HRP substrate (WBKLS0500, Millipore)

and captured on ChemiScope (3,300 Mini, Clinx Science

Instruments). The mean gray value of each band was then

semi-quantified with Chemi analysis software. All presented

results are representative of at least three independent

experiments.

2.5 Total RNA extraction and quantitative
real-time PCR (q RT-PCR)

Total RNA was extracted from the left ventricle tissues

using the TRIzol Reagent (Invitrogen, 15596-026). equal

amounts of RNA (1 μg) were transformed into cDNA with

the PrimScriptTM RT reagent Kit with gDNA Eraser (Takara,

RR047A). Quantitative TaqMan PCR was conducted with

SYBR Premix Ex TaqTM II (Takara, RR082A) by the

Applied Biosystems 7,500 Real-Time PCR System. All data

were normalized to GAPDH content and are expressed as fold

increase relative to the expression level in a sham-operated

control littermate mouse.

2.6 Histological and
immunohistochemical staining and
imaging

Mouse hearts were immediately immersed in 4% neutral

phosphate-buffered paraformaldehyde (12 h), embedded in

paraffin, and sectioned (4 μm). The sections of the specimens

were evaluated under a light microscope after were stained with

hematoxylin-eosin (HE), Masson’s trichrome, or wheat germ

agglutinin (WGA) and were then observed for morphological

changes and fibrosis in the myocardium.

For immunohistochemical staining, mouse heart tissues were

gathered for morphological analysis with mice hearts prepared as

4-µm thick serial paraffin-embedded sections and rehydrated in

graded alcohol. We treat the sections with 3% hydrogen peroxide

for 15 min to block endogenous peroxidase activity and incubate

them in imported goat serum (ZLI-9022, Beijing Zhongshan

Biotechnology) to prevent nonspecific binding of the antibodies.

The sections were then incubated separately for 14 h with

antibodies against IKKε (1:100, 3,416, CST), connexin43 (1:

100, ab11370, Abcam), IL-1β (1:50, sc7884, Santa Cruz), and

IL-18 (1:100, ab71495, Abcam), and then with goat anti-rabbit or

anti-mouse IgG (KIT-5004 and KIT-5001, MXB) for 1 h at 37°C

in a humidified box. Each antibody’s signal was developed using

the substrate diaminobenzidine (DAB, ZLI-9018, Beijing

Zhongshan Biotechnology). The sections were counterstained

with hematoxylin, and photomicrographs were taken with a Zeiss

SCOPE. A1 camera. The immunohistochemistry results were

analyzed based on Fromowitz semiquantitative analysis scores

used to score the brown chromogen intensity (range: 0–7). The

average score of each slice determined by two independent

observers was used for later comparison.

2.7 TUNEL staining

Frozen mice ventricular tissues were cut into 4 μm-thick

sections and fixed in 4% paraformaldehyde at room

temperature for 16 min. We performed the TUNEL assay

according to the in situ apoptosis detection kit (Roche

Diagnostics (Shanghai) Co., Ltd.). The sections are intubated

with protease K for 20 min, followed by equilibration buffer for

30 min and TUNEL reaction mixture for 1 h in a dark

humidified box at room temperature. The last, the sections

were stained with Hoechst to label nuclei and examined using a

fluorescence microscope. Only nuclei that were located in

cardiac myocytes were considered.

2.8 Statistical analysis

The data of experiments are presented as the mean ± SE.

Differences among groups were evaluated by an analysis of
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variance followed by a post hoc Tukey’s test. The two groups’

differences were assessed using Student’s t-test. All statistical

analysis used SPSS software (version 17.0; SPSS, Inc.). A value

of p < 0.05 was considered to indicate a statistically significant

difference.

3 Result

3.1 I-κB kinase-ε was evaluated in mice
with dilated cardiomyopathy

The western blotting analysis showed that the expression

of IKKε was increased in the WT + Dox group compared with

the WT + Saline group (Figure 1A, C). The images of IHC

showed the same increasing expression of IKKε (Figure 1B,

D). So, we found an apparent increasing expression of IKKε in
the heart tissues of WT mice injected with Dox for 30 days

compared to those of mice injected with saline.

3.2 I-κB kinase-ε knockout attenuated
dox-induced cardiac dilatation and left
ventricular dysfunction in mice

To examine the function of the IKKε in the development

of DCM in vivo, we established a mouse model of DCM by

intraperitoneally injecting Dox into WT and IKKε-KO mice.

After Dox injection, WT mice’s hearts showed significant

enlargement compared to Dox-induced IKKε-KO mice

hearts (Figure 2A). The ratio of heart weight to body

weight (HW/BW) among the four groups was evaluated,

and the ratio in the WT + Dox group mice was higher

than in the IKKε-KO + Dox group mice. (Figure 2B,

Table 1). Left ventricular ejection fraction (LVEF) and

fractional shortening (FS) were significantly lower in the

WT + Dox group than in the IKKε-KO + Dox group mice.

Moreover, left ventricular end-diastolic diameter (LVEDd)

and left ventricular end-systolic diameter (LVEDs) were

significantly increased in the WT + DOX mice compared

to WT + Saline mice and IKKε+Saline mice, and this change

was attenuated in IKKε-KO + Dox group mice (Figure 2C,

D). The results of PCR showed that heart exhaustion

markers, including atriopeptin (ANP), brain natriuretic

peptide (BNP), β -cardiac myosin heavy chain (β-MHC),

and skeletal muscle α-actin gene (Acta-1) significantly

decreased in the IKKε-KO + Dox group mice when

compared with the WT + Dox mice (Figure 2E). HE and

WGA staining showed cardiomyocyte hypertrophy,

myocardial structure destruction, and inflammatory cell

infiltration in the WT + Dox group mice, but these were

alleviated in the hearts of the IKKε-KO + Dox group mice

(Figure 2F). Furthermore, Masson’s trichrome staining also

showed that the collagen-stained area was remarkably larger

in the WT + Dox group mice than in the IKKε-KO + Dox

group mice (Figure 2F).

FIGURE 1
The expression of IKKε was increased in WT mice’ hearts after injection of Dox (A). Representative western blot showing expression of IKKε in
heart tissue after Dox injection (n = 4 mice per experimental group). (B). Representative images of IHC staining of IKKε in WT mice’ hearts after Dox
injection (n = 4mice per experimental group, 400x; vs. Saline, *p < 0.05). (C). Quantitative analyses of western blot of IKKε (vs. Saline, *p < 0.05). (D).
Quantitative analyses of IHC of IKKε (vs. Saline, *p < 0.05).
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FIGURE 2
Deficiency of IKKε attenuated the development of Dox-induced dilated cardiomyopathy. (A). Representative images of the hearts of WT and
IKKε-KOmice. (B). The ratio of heart weight/body weight between WT and IKKε-KOmice under Dox stimulation (n = 6mice each group in HW/BW;
vs. Saline orWTDox, *p < 0.05) (C,D). Representative images and parameters of echocardiography (LVIDd, LVIDs, FS, and EF) ofWT and IKKε-KOmice
injected with saline or Dox (n = 6 mice per experimental group; vs. Saline or WT Dox, *p < 0.05). (E). The mRNA analysis of markers of heart
failure (ANP, BNP, Acta-1, and β-MHC) in the heart of WT or IKKε-KO mice after Dox injection (n = 4 mice per experimental group; vs. Saline or WT
Dox, *p < 0.05). (F). Representative images of WGA staining, HE staining and Masson staining of WT and IKKε-KO mice (n = 4 mice per experimental
group, 400x for HE andWGA staining; 200x for Masson). The small arrows in HE refer to the changed nuclei after doxorubicin stimulation. Analysis of
collagen content of WT and IKKε-KO mice (n = 4 mice per experimental group, vs. Saline or WT Dox, *p < 0.05).
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3.3 I-κB kinase-ε knockout relieved
fibrosis, inflammation, and destruction of
gap junction structure after dox induction

Subsequently, we extensively examined the effect of IKKε on

inflammation, and collagen deposition. The expression of

proinflammatory factors (including TNF-α, IL-6, and IL-1β) and

fibrosis markers (including CTGF, Collagen 1a1, and Collagen 3a1)

showed the same trend in the two groups (Figure 3A). Furthermore,

both western blots and IHC staining revealed that Cx43 expression

significantly decreased in WT + Dox group mice compared with

IKKε-KO+Dox groupmice (Figures 3B–E). Thence, IKKε knockout
might alleviate inflammation, collagen deposition, and destruction of

gap junction structure after Dox induction.

3.4 I-κB kinase-ε knockout ameliorated
pyroptosis and apoptosis in myocardial
tissue after dox stimulation

The TUNEL result and the expression of apoptosis-marked

proteins suggested that apoptosis was more severe in WT + Dox

mice than in IKKε-KO + Dox mice (Figures 4A–C). Moreover,

the expression levels of IL-1β and IL-18 were significantly higher

in theWT +Dox group than in the IKKε-KO +Dox group, which

were determined by IHC staining (Figure 4D, E). Additionally,

western blot analysis showed the same tendency of caspase1 and

GSDMD, which are the markers of pyroptosis, between the two

groups (Figure 4F). In conclusion, the lack of IKKε might

alleviate apoptosis and pyroptosis in Dox-induced DCM.

3.5 I-κB kinase-ε knockout inhibited the
NF-κB signaling pathway in dox-induced
dilated cardiomyopathy

Due to the significant differences in the inflammatory reaction,

we evaluated the inflammation-related NF-κB signal pathways in

WT and IKKε-KOmice’s hearts after Dox stimulation. Interestingly,

we found apparent differences in IκBα, p65, RelB, and p100 in the

NF-κB pathways between the two groups after intraperitoneal

injection of Dox. The p-IκBα, p-P65, p-RelB, and p-p100 were

higher expressed in the WT + Dox group compared with the

IKKε-KO + Dox group (Figure 5A, B). Moreover, the nuclear

translocation of p65 was increased in the WT + Dox group when

compared to the IKKε-KO +Dox group (Figure 5C, D). The western

blot results suggested that IKKε deficiency might inhibit the NF-κB
signaling pathway in mouse hearts after Dox injection for 30 days.

4 Discussion

In this study, we demonstrated the role of IKKε on the

development of DCM by intraperitoneal injection of doxorubicin

in WT or IKKε-KO mice. Our study indicated that the knockout

of IKKε alleviated Dox-induced cardiac dilatation and left

ventricular dysfunction in mice. Moreover, the IKKε knockout
protected the heart against inflammation, fibrosis, apoptosis,

pyroptosis, destruction of gap junction structure, and

pathological cardiac remodeling in response to long-term Dox

stimulation. Thus, we provide the first time that IKKεmight play

a critical role in aggravating Dox-induced DCM.

Our previous study found that mice injected with doxorubicin

showed pathophysiological changes related to dilated

cardiomyopathy (Liu et al., 2020). In this study, the ratio of heart

weight to body weight in the WT + Dox group was higher than that

in the other groups. To examine whether IKKε knockout has

cardioprotective effects in Dox-induced DCM, we examined

murine cardiac function by echocardiography under steady-state

conditions. Our echocardiographic data showed that the WT mice

exhibited worst cardiac function with a lower EF and FS after Dox

injection.

Moreover, echocardiographic examination revealed that the

Dox-injected WT mice’s ventricular cavity was more extensive,

and the ventricular wall was thinner than those of untreated WT

mice. However, this change was alleviated in IKKε-KO + Dox group

mice. As shown in Figure 3A, PCR also showed that heart failure

markers (ANP, BNP, β-MHC, and Acta-1) were higher in theWT +

Dox group than in the WT + Saline group. However, this

deterioration of cardiac function was alleviated in the IKKε-KO +

Dox group mice, which indicated a better cardiac function in IKKε-
KO + Dox group mice compared to WT + Dox group mice.

Additionally, the IKKε is a non-canonical IκB kinase that plays a

significant role in fibrosis and inflammation (Verhelst et al., 2013;

TABLE 1 heart weight and body weight of mice after Dox-induced.

number Heart weight (mg) Body weight(g) HW/BW(mg/g)

WT + Saline 128 ± 2.966 31.167 ± 1.835 4.118 ± 0.235

IKKε+Saline 125.167 ± 4.665 30 ± 2.366 4.186 ± 0.234

WT + Dox 143 ± 4.648# 23.667 ± 1.366# 6.055 ± 0.4#

IKKε+Dox 130.167 ± 2.317* 26.333 ± 1.032* 4.94 ± 0.223*

#p < 0.05 vs. WT + Saline,*p < 0.05 vs. WT + Dox.
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Zhou et al., 2019). Previous studies (Cao et al., 2014; He et al., 2019)

have shown that IKKε deficiency inhibits the inflammatory response

and fibrosis in cardiovascular disease. IKKε knockout attenuates

inflammation to promote cardiac protection in mice treated with a

high-fat diet. Moreover, IKKε deficiency inhibits the fibrosis of

cardiac remodeling and attenuated aortic valve thickening in

apolipoprotein E deficient mice after angiotensin II-induced. As

shown in Figure 2E, cardiomyocyte hypertrophy and

inflammatory cell infiltration were evidenced in HE and WGA

staining, which was alleviated in the hearts of IKKε-KO mice

with Dox-induced. Moreover, Masson’s trichrome staining

showed that the collagen area was remarkably larger in the WT +

Dox group compared to IKKε-KO + Dox group mice. Consistent

with previous studies (Corr et al., 2009; Bulek et al., 2011), we found

an increased expression of anti-inflammatory factors (IL-10) and a

decreased expression of proinflammatory factors (IL6, IL-1β, and
TNF-α) in IKKε-KO mice after Dox injection. Therefore, IKKε
knockout inhibits the inflammation during the process of Dox-

induced DCM.

Dilated cardiomyopathy is often accompanied by arrhythmia.

Reducing fibrosis is a primary therapeutic strategy because heart

electrophysiology can be disrupted by fibrotic tissue and triggered

life-threatening arrhythmias (Piek et al., 2019). Connexin43 is a

cardiac gap junction protein that plays a vital role in the proper

coordination of electrical conduction and mechanical contractility.

Connexin 43 (Cx43), the most abundant cardiac gap junction

FIGURE 3
IKKε knockout relieved heart failure, fibrosis, inflammation, and destruction of gap junction structure after Dox induction. (A). The mRNA
analysis ofmarkers of Inflammatory cytokines (IL-6, IL-1β, TNF-α, and IL-10), and collagen-related factors (CTGF, TGF-β1, Collagen 1a1, and Collagen
3a1) in the heart ofWT or IKKε-KOmice after Dox injection (n= 4mice per experimental group; vs. Saline orWTDox, *p < 0.05). (B,D). Representative
IHC images and analyses of Cx43 in the heart tissues of WT and IKKε-KOmice after Dox stimulation (n = 4 mice per experimental group, 400x,
vs. Saline or WT Dox, #p/*p < 0.05). (C,E) Representative western blot images and analysis of Cx43 in heart tissue after Dox injection (n = 4 mice per
experimental group, #vs. Saline or WT Dox, p/*p < 0.05).
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FIGURE 4
IKKε knockout ameliorated pyroptosis and apoptosis in myocardial tissue after Dox stimulation. (A). Representative figures and analysis of
TUNEL staining of tissue fromWT and IKKε-KOmice after Dox injection (n= 4mice per experimental group, vs. Saline orWTDox, #p/*p < 0.05). (B,C).
The western blotting images and analysis of apoptosis-related proteins in the heart tissue of WT and IKKε-KOmice injected with Dox for 30 days (n =
4 mice per experimental group, vs. Saline or WT Dox, #p/*p < 0.05). (D,E). Representative Immunohistochemistry images and analysis of IL-18
and IL-1β in the heart tissues of WT and IKKε-KO mice after Dox injection (n = 4 mice per experimental group, 200x, vs. Saline or WT Dox, #p/*p <
0.05). (F). Representative western blot images and analysis of proteins associated with pyroptosis in heart tissue of WT and IKKε-KO mice injected
with Dox for 30 days (n = 4 mice per experimental group, vs. Saline or WT Dox, #p/*p < 0.05).
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protein, decreased in the decompensatory stage, or dilated

cardiomyopathy might be associated with the destruction of gap

junction structure (Kostin et al., 2003; Chang K. T. et al., 2017; Le

Dour et al., 2017). In our study, the PCR analysis of fibrosis markers

(CTGF, Collagen 1a1, and Collagen 3a1) showed that the IKKε-KO
alleviated fibrosis in murine hearts after Dox stimulation.

Additionally, the result of connexin43 tested by western blot and

IHC staining suggested that destruction of cardiac gap junction

structure was significantly attenuated in IKKε-deficient mice.

Taken together, our results reveal that IKKε deficiency can reduce

fibrosis and disruption of gap junction structures to protect the

cardiac electrophysiological functions in Dox-induced DCM.

Numerous previous researches have revealed that apoptosis

is associated with dilated cardiomyopathy (Zhang et al., 2017;

Mazelin et al., 2016; Yin et al., 2022). Moreover, Dox increases

ROS production in cardiomyocytes, which leads to

mitochondrial damage and promotes apoptosis (Wu et al.,

2016; Xia et al., 2017). The TUNEL staining and western

blotting results of Bax, cleaved-caspase3, caspase6, and

caspase9 showed a significantly higher expression of

apoptosis in WT + Dox group mice than those of the group

to IKKε-KO + Dox group mice, which suggested that the IKKε
knockout could inhibit apoptosis in Dox-induced DCM.

Pyroptosis is known as a form of programmed cell death,

accompanied by inflammation. The characteristics of

pyroptosis are disruption of the plasma membrane and

release of cellular contents and proinflammatory mediators,

including IL-1β and IL-18 (Ge et al., 2018).

FIGURE 5
IKKε knockout inhibited the NF-κB signaling pathway in Dox-induced DCM. (A). Representative western blots showing total protein and the
phosphorylation levels of IκBα, RelB, p65, and p100 in the NF-κB pathway in heart tissues of WT and IKKε-KOmice injected with Dox (n = 6mice per
experiments). (B). Quantitative analysis of western blotting of proteins related to the NF-κB pathway (n = 6 mice per experimental group; #p/*p <
0.05 vs. Saline orWTDOX). (C). Representative western blots showing the nuclear and cytoplasmic protein levels of p65 in theNF-κB pathway in
heart tissues from WT and IKKε-KO mice injected with Dox (n = 6 independent experiments). (D). Relative quantitative analysis of nuclear
translocation of p65 (n = 6 mice per experimental group; #p/*p < 0.05 vs. Saline or WT DOX).
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Moreover, pyroptosis plays a role in many cardiovascular

diseases, including atherosclerosis, heart failure, and

cardiomyopathy (Vande Walle and Lamkanfi, 2016). Gasdermin-

D (GSDMD) is known as the critical executioner of pyroptosis

(Vande Walle and Lamkanfi, 2016). In addition, a previous study

suggested thatNF-kBwas an essential transcription factor ofGSDMD

(Liu et al., 2017). Promoting the phosphorylation of the NF-κB
subunit p65 increases the production and release of IL-1β(Denkers
et al., 152019).We detected the pyroptosis-related proteins and found

that the expression of representative factors of pyroptosis (IL-1β, IL-
18, caspase1, and GSDMD) was higher in WT + Dox mice than in

IKKε-KO + Dox mice. Consequently, deficiency of IKKε could

attenuate apoptosis and pyroptosis in Dox-induced DCM.

IKKε is a member of the IKK complex, which regulates the NF-

κB pathway. Numerous previous studies have verified that IKKε is
associated with phosphorylation of p65 in the classical NF-κB
pathway (Moser et al., 2011; Yi et al., 2013; Changchun et al.,

2014; Yang et al., 2018). In our study, the western blotting

showed that the phosphorylation of IκBα, p65, RelB, and

p100 was increased in WT mice after Dox injection. However,

this trend was not found in Dox-treated IKKε knockout mice;

and the nuclear translocation of p65 which is a significant

member of the NF-κB pathway was inhibited by IKKε knockout

in Dox-induced mice. Thus, we hypothesized that IKKε has a

relationship with the NF-κB pathway in Dox-induced murine DCM.

TheDox-inducedDCMinmice occursmainly through the direct

lesion of cardiomyocytes, leading to inflammation, cardiomyocyte

apoptosis, and pyroptosis. Although this model is similar to human

DCM, it does not fully simulate many human DCM aspects. Limited

by time, this study only performed the research in vivo, which

revealed IKKε as an essential regulator in Dox-induced DCM

development. In the future, we will clarify the exact mechanism of

IKKε in Dox-induced rat cardiomyocytes in vitro.

In conclusion, IKKε-KO attenuates Dox-induced DCM in.

mice and reduces the inflammatory reaction, apoptosis,

pyroptosis, and destruction of gap junction structure by

inhibiting the NF-κB pathway. Therefore, our study might

find a novel therapeutic target for the treatment of DCM.
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Short-coupled variant of torsade
de pointes: A systematic review
of case reports and case series

Guangqiang Wang*†, Lin Zhong†, Hongxia Chu†,

Chunxiao Wang and Xuefeng Zhu

Department of Cardiology, The A�liated Yantai Yuhuangding Hospital of Qingdao University, Yantai,

China

Background: The short-coupled variant of torsade de pointes (scTdP) is

characterized by a particular electrocardiogram (ECG) pattern that shows

a short-coupling interval of the initial Tdp beat and that can degenerate

into ventricular fibrillation without the presence of structural heart disease.

However, its etiology, epidemiology, clinical characteristics, underlying

mechanism, treatment, and prognosis remain unclear. This study aimed to

systematically review case reports and series of scTdP to synthesize existing

data on the demography, clinical characteristics, ECG features, management,

and outcomes.

Methods: A literature search was conducted for eligible published articles

using the Medline, Embase, and PubMed databases. All eligible case reports

and case series were included without any language restrictions. SPSS 24 was

used for statistical analysis.

Results: A total of 22 case reports and 103 case series of patients with

scTdP were identified and included in the analysis. All selected cases had

acceptable quality of evidence. Most young patients without sex di�erences

had no trigger or a negative programmed simulation. The ECGs of all selected

patients showed a short first-coupling interval (302 ± 62ms) and a long QRS

duration of ventricular extrasystole (VE) (135 ± 17ms). The first coupling

interval levels and QRS duration levels of VE were significantly longer and

wider in patients with scTdP originating from the right ventricular outflow

tract (RVOT) than in those with scTdP originating from the Purkinje fibers

(380 ± 70 vs. 274 ± 28ms, P < 0.001; 147 ± 8 vs. 131 ± 17ms, P <

0.001), respectively. The receiver operating characteristic curve showed that

the optimal cuto� values of the first coupling interval triggering TdP and

QRS duration of VE were more than 319ms and 141ms (92% sensitivity,

95.7% specificity; 82.6% sensitivity, 77.8% specificity) for predicting the RVOT

origin, respectively. The Kaplan-Meier survival curve revealed increased survival

in patients with implantable cardioverter defibrillator (ICD) implantation

than in patients without ICD implantation (log-rank =10.127, P = 0.001).
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Conclusion: Some agreements were confirmed in selected case reports

regarding the clinical features, diagnosis, and management of scTdPs. Further

large-scale and long-term follow-up studies are required to clarify the existing

arrhythmogenic entities.

KEYWORDS

short-coupled variant of torsade de pointes, first-coupling interval, QRS duration of
ventricular extrasystole, implantable cardioverter defibrillator, systematic review

Introduction

Idiopathic polymorphic ventricular tachycardia

(PMVT)/ventricular fibrillation (VF) is the leading cause

of unexplained sudden cardiac death (SCD) in the absence

of structural heart disease, particularly in young adults (1).

The short-coupled variant of torsades de pointes (scTdP)

is a rare cause of idiopathic PMVT/VF and is defined as a

new electrocardiogram (ECG) entity that exhibits TdP/VF

secondary to a short-coupled premature ventricular complex

(PVC) with a normal QT interval, mimicking the R-on-T

phenomenon (2). TdP, which means twisting of the points, is

a potentially life-threatening form of PMVT, which appears

on the ECG as a characteristic beat-to-beat varying QRS

morphology that is prone to spontaneous reversal. Occasionally,

the clinical presentation of TdP is an electrical storm, that is,

a cluster of arrhythmic episodes that sometimes degenerates

into VF (3). TdP is usually not induced by programmed

electrical stimulation during electrophysiological studies. In

1994, Leenhardt et al. first described a series of 14 patients

with normal heart structure and a history of syncope, whose

electrocardiographic monitoring showed TdP with normal

QT intervals initiated by ventricular extrasystole (VE) with a

short coupling interval (200–300ms) (2). Despite the unique

ECG features at the TdP onset, other ECG findings specific

to Brugada, long QT, or short QT syndrome are lacking.

Therefore, it is often difficult to diagnose scTdP after the

disappearance of PVCs. ScTdP should be considered as a

Abbreviations: AUC, area under the receiver operating characteristic

curve; ARVC, arrhythmogenic right ventricular cardiomyopathy;

CI, confidence interval; ECG, electrocardiogram; ICD, implantable

cardioverter defibrillator; LBBB, left bundle branch block; LVOT, left

ventricular outflow tracts; PMVT, polymorphic ventricular tachycardia;

PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-

analyses; PVC, premature ventricular complex; RFCA, radiofrequency

catheter ablation; ROC, receiver operating characteristic; RBBB, right

bundle branch block; RVOT, right ventricular outflow tract; scTdp,

short-coupled variant of torsade de pointes; SCD, sudden cardiac

death; VE, ventricular extrasystole; VF, ventricular fibrillation; VT,

ventricular tachycardia.

diagnosis when the etiology of aborted SCD is unknown. Thus,

the clinical features of this disease differ from those of long

or short QT syndrome in many respects, and the underlying

mechanisms have not yet been fully elucidated. In recent

years, few reports have been published on this disease. It is

important to identify this characteristic electrocardiographic

pattern to prevent SCD. In the long term, the spontaneous

behavior of arrhythmia is unpredictable. Placement of an

automatic implantable cardioverter defibrillator (ICD) is the

only confirmed therapy, since no medication can entirely

prevent SCD in this disease. Verapamil is the only effective

drug that can partially suppress arrhythmias, but it does not

prevent SCD. If ventricular arrhythmia recurs despite drug

therapy, catheter ablation to initiate premature ventricular

beats may be warranted. The feasibility of ablation has

been demonstrated in a small series of patients in expert

centers, and long-term follow-up data on catheter ablation are

lacking. Successful ablation does not invalidate the need for

an ICD.

As this is an uncommon condition, there are only short

descriptive series and isolated case reports. Our aim was

to systematically review case reports and series of scTdP

to synthesize existing data on the demography, clinical

characteristics, ECG features, management, and outcomes about

the disease.

Methods

This systematic review was conducted according to the

Preferred Reporting Items for Systematic Reviews and Meta-

analyses (PRISMA) guidelines.

Search strategy

A literature search was performed for eligible articles

published between January 1994 and December 2021 using

the MEDLINE/PubMed and Embase databases. Subsequently,

we performed a search using the term “short-coupled

variant of torsade de pointes.” The search strategy yielded
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FIGURE 1

Flow diagram.

a total of 36 articles. Eligibility of the case reports was

determined by assessing the titles and abstracts. In order

to find additional qualifying reports, the reference lists of

the included studies and related literature were manually

checked. The detailed PRISMA flow diagram is shown in

Figure 1.

Eligibility criteria

All eligible case reports and case series from around

the world were included, without any language restrictions.

For this review, the inclusion criteria were (1) age and

sex of the scTdp patients, (2) clinical and ECG features,

(3) results of electrophysiological studies, (4) specific

treatment strategies, and (5) patient outcomes. Articles,

such as review articles, hypothesis articles, and commentaries,

were discarded.

Study selection and quality assessment

The titles and abstracts of studies from the aforementioned

databases were evaluated by three authors (GQW, CXW, and

XFZ). The authors assessed the studies based on predetermined

eligibility criteria. The critical appraisal checklist for case reports

developed by Moola et al. (4) was used to perform a quality

check of the systematic review of case reports. If five of the

eight evaluation criteria were met, the quality was judged to be

sufficient. All researchers agreed on the included studies.

Data extraction

From these selected studies, three authors (GQW, HXC,

and CXW) manually retrieved the data. The following details

were extracted from each report: author, country of origin, study

design, sample size, mean age, sex, past medical history, family
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history of sudden death, presenting symptoms, ECG findings,

electrophysiological study, treatment, recurrence, follow-up,

and outcomes.

Statistical analysis

Continuous variables are presented as mean ± standard

deviation, and categorical variables are expressed as frequency

and percentage. A chi-square test and Fisher’s exact probability

test were used to compare qualitative parameters, and

Student’s t-test and the Mann-Whitney U-test were used

to compare quantitative parameters. A receiver operating

characteristic (ROC) curve was used to evaluate the sensitivity

and specificity of the scTdP test. An area under the ROC

curve (AUC) of 1.0 indicates perfect discrimination, whereas

an area of 0.5 indicates that the test discriminates no

better than chance. Kaplan-Meier analysis was performed

to plot survival curves. The log-rank test was used to

compare event-free survival between groups. In all statistical

tests, P < 0.05 was regarded as statistically significant.

All statistical analyses were performed using SPSS software

version 24.0.

Results

Study selection

In this review, 103 patients diagnosed with scTdP were

included from 22 published studies (2, 3, 5–24). The median age

of the included patients was 38± 12 years, and 52% of themwere

female. Most of the reports were from Asia (54.5%), followed by

Europe (41%) and America (4.5%). Table 1 presents the patients

demographic and clinical characteristic features of each report.

Evaluating the risks of biases

Table 2 shows the risk of bias evaluated in this study

by using the critical appraisal checklist for case reports. In

the evaluated case reports, the demographic characteristics

of selected patients, medical history, current clinical status,

diagnostic test or evaluation method, and results were all

appropriately reported.

Clinical characteristics

Syncope was the most prevalent presenting symptom

in 76% of patients with scTdP, followed by sudden cardiac

arrest (6%). A majority of patients without sex differences

had no high-risk factors for coronary artery disease (97%),

no presence of structural heart disease (99%), no family

history of cardiac disease or sudden death (85%), and

no emotional stress (94%) (Table 1). The exercise stress

test and provocative testing were negative in 78 and 91%

of the enrolled patients, respectively. In addition, the

programmed simulation was also negative in 78% of the

selected patients.

ECG findings

Significant clues suggesting the PVC triggering TdP were

often found upon analysis of telemetry and ambulatory monitor

tracings. Then, a meticulous inspection of the 12-lead ECG

indicating different characteristic morphologies of PVCs should

be done to distinguish the PVC origin between the right

ventricular outflow tract (RVOT) and Purkinje fibers. The 12-

lead ECGs of all selected patients showed sinus rhythm, normal

QRS-ST-T morphology, and QT intervals. Among them, the

inferior J-wave in only two cases may not be a critical finding

but rather a sign of clinical or genetic heterogeneity (17). The

first coupling interval was 302 ± 62ms (<400ms) and the

QRS duration of VE was 135 ± 17ms (<153ms). Around

24% of selected patients showed a left bundle branch block

(LBBB) pattern with a right axis deviation, suggesting that

the origin of the PVCs was RVOT localizing along the RV

papillary muscle, carrying within its muscular bundle a major

fascicle of the right bundle branch. Most of the selected patients

(67%) showed a right bundle branch block (RBBB) or LBBB

configuration with a left axis deviation, suggesting that the

origin of the PVCs was the Purkinje fibers (Figure 2). However,

there were only a few cases in which the PVC origin estimated

by the ECG pattern differed from the site of successful PVC

ablation (10, 21).

PVC origins

The PVC origins could not be identified because of

the fragmentary inspection of recorded ECGs in nine

patients. In total, the data of 94 patients with different

origins of Purkinje fibers and RVOT were analyzed (Table 3).

Significant differences were found in the values of the selected

parameters, including the first coupling interval triggering

Tdp, QRS duration of VE, VF, radiofrequency catheter ablation

(RFCA) monotherapy or combination therapy, and ICD

monotherapy/combination therapy (P < 0.05). No significant

differences were observed between the two groups in terms

of age, male sex, no structural heart disease, family history of

sudden death, emotion, electrical storm, medication treatment

alone, and death (P > 0.05). The scTdp originating from

the Purkinje fibers is more likely to be generated in VF.

RFCA and ICD monotherapy/combination therapy are more
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Leenhardt (2) France Case

report

21 33± 11 10 (48) 1 (5) 0 (0) 5 (24) 3 (18) 20 (95) 1 (5) 9 (64) 12 (86) NA Normal 297± 41 2 (14) NA 4 (19) 9 (43) 52± 51 15 (71)

Ruan and

Wang (9)

China Case

report

3 36± 5 2 (67) 0 (0) 0 (0) 0 (0) 0 (0) 3 (100) 0 (0) NA 2 (67) NA Normal 377± 25 NA NA 0 (0) 1 (33) 7± 6 2 (67)

Shiga et al. (11) Japan Case

report

1 41 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 0 (0) NA Normal 240 1 (100) 156 1 (100) 1 (100) 60 1 (100)

Haïssaguerre

et al. (10)

France, Japan,

Czech Republic,

UK and Brazil

Case

report

27 41± 14 14 (52) 0 (0) 0 (0) 6 (22) 0 (0) 17 (63) 0 (0) 27 (100) 27 (100) NA Normal 297± 41 10 (37) 129± 18 23 (85) 3 (11) 24± 28 27 (100)

Takeuchi

et al. (14)

Japan Case

report

1 51 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) NA Normal 280 0 (0) 120 1 (100) 0 (0) 6 1 (100)

Noda et al. (8) Japan Case

control

study

16 39± 10 9 (56) 0 (0) 0 (0) 1 (6) 0 (0) 11 (69) 0 (0) 16 (100) 16 (100) NA Normal 403± 21 3 (19) 148± 8 1 (6) 0 (0) 54± 39 16 (100)

Viskin

et al. (19)

Israel Case

report

3 48± 11 3 (100) 0 (0) 0 (0) 0 (0) 0 (0) 1 (33) 0 (0) 3 (100) 3 (100) NA Normal 350± 20 0 (0) 149± 7 2 (67) 0 (0) 42± 48 3 (100)

Yamazaki

et al. (20)

Japan Case

report

1 21 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 1 (100) NA Normal 300 0 (0) 120 0 (0) 0 (0) 36 1 (100)
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Bogaard

et al. (16)

Netherlands Case

report

1 36 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) NA Normal 240 0 (0) 120 1 (100) 0 (0) 6 1 (100)

Chiladakis

et al. (3)

Greece Case

report

1 50 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) NA Normal 290 0 (0) 120 1 (100) 0 (0) 3 1 (100)

Van den

branden

et al. (12)

Netherlands Case

report

1 51 0 (0) 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 1 (100) NA NA Normal 240 NA 160 1 (100) 0 (0) 12 1 (100)

Chokr et al.

(6)

Brazil Case

report

4 32± 16 4 (100) 0 (0) 0 (0) 0 (0) 3 (75) 3 (75) 0 (0) 2 (50) 2 (50) NA Normal 300± 43 0 (0) 155± 13 3 (75) 1 (25) 71± 90 4 (100)

Hayama

et al. (15)

Japan Case

report

1 38 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) (-) Normal 280 0 (0) 142 1 (100) 0 (0) 15 1 (100)

Jastrzebski

et al. (5)

Kraków Case

report

5 43± 19 4 (80) 1 (20) 1 (20) 0 (0) 0 (0) 5 (100) 0 (0) 1 (20) NA NA Normal 303± 38 NA 130± 17 5 (100) 3 (60) 51± 29 5 (100)

Kondo

et al. (23)

Japan Case

report

1 19 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) (-) Normal 300 0 (0) 128 1 (100) 0 (0) 8 1 (100)

Godinho

et al. (13)

Portugal Case

report

1 49 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) NA Normal 280 0 (0) 160 1 (100) 0 (0) 6 1 (100)

Fujii et al. (17) Japan Case

report

6 38± 9 3 (50) 0 (0) 0 (0) 0 (0) 0 (0) 6 (100) 0 (0) 1 (17) 3 (50) (+) Normal 426± 21 3 (50) 138± 16 6 (100) 3 (50) 62± 25 6 (100)

Kimura

et al. (18)

Japan Case

report

1 40 1 (100) 0 (0) 0 (0) 1 (100) 0 (0) 1 (100) 0 (0) 0 (0) 1 (100) (+) Normal 280 0 (0) 110 1 (100) 0 (0) NA 1 (100)
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Kajiyama

et al. (24)

Japan Case

report

1 40 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) (+) Normal 250 0 (0) 130 1 (100) 1 (100) 24 1 (100)

Sonoda

et al. (22)

Japan Case

report

1 38 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) NA 1 (100) (+) Normal 280 0 (0) 120 1 (100) 0 (0) NA 1 (100)

Steinfurt

et al. (21)

Germany, USA

and Netherlands

Case

report

5 37± 13 2 (40) 0 (0) 0 (0) 1 (20) 0 (0) 1 (20) 4 (80) NA 5 (100) NA Normal 262± 20 0 (0) 126± 5 5 (100) 0 (0) 32± 37 5 (100)

Touat-Hamici

et al. (7)

France Case

report

1 35 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) 1 (100) 0 (0) 1 (100) NA (+) Normal 280 NA 120 0 (0) 1 (100) 72 0 (0)

Total - - 103 38± 12 54 (52) 3 (3) 1 (1) 15 (15) 6 (6) 78 (76) 6 (6) 62 (78) 80 (91) – Normal 302± 62 19 (22) 135± 17 60 (58) 23 (22) 40± 41 95 (92)

ICD, Implantable cardioverter defibrillator; SD, Standard deviation; NA, Not applicable.
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1. Were patient’s demographic

characteristics clearly described?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

2. Was the patient’s history clearly

described and presented as a

timeline?

No Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

3. Was the current clinical

condition of the patient on

presentation clearly described?

No No Yes No Yes No No No Yes Yes No No Yes No Yes Yes No Yes Yes Yes No No

4. Were diagnostic tests or

assessment methods and the results

clearly described?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

5. Was the intervention(s) or

treatment procedure(s) clearly

described?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

6. Was the post-intervention

clinical condition clearly

described?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

7. Were adverse events (harms) or

unanticipated events identified and

described?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

8. Does the case report provide

take away lessions?

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Overall appraisal: include, exclude,

and seek further information

Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include Include
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FIGURE 2

Distribution of the di�erent origins of short-coupled variant of torsade de pointes (scTdP).

TABLE 3 Clinical characteristics of the di�erent ventricular extrasystole’s origins.

Variable RVOT (n= 25) Purkinje fibers (n= 69) P-value

Age (y, mean± SD) 38± 11 38± 12 0.855

Male (n, %) 9 (43) 24 (52) 0.479

No structural heart disease (n, %) 25 (100) 68 (99) 1

Family history of cardiac disease or sudden death (n, %) 1 (5) 7 (15) 0.413

Emotion and exercise (n, %) 1 (4) 4 (6) 0.754

First coupling interval (ms, mean± SD) 380± 70 274± 28 <0.001

QRS duration of ventricular extrasystole (ms, mean± SD) 147± 8 131± 17 <0.001

VF (n, %) 12 (48) 54 (78) 0.005

Electrical storm (n, %) 0 (0) 6 (9) 0.295

RFCAMonotherapy/Combination therapy (n, %) 21 (84) 36 (52) 0.005

ICDMonotherapy/Combination therapy (n, %) 3 (12) 55 (80) <0.001

Only medicines treatment (n, %) 2 (8) 12 (17) 0.422

Death (n, %) 1 (4) 5 (7) 0.888

RVOT, Right ventricular outflow tract; SD, Standard deviation; VF, Ventricular fibrillation; RFCA, Radiofrequency catheter ablation; ICD, Implantable cardioverter defibrillator.

effective for scTdp originating from the RVOT and Purkinje

fibers, respectively.

ROCs were performed, and the optimal threshold was

obtained when the Youden index was maximal. The optimal

cut-off values of the first coupling interval triggering Tdp

and QRS duration of VE for predicting RVOT origin were

319ms (sensitivity 92%, specificity 95.7%) and 141ms

(sensitivity 82.6%, specificity 77.8%), respectively. ROC

curves were established to assess the potential value of the

first coupling interval triggering TdP and QRS duration of

VE as electrocardiographic markers for predicting RVOT

origin (Figure 3). There were remarkable differences between

the first coupling interval triggering TdP and the QRS

duration of VE, with an AUC of 0.928 [P < 0.001, 95%

confidence interval (CI): 0.838–1.000], and 0.824 (P <

0.001, 95% CI: 0.731–0.917), respectively. The potential
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FIGURE 3

ROC analyses of the optimal cuto� values of the short-coupled interval triggering torsade de pointes (TdP) (A) and QRS duration of ventricular

extrasystole (VE) (B) for predicting the right ventricular outflow tract (RVOT) origin.

FIGURE 4

Comparison of Kaplan-Meier survival curves in short-coupled variant of torsade de pointes (scTdP) patients with di�erent treatments. (A)

implantable cardioverter defibrillator (ICD) vs. medication (P < 0.001); (B) radiofrequency catheter ablation (RFCA) vs. medication (P = 0.006); (C)

ICD vs. non-ICD (P = 0.001).

electrocardiographic markers were distinguished between

different scTdp origin.

Management and outcomes

During the follow-up period, 58% of the selected patients

underwent ICD implantation, 22% had arrhythmia recurrence,

and 92% were alive. In this research, the median survival time

was 72 ± 38 months in patients without ICD implantation,

and the median survival time was 24 ± 5.5 months

in patients with only medication. In the Kaplan–Meier

curve (Figure 4), patients on medication showed higher

mortality rates than patients with RFCA and ICD implantation

(log-rank = 7.682, P = 0.006; log-rank = 19.7, P <

0.001). Moreover, patients without ICD implantation had

higher mortality rates than those with ICD implantation

(log-rank = 10.127, P = 0.001). It can be seen that both

RFCA and ICD implantation may prevent the occurrence of

sudden death, but the efficacy of ICD implantation is better

(Figures 4, 5).

Discussion

This systematic review analyzed the case reports of scTdp. Of

the 36 studies searched in the databases, only 22 were selected
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FIGURE 5

Application distribution (A) and constitution (B) of di�erent treatment strategies, including radiofrequency catheter ablation (RFCA), implantable

cardioverter defibrillator (ICD), and drugs, in patients with short-coupled variant of torsade de pointes (scTdP).

and analyzed. The results of the quality assessment showed

that all of the selected studies were sufficient. To the best of

our knowledge, only a limited number of similar cases with

sufficient information to recognize the major features of scTdP

have been published.

Young patients (<60 years), without differences in sex,

often had no high-risk factors for coronary artery disease, no

structural heart disease, no family history of sudden death, and

no emotional stress. Ameticulous inspection of the 12-lead ECG

should be performed to exclude any pathological ECG findings,

including early repolarization J-wave syndrome phenotypes and

QT syndromes (25). The ECG pattern was reportedly uniform,

with a normal QT interval. Themost valuable finding in the ECG

was that a short coupling interval triggered TdP. However, there

is no consensus in the literature regarding the normal value of

the PVC coupling interval (6), which refers to the interval from

the onset of normal QRS complex to the beginning of PVC on an

ECG signal. Such ECG data should be interpreted with caution

before claiming that TdP has a limited specificity.

The origin of the scTdP remains unknown. PVCs often

precede VF but do not induce spontaneous VF, and malignant

PVCs that induce VF usually originate in the same way (26).

This indicates that the VF trigger mechanism has unique

characteristics. The two primary sources of malignant PVCs

triggering Tdp or VF are: (1) the Purkinje system and its

distal arborized fibers and (2) the myocardium of the RVOT

and left ventricular outflow tracts (LVOT) (27). In general,

malignant PVCs originating from the Purkinje system are

differentiated from their myocardial analogs by their coupling

intervals. In this systematic review, we found that short PVC

coupling intervals (<400ms) indicate high-risk PVCs that

trigger fatal arrhythmias. Among them, the malignant PVC

coupling interval values of RVOT sources are usually ≥319ms,

and the short PVC coupling interval values of Purkinje sources

are <319ms. The cut-off value of a typically short QT interval

is ≤320ms, which is the main electrocardiographic marker of

short QT syndrome (28, 29). The similar thresholds of the two

different ECG entities can further confirm that Purkinje fibers

as arrhythmogenic substrates play an important role in the

occurrence of malignant ventricular arrhythmias. Moreover, the

malignant PVC coupling intervals of left ventricular Purkinje

sources are even shorter, usually ≤300ms. It was demonstrated

that the smaller the coupling interval of these extrasystoles,

the greater the risk of spontaneous PMVT, and, therefore,

of sudden death due to VF (6). Thus, the available data

suggest that a shorter coupling interval of initiating PVCs

correlates with the more malignant form of RVOT ventricular

tachycardia (VT). However, a cutoff value that would reliably

differentiate malignant RVOT VT from benign RVOT VT

remains to be defined (30). Unlike the relatively short PVC

coupling intervals associated with malignant arrhythmogenic

PVCs, the absence of risk is not necessarily guaranteed by

relatively long PVC coupling intervals. In general, malignant

RVOT/LVOT PVCs have longer initiating coupling intervals

thanmalignant Purkinje PVCs. Patients withmalignant Purkinje

PVCs more frequently present with VF than those with PVCs

that originate from the RVOT. PVC morphology can also

be pleomorphic.

The particular morphology of malignant PVCs [LBBB, left

axis deviation, and late precordial transition (>V4)] suggests

Frontiers inCardiovascularMedicine 11 frontiersin.org

120

https://doi.org/10.3389/fcvm.2022.922525
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Wang et al. 10.3389/fcvm.2022.922525

a Purkinje origin, one originating from the moderator band

of the right ventricle. Notably, the coupling interval of the

PVC that triggered VF was usually (however, not always)

<300ms. Malignant PVCs originating from the left ventricular

Purkinje system localized along the ventricular septum and

that morphologically resembled fascicular beats, presented with

a relatively narrow QRS complex, an RBBB configuration,

and a superior, inferior, or intermediate axis. In addition,

the myocardium can give rise to PVCs that can produce a

malignant phenotype. These sites correspond precisely to the

regions of the myocardium that generate benign PVCs, for

example, the RVOT and LVOT, and mirror the frequency of

origin of benign PVCs. Malignant RVOT PVCs presenting with

a relatively wide QRS complex, an LBBB configuration, and a

right axis deviation, are more common than those that originate

from LVOT sites. Our study also revealed that the LVOT PVC

coupling interval triggering life-threatening arrhythmia is scarce

(Figure 2).

A PVC-QRS duration of ≥153ms and non-outflow

tract origin (possibly related to a greater degree of

dyssynchrony) were associated with the greatest risk of

developing left ventricular dysfunction. In contrast, a

PVC-QRS duration <153ms and right ventricular outflow

tract origin might be almost irrelevant to progressive left

ventricular dysfunction, which is reversible and functional.

Patients can benefit from ablation especially in ROVT PVC-

induced cardiomyopathy, which is related to the amount

and duration of PVC. In addition, our research confirmed

that PVCs originating from the RVOT could be identified

by the cut-off value of PVC-QRS duration (>140ms) for

predicting the triggering of PMVT or Tdp. Nevertheless,

PVCs originating from the Purkinje fibers (<140ms) could

be distinguished from those originating from the RVOT.

Almahameed et al. revealed that a PVC-QRS duration

<140ms was a significant feature of malignant PVCs in

patients with unexplained syncope and apparently normal

hearts (25). Therefore, the anatomical origin of the PVC

and PVC-QRS duration is essential to predict left ventricular

dysfunction and impending malignant arrhythmia. More

importantly, current imaging modalities do not consistently

and reliably differentiate between patients with PVC-induced

cardiomyopathy and those with frequent PVCs and pre-existing

non-ischemic cardiomyopathy.

TdP/VF in the absence of identifiable structural heart disease

is usually the result of short coupled PVCs arising from the

outflow tracts or the Purkinje system within either the right

or left ventricles or, less commonly, from the ventricular

myocardium. The typical PVCs initiating TdP/VF usually have

a consistent QRS morphology and a short coupling interval

and can be targeted for ablation to control the arrhythmia.

For PVCs from the Purkinje system, the ablation target is a

high-frequency Purkinje potential preceding the PVCs. When

episodes are induced by short-coupled PVCs arising from

the outflow tracts, the ablation target is the site of earliest

ventricular activation (31). However, the detailed mechanism

of scTdP remains unclear. Several reports have described

triggered activity, abnormal automaticity, or reentry, as possible

underlying mechanisms of idiopathic PMVT/VF originating

from the Purkinje system (23). One study suggested that the

scTdP mechanism might be reentry into the papillary muscles

and the Purkinje network (15). Although the mechanism

of benign idiopathic monomorphic VT arising from RVOT

is considered to be triggered activity, that of idiopathic

PMVT or TdP originating from RVOT is unknown, due to

limited investigation of the electrophysiological characteristics

during the ablation procedure. It is speculated that functional

block and/or delayed conduction by rapid firing (caused by

triggered activity or microreentry arising from a single focus)

leads to chaotic ventricular conduction, thus causing PMVT

and/or VF (8). However, it is also speculated that rapid

firing from close multiple foci one after another produces

polymorphic morphological changes in the QRS configuration,

since other PVCs with slightly different QRS morphologies

often appear after eliminating the initial target PVCs by RFCA

(10, 30). In addition, scTdP is observed in the context of a

particular autonomic nervous system profile, with low heart

rate variability and a high sympathetic to parasympathetic ratio

(9, 14).

A clinical hypothesis is that scTdP arises from the same

genetic mutation with varying degrees of gene penetration,

and consequently, different clinical expressions. Therefore,

individuals with a more severe form of the disease could

potentially develop malignant arrhythmias without necessarily

having a coupling interval <300ms (6). VE patients with

short coupling may carry an uncommon syndrome, probably

of genetic etiology, which can result in TdP. Most idiopathic

PMVT/VF cases are sporadic; however, a subset of patients

have a family history of SCD, which is suggestive of a

genetic origin. Genetic screening of known genes responsible

for arrhythmias has led to the identification of only a

few ryanodine receptor 2 variants in a small percentage of

cases (17). This suggests that these patients are genetically

heterogeneous and that idiopathic PMVT/VF is possibly

oligogenic in the origin of the Purkinje fibers, which could

explain the low penetrance in families. Multiple genetic variants

may be responsible, as is the case in other channelopathies

(7). In addition, the scTdP may also be caused by many

kind of inheretory channelopathies without structural heart

abnormalities. Consequently, the further evaluation for genetic

arrhythmia syndromes is recommended.

The diagnosis of scTdP is clinically and therapeutically

important. It is critical to enhance the fundamental

understanding of the relative importance of the PVC site

of origin and PVC coupling interval in the triggering of fatal

arrhythmias, as well as the dynamic interplay between the PVC

and the underlying myocardial substrate. Several drugs, such
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as verapamil and β-blockers, and catheter ablation can reduce

or suppress arrhythmic episodes in the short-term. However,

this beneficial effect of medication does not prevent sudden

death due to spontaneous and unpredictable arrhythmias (12).

Decreasing the incidence of VF with localized ablation may

reduce the requirement of defibrillation and ICD replacement,

and improve the patient’s quality of life (10). However, RFCA

may be ineffective, because the same or similar PVCs may recur,

or an ill-defined underlying electrical substrate or unidentified

channelopathy may coexist. For example, idiopathic RVOT

VT, a significant sign of arrhythmogenic right ventricular

cardiomyopathy (ARVC), developed in one patient 10 years

after RFCA. This suggests that RFCA seems to be effective

in curing the malignant form of idiopathic VT arising from

RVOT; however, a backup for ICD implantation is required

in patients with the malignant form of idiopathic RVOT VT,

especially in those with ARVC. In addition, when the PVCs can

be identified, ablation is highly successful, but late recurrences

are observed in ∼10% of patients such that implantation of

an ICD is prudent even if ablation is acutely successful (31).

Moreover, the efficacy of catheter ablation has not been verified

due to the lack of long-term follow-up data in the prevention

of sudden death (30). Therefore, we strongly recommend

the use of ICD therapy. However, limited data suggests that

the subcutaneous ICD may not be a good therapy for these

patients due to the higher risk of T-wave oversensing seenin

this population (31). Due to the limited data in the literature

on asymptomatic individuals, we chose to institute a clinical

follow-up and prophylactic and empirical prescription of

verapamil (6).

Limitations

First, the electrocardiographic details of this rare heart

rhythm disorder are undefined, and the underlying mechanism

is unknown in sick individuals. Moreover, these reports were

small-scale studies based on early restricted understanding,

rather than large-scale clinical trials; hence, these data may

not be decisive and relevant for the entire population. Second,

there was a selection bias, as PVCs originating from the LVOT

were not included. Third, the limitations of our results are due

to incomplete information on some case descriptions. Further

long-term follow-up studies are necessary to verify whether

RFCA can prevent SCD.

Conclusions

This systematic review was performed to synthesize and

analyze case reports of scTdP. The main clinical features of

scTdp include a normal cardiac structure and unexplained

syncope in young patients. Short PVC coupling (<400ms,

especially ≤320ms) and long PVC-QRS durations (<140ms)

are more likely to predict impending scTdp. Moreover,

according to the cut-off values, we could distinguish between

different origins of PVC triggering TdP and take effective

treatments. Thus far, ICD implantation has been the only

effective way to prevent SCD in these patients. Further large-

scale and long-term follow-up studies, especially addressing

the definitive diagnosis, risk stratification, and management of

scTdP, are warranted.
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Objective: New-onset atrial fibrillation (NOAF) is a common complication and

one of the primary causes of increased mortality in critically ill adults. Since

early assessment of the risk of developing NOAF is difficult, it is critical to

establish predictive tools to identify the risk of NOAF.

Methods: We retrospectively enrolled 1,568 septic patients treated at Wuhan

Union Hospital (Wuhan, China) as a training cohort. For external validation

of the model, 924 patients with sepsis were recruited as a validation cohort at

the First Affiliated Hospital of Xinjiang Medical University (Urumqi, China). Least

absolute shrinkage and selection operator (LASSO) regression and multivariate

logistic regression analyses were used to screen predictors. The area under the

ROC curve (AUC), calibration curve, and decision curve were used to assess

the value of the predictive model in NOAF.

Results: A total of 2,492 patients with sepsis (1,592 (63.88%) male; mean [SD]

age, 59.47 [16.42] years) were enrolled in this study. Age (OR: 1.022, 1.009–

1.035), international normalized ratio (OR: 1.837, 1.270–2.656), fibrinogen (OR:

1.535, 1.232–1.914), C-reaction protein (OR: 1.011, 1.008–1.014), sequential

organ failure assessment score (OR: 1.306, 1.247–1.368), congestive heart

failure (OR: 1.714, 1.126–2.608), and dopamine use (OR: 1.876, 1.227–2.874)

were used as risk variables to develop the nomogram model. The AUCs of

the nomogram model were 0.861 (95% CI, 0.830–0.892) and 0.845 (95%

CI, 0.804–0.886) in the internal and external validation, respectively. The

clinical prediction model showed excellent calibration and higher net clinical

benefit. Moreover, the predictive performance of the model correlated with

the severity of sepsis, with higher predictive performance for patients in septic

shock than for other patients.
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Conclusion: The nomogram model can be used as a reliable and simple

predictive tool for the early identification of NOAF in patients with sepsis,

which will provide practical information for individualized treatment decisions.

KEYWORDS

new-onset atrial fibrillation, nomogram, predictive model, sepsis, SOFA score

Introduction

Atrial fibrillation (AF) is one of the common types of
arrhythmia with a high prevalence, and it is involved in the
development of heart failure, stroke, myocardial infarction, and
death (1–3). In the intensive care unit (ICU), approximately
10–15% of patients in critical illness may develop new-onset
atrial fibrillation (NOAF) (4, 5). NOAF signals the criticality of
the disease and a possible factor for adverse outcomes (4, 6).
Furthermore, NOAF increases the cost of treatment (cost ratio:
1.09, 1.02–1.20), length of stay in the ICU (median IQR: 6.7, 4.8–
12.1), and the mortality rate (OR: 1.28, 1.09–1.36) of patients (7,
8). Although the prognosis for patients with NOAF is poor, there
is no early and effective tool to predict NOAF.

Unlike AF in non-critical patients, the pathogenesis of
NOAF in sepsis may be more complex. Inflammatory factors
increase CD31 expression in cardiomyocytes (9) and inhibit K+

channel currents, enhance Na+/Ca2+ exchange, prolong action
potential duration, and increase the risk of arrhythmogenesis
(10). At the same time, increased body temperature due to
infection affects the effect of sodium channel blockers on
Na+ currents, decreases the efficacy of some antiarrhythmic
drugs, and increases patient mortality (11). Previous studies
have suggested various risk factors for NOAF, such as age,
vasopressor selection, inflammatory indicators, etc (6, 12, 13).
In addition, stress on the myocardium is an important factor,
such as takotsubo syndrome. Increased ventricular load causes
stretching of the cell membrane and changes in ion channels
and electrical activity in cardiac myocytes, causing mechanical-
electrical feedback and inducing arrhythmias (14, 15). However,
a set of practical and convenient prediction models of NOAF
have not been developed after various risk factors have been
put forward. The application value of dispersed risk factors in
clinical work is limited.

We believe that early identification of people at high risk
for NOAF in sepsis is the most appropriate investment to save
lives and alleviate the strain on healthcare resources. Firstly,
we mainly conducted a retrospective analysis of previous case
data to determine the risk factors of NOAF in patients with
sepsis. Secondly, we established a predictive model of NOAF
based on risk factors. Furthermore, we evaluate this predictive
model’s validity and application value to inform decisions for
individualized treatment.

Materials and methods

Study design and setting

This project retrospectively reviewed 1,827 patients
diagnosed with sepsis at Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology
between January 2015 and December 2019. Based on the
inclusion and exclusion criteria, 1,568 adults with sepsis were
ultimately enrolled in the training cohort (994 (63.39%) male;
mean [SD] age, 59.26 [6.23] years). From January 2015 to
December 2019, an independent validation cohort of 924
patients (598 (64.72%) male; mean [SD] age, 59.84 [16.72]
years) was screened from 1,088 patients using the same
criteria at The First Affiliated Hospital of Xinjiang Medical
University. The flow diagram for developing and validating
the prediction model was illustrated in Figure 1. The current
project followed the principle of the Declaration of Helsinki.
The work was approved by the Ethics Committee of the Union
Hospital of Tongji Medical College, Huazhong University of
Science and Technology, and written informed consent was not
required (No.2021-0956).

Participants and data collection

The diagnostic criteria of sepsis are based on the 2016
edition of Sepsis-3. The diagnostic criteria are as follows:
(i) patients with confirmed or suspected infection; (ii) SOFA
score ≥ 2 (16). The determination of NOAF was based on the
electrocardiogram report in the case data and the hourly rhythm
record in the nursing record. NOAF was defined as (i) no history
of AF; (ii) AF lasting > 1 h; or (iii) paroxysmal AF or atrial
flutter intervened with pharmacological therapy or electrical
resuscitation (6). Patients with the following conditions were
excluded: incomplete clinical data, age < 18, death within 24 h,
history of AF, congenital coagulation disorders, congenital heart
diseases, valvular heart diseases, post-cardiac surgery, implanted
cardiac devices, and pregnancy.

The following clinical data were collected within 24 h of
patient admission: gender, age, body mass index (BMI), pre-
admission comorbidities, coagulation, liver and renal function,
B-type natriuretic peptide (BNP), procalcitonin, international
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FIGURE 1

The flow diagram of developing and validating the prediction model.

normalized ratio (INR), cardiac troponin I, C-reaction protein
(CRP), sequential organ failure assessment (SOFA) score, site
of infection, and pathogens, etc. If a variable reported more
than one value in the first 24 h, the worst was selected
for analysis.

Outcomes

The primary observation was the incidence of NOAF in
patients with sepsis. Secondary observations were the length of
stay in the hospital, in-hospital mortality, length of ICU stay,
and readmission to the ICU during hospitalization.

Statistical analysis

The baseline information of the study population was
analyzed by descriptive statistics. The Kolmogorov–Smirnov
test accomplished the normality distribution of continuous
variables. Normally distributed continuous variables were
expressed as mean and standard deviation and vice versa
as median and interquartile range. For categorical variables,
frequencies and percentages are the best way to represent them.
The least absolute shrinkage and selection operator (LASSO) is
a powerful method for regression with high-dimensional

predictors. Our study used the LASSO binary logistic
regression model for risk factor selection, and factors with
non-zero coefficients were selected. Multivariate logistic
regression analysis assessed the association between risk
factors and NOAF and created a nomogram based on
selected variables.

The accuracy of the nomogram model can be performed
by internal and external validation. The area under the ROC
curve (AUC) is used to assess the model’s discrimination.
Calibration plots are more meaningful for evaluating the
degree of model fit, which assesses how close the actual
results of each nomogram are to the predicted results (17).
Decision curve analysis (DCA) shows the standardized net
benefit relative to the risk threshold probability and is used
to assess the clinical utility of the model (18). The clinical
impact curves show the number of high-risk and true-
positive patients at different threshold probabilities. In addition,
Kaplan–Meier curves and log-rank tests were used in the
survival analysis.

Statistical analysis was conducted with SPSS (IBM SPSS
Statistics 26.0, SPSS Inc., Chicago, IL, United States) and
R language (version 4.1.3).1 The R packages used in our
study were displayed in Supplementary Table 1. All statistical

1 www.R-project.org/

Frontiers in Cardiovascular Medicine 03 frontiersin.org

126

https://doi.org/10.3389/fcvm.2022.968615
http://www.R-project.org/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-968615 August 18, 2022 Time: 16:48 # 4

Li et al. 10.3389/fcvm.2022.968615

tests were two-sided, and statistical significance was set
at 0.05.

Results

Demographic and baseline
characteristics

In this study, 2,492 patients with sepsis were enrolled, of
whom 269 (10.8%) had NOAF. The median age was 59, ranging
from 18 to 94 years old. Male patients comprised 63.9% of
the total. The demographic data between the training and
validation cohorts were described (Table 1). The variables were
well balanced between the two cohorts, except for the prevalence
of chronic obstructive pulmonary disease, the rate of skin soft
tissue infections, and albumin levels. No statistical differences
were observed in the training cohort for the three variables
mentioned above when compared between the NOAF and non-
NOAF groups (Supplementary Table 2).

The construction of predictive model
based on risk factors

Forty-eight variables in the training cohort of 1,568 patients
with sepsis (167 with NOAF) were screened by the LASSO
binary logistic regression model, which selected 7 predictors
with non-zero coefficients (Figures 2A,B and Supplementary
Table 3). After multivariate logistic regression analysis, age,
congestive heart failure (CHF), SOFA score, INR, fibrinogen,
CRP, and dopamine use were independent risk factors for NOAF
(Figure 3). We weighted the regression coefficients of risk
factors in multivariate logistic regression and developed a risk
score formula to predict NOAF. Risk score = −8.296 + 0.022
(age) + 0.539 (if CHF is positive) + 0.267 (SOFA score) + 0.608
(INR) + 0.429 (fibrinogen) + 0.011 (CRP) + 0.629 (if dopamine
is used). Predicted risk = 1/(1 + e−riskscore) (Table 2). The
nomogram model for predicting the probability of NOAF was
developed based on the above risk factors. A true case is
presented in Figure 4.

Validation and evaluation of the
nomogram

The validation of the nomogram in this study was performed
using internal and external validation.

Internal validation
The calibration curve of the nomogram is used to show

the agreement between the predicted and observed results. The
agreement between the two results performs well in the training

cohort (Figure 5A). The Hosmer–Lemeshow results indicated
no significant difference, which suggested a good fit in the
training cohort (Hosmer–Lemeshow χ2

= 3.423, p = 0.891).
The predictive performance of the nomogram was evaluated
by the ROC curve, which had an AUC of 0.861 (95% CI,
0.830–0.892) (Figure 5C).

Independent validation
We also observed an excellent calibration effect in the

validation cohort (Figure 5B) and no statistical difference in
the Hosmer-Lemeshow results (Hosmer–Lemeshow χ2

= 4.653,
p= 0.794). Meanwhile, the area under the ROC curve was 0.845
(95% CI, 0.804–0.886) (Supplementary Table 4). There was no
statistically significant difference between the AUCs of the two
cohorts (P = 0.535) (Figure 5C).

Predictive performance of different sepsis
severity

To test the performance of the prediction model in different
sepsis severity, we divided the patients into sepsis group,
severe sepsis group and septic shock group. In the training
cohort, CRP, dopamine use, the incidence of NOAF, and in-
hospital mortality were higher in the septic shock group than
in the other groups (Supplementary Table 5). In addition,
the predictive performance of the nomogram model improved
with increasing disease severity (Supplementary Figure 1A).
The AUC in the septic shock group was 0.913 (0.873–0.953),
which was significantly higher than that in the sepsis group
(AUC: 0.812, 0.755–0.870) and severe sepsis group (AUC: 0.885,
0.830–0.939) (Supplementary Table 7). We obtained the same
conclusion in the validation cohort (Supplementary Figure 1B
and Supplementary Table 6).

Clinical usefulness

Decision curve analysis (DCA) is a method to assess
the benefits of a diagnostic test by quantifying the net
benefit at different threshold probabilities to determine the
clinical usefulness of the nomogram. DCA was applied in
this study to assess the nomogram’s clinical utility. Both the
training and validation cohorts demonstrated higher clinical net
benefit compared to the two thresholds of “no intervention”
and “intervention for all” (Figure 6A). The clinical impact
curves revealed a convergence between the number of patients
considered at high risk of NOAF and those with a NOAF event
within this risk threshold (Figures 6B,C). The prediction model
had good clinical application.

Outcomes

A total of 2,492 septic patients were included in this
study, of whom 269 septic patients developed NOAF. The
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TABLE 1 Comparison of characteristics between the training and validation cohorts.

Variables All patients (n = 2,492) Training cohort (n = 1,568) Validation cohort (n = 924) P-value

Gender, n (%) 0.506

Male§ 1,592 (63.9) 994 (63.4) 598 (64.7)

Female§ 900 (36.1) 574 (36.6) 326 (35.3)

Age (years)† 59.47 (16.42) 59.26 (16.23) 59.84 (16.72) 0.392

Physiological data on admission

Heart rates (beats/min)† 105.13 (10.25) 105.38 (10.48) 104.70 (9.83) 0.111

MAP (mm Hg)† 96.40 (7.01) 96.60 (6.11) 96.08 (8.31) 0.074

BMI (kg/m2)† 22.06 (1.89) 22.12 (1.87) 21.98 (1.91) 0.091

Comorbidity, n (%)

Hypertension§ 449 (18.0) 274 (17.5) 175 (18.9) 0.358

Coronary artery disease§ 234 (9.4) 136 (8.7) 98 (10.6) 0.110

Congestive heart failure§ 559 (22.4) 364 (23.2) 195 (21.1) 0.223

Diabetes mellitus§ 337 (13.5) 227 (14.5) 110 (11.9) 0.070

COPD§ 186 (7.5) 130 (8.3) 56 (6.1) 0.041

Hyperlipidemia§ 556 (22.3) 345 (22.0) 211 (22.8) 0.630

Stroke§ 183 (7.3) 124 (7.9) 59 (6.4) 0.159

Hepatic insufficiency§ 199 (8.0) 123 (7.8) 76 (8.2) 0.735

Renal insufficiency§ 273 (11.0) 158 (10.1) 115 (12.4) 0.067

Cancer§ 70 (2.8) 47 (3.0) 23 (2.5) 0.458

Infection site, n (%)

Pulmonary§ 1318 (52.9) 837 (53.4) 481 (52.1) 0.523

Intra-abdominal§ 541 (21.7) 322 (20.5) 219 (23.7) 0.064

Genitourinary§ 366 (14.7) 233 (14.9) 133 (14.4) 0.751

Skin and soft tissue§ 108 (4.3) 80 (5.1) 28 (3.0) 0.014

Blood stream§ 344 (13.8) 218 (13.9) 126 (13.6) 0.852

Type of pathogen, n (%)

Bacteria§ 2319 (93.1) 1459 (93) 860 (93.1) 0.981

Fungi§ 200 (8.0) 134 (8.5) 66 (7.1) 0.213

Severity on admission

SOFA score* 5.00 (3.00–7.00) 5.00 (3.00–7.00) 5.00 (2.00, 7.00) 0.093

APACHE II score* 15.00 (10.00–18.00) 15.00 (10.00–18.00) 14.00 (9.00–18.00) 0.204

SAPS II score* 42.00 (36.00–46.00) 42.00 (36.00–46.00) 42.00 (36.00–46.00) 0.424

Laboratory tests

White blood cell count (× 109/L)* 13.40 (12.00–14.60) 13.40 (12.30–14.40) 13.30 (10.40–15.20) 0.204

Hemoglobin (g/L)* 114.00 (111.00–117.00) 114.00 (111.00–117.00) 114.00 (111.00–117.00) 0.299

Platelet count (×109/L)* 156.0 (98.00–164.00) 155.0 (98.00–164.00) 156.0 (98.00–164.75) 0.291

Platelet distribution width (%)* 16.10 (15.40–16.80) 16.00 (15.40–16.70) 16.10 (15.40–16.80) 0.277

Serum creatinine (µmol/L)* 80.44 (73.23–86.67) 80.28 (72.94–86.63) 80.91 (73.58–86.70) 0.154

Blood urea nitrogen (mmol/L)* 7.20 (5.70–8.40) 7.10 (5.70–8.40) 7.20 (5.70–8.48) 0.989

ALT (U/L)* 35.00 (24.00–47.00) 35.00 (23.25–47.00) 35.00 (24.00–48.00) 0.633

Bilirubin (µmol/L)* 25.03 (21.80–28.49) 25.10 (21.88–28.70) 24.89 (21.76–28.26) 0.190

Albumin (g/L)* 39.84 (34.73–44.82) 40.12 (35.11–44.91) 39.36 (34.07–44.57) 0.021

Cardiac troponin I (ng/mL)* 0.05 (0.04–0.06) 0.05 (0.04–0.06) 0.05 (0.04–0.06) 0.529

BNP (pg/mL)* 94.42 (80.90–108.93) 94.50 (81.01–108.48) 94.38 (80.40–109.85) 0.562

APTT (s)* 35.20 (31.62–38.70) 35.20 (31.70–38.70) 35.30 (31.60–38.88) 0.771

PT (s)* 15.20 (13.70–17.40) 15.20 (13.70–17.40) 15.10 (13.60–17.30) 0.096

INR* 1.28 (1.10–1.72) 1.27 (1.10–1.70) 1.29 (1.10–1.74) 0.376

(Continued)
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TABLE 1 (Continued)

Variables All patients (n = 2,492) Training cohort (n = 1,568) Validation cohort (n = 924) P-value

Fibrinogen (g/L)* 4.06 (3.69–4.44) 4.07 (3.70–4.44) 4.01 (3.66–4.43) 0.123

D-dimer (mg/L)* 2.92 (1.62–6.39) 2.98 (1.65–6.31) 2.81 (1.55–6.40) 0.642

Lactic acid (mmol/L)* 4.40 (3.69–5.11) 4.40 (3.71–5.12) 4.37 (3.67–5.09) 0.411

Procalcitonin (µg/L)* 3.03 (2.70–3.40) 3.03 (2.69–3.39) 3.05 (2.70–3.40) 0.639

CRP (mg/L)* 46.00 (17.92–89.36) 45.30 (18.04–88.30) 47.40 (17.45–90.59) 0.790

Treatment measures, n (%)

Corticosteroid use§ 583 (23.4) 366 (23.3) 217 (23.5) 0.935

Epinephrine use§ 136 (5.5) 96 (6.1) 40 (4.3) 0.057

Norepinephrine use§ 578 (23.2) 383 (24.4) 195 (21.1) 0.058

Dopamine use§ 538 (21.6) 322 (20.5) 216 (23.4) 0.096

Outcome, n (%)

New-onset atrial fibrillation§ 269 (10.8) 167 (10.7) 102 (11.0) 0.763

†Normally distributed continuous variables are presented as means with standard deviations and analyzed by Student’ s t-test.
*Non-normally distributed continuous variables are presented as medians with interquartile ranges and analyzed by non-parametric test.
§Categorical variables are presented as frequencies with percentages and analyzed by Chi-square test or Fisher’ s exact test.
MAP, mean arterial pressure; BMI, body mass index; COPD, chronic obstructive pulmonary disease; SOFA score, sequential organ failure assessment score; APACHE II score, acute
physiology and chronic health evaluation II score; SAPS II, simplified acute physiology score II; ALT, alanine aminotransferase; BNP, B-type natriuretic peptide; APTT, activeated partial
thromboplasting time; PT, prothrombin time; INR, international normalized ratio; CRP, C-reaction protein.

FIGURE 2

Variable selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) The tuning parameter
(λ) in the LASSO model was selected for 10-fold cross-validation by the minimum criteria. The dotted vertical lines were drawn at the best
values using the minimum criteria and 1 standard error of the minimum criteria (the 1-SE criteria). A λ-value of 0.021, with log (λ), –3.855 was
chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coefficient curves of the 48 variables. A coefficient profile plot was
produced against the log (λ) sequence. Vertical line was drawn at the value selected using 10-fold cross-validation, where optimal λ resulted in
7 non-zero coefficients.

length of hospitalization, length of ICU stay, and in-
hospital mortality were significantly increased by univariate
analysis in the NOAF group versus the non-NOAF group.
However, no significant difference was observed in the
rate of ICU readmission during hospitalization (Table 3).
We found that in-hospital mortality in patients with sepsis
increased dramatically in the early stages of hospitalization
(Figure 7A). Moreover, in-hospital mortality was significantly

higher in the NOAF group than in the non-NOAF group
(Figure 7B).

Discussion

Our study developed and validated a predictive model
for NOAF using clinical data from 2,492 patients with sepsis
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FIGURE 3

Forest plot showing the relationship between risk factors and the development of new-onset atrial fibrillation in patients with sepsis.

at two institutions. We identified age, INR, fibrinogen, CRP,
SOFA score, CHF, and dopamine use as independent predictors
of NOAF by multivariate logistic regression analyses. We
developed a nomogram based on these predictors. After
validation by multiple methods, the model showed good
calibration, discrimination, and clinical utility.

Investigators have conducted in-depth studies on sepsis
to manage patients with NOAF in sepsis better. In a study
by Moss TJ et al. that included 8,356 critically ill patients,
advanced age and sepsis were noted as significant risk factors
for NOAF, yet no predictive models were constructed (19). In
the systematic analysis by Wetterslev M’s team, risk factors for
NOAF were systematically analyzed and discussed, but no easy
and practical prediction model was developed (5). Furthermore,
one study developed a risk factor scoring system for NOAF in

TABLE 2 Association between risk factors and new-onset atrial
fibrillation in multivariate logistic regression.

Variables β OR (95% CI) P-value

Intercept −8.296 <0.001

Age (years) 0.022 1.022 (1.009–1.035) 0.001

Comorbidity

Congestive heart failure 0.539 1.714 (1.126–2.608) 0.012

Severity on admission

SOFA score 0.267 1.306 (1.247–1.368) <0.001

Laboratory tests

INR 0.608 1.837 (1.270–2.656) 0.001

Fibrinogen (g/L) 0.429 1.535 (1.232–1.914) <0.001

CRP (mg/L) 0.011 1.011 (1.008–1.014) <0.001

Treatment measures

Dopamine use 0.629 1.876 (1.227–2.874) 0.004

SOFA score, sequential organ failure assessment score; INR, international normalized
ratio; CRP, C-reaction protein.

sepsis, but the scoring system was more complex to operate
and had a C statistic of 0.81 (95% CI, 0.79–0.84), with poor
predictive performance (6). Therefore, the present study applied
the visualized nomogram model to predict NOAF in sepsis, and
the model’s predictive performance was better than the studies
above, which was more applicable in clinical practice.

Advancing age is one of the prominent risk factors for the
development of AF, and epidemiological studies have found a
progressive increase in the prevalence of AF with increasing
age. With aging, the myocardium will undergo anatomical and
electrophysiological changes. The atrial myocardium may lose
lateral electrical connections between myofibers, and electrical
conduction in the sinoatrial node, atrioventricular node, and
atria may be reduced. A multicenter cohort study of a Chinese
community population found a prevalence of 0.13% for AF in
51–60 years old (20). The prevalence was 0.11% in the Scottish
aged 55–64 (21). In contrast, the mean age of septic patients
in this study was 59 years. The prevalence of AF was 10.8%,
significantly higher than the prevalence in the community
population of the same age. In addition, some studies have
shown that gender, BMI, and hypertension were risk factors
for the development of AF (6, 12, 19). However, the above
variables were not statistically different in this study, which may
be related to the different populations included in the study,
such as septic patients combined with multi-organ dysfunction.
Therefore, NOAF may result from multiple factors.

It is well known that AF contributes to heart failure and
vice versa. The pathogenesis of AF is structural remodeling and
abnormal electrical activity of the atria (22, 23). The prevalence
of AF in patients with congestive heart failure was 26–35%,
and its pathogenesis may be caused by intracellular calcium
dysregulation, elevated cardiac filling pressures, abnormal
autonomic function, and neuroendocrine dysfunction (24).
Thus, CHF may provide an “arrhythmogenic substrate” for
the development of AF. In this study, CHF was identified as
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FIGURE 4

Nomogram for predicting the risk of new-onset atrial fibrillation in patients with sepsis. A 70-year-old patient with sepsis and no history of
congestive heart failure. During hospitalization INR was 0.83, fibrinogen was 4.87 g/L, C-reactive protein was 108 mg/L, SOFA score was 11, and
dopamine was not used during treatment. This patient had a total score of 163 and a 33.0% risk of developing new-onset atrial fibrillation.

FIGURE 5

Discrimination and calibration of nomogram prediction models in the training and validation cohorts. (A) Calibration plot in the training cohort.
(B) Calibration plot in the validation cohort. (C) ROC curves in both the training and validation cohorts.

a significant risk factor for NOAF, with a 1.714-fold risk of
AF, which was consistent with previous studies (25). However,
a meta-analysis proposed that CHF was a significant risk
factor for community-associated AF, with a diminished role in
patients with sepsis (12). Patients with sepsis often have internal
environmental disturbances and multi-organ dysfunction, and

the combined effect of multiple factors may diminish the
predictive value of CHF.

Our findings indicated that the risk of NOAF during
sepsis was driven more by sepsis-related events and therapy,
except for non-modifiable factors (age and history of CHF).
Currently, more studies suggest that inflammation promotes the
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FIGURE 6

Evaluation of clinical utility of nomogram prediction models in the training and validation cohorts. (A) Decision curves in both the training and
validation cohorts. (B) Clinical impact curve in the training cohort. (C) Clinical impact curve in the validation cohort.

TABLE 3 Outcomes in patients with or without new-onset atrial fibrillation.

Outcome All patients (n = 2,492) non-NOAF (n = 2,223) NOAF (n = 269) χ2/Z P-value

Hospital length of stay, median (IQR), d 12.00 (7.00–18.00) 11.00 (7.00–18.00) 13.00 (8.00–21.00) 2.247 0.025

ICU length of stay, median (IQR), d 2.00 (2.00–4.00) 2.00 (2.00–4.00) 4.00 (2.00–6.00) 8.915 <0.001

Readmission to ICU during hospitalization, No. (%) 345 (13.8) 299 (13.5) 46 (17.1) 2.680 0.102

Thromboembolic events, No. (%) 183 (7.3) 153 (6.9) 30 (11.2) 6.430 0.011

In-hospital mortality, No. (%) 538 (21.6) 457 (20.6) 81 (30.1) 12.938 <0.001

development of AF (26, 27). Inflammatory indicators can reduce
myocardial contractility by upregulating myocardial nitric
oxide synthase and downregulating sarcoplasmic reticulum
Ca2+ATPase (28). In addition, inflammatory cell infiltration
in cardiac myocytes leads to myocardial microabscesses and
promotes myocardial fibrosis (29). Some studies have noted an
association between leukocyte counts and AF (30). However,
more studies focus on CRP as a primary predictor of NOAF
(31, 32). CRP could act on monocytes/macrophages, vascular
endothelial cells, and smooth muscle cells to secrete pro-
inflammatory molecules to induce cardiovascular disease (33).
The prevalence of AF was increased during sepsis when CPR
was ≥ 70 mg/L (12). In this study, the CRP level in the
NOAF group was 67.11 (95%CI, 30.58–110.00) mg/L, which was
lower than 70 mg/L but significantly higher than the CRP level
in the community population with NOAF (<10 mg/L) (34).
The main reason was the greater degree of infection in septic
patients compared to the community population. Moreover,
the incidence of pulmonary infection was 67.1% in the NOAF
group, which was higher than that in the non-NOAF group
(P < 0.001), the result consistent with the findings of previous
studies (35). The specific pathogenesis might be related to
cytokine production and secondary myocardial suppression, but
confirmation by further studies is needed.

Another indicator of inflammation, IL-6, is a cytokine with
multiple biological functions. Not only associated with left

ventricular hypertrophy and systolic dysfunction, but it is also a
risk factor for the development of AF in patients with coronary
artery disease (36). IL-6 increases AF susceptibility by mediating
Ca2+ handling in cardiomyocytes, leading to RyR2 dysfunction
(37). In a study that included 371 patients with coronary artery
bypass grafting, IL-6 gene expression levels were higher in the
postoperative AF group than in the non-AF group and were
independently correlated with postoperative AF (odds ratio:
2.01, 95% CI: 1.15–3.52) (38). Moreover, increased IL-6 levels
were also related to an increased risk of death in patients with
AF (39, 40). However, the absence of IL-6 data in this study did
not allow exploring the relationship between it and AF. We will
study the relationship between IL-6 and AF at a later stage.

The SOFA score is widely used in clinical work as an
essential criterion for diagnosing sepsis (16). It includes an
assessment of dysfunction in six organ systems and a scoring
system to assess the severity of disease and prognosis in critically
ill patients (41). A prospective study identified the SOFA
cardiovascular score as an independent risk factor for NOAF
(42). The median SOFA score in the NOAF group was 6 in this
study. It was proved to be one of the risk factors predicting
NOAF, similar to the findings of the above studies, but we did
not compare the scores of each organ system.

Dysfunction of the coagulation system, known as sepsis-
associated coagulopathy, also occurs during sepsis. Sepsis-
associated coagulopathy consists of a prolonged INR and a

Frontiers in Cardiovascular Medicine 09 frontiersin.org

132

https://doi.org/10.3389/fcvm.2022.968615
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-968615 August 18, 2022 Time: 16:48 # 10

Li et al. 10.3389/fcvm.2022.968615

FIGURE 7

Cumulative mortality in patients with sepsis based on kaplan-meier curves. (A) Cumulative mortality in all patients with sepsis. (B) Comparison
of cumulative mortality between new-onset atrial fibrillation and non-new-onset atrial fibrillation.

reduced platelet count, which was related to 28-day mortality
in septic patients and was one way to assess disease severity (43,
44). In a retrospective study of sepsis, coagulopathy within 24 h
of admission was an independent risk factor for AF, with an
INR of 1.5 (95%CI, 1.2–2.2) in the AF group (45). The INR was
1.46 (95%CI, 1.20–3.26) in this study, consistent with the above
findings. The INR values were higher than those in the non-
NOAF group. We also found a significant decrease in platelet
count, a higher incidence of sepsis-associated coagulopathy,
and higher disease severity in the NOAF group. Furthermore,
fibrinogen was also related to the development of AF in this
study. Fibrinogen levels were significantly higher in septic
patients, and fibrinogen production was more than three times
higher than in non-septic patients (46). Fibrinogen was elevated
in permanent and paroxysmal AF in a prospective study
(47). In addition, the fibrinogen level was 3.33 ± 0.9 in the
idiopathic AF group, which was higher than in the control group
(P < 0.05) (48). These results were consistent with our finding
that fibrinogen was associated with AF development. Therefore,
we should not ignore the coagulation indicators as a risk factor.

Sometimes sepsis-related therapy can also be a risk factor for
the development of AF. Dopamine, a vasoactive drug, is widely
used in patients with sepsis. However, the cardiac adverse events
with dopamine use have also attracted more attention (49).
In patients undergoing coronary artery bypass graft surgery,
the incidence of AF was 23.3% with postoperative dopamine
use, higher than the 14.1% rate in the non-dopamine group
(50). In a meta-analysis that included 2,768 patients in septic
shock, the dopamine use resulted in a higher incidence of
arrhythmic events and patient mortality than norepinephrine
(51); the same conclusion was obtained in 1,679 patients in
shock (52). Our study further confirmed dopamine as a risk

factor for NOAF. Hemodynamic instability often accompanies
patients with sepsis and requires maintenance therapy with
vasoactive drugs. Dopamine may cause positive inotropic
and positive chronotropic effects (increased contractility and
rate) by activating β1-adrenergic receptors in the heart (53).
The incidence of arrhythmias, most commonly in AF, is
increased at high doses (>10 µg kg−1 min−1). Therefore, more
caution is needed in using dopamine when treating patients
with sepsis.

Currently, much more studies are focusing on genomics
(54) and extracellular vesicles (55) in the development of AF.
As more relevant studies are explored, more new therapeutic
targets for AF will be identified, which will help improve
the prevention and management of AF. This study also has
some limitations. First, it was a non-randomized retrospective
analysis and may have potential comparison biases such as
sample selection and patient inclusion bias. Second, although
the study found a higher mortality rate in the NOAF group
than in the non-NOAF group, it does not equate to a causal
relationship between NOAF and sepsis prognosis, which needs
further confirmation by prospective studies with large samples.
Finally, relevant results from advanced genomics and cardiac
magnetic resonance imaging were not included. However, our
findings are expected to combine with genomics or other
markers to enable AF prediction models to achieve higher
predictive power.

Conclusion

In this study, we developed and validated a nomogram
model to predict the prevalence of NOAF during sepsis. The
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model achieves individualized prediction of NOAF during
hospitalization in patients with sepsis and offers the
possibility of early intervention and reduction of the
prevalence of AF.
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Atrial fibrillation (AF) with multiple complications, high morbidity and mortality,

and low cure rates, has become a global public health problem. Although

significant progress has been made in the treatment methods represented by

anti-AF drugs and radiofrequency ablation, the therapeutic effect is not as good

as expected. The reason is mainly because of our lack of understanding of AF

mechanisms. This field has benefited from mechanistic and (or) statistical

methodologies. Recent renewed interest in digital twin techniques by

synergizing between mechanistic and statistical models has opened new

frontiers in AF analysis. In the review, we briefly present findings that gave

rise to the AF pathophysiology and current therapeutic modalities. We then

summarize the achievements of digital twin technologies in three aspects:

understanding AF mechanisms, screening anti-AF drugs and optimizing

ablation strategies. Finally, we discuss the challenges that hinder the clinical

application of the digital twin heart. With the rapid progress in data reuse and

sharing, we expect their application to realize the transition from AF description

to response prediction.

KEYWORDS

digital twin, atrial fibrillation, heart rhythm, computational modelling, artificial
intelligence, machine learning, catheter ablation, anti-arrhythmic drugs

1 Introduction

The most common sustained arrhythmia atrial fibrillation (AF) not only has high

morbidity andmortality, but also is very difficult to prevent, diagnose and treat, bringing a

huge economic burden to individuals, countries and society (Hindricks et al., 2020). AF is

often asymptomatic and frequently undetected clinically (Gibbs et al., 2021), but it

increases the risk of stroke by fivefold (Freedman et al., 2016), heart failure by threefold

(Kotecha and Piccini, 2015), andmortality by twofold (Tsao et al., 2022). Occurring in less

than 0.16% in patients aged≤ 49 years, AF has a prevalence that increases steadily with

advancing age, affecting up to 9% in those aged ≥65 years and 17% in patients beyond the

age of 80 years (Freedman et al., 2021); the overall lifetime risk is at least 37.8% (Staerk
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et al., 2018). The number of individuals affected by AF had

exceeded 46.3 million in 2016, with more than five million each

year new cases diagnosed, as well as the number will double by

2060 (Krijthe et al., 2013). The costs associated with AF are large:

in the U.S. alone, the incremental cost of AF treatment exceeds

$26.0 billion (Kim et al., 2011), while the incremental cost of

asymptomatic AF exceeds $3.1 billion (Turakhia et al., 2015).

Thus, AF has become a global public health problem.

The 2020 European Society of Cardiology guidelines endorse

the Atrial Fibrillation Better Care (ABC) pathway as a structured

approach for AF management, addressing three principal

elements: “A” - avoid stroke (with oral anticoagulation), “B” -

patient-focused better symptom management, and “C” -

cardiovascular and comorbidity risk factor reduction and

management (Hindricks et al., 2021). The mobile AF

application randomized trial confirmed that the ABC

approach could reduce adverse outcomes more significantly

than usual care (Guo et al., 2020). In addition, several studies

found that implementing the ABC pathway can improve cure

rates, decrease related costs and the risk of complications, and

reduce mortality and morbidity (Pastori et al., 2019; Yoon et al.,

2019; Wijtvliet et al., 2020). Despite significant advances in the

management and treatment of AF using the ABC pathway, AF

continues to pose a significant risk of death, partly due to

knowledge gaps in the fundamental AF mechanisms and

treatment strategies (Goette et al., 2019). Developing a

personalized digital twin of the heart, which integrates

coherently and dynamically the patient’s clinical data over

time, will likely be essential to overcome current challenges

(Corral-Acero et al., 2020; Lindemans, 2020; Gerach et al.,

2021). Over the last decades, the digital twin heart has

emerged as a modality to diagnose, understand and therapy

complex arrhythmias (Gillette et al., 2021a; Gillette et al., 2021b).

This mini-review is structured as follows: Section 2 briefly

summarizes the AF pathophysiology and current therapeutic

modalities. Section 3 summarizes the achievements of synergy

between mechanistic and statistical models in three aspects:

understanding AF mechanisms, screening anti-AF drugs and

optimizing ablation strategies. Finally, we discuss the challenges

that hinder the clinical application of synergy between

mechanistic and statistical models. More methodological

details on mechanistic and (or) statistical models can refer to

other reviews (Nattel et al., 2021a; Heijman et al., 2021b; Nattel

et al., 2021b; Leblanc et al., 2021; Trayanova et al., 2021).

2 Atrial fibrillation pathophysiology
and current therapeutic landscape

Many dynamic predisposing factors, including modifiable

and non-modifiable risk factors, contribute to the onset and

progression of AF. The identified non-modifiable risk factors

include age, sex, ethnicity and genetics, while modifiable factors

consist of smoking, alcohol consumption, hypertension, lipid

profile, diabetes, vascular disease, coronary artery disease, heart

failure, obesity, physical inactivity, chronic kidney disease,

obstructive sleep apnoea, chronic obstructive pulmonary

disease, valve disease and inflammatory diseases (Benjamin

et al., 1994; Mont et al., 2008; Lau et al., 2017; Roselli et al.,

2020). These risk factors can lead to atrial remodeling through

various pathways facilitating the development of AF. The atrial

remodeling can be grouped into electrical, structural, and

autonomic remodeling that allows for the initiation and

maintenance of AF. Recent reviews detailing the role of each

risk factor in the pathophysiology of AF and various underlying

mechanisms can be summarized as follows (Dobrev et al., 2019;

Nattel et al., 2020): Complex electrical defects in the atria,

including reentrant waves and localized premature atrial

contractions, contribute to the development of AF. Among

them, premature atrial beats are mainly derived from the early

and late afterdepolarization (EAD/DAD) of atrial cells, and

reentrant waves are related to the shortening of the effective

refractory period, slow conduction and conduction barriers

(Hansen et al., 2015; Mikhailov et al., 2021). AF is not only a

complex multifactorial disease, but also a progressive condition,

moving from paroxysmal AF (self-terminating in <7 days),
persistent AF (lasting >7 days and requiring termination by

cardioversion) to long-standing persistent AF (lasting >1 year
and requiring a rhythm control strategy) and, may become

resistant to antiarrhythmic drugs (AADs) (Chiang et al., 2012)

and ablation therapies (Wyse et al., 2014; Ogawa et al., 2018). In

addition to advancing age and the progressive remodeling caused

by modifiable risk factors (Mountantonakis et al., 2012), AF

progression also has a substantial genetic component (e.g., the

most common ones at 4q25 near PITX2) (Gudbjartsson et al.,

2007) (Figure 1). However, the contribution of each factor in a

specific patient to AF occurring and progression remains

incompletely understood.

Potential AF patients are usually diagnosed with long-term

electrocardiogram (ECG) monitoring to determine the temporal

patterns (Hindricks et al., 2020). In addition to AF patients with

distinct ECG features, up to 40% of AF patients have no obvious

symptoms (Page et al., 2003; Jones et al., 2020). A large number of

undiagnosed AF patients cannot receive the necessary risk

management (Davidson et al., 2022), resulting in irreversible

AF-causing structural remodeling, increasing the difficulty of

later treatment and reducing therapeutic efficacy. The EAST-

AFNET4 trial has confirmed that early rhythm-control therapy

can reduce the risk of adverse outcomes (Kirchhof et al., 2020).

Although AF screening is also recommended, the best way to

screen is uncertain.

Rate and rhythm control strategies are two cornerstones of

symptomatic AF management. For preventing mortality and

morbidity from cardiovascular causes, the effectiveness of the two

strategies is comparable (Van Gelder et al., 2002; Wyse et al., 2002).

Due to the limited efficacy and proarrhythmic side effects. AADs are
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widely used but cannot effectively control sinus rhythm (Heijman

et al., 2021a). Although pulmonary vein isolation (PVI) via catheter

ablation (CA) can improve sinus rhythm maintenance compared to

AADs (Marrouche et al., 2018; Kelly et al., 2019), many AF

recurrence cases illustrate that the one-size-fits-all approach is still

suboptimal (Andrade et al., 2019). These studies found patients with

later AF recurrences respond better to AADs and repeat ablation,

providingmetrics to assess different CA strategies (i.e., the time to AF

recurrence) (Gaztañaga et al., 2013). Despite the increasing

importance of CA strategies (Asad et al., 2019; Blomström-

Lundqvist et al., 2019), AADs remain an important component of

AFmanagement (Markman et al., 2020; Andrade et al., 2021), since a

large number of AF patients, and the costs and risks of the invasive

procedures of CA should be considered. However, the choice of

AADs is limited by their proarrhythmic and toxic properties

(Zimetbaum, 2012). Therefore, specific rate or rhythm control

strategies for distinct fundamental molecular and cellular

determinants of AF are likely to yield better therapeutic outcomes

(Garvanski et al., 2019). Nevertheless, it is challenging to predict

which AF patients are likely to recur and thereby require more

aggressive therapy.

3 Applications of digital twin
techniques in atrial fibrillation
management

Digital twin technologies are expected to overcome existing

difficulties. The digital twin was firstly presented by Michael

Grieves in 2003 and was initially described as a virtual

representation of a physical product (Grieves, 2005). Its

definition was expanded to consist of three components: a

physical product, its virtual representation and a two-way data

connection between the virtual and the physical representations

(Haag and Anderl, 2018). The digital twin in health care denotes

the vision of “a comprehensive, virtual tool that integrates

coherently and dynamically the clinical data acquired over

time for an individual using statistical models and mechanistic

modeling and simulation” (Alber et al., 2019). Using digital twin

techniques, precision cardiology will be provided in a

collaborative way, through mechanistic modeling and

simulation of multiscale heart and the use of statistical models

learned from massive raw data (including simulated,

experimental and clinical data) (Bai et al., 2016; Bai et al.,

FIGURE 1
Schematic overview ofmechanisms underlying AF development and progression. This figure depicts the interrelationships between risk factors,
time-dependent atrial remodeling and progression from sinus rhythm (SR) through paroxysmal and persistent to permanent AF. ECV = electrical
cardioversion; ERP= effective refractory period; AADs = antiarrhythmic drugs; EADs = Early afterdepolarization; DADs =Delayed afterdepolarization.
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2017a; Bai et al., 2017b). Following fundamental biophysical laws

and concepts, mechanistic models integrate fragmented data into

a “biologically functional heart” that can be used to simulate

cardiac electrophysiological dynamics to explore underlying

mechanisms (Bai et al., 2021a). However, it is a difficult task

to reduce hundreds of thousands of multiscale simulation data to

meaningful predictive biomarkers, and clinical biomarkers or

quantitative measures of structural remodeling derived from raw

imaging data were not considered in mechanistic modeling.

Statistical models are ideal for identifying meaningful

predictive biomarkers in high-dimensional simulation and

clinical data (Corral-Acero et al., 2020; Liu et al., 2021; Zeng

et al., 2021; Zhong et al., 2022). Therefore, digital twin techniques

have value in evidence generation, diagnosis and treatment.

Although personalized atrial computer models from either

imaging data or electroanatomical maps have been developed,

their standardization has just begun. Lately, Razeghi et al.

published the CemrgApp platform for image processing to

provide MRI segmentation, including fibrotic tissue

distribution derived from late gadolinium enhancement (LGE)

intensity in a semi-automatic and userfriendly way (Razeghi

et al., 2020). In addition, Williams et al. presented the

OpenEP framework for evaluating electroanatomic mapping

data (Williams et al., 2021). Considering the advantages of

CemrgApp and OpenEP, Azzolin et al. proposed a patient-

specific Augmented Atria generation pipeline (AugmentA)

that ingests the tomographic segmentations and (or) the

electroanatomic map, and provided ready-to-use atrial

personalized computational models from clinical data.

AugmentA consists of a preprocessing step (Azzolin et al.,

2021a), atrial orifices’ annotation, a statistical shape model

fitting procedure, fiber generation (Zheng et al., 2021) and

conduction velocity (CV) estimation. AugmentA offers an

automated and comprehensive pipeline delivering personalized

atrial computer models from clinical data in procedural time

(Azzolin et al., 2022a). This is a step forward toward standardized

assessment of arrhythmia vulnerability and testing of ablation

strategies. The following part of the review addressed studies

using digital twin techniques for understanding AF mechanisms,

screening anti-AF drugs and optimizing AF ablation strategies.

3.1 Understanding AF mechanisms using
digital twin techniques

Recently, several hybrid studies utilizing both mechanistic and

statistical approaches investigated AF mechanisms. An example of

the use of digital twin techniques is investigations of atrial

electrophysiological variability (Muszkiewicz et al., 2016).

Although the variability is manifested through functional

differences between individuals and has important implications

for AF progression, it is often ignored in traditional studies by

averaging samples from multiple individuals (Bai et al., 2018).

Recently, a digital twin framework has been designed to study its

underlying mechanisms and arrhythmogenic risks under different

conditions (Ni et al., 2020). Based on the common assumption of

heterogeneous current properties and an appropriate atrial cell

model, parameters of the baseline model are varied to construct a

population of candidate models by using different samplingmethods

(e.g., Latin Hypercube sampling (Burrage et al., 2015), sequential

Monte Carlo (Lawson et al., 2018) and Bayesian history matching

(Coveney and Clayton, 2018)). Populations of models (POMs) are

directly calibrated to experimental data distributions to provide

valuable tools for investigating the factors that underlie emergent

atrial electrophysiology. In detail, experimentally-calibrated POMs

are used to conduct simulations of atrial electrophysiology, whereas

statistical models are used to identify how variability in in-silico atrial

electrophysiology modulates the dynamics of AF.

At the cellular level, several studies concentrated on

identifying potential determinants of inter-subject variability

in calcium transient (Muszkiewicz et al., 2018; Vagos et al.,

2021), action potential (AP) duration (APD) (Sánchez et al.,

2014; Chang et al., 2017; Coveney and Clayton, 2020; Nesterova

et al., 2020), triggered activity (Morotti and Grandi, 2017; Zhu

et al., 2021) and dynamic AP restitution (Vagos et al., 2017). In

these studies, the kinetic parameters influencing ion currents

(Chang et al., 2017) and ionic conductances (Sánchez et al., 2014;

Coveney and Clayton, 2020; Nesterova et al., 2020) were

identified to have a strong influence on APD and Dome

potential. In addition to ionic current properties, external

factors (e.g., stimulus strength) were also found to modulate

AP amplitude and APD (Muszkiewicz et al., 2014). Digital twin

techniques were also used to classify different AF types, such as

AFs at different ages (Nesterova et al., 2020), as well as

upregulated vs downregulated Pitx2-induced AFs (Zhu et al.,

2021). At the tissue level, factors related to the maintenance and

formation of reentrant waves were investigated. For example, the

study of Simon et al. employed a population of tissue models to

identify inter-subject variability that modulates CV that is critical

for arrhythmia inducibility (Simon et al., 2017), while the study

of Clayton et al. investigated the influence of the spatial scale of

fibrosis regions on the APD dispersion and vulnerability to re-

entry (Clayton, 2018). They found that the specific balance

between sodium current and diffusion coefficient can promote

the formation of reentrant waves, and small fibrosis areas favor

the maintenance of reentrant waves. The potential of the digital

twin heart in exploring AF mechanisms was directly highlighted

in these studies reviewed in this section.

3.2 Screening anti-AF drug using the
digital twin techniques

A variety of computational models have been used to screen

anti-AF drugs. Some of them are related to potential drug targets,

as is the case of Liberos et al., who used chronic AF-induced
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remodeling tissue models to investigate the effect of each

remodeled target on rotor dynamics. The study found that the

effectiveness of ICaL block as a rhythm control strategy depends

on the availability of Na+ and Ca2+ currents (Liberos et al., 2016;

Liberos et al., 2017). In addition, special ion channels as drug

targets (including INa and/or INaL, IKr, IKur, IK,Ach, IK,2P and IK,Ca)

were investigated by altering the conductance or the gating

kinetics. Scholz et al. introduced a mathematical description

of IKur blockade into models of normal and remodeled atrial

electrophysiology and found antiarrhythmic effects of IKur
inhibitors are dependent on kinetic properties of blockade

(Scholz et al., 2013). Schmidt et al. changed the conductance

of IK,2P to investigate the effects of genetic ablation of TASK-1

and found antiarrhythmic effects of anti-TASK-1-siRNA were

associated with APD prolongation (Schmidt et al., 2019). Using a

population of virtual whole-atria human models, Sánchez et al.

found specific inhibitions of IK1, INaK, or INa may be a promising

rhythm control strategy by enlarging wave meandering to reduce

the dominant frequency (Sánchez et al., 2017). Another

interesting study by Ni et al. investigated the synergistic anti-

AF effects of the combined block of multiple atrial-predominant

K+ currents using populations of cell and tissue models. The

study found that the proposed strategy can promote favorable

positive rate-dependent APD prolongation, illustrating its

potential anti-AF effects (Ni et al., 2020). Some other studies

concentrated on predicting the risk of anti-AF drugs. In the

study by Bai et al., the focus was on evaluating the efficacy of

disopyramide, quinidine, and propafenone on Pitx2-induced

AF. The study found that disopyramide is most effective in

the three drugs for Pitx2-induced AF by prolonging the

wavelength (Bai et al., 2021b). Wiedmann et al. tested the

antiarrhythmic effects of the high-affinity TASK-1 inhibitor

A293 on cardioversion in a porcine model of paroxysmal AF

and multicellular tissue modeling predicted that the

antiarrhythmic effect of TASK-1 inhibition by A293 was

strongly dependent on the tissue conductivity and the

resulting CV (Wiedmann et al., 2020). Loewe et al.

evaluated the dynamic effects of amiodarone and

dronedarone on human atrial patho-electrophysiology and

simulated results provided possible explanations for the

superior efficacy of amiodarone (Loewe et al., 2014). The

digital twin techniques also were used to classify drugs. For

example, Sanchez et al. predicted the effects of isoproterenol,

flecainide and verapamil using in silico simulations and then

classified these drugs based on proarrhythmic patterns using

a random forest algorithm. The study found that IK1 is the

most important current for classifying the proarrhythmicity

of a given profile (Sanchez de la Nava et al., 2021). These

initial results point to future developments where the

combination of mechanistic and statistical models could

create efficient platforms for drug screening and

cardiotoxicity studies, and, importantly, platforms for

individualized medication.

3.3 Optimizing AF ablation strategies using
the digital twin techniques

Pulmonary vein isolation (PVI) by cardiac ablation emerged

as a feasible strategy in AF ablation and has evolved from

segmental ostial pulmonary vein ablation to the guide ablation

with the 3D electroanatomical mapping, to wide-area

circumferential ablation with verification of conduction block.

For long-term ablation success, PVI using point-by-point

radiofrequency or with the cryoballoon has evolved

substantially, with multiple energy sources and a variety of

ablation tools being available to make it safe and effective.

These emerging tools include numerous novel radiofrequency

catheters (such as Satake HotBalloon, Heliostar, Luminize-RF,

Sphere-9 catheter and NADH autofluorescence-guided ablation

catheter) and alternative energy sources (e.g., endoscopic laser

balloon and pulsed field electroporation). Although PVI has been

shown to have a high success rate in patients with paroxysmal AF

in proximity to the PV regions, it is insufficient in the most

patients with persistent AF outside the PV regions. Over the past

2 decades, numerous anatomical structures have been suggested

as sites from which non-pulmonary vein triggers might occur,

including the posterior wall of the left atrium, the left atrial

appendage, the superior vena cava, the crista terminalis, the fossa

ovalis, the coronary sinus, the ligament of Marshall and adjacent

to the atrioventricular valve annuli. Unfortunately, strong

evidence to support improved clinical outcomes for any

adjunctive ablation strategies is lacking and identifying

functional localized target sites for ablation remains

challenging (Wu et al., 2021). This may be optimized by using

digital twin techniques.

One of the applications of digital twin techniques is to link

biomarkers to tissue properties. For example, Corrado et al.

found combing CV and APD with the atrial surface area can

improve the accuracy in identifying regions that tether re-entrant

activation patterns using both biophysically detailed

computational models of the atria and a support vector

machine classifier (Corrado et al., 2021). Godoy et al. linked

body surface potential mapping (BSPM) derived indexes to the

location of ectopic foci, indicating its potential application of

these biomarkers in targeting ectopic foci (Ferrer-Albero et al.,

2017; Godoy et al., 2018a; Godoy et al., 2018b).

Another application is to identify potential ablation targets.

In these studies, mechanistic models were used to simulate the

typical AF scenarios and statistical models were used to find the

regions in the atria where arrhythmias are inducible (Sha et al.,

2022). For example, Ravikumar et al. evaluated the performance

of multiscale frequency [MSF], Shannon entropy [SE], kurtosis

[Kt], and multiscale entropy [MSE] techniques to identify the

pivot point of the rotor using unipolar and bipolar EGMs

obtained from numerical simulations (Ravikumar et al., 2021).

Ganesan et al. developed and evaluated the AF source area

probability (ASAP) mapping algorithm in 2D and 3D atrial
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simulated tissues with various arrhythmia scenarios and a

retrospective study with three cases of clinical human AF.

They found that ASAP delineated the AF source in over 95%

of the simulated human AF cases within less than eight catheter

placements regardless of the initial catheter placement (Ganesan

et al., 2020). The study of Sánchez et al. characterized atrial

fibrotic substrate with a hybrid in silico and in vivo dataset and

found the digital twin techniques can overcome a single voltage

cut-off value to identify fibrotic tissue from intracardiac signals

(Sánchez et al., 2021). Using personalized biophysically detailed

computational models of the atria based on the patient’s LGE-

MRI, Zahid et al. employed mechine learning to determine the

characteristics of fibrosis distribution and found the ablation

targets may be the regions with high fibrosis density and entropy

(Zahid et al., 2016). And this approach has been shown to be

more accurate than these purely image-driven learning schemes

for identifying ablation targets (Lozoya et al., 2019). These

findings have important consequences for clinical decision-

making as they indicate how mechanistic and statistical

models work together to determine ablation targets (Ali et al.,

2019; Muffoletto et al., 2019; Cámara-Vázquez et al., 2021;

Gander et al., 2022).

Moreover, a digital twin heart may indicate a CA strategy is

appropriate for a patient by predicting the likelihood of AF

recurrence before a specific therapy is selected (Muffoletto et al.,

2019; Shade et al., 2020; Seno et al., 2021; Roney et al., 2022). For

example, in the study of Roney et al., AF patient-specific models

incorporating fibrotic remodeling from LGE-MRI scans were

constructed to test six different ablation approaches. A random

forest classifier was subsequently trained to predict ablation

response. The study found the surface areas of pre-ablation

driver regions and of fibrotic tissue not isolated by the

proposed ablation strategy are both important for predicting

ablation outcome (Roney et al., 2020). In addition, Azzolin et al.

developed a technology to tailor ablations in AF patient-specific

models aiming to identify the most successful ablation strategy.

They used the Pacing at the End of the Effective Refractory

Period (PEERP) protocol to localize emergent AF episodes, and

then connected localized ablations to the closest non-conductive

barrier to prevent recurrence of AF (Azzolin et al., 2021b). This

study found that the proposed Personalized Ablation Lines

(PersonAL) plan, consisting of iteratively targeting emergent

high dominant frequency regions, outperformed state-of-the-

art anatomical and substrate ablation strategies (Azzolin et al.,

2022b).

4 Challenges and perspectives for the
digital twin heart in AF

Before considering the digital twin techniques to improve the

clinical treatment strategy, it may be beneficial to assess the

sources of current therapies. Currently, most drugs used for the

treatment of AF, such as quinidine, flecainide, propafenone,

amiodarone, dofetilide, sotalol, and dronedarone, are not

developed specifically to target AF (Nattel et al., 2021b). This

fact is related to the importance of ventricular tachyarrhythmia

as a potentially fatal clinical target. However, as the importance of

AF to public health becomes apparent, drug development

targeting AF is booming. In the major interventional

approaches, the surgical maze procedure is the first

mechanism-targeted approach to AF pathophysiology, whereas

the empirical PVI is the most effective catheter-based procedure

(Noheria et al., 2008). However, the apparent failure of AF

treatment has primarity been attributed to the limited efficacy

of AADs and the suboptimal PVI.

A digital twin heart that promises to transform from AF

description to response prediction (i.e., from understanding AF

mechanisms to screening anti-AF drugs and optimizing AF

ablation strategies). In the digital twin heart, on the one hand,

potential pathological mechanisms are explored through

personalized multi-scale modeling and simulation; on the

other hand, AF phenotypes are identified through a data-

driven statistical model. Mechanistic and statistical models

complement each other’s strengths to facilitate AF mechanism

understanding and therapeutic evaluation. As experimental

methods and imaging techniques continue to advance, more

abundant and high-quality data will facilitate the development of

digital twin hearts. Standardization of data acquisition and

improved attention to re-usability will accelerate the

development of digital twin technologies (Strocchi et al.,

2020), while their integration into existing workflows will

facilitate its clinical application. In the future, AF patients can

be screened based on ECG biomarkers using statistical models

(Xiong et al., 2018), while personalized biophysically detailed

computational models of the atria based on the patient’s LGE-

MRI can be used to interpret AF phenotypes (Figure 2) (Aslanidi

et al., 2011).

Although there is a palpable exuberance in AF research

regarding the potential of digital twin techniques, limitations

of the various approaches and challenges in ensuring their

clinical application remain. Whether it is the development of

digital twin hearts or their clinical applications, the main

challenge is the limited availability of experimental data at

present. In order to achieve tailored AF treatment, we need to

develop a more detailed personalized mechanistic model, but the

functional and structural data required to build personalized atria

are lacking. Except for the electrophysiological function data of

the right atrial appendage of AF patients, other microstructural

data, especially from the healthy atrium, are currently very scarce.

Although individual structural data represented by patient-

specific anatomy and fibrosis distribution can be obtained

with LGE-MRI, the limited spatial resolution makes modeling

fiber orientations and atrial fibrosis patterns difficult. Even if

patient-specific models of the heart can be personalized, we still

need to address the issue of intra-individual heterogeneity,
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including variability in atrial structural and functional properties.

Due to the lack of massive experimental and clinical data, these

heterogeneous features and their effect on the overall behavior of

AF are poorly understood. For statistical models, supervised

algorithms require significant amounts of high-quality labeled

data. Annotation of data with labels is labor-intensive and

datasets with poor data seriously affect the performance of

algorithms. Therefore, data with its many aspects presents

challenges to the digital twin heart adoption in AF management.

5 Conclusion

AF continues to pose a significant risk of death, in part due to

knowledge gaps in the fundamental AF mechanisms and

treatment strategies. These clinical challenges in

understanding AF mechanisms, screening anti-AF drugs and

optimizing AF ablation strategies might benefit from the digital

twin techniques. Although limited by the availability of

experimental data, the digital twin heart remains a promising

path towards the vision of precision cardiology and its clinical

applications are emerging.
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FIGURE 2
Digital twin heart in exploring the AF mechanisms. Clinical data are used to create and validate statistical and mechanistic models. Synergy
betweenmechanistic and statistical models gives valuable insight that is clinically interpreted and combined with traditional data to aid in the process
of clinical decision-making.
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Background: Sacubitril/valsartan therapy reduced the risks of death and of

hospitalization for heart failure (HF). HF and cardiac arrhythmias have shared

physiological mechanisems. Therefore, sacubitril/valsartan may exhibit anti-

arrhythmic properties in HF. The purpose of this study was to evaluate the

effect of sacubitril/valsartan on the occurrence of cardiac arrhythmias and

the risk of sudden cardiac death (SCD) in HF.

Methods: This meta-analysis was performed according to PRISMA guidelines.

We searched PubMed and Embase (from inception up to 6 February 2022) to

identify randomized control trials (RCTs) on the effect of sacubitril/valsartan

on the occurrence of cardiac arrhythmias and the risk of SCD in HF. Primary

outcomes were the occurrence of atrial arrhythmias, ventricular arrhythmias,

and SCD. Risk ratios (RRs) with 95% confidence intervals (CIs) were pooled

using a random-effects model for meta-analysis.

Results: We included 9 RCTs (published between 2012 and 2021) with 18,500

patients (9,244 sacubitril/valsartan vs. 9,256 active control). Enalapril and

valsartan were used as active control in six and two studies, respectively.

Follow-up ranged from 2 to 35 months. The cumulative occurrence of

events was 76, 13, and 48 per 1,000 patient-years for atrial arrhythmias,

ventricular arrhythmias and SCD, respectively. There was no significant

association between sacubitril/valsartan therapy and the occurrence of atrial

arrhythmias (RR 1.06; 95% CI: 0.97–1.17; P = 0.19) and ventricular arrhythmias
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(RR 0.86; 95% CI 0.68–1.10; P = 0.24). However, sacubitril/valsartan therapy

significantly reduced the risk of SCD (RR 0.79; 95% CI 0.70–0.90; P = 0.03)

compared with control.

Conclusion: No association between sacubitril/valsartan therapy and

the occurrence of atrial and ventricular arrhythmias was found, but

sacubitril/valsartan therapy significantly reduced the risk of SCD.

KEYWORDS

sacubitril/valsartan, cardiac arrhythmia, sudden cardiac death, heart failure, meta-
analysis

Introduction

Heart failure (HF) is associated with substantial morbidity
and mortality. Cardiac arrhythmias are common in HF, and
HF predisposes cardiac arrhythmias and vice versa (1). Cardiac
arrhythmias, including atrial arrhythmias and ventricular
arrhythmias, are important causes of adverse outcomes in HF
patients (1–3). Sudden cardiac death (SCD) is also a major
cause of mortality among HF patients and is commonly related
to ventricular arrhythmias, particularly ventricular tachycardia
(VT) and ventricular fibrillation (VF) (4). The management of
cardiac arrhythmias in HF depends on the type and etiology
of arrhythmia, the severity of HF, and the range from medical
therapy to cardiac implantable electronic devices (CIEDs) (2,
4). Previous studies suggest that drugs blocking the rennin-
angiotensin-aldosterone system (RAAS) and natriuretic peptide
(NP) system have various beneficial effects on arrhythmia
mechanisms (4, 5).

Sacubitril/valsartan, an angiotensin receptor-neprilysin
inhibitor (ARNI), has been shown to reduce the risk of
cardiovascular death or HF hospitalization in patients
with HF compared with enalapril (6). The advantages of
sacubitril/valsartan are likely to result from reduced cardiac
remodeling, improved left ventricular ejection fraction (LVEF),
and increased NP availability (7). Therefore, sacubitril/valsartan
may exhibit anti-arrhythmic properties and modulate the risk
of cardiac arrhythmias in HF.

Two recent meta-analyses on the similar topic have been
published (8, 9). The meta-analysis by Fernandes et al. found
that ARNI therapy was associated with a reduction in SCD
and ventricular arrhythmias compared with control in HF
with reduced ejection fraction (HFrEF) (8). However, the
role of sacubitril/valsartan in HF with preserved ejection
fraction (HFpEF) remains unclear. Another meta-analysis
by Liu et al. found that sacubitril/valsartan was similar to
control in preventing the occurrence of atrial fibrillation
(AF) in HF (9). The effect of sacubitril/valsartan on the
risks of ventricular arrhythmias and SCD was not evaluated.

Recently, several randomized controlled trials (RCTs) (10–
12) involving more evidence have been published. Thus, a
comprehensive evaluation of the effect of sacubitril/valsartan
on this topic is needed. The purpose of this meta-analysis
was to evaluate the effect of sacubitril/valsartan on the
occurrence of cardiac arrhythmias and risk of SCD in
patients with HF.

Methods

This meta-analysis was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines (13).

Search strategy

PubMed and Embase were searched from inception
up to 6 February 2022. Search terms included “sacubitril,”
“sacubitril/valsartan,” “LCZ696,” “neprilysin,” and “randomized
controlled trial.” No language restriction was applied.
References of included trials and previous reviews were
checked for potentially eligible trials.

Study selection and eligibility criteria

Two authors independently reviewed the titles and
abstracts of all articles initially identified, according
to the inclusion criteria. Disagreements were resolved
by discussion.

Studies were included if they met the following criteria:
(1) randomized controlled trials; (2) adult patients older
than 18 years; (3) presented of a control group (either
placebo or active controlled); and (4) reported the outcomes
of interest as an endpoint or adverse events (AEs). The
outcomes included the occurrence of atrial arrhythmias [AF,
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FIGURE 1

Flow diagram of search strategy.

atrial flutter (AFL), and atrial tachycardia (AT)], ventricular
arrhythmias [VF, ventricular flutter (VFL), and VT], and
SCD (sudden cardiac death, sudden death, and cardiac
arrest).

Data extraction

Two authors independently extracted the following data
from the included trials: first author, publication year,
ClinicalTrials.gov unique identifier, study characteristics, and
outcomes of interest. When multiple publications of the
same trial were found, data from the most complete dataset
were extracted for analysis. If no outcomes of interest were
reported in the manuscript, we searched the supplementary

material and the adverse event of the trial on ClinicalTrials.gov.
Disagreements were resolved by discussion.

Assessment of risk of bias

The risk of bias of included trials was assessed by using the
Reviews Manager 5.4.1, which included the following sections:
selection bias, performance bias, detection bias, attrition bias,
reporting bias, and other bias. Trial with one or more key
domains at high risk of bias was judged to high risk of bias;
trial with all key domains at low risk of bias was judged to low
risk of bias; otherwise it was judged to unclear risk of bias (14).
The results were presented as a risk of bias graph and a risk of
bias summary figure.
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TABLE 1 Baseline characteristics of the included trials.

PARAMOUNT, 2012 PARADIGM-HF, 2014 PARAGON-HF, 2019 EVALUATE-HF, 2019 PIONEER-HF, 2019 OUTSTEP-HF, 2019

Sac/Val
(n = 149)

Valsartan
(n = 152)

Sac/Val
(n = 4203)

Enalapril
(n = 4229)

Sac/Val
(n = 2419)

Valsartan
(n = 2,402)

Sac/Val
(n = 231)

Enalapril
(n = 233)

Sac/Val
(n = 439)

Enalapril
(n = 436)

Sac/Val
(n = 309)

Enalapril
(n = 310)

NCT 00887588 01035255 01920711 02874794 02554890 02900378

Follow-up
duration

36 weeks 27 months 35 months 12 weeks 8 weeks 12 weeks

Does of Sac/Val Started with 50 mg bid
for 1–2 weeks, then

uptitrated to 100 mg bid
for 1–2 weeks, and

thereafter, uptitrated to
200 mg bid.

200 mg bid during
double blind treatment

period

Target dose of Sac/Val
during the double blind
period was 200 mg bid

Started with 50 mg
bid,and titrated every
2 weeks to 200 mg bid

Target dose of Sac/Val
was 200 mg bid

Started with 50 mg bid or
100 mg bid, then

uptitrated to a target
dose of 200 mg bid

Age (years) 70.9(9.4) 71.2(8.9) 63.8(11.5) 63.8(11.3) 72.7(8.3) 72.8(8.5) 67.8 (9.8) 66.7 (8.5) 61 median 63 67.2(11.0) 66.6(10.5)

Women 57% 56% 21.0% 22.6% 51.6% 51.8% 26% 21% 25.7% 30.2% 23.0% 19.7%

BMI 30.1(5.5) 29.8(6.1) 28.1(5.5) 28.2(5.5) 30.2(4.9) 30.3(5.1) 30.0(5.7) 30.1 (5.8) 30.5 med 30.0 29.3(4.7) 29.3(4.7)

Serum
creatinine
(mg/dl)

NA NA 1.13 (0.3) 1.12 (0.3) NA NA NA NA 1.28 1.27 NA NA

eGFR 67 (19) 64 (21) NA NA 63 (19) 62 (19) 70 (22) 69 (20) 58.4 58.9 NA NA

NYHA
functional class

I
II
III
IV

1%
81%
19%
0%

1%
78%
21%
0%

4.3%
71.6%
23.1%
0.8%

5.0%
69.3%
24.9%
0.6%

3%
77.5%
19.0%
0.3%

2.7%
77.0%
19.8%
0.5%

14%
66%
20%
0%

12%
69%
19%
0%

0.9%
22.7%
64.3%
8.9%

1.1%
27.7%
61.0%
8.2%

0%
52.1%
47.3%
0.6%

0%
52.3%
47.1%
0.6%

Hypertension 95% 92% 70.9% 70.5% 95.7% 95.4% NA NA NA NA 68.9% 65.5%

Diabetes 41% 35% 34.7% 34.6% 43.5% 42.5% NA NA NA NA NA NA

AF or AFL 40% 43% AF 36.2 37.4% 32.2% 32.5% NA NA NA NA 47.6% 39.4%

MI 21% 20% 43.4% 43.1% 23.3% 21.9% NA NA NA NA 44.3% 46.8%

Stroke NA NA 8.5% 8.8% 11.1% 10.1% NA NA NA NA 7.1% 8.1%

Medical therapy
at
randomization

β-blocker
MRA
Diuretic

79%
19%

100%

80%
23%

100%

93.1%
54.2%
80.3%

92.9%
57.0%
80.1%

79.9%
24.6%
95.3%

79.5%
27.1%
95.9%

85%
25%
56%

88%
25%
55%

59.5%
10.9%
59.5%

59.6%
9.1%

54.4%

90.6%
64.4%
77.7%

92.6%
69.4%
75.5%

(Continued)
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TABLE 1 (Continued)

ACTIVITY-HF, 2021 PARALLAX, 2021 PARALLEL-HF, 2021

Sac/Val
(n = 103)

Enalapril
(n = 98)

Sac/Val
(n = 1280)

IMT
(n = 1284)

Sac/Val
(n = 111)

Enalapril
(n = 112)

NCT 02768298 03066804 02468232

Follow-up
duration

12 weeks 24 weeks 33.9 months

Does of Sac/Val 100 mg bid for
2 weeks followed by

200 mg bid for
10 weeks.

Target dose of
Sac/Val was 200 mg

bid

Started with 50 mg
bid, then uptitrated
to a target dose of

200 mg bid.

Age (years) 66.1(10.8) 67.6(10.0) 72.9 (8.4) 72.4 (8.6) 69.0 (9.7) 66.7 (10.9)

Women 16.5% 21.4% 50.2% 51.2% 13.5% 14.3%

BMI (kg/m2) 29.2(4.6) 29.6(4.3) 30.6 (5.0) 30.5 (4.8) 23.8 (4.0) 25.1 (4.2)

Serum creatinine
(mg/dl)

NA NA NA NA NA NA

eGFR
(ml/min/1.73 m2)

NA NA 62.5 (20.2) 62.7 (19.6) 58.3 (17.6) 57.6 (14.7)

NYHA functional
class

I
II
III
IV

0%
0%

100%
0%

0%
1%

99.0%
0%

0.1%
67.0%
32.5%
0.4%

0.3%
68.2%
31.2%
0.3%

3.6%
91.0%
5.4%
0%

3.6%
92.9%
3.6%
0%

Hypertension NA NA 96.9% 97.4% 64.0% 73.2%

Diabetes NA NA 44.2% 45.8% 46.8% 46.4%

AF or AFL NA NA 54.6% 53.9% 32.4% 35.7%

MI 56.3% 55.1% 23.0% 23.8% 46.0% 41.1%

Stroke NA NA NA NA 9.9% 8.9%

Medical therapy at
randomization

β-blocker
MRA
Diuretic

92.2%
78.6%
76.7%

96.9%
75.5%
76.5%

83.7%
32.7%
99.8%

83.0%
30.5%
99.8%

94.6%
57.7%
82.0%

96.4%
61.6%
84.8%

Data are mean (standard deviation); AF, atrial fibrillation; AFL, atrial flutter; BMI, body mass index; eGFR, estimated glomerular filtration rate; IMT, individualized medical therapy; MI,
myocardial infarction; MRA, mineralocorticoid receptor antagonist; NA, data not available; NYHA, New York Heart Association; Sac/Val, sacubitril/valsartan.

Statistical analysis

Risk ratios (RRs) with 95% confidence intervals (CIs)
were used to calculate the pooled effects. Meta-analyses
were conducted using a random-effects model regardless
of heterogeneity. Statistical heterogeneity across studies was
assessed by the I2 statistic (15). An I2 value greater than
50% indicates significant heterogeneity. Publication bias was
not performed because the number of included trials was
too small (<10) to detect an asymmetric funnel. Subgroup
analyses were pre-specified according to the type of HF (HFrEF
vs. HFpEF), control agent used, follow-up duration (<1 year
vs. >1 year). A two-sided P-value < 0.05 was considered
statistically significant. All analyses were performed using
Review Manager Software (RevMan version 5.4; The Nordic
Cochrane Centre, Cochrane Collaboration).

Results

Study search

A total of 410 articles were initially identified, of which
9 RCTs (6, 10–12, 16–20) were included in the meta-analysis,
comprising a total of 18,500 patients, of whom 9,244 were in the
sacubitril/valsartan group and 9,256 in the control group. The
search strategy is presented in Figure 1.

Characteristics of eligible studies

The baseline characteristics of the included studies
are summarized in Table 1. All trials were randomized,
double-blind, and active-control. The trials were published
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FIGURE 2

Assessment of risk of bias. (A) Risk of bias graph, (B) risk of bias summary.

between 2012 and 2021. Among the included trials, 6 trials
(6, 10, 12, 17, 19, 20) used enalapril as a comparator, 2 (16, 18)
used valsartan as a comparator, and 1 (11) used individualized
medical therapy (IMT) as a comparator. Of included nine trials,
6 trials (6, 10, 12, 17, 19, 20), including 1 (19) enrolled patients
with acute decompensated HF, enrolled patients with HFrEF the
others (11, 16, 18) enrolled patients with HFpEF. The sample
size ranged from 201 to 8,432. The mean age ranged from
62 to 72.8 years, and the percentage of women ranged from
13.9 to 56.5%, with a mean follow-up duration between 2 and
35 months. All included trials did not describe the definition of
cardiac arrhythmias and the methods used to document cardiac
arrhythmias. All included trials were funded by industry.

Assessment of risk of bias

Details of risk of bias assessment are summarized in
Figure 2. Eight trials (6, 10, 11, 16–21) were judged to be
at low risk of bias, and one trial (12) was judged to be at
unclear risk of bias.

Atrial arrhythmias

Atrial arrhythmias were reported in 9 RCTs (6, 10–12, 16–
20), of which 6 compared sacubitril/valsartan with enalapril, 2
with valsartan, and 1 with IMT. During an average follow-up of
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FIGURE 3

Forest plot comparing the occurrence of atrial arrhythmias between sacubitril/valsartan and control.

1.13 years, the cumulative occurrence of atrial arrhythmias was
78 per 1,000 patient-years in the sacubitril/valsartan group and
73 per 1,000 patient-years in the control group. The occurrence
of atrial arrhythmias was not significantly different between the
sacubitril/valsartan and control group (RR 1.06; 95% CI: 0.97–
1.17; P = 0.19; Figure 3). There was no heterogeneity across
the studies (I2 = 0%, P = 0.46). The pooled effects of 3 pre-
specified components of atrial arrhythmias (AF, AFL, AT) were
individually presented in Figure 3.

To assess the effect of sacubitril/valsartan therapy in HFrEF
and HFpEF, we conducted corresponding subgroup analyses.
However, neither HFrEF (RR 1.08; 95% CI: 0.92–1.26; P = 0.33)
nor HFpEF (RR 1.00; 95% CI: 0.78–1.30; P = 0.98) showed a
significant association.

In subgroup analysis based on comparator used,
sacubitril/valsartan therapy was associated with no significant
difference in the occurrence of atrial arrhythmias compared
with enalapril (RR 1.08; 95% CI: 0.92–1.26; P = 0.33) or
valsartan (RR 0.73; 95% CI: 0.25–2.16; P = 0.57).

Regarding the follow-up duration, we defined two
subgroups, shorter duration (<1 years; RR 0.98; 95% CI:
0.73–1.33; P = 0.90) and longer duration (>1 years; RR 1.08;
95% CI: 0.98–1.19; P = 0.12), and neither affected the occurrence
of atrial arrhythmias.

Ventricular arrhythmias

Ventricular arrhythmias were reported in 7 RCTs (6,
10, 12, 17–20), of which 6 compared sacubitril/valsartan
with enalapril, and 1 with valsartan. A total of 262
events of ventricular arrhythmias were reported as AEs.
During an average follow-up of 1.27 years, the cumulative
occurrence of ventricular arrhythmias was 12 per 1,000
patient-years in the sacubitril/valsartan group and 14 per
1,000 patient-years in the control group. The occurrence
of ventricular arrhythmias was not significantly different
between the sacubitril/valsartan and control group (RR
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FIGURE 4

Forest plot comparing the occurrence of ventricular arrhythmias between sacubitril/valsartan and control.

0.86; 95% CI 0.68–1.10; P = 0.24; Figure 4). There was
no significant heterogeneity across studies (I2 = 0%,
P = 0.75). The 3 pre-specified components of ventricular
arrhythmias (VF, VFL, VT) were individually presented in
Figure 4.

To assess the effect of sacubitril/valsartan therapy
in HFrEF and HFpEF, we conducted corresponding
subgroup analyses. However, neither HFrEF (RR 0.89;
95% CI: 0.60–1.33; P = 0.58) nor HFpEF (RR 1.43;
95% CI: 0.61–3.35; P = 0.40) showed a significant
association.

In subgroup analysis based on comparator used,
sacubitril/valsartan therapy was associated with no significant
difference in the occurrence of ventricular arrhythmias
compared with enalapril (RR 0.89; 95% CI: 0.60–1.33; P = 0.58)
or valsartan (RR 1.43; 95% CI: 0.61–3.35; P = 0.40).

Regarding the follow-up duration, we defined two
subgroups, shorter duration (<1 years; RR 1.91; 95% CI:
0.56–6.47; P = 0.30) and longer duration (>1 years; RR 0.83;
95% CI: 0.65–1.07; P = 0.16), and neither affected the occurrence
of ventricular arrhythmias.

Sudden cardiac death

Sudden cardiac death was reported in 6 RCTs (6, 11, 17–
20). During an average follow-up of 1.06 years, the cumulative
occurrence of SCD was 43 per 1,000 patient-years in the
sacubitril/valsartan group and 54 per 1,000 patient-years in
the control group. The overall analysis of the composite SCD
outcome demonstrated a 21% reduction when compared with
control (RR 0.79; 95% CI 0.70–0.90; P = 0.03; Figure 5). The
3 pre-specified components of SCD (sudden cardiac death,
sudden death, and cardiac arrest) were individually presented
in Figure 5.

Discussion

To our knowledge, this is the largest and most
comprehensive meta-analysis that evaluates the association
between sacubitril/valsartan and the risk of arrhythmic
events. Our meta-analysis found no association between
sacubitril/valsartan therapy and the occurrence of atrial and
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FIGURE 5

Forest plot comparing the risk of sudden cardiac death between sacubitril/valsartan and control.

ventricular arrhythmias. But it significantly reduced the risk of
SCD in patients with HF.

Two previous meta-analyses on the similar topic have been
published. One meta-analysis of six RCTs by Liu et al. showed
no association between sacubitril/valsartan therapy and the
occurrence of AF in patients with HF compared with control (9).
In comparison, this meta-analysis added three latest published
trials (10–12) and evaluated the effect of sacubitril/valsartan
on the occurrence of ventricular arrhythmias and the risk of
SCD in HF. Similar to previous meta-analysis, no significant
association between sacubitril/valsartan and the occurrence of
atrial arrhythmias, including AF, was observed. Another meta-
analysis by Fernandes et al. concluded that ARNI therapy was
associated with lower SCD events and ventricular arrhythmias
compared with control in HFrEF (8). However, the finding was
underpowered limited to the included observational studies.
Observational studies are highly subject to selection bias. If
only RCTs were included in their meta-analysis, there was
no significant difference between groups regarding of the
occurrence of ventricular arrhythmias. Besides, the association
between sacubitril/valsartan and the risk of cardiac arrhythmias
in HFpEF was not evaluated. In contrast with the previous ones,
our meta-analysis is the latest and the most comprehensive.

It is well known that HF is associated with increased risk
of cardiac arrhythmias and SCD, which is related to multiple
potential mechanisms, including the RAAS and NP system
(4, 5). The RAAS and NP system play important role in
the development of structural and electrical remodeling (5),
potentially explaining the occurrence of cardiac arrhythmias.
Sacubitril/valsartan has been shown positive results on
patients’ outcome, particularly in those with HF (22). In the
PARAMOUNT study, sacubitril/valsartan therapy resulted
in greater reduction in NT-proBNP at 12 weeks and greater
reduction in left atrial size after 36 weeks compared with
valsartan (16). In the PARADIGM-HF study, the further
reduction of cardiovascular mortality, including SCD, observed
in HFrEF received sacubitril/valsartan is likely due to a
combined protective effect against death from HF and fatal
ventricular arrhythmias (6, 23, 24). A retrospective study
demonstrated sacubitril/valsartan therapy was associated
with improvements in echocardiographic parameters,
including LVEF, pulmonary atrial pressure and cardiac
valvular insufficiency, in patients with HFrEF (25). To
date, increasing evidence suggests that sacubitril/valsartan
may have anti-arrhythmic properties, either by limiting
pro-arrhythmic remodeling or through direct anti-arrhythmic
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FIGURE 6

Potential mechanisms regarding the anti-arrhythmic effects of sacubitril/valsartan. AT1R, angiotensin II type1 receptor; LVEF, left ventricular
ejection fraction; NEP, neprilysin.

effects on cardiomyocytes (Figure 6) (5, 26–28). Although these
mechanisms of sacubitril/valsartan are potential contributors
to the observed in vivo anti-arrhythmic effects, there is no
conclusive mechanism regarding sacubitril/valsartan mediated
cardiac arrhythmia suppression in patients.

Based on the results of our meta-analysis,
sacubitril/valsartan therapy does not reduce the occurrence
of cardiac arrhythmias in patients with HF. One possible
explanation is that all included RCTs were active-control
trials. The renin-angiotensin system inhibitions are associated
with reduction in cardiac arrhythmias (2, 29–31), and the
incremental benefit of sacubitril/valsartan therapy for this
outcome may have been minimal. Another possible explanation
is that all included RCTs were not designed to evaluate the
effect of sacubitril/valsartan on cardiac arrhythmias and the
actual occurrence of cardiac arrhythmias may have been
underestimated since not all patients underwent continuous
rhythm monitoring. In HFrEF patients with CIEDs, previous

studies have suggested that sacubitril/valsartan could decrease
atrial arrhythmia burden and reduce the recurrence of atrial
arrhythmias in patients with non-permanent AF (32, 33).
Diego et al. found that sacubitril/valsartan could decrease
ventricular arrhythmias in HFrEF patients under continuous
monitoring of ICD compared with angiotensin inhibition
(34). Furthermore, appropriate ICD shocks were significantly
reduced. However, a study presented that sacubitril/valsartan
does not reduce the risk of ventricular arrhythmias in HFrEF
patients over 12 months of follow-up (35). In addition,
another retrospective study reported that male and previous
episodes of ventricular arrhythmias could be associated with
an increased risk of sustained ventricular arrhythmias after
sacubitril/valsartan initiation (36). Overall, most studies
suggest sacubitril/valsartan might reduce the risk of cardiac
arrhythmias in HF patients.

Sudden cardiac death is the leading cause of mortality in HF
(37). In most cases, SCD is triggered by ventricular arrhythmias
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(38). Implantable cardioverter defibrillator (ICD) and wearable
cardioverter defibrillator (WCD) are recommended for the
prevention of SCD in selected populations (39, 40). Our
meta-analysis showed that there was a 21% reduction in the risk
of SCD. A post-hoc analysis of PARADIGM-HF demonstrated
that sacubitril/valsartan reduced SCD risk regardless of ICD use
(HR 0.49; 95% CI 0.25–0.99) or eligibility criteria (HR 0.81; 95%
CI 0.67–0.98) in HFrEF (23). Given this outstanding advantage,
sacubitril/valsartan is recommended to reduce SCD in HFrEF
(2). The possible explanation is that sacubitril/valsartan
could lead to reverse cardiac remodeling and attenuation of
myocardial fibrosis (17, 41), both of which may reduce the risk
of ventricular arrhythmias.

Because of the potential adverse outcomes of HF patients
who develop cardiac arrhythmias, an upstream therapy with
sacubitril/valsartan may prevent or delay the development of
cardiac arrhythmias. According to our meta-analysis, it is
premature to recommend sacubitril/valsartan solely for the
prevention of cardiac arrhythmias, but our findings raise
the possibility of an added benefit in HF patients receiving
ARNI therapy. For selected patients, WCD in addition to
sacubitril/valsartan treatment of HF is a possible approach to
bridge the time until improvement of LVEF.

There are several potential limitations to our meta-analysis.
First, events of cardiac arrhythmias and SCD in the included
RCTs were reported as adverse events, and not as pre-specified
endpoints. Although the number of cardiac arrhythmias was
coded by reported adverse events, it is difficult to exclude the fact
that some of the patients had asymptomatic arrhythmias that
converted spontaneously. Second, there were no standardized
definition and routine monitoring for the cardiac arrhythmias
in the included RCTs, which may lead to reporting bias. It is not
known whether the sudden death and cardiac arrest represented
death from an arrhythmia or from another mechanism. Third,
cardiac arrhythmias were not described in terms of sustained
or non-sustained, fast or slow. Forth, data have shown a
possible different effects of sacubitril/valsartan according to
the HF etiology and age (42, 43). Due to lack of data, the
effects of sacubitril/valsartan on the risk of cardiac arrhythmias
and SCD according to HF etiology and age remain unclear.
Finally, no cardiac MRI was done to correlate arrhythmias
with fibrosis. These limitations should be considered when
interpreting our findings.

Conclusion

No association between sacubitril/valsartan therapy and the
occurrence of atrial and ventricular arrhythmias was found,
but it significantly reduced the risk of SCD. On the basis of
our findings, we suggest that future RCTs systematically detect
cardiac arrhythmias with routine ambulatory monitoring and
define them as primary endpoints.
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Background: At present, catheter ablation is an effective method for rhythm

control in patients with atrial fibrillation (AF). However, AF recurrence is an

inevitable problem after catheter ablation. To identify patients who are prone

to relapse, we developed a predictive model that allows clinicians to closely

monitor these patients and treat them with different personalized treatment

plans.

Materials and methods: A total of 1,065 patients who underwent AF catheter

ablation between January 2015 and December 2018 were consecutively

included in this study, which examines the results of a 2-year follow-up.

Patients with AF were divided into development cohort and validation cohort.

Univariate and multivariate analyses were carried out on the potential risk

factors. Specific risk factors were used to draw the nomogram according

to the above results. Finally, we verified the performance of our model

compared with CHADS2 and CHA2DS2-Vasc scores by receiver operating

characteristic (ROC) curve and calibration curve and plotted the decision

analysis curve (DAC).

Results: A total of 316 patients experienced AF recurrence. After univariate and

multivariate analyses, AF history (H), age (A), snoring (S), body mass index (BMI)

(B), anteroposterior diameter of left atrial (LA) (L), and persistent AF (P) were

included in our prediction model. Our model showed a better performance

compared with CHADS2 and CHA2DS2-Vasc scores, and the area under ROC
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curve (95%CI) was 0.7668 (0.7298–0.8037) vs. 0.6225 (0.5783–0.6666) and

0.6267 (0.5836–0.6717).

Conclusion: We established a nomogram (HASBLP score) for predicting AF

recurrence after the first catheter ablation at a 2-year follow-up, which can be

used as a tool to guide future follow-up of patients. However, its usefulness

needs further validation.

KEYWORDS

atrial fibrillation, catheter ablation, recurrence, prediction model, nomogram

Introduction

Atrial fibrillation (AF) is the most common arrhythmia
in adults worldwide (1). AF is associated with substantial
morbidity and mortality, placing a significant burden on
patients, families, and healthcare systems. The estimated
prevalence of AF in adults is between 2% and 4% (2),
and it will continue to rise due to the lengthening of life
expectancy and improvement of screening methods (3–5).
Catheter ablation of AF has been recommended by several
important guidelines as an effective rhythm control strategy
(1, 6), since it reduces hospitalization rate and improves the
quality of life; however, its most significant disadvantage is
recurrence. Recurrence of AF would not only affect enthusiasm
for catheter ablation in patients with AF but also bring some
potential risks.

According to several studies, both individuals with and
without an AF recurrence have a different chance of developing
thromboembolism (7–10). Nevertheless, AF recurrence is
usually asymptomatic (11), causing an unawareness of the
episode in a considerable number of patients. Therefore,
the continued use of oral anticoagulation in patients with
AF after catheter ablation remains controversial (12). The
objective world needs a prediction model to predict the
probability of AF recurrence to guide the follow-up after AF
catheter ablation. At the same time, a recurrence prediction
model could also assist in screening patients undergoing
catheter ablation. Several predictors of arrhythmia recurrence,
including left atrial (LA) size, LA fibrosis, non-paroxysmal AF,
hypertension, and sleep apnea syndrome, had been proposed
in previous studies (13). CHADS2 and CHA2DS2-Vasc scores
have been shown to predict the recurrence of AF to some
extent (14); however, as a prediction model, the result
does not seem ideal.

In this study, we attempted to develop a predictive model
for recurrence after the first catheter ablation in patients with
AF by following and reviewing clinical data from those with
AF and compared our predictive model with the CHADS2 and
CHA2DS2-Vasc score models.

Materials and methods

Study design

We aimed to establish a prediction model with the
outcome of 2-year follow-up of patients with AF after catheter
ablation. This study was based on data from a prospective
observational study (Chinese Clinical Trial Registry: ChiCTR-
OCH-14004674) of patients who underwent ablation at our
center. The primary endpoint of this study was AF recurrence,
defined as symptomatic or documented AF, atrial flutter, or atrial
tachycardia >30s after a 3-month blanking period after the first
catheter ablation.

Patients selection

All patients who underwent AF catheter ablation between
January 2015 and December 2018 were consecutively included
in this study unless they met any of the following exclusion
criteria: (1) patients with a previous history of catheter ablation;
(2) patients with < 24 months of follow-up; or (3) patients who
underwent cardiac surgery during the follow-up period. Prior
to catheter ablation, coronary computed tomography (CTA) or
transesophageal echocardiography was performed to rule out
cardiac thrombosis.

Data collection

Age, gender, course of AF, type of AF, history of related
diseases, LA size, and left ventricular ejection fraction (LVEF)
were collected before the procedure, and AF history (years)
was found based on medical records or according to patient-
reported time of first documented AF. The types of AF
were divided into paroxysmal AF and persistent AF (e.g.,
long-standing persistent AF). LA size was represented by
its anteroposterior diameter measured by echocardiography.
Patients with heart failure were defined as ≥ class 2
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TABLE 1 Baseline characteristics of all patients.

Total cohort Development cohort Validation cohort

Variables Total
(n = 1,065)

No recurrence
(n = 749)

Recurrence
(n = 316)

Total
(n = 710)

No recurrence
(n = 490)

Recurrence
(n = 220)

p Total
(n = 355)

No recurrence
(n = 259)

Recurrence
(n = 96)

Sex, male (%) 674 (63) 480 (64) 194 (61) 443 (62) 311 (63) 132 (60) 0.42 231 (65) 169 (65) 62 (65)

Age, Median (Q1, Q3) 61 (53, 67) 61 (53, 66) 63 (55, 69) 61 (53, 68) 60 (53, 66.75) 63.5 (57, 70) < 0.01 61 (53, 66) 61 (53, 66) 61 (54, 66.25)

Snoring, n (%) 475 (45) 271 (36) 204 (65) 310 (44) 168 (34) 142 (65) < 0.01 165 (46) 103 (40) 62 (65)

BMI, Median, (Q1, Q3) 26.34 (24.34,
28.65)

25.88 (24, 27.92) 27.66 (25.34,
29.97)

26.24 (24.31,
28.54)

25.79 (23.91, 27.73) 27.54 (25.49,
29.61)

< 0.01 26.45 (24.46,
29.00)

26.17 (24.16, 28.13) 27.99 (24.89,
30.38)

AF history, Median
(Q1, Q3)

2 (0.4, 5) 1.5 (0.3, 4) 3 (1, 6.1) 2 (0.4, 5) 1.3 (0.3, 4) 3 (1, 7) < 0.01 2 (0.5, 5) 2 (0.4, 4) 3 (0.8, 5.3)

Hypertension, n (%) 479 (45) 320 (43) 159 (50) 319 (45) 207 (42) 112 (51) 0.04 160 (45) 113 (44) 47 (49)

CHD, n (%) 211 (20) 132 (18) 79 (25) 154 (22) 91 (19) 63 (29) < 0.01 57 (16) 41 (16) 16 (17)

Diabetes, n (%) 144 (14) 89 (12) 55 (17) 96 (14) 55 (11) 41 (19) 0.01 48 (14) 34 (13) 14 (15)

Heart failure, n (%) 70 (7) 32 (4) 38 (12) 55 (8) 24 (5) 31 (14) < 0.01 15 (4) 8 (3) 7 (7)

Cardiomyopathy, n
(%)

23 (2) 12 (2) 11 (3) 13 (2) 5 (1) 8 (4) 0.03 10 (3) 7 (3) 3 (3)

Valvular heart disease,
n (%)

27 (3) 12 (2) 15 (5) 19 (3) 8 (2) 11 (5) 0.02 8 (2) 4 (2) 4 (4)

TIA/stroke, n (%) 76 (7) 55 (7) 21 (7) 52 (7) 35 (7) 17 (8) 0.90 24 (7) 20 (8) 4 (4)

Renal disease, n (%) 14 (1) 9 (1) 5 (2) 10 (1) 6 (1) 4 (2) 0.54 4 (1) 3 (1) 1 (1)

Vascular disease,
n (%)

94 (9) 62 (8) 32 (10) 63 (9) 41 (8) 22 (10) 0.57 31 (9) 21 (8) 10 (10)

Smoke, n (%) 331 (31) 244 (33) 87 (28) 214 (30) 158 (32) 56 (25) 0.08 117 (33) 86 (33) 31 (32)

Drink, n (%) 272 (26) 201 (27) 71 (22) 177 (25) 131 (27) 46 (21) 0.12 95 (27) 70 (27) 25 (26)

persistent AF, n (%) 409 (38) 250 (33) 159 (50) 270 (38) 166 (34) 104 (47) < 0.01 139 (39) 84 (32) 55 (57)

LA, Median (Q1, Q3) 40 (37, 43) 39 (36, 43) 42 (39, 45) 40 (37, 43) 39 (36, 42.75) 42 (39, 45) < 0.01 40 (36, 43) 39 (36, 43) 41.5 (38, 45)

LVEF, Median (Q1,
Q3)

0.6 (0.6, 0.63) 0.6 (0.6, 0.64) 0.6 (0.59, 0.63) 0.6 (0.6, 0.64) 0.6 (0.6, 0.64) 0.6 (0.59, 0.63) 0.50 0.6 (0.59, 0.63) 0.6 (0.6, 0.63) 0.6 (0.58, 0.6)

CHA2DS2-Vasc score*,
mean ± SD

1.67 ± 1.35 1.57 ± 1.31 1.91 ± 1.41 1.71 ± 1.38 1.56 ± 1.33 2.05 ± 1.45 – 1.60 ± 1.28 1.60 ± 1.29 1.60 ± 1.28

SD, standard deviation; BMI, body mass index; CHD, coronary heart disease; TIA, transient ischemic attack; LA, left atrium; LVEF, left ventricular ejection fraction; Q1, Q3: 25% and 75% quartile.
*CHA2DS2-Vasc score was the result of multiple risk factors, it was not included in the univariate and multivariate analysis.
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(classification of NYHA heart function) according to the
admission diagnosis.

Oral anticoagulant (OAC; warfarin, rivaroxaban, or
dabigatran) was used at least 3 months after catheter

ablation. All patients had a follow-up of at least 24 months
after the procedure. Documented AF was evaluated by
electrocardiography (ECG) and a 24-h Holter monitoring at the
first, third, and sixth months and every 6 months thereafter.

FIGURE 1

Atrial fibrillation (AF) recurrence nomogram. The nomogram was developed in the development cohort. The total score of the nomogram was
the sum of the corresponding score assigned to each risk factor, and the total score corresponds to the recurrence risk.

FIGURE 2

Receiver operating characteristic (ROC) curve of prediction model. (A) Development cohort; (B) Validation cohort. Model 1: Recurrence∼

age + snoring + BMI + AF history + hypertension + coronary heart disease + diabetes + heart failure + valve diseases + cardiomyopathy
+ persistent AF + LA. HASBLP: Recurrence∼age + snoring + BMI + AF history + persistent AF + LA. CHADS2: Recurrence∼heart failure
+ hypertension + age + diabetes + stroke. CHA2DS2-Vasc: Recurrence∼heart failure + hypertension + age + diabetes + stroke + vascular
disease + female.
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If the patient did not show up for a scheduled follow-up, our
office contacted them telephonically to recommend 24-h Holter
monitoring at the local hospital and collect information on
recurrence. Time and outcome of primary events were recorded
during follow-up.

Statistical analysis and nomogram

Data analysis was performed using IBM SPSS Statistic
25 and R,1 and the significance level was set at p < 0.05.
Two-thirds of all patients were taken as development
cohort and one-third of patients as validation cohort by
random sampling. The rank sum test was used for numerical
variables with non-normal distribution, independent t-test
random was used for numerical variables with normal
distribution, and categorical variables were tested by chi-
square test (χ2 test). Univariate analysis was performed
using the abovementioned methods and variables with
p < 0.05 were included in the subsequent logistic regression.
Iteratively reweighted least squares (IWLS) were used to
fit the logistic regression model based on development
cohort data (model 1); then, according to the results of
logistic regression, the variables with p < 0.05 were selected
to form model 2.

Nomogram was constructed in accordance with the results
of model 2. A nomogram is valuable because it converts
anticipated probabilities into points on a scale of 0–100
in a user-friendly graphic interface (15). The total number
of points accumulated by various factors corresponds to a
patient’s expected likelihood (16, 17). The point system ranks
effect estimates irrespective of statistical significance, and it is
modified by the existence of other factors.

1 https://www.r-project.org

The total score of the nomogram was the sum of the
corresponding score assigned to each risk factor, which
corresponds to the recurrence risk.

Prediction performance of the
nomogram

Receiver operating characteristic (ROC) and calibration
curves were plotted using development cohort data and
validation cohort data, respectively. Subsequently, a decision
curve analysis (DCA) diagram was drawn from development
cohort data to guide clinical decision-making. Risk factors
included in CHADS2 and CHA2DS2-Vasc scores were used to
form model CHADS2 and CHA2DS2-Vasc. Using development
cohort data, ROC curves for the CHADS2 and CHA2DS2-
Vasc models were created, and the area under the curve
(AUC) was calculated.

Results

Basic information

As shown in Table 1, a total of 1,065 patients (no
recurrence: recurrence = 749:316) were included in this
study; the development cohort consisted of 710 patients (no
recurrence: recurrence = 490:220), while the validation cohort
consisted of 355 patients (no recurrence: recurrence = 259:96).
Non-normally distributed continuous data were presented as
median (Q1, Q3), normally distributed data were presented as
mean ± standard (SD), and categorical variables were presented
as percentages. Finally, after univariate analysis, age (p < 0.01),
body mass index (BMI; p< 0.01), AF history (p< 0.01), snoring
(p < 0.01), hypertension (p = 0.04), coronary heart disease
(p < 0.01), diabetes (p = 0.01), heart failure (p < 0.01), valve

TABLE 2 Area under curve of receiver operating curve.

AUC
(95%CI)

Specificity
(%)

Sensitivity
(%)

Accuracy
(%)

Development
cohort

Model 1 0.7766
(0.7397–0.8135)

76.53 65.91 73.24

HASBLP 0.7668
(0.7298–0.8037)

73.47 67.73 71.69

CHADS2 0.6225
(0.5783–0.6666)

54.29 65.91 57.89

CHA2DS2-Vasc 0.6267
(0.5836–0.6717)

54.08 67.27 58.17

Validation
cohort

Model 1 0.7038
(0.6441–0.7634)

64.84 69.79 66.20

HASBLP 0.7264
(0.6697–0.7830)

62.93 73.96 65.92
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diseases (p = 0.02), cardiomyopathy (p = 0.03), persistent AF
(p< 0.01), and the anteroposterior diameter of the LA (p< 0.01)
were found to be statistically significant with AF recurrence.

Atrial fibrillation recurrence nomogram
and other prediction models

The abovementioned statistically significant risk factors
were used to build model 1 (recurrence∼age
+ snoring + BMI + AF history + hypertension + coronary

heart disease + diabetes + heart failure + valve
diseases + cardiomyopathy + persistent AF + LA).

According to the results of logistic regression, the
variables with p < 0.05 were selected to form model 2
(recurrence∼age + snoring + BMI + AF history + persistent
AF + LA) to facilitate the clinical application, age
was divided into five segments (< 40 years, 40–
49 years, 50–59 years, 60–69 years, and ≥ 70 years), LA
anteroposterior diameter was divided into four segments
(<35 mm, 35–39.99 mm, 40–44.99 mm, and ≥ 45 mm),
and BMI was divided into four segments according

FIGURE 3

Calibration curve of prediction models. (A) Model 1 (development cohort); (B) model HASBLP (development cohort); (C) model 1 (validation
cohort); and (D) model HASBLP (validation cohort).
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FIGURE 4

Decision curve analysis curve of model HASBLP.

to the Chinese standard (< 24, 24–26.99, 27–29.99,
and ≥ 30). In addition, the result of model 2, which
we termed the HASBLP score (AF history, age, snoring,
BMI, LA, and persistent AF), was used to plot the
nomogram (Figure 1).

Prediction performance of the
nomogram

The ROC curve of model 1, model HASBLP, and model
CHADS2 and CHA2DS2-Vasc in the development cohort
data is shown in Figure 2A, and their AUCs, shown in
Table 2, were 0.7766 (95%CI, 0.7397–0.8135), 0.7668 (95%CI,
0.7298–0.8037), 0.6225 (95%CI, 0.5783–0.6666), and 0.6267
(95%CI, 0.5836–0.6717), respectively. Based on this result, we
found that the CHADS2 and CHA2DS2-Vasc scores predict AF
recurrence with suboptimal results, and the HASBLP score was
better able to predict AF recurrence. The ROC curves of model
1 and HASBLP score with validation cohort data are shown in
Figure 2B; calibration curves of model 1 and HASBLP score
with development and validation cohort data are shown in
Figures 3A–D. The analysis of DCA showed that the recurrence
probability of patients was in the range of about 5 to 80%,
and this model has the highest accuracy and net benefit in
clinical application (Figure 4).

Discussion

Using clinical data and follow-up results of patients with
AF in our center, we constructed a prediction model to predict
AF recurrence after the first catheter ablation, which showed
better performance compared with CHADS2 and CHA2DS2-
Vasc scores. Several other scores, such as DR-FLASH (AUC
0.801) (18), CAAP-AF (AUC 0.691) (19), ATLAS (AUC 0.750)
(20), APPLE (AUC 0.634) (21), and MB-LATER (AUC 0.782)
(22), have shown good predictive effectiveness in their respective
studies. However, there are differences in the overall variables
included in our study compared with these studies, so it is
difficult to compare them directly.

It is reported that age is the most common risk factor for
AF recurrence in several trials and other prediction models
(20, 21, 23, 24), which indicated that younger patients with
AF may have a lower risk of recurrence following catheter
ablation and thereby may be more suitable for the procedure.
Being overweight or obese not only promotes the development
of AF but also increases the risk of recurrence after catheter
ablation (25–28). This may be associated with an increase in
epicardial adipose tissue, which is a source of pro-inflammatory
adipocytokines, leading to microvascular dysfunction and
myocardial fibrosis (29). Inflammation has been proven to
affect the occurrence of AF through multiple pathways (30).
Obesity was also accompanied by other cardiovascular disease
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risk factors, such as hypertension, diabetes, and sleep apnea
syndrome (31, 32), so weight loss could not only reduce the
AF load (33) but also reduce AF recurrence after catheter
ablation (34). Other studies have mentioned a history of
AF as a risk factor for recurrence of AF after catheter
ablation (35, 36); this may be due to the changes in the
atrial matrix caused by risk factors over time. Jens Cosedis
Nielsen’s trial proved that the efficacy of catheter ablation in
patients with paroxysmal AF is better than that of patients with
persistent AF (37). Although catheter ablation is effective for
patients with persistent AF, the risk of recurrence is higher
than that of patients with paroxysmal AF. Age, AF burden,
obesity, smoking, renal insufficiency, and other cardiovascular
risk factors promote atrial remodeling (38). While atrial
enlargement is more likely a result of multiple factors, it
often reflects atrial fibrosis. A study on MRI evaluation of
atrial fibrosis and AF recurrence suggested that atrial fibrosis
may be an independent risk factor for recurrence of AF after
catheter ablation (39). In our study, the LA anteroposterior
diameter measured by echocardiography represented the atrial
size, which was slightly less accurate than the LA volume
measured by CT or echocardiography. Still, it could increase
the applicability of the model. Previous studies have shown
that snoring is related to sleep apnea (SA) (40, 41). While
snoring does not represent SA, habitual snoring is often a
form of SA (42). Obstructive sleep apnea syndrome (OSAS)
could promote the occurrence and progress of cardiovascular
diseases, such as hypertension and arrhythmia (40, 41). A meta-
analysis had shown OSAS could promote AF recurrence (43),
and continuous positive airway pressure ventilation had a
positive effect on preventing AF recurrence, which may be
related to the correction of hypoxemia during sleep (44). In
addition, a recent study showed that a healthy sleep pattern
is associated with lower risks of AF and bradyarrhythmia,
independent of traditional risk factors (45). An AF patient
with snoring may be comorbid with OSAS or hypoxemia
(44); however, some patients rarely get a proper diagnosis
and treatment for a variety of reasons. Therefore, in our
prediction model, OSAS was replaced by snoring. Snoring
during sleep may be inaccurate and ambiguous compared
with OSAS, but snoring as a common phenomenon is more
practical in our opinion.

The present model might guide patients with AF to
correct reversible risk factors after catheter ablation, such
as weight loss, improvement of hypoxemia during sleep,
and drug intervention for the process of cardiac fibrosis.
It proposes that early treatment with catheter ablation not
only allows for better symptom control but may also reduce
the probability of AF recurrence. With the exploration of
recurrence risk factors and the prediction models, we could
screen patients who intend to undergo catheter ablation. For
patients with a high risk of recurrence, catheter ablation should
be carefully examined.

In addition, a long-term use of OAC or cessation of OAC
after 3 months post-ablation remains controversial (46, 47). In
our previous study, we concluded that cessation of OAC in non-
recurrent AF may be reasonable; however, cessation appeared
unsafe in recurrent AF with a high thromboembolism risk
(10). With the help of the prediction model, patients at a high
risk of recurrence could be identified after catheter ablation,
allowing us to monitor these patients closely and encourage
them to continue OAC.

There are several other limitations to our study. Due to
following up with 24-h Holter ECG only, it might miss some
patients with asymptomatic recurrence, which was inevitable
in our study. This was a single-center study and the sample
size should be expanded for more robust conclusions. Our
prediction model needs to be verified by multicenter research.
In this model, two variables (LA size and snoring) may be
questioned for inaccuracies.

Conclusion

This study established a model (HASBLP score) for
predicting AF recurrence after the first catheter ablation, which
can be used as a tool to guide patients’ follow-up. Compared
with CHADS2 and CHA2DS2-Vasc scores, this model showed
a better performance in predicting AF recurrence. However, its
role requires further validation.
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Autonomic nervous activity
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Background: Autonomic nerve system (ANS) plays an important role in

regulating cardiovascular function and cerebrovascular function. Traditional

heart rate variation (HRV) and emerging skin sympathetic nerve activity (SKNA)

analyses from ultra-short-time (UST) data cannot fully reveal neural activity,

thereby quantitatively reflect ANS intensity.

Methods: Electrocardiogram and SKNA from sixteen patients (seven cerebral

hemorrhage (CH) patients and nine control group (CO) patients) were recorded

using a portable device. Ten derived HRV (mean, standard deviation and root

mean square difference of sinus RR intervals (NNmean, SDNN and RMSSD),

ultra-low frequency (<0.003 Hz, uLF), very low frequency ([0.003 Hz, 0.04 Hz),

vLF), low frequency ([0.04 Hz, 0.15 Hz), LF) and high frequency power ([0.15 Hz,

0.4 Hz), HF), ratio of LF to HF (LF/HF), the standard deviation of instantaneous

beat-to-beat R-R interval variability (SD1), and approximate entropy (ApEn)) and

ten visibility graph (VG) features (diameter (Dia), average node degree (aND),

average shortest-path length (aSPL), clustering coefficient (CC), average

closeness centrality (aCC), transitivity (Trans), average degree centrality

(aDC), link density (LD), sMetric (sM) and graph energy (GE) of the

constructed complex network) were compared on 5-min and UST segments

to verify their validity and robustness in discriminating CH and CO under

different data lengths. Besides, their potential for quantifying ANS-Load were

also investigated.

Results: The validation results of HRV and VG features in discriminating CH from

CO showed that VG features were more clearly distinguishable between the

two groups than HRV features. For effectiveness evaluation of analyzing ANS on

UST segment, the NNmean, SDNN, RMSSD, LF, HF and LF/HF in HRV features

and the CC, Trans, Dia and GE of VG features remained stable in both activated

and inactivated segments across all data lengths. The capability of HRV and VG

features in quantifying ANS-Load were evaluated and compared under different

ANS-Load, the results showed that most HRV features (SDNN, LFHF, RMSSD,

vLF, LF and HF) and almost all VG features were correlated to sympathetic nerve

activity intensity.
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Conclusions: The proposed autonomic nervous activity analysis method based

on VG and SKNA offers a new insight into ANS assessment in UST segments and

ANS-Load quantification.

KEYWORDS

autonomic nerve system, cerebral hemorrhage, heart rate variation, skin sympathetic
nerve activity, visibility graph analysis

1 Introduction

The autonomic nerve system (ANS), composed of the

sympathetic nervous system and the parasympathetic nervous

system, plays an important role in regulating cardiovascular

function and cerebrovascular function. Dysregulation of the

ANS can affect the brain’s perception of various stressors,

disrupt the adaptive capacity of homeostasis restoration, and

ultimately increase the risk of stress-related disorders such as

cardiac arrhythmia, hypertension, atherosclerosis, and stroke

(Sternberg and Schaller, 2020). More recently, ANS

modulation has been proposed as a promising therapeutic

strategy for the management of autonomic dysfunction-related

stroke (Mo et al., 2019). Therefore, ANS monitoring and analysis

before the development of stress-related disorders is of

paramount importance for improving the prognosis of

patients with dysfunction-related stroke.

The most widely used clinical assessmentmethod of sympathetic

nerve activity (SNA) is evaluating end-organ responses to ANS

physiological stimuli, such as tilt table testing, valsalva maneuver,

plasma catecholamines, baroreflex sensitivity, thermoregulatory

sweat test, and heart rate variation (HRV) (Thomas et al., 2019).

Among these tests, HRV analysis is a widely accepted and

implemented method to non-invasively and conveniently assess

sympatho-vagal balance (Thomas et al., 2019). In general, HRV is

generated and analyzed from the long-term electrocardiogram

(ECG) waves, such as 24-h Holter, and its change can reflect the

dynamic/trend of ANS activity over time (Bodapati et al., 2017;

Schneider et al., 2018). It is reported that poststroke patients with

raised SNA and low HRV are at higher risk for arrhythmias (atrial

fibrillation, ventricular tachyarrhythmia) or other ECG changes

(prolonged QT, inversed T wave) (Constantinescu et al., 2018). In

addition, HRV is also used as a biomarker for classifying acquired

brain injury patients and healthy controls (Galea et al., 2018).

Meanwhile, multiple functional outcomes (cognitive functions,

physical activity, and emotional expression) can be manifested in

HRV (Forte et al., 2019; Sharma et al., 2019). Thus, HRV can not only

serve as an indicator of cardiac function, but also reflect the central

modulation capacity to stress (Yperzeele et al., 2015; Fyfe-Johnson

et al., 2016; Kim et al., 2018). However, HRV quantifies ANS

modulation at the sinoatrial level, which is difficult to generalize

to cardiac patients with abnormal rhythms (atrial fibrillation,

premature beats, etc.) (Zhao et al., 2020).

As a non-invasive and versatile SNA assessment method,

skin sympathetic nerve activity (SKNA) has been applied to

many clinical events (Doytchinova et al., 2017; Kusayama et al.,

2020) and been proven to have the potential to predict

sympathetic tone in many applications (i.e., acute myocardial

infarction (He et al., 2020), neurologic recovery patients (Liu

et al., 2021a), and sleep apnea (Kutkut et al., 2021)). To this

juncture, several parameters have been derived from SKNA to

quantify SNA. The average voltage of SKNA (aSKNA) is

validated to be correlated with heart rate, and can be used as

a biomarker for fitness level and efficacy of exercise training (Liu

et al., 2021b). The burst numbers of SKNA (bSKNA) and variable

value of SKNA (vSKNA) (Zhang et al., 2019) are higher in

ventricular arrhythmia patients than in control groups,

indicating SKNA can be used to predict the ventricular

arrhythmogenesis recurrence. The envelope of SKNA

(eSKNA) is extracted to depict the temporal pattern of SKNA,

and the cross-comparison results between SKNA clustering

groups and non-SKNA clustering groups demonstrate that

eSKNA can act as a valid surrogate marker to classify ANS

regulation ability in acute myocardial infarction patients (Liu

et al., 2021a). Although these parameters can reflect the ANS

changes by empirical threshold-based nerve bursts detection, the

low signal-to-noise ratio of SKNA will lead to misjudgments

(Xing et al., 2022a). In addition, the low amplitude SKNA signal

(0.5–80 µV) is susceptible to noise, increasing the difficulty of

extracting sympathetic-related information (Zhang et al., 2022).

Therefore, more work is still needed to effectively analyze the

autonomic nervous activity from SKNA, especially in real-time

application.

Complex network is an emerging nonlinear dynamics

analysis method for complex systems. It has been employed in

a variety of physical and engineering systems: weather conditions

(Fang et al., 2017), finance (Zhao et al., 2018), biomedical

applications (Gao et al., 2021). Recently, several network-

based approaches have been proposed to map time series into

complex networks, such as visibility graph (Xu et al., 2018),

recurrence plot (Eroglu et al., 2018), ordinal partition network

(Santos et al., 2022). In particular, visibility graph (VG) is a

simple and fast computational framework for us to bridge the gap

between time series and complex networks, and it has been

successfully implemented in different fields. Bhaduri and Ghosh

(2016) studied cardiac dynamics during meditation through

multi-fractal detrended fluctuation and RR interval-based VG,

and they found that VG was superior to multi-fractal detrended

fluctuation in reflecting physiological effects on subjects

undergoing meditation. Gao et al. (2017) developed a time-
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dependent limited penetrable VG, and applied it to RR intervals

for classifying heart states of healthy, congestive heart failure and

atrial fibrillation. León et al. (2020) used HRV features and VG

features derived from the heart rate time series for the prediction

of late onset sepsis in preterm infants, the results showed that the

VG features in HRV analysis were useful for sepsis prediction in

newborns. From these studies, VG complex networks are often

constructed from RR intervals for heart rate-related applications,

while no work has focused on the application of VG analysis in

evaluating ANS with SKNA.

In this study, an autonomic nervous activity analysis method

was proposed based on VG complex network and SKNA. Based

on previous studies (Naredi et al., 2000; Chun-jing et al., 2013),

we hypothesized that SNA was elevated in patients with cerebral

hemorrhage (CH). Therefore, we collected ECG and SKNA from

CH patients and control group (CO), and compared the derived

HRV and VG features to evaluate their effectiveness in

distinguishing CH from CO. In addition, the ANS analysis

performance of HRV and VG features on ultra-short-time

(UST) segments were evaluated to verify their robustness

under different data lengths. Finally, the correlations between

HRV and VG features and ANS-Load were investigated under

different data lengths to explore their potential for quantifying

the intensity of SNA.

2 Methods

2.1 Data acquisition

The ECG and SKNA were recorded by a portable data

acquisition device designed in our previous work (Xing et al.,

2022b). It consists of low-noise analog-front-end (ADS1299,

Texas Instruments, Dallas, TX) for bio-potential signal

acquisition, a microcontroller (STM32L476,

STMicroelectronics) for the management of the whole system,

and a power management circuits (powered by a 3.7 V

rechargeable lithium polymer battery). In order to reduce the

system noise floor, a low-noise first-stage amplifier (INA128) was

implemented with the ADS1299 chip. The clinical signals were

measured at 4 kHz sampling frequency using conventional

disposable silver/silver-chloride (Ag/AgCl) electrodes attached

to the users’ chest. The signal measurements were carried out in a

noise-free sound insulation room. After an adjustment period of

at least 10-min, the 10-min signal of each subject was acquired in

a supine position. The recorded signals were stored on a local

trans-flash card, and processed off-line by MATLAB.

2.2 Patients

Patients with spontaneous CH who had a history of

hypertension were recruited. All patients were male and had

no definite cardiovascular and cerebrovascular events other than

hypertension. The location of cerebral hemorrhage in all patients

was located in the basal ganglia, and the hemorrhage did not

break into the ventricle. The course of cerebral hemorrhage had

passed through the acute phase and was in the subacute phase.

Age- and sex-matched normal volunteers, no other obvious

cardiovascular and cerebrovascular diseases except

hypertension, were recruited as CO from the hypertension

clinic. All the patients were enrolled from the Department of

Neurosurgery, First Affiliated Hospital of Nanjing Medical

University from October 2021 to December 2021. Exclusion

criteria included: 1) patients with traumatic cerebral

hemorrhage, ischemic stroke or hemorrhagic conversion; 2)

cerebral hemorrhage patients underwent the unstable phase

(with shock, large fluctuations in heart rate or blood

pressure); 3) patients with thyroid disease, diabetes, cardiac

arrhythmia, and other disorders that may affect ANS.

Sixteen patients were enrolled in this study, including seven

CH patients and nine CO patients. A 10-min single-lead ECG

and SKNA were recorded in a supine position for each patient,

and they were asked to avoid unnecessary movement during the

recording. Three Ag/AgCl electrodes were placed in the left

subclavian, right subclavian, and right lower abdomen, and

the sampling rate was 4 kHz.

2.3 Data process

2.3.1 Signal pre-processing
Due to the small amplitudes of ECG and SKNA, the signal is

easily contaminated by various noises. Therefore, the signal

quality is visually assessed before signal processing. Those

episodes that are corrupted by severe background noise and

cannot distinguish QRS complexes are eliminated. Afterwards,

only 5-min segments with more than 90% high signal quality

are reserved, and the ECG and SKNA are extracted from these

segments by 10th-order Butterworth bandpass filters with

cutoff frequencies of 0.5–150 Hz and 500–1,000 Hz,

respectively. For further HRV analysis, the QRS complexes

are identified by P&T method (Pan and Tompkins, 1985),

and false and missing detection are calibrated artificially. To

clearly label neural clusters, eSKNA was extracted by

performing moving average (MA) and root mean square

(RMS) on SKNA (Eqs. 1, 2). Referring to (Liu et al., 2021a),

the window size and sliding step of MA are 100-ms and 2-ms,

respectively.

xMAk � ∑spk+w
i�spk xi

m
(1)

j � (FspT − w)ps
Fs

(2)

where XMA is the array of input signal after MA; xMAk is the kth

sample ofXMA; j is the number ofXMA; w is the window size; s is
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the sliding step; xi is the ith sample of the input signal; Fs is the

sampling frequency; T is the duration in second of selected data.

In RMS calculator (Eq. 3), the XRMS is extracted from XMA

with a window size of 100-ms and a sliding step of 2-ms:

XRMS �
��������∑k+j

i�k x
2
MAi

n

√
(3)

where n is the number of samples in a window; xRMS is the kth

sample value of RMS; j is the number of samples ofXRMS;XMAi is

the ith sample value of the array XRMS.

The XRMS is defined as eSKNA, and a threshold-based

method is performed on it for SKNA bursts determination.

The threshold is calculated as follows:

Threshold � (Baseline −Min)p5 +Min (4)

where Baseline is the average of the lower 20% samples in the

selected window; Min is the minimum of the selected window.

In order to analyze the effectiveness of VG features in

quantifying ANS from UST segments, the 5-min signals were

split into 10-s, 20-s, 30-s, 40-s, 50-s and 60-s segments,

respectively. The burst load of each segment was calculated as

the ratio of burst time to total time, and partitioned to 5 equal

intervals from 0 to 1 ([0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8,

1.0]). Then, the segments were marked as activated (burst load >

0) and inactivated (burst load = 0) according to the burst load.

Thereafter, the HRV and VG analysis were conducted on these

data. The flowchart of this paper is illustrated in Figure 1.

2.3.2 Heart rate variation analysis
The time-domain features, frequency-domain features, and

nonlinear features were extracted by the PhysioNet

Cardiovascular Signal Toolbox (Vest et al., 2018). The time-

domain analysis included sinus RR intervals-related features

(mean (NNmean), standard deviation (SDNN), and root

mean square difference (RMSSD)). The frequency-domain

features consisted of the power in different frequency range

(ultra-low frequency power (<0.003 Hz, uLF), very low

frequency power ([0.003 Hz, 0.04 Hz), vLF), low frequency

power ([0.04 Hz, 0.15 Hz), LF), high frequency power

([0.15 Hz, 0.4 Hz), HF), ratio of LF to HF (LFHF)). The

nonlinear features consisted of the standard deviation of

projection of the Poincaré Plot on the line perpendicular to

the line of identity (y = −x, SD1), and approximate entropy

(ApEn). The standard deviation of the projection of the Poincaré

Plot on the line of identity (y = x, SD2) was not included in this

study because it was not suitable for UST HRV analysis.

2.3.3 Visibility graph features extraction of
envelope of SKNA

As a natural graph-theoretical description of nonlinear

systems, VG can simply convert a time series into a scale-free

network. The statistical measures from the constructed network

can demonstrate the dynamic behaviors of the nonlinear systems,

and have been proven to be related to the self-similarity and

complexity of the time series (Bhaduri and Ghosh, 2016). Every

data point of time series is mapped to a node in its associated VG

network, and an edge between two nodes is connected if the

corresponding time samples can view each other. Suppose the

original time series is X, and the ith point of X is Xi. Two data

points (ta, Xa) and (tc, Xc), at time ta and tc, are connected if and

only if any other data (tb, Xb) between them (ta < tb < tc) satisfies

the following criterion:

Xb <Xc + (Xa −Xc)p tc − tb
tc − ta

(5)

The VG network are applied on eSKNA, and ten network

measures (Pan and Tompkins, 1985; Hou et al., 2016; Vest et al.,

2018; Xing et al., 2022b; Santos et al., 2022) are extracted for

further analysis in this study:

2.3.3.1 Diameter

The longest shortest path between any two nodes in the

network (Eq. 6).

Dia � maxi,jDij (6)

where Dij is the length of the shortest path between node i and

node j.

FIGURE 1
The flowchart of data process in this paper. MA and RMS
mean the operation of moving average and root mean square,
respectively.
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2.3.3.2 Average node degree

The degree of a node in a graph is defined as the number of

connected edges to this node, and the mean degree (Eq. 7) is the

average value of all node’s degree in this graph (León et al.,

2020).

aND � 1
Ν
∑N
n�1

dn (7)

where N is the total number of nodes, and dn is the degree of

node n.

2.3.3.3 Average shortest-path length

The shortest path is a reflection of transmission and

communication in the graph, the average shortest path length

(Eq. 8) is the average of shortest path over all couples of nodes

(Hou et al., 2016).

aSPL � 1
Νp(Ν − 1) ∑

i,j∈V,i≠j
Dij (8)

where N is the total number of nodes, and V is the set of N

nodes.

2.3.3.4 Clustering coefficient

The cluster coefficient of a node in a graph is the ratio of all

triangles involving that node to the number of connected triples

centered on that node, and the cluster coefficient of a graph (Eq.

9) is the average of the cluster coefficient of all nodes (León et al.,

2020).

CC � 1
Ν
p∑
i∈V

ei
kip(ki − 1) (9)

where ei is the actual number of edges between all the

couples of neighbors of node i, and ki*(ki-1) is the

maximum possible number of edges between all the ki
neighbors of node i.

2.3.3.5 Average closeness centrality

Closeness centrality is the sum of the distances from a node

to other nodes, representing the convenience and ease of

connection between the focal node and other nodes (Zhang

and Luo, 2017).

aCC � 1
Ν
∑N
i�1

N − 1∑N
j�1Dij

(10)

2.3.3.6 Transitivity

The transitivity (Eq. 11) is the ratio between the triangle

numbers and the connected triple numbers in a graph to obtain

the global information of CC (León et al., 2020).

Trans � 3pnumber of trangles in the graph

number of connected triples in the graph
(11)

2.3.3.7 Average degree centrality

Degree centrality is defined as the ratio between the number

of nodes connected to the current node, and the total number of

all nodes in the network (Zhang and Luo, 2017).

aDC � 1
Ν
∑N
i�1

∑N
j�1eij

N − 1
(12)

2.3.3.8 Link density

Link density (Eq. 13) is the ratio between the number of edges

and the maximum possible number of edges (N*(N-1)/2) (Liu

et al., 2015).

LD � ∑Ν
i�1∑N

j�1eij
Np(N − 1)/2 (13)

2.3.3.9 sMetric

The sMetric (Eq. 14) is the sum of products of degrees across

all edges (Li et al., 2005).

sM � ∑Ν
i,j�1

dipdj (14)

2.3.3.10 Graph energy

Graph Energy (Eq. 15) is defined as the sum of the absolute

values of the real components of the eigenvalues (λi) of the graph

(Balakrishnan, 2004).

GE � ∑
i

|λi| (15)

FIGURE 2
The typical eSKNA signals and their corresponding VG
complex networks of CH and CO segments. (A) The typical eSKNA
and their VG, (B) and (C) are the complex networks of CH and CO
with colored communities.
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3 Experiments and results

3.1 Comparison of heart rate variation and
visibility graph on autonomic nerve system
analysis

The eSKNA segments are converted into a scale-free graph

by natural VG method. The typical 10-s eSKNA of CH and CO

segments are illustrated in Figure 2A, and their corresponding

VG complex networks are shown in Figures 2B,C, respectively.

For clear demonstration, the communities of these complex

networks are colorized according to their modularity classes

by Gephi software. It can be seen that the amplitudes of CH

eSKNA fluctuate smoothly, while there is a clear burst in CO

eSKNA around about 6-s time point (Figure 2A). The

communities of the CH complex network are dispersed as all

intermediate peaks obstruct the visible range between the front

and rear peaks (Figure 2B). Conversely, the CO complex network

consists of several small communities crowded with a central

community, since the burst can view almost all other nodes in the

network (Figure 2C).

To evaluate the validity of HRV and VG features from the 5-

min signal, these features are normalized to [0, 1], and the

comparisons between CH and CO for these features are

illustrated in Figure 3. To further quantify the distribution

differences between CH and CO, the WRS test is carried out

for each feature. Significant difference (p < 0.05) between two

groups is marked with red “*”, and extremely significant

difference (p < 0.01) is marked with red “**“. In this paper, p

values less than 0.05 were regarded as statistically significant for

each test. Statistical analyses were performed using MATLAB

(R2022a) on a PC with Intel® Core™ i7-7700 3.6 GHz processor

and 32 GB RAM.

It can be seen from Figure 3, the distributions of most HRV

features between CH and CO are overlapped, indicating the

difficulty to distinguish CH from CO by these features. In

contrast, the distribution differences between CH and CO are

evident in most VG features, validating the effectiveness of VG

features in classifying CH from CO. In addition, almost all

p-values calculated from VG features are < 0.01 (except Trans

and Dia), while only SDNN, vLF and ApEn show significant

difference in HRV features.

The ANS function assessment by HRV analysis is typically

performed on either 5-min ECG recordings or nominal 24-h

recordings, which limits its application in dynamic conditions,

such as dynamic sympathetic assessment in athletes. To

investigate the ANS analysis performance of these parameters

on UST signals, the 5-min signals are split to 10-s, 20-s, 30-s, 40-

s, 50-s and 60-s segments, respectively. In addition, these

segments are marked as ANS activated and inactivated

depending to whether they contain ANS bursts labeled from

eSKNA. Note that segments without valid QRS complexes are

removed. The final number of each data length is illustrated in

Table 1. The distribution of each feature among different data

length is compared and quantified by KW test. Furthermore, the

total runtime of VG feature extraction for each data length is

compared.

Figure 4 depicts the distribution differences of each feature

(HRV and VG) for activated and inactivated segments under

different data lengths. For almost all HRV features (except

ApEn), the distribution for activated segments seldom changes

with the data length increase, and the distribution for inactivated

segments varies sightly in uLF, vLF and SD1. The ApEn for both

activated and inactivated segments increases with data length

expands. For VG features, the distributions for both activated

and inactivated segments remain stable in CC, Trans, Dia and

FIGURE 3
HRV and VG features between CH and CO. “*” stands for significant difference between two groups (p < 0.05) and “**” stands for extremely
significant difference (p < 0.01). ANS Analysis Performance of VG on UST Segments.
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TABLE 1 The number of data segments according to different data length, ANS status and burst load.

Data length
(s)

Number of ANS status Number of different burst load

Activated Inactivated [0, 20%) [20%, 40%) [40%, 60%) [60%, 80%) [80%, 100%]

10 335 136 310 111 39 8 3

20 162 65 154 52 15 5 1

30 107 44 104 30 14 2 1

40 77 29 73 24 8 1 0

50 63 26 59 25 4 1 0

60 56 23 50 24 4 1 0

FIGURE 4
The distribution of features (HRV and VG) for different data length. Effectiveness of HRV and VG on ANS-Load Determination.
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GE, and change slightly in aSPL and aCC. However, they

decrease (increase) sharply with the data length increases in

aND and aDC (sM).

To quantitatively characterize the stability of features

(HRV and VG) in UST segments, their distribution

differences (for activated and inactivated segments,

respectively) in different data lengths (10-s, 20-s, 30-s, 40-s,

50-s and 60-s) are compared by KW test. The results are

shown in Table 2. It is clear that the p-values of NNmean,

SDNN, RMSSD, LF, HF, LFHF and SD1 are > 0.05 in both

activated and inactivated segments, indicating that these

features are not distributed differently across segments with

different length. Similarly, the VG features of CC, Trans, Dia

and GE also show no distribution differences in both activated

and inactivated segments, as they all had p-values > 0.05.

However, the p-values for vLF and ApEn of HRV features and

aND, aDC, LD and sM of VG features are all < 0.01 for both

groups, implying that their distribution varies significantly

during data length increase.

Although several features (HRV and VG) show stable

performance in short-term segments, their efficiency still

needs to be investigated to ensure their practical application.

As we all known that the computational complexity of HRV

features is very low, therefore, we only compare the running time

of VG features under different data lengths. Figure 5 shows the

histogram based on empirical cumulative distribution function

and kernel density estimation of the running time for VG

features extraction from different data lengths. The

TABLE 2 The KW test results of feature distribution differences in different data lengths.

Status Statistics NNmean SDNN RMSSD uLF vLF LF HF LFHF SD1 ApEn

HRV Activated Chi-sq 0.17 5.64 0.55 11.04 27.52 0.89 0.70 0.57 0.42 70.51

p 0.920 0.059 0.761 0.004 0.000 0.641 0.703 0.754 0.810 0.000

Inactivated Chi-sq 0.27 5.62 0.88 4.14 18.14 1.67 1.09 0.58 0.65 153.27

p 0.876 0.060 0.645 0.126 0.000 0.434 0.579 0.750 0.721 0.000

VG Status Statistics CC aSPL aCC Trans Dia aND aDC LD sM GE

Activated Chi-sq 0.13 3.77 3.65 2.16 0.27 43.31 43.31 15.22 68.23 0.27

p 0.937 0.152 0.161 0.339 0.874 0.000 0.000 0.000 0.000 0.874

Inactivated Chi-sq 0.49 6.85 6.45 2.60 1.23 37.44 37.44 19.58 157.94 1.23

p 0.785 0.033 0.040 0.272 0.540 0.000 0.000 0.000 0.000 0.540

FIGURE 5
The running times of VG feature extraction under different data lengths.
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distribution is heavy-tailed in 10-s and 30-s segments, but

appears approximately normal distribution in the remaining

segments. The average time for each data length is around 15-

s, 80-s, 210-s, 360-s, 565-s and 1,420-s, respectively. Obviously,

the average runtime increases rapidly with data length expands

and shows an exponential growth trend. The reason is that the

nodes of the VG complex network increase with data length,

resulting in a rapid growth of computational complexity for

extracting features from the constructed adjacent matrix.

In order to evaluate the capability of HRV and VG features

in quantifying ANS-Load, the burst of each segment is

determined by a threshold-based method. Furthermore, the

burst load (ANS-Load) is extracted by calculating the ratio of

the burst time to total time of the segment. The burst load is

coarse-grained to 5 equal partitions from 0 to 1, the segment

number of each partition under different data lengths is listed

in Table 1. Then, the correlations between features and

segment length under different burst load are quantified by

Kendall rank correlation coefficient. As there are not enough

ANS-Load in partitions [0.6, 0.8) and [0.8, 1.0], we only

compare the correlation coefficient in ANS-Load

among (0, 0.6).

The distributions between each HRV and VG feature and

data lengths under different ANS-Load, associated with their

mean values, are shown in Figure 6. In HRV features, the

SDNN and LFHF (RMSSD, vLF, LF and HF) decrease

(increase) with the ANS-Load increase in different data

lengths, implying that the variation of ANS-Load would

influence the time-domain and frequency-domain features

of HRV. Meanwhile, almost all the VG features present an

increasing or decreasing trend with the ANS-Load increase.

The reason may be that the increased autonomic activity is

reflected in increased bursts in eSKNA, resulting in the

variation of connections between two nodes.

The Kendall rank correlation coefficients for HRV and VG

features are illustrated in Figure 7, and the red “*” and “**”

represent p-values < 0.05 and < 0.01, respectively. In this study,

we only focus on the degree of correlation other than its

direction, therefore the positive correlation and negative

correlation share the same color in Figure 7. It is obvious that

there is a weak correlation between HRV features and ANS-Load,

most correlation coefficients are around 0, and the maximum is

0.273 for uLF in 60-s segment. On the contrary, the VG features

show a stronger correlation with ANS-Load, especially the

correlation coefficient of aND reaches 0.526 in 60-s. In

addition, the absolute values of the correlation coefficients are

all above 0.13. Besides, only few HRV features show significant

correlation between features and ANS-Load (i.e., NNmean in 10-

s, LFHF in 20-s, vLF in 40-s). However, almost all the correlations

between VG features and ANS-Load are extremely significant,

indicating the potential of VG features for ANS-Load

quantification.

FIGURE 6
The distributions between each HRV and VG features and data lengths under different ANS-Load and their corresponding mean values.
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4 Discussion

A VG and SKNA based autonomic nervous activity analysis

method was proposed in this paper. SKNA overcomes the

sinoatrial level limitations of traditional HRV analysis, and a

number of SKNA-derived metrics had been proposed for SNA

quantification. However, the noise-susceptibility of these

metrics required new methods for quantitatively ANS

assessment, especially for short-time segment application. As

a nonlinear analysis method, VG offered a new insight into ANS

assessment in short-term segments and ANS-Load

quantification.

The unique contribution of this paper was the first

application of VG on eSKNA for ANS assessment. HRV

was the most widely used ANS assessment method, and its

indices from time-domain, frequency-domain and

nonlinear-domain had been proved to be biomarkers for

cardiac arrhythmias, brain injury and emotion (Fyfe-

Johnson et al., 2016; Constantinescu et al., 2018; Galea

et al., 2018). However, HRV from UST data could not

fully show the nerve activity. The newly proposed

noninvasive cardiac SNA assessment method (SKNA)

and its derived metrices has been widely used in clinical

events, such as acute myocardial infarction (He et al., 2020),

neurologic recovery patients (Liu et al., 2021a), and sleep

apnea (Kutkut et al., 2021). Nevertheless, these SKNA-

derived metrics could only qualitatively analyze ANS and

could not quantitatively reflect ANS intensity or ANS-Load.

Thanks to the nonlinear dynamics analysis method–VG

complex networks, we could evaluate the ANS from

network aspect. Although many previous studies had

investigated and compared VG and HRV in meditation

analysis (Bhaduri and Ghosh, 2016), sleep assessment

(Hou et al., 2016) and congestive heart failure (Gao

et al., 2017), this paper was the first to employ VG on

eSKNA for ANS assessment. The comparison of HRV and

VG features between CH and CO (Figure 2) showed that VG

features are superior to HRV features in the ANS analysis.

There were no significant distribution differences between

CH and CO for most HRV features, while almost all VG

features were clearly distinguishable between the two

groups.

The stability of HRV and VG features in UST segments

were compared by quantifying their distribution differences

against different data lengths. Most HRV features remained

stable for both activated and inactivated segments under all

data lengths. In addition, the time-domain features (NNmean,

SDNN, RMSSD) and most frequency-domain features (LF,

HF, LFHF) manifested conformity in these segments,

indicating that most UST HRV features could be used as

surrogates for short-term HRV features. These results were

consistent with Castald’s (Castaldo et al., 2019) investigation

that NNmean and HF displayed consistency across all of the

excerpt lengths (30 s, 1 min, 2 min, 3 min, and 5 min) for

mental stress assessment. However, Jin Woong et al. (Kim

et al., 2021) studied UST HRV in non-static conditions by

comparing UST HRV features (10, 30, 60, 120, 180, and 240-s)

with those from 5-min HRV, the results showed that UST

HRV variables derived from the static condition could not

applied to the non-static conditions of daily life. Similarly, the

CC, Trans, Dia and GE of VG features remained stable in both

activated and inactivated segments across all data lengths,

implying that these VG features could reveal the dynamical

changes caused by the adjustment of autonomous neural

system from UST segments. Likewise, Jiang et al. (2013)

applied VG to heartbeat interval time series for meditation

investigation, and they also tested the stability of VG features

on different length data, the results showed that the data

FIGURE 7
The Kendall rank correlation coefficients between features and segment length under different burst load. “*” stands for significant correlation
between features and ANS-Load (p < 0.05) and “**” stands for extremely significant correlation (p < 0.01).
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length had no prominent effect on the VG analysis. The reason

may be that the degree distribution persisted the same form

for different length of data in any activated and inactivated

segments.

HRV had been used as a biomarker for SNA measurement, but

seldom been used for quantifying ANS-Load. The correlations

between HRV features and ANS-Load were studied at different

data lengths, and the comparison results showed that time-domain

and frequency-domain features (SDNN, LFHF, RMSSD, vLF, LF

andHF) had the potential to quantify ANS inUST segments. From a

multimodal perspective, Debnath et al. (2021) designed a template

matching algorithm to calculate scaled and stretched HRV features,

associated with other features, for sympathetic and parasympathetic

parameters determination. However, the acquisition of these

employed features was complicated, and it still required more

other biomarkers or calculated features to improve the

quantification accuracy for practical clinical applications. The

SKNA had been applied to evaluate the ANS as a non-invasive

method in many clinical applications (Zhang et al., 2022), andmany

SKNA-derived metrices (e.g., aSKNA, bSKNA) had been validated

and used for ANS qualification. Nevertheless, these parameters were

susceptible to noise. In this paper, the VG features on eSKNA were

extracted and compared across different ANS-Load, the results

showed that almost all the VG features were correlated to ANS-

Load. The link-related features (CC, aPL, Dia and LD) increased as

ANS-Load grow, while the degree-related features (aCC, Trans,

aND, aDC and sM) presented a decreasing trend across increasing

ANS-Load. The increase in SNA intensity was manifested as the

rising number and duration of bursts in eSKNA, which leads to a

growth in the possibility of links between any two nodes in the VG.

However, these links only concentrated on certain nodes (peak

points of bursts), it meant that the node degrees of the entire VG

would be aggregated into these nodes, resulting the increase of

community numbers and the decrease of average degree. In

addition, the total number of links grow exponentially with the

total number of nodes in the network, while the degree distribution

did not change with the node numbers (Tessone et al., 2011).

One limitation of our study is the small number of

participants, further studies with larger cohorts are needed to

confirm and strengthen these results. Another limitation is the

VG features are only compared with HRV features, its validity

still needs comparison with demographic information and

laboratory tests for practical clinical applications. In addition,

the robustness against noise of this method needs more efforts.

5 Conclusion

In summary, a VG on eSKNA based autonomic nervous

activity analysis method was proposed in this paper. The

comparison results of the HRV and VG features on CH and

CO segments showed the superiority of VG features in ANS

analysis. Furthermore, the ANS analysis performance of VG

features on eSKNA signals with different data lengths

demonstrated the stability of VG features (aND, aDC, LD and

sM) in discriminating activated and inactivated segments at

different data lengths. In addition, the capability of HRV and

VG features to quantify SNA intensity was also evaluated, and the

results showed that VG features had the potential to determine

ANS-Load.
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Extreme bradycardia (EB), extreme tachycardia (ET), ventricular tachycardia

(VT), and ventricular flutter (VF) are the four types of life-threatening

arrhythmias, which are symptoms of cardiovascular diseases. Therefore, in

this study, a method of life-threatening arrhythmia recognition is proposed

based on pulse rate variability (PRV). First, noise and interference are wiped

out from the arterial blood pressure (ABP), and the PRV signal is extracted.

Then, 19 features are extracted from the PRV signal, and 15 features with

highly important and significant variation were selected by random forest (RF).

Finally, the back-propagation neural network (BPNN), extreme learning

machine (ELM), and decision tree (DT) are used to build, train, and test

classifiers to detect life-threatening arrhythmias. The experimental data are

obtained from the MIMIC/Fantasia and the 2015 Physiology Net/CinC

Challenge databases. The experimental results show that the DT classifier

has the best average performance with accuracy and kappa coefficient

(kappa) of 98.76 ± 0.08% and 97.59 ± 0.15%, which are higher than those

of the BPNN (accuracy = 94.85 ± 1.33% and kappa = 89.95 ± 2.62%)

and ELM (accuracy = 95.05 ± 0.14% and kappa = 90.28 ± 0.28%)

classifiers. The proposed method shows better performance in identifying

four life-threatening arrhythmias compared to existing methods and has

potential to be used for home monitoring of patients with life-threatening

arrhythmias.
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pulse rate variability, arterial blood pressure, cardiovascular diseases, life-threatening
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1 Introduction

In recent years, cardiovascular diseases have the highest

mortality rate and are the “number one killer” of human

beings (Roberts and Fair 2021). Among them, acute

cardiovascular diseases such as myocardial infarction (MI)

and cerebral infarction (CI) have the high suddenness and

lethality (Du et al., 2021). If MI and CI are not effectively

treated within a few hours after the sudden onset, it will

directly lead to the patient’s death.

Life-threatening arrhythmias are a common symptom in

patients with CI and MI, and the common life-threatening

arrhythmias include EB, ET, VT, and VF (Deaconu et al.,

2021), and the definitions of those four life-threatening

arrhythmias are given in Table 1 according to the beating

rhythm of the heart rate (Alinejad et al., 2019; Paliakaitė

et al., 2019). In the initial period of suddenness of life-

threatening arrhythmias, patients sometimes experience

sudden heart pain that is slight and rapid and disappears after

a short rest such as sitting or lying down, which is called

“transient” (Chorin et al., 2021). The “transient” of life-

threatening arrhythmias is often ignored by patients, which

can lead to the sudden illness of dangerous MI, CI, and other

acute cardiovascular diseases. On the eve of acute cardiovascular

diseases such as MI and CI, significant abnormal changes in

physiological parameters such as electrocardiographic (ECG)

and blood pressure occur (Jahmunah et al., 2021; Shuvo et al.,

2021). Moreover, if these abnormalities can be monitored in

time, then patients can be warned of the risk so that they can seek

medical help, which would significantly reduce the rate of death

from acute cardiovascular disease.

At present, the main detection method is hospital ECG, while

the acquisition of ECG signal requires multiple electrodes and

cable connection and the process needs professional medical

staff’s guidance. If one electrode is wrongly attached, the whole

signal is no longer valuable. In addition, the prolonged electrode

connection can cause skin irritation (Chou et al., 2019). It is

difficult for short-time ECG monitoring to effectively recognize

life-threatening arrhythmias with transient; thus, long-term

tracking and detection of physiological signals is required to

achieve recognition of acute cardiovascular disease outbreaks.

The beat rhythm of the heart is transmitted to the pulse with

the blood, and both ECG and pulse period sequences can

effectively reflect heartbeat rhythm changes (Mitchell and

Schwarzwald, 2021). Heart rate variability (HRV) is calculated

from ECG, which reflects the rate of the heartbeat and is used to

assess the autonomic nervous system of the heart (Ishaque et al.,

2021); thus, HRV can be used for the diagnosis of cardiovascular

diseases (Saul and Valenza, 2021). The PRV is extracted from the

ABP signal, which reflects the subtle changes in the vascular pulse

cycle (Jan et al., 2019). Moreover, the PRV can be utilized to

assess cardiovascular autonomic activity (Mejía-Mejía et al.,

2021). Studies have shown that the PRV extracted from the

ABP signal and HRV obtained from the ECG signal have a strong

correlation and are interchangeable in cardiovascular disease

monitoring in the supine or resting state (Mejía-Mejía et al.,

2020; Hejjel and Béres, 2021). Compared with the ECG signal,

the ABP signal acquisition does not require the affixing of

multiple electrodes and can be easily affixed to multiple parts

of the body, which is easy to operate and can be self-measured

(Jan et al., 2019; Mejía-Mejía et al., 2022). Thus, ABP signals are

widely used in wearable devices such as bracelets and smart

watches (Zhu et al., 2021). The study of the life-threatening

arrhythmia detection method based on the PRV signal is

expected to be used for home monitoring of life-threatening

arrhythmias.

Therefore, based on the PRV signal, this study studies

techniques for the recognition of four life-threatening

arrhythmias: EB, ET, VT, and VF. First, the interference and

noise in the pulse signal are filtered out, and then, the PRV signal

is extracted from ABP. Next, the parameters of physiological and

pathological changes caused by these four life-threatening

arrhythmias are extracted from the PRV signal, and the

parameters with high importance and contribution are

obtained as feature vectors by RF to train classifiers of BPNN,

ELM, and DT to detect these four life-threatening arrhythmias.

This study is structured as follows: Section 2 gives the

experimental data we used and describes the process and

methods of the experiments; Section 3 describes the

experimental results, including signal preprocessing, PRV

extraction, feature parameter extraction and dimensionality

reduction, and classification results; the discussion of the

experimental results is given in Section 4; and the conclusions

of the study are presented in Section 5.

2 Materials and methods

2.1 Materials

The experimental data consisted of two groups, both of them

from the international physiological signal database: PhysioBank.

One group has 10 young (aged 21–31) and 10 elderly (aged

70–85) healthy subjects with equal males and females, which

comes from the sub-database “MIMIC/Fantasia” (Iyengar et al.,

1996; Goldberger et al., 2000). The other group has patients with

four life-threatening arrhythmias consisting of 17 EB, 39 ET,

TABLE 1 Types and definition of four life-threatening arrhythmias.

Types Definition

EB HRV <40 bpm for 5 consecutive beats

ET HRV >140 bpm for 17 beats

VT Five or more ventricular beats with HRV >100 bpm

VF Rapid flutter, oscillatory, or fibrillation lasting at least 4 s
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47 VT and 6 VF subjects, which comes from the sub-database

“2015 Physiology Net/CinC Challenge” (Clifford et al., 2015).

The data of healthy subjects: the data of healthy subjects are

the PRV signal extracted from the ABP signal in the MIMIC/

Fantasia database. Before the data recording, every non-smoking

subject underwent a physical examination, and only the healthy

subjects were allowed to participate. In addition, each recording

includes the continuous ECG, respiration, ABP signals with a

sampling rate of 250 Hz, and a duration of 2 h.

The data of patients with four life-threatening arrhythmias:

the data are the PRV signal extracted from the ABP signal in the

2015 Physiology Net/CinC Challenge database, which was

recorded from patients in the intensive care unit of hospitals.

During data recording, two ECGs and one ABP signal were

collected from the patients, and all signals were sampled at

250 Hz with a duration of 5 or 5.5 min.

The simulation software is MATLAB 2020b, installed on an

Intel(R) Core (TM) i5-6300HQ CPU at 2.30 GHz, Windows-10

64-bit operating system, and installed on a laptop with

8 GB RAM.

2.2 Methods

Figure 1 depicts the processing of the intelligent

recognition of those four life-threatening arrhythmias,

which includes six steps: the preprocessing of the ABP

signal, extraction of PRV, extraction of features,

dimensionality reduction of features by RF, life-

threatening arrhythmia recognition, and evaluation of

results. The details are displayed in the following

subsections.

2.2.1 The preprocessing of the arterial blood
pressure signal

Noise such as electromyographic (EMG) interference,

alternating current (AC) interference, and baseline drift

can be generated in the ABP signal acquisition, for

example, the ABP signal from an ET patient with noise is

displayed in Figure 2. The purpose of ABP signal

preprocessing is to wipe out these noises and obtain a

clean ABP signal in order to improve the accuracy of PRV

extraction. According to the range of frequencies, an integer

coefficient notch filter with a stop frequency of 0 Hz, 50 Hz,

and its integer multiples are used for de-noising the AC

interference and the baseline drift, and an integral

coefficient low-pass filter is utilized to eliminate the EMG

interference in this study (Chou et al., 2020).

The transfer function F1(Z) of the integer coefficient notch

filter is,

F1(Z) � FAP(Z) − FBP(Z) � Z−(R−P)·N2 − [ 1 − Z−R

Q(1 − Z−P)]
N

. (1)

In Equation 1, FAP(Z) is the transfer function of the all-pass

filter; FBP(Z) is the transfer function of the band pass filter; N is

the order of the filter; R and P are the order of the numerator

polynomial and denominator polynomial of the transfer

function, respectively, where P = fs/f1, fs is the sampling rate

of the signal and is 250Hz and f1 is the notch frequency and is

50 Hz here; and Q is the gain of the filter (i.e., the amplification)

and should be 2N, which is proportional to the steepness of the

notch band, and Q = R/P. In this study, N = 2, P = 5, and Q =

64 by trial and error, and R = PQ = 320. Therefore, Equation 1

becomes

F1(Z) � Z−315 − [ 1 − Z−320

64 − 64Z−5]
2

� −1 + 4096Z−315 − 8190Z−320 + 4096Z−325 − Z−640

4096(1 − 2Z−5 + Z−10) . (2)

FIGURE 1
Process of four life-threatening arrhythmias.

FIGURE 2
ABP signal of an ET patient with noise.
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Then, Equation 3 is the difference equation, which is

calculated to eliminate the ABP signal containing the AC

interference and the baseline drift in real time by Equation 2.

y1(n) � 2y1(n − 5) − y1(n − 10) + 1
4096

[ − x1(n)
+ 4096x1(n − 315) − 8190x1(n − 320)
+ 4096x1(n − 325) − x1(n − 640)], (3)

where x1(n) is the latest data of the ABP signal, x1 (n-r) is the r-th

sampling data before x1(n), and y1(n) is the output of the integer

coefficient notch filter.

The frequency response of the integer coefficient notch

filter is

H1 � e−
jwN(R−P)

2 − [1 − sin wR
2

Q sin wP
2

]N

� e−315jw − [1 − sin 160w
64 sin 5w

2

]N

.

(4)
The frequency response is illustrated in Figure 3. The filter

with notch frequencies of 0Hz, 50Hz, and 100 Hz can effectively

de-noise the AC interference and the baseline drift, and it has

linear phase in the passband.

The transfer function F2(Z) of integer coefficient low-pass

filter is

F2(Z) � [ 1 − Z−C

C(1 − Z−1)]
N

, (5)

whereN is the order of the filter, fs is the sampling frequency, f2 is

the first-order cut-frequency, and C must be an integer and is fs/

f2. Here, fs = 250Hz, f2 = 62.5Hz, N = 2, so C = 4. Therefore,

Equation 5 becomes

F2(Z) � [ 1 − Z−4

4(1 − Z−1)]
2

. (6)

Then, as displayed in Equation 7, the difference equation is

calculated to de-noise the ABP signal containing the EMG

interference in real time.

y2(n) � y2(n − 1) + 1
4
[x2(n) − x2(n − 4)], (7)

where x2(n) is the latest datum of the ABP signal, x2 (n-c) is the

c-th sampling datum before x2(n), and y2(n) is the output of the

integer coefficient low-pass filter.

The frequency response of the integer coefficient low-pass

filter is

H2 � ⎡⎢⎣1
C
e−

j(C−1)
2

sin(wC2 )
sin(w2) ⎤⎥⎦

N

� ⎡⎢⎣1
4
e−

3j
2
sin(2w)
sin(w2) ⎤⎥⎦2. (8)

The frequency response is illustrated in Figure 4. The

filter with a stop band frequency of 62.5 Hz can effectively

suppress the EMG interference, and it has linear phase in the

passband.

FIGURE 3
Frequency response of the integer coefficient notch filter.

FIGURE 4
Frequency response of the integer coefficient low-pass filter.

FIGURE 5
ABP signal.

Frontiers in Physiology frontiersin.org04

Chou et al. 10.3389/fphys.2022.1008111

186

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1008111


2.2.2 The extraction of pulse rate variability
Since the cardiac cycle corresponds to the pulsation period,

one heartbeat produces one pulse wave. An ABP signal consisting

of a series of pulse waves (the red curve) is displayed in Figure 5.

The start and end points are two pulse troughs (the solid green

dots) corresponding to a complete pulse wave, respectively,

where the end point of one pulse wave is the start point of

the next pulse wave. In general, the PRV can be calculated by

computing the first-order difference between the start points and

end points, that is, pulse-to-pulse intervals (PPIs). However, it is

not easy to detect troughs due to the small amplitude of the waves

corresponding to the pulse troughs, while the waves

corresponding to the pulse peaks (the blue hollow cycle) have

notable characteristics and are easy to detect. Therefore, in this

study, the frequency domain extraction method based on sliding

window iterative discrete Fourier transform (SWIDFT) is used to

detect the wave peaks (Chou et al., 2014), which can be corrected

using a manual calibration method if there are incorrect or

missing sampling points. Two adjacent pulse peaks are

utilized as the boundary to divide the PRV signal, which is

calculated by the time interval between two adjacent peaks,

and the equation is as follows

PRV(i) � 60
t
� 60 · fs

Peaks(i + 1) − Peaks(i), (9)

where t is the sampling time of the ABP signal, and fs is the

sampling frequency of the ABP signal.

2.2.3 Pulse rate variability feature extracted
So far, the main methods for analyzing physiological signals

include time domain analysis, frequency domain analysis, and

nonlinear domain analysis, from which some features are

extracted to describe changes in heartbeat rhythm for the

diagnosis of cardiovascular diseases (Sluyter et al., 2019;

Mandal et al., 2021). In this study, 19 features were extracted

from the PRV signal based on the description of heart rhythm

changes.

2.2.3.1 Feature extraction based on time domain analysis

The PRV signal is quantified in the time domain, and some

useful information is extracted from the PRV signal by the

statistical analysis method to analyze the temporal variation

among the PRV signal and obtain the abnormalities and

stability of the cardiovascular system. We extracted seven

indexes in the time domain, which are calculated as follows.

1) Mean: the average of the PRV signal, and the equation is

Mean � ∑n
i�1

S(i)
n

, (10)

where S(i) is the ith datum of the PRV signal, and n is the length

of the PRV signal.

2) Std: the standard deviation of the PRV signal, which can

reflect the dispersion of the Mean and the datum of the PRV

signal. The equation is

Std �
��������������������
1

n − 1
∑n
i�1
(S(i) −Mean)2.

√
(11)

3) RMSD: the root mean square of PRV signal’s difference,

which can reflect the degree of rapid change in the PRV

signal. The equation is

RMSD �

����������������������
1

n − 1
∑n−1
i�1

(S(i + 1) − S(i))2.

√√
(12)

4) nRMSD: the normalized RMSD, and the equation is

nRMSD � RMSD

Mean
. (13)

5) PNN40: the percentage of difference in time intervals between

adjacent sampling points of a PRV signal greater than 40 ms.

The higher the value, the higher the nervous system tension.

The equation is

PNN40 � NN40
TotalNN

× 100%, (14)

where NN40 is the number of time intervals between two

adjacent sampling points in a PRV signal that exceed 40 ms,

and TotalNN is the number of sampling points intervals of a PRV

signal.

6) PNN70: the percentage of difference in time intervals between

adjacent sampling points of a PRV signal greater than 70 ms.

The equation is

PNN70 � NN70
TotalNN

× 100%, (15)

where NN70 is the number of time intervals between two

adjacent sampling points in a PRV signal that exceed 70 ms.

7) Mid: the median of the PRV signal, which represents a value

in the PRV signal distribution that can divide the PRV signal

into two groups. For a sequence of PRV signal from small to

large, when n is an odd number, the equation is

Mid � S((n + 1)/2). (16)

When n is an even number, the equation is

Mid � S(n/2) + S(n/2 + 1)
2

. (17)

8) IQR: the interquartile range of the PRV signal, which

describes the dispersion of the PRV signal. The equation is
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IQR � S75
S25

, (18)

where S75 is the third quartile, and S25 is the first quartile.

9) RMSD_APM: the root mean square of amplitude’s (APM)

difference, which can reflect the degree of rapid change in

APM. The calculation method is the same as Equation 12.

2.2.3.2 Feature extraction based on frequency domain

analysis

The power spectrum is calculated using the autoregressive

(AR) model for the PRV signal, from which the features are

extracted according to the frequency range to reflect the stability

of cardiovascular activity within the human body and to obtain

information about the variability of the cardiovascular system

(Fallet et al., 2019).

1) LF_HF: the ratio of low frequency (LF) to high frequency

(HF), which can reflect a balanced state of sympathetic and

parasympathetic tone.

LF HF � LF

HF
(19)

,

where the range of LF is 0.04–0.15, and the range of HF is

0.15–0.4.

2.2.3.3 Feature extraction based on nonlinear domain

analysis

The methods of nonlinear domain analysis are Poincaré plot

(Nordin et al., 2019) and entropy (Rohila and Sharma, 2019),

where the Poincaré plot can be approximated as an ellipse with

the horizontal axis of a single time interval of the PRV signal and

the vertical axis of time interval of two adjacent PRV signals,

which can be utilized to reflect the variation of different PRV

signals. The following are some relevant features of the

calculation.

1) Sd1:Sd2: the ratio of the long half-axis (Sd1) to the short half-

axis (Sd2) of the ellipse. The equation is

Sd1 Sd1 � Sd1

Sd2
, (20)

where Sd1 is defined as

Sd1 �

����������������������
1

n − 1
∑n−1
i�1

(S(i + 1) − S(i))2
2

√√
, (21)

and Sd2 is defined as

Sd2 �

������������������������������
1

n − 1
∑n−1
i�1

(S(i + 1) + S(i) − 2Mean)2
2

√√
. (22)

2) Se: the area of the ellipse is

Se � ∏ ·Sd1 · Sd2. (23)

3) TPR_PR: the turning point ratio of the PRV signal, which can

measure the randomness of the PRV signal. The equation is

TPR PR � Num((S(i) − S(i − 1)) · (S(i) − S(i + 1))> 0)
n

,

(24)
where Num is used to count the number of turning point.

4) ShE: the Shannon entropy of the PRV signal, and the

equation is

ShE � −∑n
i�1
P(i)log2(P(i)), (25)

where P(i) is the probability of the i-th datum in the PRV signal.

5) SamE_PR: the sample of the PRV signal, and the calculation is

as follows:

SamE PR � −lnB
m+1(r)
Bm(r) , (26)

where Bm(r) is the average probability of the PRV signal when the

embedding dimension ism, and Bm+1(r) is the average probability

of the PRV signal when the embedding dimension is m+1. Here,

m is equal to 2.

6) CSampEn: the coefficients of sample entropy, and the

calculation is as follows (Eerikäinen et al., 2018)

CSampEn � SamE PP + ln(2r) − ln(mean(S)), (27)
where r is the tolerance and is equal to 0.25 here, and S is the PRV

signal in the buffer.

7) PE_PR: the permutation entropy of the PRV signal, and the

equation is

PE PR � −∑m!

i�1
P(i)log(P(i)), (28)

where P(i) is the probability of occurrence of mode i.

8) SamE_APM: the sample entropy of APM, and the calculation

method is the same as that of Equation 26.

9) TRP_APM: the turning point ratio of APM, and the

calculation method is the same as that of Equation 24.

2.2.4 Feature dimensionality reduction
In this study, a method of RF is used to measure the

importance of the feature parameters and to reduce the

feature dimensionality with less information loss (Qi, 2012),
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which will make the subsequent recognition of life-threatening

arrhythmias more efficient without overfitting due to too many

features. The method of RF in the “neural network toolbox” of

MATLAB 2020b is exploited to calculate the importance of

feature parameters for feature dimensionality reduction. The

related functions are as follows:

RF_model = classRF_train (p_train, t_train, ntree, mtree,

extra_options);

Feature_measure = RF_model.importance.

The function “classRF_train” is engaged to train the RF

model. The input parameters p_train and t_train are the

features and labels of the training set, respectively. The input

parameter ntree is the number of trees; here, it is 100. The input

parameter mtree is the number of predictors used for

segmentation at each node; here, it is a rounding down for

the number of features, that is, 4. The input parameter

extra_options is used to control the RF model.

The function “RF_model.importance” allows to calculate

feature weights using accuracy and Gini index. The accuracy

and Gini index reflect the importance of the features, and the

larger the value of accuracy and Gini index, the more important

the feature is.

2.2.5 Life-threatening arrhythmia classification
In this study, supervised learning methods, which include

BPNN, ELM, and DT, are engaged to design classifiers to identify

four life-threatening malignant arrhythmias. The BPNN and DT

classifiers are built, trained, and tested with the “neural network

toolbox” in MATLAB 2020b. In addition, the classification

performance is analyzed using Kappa coefficients, accuracy,

and time consumption.

2.2.5.1 BPNN classifier

A BPNN classifier consists of an input layer, one or more

hidden layers, and an output layer. After entering the training set

into the input layer, the training set is calculated by weights and

thresholds in the hidden layer, and the result is transported to the

output layer to calculate a prediction value. If the error between

the predicted value and the expected value is too large, the error is

passed to the input layer and calculated again until the predicted

value and the expected value meet the requirements (Hamdani

et al., 2022). The BPNN classifier is composed of the following

three functions:

Net = feedforwardnet (option);

Net_BP = train (Net, p_train, t_train);

Error_sim_BP = sim (Net_BP, p_test).

The function “feedforwardnet ( )” is utilized to build the

BPNN classifier. The option is the number of nodes in every

layer of the BPNN; here, the number of nodes in one input

layer, two hidden layers, and one output layer is 5, 15, 15,

and 1, respectively. In addition, the number of training

sessions, the minimum error of the training target, and

the learning rate are set to 3,000, 0.001, and 0.1,

respectively. The training function and the transfer

function of the second hidden layer use “BFGS Quasi-

Newton” and “sigmoid,” respectively. The parameter Net

is the design result of the classifier.

The function “train ( )” is exploited to train the BPNN

classifier. The input parameters p_train and t_train are the

features and labels of the training set, respectively. The output

parameter Net_BP is the predicted value of the BPNN after

training.

The function “sim ( )” is engaged to test the BPNN classifier.

The feature of the test set p_test is compared with the predicted

value until the training parameters are satisfied, and the

classification result Error_sim_BP is obtained.

2.2.5.2 ELM classifier

The ELM classifier has the same structure as the BPNN

classifier, and they both belong to the feed-forward neural

network, while the hidden layer of ELM classifier is one. The

weights and thresholds of the BPNN classifier are constantly

changing, while the ELM classifier generate the unchanged

weights and thresholds initially, which will save a lot of time

compared to the training of BPNN classifier (Wang et al.,

2021).

The key points in the building and training ELM classifier

are the calculation of the connection weights (IW) between the

hidden layer and the input layer, the thresholds (B) of the

hidden layer neurons and the connection weights (LW)

between the hidden layer and the output layer. Here, the

number of nodes in the input layer, hidden layer, and

output layer are 12, 300, and 5, respectively. In addition,

IW and B are randomly generated by function “rand ( )” in

MATLAB 2020b, where IW = rand (300,15) * 2–1, B = rand

(300,1), and LW is calculated with the help of the function

“pinv ( ).” The predicted value Y is computed by performing

the classification using the sinusoidal transfer function based

on parameters IW, B, and LW, and Y is equal to the inverse

matrix of the inverse matrix of the output in the hidden layer

(H) by LW; then, the maximum value of all the features of Y is

used as the label, marked as 1, the others are 0, and the new

predicted value is output.

2.2.5.3 DT classifier

The DT has a top-down structure, growing down from the

root to the nodes in a certain order to make a decision, and

getting results at the leaves (Charbuty and Abdulazeez, 2021).

The two functions of the DT classifier are as follows:

Ctree = fitctree (p_train, t_train);

T_sim_tree = predict (Ctree, p_test).
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The function “fitctee ( )” is exploited to build and test the DT

classifier, and the output parameter Ctree is the trained decision

tree. The function “predict” is utilized to test the trained decision

tree. Here, the feature space of the training and testing sets for the

input parameters p_train, t_train, and p_test is different from

that of BPNN and the ELM classifiers, which should be the

number of samples ×feature properties.

3 Results

3.1 The preprocessing results

After de-noising the ABP signal using an integer coefficient notch

filter and an integer coefficient low-pass filter, a clean ABP signal is

obtained. Figure 6 displays the ABP before and after filtering for an ET

patient. The AC interference and baseline drift are presented in

Figure 6A, and the red box of Figure 6A is enlarged to Figure 6B in

order to clearly observe these noises. It can be observed that the AC

interference and the baseline drift have been wiped out in Figure 6C, the

EMG interference has been eliminated in Figure 6Dbased on Figure 6C,

and it can be clearly observed that the burr is eliminated in Figure 6C.

3.2 Pulse rate variability extraction results

The results of Peaks in subjects extracted from the ABP signal

of different groups by the methods of SWIDFT and manual

calibration are illustrated in Figure 7. Also, it can be observed that

the method is highly accurate and robustly stable, which can be

engaged effectively for PRV calculations.

The PRV results of subjects extracted based on the Peaks

detection are illustrated in Figure 8, from which it is obvious that

the amplitudes of those PRV signals are different. The PRV signals’

average of healthy young, healthy old, EB, ET, VT, and VF are

75.902 beat per minute (bpm), 60.282 beat per minute (bpm),

44.462 bpm, 137.598 bpm, 112.760 bpm, and 84.714 bpm,

respectively. The average heartbeat of EB is the lowest, while that

of ET is the highest. The average heartbeat of VF is higher than that

of the EB subjects and lower than that of the VT subjects.

3.3 Feature extraction results

A total of 19 features (defined in Section 2.2.3) were extracted

from the PRV signal, and the statistical results of the features are

FIGURE 6
ABP signal before and after filtering for an ET patient. (A) ABP signal before filtering. (B) Enlargement of the red box (A). (C) De-nosing the ABP
signal by an integer coefficient notch filter. (D) De-nosing the ABP signal obtained (C) by an integer coefficient low-pass filter.
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presented as “mean ± standard deviation” in Table 2. In total, we

extracted the 143853 PRV signal from the ABP signal, for which

we calculated a feature vector of 19 × 139719. Among them, the

feature vectors for healthy, EB, ET, VT, and VF subjects are 19 ×

93516, 19 × 6475, 19 × 16124, 19 × 22083, and 19 × 1521,

respectively.

3.4 Feature dimensionality reduction
results

To reduce the complexity of the algorithm without affecting

the accuracy as much as possible, the features extracted from the

PRV signal need to be dimensionalized by the method of RF.

FIGURE 7
Peaks of ABP signal extracted. (A) Peak detection of a healthy young subject. (B) Peak detection of a healthy old subject. (C) Peak detection of an
EB subject. (D) Peak detection of an ET subject. (E) Peak detection of a VT subject. (F) Peak detection of a VF subject.
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The magnitude of the features calculated with RF is displayed

in Figure 9, the mean decrease of accuracy is given in Figure 9A,

and the mean decrease of Gini index is given in Figure 9B. For

each feature, the trend of the Gini index and accuracy is

essentially the same, which ensures the correctness of feature

importance on both sides. The feature values of the accuracy and

Gini index are illustrated in the third and fourth columns of

Table 3. Table 3 displays the result of feature dimensionality

reduction with RF, and the statistical results of healthy and four

life-threatening arrhythmia patients are shown in column 2.

According to Figure 8 and the feature values of accuracy and

Gini index, 15 feature parameters are selected, which contains

most of the information about the PRV signal. In addition, the

results of feature selection (h) shows in the last column of Table 3,

where h = 1 is the feature accepted and h = 0 is the feature

rejected. Therefore, in this study, 15 features can be exploited to

detect life-threatening arrhythmias, and the feature vector

becomes 15 × 139719.

3.5 Classification results

In this study, kappa coefficients (Islam et al., 2018) and accuracy

(Sabut et al., 2021) were exploited to calculate the average

FIGURE 8
PRV extracted. (A) PRV of a healthy young subject. (B) PRV of a healthy old subject. (C) PRV of an EB subject. (D) PRV of an ET subject. (E) PRV of a
VT subject. (F) PRV of a VF subject.
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performance of supervised learning to recognize the life-threatening

arrhythmia results. The accuracy is calculated as follows

accuracy � TN + TP

TN + FP + TP + FN
× 100%, (29)

where the parameters “TN,” “FP,” “TP,” and “FN” are true

negative, false positive, true positive, and false negative of the

classification result, respectively.

The kappa coefficient (kappa) is calculated as follows

kappa � p1 − p2

1 − p2
, (30)

p1 � ∑r
t�1Qtt

M
, (31)

p2 � ∑r
t�1(Qt+ × Q+t)

M2
. (32)

Moreover, the kappa(i) is utilized to evaluate the average

performance of the classification results for the healthy and the

TABLE 2 Results of feature extraction.

Feature Healthy EB ET VT VF

Mean (bpm) 64.416 ± 9.927 68.415 ± 17.993 127.740 ± 25.192 97.849 ± 16.322 106.964 ± 40.108

Std (bpm) 4.225 ± 4.135 5.468 ± 5.469 19.756 ± 10.522 11.709 ± 8.557 25.690 ± 10.921

RMSD (bpm) 4.398 ± 5.280 6.022 ± 5.937 25.304 ± 12.951 15.603 ± 10.819 34.148 ± 14.017

NRMSD 0.070 ± 0.089 0.101 ± 0.106 0.201 ± 0.112 0.155 ± 0.101 0.327 ± 0.104

PNN40 0.282 ± 0.232 0.272 ± 0.284 0.509 ± 0.262 0.387 ± 0.274 0.809 ± 0.133

PNN70 0.116 ± 0.177 0.156 ± 0.222 0.364 ± 0.218 0.272 ± 0.230 0.712 ± 0.169

Mid (bpm) 63.982 ± 10.061 69.291 ± 17.707 128.012 ± 24.466 96.873 ± 16.795 106.532 ± 42.183

IQR 1.075 ± 0.082 1.105 ± 0.167 1.214 ± 0.181 1.116 ± 0.135 1.468 ± 0.351

LF_HF 0.690 ± 0.620 0.322 ± 0.396 0.326 ± 0.391 0.327 ± 0.391 0.358 ± 0.466

Sd1_Sd2 0.600 ± 0.285 1.008 ± 0.461 1.080 ± 0.502 1.075 ± 0.383 1.136 ± 0.524

Se 17,957.633 ± 48,104.424 84,636.350 ± 207,135.375 28,566.523 ± 33,315.262 48,468.728 ± 653,737.846 127,469.782 ± 153,701.838

TPR_PR 0.387 ± 0.102 0.298 ± 0.113 0.294 ± 0.107 0.277 ± 0.117 0.283 ± 0.099

ShE_PR 0.770 ± 0.263 0.733 ± 0.282 0.798 ± 0.232 0.677 ± 0.267 0.833 ± 0.219

SamE_PR 1.401 ± 0.541 0.924 ± 0.659 1.097 ± 0.777 0.888 ± 0.697 1.151 ± 0.752

C_ SamE_PR −3.445 ± 0.565 −3.952 ± 0.721 −4.426 ± 0.777 −4.374 ± 0.727 −4.151 ± 0.754

PE_PR 5.145 ± 0.223 4.013 ± 0.399 4.158 ± 0.158 4.108 ± 0.207 4.174 ± 0.140

RMSD_APM 0.088 ± 0.062 0.245 ± 0.183 0.837 ± 0.397 0.610 ± 0.419 0.584 ± 0.224

SamE_APM 1.380 ± 0.498 1.106 ± 0.675 1.124 ± 0.816 1.071 ± 0.661 1.336 ± 0.697

TPR_APM 0.461 ± 0.090 0.381 ± 0.108 0.283 ± 0.096 0.272 ± 0.115 0.286 ± 0.126

FIGURE 9
Magnitude of feature. (A) Mean decrease in accuracy. (B) Mean decrease in the Gini index.
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four life-threatening arrhythmia subjects, and the i is the label of

five types of subjects.

kappa(i) � Ptt − Pt+P+t
P+t − Pt+P+t

, (33)

Ptt � Qtt

M
, (34)

Pt+ � Qt+
M

, (35)

P+t � Q+t
M

. (36)

where “p1” is the rate of correct classification, “p2” is the rate of

incorrect classification, “Qtt” is the sum of elements on the

diagonal of the column matrix, “r” is the number of features,

“M” is the number of classes, and “Qt+” and “Q+t” are the sum of

elements on tth row and column, respectively. Here, “r” and “M”

are equal to 15 and 5, respectively. The kappa∈[-1,1], and the

closer the value to 1, the better the classification result.

In Table 3, 15 features were selected by RF to form the feature

vector. Therefore, the size of the feature vector becomes 15 ×

139,719. We randomly selected 80 and 20 percent of the features

as the training set and the test set, respectively. The features of the

training and test sets were randomly changed 100 times to

minimize the influence of input data differences, and the

procedure was run 100 times in order to verify the

classification accuracy of BPNN, ELM, and DT. The results of

classification performance are displayed as “mean ± standard

deviation” in Table 3, and 1, 2, 3, 4, and 5 are the labels for

healthy, EB, ET, VT, and VF subjects, respectively.

As demonstrated in Table 4, the average performance of the

classifier was verified with accuracy and kappa coefficient, whose

result of BPNN is 94.85 ± 1.33% and 89.95 ± 2.62%, that of ELM

is 95.05 ± 0.14% and 90.28 ± 0.28%, and that of DT is 98.76 ±

0.08% and 97.59 ± 0.15%. Therefore, the DT classifier has the best

average performance in identifying those four life-threatening

arrhythmias. In addition, the time consumption of BPNN is

100.58 ± 26.49 s, that of ELM is 8.63 ± 0.22 s, and that of DT is

1.12 ± 0.09 s. In brief, the performance of the DT classifier is

optimal in the detection of the four arrhythmias. For identifying

these life-threatening arrhythmias with the DT classifier, healthy

subjects have the highest average performance with kappa (1) of

99.94 ± 0.05%, and VF patients have the lowest average

performance with kappa (5) of 77.87 ± 2.39%. In addition, the

average performance to detect EB, ET, and VF are all over

95.00%. With regard to time consumption, the DT and ELM

classifiers take significantly less time than the BPNN classifier,

which is because the BPNN classifier needs to constantly adjust

the weights and thresholds.

4 Discussion

In this study, we propose a method to recognize four life-

threatening arrhythmias based on the PRV signal calculated from

the ABP signal of 2015 “PhysioNet/CinC” and “Fantasia”

databases. A total of 19 features were extracted, and 15 of

them were selected after feature dimensionality reduction to

train and test the classifier. It can be illustrated that the DT

classifier has the best average performance with accuracy and

kappa of 97.59 ± 0.15% and 99.94 ± 0.05% in Table 4,

respectively.

Figure 10 presents the ABP and PRV signals in different types

of patients, where the green line is the standard of whether the

disease is present or not, and the EB (1), EB (2), ET (1), VT (1),

and VF (1) are the signals of those four life-threatening burst

periods. In general, the sudden segment signals EB (1), EB (2), ET

TABLE 3 Results of feature dimensionality reduction with RF.

Feature Arrhythmia Magnitude

Accuracy Gini index h

Mean (bpm) 77.656 ± 26.427 0.14803 9190.703 1

Std (bpm) 7.491 ± 8.342 0.04319 2875.464 1

RMSD (bpm) 8.981 ± 10.923 0.04695 2509.154 1

NRMSD 0.103 ± 0.109 0.03050 1566.921 1

PNN40 0.330 ± 0.261 0.01856 658.777 1

PNN70 0.178 ± 0.220 0.02003 650.410 1

Mid_PR 77.279 ± 26.823 0.12823 9310.805 1

IQR 1.103 ± 0.131 0.03286 1326.019 1

LF_HF 0.570 ± 0.581 0.00151 296.167 0

Sd1_Sd2 0.755 ± 0.411 0.03250 1834.461 1

Se 28286.557 ± 268061.587 0.03482 1744.127 1

TPR_PR 0.353 ± 0.116 0.01240 557.654 0

ShE_PR 0.758 ± 0.263 0.01369 623.074 1

SamE_PR 1.260 ± 0.642 0.01170 350.191 0

CSampEn −3.736 ± 0.760 0.02585 2423.171 1

PE_PR 4.804 ± 0.535 0.29766 10999.265 1

RMSD_APM 0.269 ± 0.360 0.10571 6848.117 1

SamE_APM 1.288 ± 0.596 0.01161 676.207 0

TPR_APM 0.405 ± 0.127 0.04555 2737.818 1

TABLE 4 Classification results.

Classifier BPNN ELM DT

Accuracy (%) 94.85 ± 1.33 95.05 ± 0.14 98.76 ± 0.08

Kappa (%) 89.95 ± 2.62 90.28 ± 0.28 97.59 ± 0.15

Kappa (1) (%) 99.60 ± 0.22 98.43 ± 0.22 99.94 ± 0.05

Kappa (2) (%) 93.02 ± 2.70 88.39 ± 1.18 98.70 ± 0.37

Kappa (3) (%) 80.43 ± 7.42 92.70 ± 0.69 96.87 ± 0.49

Kappa (4) (%) 82.22 ± 3.26 78.07 ± 0.81 95.46 ± 0.40

Kappa (5) (%) 72.51 ± 4.21 75.08 ± 2.45 77.87 ± 2.39

Time(s) 100.58 ± 26.49 8.63 ± 0.22 1.12 ± 0.09
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FIGURE 10
ABP and PRV signals of patients. (A) ABP and PRV signals of a patient with EB. (B) ABP and PRV signals of a patient with ET. (C) ABP and PRV signals
of a patient with VT. (D) ABP and PRV signals of a patient with VF.
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(1), VT (1), and VF (1) in patients are used for the recognition of

life-threatening arrhythmias. However, since the “transient” of

life-threatening arrhythmias can paralyze the patient and the

signal can change rapidly and return to normal values, it is more

important to confirm for the patient before the burst, which can

alert the patients and send them to the hospital in time. The

method we used detects not only the burst segment signal but

also the normal segment signal before and after the burst, that is,

the complete PRV signal in Figure 10, which is effective in

identifying episodes of life-threatening arrhythmias.

So far, some researchers have studied the recognition of life-

threatening arrhythmias. For example, Lee, K. et al. utilized

feature parameters RMSD and ShE to identify AF (Lee et al.,

2017), Eerikäinen, L.M. et al. used feature parameters PNN40,

PNN70, ShE, RMSD, nRMSD, SampEn, and CSampEn to detect

AF (Eerikäinen et al., 2018). Although these methods detect other

cardiovascular diseases rather than those four life-threatening

arrhythmias described in this study, they can provide ideas for

our study. Therefore, the recognition of life-threatening

arrhythmias is performed by the method used in this work for

the extracted features of these researchers.

The average performance results of training and testing the

DT classifier with the features extracted by Lee, K. et al. and

Eerikäinen, L.M. et al. are displayed in Table 5. For the features

extracted by Lee, K. et al., the performance of the DT classifier

gives an accuracy of 83.32 ± 0.22% and kappa of 65.88 ± 0.42%,

and the best average performance is ET with the kappa of 68.81 ±

0.92%. For the features extracted by Eerikäinen, L.M. et al., the

performance of the DT classifier gives an accuracy of 95.27 ±

0.16% and kappa of 90.72 ± 0.32%, and the best average

performance is healthy with the kappa of 95.90 ± 0.37%. In

addition, the average performance of identifying those four life-

threatening arrhythmias using the features utilized in Eerikäinen,

L.M. et al. is better than that of Lee, K. et al., and the difference

between them for accuracy and kappa is 11.95% and 24.84%,

respectively, which is due to the fact that more features are

engaged by Eerikäinen, L.M. et al. However, the accuracy and

kappa values of Eerikäinen et al. are 3.49% and 6.87% lower than

those of the method we used, which proves that the more features

there are, the more comprehensive the information contained,

and the higher the classification performance. However, it is not

better to use more features if these features are correlated; it will

cause a dimensional disaster which will affect the training of the

model, reduce the average performance of the classification, and

be more time consuming.

5 Conclusion

In this study, a method is presented to identify four types of

life-threatening arrhythmia identification based on the PRV

signal. First, the noise of ABP signals is eliminated during

preprocessing to de-noise the EMG interference, AC

interference, and baseline drift. Then, PRV signals are

extracted, and 15 features are obtained and downscaled from

the PRV signal to form a feature vector. Finally, the BPNN, ELM,

and DT classifiers are trained and tested based on the feature

vector. The results show that DT has the best average

performance with an accuracy of over 98.50% and a kappa of

over 97.50%, which is better than some previous studies.

Therefore, the method we used can effectively detect EB, ET,

VT, and VF and has a potential for monitoring at home. In

subsequent studies, the detection of motion artifacts will be

added to the preprocessing part to improve the signal

availability, and some algorithms such as feature extraction

will be optimized. In the future, the DT model based on PRV

signals is expected to be used for the recognition of other life-

threatening arrhythmias.
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A Corrigendum on

A life-threatening arrhythmia detection method based on pulse rate

variability analysis and decision tree

by Chou L, Liu J, Gong S and Chou Y (2022). Front. Physiol. 13:1008111. doi: 10.3389/fphys.
2022.1008111

In the published article, there was an error in Affiliation(s) [1]. Instead of “[Country

School of Electrical and Automatic Engineering, Changshu Institute of Technology,

Suzhou, China],” it should be “[School of Electrical and Automatic Engineering,

Changshu Institute of Technology, Suzhou, China].”

The authors apologize for this error and state that this does not change the scientific

conclusions of the article in any way. The original article has been updated.
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Background: Carbon monoxide (CO) is gaining increased attention in air

pollution-induced arrhythmias. The severe cardiotoxic consequences of CO

urgently require effective pharmacotherapy to treat it. However, existing

evidence demonstrates that CO can induce arrhythmias by directly affecting

multiple ion channels, which is a pathway distinct from heart ischemia and has

received less concern in clinical treatment.

Objective: To evaluate the efficacy of some common clinical antiarrhythmic

drugs for CO-induced arrhythmias, and to propose a potential

pharmacotherapy for CO-induced arrhythmias through the virtual

pathological cell and tissue models.

Methods: Two pathological models describing CO effects on healthy and failing

hearts were constructed as control baseline models. After this, we first assessed

the efficacy of some common antiarrhythmic drugs like ranolazine,

amiodarone, nifedipine, etc., by incorporating their ion channel-level effects

into the cell model. Cellular biomarkers like action potential duration and

tissue-level biomarkers such as the QT interval from pseudo-ECGs were

obtained to assess the drug efficacy. In addition, we also evaluated multiple

specific IKr activators in a similar way to multi-channel blocking drugs, as the IKr
activator showed great potency in dealing with CO-induced pathological

changes.

Results: Simulation results showed that the tested seven antiarrhythmic drugs

failed to rescue the heart from CO-induced arrhythmias in terms of the action

potential and the ECG manifestation. Some of them even worsened the

condition of arrhythmogenesis. In contrast, IKr activators like HW-0168

effectively alleviated the proarrhythmic effects of CO.

Conclusion: Current antiarrhythmic drugs including the ranolazine suggested

in previous studies did not achieve therapeutic effects for the cardiotoxicity of

CO, and we showed that the specific IKr activator is a promising

pharmacotherapy for the treatment of CO-induced arrhythmias.
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1 Introduction

Carbon monoxide (CO) is one of the major gaseous

pollutants in traffic pollution. Epidemiological studies

have substantiated the association of urban air pollution

with cardiovascular events, among which CO is considered

as a critical contributor (Hoek et al., 2002; Hoffmann et al.,

2007; Allen et al., 2009; Bell et al., 2009). The traditional

theory of CO poisoning attributes CO-induced arrhythmias

to tissue hypoxia, a condition that arises from the high-

affinity binding of CO to hemoglobin, which may predispose

to arrhythmias (Hantson, 2019). However, accumulating

evidences have demonstrated that CO can also impair

cardiac electrophysiology by exerting direct effects on

multiple ion channels. For sodium channels, Dallas et al.

demonstrated that CO could enhance the late Na+ current

(INaL) by increasing the production of NO and the

subsequent nitrosylation of the NaV1.5 channel protein

(Dallas et al., 2012). In addition, CO could inhibit the INa

and the process was dependent on the NO formation and

channel redox states (Elies et al., 2014). For calcium

channels, Scragg et al. found that CO inhibited L-type

Ca2+ channels (ICaL) via redox modulation of key cysteine

residues by mitochondrial reactive oxygen species (Scragg

et al., 2008). Finally, for potassium channels, CO inhibited

inward rectifier K+ current (IK1) by modulating the

interaction between Kir2.0 channels and

phosphatidylinositol (4, 5)-diphosphate (Liang et al.,

2014), and inhibited the rapid delayed rectifier K+ current

(IKr) by promoting the production of peroxynitrite

(ONOO−) (Al-Owais et al., 2017). These remodeling

effects together contributed to a prolonged QT interval

and predisposed to severe ventricular arrhythmias like

Torsades de Pointes (TdP) (Jiang et al., 2022). Such

arrhythmogenic influences may get even worse in

susceptible populations like heart failure (HF) patients.

This is because the repolarization reserve has been

reduced in failing hearts, and the further depression of IKr
by CO can easily lead to early-afterdepolarization (EAD)

activities in cardiomyocytes and ectopic beats at the organ

level, which act as triggers for reentry arrhythmias (Al-Owais

et al., 2021).

The serious consequence of CO cardiotoxicity has raised

concerns on finding an effective pharmacotherapy for it. In

this regard, potential drugs have been raised to deal with the

proarrhythmic effects of CO. For instance, the antianginal

drug ranolazine was suggested by Dallas et al. for its

significant therapeutic effects on CO-induced arrhythmias

(Dallas et al., 2012). In vivo experiments showed that

ranolazine corrected QT variability and arrhythmias

induced by CO, and further cellular investigations

reported that ranolazine abolished CO-induced early

after-depolarizations (EADs) in rat myocytes via the

inhibition of INaL. This study highlighted a potential

pharmacological strategy for the treatment of CO-

induced arrhythmias; however, the efficacy of ranolazine

was evaluated in rats, and the significant discrepancy

between rats and human action potentials may limit their

conclusions. Despite that ranolazine can inhibit INaL and

correct CO-induced arrhythmias in rat ventricular

myocytes, the drug is also known to block IKr (IC50

12 μM) (Rajamani et al., 2008) in an overlapped range

with INaL (IC50 5–21 μM) (Moreno et al., 2013).

Therefore, considering the complicated multi-channel

blocking effect of ranolazine, whether it still exerts

antiarrhythmic effects in the human ventricle needs to be

re-assessed. In addition to ranolazine, our previous

simulation study on CO exposure showed that the

inhibition of IKr by CO is the main factor responsible for

the substantial prolongation of the QT interval in patients

(Jiang et al., 2022). Therefore, specific IKr activators such as

HW-0168 (Dong et al., 2019) might benefit the treatment of

CO-induced arrhythmias.

In this study, we conducted an in silico assessment of

pharmacotherapy for the treatment of CO-induced

ventricular arrhythmias in healthy and failing hearts.

First, human myocardial cell and tissue models with the

effects of CO incorporated were constructed on healthy

and heart failure conditions, respectively, to act as

baseline pharmacological models for the screening of

drugs. Next, we evaluated several of the clinically

available antiarrhythmic drugs described above by

incorporating their experimentally-measured dose-

dependent effects on various ion channels. The class IV

antiarrhythmic drugs (i.e., calcium channel blockers

including verapamil, nifedipine, and bepridil) were

mainly focused on due to their ability of attenuating

depolarization forces. We also tested three other multi-

channel drugs for a wide coverage of the antiarrhythmic

drug classification. These drugs are namely quinidine

(class I), amiodarone (class III), and vanoxerine (class

III). Noted that, like the case of ranolazine, all these six

drugs are multi-channel blockers and can block some

critical channels concurrently. Action potentials and

pseudo-ECGs after the application of drugs were

simulated and used as the criteria for drug efficacy.

In addition, due to the critical role of IKr in mediating

CO-induced arrhythmogenesis, we also evaluated

multiple IKr activators for potential pharmacotherapy.

Comprehensive Simulations were conducted on cell
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populations, 1D transmural strands, and 2D ventricular

slice models to verify the robustness of the reported

findings.

2 Methods

2.1 Modeling action potentials of human
ventricular myocytes

The O’Hara-Rudy dynamics (ORd) model (O’Hara et al.,

2011) was utilized to simulate the electrophysiology of

human ventricular myocytes in this study. The ORd

model is a comprehensive human cell model that was

created using human experimental data. To overcome its

unphysiologically slow conduction velocity (Elshrif and

Cherry, 2014), the original INa in the ORd model was

substituted with that in the Tusscher et al. biophysically

detailed model (TNNP06 model) (Ten Tusscher and

Panfilov, 2006).

A conventional Hodgkin-Huxley model of a cardiac cell

was implemented at the cellular level, with the model equation

being:

zVm

zt
� −(Iion + Istim)

Cm
(1)

where Vm is the membrane potential, Iion is the sum of

all transmembrane ionic currents, and Istim is the

externally applied stimulus current. Cm is the membrane

capacitance.

The cell model of heart failure (HF) used in this study

was based on Elshrif et al.’s research (Elshrif et al., 2015),

where a collection of HF-induced ion channel remodeling

effects were incorporated into the ORd model. Similarly, the

effects of CORM-2 (i.e., a CO-releasing molecule) were

modeled based on previous research by Al-Owais et al.

(Al-Owais et al., 2021) and were incorporated into the

healthy and HF cell models. The reason we chose CORM-

2 rather than CO is that CORM-2 is one of the most

common CO-releasing molecules in biological research,

and is safer and more controllable than CO. More details

can be found in Sections SII and SIII in the Supplementary

Material.

2.2 Modeling the effects of ranolazine and
HW-0168 on ion channels

Available experimental data regarding the effects of

ranolazine and HW-0168 from previous studies have

been summarized in Table 1 (Antzelevitch et al., 2004;

Rajamani et al., 2008; Beyder et al., 2012; Moreno et al.,

2013; Dong et al., 2019). Specifically, ranolazine has been

shown to exert dose-dependent blocking effects on INa

(Beyder et al., 2012), INaL (Antzelevitch et al., 2004),

INaCa (Antzelevitch et al., 2004), ICaL (Antzelevitch et al.,

2004), IKr (Rajamani et al., 2008). Dose-response curves for

ranolazine-affected ion channels were fitted using the

following Hill functions:

INa

fRAN
Na � 1.0

1.0 + ([RAN]/53.6)2.4 (2)

INaL

fRAN
NaL � 1.0

1.0 + ([RAN]/6.23)1.0 (3)

INaCa

fRAN
NaCa �

1.0

1.0 + ([RAN]/91.0)1.48 (4)

ICaL

fRAN
CaL � 1.0

1.0 + ([RAN]/296.0)1.0 (5)

TABLE 1 Summary of data for ranolazine and HW-0168.

INa INaL INaCa ICaL IKr

Ranolazine IC50 (μM) 53.6 6.23 91 296 12

Hill 2.4 1 1.48 1 1

Species HEK 293 Canine Canine Canine HEK 293

Ref Beyder et al. (2012) Moreno et al. (2013) Antzelevitch et al. (2004) Antzelevitch et al. (2004) Rajamani et al. (2008)

HW-0168 EC50 (μM) n/a n/a n/a n/a 0.41

Hill n/a n/a n/a n/a 0.73

Actmax n/a n/a n/a n/a 2.8

Species n/a n/a n/a n/a HEK 293

Ref n/a n/a n/a n/a Dong et al. (2019)
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IKr

fRAN
Na � 1.0

1.0 + ([RAN]/12.0)1.0 (6)

where [RAN] is the dose of ranolazine used in experiments.

The fitting results are illustrated in Figure 1A. For the IKr
activator, HW-0168, only IKr was reported to be affected by the

drug (Dong et al., 2019); therefore, the data were fitted

using Eq. 7:

IKr

fHW
Kr � 1.8

1.0 + (0.41/[HW])0.73 + 1 (7)

where [HW] is the dose of HW-0168 used in the experiment.

The fitted dose-dependent curve is illustrated in Figure 1B.

In this study, we used 10 μM and 0.5 μM for ranolazine and

HW-0168, respectively. The above-fitted equations were finally

incorporated into the ‘Healthy + CO’ and ‘HF + CO’ cell

models.

The ionic current under the action of the drug is calculated by

Eq. 8:

IDrug
ion � Iion · fDrug

ion (8)

where fDrug
ion represent the effect of a drug on a certain ionic

current.

2.3 Simulating the efficacy of multi-
channel blockers and specific IKr channel
activators

In addition to ranolazine and HW-0168, we also selected six

multi-channel blockers (i.e., amiodarone, verapamil, nifedipine,

quinidine, vanoxerine, and bepridil) and four specific IKr
activators (i.e., KB130015, ICA-105574, NS1643, NS3623) for

efficacy simulation and screening of the drugs. A simple pore

block theory (Brennan et al., 2009) was used in this study to

model the interactions between drugs and ion channels. Based on

this theory, the effect of drugs blocking ion channels was fitted by

the following formula:

θ � 1

1 + (IC50/[D])nH (9)

where θ is the blocking efficiency, [D] is the concentration of a

drug, IC50 is the half-maximal inhibitory concentration, and nH

is the Hill coefficient.

The effect of drugs activating ion channels was fitted by

Eq. 11:

Y � Act max − 1

1 + (EC50/[D])nH (10)

where Y is the activation efficiency, and Actmax is the maximum

activation efficiency, EC50 is the compound concentration

resulting in 50% of the Actmax.

FIGURE 1
Dose dependent effects of ranolazine and HW-0168 on ionic currents. (A) Effects of ranolazine on INa, INaL, INaCa, ICaL and IKr. (B) Effects of HW-
0168 on IKr. Green boxes indicate therapeutic ranges of ranolazine (5–10 μM) and HW-0168 (0.5–1 μM).
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The six multi-channel blockers act on related ion

channels in a dose-dependent manner, and the related

parameters are listed in Table 2. To evaluate the drug

efficacy more objectively, we explored all drugs at three

doses based on their Cmax, as shown in Table 3. The four

specific IKr activators activated IKr currents in a dose-

dependent manner as well, and the relevant parameters

are shown in Table 4.

TABLE 2 Summary of data for six multi-channel blockers.

Drug INa INaL ICaL Ito IKr IK1 IKs INaK INaCa

Amiodarone IC50

(μM)
40.4 9 5.8 n/a 0.03 n/a 3.84 15.6 3.3

Hill 0.75 0.4 1 n/a 1 n/a 0.63 1 1

Species Rabbit MANTA* Guinea pig n/a HEK-293 n/a Guinea pig Rabbit Guinea pig

Ref Suzuki et al.
(2013)

Sutanto et al.
(2019)

Nishimura
et al. (1989)

n/a Mirams et al.
(2011)

n/a Zankov et al.
(2005)

Gray
et al.
(1998)

Watanabe
and Kimura,
(2000)

Verapamil IC50

(μM)
7.221 6.094 0.0794 n/a 0.831 9.033 65.587 n/a n/a

Hill 0.95 1.24 0.69 n/a 1.17 1 0.92 n/a n/a

Species HEK 293 HEK 293 CHO cell n/a HEK 293 HEK 293 HEK 293 n/a n/a

Ref Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

n/a Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

n/a n/a

Nifedipine IC50

(μM)
56.2 n/a 0.3 26.8 275 260 360 n/a n/a

Hill 0.59 n/a 1 0.97 0.9 0.85 0.97 n/a n/a

Species Human n/a Guinea pig Human Guinea pig Guinea pig Guinea pig n/a n/a

Ref Li et al. (2009) n/a Shen et al.
(2000)

Gao et al.
(2005)

Zhabyeyev
et al. (2000)

Zhabyeyev
et al. (2000)

Zhabyeyev
et al. (2000)

n/a n/a

Quinidine IC50

(μM)
17 12 14.9 21.8 0.41 42.6 44 n/a n/a

Hill 0.92 1 1.1 0.67 0.76 0.25 1.8 n/a n/a

Species Guinea pig Rabbit Guinea pig Human HEK 293 Human CHO cell n/a n/a

Ref Koumi et al.
(1992)

Wu et al.
(2008)

Zhang and
Hancox,
(2002)

Nenov
et al.
(1998)

Paul et al.
(2002)

Nenov et al.
(1998)

Kang et al.
(2001)

n/a n/a

Vanoxerine IC50

(μM)
0.0346 0.0852 0.0162 2 0.0093 98.142 2.9 n/a n/a

Hill 0.97 1.62 0.63 1 1.11 1 1 n/a n/a

Species HEK 293 HEK 293 CHO cell Mouse L
cells

HEK 293 HEK 293 CHO cell n/a n/a

Ref Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Lacerda
et al.
(2010)

Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Lacerda et al.
(2010)

n/a n/a

Bepridil IC50

(μM)
0.517 0.411 0.157 n/a 0.0738 66.536 6.156 n/a n/a

Hill 1.14 1.72 1.08 n/a 1.33 1 2.33 n/a n/a

Species HEK 293 HEK 293 CHO cell n/a HEK 293 HEK 293 HEK 293 n/a n/a

Ref Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

n/a Obejero-Paz
et al. (2015)

Obejero-Paz
et al. (2015)

Lacerda et al.
(2010)

n/a n/a

*MANTA, theMaastricht Antiarrhythmic Drug Evaluator, integrated published computational cardiomyocyte models from different species, regions and disease conditions. #The drugs in

the table are all inhibitory for the channels listed, so their effects are not individually marked in the table.
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2.4 Modeling the conduction of action
potentials in one-dimensional (1D)
transmural ventricular strands

The 1D transmural ventricular strand model, which is a

linear syncytium formed by coupling multiple cells, can be

calculated by adding a diffusion term to the cell model equation:

zVm

zt
� D(z2Vm

zx2
) − Iion

Cm
(11)

where D is the scalar diffusion coefficient that decides the

conduction velocity of APs.

The 1D transmural strand was 15 mm long, which was close

to the normal range of the human transmural ventricle width

(~4.0–14.0 mm) (Drouin et al., 1995; Yan et al., 1998). The strand

was discretized into 100 interconnected nodes with a spatial

precision of 0.15 mm, which was consistent with the reported cell

length [i.e., 80–150 μm (Hinrichs et al., 2011)]. The proportions

for transmural cell types were set to 25:35:40 for ENDO, MID,

and EPI cells, which were identical to that used in previous

studies (Zhang and Hancox, 2004; Luo et al., 2017). Such

proportions reliably reproduced a positive T wave in the

computed pseudo-ECG under control (healthy) conditions.

The diffusion coefficient D was set to 0.127 mm2/ms, giving a

TABLE 4 Summary of data for four specific IKr activators.

IKr activators KB130015 ICA-105574 NS1643 NS3623

EC50 (μM) 12.2 0.42 10.4 79.4

Hill 1.1 2.5 1.8 1.3

Actmax 4.7 5.5 1.5 2.9

Species HEK 293 HEK 293 Xenopous oocytes Xenopous oocytes

Ref Gessner et al. (2010) Asayama et al. (2013) Casis et al. (2006) Hansen et al. (2006)

FIGURE 2
Schematic of 1D homogenous ventricular strandmodel with CO-affected regions. The tissue is 15 mm in length and contains 100 cells. The red
part in the middle indicates the susceptible region where the number of cells varies from 0 to 100.

TABLE 3 Cmax and experimental dose allocation for six multi-channel blockers.

Amiodarone Verapamil Nifedipine Quinidine Vanoxerine Bepridil

Cmax (μM) 0.0001–0.0005 0.025–0.081 0.0031–0.0077 0.924–3.237 0.00088–0.00753 0.01–0.033

Ref Mirams et al. (2011) Mirams et al. (2011) Mirams et al. (2011) Mirams et al. (2011) Hagiwara-Nagasawa et al. (2021) Mirams et al. (2011)

High dose (μM) 0.005 0.3 0.05 10 0.05 0.1

Medium
dose (μM)

0.0005 0.03 0.005 1 0.005 0.01

Low dose (μM) 0.00005 0.003 0.0005 0.1 0.0005 0.001
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CV of planar excitation waves of 70 cm/s through the strand,

which matched well with the experimental data from human

ventricles (Taggart et al., 2000).

2.5 Modeling the conduction of action
potentials in the 1D strand with CO-
affected regions

To further quantify the critical size of EAD cells for

overcoming the source-sink effect and initiating triggers in

ventricular tissue, we simulated a 15 mm homogenous

ventricular strand consisting of only MID cells for the failing

heart, with the center of the strand (Figure 2, red region)

containing a variable number of contiguous cells affected by

CO. The number of cells in the susceptible region was gradually

increased until the synchronously occurred EADs overcame the

source-sink effect and trigger a premature beat. The critical cell

number was recorded as a metric for measuring the susceptibility

to arrhythmias.

2.6 Generating pseudo-ECGs using the 1D
model

The pseudo-ECG was calculated from the constructed 1D

strand model by the following equation (Gima and Rudy,

2002):

ϕe(x′) � a2

4
∫ (−∇Vm) · [∇1r]dx (12)

where ϕe is a unipolar potential generated by the strand, a is the

radius of the strand, dx is the spatial resolution, and r is the

Euclidean distance from a point x to another point x′.

As shown in Figure 3, the period from the earliest appearance of

the QRS complex to the end of the T-wave was defined as the QT

interval, measured in milliseconds. The end of the T-wave was

defined as the return of the descending limb to the TP baseline.

2.7 Modeling cell populations

To demonstrate the robustness of the reported findings, we

constructed cell population models with reference to previous

studies (Britton et al., 2013; Sutanto and Heijman, 2020).

Specifically, the maximum conductance of the nine major ionic

currents (INa, INaL, ICaL, IKr, IKs, IK1, Ito, INaCa, and INaK) in the

original deterministic model was scaled by a group of factors that

follow a normal distribution with mean 1.0 and standard deviation

0.2. In this way, 1,000 population model variants were obtained.

2.8 Dynamic restitution protocol

The CV dynamic restitution curves were obtained using a

dynamic pacing protocol. Specifically, the 1D strand model was

paced with a certain basic cycle length (BCL) until reading its

steady state upon which the CV value was recorded for that BCL.

The initial BCL was set to 3,000 ms and was decreased gradually

until the model failed to produce excitation waves. Based on the

‘CV-BCL’ pairs generated by the above protocol, CV restitution

curves could be plotted against BCL.

2.9 Modeling the conduction of excitation
waves on a two-dimensional (2D) realistic
ventricular slice

Similar to the 1D strand model, the monodomain equation

(Eq. 11) was adopted to describe the propagation of excitation

waves in the ventricular slice. Isotropic propagation was

assumed, and the diffusion coefficient D was set to

0.154 mm2/ms, to produce a CV of 0.74 m/s (Taggart et al.,

2000). The spatial step was set to 0.15 mm to be consistent with

that in 1D models. To mimic the physiological characteristics of

the Purkinje fibers, a series of supra-threshold stimuli were

applied to several pacing sites on the endocardium of the slice.

3 Results

3.1 Assessing the drug efficacy of multi-
channel blockers on CO-affected hearts

3.1.1 Effects of ranolazine on AP and ECG
Previous studies have suggested the drug ranolazine to be a

potential pharmacotherapy for the treatment of CO-induced

FIGURE 3
Schematic diagram of the QT interval measuring method.
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arrhythmias (Dallas et al., 2012). Therefore, we first tested the

efficacy of ranolazine on the baseline model of ‘healthy + CO’.

Simulation results are illustrated in Figure 4. Interestingly,

ranolazine aggravated the arrhythmogenesis of CO. At the

cellular level, it can be observed that ranolazine (10 μM)

further extended APDs of all cell types, and APD90 values of

ENDO, MID, and EPI cells were increased by 15.7%, 14.6%, and

20.3% based on CO conditions, respectively (Figure 4A). At the

tissue level, generated pseudo-ECGs using 1D transmural

ventricular strand models showed that ranolazine further

FIGURE 4
Actions of ranolazine (RAN) on CO-affected myocardial cells and tissues. (A) The comparison of action potentials of three cell types under
‘healthy’, ‘healthy + CO’, and ‘healthy + CO + RAN’ conditions. (B) Spatial-temporal plots under the ‘healthy + CO + RAN’ condition (Bi), and the
corresponding pseudo-ECG (Bii).

FIGURE 5
Effects of six multi-channel blockers at three doses on ECGmorphology under healthy conditions. (A) amiodarone, (B) quinidine, (C) nifedipine,
(D) verapamil, (E) vanoxerine and (F) bepridil. Blue ‘↓’ indicates the magnification of the rectangular area; red ‘↓’ indicates the failed depolarization
in ECG.
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prolonged the QT interval and decreased the T-wave amplitude

(Figure 4Bii). The effect of ranolazine was also reflected in

conduction properties, where the tissue with ranolazine owned

a wider wavelength (Figure 4Bi) than the control condition.

3.1.2 Effects of six multi-channel blockers
on ECG

To find out if there are any available medications for the

treatment of CO-induced arrhythmias, we collected the

experimental data regarding the blocking effects of drugs on

various channels as possible (see Table 2 in theMethod section),

and incorporated them into the baseline model to explore their

potential treatment to CO-induced arrhythmias. In this study,

three experimental doses were designed based on the Cmax of

these drugs (as shown in Table 3). The simulated pseudo-ECGs

are shown in Figure 5.

It can be observed that all six drugs failed to restore the

prolonged QT interval even at their ‘high’ doses that are

remarkably higher than the Cmax level (i.e., ‘high dose’ =

10×Cmax). Specifically, low doses of amiodarone, nifedipine,

verapamil, vanoxerine, and bepridil had no effects on the QT

interval, while a low dose of quinidine exerted mild QT

prolongation effects. When moderate doses were applied,

quinidine and vanoxerine considerably prolonged the QT

interval, while the other drugs still had no sensible effects.

Finally, at high doses, all drugs except nifedipine prolonged

the QT interval to varying degrees. Among them, vanoxerine

and bepridil considerably prolonged the QT interval, and

quinidine led to ECG repolarization failure.

3.1.3 Independent component analysis of ion
channels

To determine the independent role of each drug-affected ion

channels, we performed an ion mechanism analysis with

ranolazine as a representative case. First, we quantitatively

analyzed the individual role of each ion channel involved in

the action of ranolazine. APD90 was used as the metric, and the

results are summarized in Table 5. It can be observed that the

effects of ranolazine on INa, INaCa, and ICaL have no effect on

APD90. On the other hand, the inhibition effect of ranolazine on

INaL shortened the APD90 of all three cell types, demonstrating an

antiarrhythmic action; however, the simultaneously inhibited IKr
by ranolazine led to a more pronounced prolonging of APD,

TABLE 5 Effects of ranolazine-induced changes in single ion channels
on APD90.

Ion channels INa INaL INaCa ICaL IKr

APD90 (ENDO) 0 9.4%↓ 0 0 27.1%↑
APD90 (MID) 0 7.0%↓ 0 0 24.1%↑
APD90 (EPI) 0 4.4%↓ 0 0 26.3%↑

‘↑’ and ‘↓’indicate that the effect of the change of this ion channel on APD90 is

lengthening or shortening.

FIGURE 6
Simulation results of ranolazine single-channel analysis and Vulnerable Window (VW) in a 1D transmural ventricular strand model. (A) Pseudo-
ECG under the single-channel effect of ranolazine. (B) Simulation results for VW. (Bi) Distribution of VWs across the strand. Black and red belts stand
for the ‘CO’ and ‘CO + ranolazine’ conditions, respectively. (Bii) Comparisons of the average width of VWs in the two conditions.
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which offset the effects of INaL and aggravated the CO-induced

arrhythmogenesis at the cellular level.

Next, we analyzed the individual role of each ion channel in

the ECG changes, as shown in Figure 6A. Consistent with the

results at the cellular level, the effects of ranolazine on INa, INaCa,

and ICaL did not cause any obvious ECG changes. More

specifically, the IC50 values of ranolazine for INa, INaCa, and

ICaL were 53.6 μM, 91.0 μM, and 296.0 μM, and ranolazine at

10 μM inhibited only 1.8%, 3.7%, and 3.3% of INa, INaCa, and ICaL,

respectively, which had almost no effect on APD and ECG. As for

the INaL, the QT interval shortening effect caused by the

inhibition of INaL could not offset the QT interval

prolongation by the attenuation of IKr. So overall, ranolazine

eventually led to QT prolongation.

3.1.4 Effects of drugs on the transmural
dispersion of repolarization

In this part, we assessed the role of heterogeneity among

different ventricular cells on arrhythmias. Simulations at the

cellular level show that, under the action of ranolazine, the APD

difference between MID and ENDO cells (ΔAPDMID-ENDO)

decreased from 63 ms to 61 ms, and ΔAPDMID-EPI reduced

from 111 ms to 109 ms. The decreased ΔAPD among different

cell types suggested that the drug decreased the vulnerability in

terms of transmural heterogeneity. The following experiments of

vulnerable window measurements using transmural 1D strand

further confirmed this. As shown in Figures 6Bi,Bii, the average

width of the VW under the ‘CO + RAN’ condition is apparently

narrower compared to that in the CO condition (from 7.04 ms to

4.28 ms). The decreased temporal risk evidenced by the

vulnerable window changes is consistent with the cellular level

simulation results.

3.1.5 Effects of drugs on conduction velocity
Simulations demonstrated that the CV under ‘CO’ and ‘CO +

drug’ conditions were lower for all BCLs compared to the healthy

conditions (Figure 7A). Specifically, after the addition of

amiodarone, verapamil, nifedipine, and bepridil, the CV

dynamic restitution curves were almost unchanged compared

to CO conditions, suggesting that amiodarone, verapamil,

nifedipine, and bepridil had no effect in terms of the tissue

conduction properties (Figure 7B). Vanoxerine caused a further

decrease in CV on the basis of CO, and ranolazine led to a right

shift of the CV curve and an increase in the curve slope.

Quinidine caused a mild decrease in CV and impaired the

adaptability of tissue to fast heart rates (small BCLs).

In general, none of these drugs could restore the decreased

CV by CO, and some of them even aggravated this situation.

Furthermore, the decreased CV also contributed to a smaller

wavelength (calculated as CV×ERP) and might therefore help to

maintain the reentrant waves within a limited tissue size.

3.2 Assessing the drug efficacy of multi-
channel blockers on CO-affected hearts
accompanied by heart failure

The influences of the aforementioned drugs were also

evaluated under the heart failure condition. Simulated actions

of ranolazine on CO-affected cells and tissues of heart failure are

presented in Figure 8. Overall, ranolazine exacerbated the CO

and heart failure-induced arrhythmias. In detail, the CO-induced

2:1 alternated EADs in MID cells became 1:1 consecutive EADs

(Figure 8Aii), resulting in complete repolarization failure.

Ranolazine also led to the occurrence of EAD in EPI cells

(Figure 8Aiii). Above EAD activities in single cells did not

develop into ectopic beats in 1D ventricular strands due to

the ‘source-sink’ effect (Xie et al., 2010); however, ranolazine

resulted in the 1:1 conduction failure of excitation waves at the

pacing frequency of 1.25 Hz (Figure 8Bi). For the pseudo-ECG,

ranolazine did not eliminate the CO-induced ECG

morphological changes in heart failure tissue and further led

to failed depolarization due to the considerably prolonged

repolarization phase of the last cycle (Figure 8Bii).

FIGURE 7
Simulated CV restitution curves in different conditions. (A)CV restitution curves under ‘healthy’, ‘CO’, and ‘CO+drug’ conditions. Themagnified
view inside the blue rectangle was shown in (B).
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Figure 9 shows the effects of the other six multi-channel

blockers on ECG morphology in heart failure conditions. Due to

the remodeled transmural gradient of repolarization in the heart

failure condition, the T-wave was almost flattened. In terms of

the QT-interval, amiodarone (0.0005 μM), nifedipine

(0.005 μM), and verapamil (0.03 μM) had almost no effect on

FIGURE 8
Actions of ranolazine (RAN) on CO-affected myocardial cells and tissues accompanied by heart failure (HF). (A) The comparison of action
potentials of three cell types under ‘HF’, ‘HF + CO’, and ‘HF + CO + RAN’ conditions. (B) Spatial-temporal plots under the ‘HF + CO + RAN’ condition
(Bi), and the corresponding pseudo-ECGs (Bii).

FIGURE 9
Effects of six multi-channel blockers on CO-affected ECGmorphology by heart failure (HF). ECGmorphology of (A) amiodarone (0.0005 μM),
(B) quinidine (1 μM), (C) nifedipine (0.005 μM), (D) verapamil (0.03 μM), (E) vanoxerine (0.005 μM) and (F) bepridil (0.01 μM).
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the QT interval, and bepridil (0.01 μM) slightly prolonged the QT

interval. In addition, quinidine (1 μM) and vanoxerine

(0.005 μM) caused depolarization failure. Overall, all six drugs

were not effective against CO-induced arrhythmias in heart

failure conditions.

3.3 Investigating the critical cell number
for triggering ectopic beats

The baseline model of HF + CO showed that CO could

induce pronounced EAD activities in MID cells, but these

EADs did not evolve into ectopic beats in 1-D tissue due to the

‘source-sink’ effect (i.e., the depolarization force of EAD is not

able to trigger an excitation due to the limited number of EAD

cells) (Xie et al., 2010). Applying ranolazine did not trigger

ectopic beats in the tissue either; however, it did diminish the

repolarization ability in terms of the cellular action potential

(Figure 8A). To give a more intuitive presentation of the

increased proarrhythmic risk of ranolazine, we quantified

the risk by measuring the critical number for generating the

ectopic beat. Specifically, we constructed a 1D model of HF

MID cells, with its central segment being set to CO-affected,

and the minimum number of affected cells that could

overcome the source-sink effect and lead to ectopic beats

was recorded as the critical cell number. As shown in

Figure 10, simulations suggested that the critical cell

number under CO conditions was 68, corresponding to a

tissue length of 10.2 mm. In contrast, the critical cell number

was only 58 after the addition of ranolazine, which suggested

an increased susceptibility to ectopic beats. Action potentials

of representative cells within the CO-affected region (marked

‘*’ and ‘**’ in Figure 10) were plotted in the right panels of

Figure 10.

FIGURE 10
The critical size for initiating ectopic beats in failing 1D homogenous ventricular strands. (A) Simulated effects of CO on the failing 1D tissue: (Ai)
Schematic of themodel infected by CO region, the red region represents CO-affected cells, whereas the yellow regions at both ends represent cells
that were not affected by CO; (Aii) Schematic of the 1D excitation wave conduction in the CO-affected tissuemodel (left) and the corresponding APs
of the cells marked ‘*’ or ‘**’ (right). The red arrows (‘↑’) represent the location of ectopic beats and the corresponding EADs. (B) Simulation
results under CO + ranolazine conditions.
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3.4 Assessing the drug efficacy of specific
IKr activators on CO-affected hearts in
healthy and concomitant heart failure

In our previous study (Jiang et al., 2022), we have shown that

the suppression of IKr is the main factor responsible for the CO-

induced prolongation of APD and QT interval. Considering the

critical role of IKr in the pathological pathway and the bad efficacy

of multi-channel blockers, we evaluated several specific IKr
activators in this section. For simplicity, the simulation results

of a representative drug HW-0168 (full name: N-(2-(tert-butyl)

phenyl)-6-(4-chlorophenyl)-4-(trifluoromethyl) nicotinamide)

FIGURE 11
Actions of HW-0168 (HW) on CO-affected myocardial cells and tissues. (A) The comparison of action potentials of three cell types under
‘healthy’, ‘healthy + CO’, and ‘healthy + CO + HW’ conditions. (B) Spatial-temporal plots under the ‘healthy + CO + HW’ condition (Bi), and the
corresponding pseudo-ECGs (Bii). Noted that the HW-0168 restored the QT interval almost to the control level.

FIGURE 12
Actions of HW-0168 (HW) onCO-affectedmyocardial cells and tissues accompanied by heart failure. (A) The comparison of action potentials of
three cell types under ‘HF’, ‘HF + CO’, and ‘HF + CO + HW’ conditions. (B) Spatial-temporal plots under the ‘HF + CO + HW’ condition (Bi), and the
corresponding pseudo-ECGs (Bii).
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(Dong et al., 2019) are presented in detail (Figures 11, 12), whereas

only the effective dose is recorded for the other activators (Table 4).

On the ‘healthy + CO’ condition, it can be observed that the

HW-0168 at a dose of 0.5 μM [therapeutic range suggested in

clinical: 0.5–1 μM (Dong et al., 2019)] effectively shortened the

APD prolongation caused by CO and reversed the prolonged

APD90 to almost the same as the healthy condition. Generated

pseudo-ECGs using 1D transmural ventricular strand models

showed consistent results——HW-0168 restored the prolonged

QT interval to a level that was almost identical to the control

condition (Figure 11Bii). In addition, HW-0168 also improved

the conduction properties of excitation waves and shortened the

conduction wavelength of the tissue (Figure 11Bi).

The efficacy of HW-0168 under heart failure conditions is

presented in Figure 12. Simulation results showed that HW-0168

effectively reversed the proarrhythmic effects (i.e., prolonged

APDs and EADs) of CO in all three cell types (Figure 12A),

and shortened the excitation wavelength in the heart failure

tissue (Figure 12Bi). For the ECG, although the drug did not

restore the altered T-wave morphology in heart failure, it

eliminated the QT interval prolongation effects by CO.

According to the above results, the selective IKr activator

achieved desired treatment for CO-induced arrhythmias.

Therefore, more existent IKr activators (i.e., KB130015 (Gessner

et al., 2010), ICA-105574 (Asayama et al., 2013), NS1643 (Casis

et al., 2006), NS3623 (Hansen et al., 2006)) were tested and the doses

of drugs under which the QT-interval was restored were recorded in

Table 6. According to our simulation results, ICA-105574 was the

most sensitive one, which restored the QT-interval and suppressed

EADs (under heart failure conditions) at a dose of only 0.25 μM.

3.5 Simulating drug efficacy based on cell
population models

Considering the potential influence of intercellular or

intersubject variability on the reported findings, we built cell

population models and performed additional simulations based

on them. The simulation results are shown in Figure 13. It can be

observed that EADs occurred occasionally under the HF condition,

with a ratio of only 2.6%. Next, after considering the effects of CO,

APDs of cell populations were generally prolonged, and the ratio of

cells with EAD increased to 18.5%. The administration of ranolazine

aggravated the situation, and the ratio of EAD cells increased

dramatically to 58.2% (as shown in panel Aiii). In contrast, the

addition of HW effectively alleviated the above arrhythmogenesis at

the cellular level, whichwas evidenced by the complete suppression of

EAD activities and the generally shortened APDs.

TABLE 6 Simulated therapeutic doses of four specific IKr activators.

IKr activators KB130015 ICA-105574 NS1643* NS3623

Therapeutic dose (μM) 5 0.25 30 85

*Noted that the maximum IKr activation (152%) of NS1643 was still not able to restore the QT interval to its control level. However, 30 μMNS1643 greatly shortened the QT interval to a

normal range and was enough to suppress EADs in heart failure cells.

FIGURE 13
Population-basedmodeling for four conditions in heart failure human ventricular MID cells. (A) Population-basedmodeling of 1,000 variants for
(Ai) HF, (Aii) HF + CO, (Aiii) HF + CO + RAN, and (Aiv) HF + CO + HW conditions. (B) EAD ratios under the four conditions.
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3.6 Simulating pseudo-ECGs based on a
2D realistic ventricular slice

To avoid the potential difference caused by the simplified model

geometry, we conducted simulation experiments for two

representative drugs, i.e., ranolazine and HW-0168, using a 2D

realistic ventricular slice model. The simulation results are shown

in Figure 14. It can be observed obviously that the tissue slice with

ranolazine took more time to repolarize than that with HW-0168

(Figure 14A). In terms of the ECG, the 2D-based ECGs are consistent

with the 1D-based ones (Figure 14B). For example, ranolazine further

prolonged the QT interval based on CO and therefore exacerbated

the proarrhythmic effect. On the other hand, HW-0168 still exerted

the antiarrhythmic effects of ranolazine by restoring the QT interval.

4 Discussion

4.1 Main findings

The severe cardiotoxic consequences of CO urgently require

an effective therapeutic strategy to treat them. In this study, we

evaluated the efficacy of various multi-channel blockers and

specific IKr activators against CO-induced ventricular

arrhythmias in healthy and failing hearts. The major findings

are as follows: 1) The tested existent antiarrhythmic drugs failed

to rescue the heart fromCO-induced arrhythmias, andmost of them

even aggravated the arrhythmogenic condition, which was

evidenced by the more frequent EAD activities and decreased

critical cell numbers for triggering ectopic beats. 2) In contrast,

specific IKr activators demonstrated good efficacy according to the

improved biomarkers at both cellular and tissue levels. All of the

tested IKr activators restored the prolonged QT intervals in both

healthy and heart failure conditions, and the EADs in MID cells

were successfully suppressed as well. 3) In-depth case analysis with

ranolazine and HW-0168 revealed the critical role of IKr in the CO-

induced functional changes in cardiac electrophysiology, and neither

ICaL nor INaL blockers were able to offset the decreased repolarization

forces caused by the CO-induced IKr inhibition. 4) Of note, the drug

ranolazine was previously suggested as a potential strategy in dealing

with CO-induced arrhythmogenesis due to its good efficacy

demonstrated in rats, and the failure of ranolazine in the human

tissue in this study hinted the crucial role of inter-species variances

when determining the pharmacotherapeutic strategy.

4.2 Species-dependent effects of
ranolazine for the treatment of CO-
induced arrhythmias

Ranolazine was first suggested in Dallas et al.’s study (Dallas

et al., 2012) for the treatment of CO-induced arrhythmias. Based

FIGURE 14
Simulation results of the influences of ranolazine and HW-0168 using a 2D realistic ventricular slice. (A) Propagation of excitation waves after
applying ranolazine (Ai) or HW-0168 (Aii). (B) Pseudo-ECGs under different conditions.
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on the experimental results obtained from rats, they proposed

that CO-induced EADs arouse from the activation of NO

synthase, which in turn leads to the NO-mediated

nitrosylation of NaV1.5 and the enhanced INaL.

Correspondingly, the INaL inhibitor ranolazine abolished the

EADs and was considered to be effective in dealing with CO-

induced arrhythmias. Similarly, Morita et al. also observed the

antiarrhythmic effects of ranolazine for its suppression of

reentrant and multifocal ventricular fibrillation in rat

ventricles (Morita et al., 2011). However, APs in rats are

distinctly different from those in humans, and the such

discrepancy may lead to species-dependent effects of the same

drug. This hypothesis was explored in Al-Owais et al.’s study (Al-

Owais et al., 2017), where the effects of ranolazine were examined

in guinea pigs—a species with action potentials more closely

resembling that of humans. Interestingly, ranolazine failed to

abolish CO-induced EAD and even exacerbated such

proarrhythmic factors.

Our simulations suggested that ranolazine exerted similar

proarrhythmic effects in human hearts. Specifically, ranolazine

further prolonged AP durations and QT intervals in healthy

human simulations (Figure 4), while in heart failure conditions it

led to more pronounced EADs in MID and EPI cells (Figure 6).

The above model-dependent effects of ranolazine arose from the

differences of IKr, a major outward current responsible for the

repolarization in human APs but are almost negligible in rat

myocytes (Pandit et al., 2001). Although the INaL inhibition

effects of ranolazine tend to suppress EAD, the drug can also

reduce the repolarization force by inhibiting IKr. Further

assessment using a 1D homogenous ventricular strand

consisting of only MID cells found that ranolazine decreased

the critical cell number for triggering ectopic beats (from 68 to

58), which also suggested the increased arrhythmogenic risk of

the drug. These findings provide new insights into the side effects

of ranolazine on the treatment of CO-induced arrhythmias. They

also highlighted that the drug effects obtained in rats need to be

carefully interpreted in clinical trials due to the species-

dependent differences.

4.3 IKr activator—A promising
pharmacotherapy for the treatment of
CO-induced arrhythmias

In addition to ranolazine, we evaluated more existent

antiarrhythmic drugs to find potential drug strategies for CO-

induced arrhythmias. Calcium current blockers were focused on

in hopes of attenuating the depolarization force in the plateau

phase and therefore shortening the action potential and the QT

interval. However, none of the six drugs was able to rescue the

heart from arrhythmogenesis, and most of them even worsened

the conditions, evidenced by the further prolonged QT intervals

and more frequently observed EAD activities. By analyzing the

separate role of each channel current in the integral effect of

multi-channel drugs, we found that blocking ICaL and INaL was

not able to offset the reduction of IKr by CO; furthermore, most of

these multi-channel blockers also inhibited IKr with a relatively

low affinity. Indeed, the hERG channel that conducts IKr is a

highly sensitive target and it accounts for the majority of drug

withdrawal events in the last 2 decades (Brown, 2004;

Stockbridge et al., 2013; Villoutreix and Taboureau, 2015). On

the other hand, there are few drugs available in the current

antiarrhythmic category exerting IKr activating effects (Lei et al.,

2018), making it difficult to find a proper drug strategy. We have

also tried pinacidil (an IKATP activator) in the model, but it did

not produce any significant efficacy as well (data not shown).

This can be attributed to the fact that the K-ATP channel barely

opens under normoxic conditions due to its ATP-sensitive

characteristic (Dart and Standen, 1995); therefore, the IKATP
would not make obvious differences even a high magnification

ratio was used in the model.

In-depth analysis has demonstrated that IKr plays a major

role in CO-induced arrhythmogenesis (Jiang et al., 2022).

Considering that existent multi-channel antiarrhythmic drugs

did not achieve idealized efficacy, we turned to evaluate the

potential phrenological effect of specific IKr activators. In line

with expectations, the simulation results showed that IKr
activators could effectively reverse the proarrhythmic effects of

CO. All the tested drugs notwithstanding in different doses

restored AP and ECG morphologies almost to their control

levels in healthy human simulations, and they also suppressed

EADs and ectopic beats in heart failure human simulations.

These findings suggest that the IKr activator is a promising

pharmacotherapy for the treatment of CO-induced arrhythmias.

4.4 Potential limitations of this study

This study lacks validation of heart failure models. Though

we have adopted a well-established cell model under heart failure

conditions and replicated several known electrophysiological

changes in failing hearts, for example, the prolonged APD

(Akar and Rosenbaum, 2003; Lou et al., 2012), the decreased

conduction velocity (Akar et al., 2004), the widened QRS

complex (Shenkman et al., 2002; Sandhu and Bahler, 2004),

and the prolonged QT interval (Davey et al., 2000; Medina-Ravell

et al., 2003); however, we did not find enough tissue-level

experimental data to validate other observations such as the

flattened T-wave.

The above limitations shall not change the main conclusions

of this study. Specifically, most of the observations and

conclusions in the present study were based on the damaged

cellular repolarization and the consequent QT prolongation in

failing hearts, which were well-established in biological

experiments (Davey et al., 2000; Medina-Ravell et al., 2003;

Lou et al., 2012; Ng et al., 2014). In addition, for the EAD
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phenomenon, we adopted relatively conservative parameters

(i.e., no EAD phenomenon occurred in pure heart failure

conditions) to avoid exaggeration of the experimental results.

The experimental data on CO effects, drugs, and currents

used in this study were obtained from different species, and the

CO effects were obtained at room temperature. Interspecies

differences and temperature dependence should be taken into

account when interpreting and translating the results. The effects

on APD in this study were measured in individual isolated

ventricular myocytes, and the potential cell-coupling effects on

the APD in high-dimensional models were not considered.

Besides, the pathological model of CO was constructed based

on experimental data obtained from different CORM-2 doses

(10–30 μM) (Al-Owais et al., 2021), which should be considered

in future studies. As for the drugs, the IKr activators proposed in

this study for the treatment of CO-induced arrhythmias

currently face some disadvantages and unknowns. Specifically,

compared with the FDA-approved drugs such as ranolazine and

amiodarone, IKr activators represented by HW-0168 are

currently only used in biological experiments and simulation

experiments, and their effective doses have not been clinically

verified and side effects are not being disclosed. Moreover,

whether these IKr activators interact with ion channels other

than IKr remain unknown. If this is the case, then they must be

treated as multiple-channel drugs and the potential offset or

synergy effects among the involved ion currents should be

considered.

Finally, according to our previous research review (Zhang

et al., 2021), CO was also known to affect multiple cellular

pathways other than the ion channels in this study. The

present study mainly considered arrhythmias caused by

changes in ionic currents directly induced by CO, without

considering the mitochondrial toxicity of CO and some other

complicated electrophysiological remodeling induced by cellular

ischemia. Specifically, CO poisoning will increase ROS and RNS

(Piantadosi, 2008), which further impair the chondrial energetics

and can alter the intracellular calcium handling as well (Hegyi

et al., 2021). This alteration will subsequently impact the

expression and trafficking of channels (Sutanto et al., 2020).

These cellular pathways warrant further investigations in the

future.

5 Conclusion

In this study, we conducted an in silico assessment of the

efficacy of some common antiarrhythmic drugs and specific IKr
activators on CO-induced arrhythmias under healthy and heart

failure conditions. We showed that existent antiarrhythmic drugs

like ranolazine failed to exert therapeutic effects, and even

worsened the arrhythmogenic situation in failing hearts. In

contrast, specific IKr activators such as HW-0168 can

effectively alleviate the proarrhythmic effects of CO, providing

a promising pharmacotherapy for the treatment of CO-induced

cardiotoxicity.
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A deep feature fusion network for
fetal state assessment

Yahui Xiao1, Yaosheng Lu1*, Mujun Liu2, Rongdan Zeng1 and
Jieyun Bai1*
1Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Department
of Electronic Engineering, College of Information Science and Technology, Jinan University,
Guangzhou, China, 2College of Science and Engineering Jinan University, Guangzhou, China

CTG (cardiotocography) has consistently been used to diagnose fetal hypoxia. It

is susceptible to identifying the average fetal acid-base balance but lacks

specificity in recognizing prenatal acidosis and neurological impairment.

CTG plays a vital role in intrapartum fetal state assessment, which can

prevent severe organ damage if fetal hypoxia is detected earlier. In this

paper, we propose a novel deep feature fusion network (DFFN) for fetal

state assessment. First, we extract spatial and temporal information from the

fetal heart rate (FHR) signal using a multiscale CNN-BiLSTM network, increasing

the features’ diversity. Second, the multiscale CNN-BiLSM network and

frequently used features are integrated into the deep learning model. The

proposed DFFN model combines different features to improve classification

accuracy. The multiscale convolutional kernels can identify specific essential

information and consider signal’s temporal information. The proposed method

achieves 61.97%, 73.82%, and 66.93% of sensitivity, specificity, and quality index,

respectively, on the public CTU-UHB database. The proposedmethod achieves

the highest QI on the private database, verifying the proposed method’s

effectiveness and generalization. The proposed DFFN combines the

advantages of feature engineering and deep learning models and achieves

competitive accuracy in fetal state assessment compared with related works.

KEYWORDS

cardiotocography, computer-aided diagnosis algorithm, feature fusion network, fetal
state assessment, convolutional neural network

1 Introduction

Many studies confirm that fetal hypoxia and acidosis are more likely to occur during

childbirth, leading to fetal asphyxia, brain damage, and even death (Muccini et al., 2022),

(Kanagal and Praveen, 2022), (Giussani, 2021). Continuous fetal monitoring during birth is

crucial for detecting early signs of fetal hypoxia and preventing irreversible damage. CTG

(cardiotocography) is a combined recording of fetal heart rate (FHR) and uterine contractions

(UC). These time-series signals comprise the features of fetal state. When FHR features

indicative of fetal oxygen deficiency are identified early, they can aid in fetal state prediction

(Gupta et al., 2022), (Al-Yousif et al., 2021) and decrease respiratory acidosis in newborns and

fetal brain injury (Castro et al., 2021), (Miller et al., 2021), (Gunaratne et al., 2022). CTG is

sensitive in predicting the acid-base balance of fetuses but lacks specificity in identifying fetal
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acidosis and neurological disorders. Due to the complexity of CTG

signals, visual interpretation based on guidelines result in diagnostic

errors. Additionally, owing to observer variability, the false-positive

rate of CTG is relatively high, leading to an increase in unnecessary

Cesarean deliveries (Garabedian et al., 2017), (Ogasawara et al.,

2021). The computerized data-driven analysis of CTG can assist

obstetricians in reducing subjective errors and making objective

medical decisions. There are two classification methods for CTG

signals: machine learning and deep learning (Georgieva et al., 2019).

Machine learning identifies essential morphological features by

imitating obstetricians’ inspection techniques (Nunes and Ayres-de

Campos, 2016). Baseline, acceleration, deceleration, and variability

are visual morphological features that represent the macroscopic

aspects of FHR pattern (Akkanapalli and Mudigonda, 2022).

Furthermore, several statistical approaches are used with machine

learning methods to recognize potential features of CTG signal

(Ponsiglione et al., 2021). On the one hand, there are several signal-

based approaches as follows. Nonlinear features, such as

Approximation Entropy (ApEn) (Pincus, 1995), Sample Entropy

(SampEn) (Richman et al., 2004), and Lempel Ziv Complexity

(LZC) (Lempel and Ziv, 1976), have been employed as diagnostic

features primarily for analyzing the nonlinearity and complexity of

FHR signal. Fetal heart rate variability (FHRV) offers essential

information on acidosis during delivery (Gatellier et al., 2021).

Long-Term Variability (LTV) and Short-Term Variability (STV)

have been developed mainly for FHRV analysis (Malik, 1996). On

the other hand, transform-based methods such as empirical mode

decomposition, discrete wavelet transform, and Fourier transform

have been applied to extract implicit CTG features (Cömert et al.,

2018b). Fetal state assessment also utilizes the features derived from

fast Fourier transform and continuous wavelet transform (Bursa and

Lhotská, 2017).

Machine-learning algorithms are applied to classify fetal states

after features are extracted and selected. Several classifiers have been

used, such as support vector machine (SVM), logistic regression,

K-nearest neighbors, random forest, and decision tree. Karabulut

and Ibrikci. (2014) classified CTG recordings using a decision tree.

Spilka et al. (2016) categorized fetal states by adopting a sparse subset

of features. Likewise, Subasi et al. (2020) conducted a study with the

same purpose while using more machine learning methods.

Differently, Cömert and Kocamaz. (2016b) sought to categorize

hypoxic fetuses. Cömert et al. (2018b) assessed fetal state through

SVM. They proposed an innovative image-based time-frequency

feature extraction method (IBTF) (Cömert et al., 2018a). Zeng et al.

(2021) used time-frequency features and an ensemble cost-sensitive

SVM classifier to classify CTG recordings. Nevertheless, machine

learning algorithms involve intricate feature engineering. The

model’s performance is primarily determined by the quality of

feature engineering, which has a heavy workload and is prone to

ignoring correlations between features.

Deep learning is a form of sophisticated machine learning that

employs neural networks. Deep learning does not require feature

extraction and selection, whose models extract useful features

automatically by training data. Li et al. (2018) and Ogasawara

et al. (2021) compared and analyzed the performance of

convolutional neural network (CNN) and traditional machine

learning algorithms for fetal state assessment. Their studies

indicated that CNN algorithms outperformed conventional

machine learning algorithms. Petrozziello et al. (2018) compared

the performance of RNN andCNN in assessing fetal states, and their

research suggested that CNN was more advantageous. Cömert and

Kocamaz. (2018) proposed using a short-time Fourier transform to

convert a signal into a visual for fetal state evaluation through CNN.

Zhao et al. (2019b) combined recursive graph and CNN in order to

turn signals into images that could be used to categorize fetal states.

It was shown that transforming signals into images and processing

them was a more effective way of predicting fetal hypoxia than

merely processing the signals. Das et al. (2018) then presented a

Long Short-TermMemory (LSTM) network to adjust the weights of

normal and pathological recordings and improve detection

accuracy. Ogasawara et al. (2021) employed CNN and LSTM

architecture for analyzing CTG time series. Liu et al. (2021)

proposed a CNN-BiLSTM network based on attention to

obtaining the complex nonlinear spatial and temporal

relationships of FHR. However, using a single-scale convolution

kernel in CNN may neglect some of the signal’s latent and timing

information. Unlike traditional CNN, the Multiscale Convolutional

Neural Network (MSCNN) network retains global and local

information synchronously. Moreover, MSCNN is capable of

increasing the accuracy of medical image segmentation and

provides an effective solution (Teng et al., 2019). Most studies

use single feature engineering or deep learning. Clinicians are

more likely to base their diagnosis on physiological parameters,

given the complexity of physiological phenomena influencing fetal

heart rhythm. Computer-aided CTG analysis can be a potential

solution for improving CTG interpretation accuracy (Sbrollini et al.,

2017).

Toward accurate and practical fetal state assessment, a

feature fusion network is introduced to capture the complex

features frow CTG signals. The chief contributions are

summarized as follows. 1) As far as we know, this work is the

first to use a deep feature fusion network (DFFN) that combines a

multiscale CNN-BiLSTM model with linear and nonlinear

features to improve the classification performance. 2) The

multiscale CNN-BiLSTM model simultaneously derives spatial

features and temporal information from CTG signals to capture

complex fetal vital signs. 3) We construct the JNU-CTG database

and use it to validate the generalizability of the proposed method.

Compared to other researches, the present method has the best

generalization performance.

2 Materials and methods

The public CTG database CTU-UHB and the private CTG

database Jinan University cardiotocography (JNU-CTG) are
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employed to demonstrate the validity of methods. We propose a

novel DFFN for fetal status assessment. A multiscale CNN-

BiLSTM network extracts spatial and temporal information

from FHR signal. The multiscale CNN-BiLSM features

combined with linear and nonlinear features is used to classify

fetal states.

2.1 Database description

In this study, we use 552 recordings from the public database

and 784 recordings from the private database for fetal state

assessment. There are two types of recordings: normal and

pathological. The recordings with pH < 7.15 are considered

pathological, while the rest are considered normal. CTU-UHB

is unable to provide UC signals of sufficient quality for this

experiment. This problem is also mentioned in the study of Zeng

et al. (Zeng et al., 2021), which select 469 UC signals from 552 UC

signals that meet the signal quality requirements (i.e., some UC

signals are available) and directly delete the missing parts of

469 UC signals, resulting in a discontinuity in the signal. For the

following reasons, UC signals are not used in this study: 1) A low-

quality UC signal will severely reduce classification accuracy. 2)

Most current studies use FHR signals for fetal state assessment. In

order to demonstrate the validity of the proposed method under

the same benchmark (i.e., without UC signal), we only use FHR

signal for fetal state assessment.

2.1.1 The public CTG database CTU-UHB
Based on clinical and technical criteria, the 552 recordings

are chosen from 9164 intrapartum recordings obtained at the

University Hospital in Brno, the Czech Republic (Chudáček et al.,

2014). The raw data recordings are publicly available in

Physionet (https://physionet.org/content/ctu-uhb-ctgdb/1.0.0/).

A summary of patient and labor outcome measure statistics is

also available in the database. Table 1 lists the statistical

properties of CTU-UHB database. The signal has a sampling

frequency of 4 Hz and a maximum recording time of 90 min. All

the records are singleton pregnancies with a signal loss of 50% or

less per 30-min time window and gestational weeks longer than

36 weeks.

2.1.2 The private CTG database JNU-CTG
The JNU-CTG database is developed to help with CTG

classification and fetal state evaluation. We use JNU-CTG

database to develop, test, and compare algorithms for automatic

CTG analysis. Table 2 summarizes the statistical properties of JNU-

CTG database. The recordings in JNU-CTG database were collected

between 2015 and 2020 at the obstetrics ward of the first affiliated

hospital of Jinan University. Intrapartum CTG recordings and

medical records are two main components of the data. The OB

TraceVue®system (Philips) stores all CTG recordings in an

electronic format in a proprietary form. Furthermore, the system

uses the anonymized unique identifier generated by the hospital

information system to match the CTG recordings and medical

records. To ensure the integrity and correctness of the database, data

that does not fit clinical criteria are removed. The selection

procedure is depicted in Figure 1.

Step 1: Unqualified recordings should be excluded according

to the following guidelines. 1) Recordings that lack maternal or

fetal medical records are eliminated. 2) A fetal state classification

involves pH value, which determines whether CTG recording is

normal or pathological. The fetal medical records without the

fetal umbilical artery blood pH are excluded.

TABLE 1 The statistical properties of CTU-UHB database.

Term Mean (Median) Minimum Maximum

Mother’s age (years) 29.6 18 46

Parity 0.43 0 7

Gravidity 1.43 1 11

Gestational age (weeks) 40 37 43

Gestational diabetes (True/False) 515/37

Delivery VB: 506 CS: 46

pH 7.23 6.85 7.47

BE −6.38 −26.80 −0.2

BDecf (mmol/L) 4.60 −3.40

Apgar 1 min 8.26 1 10

Apgar 5 min 9.06 4 10

Neonate’s weight (g) 3408 1970 4750

Neonate’s sex (Female/Male) 259/293

Signal Length (min) 60 55 95

Abbreviations: VB, vaginal birth; CS, cesarean section; BE, base excess; BDecf, base deficit in extracellular fluid.
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Step 2: We use the following criteria to determine which

CTG recordings should be included in the final database. 1)

Maternal age: Although maternal age plays a significant role in

the risk of congenital disorders, there are no significant

differences at delivery. The records with a low maternal age

(under 18 years) are excluded since there may have been an

adverse effect. 2) Gestational weeks: Fetal maturity

significantly impacts the morphology and behavior of FHR

before and during delivery. Thus, full-term fetuses are chosen

based on their last menstrual count (37 weeks of gestation),

determined by ultrasound measurements during prenatal

examinations.

Step 3: CTG recordings should comply with the following

rules to ensure quality. 1) The recording time for CTG is more

than 60 min 2) The loss rate of fetal heart rate signals is less than

15% per 30 min.

2.2 Signal preprocessing

In this paper, we use the FHR signal 20 min before delivery,

detect and interpolate the outliers, and finally obtain the FHR

signal required for the experiment. The 20-min FHR signal is

usually used to assess the state of a fetus in clinical practice since

TABLE 2 The statistical properties of JNU-CTG database.

Term Mean (Median) Minimum Maximum

Mother’s age (years) 29.3 18 44

Parity 0.26 0 2

Gravidity 1.61 1 8

Gestational age (weeks) 39 37 41

Gestational diabetes (True/False) 189/595

Delivery VB: 549 CS: 295

pH 7.20 6.82 7.42

Apgar 1 min 8.79 4 10

Apgar 5 min 9.87 5 10

Neonate’s weight (g) 3192 2000 4450

Neonate’s sex (Female/Male) 489/295

Signal Length (min) 186.7 60 545.6

Abbreviations: VB, vaginal birth; CS, cesarean section.

FIGURE 1
JNU-CTG database selection procedure.
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FHR signals closer to delivery are highly associated with fetal

hypoxia (Chudáček et al., 2011). In our study, we use 20-min

CTG recordings at the end of the first stage of labor. The signal is

divided into 20-min segments, has 4,800 samples, and is sampled

at a rate of 4 Hz.

Preprocessing is an essential step in almost all biomedical

signal processing applications. The value of extracted features

and classification performance are both affected by this

process. The main preprocessing processes are signal

fragment selection, outlier detection, and interpolation. Our

work uses the same FHR signal preprocessing method as AH

del’Aulnoit et al. (de l’Aulnoit et al., 2019) for outlier detection

and interpolation. These anomalous data points are

recognized first, eliminated, and replaced with a linear

interpolation between valid data points. Invalid data points

are defined as follows. 1) The signal values are outside the

acceptable range (50–220 bpm). 2) Abrupt and large

deviations in FHR signal (absolute value of two adjacent

points exceeding 25 bpm). A comparison of a signal (No.

1008 FHR signal) before and after preprocessing is shown

in Figure 2. It suggests that this interpolation technique is

capable of effectively removing noise.

2.3 Deep feature fusion network

A deep neural network works like a feature learning

process, where the initial input is abstracted step-by-step

through a hidden layer. As a result, it can extract more

valuable features from the original input data. An end-to-

end deep learning model extracts latent representation vectors

from the input FHR signal and automatically assesses the fetal

status based on this information. The proposed DFFN’s

structure is shown in Figure 3. The feature fusion network

receives the preprocessed FHR signal as input. The complex

invisible features in the FHR signal are extracted using a

multiscale CNN-BiLSTM network. The multiscale CNN-

BiLSTM network is used to obtain the deep neural network

feature vector. The multiscale features then are spliced with

the linear and nonlinear features. The fused features are

transmitted to the fully connected layer. A 32-dimensional

vector is extracted from the multiscale CNN-BiLSTM network

via a fully connected layer with 32 nodes. Training and testing

are relatively straightforward with the DFFN since multiscale

features and feature fusion are integrated into a network. The

DFFN framework consists of two stages of training. In the first

stage, we obtain the optimal model for each scale, and then we

extract the features of the residual block of each scale. In the

second stage, the multiscale, linear, and nonlinear features are

combined to train a new model. The fused features are input

into a new model that learns more discriminative features for

final classification. The hierarchy information in parallel is

used to calculate the corresponding weight through learning.

Consequently, the fused features tend to favor the features that

are useful for classification, which is the weight that indicates

the importance of multiscale features.

FIGURE 2
A comparison of a signal (No. 1008 FHR signal) before and after preprocessing. (A) is the original signal, whereas (B) is the denoised signal.
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2.4 Extracting multiscale CNN-BiLSTM
features

Figure 4 depicts the architecture of the multiscale CNN-

BiLSTM hybrid network. Multiscale CNN provides a greater

diversity of features than CNN. The multiscale CNN-BiLSTM

network contains one multiscale layer and three convolutional

layers. A batch normalization (BN), an exponential linear unit

(ELU), an average pooling layer, and a dropout layer follow each

convolutional layer. Dropout is valuable to the hybrid network

since it reduces overfitting and improves the model’s

generalization capabilities. The rate of dropout is 0.25. The

FIGURE 3
The proposed deep feature fusion network’s structure.

FIGURE 4
The architecture of multiscale CNN-BiLSTM network.
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hybrid neural network receives the preprocessed FHR signal as

input.

FHR signals have various waveforms, resulting in huge

differences between them. Therefore, it is difficult to choose a

suitable convolution kernel size for the convolution operation.

The single-scale convolutional kernel size limits network feature

extraction. FHR signals with more global information

distribution prefer larger convolution kernels, and FHR

signals with more local information distribution prefer smaller

convolution kernels. In multiscale layers, convolution kernels of

different sizes are employed to extract different information from

the FHR signal, and these operations are performed in parallel

and then merged to provide a more accurate representation. In

this paper, two convolution kernels of different sizes (KS = 32,

64) are used to extract features from the FHR signal, and the

extracted features are dimensionally spliced to fuse features of

different scales.

There is a particular type of recurrent neural network known

as LSTM, which is capable of solving the vanishing gradient

problem and learning long-term dependencies in neural

networks. The FHR signal is a time series. The classification

results will be more robust if information from past and future

time points is taken into account simultaneously. In standard

LSTM networks, sequences are processed chronologically, but

future point-in-time information is not considered. In this paper,

two independent hidden LSTM layers are combined in opposite

directions as BiLSTM to compensate for this weakness. With this

structure, the output layer is able to utilize information from past

and future time points. The spatial features of the FHR signal are

extracted using the multiscale CNN to enhance the variety of

features. The temporal information features are extracted using

the BiLSTM. The residual connection efficiently merges the

spatial and temporal information features. The gate

mechanism determines the transmission of information and

can learn relevant information regarding the current

information. The forget gate determines which information is

irrelevant for classification and should be discarded, the input

gate determines which information requires updating, and the

output gate decides which information to output.

2.5 Linear features

It has been a consensus for a long time that linear features

have been regarded as the primary indicators for evaluating FHR

signals. FHR linear features are the most efficient prognostic

indicators for detection of fetal distress (Cömert and Kocamaz,

2016a). The morphological and time-domain features constitute

the conventionally used linear features essential for interpreting

FHR signals (Cömert et al., 2018a) (Akkanapalli et al., 2022)

(Fergus et al., 2018).

Morphological features are the significant indicators to

ascertain fetal state in clinical practice. Obstetricians have

attempted to identify specific FHR patterns that can be seen

visually as morphological features (Haweel et al., 2021). Baseline,

acceleration, deceleration, and variability in short and long terms

represent the gross features of the FHR patterns (Cömert et al.,

2018a). In this paper, they are calculated based on FIGO

guidelines (Ayres-de Campos et al., 2015).

Stationary information of CTG signals is often measured

with time-domain features. In clinical practice, time-domain

features are easy to understand and recognize by clinicians

since they have good clinical interpretability. The time-

domain features are formulated as follows (Cömert and

Kocamaz, 2016a) (Zhao et al., 2018). Time-domain features

are physiologically closely related to physiological activities

such as fetal control mechanisms, sympathetic and

parasympathetic nerve activity, fetal movement, and fetal

respiration (Akkanapalli et al., 2022), (Feng et al., 2018).

FHRmean denotes FHR’s mean value, whereas FHRstd denotes

FHR’s standard deviation. x(i) is an FHR signal of lengthN, i = 1,

. . . , N.

FHRmean � �x � 1
N

∑N
i�1

x i( ) (1)

FHRstd �

�����������������
1

N − 1
∑N
i�1

x i( ) − �x( )2
√√

(2)

LTV and STV are two kinds of FHRV. LTV is critical to

determining the stability of fetal heart rate. A large LTV of the

FHR signal within 10 min may contribute to the instability of the

fetal intrauterine environment (Gonçalves et al., 2007). First, the

FHR signal is separated into 60-s segment blocks denoted by v(i)

to calculate LTV. The difference between these fragment blocks’

maximum andminimum values is then calculated as a sum. After

that, M is used to divide this value. The M represents the total

amount of minutes.

LTV � 1
M

∑M
i�1

max
i∈M

v i( )( ) −min
i∈M

v i( )( )[ ]] (3)

The difference in FHR signal between 2.5 s connected within

a minute is used to calculate STV, reflecting the FHR signal’s

variability due to beat-by-beat differences (Dawes et al., 1992).

Low STV has a direct correlation with the occurrence of

metabolic acidemia and imminent intrauterine death

(Kouskouti et al., 2018). The FHR signal is first divided into

2.5-s fragment blocks to calculate the STV. The mean sm(i) is

calculated for each fragment block, consisting of 10 sample

points. FHR signal frequency is 4 Hz. The difference between

the mean sm(i) and sm (i + 1) of two consecutive fragment blocks

is then calculated as the sum of the differences. Finally, M is

divided by this value.

STV � 1
24M

∑24M
i�1

|sm i + 1( ) − sm i( )| (4)
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LTI identifies a long-term irregularity. Calculate the square

root of the sum of sm(i) and sm (i + 1).M is divided by this value.

LTI � 1
24M

∑24M
i�1

����������������
sm i + 1( ) + sm i( )( )√

(5)

The interval index, denoted by II, indicates FHR variability

over a short period.

II � FHRstd

std sm i( )[ ] (6)

The absolute value of the FHR signal x(i) from the mean

value of the FHR signal. FHRmean is averaged to get FHRmean AD.

FHRmeanAD � 1
N

∑N
i�1

|x i( ) − �x| (7)

The deviation between the FHR signal value x(i) and the

median of the FHR signal (x(N)) is computed, followed by the

median of the absolute magnitude of the deviation FHRmedian AD.

FHRmedianAD � median |x i( ) −median x N( )( )|( ) (8)

2.6 Nonlinear features

Nonlinear analysis is conducted to identify the essence of

complex phenomena, effectively addressing the complexity of the

FHR time series. A nonlinear approach may reveal relevant

clinical information of FHR that cannot be revealed by

conventional time series analyses, such as abnormalities in

heart rate (Spilka et al., 2012). The methods of ApEn,

SampEn, and LZC for the analysis of nonlinear time series

have been found to increase the accuracy of the fetal status

assessment significantly (Zhao et al., 2019a), (Usha Sri et al.,

2020), (Marques et al., 2020). These features allow for the

measurement of FHR variability, which is beneficial for

clinically interpreting the fetal wellbeing during the final stage

of delivery (Georgoulas et al., 2006).

2.6.1 Approximate entropy
The degree of data disbandment in a system is calculated by

ApEn. ApEn is a nonlinear parameter that measures the

unpredictability and regularity of physiological time series. It

is used to assess the internal complexity of time series and

anticipate the possibility of new information arriving in them.

AN-length time series indicated by xn is divided by a collection of

m-length vectors represented by um(i). The um(i) and um(j)

vectors are then written as nmi (r) in terms of Euclidean sense

d[um(i), um(j)]≤ r. As stated Cm
i (r) � nni

N−m+1, the number is

used to compute the possibility of vectors being near. Define

the function: Φm(r) � 1
N−m+1∑N−m+1

i�1 lnCm
i (r). ApEn is defined

as follows.

ApEn m, r( ) � lim
N→∞

Φm r( ) −Φm+1 r( )[ ] (9)

2.6.2 Sample entropy
For the SN time series, SampEn is calculated by the same

process and metrics as ApEn. It provides a quantitative measure

of the complexity of time series, similar to ApEn. The

fundamental difference between the two methods is that

ApEn considers self-matches, whereas SampEn does not.

SampEn also has fewer biases. Due to the elimination of self-

matches, SampEn requires a lower computational time and is

remarkably independent of signal length. Its definition is as

follows.

SampEn m, r( ) � lnΦm r( ) − lnΦm+1 r( ) (10)

The m and r parameters are set to the same values as with

ApEn in our work: m = 4, r = 0.15, and r = 0.2.

2.6.3 Lempel ziv complexity
LZC predicts recurring patterns in time series. It is applicable

in the non-stationary signal. As a result, each time series may be

described with fewer data. The number of patterns in the

sequence is counted, and each time a new pattern emerges,

the complexity value c(n) increases by one. The upper

constraint on the complexity c(n) is known from the current

work, which is limn→∞c(n) � b(n) � N
logaN

, where a represents

the number of distinct patterns in the time series. To address the

issue of varying complexity caused by sequence length, the LZC is

defined as follows.

LZC � c N( )
b N( ) (11)

Our experiment use a 20-min FHR signal with a rate of 4 Hz

and a total data length of 4,800. N is set to 4,800 for

calculating LZC.

2.7 Performance metrics

Four umbilical artery pH cutoffs are used to categorize

fetuses as acidemic or non-academic: 7.05, 7.10, 7.15, and 7.20

(Castro et al., 2021). The pH value of 7.15 is determined as the

threshold value in this paper after extensive research

(Sholapurkar, 2020) (Singh et al., 2021). Blood with a pH of

less than 7.15 is regarded as hypoxia, whereas blood with a pH of

more than 7.15 is considered normal. This work uses a sigmoid

function to do binary classification for fetal status assessment

since its results are in two categories (hypoxia and normal). The

function’s input is the integrated expression of FHR signal

features fz. The p denotes the output. The function is

calculated as follows. The weight matrix is WP, and the bias

matrix is bP.
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P � sigmoid WP · fz + bP( ) (12)

The cross-entropy cost function is the loss function in the

training process. The expected output is y, and _y is the actual

output.

Loss � − y log _y + 1 − y( )log 1 − _y( )( ) (13)

We use the Sensitivity (SE), Specificity (SP), and Quality

Index (QI) calculated from the confusion matrix to assess the

proposed method’s performance. SP is the percentage of normal

samples that are correctly recognized. SE measures the

discriminative power of the model on hypoxic samples. QI is

defined as the geometric mean of SE and SP. An unbalanced

database can harm the overall performance of any classifier. The

ratio of normal to hypoxic samples is about 4:1 in this study. As a

result, QI is used to assess overall classification performance.

These metrics are formulated as follows:

SE � TP

TP + FN
(14)

SP � TN

TN + FP
(15)

QI � ������
SE · SP√

(16)

Where TP, FP, FN, and TN represent true positive, false

positive, false negative, and true negative.

3 Experimental results

The proposed DFFN is built using Python, the Keras library,

and TensorFlow as a backend. The model is trained and tested on

a computer with a 2.60 GHz CPU, an NVIDIA

GeForceRTX2080Ti GPU, and a 128 GB memory stick. Signal

preprocessing is performed in MATLAB Aulnoit et al. (2019).

3.1 Determination of class weight and
network parameters

It is generally acknowledged that neural networks contain many

factors that might influence their performance. The settings are

tweaked in the following method in our experiment. The network is

trained for 130 epochs with an initial learning rate of 0.01, which

declined by ten at 15 and 90 counts. The network is optimized using

stochastic gradient descent with momentum, with the momentum

set at 0.9 in this experiment. To assess the algorithm’s accuracy, we

employ a 10-fold cross-validation procedure. The complete FHR

signal of the CTU-UHB database is randomly divided into 10 folds.

Stratified sampling is used to combine nearly the same proportion of

normal and pathological samples in each fold. The training set

consists of 90% of recordings (395 normal and 101 pathological),

while the remaining 10% (44 normal and 12 pathological) are

utilized to test the proposed approach’s performance. The

process is repeated ten times, reinitializing and testing the model

with a new subset of data before averaging the final findings. The

weights of normal and pathological sample categorization are

changed in this experiment due to data imbalance (the number

of normal and pathological samples is roughly 4:1). To verify the

generalization of methods, JNU-CTG database is used as an

independent test dataset.

Experiments are carried out using various classification weights,

as indicated in Table 3. Furthermore, QI is used as the final metric

for evaluating model performance. Higher QI values indicate better

performance. This experiment shows that the QI values vary for

different classification weights. The model’s QI increases as the

weight of normal samples decreases. Themodel’s QI decreases as the

weights of pathological samples increase further. The proposed

DFFN focuses on recognizing hypoxia FHR recordings when the

weight of pathological samples increases and the detection rate of

normal samples is dramatically lower. When the classification

weights ratio is 0.21 : 0.79, the QI value is the highest. The

DFFN with a ratio of 0.21 : 0.79 enhances the likelihood of

identifying aberrant signals while preserving its capacity to detect

normal signals. It maintains sensitive detection of both normal and

pathological samples. As a consequence, 0.21 : 0.79 is chosen as the

classification weight.

The DFFN parameters are modified layer by layer based on

the QI value. The parameters for each layer in Figure 3 are listed

in Table 4. Table 4 lists the parameters for each layer in Figure 3.

Figure 5 depicts experimental results obtained with the settings in

Table 4. For imbalanced data sets, Precision-Recall (P-R) curves

outperform receiver operation characteristic curves in comparing

the performance of different models. Consequently, the P-R

curve has been used to illustrate the experimental results.

Figure 5A depicts the confusion matrix for the test set,

whereas Figure 5B depicts the P-R curve for the test set.

3.2 Performance of different features

Experiments are conducted on the public CTU-UHB

database to compare the outcomes of fetal state classification

TABLE 3 Performance of DFFN on CTU-UHB database with different
class weights.

Class weights (N:P) SE (%) SP(%) QI (%)

0.22: 0.78 57.58 ± 17.06 76.32 ± 5.55 65.54 ± 11.19

0.21: 0.79 61.97 ± 16.47 73.82 ± 5.35 66.93 ± 10.20

0.20: 0.80 61.97 ± 16.47 68.57 ± 4.47 64.49 ± 9.69

0.19: 0.81 65.61 ± 19.64 65.84 ± 5.05 64.75 ± 10.42

0.18: 0.79 67.42 ± 16.62 62.19 ± 4.95 64.17 ± 8.14

0.17: 0.83 70.91 ± 18.10 55.14 ± 3.63 61.95 ± 8.46

0.16: 0.84 71.74 ± 17.30 49.89 ± 4.33 59.33 ± 8.03

Note: N represents normal samples, and P represents pathological samples.
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for different features. A SVM classifier is derived from structural

risk minimization theory. It transforms the classification

problem of samples into the optimization problem of

classification hyperplane in the sample feature space. Table 5

compares performance utilizing SVM for linear and nonlinear

features and their combinations. Linear and nonlinear features

TABLE 4 Network parameters.

Layer name Size Input Output

Number Stride Padding Feature map

Signal input − − − − 4,800 × 1

Conv1 32 × 1 8 1 SAME 4,800 × 8

Conv2 64 × 1 8 1 SAME 4,800 × 8

Concat − − − − 4,800 × 16

Conv3 32 × 1 24 1 SAME 4,800 × 24

Average pooling 4 × 1 − 4 VALID 1200 × 24

Dropout − 0.25 − − 1200 × 24

Conv4 32 × 1 24 1 SAME 1200 × 24

Average pooling 8 × 1 − 8 VALID 150 × 24

Dropout − 0.25 − − 150 × 24

Conv5 32 × 1 24 1 SAME 150 × 24

Average pooling 16 × 1 − 16 VALID 9 × 24

Dropout − 0.25 − − 9 × 24

BiLSTM 1 9 − − 9 × 24

Add − − − − 9 × 24

Flatten − − − − 1 × 216

Fully connection 32 − − − 1 × 32

Dropout − 0.5 − − 1 × 32

Feature input − − − − 1 × 16

Concat − − − − 1 × 48

Dropout − 0.25 − − 1 × 48

Fully connection 1 − − − 1 × 1

Sigmoid − − − − 1 × 1

FIGURE 5
The experimental results of the test set. (A) is the confusion matrix using the parameters listed in Table 4, whereas (B) is the P-R curve using the
parameters listed in Table 4.
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have a QI of 61.12% and 57.70%, respectively, for the evaluation

index for fetal status assessment. The performance of linear

features outperforms that of nonlinear features in the SVM

classifier. Additionally, the QI value for their combination is

64.90%, which suggests that combining both features could

increase the accuracy of fetal status assessment. And their

combination achieves highest SE. The SP of linear features

reaches the highest value, 80.87%, which indicates that the

linear feature can discriminate hypoxic samples

exceptionally well.

Logistic Regression classifiers are normalized linear

regression models that incorporate a logistic function based

on linear regression. Table 6 shows the classification

performance of different feature sets in the logistic regression

classifier. The QI of linear and nonlinear features is 61.72% and

59.87%, respectively. The QI value of 63.91% indicates that

combining linear and nonlinear features improves fetal state

classification accuracy. The SP of linear features also reaches the

highest value in logistic regression, 74.95%, indicating that linear

features can distinguish hypoxic samples extremely well. In the

logistic regression classifier, nonlinear features achieved the

highest SE, 58.48%. This indicates the use of nonlinear

features can be beneficial in identifying normal fetuses.

As shown in Tables 5, 6, logistic regression classifier

outperforms SVM classifier for classification using just linear

or nonlinear features. SVM classification is superior to logistic

regression when used with their combination.

3.3 Performance of various networks
structures

The classification performance of different network

structures on CTU-UHB database is shown in Table 7. CNN

has been found to outperform traditional machine learning

methods for image processing in previous studies. The CNN

is capable of not only extracting low-level features and local

features from the original signal, but also integrating those

features into high-level features for analysis. The overall

outcome of FHR signal diagnosis is closely related to some

local waveforms. The purpose of CNN is to extract visible

waveform features from the raw waveform signal and

integrate these features into high-level features related to fetal

hypoxia. Compared with CNN, multiscale CNN can increase the

diversity of features. The experimental results prove that the

classification performance of multiscale CNN(i.e., 65.12%)

outperforms that of CNN (i.e., 63.90%). BiLSTM networks are

widely used in time series forecasting and classification research

because of their unique ability to capture long-term and short-

term temporal relationships. The multiscale CNN-BiLSTM

achieves the best performance (i.e., 65.74%) and is senstive to

recognize pathlogical recrodings (i.e., 66.92%), indicating the

model can integrate both spatial and temporal information

features of the FHR signal to maximize the classification

performance.

3.4 Performance of related works on two
databases

We present a neural network with feature fusion to assist

obstetricians in making objective clinical judgments on fetal

state. In order to analyze the experimental results of this

paper more comprehensively, Table 8 presents the results of a

comparison between the proposed methods and previous works

on the CTU-UHB database. Numerous variables, such as the

FHR signal properties and the selection of signal fragments from

the database, lead to varied experiment outcomes. The research

evaluated in Table 8 employs the identical processing steps: signal

preprocessing, feature extraction, feature selection, and final

classification. To verify the validity of the proposed method,

the work of (Liang and Li, 2021), (Li et al., 2018), (Zhao et al.,

2019b), and (Baghel et al., 2022) are repeated in this paper.

Experiments are conducted under identical settings and identical

databases.

We employ a multiscale network to classify the fetal state and

compare it to other works on the public database.

TABLE 5 Performance of SVM on CTU-UHB database.

Features SE (%) SP (%) QI (%)

Linear Features 47.20 ± 15.84 80.87 ± 6.28 61.12 ± 11.38

Nonlinear Features 54.02 ± 14.08 63.28 ± 8.61 57.70 ± 7.84

Linear and Nonlinear Features 55.08 ± 16.81 78.13 ± 5.19 64.90 ± 10.66

TABLE 6 Performance of Logistic Regression on CTU-UHB database.

Features SE (%) SP (%) QI (%)

Linear Features 52.65 ± 19.68 74.95 ± 3.46 61.72 ± 12.28

Nonlinear Features 58.48 ± 13.61 62.38 ± 5.58 59.87 ± 7.26

Linear and Nonlinear Features 56.97 ± 17.47 73.35 ± 3.79 63.91 ± 10.20

TABLE 7 Performance of different network structures on CTU-UHB
database.

Network Structure SE (%) SP (%) QI (%)

CNN 66.29 ± 14.46 62.65 ± 7.77 63.90 ± 8.98

Multiscale CNN 65.45 ± 12.40 65.38 ± 4.92 65.12 ± 7.94

Multiscale CNN-BiLSTM 66.29 ± 13.37 65.84 ± 5.90 65.74 ± 8.65
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1) Comparing with (Cömert et al., 2018a), (Cömert et al.,

2018b), the proposed multiscale model is more effective

since it did not use complicated features. The proposed

multiscale CNN-BiLSTM model has the highest SE and

slightly lower SP for the same FHR signal classification

criterion. The evaluation index QI is increased by 1.09%

and 2.3% compared with the IBTF and BFS + DWT

techniques, respectively, highlighting the hybrid model’s

benefits.

2) (Liang and Li, 2021) and (Li et al., 2018), who separate the

FHR signal into several sub-segments before processing the

data in parallel using CNN. After that, the fetal status is

determined utilizing a voting system. The difference is that

(Liang and Li, 2021) utilized a system based on weighted

voting. Using the same deep learning method (CNN), the QI

and SE for fetal hypoxia detection of the proposed multiscale

model are much superior to their method.

3) (Zhao et al., 2019b) employ recursive graphs to turn signals

into images and CNN for fetal status evaluation. All the

metrics of the proposed multiscale model are higher than

RP + CNN, indicating that the multiscale model suggested in

this study could capture the FHR signal’s hidden features

more sensitively.

4) The direct input of the FHR signal is used to assess the fetal

state by a neural network and automatically learn essential

features in the work of (Baghel et al., 2022). We apply the

same procedure and employ a multiscale model that can

account for spatial features and temporal data extraction. The

SP, SE, and QI of the proposed multiscale model are higher

than their method, showing that our work is more accurate in

fetal status classification.

We propose the DFFN, including linear and nonlinear

features with the multiscale CNN-BiLSTM network. The

experimental results of DFFN and other work on the public

database are shown in Table 8.

1) (Cömert et al., 2018a), (Cömert et al., 2018b), utilize some

time-domain, and nonlinear features. These features perform

better for fetal hypoxia identification (i.e.,SE) but are less

efficient for normal fetal detection (i.e.,SP). We integrate

more complex features automatically retrieved by deep

learning to increase the model’s capacity to recognize

normal fetuses while retaining superior performance for

fetal hypoxia identification.

2) In comparison to (Liang and Li, 2021), (Li et al., 2018), (Zhao

et al., 2019b), and (Baghel et al., 2022), who all utilize the deep

learning approach. Deep learning is sensitive for normal fetal

detection but less sensitive for fetal hypoxia detection. The

proposed DFFN contains both linear and nonlinear features.

Therefore, the expressive capacity of DFFN and the model’s

ability to identify fetal hypoxia have been improved.

Meanwhile, the performance of normal fetal detection has

been preserved.

3) The proposed DFFN in this study has the highest

classification accuracy compared to previous fetal state

assessment methods. It overcomes the constraints of a

single model and compensates for the shortcomings of

feature engineering and deep learning model. In addition,

the performance of the proposed feature fusion approach is

superior to that of the proposed multiscale CNN-BiLSTM

network. The QI of the proposed DFFN method is 66.96%,

1.22% higher than the multiscale CNN-BiLSTM network.

The generalization of the proposed DFFN and multiscale

CNN-BiLSTM network is tested by an independent test set of

JNU-CTG database. The experimental results are shown in

Table 9. The experiment is more challenging in the

independent test set. However, the proposed DFFN still

performs best on the test set with a QI of 53.60%. The

generalization ability of the fusion network is enhanced

compared to other methods. The SE and SP of the proposed

DFFN method are 43.94% and 65.53%, respectively. The

TABLE 8 Performance of previous works on CTU-UHB database.

Author Method Performance (%)

Extraction Selection Classifier SE SP QI

Cömert et al. (2018b) BFS + DWT — LS-SVM 57.42 70.11 63.44

Cömert et al. (2018a) IBTF GA LS-SVM 63.45 65.88 64.65

Liang and Li. (2021)* CNN — — 33.48 77.46 50.35

Baghel et al. (2022)* 1D-FHRNet — — 50.15 61.26 54.32

Zhao et al. (2019b)* RP + CNN — — 54.17 61.73 57.22

Li et al. (2018)* CNN — — 52.12 74.93 61.02

Ours Multiscale CNN-BiLSTM — — 66.29 65.84 65.74

Ours DFFN — — 61.97 73.82 66.93

Note: * is the reproduction method of this article. BFS, basic feature set; DWT, discrete wavelet transform; IBTF, image-based time-frequency features; GA, genetic algorithm; RP, recursive

graph.
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proposed models are capable of identifying both normal and

hypoxic fetal states.

4 Discussion

Previous studies have pointed out that imbalanced dataset is a

problem for machine learning since they are biased toward majority

classes and tend to miss minority class cases (Ahsan and Siddique,

2022). Therefore, we focus more on SE (i.e., the minority cases)

when evaluating classification performance. We propose a DFFN

model to classify CTG recordings. The model includes multiscale

feature extraction, fusion, and classification and automatically fuses

different features through end-to-end learning.

In this work, we integrate linear and nonlinear features. The

combination of linear and nonlinear features can achieve better

classification performance compared to a single feature set, as

shown in Tables 5, 6. Tables 5, 6 show the performance of logistic

regression and SVM on the public database. There is a relatively

high accuracy rate for classifying normal fetuses but poor

accuracy for classifying acidosis fetuses for two classifiers. This

difference is more pronounced when experiments are conducted

using private databases (see Table 9). According to Tables 5, 6, 9,

SVM outperforms logistic regression with combined features on

the public dataset, while on the private dataset, logistic regression

outperforms SVM. It suggests that machine learning and

traditional features are not very feasible. One of the

limitations of machine learning is its instability. Classifiers

that perform well on old data rarely perform consistently on

new data, necessitating continual model development and

tuning. The experimental results on the public database are

presented in Tables 5, 6, 8. They demonstrate that (Cömert

et al., 2018a) uses IBTF features, which can distinguish normal

and acidic fetuses more accurately than other machine learning

methods (combination of linear and nonlinear features, BFS +

DWT). It is temporarily unable to test (Cömert et al., 2018b) and

(Cömert et al., 2018a) on the private database since the essential

details of their works are unavailable.

The experiments on two databases clearly demonstrate that

our proposed model is superior to other deep learning-based fetal

state classification models, as shown in Tables 8, 9. In the

experiment of the public dataset (Liang and Li, 2021), and

multiscale CNN-BiLSTM perform best at identifying normal

fetuses and acidic fetuses, respectively. And DFFN has the

highest QI value. The model of (Baghel et al., 2022)

outperforms other methods on the private database when

identifying normal fetuses, while DFFN outperforms other

methods when identifying acid fetuses and has the highest QI

value. Based on the experimental results of two databases,

(Cömert et al., 2018a), (Zhao et al., 2019b), and DFFN are

more capable of distinguishing normal and acid fetuses.

Despite having good accuracy in identifying normal fetuses,

the studies of (Baghel et al., 2022), (Liang and Li, 2021) and

(Li et al., 2018) are grossly insufficient in identifying acid fetuses.

The proposed multiscale CNN-BiLSTM network and DFFN

achieve higher classification accuracy when compare to the

single-scale networks used by (Zhao et al., 2019b), (Baghel

et al., 2022), (Liang and Li, 2021), and (Li et al., 2018). It is

attributed to the fact that many regional features in FHR signal

are preserved during multiscale feature fusion process. These

features are weighted and calculated as the final features of fetal

status classification. (Cömert et al., 2018a), (Zhao et al., 2019b),

DFFN, and multiscale CNN-BiLSTM network are better able to

capture the timing-related information of FHR signals. The

signal is transformed into a picture by (Cömert et al., 2018a)

and (Zhao et al., 2019b), from which time-frequency features can

be extracted that more accurately reflect the non-stationarity of

FHR. The proposed multiscale CNN-BiLSTM network and

DFFN have a BiLSTM module that extracts forward and

backward information simultaneously from the FHR signal

sequence. Rather than treating the data having time steps,

CNN treats it as a sequence that can be read using

convolutional operations. Consequently, it is difficult for CNN

to acquire the time-domain features of FHR signals

automatically. By incorporating BiLSTM, FHR signals can be

classified more accurately and time-series features can be

TABLE 9 Performance of different methods on JNU-CTG database.

Author Method SE (%) SP (%) QI (%)

Baghel et al. (2022)* 1D-FHRNet 11.97 ± 5.05 81.56 ± 3.85 30.47 ± 5.60

Liang and Li. (2021)* CNN 27.62 ± 7.69 79.96 ± 5.00 46.29 ± 5.34

Li et al. (2018)* CNN 27.77 ± 10.01 81.35 ± 5.63 46.44 ± 6.87

Zhao et al. (2019b)* RP + CNN 40.05 ± 4.86 65.36 ± 4.37 50.95 ± 1.80

Ours Linear and Nonlinear Features 21.24 ± 2.39 78.61 ± 1.24 40.78 ± 2.13

Ours (SVM) 34.72 ± 2.16 73.59 ± 0.96 50.52 ± 1.55

Ours Multiscale CNN-BiLSTM 37.15 ± 3.44 76.35 ± 1.49 53.18 ± 2.21

Ours DFFN 43.94 ± 2.39 65.53 ± 2.60 53.60 ± 0.60

Note: * is the reproduction method of this article. RP, recursive graph.
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captured. The QI value of DFFN is higher than that of multiscale

CNN-BiLSTM network on two databases. The DFFN can more

precisely express the original features of signal because feature

fusion realizes the complementary advantages between features.

Computerized CTG analysis can reduce the inter- and intra-

observer variability caused by pattern recognition based solely on

existing guidelines. However, most proposed models focus only on

improving classification accuracy, ignoring the clinical relevance of

parameters and the obstetrician’s decision-making mechanism. In

clinical decision-making, obstetricians are more inclined to make

diagnoses based on objective parameters of specific physiological

significance. Obstetricians are unlikely to trust black-box deep

learning model. In this study, traditional and multiscale network

features are combined for the first time, maximizing fusion features

and improving fetal state accuracy significantly. Morphological

features, which are used in clinicians’ diagnoses, are combined in

order to provide interpretability of proposed fetal status assessment

model.Meanwhile, the experimental results validate the generalization

of DFFN, making it more applicable in clinical practice.

We intend to integrate clinical parameters into deep learning

algorithms in the future, such as maternal tachycardia and maternal

pyrexia, which are collected frommaternal records. Further research

can include UC and FHR signals as inputs to the neural network.

The more comprehensive input information may allow network

models to extract more valuable features Furthermore, we hope to

study our model on a larger dataset to develop a lightweight

algorithm that can be applied to large-scale data. Since the two

databases have similar selection criteria, further workmight increase

the model’s generalization using data of diverse quality.

5 Conclusion

This paper proposes a novel deep feature fusion network for

diagnosing fetal acidosis from FHR signals. A multiscale CNN-

BiLSTM hybrid network is developed to extract the signal’s

temporal and spatial features adequately. In order to account

for clinical physiological parameters and assessment accuracy, a

feature fusion network is used to splice the multiscale CNN-

BiLSM features, as well as the currently popular linear and

nonlinear features. Encouraging results are obtained, with a

SE of 61.97%, SP of 73.82%, and QI of 66.93% on the public

database. The proposed DFFN has the highest QI value on two

databases, which indicates that the proposed feature fusion

model has good generalization. The experimental results on

two databases show that DFFN achieves better performance

than previous works. The accuracy of fetal state classification

as well as the generalization of DFFN are improved by merging

the FHR features frommultiscale layers with the extra features. In

the future, we will work to optimize the interpretability of our

model as well as its accuracy and generalizability. Through these

advancements, we will be able to gain a deeper understanding of

particular disease state of the fetus.
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Introduction: A contactless multiscale cardiac motion measurement method

is proposed using impulse radio ultra-wideband (IR-UWB) radar at a center

frequency of 7.29 GHz.

Motivation: Electrocardiograph (ECG), heart sound, and ultrasound are

traditional state-of-the-art heartbeat signal measurement methods. These

methods su�er fromdefects in contact and the existence of a blind information

segment during the cardiogram measurement.

Methods: Experiments and analyses were conducted using coarse-to-fine

scale. Anteroposterior and along-the-arc measurements were taken from five

healthy male subjects (aged 25–43) when lying down or prone. In every

measurement, 10 seconds of breath-holding data were recorded with a

radar 55 cm away from the body surface, while the ECG was monitored

simultaneously as a reference.

Results: Cardiac motion detection from the front was superior to that from

the back in amplitude. In terms of radar detection angles, the best cardiac

motion information was observed at a detection angle of 120◦. Finally, in terms

of cardiac motion cycles, all the ECG information, as well as short segments of

cardiac motion details named blind ECGs segments, were detected.

Significance: A contactless andmultiscale cardiacmotion detectionmethod is

proposed with no blind detection of segments during the entire cardiac cycle.

This paves the way for a potentially significant method of fast and accurate

cardiac disease assessment and diagnosis that exhibits promising application

prospects in contactless online cardiac monitoring and in-home healthcare.

KEYWORDS

radar cardiogram (RCG), cardiac motion, anteroposterior measurements,
along-the-arc measurements, diastasis measurement
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1. Introduction

In recent years, physiological signal measurements and

perceptions have always been among the most popular research

topics in auxiliary diagnosis medical technology (1). As the most

important organ and the “engine” of the human body, heart

status detection undoubtedly holds great significance in human

health monitoring. With the development of sensor technology,

numerous sensor-based applied studies have been oriented

toward cardiac signal measurements. At present, classical

cardiac information detection technologies mainly include

electrocardiography (ECG) (2) and photoplethysmography

(PPG) (3), which are relatively mature and widely used

in clinical practice. ECG detects electrophysiological signals

generally using metal electrodes placed on the body surface,

and PPG detects optical signals at the wrist or finger (which

are affected by blood volume changes) through optical sensors.

However, both of the above methods require bodily contact,

especially ECG, which requires electrode attachment and

is not suitable for future round-the-clock real-time home

health monitoring and diagnosis monitoring for burn or

infected patients. Therefore, if contactless and unconstrained

cardiac motion information detection technology can be

developed, this would be highly promising to serve as

core contactless physiological measurement technology for

next-generation smart medical detection and smart home

health monitoring.

Bio-radar research originated in the 1970s (4) and has

been widely studied over the last 20 years because of its

unique advantages. The basic principle of bio-radar for detecting

vital signs is that cardiopulmonary activity (heartbeat and

respiration) causes micro-movements of the body surface.

These micro-movements generate specific modulation of

the electromagnetic waves transmitted by radar sensors

which are then reflected. Consequently, human heartbeat and

respiration signals can be obtained through demodulation

operations on radar echoes. More importantly, considering its

unique advantages, such as privacy preservation, penetrating

nonmetallic obstacle detection, and sensitivity to finer motion,

bio-radar technology has been widely applied in vital sign

detection (5, 6) and target localization (7), especially in the field

of non-contact detection of respiratory and heartbeat signals for

broad applications (8–13).

In terms of cardiac motion information detection, in recent

years, although many bio-radar-based studies on physiological

information (such as heartbeat and respiration) have been

carried out, most of these are mainly concentrated on coarse-

grained information such as heart rate (14), heart rate

variability (2) and other statistical indexes. This coarse-grained

information can partly reflect the target’s physiological state

and health status, but we prefer to obtain more specific and

detailed information of cardiac movement similar to the ECG

waveform signal, which is more conducive to facilitating deep

and careful observation of the time-varying state of heartbeats

and even for assessing relevant cardiovascular function and

diseases. Unfortunately, only a few exploratory studies have

been conducted to date. For example, Aardal et al. (15) stated

that the bio-radar was first exploited to detect the two main

and detailed cardiac activities of ventricular ejection and filling.

Wang et al. (16) used a bio-radar to extract two geometric feature

points corresponding to the atrial and ventricular contractions

of an atrial-ventricular co-motion simulator. Furthermore, Gao

et al. (17) found that time delays between contractions and

relaxations of the atrium and ventricle can be observed in radar

echoes. In contrast, Zhu et al. and Dong et al. (18, 19) verified

that five feature points of radar heartbeat signals detected from

the back of the body could be extracted, which consistently

corresponds to five points in the ECG. Moreover, four different

body orientations for heartbeat signal detection during normal

breathing were investigated, and the results showed that the

amplitude ratio of the heartbeat to the respiratory harmonic in

the frequency domain from the back was greater than that from

the front (20).

Generally, preliminary studies have obtained time-varying

signals of cardiac motion and principally found corresponding

relations between the radar cardiogram (RCG) and ECG in

physiological feature points. However, three significant points

remain unexplored: (1) The influence of some key factors on

the RCG detection, such as the heart anatomical position,

posture, and atrial and ventricular motion characteristics; (2)

The corresponding relationships between the features of the

electrical signal, radar echo signal, and physiological process-

oriented cardiac motion; (3) In the ECG signal, there is a period

with no electrical stimulation or conduction in a cardiac motion

cycle (from the last T-wave to the next P-wave), resulting in a

flat waveform, which is called diastasis (21). During diastasis, the

ECG does not contain information about cardiac motion, but

the heart still undergoes corresponding blood flow movement

and volume changes during this period. Therefore, it is worth

exploring whether motion-sensitive RCG can detect cardiac

motion during this special period.

Based on the physiological characteristic analysis of cardiac

three-dimensional motions and the proposal of classical

signal processing schemes for RCG, this study designed

and implemented multiscale cardiac motion measurement

experiments based on the IR-UWB radar system to investigate

the three significant points mentioned above. Leveraging the

anteroposterior measurements, along-the-arc measurements,

and comparative experiments with ECG focusing on diastasis

detection, the rationality and advantages of bio-radar for cardiac

detail monitoring and cardiovascular disease diagnosis are

thoroughly discussed.

This paper is organized as follows: Section 2 introduces the

principle of radar cardiac motion detection. Subsequently, the

physiological process of cardiac movement alone with three

dimensions and the advantages of RCG for cardiac motion
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detection were analyzed, and the radar sensor and experimental

scheme are described. In Section 3, signal processing and feature

extraction methods are presented. The experiments and results

are presented in Section 4. In Section 5, the discussion and

conclusions are presented.

2. Materials and protocol

This section contains four parts, including the principle

of bio-radar-based heartbeat detection, the three-dimensional

motion mechanism of the heart, the advantages of RCG

over ECG in heart motion detection, and a corresponding

experimental scheme illustration.

2.1 Principle of cardiac motion detection
based on IR-UWB

The IR-UWB radar acquires physiological information

by analyzing the time and amplitude variations of reflected

pulses. When the transmitting antenna transmits very short

pulses at the carrier frequency to illuminate the human

chest, the receiving antenna receives the corresponding

reflected electromagnetic wave modulated by the thoracic

motion caused by respiratory and heartbeat organ behavior.

Consequently, the micro-motion Doppler signal can be derived

from (1).

s (t) = d0 + d(t) = d0 + dr sin(2π frt)+ dh sin(2π fht) (1)

where d0is the fixed distance between the antenna and

human chest wall, dris the displacement amplitude of

respiration, dh is the displacement amplitude of the

heartbeat, and fr andfh represent the respiratory and heartbeat

frequencies, respectively.

Denoting the normalized received pulse as δ(t), the total

response can be expressed as follows:

r(t, τ ) = Akδ(τ − τk(t))+
∑

i=1
Aiδ(τ − τi) (2)

where t is the observation time, and τ is the propagation time.

where δ(t, τ ) is the generated short pulse centered at the carrier

frequencyVc. Ak and Ai denote the amplitudes of the target

response and the multipath components, respectively, while

τk(t) and τi are the corresponding delays.τk(t) is determined by

the antenna distance to the target, which is expressed as

τk (t) =
2s(t)

c
= τ0 + τr sin(2π frt)+ τh sin(2π fht) (3)

where the speed of light c is∼3×108m/s, τ0 = 2s/c,τr = 2dr/c,

τh = 2dh/c.

Radar converts the received signal into a matrix of mrows

and ncolumns, denoted as R[m, n],

R[m, n] = r(t = mTs, τ = nTf ) (4)

where m and n represent the sampling numbers of slow time

and fast time, respectively. Ts is the pulse duration of slow time,

and Tf is the sampling interval of fast time. The row vector

records the echo signals received at different observation times

in each range interval, whereas the column vector records the

echo signals received at different distance intervals in each time

interval. Conventionally, vital sign information can be extracted

by directly applying a Fourier transform to the cross-range slow

time samples fixed at the range bin that contains most of the

energy from chest movement.

2.2 Analysis of physiological
characteristics of three-dimensional
cardiac exercise

The complex three-dimensional structure and its relative

position in the thoracic cavity cause the heart to beat uniquely,

making the observation results of heart pulsation vary greatly

from different perspectives. As illustrated in Figure 1, the heart

is located in the lower part of the anterior mediastinum of

the thoracic cavity, and is wrapped with pericardium outside,

about 2/3 on the left side of the anterior median line, and

1/3 on the right side. Heart contractions and relaxations cause

the heart to twist from right to left along the long axis. In

terms of mechanics, the longitudinal force of the myocardium

impels the heart to vibrate (xs(t)) along the sagittal axis, and

the transverse force contributes to shape changes (xv(t)) in the

vertical axis direction. Consequently, the vector sum (x(t)) of the

forces in three directions maximizes the amplitude of the heart

movement in a certain direction in three-dimensional space. In

addition, from an anatomical perspective, the heart consists of

four parts: the left atrium, left ventricle, right atrium, and right

ventricle, which cooperate to complete systemic circulation and

pulmonary circulation. The key process is that the left ventricle

pumps blood into the aorta and then transports it to all organs

and tissues within the body; thus, the left ventricle beats most

violently during this duration. However, the front heart is mostly

blocked by the lung and pleura, and the other parts are also

connected to adjacent organs and tissues, leaving only the apical

part attached to the lower half of the sternum and left 4–6 costal

cartilage. Consequently, the anatomical features described above

resulted inmovement of the apical part of the heart to be directly

transmitted to the chest surface through the intercostal space,

thus generating an obvious apical beat in the fifth intercostal

space (7–9 cm to the left of the midline). In summary, based on

the dynamic and static indicators, we speculate that there may be
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FIGURE 1

Schematic diagram of radar cardiac motion detection and the

physiological structure of the heart.

an optimal position and angle for cardiac pulsation observation

in three-dimensional space.

Driven by blood flow and electrical stimulation-induced

myocardial contraction and relaxation, different chambers of

the heart generate regular volume changes and micromotion

rhythms at different stages during a single cardiac cycle, namely

mechanical motion patterns. As shown in Figure 2, each cardiac

motion cycle consists of five distinct stages including: (1)

ventricular filling (VF), (2) atrial systole (AS), (3) isovolumetric

ventricular contraction (IC), (4) ventricular ejection (VE), and

(5) isovolumetric ventricular relaxation (IR). In the first stage,

ventricular filling (VF) occurs when the semilunar valves (SV)

are closed and the atrioventricular valves (AV) are open because

the ventricular pressure is less than the atrial pressure. At this

stage, the whole heart is relaxed, the blood in the atrium charges

into the ventricle, and the ventricular filling accounts for 2/3 of

the total filling, resulting in the rapid outward expansion of the

heart. The second stage, atrial systole (AS), occurs when atria

contract to pump their contained blood into ventricles, namely,

the residual 1/3 ventricular filling. Although the heart contracts

inward first because of the emptying of the atria, it expands

outward immediately after because the extra blood in the atria

is squeezed into the ventricles. The third stage, isovolumetric

ventricular contraction (IC), occurs when the ventricles begin to

contract and the SV/AV close. Although the ventricular pressure

increases, no significant displacement occurs because there is no

change in volume. Lastly, ventricular ejection (VE) occurs when

the SV opens and ventricles contract and force blood into the

arteries. This is because ventricular pressures rise to be higher

than arterial pressures as the ventricle continues to contract,

following which the SV is forced to open. During this process,

the heart contracts inward because of the significant decrease

in ventricular pressure and volume. During the fifth stage,

isovolumetric ventricular relaxation (IR), ventricles finish the

blood ejection, and SV/AV close when the ventricular pressure

is lower than the aortic pressure and atrial pressure, respectively.

The heart stops contracting and is relaxed, which ends the

FIGURE 2

Motion characteristics during a cardiac cycle.

cycle. According to our analysis above, if we compare it with

the electrophysiological activity of the heart, we speculate that

there may be a certain correspondence between the mechanical

activity and electrophysiological activity of the heart.

2.3 Analysis of the advantages of RCG
and ECG cardiac physiological motion
detection

The principle of ECG is to observe the change rule of cardiac

current during a cardiac cycle, namely, the depolarization and

repolarization processes of the atrial ventricle, which could

help reverse the movement process and functional execution

state of each chamber of the heart. Under the regulation of

sympathetic and parasympathetic nerves, the heart transmits

electrical signals generated usually by the sinoatrial node,

atrioventricular node, and other nodes, to trigger heart muscle

contraction, which in turn results in coordinated rhythmic

contraction and relaxation of the heart throughout each cardiac

cycle. Specifically, there is a special segment called the heart rest

period between the rapid filling period and the atrial contraction

period, similar to the interval marked by the green box in

the ECG curve shown in Figure 3. Nevertheless, during heart

blood flow, blood flow still occurs even during the heart rest

period, so it still causes heart volume changes and mechanical

motion, which undoubtedly contains (conveys) a large amount

of information (abnormal heart disease) about the structure and

function of the heart. Unfortunately, the ECG measurement

method fails to detect the corresponding cardiac motion; thus,

we refer to this interval as the blind segment.

As a novel non-contact measurement method, bio-radar

mainly exploits the Doppler principle to measure the surface
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FIGURE 3

Rule of electrical activity and atrioventricular volume during a cardiac cycle.

micro-motion caused by atrial ventricular contraction and

relaxation movement transmitted to the body surface, namely

the radar cardiogram. In other words, RCG measures cardiac

mechanical motion instead of electrical activity. According

to our analysis of the physiological characteristics of three-

dimensional cardiac motion in Section Analysis of physiological

characteristics of three-dimensional cardiac exercise, it can

be guaranteed that the RCG could also contain similar

information about the structure and function of the heart

to the ECG and even detect cardiac mechanical motion

during the blind segment. Therefore, the RCG holds two

natural and critical superiorities to the ECG in the theory

of non-contact and no-blind segment, which is expected to

serve as a novel and refined measurement for whole-process

cardiac detection.

2.4 Experimental scheme

For multiscale measurements of cardiac motion, three types

of experiments were designed along with coarse-to-fine scales,

as shown in Figure 4. The experimental setup of anteroposterior

measurements is illustrated in Figures 4A,B, and cardiac motion

detection was performed from the front and back of the body.

Second, cardiac signal detection from multiple perspectives

of the front body experiment was performed, as shown in

Figure 4C, which aimed to find the optimal position and angle

for cardiac pulsation observation in a three-dimensional space.

Finally, as illustrated in Figure 4D, contact (ECG) and non-

contact (RCG) detections were used to simultaneously measure

cardiac signals for performance comparison of the methods.

2.5 Cardiac signal acquisition system

The X4M200 pulse UWB radar system developed by

Novelda was adopted in this study for human vital sign

detection. The transmitting antenna of the radar adopts direct

sampling technology and radio frequency (RF) interference

suppression technology. The structure and radar system are

shown in Figure 5, and its key parameters are listed in Table 1.

Similar to the system schematic in Figure 5, the transmitting

antenna transmits pulses at a certain interval with a certain

pulse repetition rate. After the pulse signal reaches the target,

it is modulated and reflected by the target, and then received

by the receiving antenna. Simultaneously, the system creates

a frame of data that contains the motion information of the

target. In a radar system, the phase-locked loop (PLL) of

the transmitting antenna synthesizes the transmitting pulse.

The front-end of the differential receiving antenna includes

a high-pass filter (HPF), low-noise amplifier, and sampler for

preliminary hardware filtering. A serial peripheral interface

(SPI) was used to communicate with the host computer, and the

power management unit (PMU) was responsible for the power

supply of the radar system.

This radar system could operate under two modes with

different bandwidths of 1.4 and 1.5 GHz respectively, and

the corresponding center frequencies are 7.29 and 8.748

GHz, respectively. In our study, a mode with 7.29 a center

frequency of 1.4 GHz bandwidth was chosen. It should be

noted that the average output power (dBm/MHz) was >-44

dBm and the distance between human and radar antenna

is about 0.55m during measurement, thus the maximum

power density of our bio-radar system is much lower than

the accepted safe power density level of 10 mW/cm2, which
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FIGURE 4

Schematic diagram of multiscale detection of a cardiac signal. (A) Front orientation measurement, (B) back orientation measurement, (C)

along-the-arc measurements, and (D) reference measurement.

FIGURE 5

(A) Radar structure diagram and (B) radar object diagram.

would poses no threat to human health according to previous

studies (22–24). Moreover, The Medical Ethic Committee of

the First Affiliated Hospital of the Fourth Military Medical

University approved the study. The informed consent of all

subjects were obtained prior to volunteers’ participation in

the experiments.

3. Signal processing

Based on the fact that the reflected radar echo has been

modulated by the chest movement, cardiac motion information

can be obtained through a series of signal processing and

demodulating on the radar echo. The signal processing flow

chart of the cardiac radar signal shown in Figure 6 includes the

following steps.

TABLE 1 Key parameters of the UWB radar system.

Key parameters Symbol Value

Center frequency fc 7.29 GHz

Bandwidth B 1.4 GHz

Pulse repetition rate PRR 15.18 MHz

Detection range R 0–9.9 m

Range point fr 186

Scanning rate fs 17 Hz

3.1 Preprocessing

The original time-range 2D radar echo signal contains DC

components caused by static objects such as tables and ground,

as well as the baseline drift of the echo caused by environmental
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FIGURE 6

Processing flow chart of a cardiac radar signal.

factors, which cause strong interference in heartbeat extraction.

In this study, the 100-order slide-window average subtraction

method was used to remove the DC component and baseline

drift, as shown in Equation (5):

RDC(m, n) = Raw(m, n)−
1

100

∑n+99

i=1
Raw(m, n) (5)

where Raw(m, n) is the raw data and RDC(m, n) is the radar echo

after removing the DC and baseline drift.

Subsequently, a low-pass filter with a cutoff frequency of

5Hz was used to filter out high-frequency noise interference to

obtain mixed signals of respiration and heartbeat, as shown in

Equation (6):

RLP(m, n) = RDC(m, n)∗HLP(t) (6)

where RLP(m, n) is the data after removing the high-frequency

noise and HLP(t) is the finite impulse response function of the

low-pass filter.

Here, sample data were used to verify the effect of

this preprocessing method. The time-range 2D radar echo

(Figure 7A) was from a static lying human subject whose heart

was directly in line with the UWB radar at a distance of

0.55m. Obviously, except for the strong echo around the 0.55m

position, the 2D echo is also filled with various noise and

interference. Nevertheless, this noise and interference can be

removed effectively after preprocessing, as shown in Figure 7B.

3.2 Cardiac motion separation from radar
cardiopulmonary physiological motion
echo

For the time-range-preprocessed radar echo, the

characteristics of IR-UWB allow cardiac motion information

to exist in multiple range bins. Thus, before extracting cardiac

signals, we must first select and locate the optimal range unit

in which the human body lies. Here, the range bin with the

maximum energy is selected as the optimal range bin signal, as

shown in Equations (7) and (8):

S(j)j=1 =

∑n

n=1
R2DC(1, n) (7)

RTP = max
[

S(j)
]j=m
j=1 (8)

where R2DC(1, n) is the slow time signal in the jth range bin,

S(j)j=1 is its energy sum, and RTP is the optimal range bin signal.

Additionally, because the chest wall vibration detected by

radar is a mixture of pulmonary motion (breathing) and cardiac

motion (heartbeat), the next key step is to separate the heartbeat

signal from the echo. The classic band-pass filter with the cut-

off frequency of 0.85 and 3.3Hz is exploited here, assuming the

human heart rate to be 50–220 times per minute. The principle

of this method can be expressed by Equation (9):

{

RBP = RTP∗HBP(t)

RLP = RTP∗HLP(t)
(9)

where RBPis the obtained cardiac signal, HBP(t) is the finite

impulse response function of the bandpass filter.RLP is the

obtained respiration signal, and HLP(t) is the finite impulse

response function of the low-pass filter.

4. Experiments and results

4.1 Experimental setup

According to the anatomical structure of the heart, cardiac

apex motion, such as systole, diastole, or torsion, is conducted

through the gap between the fourth and fifth ribs to generate

micro-movement at the skin surface. Therefore, it is reasonable

to speculate that there is an optimal observation position for

micromotion signals. Clinically, the fifth intercostal space can

be localized using one notch counting down from the fourth

intercostal space, which is located on the line connecting the

two nipples. The skin surface area of the micro-movement

originating from the heartbeat is an approximate circle with a

diameter of 2–2.5 cm. This circular area is the right position that

needs to be aimed at by the radar.

Then, anteroposterior and arc measurements were carried

out. Radar cardiac signals of five male subjects aged 24–43

years were collected. For anteroposterior measurements, human

subjects lay on the ground in a supine or prone position while

holding their breath. The radar was placed 55 cm away from the

human body. Eight traits of 10-s signal for each person were

recorded, four collected from the front side and four from the

back side.

The along-the-arc measurement was designed to determine

the optimal observation angle that could ensure the acquisition

of the best radar echo signal. To avoid inconsistencies caused

by side-lobe energy attenuation or further distance energy

attenuation, an equal-radius measuring method is proposed to

maintain the detection distance between the body surface area

of the cardiac apex and the radar constant. A laser pointer was

used to ensure that the radar is always aimed at the cardiac apex.

Each human target was detected eight times along an arc in

the sagittal plane with the circle center of the cardiac apex and

an angle step of 20◦each time. The along-the-arc measurement

ensured that the best radar echo signal was obtained at each

observation angle.
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FIGURE 7

The preprocessing performance on heartbeat UWB radar echo (A) before and (B) after preprocessing.

FIGURE 8

RCG results from five adjacent range bins.

FIGURE 9

Anteroposterior measurements, (A) measured from back side, (B) measured from front side.
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FIGURE 10

RCG results of anteroposterior measurements from the back and front side, (A) time domain RCG amplitude results, (B) box plot of RCG

amplitude results.

FIGURE 11

Scenarios of the along-the-arc measurements.

Due to support from the ground, body shaking was minimal

when the human target is measured in a lying posture. In this

study, the lying position was used for cardiac signal collection.

Respiratory harmonics cause serious interference to heartbeat

signals (respiratory harmonics could be close or even coincide

with the cardiac signal in the frequency domain), which were

difficult to remove. To eliminate this harmonic interference, the

cardiac signals were recorded under breath-holding conditions.

4.2 Anteroposterior measurements

Radar echo data are a 2-dimensional array alone with range

(fast time) and slow time, which can be divided into a limited

number of range bins along the range dimension. If the motion

amplitude of the target is beyond the width of a single range

bin, the motion will appear in several adjoining range bins and

influence the neighbors, which is called the range bin effect (25).

Therefore, an experiment was performed to explore whether

the proposed radar has a range-bin effect. Five range bins,

TD−2, TD−1, TD, TD+1, and TD+2, centered symmetrically

on the range bin signal with maximum energy were collected.

According to the results, no morphological differences were

observed, except for the difference in amplitude among the five

collected range bins. This demonstrates that there is no range-

bin effect, and the cardiac motion signal at the range point

with the largest energy can represent the overall range bins. The

cardiac signals of the five range bins are shown in Figure 8.

To study the detection performance from the front and back

orientations, we collected the radar cardiac signals of five male

subjects who held their breath while lying in a supine or prone

position. As shown in Figure 9, 40 groups of eight traits for each

person were collected under the anteroposterior measurement

scenario. Li et al. (20) found that the energy ratio of heartbeat
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FIGURE 12

RCG results at di�erent angles.

to respiration detected from the back was larger than that from

the front, cardiac signal feature extraction for disease diagnosis

requires critical characteristics of large amplitude and more

detailed information.

The measurement results from the front side and back side

are shown in Figure 10. The median of all RCG time-domain

amplitudes detected from the front side was 3.67 × 10−4 and

the standard deviation (STD) was 4.05× 10−6. The median and

STD of the RCG amplitude from the back side were 1.53 ×

10−4 and 4.04 × 10−6 respectively. We can see that the RCG

amplitude detected from the front side was larger than that from

the back side, and superiority also existed with respect to the

detailed information. The reasons for this are as follows: The

cardiac movement just needs to pass through the fifth intercostal

space to reach the skin surface and be detected by radar from

the frontal detection perspective when the attenuation is weak.

However, from the backside detection view, cardiac motion

needs to be conducted through the spine, lungs, muscles, skin,

and other tissues and organs, and then detected by radar, so the

attenuation was much greater than that of front side detection.

4.3 Along-the-arc measurements

To find the optimal detection angle of the view from

the front side, measurements from eight different angles were

carried out when the human target was lying in a supine

posture and holding their breath. The angles, 20, 40, 60,

80, 100, 120, 140, 160◦, within sagittal plane, were adopted.

The radar changed the angle along an arc with a radius of

55 cm. The scenario is shown in Figure 11. Each person at

each angle was detected once, and five subjects amounted to

40 sets of data. The results are shown in Figures 12, 13. The

best cardiac signal was observed at 120◦ both in amplitude

and morphology. When the radar detection angle increasing

from 20 to 160◦, the amplitudes, representing echo energy,
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FIGURE 13

Results of RCG at di�erent angles from front side (A) overall results (mean of peak amplitude), (B) detailed results (mean of Dspsr).

gradually increased and then decreased. The RCG reached its

maximum energy at an angle of 120◦. Morphologically, the

average difference between the second peak and second trough

in RCG cardiac cycles, denoted as Dspsr , moved from unobvious

to obvious and then unobvious again along with the increase

in the detecting angle. As shown in Figure 13, the second most

obvious peak also appeared at 120◦. The RCG results, both

in energy and morphology, indicated that the vector sum of

the three-dimensional motion of the heart was in the direction

of 120◦.

4.4 Comparison of diastasis
measurements between RCG and ECG

To study the similarities and differences between the RCG

and ECG, simultaneous acquisition experiments using a radar

sensor and ECG are illustrated in Figure 14. A comparative

analysis of the features and cardiac cycle staging between

ECG and RCG is shown in Figure 15. The maximum RCG

value indicated that ventricular relaxation corresponded to the

T wave in the ECG. The stage after this maximum value

was the change in ventricular volume from small to large.

The second peak of the RCG represents the start of atrial

contraction and corresponds to the P wave in the ECG.

The stage related to the time interval from second peak to

second trough was the change in atrial volume from large

to small.

With regard to the ECG results in Figure 15, there is

a period after the stage of ventricular filling before the

next P-wave presents a straight line without any fluctuation,

which is called diastasis. During diastasis, the heart maintains

FIGURE 14

Synchronous acquisition experiment of RCG and ECG.

systole and diastole phases, and the heart volume keeps

changing, which means that the heart still has motion in the

diastasis period. The motion in diastasis is transmitted to

the body surface and detected by the radar, which appears

as a fluctuation in the RCG. Therefore, the RCG can detect

and obtain cardiac motion information from a blind segment

that has no ECG information. Considering that the cardiac

motion signal in the blind area contains information on heart

motion status and disease, RCG contains more information

than ECG and can provide real-time whole-cardiac cycle

health monitoring.

The position of the cardiac apex beat is affected by

various physiological and pathological factors. For example,

when the human body is in a lying position, the surface
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FIGURE 15

Comparison of RCG and ECG.

beating position where the cardiac motion is conducted

changes with different lying postures. Furthermore, different

body shapes, enlargement of the heart, and displacement

of the mediastinum and diaphragm also affect the surface-

beating position. Research on disease diagnosis based on

radar cardiac motion signals is still in its infancy. In

practical application scenarios, the human breathing signal

causes severe interference with the RCG. Body shaking is

another great challenge to RCG measurement that needs to

be suppressed. In addition, the correspondence between RCG

features and cardiac pathological changes needs to be studied

further. Further research should be conducted to address

these issues.

5. Conclusion

This study systematically investigated the influence of

the detecting position, orientation, and angle on cardiac

motion measurements. Considering the anatomical

position, posture, physiological structure, and motion

characteristics of the atrium and ventricle, multiscale

measurements were designed and performed. The best

location, optimal orientation, and angle of detection were

first found and experimentally verified. In anteroposterior

measurements, a better RCG amplitude was obtained

when the radar was aimed at the fifth intercostal space

and illuminated the human body from the front side. For

along-the-arc measurements, an optimal RCG result was

observed with a detection angle of 120◦ both in overall

amplitude and detailed information, which means that

the vector sum of three-dimensional cardiac motion is in

the direction of 120◦. It is worth mentioning that, some

non-absolute-amplitude-based-features of RCG, such as time

interval between two points, relative amplitude and magnitude

ratio, etc. are also important diagnostic basis for heart disease

and these features do not require high accuracy detection

angle. Furthermore, due to differences in detection theory,

RCG can detect information in the blind area (diastasis) where

ECG cannot.

The new discoveries of this study lay a theoretical foundation

for RCG measurements and are of great significance for

RCG applications in cardiovascular disease diagnosis. This

could also serve as a foundation for subsequent RCG-

based studies.
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It has been found that arsenic trioxide (ATO) is effective in treating acute

promyelocytic leukemia (APL). However, long QT syndrome was reported in

patients receiving therapy using ATO, which even led to sudden cardiac death.

The underlying mechanisms of ATO-induced cardiotoxicity have been

investigated in some biological experiments, showing that ATO affects

human ether-à-go-go-related gene (hERG) channels, coding rapid delayed

rectifier potassium current (IKr), as well as L-type calcium (ICaL) channels.

Nevertheless, the mechanism by which these channel reconstitutions

induced the arrhythmia in ventricular tissue remains unsolved. In this study,

a mathematical model was developed to simulate the effect of ATO on

ventricular electrical excitation at cellular and tissue levels by considering

ATO’s effects on IKr and ICaL. The ATO-dose-dependent pore block model

was incorporated into the IKr model, and the enhanced degree of ATO to ICaL
was based on experimental data. Simulation results indicated that ATO

extended the action potential duration of three types of ventricular

myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells

(MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity

among them. ATO could also induce alternans in all three kinds of VMs. In a

cablemodel of the intramural ventricular strand, the effects of ATO are reflected

in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable

window, thus increasing the possibility of spiral wave formation in ventricular

tissue. In addition to showing that ATO prolonged QT, we revealed that the

heterogeneity caused by ATO is also an essential hazard factor. Based on this, a

pharmacological intervention of ATO toxicity by resveratrol was undertaken.

This study provides a further understanding of ATO-induced cardiotoxicity,

which may help to improve the treatment for APL patients.
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Introduction

Arsenic trioxide (ATO), a traditional Chinese medicine, has

been reported to be used to treat acute promyelocytic leukemia

(APL) in 1997 (Chen et al., 1997). After that, scientists discovered

that a combination of ATO and all-trans retinoic acid (ATRA)

almost cured APL (Shen et al., 2004), whose molecular and

cellular mechanisms have also been elucidated (Zhang et al.,

2010). In recent years, ATO was screened to rescue the

p53 folding function (Chen et al., 2021). In oncology, this is a

breakthrough, since the p53 mutation is the most common

mutation among cancer patients, which has shown great

therapeutic potential but had never been rescued before this

research. As a result, ATO is a promising drug in oncotherapy

and deserves to be further investigated and applied.

In addition to the efficacy, the safety of ATO also needs to be

assessed in clinical trials. It has been reported that ATO may

generate cardiotoxicity as well as hepatotoxicity (Mathews et al.,

2006; Alexandre et al., 2018). Cardiotoxicity is reflected in the

prolonged QT interval of electrocardiograms (ECGs) (Soignet

et al., 2001), called long QT syndrome (LQT), which may lead to

torsade de pointes tachycardia (TdP) (Unnikrishnan et al., 2001;

Hai et al., 2015) and even threaten life (Westervelt et al., 2001;

Lenihan and Kowey, 2013). There was also a case of ventricular

tachycardia with a normal QT interval in ATO therapy (Ducas

et al., 2011), which further warned of the potential arrhythmia

risk. A studymanifested that the combination of ATRA and ATO

therapy can reduce side effects and has less toxicity than ATO

treatment alone (Hu et al., 2009). Nevertheless, a Position Paper

published by the European Society of Cardiology emphasized

that ATO was more related to QT prolongation than other

reported anticancer drugs, and it also has a higher chance of

causing sudden death due to TdP (Zamorano et al., 2016).

Therefore, there is a strong need to further investigate the

mechanisms of ATO-induced cardiotoxicity.

Because of the clinical observation of ATO-induced

cardiotoxicity, a series of animal studies, including subcellular

and cellular experiments, were carried out. According to

experimental research, ATO acts on cardiomyocytes (CMs)

mainly via potassium channels and calcium channels. The

human ether-à-go-go-related gene (hERG) codes rapid

delayed rectifier potassium current (IKr) in the human heart,

which is susceptible to ATO. Exposure to ATO for 20 min can

suppress the hERG channel in hERG-transfected CHO cells

(Drolet et al., 2004), whereas an experiment in HEK293 cells

(Ficker et al., 2004) indicated that short-term application of ATO

did not affect the hERG current and could not alter the action

potential duration (APD) in guinea pig ventricular myocytes

(VMs). This study revealed that long-term ATO suppressed the

IKr current in HEK293 cells, and the dosage of ATO directly

determined the reduction degree of IKr (Ficker et al., 2004). The

same phenomenon can also be observed in other

HEK293 experiments (Zhao et al., 2015; Yan et al., 2017), and

the inhibiting effect of ATO on the hERG channel has also

appeared in rodent animals, such as guinea pig VMs (Ficker et al.,

2004; Zhao et al., 2014), neonatal rat VMs (NRVMs) (Zhao et al.,

2015), and neonatal mouse cardiomyocytes (Liu et al., 2017). In

addition, the underlying RNA regulation mechanisms of ATO-

impaired hERG were revealed (Shan et al., 2013; Zhao et al.,

2015). The effect of ATO on slow delayed rectifier potassium

current (IKs) is controversial. The IKs of CHO cells were

susceptible to short-term exposure to ATO (Drolet et al.,

2004), but in guinea pig VMs, ATO did not have an apparent

influence on IKs density (Ficker et al., 2004). A similar

controversy also appeared in the inward rectifier potassium

current (IK1). Chronic ATO administration inhibited IK1
significantly by reducing Kir2.1 protein expression levels in

guinea pig CMs (Chu et al., 2012; Shan et al., 2013) and

neonatal rat CMs (Chen et al., 2010; Chu et al., 2012).

However, a guinea pig experiment did not show an obvious

change in IK1 after overnight ATO treatment (Ficker et al., 2004).

The drug-delivery method and its dosage should be responsible

for this difference between the results. Furthermore, calcium

channels are sensitive to ATO. Experiments in guinea pig VMs

(Sun et al., 2006) and NRVMs (Chen et al., 2010; Yan et al., 2017)

reported an increase in L-type calcium current (ICaL) under the

action of ATO at different dosages. The peak of intracellular

calcium concentration ([Ca2+]i) was also markedly increased in

the presence of ATO (Yan et al., 2017), while the diastolic [Ca2+]i
level did not change (Chen et al., 2010). Consistently, it has been

verified that ATO can prolong APD in different cell types,

including guinea pig VMs (Sun et al., 2006), NRVMs (Chen

et al., 2010), HEK293 cells (Ficker et al., 2004), and human-

induced pluripotent stem cell-derived cardiomyocytes (hiPS-

CMs) (Yan et al., 2017). This finding was consistent with the

clinical observation that ATO caused LQT in animal studies

(Chen et al., 2010). Research on the potential signaling

mechanisms of ATO-induced LQT revealed that ATO

promoted the secretion of transforming growth factor-β1
(TGF-β1), which led to fibrosis and inhibited hERG and

Kir2.1 protein in CMs, thus causing LQT syndrome (Chu

et al., 2012). Although the above experimental results greatly

helped understand ATO-induced cardiotoxicity, most studies

have been conducted on a single ion channel and have not

directly examined using human cardiomyocytes.

It is of great significance in clinical practice to find a way to

ameliorate the side effects of ATO. To date, several drugs have

been attempted to do this, including antiallergic drugs [such as

fexofenadine and astemizole (Yan et al., 2017)], hypoglycemic

drugs [such as glibenclamide (Drolet et al., 2004)], cardiovascular

drugs [such as nisoldipine (Ficker et al., 2004), ranolazine (Yan

et al., 2017) and choline (Sun et al., 2006)], antagonists (Chu

et al., 2012) and organic compounds [such as resveratrol (Zhao

et al., 2014; Yan et al., 2017), eugenol (Binu et al., 2017) and

omega-3 fatty acid (Varghese et al., 2017)]. Fexofenadine can

increase the IKr of HEK293 cells and shorten APD in both
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NRVMs and hiPS-CMs treated with 3 μM ATO (Yan et al.,

2017). Ranolazine, astemizole and glibenclamide also acted on

potassium channel proteins. Ranolazine corrected hERG

expression in HEK293 and NRVMs but failed to reverse the

damaged hERG channel in hiPS-CMs (Yan et al., 2017).

However, astemizole did not have remarkable assuasive effects

on the long APD caused by ATO (Yan et al., 2017). Resveratrol

(Yan et al., 2017) and choline (Sun et al., 2006) attenuated ATO

toxicity by inhibiting the ICaL channel, and resveratrol exerted a

better rescue effect than potassium-intervened agents (Yan et al.,

2017). Moreover, lead compound optimization was also reported

to be a strategy that alleviated ATO toxicity (Zhou et al., 2016). In

addition, the regulatory mechanism of TGF-β1 under ATO

treatment (Chu et al., 2012; Liu et al., 2017) provided new

methods for preventing hERG and Kir2.1 protein damage by

treatment with the protein kinase A (PKA) antagonist H89 and

the TβR-I inhibitor LY364947 (Chu et al., 2012).

ATO is a vital agent in the field of clinical oncotherapy.

Research is being conducted to unravel and alleviate ATO-

induced cardiotoxicity. However, the mechanism of ATO-

induced cardiotoxicity is not well understood, especially at

the myocardial tissue level. In the present study, we

constructed a multiscale mathematical model to simulate

cardiac electrical activity in the presence of ATO, by which

the generating process of arrhythmia induced by ATO

treatment can be delineated from ionic channels to

cardiac tissue. In this way, the effect of ATO on single

CMs can be extended to a macroscopic level to further

predict and analyze its underlying risks. Using the results

from this study, we gained a new perspective on ATO-

induced cardiotoxicity, such as tissue electrical

heterogeneity, vulnerability to arrhythmogenesis and

electrical alternans, and provided a method for finding the

right dose and a pharmacological rescue scheme for ATO

treatment.

Methods

Modeling single VMs and the binding
interaction between ATO and the IKr/ICaL
channel

The human VM models, including endocardial cells

(ENDO), midmyocardial cells (MCELL) and epicardial cells

(EPI), followed ten Tusscher’s model (TNNP06) because of its

application in alternans and reentry (ten Tusscher and Panfilov,

2006). The membrane potential of a single VM can be described

by the following ordinary differential equation:

dV

dt
� −Iion + Istim

Cm
(1)

where V is the membrane potential; t is time; Istim is the

stimulation current; Cm is the cell capacitance. Iion is the sum

of transmembrane ionic currents, including:

Iion � INa + IK1 + Ito + IKr + IKs + ICaL + INaK + INaCa + IpCa + IpK

+ IbCa + IbNa (2)

Here, we simulated the electrophysiological activities of VMs

incubated with ATO by modifying a potassium channel, IKr, and

a calcium current, ICaL. The formulations of all ionic channel

currents can be referenced in the TNNP06 model (ten Tusscher

and Panfilov, 2006).

According to a simple pore block theory (Yuan et al., 2014),

the binding interaction between ATO and IKr can be modeled by

a blocking factor λ that denoted the blocking degree of ATO to

the maximum conductance of the targeted ion channel. This

blocking factor λ can be described by a Hill equation as follows:

λ � 1

1 + D
IC50( )nH (3)

where D is the concentration of ATO, IC50 is the ATO

concentration at which 50% blockade of the binding site

occurs and nH is the Hill coefficient. As a result, the

remaining maximum conductance index of IKr is:

k � 1 − λ (4)

Consequently, the formulation of IKr can be described as

follows:

IKr � k · GKr

���
Ko

5.4

√
xr1xr2 V − EK( ) (5)

where GKr is the conductance of IKr, Ko is the extracellular K+

concentration, xr1 is an activation gate, xr2 is an inactivation gate,

and EK is the reversal potential.

According to the experimental data (Ficker et al., 2004), IC50

was 1.5 μM and nH was fitted at −1.2, so the interaction between

ATO concentration and k is demonstrated in Figure 1A. The tail

currents of IKr under control and 3 μM ATO in the present

simulation model and experimental measurement (Yan et al.,

2017) are shown in Figure 1B. Our model could well fit the

experimental data, which indicated the accuracy of the present

model.

Experiments indicated that exposure to 3 μM ATO for 24 h

tripled the density of ICaL in guinea pig VMs (Ficker et al., 2004)

or doubled it in NRVMs (Yan et al., 2017). Another animal

experiment showed that when ATO administration led to a

double ICaL density, the activation curve of ICaL was shifted

negatively (Chen et al., 2010).

In the present model, the formulation of ICaL was as follows:

ICaL � θ · GCaLdff2fCaSS4
V − 15( )F2

RT

0.25CaSSe2 V−15( )F/RT − Cao
e2 V−15( )F/RT − 1

(6)
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where d is a voltage-dependent activation gate:

d∞ � 1

1 + e V1/2−V( )/7.5 (7)

Two parameters that were modified to simulate the effect of

ATO on ICaL were θ and V1/2, which represented the change in

the conductance of ICaL (GCaL) and the half activation voltage

(V1/2) of the activation gate d) respectively. They were estimated

according to the above biological experimental results, and the

corresponding values are listed in Table 1. The meanings of the

other parameters in Eq. (6) can be seen in Ref. (ten Tusscher and

Panfilov, 2006).

Experiments observed that resveratrol can suppress the

ICaL channel current, thus shortening APD (Zhang et al.,

2006), and it was shown to increase the IKr channel current

(Zhao et al., 2014). Consequently, it was suitable to alleviate

cardiotoxicity caused by ATO (Zhao et al., 2014; Yan et al.,

2017). The effect of resveratrol on the VMs treated with 3 µM

ATO was simulated by manipulating the conductance of ICaL
and IKr. According to experimental data, under the condition

of 3 µM ATO, 10 µM resveratrol decreased the ICaL density

from twice the original value to approximately 1.3 times (Yan

et al., 2017). And 10 µM resveratrol recovered IKr by

approximately 33% of its density under the impact of 3 µM

ATO (Zhao et al., 2014). The same rescue ratio of resveratrol

was applied in the present model; thus, the formulation of IKr
and ICaL was changed as follows:

IKr � nRes · k · GKr

���
Ko

5.4

√
xr1xr2 V − EK( ) (8)

ICaL � mRes · θ

· GCaLdff2fCaSS4
V − 15( )F2

RT

0.25CaSSe2 V−15( )F/RT − Cao
e2 V−15( )F/RT − 1

(9)
where nRes and mRes are the coefficients of resveratrol’s effect on

IKr and ICaL, whose values were 1.33 and 1.3, respectively, under

10 µM resveratrol.

To assess the degree of pharmacological rescue, we defined

the rescue ratio as follows:

r � 1 − APD90Drug+ATO − APD90Control

APD90ATO − APD90Control
(10)

In which APD90 means time duration from depolarization to

90% repolarization, APD90Control is the APD90 of original VM

FIGURE 1
Effects of ATO and the hERG channel current. (A) The normalized remainingmaximum conductance of IKr blocked by ATO. (B) Tail current of IKr
under the conditions of control and 3 μM ATO in the simulation model (black lines) and an experiment (red circle and square), respectively.

TABLE 1 The effect of ATO on ICaL.

Concentration of ATO (μM) θ (index of GCaL) V1/2 of the activation gate d (mV)

0 0 −8

1 33 −8

2 66 −8

3 100 −10
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cells with 0 µM ATO, APD90ATO is the APD90 with 3 µM ATO,

andAPD90Drug+ATO is the APD90 with 3 µMATO as well as drug.

The greater r is, the better the therapeutic effect of the drug.

Particularly, when r is equal to 0, the drug does not work. When r

is equal to 1, the side effect of ATO is completely rescued.

Eq. (1) was solved by the forward Euler method with a time

step of 0.02 m. The single VM model was pulsed under stimulus

currents of −52 pA/pF with a basic cycle length (BCL) of 800 m.

The S1-S2 standard protocol was used to depict the restitution

curve of a single cell. Ten S1 stimulation currents were applied

under a BCL of 800 m, following an S2 stimulation current after a

dynamic shortening period. This period was called the S1-S2

interval, and the corresponding APD90 of the last cycle was

calculated. A dynamic protocol was used to estimate the risk of

alternans of VMs, which was conducted by a series of S1 with

tapering BCL and corresponding APD90 being calculated.

Modeling ventricular tissue

Non-linear cable theory was applied to build a monodomain

ventricular tissue model. As such, the electrical activity of

ventricular tissue can be described by a partial differential

equation as follows:

zV

zt
� ∇ ·D∇V − Iion + Istim

Cm
(11)

where ∇ is the spatial gradient operator, ∇ � zV
zx in the ventricular

cablemodel and∇ � zV
zx + zV

zy in the ventricular tissuemodel;V is the

membrane potential; t is time;D is the diffusion coefficient; Iion is the

sum of transmembrane ionic currents; Cm is the cell capacitance.

Eq. (11) was solved by the finite difference method with a

time step of 0.02 m and a space step of 0.25 mm. The D was set at

0.08 mm2/ms (Luo et al., 2017) so that the conductivity velocity

of electrical waves in ventricular tissue was 0.7 m/s, which was

consistent with experimental observations (Taggart et al., 2000).

ECG is used to describe the body surface potential in the

clinic. It can be estimated according to cellular

electrophysiological processes (Gima and Rudy, 2002). Here,

we calculated a pseudo-ECG by the following equation:

Φ � ∫ k∇V · �r
r3

dV (12)

where k is a constant; V is the membrane potential; �r is a vector

from any point in tissue to the electrode; r is the length of �r.

S1-S2 stimuli were used to evaluate the vulnerability of

ventricular cables and tissues via the genesis of unidirectional

conduction block. In the ventricular cable, S1 stimuli were

applied at first five ENDO cells, and S2 stimuli were applied

at five EPI cells. Different locations of EPI that applied S1 stimuli

were from the site that neighboring MCELLs to the site that was

far away from 5 MCELLs, i.e., the 61–65th cells to 65–69th cells.

In ventricular tissue, S1 stimuli were also located at ENDO cells,

while S2 stimuli were applied at a block of epicardial tissue whose

width was less than the whole cardiac width so that spiral waves

could be motivated.

The dynamic protocol was conducted in a heterogeneous

ventricular cable, in which the S1 stimuli were applied at the first

five ENDO cells with a variable cycle length from 300–500 m.

Results

Effects of ATO on the action potential
of VMs

There were experimental data of VMs incubated with 3 µM

ATO (Ficker et al., 2004; Yan et al., 2017), in which the subcellular

effects of ATO on IKr and ICaL were provided. As a result, we

simulated the electrophysiology of three types of VMs in the

presence of 3 μM ATO and exerted different stimulation

protocols to investigate the change in single-cell membrane

potential under ATO intervention. First, a series of periodic

stimulation protocol with a BCL of 800 m was conducted, whose

corresponding heartbeat was 75 times per minute. According to Eq.

(3), 3 μM ATO inhibited the conductance of IKr by 70%, thus

suppressing IKr density in ENDO, MCELL and EPI (Figure 2A(ii)–

C(ii)). The administration of 3 μM ATO also doubled the

conductance of ICaL and shifted the activation curve, thus

increasing ICaL density (Figure 2A(iii)–C(iii)). The increased ICaL
also accumulated the intracellular calcium concentration ([Ca2+]i)

via the calcium dynamics in VMs, thus increasing the Na+/Ca2+

exchanger current (INaCa) as shown in Supplementary Figure S1. As

expected, the decrease in IKr and increase in ICaL and INaCa
prolonged the APD of VMs to different degrees. ATO increased

the APD90 of ENDO from 306 m to 391 m, that of MCELL from

410 m to 602 m, and that of EPI from 307 m to 394 m. The increase

ratio of APD90 were approximately 27.8%, 46.8%, and 28.3%,

respectively, in the three types of VMs. It was noteworthy that

the APD90 increase ratio showed a great difference among different

VMs, which may increase the risk of arrhythmia in ventricular

tissue. Specifically, the difference in the action potential properties

between two adjacent VMs can extend the time window that one

kind of cell was in the resting state and the other was in the

refractory period, which may lead to unidirectional conduction

block, thus producing reentry in cardiac tissue. This will be further

analyzed in the following section.

The APD restitution curve of a single cell was deemed to

relate to the dynamical behavious of spiral waves in cardiac

tissue. Here, we drew an APD restitution curve via the S1-S2

stimulation protocol, as shown in Figure 3A. Ten uniform

S1 stimuli with a BCL of 800 m were applied before the

S2 stimulus (only five S1 stimuli are shown in Figure 3A).

With the reduction of the S1-S2 interval, the APD90 of the

action potential triggered by the S2 stimulus declined until the

S2 stimulus could not ignite depolarizing activity. The
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relationship between the S1-S2 interval and the corresponding

APD90 formed the restitution curve as shown in Figure 3B. The

restitution curve was shifted rightward slightly in ENDO and EPI

and dramatically in MCELL, implying that the ATO-incubated

VMs cannot support high-frequency pacing activity. The slope of

the restitution curve reflects the stability of spiral waves. Results

showed that ATO steepened the restitution curves of all kinds of

VMs to varying degrees, whose slope is shown in Figure 3C,

indicating unstable electrical activities.

To inspect the electrical activity of ATO-induced VMs under the

high-frequency stimulus, a dynamic stimulation protocol was

executed by gradually shortening the BCL. In the normal VM

model, APD90 was unchanged under a specific BCL no matter

how small the BCL was (results not shown). In the presence of

3 μM ATO, the APD90 in two consecutive beats may be different

when BCL was reduced to a threshold. For example, when the BCL

was 360m, the membrane potential of ENDO had two alternans

APD90 with a long APD90 at 334m and a short APD90 at 238 m

FIGURE 2
The effect of ATO on the action potentials of different ventricular myocytes. (A–C) The membrane potential, (i) (V), IKr (ii) and ICaL
(iii) of endocardial cells (ENDO), middle cells (MCELL) and epicardial cells (EPI) on the condition of control and 3 μMATO. (D) The APD90 of the action
potentials in Figure A.
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(Figure 4A(ii)). This kind of periodic APD90 change in a fixed BCL is

called alternans. Figure 4 indicates that the alternans occurred during

a BCL of 350–375m in ENDO, that of 550–600m in MCELL and

that of 350–380 m in EPI, whose corresponding representative

membrane potentials are given in Figure 4A(ii)–C(ii).

Effects of ATO on the vulnerability of
heterogeneous ventricular cables

A heterogeneous ventricular cable including ENDO, MCELL

and EPI with a ratio of 25:35:40 (Luo et al., 2017) was designed,

and its electrical activities were simulated by solving Eq. (11).

According to themembrane potential of the ventricular cable, the

pseudo ECG, whose virtual electrode was placed 2.0 cm away

from the last EPI, was calculated by Eq. (12). The ECG under

different ATO concentrations is shown in Figure 5A. With the

increase in ATO concentration, the QT interval rose from 362 m

at 0 μMATO to 477 m at 3 μMATO, and the amplitude of the T

wave slightly increased.

The dispersion of APD in the ventricular cable directly

influenced the vulnerability of the cable. Compared with the

isolated single cell, the gap junction between VMs decreased the

difference in membrane potential duration between cells.

Nevertheless, there was still an obvious difference in APD90

in space, particularly between MCELL and EPI, as shown in

FIGURE 3
The restitution curves of ventricularmyocytes. (A) The S1-S2 stimulation protocol. (B) The restitution curves of endocardial cells (ENDO), middle
cells (MCELL) and epicardial cells (EPI) on the condition of control and 3 μM ATO. (C) The maximum slope of restitution curves in Figure (B).
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Figure 5B. The incorporation of ATO exacerbated the

dispersion. The maximum gap of APD90 between two

adjacent cells was 17 m in the control and 26 m on the

condition of 3 μM ATO (Figure 5B). An S1-S2 stimulation

protocol was applied to heterogeneous ventricular cables to

detect vulnerability under varying ATO concentrations. Under

the condition of long S1-S2 intervals, S2 inspired an electrical

wave that can propagate into both MCELL and EPI tissue, as

FIGURE 4
Alternans induced by ATO. [A(i)–C(i)] APD90 rate-dependent curves of endocardial cells (ENDO), middle cells (MCELL) and epicardial cells (EPI)
incubated with 3 μM ATO. [A(ii)–C(ii)] The representative membrane potentials of Figure [A(i)–C(i)] with the basic cycle lengths at 360, 585, and
360 ms, respectively.
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shown in the left panel in Figure 5C. However, in a short S1-S2

interval, the S2-inspired wave can only propagate into EPI

tissue because the MCELL was in the refractory period and

could not depolarize, as shown in the right panel of Figure 5C.

This kind of unidirectional conduction may lead to the

formation of reentry in ventricular tissue. As a result, the S1-

S2 interval that led to unidirectional conduction was measured

to evaluate the underlying arrhythmia risk, which was called the

vulnerable window. Figure 5D presents the results. With the

increment of ATO dosage, the vulnerable window expanded

from 37 m at 0 μM ATO to 62 m at 3 μM ATO, demonstrating

an increasing possibility of reentry at the tissue level. The value

of the vulnerable window also increased from 376–413 m at

0 μM ATO to 461–532 m at 3 μM ATO. This was because extra

ATO prolonged the APD in single VM cells; thus, the refractory

period extended. As a result, the S1-S2 interval with a

unidirectional conduction block was greater, which was

reflected in the increase in the value of the vulnerable

window. In addition, S2 was exerted at more locations as

described in the Method section. The results at all locations

had a coincident density of VM as shown in Table 2.

The results of the dynamic protocol indicated that discordant

alternans can be induced in a heterogeneous ventricular cable. A

representative result with a BCL of 410 m is shown in

Supplementary Figure S2. The ENDO cells presented

alternans APD, while some of the short APD was blocked by

the MCELL because of its long refractory period.

Effects of ATO on the vulnerability of
heterogeneous ventricular tissue

We designed a heterogeneous ventricular tissue with a size

of 100 × 400 cells (Figure 6A). The length of the tissue

included 100 heterogeneous VMs with an ENDO:MCELL:

EPI ratio of 25:35:40. Electrophysiology activity with time

can be solved by Eq. (11). An essential evaluation index in the

two-dimensional (2D) ventricular tissue was reentry,

FIGURE 5
The effect of ATOon the heterogeneous ventricular cable. (A) ECGof ventricular cableswith varying ATOconcentrations. (B) Spatial distribution
of APD90 across the ventricular cable with varying ATO concentrations. (C) Space-time plot of normal and unidirectional conduction. (D) Vulnerable
windows of ventricular cables under varying ATO concentrations.
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i.e., spiral wave. It was a curved wavefront generated due to

unidirectional conduction in tissue. We induced spiral waves

through an S1-S2 stimulation protocol in ventricular tissue. A

case in the control condition is shown in Figure 6C and the

complete videos were attached in the supplementary

materials. A case of reentry under the 3 μM ATO condition

is also shown in the supplementary materials. An S1 stimulus

was applied to the peripheral ENDO tissue with a length of five

cells and a width of 400 cells (whole tissue width) to induce a

plane wave (the first panel in Figure 6C(i)). During the

refractory period of MCELL, an S2 stimulus was applied to

the EPI cells that neighbored MCELL, whose width was less

than that of the whole tissue (the second panel in

Figure 6C(i)). With a specific S1-S2 interval and sufficient

S2 stimulus width, a spiral wave can be provoked. The S1-S2

interval in Figure 6C(i) were 378 m. The membrane potentials

of horizontal cells in 2D tissue are shown in Figure 6C(ii)), in

which a single S2 stimulus could provoke more than one

depolarizing potential. In the control condition (the ATO

concentration was 0 μM), the S1-S2 interval that can induce

spiral waves was from 376 m to 414 m, with a time window of

38 m. When the ATO concentration increased to 3 μM,

reentry occurred during the S1-S2 interval of 461–507 m,

whose vulnerable window rose to 46 m (Figure 6B).

Effects of resveratrol on ATO-induced
cardiotoxicity

When treated with 3 μMATO in VMs, 10 μM resveratrol can

surpress the excessive ICaL conductance from twice to 1.3 times

(Yan et al., 2017) and increase the remaining maximum

conductance index k of IKr (Eq. (4)) to 1.3 times (Zhao et al.,

2014). The membrane potential of three types of VMs in the

presence of 3 μM ATO and 10 μM resveratrol were simulated.

The results showed that resveratrol shortened the APD90 from

391 to 357 m in ENDO cells, from 602 to 511 m in MCELL cells

and from 394 to 360 m in EPI cells. Resveratrol also narrowed the

maximum gap of APD90 between the three types of VMs from

211 to 154 m. The action potentials of different types of VMs

TABLE 2 Effect of ATO on VM in the ventricular cable model.

Concentration of
ATO (μM)

S2 location (cell
number)

Unidirectional conduction
timing range (ms)

Vulnerable
window (ms)

Average vulnerable
window (ms)

0 61–65 376–413 37 35.6

62–66 376–415 39

63–67 377–414 37

64–68 379–413 34

65–69 381–412 31

1 61–65 414–458 44 38

62–66 414–456 42

63–67 416–455 39

64–68 415–454 39

65–69 416–454 38

2 61–65 439–496 57 53

62–66 438–490 52

63–67 437–490 53

64–68 437–489 52

65–69 441–494 53

3 61–65 461–523 62 70

62–66 458–524 66

63–67 455–523 68

64–68 453–522 69

65–69 451–521 70
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FIGURE 6
The effect of ATO on heterogeneous ventricular tissue. (A) The structure of heterogeneous ventricular tissue. (B) The vulnerable window of
ventricular tissue in control and 3 μM ATO conditions. (C) Snapshots of reentrant excitation waves in the control condition with S1-S2 intervals at
378 m and sequence diagram of the membrane potential of horizontal continuous ventricular myocytes.

TABLE 3 Effect of resveratrol on the ATO-induced ventricular cable model.

Condition Unidirectional conduction range of stmulus timings (ms) Vulnerable window (ms)

Control 376–413 37

3 μM ATO 461–523 62

3 μM ATO + 10 μM resveratrol 435–480 45
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treated with ATO and resveratrol are shown in Supplementary

Figure S3.

The effect of resveratrol was further predicted in a ventricular

cable model. The S1-S2 stimulation protocol was conducted with

3 μM ATO and 10 μM resveratrol. Simulation results showed

that the time window that produced unidirectional conduction

was narrowed from 62 m to 45 m under the action of resveratrol.

The vulnerable window in different conditions is presented in

Table 3.

Discussion

Summary of major findings

As has been widely reported, ATO may cause severe

cardiotoxicity when applied to treat APL (Haybar et al.,

2019) by interfering with hERG channels (Zhao et al.,

2015) as well as ICaL channels (Chen et al., 2010). Even

so, ATO remains one of the most effective drugs for rescuing

cancer patients since it has a high long-term survival rate in

newly diagnosed APL patients (Hu et al., 2009). As a result,

the mechanisms of ATO-induced cardiotoxicity need to be

elucidated, based on which more methods can be developed

to improve the safety of ATO therapy. The in silico method

provided an efficient approach to do this. Some mature

models have been widely used in drug screening, such as

the CiPA model (Park et al., 2019; Han et al., 2020; Ridder

et al., 2020; Strauss et al., 2021) and a virtual heart model

(Yuan et al., 2014). In this study, a mathematical model was

built to delineate the cardiotoxicity of the human ventricle

implicated in ATO by modulating the IKr and ICaL channels

according to corresponding patch clamp data (Ficker et al.,

2004; Chen et al., 2010; Yan et al., 2017). Based on the

constructed model, we explored the process of ATO-

induced arrhythmia from the subcellular level to the

tissue level. The long APD in cells and LQT in cables

were triggered by ATO-induced inhibition of IKr and

facilitation of the ICaL channel, coinciding with clinical

ECG diagnosis (Soignet et al., 2001). Beyond ATO’s

explicit side-effect on LQT, it was first uncovered that

ATO could augment the heterogeneity between different

types of ventricular tissue, which was also an essential

predisposing factor of tachycardia. In addition, ATO may

induce alternans in all three types of VMs, which indicated

an increase in the arrhythmia risk. Moreover, the

vulnerability of ventricular tissue increased under the

action of ATO, which was a direct factor of cardiac

arrhythmia. Despite the underlying detrimental effects of

ATO on the human heart, this study demonstrated a

potential pharmacological remedy by resveratrol, which is

expected to be beneficial for the safety of ATO therapy and

provided better prognosis for newly diagnosed APL patients.

ATO-induced cardiotoxicity

In clinical trials, APL patients who received ATO had a

higher risk of suffering from LQT syndrome and even sudden

cardiac death (Westervelt et al., 2001). Biologists tried to explain

the underlying ionic mechanisms of ATO-induced arrhythmia

and found that K+ channels (including IKr, IKs and IK1) (Ficker

et al., 2004) and Ca2+ dynamics (including ICaL and [Ca2+]i)

(Chen et al., 2010) might be responsible for this. The effect of

ATO on IK1 and IKs is controversial. An experiment in CHO cells

claimed that ATO could inhibit the IKs channel (Drolet et al.,

2004). ATO can also impair the expression of Kir2.1 in guinea

pigs (Shan et al., 2013) and reduce the IK1 density in guinea pig

VMs (Shan et al., 2013) and rat VMs (Chen et al., 2010).

However, another study announced that the IKs and IK1 of

guinea pig VMs had no obvious changes with overnight ATO

incubation (Ficker et al., 2004). There were unified results of the

inhibitory effect of ATO on IKr and its promotive effect on ICaL,

whose experimental data were more abundant. As a result, we

mainly focused on ATO’s effect on the ventricle via IKr and ICaL
channels.

The relationship between several ATO dosages and the

degree of inhibition of IKr was given in an experiment (Ficker

et al., 2004), which provided basic data to depict the binding

interaction between ATO and IKr in the present model. The I-V

curve data of ICaLwere usually measured in the condition of 3 µM

ATO. Experiments displayed that long-term exposure to ATO

facilitated ICaL density to approximately 2–3 times and negatively

shifted the V1/2 of the activation curve (Ficker et al., 2004; Chen

et al., 2010; Yan et al., 2017). According to this, we estimated the

subcellular effect of ATO on human VMs and simulated the

electrical activity of ATO-disrupted ventricular single cells,

cables, and tissue. The simulation result implied a high risk of

arrhythmia due to the steep restitution curve and electrical

alternans in single VMs. Additionally, beyond the biological

experiments, we found that ATO-reconstructed ionic channels

not only prolonged the action potential of ventricular cells, but

also aggravated the heterogeneity between the three types of

VMs. On the one hand, in the present simulation, the QT interval

of heterogeneous ventricular cable was 362 m in control and

treated with 3 μM ATO prolonged QT interval to 477 m.

Clinically, the normal QT interval should range from

350–420 m, over 460 m in women and 440 m in men can be

diagnosed with LQT (Vadavanath et al., 2019). Particularly,

when QT is more than 500 m, the risk of TdP increases

dramatically (Zamorano et al., 2016). This means that the

present simulation result with 3 μM ATO was in a hazardous

range of QT intervals, which was coincident with clinical

manifestations and thus reliable. In addition, simulation

studies also reported the underlying risk of long APD. A

study indicated that the prolonged APD impaired the

repolarization of action potential, so in a short cycle length,

the early afterdepolarizations may be evoked (Bai et al., 2017).
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TABLE 4 Effect of drugs on the APD of cardiomyocytes incubated with 3 μM ATO.

Drugs Subject Working channel Control APD90 (ms) ATO APD90 (ms) Drug + ATO APD90 (ms) r

1 μM fexofenadine (Yan et al., 2017) HEK293 IKr N/A N/A N/A N/A

NRVMs N/A 171.25 ± 10.58 396.43 ± 25.33 233.30 ± 18.75 72.44%

hiPS-CMs N/A 706.98 ± 23.71 1164.71 ± 40.25 942.86 ± 103.11 48.47%

25 nM nisoldipine (Ficker et al., 2004) Guinea pig VMs ICaL 495 ± 40 880 ± 61 686 ± 36 50.39%

10 μM resveratrol hiPS-CMs (Yan et al., 2017) ICaL 706.98 ± 23.71 1164.71 ± 40.25 942.86 ± 103.11 48.47%

Guinea pig VMs (Zhao et al., 2014) IKr 429.1 ± 26.5 948.3 ± 63.7 522.6 ± 26.3 81.99%

10 μM resveratrol simulation ENDO ICaL& IKr 306 391 357 40.00%

MCELL ICaL& IKr 410 602 511 47.40%

EPI ICaL& IKr 307 394 360 39.08%
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Another study also proved that the adaptability of ventricular

tissue was impaired because of the prolonged APD (Bi et al.,

2022). On the other hand, increased ventricular heterogeneity

among single VM cells can result in a further detriment in the

ventricle, raising the possibility of reentry within the heart. Both

factors led to a wide vulnerable window in ventricular tissue,

indicating a higher risk of arrhythmia in the heart.

An uncharacteristic discordant alternans can be observed

under the action of ATO (Supplementary Figure S2). The tissue

alternans in this study were not as obvious as those in heart

failure-associated atrial alternans research (Zhao et al., 2020)

because except for single cell characters, the decreased CV in

atrial tissue was also an essential factor in inducing tissue

alternans. There is no evidence that ATO reduced the CV in

ventricular tissue, so the alternans did not easily occur in this

present simulation.

The ATO concentration in plasma reached 0.34–2 µM with

intravenous treatment for APL and acute myeloid leukemia

(AML) patients at a dosage of 10 mg/day (Siu et al., 2006). As

a result, although there were animal experimental data with ATO

concentrations of 0.1–50 µM (Ficker et al., 2004; Sun et al., 2006),

we mainly adopted and modeled the data within 0.1–3 µM ATO.

As a result, the present model was clinically valuable, based on

which ATO-induced arrhythmogenesis can be investigated.

Pharmacological rescue of ATO toxicity

Despite the possibility of cardiac arrhythmia after

administering ATO in both experiments and the simulation, it

was still crucial for APL patients. Consequently, drug

combinations have been proposed as a means of reducing

cardiotoxicity resulting from ATO. Various kinds of drugs

have been investigated to attenuate ATO-induced toxicity, but

only a few have shown remarkable rescue properties.

Fexofenadine is an antiallergic agent. Experiments have shown

that 1 μM fexofenadine can increase IKr from 30% of the original

density to approximately 60% in HEK293 cells incubated with

3 µMATO (Yan et al., 2017). It was verified to shorten the APD90

from 396.43 ± 25.33 (with 3 µM ATO) to 233.30 ± 18.75 m in

NRVMs and from 1164.71 ± 40.25 to 942.86 ± 103.11 m in hiPS-

CMs (Yan et al., 2017). Nisoldipine, a hypotensive drug, could

shorten the APD90 of guinea pig VMs with 3 µM ATO treatment

from 880 ± 61 to 686 ± 36 m (Ficker et al., 2004). It is known to be

the ICaL blocker, but the quantitative relation between

Nisoldipine concentration and ICaL properties was not given

on the condition of ATO. Resveratrol is a natural antioxidation

ingredient that can protect the cardiovascular system (Sulaiman

et al., 2010; Dudka et al., 2012) by ameliorating structural

abnormalities and oxidative damage (Zhao et al., 2008). It can

act on both the IKr (Zhao et al., 2014) and ICaL (Yan et al., 2017)

channels and shorten the APD90 of ATO-incubated cells from

948.3 ± 63.7 m to 522.6 ± 26.3 m in guinea pig VMs (Zhao et al.,

2014) and from 1164.71 ± 40.25 to 942.86 ± 103.11 m in hiPS-

CMs (Yan et al., 2017). It can be found that resveratrol performed

the best rescue effect among all three drugs that had significant

protective effects on ATO-incubated CMs, and the rescue ratio

was less in hiPS-CMs than in rodent VMs. The data on drug

rescue in ATO-incubated CMs are summarized in Table 4.

To further predict the effect of resveratrol on human VMs

incubated with ATO, we simulated ATO/resveratrol-

incorporated ventricular models by modifying the IKr and ICaL
channels. Although the rescue ratio of resveratrol declined in

human VMs, it still remarkably ameliorated ATO cardiotoxicity

(Table 4). In the present model, resveratrol not only shortened

the APD90 of ENDO, MCELL and EPI but also narrowed the

difference in APD90 between VMs, thus decreasing the

vulnerable window of the ventricular cable (Table 3). This

study verified that resveratrol has the potential to be applied

in clinics to protect the cardiovascular system in ATO-treated

patients.

Limitations

Except for the intrinsic limitations of the basic

TNNP06 model (ten Tusscher and Panfilov, 2006), the

pharmacological model in this study was not completely

accurate due to a lack of abundant experimental data. The

patch clamp experiment was performed on HEK293 (Yan

et al., 2017) or rodent VMs (Chen et al., 2010), so it was

only a prediction of the binding interaction between ATO and

human VMs. In another human VM model (O’Hara et al.,

2011), the IKr channel model was built by the Markov chain

model, and the corresponding drug model was extended by

incorporating two drug states (Whittaker et al., 2017). In this

study, the simple pore block theory was used to depict the

effect of ATO on the IKr channel because it was suitable for the

IKr model of TNNP06.

Experiments reported that ATO had an underlying effect on

calcium homeostasis by upregulating the expression of CaMKII,

which finally caused abnormal CM contraction (Zhang et al.,

2016; Zhang et al., 2017). The change in calcium dynamics

caused by extra ATO is worth discussing in silico after more

specific ionic data are obtained.

ATO may also have an impact on other ionic currents, such

as IK1 (Chen et al., 2010), IKs (Drolet et al., 2004) and INa (Ficker

et al., 2004), but the literature shows that their effect is not

obvious. So did the present model study. We did not perform

further study in this paper because of insufficient biological

evidence as well as the minor effect. A related study can be

conducted if more data are provided.

This simulation study revealed the acute effect of ATO on

ionic channel currents rather than on protein expression. In the

future, a Markov pharmacological model of IKr can be built to

simulate the effect of ATO on hERG protein, which can refer to
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the previous short-QT simulation work (Whittaker et al., 2017;

Zhang et al., 2022).

Many drugs or chemical compounds have been explored to

relieve ATO toxicity (Haybar et al., 2019), but most of their ionic

reactions were not clear, so only two drugs were modeled in this

study. Nevertheless, this study provided an approach for

simulating and evaluating the effectiveness of new drugs that

can ameliorate ATO toxicity. Drugs that can protect the hearts

treated with ATO should be compared in the future so that the

optimal medication regimen can be screened.

Conclusion

This study provided a computational method for

investigating the cardiotoxicity induced by ATO. The

mechanisms of arrhythmia attributed to ATO were

investigated from the ionic level to the tissue level. Simulation

results showed that ATO not only extended the QT interval of

ECG but also aggravated the heterogeneity of VM cells and led to

alternans, thus raising the possibility of reentry in the human

ventricle. Under the actions of ATO, resveratrol was

incorporated into the ventricular model by intervening in the

ionic channel, by which the side effects of ATOwere ameliorated.

The method of this study can also be used to screen drugs that

may ameliorate ATO toxicity. This study elucidated ATO

cardiotoxicity pathogenesis and its attenuation mechanisms,

which is expected to improve ATO treatment in its clinical use.
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SUPPLEMENTARY FIGURE S1
The calcium dynamic in VMs under the action of ATO. (A–D) The
membrane potential (V), ICaL, [Ca

2+]i, and INaCa of endocardial cells
(ENDO) on the condition of control and 3 μM ATO.

SUPPLEMENTARY FIGURE S2
The action potential of heterogeneous ventricular cable with a BCL of
410 ms.

SUPPLEMENTARY FIGURE S3
The action potential of endocardial cells (ENDO), middle cells (MCELL)
and epicardial cells (EPI) incubated with 3 µM ATO on the condition of
pharmacological rescue.

SUPPLEMENTARY VIDEO S1
Control reentry in heterogeneous ventricular tissue. This video shows the
generation and elimination of a reentrant excitation wave in a control
condition. At the beginning of the simulation, an S1 stimulus was
conducted at the peripheral endocardial cells so that a planar wave was
initiated. At 378 m, a S2 stimulus was applied at a piece of epicardial cells
neighboring the middle cells so that a series of spiral waves were
provoked.

SUPPLEMENTARY VIDEO S2
ATO reentry in a heterogeneous ventricular tissue. This video shows the
generation and elimination of a reentrant excitation wave in 3 µM ATO.
At the beginning of the simulation, an S1 stimulus was conducted at the
peripheral endocardial cells so that a planar wave was initiated. At 475 ms,
an S2 stimulus was applied at a piece of epicardial cells neighboring the
middle cells so that a series of spiral waves were provoked.
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Cardiac magnetic resonance imaging (MRI) segmentation task refers to the
accurate segmentation of ventricle and myocardium, which is a prerequisite for
evaluating the soundness of cardiac function. With the development of deep
learning in medical imaging, more and more heart segmentation methods based
on deep learning have been proposed. Due to the fuzzy boundary and uneven
intensity distribution of cardiac MRI, some existing methods do not make full use of
multi-scale characteristic information and have the problem of ambiguity between
classes. In this paper, we propose a dilated convolution network with edge fusion
block and directional featuremaps for cardiacMRI segmentation. The network uses
feature fusion module to preserve boundary information, and adopts the direction
field module to obtain the feature maps to improve the original segmentation
features. Firstly, multi-scale feature information is obtained and fused through
dilated convolutional layers of different scales while downsampling. Secondly, in
the decoding stage, the edge fusion block integrates the edge features into the
side output of the encoder and concatenates them with the upsampled features.
Finally, the concatenated features utilize the direction field to improve the original
segmentation features and generate the final result. Our proposemethod conducts
comprehensive comparative experiments on the automated cardiac diagnosis
challenge (ACDC) and myocardial pathological segmentation (MyoPS) datasets.
The results show that the proposed cardiac MRI segmentation method has better
performance compared to other existing methods.

KEYWORDS

automatic segmentation method, cardiac MRI, dilated convolution, medical image
processing, deep learning

1 Introduction

Cardiovascular disease has been widely concerned by the medical community because
of its harmfulness Cai et al. (2015). With the development of cardiac imaging technology,
medical staff have been able to further study this disease. Among them, short-axis cardiac
magnetic resonance imaging (MRI) is adopted by medical staff due to its non-invasive
imaging characteristics, and is often used for the diagnosis of cardiovascular diseases
Ripley et al. (2016). In clinical cardiology, clinicians need to distinguish left ventricle (LV), right
ventricle (RV), and myocardium (MYO) from short-axis cardiac MRI. Manually identifying
the parts of the heart is time-consuming, tedious and susceptible to external influences.
Therefore, a great method that can automatically perform cardiac MRI segmentation task is
very necessary. It allows an inexperienced person to easily complete the segmentation job.
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In recent years, with the development of deep convolutional
networks (CNNs), many natural image segmentation (Cheng and
Li, 2021; Aganj and Fischl, 2021) and medical image segmentation
(Pang et al. 2021; Oksuz et al. 2020) methods have been proposed
in the field of computer vision and achieved great success. U-
Net Ronneberger et al. (2015) is one of the seminal works in
medical image segmentation task. It has been demonstrated that
segmentation of cardiac MRI with deep neural network is better
than other traditional computer vision andmachine learningmethods
Bernard et al. (2018). After U-Net was proposed, many works were
improved based on u-shaped network. Most of the best performing
ventricular segmentation algorithms can be roughly divided into 2D
methods and 3D methods. 2D methods take a single 2D slice as
input, while 3Dmethods utilize entire volumes.NnU-Net Isensee et al.
(2019) adopts two different fusion strategies of 2D and 3D to obtain
the best model. Subsequently, Ke et al. (2018) propose a method
that utilizes the optimal neighborhood size of each semantic class
to optimize the adversarial loss in various situations. Dangi et al.
(2019) propose a network that could predict the uncertainties
associated with semantic segmentation and pixel-level distance graph
regression, and the loss of the network is weighted by the reciprocal
of the corresponding uncertainties. Painchaud et al. (2019) propose
an adversarial variational autoencoder that can be adapted to any
heart segmentation method. The encoder can automatically bend an
inaccurate heart shape to a close but correct shape. Oksuz et al. (2020)
propose a network that could automatically correct motion-related
artifacts, and the network achieved good image quality and high
segmentation accuracy in the presence of synthetic motion. Yang et al.
(2021) propose a deep dilated block adversarial network, which uses
the properties of dilated convolution to acquire and connect multi-
scale features.

However, there is still room for improvement in existing methods.
The existing networks (Ronneberger et al., 2015; Cheng et al., 2020)
usually use ordinary convolutional networks. In this way, it is easy
to lose information or add too much information so that the
features can not be fully utilized. Some methods (Dangi et al., 2019;
Painchaud et al., 2019) do not take into account the fuzziness and
inhomogeneity of MRI artifacts, which can easily lead to the problem
of blurring between classes and unclear boundaries. In addition, some
models (Isensee et al., 2019; Zhou et al., 2021) require high memory
and computational costs, making their usefulness limited.

In order to solve the problem that feature information cannot
be fully utilized due to the loss of effective information or the
increase of invalid information, we propose a dilated convolutional
network with directional feature mapping inspired by Wang et al.
(2018); Cheng et al. (2020). The network is based on the U-Net
architecture, which we call DDFN. In DDFN, a dilated convolution
module processes the characteristics of each layer of input in the U-
Net encoder and decoder. The dilated convolution module consists
of three dilated convolution with different dilated rates. Note that
the dilated convolution module does not change the feature size. The
dilated convolution block can extract multi-scale features effectively,
and it is not easy to cause feature information loss. In the decoder, the
features of each layer are up-sampled to the size of the original image
and then concatenated to make full use of the feature information at
different stages. In addition, we propose an edge fusion block (EFB) to
preserve the image boundary. In the decoding phase, EFB integrates
the edge feature into the side output feature of the encoding layer.
Then it is concatenated with the upsampled features in the decoding

layer. Finally, we add a direction field module before the output layer
of U-Net. This module uses the learned direction field to improve
the original segmentation features and serves as the input to the
final output module to get the final segmentation result. Experimental
results show that our proposed model is more competitive than other
models.

The main contributions of this paper are as follows.

1) We propose a deep learning-based cardiac MRI segmentation
network. The network can effectively extract and utilize multi-scale
information, and is not easy to cause loss of feature information or
increase of useless information.

2) We propose an edge fusion block to integrate edge featuremaps into
U-Net. The purpose is to preserve more boundary information for
better cardiac MRI segmentation.

3) The network combines the direction field module to enhance the
differences between classes and the similarity within classes. This
module uses directional feature to improve the original network
features and generate the final segmentation results.

The rest of the article follows. Section 2 describes the related work.
In Section 3, we describe the proposed network structure in detail.The
experimental results are presented and analyzed in section 4. Finally,
the conclusion is drawn in Section 5 and future work is discussed.

2 Related work

In this section, we will outline the related efforts from three
aspects.

2.1 Development of medical image
segmentation

Since 2000, some researchers have been trying to use computers to
automatically divide different parts of the heart. Therefore, the cardiac
segmentationmethod based onmachine learning came into being. For
example, Codella et al. (2008) propose a semi-automatic segmentation
method to segment LV, which utilizes region growing to improve
performance. In order to overcome the influence of nipple muscle on
segmentation effect, Pluempitiwiriyawej et al. (2005) propose a new
stochastic active contour scheme. Zhang et al. (2020) propose a new
external gradient vector manifold flow over manifold. Subsequently,
some scholars propose to use prior probabilistic atlas to obtain more
efficient models Mitchell et al. (2001); Lorenzo-Valdés et al. (2004).
The model can achieve good performance under the premise of
sufficient prior knowledge. Machine learning methods have certain
shortcomings, such as the need for human assistance and the difficulty
of improving accuracy.

With the development of deep learning in the field of computer
vision, some scholars have proposed many automatic segmentation
methods based on deep learning. Shelhamer et al. (2016) propose
the full convolutional machine network (FCN), which has had a
profound impact on the task of semantic segmentation. For medical
image segmentation task, Ronneberger et al. (2015) propose U-Net.
U-Net is also a fully convolutional network, which solves the problem
of small amount of medical image data. It learns feature content
better by connecting features of the same size. Subsequently, for small
training sets, Ngo et al. (2017) propose to combine deep learning
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and level sets to solve the problem. Wang W. et al. (2019) use a
subdivision component and a regression component to solve the
problem caused by different ventricular heights in heart segmentation.
Uslu et al. (2022) propose a multi-task network to generate left atrial
segmentation image and edge mask simultaneously. The network
can segment edge pixels well. In the unsupervised field, Vesal et al.
(2021) propose a new multi-modal MRI segmentation model based
on unsupervised domain adaptation. This party can adapt network
characteristics between source target domains. Wu and Zhuang
(2021) designed two networks based on variational autoencoders
and regularized them to reduce the difference between segmentation
results and ground truth.

All the above methods are based on deep learning, which proves
that deep learning can further improve the segmentation performance.

2.2 Dilated convolution

Holschneider et al. (1990) first propose the concept of dilated
convolution and applied it to wavelet decomposition. Dilated
convolution is to insert different distances between the pixels of
the ordinary convolution kernel to enlarge the receptive field of the
convolution layer. Dilated convolution can effectively extract features
in deep learning without increasing the number of parameters. Yu
and Koltun (2015) propose to introduce dilated convolutions into the
model to aggregate feature information at multiple scales. Chen et al.
(2017) propose a spatial pyramid poolingmodule to obtainmulti-scale
feature information through dilated convolutions of different rates in
parallel. Dilated convolutions can also be applied to computer vision
fields such as object tracking Hsu and Chen (2022), audio generation
Oord et al. (2016), and image super-resolution Song et al. (2022).

2.3 Directional feature

In addition, some scholars try to improve the semantic
segmentation model by using directional information. Wang Y. et al.
(2019) propose a model that could learn image context information,
which can explicitly encode the relative positions of semantically
meaningful entities to better deal with large object portions. Xu et al.
(2019) propose a new text detector for irregular scene text detection,
which uses a full convolutional network to learn the direction field
from the nearest text boundary to each text point. However, semantic
segmentation methods for natural images often produce inaccurate
results for cardiac MRI segmentation tasks. Therefore, it cannot be
directly used in the field of cardiac MRI segmentation. Influenced by
Cheng et al. (2020), we use the directional information to improve
segmentation features to improve the performance of the model.

3 Proposed method

In this section, we will detail the structure of our model.

3.1 Network architecture

As shown in Figure 1, our proposed model follows the U-Net
model architecture.Themodel consists of an encoder, a decoder, EFBs

and a directional field module. First, in the decoder and encoder,
we replace the two consecutive 3 × 3 convolutional layers in the
original U-Net with a more efficient dilated convolutional module.
The purpose is to use dilated convolution to obtain larger receptive
field andmulti-scale feature information. In addition, we propose EFB
to preserve image boundaries. In the decoding stage, EFB embeds
the edge features into the downsampled features of the same size as
the upsampled features, and concatenates them with the upsampled
features. Second, the model upsamples the feature size of each layer of
the decoder to the same size as the original image size. They are then
concatenated and fused through a 1 × 1 convolutional layer. Final, the
fused features are used as the input of the directional field module.
The model uses the directional field to refine the fused features and
generate the final segmentation result. The output segmentation map
has four channels representing the probabilities of LV, RV, MYO and
background.

3.2 Dilated convolutional module

Blurred shadows are created during MRI acquisitions due to
the beating of the heart. To solve this problem effectively, we use
dilated convolution to obtain multi-scale features. This reduces the
impact of blurry shadows and increases prediction accuracy. Because
different receptive fields can obtain different scale features, multi-
scale features can reduce the error caused by heart beating. However,
if large convolution kernels are used to learn large-scale features,
the computational cost and number of parameters will increase
significantly. In limited data sets, this situation can easily lead to
overfitting. Therefore, by using dilated convolution, the acceptance
domain can be extended without adding too many parameters
and computing costs. Therefore, we ended up choosing dilated
convolutions. The definition of dilated convolution is as follows:

D (p) = ∑
s+lt=p

F (s)k (t) , (1)

where F:ℤ2→ℝ represents the input of the dilated convolution. The
convolution kernel of size (2r+ 1)2 is represented by Ωr = [−r, r]

2 ∩ℤ2

and k:Ωr→ℝ.D(⋅) represents the output of the convolution operation,
where l represents the dilation rate, s is the stride, and p is an element
of D(⋅).

Figure 2 is a schematic diagram of 3 × 3 dilated convolutions
with different dilation rates. Their receptive fields are 3 × 3 and 7 ×
7, respectively. Note that a dilated convolution with a dilation rate of
one is equivalent to a normal convolution. Compared with the simple
stacked ordinary convolution, the dilated convolution can reduce the
number of convolutional layers while obtaining a larger receptive field.
Therefore, the model employs dilated convolutional blocks to extract
multi-scale features of cardiac MRI.

The structure of the dilated convolution module is shown in
Figure 3, which uses 3 × 3 convolution kernels with different dilation
rates for multi-scale feature extraction, and forms a parallel structure
with the double convolution layer of the original U-Net. The purpose
of the dilated convolution is to extract the multi-scale features of the
image. We set the rates to 1, 2, and 3, respectively. The resulting multi-
scale features are then concatenated and then passed through a 1 ×
1 convolutional layer for feature fusion. Compared with traditional
convolutional layers, dilated convolutions can use fewer parameters to
obtain a larger receptive field. This is very beneficial for data-limited
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FIGURE 1
Overall structure of the proposed DDFN model.

FIGURE 2
Schematic diagram of dilated convolution. The dark blue points represent the convolution kernel, and the light blue area is the receptive field.

FIGURE 3
The structure of the dilated convolution module.
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FIGURE 4
Schematic diagram of the receptive field of the dilated block. The
numbers in the grid represent the number of convolutions.

cardiac MRI segmentation tasks. The receptive field of the Dilated
block in Figure 3 is shown in Figure 4. The numbers in the grid
represent the number of convolutions.

As shown in Figure 1, the overall U-Net infrastructure is adopted.
We replace all double-layer 3 × 3 convolutions in the encoder and
decoder with dilated convolution blocks to extract and fuse multi-
scale features. And in the decoder, we upsample the features produced
by each layer to the original image size, then concatenate them and
perform feature fusion through a 1 × 1 convolution.The feature fusion
layer does not change the size of the input features, but takes the
concatenated features as the input of the 1 × 1 convolution block
to generate the fused features. After this step, the feature fusion is
completed, and the number of channels changes from 512 to 64.

3.3 Edge fusion block

We propose an edge fusion module to effectively utilize edge
features, as shown in Figure 1. First, we use the existing method
Zitnick and Dollár (2014) to extract the edge map and take it as one
of the inputs of DFB. Second, in the decoding stage, EFB embeds
the edge features into the downsampled features of the same size as
the upsampled features, and concatenates them with the upsampled
features. The DFB is a two-step process. First, the edge map passes
through four convolution layers of size 3× 3 to generate conditional
features. Second, in order to make better use of the edge features,
EFB outputs two independent branch features (γ,β) based on the
conditional features. We use (γ,β) to transform the feature Xec in
the encoding stage into a feature Xes with edge sensing capability as
follows:

EFB(Xes ∣ γ,β) = Xec ⊙ γ+ β, (2)

where ⊙ and + represent the element-wise product operation and
the element-wise addition operation, respectively. The EFB performs
spatial transformations as well as feature operations. As shown in
Figure 1, our model uses four EFBs to integrate edge features.

3.4 Directional field module

We use a direction field module composed of 1 × 1 convolution
to learn the direction field. Its input is the final output feature of the
model decoder, and the output is the direction field with channel
number of two. The background pixel of the direction field is (0, 0),
which is defined as follows:

F (a) =

{{{{{
{{{{{
{

ba→
|ba→|

a ∈ foreground

(0,0) otherwise.

, (3)

where a represents the foreground pixel, b represents the pixel where
a is located closest to the border of the cardiac tissue, and ba→ is the
direction vector between b and a, which we normalize by distance.

The direction field module provides a direction vector for each
pixel to point to the central region, which predicts the relationship
between pixels. After generating the direction field, the model uses
the generated direction field F ∈ ℝ2×H×W to improve the output feature
M0 ∈ ℝC×H×W to obtain the improved feature MN ∈ ℝC×H×W. The
features in the central region are error corrected forM0 ∈ ℝC×H×W, and
each pixel is updated iteratively. The operation is defined as follows:

∀a ∈Ω,Mk (p) =M(k−1) (ax + F(a)x,ay + F(a)y) , (4)

where Ω is the image domain, k represents the kth step, N is the
total number of iterations, and px and py represent the x and y
coordinates of pixel a, respectively. Subsequently, MN ∈ ℝC×H×W and
M0 ∈ ℝC×H×W are concatenated as the input of the final classifier to
generate segmentation results.

3.5 Loss function

The loss function involved in this method includes the
segmentation LiCE with U-Net as the architecture, the segmentation
L f
CE after the direction field, and the direction field module LF . The

segmentation model based on U-Net uses cross-entropy LCE as the
segmentation loss. LCE is defined as follows

LCE = −∑
i
pi log2 (qi) , (5)

where pi is the ground truth and qi is the predicted value. Then the
model selects L2-norm distance and angle distance as the loss for
direction field learning

LF = ∑
a∈Ω

w (a) (‖F (a) − F̂ (a)‖2

+α× ‖cos−1⟨F (a) , F̂ (a)⟩‖2) , (6)

where F and F̂ are the ground truth and the corresponding predicted
direction field respectively. The hyperparameter α is set to one to
balance L2-norm distance and angular distance. The weight on pixel
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FIGURE 5
Overall structure of the proposed DDFN model.

a is represented by w(a), which is defined as

w (a) =

{{{{{{
{{{{{{
{

∑Ncls

i=1
|Ci|

Ncls ⋅ |Ci|
a ∈ Ci

1 otherwise

, (7)

where |Ci| is the total number of pixels with label i, and Ncls is the
number of classes. The total loss Lall contains LCE and LF , where the
balance factor λ = one

Lall = L
i
CE + L

f
CE + λLF. (8)

The training loss of the model is shown in Figure 5. The loss function
value decreases significantly in the first 20 epochs and then becomes
slow. At the 60th epoch, the model’s loss cannot continue to decrease.

4 Experiment and analysis

In this section, we describe the processing of the dataset and the
experimental environment. Then, we conduct ablation experiments
to demonstrate the effectiveness of the model and analyze it. Finally,
we compare our method with other methods on ACDC and MyoPS
datasets.

4.1 Datasets

In this section, we introduce three different datasets: ACDC, MS-
CMRSeg, andMyoPS.Thedatasets are all derived fromchallenges, and
all data labels are done by experts in the relevant fields.

ACDC 2017: The ACDC dataset Bernard et al. (2018) contains
100 training images. These data included groups for normal cases,

heart failure with infarction, dilated cardiomyopathy, hypertrophic
cardiomyopathy, and right ventricular abnormalities. The dataset
provides LV, RV, and MYO labels.

MS-CMRSeg 2019:Multi-sequence cardiacmr segmentation (MS-
CMRSeg) Zhuang (2016); Zhuang (2018) dataset contains data of 45
cases. This dataset provides cardiac MRI images with three different
sequences: bSSFP, LGE and T2. The sFFPS MRI is an equilibrium
steady state free precession sequence. The LGE MRI is a T1-
weighted gradient echo sequence. The T2 MRI is a T2-weighted, black
blood spectral presaturation attenuated inversion-recovery (SPAIR)
sequence. The dataset provides LV, RV, and MYO labels.

MyoPS 2020: The myocardial pathological segmentation (MyoPS)
Zhuang (2016); Zhuang (2018) dataset provides 25 labelled MRI data.
MyoPS is similar to theMS-CMRSeg dataset in that it provides cardiac
MRI images with three different sequences. This dataset includes left
ventricular blood pool, left ventricular blood pool, left ventricular
normal myocardium, left ventricular myocardial edema, and left
ventricular myocardial scar.

We use the ACDC dataset as the model training dataset and part
of it as the test set. Due to the similarity and small size of MS-CMRSeg
and MyoPS datasets, we take MS-CMRSeg as the training set and
MyoPS as the test set. Since only LV, RV, and Myo were labeled in the
MS-CMRSeg dataset, myocardial scarring and myocardial edema in
the MyoPS dataset were included in the MYO classification. For the
ACDC dataset, we use one-fifth of the training images as validation
images and perform experiments with 5-fold cross-validation. In the
validation set, we use the dice coefficient and hausdorff distance (HD)
to evaluate the model. The formula of the Dice and HD evaluation
index is as follows

Dice =
2 |R∩RG|
|R| + |RG|

, (9)

where, RG represents the ground truth and R represents the
segmentation result. The formula of the HD evaluation index is as
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TABLE 1 Hyper-parameter setting of themodel.

Hyper-parameter —

Input size 256

Batch_size 8

Max_epoch 300

Early_stop_epoch 15

Initial learning rate 0.0001

Decay of learning rate 0.00001

follows

HD =MAX(MAXX⊂OR
MINX⊂OG

d (x,y) ,

MAXX⊂OG
MINX⊂OR

d (x,y)) , (10)

where, OR and OG represent the contour of segmentation result and
ground truth respectively, and d represents the Euclidean distance
between two points.

4.2 Implementation details

The thickness of slices in MRI is large, which easily leads to
insufficient connectivity information between slices Jang et al. (2017).
Therefore, the cardiacMRI was first converted into a two-dimensional
image through slices. Then, in order to make better use of the batch
processingmechanism, all imageswith awidth and height greater than
256 are cropped to 256× 256. For images less than this size, we fill them
with the minimum gray value of each image.

The proposed model is trained on Nvidia RTX3090Ti GPU. We
adopt Adam optimizer Kingma and Ba (2014) to assist training,
and the initial learning rate is set to 10−4. We set up an early stop
mechanism. Within 15 epochs, the evaluation dice index on the
validation set does not increase by more than 0.1%, then the training
is stopped, and the best model on the validation set is saved. HD can
assess the difference between two sets of points. The smaller the HD
value, the better the effect of the model.

The hyperparameter Settings of the model are shown in Table 1.
Where, max_epoch represents the maximum number of training
epochs, and early_stop_epoch represents the stop of training when
loss does not decrease during continuous training for 15 epochs.

4.3 The overall performance of the
proposed method

Table 2 and Figure 6 shows the performance of the proposed
cardiac MRI segmentation algorithm on the ACDC and MyoPS
datasets. As shown in Table 2, the average dice index and average
HD index of LV, RV and MYO all reach a relatively good standard.
In the ACDC dataset, the dice index of LV reaches 0.947, showing
good a performance of the model. For the three different parts of
the heart, the LV segmentation accuracy is the highest, while the
MYO segmentation accuracy is lower. This is due to the presence of
some diseases (such as myocardial infarction) in MYO, which cause
changes in its appearance, which in turn increases the difficulty of

segmentation. However, our proposed method still achieves a decent
accuracy. The MYO value in the average HD index is larger, and it is
speculated that the segmentation difficulty was increased due to the
low contrast of cardiac MRI and the large change in MYO size. For
the MyoPS dataset, the segmentation results are different due to the
different intensity distributions of three different sequences of MRI.
The intensity distribution of LGE sequence images is similar to that
of bSSFP sequence images, so the variation trend of experimental
results is the same. Among the segmentation results of these two
sequences, the LV segmentation task achieved the highest Dice score
and the lowest HD score. Among the segmentation results of T2-
SPAIR sequence, LV segmentation results obtained the highest Dice
score, but RV was relatively low.

4.4 Network structure analysis

In this section, we perform ablation experiments on the proposed
model for detailed analysis. Our model design is based on U-Net,
which is a popular network for medical image segmentation tasks.
Therefore, in the ablation experiments, we use U-Net as the baseline
comparison model.

4.4.1 Study on the dilated convolution module
The proposed model adopts a dilated convolution module to

expand the receptive field and obtain multi-scale feature information.
To demonstrate the effectiveness of the dilated convolution block, we
change the module to the U-Net initial double convolution module
and keep other configurations unchanged. It is then compared with
the original model. Table 3 shows the comparison results on the
ACDC dataset. As can be seen from the table, the performance of
the model after removing the dilated convolution block is significantly
degraded. Dice’s mean decreased from 0.918 to 0.900, while HD’s
mean increased from 9.892 to 10.494. This is because the dilated
convolution module can effectively expand the receptive field and
extract multi-scale feature information.

In addition, we also conduct ablation experiments for the effect
of different dilated rates on the experimental results. In the dilated
convolution module, we set the dilated rate to three groups of
{1,2,3}, {1,2,5}, {1,3,5} respectively for comparison.The experimental
results are shown inTable 4.The results show that themodel performs
the best when the dilated rate is set to (1, 2, 3). Therefore, we apply this
setting to our model.

4.4.2 Study on the multi-scale fusion module
To demonstrate the effectiveness of themulti-scale fusionmodule,

we remove the entire multi-scale module and keep other processing
steps unchanged. The experimental results on the ACDC dataset are
shown in Table 3. The Dice and HD values of the model using multi-
scalemodules have been improved.Therefore, the experimental results
can prove that multi-scale fusion module is beneficial to cardiac MRI
segmentation task. This is because the multi-scale fusion module can
fully utilize the features of each layer of the decoder.

4.4.3 Study on the edge fusion block
The role of the EFB is to use edge features for more accurate

segmentation of MRI. To demonstrate the effectiveness of the EFB, we
performed an ablation experiment on the EFB. The ablation results
of EFB are shown in Table 3. We deleted the EFB and kept the other
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TABLE 2 Overall performance of the proposedmethod.

Dataset Dice HD

LV RV MYO Mean LV RV MYO Mean

ACDC 0.947 0.908 0.899 0.918 8.314 10.281 11.014 9.892

MyoPS(bSSFP) 0.830 0.818 0.794 0.814 7.456 7.299 11.481 8.745

MyoPS(LGE) 0.849 0.803 0.831 0.827 6.991 6.915 11.248 8.384

MyoPS(T2-SPAIR) 0.861 0.708 0.817 0.793 6.501 8.824 10.672 8.665

FIGURE 6
In order to obtain better visual effects, the segmentation parts and evaluation indexes are displayed in the form of three-dimensional bar charts. Dice’s
score is on the left and HD’s score is on the right.

FIGURE 7
The variation of loss.
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TABLE 3 Dice/HD of our methods on ACDC dataset.

Methods Dice HD

LV MYO RV Mean LV MYO RV Mean

DDFN(Ours) — 0.947 0.899 0.908 0.918 8.314 11.014 10.281 9.892

DDFN w/o dilated convolution
module

0.932 0.881 0.889 0.900 8.914 11.881 10.712 10.494

DDFN w/o multi-scale feature
fusion

0.940 0.891 0.899 0.910 8.901 11.323 10.587 10.270

DDFN w/o direction field module 0.939 0.886 0.896 0.905 9.257 12.104 11.951 11.104

DDFN w/o edge fusion block 0.938 0.885 0.893 0.904 8.502 11.357 10.417 10.092

TABLE 4 Ablation experiments with different dilation rate settings.

Settings Dice

LV MYO RV Mean

(1, 2, 3) 0.947 0.899 0.908 0.918

(1, 2, 5) 0.942 0.883 0.890 0.905

(1, 3, 5) 0.939 0.890 0.889 0.906

procedures unchanged for comparison. As can be seen from the table,
both Dice and HD values have been improved. The results show that
themodule effectively uses edge features, which is conducive to cardiac
MRI segmentation.

4.4.4 Study on the direction field module
Our method utilizes the direction field module to learn a

direction field, which represents the direction relationship between
each pixel. Its function is to improve the segmentation feature map. To
demonstrate the effectiveness of this module, we analyze the impact
of the direction field module on the segmentation task. In ablation
experiments, we remove the direction field module of DFFN and
keep other settings unchanged. It can be seen from Table 2 that
the precision of the model decreases significantly after the direction
field module is removed. In particular, the average of HD increased
from 9.892 to 11.104. This proves that the direction field module
can effectively improve the output features and obtain better cardiac
segmentation results.

4.5 Comparison with existing methods

In this section, the proposed cardiac MRI segmentation method
is compared with other mainstream networks. Including U-Net
Ronneberger et al. (2015), U-Net++ Zhou et al. (2018), DeeplabV3+
Chen et al. (2018), Segnet Badrinarayanan et al. (2017), Distance Map
Regularized (DMR) Dangi et al. (2019) and SK-Unet Wang et al.
(2021). The above methods are encoder - decoder structure. U-Net
is a very classical model in medical image segmentation, while Segnet
is one of the earliest multi-pixel segmentation models. DeeplabV3+
is a conventional semantic segmentation method and has achieved
very good results in VOC2012 dataset. U-Net ++ is an improvement
on the basis of U-Net, which alleviates the unknown network depth

through effective integration of features of different depths. CE-Net
integrates dense convolution and residual structure into the model
to improve the segmentation performance. DMR is a distance graph
regularized image segmentation model. SK-Unet utilizes the selection
kernel module and residual module to improve the U-Net model.
This section compares the above methods with our proposed ones.
To be fair, the parameter settings are all the same as the proposed
method.

4.5.1 Experiments on ACDC dataset
Table 5 shows the comparison results of all methods on the ACDC

dataset. Experimental results show that comparedwith othermethods,
our proposed method has certain advantages and dice value has
been significantly improved. Among them, DeeplabV3+ performs
poorly, and it can be seen that it is not suitable for medical image
segmentation. As a baselinemodel, U-Net has better performance, but
there is still room for improvement. U-Net++ has achieved obvious
results after improving U-Net, and the Dice value has increased
from 0.912 to 0.928. DMR and SK-Unet are very effective as recent
cardiac segmentation methods. Compared with these methods, the
average dice value and average HD value of our method reached
0.918 and 9.892. Among them, the dice value of LV reached 0.947,
the RV reached 0.908, and the segmentation of MYO is difficult
due to heart disease, which is 0.899. Overall, our method achieves
competitive results for segmentation of various parts of the heart. This
is because our model can effectively extract and utilize multi-scale
information without causing the loss of feature information or the
increase of useless information. In addition, themodel retains the edge
information to make the results more accurate.

Figure 7 presents a visual comparison of the proposed cardiac
MRI segmentation method against other methods. We select the
segmentation results of three different slices for comparative display.
Among them, U-Net can accurately segment LV parts, but cannot
segment RV and MYO well. The remaining other models can segment
the three parts of the heart well, but there are still some shortcomings.
The segmentation results of DMR are prone to omissions, and SK-
Unet is prone to over-segmentation. Our segmentation result is the
closest to ground truth. However, for some very fine edge structures,
our method still falls short. With the deepening of the layer number of
convolutional network, the edge information is easy to be gradually
blurred. Briefly, the deep convoluted layer cannot obtain better
boundary information. Therefore, fine edges are not easy to recover.
These fine edge structures are difficult to segment manually even for
experienced experts.
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TABLE 5 Dice and HD of different segmentationmodels on ACDC dataset are compared quantitatively.

U-net DeeplabV3+ Segnet U-net++ DMR SK-unet Ours

Dice LV 0.912 0.824 0.919 0.928 0.929 0.932 0.947

RV 0.857 0.711 0.861 0.874 0.884 0.882 0.908

MYO 0.813 0.756 0.823 0.842 0.853 0.873 0.899

— Mean 0.861 0.764 0.868 0.881 0.888 0.895 0.918

HD LV 9.318 19.554 9.813 9.051 9.248 8.898 8.314

RV 11.899 24.158 12.015 11.459 11.548 10.945 10.281

MYO 14.176 27.456 14.991 13.546 14.354 12.458 11.014

— Mean 11.797 23.722 12.273 11.352 11.716 10.767 9.892

The values in bold are the best results.

TABLE 6 Dice and HD of different segmentationmodels onMyoPS dataset are compared quantitatively.

bSSFP MRI

— — U-net DeeplabV3+ Segnet U-net++ DMR SK-unet Ours

Dice LV 0.812 0.734 0.821 0.820 0.822 0.825 0.830

RV 0.797 0.691 0.792 0.809 0.811 0.814 0.818

MYO 0.783 0.695 0.806 0.789 0.790 0.791 0.794

HD LV 7.618 12.798 7.583 7.499 7.491 7.477 7.456

RV 7.576 13.186 7.491 7.545 7.557 7.348 7.299

MYO 11.971 20.854 11.815 11.713 11.706 11.648 11.481

LGE MRI

— — U-Net DeeplabV3+ Segnet U-Net++ DMR SK-Unet Ours

Dice LV 0.837 0.731 0.844 0.842 0.834 0.840 0.849

RV 0.764 0.679 0.772 0.778 0.769 0.792 0.803

MYO 0.807 0.697 0.818 0.831 0.827 0.829 0.831

HD LV 7.215 12.948 7.158 7.115 7.128 7.112 6.991

RV 7.954 13.485 7.758 7.147 7.168 7.135 6.915

MYO 12.015 19.942 11.849 11.428 11.489 11.408 11.248

T2-SPAIR MRI

— — U-Net DeeplabV3+ Segnet U-Net++ DMR SK-Unet Ours

Dice LV 0.848 0.795 0.850 0.853 0.852 0.857 0.861

RV 0.684 0.624 0.683 0.689 0.691 0.695 0.698

MYO 0.795 0.742 0.792 0.798 0.801 0.811 0.817

HD LV 6.518 10.548 6.517 6.521 6.517 6.510 6.501

RV 8.849 15.984 8.850 8.853 8.842 8.834 8.824

MYO 10.742 19.571 10.743 10.738 10.698 10.691 10.672

The values in bold are the best results.

4.5.2 Experiments on MyoPS dataset
Since the MyoPS dataset contains MRI with three different

sequences: bSSFP, LGE, and T2-SPAIR, we designed three sets
of comparative experiments to verify the effectiveness of the
model.

4.5.2.1 Comparison of results on bSSFP sequence MRI
Table 6 shows the experimental comparison results of ourmethod

and other methods on bSSFP sequence images. It can be seen that
compared with the classical U-Net method, our method improves the
RV segmentation accuracy by 2.11%. The segmentation accuracy was
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also improved in MYO and LV segmentation tasks. And compared
with other methods, our method can segment more accurately.

4.5.2.2 Comparison of results on LGE sequence MRI
The comparison results are shown in Table 6. The intensity

distribution of MRI of LGE sequence is similar to that of bSSFP
sequence, so the trend of MRI segmentation accuracy of the two
sequences is similar. Our method outperforms other methods on
cardiac MRI segmentation tasks. In addition, the proposed method
achieves the highest Dice score on LV, RV and MYO segmentation,
and the lowest Hausdorff distance score.

4.5.2.3 Comparison of results on T2-SPAIR sequence MRI
The intensity distribution of T2-SPAIR MRI was different from

that of the previous two sequences. Table 6 shows the experimental
results. It can be seen that all segmentation methods perform poorly
when segmentingRV.When segmenting lv, the segmentation accuracy
of the proposed method is slightly higher than that on the other two
sequences. For theMYO site, the proposedmethod performed well on
all three sequences of MRI. Similarly, in the MRI segmentation task of
T2-SPAIR sequence, our proposed method performs well.

5 Conclusion

This paper proposes a cardiacMRI segmentationmethod utilizing
multi-scale features and orientation fieldmodules.Thismethodmakes
full use of multi-scale features, and effectively improves the output
features through the directional fieldmodule, thereby obtaining better
segmentation accuracy. In addition, the model also uses edge features
to further improve the segmentation performance. Our limitation is
that with the deepening of the convolution layer, some small details
are easily lost and cannot be recovered. In the future work, we will try
to provide global context information for all the convolutional layers
in the decoder to preserve the more easily ignored details.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its early
detection is critical for preventing complications and optimizing treatment. In
this study, a novel AF prediction method is proposed, which is based on
investigating a subset of the 12-lead ECG data using a recurrent plot and
ParNet-adv model. The minimal subset of ECG leads (II &V1) is determined via
a forward stepwise selection procedure, and the selected 1D ECG data is
transformed into 2D recurrence plot (RP) images as an input to train a shallow
ParNet-adv Network for AF prediction. In this study, the proposed method
achieved F1 score of 0.9763, Precision of 0.9654, Recall of 0.9875, Specificity
of 0.9646, and Accuracy of 0.9760, which significantly outperformed solutions
based on single leads and complete 12 leads. When studying several ECG datasets,
including the CPSC and Georgia ECG databases of the PhysioNet/Computing in
Cardiology Challenge 2020, the new method achieved F1 score of 0.9693 and
0.8660, respectively. The results suggested a good generalization of the proposed
method. Compared with several state-of-art frameworks, the proposed model
with a shallow network of only 12 depths and asymmetric convolutions achieved
the highest average F1 score. Extensive experimental studies proved that the
proposed method has a high potential for AF prediction in clinical and particularly
wearable applications.

KEYWORDS

atrial fibrillation identification, electrocardiogram, recurrence plot, non-deep neural
network, optimal subset

1 Introduction

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia caused by uncoordinated
atrial electrical activation and ineffective atrial contraction (Hindricks et al., 2021). As the
most common cardiac arrhythmia and a major risk factor that can lead to ischemic, the AF
incidence and prevalence have increased over the last 20 years, becoming one of the largest
epidemics and public health challenges (Lippi et al., 2021). The diagnosis of AF at an early
stage is essential for the timely inception of treatment, which is usually realized by analyzing
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Electrocardiogram (ECG) signals. In clinical practice, the body
surface ECG is a powerful tool to reveal the occurrence,
maintenance, and termination of AF. However, manual analysis
of continuous rhythm registrations is time-consuming and needs
cardiologists with expertise in ECG-based diagnosis.

In recent years, automated AF detection based on traditional
methods and neural networks has been actively developed
(Wesselius et al., 2021). Traditional methods mainly focus on
atrial and ventricular signal features obtained from single-lead or
standard 12-lead ECG recordings. The atrial features are primarily
based on the P-wave disappearance or f-waves appearance. Typical
methods include the wavelet energy method (Garcia et al., 2016;
Serhal et al., 2022), the frequency and amplitude features of the
f-wave (Henriksson et al., 2018), and the time between P-waves as a
measure of the atrial rate (Huang et al., 2020). The ventricular
features mainly describe irregularity of intervals between subsequent
R-peaks (R-R intervals). Conventional methods also study wavelet
sample entropy (Serhal et al., 2022), normalized fuzzy entropy (Liu
C. et al., 2018), Shannon entropy (Dharmaprani et al., 2018), R-R
interval features (Lown et al., 2020; Luo et al., 2021), and heart rate
variability analysis (Nguyen et al., 2018). The signal features describe
other characteristics buried in ECG and are related to AF’s clinical
presentation and pathophysiology (e.g., signal quality and frequency
components). A bimodal analysis of physiological time and
frequency components is used to detect AF (Kruger et al., 2019).
The ECG signals are transformed into the frequency domain
(Khadra et al., 2005), time-frequency domain (Asgari et al.,
2015), and phase space (Parvaneh et al., 2018) to predict AF.

The standard 12-lead ECG provides a complete evaluation of
cardiac electrical activity, commonly employed across clinical
settings. Existing neural network studies have mostly addressed
the task of automatic AF classification based on the standard 12-
lead ECG in different ways. For example, Ribeiro et al. presented a
DNN framework to diagnose AF and other five types of rhythms
recordings with an F1 score above 80% (Ribeiro et al., 2020). Yao
et al. developed an attention-based time-incremental convolutional
neural network to detect AF and other arrhythmias from the 12-lead
ECG with varied-length (Yao et al., 2020). Zheng et al. proposed an
optimal multi-stage arrhythmia classification approach to predict
AF and other types at a cardiologist-level accuracy (Zheng et al.,
2020). Many works developed neural network methods based on the
popular dataset from the first China Physiological Signal Challenge
2018 involving AF and other eight types of different rhythms
(Runnan He et al., 2019; Tsai-Min Chen et al., 2020).

However, information redundancy exists in standard 12-lead
ECG signals, which could induce systematic overfitting in deep
learning, causing poor generalization, performance, and
unnecessary computational costs. Thus, some recent studies have
explored the optimal selection of ECG leads for cardiac arrhythmia
classification. Lai et al. proposed a deep learning model using the
optimal 4-lead subset that outperformed the classification
performance of the complete 12-lead ECG on normal and eight
arrhythmias (Lai et al., 2021). References (Jimenez-Serrano et al.,
2022; Xu et al., 2022) used deep learning-based methods to
discriminate multiple cardiac conditions with various lead
combinations, namely six leads (I, II, III, aVR, aVL, aVF), four
leads (I, II, III, V2), three leads (I, II, V2) and two leads (I, II) vs the
standard 12-lead ECG, and the data were provided during the

PhysioNet/Computing in Cardiology Challenge 2021. In our
previous work (Zhang et al., 2021), we addressed the
classification of AF and eight other types of arrhythmias utilizing
RP representation of ECG signals based on the identified optimal
leads (lead II and aVR) via the Inception-ResNet V2 framework in
which general optimal leads were selected for nine types of
arrhythmia classification. These earlier works explored the
optimal ECG-lead subsets on multiple prevalent arrhythmias
classification tasks.

AF prediction has recently been investigated based on single-
lead ECG data. Hannun et al. developed a deep neural network to
classify 12 rhythm classes, including AF and other arrhythmias,
based on single-lead ECG records obtained from an ambulatory
monitor with high diagnostic performance, similar to cardiologists
(Hannun et al., 2019). Ma et al. proposed a multi-step method that
combined the support vector machine classifier and an auto-
encoding network to predict the paroxysmal AF based on single-
lead long-term ECG data from the fourth China Physiological Signal
Challenge (CPSC 2021) database (lead II) and the wearable ECG
database collected by the wearable ECG device (Ma et al., 2022).
Athif et al. proposed an algorithm to discriminate AF from normal
and other arrhythmias based on a short single-lead ECG (lead I),
obtained from the Computing in Cardiology Challenge 2017
(Clifford et al., 2017). Mathunjwa et al. developed an approach to
classify AF from VF, PAC, and PVC arrhythmia in two steps using a
convolutional neural network based on the datasets from the
MITDB, MIT-NIH AFDB, and MIT-BIH VFDB, in which the
data is from the lead II recording channel (Mathunjwa et al., 2021).

Nevertheless, accurate diagnosis of AF using single-lead ECG
data (lead I or II) is still challenging. Despite the above studies
reporting promising AF detection results, one main challenge of
these methods is the loss of certain morphologic features and
patterns only visible in specific leads. For example, the low
amplitudes of the f wave are mainly observable in lead V1 and
aVF, whereas they barely appear in lead I (Cheng et al., 2013).

The clinical diagnosis of cardiac arrhythmia types is often task-
specific. To improve AF detection performance and efficiency, it is
essential to identify a minimal number of leads and which leads
should be included in the analysis. In this work, we developed a
novel method to explore the minimal subset of ECG leads dedicated
to AF prediction. Furthermore, to achieve better classification
results, we use the recurrence plot (RP) technique to represent
ECG signals. The RP technique (Eckmann et al., 1987; Eckmann
et al., 1995) has been widely used to explore the recurrence features
and irregular cyclicities properties of time series dynamic
information in the phase space. It is a visualization method that
transforms the 1D time signals into 2D RP images (Izci et al., 2019).
Zeng et al. developed a recurrence plot-based densely connected
convolutional network to classify the epileptiform based on EEG
(Zeng et al., 2021). Afonso et al. proposed an RP-based approach for
identifying Parkinson’s disease (Afonso et al., 2019). The RPmethod
was also combined with deep learning models for arrhythmias
classification based on ECG (Zbilut et al., 2002; Mathunjwa et al.,
2021; Zhang et al., 2021; Labib and Nahid, 2022).

Moreover, in this work, we attempted to achieve higher AF
prediction performance with “non-deep” neural networks. In our
previous study, we found that the Inception-ResNet V2 could
enhance the diversity of the filter patterns by asymmetric
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convolution splitting, thus improving arrhythmia classification
performance (Zhang et al., 2021). However, it requires training
deep networks involving large-scale sequential processing and
higher computing cost. This is challenging and less suitable for
those applications requiring fast responses. Here, we improved the
non-deep ParNet (Goyal et al., 2021) (Parallel Networks),
combining the asymmetric filters for this RP-based AF
prediction task.

The main contribution of our work is as follows: 1) A novel
neural network method combining the recurrence plot technique

and ParNet-adv model was proposed for AF classification. 2) We
find the minimal subset of ECG leads for AF prediction. 3) We
proposed a shallow network with only 12 depths and asymmetric
convolutions for AF prediction. Our method, combined with a
tailored ECG subset and a light framework, can be used as a
screening tool for automatic and early detection of AF problems,
particularly useful for portable or wearable ECG devices.

The rest of the paper is organized as follows: methods and
materials are described in Section 2, experiments and results are
detailed in Section 3 and 4, validation of the proposed method is
provided in Section 5, a discussion is presented in Section 6, and
conclusions are drawn in Section 7.

2 Methodology and materials

In this work, we develop a novel neural network method for
ECG-based AF prediction. The method selects the minimal subset
ECG leads for AF prediction by combining the light ParNet-adv
architecture and the recurrence features buried in AF and normal
ECG signals. As shown in Figure 1, the system includes three steps:
1D ECG data pre-processing, conversion of 1D ECG into 2D RP
images, and AF prediction.

2.1 ECG database

The dataset Physikalisch-Technische Bundesanstalt (PTB-XL)
(Wagner et al., 2020) was used for training, validation, and testing.
Another two ECG datasets (including CPSC and Georgia) were used
to evaluate the generalization of the proposed approach. The data
source CPSC (Liu F. et al., 2018) is the public training dataset from
the China Physiological Signal Challenge (CPSC 2018). Georgia is a
12-lead ECG Challenge Database, Emory University, Atlanta,
Georgia, United States, representing a large population from the
South-eastern United States. These datasets were publicly accessible
from the PhysioNet/Computing in Cardiology Challenge 2020
(Perez Alday et al., 2021) and detailed in Table 1. Each data
contains 12-lead ECG recordings (I, II, III, aVL, aVR, aVF,
V1–V6) sampled at 500 Hz with the mean duration of 10 s for
PTB_XL and Georgia, and 16.2 s for CPSC.

2.2 Data pre-processing for network input

2.2.1 1D ECG data pre-processing
In the data pre-processing stage, as illustrated in step 1 of

Figure 1A, the data with multi-labels were removed to focus on
the single-labelled AF classification. 16,801 Normal sinus rhythm
(NSR) and 1396 AF in the PTB-XL, 918 NSR and 1000 AF in the
CPSC, and 1000 NSR and 527 AF in Georgia were obtained after
data-pre-processing. The proportion of AF and NSR is
unbalanced in PTB-XL. To balance the data proportion,
1200 AF and NSR data were randomly picked up. Four in five
of the data labelled AF(NSR) were used as the training &
validation dataset, and one in five was used as the test dataset.
Thus, the training & validation set is independent of the testing
set without overlap, usually called inter-patient classification

FIGURE 1
The flow chart of the automatic AF prediction system. ECG,
electrocardiogram; AF, atrial fibrillation; NSR, normal sinus rhythm; 1D,
one dimensional; 2D, two dimensional; RP, recurrence plot. (A) ECG
data pre-processing. (B) ECG data were transformed into RP
images. (C) AF prediction experiments based on 12-lead ECG and
selected the minimal ECG-lead subsets. The validation superiority of
the proposed method and testing the generalization on different extra
databases.
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(Huang et al., 2014). Afterward, each ECG data was split into
12 subsets corresponding with the 12 leads.

Converting 1D ECG signals to 2D Recurrence plot (RP) images.
Cardiac activity has temporal evolutions, including

polarization and depolarization, which can be considered as a
dynamic system (Labib and Nahid, 2022). Using electrodes, ECG
records dynamic features of the cardiac electrical activities in the
form of time-varying voltages, which is not easy to visualize
whole aspects of the system dynamics in the time domain
(Debayle et al., 2018). A recurrence plot (RP) is a widely used
graphical tool to visualize the recurrent behaviors of the time
series in phase space (Eckmann et al., 1995). It enables analyzing
the dynamic recurrence features buried in ECG. The RP is
obtained as follows.

Step 1: A 1D time series X(t) phase space reconstruction is
performed via Takens’ delay coordinate method (Takens, 1981).
One consecutive time series is generated from the original time
series, where τ is a constant delay taken as 1.

Y t( ) � X t − τ( ) (1)

Step 2: The 2D phase space trajectory is constructed fromX and Y.
The constructed vector is generated in the phase space as S1(x1, y1),
S2(x2, y2), . . .. . .Sn−1 (xn−1, yn−1) (Debayle et al., 2018).

Step 3: The distance between Si and Sj on the trajectory can be
formulated as:

Ri,j � θ ε − Si − Sj
���� ����( ), i, j � 1, ...., N (2)

Where N is the length of the time series, ε is a threshold distance,
‖ · ‖ is a norm (e.g., Euclidean norm), and θ (.) is the Heaviside
function and defined as:

θ Ζ( ) � 0, ifZ< 0
1, otherwise

{ (3)

As a result, an RP image is obtained based on the matrix Ri,j,
which is a reconstructed recurrence representation in 2D phase
space. As can be seen from Eq. 2, the RP is a binary matrix because of
the threshold distance ε. This processing may lose some detailed
information. In this work, an un-threshold approach proposed by
(Faria et al., 2016) was adopted to avoid information loss by the
R-matrix binarization, to obtain an RGB image, and to make use of
the color information in RP images. Then the R-matrix can be
defined as:

Ri,j � Si − Sj
���� ����, i, j � 1, ...., N (4)

In the present study, as illustrated in Figure 1B, the 1D ECG
signals were converted to 2D RP images as the input signals of the
2D network for AF prediction.

2.3 ParNet-adv-based AF classification

In this work, we modified the ParNet (Goyal et al., 2021) (Parallel
Networks) as a “non-deep” neural network for this RP-based AFTA
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prediction task. The classification network with a shallow depth and
asymmetric filters is called ParNet-adv. The schematic architecture of
the ParNet-adv used for AF prediction is represented as follows.

As illustrated in Figure 2, the shallow ParNet-adv model with
a depth of 12 layers is a parallel model with three streams,
including four parallel sub-networks (Downsampling, ParNet-
adv Block, Fusion, Avg pool + FC). Downsampling Blocks in
Figure 3A reduce resolution and increase the width to enable
multi-scale processing. For the ParNet-adv Block in Figure 3B,
the key design choice is the use of 1 × 7 and 7 × 1 asymmetric
convolutions. The ParNet has only 3 × 3 convolutions, which is
challenging as the receptive field is somewhat limited. To address
this, we build asymmetric filters inspiring from the Inception-
ResNet V2 design with 1 × 7 and 7 × 1 convolutions providing a
large and diverse reception scale in the proposed ParNet-adv
model. Fusion Blocks in Figure 3C combine information from
multiple resolutions. The Avg pool and FC Blocks perform AF

classification. In addition, one concern is that a non-deep
network may have insufficient non-linearity, limiting its
representational power. Thus, the model replaces the ReLU
activation with SiLU. In this work, we trained our networks
with the cross-entropy loss, a learning rate of 0.001, a batch size
of 64, and the RP input images with a resolution of 299 × 299.

2.4 Performance analysis of the proposed
method

To assess the effectiveness of the proposed method, several
parameters, including Precision, Recall, Specificity, Accuracy and
F1 score are adopted, which are defined as follows.

Precision � TP

TP + FP
(5)

FIGURE 2
The architecture of the ParNet-adv for AF prediction. It consists of three parallel streams and four sub-networks, including ParNet-adv Block,
Downsampling, Fusion, Avg pool + FC. The ParNet-adv model has only 12 depths of layers, the model inputs are RP images, and the outputs are the
predictions of AF and NSR. AF, atrial fibrillation; NSR, normal sinus rhythm.

FIGURE 3
The sub-networks architecture of the ParNet-adv model, including ParNet-adv Block, Downsampling, and Fusion. Conv, convolutional layer; Batch
Norm, batch normalization layers; Global Avg pool, global average pooling layer; Avg pool, intermediate pooling layer; SiLU, sigmoid linear unit activation.
(A) An illustration of the Downsampling block. (B) An illustration of the ParNet-adv block with the key design of 1 × 7 and 7 × 1 asymmetric convolutions.
(C) An illustration of the Fusion block.
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Recall � TP

TP + FN
(6)

Specificity � TN

TN + FP
(7)

Accuracy � TP + TN

TP + TN + FP + FN
(8)

F1 � 2 Precision × Recall( )
Precision + Recall

(9)
Where TP is the number of true positive data; FP is the number of
false positive data; FN is the number of false negative data. Here,
Precision is the fraction of all predicted data that are labelled data;
Recall is the fraction of all labelled data that are successfully detected;
Specificity is the probability of a negative test, conditioned on truly
being negative; and Accuracy is the fraction of correct classifications.
The F1 score among classes is computed to evaluate the model’s final
performance.

3 Experiments

3.1 Experimental design and computing
environment

As illustrated in Figure 1, we designed several experiments,
including the selection of sampling frequency and length of ECG
data, minimal leads selection, and comparison between the
proposed method and conventional 12-leads and other
leads options-based solutions. All experiments were
conducted on Wiener nodes of the University of Queensland
computer cluster with 4 * Nvidia Volta V100 SXM2 connected
GPUs per node. Each node contains 5120 CUDA cores,
640 TensorFlow hardware cores, and 32 GB of HBM2 class
memory. This model was implemented using the TensorFlow
3.6 and Karas deep learning framework. The fivefold cross-
validation was introduced in the training and validation
processing.

3.2 Selection of the sampling frequency and
length of data

In this section, we compared the performance of AF
classification based on different sampling frequencies and
data lengths. Each original data was sampled at 500 Hz with a
mean duration of 10 s. For comparison, we downsampled the

lead II and lead VI of ECG data into 200 Hz, and 300 Hz. In
addition, the data were split into 5 s and 10 s in length at each
sampling frequency, respectively. Regarding the sampling
frequency 200 Hz/300 Hz/500 Hz, we picked up 5 s segment
of the data from first to 1000th/1500th/2500th, and 10 s
segment from 1st to 2000th/3000th/5000th. Each ECG
segment was transformed into the corresponding RP image,
with the z-score normalization of the input signals of the model.
The average F1 score was chosen for performance evaluation.

The results of these experiments are summarized in Table 2. The
results suggest that almost all the performance of AF detection on
10 s data length are better than 5 s in three sampling frequencies,
except the Recall of 500 Hz. Further, the experiment with the 300 Hz
sample frequency and 10 s data length achieved the optimal F1 score
and Accuracy over others. Based on this investigation, we
downsampled the ECG signal to 300 Hz and picked up 10 s data
for each recording to carry out the following AF detection
experiments.

3.3 Selection on minimal ECG-leads subset
for AF detection

In this section, we determine which leads are necessary to keep
and which carry redundant information that can be removed from
the automated AF detection system. The ParNet-adv model was
used to identify AF via analyzing recurrence features of RP images
derived from the complete 12-leads ECG and minimal ECG-leads
subset based on the PTB-XL dataset.

A forward, stepwise minimal subset selection method (James
et al., 2013; Lai et al., 2021) was used to find an minimal ECG-lead
subset for AF detection based on the same ParNet-adv model. In
the first phase, we conduct an AF prediction based on each lead
and find the one achieving the best performance. The selected
lead will be set as the seed one in the minimal subset. In the
second phase, the other 11 leads will individually combine the
seed lead in phase one to undertake another round of AF
prediction, from which we can identify the best two leads with
the best performance. In the next phase, we repeat the search with
the selected two leads from the first two phases. In each
operation, we trained the model and tested the performance
with the addition of each single-lead ECG into the minimal
lead subset until finding that the incorporation of any single-
lead ECG no longer improves the detection performance. We
stop searching if we see further enhancement cannot be achieved.

TABLE 2 Performance of AF classification based on different frequencies and data lengths.

Frequency (Hz) Data length (s) F1 Precision Recall Specificity Accuracy

200 10 0.9738 0.9810 0.9667 0.9813 0.9740

5 0.9625 0.9664 0.9583 0.9667 0.9625

300 10 0.9763 0.9654 0.9875 0.9646 0.9760

5 0.9565 0.9506 0.9625 0.9500 0.9367

500 10 0.9718 0.9748 0.9688 0.9750 0.9719

5 0.9598 0.9491 0.9708 0.9479 0.9594
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We use the fivefold cross-validation to train and test the
classification performance each time. The matric F1 score was
applied to measure AF prediction performance. And we conduct
the two-sample t-test between every two groups’ F1 scores. Our
null hypothesis is that the performance of the two groups is
dependent. And our alternative hypothesis is that the
performance of the two groups is independent. A p-value is
used as a threshold to reject or accept the null hypothesis. In
accordance with the acceptance of statistical significance at a
p-value of 0.05 or 5%, CI is calculated at a confidence level of 95%.
Among all steps, we choose the one that can achieve the optimal
F1 score as the final minimal subset of 12-lead for AF prediction
through the above multiphase searching procedure.

4 Results

This section presents experimental results for AF and NSR
classification. Two different scenarios were designed for the study.
First, the classification experiment based on the complete 12-leads ECG

was performed, and achieved the F1 score of 0.9692, the precision of
0.9721, and the recall of 0.9663, the Specificity of 0.9722 and the
accuracy of 0.9693 for AF detection based on the fivefold cross-
validation experiments. Second, the minimal subset of ECG was
explored for AF discrimination, including three phases. As
illustrated in Figure 4A, in the first phase, the F1 score for AF
detection using single leads ranged from 0.9308 (lead V5) to 0.9729

FIGURE 4
F1 scores—ECG leads bar chart. Show the performance F1 score for our ParNet-adv model on each AF prediction experiment. (A) One-lead AF
prediction and show the lead V1 achieved the optimal performance. (B) Two-leads AF prediction (addition of each single lead to the lead V1) shows the
highest F1 score bar corresponding to the lead V1+ II subset. (C) Three-leads AF prediction (addition of each single-lead to the subset leads V1+II).
(1,2,3,4,5,6,7,8,9,10,11,12 stands for lead I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6).

FIGURE 5
Optimal ECG lead subset selection for AF detection. (A) Lead V1was taken as the base element, and other leadswere considered as candidates. Each
time, a single lead was added to the seed set for training, validation of the model, and testing. (B) Leads V1&II were selected as the base element, and the
other 10 leads were considered as candidates for repeat searching.

TABLE 3 Performance of AF classification based on different ECG leads.

ECG
leads

F1 Precision Recall Specificity Accuracy

I 0.9593 0.93655 0.9833 0.9333 0.9583

II 0.9669 0.9590 0.9750 0.9583 0.9667

V1 0.9729 0.9749 0.9708 0.9750 0.9729

II + V1 0.9763 0.9654 0.9875 0.9646 0.9760

12 leads 0.9692 0.9721 0.9663 0.9722 0.9693
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(lead V1), and the lead V1 obtained the best overall results compared to
other leads, which was statistically significant (p < 0.05). In the
second phase, Figure 5A shows that lead V1 was taken as the base
element, and other leads were considered candidates. As illustrated
in Figure 4B, the subset composed of lead II and lead V1 achieved the
best overall results (F1 score 0.9763) for AF detection over other
combinations. In the third phase, Figure 5B shows that we repeated
searching with selected leads V1 and II, individually combining
every single lead from the other 10 leads. Among each step, the
p-value is less than 0.05 and statistically significant. Therefore, we
reject the null hypothesis and accept the alternative hypothesis that
the performances of each two groups are independent. As illustrated
in Figure 4C, incorporating more lead could not improve AF
detection performance in this phase, and the F1 score of each
experiment decreased. Thus, leads V1 and II were identified as
the minimal subset of 12 leads ECG for AF detection.

5 Validation of the proposed method

5.1 Comparison of performance between
cases with the minimal subset, the 12-lead,
and the single lead (lead I or lead II) ECG
signals

The performance of the minimal subset (leads V1 and II) was
compared with that of other options (complete 12-leads, lead I, and
lead II). Table 3 reports the comparison in terms of Precision, recall,
Specificity, Accuracy and F1 score. Note that the performance with
the minimal subset (F1 score 0.9763) (p-value <0.05) outperformed
the performance based on the complete 12-lead (F1 score 0.9692),
single-lead I (F1 score 0.9593), single-lead II (F1 score 0.9669) and
single-lead V1 (F1 score 0.9729). It is noted that lead I, which is used
in the Apple Watch (Perez et al., 2019), Karadia Mobile (Goldenthal
et al., 2019), and single time point testing (Duarte et al., 2020) for AF
detection; and lead II, which is used as the input signal to predict AF
in (Mathunjwa et al., 2021; Ma et al., 2022), achieved ordinary
performance in our study.

5.2 Comparison with state-of-art models

In this section, we compared the proposed method with several
state-of-art models based on the minimal subset as the input. For a
fair comparison, we have trained the Inception-ResNet V2 (Szegedy
et al., 2017), ParNet (Goyal et al., 2021), and the proposed ParNet-
adv model with the same set of hyperparameters and input data. As
illustrated in Table 4, the proposed method achieved the F1 score of
0.9763, higher than other reference models. In the study, we built the

1 × 7 and 7 × 1 layers based on the asymmetric design, increasing the
receptive field of the ParNet-adv model, thus improving the
performance than that of the ParNet performance with the same
depth. In addition, note that the proposed model effectively reduces
depth while can perform competitively with the deep model, the
Inception-ResNet V2, in AF detection study (Table 4).

5.3 Generalization of the proposed method

In this section, we evaluated the generalization of the proposed
method via testing two different ECG datasets CPSC (Liu F. et al.,
2018) and Georgia (Perez Alday et al., 2021). The detailed
information of these datasets is illustrated in Table 1. For proper
testing, all data were pre-processed and fed into the model training,
validation, and testing in the same way. As shown in Table 5, the
proposed method achieved the F1 score of 0.8660 on CPSC and
0.9693 on Georgia based on the minimal subset of ECG leads (leads
II and V1). These testing results indicate that the new method has a
good generalization ability for AF prediction.

6 Discussion

In this study, we developed a neural network-based system
for automatic AF prediction. The design incorporates several
novel points: 1) it identifies which leads of 12-lead ECG are
necessary for detecting AF features; 2) it uses RP images to train
the neural network instead of 1D ECG data for better capturing
the recurrence features of AF; 3) the neural network employs a
light ParNet-adv structure, suitable for applications demanding a
prompt response.

The results show that using the minimal ECG-lead subset
outperformed the complete 12-lead ECG, supporting our
hypothesis that eliminating the data redundancy can reduce the
overfitting issue and thus improve the prediction performance. Note
that the clinical diagnostic criteria of cardiac arrhythmia types are
often lead-specific. So, the proposed algorithm explicitly seeks the
minimal ECG-lead subset for AF prediction, and the selection is

TABLE 4 Comparison of AF detection based on different models.

Model Depth Kernel size F1 Precision Recall Specificity Accuracy

Inception-ResNet v2 (Szegedy et al., 2017) 164 1 × 7,7 × 1 1 × 3,3 × 1 0.9752 0.9672 0.9833 0.9667 0.9750

ParNet (Goyal et al., 2021) 12 3 × 3 0.9700 0.9630 0.9771 0.9625 0.9698

ParNet-adv 12 1 × 7,7 × 1 0.9763 0.9654 0.9875 0.9646 0.9760

TABLE 5 Performance of AF classification based on the CPSC and Georgia ECG
datasets.

Dataset F1 Precision Recall Specificity Accuracy

CPSC 0.9693 0.9518 0.9875 0.9454 0.9674

Georgia 0.8660 0.8702 0.8619 0.9322 0.9079

PTB-XL 0.9763 0.9654 0.9875 0.9646 0.9760
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performed based on the most common short-time 12-lead ECG in
the clinical setting. As demonstrated in Section 4, a minimal subset
ECG lead (leads II & V1) can interpret AF rhythm with a significant
increase of F1 score compared with the complete 12-leads ECG and
other options.

The minimal lead subset obtained by this data-driven
approach provides valuable insights for recurrence features in
this automatic AF detection protocol. As a 2-lead subset, it
consists of the limb lead II and the other unipolar lead V1,
providing assessments in the horizontal plane from the vantage
points of the septal surface. These two quasi-orthogonal leads
(leads II & V1) play a vital role in AF prediction. This is
consistent with clinical practice: Lead II, favored among the
12 leads by physicians for a quick exam of an ECG recording
due to its clearest signal, has decent overall performance in
predicting AF. Lead V1 is used in the clinic to detect
fibrillatory waves, which can be either fine or coarse. Of the
12 ECG leads, the lead V1 electrode is considered closest to the
right atrium. It was obvious that lead V1 electrode position is
right in front of the right atrial free wall and that the right atrium
almost entirely conceals the left atrium from a V1 point of view.
The f-waves in all patients were most dominant in this lead
(Holm et al., 1998; Hsu et al., 2008).

Figure 6 shows the ECG time series and corresponding RP
images. (A) is a normal ECG, the temporal waveform contains
normal P waves, regular rhythm, and R-R interval, and the RP
pattern shows the regular image texture. (B) represents an AF
case, having features of missing the P waves and irregular RR
intervals. The RP features were considered good predictors of AF
(Huang et al., 2020), as they reflect the non-linear and non-
stationary nature of the ECG signals. It has shown high efficiency
in arrhythmia classification from the ECG signals, as
demonstrated in our previous work (Zhang et al., 2021). In

this study, we only extract recurrence features of a subset of
RPs for AF detection. Note that fibrillatory waves are observable
and present either fine or coarse, corresponding to irregular and
cluttered textures in the RP of lead V1, as shown in Figure 6B.
This corresponds well to the variation of f-waves recorded in lead
V1 (see Figure 6A).

Regarding the feature extraction model, we introduced a
novel shallow ParNet-adv network that integrated a non-deep
ParNet with large and asymmetric filters of Inception-ResNet, to
automatically extract high-quality recurrence structure features
of RP images based on ECG leads. Therefore, our ParNet-adv
model, integrated complementary advantages of these two
networks (Table 4), is efficient for feature extraction and has
achieved promising performance in AF detection. Thus, the
ParNet-adv-like models have the potential to create an
incredibly light recognition system for wearable applications.
We also note that the study of ECG datasets of the PhysioNet/
Computing in Cardiology Challenge 2020 has well demonstrated
the generalization ability of the proposed method.

7 Conclusion

We have developed a novel neural network-based system for
automatic AF prediction in this paper. The proposed method offers
three main advantages. First, unlike most previous work, mainly
based on single-lead ECG or standard 12-lead ECG data, this work
performs AF detection with a minimal subset of leads (lead II &V1),
thus more efficient and easier to implement than existing methods.
Second, the proposed method achieved promising prediction
performance using non-deep neural networks with only
12 depths. Third, the 1D ECG signals were transformed into
2DRPs for extracting structural topographies in images, beyond

FIGURE 6
ECG time-series (up) and corresponding RP (below) images of Normal and AF. (A)Normal (B) AF. R, the R peak of the ECG; P, the P peak of the ECG; f,
the f wave of the ECG.
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processing original time series. This solution is demonstrated
useful for extracting signal dynamical features and better
detecting AF. The benefits of the proposed method have been
validated with extensive experiments; we hope this new method
can be further improved for AF detection in clinical and wearable
applications.
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Aim: This study sought to develop and validate diagnostic models to identify

individuals with atrial fibrillation (AF) using amplified sinus-p-wave analysis.

Methods: A total of 1,492 patients (491 healthy controls, 499 with paroxysmal

AF and 502 with persistent AF) underwent digital 12-lead-ECG recording during

sinus rhythm. The patient cohort was divided into training and validation set in a

3:2 ratio. P-wave indices (PWI) including duration of standard p-wave (standard

PWD; scale at 10 mm/mV, sweep speed at 25 mm/s) and amplified sinus-p-wave

(APWD, scale at 60–120 mm/mV, sweep speed at 100 mm/s) and advanced inter-

atrial block (aIAB) along with other clinical parameters were used to develop

diagnostic models using logistic regression. Each model was developed from the

training set and further tested in both training and validation sets for its diagnostic

performance in identifying individuals with AF.

Results: Compared to standard PWD (Reference model), which achieved an

AUC of 0.637 and 0.632, for training and validation set, respectively, APWD

(Basic model) importantly improved the accuracy to identify individuals with AF

(AUC = 0.86 and 0.866). The PWI-based model combining APWD, aIAB and

body surface area (BSA) further improved the diagnostic performance for AF

(AUC = 0.892 and 0.885). The integrated model, which further combined left

atrial diameter (LAD) with parameters of the PWI-based model, achieved optimal

diagnostic performance (AUC = 0.916 and 0.902).

Conclusion: Analysis of amplified p-wave during sinus rhythm allows

identification of individuals with atrial fibrillation.

KEYWORDS

atrial fibrillation, p-wave duration, electrocardiogram (ECG), diagnostic accuracy, atrial
cardiomyopathy
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GRAPHICAL ABSTRACT

Illustration of PWD measurement and diagnostic performance from external validation. Panel (A) depicts the PWD measurement from the same ECG
of an individual at standard scaling (10 mm/mV, 25 mm/s) and amplified scaling (60 mm/mV, 100 mm/s) using digital calipers. Panel (B) illustrates the
ROC curves from external validation of all four diagnostic models regarding identifying individuals with AF, the component of each model and their
AUC values are listed on the right margin. Panel (C) further delineates the diagnostic performance in external validation of each model in their
respective optimal thresholds regarding accuracy, AUC, sensitivity, specificity, PPV and NPV. PWD, p-wave duration; ECG, electrocardiography; ROC
curve, receiver operating characteristic curve; AF, atrial fibrillation; AUC, area under the curve; PPV, positive predictive value; NPV, negative
predictive value.

Introduction

Atrial fibrillation (AF) is associated with significant morbidity
and mortality (1). The high health care burden of AF and AF-
related complications such as stroke or heart failure have prompted
various attempts for risk prediction in the past decades, using ECG-
derived p-wave indices (PWI) and cardiac imaging (2–4). Although
several studies reported the potential predictive value of p-wave
duration (PWD) for AF, ischemic stroke or mortality (5–8), the
reported results were variable and the predictive value of PWD was
limited, when measured using a standard scaling of 10 mm/mV,
25mm/s, i.e., standard PWD. In this context, we recently reported
a novel p-wave analysis method that uses the measurement of
p-wave duration (PWD) in amplified digital 12-lead-ECG (APWD)
during sinus rhythm (SR), with high correlation to both the
invasive bi-atrial activation time during electrophysiological study
(EPS) and the extent of atrial fibrotic remodeling as detected
by endocardial voltage and activation mapping in patients with
atrial cardiomyopathy (9, 10). In the current study, we aim to
compare the diagnostic performance of standard PWD to APWD
and establish APWD-based diagnostic models for AF in a large
cohort of consecutive patients.

Materials and methods

Study design and population

As illustrated in the study flowchart (Figure 1), Consecutive
patients referred to our center between 2017 and 2021 for
electrophysiological study were screened for study inclusion.
Inclusion criteria were availability of a high-quality digital 12-lead

ECG in sinus rhythm. Exclusion criteria were prior right- or left-
atrial ablations, prior cardiac surgery or pacemaker-implantation
of any kind. Patients with confirmed diagnosis of paroxysmal
or persistent atrial fibrillation were allocated to the AF-cohort.
Patients who presented with AF in their admission ECG, first
underwent electrical cardioversion to sinus rhythm and were
scheduled for pulmonary vein isolation (PVI) 6–8 weeks thereafter.
In these patients, the analysis of 12-lead-ECGs during sinus rhythm
was based on ECG recordings from the rehopsitalisation (i.e.,
6–8 weeks after electrical cardioversion to SR). For the purpose of
the current study, patients diagnosed with atrio-ventricular nodal
reentrant tachycardia in the absence of AF or other arrhythmia
were considered as control cohort.

Training and validation sets

All individuals were subsequently randomized into training
and validation set with predefined ratio of 3:2. The former was used
to develop diagnostic models for AF and internally validate model
performance, the latter was used to validate model performance in
an external way. Current study conforms to the principles outlined
in the Declaration of Helsinki and was approved by the institutional
ethics committee, all patients provided written informed consent
prior to enrollment.

Digital 12-lead-ECG recording and
p-wave analysis

Digital 12-lead-ECG was recorded during sinus rhythm in all
study patients using LabsystemPro EP-system (Boston Scientific)
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FIGURE 1

Study flowchart. EPS, electrophysiology study; ECG, electrocardiography; Echo, echocardiography; Standard PWD, duration of standard
(non-amplified) p-wave; APWD, duration of amplified p-wave.

prior to sedation at the beginning of electrophysiology study with
the following filter settings: 0.05–100 Hz without additional 50 Hz
filtering at a sampling rate of 1,000 Hz. The duration of the
standard p-wave (standard PWD) was measured at 10 mm/mV and
25 mm/s scaling and the duration of amplified p-wave (APWD)
was measured at amplified scaling (60–120 mm/mV and 100 mm/s)
(Figure 2A and Supplementary Figure 1). The duration of p-wave
was determined using digital calipers from the earliest p-wave onset
until latest p-wave ending in any of the 12 leads. Standard PWD and
APWD were calculated as the mean value of three consecutive beats
measurements. Advanced inter-atrial block (aIAB) was defined as
initially positive p-wave with negative terminal deflection in two of
three inferior leads. The measurement of standard PWD, APWD
and aIAB was performed independently by two cardiologists who
were blind to patients’ clinical characteristics.

Statistical analysis

Continuous variables were expressed as mean ± SD or
median± interquartile range based upon distribution status. Given
the sample size of our study, the normality test was performed using
both Shapiro–Wilk’s test and visual estimation of the P–P plot.
The homoscedasticity of the dataset was performed using Levene’s
test. Based on the results of normality and homoscedasticity,
comparisons between two cohorts was performed using t-test
or Mann-Whitney U test. Categorical variables were expressed
as frequency and percentage (%) and were compared by Chi-
square test or Fisher’s exact test. Inter-and intra-observer variability
was analyzed using intra-class correlation coefficient (ICC),

Bland–Altman plot, and correlation curve were used to illustrate
the consistency in PWD measurement within the same observer
and between observers.

Optimal PWD parameter selection

As illustrated in Figures 2B, C, 3A, the current study provided
both standard PWD and APWD as candidate PWD parameters
for model development. By comparing their efficacy in identifying
individuals with AF, the one with superior discriminatory
performance (AUC or C-index) would be used as a basic model
and undergo further steps for multivariable AF diagnostic model
construction whereas the other would be used as a reference model.

Model development

Model development was performed in the training set
(Figure 3B). The optimal PWD parameter, along with other
variables describing baseline characteristics were used as candidate
variables prior to univariable logistic regression analysis.
Subsequently, significant variables (p < 0.05) in univariable
regression would undergo further multivariable regression analysis.
As a result, variables that maintained p < 0.05 after multivariable
logistic regression would be selected to develop the multivariable
AF diagnostic model (Integrated model). Additionally, alternative
diagnostic models were also proposed using less variables in order
to improve model practicability and test model stability with regard
to diagnostic efficacy.
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FIGURE 2

Illustration of PWD measurement in standard and amplified scaling. Panel (A) illustrates the results of p-wave duration from the same digital 12-lead
ECG measured at standard scaling (10 mm/mV, 25 mm/s) and amplified scaling (60 mm/mV, 100 mm/s) using digital calipers. PWD was measured
from the earliest p-wave onset until latest p-wave ending in any of the 12 leads at respective scaling. The noise level of annotated by the red dashed
lines. Panel (B,C) illustrate the difference between control and AF cohorts in internal and external validation using standard PWD (reference model)
and APWD (basic model), respectively. PWD, p-wave duration; standard PWD, duration of standard p-wave; APWD, duration of amplified p-wave;
∗∗∗∗p < 0.001.

FIGURE 3

Development of diagnostic models from the training set. Panel (A) illustrates the data collection in the training set in the current study, different
parameters from echocardiography, 12-lead ECG and other baseline characteristics are collected. Every ECG was measured at both standard setting
(25 mm/s, 10 mm/mV) and amplified setting (100 mm/s, 60–120 mm/mV) to acquire the standard PWD and amplified PWD, respectively. Panel
(B) depicts the steps in developing models. Amplified PWD and standard PWD were compared regarding their AUC in discriminative power to
identify patients with AF. The one with higher AUC value is used as the basic model and proceed to further steps whereas the one with lower AUC
value is used as the reference model. Basic model, along with other echo and baseline parameters are selected by univariate and subsequent
multivariate parameters. The integrated model consists of all the significant parameters from the logistic analysis. Additionally, in order to create an
alternative model with less variables and more oriented at ECG parameters, a PWI-based model is developed by excluding echo parameters (if any)
from the integrated model. AUC, area under the curve; BSA, body surface area; ECG, electrocardiography; Echo, echocardiography; LAD, left atrial
diameter; LVEF, left ventricular ejection fraction; PWD, p-wave duration; PWI, p-wave index; Uni, univariate; Multi, multivariate.
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Model validation

Validation of models were performed both internally (in
training set) and externally (in validation set) regarding their
efficacy in discrimination, calibration, net benefit and diagnostic
accuracy using optimal thresholds.

Discriminatory power of each model for identification of AF
patients was quantified by area under the curve (AUC) of respective
receiver operating characteristics (ROC) curve, ranging from
0.5 (random forecast) to 1.0 (perfect discrimination). Additional
comparison regarding discriminatory power between models was
performed using integrated discrimination improvement (IDI).
Two-tailed p values were calculated for all tests and considered
significant at p value < 0.05.

After the components of each model were determined, the
individual probability for AF by each model was estimated.
Calibration plot of each model was created to visualize the
agreement between estimated probabilities for AF and the actual
probabilities observed in each set. Moreover, Brier score, as a
parameter that quantifies the accuracy of probability by diagnostic
model (0 for total accuracy, 1 for wholly inaccurate) was calculated
and noted in the calibration curves.

The net benefit in clinical usefulness of selected models across
a range of probability threshold was illustrated by decision curve
analysis (DCA). The ‘None’ and ‘All’ curve indicated the expected
net benefit when intervention was performed to “none” and “all”
of the patients.

Diagnostic performance evaluation of each model consisted
of sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and accuracy. Based on ROC curve
coordinates of each model from training set, optimal probability
threshold from every model for AF was determined by Youden
Index (sensitivity + specificity − 1). Diagnostic performance
of each model was subsequently evaluated using determined
probability thresholds in both training and validation sets.

Statistical analysis was performed with SPSS version
27.0 for Macintosh (IBM-Corporation, Armonk, NY, USA),
GraphPadPrism-V9.0 for Macintosh (GraphPad Software, LaJolla,
CA, USA) and R software version 4.0.31 with rms, pROC, ggplot2,
rmda, ggDCA, caret, and PredictABEL packages.

Results

Patient characteristics and
randomization

A total of 1,492 individuals were included: 491 (32.9%) patients
with AVNRT but no history of AF or other arrhythmias were
in the control cohort, and 1,001 (67.1%) patients in the AF
cohort (499 (33.5%) with paroxysmal AF and 502 (33.6%) with
persistent AF). Baseline characteristics are presented in Table 1
and Supplementary Table 1. Patients with AF were predominantly
male, had higher body mass index (BMI), larger body surface
area (BSA), larger LA-diameters (LAD), lower LVEF, presented
more often hypertension, stroke and coronary artery disease.

1 http://www.r-project.org/

Subsequently, 896 (60.1%) of the total patients were randomized
into training set and 596 (39.9%) patients into validation set
(Figure 1). No significant differences in baseline characteristics
were observed between training and validation set (Supplementary
Table 2).

Differences between “standard PWD” and
“APWD” in control cohort vs. AF cohort

As illustrated in Figures 2B, C, both standard PWD and
APWD differed significantly in training set between control and
AF cohort (standard PWD: 115 ± 11 ms in control cohort vs.
121 ± 12 ms in AF cohort, p < 0.001; APWD: 122 ± 14 ms
in control cohort vs. 149 ± 22 ms in AF cohort, p < 0.001)
while the difference was more pronounced in the latter. Consistent
findings were observed in the validation set, in contrast to standard
PWD (116 ± 11 ms in control cohort vs. 122 ± 13 ms in AF
cohort, p < 0.001), APWD displayed larger differences between
two cohorts (122 ± 14 ms in control cohort vs. 150 ± 23 ms
in AF cohort, p < 0.001). Subgroup sex-specific analyses
revealed consistency of these findings (Supplementary Figure 2
and Supplementary Table 3). Subsequently, sensitivity analyses
were performed to exclude the potential bias mediated by use
of antiarrhythmia pharmaceuticals and anticoagulants in the
AF cohort. As listed in Table 1, 52.1% of patients in AF
cohort had current or history use of antiarrhythmia drugs
(Amiodarone/Dronedarone/Flecanid/Propafenon/Sotalol) within
four weeks that might influence the atrial de- and repolarization.
In those without use of aforementioned drugs, comparisons in
APWD and standard PWD were performed between control and
AF cohort. As a result, APWD was significantly longer in the
AF cohort than in the control cohort (143.9 ± 22.4 ms vs.
122.9 ± 14.8 ms, p < 0.001). In standard PWD, on the other hand,
although the difference between two cohorts reached statistical
significance (p < 0.001), the absolute value was insufficient to
provide clinical implication (119.4 ± 12.3 ms vs. 115.7 ± 11.1 ms).
Moreover, oral anticoagulants (OAC) were used in over 90% of
AF cohort, in the remaining 61 OAC-free patients in AF cohort
and 491 patients in control cohort, a profound difference in
APWD remained significant (144.1 ± 24.2 ms vs. 122.9 ± 14.8 ms,
p < 0.001). Similar findings were also observed in standard
PWD with marginal absolute difference (120.3 ± 12.9 ms vs.
115.7± 11.1 ms, p= 0.004).

Reproducibility in measurements using
amplified p-wave analysis

Among 1,492 study patients, 25 (1.7%) presented sinus ECG
recording with unsatisfying noise level (baseline noise above
0.08 mV). In those cases, the digitalized 12-lead-ECGs that were
recorded within the 3-month preceding the EPS were taken for
analysis. Each 12-lead digitalized ECG was measured by two
independent cardiologists using digital calipers. The amplified
scaling of each ECG was manually adjusted to obtain an optimal
signal-to-ratio that allowed visualization of the entire p-wave
(Supplementary Figure 1). As a result, among 1492 ECG in total
cohort, 83.3% of them were measured at an amplified scaling
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TABLE 1 Baseline characteristics of total cohort.

Variables Overall (n = 1492) Control (n = 491) AF (n = 1001) P-value

Age, years 60.14± 14.42 60.02± 17.14 60.19± 12.88 0.828

Female, n (%) 631 (42.30%) 262 (53.40%) 369 (36.90%) <0.001

Paroxysmal AF, n (%) 499 (33.44%) 0 499 (49.85%) <0.001

BMI, kg/m2 27.09± 4.66 25.72± 4.39 27.75± 4.64 <0.001

BSA, cm2 1.97± 0.23 1.87± 0.21 2.01± 0.22 <0.001

LAD, mm 40.19± 6.23 36.55± 4.95 41.90± 6.03 <0.001

LVEF,% 59.81± 9.87 61.67± 8.76 58.92± 10.25 <0.001

Hypertension, n (%) 778 (52.10%) 212 (43.20%) 566 (56.5%) <0.001

Diabetes, n (%) 127 (8.50%) 35 (7.10%) 92 (9.2%) 0.180

Stroke, n (%) 36 (2.40%) 4 (0.8%) 32 (3.2%) 0.004

TIA, n (%) 36 (2.40%) 10 (2.0%) 26 (2.6%) 0.593

CHD, n (%) 177 (11.90%) 35 (7.1%) 142 (14.20%) <0.001

CHA2DS2-VASc score 1.94± 1.45 1.74± 1.47 2.03± 1.43 <0.001

GFR (ml/min/1.73 m2) 80.58± 19.79 84.24± 19.71 78.79± 19.59 <0.001

Creatinin clearance (mg/dl) 0.96± 0.33 0.89± 0.21 0.99± 0.38 <0.001

Antiarrhythmia drugs, n (%) 522 (35.0%) 0 522 (52.1%) <0.001

Amiodarone, n (%) 247 (16.60%) 0 247 (24.7%) <0.001

Dronedarone, n (%) 14 (0.9%) 0 14 (1.4%) 0.019

Flecanid, n (%) 205 (13.7%) 0 205 (20.5%) <0.001

Propafenon, n (%) 11 (0.7%) 0 11 (1.1%) 0.044

Sotalol, n (%) 45 (3.0%) 0 45 (4.5%) <0.001

Anticoagulant, n (%) 940 (63.0%) 0 940 (93.9%) <0.001

VKA, n (%) 159 (10.7%) 0 159 (15.9%) <0.001

Apixaban, n (%) 200 (13.4%) 0 200 (20.0%) <0.001

Rivaroxaban, n (%) 429 (28.8%) 0 429 (42.9%) <0.001

Edoxaban, n (%) 63 (4.2%) 0 63 (6.3%) <0.001

Dabigatran, n (%) 89 (6.0%) 0 89 (8.9%) <0.001

AF, atrial fibrillation; BMI, body mass index; BSA, body surface area; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; TIA, transient ischemic attack; CHD, coronary heart
disease; GFR, glomerular filtration rate; VKA, vitamin-K antagonist.

of 60 mm/mV, 100 mm/s, and the remaining 16.7% of cases,
due to low p-wave amplitudes, were measured at 120 mms/mV,
100 mm/s. An excellent agreement was observed both in intra-
observer (ICC 0.951, 95%CI: 0.936–0.963) and inter-observer
(ICC 0.915, 95%CI: 0.875–0.941) measurements. Both the intra-
and inter-observer measurements were performed on the same
p-waves, but after a three-month time interval between the first and
second measurement. Bland-Altman plots and correlation curves
illustrate the agreement in each measurement within and between
observers (Supplementary Figure 3).

Discriminatory performance of standard
PWD and APWD to identify individuals
with AF

In order to determine the optimal candidate between
standard PWD and APWD for further development of diagnostic

models, C-index from training set was calculated to compare
the discriminatory power between standard PWD and APWD.
In contrast to standard PWD (C-index: 0.637, 95%CI: 0.599–
0.675), APWD achieved significantly higher C-index value
(0.86, 95%CI: 0.836–0.884, p < 0.001). Consistent results
were observed in validation set (0.632, 95%CI: 0.586–0.679
in standard PWD vs. 0.866, 95%CI: 0.836–0.895 in APWD;
p < 0.001).

Univariable and multivariable analysis for
variable selection (training set)

Given the significant superiority in discriminatory power of
APWD over standard PWD between control and AF cohort,
APWD instead of standard PWD was used for the construction of
further AF diagnostic models. As shown in Table 2, in univariable
analysis, significant AF predictors (p < 0.05) were further included
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TABLE 2 Univariable and multivariable analysis of AF predictors.

Univariable P-value OR 95%CI

aIAB 0.996 9.87e + 08 0 –

Sex <0.001 0.535 0.404 0.709

Age 0.521 1.003 0.994 1.012

APWD <0.001 1.096 1.082 1.11

Hypertension <0.001 2.601 1.951 3.468

Diabetes 0.223 1.382 0.821 2.327

Stroke 0.018 11.286 1.514 84.139

TIA 0.529 1.393 0.497 3.904

CHD <0.001 2.705 1.597 4.582

BMI <0.001 1.104 1.068 1.142

BSA <0.001 14.415 7.138 29.109

LAD <0.001 1.207 1.168 1.247

LVEF <0.001 0.964 0.949 0.979

Multivariable P-value OR 95%CI

Sex 0.236 0.78 0.517 1.177

APWD <0.001 1.087 1.071 1.103

Hypertension 0.715 0.927 0.616 1.394

Stroke 0.084 8.803 0.747 103.71

CHD 0.529 1.249 0.626 2.492

BMI 0.612 0.986 0.935 1.04

BSA 0.034 3.53 1.103 11.293

LAD 0.008 1.056 1.015 1.1

LVEF 0.841 1.002 0.981 1.024

aIAB, advanced inter-atrial block; APWD, duration of amplified p-wave; TIA, transient
ischemic attack; CHD, coronary heart disease; BSA, body surface area; BMI, body mass index;
LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

in multivariable logistic regression analysis. As a result, only APWD
(p < 0.001), BSA (p = 0.034), and LAD (p = 0.008) remained
significant, and were further incorporated for identification of
individuals with AF.

Development of diagnostic models for
AF (training set)

As described under supplemental statistical section, standard
PWD was therefore used as a reference model. Given the
above-mentioned results, APWD, BSA and LAD were considered
for integrated model construction. In order to facilitate model
practicability in clinical setting, we intended to provide two
alternative models with less variables: (1) APWD alone was
chosen as a basic model. (2) A PWI-based model was established
as another alternative ECG model. In this context, advanced
Inter-atrial block (aIAB), as a valuable predictor of left atrial
arrhythmogenic/fibrotic substrate with high specificity (9), was
incorporated to the models. As a result, we developed four
diagnostic models for identification of individuals with AF:
(1) Reference model (standard PWD), (2) Basic model (APWD),

(3) PWI-based model (APWD + aIAB + BSA), and (4) Integrated
model (APWD + aIAB + BSA + LAD).

Validation of diagnostic models for AF

Discrimination between control and AF cohort
As illustrated in Figures 4A, C, the integrated model achieved

optimal discriminatory performance in both internal (AUC 0.916)
and external validation (AUC 0.902) in comparison to the
basic model and the PWI-based model, indicating its prominent
potential for identification of AF patients. Although alternative
models contained less variables, they still maintained an AUC
value over 0.85 in both validations, suggesting that APWD
was an essential component for identification of AF patients
(Supplementary Table 4). In contrast, standard PWD achieved
significantly lower discriminatory performance (AUC: 0.637 and
0.632). Additionally, we performed a subgroup analyses to evaluate
the discriminative performance of APWD and standard PWD
in differentiation between paroxysmal AF cohort from control
cohort. In the training set, APWD achieved an AUC of 0.777
(95%CI: 0.740–0.813) whereas standard PWD achieved only
mild discriminative power (AUC: 0.624, 95%CI: 0.579–0.668).
Similar results were observed in the validation set regarding AUC
between paroxysmal AF cohort and control cohort (APWD: 0.780,
95%CI: 0.734–0.826 vs. Standard PWD: 0.623, 95%CI: 0.568–
0.678). Integrated discrimination improvement (IDI) is a statistical
parameter to evaluate the ability of a model to improve the
average sensitivity without reducing average specificity. As shown
in Supplementary Table 5, both PWI-based model and integrated
model showed significantly improved discriminatory performance
compared to the basic model in internal and external validation.
Based on AUC comparison between integrated- and PWI-based
model (p< 0.001 and p= 0.005 in internal and external validation)
and IDI value, the integrated model was associated with higher
accuracy to correctly identify patients with AF than PWI-based
model.

Calibration between estimated and observed AF
probabilities

Brier score, which is defined as the mean squared difference
between the observed and estimated outcome, allows estimation
of model calibration performance (“0” for optimal calibration,
“1” for entirely inaccurate). As illustrated in calibration curves
(Supplementary Figure 4) integrated model displayed excellent
agreement between estimated and observed AF probability
with Brier score of 0.103 and 0.112 in internal and external
validation, respectively. PWI-based Reference model and basic
model, despite fewer variables, also demonstrated rather good
agreement between estimated and observed AF probability.
Reference model, in contrast to other APWD-based models,
achieved insufficient performance with Brier score of 0.209 and
0.210 in respective validation.

Decision curve analysis for net benefit
assessment

As illustrated in Figures 4B, D, the net benefit for clinical
usefulness by each diagnostic model across a range of AF-risk
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FIGURE 4

ROC and DCA curves. In internal (upper panel) and external validation (lower panel), ROC curves of reference model (red), basic model (blue),
PWI-based model (brown) and integrated model (yellow) are plotted (A,C) with model components and AUC value annotated at right side. DCA
(B,D) illustrates the clinical impact (net benefit) of diagnostic model with reference curves of “Treat All” and “Treat None”. “Treat All” and “Treat None”
described the impact of intervention for “All” and “None” of individuals for target outcome (AF) respectively, when diagnostic model is not applied.
ROC, receiver operating characteristics; AUC, area under the curve; DCA, decision curve analysis; PWD, p-wave duration.

thresholds was assessed using Decision curve analysis (DCA).
Results from internal and external validations demonstrated
comparable promising net benefit across potential thresholds by
integrated and PWI-based models, indicating their robust efficacy
in identification of AF patients. The basic model, on the other
hand, presented slightly reduced net benefit in comparison to
integrated model and PWI-based model when thresholds were
above 0.50 in both internal and external validation. In contrast,
the reference model (standard PWD) demonstrated only marginal
benefit in both internal and external validation, making only
marginal difference than treating all or none of individuals when
no diagnostic model was used.

Diagnostic performance using optimal
thresholds and development of
nomograms for identification of AF
patients

Based on the ROC curve of each model in training set,
respective optimal thresholds were determined and subsequently
applied in both training and validation sets to dichotomize the
AF probability as high risk (above threshold) or low risk (below
threshold). As a result, the optimal thresholds of the reference
model and basic model were determined with a standard PWD
of 121 ms and APWD of 136 ms, respectively. The optimal
thresholds of PWI-based model and integrated model, however,

due to their multi-variable feature, were determined by ROC
curves based on their estimated AF probability. After calculating
Youden index, we determined AF probability of 0.63 and 0.65 as
optimal thresholds for the PWI-based model and the integrated
model, respectively. Detailed diagnostic performance of each
model in internal and external validation was illustrated in
Supplementary Figure 5 and Table 3. In an additional effort
to facilitate the application of PWI-based and integrated model
for identification of patients with AF, we developed a nomogram
for each of those two models and incorporated the optimal
thresholds to assist further decision-making (Figure 5), each
value in the listed parameters (APWD, aIAB, BSA, etc.) can be
converted into a corresponding points at the ‘Points scale’ at
the top, and the sum of all points from every parameter can
be used to estimate the risk for AF. Based on the individual
result of APWD, IAB, BSA (and LAD), the nomogram allowed
estimation of the personalized risk for AF, and by comparing it
with the ROC-defined optimal threshold, each individual would
be assigned as either high or low risk for AF (illustrative
example in Supplementary Figure 6 to guide the use of both
nomograms).

Discussion

The present study provides three main findings: (1) Compared
to standard PWD, the diagnostic models based on APWD
significantly improve the accuracy for the identification of
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TABLE 3 Optimal thresholds in models with diagnostic performance.

Randomization Model Reference Basic PWI-based Integrated

Component Standard PWD APWD APWD, aIAB, BSA APWD, aIAB, BSA, LAD

Threshold 121 ms 136 ms AF probability 0.63 AF probability 0.65

Training set Accuracy 55.7% 76.6% 81.4% 81.7%

sensitivity 47.8% 71.5% 81.1% 81.1%

specificity 72.1% 86.9% 81.8% 82.8%

PPV 77.5% 91.0% 90.0% 90.5%

NPV 40.5% 60.3% 68.3% 68.5%

Validation set Accuracy 56.0% 76.8% 80.9% 80.7%

sensitivity 48.5% 73.4% 81.8% 80.9%

specificity 71.7% 84.0% 78.9% 80.4%

PPV 78.0% 90.5% 88.9% 89.5%

NPV 40.2% 60.4% 67.7% 67.0%

Standard PWD, duration of standard (non-amplified) p-wave; APWD, duration of amplified p-wave; aIAB, advanced inter-atrial block; BSA, body surface area; LAD, left atrial diameter; PPV,
positive predictive value; NPV, negative predictive value.

FIGURE 5

Nomograms for identification of AF patients. Nomogram of PWI-based model (upper panel) and Integrated model (lower panel). Each value from
respective scale corresponds to a specific value at the top points scale, and the total points correspond to the estimated risk (bottom scale) for AF
by respective model. APWD, duration of amplified p-wave; aIAB, advanced inter-atrial block; BSA, body surface area; LAD, left atrial diameter.

patients with AF. (2) Integration of APWD with IAB, and
BSA allowed development of a multi-variable PWI-based model
with optimal performance for identification of patients with
AF. (3) Addition of echocardiographic left atrial diameter to
the PWI-based model further improved the diagnostic power
for AF.

Previously described diagnostic tools for
atrial fibrillation

Pathological mechanisms responsible for AF development and
progression are intertwined and triggered by multiple factors
including stretch-induced fibrosis, fatty infiltration, myocardial
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inflammation, heterogeneous conduction, etc. (1, 11, 12). Previous
studies proposed several predictive scores for new-onset AF based
on various risk factors: The C2HEST score consists of comorbidities
that predict 1-year risk for AF with C-index of 0.734 (13).
Other models including CHARGE-AF score and FHS score reach
C-index of 0.77 and 0.78 for 5- and 10-year AF risk, respectively
(14, 15). Nevertheless, the C-index reported from those studies
indicated moderate accuracies. In addition, the complexity and
high number of risk factors that are mandatory in those scores also
limit the practicability in clinical practice. Therefore, ECG-analysis
has been favored with its advantages of being non-invasive and
cost effective.

In the past decades, important efforts have been made in
various studies to determine the ideal ECG-parameter for AF
prediction. PWI including p-wave dispersion, p-wave axis, p-wave
duration, P-terminal force in V1, p-wave morphological criteria
and other parameters have been introduced and assessed for their
diagnostic value for predicting AF or cardiovascular mortality (3,
5, 6, 16). Nevertheless, controversies still remain as the predictive
accuracy was not always encouraging among studies. Nielsen et al.
analyzed the standard PWD of more than 285,000 individuals
from Copenhagen ECG study, and reported that individuals with
very short PWD (<89 ms) and very long PWD (>130 ms) have
a respective hazard ratio of 1.6 and 2.06 for incident AF in
comparison to individuals with a PWD between 100 and 105 ms
(7). They stated the hypothesis that a more rapid conduction
time might provide a substrate for reentry in early stages of
arrhythmias. However, in our current study, short APWD <90 ms
was only observed in individuals without AF. Conte et al. reported
a threshold of 121 ms to differentiate between paroxysmal AF
patients from healthy individual with an AUC of 0.80, however,
the reported sensitivity was only 63% and the total sample
size was 76 individuals only (17). Our study confirmed their
findings in a larger cohort, regarding the threshold of 121ms.
However, the diagnostic value of standard PWD in our larger
cohort is limited with an AUC of 0.63. In the current study, an
APWD > 136 ms, was found to have a greater potential to identify
patients with AF than PWD.

Relationship of APWD with atrial
cardiomyopathy and risk of AF

We recently reported that the duration of the digitally recorded,
highly amplified sinus-p-wave (APWD) accurately represents both
the invasively measured bi-atrial activation time and the extent
of atrial low voltage areas (as a electrophysiological marker
of atrial cardiomyopathy), thus allowing identification of AF
patients with advanced atrial cardiomyopathy, who are at risk
for recurrent AF after catheter ablation therapy (10). In contrast
to APWD, the standard p-wave duration (10 mm/mV and
25 mm/s) may underestimate the atrial conduction time (9).
This is even more pronounced in individuals with advanced
atrial fibrotic cardiomyopathy who present reduced p-wave
voltages (due to the loss of synchronously depolarized atrial
cardiomyocytes). Thereby, the standard PWD does not allow
accurate measurement of the true atrial conduction time, leading

to an insufficient diagnostic performance to identify individuals
with AF.

Rationale for developing alternative
diagnostic models using APWD

Previous studies focusing on development of prediction
model predominantly aimed to propose one model with optimal
performance by incorporation of multiple variables. FHS score
required the information of eight variables and CHARGE-AF score
demanded data of more than ten variables to predict new-onset
AF (14, 15). Albeit they were developed from large data cohorts
and enabled long-term risk estimation, the complexity of models
inevitably limited their application in real-world practice. In the
current study, in an aim to further improve its practicability,
we proposed alternative models with even fewer variables while
maintaining a rather comparable diagnostic efficacy. As APWD
alone already displayed robust superiority in discriminatory
performance (AUC over 0.85), it would be rational to be a basic
model. Furthermore, among LAD, aIAB, and BSA, construction of
another alternative model by different combinations with APWD
should take into account both the strength and weakness of each
variable. BSA, is easily available, as it is calculated from patient’s
height and weight. AIAB was shown to be predictive for AF-
associated atrial cardiomyopathy and AF development (9, 18). We
therefore combined it to APWD in the PWI-based and integrated
models, leading to an improved identification of AF patients. In the
current study, LAD was routinely measured in echocardiography in
all patients. Although it assesses the LA size in one direction only,
it could slightly improve identification of AF patients in our AF
models. However, we expect that integration of LA volume (as a
3D parameter of LA size) and/or LA strain would further improve
the diagnostic models for AF. In this context, a diagnostic model
(PWI-based model) without LAD but focused on APWD and AIAB
can be considered as an alternative model with high diagnostic
performance for detection of AF patients (AUC: 0.892).

Clinical potential in APWD-based models

The current study is the first to use amplified p-wave
analysis during sinus rhythm and reveals that APWD alone or in
combination with a few other predictors is of great potential in
differentiating individuals with AF from those without. Thereby,
the new models identify the current predisposition for AF and
provide the option for targeted screening of individuals at risk
for AF, instead of a non-selective population-wide screening.
Individuals that are identified as high risk for AF using current
models may benefit from a more frequent ECG monitoring for AF.

Artificial intelligence (AI) and
ECG-analysis for AF detection

Recently, AI-empowered algorithms were reported to facilitate
AF-screening using the newest generation of portable ECG-
devices. These devices and algorithms allow direct detection of
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AF occurrence based on RR-interval analysis (19). Nevertheless,
detection of short self-limited episodes of AF may lead to a test
and treatment cascades affecting the individuals’ quality of lives
and questioning whether the use of single-lead ECG devices is
suited for AF screening at population level without prior risk
stratification for underlying cardiovascular diseases (20). The
combination of our current diagnostic models for AF (using
APWD-based detection of left atrial electrical arrhythmogenic
remodeling) with subsequent AF screening (using AI-enabled
single-lead-ECG as in ECG-watches), would yield higher diagnostic
efficiency and allow to identify individuals at risk for AF and
cardiovascular complications.

A large sample-sized study using AI-algorithm for AF
prediction reported an AUC of 0.87 with overall accuracy of 79.4%,
when using 10-s 12-lead-ECGs recorded during sinus rhythm (21).
Although this AI-algorithm reaches similar diagnostic accuracies
as our APWD-based models, the route-to-diagnosis remains
unclear. In contrast to the AI-algorithm, our current APWD-
based diagnostic models for AF have the strength in providing
a comprehensible result by measurement of bi-atrial conduction
time to detect individuals with underlying atrial arrhythmogenic
substrate (10). Measurement of the PWD after digital recording
and amplification enables physicians to diagnose atrial fibrotic
cardiomyopathy. Therefore, the current methodology (APWD) can
be considered as complementary to AI-based ECG-analysis.

Limitations

The current cohort study demonstrates a high diagnostic
potential for identification of individuals with current AF
using the novel APWD models. Future large-scale longitudinal
studies in population-based epidemiological cohorts are warranted
to evaluate the diagnostic value of APWD-based models for
prediction of future AF. Accurate measurement of p-wave duration
necessitates digital 12-lead-ECGs that are recorded at a sampling
rate 500–1,000 Hz, with acceptable signal-to-noise ratio (baseline
noise should be below 0.08 mV) and amplified (60–120 mm/mV
at 100 mm/s) with adequate visualization. Moreover, physicians
need to be trained to correctly identify the onset and ending of the
amplified p-waves, which should not be a major obstacle, as high
expertise/training is also needed in many other diagnostic methods
in medicine/medical imaging.

Conclusion

The proposed APWD-based analysis detects the underlying
atrial electrical abnormalities/substrate that predispose to
AF development. Patients identified as high risk for AF
(based on the proposed APWD-models), should undergo
intensified ECG-monitoring for AF and may benefit from
further diagnostics in search for underlying cardiovascular

conditions that cause prolonged atrial conduction times and
atrial cardiomyopathy.
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Background: The advent of novel monitoring technologies has dramatically
increased the use of ambulatory electrocardiography (AECG) devices. However,
few studies have conducted detailed large-scale investigations on the incidence
of arrhythmias over 24 h, especially ectopy, in healthy individuals over a wide
age range.
Objectives: This study aimed to investigate the incidence of arrhythmias detected
using AECG and associated factors, in healthy individuals, over a wide age range.
Methods: In this cross-sectional study, we performed AECG on 365 healthy
volunteers (median [interquartile range]: 48 [36, 67], 20–89 years, 165 men)
under free-running conditions for 24 h. Ultrasonic echocardiography and heart
rate variability analysis were performed to explore the factors associated with
the incidence of arrhythmias.
Results: The 97.5th percentile of single ventricular ectopy (VE) was 149/day, 254/
day, and 1,682/day in the 20–39-, 40–59- and 60–89-year age groups,
respectively; that of single supraventricular ectopy (SVE) was 131/day, 232/day,
and 1,063/day, respectively. Multivariate analysis revealed that aging was the
only independent significant factor influencing the frequency of VE (β= 0.207,
P=0.001). Age (β= 0.642, P < 0.001), body mass index (BMI) (β=−0.112,
P=0.009), and the root mean square of successive differences in RR intervals
(β=0.097, P= 0.035) were factors significantly associated with SVE frequency.
Conclusions: Age-specific reference intervals of VE and SVE in a large population
of healthy participants over a wide age range were generated. VE and SVE
increased with age; SVE was influenced by BMI and the aging-induced decrease
in parasympathetic tone activity.

KEYWORDS

atrial fibrillation, amburatory ECG monitoring, premature ventricular complex (PVC),

premature atrial complex (PAC), heart rate variability, Holter ECG monitoring
Abbreviations

AECG, ambulatory electrocardiography; AF, atrial fibrillation; AV block, atrio-ventricular block; BMI, body
mass index; ECG, electrocardiogram; EF, ejection fraction; HF, power in the high-frequency area; HRV,
heart rate variability; LF, power in a low-frequency area; LF/HF, power in the low-frequency area/power in
the high-frequency area ratio; SDNN, standard deviation of the mean normal RR intervals; SDANN,
standard deviation of the averages of NN intervals in all 5-min segments of the entire recording; SVE,
supraventricular ectopy; pNN50, proportion of times between adjacent cycles that are different by >50 ms;
UCG, ultrasonic echocardiography; VE, ventricular ectopy; VLF, power in the very low-frequency area.
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1. Introduction

The development of ambulatory electrocardiography (AECG) by

Holter in 1957 enabled 24-h-ECG recording (1). Since then, AECG

has been widely used for detecting arrhythmic events in clinical

settings. Recently, the use of AECG devices has dramatically

increased, especially with the advent of novel monitoring

technologies, such as patch-type, implantable, and smartwatch-

type ECG devices (2–4). Thus, it is necessary to establish reference

intervals for AECG parameters to guide interpretation and clinical

care. It is well-known that the prevalence of arrhythmic events

depends on age. However, few studies have focused on the

reference values for the prevalence of arrhythmias in each

generation (younger, middle-aged, older populations) over a wide

age range among healthy individuals. Previous studies on this

subject included small sample sizes or were limited to fewer age

groups, such as young (20–39 years) (5–9), middle-aged (40–59

years) (7, 10, 11), or older-aged cohorts (over 60 years) (7, 11–16).

Moreover, most of these studies were conducted 20–40 years prior.

Lifestyle and average longevity have changed over the 21st century,

and few studies have investigated the incidence of arrhythmia in a

wide age range using AECG.

Supraventricular ectopy (SVE) (incidence: 56%–87%) is

reportedly the most common arrhythmia type in healthy

individuals detected using AECG, followed by ventricular ectopy

(VE) (incidence: 46%–69%) (17, 18). Previous studies have stated

that SVE or VE should not be treated if they are infrequent or not

severe in the absence of structural heart disease (19). However,

recent studies have suggested that a higher frequency of

ventricular extrasystole was associated with reversible

cardiomyopathy (20), inducing a decreased left ventricular ejection

fraction, increased chronic heart failure incidence, and a high

mortality rate even in individuals without structural heart disease

(21). Moreover, a recent study reported that frequent excessive

supraventricular activity was associated with a risk of atrial

fibrillation (AF), stroke, and total mortality in apparently healthy

individuals (22). Therefore, establishing reference values of VE and

SVE is of paramount importance. Furthermore, the factors

influencing the incidence of VE and SVE are not fully understood.

This cross-sectional study entailed AECG examination of

healthy volunteers whose ages varied widely, from 20 to 89 years.

This study aimed to investigate the incidence of bradyarrhythmia

and tachyarrhythmia and establish age-related reference values

for AECG parameters. Moreover, we explored the factors

associated with these AECG parameters, including ultrasonic

echocardiography (UCG) and autonomic nervous system activity

parameters expressed as heart rate variability (HRV), which can

influence the prevalence of ectopy.
2. Materials and methods

2.1. Study population

We recruited healthy volunteers between April 2015 and

March 2018 for this study. The inclusion criteria were as follows:
Frontiers in Cardiovascular Medicine 02301
individuals with no history of cardiovascular disease, respiratory

disease, dyslipidemia, diabetes mellitus, chronic kidney disease,

psychiatric disease, and autonomic nervous system disorders.

Moreover, participants who underwent annual medical

examinations within the past year without abnormal findings on

chest radiographs and 12-lead ECG were also included. Night-

shift workers and current smokers were excluded during the

initial stage. A total of 400 participants, without structural heart

disease, were initially included in this study. The study

procedures included the following (in order): detailed medical

history, general physical examination, systolic and diastolic blood

pressure measurements, 12-lead standard ECG, ultrasonic

echocardiology (UCG), and 24-h AECG. The recording time of

AECG was stipulated to be more than 23 h/day. The exclusion

criteria were as follows: participants with ST-T abnormalities on

baseline 12-lead ECG, second- or third-degree atrio-ventricular

(AV) block and left ventricular conduction block on standard 12-

lead ECG, low ejection fraction (EF) (<50%) with wall motion

abnormalities, significant left atrial dilatation and/or left

ventricular dilatation detected with echocardiography, ST-T

changes of an ischemic nature during daily activity and/or

ambulatory ECG monitoring, long QT interval (>500 ms) on

baseline 12-lead ECG, family history of sudden cardiac death,

and body mass index (BMI) over 30 kg/m2.

Thirty-five participants [48 (36, 47)] were excluded from this

study based on the above-mentioned exclusion criteria, while 365

participants were enrolled (Table 1). Most participants were

healthy volunteers who were citizens of the Tokyo Metropolitan

and Saitama Prefecture area, Japan. All volunteers provided

written informed consent before participation. The study

protocol conformed to the Declaration of Helsinki and was

approved by the Medical Ethics Committee of the National

Defense Medical College Hospital (approval no. 4645), Saitama,

Japan, and Nihon University School of Medicine, Itabashi

Hospital, Tokyo, Japan (approval no. MF 2208-0037).
2.2. Study protocol

Standard 12-lead ECG was performed, followed by UCG.

Thereafter, an AECG recorder (FM180S, Fukuda Denshi Co.,

Ltd., Tokyo, Japan) was used to record the ECG for 24 h under

free-running conditions, followed by analysis with the Holter

ECG system (SCM8000, Fukuda Denshi Co., Ltd., Tokyo, Japan).
2.3. Routine AECG data analysis

Routine AECG data analysis was performed automatically with

manual editing (Table 1). The parameters analyzed included the

total number of beats, maximum, minimum, and mean heart

rate (HR), and the frequency of VE and SVE per day.

Ventricular arrhythmias were defined as follows: ventricular

tachycardia (VT), ≥3 consecutive ventricular complexes at a rate

>100 bpm; ventricular triplet (V3), more than three ventricular

ectopic beats in a row at a rate <100 bpm; and ventricular
frontiersin.org
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TABLE 1 Demographics and Holter ECG and UCG results.

20–39 years 40–59 years 60–89 years P-value Total

(n = 120) (n = 124) (n = 121) (N = 365)
Demographics

Age 31 [25, 36] 47 [43, 53] 71 [66.8, 75] <0.001 48 [36, 67]

Men 61 52 53 166

Height (cm) 164.4 ± 9.2 162.8 ± 8.7 158.7 ± 9.2 <0.001 162.0 ± 9.3

Body weight (kg) 60.1 ± 10.8 62.2 ± 12.0 56.3 ± 9.9 <0.001 59.6 ± 11.2

Body mass index (kg/m2) 22.1 ± 4.1 23.3 ± 3.6 22.2 ± 2.5 0.016 22.6 ± 3.5

Systolic blood pressure (mmHg) 115.5 ± 11.4 126.2 ± 17.3 129.4 ± 14.2 <0.001 123.8 ± 15.7

Diastolic blood pressure (mmHg) 71.1 ± 10.4 79.4 ± 13.5 76.1 ± 10.9 <0.001 75.6 ± 12.2

AECG

Total beat/day 109,462.9 ± 12,341.5 110,534.9 ± 11,045.2 103,693.1 ± 11,055.1 <0.001 107,957.0 ± 1,1845.9

Maximum heart rate/day 144.0 ± 18.0 133.3 ± 14.7 121.1 ± 15.1 <0.001 131.0 [120.0, 143.0]

Minimum heart rate/day 50.6 ± 6.9 53.9 ± 6.2 53.0 ± 6.0 <0.001 52.5 ± 6.5

Mean heart rate/day 78.9 ± 8.7 78.8 ± 8.0 73.8 ± 8.1 <0.001 77.2 ± 8.6

Ventricular ectopy (single)/day 1.0 [0, 3.0] 2.0 [0, 6.0] 4.0 [0, 13] <0.001 2.0 [0, 7]

Supra ventricular ectopy (single)/day 6.0 [2.0, 14] 13.0 [6.0, 30] 67.0 [30.0, 189] <0.0001 18.0 [5.0, 51]

HRV

SDNN (ms) 154.7 [129.4, 186.3] 136.2 [115.8, 158.1] 129.9 [109.7, 153.2] <0.001 139.5 [117.1, 165.6]

RMSSD (ms) 35.4 [27.1, 50.3] 25.0 [18.6, 32.5] 23.3 [17.1, 31.8] <0.001 27.2 [20.6, 36.7]

pNN50 (%) 11.2 [5.2, 20.7] 4.0 [1.3, 9.0] 2.8 [0.8, 7.0] <0.001 5.4 [1.9, 11.2]

SDANN (ms) 144.7 [113.8, 173.2] 125.4 [104.6, 146.2] 123.0 [99.8, 142.5] <0.001 128.2 [107.4, 153.8]

VLF (ms2) 4,026.5[2,764.5, 6,373.8] 3,374.6 [2,424.0, 4,324.5] 2,996.0[2,155.8, 3,929.6] <0.001 3,387.8[2,509.2, 4,741.7]

LF (ms2) 972.3 [698.9, 1,513.4] 586.2 [395.3, 885.4] 321.3 [214.5, 536.6] <0.0001 616.6 [339.2, 1,001.9]

LFnu 17.1 [13.9, 20.0] 14.1 [10.8, 17.0] 9.4 [7.3, 12.5] <0.0001 13.2 [9.9, 17.5]

HF (ms2) 418.3 [256.7, 900.5] 224.7 [118.3, 381.7] 152.8 [76.4, 259.6] <0.0001 251.5 [129.1, 456.4]

HFnu 7.6 [5.4, 11.2] 4.9 [3.1, 7.6] 4.3 [2.6, 6.4] <0.001 5.4 [3.4, 8.4]

LF/HF 2.2 [1.5, 2.8] 2.8 [1.9, 4.1] 2.2 [1.3, 3.2] <0.001 2.3 [1.6, 3.4]

UCG

LVDd (mm) 46.8 ± 5.7 46.0 ± 6.2 45.9 ± 4.8 0.432 46.4 ± 5.7

EF (%) 67.4 ± 6.8 66.6 ± 6.3 67.1 ± 7.1 0.684 66.7 ± 6.9

E/e′ (septal) 5.8 ± 1.7 6.3 ± 1.8 6.6 ± 2.2 <0.001 6.1 ± 1.9

E/e′ (lateral) 4.9 ± 1.3 5.7 ± 1.6 5.9 ± 1.8 <0.001 5.4 ± 1.5

E/A 1.4 ± 0.4 1.2 ± 0.4 0.9 ± 0.3 <0.001 1.2 ± 0.4

EF, Left ventricular ejection fraction; E/e′, early diastolic flow velocity/ velocity of early diastolic mitral annular motion; HF, the power in the high-frequency area; HFnu, HF

normalized unit; LF, low-frequency area; LF/HF, the power in the low-frequency/the power in the high-frequency ratio; LFnu, LF normalized unit; LVDd, left ventricular

end-diastolic dimension; pNN50, percent of difference between adjacent normal; RR intervals greater than 50 ms, RMSSD (The square root of the mean of the sum of

squares of differences between adjacent normal to normal intervals); SDANN, standard deviation of the 5-min average NN intervals; SDNN, standard deviation of the

mean normal RR intervals for 5-min segments, ms; VLF, low frequency area; UCG, ultrasonic echocardiography.
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couplet (V2), two ventricular ectopic beats in a row.

Supraventricular arrhythmia was defined as follows:

supraventricular tachycardia (SVT), ≥3 consecutive ventricular

complexes at a rate >150 bpm; supraventricular triplet (S3), more

than three supraventricular ectopic beats in a row at a rate

<150 bpm; and supraventricular couplet (S2), two supraventricular

ectopic beats in a row. The total number of beats, and the

maximum and mean HR were significantly lower in the older

generation (P < 0.001 for all, respectively) (Table 1). Thus, the

prevalence of VE and SVE was significantly higher in the older-

aged group (P < 0.001 and P < 0.0001, respectively) (Table 1).
2.4. Analysis of HRV

HRV analysis was also performed to evaluate autonomic

nervous system activity using the SCM 8,000 system (Fukuda
Frontiers in Cardiovascular Medicine 03302
Denshi Co., Ltd., Tokyo, Japan) (Table 1). The RR interval was

calculated for HRV analysis via the corrected maximum entropy

method using Akaike’s algorithm, as previously reported (23).

The HRV data were subjected to time and frequency domain

analyses at 60-min intervals. The definitions of all HRV

parameters were based on previous studies (24). The parameters

for time domain analysis, which were evaluated every 5 min over

24 h, included the following: standard deviation of the mean

normal RR interval (SDNN), the square root of the mean of the

sum of the squares of differences between adjacent normal to

normal intervals (RMSSD), proportion of times between adjacent

cycles that are different by >50 ms (pNN50), and standard

deviation of the averages of NN intervals in all 5-min segments

of the entire recording (SDANN). Frequency domain analysis

entailed evaluation of the power in the very low-frequency area

(VLF), power in low-frequency area (LF), power in the high-

frequency area (HF), and power in the low-frequency/power in
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the high-frequency (LF/HF) ratio every 5 min. The power spectra

of frequency domain analysis were defined as follows: total power

(TP), approximately <0.4 Hz; power in the very low-frequency

range (VLF), 0–0.04 Hz; power in the low-frequency range (LF),

0.04–0.15 Hz; and power in the high-frequency range (HF), 0.15–

0.40 Hz. The normalized values (nu) were calculated using the

following formula: LF/TP × 100 for LFnu, and HF/TP × 100 for

HFnu. All HRV parameters, except for LF/HF, were significantly

lower in the older generation (P < 0.001 for SDNN, RMSSD,

pNN 50, SDANN, VLF; P < 0.0001 for LF, HF, and HFnu)

(Table 1).
2.5. Echocardiography recordings

Echocardiography was performed using the Xalio (Toshiba Co.,

Ltd., Tokyo, Japan) system to evaluate left ventricular EF and left

ventricular end-diastolic dimension (LVDd). Left ventricular EF

was calculated during sinus beats using Simpson’s method (25).

LVDd and EF did not differ significantly among the three

generations (P = 0.432 and P = 0.684). E/e′ (septal) and E/e′
(lateral) were significantly higher in the older generation (P <

0.001 for all, respectively) (Table 1).
2.6. Statistical analyses

Data are presented as the mean ± standard deviation for

normally distributed continuous variables, and as medians

(interquartile range: 25–75th percentile) for non-normally

distributed variables. Patient characteristics including

demographic features, and the AECG, HRV, and UCG

parameters were compared using the χ2 test for categorical

variables, analysis of variance for continuous and parametric

data, and the Kruskal–Wallis test for nonparametric data.

Comparisons of frequencies among each hour in

bradyarrythmias (sinus pause and AV block) and VE/SVE were

performed using the Kruskal–Wallis test. The parameters

influencing the ectopy prevalence in each generation were also

compared using the Kruskal–Wallis test; post hoc multiple

comparisons were performed using the Bonferroni method.

Multivariate regression analysis was performed to determine

the intensity of the incidence of premature atrial and ventricular

complex and theoretical consideration of important factors such

as the UCG and HRV indices. We also selected age, sex, and

BMI as the explanatory variables for multivariate analysis. Before
TABLE 2 Complex premature beats on 24-h AECG (N = 365).

Sinus pauses >2 s Sinus pauses >3 s

20–39 years (n = 120) 5 (4.1%) 0 (0%)

40–59 years (n = 124) 2 (1.6%) 0 (0%)

60–89 years (n = 121) 1 (0.8%) 0 (0%)

20–89 years (n = 365) 8 (2.1%) 0 (0%)

AECG, ambulatory electrocardiography; AV, atrioventricular.
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performing multiple regression for the incidence of VE and SVE,

the HRV indices (SDNN, SDANN, RMSSD, PNN50, LFnu,

HFnu, and LF/HF) were transformed to natural logarithms, as

these parameters showed skewed distributions. Multivariate linear

regression was performed after simultaneously controlling for

potential confounders, followed by step-wise selection or

backward selection. Log SDANN and log LFnu were excluded

owing to multicollinearity (variance inflation factor >10) during

multivariate regression analysis for both VE and SVE. We set the

reference interval for the AECG parameters as the 2.5th–97.5th

percentile according to the Clinical and Laboratory Standards

Institute guidelines and meta-analysis (26, 27). Furthermore, the

sample size of the reference interval of AECG parameters was set

at 120 participants minimum in each generation (20–39, 40–59,

and 60–89 years) according to the Clinical and Laboratory

Standards Institute guidelines (26). Statistical analyses were

conducted using SPSS version 28 (IBM Corp, Armonk, NY,

USA). All tests were two-sided, and P-values <0.05 were

considered statistically significant.
3. Results

3.1. Sinus pauses and conduction
abnormalities

The incidence of sinus pause >2 s was 4.1%, 1.6%, and 0.8% in

the 20–39-, 40–59-, and 60–89-year age groups, respectively

(Table 2). The incidence was higher in the younger-aged group.

The incidence of pause >2 s was under 5% in all generations,

rendering these findings abnormal. Generation-dependent

incidence was observed in the case of second-degree AV block,

akin to sinus pause. Additionally, the incidence of second-degree

AV block (i.e., abnormal findings) was under 5% for all

generations, rendering these findings abnormal. The evaluation of

the diurnal variations in the prevalence of sinus pause and

second-degree AV block revealed that both were observed mainly

at night-time: from 21:00 to 8:00 (Figures 1A,B).
3.2. Percentile of simple VE and SVE number
(reference values of ectopy)

The principal results of this study are presented in Table 3 and

summarized in the Figures 3A,B. The 97.5th percentile of simple

VE frequency (reference values of ectopy) was 149, 254, and
Second-degree AV
block (Wenckebach)

Second-degree
AV block (Mobitz)

Third-degree
AV block

4 (3.3%) 0 (0%) 0 (0%)

2 (1.6%) 0 (0%) 0 (0%)

1 (0.8%) 1 (0.8%) 0 (0%)

7 (1.9%) 1 (0.2%) 0 (0%)
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TABLE 3 Percentile of the frequency of simple ectopy (reference value of
ectopy) (N = 365).

Percentile

2.5 5 10 25 50 75 90 95 97.5
VE

20–39 years 0 0 0 0 1 3 9 59 149

40–59 years 0 0 0 0 2 6 37 144 254

60–89 years 0 0 0 1 4 13 171 393 1,682

20–89 years 0 0 0 0 2 7 57 194 366

Percentile

2.5 5 10 25 50 75 90 95 97.5
SVE

20–39 years 0 0 0 2 6 13 24 52 131

40–59 years 1 1 2 6 13 29 55 125 232

60–89 years 4 9 14 27 67 189 453 558 1,063

20–89 years 0 0 2 5 18 50 186 311 537

SVE, supraventricular ectopy; VE, ventricular ectopy.

FIGURE 1

Diurnal variation in the median number of bradyarrhythmias. Significant
night-time dominance was observed in the diurnal variation of the
median number of sinus pauses (P= 0.002) (A). Significant night-time
dominance in the diurnal variation of the median number of atrio-
ventricular blocks (P= 0.009) (B). Comparisons of frequencies among
each hour in sinus pause and AV block were performed using the
Kruskal–Wallis test. AV block: atrio-ventricular block.

Hashimoto et al. 10.3389/fcvm.2023.1099157
1,682/day in the 20–39-, 40–59-, and 60–89-years age groups,

respectively. The overall reference value for premature ventricular

ectopy for all generations was 366/day. On the other hand, the

95th percentile of the frequency of simple SVE (reference values
Frontiers in Cardiovascular Medicine 05304
of extrasystole) was 131, 232, and 1,063/day for the 20–39-,

40–59-, and 60–89-year age groups, respectively. Overall, the

reference value of SVE for all generations was 537/day.

Significant diurnal variation was observed in the mean HR and

mean frequency of VE and SVE. The mean frequency of VE was

significantly higher during the waking hours (8:00–24:00) than

during sleeping hours (23:00–7:00) (P < 0.001) (Figure 2A). In

contrast, the mean frequency distribution of SVE had two peaks

at 4:00 and 13:00–15:00 (P < 0.001) (Figure 2B).
3.3. Complex VE and atrial SVE

The findings associated with complex ectopy and tachycardia

are described in Table 4. VE Multiform was observed in 138/365

(37.8%) of the participants (Table 4). VT and V3 were observed

in 6/365 (1.6%) and 4/365 (1%) of the participants, respectively,

whereas R-on-T were not observed in any participant. All types

of SVT, S3, and S2 were observed in 37/365 (10.1%), 86/365

(23.5%), and 151/365 (41.3%) participants, respectively. The

incidence of complex SVE increased with age progression

(Table 4).
3.4. Correlation between the incidence of
ectopy and UCG and HRV indices

Multivariate regression analysis was performed to explore the

intensity of factors affecting the incidence of VE and SVE. Log

VE was higher in the older generation (P = 0.014) (Figure 3A).

Age was an independent factor influencing the VE incidence

(β = 0.293, P = 0.001), whose effect was retained in step-wise

selection (β = 0.207, P = 0.001) (Table 5). In a sub-analysis,

multivariate regression analysis with the backward selection

method showed that age tended to be the most influential factor

for log VE in all the generations (20–39, 40–59, and 60–89

years) (P = 0.054–0.079) (Supplementary Tables S1–S3). Log

SVE was higher in the older generation (P < 0.001) (Figure 3B).

However, BMI was significantly higher in the 40–59-year age

group than in the 20–39- and 60–89-year age groups (P = 0.016)

(Figure 3C). Hence, log SDNN, log RMSSD, and log HFnu were

lower in the older generation (P < 0.001 for all) (Figure 3D,E,,

F). Age, BMI, log SDNN, log RMSSD, and log HFnu were

significant factors affecting the SVE incidence (age, β = 0.532,

P < 0.001; BMI, β =−0.099, P = 0.029; log SDNN, β =−0.136, P =
0.02; RMSSD, β = 0.457, P < 0.001; log HFnu, β =−0.368, P =

0.001). Moreover, these indices were significant factors affecting

the SVE incidence, even according to step-wise selection (age,

β = 0.642, P < 0.001; BMI, β = v0.112, P = 0.009; log RMSSD, β =

0.097, P = 0.035) (Table 6). In contrast, a sub-analysis was

performed on the most influential factors for log SVE in each

generation (20–39, 40–59, and 60–89 years). Multivariate analysis

revealed that age, BMI, and RMSSD were significant factors

(Supplementary Tables S4–S6), with a similar trend as in the

analysis of all generations (Table 6). However, in the 60–89-year

age group, BMI was not a significant factor.
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FIGURE 3

Changes in the ectopy prevalence and parameters influencing ectopy prevalence in each generation. The log VE/day and log SVE/day were significantly
decreased in the older generation (P= 0.014 for log VE; P < 0.001 for log SVE), (A), (B). On the other hand, body mass index was significantly higher in the
40–59-year age group than in the 20–39- and 60–89-year age groups (P= 0.016) (C). HRV parameters (log SDNN, log RMSSD, and log HFnu), which
influenced the prevalence of SVE, were significantly decreased in the older generation (P < 0.001 for all, respectively) (D–F). The parameters influencing
the ectopy prevalence in each generation were compared using the Kruskal–Wallis test; post hoc multiple comparisons were performed using the
Bonferroni method. HRV, heart rate variability; SVE, supraventricular ectopy; VE, ventricular ectopy.
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4. Discussion

In this study, we provided age-specific reference values for

AECG parameters, including bradycardia detected using 24-h

AECG, in each generation, spread over a wide age range (20–89

years) in a healthy population. Moreover, we provided evidence

that the incidence of VE was only related to the increase in age;

hence, SVE was influenced by the increase in age and BMI and

decrement in RMSSD and HFnu, which are reflective of

parasympathetic nervous system activity. This is the first study to

demonstrate the relationship between autonomic tone activity,

expressed as HRV, and the incidence of VE and SVE over a wide

age range.
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4.1. Reference intervals of AECG parameters

The differences between the “normal” and “abnormal” AECG

findings in each generation (20–39, 40–59, and 60–89 years)

(Table 7) were determined, based on the assumption that events

occurring in less than 2.5% of a healthy population were

“abnormal” and those occurring in more than 2.5% of the

population were “normal.” The 2.5th–97.5th range is defined as

the reference interval in the Clinical and Laboratory Standards

Institute guidelines, as well as in many of the articles included in

the meta-analysis and the meta-analysis itself (26, 27). Therefore,

in the present study, the 95th percentile distribution was also

defined as the reference interval or reference value. The strength
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FIGURE 2

Diurnal variation in the median frequency of ventricular and
supraventricular ectopy. A significant diurnal variation was observed in
the mean frequency of VE (P < 0.001). The daytime prevalence of VE
was predominant, which was parallel to the diurnal variation in HR (A).
Meanwhile, the mean frequency of SVE was significantly higher at
4:00 and during 13:00–15:00 (P < 0.001). However, the diurnal
variation of SVE was not parallel to the diurnal variation of HR (B).
Comparisons of frequencies among each hour in VE and SVE were
performed using the Kruskal–Wallis test. HR: heart rate, SVE:
supraventricular ectopy, VE: ventricular ectopy.

TABLE 4 Complex ectopy and tachycardia on 24-h AECG (N = 365).

VE Incidence Multiform VT
20–39 years (n = 120) 68 (56.7%) 27 (22.5%) 2 (1.7%)

40–59 years (n = 124) 88 (71.0%) 46 (37.0%) 2 (1.6%)

60–89 years (n = 121) 102 (84.3%) 65 (53.7%) 2 (1.7%)

20–89 years (N = 365) 258 (70.7%) 138 (37.8%) 6 (1.6%)

SVE Incidence All types of SVT SVT >10 bea
20–39 years (n = 120) 103 (85.8%) 1 (0.8%) 0 (0%)

40–59 years (n = 124) 122 (98.4%) 4 (3.2%) 0 (0%)

60–89 years (n = 121) 121 (100%) 32 (26.4%) 10 (12%)

20–89 years (N = 365) 346 (94.7%) 37 (10.1%) 10 (2.7%)

TABLE 5 Multiple regression analysis for log ventricular ectopy (n = 365).

R = 0.324 R = 0.207a

β P VIF β P VIF
log VE - - - - - -

Age 0.293 0.001 2.08 0.207 0.001 1.0

Sex −0.044 0.532 1.274

SBP −0.133 0.064 1.338

BMI 0.067 0.315 1.161

E/e′ (septal) 0.139 0.183 2.856

E/e′ (lateral) 0.019 0.852 2.88

E/A 0.089 0.217 1.353

EF 0.033 0.596 1.041

logSDNN −0.153 0.074 1.92

logRMSSD 0.041 0.827 9.336

logPNN50 0.085 0.557 5.467

logHFnu 0.081 0.62 7.045

log LF/HF 0.108 0.367 3.795

EF, left ventricular ejection fraction; HF, power in the high-frequency area; HFnu,

HF normalized unit; LF, low-frequency area; LF/HF, power in the low-frequency/

power in the high-frequency ratio; LFnu, LF normalized unit; LVDd, left

ventricular end-diastolic dimension; pNN50,percent of difference between

adjacent normal RR intervals greater than 50 ms; RMSSD, root mean square

successive difference; SBP, systolic blood pressure; SDNN, standard deviation of

the mean normal RR intervals for 5-min segments (ms); VIF, variance inflation

factor; VLF, low frequency area. a Varibles by multiple linear regression with

stepwise selection.
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of the reference values calculated in our study is the mild skew in

age and sex, and the wide age range (20–89 years) of the

participants (Table 1).

Moreover, we set stringent criteria for healthy participants in

this study, who were defined as individuals with no history of

the following: cardiac abnormalities, abnormality on physical

examination, 12-lead ECG, chest radiograph, blood

investigations, and almost normal UCG findings; previous studies

did not establish such strict criteria, especially with respect to

blood work and UCG (25). Therefore, it is possible to designate

this result as a precise reference interval. However, this reference

interval is not normally distributed. There is a large discrepancy

in the 90–97.5 percentile, especially in VE and SVE; therefore,

this value should be treated with caution (Table 3). Since strict

criteria of reference values, such as those in this study, have not

existed in recent years, this information may be very useful not

only for physicians but also for healthcare professionals in

clinical settings in many situations, such as outpatient clinics and

health checkup posts. Moreover, this reference interval could be
V3 V2 R-on-T Bigeminy Trigeminy
0(0%) 2 (1.6%) 0 (0%) 4 (3.3%) 2 (1.7%)

0 (0%) 6 (4.8%) 0 (0%) 4 (3.2%) 2 (1.6%)

4 (3.3%) 16 (13.2%) 0 (0%) 10 (8.2%) 11 (9%)

4 (1%) 25 (6.6%) 0 (0%) 18 (4.9%) 15 (4.1%)

ts S3 S2
6 (5%) 19 (15.8%)

22 (17.7%) 42 (33.9%)

73 (60.3%) 90 (74.3%)

86 (23.5%) 151 (41.3%)
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TABLE 6 Multiple regression analysis for log supraventricular ectopy (N =
365).

R = 0.653 R = 0.626a

β P VIF β P VIF
log SVE - - - - - -

Age 0.532 <0.001 2.235 0.642 <0.001 1.15

Sex −0.003 0.946 1.308

SBP −0.028 0.561 1.397

BMI −0.099 0.029 1.191 −0.112 0.009 1.03

E/e′ (septal) 0.071 0.309 2.832

E/e′ (lateral) 0.012 0.866 2.883

E/A 0.005 0.923 1.362

EF 0.031 0.459 1.031

logSDNN −0.136 0.02 2.001

logRMSSD 0.457 <0.001 8.828 0.097 0.035 1.18

logPNN50 −0.136 0.168 5.665

logHFnu −0.368 0.001 7.497

logLF/HF −0.164 0.051 4.09

log SVE, log supra ventricular ectopy; the other abbreviations as in Table 5.
aVariables by multiple linear regression with stepwise selection.

TABLE 7 Differentiation between the normal and abnormal AECG findings
in each generation.

Normal Abnormal
20–39 years (n = 120)

Bradycardia Sinus pause <3 s Sinus pause >3 s,
Second-degree atrio-ventricular

block (Mobitz),
Third-degree atrio-ventricular

block

Ectopy and tachycardia
(ventricular)

VE < 149 VE >149, Multiform VE, VT,
V3, V2, R on T, Bigeminy,

Trigeminy

Ectopy and tachycardia
(supraventricular)

SVE <131, S3, S2 SVE >131, any SVT

40–59 years (n = 124)

Bradycardia Sinus pause <2 s Sinus pause >3 s,
All second-degree atrio-

ventricular block,
Third-degree atrio-ventricular

block

Ectopy and tachycardia
(ventricular)

VE <232 VE >232, Multiform VE, VT,
V3, V2, R on T, Bigeminy,

Trigeminy

Ectopy and tachycardia
(supraventricular)

SVE <144, S3, S2 SVE >144
SVT >10 beat

60–89 years (n = 121)

Bradycardia Sinus pause <2 s Sinus pause >3 s,
All second-degree atrio-

ventricular block, Third-degree
atrio-ventricular block

Ectopies and
tachycardia
(ventricular)

VE <1,682, V2, V3,
Bigeminy,
Trigeminy

VE >1,682, Multiform VE, VT,
R on T

Ectopy and tachycardia
(supraventricular)

SVE <1,063, S3, S2 SVE >1,063
SVT >10 beat

AECG, ambulatory electrocardiogram; S2, supraventricular couplet S3,

supraventricular triplet; SVE, supra ventricular ectopy; SVT, supraventricular

ventricular tachycardia; V2, ventricular couplet; V3, ventricular triplet; VE,

ventricular ectopy; VT, ventricular tachycardia.
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versatile, because an AECG is performed in not only cardiology,

but also various other medical departments and in general

medicine.
4.2. Sinus pauses and conduction
abnormality

We found that the incidence of sinus pause >3 s and second-

degree AV block (Mobitz)was less than 2.5% in all generations

(Table 2). Therefore, sinus pause >3 s and second-degree AV

block (Mobitz) are abnormal findings in healthy individuals.

Although the incidence of

second-degree AV block (Wenckebach) in 20–39 years was

more than 2.5%, that in 40–59 and 60–89 years was less than

2.5% each. Therefore, second-degree AV block (Wenckebach) in

an abnormal finding in 40–59 and 60–89 years. Moreover, the

incidence of bradyarrhythmia was higher in the younger-age

group. These findings are consistent with those of a previous

meta-analysis (27). Hingorani et al. reported that the incidence

of sinus pause >2 s in 1,273 healthy normal volunteers aged 18–

45 and 46–65 years was 4.4% and 0%, respectively, whereas the

incidence of second-degree AV block was 2.6% and 0.9%,

respectively (17). The precise pathogenesis responsible for the

higher incidence of bradyarrhythmia in the younger population

is unknown. However, we speculated that autonomic nervous

system activity, especially parasympathetic dominance, in

younger individuals contributes to the susceptibility to

bradyarrhythmia. The night-time predominance of sinus pause

and diurnal variation in the AV block suggests the involvement

of parasympathetic tone in these arrhythmias. Our findings

provide valuable evidence, as no study has focused on diurnal

variation in bradycardia detected on AECG (27).
4.3. Reference intervals of VE and SVE

We provided reference values for both VE and SVE in each

generation (20–39, 40–59, and 60–89 years) over a wide age

range in a population (Table 3 and central illustration). Several

studies have reported on the frequency of VE and SVE/24 h

using AECG in a few age groups in apparently healthy

participants (Tables 8–10) (5–16). However, few studies have

demonstrated reference values in each generation (20–39, 40–59,

and 60–89 years) over a wide age range. Notably, the frequency

of VE and SVE/24 h was higher in the older-aged group than in

the younger-aged group in all percentile categories (from the

2.5th–97.5th percentiles) (Table 3). Recently, Williams et al.

conducted a meta-analysis of 33 studies from 1950 to 2020

concerning reference intervals for AECG parameters and

reported that the normal range of VE and SVE was 0–500/24 h,

0–1,000/24 h, and >1,000/24 h, for 20–39, 40–59, and 60–89

years, respectively (27). These findings are consistent with our

data, except for the older generation (60–89 years). However,

most studies (28 of 33) incorporated in that meta-analysis were

published before 2000. The reference values for the young
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generation (18–36 years) were published in 1981 (Table 8).

Moreover, reference values for the middle-age group are lacking

(Table 9). Notably, the latest study to report reference values

(age range: 64–80 years) of VE and SVE in a Japanese

population was published in 2006, but data for establishing the

reference values were collected in 1989 (Table 10) (15). Thus,

the data used, and inferences derived from these studies are

extremely old. Therefore, our study’s findings significantly

contribute to and expand the existing body of evidence. We also

investigated complex ectopy and tachycardia using 24-h AECG

(Table 4). The incidence of VT, R-on-T, and SVT >10 beats in

20–39 and 40–59 years generation were less than 2.5% in all

generations; i.e., these findings are abnormal in healthy

individuals. However, the prevalence of bigeminy and trigeminy

in the 60–89 years age group was 8.2% and 9%, respectively. To

the best of our knowledge, this study was the first to conduct

such a detailed analysis, rendering these findings novel.
4.4. Correlation between ventricular ectopy
and UCG or HRV parameters

In the present study, VEs were only correlated with age, whereas

SVEs were correlated with BMI, age, log RMSSD, and log HFnu.

Aging has the greatest influence on the frequency of VE and SVE.

Regarding VE, age was the independent factor that affected the

number of VE through all the generations. VE had no relationship

with the other factors in Figures 3D–F (log SDNN, log RMSSD,

and log HFnu). In the sub-analysis, age tended to be the most

influential factor affecting VE, although it was not statistically

significant (Supplementary -Tables S1–S3). We speculate that this

may have been the case because the sub-analysis was divided

based on the generations and therefore did not reach significance.

It has been widely reported that the prevalence of VE in the older

population was higher than that in the younger population, which

was also proven in a meta-analysis (27). Moreover, Tasaki et al.

followed a cohort of healthy individuals for 15 years and found

that the incidence of VE and SVE increased significantly after 15

years (15). Therefore, although the higher incidence of VE and

SVE in older individuals is an unquestionable fact, few studies

have investigated the mechanism of this phenomenon. The age-

related changes in intracellular Ca2+ regulation which play an

important role in the development of several types of arrhythmias

may explain this phenomenon (28). Studies have suggested that

age-related changes in intracellular Ca2+ regulation may prolong

the action potential, especially during tachycardia, inducing

electrical instability due to inadequate return of intracellular Ca2+

concentration. VE, which accounts for the high diurnal variation

in VE when HR is elevated during the day, supports this hypothesis.
4.5. Correlation between supraventricular
ectopy and UCG or HRV parameters

Several studies have reported that the frequency of SVEs

increases with age, but few have examined the correlation
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1099157
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Hashimoto et al. 10.3389/fcvm.2023.1099157
between the frequency of ectopy (SVE) and UCG and HRV

parameters simultaneously. SVE was inversely correlated with

parasympathetic indices such as log RMSDD and log Hfnu

(Figures 3B,E,F), thereby supporting the results of the

multivariate analysis in Table 6. In contrast, age, obesity, and

RMSSD, a parasympathetic index, were significant factors

influencing SVE, as was the case for all age groups (Table 6 and

Supplementary Tables S4, S5). However, BMI was not

significant in the 60–89-year age group (Supplementary

Table S6). The possible causes for this are as follows: BMI was

lower in this generation than in the 40–59-year age group

(Figure 3C) and the small variation in BMI made it less likely to

be statistically significant.

The causes for the increase in frequency of SVE with age have

not been clarified in humans; however, the following speculations

are made regarding the basic experimental study. Age-related

changes in ion channels in the atria and ventricles are key to the

dynamics of Ca2+ channels. In the animal experimental study,

the uptake of Ca2+ into the sarcoplasmic reticulum decreases

with age and intracellular Ca2+ increases with age (29). Increased

intracellular Ca2+ causes early posterior depolarization and

induces APC and AF (30). Conversely, it has been reported that

aging (degree of frailty) correlates with prolongation of the P

wave and PR interval in ECGs of aged mice and that this is

caused by elevated levels of interstitial fibrosis and collagen

content (31). The above structural remodeling has been reported

to increase the frequency of AF from APCs with aging.

It is generally recognized that RMSSD, pNN50, and HFnu are

parameters related to parasympathetic nervous system activity (24).

Therefore, there is a possibility that the increment in the frequency

of SVE with aging partially results from decreased autonomic

nervous system activity due to aging, particularly

parasympathetic nervous system activity. Automaticity or

triggered activity is thought to be the mechanism underlying

SVE occurrence (32). It is speculated that a decrease in

parasympathetic activity can lead to an increase in automaticity

(32), which may be responsible for the decrease in

parasympathetic activity in middle-aged and older individuals

and may increase the frequency of SVEs with aging. It has been

widely reported that the incidence of AF increases in middle-

aged and older individuals (33). The incidence of SVE due to

aging and the change in the equilibrium of sympathetic/

parasympathetic activity may influence the increase in AF in

older individuals. Incidentally, fluctuations in heart rate

variability, expressed as SDNN, became significantly smaller with

age. This result is consistent with that of previous reports and is

an age-related change (34).

In this study, multiple regression analysis revealed that BMI

was an independent factor influencing SVE prevalence. Naturally,

the high prevalence of SVE can induce AF. Obesity is an

independent risk factor for increasing the prevalence of AF (35).

Although the pathophysiology of obesity implicating AF is not

completely understood, the factors associated with it are as

follows: genetic factors; clinical correlations such as hypertension,

diabetes mellitus, and sleep apnea syndrome; coronary artery
Frontiers in Cardiovascular Medicine 11310
disease; ventricular adaptation; inflammation; oxidative stress;

focal adrenergic pathways; and focal adiposity (36). Among these,

epicardial focal adiposity has recently garnered much attention.

Recent studies have reported that the increase in epicardial fat

caused by obesity leads to the development of adipocyte

infiltration into the myocardium, fibrosis, inflammation, oxidative

stress, and impaired cardiac muscle activity in the myocardium

(37). These factors can be triggers underlying the development of

AF (37). Our findings show that a higher BMI contributes to the

increased incidence of atrial premature complexes and may

support recent findings on the role of obesity in AF.
4.6. Limitations

There are some limitations to this study. This study was

performed for a brief duration of monitoring, i.e., a 24-hr period

without any follow-up. We did not evaluate reproducibility

between day-to-day values, which should be assessed using novel

AECG devices, such as patch ECG, in the future (38). Moreover,

the study population was restricted to individuals of Asian

ethnicity; there is a possibility that the reference values of other

ethnicities such as European, African, and Hispanic may be

different. The minimum sample size required for the reference

interval recommended by the Clinical and Laboratory Standards

Institute guidelines (26) is met in this paper. However, a larger

cohort and several follow-up recordings will be needed to

investigate potential future directions of this work. In this study,

the age range of 60–89 years was adopted as a single group.

However, as shown in the meta-analysis by Williams et al. (27),

the validity of the healthy value of 80 years of age and older is a

controversial area and has not been clarified in previous reports.

In order to verify the validity of using 60 years of age as a cutoff,

we first compared the items listed as parameters in this study in

the age group of 60–70 years and 70–89 years. There were no

significant differences in all arrhythmia parameters (P = 0.204–

0.916) except R-on-T, V3, and bradyarrhythmia. We then

compared the parameters in the 60–75-year and 75–89-year age

groups. There were no significant differences in any of the

arrhythmia parameters except R-on-T, V3, and bradyarrhythmia

(P = 0.349–0.972). These results support the fact that the age

category of 60–89 years used in this study is valid. On the

other hand, we could not validate R-on-T, V3, and

bradyarrhythmia in the 60–89 years age group because the

number of patients in all categories of R-on-T, V3, and

bradyarrhythmia (Sinus pause and AV block) was less than 2,

and statistics were difficult to obtain.
4.7. Conclusions

We presented age-specific reference values for AECG

parameters derived from 24-h AECG in healthy individuals, over

a wide age range (20–89 years). Notably, the reference values of

VE and SVE were different in each generation. Moreover, we
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demonstrated that the incidence of VE was only related to the

progression in age; hence, SVE was influenced by age and BMI

increases, and RMSSD and HFnu decreases, which represent

parasympathetic nervous system activity. This information will

be useful for the diagnosis and prevention of diverse cardiac

diseases in patients of various age groups in clinical settings.

Future studies that account for the daily variance in healthy

individuals are warranted to seek the reference interval of

AECG.
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A lightweight fetal
distress-assisted diagnosis model
based on a cross-channel
interactive attention mechanism
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Pengfei Jiao2 and Zhidong Zhao2*
1School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China, 2School of
Cyberspace Security, Hangzhou Dianzi University, Hangzhou, China

Fetal distress is a symptom of fetal intrauterine hypoxia, which is seriously harmful
to both the fetus and the pregnant woman. The current primary clinical tool for the
assessment of fetal distress is Cardiotocography (CTG). Due to subjective
variability, physicians often interpret CTG results inconsistently, hence the need
to develop an auxiliary diagnostic system for fetal distress. Although the deep
learning-based fetal distress-assisted diagnosis model has a high classification
accuracy, themodel not only has a large number of parameters but also requires a
large number of computational resources, which is difficult to deploy to practical
end-use scenarios. Therefore, this paper proposes a lightweight fetal distress-
assisted diagnosis network, LW-FHRNet, based on a cross-channel interactive
attention mechanism. The wavelet packet decomposition technique is used to
convert the one-dimensional fetal heart rate (FHR) signal into a two-dimensional
wavelet packet coefficientmatrixmap as the network input layer to fully obtain the
feature information of the FHR signal. With ShuffleNet-v2 as the core, a local
cross-channel interactive attention mechanism is introduced to enhance the
model’s ability to extract features and achieve effective fusion of multichannel
features without dimensionality reduction. In this paper, the publicly available
database CTU-UHB is used for the network performance evaluation. LW-FHRNet
achieves 95.24% accuracy, which meets or exceeds the classification results of
deep learning-based models. Additionally, the number of model parameters is
reduced many times compared with the deep learning model, and the size of the
model parameters is only 0.33 M. The results show that the lightweight model
proposed in this paper can effectively aid in fetal distress diagnosis.

KEYWORDS

fetal distress, fetal heart rate, lightweight model, attention mechanism, wavelet packet
coefficient

1 Introduction

Fetal distress is a syndrome of respiratory and circulatory insufficiency caused by
intrauterine fetal hypoxia during labor and is closely associated with changes in fetal heart
rate signals (Blickstein and Green, 2007; Spairani et al., 2022). Fetal distress may cause
hypoxic-ischemic encephalopathy and eventually leading to cerebral palsy or perinatal death
(Bobrow and Soothill, 1999). Early detection and diagnosis of fetal distress can help prevent
damage to the vital organs of the fetus prior to delivery. Therefore, it is important to enhance
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intrauterine fetal status monitoring during pregnancy to ensure the
safety of the fetus and the pregnant woman. The most common
method for monitoring fetal status in clinical practice is CTG
monitoring (Grivell et al., 2015). The CTG signal consists of the
FHR curve and uterine contraction (UC) curve. Through CTG
monitoring, doctors can detect fetal distress in time so that they
can take effective treatment measures to protect the health of the
fetus. However, the diagnosis is too dependent on physician
experience and interobserver disagreement when interpreted by
the physician’s naked eye alone (Bernardes et al., 1997; Palomaki
et al., 2006). Therefore, there is an increased incidence of
unnecessary cesarean section due to subjective physician error
(Abdulhay et al., 2014; Marques et al., 2019).

With the development of artificial intelligence technology,
scholars worldwide are committed to developing fetal health-
assisted diagnosis systems based on machine learning and deep
learning to help healthcare professionals analyze CTG signals
objectively and correctly. Barquero-Perez et al. (2017); Spilka
et al. (2014); Georgoulas et al. (2017); Yilmaz. (2016) used
normalized compression distance, random forest (RF), support
vector machine (SVM), and artificial neural network (ANN)
classification algorithms, respectively, to classify CTG signals for
fetal distress problems and achieved good results. Zhao et al. (2018)
extracted 47 features from different domains (morphological, time
domain, frequency domain and non-linear domain) and selected
Decision Tree, SVM and adaptive boosting, respectively, for fetal
acidosis classification. Comert et al. (2018) used short-time Fourier
transform (STFT) to obtain 2-D images and combined it with
transfer learning and convolutional neural networks to predict
fetal distress (Liu et al., 2021). proposed an attention-based
CNN-BiLSTM hybrid neural network enhanced with features of
discrete wavelet transformation, obtaining an average sensitivity,
specificity and quality index of 75.23%, 70.82%, and 72.93%,
respectively. Zhao et al. (2019) used recurrence plot to convert
one-dimensional FHR to two-dimensional and fed into
convolutional neural network to obtain 98.69% accuracy in fetal
distress classification. Baghel et al. (2022) obtained 99.09%
classification accuracy by performing direct 1-D convolutional
operations on the FHR signal after Butterworth filtering.
Although the abovementioned classification models based on
machine learning and deep learning achieve better results, the
complexity of the model and the large number of parameters
take up large computational resources, which leads to the model
being highly dependent on the performance of the device hardware
and difficult to deploy to the terminal for generalized application.

Lightweight models and miniaturization have become a trend in
many application scenarios, so an increasing number of academics
are focusing on lightweight network models that can be deployed
and run directly on mobile devices. The MobileNet series (Howard
et al., 2017; Sandler et al., 2018; Howard et al., 2019) and ShuffleNet
series (Ma et al., 2018; Zhang et al., 2018) of lightweight networks
currently have good performance in the target detection and image
classification field. MobileNet model is a lightweight deep neural
network proposed by Google for embedded devices, using the core
idea of depthwise separable convolution. ShuffleNet model is a
neural network structure designed for devices with limited
computational resources, mainly using pointwise group
convolution and channel shuffle. Lightweight models are also

beginning to make their mark in the medical signaling field. Cao
et al. (2021) proposed a multichannel lightweight model with each
channel integrating multiple heterogeneous convolutional layers to
obtain multilevel features for classifying myocardial infarction with
an accuracy rate of 96.65%. Zheng et al. (2021) trained
MobileNetV1 and MobileNetV2 models by migration learning
for pterygium diagnosis in the eye and compared them with the
classical model and found that MobileNetV2 obtained better results
with a model size of only 13.5 M. Chen et al. (2022) used the
lightweight networks MobileNetV1, MobileNetV2, and Xception to
classify cervical cancer cells and used knowledge distillation for
accuracy improvement. Among them, Xception matched the
accuracy of the large network Inception-ResNetV2, while the
model size was only 40%. The lightweight network model
effectively reduces the number of model parameters and opens
up a method for promoting a low-cost operating model.
However, the feature extraction ability and the network
classification accuracy still need to be further improved.

Aiming at the complexity and considerable computation in
existing deep learning-based fetal distress algorithm models, this
paper introduces a lightweight network architecture to design a
lightweight fetal distress-assisted diagnosis network based on FHR.
Additionally, to further improve the feature extraction ability and
classification effect of the network, the attention mechanism is
incorporated into the lightweight network to build a lightweight
network unit (ECA-Shuffle) based on the cross-channel interactive
attention mechanism. The main contributions of this paper are as
follows.

(1) The matrix feature map based on wavelet packet coefficients is
constructed to refine the FHR signal in multiple frequency
bands and used as input to the model. Different wavelet
basis functions are selected to generate multiple feature maps
to vote on the sample classification results.

(2) The cross-channel interactive attention module is embedded in
the tail of the ShuffleNet-V2 base unit to generate an ECA-
Shuffle unit to achieve effective multichannel feature fusion
without dimensionality reduction.

(3) A lightweight fetal distress-assisted diagnosis network based on
the FHR signal, LW-FHRNet, is proposed. Conventional
convolution with ECA-Shuffle units ensures effective channel
feature fusion while reducing model complexity and enhances
the model’s ability to classify fetal distress.

The rest of the paper is presented below. Section 2 describes the
overall scheme in detail. Section 3 describes the database,
experimental setup and results in detail. Section 4 discusses and
analyzes the performance of the proposed model. The final section
contains conclusions and future work.

2 Materials and methods

The architecture of the lightweight fetal distress-assisted diagnosis
model based on the cross-channel interactive attention mechanism
designed in this paper is shown in Figure 1, including a
preprocessing module, a feature map construction module, and a
feature extraction and classification module. First, the missing values
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and spikes in the FHR signal are removed by signal preprocessing, and
the signal is segmented into 20-min lengths. Second, the wavelet packet
decomposition technique is used to construct wavelet coefficient matrix
featuremaps of FHR signals based on db1 to db5wavelet basis functions.
Finally, LW-FHRNet is constructed by using deep separable
convolution, channel shuffle and other techniques and incorporating
a local cross-channel interactive attention mechanism without
dimensionality reduction, which effectively reduces the number of
model parameters and improves the classification accuracy of themodel.

2.1 Signal preprocessing

Clinically, the FHR signal is acquired mainly by an ultrasound
Doppler probe placed in the abdomen of the pregnant woman.
During the acquisition process, the signal is inevitably subject to a
variety of noise interferences, such as the movement of the fetus and
the pregnant woman, improper placement of the sensor and other
external factors. The noise of the FHR is represented by spikes (FHR
values greater than 200 or less than 50 bpm) and missing values
(FHR values equal to 0) (Cesarelli et al., 2007). Accordingly, the
purpose of preprocessing is to remove these two types of noise. In
this study, the interpolation method is used to remove noise
(Chudaek et al., 2009), and the specific process is as follows.

(1) If the FHR value is equal to 0 and the duration is greater than
15 s, the segment is removed directly; otherwise, it is linearly
interpolated.

(2) If the FHR value is unstable, i.e., the absolute value of two adjacent
points is greater than 25 bpm, and interpolation is performed
between the starting sampling point and the first point of the next
stabilization segment. A stable segment is defined as five
consecutive FHR values where the difference is less than 10 bpm.

(3) If the FHR value is greater than 200 bpm or less than 50 bpm, it
is filled in with Hermite spline interpolation.

Noise and missing value segments in the FHR signal can be
effectively filtered out by the above interpolation method. In
conjunction with the time requirement of clinical prenatal
examination, this paper uses 20-min data segments for analysis.
The preprocessed data are segmented into 20-min time segments to
obtain multicomponent segment data. The waveform obtained
using the above preprocessing method is shown in Figure 2,
where (a) is the raw data of the FHR signal, (b) is the waveform
after preprocessing using the above method, and (c) is the segment
after splitting the data into multiple segments with a 20-min data
length.

2.2 Construction of feature maps based on
wavelet packet coefficients

As a non-stationary and non-linear time series, FHR
contains complex physiological and pathological
information. Wavelet packet decomposition is a discrete
analysis method of non-stationary signals that can select the
appropriate spectral band according to the signal
characteristics and improve the time-frequency analysis
resolution (Behera and Jahan, 2012). In this paper, wavelet
packet decomposition is introduced to construct the wavelet
packet coefficient matrix using different subspace coefficients
to convert the 1D FHR signal into a 2D wavelet packet
coefficient feature map. The feature map is used as the input
layer data for the deep network model.

Figure 3A shows the wavelet packet coefficient matrix
construction process. The signal is decomposed into

FIGURE 1
Description of the architecture for the proposed lightweight network-based fetal distress assisted-diagnosis model.
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corresponding frequency bands through different layers, and each
frequency band has a series of wavelet packet coefficients. For the
nth layer decomposition, the wavelet packet transform provides 2n

different subspaces, and each subspace corresponds to a
frequency band.

Wavelet packet decomposition can be implemented using a
series of convolutions with high-pass filters and low-pass filters.
The high-pass filter h(·) and low-pass filter g(·) can be defined as
Eqs 1, 2.

h k( ) � 1�
2

√ 〈φ t( ),φ 2t − k( )〉 (1)

g k( ) � 1�
2

√ 〈ψ t( ),ψ 2t − k( )〉 (2)

where ϕ(t) is the scale function, ψ(t) is the wavelet function, 〈·, ·〉
represents the inner product, and t and k are variables. h(·) and g(·)
satisfy Eq. 3.

g k( ) � −1( )kh 1 − k( ) (3)

FIGURE 2
FHR signal preprocessing process. Remove spikes and missing values of the original signal, then divide into segments of 20-min length. (A) The
original signal, (B) processed signal, (C) segmented signal.

FIGURE 3
Construction of feature maps based on wavelet packet coefficient matrix. (A)Construction of wavelet packet coefficient matrix; (B)Construction of
db1~db5 feature map.
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The wavelet coefficients at different frequency bands and
decomposition layers can be calculated iteratively by the
following equation.

Si+1,2j τ( ) � ∑
k

h k − 2τ( )Si,j k( ) (4)

Si+1,2j+1 τ( ) � ∑
k

g k − 2τ( )Si,j k( ) (5)

where S0,0 is the original signal of length N,
Si,j(k), k � 1, 2, ..., N/2i{ } are the wavelet coefficients in the jth
subfrequency band at the ith layer decomposition,
Si+1,2j(τ), τ � 1, 2, ..., N/2i+1{ } and Si+1,2j+1(τ), τ � 1, 2, ..., N/2i+1{ }
are the wavelet coefficients in the (2j)-th and (2j+1)-th subfrequency
bands at the (i+1)-th layer decomposition, and for the ith layer
decomposition j ∈ 0, 1, ..., 2i − 1{ }.

To increase the number of datasets to obtain better model
effects, db1~db5 wavelet basis functions are selected for wavelet
packet coefficient decomposition in this paper. Therefore, five
wavelet packet coefficient matrix maps can be obtained for each
data segment to enhance the dataset. Meanwhile, each wavelet
packet matrix coefficient map is resized to 224*224*3 pixels as
the input layer of the neural network model. The feature map
construction based on wavelet packet coefficients is shown in
Figure 3B. Each FHR signal segment is converted into a total of
5 feature maps based on db1~db5 wavelet bases.

2.3 LW-FHRNet network structure

To meet the application of deep neural networks on embedded
and mobile terminals and maintain excellent performance,
lightweight network models have emerged. In particular, the
lightweight models of the MobileNet series and the ShuffleNet
series are the most widely used. Depthwise separable convolution,
pointwise convolution, group convolution, channel shuffle and
channel separation are used to reduce the number of model
parameters and speed up the model computation time.

Recently, the channel attention mechanism has been shown to
have great potential in improving the performance of deep

convolutional neural networks. By assigning different weights to
each part of the input, more important information can be extracted
to help the model make more accurate judgments without imposing
greater overhead on the model’s computation and storage.

Inspired by the above work, a lightweight network based on a
cross-channel attention mechanism, LW-FHRNet, is proposed in
this work to assist in the diagnosis of fetal distress symptoms, as
shown in Figure 4. The main structure of the network contains two
stages and a total of four ECA-Shuffle units. First, the feature maps
based on wavelet packet coefficients are used as the input layer of the
model. Subsequently, the image is conventionally convolved and the
size of the output feature matrix is reduced to 1/4 of the input image
using the maximum pooling operation. Then, feature extraction is
performed by 4 ECA-Shuffle units to fully learn the feature unit
information. Finally, regular convolution and average pooling are
performed, and the output features are sent to the fully connected
layer for classification.

Based on the ShuffleNet-V2 units, this study constructs two
types of ECA-Shuffle units by integrating the cross-channel
attention module without dimensionality reduction, as shown
in Figure 5. Figure 5A (Unit A) shows the first unit of each stage.
The stride of the depthwise separable convolution in both the
residual branch and the identity branch of the bottleneck
structure is 2, and the two output feature matrices are
concatenated to 2 times their depth. The ECA strategy is used
at the tail of the structure. Figure 5B (Unit B) shows the second
unit of each stage. The input feature matrix is divided equally into
two groups. The main branch performs a depthwise separable
convolution with a stride of 1, while the other branch is left
unprocessed and connected to the main branch via concat, and
the feature matrix depth is kept constant. The ECA strategy is
also used at the end of the structure.

The lower half of the ECA-Shuffle unit is the cross-channel
interactive attention module without dimensionality reduction. The
detailed structure is shown in Figure 6. Given the aggregated feature
y ∈ RC without dimensionality reduction, channel attention can be
learned by Eq. 6.

ω � σ(Wy) (6)

FIGURE 4
The structure of LW-FHRNet. Notes: Conv2D: Convolution2D; BN: Batch Normalization; Maxpool: Max pooling; Avgpool: Average pooling.
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FIGURE 5
Detailed description of the ECA-Shuffle unit. (A) Unit A: the basic unit for spatial down sampling; (B) Unit B: the basic unit for channel split. Notes:
DWConv: Depthwise separable convolution; Conv: convolution; BN: Batch Normalization; GAP: Global Average Pooling.

FIGURE 6
The cross-channel interactive attention module. Notes: GAP: Global Average Pooling; C: Channel dimension; H: Height; W: Width.
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If the weight of yi is calculated by only considering the interaction
between yi and its k neighbors and all channels share the same
learning parameters, Eq. 6 can be written as Eq. 7.

ωi � σ ∑k
j�1
wjyj

i
⎛⎝ ⎞⎠, yj

i ∈ Ωk
i (7)

whereΩk
i indicates the set of k adjacent channels of yi. This strategy

can be easily implemented by a fast 1D convolution with kernel size
k, i.e.,

ω � σ C1Dk y( )( ) (8)
where C1D denotes 1D convolution.

Considering each channel and its k nearest neighbors, computing
local cross-channel interaction information instead of all channels
effectively improves computational efficiency. This efficient channel
attention calculation can be quickly implemented by 1D convolution.
Thus, k is the key parameter and the size of the convolution kernel of
the 1D convolution, which determines the range and convergence of
the local cross-channel interaction.

To avoid resource-consuming cross-validation adjustment, an
adaptive method is used to select the appropriate k value. According
to the properties of group convolution, the high-dimensional (low-
dimensional) channels are proportional to the long-distance (short-
distance) convolution for a fixed number of groups. Similarly, the
coverage of the interaction (i.e., the size k of the 1D convolution
kernel) is proportional to the channel dimension C. The mapping
relationship between k and C is shown in Eq. 9.

C � ϕ k( ) (9)
Since the channel dimension is generally an exponential multiple of
2, the non-linear mapping relationship is represented by an
exponential function with a base of 2. Thus, Eq. 9 can be
rewritten as Eq. 10.

C � ϕ k( ) � 2 γ*k−b( ) (10)
Consequently, the size k of the convolution kernel can be calculated
automatically based on the number of channels C, which is given by
Eq. 11.

k � ψ C( ) � log2 C( )
γ

+ b

γ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
odd

(11)

where |t|odd represents the nearest odd number of t. To reduce the
computational cost and training time, γ and b are empirically set to
2 and 1, respectively.

The details of the lightweight network: LW-FHRNet structure
designed in this work are shown in Table 1. The first operation of
each stage is the ECA-Shuffle unit A, which realizes the doubling of
feature dimensions, followed by the ECA-Shuffle unit B, which
realizes the subsequent operations.

The process of the fetal distress classification algorithm based on
a lightweight network is described in Table 2. After preprocessing
and 20-min length segmentation, the dataset is randomly divided
into a training set and a testing set in proportion. Each segment is
subjected to wavelet packet decomposition based on db1 to
db5 wavelet basis functions to obtain five feature maps. Iterative
testing of model tuning is performed with the training set data to
obtain the optimal model. The testing set is subjected to category
prediction under the optimal model, and the final category
attribution is decided by voting on the five feature maps of each
data segment.

3 Results

3.1 Dataset

The database in this paper uses the publicly available dataset
CTU-UHB, which comes from the Czech Technical University in
Prague (CTU) and the University Hospital in Brno (UHB)
(Chudacek et al., 2014). A total of 552 CTG records were
collected in the database. These records were carefully selected
from 9,164 records collected by UHB from 2010 to 2012. The
sampling rate of CTG data is 4 Hz, and each CTG record
contains FHR sequences and UC sequences. The records in the
database were all singleton gestations, all gestational ages greater
than 36 weeks and no known congenital developmental defects. The
quality of the FHR signal was greater than 50% in every 30-min

TABLE 1 The structure parameter information of LW-FHRNet.

Layer Output size Kernel size Output channel

Input 224 × 224 - 3

Conv 112 × 112 3 × 3
24

MaxPool 56 × 56 3 × 3

Stage1 28 × 28 - 116

Stage2 14 × 14 - 232

Conv 14 × 14 1 × 1
1024

AvgPool 1 × 1 14 × 14

FC - - 1

The normalization and ReLU, layers that follow each convolutional layer are not shown above because they do not change the output feature shape. Conv: convolutional layer; MaxPool: max

pooling layer; AvgPool: average pooling layer; FC: fully connect layer; stage: ECA-Shuffle uint A+ ECA-Shuffle uint B.
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window. Available biochemical parameters of the umbilical artery
blood sample (pH) were recorded for each sample.

The pH value is a marker of blood acid-base balance and can
provide information on possible fetal acidosis caused by intrauterine
hypoxia. A lower pH value represents a more severe degree of fetal
acidosis (Vayssiere et al., 2007). showed moderate ability to detect
mild acidosis at pH ≤ 7.15 and better ability to detect more severe
acidosis at pH ≤ 7.05. Therefore, in this paper, pH = 7.05 was chosen
as the criterion to classify the data into two categories. Data with a
pH value greater than 7.05 are considered normal, and data with a
pH value less than or equal to 7.05 are considered abnormal. Based
on this discriminant, 44 abnormal samples and 508 normal samples

are obtained (Ito et al., 2022). predicted fetal acidemia by calculating
iPREFACE (10), iPREFACE (30) and iPREFACE (60) at 10, 30, and
60 min before delivery. The results showed that iPREFACE (30) was
slightly better than iPREFACE (60) but significantly better than
iPREFACE (10). To enhance the sample size, a 20-min segmentation
is performed after preprocessing the 60-min data before delivery.
After splitting the samples into 20-min data segments, 106 abnormal
sample segments are obtained. To avoid the effect of overfitting or
underfitting caused by category imbalance on the classification
results, 106 samples from 512 normal samples are randomly
selected. The second 20-min segment is selected to construct
106 normal sample segments for the experiment. Eighty percent
of the dataset is randomly selected as the training set (85P and 85N),
and the remaining 20% as the test set (21P and 21N). The wavelet
packet decomposition from the db1 to db5 wavelet basis is
performed separately for each FHR data segment, which
constitutes 5 wavelet packet coefficient matrix feature maps.
Therefore, there are 850 images in the training set and
210 images in the test set.

In this paper, each 20-min segment of FHR data is subjected to
wavelet packet decomposition based on db1 to db5 wavelet basis
functions to obtain five wavelet coefficient matrix feature maps.
Category attribution is determined by voting on the 5 feature maps.
The category voting process is shown in Figure 7. First, each feature
map of the segment is classified. Subsequently, the frequency of each
category label is calculated for the segment. Finally, the class with
higher frequency is selected as the category of this FHR segment.

3.2 Experimental setup

3.2.1 Environment
The network structure proposed in this paper is trained and

tested on the CTU-UHB dataset. The experimental platform is a
computer equipped with an Intel Xeon(R) CPU E3-1535M v6 @

TABLE 2 Details of LW-FHRNet classification algorithm.

Input: Strain training sample sets; Ltrain training label sets, Stest

testing sample sets; Ltest testing label sets
Output: Prediction label ~L

test
of the Stest

1: for dbi in [db1, db2, db3, db4, db5] do
2: Ftrain

dbi � PWTdbi(Strain) # PWTdbi(·) is the wavelet packet decomposition based
on the dbi wavelet basis functions
3: Ltraindbi � Ltrain

4: Ftest
dbi � PWTdbi(Stest)

5: Ltestdbi � Ltest

6: end for

7: # training procedure
8: Initialize parameters and weights
9: for i in [1, 2, 3, 4, 5] do
10: metrics = LW − FHRNet(Ftrain

dbi , Ltraindbi )
11: Train the LW-FHRNet model by optimizing the loss function

12: end for
13: return model LW-FHRNet-best

14: # testing procedure
15: for i in [1, 2, 3, 4, 5] do
16: Ltestdbi ←������predict

LW-FHRNet-best (Ftest
dbi )

17: end for
16: ~L

test � vote(Ltestdb1 , L
test
db2 , L

test
db3 , L

test
db4 , L

test
db5) #Vote () s a voting function

17: return ~L
test

FIGURE 7
An example of the category voting process. Notes: P: Positive; N: Negative.
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3.10 GHz x 8, Quadro P5000 GPU and 32 G RAM. The system is
Ubuntu 18.04.6LTS, the development environment is TensorFlow
2.6.2, and the language used is Python.

3.2.2 Metrics
To evaluate the classification performance of the model,

accuracy, precision, recall and F1-Score metrics are used in this
paper. Additionally, model parameters and model size are
introduced to evaluate the complexity of lightweight models.
Finally, sensitivity (Se) and specificity (Sp) are used to observe
the discriminatory ability of the model between abnormal and
normal samples.

3.2.3 Baselines
The commonly used lightweight networks MobileNetV3-

Small, MobileNetV3-Large and ShuffleNet-V2 are introduced
as the baselines of this research. MobileNetV3 introduces the
channel attention module based on MobileNetV2 to enhance the
adaptive capability of the model by assigning different weights to
different channels. MobileNetV3 has two versions: small and
large. ShuffleNet-V2 proposes the concept of channel separation

to replace group convolution to further improve the inference
speed.

3.3 Experiment 1: Selection of wavelet
packet decomposition layers

Wavelet packet decomposition with different numbers of layers
can obtain different detailed information. The sampling frequency
of the raw data is 4 Hz. The ith layer is decomposed to obtain 2i

frequency bands. The 2D image is constructed according to the
frequency from the highest to the lowest. The frequency range of the
jth frequency band is ( 4

2i (j − 1) ~ 4
2i j)Hz, j ∈ [1, 2i]。 To select the

best wavelet coefficient matrix feature map, this paper performs
wavelet packet 1-layer to 5-layer decomposition to obtain the
wavelet packet coefficient matrix maps of corresponding layers to
test the classification performance. The experimental results are
shown in Table 3. The accuracy of the 2-layer and 3-layer
decomposition is higher, and the accuracy of the 4-layer and 5-
layer decomposition gradually decreases. The 2-layer decomposition
achieves optimal performance with 95.24% accuracy, 100%
precision, 90.48% recall and a 95.00% F1-score. Therefore, the
feature map based on 2-layer wavelet packet decomposition is
chosen as the input of the model in this paper. That is, the signal
is decomposed into four frequency bands:0–1 Hz, 1–2 Hz, 2–3 Hz
and 3–4 Hz. And the wavelet packet coefficients in the
corresponding frequency bands are used to jointly construct the
feature maps.

3.4 Experiment 2: The effective role of local
cross-channel interactive attention
mechanisms

The channel attention mechanism has great potential to
improve the performance of deep convolutional neural networks.
In this paper, we introduce a cross-channel local interaction

TABLE 3 Performance comparison of feature maps constructed by different
layers of wavelet packet decomposition.

Decomposition
Level

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

layer 1 83.33 85.00 80.95 82.93

layer 2 95.24 100 90.48 95.00

layer 3 90.48 94.74 85.71 90.00

layer 4 80.95 84.21 76.19 80.00

layer 5 76.19 76.19 76.19 76.19

The bold values means the best performance.

FIGURE 8
Confusion matrix. (A) The proposed LW-FHRNet, (B) the proposed LW-FHRNet without the ECA module.
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attention strategy without dimensionality reduction to improve the
performance of lightweight models. Experiments are conducted on
the dataset of this paper using a lightweight network with and
without an ECA module. The confusion matrix of whether the
proposed lightweight model contains ECA modules is shown in
Figure 8. Table 4 shows the model performance comparison with
and without the ECA module. The lightweight model accuracy with
the ECA module is as high as 95.24%, and the accuracy of the
lightweight model without the ECA module is 92.86%. The
experimental results show that the lightweight model with the
ECA module improves performance in fetal distress classification.

3.5 Experiment 3: Lightweight model
comparison experiment

To clarify the performance of the network, this paper performs a
comparative test with different lightweight networks. The classification
performance of fetal distress under different lightweight networks is
measured using accuracy, precision, recall, F1-score and model size
metrics. The test performance comparison of the LW-FHRNet network
with other commonly used lightweight networks is shown in Table 5.
MobileNetV3 improves MobileNetV2 by using a deep separable
convolution +SE channel attention mechanism + residual structure
connection to further reduce the computational effort. The overall
structure of small and large is the same, and the difference is the number
of bnecks and channels. MobileNetV3-Small achieves 85.71% accuracy,
proving that the network has a strong feature learning capability.
MobileNetV3-Large has better accuracy than MobileNetV3-Small,
but the number of network parameters has increased significantly
due to the increase in the number of bnecks and channels. The
ShuffleNet-V2 network improves the ShuffleNet-V1 network
architecture in terms of optimizing memory access cost (MAC),
reducing network fragmentation, and decreasing element operations.
Due to the small number of parameters in the ShuffleNet-V2 model, it

performs poorly in terms of accuracy, with only 83.33%. Due to the low
number of parameters in the ShuffleNet-V2 model, its performance is
relatively poor, with an accuracy of 83.33%.

LW-FHRNet incorporates an efficient cross-channel attention
mechanism without downscaling on the base unit of ShuffleNet-V2.
The channel interaction strategy effectively improves the
performance of channel attention and enables LW-FHRNet to
have a more accurate recognition performance. The ROC curves
of LW-FHRNet and other commonly used lightweight network
models are shown in Figure 9A. The proposed network in this
paper has the best performance with 97.96% AUC. A comparison of
the accuracy and model size of LW-FHRNet with other commonly
used lightweight networks for fetal distress classification is shown in
Figure 9B. LW-FHRNet achieves 95.24% accuracy for fetal distress
classification, which is higher than other commonly used lightweight
networks. Additionally, it has the lowest computational cost, and the
number of network parameters is only 0.33 M, which is much lower
than other commonly used lightweight networks.

4 Discussion

In this paper, a lightweight network based on cross-channel
interactive attention mechanism is proposed to effectively fuse
channel features and reduce model complexity to help
obstetricians to objectively assess fetal distress. In the
experiments, the classification effects of wavelet packet
decomposition with different layers as feature maps were first
compared. And the optimal number of wavelet packet
decomposition layers was chosen as 2-layer. Then two different
network architectures (LW-FHRNet and LW-FHRNet-without-eca)
were used. The results showed that the attention machine module
effectively improves the classification performance of fetal distress.
Finally, a comparison with other lightweight models was made to
show that the lightweight network proposed in this paper
outperforms other common lightweight networks.

To analyze the significance of the results, the algorithm in this
paper is compared with recent related work in the diagnosis of fetal
distress using the CTU-UHB database. The results are shown in
Table 6, which measures the performance of this research work in
terms of accuracy (Acc), sensitivity (Se) and specificity (Sp).
Compared with (Zarmehri et al., 2019), the method of this paper
has higher Se and Sp under the same fetal distress division criteria,
which further highlights the advantages of our model. Compared
with (Alsaggaf et al., 2020), they also have good classification
accuracy, but they use the traditional machine learning

TABLE 4 Lightweight model performance comparison with and without the
ECA module.

Model (%) Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

LW-FHRNet 95.24 100 90.48 95.00

LW-FHRNet-
without-eca

92.86 100 85.71 92.31

The bold values means the best performance.

TABLE 5 Performance comparison of different lightweight models for fetal distress classification.

Network Accuracy
(%)

Precision
(%)

Recall
(%)

F1 score
(%)

Parameter
(M)

Model size
(M)

MobileNetV3-Small 85.71 82.61 90.48 86.36 1.53 5.84

MobileNetV3-Large 90.48 94.74 85.71 90.00 4.23 16.13

ShuffleNet-V2 83.33 85.00 80.95 82.93 1.27 4.85

LW-FHRNet(ours) 95.24 100 90.48 95.00 0.33 1.27

The bold values means the best performance.
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classification method, which requires manual design to extract a
large number of features. The feature extraction process is complex
and computationally intensive. Compared with (Baghel et al., 2022),
they have higher accuracy than the model in this paper, but they use
regular CNN convolution for feature extraction. The parameter
number and computational time still need to be improved and
optimized for end-application deployment.

In conclusion, the lightweight network model based on the
cross-channel interactive attention mechanism proposed in this
paper achieves better classification results in fetal distress
diagnosis. The ShuffleNet-V2 unit combined with the local cross-
channel interactive attention mechanism is used to build a
lightweight network, which ensures a low number of parameters
and achieves effective network performance improvement.

However, one limitation of the study in this paper is the criteria
for discriminating between normal and distressed samples. The
current work generally endorses the use of umbilical artery blood

pH as a criterion for classification, since pH is an objective response
to the fetal oxygen cell supply (Zarmehri et al., 2019) and also to the
severity of fetal acidosis (Vayssiere et al., 2007). However, as shown
in Table 6, a variety of pH values were used in different research
works. There is not yet a universally accepted pH value. In future
research work, the study will focus on exploring the pH value of
pathological samples. Meanwhile, the BDecf index can reflect the
degree of fetal acidosis (Liu et al., 2021). Therefore, a more precise
classification of fetal distress can be performed by combining
pH and BDecf in subsequent studies.

5 Conclusion

In this work, a lightweight network (LW-FHRNet) based on
ECA-Shuffle units is proposed for fetal distress classification of FHR
signals. After preprocessing, the FHR signal is segmented into 20-

FIGURE 9
Classification performance of different lightweight models. (A) ROC curves of different lightweight models; (B) Acc and parameters of different
lightweight models, where green, blue, purple, and red refer to MobileNetV3-Small, MobileNetV3-Lagre, ShuffleNetV2, and LW-FHRNet (Ours).

TABLE 6 Comparison of recent studies on the prediction of fetal distress using the CTU-UHB database.

Author Division criteria Method Performance (%)

Acc Se Sp

Comert and Kocamaz. (2018) pH ≤ 7.15 BFS, DWT + SVM 67.00 57.42 70.11

Fuentealba et al. (2019) PH<7.05; BDecf≥12pH>7.20; BDecf≥12 CEEMDAN, TV-AR + SVM 81.7 79.5 86.45

Zarmehri et al. (2019) pH ≤ 7.05 FFT — 63.60 80.10

Alsaggaf et al. (2020) pH < 7.15 Morphological, linear, non-linear, CSP + SVM 94.75 74.29 99.55

Zeng et al. (2021) pH ≤ 7.05; BE ≤ −10 CWT, WTC, XWT + ECSVM 67.2 85.2 66.1

Liu et al. (2021) pH ≤ 7.15 CNN-BiLSTM + Attention, DWT 71.71 75.23 70.82

Baghel et al. (2022) pH ≤ 7.15 1D CNN 99.09 — —

Ours pH ≤ 7.05 WPT + LW-FHRNet 95.24 90.48 100

BFS: basic feature set; DWT: discrete wavelet transform; CEEMDAN: complete ensemble empirical mode decomposition with adaptive noise; TV-AR: time-varying autoregressive; CSP:

common spatial pattern; CWT: continuous wavelet transform; WTC: wavelet coherence; XWT: Cross-wavelet Transform; ECSVM: ensemble cost sensitive SVM; WPT: wavelet packet

transform; Acc: Accuracy; Se: Sensitivity; Sp: Specificity.

The bold values means the best performance.
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min segments, and the wavelet packet decomposition operation
based on db1 to db5 wavelet basis functions is performed on each
segment. Each segment obtains five wavelet packet coefficient matrix
feature maps, which are used as input to the model and vote on the
classification result. The ECA-Shuffle unit performs feature
extraction on the feature map to fully learn the feature
information. We integrate an efficient local cross-channel
interactive attention mechanism without dimensionality
reduction to reduce model complexity and ensure performance
improvement. In this paper, the CTU-UHB open source database
is used to test the classification performance of the proposed
network. A pH value of 7.05 was used as the gold standard for
classification. The proposed algorithmic model achieves excellent
results of 95.24%, 90.48%, and 100% for Acc, Se and Sp, respectively.

Although the proposed lightweight network achieved good results
in classifying fetal distress, there is still a gap to reach the clinical
diagnosis level of physicians. In order to achieve better auxiliary
diagnosis, we will do further exploration in future work. On the one
hand, the data from clinical fetal heart monitoring contain
simultaneous UC signals and FHR signals, but only FHR signals
are used to assess fetal distress because of the poor quality of UC
signals in publicly available datasets. In the clinic, the UC signal is also
an important basis for physicians to diagnose fetal distress. Therefore,
the combination of FHR signals and UC signals needs to be
considered in further studies. On the other hand, we are
considering more time-frequency transform features to improve
the classification performance for fetal distress, including Empirical
Wavelet Transform, Hilbert-Huang Transform, Singular Spectrum
Analysis, etc.
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Sanjeev G. Shroff1*
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Maastricht (CARIM), Department of Cardiology, Maastricht University Medical Center, Maastricht,
Netherlands, 5Heart and Vascular Institute, UPMC Presbyterian, Pittsburgh, PA, United States

Background: Atrial fibrillation (AF) is a prevalent arrhythmia, that causes thrombus
formation, ordinarily in the left atrial appendage (LAA). The conventional metric of
stroke risk stratification, CHA2DS2-VASc score, does not account for LAA
morphology or hemodynamics. We showed in our previous study that residence
time distribution (RTD) of blood-borne particles in the LAA and its associated
calculated variables (i.e., mean residence time, tm, and asymptotic
concentration, C∞) have the potential to improve CHA2DS2-VASc score. The
purpose of this research was to investigate the effects of the following potential
confounding factors on LAA tm and C∞: (1) pulmonary vein flow waveform
pulsatility, (2) non-Newtonian blood rheology and hematocrit level, and (3)
length of the simulation.
Methods: Subject-Specific data including left atrial (LA) and LAA cardiac computed
tomography, cardiac output (CO), heart rate, and hematocrit level were gathered
from 25 AF subjects. We calculated LAA tm and C∞ based on series of
computational fluid dynamics (CFD) analyses.
Results: Both LAA tm and C∞ are significantly affected by the CO, but not by
temporal pattern of the inlet flow. Both LAA tm and C∞ increase with increasing
hematocrit level and both calculated indices are higher for non-Newtonian
blood rheology for a given hematocrit level. Further, at least 20,000 s of CFD
simulation is needed to calculate LAA tm and C∞ values reliably.
Conclusions: Subject-specific LA and LAA geometries, CO, and hematocrit level
are essential to quantify the subject-specific proclivity of blood cell tarrying
inside LAA in terms of the RTD function.

KEYWORDS

mean residence time, computational fluid dynamics, confounding variables, pulmonary

vein flow, pulsatility, hematocrit, simulation length
Abbreviations

AF, atrial fibrillation; LAA, left atrial appendage; LA, left atrium; RTD, residence time distribution;
thromboembolism, TE; CCT, cardiac computed tomography; ECAP, endothelial cell activation potential;
DICOM, digital imaging and communications in medicine; PV, pulmonary vein; RTD, residence time
distribution; E(t), residence time distribution function; tm, mean residence time; C∞, asymptotic concentration
remaining inside LAA; CFD, computational fluid dynamics; Hct, hematocrit; ρ, density/correlation coefficient; p,
pressure; μ, dynamic viscosity; μa, blood apparent viscosity; μp, plasma viscosity; eij, strain rate tensor; τij, stress
tensor; γ, strain rate; u, velocity, k, intrinsic viscosity; γc,k0,k∞ Quemada coefficients.
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1. Introduction

Atrial Fibrillation (AF), the most common type of arrythmia,

was estimated to afflict 33.5 million people globally in 2010 (1).

The prevalence of this arrythmia has been estimated to be

increased to 15.9 million people in the United States alone by

2050 if the incidence trend continue to rise (2–4). AF patients

are clearly at an elevated risk of morbidity and mortality. The

most dangerous complication is thromboembolism (TE) for

which AF is an independent risk factor. The loss of effective

atrial contractile function and sinus rhythm contribute to

reduction in cardiac output and leads to flow stasis and

thrombus formation, and consecutively raises the risk of

cardioembolic events and stroke. AF patients have a 3–5 fold

higher risk of stroke and it is estimated that about 15% to 20%

of strokes in the US each year can be related to AF (5, 6).

Many of these strokes are caused by thrombi originating in the

left atrial appendage (LAA) due to its complex morphology that is

conducive to blood stasis: 91% and 50% of thrombi in nonvalvular

AF and valvular AF, respectively, are found in the LAA (7–9). Each

patient is evaluated for TE risk. Currently, clinical data are the sole

factors that are being used to predict stroke and TE risks in AF

patients in a clinical setting, with CHA2DS2-VASc score being

the most common metric (10). Efforts have been made to

improve the risk stratification for thromboprophylaxis to find the

higher risk patients more effectively (11). However, many

inconsistencies have been reported among the risk stratification

schemes (12).

Several studies have employed computational fluid dynamics

(CFD) to analyze the blood flow fields in LA and LAA. In these

studies, surrogates of blood flow fields have been studied to

associate the dynamics of the blood flow inside the LA and LAA

to risk of clot formation. There are several examples of these

surrogates, including but not limited to: shear strain rate, wall

shear stress (13, 14), oscillatory shear index, time-averaged wall

shear stress (15, 16), time-averaged velocity (13, 17–21), particle

resident time (22, 23), local relative residence time (16, 24–26),

residual virtual contrast agent (13, 18, 19, 27), vortex structure

(14, 17–20, 25), flow kinetic energy (25), age stasis (28), and

endothelial cell activation potential (ECAP) (16, 29–31). The

most accurate approach to simulate clot formation is to include

the mechanics of the blood cell (i.e., red blood cells, platelets,

etc.) transport into the model, and couple it to the models of

thrombus formation and coagulation cascade processes. This

approach is associated with substantial computational cost to

perform multiscale simulations (32). Qureshi, et al. (21) were

able to model thrombogenesis in LA and LAA in a small cohort

using a simplified coagulation model. They showed that

increased blood stasis in the LAA results in accumulation of

thrombin which can lead to thrombus (21). A well-known

method to characterize stasis and propensity of blood cells to

reside inside the LAA is to calculate the residence time of

discrete phase blood borne particles inside the LAA using the

Lagrangian approach. However, this approach requires tracking

of many individual particles as well as a very fine grid to resolve

the flow field with sufficient resolution, making it
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computationally too expensive. Alternatively, the Eulerian

approach can be used to characterize spatial and temporal

distributions of blood-borne particle concentration, as opposed to

tracking each individual particle. The Eulerian approach, which

significantly reduces the computational cost, has been utilized for

quantifying indices correlated with thrombus formation (33–36).

We have recently reported that blood-borne particle residence

time distribution (RTD) and its associated variables (i.e., mean

residence time, tm, and asymptotic concentration, C∞), calculated

using a CFD model of LA and LAA hemodynamics and the

Eulerian approach, have the potential to enhance the ability of

CHA2DS2-VASc score to stratify stroke risk in AF subjects (35).

Subject-Specific LA and LAA geometries, cardiac output (CO),

and heart rate (HR) were used. However, the same temporal

pattern of LA inlet flow (i.e., pulmonary vein, PV, flow) was

assigned for all AF subjects and simulations were performed for

a fixed duration (150 s). In addition, we treated blood as a

Newtonian fluid and used a fixed dynamic viscosity value for all

AF subjects. It is reasonable to expect that these assumptions

may have an impact on the calculated LAA RTD (i.e., values of

LAA tm and C∞). Accordingly, the purpose of this study was to

investigate the effects of the following potential confounding

factors on calculated values of LAA tm and C∞: (1) PV flow

waveform pulsatility (magnitude and temporal pattern), (2) non-

Newtonian blood rheology and hematocrit level, and (3) length

of the simulation.
2. Methods

2.1. Data acquisition

All study subjects included in this study were undergoing

evaluation and treatment of AF, including medical management

and procedural based treatments. Children were excluded from

this study. Cardiac-computed tomography (CCT) images were

obtained before AF catheter ablation procedure as a part of AF

treatment at Heart and Vascular institute (University of

Pittsburgh Medical Center; UPMC, Pittsburgh, PA, United

States) and Heart Center (University of Leipzig, Leipzig,

Germany). Multidetector Helical scanners with 64 and 256 rows

were used (Brilliance 64, Philips, Netherlands and Revolution

Apex, General Electric Medical System, LLC., Chicago, IL, United

States). Electrocardiogram (ECG)-gated acquisition was employed

to one beat in cranio-caudal orientation from the aortic arch

onto the diaphragm. The acquisition parameters were: 0.6 mm

beam collimation, 0.625–1.25 mm thickness, 70–120 kV, 850 mA

s, and 20–30 cm field-of-view. Iodinated contrast agent (Ultravist

370, Bayer Vital, Cologne, Germany) was injected (90 ml) during

20 s of end-inspiratory breath holding challenge and a timing

bolus-chase injection (20 ml at 5 ml s−1). Echocardiography-

based measurements of left ventricle short-axis end diastolic and

end-systolic diameters were used to calculate stroke volume using

the Teichholz formula (37). Cardiac output was calculated as the

product of heart rate and stroke volume. Subjects included in

this study were part of another study focused on establishing a
frontiersin.org
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clinical database of subjects undergoing evaluation and treatment

of AF, including medical management and procedural based

treatments (i.e., ablation, device-based therapies with pacemakers/

defibrillators, and LAA closure devices).
1Vectors and other variables are presented in bold and italics fonts,

respectively.
2.2. Imaging, segmentation, and
computational fluid dynamics

Contrast-enhanced CCT DICOM images of 25 AF subjects

with distinctive LAA morphologies were processed to obtain a

3D representation of the LA surface, including the LAA and four

pulmonary venous inlets, until the mitral valve plane. The LA-

LAA surface geometries were segmented manually. The images

were cropped and smoothed using a median filter with a kernel

of 5 × 5 × 5 in ParaView (version 5.9.0, Kitware, Inc.,

Albuquerque, NM, United States). The Marching Cubes method

was used to generate an iso-surface representing the LA surface,

which included the PV, LA and LAA walls, and the mitral valve

plane (excluding the valves themselves). The extracted surface

was smoothed out for computational fluid dynamics mesh using

Geomagic Studio (version 10, Geomagic, Inc., Research Triangle

Park, NC, United States) and ANSYS SpaceClaim (version 2020

R2, ANSYS Inc., Canonsburg, PA, United States) to remove

spikes and reduce noise (i.e., simplifying polygons). A detailed

flowchart of the LAA segmentation process is provided in

Sanatkhani and Menon (38). In short, the size of mesh elements

was adjusted based on surface curvature to accurately reflect the

topology. As an example, the mesh at the end of the LAA is

more detailed than at the center of the LA. The processed

geometries were meshed in ANSYS Meshing (version 2020 R2,

ANSYS Inc., Canonsburg, PA, United States). The methods and

parameters used to mesh the geometries were based on

Sanatkhani, et al. (35), with a smaller maximum tetrahedron

edge length of 3 mm. Although the total number of mesh

elements were typically ∼800,000 tetrahedrons, up to 2,000,000

tetrahedrons were used for subjects with large and complex LAAs.

Blood density was considered ρ = 1,060 kg m−3 and in case of

Newtonian fluid assumption, the dynamic viscosity was

considered μ = 0.00371 Pa s when studying the effects of

pulmonary waveforms as a confounder (Section 3.2.1) and was

adjusted according to the hematocrit level when studying the

effects of hematocrit and non-Newtonian model as a confounder

(Section 3.2.2). The related governing equations have been

discretized using spatial and temporal discretization schemes in

OpenFOAM (version 8, The OpenFOAM Foundation Ltd, Inc.,

UK.). Throughout this study walls were assumed to be

impermeable, rigid, and with no-slip boundary conditions where

pressure gradient is zero. Further, the mitral valve was supposed

to be wide open for simplicity and reducing the computational

costs. Neumann boundary condition was used at the mitral valve

where both gauge pressure and velocity gradient set to zero.

Furthermore, the outlet (i.e., mitral valve) was extended to

prevent outlet backflow divergence while developing a uniform

flow with zero velocity gradient and zero pressure gradient at the

outlet. Inlets were set with a Dirichlet boundary condition where
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a blood velocity inlet profile was given at PV inlets based on PV

flow waveform. The PV inlets were cropped to ensure that all

subjects had four PV inlets. The flow rate was distributed among

the PV inlets based on their cross-sectional area, resulting in

uniform and equal velocity inlets for all PV inlets.

More detailed explanation regarding the imaging, segmentation,

and CFD methods is presented in Sanatkhani, et al. (35, 38).
2.3. Quemada viscosity model

Due to the focus of this study around the stasis region (very low

shear strain rate) inside the LAA, it is crucial to take into account

the effects of the shear thinning behavior of whole blood. Further,

it has been shown that blood viscosity is very sensitive to

hematocrit (39).

Using conservation of momentum, the equation of motion

(Cauchy’s equation of motion) is:

r
Dui
Dt

¼ @tij
@xj

(1)

where D/Dt is material derivative, t is time, x is coordinate

direction, ρ is density, τ is stress tensor, and u is velocity. To

include blood viscosity properties in our model we used

generalized Newtonian fluid assumption where viscosity depends

on the shear rate. Based on this assumption, the constitutive

equation for an incompressible fluid using Stokes assumption can

be written as follows (40):

tij ¼ � pþ 2
3
mr � u

� �
dij þ 2meij (2)

where p is pressure, δ is Kronecker delta, µ is viscosity, and eij is the

strain rate tensor1. Equation (2) can be substituted into Equation

(1) to derive the general form of Navier-Stokes equation. The

strain rate tensor in Equation (2) is given by:

eij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
(3)

Due to the small mesh size, especially inside the LAA, we assumed

that a single value of shear strain rate will apply in all directions.

With the assumption of generalized Newtonian fluid, we

calculated the magnitude of strain rate, _g, as follows (39):

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(eijeij)

q
(4)
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Based on the calculated strain rate, _g, at each time-step and each

mesh cell the viscosity model was updated to calculate the

appropriate apparent viscosity for each cell (32). The Quemada

viscosity model (41, 42) has been chosen as a reliable approach

to approximate the non-Newtonian properties of blood especially

in the LAA where strain rate is low. We employed the Quemada

viscosity model in the present study for several reasons: (1) It

incorporates blood hematocrit as an explicit parameter, (2) It

reproduces the blood non-Newtonian behavior well and matches

the performance compared to other available models (43), and

(3) It is relatively simple to implement this blood rheological

characterization in the CFD code. Based on the Quemada model

the blood apparent viscosity, μa, can be calculated as:

ma ¼ mp(1� 0:5kHct)�2 (5)

where μp= 0.00123 Pa s is plasma viscosity and Hct is hematocrit

level. Coefficient k and its other related coefficients are calculated

using the relations in Table 1.
2.4. OpenFOAM solvers

Previous studies have concluded that laminar assumption is

adequate in context of flow modelling in LA (16, 44). Therefore,

we solved the governing equations using a laminar solver

developed from nonNewtonianIcoFoam solver in OpenFOAM by

implementing the Quemada viscosity model into the

nonNewtonianIcoFoam solver. We modified the

ScalarTransportFoam solver for implementing the tracer transport

simulations and conducted the tracer transport-related simulations

only after a steady state flow was reached (after 25 cycles).

We used the asymptotic tracer concentration inside LAA (35)

as our convergence criteria to choose the time step for our

simulations. A time-step study was carried out in which

independence of solutions to time-step = 500 µs was established.

The first-order implicit and second-order least-square methods

were used for time and pressure (as well as velocity gradient)

discretization, respectively. Divergence terms and convection

terms were discretized using first-order and second order upwind

schemes, respectively. Tolerances for velocity, pressure, velocity,

and concentration were set to be 10−8 m/s, 10−7 Pa, and 10−8,

respectively. For these simulations, 24 threads of dual 12 core

Intel Xeon Gold 6126 CPU with 2.6 GHz clock speed and

minimum of 8 GB of RAM were used at the University of
TABLE 1 Quemada viscosity model coefficients.

k ¼ k0 þ k1
ffiffiffiffiffiffiffiffiffiffi
_g= _gc

p
1þ ffiffiffiffiffiffiffiffiffiffi

_g= _gc
p

k0 ¼ exp(3:874 � 10:41Hct þ 13:8Hct2 � 6:738Hct3)

k1 ¼ exp(1:3435 � 2:803Hct þ 2:711 Hct2 � 0:6479 Hct3)

_gc ¼ exp(�6:1508 þ 27:923Hct � 25:6Hct2 þ 3:697Hct3)

Hct: hematocrit; _g: shear strain rate; k: intrinsic viscosity; _gc , k0, k∞: Quemada

coefficients.
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Pittsburgh Computing Research Center. The average execution

time for each case in a steady flow using non-Newtonian model

was ∼7 days to simulate 20,000 s of tracer concentration

advection through LA/LAA. The codes and instructions

regarding the solvers developed for this study have been made

available via the project repository (https://github.com/

sorooshsanatkhani/LAA-AF-Stroke).
2.5. LAA residence time distribution of
blood-borne particles and associated
indices

Previous studies have demonstrated that majority of thrombi in

AF originate from the LAA. As a result, the focus of this study was

on the LAA, rather than other locations (7–9). LAA RTD of blood-

borne particles and associated indices (LAA tm, and C∞) were

calculated to quantify the propensity of blood-borne particles to

reside inside the LAA. The details regarding these calculations,

including the graphical representation for the CFD simulations,

are presented in (35). In short: tracer transport-related

simulations were performed using fluid dynamic analysis to

simulate the advection of a tracer through the LAA. The tracer

concentration inside the LAA was recorded as C(t) and fitted to

a triple exponential model that included an asymptotic term, C∞.

The residence time distribution (RTD) function was used to

quantify the dynamics of tracer clearance from the LAA, with

the unit per second representing the normalized outflow of tracer

material from the LAA at time t. Two measures of the

propensity of particles to remain within the LAA were calculated:

mean residence time (tm), which is the first moment of the RTD

function, and C∞ [C∞ = C(t→∞)].
2.6. Statistical analysis

Data for continuous variables are presented as mean ± standard

deviation. For parameters in linear regression, mean ± standard

error of the estimates is reported. Rank correlations between

variables were calculated by Spearman rank correlation. Statistical

significance for all comparisons was taken to be P < 0.05. A

multiple linear regression analysis was conducted to identify the

effects of 3 independent variables (i.e., CO and 2 PV flow

waveform pulsatility indices, Table 2) on LAA tm or LAA C∞:

tm or C1 ¼ aþ bCO �COþ bSys � SysP þ bRev �RevP

þ
X24
i¼1

giDi (6)

where, α is the intercept and β’s are the coefficients of the

independent predictor variables in the regression model. The last

term in Equation (6) is included to account for the inter-subject

variability of the intercept, where a set of 24 dummy variables
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TABLE 2 Pulmonary vein blood flow waveform pulsatility indices.

Waveform Pulsatility Indices Normal Pulsatile
Waveform

AF Pulsatile
Waveform

No Pulsatile
Waveform

Cardiac Output
(L min−1)

1 Normalized Systolic Peak(SysP) ¼ Systolic Peak
Cardiac Output

2.25
2.18
2.27

1.55
1.25
1.54

1
1
1

3.3
4.4
5.5

2 Normalized Reversal Peak(Revp) ¼ jReversal Peakj
Cardiac Output

0.64
0.91
0.91

0.61
0.18
0.21

1
1
1

3.3
4.4
5.5

Definitions of pulmonary vein (PV) flow waveform pulsatility indices are presented. Further, their value corresponding to each waveform type [pulsatile waveform seen in a

typical normal subject, pulsatile waveform seen in a typical atrial fibrillation (AF) patient, and steady with no pulsatility; Figures 1A–C] and cardiac output are shown. Systolic

peak and reversal peak are shown in Figure 1A.

Sanatkhani et al. 10.3389/fcvm.2023.1070498
are defined using effects coding (45):

Di(i ¼ 1:24) ¼
1, Observation is from Subject i
�1, Observation is from Subject 25
0, Otherwise

8<
: (7)

The design matrix for the dummy variables, Di, is given in

Equation (7).

The effects of hematocrit (3 levels, 27.4%, 45.5%, and 60.4%),

blood rheology model (2 levels, Newtonian and non-Newtonian),

and their interaction on LAA tm or LAA C∞, was tested by a

multiple linear regression model:

tm or C1 ¼ aþ bHct �Hctþ bN �DN þ bHD �Hct �DN

þ
X24
i¼1

giDi (8)

where, α is the intercept and β’s are the coefficients of the

independent predictor variables, DN is the dummy variable to

account for blood rheology model (DN = 1, if non-Newtonian,

DN = 0, if Newtonian) and Di’s are the dummy variables to

account for the inter-subject variability in the intercept value as

before [Equation (7)]. A single CO value (4.4 L min−1) with

steady PV flow (i.e., no pulsatility) was used in the simulations

for this model.

Regression parameter estimates are presented as mean ±

standard error. Statistical analyses in this study were carried out

in the MATLAB® (version R2022b, MathWorks, Inc., Natick,

MA, United States). Additional details about the statistical

analysis can be found in the Supplement.
2.7. Confounding factors

As discussed above, there are several confounding factors that

can affect regarding the CFD-based modeling of hemodynamics

and particle transport and consequently, the calculation of LAA

residence time. In this section we present the sets of simulation

that we used to examine the following confounding factors: (1)

PV flow waveform pulsatility (magnitude and temporal pattern),

(2) non-Newtonian blood rheology and hematocrit level, and (3)

length of the simulation.
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2.7.1. Simulation set 1: pulmonary vein flow
waveform

Subject-specific 3D geometry can be obtained readily,

however, it is not easy to measure all PV inlet blood flow

waveforms in vivo. A study to investigate the effects of inlet

blood flow waveform pulsatility (magnitude and temporal

pattern) on LAA residence time is needed to examine whether

the nature of the inlet flow (steady vs. pulsatile) affects LAA

residence time. Accordingly, various PV blood flow waveforms

were generated by modifying the template waveforms (Normal

Pulsatile: Figure 1A; AF Pulsatile: Figure 1B; No Pulsatility:

Figure 1C).

In our cohort of 25 subjects, each subject was simulated using 9

settings of PV inlet blood flow pulsatility (resulting in a total of 225

observations): 3 levels of mean PV blood flow (i.e., CO = 3.3, 4.4,

and 5.5 L min−1) and 3 types of PV flow waveform [pulsatile

waveform seen in a typical normal subject, pulsatile waveform

seen in a typical AF subject, and no pulsatility (steady);

Figures 1A–C] for each of the three levels of CO. The mean

residence time of blood-borne particles in LAA, LAA tm, and

asymptotic concentration inside LAA, LAA C∞, were quantified

in each simulation.

To investigate the effects of pulsatility of PV blood flow

waveforms, we characterized PV blood flow waveform

pulsatility in terms of two indices (Table 2). Multiple linear

regression analysis was used to identify the effects of CO

and 2 PV flow waveform pulsatility indices on LAA tm or

LAA C∞.
2.7.2. Simulation set 2: non-newtonian blood
rheology and hematocrit level

We used our cohort of 25 subjects to investigate the effects

of hematocrit level and non-Newtonian behavior of blood on

the calculated indices (LAA tm and LAA C∞). The non-

Newtonian behavior of blood was simulated for 3 different

hematocrit levels (Hct = 27.4%, 45.5%, and 60.4%) using the

Quemada viscosity model. Further, the equivalent Newtonian

viscosity of each hematocrit level was calculated based on

Figure 2 (μ = 2.5 × 10−3, 3.7 × 10−3, and 5.4 × 10−3 Pa s for Hct

= 27.4%, 45.5%, and 60.4%, respectively). Six CFD-based

simulations were conducted for each subject (resulting in a

total of 150 observations): non-Newtonian and Newtonian

behavior of blood for each of the 3 levels of hematocrit. A
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FIGURE 2

Blood viscosity as a function of shear strain rate and hematocrit using
Quemada viscosity model and Newtonian fluid model.
The equivalent Newtonian viscosity of each hematocrit level was
calculated based on the corresponding viscosity calculated using
Quemada model at _g ¼ 2, 000 s�1. Hct: hematocrit.

FIGURE 1

Three pulmonary vein flow waveform types.
(A) Normal pulsatile pulmonary vein (PV) flow waveform. Systolic, diastolic, and reversal areas in during one cardiac cycle are shown. Further, the peak of
each period is pointed out. (B) Pulsatile PV flow waveform that is seen in a typical atrial fibrillation patient. Systolic, diastolic, and reversal durations are
marked. (C) PV flow waveform with no pulsatility.
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pulmonary vein flow waveform with no pulsatility with cardiac

output of 4.4 L min−1 was used in these simulations. Multiple

linear regression analysis was used to identify the effects of

Hct, blood rheology model and their interactions on LAA tm
or LAA C∞.
2.7.3. Simulation set 3: length of simulation
In theory, one needs to continue the CFD-based simulation of

tracer transport to infinite time for calculating the mean residence

time (46). Clearly, this is not possible. Therefore, simulations must

be truncated at some point in time. LAA tm and LAA C∞ values are

calculated based on these truncated data and an assumed decay

function. Based on our study, the temporal pattern of the LAA
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tracer concentration decay following an impulse injection of

tracer is complex—it is certainly not a single exponential

decay. We chose a triple exponential decay function (capable

of fitting to a period of fast tracer washout at the beginning of

simulation, moderate washout rate in the middle, and slow

washout rate at the end of the simulation) as a compromise

between over fitting and accuracy. It is important to know

what minimum length of simulation is necessary for a reliable

calculation of the mean residence time. We calculated LAA tm
and LAA C∞ for various simulation times over the range 625 s

to 30,000 s.
3. Results

3.1. Study subject characteristics

A total of 25 subjects (15 males) with symptomatic AF (22

paroxysmal, 3 persistent) were studied. The average age, heart

rate, cardiac output, and hematocrit level were 61 ± 11 years

(range: 33–78 years), 64.1 bpm (range: 44–84 bpm), 3.8 L min−1

(1.9–6.8 L min−1), and 41.5% (35%–49%). The average

CHA2DS2-VASc score was 1.9 ± 1.1 (range: 0 to 4).
3.2. Effects of confounding factors

In this section we present the results of our studies carried out

to examine the effects of the following confounding factors: (1) PV

flow waveform pulsatility (magnitude and temporal pattern), (2)

non-Newtonian blood rheology and hematocrit level, and (3)

length of the simulation.
3.2.1. Pulmonary vein flow waveform
Multiple linear regression analysis showed that only CO was a

significant independent predictor variable (i.e., only βCO in
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Equation (6) was significantly different from zero, P < 0.0001);

none of the coefficients associated with indices of PV waveform

pulsatility (i.e., coefficients βSys and βRev) were significantly

different from zero. This observation implies that both LAA tm
and LAA C∞ decreased significantly as CO was increased,

regardless of PV waveform type (Figure 3). Based on this study,

an increase of 1 L min−1 in CO decreases the LAA tm by 2.43 s

(±0.20 s; adj-R2 = 0.87; P < 0.0001) and C∞ by 2.09% (±0.19 s;

adj-R2 = 0.89; P < 0.0001).
3.2.2. Non-Newtonian blood rheology and
hematocrit level

The results of multiple linear regression analysis showed that

both LAA tm and LAA C∞ are significantly affected by Hct, choice

of blood rheology, and the interaction between the Hct and blood

rheology model (P < 0.0001). Both LAA tm and LAA C∞ values

for a given hematocrit level were significantly lower for the

Newtonian model as compared the values for the non-Newtonian

model (Figure 4). In both Newtonian and non-Newtonian models,

both LAA tm and C∞ increased with increasing hematocrit level

(Figure 4). The multiple linear regression model was used to

relate LAA tm or LAA C∞ to hematocrit level using the non-

Newtonian fluid characterization in simulations (Quemada

viscosity model), respectively. Hematocrit level was found to be a

significant independent variable as expected for both LAA tm
(βHct = 0.65 ± 0.07; adj-R2 = 0.85; P < 0.0001) and LAA C∞ (βHct =

0.65 ± 0.05; adj-R2 = 0.83; P < 0.0001).

To examine whether the fluid characterization (Newtonian vs.

non-Newtonian) affects the rank ordering of subjects, we

performed the Spearman rank correlation analysis of results

obtained using the Newtonian model and the non-Newtonian

model (i.e., Quemada model). Based on 150 simulations [75
FIGURE 3

Three pulmonary vein flow waveform types and their relationship with the h
Mean residence time and asymptotic concentration in left atrial appendage
cohort of 25 patients. Data: Mean ± SD.
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Newtonian (25 subjects × 3 hematocrit levels) and 75 non-

Newtonian], LAA tm and C∞ from the non-Newtonian

model and the Newtonian model were highly correlated (ρ =

0.71, P < 0.0001 for LAA tm and ρ = 0.82, P < 0.0001 for LAA C∞).
3.2.3. Length of simulation
It was expected that the calculated LAA tm and C∞ values

would reach an asymptotic steady state by the end of the

30,000 s simulation. The mean LAA tm increased and the mean

LAA C∞ decreased as a function of the simulation time

(Figure 5). Although some individual subjects reached steady-

state after 30,000 s of simulation, it does not appear that the

mean LAA tm and LAA C∞ for the cohort of 25 subjects reach

steady-state values (Figure 5).

Although reaching a steady state is ideal, the consistency of the

rank ordering of subjects is more important. Spearman rank order

correlation analyses between LAA tm and LAA C∞ values calculated

using 30,000 s simulation and results based on shorter simulation

lengths were performed. Based on these results, 20,000 s found to

be a sufficient length to calculate LAA tm (ρ = 0.9, P < 0.0001;

Figure 6A) and LAA C∞ (ρ > 0.9, P < 0.0001; Figure 6B).
4. Discussion

Tarrying of blood cells inside the LAA could lead in an

increased risk of thrombus formation and, consequently, stroke.

We have recently quantified the proclivity of blood cell staying

within the LAA in terms of the RTD function, E(t), and related

calculated variables: mean residence time of blood-borne particles

in LAA, tm, and asymptotic concentration remaining inside LAA,

C∞ (35). Even though it is important for these calculations to be
emodynamic indices.
corresponding to different PV flow waveforms and cardiac outputs for a
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FIGURE 4

Mean residence time and asymptotic concentration inside left atrial
appendage as a function of hematocrit using Newtonian and non-
Newtonian models.
Left atrial appendage mean residence time, LAA tm, LAA asymptotic
concentration, C∞, increased as a function of cardiac output. Data:
Mean ± SD.

FIGURE 6

Left atrial appendage mean residence time, LAA tm, and asymptotic
concentration, C∞ rank order correlation coefficient as a function of
the length of simulation.
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subject-specific, only subject-specific LA and LAA morphologies

were used in the previous study. The present study explored the

effects of additional subject-specific variables [pulmonary vein (PV)

flow waveform pulsatility, cardiac output, and hematocrit] and

certain CFD model-related assumptions (Newtonian blood rheology,

length of the CFD simulation) on the calculation of LAA RTD

function and associated calculated variables (LAA tm and C∞). The

key observations of the present study are as follows: (1) LAA tm
and C∞ values are significantly affected by the mean value (cardiac

output, but not the temporal pattern) of the PV inlet flow and
FIGURE 5

Left atrial appendage mean residence time, LAA tm, and asymptotic
concentration, C∞ as a function of simulation length.
LAA tm and C∞ did not reach a steady state even after 30,000 s of
simulation. Data: Mean ± SD.

The Spearman rank order correlation coefficient, ρ, between the LAA tm
and C∞ for the reference group using 30,000 s of simulation (ρ = 1, by
definition) and LAA tm and C∞ calculated using smaller simulation
lengths.
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hematocrit; (2) Although non-Newtonian blood rheology

significantly increased both LAA tm and C∞, the rank ordering of

LAA tm and C∞ were similar for Newtonian and non-Newtonian

formulations; and (3) The length of CFD simulation should be at

least 20,000 s for reliable calculations of LAA tm and C∞.

Several indices exist that relate blood flow patterns in LA and

LAA to the probability of clot formation. These indices are

directly calculated from flow the velocity field (e.g., wall shear

stress, time-averaged wall shear stress, oscillatory shear index,

time-averaged velocity, vortex structure, flow kinetic energy, and

ECAP). In contrast, LAA RTD incorporates the transport of

blood-borne particles, and it, by definition, quantifies the

propensity of blood cell lingering within the LAA. Although the

velocity field-based indices require only a short simulation time,

we believe that LAA RTD has the capability to better simulate

the transport and lingering of blood cells in LAA.

It has been suggested that the PV flow pattern seen in AF

subjects, with diminished systolic flow and end-diastolic flow
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reversal (17), is associated with hemodynamic indices that predict

higher chance of thrombus formation compared to that for the

normal PV flow pattern (13). Several studies have shown that the

flow pattern within in LA and LAA and LA-LAA wall

contraction pattern in AF are the determinants of the thrombus

formation (14, 17, 19). However, we showed in this study that

PV flow waveform pulsatility does not affect the LAA RTD (i.e.,

representative of risk of thrombus formation in LAA), an

observation that is consistent with the findings of Dueñas-

Pamplona, et al. (44), suggesting that LA-LAA wall contraction

pattern is more important than PV flow temporal pattern. The

LAA blood stasis risk, as quantified by LAA tm and C∞, was

significantly affected by the mean value of inlet flow (i.e., cardiac

output), Therefore, the subject-specific LAA blood stasis risk can

be reliably estimated using subject-specific LA and LAA 3D

geometries and subject-specific cardiac output, without any need

for subject-specific PV blood flow waveform.

The assumption that blood flow inside the left atrium (LA) can

be modeled as a Newtonian fluid is considered reasonable due to

the high strain rates present in the LA cavity, which cause blood

to behave like a Newtonian fluid (13, 14, 16, 20). However, due

to the existence of stasis regions inside the LAA and associated

low shear strain rate, non-Newtonian blood rheology might be

important in calculating LAA tm and C∞. We observed that both

LAA tm and C∞ were affected significantly by hematocrit

level and blood rheology (Newtonian vs. non-Newtonian): both

LAA tm and C∞ values were higher for the non-Newtonian

formulation.

Gonzalo, et al. (47) have investigated blood rheology effects on

CFD estimations of LAA blood stasis, including LA-LAA residence

time. They used the Carreau–Yasuda rheology model parameters to

mimic Hct = 37% and 55%. In contrast, we chose the Quemada

model because it allows us to explicitly adjust the Hct values.

However, both models have been demonstrated to perform well

(43). Further, they employed a modified rheology model wherein

non-Newtonian effects are activated based on the local residence

time. Gonzalo, et al. (47) calculated residence time by solving a

scalar advection transport equation where the source term is 1,

resulting in an increasing age of fluid over time (48). The mean

residence time in a specific region can then be calculated by

averaging the age of fluid at each grid point over a period of

time. In contrast, the present study follows the concept of mean

residence time as described in Fogler (49), which involves solving

a scalar advection transport equation with a source term of zero

and an initial condition where the region of interest has a scalar

(i.e., tracer) concentration of 1. The mean residence time is then

calculated based on the concentration of the tracer inside the

region as a function of time, as described in more detail in

Sanatkhani, et al. (35). Although the methods used to investigate

blood rheology effects differ between the Gonzalo, et al. study

(47) and the present study, both studies are aiming to identify

thrombus-promoting flow patterns and the results of both studies

are similar: higher Hct values are associated with higher

residence time and there is a greater effect of Hct on residence

time at higher Hct values. Researchers can choose between these

two methods for modeling blood rheology and calculating mean
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residence time depending on their specific research goals and the

availability of required input parameters.

The choice of blood rheology model did not affect LAA tm and

C∞ rank ordering among the study subjects. Therefore, one might

choose to quantify the LAA tm and C∞ in a study cohort using

Newtonian fluid model with a fixed value of viscosity

corresponding to the subject-specific hematocrit level. However,

the incremental computational cost of using a non-Newtonian

blood rheology model (i.e., Quemada model) was negligible.

Therefore, we recommend that the non-Newtonian blood

rheology model be used in all future CFD simulations.

It is important to note that tm will continue to rise if certain

amount of tracer is stuck in the LAA (never gets washed out).

This can be readily seen from the definition of tm (35, 47). On

the practical level, estimated tm and C∞ will be used to rank

order the thrombogenic risk. Our results indicate (Figure 6) that

the rank ordering at 20,000 s is more than 90% similar to the

rank ordering for 30,000 s. Therefore, it is reasonable to conclude

that 20,000 s is a sufficient simulation time. Despite this, the

CFD simulation for a single subject still requires a significant

amount of computational time (∼7 days using 24 threads of dual

12 core Intel Xeon Gold 6126 CPU with 2.6 GHz clock speed

and minimum of 8 GB of RAM). Additional enhancements of

the CFD model, such as one-way and two-way fluid-wall

interactions and multiscale analysis of biochemical coagulation

cascade, will further increase the computational cost. A new

method to reconstruct RTD, introduced by Sierra-Pallares, et al.

(48), might be able to reduce the computational cost of LAA tm
and C∞; however, its applicability and accuracy has not been

tested using LA-LAA geometries. In recent studies, deep neural

network has been implemented to predict CFD simulation results

in LA-LAA geometries (29). Although this approach is expected

to decrease the computational cost significantly, many CFD

simulations are still needed to develop the ground truth for LAA

tm and C∞ (and any other indices developed in the future) that

is necessary for training the deep neural network.

Our data indicate that mean residence time, tm, and asymptotic

concentration, C∞, are correlated and therefore, they may be used

interchangeably. However, if the tracer washes out completely after

a certain time, C∞ will be zero and therefore, tm is the only index

that can be used to discriminate between subjects. We believe that

both tm and C∞ should be reported to provide a comprehensive

understanding of the residence time distribution.

Finally, we performed a preliminary analysis to explore

whether quantifying mean residence time helps stratify stroke

risk. The mean residence time was calculated as a function of

subject-specific LA-LAA morphology, CO, and Hct. The plot of

mean residence time against CHA2DS2-VASc score

(Figure 7A) illustrates that both CHA2DS2-VASc score and

mean residence time may be helpful in stratifying patients. The

patient at the bottom right of the figure (Subject #4) has a high

stroke risk according to the mean residence time, tm, but this

risk may be overlooked if the focus is only on CHA2DS2-VASc

score. In contrast, the patient in the top left of the figure

(Subject #2) has a low residence time but a high CHA2DS2-

VASc score, demonstrating that residence time alone is not
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FIGURE 7

Relationship between LAA tm and CHA2DS2-VASc score and visual representation of tracer washout in the LAA of four subjects.
(A) The plot of CHA2DS2-VASc vs. tm reveals that a patient with a stroke (marked with diamond symbols) could potentially be overlooked if LA
hemodynamics are not considered, as subject #4’s tm values indicate a high risk of stroke. Subject #4 has a history of stroke, which is not reflected
in their CHA2DS2-VASc score. However, tm values may be able to predict the risk of stroke. To evaluate the accuracy of CHA2DS2-VASc in predicting
stroke, data points corresponding to previous strokes were excluded. Only 17 subjects are shown in this figure because complete physiological/
clinical data were not available for the remaining 8 subjects. (B) Contours of tracer concentration at selected times show the tracer washout in each
subject from most of the LAA, with the exception of the tip. Among these four subjects, Subject #2 had the simplest morphology, while Subjects #3
and #4 had more complex morphologies with multiple lobes, long LAA, and a sharp bend.

Sanatkhani et al. 10.3389/fcvm.2023.1070498
sufficient. A discriminative line can be envisioned in the figure to

suggest the possibility of using mean residence time along with

CHA2DS2-VASc score to stratify stroke risk in future studies.

Data from four subjects are shown to illustrate the variability

of the tracer washout among these subjects (Figure 7B). The

morphology of the LAA seems to have a direct impact on tm.
Frontiers in Cardiovascular Medicine 10335
As shown, Subject #3 had multiple dominant lobes and Subject

#4 had a long LAA with a sharp bend. These complex LAA

shapes contributed to the relatively high tracer concentration

in the LAA of Subjects #3 and #4 even after 25,000 s. However,

the visual complexity of the LAA does not always dictate its

residence time. For example, Subject #1 appears to have a
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1070498
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sanatkhani et al. 10.3389/fcvm.2023.1070498
complex shape, but due to its high cardiac output, the calculated

residence time was not high. In a future study, we will compare

the simulation results with thrombogenic events (in the context

of developing a prediction algorithm). However, that was not

the goal of this study. Comparing thrombogenic events with

simulation results for the purpose of risk assessment requires a

larger cohort with a sufficient number of thrombogenic events

to achieve statistical significance. This is our goal in our next

study, where we will collect longitudinal data from a much

larger patient cohort. The primary aim of this study was to

investigate the effects of some subject-specific variables on the

calculation of LAA RTD function and associated calculated

variables (LAA tm and C∞), so that we can use the “optimized”

approach for patient-specific CFD-based modeling in future

studies.
5. Limitations

Although we examined the effects of some subject-specific and

other confounding variables on the calculation of LAA tm and C∞,

there are additional considerations that merit evaluations. The

contractility pattern of the LA-LAA wall during atrial fibrillation

(AF) has been shown to increase the risk of thrombus formation

as predicted by fluid dynamics indices. Rigid wall simulations are

insufficient in modeling these effects (14, 16–18, 20, 21, 25, 27,

44). In this study, we accepted the rigid wall assumption as a

limitation for two reasons: (1) A 4D data set (such as CT or

MRI) is needed to impose LA-LAA wall motion as a boundary

condition for more sophisticated fluid-structure interaction

models that require LA-LAA passive and active wall mechanical

properties (17, 20). These data were not available for this study.

Additionally, using population average wall motion patterns from

literature (which implies using the same temporal pattern of

movement for all subjects) is unlikely to alter the ranking of

subjects (more on this in point #2). (2) In our follow-up study,

which aims to assess stroke risk, we value the ranking of

calculated mean residence time among subjects. Studies have

shown that rigid wall assumptions may overestimate

thrombogenesis risk, as expected. However, there is no

conclusion that this assumption would alter the ranking of

calculated variables. While there are studies in the literature that

have included wall motion in their simulations (14, 17, 19, 44),

they have only included a small number of subjects, which is not

suitable for risk assessment. We acknowledge these limitations in

the present study and future parametric studies that examine the

effects of LA-LAA wall properties and contraction patterns on

LAA tm and C∞ in larger cohorts are needed.

For simplicity, we assumed the mitral valve to be wide open in

the CFD simulations. Further, both gauge pressure and velocity

gradient were set to zero. It is possible that a more realistic

(physiologic) outlet boundary condition will affect the calculation

of LAA tm and C∞. It is postulated that the presence of mitral

regurgitation (MR) modifies the stroke risk in AF subjects; but

this issue is still controversial (49). Incorporating the models of

mitral valve and left ventricular diastolic behavior will enable us
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to study the effects of the outlet boundary conditions (17).

Further, it has been shown that patient-specific mitral valve

velocities acquired from echocardiography and pressure/velocity

profiles at the pulmonary vein inlets would improve the

simulations (50).
6. Conclusions

LAA blood stasis risk, as quantified by LAA tm and C∞, is

significantly affected by the mean value of inlet flow (i.e., cardiac

output), but not by temporal pattern of the inlet flow. In

addition, subject-specific hematocrit is also an important factor

and should be considered as one of the input variables for the

CFD simulations. Therefore, the subject-specific LAA blood stasis

risk can be reliably estimated using subject-specific LA and LAA

3D geometries, subject-specific hematocrit, and subject-specific

cardiac output, without any need for subject-specific PV blood

flow waveform. Further, at least 20,000 s of tracer concentration

transport simulation is needed to calculate LAA tm reliably and

consistently. These results will be used to adjust our CFD-based

simulation methodology for calculating LAA tm and C∞ in future

stroke risk stratification studies.
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Cardiac biophysical detailed
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The heart is a vital organ in the human body. Research and treatment for the heart
havemade remarkable progress, and the functional mechanisms of the heart have
been simulated and rendered through the construction of relevant models. The
current methods for rendering cardiac functional mechanisms only consider one
type of modality, which means they cannot show how different types of modality,
such as physical and physiological, work together. To realistically represent the
three-dimensional synergetic biological modality of the heart, this paper proposes
a WebGL-based cardiac synergetic modality rendering framework to visualize the
cardiac physical volume data and present synergetic correspondence rendering of
the cardiac electrophysiological modality. By constructing the biological detailed
interactive histogram, users can implement local details rendering for the heart,
which could reveal the cardiac biology details more clearly. We also present
cardiac physical-physiological correlation visualization to explore cardiac
biological association characteristics. Experimental results show that the
proposed framework can provide favorable cardiac biological detailed
synergetic modality rendering results in terms of both effectiveness and
efficiency. Compared with existing methods, the framework can facilitate the
study of the internal mechanism of the heart and subsequently deduce the
process of initiation, development, and transformation from a healthy heart to
an ill one, and thereby improve the diagnosis and treatment of cardiac disorders.

KEYWORDS

cardiac synergetic configuration, biophysical detail, WebGL-based rendering, interactive
configuration histogram, physical and electrophysiological correlation

1 Introduction

Globally, the number of people by heart disease is increasing. Heart disease has become a
serious threat to human health, ranking among the three leading causes of death. To prevent
and cure heart disease, it is necessary to understand the mechanisms underlying cardiac
physiology and pathology in depth. Although clinical diagnosis and relevant data have
provided significant support for the study of heart disease, it is still challenging to explore
physiological mechanism and pathogenesis of the heart to assist in the treatment of heart
disease. Due to the restricted experimental environment or condition, the study of the heart
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is significantly hindered. Therefore, it is crucial to create a virtual
heart that can simulate the cardiac function (Zhang et al., 2000).

To help researchers understand the physiological mechanisms of
the heart and the etiology of heart disease, computational cardiology
models and simulate the heart by comprehensively leveraging cardiac
physiology, mathematical modeling methods, and virtual reality (Funk
et al., 2008). In 1960, Noble implemented the first computational model
of cardiomyocytes for the first time, which opens up the modeling
research of cardiac electrophysiological activity (Noble, 1960). So far,
researchers have built hundreds of models of various species and types,
from subcellular and cellular to tissue and organ levels. Computation
and visualization of cardiac models compute and simulate features
under physiological and varied pathological states, such as cardiac
structure, biomechanics, biochemical, and electrophysiological
activity and turn them into graphics and images that replicate the
activity processes of the human heart in terms ofmorphology, structure,
and function.

Researchers have built heart models based on geometry
(Kerckhoffs et al., 2003; Sermesant et al., 2006), tissue slices
(Vetter and McCulloch, 1998; Nielsen et al., 1991; Primoz et al.,
2007; Zhang et al., 2016), and imaging data (Virag et al., 2002; Helm
Patrick et al., 2005; Viatcheslav et al., 2011; Aslanidi Oleg et al., 2013)
to performance the structure of tissues and organs of the heart for
the non-invasive research of cardiac function mechanisms. Burton
Rebecca et al. (2006). (Gernot et al., 2009) built a high-resolution
dual-chamber model of the heart based on ultra-high resolution ex-
vivo MRI data of the small mammalian heart. The model can show
tissue-level details of the cardiac structure. To reveal detailed
structures of the human heart, considerable studies have focused
on visualizing the cardiac volume data by various algorithms based
on direct volume rendering (Liu et al., 2014; Zhang et al., 2011;
Wang et al., 2011; Gai et al., 2011; Zhang et al., 2016). In addition, ex-
vivo MRI images (Vadakkumpadan et al., 2008; Bordas et al., 2011)
and micro-CT scans (Stephenson Robert et al., 2012) have been used
to reconstruct the entire cardiac conduction system (CSS) semi-
automatically.

Because of the complicated cardiac anatomy, some heart tissues
cannot be easily distinguished from adjacent tissues when viewed
from a particular viewpoint. To improve visualization effects, Zhang
et al. (2014a) proposed a method of light enhancement to emphasize
specific cardiac tissues while weaken the display of other tissues.
However, this method considers the visualization of myocardial
fibers orientation and the electrochemical reaction to stimulation
conduction. Chen et al. transformed the reconstructed fiber bundles
into scalar field that represent their structures based on DTI
(Diffusion Tensor Imaging), and then proposed texture synthesis
method to synthesize the constructed guidance vector field and
sample texture into volume texture. Finally, they established a line-
based volume illumination formulation to solve the problem of
visualizing myocardial fibers and implemented a GPU-based
technique for biological tissue fibers visualizations (Chen et al.,
2009a; Chen et al., 2009b; Ming-Yuen et al., 2009). Yuan and Wang,
2014 applied DTMRI (Diffusion Tensor Magnetic Resonance) to
analyze myocardial fiber orientation (Yuan et al., 2011) and
proposed a mixed filter of the 3D Gauss and directional distance
filter that preserves vector directions of myocardial fibers while
suppressing noises in vector fields (Yuan and Wang, 2014). On this
basis, Yuan tracked the orientation of myocardial fibers and

combined cardiac features of scalar and vector to visualize
myocardial fiber orientation and the structure of cardiac
biological tissues.

In the field of computational visualization of cardiac function,
(Edward et al., 2009) built an image-based 3D ventricular model of
an infarcted canine heart, which simulates the mechanism of
epicardial re-entry morphology. Sato et al. (2009) and Dressler,
(2015) simulated the electrical activity of cardiac tissues and organs.
However, the model they proposed could not represent the
functional and structural characteristics of a real human heart
since it is an animal heart model. Burton Brett et al. (2013) of
Utah University highlighted the simulated cardiac ischemic regions
by non-deterministic visualization. Aslanidi et al. (2011) from the
University of Manchester built a complete human atrial model to
visualize the multi-scale dynamic behavior of the human atria
during the normal rhythm and atrial fibrillation, thus revealing
the conduction mechanisms of the electrophysiology of atrial tissue
in the normal and arrhythmic conditions. Lu et al. (2015a) built a
model of human ventricular ischemia and visually analyzed the
effect of acute global ischemia on ventricular rhythm and
subsequently on re-entrant arrhythmogenesis (Lu et al., 2015b).
Trayanova et al. (2010) studied the mechanism of ventricular
arrhythmias by building 3D computational simulation models.
Xiong et al. (2017) visualized the cardiac anatomical structure
and its physiological functions by CT and computer simulation.
Zhang et al. (2012) developed the multi-modality visualization
methods for both heart anatomical data and electrophysiological
data (Zhang et al., 2012; Zhang et al., 2016; Zhang et al., 2014b).
Vahid et al. (2014) applied the three-dimensional bionic technique
to construct models to analyze the structure and function of the
failing heart. These methods offer effective observation method
representing the anatomical and biophysical information in
particular regions of interest of the heart under both normal and
pathological conditions.

Direct volume rendering generates two-dimensional images
based on three-dimensional data fields. Using a user defined
transfer function, it composes a result image by aggregating the
colors and opacities of relevant voxels of the volumetric data sets
(Kruger and Westermann, 2003). Among them, Volume Ray
Casting (Ljung et al., 2016) is a common technique for volume
visualization which displays the salient characteristics of the volume
set. Although it is not photo realistic, it shows important
characteristics of the dataset. Due to its capability of directly
displaying obscured internal features and demonstrating more
information about the volume data, direct volume rendering has
drawn increasing attention in the research of cardiac computation
and visualization. Current cardiac rendering methods focus on the
single modality, so these methods cannot demonstrate the
synergistic associations between physical and physiological
modalities.

In this paper, we construct a web framework based on WebGL
for the visualization of the heart, implement the visual
computation of cardiac modality and its coordinated functions,
and provide a realistic representation of the 3D information of
organic functional modalities, such as cardiac structure,
biochemical reactions, and electrobiological activities from a
holistic perspective. Meanwhile this framework enables direct
web low-level 3D graphics acceleration which significantly
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improves web rendering speed, and the space can be saved
compared to traditional visualization systems. And owing to the
advantage of cross-platform of WebGL, our framework is
convenient for porting and thus has superb flexibility. The main
contributions of the paper are as following.

1. First we innovatively propose a WebGL-based rendering
framework for real-time network visualization of both the
complete physical modality and real physiological functions.

2. We construct the interactive cardiac physical modality histogram and
achieve the local details rendering. The physical structure and specific
tissues of the heart are realistically and interactively demonstrated.

3. We further present a novel cardiac physical-physiological
correlation visualization method by constructing the correlation
module to help observe synergistic associations between physical-
physiological modalities for deep understanding of the nature of
cardiac physical-physiological functions.

The remainder of the paper is organized as follows. Section 2
introduces cardiac biophysical modality volume data and the
implementation of the cardiac synergetic modality rendering, including
the interactive cardiac modality histogram based local detail rendering. In
Section 3, the cardiac biological correlation module is constructed and the
visualization of cardiac physical-physiological correlation is presented. In
the last part, the conclusion of this study is proposed.

2 Cardiac synergetic modality
rendering

Visualization is the process of transmitting and expressing
information through graphical representation. Scientific
visualization, including surface rendering and volume
rendering, can extract complex information from 3D volume
data and represent 3D phenomena through graphics, thus
transferring and expressing information effectively. Volume
rendering displays three-dimensional data field as a two-
dimensional image, thereby not only the shape, boundary
and surface information are depicted, but also the internal
hidden information can be revealed. This work achieves
cardiac synergetic biophysical modality rendering based on
the WebGL ray casting volume rendering model, offering the
user different levels of the biological characteristics of the heart.

2.1 Cardiac biophysical modality volume
data

In the field of volume rendering, the three-dimensional data field
is a structured dataset consisting of three-dimensional grids, which
is composed of a finite number of uniformly distributed voxels.
Cardiac synergetic biophysical modality rendering in this paper
works with 3D heart volume data which are the regular samples of
scalar (f: R3 → R) fields. The volume data includes the biological
structure volume from the Visible Human Project and the resultant
computational electrophysiology volume.

2.2 WebGL based rendering framework

In this paper we build a WebGL based framework of cardiac
biological cooperative construction volume rendering. Due to the fact
that 3D texture is not supported inWebGL, the volume data stored in the
raw file is thus parsed, then layered into a large 2D texture, and finally the
volume is rendered using 3D texture sampling.

When obtaining the dimension of volume data, we thus
determine 2D mapping layout scheme as well as the range of 2D
texture sizes which satisfies Eq. 1:

W2*H2≥W1*H1*L1 (1)
Here W1 is the width of volume data and H1 is the thickness of

volume data. L1 demonstrates the length of volume data. W2 is the
width of 2Dmapping andH2 represents the length of the 2Dmapping.
We then allocate space four times the texture size for values of RGBA
and initialize the texture data. R, G and B represent red, green and blue
colors respectively, and A represents opacity. After the data is stored in
the 2D texture, 3D texture sampling is performed for rendering.

Ray casting algorithm is the most straightforward volume
rendering method that can generate high quality images. Given
the viewpoint, we firstly calculate the direction of the rays as in Eq. 2
when the pixels on the screen are selected:

vec3Dir � norm Px*Vx + Py*Vy + 2.0*Vz( ) (2)
where vec3Dir is the direction of the ray. Px and Py are the x
coordinate and y coordinate of the pixel on the screen which the ray
passes through. Vx, Vy and Vz are the x-axis, y-axis and z-axis
respectively of View-coordinate.

The intersection sample voxels then arise along the ray direction
while the ray passes through the volume data. Assume that previous
sample voxel has been acquired, the location of current voxel on the
ray can be determined according to the step size which is the
distance to move within the volume data along the view ray. The
opacity and color of current voxel can then be calculated as:

As � wO*Pv

Ps
(3)

Ss � wL*Cv*As (4)
where Pv is the scalar value of the voxel v in the volume, and Cv is the
color obtained through the designed transfer function based on Pv. Ps is
the scalar value of the sampled voxel s on the ray. As is the opacity of s
and Cs is the color of s. wL, wO are the general weights for light and
opacityrespectively. The final color Ck

p of pixels on the screen
corresponding to the ray is subsequently accumulated as in Eqs 5, 6:

Ak
p � Ak−1

p + As (5)
Ck

p � Ck−1
p + 1 − Ak−1

p( )*Ss (6)

Here Ak
p is the opacity of the pixel. Once all the sample voxels on

the ray have been processed, or the accumulated result reaches the
threshold value, the calculation of color and opacity for sample voxels
on the ray intersecting with the volume is completed. And the resulting
rendered image can be generated. Supplementary Algorithm S1.
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2.3 Interactive modality histogram based
cardiac detail rendering

Based on the ray casting, the entire cardiac biological structure
can be rendered. However, in order to more effectively aid
researchers in exploring the internal modality details of the heart,
a more precise representation of the heart is necessary.

2.3.1 Transfer function
So far, researchers have conducted numerous studies aiming

to improve the speed and quality of volume rendering. The
critical factor affecting these two important indices can be
traced back to the design of the transfer function. Transfer
function transforms the values of sample voxels in the volume
data into optical properties that are visible to human eyes, such as
color, opacity, etc. This allows for the exploration of the internal
structure of various objects in the resulting rendered image. The
transfer function can be formally defined as:

T: x|→ c, a{ }, x ∈ Rn (7)
In Eq. 7, c, α{ } is usually a two-tuple consisting of color and

opacity. x is the attribute value of the sample voxels in volume
data. The dimension n of x is the number of attributes. The space
defined by these attributes is referred to as the feature space. In
this paper the transfer function is designed through the
constructed interactive cardiac modality histogram, so as to
achieve local detail rendering of cardiac volume data.

2.3.2 Interactive cardiac modality histogram
We first count the number of myocyte voxels of different tissue of

the cardiac physical modality in the volume data, and then construct the
interactive cardiac modality histogram based on the statistics result. In
the histogram, the value of tissues in the volume data increases from left
to right, and the number of relevant voxels is expressed in the form of a
vertical bar. The higher the bar, the more myocytes of the tissue are
present, indicating a larger volume of the tissue in the heart.

Although the cardiac modality histogram clearly shows the
statistical characteristics of cardiac tissue, it lacks interactivity,
making it inconvenient for users. By leveraging WebGL we add
control points to the histogram according to the value of a certain

cardiac tissue, as shown in Figure 1. Users can thus control local
rendering by setting control points on the histogram, resulting in
modality histogram based interactive cardiac detailed rendering.

2.3.3 The local detailed modality rendering
When the control point is added, the color and opacity values of

the control point can then be set and be assigned to those
corresponding myocyte voxels. The transfer function texture is
subsequently recalculated on the basis of the new color and
opacity value, and the texture of volume data is regenerated.
Eventually the texture map of the transfer function is passed to
the shader and applied during rendering. Through the constructed
interactive cardiac modality histogram, the biological modality
details of the heart can be clearly highlighted and revealed.
According to the height of the column with the value of 62 in
the histogram in Figure 1, we can conveniently determine the
volume proportion of the outer wall of the artery which
corresponds to this value in the cardiac volume data. Meanwhile
when we add a control point for the column and set its color to
green, along with a specified opacity value, the scalar value of the
myocyte voxel is mapped to the opacity and color, indicating that the
transfer function is implemented. As a result, the outer wall of the
artery (green) is highlighted in the final rendering image. The local
detail rendering of the arterial outer wall tissues from different
viewpoints are shown in Figure 2.

2.4 Synergetic electrophysiological
rendering

2.4.1 Electrophysiological volume data
Electrophysiological volume data plays an important role in the

study of cardiac organs. It reflects the electrical activity of the cardiac
tissue at a certain moment. Throughout a complete cycle from
depolarization to repolarization of the heart, the action potentials of
various cardiac tissues in the electrophysiological volume data are
ultimately integrated into the electrocardiogram (ECG). By
analyzing the ECG, medical experts can thus diagnose cardiac
electrophysiological function and extrapolate dynamic changes of
the function over a certain time period.

FIGURE 1
The interactive cardiac physical modality histogram.
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Similar to cardiac biophysical volume data, the three-
dimensional action potential matrix of electrophysiological
volume data is also sliced into a group of two-dimensional
matrices. Assume that the action potential value of a cardiac
tissue cell at a specific moment is v, this value will satisfy the
following condition:

−90≤ v≤ 90, v ∈ R (8)
To facilitate rendering, the action potential value is subsequently

linearly mapped to the range from 0 to 255.

2.4.2 Synergetic rendering of cardiac
electrophysiological modality

Cardiac electrophysiological rendering demonstrates the three-
dimensional action potential in the cardiac tissue at a certain time.
Assigned color during electrophysiological rendering is related to
the value of action potential. Since the range of action potential value
is different from the color value range, conversion is required to
obtain the color from the corresponding action potential value. The
conversion formula is as follows:

c �
⌈64
45

v] + 128,
64
45

v − ⌊64
45

v⌋≥ 1
2

( )
⌊64
45

v⌋ + 128,
64
45

v − ⌊64
45

v⌋≥ 1
2

( )
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (9)

Where c is the color value. The rendering chromatogram is
shown in Figure 3. From Figure 3, we can see that the range of action
potential value is from −86 mv to 45 mv, and the corresponding
color changes gradually from blue to red.

Different from cardiac biophysical modality rendering,
electrophysiological modality rendering requires a distinct rendering

method for the shader. In this work, a static rendering scheme is
chosen for the shader, based on the correspondence between the
action potential value and the color spectrum. The scheme involves
building a one-dimensional lookup table that stores the rendering colors
for each tissue, as well as another table which stores opacity. Before
activating the shader for rendering, our method acquires the
corresponding color and opacity from the lookup table according to
the action potential values. By modifying the opacity of the tissue voxels
in the opacity lookup table, those focused tissues are highlighted in the
rendering image owing to the reduction of occlusion by other contextual
tissueswhich is assigned to lower opacity and thereforemore transparent.

3 Visualization of cardiac physical-
physiological correlation

In addition to cardiac synergetic rendering, visualization of
physical-physiological correlations is also presented in our
proposed framework. This allows researchers or medical experts
to analyze both cardiac physical modal and physiological modal
information, as well as the relationship between them more directly,
providing them a better understanding of cardiac physical and
physiological situations. This work builds three modules: tissue-
myocyte module, tissue-electrophysiology module and
electrophysiology-myocyte module, as shown in Figure 4. The
tissue-myocyte module shows the relationship between each
cardiac tissue and its constituent myocytes. The tissue-
electrophysiology diagram shows the correlation between the
cardiac tissue and the action potential at a certain time. And the
electrophysiology-myocyte shows the relationship between action
potential of the cardiac tissue and its myocytes voxels in the
volume data.

3.1 Cardiac physical-physiological
correlation data

The original cardiac volume data used in this work are two
individual volume data of the same heart. One volume data contains
the cardiac tissue value of the myocytes, and another contains the
action potential value of the same myocytes. In this section, the two-
volume data are integrated to store the three-dimensional spatial

FIGURE 2
Rendering result of the outer wall of arterial vessels from different viewpoints.

FIGURE 3
Chromatogram of action potential values.
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position of the myocytes, as well as the corresponding tissue value
and action potential value.

3.2 Construction of module

3.2.1 Tissue-myocyte module
The purpose of the tissue-myocyte module is to visualize

physical statistical characteristics of the myocytes of cardiac
tissues. The linear scale of this module is determined by the

length of the container and the maximum number of myocytes
among all the tissues. The number of myocytes in various tissues is
then scaled proportionally to the length of the corresponding bar.
The constructed tissue-myocyte module is shown in Figure 4A.

3.2.2 Tissue-electrophysiology module
In our framework, the tissue-electrophysiology module displays

the two-dimensional elements of cardiac tissue and the associated
action potential. The action potential values and tissue values are
arranged in rows and columns, respectively, such that the

FIGURE 4
Three modules for cardiac physical and physiological modals (A). Tissue-myocyte module (B). Tissue-electrophysiology module (C).
Electrophysiology-myocyte module.
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intersection of the rows and columns represents the number of
myocytes in a tissue with a specific action potential value. This
allows for functional refinement of the tissue-myocyte module. In
the system tissue values range from 20 to 25, representing the left
ventricle endocardium, myocardium of the left ventricle, epicardium
of the left ventricle, the right ventricle endocardium, myocardium of
the right ventricle, and epicardium of the right ventricle. Action
potential values in these tissues range from 0 to 255 and are divided
into 26 segments in the tissue-electrophysiology module.

By utilizing the action potential value and the tissue value, the exact
position of each small rectangle in the tissue-electrophysiology diagram
can be calculated, and the color of the small rectangle is determined
based on the value of the corresponding action potential segment. The
color panel for electrophysiological values is then displayed below the
tissue-electrophysiology module. The final tissue-electrophysiology
module and its associated panel are depicted in the left of
Figure 4B. In the right of Figure 4B, when the user selects a tissue
value of 20 and the correlated action potential segment of 180 in the

FIGURE 5
Rendering of the biological structure of the heart (A). Rendering result from one viewpoint (B). Rendering result from a different viewpoint.

FIGURE 6
Rendering of the right atrium based on the interactive histogram (A). The interaction with cardiac modality histogram by adding control point and
setting the color for the right atrium (B). Rendering result of the right atrium outer wall of arterial vessels from different viewpoints.
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tissue-electrophysiology diagram, the number of myocytes with these
two values appears on in tissue-electrophysiology module. This
indicates that there are 20,634 cells with action potential values
ranging from 180 to 189 in the left ventricle endocardium.

3.2.3 Electrophysiology-myocyte module
To further specify the function of the tissue-electrophysiology

module, our work has constructed the electrophysiology-myocyte
module to exhibit the number of myocytes with various action
potentials for a certain cardiac tissue. The required data for this
module contains the tissue value, action potential value, the number
of myocytes and correspondence between each other among them.

The voxels in the cardiac electrophysiological volume data
with and action potential value of −1 represent myocyte voxels
without electrophysiological feature. To avoid confusion, these
voxels are assigned a value of 256. The improved volume data
contains values in the range of 0–256, which provides 257 action
potential values for myocytes in various cardiac tissues. The
constructed electrophysiology-myocyte module includes eight
regular polygons with 257 edges, where each edge represents a
specific action potential value. The circumcircles of the polygons
have different concentric diameters which demonstrate the
number of myocytes of 50,000, 100,000, 150,000, 200,000,
250,000, 300,000, 350,000, 400,000 from inside to outside.
The 257 action potential values are displayed as points on the
axis of the electrophysiology-myocyte diagram. To improve
visual clarity, only points with values that are in multiples of
8 appear on the outermost polygon edges in the diagram. The
constructed electrophysiology-myocyte module is shown on the

left side of Figure 4C. On the right side of Figure 4C, when a
tissue and electrophysiological value are selected, the
corresponding number of myocyte voxels is exhibited in the
electrophysiology-myocyte diagram. From the presented result,
we can see that there are 95,724 myocyte voxels with the action
potential value of 194 in the epicardium of the left ventricle
which has the value of 22.

The coordinate of each point on the electrophysiology-
myocyte diagram is determined through its action potential
value and the number of relevant myocyte voxels. First the
distance between each point and the center of the
electrophysiology-myocyte diagram, which is the radius of
the circumcircle where the point is located is calculated as in
Eq. 10:

r � rc* n − rangeMin( )/ rangeMax − rangeMin( ) (10)
where rc is the radius of the circumcircle of the outermost regular
polygon of the electrophysiology-myocyte diagram, and n is the
number of myocytes. RangeMax is the maximum number of
myocytes presented in the outermost polygon, while rangeMin is
equal to 0.

The position of the corresponding point on the
electrophysiology-myocyte diagram can then be obtained using
the calculated radius r as in the following equation:

x � r* sin ap*onepiece( ) (11)
y � r* cos ap*onepiece( ) (12)

where ap is the action potential value of the point, onepiece � 2π
257.

FIGURE 7
Interactive cardiac multi tissues rendering (A). The interaction with cardiac modality histogram by adding control point and setting the color for the
right ventricle and left ventricle (B). Rendering result of the right ventricle and left ventricle from different viewpoints.
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3.3 Physical-physiological correlation

In our framework, the tissue-myocyte module, tissue-
electrophysiology module and electrophysiology-myocyte module are
not isolated from each other. Cardiac tissues and their internal
electrophysiological characteristics are presented and correlated to
each other through the tissue-myocyte module and tissue-
electrophysiology module. The further refined electrophysiology-
myocyte module shows the distribution details of electrophysiological
physical quantities of cardiac tissues. Meanwhile there are control
relationships between the three modules. The tissue-myocyte module
can control the display of the tissue-electrophysiology module and the
electrophysiology-myocyte module, while the tissue-electrophysiology
module has the capability of manipulating the demonstration of the
electrophysiology-myocyte diagram and thus further refines the
visualization, so that the electrophysiology-myocyte module can show
the distribution of the myocytes within a specific action potential
segment for a certain cardiac tissue. The coordinates of each point

on the electrophysiology-myocyte diagram are computed as in Eq. 13,
where vt is the action potential value and v are the value which the user
set. When vt is equal to v or Eq. 13 is satisfied, the computation of the
coordinates of the point is the same as Eqs 11, 12. Otherwise, both the x
coordinate and y coordinate of the point are assigned 0.

vt + 10 − vt%10 � v (13)

4 Result

TheWebGL-based rendering of the biological structure of the heart is
shown in Figures 5A, B. In Figure 5A, original rendered cardiac biological
structure is demonstrated, and aorta, pulmonary artery, pulmonary vein,
superior and inferior vena cava, and cardiac atrium and ventricle are
explored. Through WebGL-based interaction rendering, researchers can
select the viewpoint by controlling the rendering canvas. Figure 5B shows
these tissues from a different viewpoint.

FIGURE 8
The electrophysiological modality rendering results. Ⅰ. The electrophysiological modality rendering results with different action potential threshold
values. 426 (a). Rendering result of action potential threshold value of 150 (b). Rendering result of action 427 potential threshold value of 180 (c).
Rendering result of the region with the highest action potential 428 of 255 (d). Rendering result of the tissue regions having action potential value of 200.
Ⅱ. Results of electrophysiological modality rendering at different time (a). Results at 160 ms. 432 (b) Results at 200 ms. (c) Results at 210 ms. (d)
Results at 220 ms.
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Figure 6 shows the interactive histogram-based rendering of
the right atrium. In the histogram, the myocyte voxels with tissue
value of 32 correspond to the right atrium, as shown in Figure 6A.

By controlling the interactive histogram, the exact shape of the
right atrium (red) and its position in the heart are presented, as
shown in Figure 6B.

FIGURE 9
The correlation of the tissue-myocyte module, tissue-electrophysiology module and electrophysiology-myocyte module (A). The association
between the threemodules when the selected tissue value is 20 (B). The association between the threemodules when the selected tissue value is 20, 22,
and 24. (C) The association between the three modules when the selected tissue value is 20, 21, 22, 23, 24, and 25.
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Through the interactive histogram, researchers can also
interactively control cardiac multi-tissue rendering, as shown in
Figure 7. It is obvious in the histogram in Figure 7A that there is a
large difference in the number of voxels between the two tissues of right
ventricle and left ventricle, with tissue values of 30 and 32 respectively,
indicating that the left ventricle is significantly larger than the right
ventricle. Researchers can add control points for the relevant voxels of
the right ventricle and left ventricle in the interactive histogram, and
then set the color and opacity for the two types of voxels through the

two control points. Figure 7B highlights the right ventricle (red) and left
ventricle (green) from different viewpoints. The shape and size of the
two tissues are presented in the rendering result image. Meanwhile the
three-dimensional position in the heart as well as the relative spatial
position relationship between right ventricle and left ventricle are also
distinctly uncovered.

Figure 8 shows the electrophysiological modality rendering results
with different action potential values and opacities. In Figure 8Ia, since
the threshold of maximum action potential value to be demonstrated is

FIGURE 10
The correlation result displayed in the electrophysiology-myocyte module (A). The result of the tissue value selected as 22 in the tissue-myocyte
module and the action potential segment of 210 chosen in the tissue-electrophysiology module (B). The result of the tissue value selected as 20 in the
tissue-myocyte module and the action potential segment of 200 chosen in the tissue-electrophysiology module (C). The result of the tissue value
selected as 20, 22, and 25with the action potential segment of 220 in the tissue-electrophysiologymodule. (D) The result of the issue value selected
as 20, 21, 22, 23, 24, and 25 with the action potential segment of 210 in the tissue-electrophysiology module.
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predetermined to 150, only myocardial cells of the biventricular tissues
with the action potential value below the threshold are rendered, and
those with values beyond the threshold are not rendered. In Figure 8Ib,
raising the maximum value to 180 results in the rendering of most cells.
Figure 8Ic shows the rendering for the regions of the biventricular
tissues containing the myocardial cells with the highest action potential
value of 255. The rendering result of the tissue regions having an action
potential value of 200 is presented in Figure 8Id. Rendering of
electrophysiological modality at different times are shown in Figure 8II.

Cardiac physical-physiological correlation between physical and
physiological modalities can be visualized based on the tissue-
myocyte module, tissue-electrophysiology module and
electrophysiology-myocyte module, as shown in Figure 9. In
Figure 9A, when only the bar with the cardiac tissue value of
20 representing the left ventricular endocardium is selected, the
colour of this bar changes from blue to grey. In the tissue-
electrophysiology module, the opacity of rectangles with the tissue
value of 20 in a row also changes to 1, while the opacity of the small
rectangles in the remaining columns becomes 0.1. Simultaneously, the
number of myocytes having the electrophysiological feature in the left
ventricular endocardium is demonstrated in the electrophysiology-
myocyte module. When selecting the bars representing the left
ventricle endocardium, epicardium of the left ventricle, and
myocardium of the right ventricle in the tissue-myocyte module,
i.e., the bars with the cardiac tissue value of 20, 22, and 24 respectively,
their electrophysiological values are all presented in the relevant
rectangle columns of the tissue-electrophysiology diagram. In the
meantime, the number of myocytes of these three tissues with the
action potential highlighted in the tissue-electrophysiology diagram
are updated and displayed in the electrophysiology-myocyte diagram,
as shown in Figure 9B. In Figure 9C, the endocardium, myocardium,
epicardium of the left ventricle and right ventricle are selected and
action potential of the cells in them is simultaneously illuminated in
the tissue-electrophysiology diagram. The distribution of action
potential in the six cardiac tissues are also associatively
demonstrated in the electrophysiology-myocyte module.

Figure 10A shows the number ofmyocytes with the action potential
value within the selected segment of 210 in the left ventricle epicardium
of value 22. Figure 10B shows the number of myocytes with the action
potential value within the selected segment of 200 in the left ventricle
endocardium of value 20. In Figure 10C, when the left ventricle
endocardium, the left ventricle epicardium and epicardium of the
right ventricle with value of 20, 22, and 25 respectively are
simultaneously selected in the tissue-myocyte module, the number of
myocytes in the three tissues with the action potential within the specific
segment of 220 are displayed in the electrophysiology-myocyte module.
While when the six tissues with values ranging from 20 to 25 are selected
in the tissue-myocyte module and the specific action potential segment
of 220 is selected in the tissue-electrophysiology module, the number of
myocytes in these tissues are demonstrated in the electrophysiology-
myocyte module, as shown in Figure 10D.

5 Conclusion

In this study, we propose a rendering framework to present the
three-dimensional cardiac synergetic biological modality. Visual
computing of cardiac synergetic modality is investigated and

implemented to realistically present the three-dimensional cardiac
structure and electrobiological activities. We build the biological
modality histogram and designed the transfer function by
interacting with the histogram. The local details of the heart are
thus highlighted in the rendering result. In addition, cardiac
physical-physiological correlation visualization is presented, and
associations between physical and physiological modality are
revealed. Our rendering framework also have a great advantage
in cross-platform and rendering speed. In summary, this work
provides an effective method for exploring the cardiac synergetic
modality feature.
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There are a variety of difficulties in evaluating clinical cardiac mapping systems,
most notably the inability to record the transmembrane potential throughout the
entire heart during patient procedures which prevents the comparison to a
relevant “gold standard”. Cardiac mapping systems are comprised of hardware
and software elements including sophisticated mathematical algorithms, both of
which continue to undergo rapid innovation. The purpose of this study is to
develop a computational modeling framework to evaluate the performance of
cardiac mapping systems. The framework enables rigorous evaluation of a
mapping system’s ability to localize and characterize (i.e., focal or reentrant)
arrhythmogenic sources in the heart. The main component of our tool is a
library of computer simulations of various dynamic patterns throughout the
entire heart in which the type and location of the arrhythmogenic sources are
known. Our framework allows for performance evaluation for various electrode
configurations, heart geometries, arrhythmias, and electrogram noise levels and
involves blind comparison of mapping systems against a “silver standard”
comprised of computer simulations in which the precise transmembrane
potential patterns throughout the heart are known. A feasibility study was
performed using simulations of patterns in the human left atria and three
hypothetical virtual catheter electrode arrays. Activation times (AcT) and
patterns (AcP) were computed for three virtual electrode arrays: two basket
arrays with good and poor contact and one high-resolution grid with uniform
spacing. The average root mean squared difference of AcTs of electrograms and
those of the nearest endocardial action potential was less than 1 ms and therefore
appears to be a poor performance metric. In an effort to standardize performance
evaluation of mapping systems a novel performance metric is introduced based
on the number of AcPs identified correctly and those considered spurious as well
asmisclassifications of arrhythmia type; spatial and temporal localization accuracy
of correctly identified patterns was also quantified. This approach provides a
rigorous quantitative analysis of cardiac mapping system performance. Proof of
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concept of this computational evaluation framework suggests that it could help
safeguard that mapping systems perform as expected as well as provide estimates
of system accuracy.

KEYWORDS

cardiac mapping, computational modeling, cardiac electrophysiology, arrhythmia,
regulatory science

1 Introduction

Catheter ablation is a primary therapy for the treatment of
cardiac arrhythmias. Life threatening ventricular tachycardia and
fibrillation occur for a variety of reasons including heart failure and
affect millions of individuals each year. The most common
arrhythmia is atrial fibrillation (AF) with an estimated prevalence
in the United States (U.S) alone of 3–5 million (Calkins et al., 2017),
and the deadliest arrhythmia is ventricular fibrillation (VF) which is
the leading cause of death in the U.S. There has been a substantial
increase in the annual number of in-hospital catheter ablation
procedures (Kneeland and Fang, 2009; Deshmukh et al., 2013;
Hosseini et al., 2017; Breithardt and Borggrefe, 2021) and
experimental data and ablation outcomes suggest that multi-
electrode cardiac mapping systems, that provide simultaneous
acquisition of tens or hundreds of recording sites, is responsible
for this increase (Calkins et al., 2017; Rolf et al., 2019). Studies have
shown that electroanatomical mapping systems significantly reduce
procedure duration and radiation exposure compared to
conventional fluoroscopy-guided atrial fibrillation (AF) ablation
procedures (Rotter et al., 2005; Estner et al., 2006). Cardiac
mapping is necessary to locate the sources of arrhythmias for
ablation and multipolar catheters, such as those incorporated
into electroanatomical mapping systems, allow rapid
identification of complex spatial patterns of electrical activity and
structural abnormalities (e.g., scar tissue) during fibrillation.
Purported mechanisms of electrical impulse propagation during
arrhythmias include (Schotten et al., 2021): 1) stable reentrant waves
(either anatomical or functional) sometimes accompanied by
fibrillatory conduction; 2) unstable reentry; 3) single or multiple
foci with or without fibrillatory conduction; and 4) asynchronous
activation of the endocardium and epicardium due to transmural
electrical dissociation.

There is considerable debate regarding the underlying activation
patterns of clinical AF and there are inconsistencies in ablation
outcomes in different studies (Roney et al., 2020). A variety of factors
are thought to underly these uncertainties including catheter
electrode density (Barbhayia et al., 2015; Roney et al., 2017a;
Aronis et al., 2019) and significant differences in mapping system
catheters and algorithms, most notably phase mapping. For
example, studies directly comparing two mapping algorithms
using the same raw data from catheter electrodes in clinical
studies indicate variability in concordance/discordance at both
ablation sites and elsewhere (Alhusseini et al., 2017; Bellmann
et al., 2018; Swerdlow et al., 2019). In another example,
Martinez-Mateu et al. demonstrated in computational modeling
studies that “far-field contributions to electrograms during AF
reduce the accuracy of detecting and interpreting reentrant
activity.” (Martinez-Mateu et al., 2019) The early success of

phase mapping during clinical VF (Masse et al., 2007) has not
been replicated for clinical AF, probably for a variety of interrelated
reasons including: the differences in ventricular and atrial geometry;
possible differences in underlying mechanisms; and differences in
electrogram signal characteristics (Gray et al., 1998; Umapathy et al.,
2010). Numerous authors have discussed further difficulties of
implementing phase mapping during clinical AF (Roney et al.,
2017b; Jacquemet, 2018; Podziemski et al., 2018; Li et al., 2020;
Roney et al., 2020) and Child et al. conclude “Despite phase analysis
being the preferred method in mapping AF, there are significant
challenges in this approach because of the non-sinusoidal and
fractionated nature of the recorded signal. Several complex signal
transformations and analytical methods have been used in response
to these difficulties reporting conflicting results, and there is urgent
need to validate and standardize these techniques.” (Child et al.,
2018).

The performance of cardiac mapping systems depends on
numerous complex and inter-related factors including the
patient’s condition, the mapping system hardware and software
including numerous mathematical algorithms, and the
interpretation of the mapping system output by the physician
(see Figure 1). Typically, performance analysis of a new mapping
system involves interpretation of system output by multiple
electrophysiological physicians. The ability to quantitatively
evaluate the performance of mapping systems in the intended
population is challenging, if not impossible, however, a
computational framework that can quantitatively integrate these
multifactorial complexities has the potential to provide concrete
performance metrics for cardiac mapping systems. Here we present
a novel computational modeling framework that enables
quantitative assessment of the accuracy of cardiac mapping
systems and demonstrate a “proof-of-concept” using a
hypothetical example. Our proposed framework allows for
blinded system evaluation and is based on estimating mapping
algorithm performance using simulated electrograms derived
from computer simulations in which the precise transmembrane
potential patterns are known.

2 Methods

2.1 Overview of proposed Mapping System
Evaluation Framework (MSEF)

Here we present a Mapping System Evaluation Framework
(MSEF) to quantitatively evaluate clinical cardiac mapping
systems using computational models. Our proposed framework
includes the ability to evaluate mapping system performance
under: 1) various electrode configurations; 2) various heart
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geometries; 3) various arrhythmias; and 4) the effect of noise on
system performance. MSEF allows for blind testing of cardiac
mapping system performance against a ‘silver standard’ in which
the transmembrane potential is known throughout the entire heart.
Our framework takes advantage of the fact that the methodology for
quantifying the dynamic spatial patterns of transmembrane
potential throughout the heart are well-established and robust, as
exemplified in hundreds of experimental (e.g., optical mapping) and
numerical (e.g., computational modeling) studies.

The framework includes a “library” of pre-computed
simulations incorporating a range of activation patterns including
paced beats, reentry, and “focal” beats replicated via pacing. For each
simulation, activation times for each node in the computational
mesh are computed using the maximum upstroke velocity of each
action potential. The location of reentrant beats are computed via
the computation of phase maps, identifying surface phase
singularities, and then computing their “center of mass” from
phase singularity density maps. Each entry in the library consists
of: 1) transmembrane potential at every node sampled at 1 kHz; 2)
activation times at every node; 3) the location of all paced beats
(including simulated focal activity); and 4) the surface location and
chirality of all reentrant waves.

Table 1 provides the chronological list of steps in the overall
process of evaluating a generic cardiac mapping system (MS) using
the MSEF. The process includes two participants: the “User” which
is most likely the MS developer and; 2) the MSEF “Administrator”.

2.2 Pilot study to demonstrate the feasibility
of MSEF

To demonstrate the feasibility of this framework, we present a
specific implementation of the approach described above in this

manuscript. Due to the large number of variables identified in Step
1) above, a comprehensive assessment of MSEF is beyond the
scope of this study. The implementation presented here is
comprised of: 1) two simulations of electrical activity in a
healthy isotropic human left atria (2 seconds duration)
comprised of paced (P), reentrant (R), and focal (F) beats; 2)
three virtual electrode catheters: two idealized 64 basket arrays and
one high-resolution 6 × 6 array; 3) well established algorithms to
compute activation times and localize reentry from high resolution
transmembrane patterns; and 4) simple generic mapping system
algorithms. Video movies of these two simulations are provided in
the Supplementary Material.

2.3 Simulations

The monodomain equation governing electrical activation and
propagation in excitable tissue was solved:

χ Cm
zV

zt
+ Iion + Istim( ) − ∇. σ∇Vm( ) � 0 (1)

where Vm is the transmembrane voltage, χ = 1,400 cm−1 is the
surface-area-to-volume ratio, and Cm = 1.0 μF cm−2 is the
capacitance per unit area. Iion is the ionic current computed by
coupling the monodomain equation with the Nygren cell model
(Nygren et al., 1998) of an adult human atrial cell; Istim is the
stimulus current imposed during S1 and S2 stimulation. The
conductivity was chosen to be isotropic with a value of
0.466 mS cm−1 to match the conduction velocity of human atria
of 55 cm/s (McDowell et al., 2015). The monodomain equation was
solved using the finite element method using the Chaste software
package (Mirams et al., 2013). Simulations were run on a high-

FIGURE 1
Overview of cardiac mapping system use. Cardiac mapping systems include both hardware and software elements are used to record electrograms
from the patient’s heart and display a variety of information to the cardiac electrophysiological physician.
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resolution computational mesh of a human left atrium derived from
a commercially available computer aided design (CAD) model by
Zygote Cooperation. The CADmodel was imported into Tetgen (Si,
2015) and an unstructured tetrahedral mesh consisting of
1.32 million nodes and 4.6 million elements with an average edge
length of 252 µm was generated. The thickness was nonuniform and
derived from patient specific imaging. The partial differential
equations were solved using a backward Euler discretization with
timesteps of 0.1 ms for both the partial differential equations and the
cell model. The transmembrane voltage of each node was saved
every 1 ms and simulations were run for a total of 2 s.

Two simulations were performed and videos of these are
provided in the Supplementary Material. The first simulation is
comprised of a single paced beat followed by 6 beats of figure-of-
eight reentry, i.e., a pair of counter rotating reentrant waves (one
clockwise denoted as “R+” and one counterclockwise denoted as “R-
” when viewed from the endocardium), generated via an S1-S2
stimulus protocol. The paced beat was initiated at the junction of the
posterior left atrium and the left inferior pulmonary vein and is
referred to as “P” and the S2 was applied in the free wall of the
septum of the left atria (LA). The second simulation is simulated
focal activity and was constructed to allow a direct comparison with
the reentrant beats. We simultaneously paced the locations
corresponding to the center of mass of R+ and R-with inter beat
intervals corresponding to the reentrant cycle lengths of each of the
six reentrant beats; we refer to these patterns as “F+” and “F-”.
Overall we simulated 13 activation patterns (AcPs) across the two
simulations: one paced beat (P), six figure-of-eight patterns with

clockwise (R+) and counterclockwise (R-) activation patterns and
6 pairs of focal beats (F+ and F-).

2.4 Electrode configurations and
electrograms

We choose two idealized generic basket electrode geometries
comprised of 64 unipolar electrodes (8 electrodes spaced 2 mm apart
on 8 separate splines) with a diameter 38 mm and one idealized “grid”
electrode geometry comprised of 36 electrodes aligned in a 6 × 6 grid
4 mm apart. Basket catheters expand within the heart chamber into
which they are placed and the distance between each electrode and the
heart surface varies depending on the electrode spacing and the
endocardial geometry. We initially considered the “worst-case” as all
64 electrodes residing on a 38mm sphere “centered” in the LA; however,
this case provided meaningless results which are not presented here. We
consider the “best case” by finding the 64 LA sites on the mesh that
minimize the distance from the endocardial surface to each electrode (see
Figure 2), and then placing the electrodes 0.5 mm from the heart surface;
we refer to this case as “basket good contact” (BGC).We also consider an
“intermediate” case by placing the 64 locations at themidpoint of the line
connecting the point on the sphere to the nearest endocardial site (see
colored lines in Figure 2A); we refer to this case as “basket poor contact”
(BPC). Although a sphere was used to derive the locations for BGC and
BPC, the resulting electrode locations do not lie on a sphere; as such the
distance between electrodes on a spline are not constant. The 8 ×
8 electrode arrays for BGC and BPC are represented in 2-D arrays

TABLE 1 Steps for MSEF execution in chronological order.

1) The User identifies the following information relevant for their mapping system (MS)

a. The heart chamber(s)

b. Type of activity (e.g., sinus rhythm, pacing, atrial tachycardia, etc.)

c. Recording electrode type(s) (e.g., contact endocardial)

2) The Administrator selects a number of simulations from the library based on the information contained in 1)

3) The Administrator provides the User with the set of points representing the heart surface(s) corresponding to the simulations selected in 2)

4) The User identifies the location(s) of the electrode(s) in their MS in the same three-dimensional space as the data in 3) so that the relative electrode location(s) and heart
chamber geometry are known. For example, the User could ‘align’ their MS electrodes to the 3-D heart geometry digitally using visualization software with a CAD
representation of their electrode catheter or physically using a 3-D printed version of the heart geometry and their actual catheters. The User provides these locations to the Tool
Administrator. In the case of ‘roving’ catheters this information will include locations as a function of time

5) The User characterizes the noise level for each of electrode locations, which may vary across locations, and also provides these noise levels to the Administrator

6) For EACH simulation selected in 2), and based on the information contained in 1) and 4), the Administrator computes the virtual electrograms corresponding to the location(s)
provided by the User in 4) and sends these electrogram(s) to the User such that the User is blind to the specifics of the underlying electrical activity in the simulation. ‘Virtual
noise’ is added to each electrogram based on the information provided by the User in 5)

7) The User processes the electrograms sent by the Administrator in 6) either by using a digital to analog converter and inputting these signals into their physical MS or via
inputting them directly into their software. In either case the User will bypass the physical electrode(s) in their system

8) The User sends the following system output to the Administrator

a. Predicted activation times at specific locations on the heart surface (i.e., a subset of points in 3) corresponding to their MS. For example, for non-contact electrodes these
locations will be different than the electrode locations provided in 4)

b. Predicted type(s) of electrical activation patterns and their location(s) as a function of time in relation to the surface points that were provided in 3)

9) The Administrator runs a set of ‘comparison’ tools which include

a. Computing the root mean square error (RMSE) in activation times computed for all points provided in 8.a) as well as the average RMSE per electrode and number of ‘missed’
activations and spurious (i.e., wrong) activations by comparing the activation times computed from the virtual transmembrane potential from the same sites

b. Comparing the type(s), location(s), and timing of electrical activation patterns provided by the User to those computed from the corresponding computer simulations, as well
as identifying missed and spurious patterns as well as those that were misclassified

c. Computing the spatial and temporal distances between the source(s) of activity patterns correctly predicted by the User
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labeled A1 to H8 (see Figure 2B). Finally, we studied an idealized
localized electrode ‘uniform array’ (referred to as “UA”) in which a
2 cm× 2 cm square wasmanually placed close to the endocardial surface
over R+ and then each of the 36 virtual electrodes were moved such that
they were 0.5 mm from the nearest endocardial site. The 6 × 6 electrode
array for UA is represented in a 2-D array labeled a1 to f6 and shown in
Figure 2C. Examples of electrograms from BGC and BPC with noise
added are shown in Figure 2D.

Virtual electrograms (referred to as electrograms in this
manuscript) were computed for all electrode locations for the
three catheter configurations for the two simulations as:

∅e x′, y′, z′( ) � ∫ −σe∇Vm( ). ∇1
r

[ ]dx dydz (2)
where

r � x − x′( )2 + y − y′( )2 + z − z′( )2[ ]1/2 (3)
where ∅e is the extracellular unipolar potential (i.e., electrogram),
∇Vm is the spatial gradient of Vm, σe � 7 m/cm is the extracellular
conductivity, r is the distance from a “source” point (x, y, z) within
the heart to the electrode location, (x′, y′, z′), and the integral is
over the myocardium. This computation ignores the size of the
electrode assuming it is a point. The integral was computed by
summing the volume integrals over each element in the finite
element mesh, calculated using Gaussian quadrature and using
the finite element solution for Vm (linear in each element).

2.5 Algorithms

The value of activation times (AcTs) for Vm were computed as
the time of maximum derivative ofVm provided it was greater than a
threshold value (α) with the constraint that two activations did not
occur within a specific interval (β). The values of α and β were
selected based on a sensitivity analysis performed on seven Vm sites
from the first simulation at five locations within the reentrant
isthmus and two sites outside the isthmus. Specifically, we
computed AcTs for thresholds of α = 0.1, 0.2, 0.3, and 0.5 mV/
ms and for β = of 25, 50, 100, 150, 200, 250, and 500 ms. For all seven
sites, the number and values of AcTs were the same for thresholds of
0.1, 0.2, and 0.3 mV/ms and window sizes of 100 and 150 m.
Therefore, we choose values of α = 0.2 mV/ms and β = 100 m
for the computation of AcTs from Vm signals (Dube et al., 2009).
Interpolation between samples was not employed so the resolution
of AcTs was 1 ms.

The algorithm for identifying reentrant patterns for the
simulations involved computing the 3-D filaments using state-
space phase analysis using Eqn (Hosseini et al., 2017). as
described previously (Pathmanathan and Gray, 2015;
Galappaththige et al., 2019).

θ t( ) � atan 2 Vm t + 2( ) + 30, Vm t − 2( ) + 30[ ] (4)
where θ is a computed phase variable; endocardial phase
singularities (PSs) were computed from the proper end of these

FIGURE 2
LA geometry and virtual electrode locations. (A) LA with the projection lines (colored according to spline #) from the sphere to the endocardial
surface. (B) Location of BGC electrode locations (A1-H8). (C) Location of UA electrode locations (a1-f6). Endocardial site R+ is shown as a red sphere and
R-as a green sphere. (D) Examples of electrograms from basket electrodes: Good Contact (BGC) and Poor Contact (BPC) with noise added; noise level
was 1 mV/ms for BGC and 0.5 mV/ms for BPC.
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filaments. PS density maps were computed using a custom Python
script that calculated the number of times a PS occurred at each
node within the simulation interval between 1 and 2 s. Since we
identified a relatively stable figure-of-eight reentrant pattern via
visual inspection, a k-means clustering algorithm was
implemented to identify two clusters corresponding to
clockwise (+) and counterclockwise (−) reentry on the
endocardial surface. The center of mass of these two clusters
were considered the locations of the two endocardial surface PS
locations, R+, and R-.

The algorithm for computing AcTs from the electrograms
was identical to that used for Vm with the exception that the sign
of the ‘derivative threshold’ was opposite; the value of ß was
100 m and the value of a was −1 mV/ms for BGC and
a = −0.5 mV/ms for BPC and UA. Due to the significant
differences between the morphology of Vm and ∅e signals, we
did not employ phase analysis for the algorithms to identify
activation patterns from the electrogram data. Instead we
developed very simple algorithms to identify focal (F) and
reentry (R) patterns using only AcTs. The algorithms include
two parameters (a ‘difference threshold’, δ in ms; and an interval,
γ in ms). We identified the presence of both F and R patterns at
each electrode location using the value of AcT at that site and the
AcTs of the eight surrounding electrode neighbors. A site was
classified as F if all the AcT differences of the 8 neighbors and the
central pixel were between -δ and γ+δ. A site was classified as R+
(R−) if there was a clockwise (counterclockwise) progression of
AcT’s along the path of the 8 neighboring electrodes including a
continuation of activation between beats; specifically, each of the
differences along the path had to be between -δ and γ+δ. These
pattern identification algorithms include the computation of
eight differences and we chose δ = 2 and γ = 100.

2.6 Addition of noise

Noise was included by adding uniformly distributed random
values to ∅e. We choose the level of noise to be equal to the
threshold value (a) which varied with electrode configuration (see
above) which is a level at or above clinical values (Unger et al., 2019)
although the effect of noise (as a factor of threshold) is included in
the Supplement. Recall that in the actual use of our proposed
framework the user will provide information on the actual level
of noise for their MS to the MSEF.

2.7 Performance analysis

Evaluation of AcTs was performed for the electrograms for both
BGC and BPC MSs by comparing to the corresponding values
computed from Vm. The acceptable level of difference in AcTs
between the MSs and simulation is unclear and may depend on the
activation pattern, therefore we introduce a “tolerance” variable
(Tol) and analyzed performance as a function of Tol. The ability of
each MS to identify AcTs was computed by identifying: 1) correctly
identified AcTs; and 2) spurious AcTs. In addition, the average RMS
of all correctly identified ACTs was computed. An “AcT

Performance Metric” (AcTPM) was computed to assess the
ability of a MS to identify AcTs:

AcTPM � fC p 1 − fS( ) p 100 (5)
where fC and fS are the fraction of correct and spurious AcTs,
respectively. A value of 100 indicates perfect performance.
Specifically, fC is computed as the number of AcTs for
simulated electrogram that are within Tol of a corresponding
AcT computed from Vm of the nearest endocardial site divided
by the total number ofVm AcTs from that site; and fS is computed as
the number of AcTs for a simulated electrogram that are not within
Tol of a corresponding AcT computed from Vm of the nearest
endocardial site divided by the total number of Vm AcTs from that
site (if fS is >1, then fS is set equal to 1).

Activation patterns (AcPs) were computed at each site using the
AcTs from the 3 × 3 array neighborhood and analyzed similarly and
were considered correct if they were localized within 100 ms and if the
distance to the true (x,y,z) location in the simulations was less than
1 cm. We define the temporal localization error (ET) as the difference
between the electrogram AcT at the centralized site and the
corresponding stimulation time (i.e., S1, S3, S4, S5) and the spatial
localization error (EX) is the Euclidean distance between the centralized
electrode location and the site identified as R+ or R-from the Vm

simulations (as described above). An ‘AcP Performance Metric’
(AcPPM) was computed to assess the ability of a MS to identify AcPs:

AcPPM � fC p 1 − fS( ) p 1 − fM( ) p 100 (6)
where fC and fS are the fraction of correct and spurious AcPs and fM
is the fraction of “misclassifications” defined as a wrong pattern type
for a beat (matching the identification criteria for the above temporal
and spatial distances of a different pattern). Specifically, a correct AcP
from a virtual electrode array was defined as the identification of the
identical pattern for the same beat for the “ground truth” (25 patterns:
1P, 6 R+, 6 R-, 6 F+, and 6 F-); and a spurious AcP from a virtual
electrode array was defined as the identification of a pattern that did
not correspond to the ground truth. AcTs and AcPs for BGC and BPC
were compared to those computed for the simulation results for
pacing, focal and reentrant patterns separately. In addition, the
average temporal (ET) and spatial (EX) localization errors of the
correctly identified and spurious AcPs were computed. Since the
definition of the correct identification of a pattern depends on a 1 cm
‘tolerance’ the value of EX is constrained (EX ≤ 1).

3 Results

3.1 High-resolution simulations

Figure 3 illustrates the initiation of the paced beat (Panel A) and
the location of the S2 stimulus whichwas applied 390 m after the paced
stimuli (Panel B). A snapshot of activity from 6 views is shown in
Figure 4 illustrating the figure-of-eight reentrant pattern. A video of the
simulation is provided as a Supplementary Material. The figure-of-
eight reentrant patterns from this simulation and focal patterns from
the second simulation on the endocardial surface are shown in Figure 5
with the computed centers of mass of R+ and R-displayed as grey
spheres. The location of these patterns in relation to the LA can be
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ascertained by viewing Figure 2A and the isochrone maps constructed
from the 8 × 8 grid of electrodes for BGC for paced, reentry and focal
activity in Figure 6. Similarly, isochronemaps constructed from the 6 ×
6 grid of electrodes for UA are shown in Figure 7.

3.2 Comparison of mapping system output
and simulation results

The average RMS value of the difference of AcTs computed from
Vm and∅e signals was less than 1 ms for all beats for all values of Tol

ranging from 0 to 100 ms for both BGC and BPC. In fact, all values
were below 0.24 ms except for the paced beat for BPC, for which the
average RMS was between 0.38 and 0.58 ms. The fact that all values
were less than 1 ms motivated the development of the novel
performance metrics presented in the Methods Section. AcTPM
and %S values are shown for BGC and BPC as a function of Tol for P,
R, and F patterns in Figure 8. As expected AcTPM was always larger,
and % S was always smaller, for BGC compared to BPC for all
activation patterns. The trend was for AcTPM values to increase and
% S values to decrease as Tol increased and reach plateau values with
these values being less for BPC compared to BGC, and highest for P

FIGURE 3
(A) small S1 site (radius of 0.5 cm) (B) large S2 site (radius of 1.0 cm). Transmembrane potential is represented with a blue-red color map such that
blue corresponds to −90 mV and red to +30 mV. The hole on the left in panel B is the fossa ovali (FO)s, the extensions represent pulmonary veins (PV) and
the left atrial appendage (LAA) is in the bottom right.

FIGURE 4
A snap shot of the reentry simulation in multiple view angles at 1,679 ms into simulation. Transmembrane potential is represented with a blue-red
color map such that blue corresponds to −90 mV and red to +30 mV.
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as compared to R and F for both BGC and BPC. The plateau for BGC
was reached at Tol = 2 ms, where the corresponding value for BPC
was Tol ≈ 10 ms. For BGC, the values forAcTPM for Tol = 2 ms were
100, 93.5 and 93.6 for P, R, and F respectively and the corresponding
values for %S were 0.2, 2.5, and 1.8. For BPC, the values for AcTPM
for Tol = 10 m were 84.9, 79.2 and 81.5 for P, R, and F respectively
and the corresponding values for % Swere 4.7, 2.0, and 3.9. Although
the average RMS values were always less than 1 ms, the RMS SD was
a function of Tol and was much greater for BPC compared to GC
(Figure 8C).

The ability of the MSs (BGC, BPC, and UA) to identify the one
paced (P) beat, the twelve reentrant (6 R+; 6 R-) patterns, and the
12 focal patterns (6 F+; 6 F-) are presented in Table 2. This
comparison was carried out for two values of δ (2 and 10 ms)
which corresponds to the values for which Tol reached plateau
values for BGC and BPC respectively. The P beat was not identified
for any MS (hence AcPPM = 0) with one misclassification and one
spurious patterns evident for BGC only. Only 1 of 6 R-beats were
identified for BGC (with 0 and 5 spurious patterns for δ = 2 and
10 m, respectively). Four (δ = 2 ms) or five (δ = 10 ms) of 6 R+
beats were identified by BGC and 2 of 6 for BPC (δ = 10 ms) while

5/6 were identified for UA; UA resulted in no spurious patterns
while there were 0 for both BGC and BPC (δ = 2 and 10 m); the
only misclassifications of R+ occurred for BGC, δ = 10 ms. Focal
beats were identified with temporal error less than 10 ms for BGC,
BPC, and UA, although only F+ beats were identified for UA
(which is consistent with its placement, see Figure 2C). Overall, F
beats were easier to identify than R beats for our simplified
algorithm.

Two factors that affect the ability of a MS to identify patterns on the
heart surface are: 1) the distance of the electrodes from the heart surface;
and 2) the density of the surface projection of the MS electrode sites.
These two values for each electrode are shown in Table 3 for BPC; the
first number is the distance of the electrode to the nearest endocardial
mesh node, and the second number is the average distance to the eight
nearest projected endocardial sites. The fact that the location for nearest
electrode for R+, F+ (E2) was closer and had a higher surface density
compared to the location of the nearest electrode for R-, F- (D4) is
consistent with the trend of better identification of + patterns sites
compared to—patterns. To demonstrate the effect of these factors, the
pattern identification algorithm described above was applied to the AcTs
computed from the noiselessVm signals. These values ofAcPPM forVm

FIGURE 5
Activation time isosurfaces with points of reentry (spheres) for (A) Reentry simulation (B) Focal simulation. Surface electrodes are marked by black
dots with spline label in white. The color bar represents the activation times for beat 2, red 500 ms and blue 970 ms.
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data were: P: 0 (1S); R+: 69; R-:14; F+: 83; F-:100 for δ = 2m. These
values are similar to BGC (δ = 2ms) suggesting that BGC performed
nearly as well as could be expected (except for F- suggesting that the
optimal electrode resolution might fall between E2 and D4, see Table 3).
The actual x,y,z location of R+ and F+ beats was located 0.52 cm from
the nearest surface site which corresponded to B7. The fact that electrode
B7 corresponds to a high surface projection density and a small electrode
to surface distance (0.18 cm) explains why F+ was the only activation
pattern identified by BPC (δ = 2ms).

4 Discussion

The success of an electrophysiological procedure to localize and
ablate arrhythmogenic sources in the heart depends on a variety of
interrelated factors such as: the patient’s heart geometry, disease
state, and arrhythmia; the number, type, and location of recording
electrodes; mapping system hardware and software (algorithms);
data display; and physician interpretation. These can be summarized
into four distinct categories as shown in Figure 1: 1) the heart; 2) the
mapping system; 3) the display; and 4) the physician.

In this manuscript we present a novel computational
framework that enables a rigorous evaluation of a mapping
systems ability to localize the arrhythmogenic sources and

their type (i.e., focal or reentrant), which spans categories 1)
and 2), via a blinded comparison with numerical simulations. As
far as we are aware, the only other similar study focused on a
computational framework for MS evaluation was by Bartolucci
et al., 2021 in which the results from two virtual catheters were
compared using simulations of a two-dimensional spiral wave
(Bartolucci et al., 2021). Here, activation times and patterns for
virtual ∅e signals were computed for simulations incorporating
three hypothetical MSs (BGC, BPC, and UA) and compared to
the corresponding high resolution Vm data from two simulations
containing paced (P), reentrant (R), and focal (F) patterns. We
introduce two novel ‘quantitative performance metrics’ (QPMs);
one for patterns (AcPPM) and one for activation times (AcTPM)
because RMS error was not indicative of performance. These
QPMs reflect the ability of the MS to identify AcTs and AcPs,
respectively by combining the number of correctly identified,
spurious, and misclassified AcTs and AcPs. Identifying “correct”
AcTs and AcPss from electrogram data requires choosing “error
tolerances” for continuous variables and these choices most
likely will impact the QPMs. Therefore, we believe it is
important to be transparent and clear regarding these error
tolerance choices. The choices in this work are the threshold
derivative for virtual ∅e AcTs (a); AcT similarity tolerances (Tol
and δ); an interval threshold for neighboring AcT to ensure they

FIGURE 6
Isochrone maps of paced (A), reentrant (B) and focal (C) activation patterns computed from 8 × 8 grid of electrodes for BGC.
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are part of the same wavefront (γ); as well as distance (1 cm) and
time (100 ms) thresholds when comparing patterns to the
simulations. Each of these “tolerance parameters” (TPs) will
affect the performance evaluation (see Table 3); therefore we
suggest identifying the sensitivity of the QPMs to these TP
values. In addition, these TPs could be constrained based on
important clinical factors (e.g., ablation lesion size). We believe
that much further work is required to identify the best QPMs
and TPs for a computational framework for clinical MS
evaluation. Regardless of the choices, we believe that the ideal
computation of QPMs should include an analyses of the
sensitivity to TPs and relevant simulation parameters (e.g.,
noise) as well as the consideration of uncertainty (including
measurement uncertainty).

It is well understood that the specific activation patterns in the
heart are dependent on the underlying mechanism of the patient’s
arrhythmia and that the corresponding sources can be either focal or
reentrant, which can be difficult to distinguish with a limited
number of electrogram recordings (Li et al., 2020). In addition,
comparison studies involving retrospective analyses of clinical data
have shown both similar (Alhusseini et al., 2017; Podziemski et al.,
2018; Swerdlow et al., 2019) and disparate (Luther et al., 2017; Anter
et al., 2018) results regarding mapping system algorithms. A
computational approach to MS evaluation will aid in not only
making these issues transparent but also in providing a
framework to quantify these effects. The fact that BGC and
simple algorithms performed poorly in identifying AcPs (see
Table 2) was the result of inadequate sampling capture patterns
as demonstrated by similar results when analyzing the nearest
64 transmembrane signals.

As expected, we found that the following two issues were the
primary factors contributing to the ability of a mapping system to
correctly identify activation patterns: 1) the distance from the
electrodes to the heart surface; 2) the physical location of each
activation pattern in relation to the density of the projection of
the electrodes onto the heart surface. This finding is consistent
with previous studies. For example, Alessandrini et al. computed
extracellular electrograms during simulated AF in a patient-
specific LA using models of grid catheters as well as
realistically deformed basket catheters (Alessandrini et al.,
2018). They found that computed maps of rotor tip trajectory
density correctly identified and located the virtual rotors
(deviation <10 mm) only for catheter recordings of sufficient
resolution (inter-electrode distance ≤3 mm) and proximity to the
wall (≤10 mm). In addition, Roney et al., performed simulations
to estimate the minimum number of measurement points
required to correctly identify the underlying AF mechanism
and found that the spatial resolution required for correct
identification of rotors and focal sources was a linear function
of spatial wavelength (the distance between wave fronts) of the
arrhythmia (Roney et al., 2017a). They also found that all clinical
high-resolution multipolar catheters are of sufficient resolution
to accurately detect and track rotors when placed over the rotor
core, although the low-resolution basket catheter was prone to
spurious detections and may incorrectly identify rotors that are
not present (Roney et al., 2017a). Martinez-Mateu et al.
(Martinez-Mateu et al., 2019) also identified two different
types of ‘phantom rotors’ associated with basket catheters due
to the far-field sources and to the interpolation between the
electrodes and found that the ability to detect rotors depended
on the basket’s position and the distance between the electrodes
and the heart surface.

The goal in this study was to develop a framework for
evaluating MSs, therefore the choice of QPMs are most likely
not be optimal, in part due to a variety of limitations. First, the
specific comparison analyses presented here depend on: 1) the
electrode configuration; 2) the simple MS algorithms we
employed; 3) the noise level as well as its spatial uniformity
and 4) the specific type and location of electrical patterns in the
simulations as well as the choice of cell model (e.g., including
“remodeling” may be appropriate for simulating AF (Heijman
et al., 2021)). For this pilot study the RMS error of AcTs was less
than 1 ms indicating that activation pattern reconstruction of
electrograms will be similar to those computed from “down
sampling” the transmembrane action potentials from the
endocardial surface. AcTs may not correspond well to action
potential depolarization during situations in which propagation
is abnormal (e.g., at sites of fractionization during persistent AF).
More sophisticated MS algorithms than those used here that
include spatial and temporal interpolation might improve the
identification of AcPs, although care must be taken to interpolate
phase values correctly (Roney et al., 2017a; Jacquemet, 2018).
Incidentally, our simple MS algorithms did not include any phase
calculations; preliminary tests to identify patterns using phase
showed decreased performance in identifying reentry compared
to the algorithms presented here based on AcTs only. Second, the
simulations presented here were carried out using an isotropic
left atrium (only) derived from a healthy male. A computational

FIGURE 7
Isochrone maps of paced (A), reentrant (B) and focal (C)
activation patterns computed from 6 × 6 grid of electrodes for UA.
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study by Jacquemet et al. (Jacquemet et al., 2003) provides insight
into the impact of atria structure on electrogram morphology:
they concluded that regardless of anisotropy, wavefront collisions
are not the basis of multiphasic electrograms during AF. Third,
we implemented a specific “basket-like” geometry which does not
capture certain aspects of the clinical situation (Laughner et al.,
2016; Oesterlein et al., 2016; Honarbakhsh et al., 2017). Fourth,
this study ignored electrogram morphology and only considered
the time of activations (i.e., only AcTs were computed using a
simple threshold of maximum derivative); in order to support the

practical usefulness of this framework to incorporate electrogram
morphology validation of virtual electrode signals with clinical
signals would be required. Nevertheless, our study includes a
quantitative comparison of three hypothetical electrode
configurations with the same reference standard
(i.e., simulation results) and the same MS algorithms.

A very important question is “How well do the Quantitative
Performance Metrics (QPMs) of a MS, resulting from
challenging the MS with simulated electrograms from
computer simulations, predict real-world performance of the

FIGURE 8
Comparison of activation times between virtual mapping systems BGC and BPC and simulations. (A) Activation time performance metric (AcTPM)
defined in Eq. 5 as a function of tolerance (Tol). (B) Percentage of spurious AcTs as a function of Tol. (C) RMS standard deviation (SD) as a function of Tol.

TABLE 2 Value of ACPPM of Paced (P), Reentrant (R), and Focal (F) patterns, with temporal (ET) and spatial (EX) errors as a function of δ; when ACPPM = 0, the
number of spurious (S) and misclassifications (M) are presented.

AcPPM (%) P: (EX cm; ET ms) R+: (EX cm) R-: (EX cm) F+: (EX cm; ET ms) F-: (EX cm; ET ms)

BGC (δ = 2) 0 1S, 1M 67 (0.52) 17 (0.63) 83 (0.52; 0.0) 50 (0.63; 5.7)

BPC (δ = 2) 0 0S, 0M 0 0S, 0M 0 0S, 0M 83 (0.5; 0.0) 0 0S, 0M

BGC (δ = 10) 0 1S, 0M 69 (0.47) 2.3 (0.63) 69 (0.52; 0.0) 83 (0.68; 7.3)

BPC (δ = 10) 0 0S, 0M 33 (0.41) 0 0S, 0M 69 (0.57; 1.7) 83 (0.83; 9.4)

UA (δ = 2) NA 0S, 0M 83 (0.34) NA 0S, 0M 83 (0.37; 0.0) 0 (NA)

UA (δ = 10) NA 0S, 0M 83 (0.37) NA 0S, 0M 69 (0.47; 2.2) 0 (NA)
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same MS in the intended use population?” Ideally, this would be
addressed by performing validation of the MSEF Framework.
This would involve comparing conclusions from MSEF MS
evaluation with conclusions from clinical MS evaluation.
However, we expect this approach to be very difficult and
possibly unethical.

FDA is responsible for ensuring the reasonable assurance of
safety and effectiveness of medical products in the United States
using the following definition of effectiveness defined in Section
860.7(e) (1) of the Code of Federal Regulations: “There is reasonable
assurance that a device is effective when it can be determined, based
upon valid scientific evidence, that in a significant portion of the
target population, the use of the device for its intended uses and
conditions of use, when accompanied by adequate directions for use
and warnings against unsafe use, will provide clinically significant
results.” We believe that this study represents a major step in
establishing appropriate performance criteria for MSs using a
computational simulation framework. However, discussions with
the MS and clinical community regarding appropriateness,
justification, and validation will help further refine the framework
and next steps in development of MSEF tools such as generating an
appropriate library of computational simulations; identifying and
standardizing appropriate performance metrics; validating the
approach; and automating the steps identified in Table 1.

Our MSEF is based on well-established scientific methods
and provides results in the form of two new performance
metrics. We believe that our MSEF provides significant new
information to aid in the performance evaluation of cardiac
mapping systems which is necessary to assess effectiveness.
The results can be used to identify the performance of a specific
mapping system as a function of a variety of variables, and due
to the use of computer simulations the framework is flexible to
account for a multitude of inter-related factors that depend of
the context of use of the system. Identifying the number and
type of simulations to include in the library is extremely
challenging; ideally they would represent the geometry,
patterns, and electrogram morphology representative of the
patient population of interest. Incidentally, the framework can
incorporate simulation results from a combination of super

computers, graphical processing units (Kaboudian et al., 2010),
or desktop computers (Pathmanathan and Gray, 2015;
Galappaththige et al., 2019), depending on the level of
desired fidelity. Overall, our results demonstrate the
feasibility of a computational framework as a method for
quantitatively evaluating the performance of mapping
system algorithms that compute activation time and/or
analyze activation patterns.
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TABLE 3 Distance between electrodes for BPC and endocardial surface (in cm), average distance of 8 nearest neighbors of 64 projected endocardial sites (in cm).
Electrodes near the poles of the sphere do not have 8 neighbors so the second value is undefined (NA).

A B C D E F G H

1 0.12, NA 0.06, NA 0.04, NA 0.09, NA 0.16, NA 0.19, NA 0.21, NA 0.19, NA

2 0.29, 0.65 0.14, 0.65 0.13, 0.74 0.17, 0.85 0.18, 0.88a 0.21, 0.86 0.32, 0.91 0.37, 0.77

3 0.50, 1.48 0.30, 1.17 0.30, 1.14 0.27, 1.10 0.23, 1.10 0.26, 1.12 0.42, 1.4 0.62, 1.76

4 0.63, 1.89 0.37, 1.57 0.46, 1.60 0.43, 1.61b 0.37, 1.64 0.43, 1.58 0.52, 1.73 0.68, 2.14

5 0.42, 1.27 0.30, 1.43 0.62, 2.10 0.57, 1.80 0.47, 1.61 0.33, 1.40 0.35, 1.20 0.43, 1.31

6 0.24, 1.05 0.39, 1.56 0.60, 1.61 0.39, 1.17 0.28, 0.99 0.19, 0.99 0.18, 0.95 0.23, 1.01

7 0.14,0.82 0.30, 0.95 0.38, 0.96 0.26, 0.81 0.16, 0.79 0.09, 0.77 0.07, 0.77 0.10, 0.77

8 0.1, NA 0.18, NA 0.21, NA 0.17, NA 0.11, NA 0.05, NA 0.04, NA 0.05, NA

aSurface electrode nearest to R+ and F+ location.
bSurface electrode nearest to R- and F- location.

surface electrode nearest to P location.

Frontiers in Physiology frontiersin.org12

Galappaththige et al. 10.3389/fphys.2023.1074527

364

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1074527


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The mention of commercial products, their sources, or
their use in connection with the material reported herein is

not to be construed as either an actual or implied endorsement
of such products by the Department of Health and Human
Services.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2023.1074527/
full#supplementary-material

SUPPLEMENTARY FIGURE S1
Effect of noise on the comparison of activation times between virtual
mapping systems BGC and BPC and simulations (black: no noise; red:
noisex2; green: noisex3). (A) Activation time performance metric (AcTPM)
defined as a function of tolerance (Tol). (B) Percentage of spurious AcTs as a
function of Tol. (C) RMS standard deviation (SD) as a function of Tol.
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Development and validation of a
novel nomogram for predicting
recurrent atrial fibrillation after
cryoballoon ablation
Yue Wei†, Changjian Lin†, Yun Xie, Yangyang Bao, Qingzhi Luo,
Ning Zhang* and Liqun Wu*

Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China

Background: Few studies have explored the use of machine learning models to
predict the recurrence of atrial fibrillation (AF) in patients who have undergone
cryoballoon ablation (CBA). We aimed to explore the risk factors for the recurrence
of AF after CBA in order to construct a nomogram that could predict this risk.
Methods: Data of 498 patients who had undergone CBA at Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, were retrospectively collected. Factors such
as clinical characteristics and biophysical parameters during the CBA procedure were
collected for the selection of variables. Scores for all the biophysical factors—such as
time to pulmonary vein isolation (TTI) and balloon temperature—were calculated to
enable construction of the model, which was then calibrated and compared with
the risk scores.
Results: A 36-month follow-up showed that 177 (35.5%) of the 489 patients
experienced AF recurrence. The left atrial volume, TTI, nadir cryoballoon
temperature, and number of unsuccessful freezes were related to the recurrence
of AF (P < .05). The area under the curve (AUC) of the nomogram’s
time-dependent receiver operating characteristic curve was 77.6%, 71.6%, and
71.0%, respectively, for the 1-, 2-, and 3-year prediction of recurrence in the
training cohort and 77.4%, 74.7%, and 68.7%, respectively, for the same
characteristics in the validation cohort. Calibration and data on the nomogram’s
clinical effectiveness showed it to be accurate for the prediction of recurrence in
both the training and validation cohorts as compared with established risk scores.
Conclusion: Biophysical parameters such as TTI and cryoballoon temperature have a
great impact on AF recurrence. The predictive accuracy for recurrence of our
nomogram was superior to that of conventional risk scores.

KEYWORDS

atrial fibrillation, cryoballoon ablation, nomogram, prediction model, post-ablation

recurrence

Introduction

Pulmonary vein isolation (PVI) is the cornerstone of efforts to ablate atrial fibrillation

(AF). Cryoballoon ablation (CBA), designed especially for PVI, is now established as a

standard treatment for symptomatic drug-resistant AF. However, there remain some 30%

of patients for whom this procedure is ineffective (1). Many scores based on clinical

characteristics have been created in efforts to assess the risk of AF recurrence, but their

predictive accuracy is limited and variables in some scores are difficult to obtain (2, 3).

Biophysical parameters during CBA—such as time to PVI (TTI), balloon temperature,
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and number of unsuccessful freezes—have been identified as

associated with the durability of PVI (4). Accordingly, we

speculated that those biophysical parameters were related to the

recurrence of AF after CBA and that a predictive model based

on them could be more useful than dependence on conventional

risk scores.

We therefore aimed to (1) prove that biophysical parameters

during CBA could be used as variables in the prediction of AF

recurrence, and (2) develop and validate a nomogram for the

prediction of recurrence after CBA.
Methods

Study population

We recruited 498 consecutive AF patients who had undergone

CBA between January 2017 and July 2019 at Ruijin Hospital,

Shanghai Jiaotong University School of Medicine. Preoperative

cardiac ultrasound and computed tomography angiography

(CTA) of left atrium (LA) were performed. The inclusion criteria

specified that these patients had to be between the 18 and 80

years of age and experiencing symptoms of AF, in whom PVI by

CBA was well indicated and successful PVI was considered as

the main endpoint of the procedure, and that they had to have

failed or refused a prescription of at least one antiarrhythmic

drug (AAD). The exclusion criteria included the following: (1)

prior LA ablation, (2) a LA diameter greater than 50 mm, (3)

experience of a myocardial infarction with the prior 3 months,

(4) a stroke or transient ischemic attack within the prior 6

months, (5) valvular AF, and (6) inability or refusal to accept

postinterventional oral anticoagulation (OAC).
Ablation procedure

Before ablation, AADs with the exception of amiodarone were

discontinued for at least 5 half-lives; amiodarone was

discontinued for at least 14 days. OAC was continued.

Transesophageal echocardiography was required within 3 days

of the procedure to assess for a left atrial thrombus. During the

procedure, patients were under conscious anesthesia and

monitored for their vital signs. Heparin was administered

intravenously with a bolus and the activated clotting time

(ACT) was monitored and maintained for more than 300 s. A

decapolar catheter was placed in the coronary sinus, with a

duopolar catheter in the right ventricular apex for backup

pacing. The LA was accessed with a steerable sheath (FlexCath

Advance, Medtronic, Minneapolis, MN, USA), through which

the CB (Arctic Front Advance, Medtronic) and circular catheter

(Achieve 20 mm, Medtronic) were placed in the LA. Attempts

were made to record the pulmonary venous potential (PVP) in

each PV. We performed a TTI-based ablation protocol. The

dosing of CBA was as follows:

1. If the PVP was recorded and the TTI was less than 60 s, the

duration of CBA was between TTI + 90 s and TTI + 120 s at
Frontiers in Cardiovascular Medicine 02368
the operator’s discretion, and a bonus CBA of 120 s was

applied.

2. If the TTI was between 60 s and 90 s, the duration of CBA was

180 s and a bonus CBA of 120 s was applied.

3. If PVI was not achieved within 90 s, CBA was abandoned and

the balloon was repositioned for a subsequent CBA.

4. If the PVP was not recorded during CBA, an empiric CBA was

delivered for 120 s. If PVI was achieved after this CBA, a bonus

of between 160 s and 180 s was applied; if not, the balloon was

repositioned for a subsequent CBA.

During the bonus application (point 4), the operators were

encouraged to change the balloon’s position and orientation by

placing the Achieve catheter in a different PV branch. If the

nadir temperature of the balloon was equal to or less than −55°C
and the duration of ablation was less than 120 s, the CBA was

stopped in advance and the balloon repositioned for a

subsequent CBA. If the nadir temperature was equal to or less

than −55°C and the duration of ablation was already above 120

s, CBA was ceased in advance and no additional CBA was given.

During the CBA of right-sided PVs, phrenic movement was

monitored by continuous phrenic nerve stimulation with a

catheter positioned in the superior vena cava. Complete PVI was

considered a bidirectional conduction block between LA and PV.

Cardioversion was applied when the heart rhythm was still AF

following completion of CBA.
Data collection

The data were collected for analysis including: (1) Basic

demographics; (2) Imaging result of LA diameter was derived

from echocardiography by measuring the anteroposterior

diameter of LA from the parasternal transverse axis. Left

ventricular ejection fraction was measured by Simpson’s biplane

method. LA Volume (LAV) was derived from CTA. The original

scanned images were processed by the in-built software of the

CT for the construction of the three-dimension model of the LA

and PVs. PVs were removed from the three-dimension model

and the LAV was calculated automatically. (3) peri-procedural

characteristics such as recording of PVP, TTI, balloon

temperature during cryoablation.
Follow-up

All patients were hospitalized with rhythm monitored by

telemetry for 3 continuous days after CBA. Patients were

followed up with 24-h Holter electrocardiogram every 3 months

over the first year and every 6 months thereafter. OAC was

continued for at least 8 weeks and prescription of AADs was

allowed during the blanking period at the discretion of the

clinical cardiologist. AF recurrence was defined as atrial

arrhythmia persisting more than 30 s—including AF, atrial

flutter, or atrial tachycardia—beyond a 90-day blanking period

(the period during which recurrence is considered clinically

insignificant). In patients with symptoms suggestive of PV
frontiersin.org
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stenosis or in those undergoing a CBA procedure, CT of the LA

and PV was performed to exclude PV stenosis.
Statistical analysis

Statistical analyses were performed using SPSS 24.0 (IBM Inc.,

Chicago, IL, USA), X-tile 3.6.1, and R (version 4.0.2; R Foundation

for Statistical Computing, Vienna, Austria) software. Continuous

data are presented as means with standard deviation, and

categorical variables are given as numbers and percentages.

Student’s t-test and the chi-square test were used to compare

clinical characteristics and variables as appropriate. Survival free

from atrial arrhythmia was estimated by the Kaplan-Meier

method and compared by log-rank tests. Cox proportional

hazards models were used to derive hazard ratios and the

corresponding confidence intervals.

All 498 patients were randomly divided into a training cohort

and a validation cohort (7:3) based on complete data. The training

cohort was used to develop the model, and the validation cohort

was applied to validate the model. We used a forward + backward

stepwise elimination approach to identify predictive variables for

the model. Least absolute shrinkage and selection operator

regression was also applied in the predictor’s selection to examine

the importance of predictive variables selected by stepwise

regression analysis. Based on the selected predictive variables, the

Cox regression model was developed and presented as the

nomogram. We assessed the predictive accuracy of the nomogram

after discrimination and calibration. To quantify the

discrimination performance of the nomogram, Harrell’s C-index

was measured. Calibration curves, accompanied by the Hosmer-

Lemeshow test, were plotted to assess the nomogram’s calibration.

To assess the nomogram’s performance, the Cox regression

formula developed in the training cohort was then applied in the

validation cohort and predicted survival was calculated.
TABLE 1 Baseline clinical characteristics.

All patients (n = 498) No rec
Age (year) 59.9 ± 10.3

Sex (Male) 63.9%

Body mass index (kg/m2) 24.6 ± 3.0

Months since first AF diagnosis 37.9 ± 36.0

Persistent AF 29.5%

Hypertension 54.6%

Diabetes mellitus 10.6%

Coronary artery disease 10.6%

Heart failure 0.6%

Previous Stroke/TIA 1.2%

Left atrial diameter 40.2 ± 4.0

LVEF 65.9 ± 5.3

Left atrial volume 115.4 ± 38.9

CHA2DS2VASc score 1.7 ± 1.4

BASE-AF2 1.3 ± 1.1

SCALE-CryoAF 2.1 ± 2.4

CAAP-AF 3.9 ± 1.5

MBLATER 1.2 ± 0.9

AF, Atrial fibrillation; TIA, transient ischemic attack; LVEF, left ventricular ejection fract
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We analyzed the following risk scores specifically developed for

the prediction of AF recurrence post-CBA: CHA2DS2-VASc,

SCALE-CryoAF, MB-LATER, CAAP-AF, and BASE-AF2. DeLong’s

test was used to compare the C-index of the nomogram and the

scores in the training and validation cohorts. Time-dependent

receiver operating characteristic (ROC) curve was evaluated and the

area under curve (AUC) was calculated for the discriminative

power of the nomogram and the scores. In addition, we performed

a decision curve analysis of the monogram and the two scores.

All P values were two-sided, with P < . 05 indicating statistical

significance. C-index, calibration curve, nomogram, and

bootstrapping validation were calculated or formulated using the

rms and risk regression packages in R.
Results

Patients’ baseline demographics

As shown in Table 1, the mean age of our 498 patients was 59.9

years; 63.9% were male, 36.1% were female, and 29.5% of the total

had persistent AF. We analyzed the clinical baseline characteristics

of patients with and without recurrence and found that there was

no difference in terms of age, gender, AF diagnosis time, or AF-

related comorbidities. Compared with patients without

recurrence, patients with recurrence had a higher percentage of

persistent AF, larger LA, and higher clinical score.
Stratification of patients according to
procedural and biophysical characteristics

Compared with patients without long-term recurrence, patients

with long-term recurrence had longer procedural and LA dwell

times as well as higher fluoroscopic doses. In patients without
urrences (n = 321) Recurrences (n= 177) P value
59.8 ± 10.5 60.1 ± 10.0 0.769

66.7% 58.8% 0.079

24.6 ± 3.1 24.7 ± 2.8 0.594

35.7 ± 34.7 41.7 ± 38.1 0.076

22.7% 41.8% <0.001

52.6% 58.2% 0.234

11.8% 8.5% 0.244

11.2% 9.6% 0.577

0.6% 0.6% 0.936

1.6% 0.6% 0.331

39.8 ± 3.7 41.1 ± 4.5 <0.001

66.0 ± 5.3 65.6 ± 5.2 0.407

110.4 ± 31.9 124.3 ± 47.9 <0.001

1.7 ± 1.4 1.7 ± 1.3 0.781

1.1 ± 1.0 1.7 ± 1.0 <0.001

1.5 ± 1.9 3.3 ± 2.6 <0.001

3.7 ± 1.5 4.2 ± 1.5 <0.001

0.9 ± 0.7 1.5 ± 1.0 <0.001

ion.
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recurrence, PVP was more frequently recorded; average TTI was

shorter, and there were fewer unsuccessful freezes. Regarding

each PV, it was noticed that the balloon temperature at 30 s

during successful CBA (Temp30), the balloon temperature at 60 s

(Temp60), and the nadir balloon temperature (Tempnadir) were

significantly lower and TTI was significantly shorter in patients
TABLE 2 Procedure-related biophysical characteristics and data.

All patients (n = 49
Procedure duration (min) 85.3 ± 33.2

LA dwell time (min) 61.0 ± 29.7

Fluoroscopy time (min) 13.3 ± 6.0

Radiation dose (mGray) 286.4 ± 192.1

Number of PV with real-time recording of PV electrogram 2.5 ± 1.2

Average TTI 38.4 ± 10.4

Total number of freezes 10.0 ± 2.7

Total number of unsuccessful freezes 2.4 ± 2.4

LSPV
Total number of freezes 2.9 ± 1.4

Number of unsuccessful freezes 0.9 ± 1.3

Total duration of freezes 399 ± 163.2

Average duration of freezes 142.7 ± 18.5

Temp30 (°C) −29.9 ± 4.4

Temp60 (°C) −40.4 ± 4.8

Tempnadir (°C) −47.1 ± 5.0

Real-time recording of PV electrogram 78.7%

TTI 42.5 ± 16

LIPV
Total number of freezes 2.3 ± 0.9

Number of unsuccessful freezes 0.4 ± 0.7

Total duration of freezes 339.1 ± 118

Average duration of freezes 152.2 ± 18.1

Temp30 (°C) −28.7 ± 3.9

Temp60 (°C) −37.7 ± 4.2

Tempnadir (°C) −43.2 ± 4.7

Real-time recording of PV electrogram 66.3%

TTI 35.8 ± 15.3

RSPV
Total number of freezes 2.5 ± 1.0

Number of unsuccessful freezes 0.5 ± 1.0

Total duration of freezes 327.1 ± 124.1

Average duration of freezes 136.6 ± 19.8

Temp30 (°C) −31.8 ± 4.6

Temp60 (°C) −42.2 ± 5.2

Tempnadir (°C) −49.5 ± 5.7

Real-time recording of PV electrogram 61.7%

TTI 33.8 ± 15

RIPV
Total number of freezes 2.4 ± 1.2

Number of unsuccessful freezes 0.5 ± 1.1

Total duration of freezes 333.6 ± 144.1

Average duration of freezes 143.0 ± 22.1

Temp30 (°C) −30.2 ± 4.9

Temp60 (°C) −39.8 ± 5.2

Tempnadir (°C) −46.3 ± 6.3

Real-time recording of PV electrogram 52.8%

TTI 38.9 ± 15.1

LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; RSPV, right super

isolation; Temp30, Temperature of CB at 30 s; Temp60, Temperature of CB at 60 s; Te
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without recurrence. Details of the biophysical characteristics are

shown in Table 2.

Stratification of the balloon temperature and TTI of each PV was

performed by X-tile and the optimal cutoff values were determined

(Table 3). Scores corresponding to Temp30, Temp60, Tempnadir, and

TTI were calculated by counting the number of PVs achieving the
8) No recurrences (n = 321) Recurrences (n = 177) P value
81.2 ± 29.2 92.6 ± 38.4 0.001

58.2 ± 26.8 66.1 ± 33.8 0.005

12.3 ± 5.3 15.1 ± 6.7 <0.001

270.4 ± 185.1 315.3 ± 201.4 0.014

2.7 ± 1.1 2.1 ± 1.2 <0.001

36.7 ± 9.6 41.7 ± 11.1 <0.001

9.9 ± 2.5 10.2 ± 3.0 0.283

2.1 ± 2.4 2.8 ± 2.5 0.007

2.7 ± 1.3 3.2 ± 1.6 <0.001

0.7 ± 1.2 1.2 ± 1.5 <0.001

379.2 ± 145.4 435.3 ± 186.7 <0.001

144.9 ± 18.3 138.8 ± 18.2 0.001

−30.3 ± 4.2 −29.3 ± 4.6 0.010

−40.9 ± 4.5 −39.4 ± 5.1 0.001

−47.5 ± 4.9 −46.4 ± 5.0 0.020

84.7% 67.8% <0.001

41.7 ± 16.1 44.5 ± 15.7 0.773

2.3 ± 0.9 2.1 ± 0.8 0.005

0.4 ± 0.8 0.3 ± 0.6 0.256

351.4 ± 113.1 316.6 ± 123.6 0.002

153.0 ± 17.3 150.7 ± 19.5 0.180

−29.3 ± 3.7 −27.5 ± 3.8 <0.001

−38.5 ± 4.0 −36.2 ± 4.2 <0.001

−43.9 ± 4.5 −41.8 ± 4.7 <0.001

72.3% 53.4% 0.001

33.5 ± 14.6 41.3 ± 15.6 <0.001

2.5 ± 1.0 2.5 ± 1.1 0.963

0.5 ± 1.0 0.6 ± 0.9 0.294

327.4 ± 121.5 326.5 ± 129.2 0.937

136.3 ± 18.9 137.2 ± 21.4 0.625

−32.6 ± 4.5 −30.2 ± 4.5 <0.001

−43.2 ± 4.9 −40.3 ± 5.3 <0.001

−50.7 ± 5.0 −47.2 ± 6.3 <0.001

69.8% 46.9% <0.001

32.0 ± 13.8 38.7 ± 16.8 <0.001

2.4 ± 1.1 2.4 ± 1.3 0.925

0.5 ± 1.0 0.6 ± 1.1 0.246

332.9 ± 131.6 334.8 ± 164.8 0.891

143.0 ± 22.7 142.9 ± 20.9 0.977

−31.0 ± 4.9 −28.9 ± 4.6 <0.001

−40.7 ± 5.2 −38.3 ± 4.9 <0.001

−47.3 ± 6.2 −44.5 ± 6.1 <0.001

59.2% 41.2% <0.001

37.7 ± 15.4 42.1 ± 13.9 0.032

ior pulmonary vein; RIPV, right inferior pulmonary vein; TTI, time to pulmonary vein

mpnadir, nadir temperature of CB.
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TABLE 3 Cutoff value of balloon temperature and TTI of each PV.

Cutoff value X2 P value

LSPV
TTI 48 s 9.872 0.039

Temp30 −26°C 6.957 0.138

Temp60 −36°C 14.470 0.005

Tempnadir −47°C 9.872 0.039

LIPV
TTI 40 s 30.517 <0.001

Temp30 −27°C 38.682 <0.001

Temp60 −36°C 38.063 <0.001

Tempnadir −40°C 32.291 <0.001

RSPV
TTI 40 s 17.379 0.001

Temp30 −31°C 23.333 <0.001

Temp60 −42°C 33.126 <0.001

Tempnadir −47°C 50.187 <0.001

RIPV
TTI 39 s 12.664 0.011

Temp30 −28°C 19.176 0.001

Temp60 −37°C 24.695 <0.001

Tempnadir −43°C 25.483 <0.001

TABLE 4 Distribution of patients with number of PVs with real-time
recording of PV potential, TTI score, balloon temperature scores and
number of unsuccessful freezes.

All patients
(n = 498)

No Recurrences
(n = 321)

Recurrences
(n = 177)

P
value

Number of PVs with real-time recording of PV potential
0 21 (4.2%) 4 (1.2%) 17 (9.6%) <0.001

1 69 (13.9%) 31 (9.7%) 38 (21.5%)

2 131 (26.3%) 73 (22.7%) 58 (32.8%)

3 147 (29.5%) 111 (34.6%) 36 (20.3%)

4 130 (26.1%) 102 (31.8%) 28 (15.8%)

TTI score
0 80 (16.1%) 16 (5%) 64 (36.2%) <0.001

1 143 (28.7%) 82 (25.5%) 61 (34.5%)

2 129 (25.9%) 99 (30.8%) 30 (16.9%)

3 103 (20.7%) 85 (26.5%) 18 (10.2%)

4 43 (8.6%) 39 (12.1%) 4 (2.3%)

Score of Temp30
0 28 (5.6%) 8 (2.5%) 20 (11.3%) <0.001

1 66 (13.3%) 31 (9.7%) 35 (19.8%)

2 104 (20.9%) 57 (17.8%) 47 (26.6%)

3 151 (30.3%) 105 (32.7%) 46 (26%)

4 149 (29.9%) 120 (37.4%) 29 (16.4%)

Score of Temp60
0 23 (4.6%) 4 (1.2%) 19 (10.7%) <0.001

1 69 (13.9%) 30 (9.3%) 39 (22%)

2 111 (22.3%) 59 (18.4%) 52 (29.4%)

3 149 (29.9%) 110 (34.3%) 39 (22%)

Wei et al. 10.3389/fcvm.2023.1073108
cutoff value; these ranged from 0 to 4. Number of PVs with real-time

recording of PVP and number of unsuccessful freezes were counted

and analyzed. The results are shown in Table 4.

4 146 (29.3%) 118 (36.8%) 28 (15.8%)

Score of Tempnadir
0 36 (7.2%) 9 (2.8%) 27 (15.3%) <0.001

1 59 (11.8%) 24 (7.5%) 35 (19.8%)

2 108 (21.7%) 72 (22.4%) 36 (20.3%)

3 176 (35.3%) 120 (37.4%) 56 (31.6%)

4 119 (23.9%) 96 (29.9%) 23 (13%)

Number of unsuccessful freezes
0 122 (24.5%) 89 (27.7%) 33 (18.6%) <0.001

1 105 (21.1%) 75 (23.4%) 30 (16.9%)

2 90 (18.1%) 61 (19%) 29 (16.4%)

≥3 181 (36.3%) 96 (29.9%) 85 (48%)
Long-term outcome after cryoballoon
ablation and risk stratification by score

AF recurrence was seen in 177 of the total number of 498

patients. The Kaplan–Meier estimated AF-free survival was 77.4%

at 1 year, 68.7% at 2 years, and 60.5% at 3 years. Kaplan–Meier

AF-free survival curves with regard to the TTI score, the balloon

temperature score (Temp30, Temp60, Tempnadir), the PV number

with real-time recording of PVP, and the number of unsuccessful

freezes are presented in Figure 1. These variables showed

predictive ability for recurrence. Thus, our results support the

idea that these factors can be useful for risk stratification and for

the prediction of outcome after CBA for AF.
Factor selection and nomogram
construction

We randomly allocated 69% (342) of our patients to the training

cohort and the remaining 31% (156) to the validation cohort. There

were 123 (36.0%) patients in the training cohort and 52 (33.3%) in

the validation cohort who experienced recurrence after CBA. There

were no significant differences between the training and validation

cohorts regarding preoperative baseline and ablation characteristics

(Supplementary Table S1).

Stepwise regression analysis and multivariate Cox regression

revealed that the LAV, TTI score, Tempnadir score, and number

of unsuccessful freezes were identified as significant independent
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risk factors for AF recurrence (Supplementary Table S2 and

Table 5). The nomogram based on these four factors from the

training cohort was developed for the prediction of 1-, 2-, and 3-

year AF-free survival. The total score, obtained by adding the

scores for each of the four factors, was predictive of the 1-, 2-,

and 3-year AF-free survival for each individual patient in the

training cohort (Figure 2).
Validation and calibration of the nomogram

ROC curves were used to evaluate the nomogram’s predictive

ability for 1-, 2-, and 3-year AF-free survival in both the training

and validation cohorts. Our nomogram demonstrated good

discriminative ability in both the training cohort (1-year AUC,

82.1%; 2-year AUC, 79.3%; 3-year AUC, 76.2%) and the

validation cohort (1-year AUC, 78.6%; 2-year AUC, 71.9%, 3-

year AUC, 75.7%) for AF-free survival rates (Figure 3). In
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FIGURE 1

Kaplan-Meier AF-free survival according to different criteria. (A) Number of PVs with real-time recording of PVP; (B) TTI score; (C) Temp30 score; (D)
Temp60 score; (E) Tempnadir score; (F) Number of unsuccessful freezes. PVP: pulmonary venous potential; TTI score: number of PVs achieving the
cutoff value of TTI; Temp30 score: number of PVs achieving the cutoff value of balloon temperature at 30 s; Temp60 score: number of PVs achieving
the cutoff value of balloon temperature at 60 s; Tempnadir score: number of PVs achieving the cutoff value of nadir balloon temperature.

TABLE 5 Cox regression analysis results of recurrence risk factors of atrial
fibrillation patients after CB ablation.

Factor HR 95%CI P value
LAV 1.006 1.002–1.010 0.006

TTI Score 0.495 0.404–0.605 <0.001

Tempnadir Score 0.759 0.649–0.888 <0.001

Number of unsuccessful freezes 1.298 1.108–1.519 0.001

HR, hazard ration; CI, confidence interval.
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comparison with other prediction models based on clinical

characteristics, our nomogram demonstrated better accuracy with

significance in predicting recurrence in the validation cohort.

Although statistical differences between the nomogram models

and conventional risk scores were not significant, it was noticed

that the AUCs were greater for our nomogram model (Table 6).

In addition, the C-index of the nomogram model was greater

than the C-index of the conventional risk scores in both the

training and validation cohorts (Figure 4).

The nomogram had acceptable calibration in the training

cohort (Hosmer-Lemeshow statistics: 1 year, χ2 = 10.278, P = .

246; 2 years, χ2 = 5.209, P = . 735; 3 years, χ2 = 3.924, P = . 864)

and the validation cohort (Hosmer-Lemeshow statistic: 1 year,

χ2 = 14.552, P = . 068; 2 years, χ2 = 6.378, P = . 605; 3 years, χ2 =

7.889, P = . 444). The calibration plots of our nomogram also

showed optimal agreement between the actual observations and
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the predicted outcomes both in the training cohort and the

validation cohort (Figure 5) for all time points. Thus these

nomogram-based results display good accuracy for predicting 1-,

2-, and 3-year AF-free survival after CBA.

Compared with the other prediction models, the results of the

decision curve analyses (DCAs) demonstrate that the nomogram

model has good clinical effectiveness in both the training and

validation cohorts (Figure 6). All the results indicate that the

accuracy, discriminative ability, and clinical effectiveness of the

nomogram model are superior to those of the other conventional

risk scores.
Discussion

To our knowledge, this is the first nomogram developed for the

prediction of AF recurrence using both clinical characteristics and

procedural biophysical parameters during CBA. The nomogram

performed well in both the training and validation cohorts. The

model contains only four variables (LAV, TTI score, Tempnadir
score, and number of unsuccessful freezes), all of which are

available and easy to use in clinical practice. In comparison with

other conventional risk scores, our nomogram showed better

predictive ability and good potential implication in clinical practice.
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FIGURE 2

Nomogram derived from the training cohort for the prediction of AF recurrence after cryoballoon ablation.

FIGURE 3

Receiver operating characteristic curves of the nomogram model and the conventional risk scores in the training cohort for (A) the prediction of 1-year
recurrence; (B) prediction of 2-year recurrence; and (C) the prediction of 3-year recurrence. In the validation cohort, (D) the prediction of 1-year
recurrence; (E) the prediction of 2-year recurrence; and (F) the prediction of 3-year recurrence.
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TABLE 6 Results of AUCs of time dependent ROC curves in training and validation cohorts.

1 Year 2 Year 3 Year

AUC% (95%CI) P AUC% (95%CI) P AUC% (95%CI) P

Training set
Nomogram 82.1 (76.7–87.5) – 79.3 (73.9–84.6) – 74.8 (67.9–81.7) –

SCALE-CryoAF 72.8 (66.6–79.0) 0.017 67.8 (61.6–74.0) 0.003 62.9 (55.0–70.7) 0.012

MB-LATER 67.3 (60.7–74.0) <0.001 66.7 (60.6–72.8) 0.001 62.2 (54.6–69.9) 0.012

BASE-AF2 66.4 (60.3–72.5) <0.001 63.4 (57.2–69.6) <0.001 61.3 (53.2–69.4) 0.009

CAAP-AF 53.9 (46.9–60.9) <0.001 55.2 (48.5–61.9) <0.001 57.9 (49.9–66.0) 0.001

CHA2DS2-VASc 51.6 (44.6–58.7) <0.001 47.0 (40.3–53.7) <0.001 53.9 (45.5–62.2) <0.001

Validation set
Nomogram 78.6 (69.9–87.3) – 71.9 (61.8–81.9) – 75.7 (65.4–86.0) –

SCALE-CryoAF 68.5 (58.9–78.2) 0.110 65.6 (56.1–75.3) 0.345 66.9 (55.7–78.2) 0.018

MB-LATER 66.8 (56.4–77.2) 0.057 62.5 (52.4–72.7) 0.167 59.2 (47.4–70.9) 0.630

BASE-AF2 66.6 (56.3–76.8) 0.034 62.9 (52.9–72.9) 0.173 64.5 (52.8–76.3) 0.111

CAAP-AF 52.9 (42.3–63.6) <0.001 57.5 (47.2–67.7) 0.035 63.7 (51.3–76.2) 0.098

CHA2DS2-VASc 45.7 (35.1–56.3) <0.001 48.3 (37.9–58.7) 0.001 58.6 (46.2–71.1) 0.040

AUC, area under curve; ROC, receiver operating characteristic; CI, confidence interval.

FIGURE 4

C-index of the nomogram model and conventional risk scores in training cohort (A) and the validation cohort (B).
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Factors related to recurrence after
cryoballoon ablation

We discovered that LAV, TTI, Tempnadir, and number of

unsuccessful freezes were associated with AF recurrence. It is

certain that LAV was highly associated with the success of

CBA. Patients with an enlarged LA—which contains more

extra-PV triggers and arrhythmogenic substrate than a normal

LA (owing to electrical remodeling, structural remodeling, and

interstitial fibrosis)—are at greater risk for the recurrence of

atrial arrythmia after an initial CBA (5, 6). The type of AF was

unexpectedly not included in the related factors, for which we

speculate that LAV is quantitative and more representative of

persistency of AF and severity of LA remodeling, which is

greatly associated with the efficacy outcome of cryoballoon

ablation. However, the number of unsuccessful freezes also

reflects the development of AF from a different angle. The
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increased number of unsuccessful freezes may derive from

anatomic variation, dilation of the PV ostium, and enlargement

of the LA, which have already been proven to raise the risk of

AF recurrence after CBA (7, 8).

It is well established that PVI is the cornerstone of AF ablation.

Since CBA was designed for the convenience of PVI, the procedural

biophysical parameter is considered an important indicator of

sufficient ablation. Several studies have already reported that a

longer TTI is associated with early reconnection of the PV and a

higher risk of recurrence after CBA (4, 9, 10). Therefore, TTI has

emerged as an important marker for the dosing of CBA. Several

studies that have designed a CBA dosing protocol based on TTI

achieved a noninferior efficacy outcome compared with

conventional protocols or radiofrequency ablation (11–13).

However, the cutoff value of TTI was the same for the four PVs

in those studies despite the different anatomic characteristics of

each PV. As shown in Table 2, the average values of TTI differed
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FIGURE 5

Calibration curves of the nomogram model in the training cohort (A) and in the validation cohort (B).

FIGURE 6

The results of decision curves analysis (DCA) of the nomogram model and the conventional risk scores in the training cohort (A) and in the validation
cohort (B).
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among the four PVs. In our study, therefore, we analyzed the four

PVs separately and explored the best cutoff value for each. By

calculating and aggregating the score of each PV, the TTI score

better reflected the durability of PVI and is believed to be more

accurate and reliable for the prediction of AF recurrence.

Balloon temperature during CBA affects the occlusion of the

treated PV. Lower balloon temperature reflects better balloon-

tissue contact. Thus, the balloon temperature is known to be an

important indicator of CBA efficiency. Fürnkranz reported that

the nadir temperature is predictive of the acute outcome of PVI

and helpful in identifying early PV reconnection (14). In
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addition, several studies have identified the role of balloon

temperature in predicting long-term durable PVI (15, 16). The

optimal balloon temperature during CBA remains unclear, but

there a prospective study using CBA guided by balloon

temperature has already demonstrated that cryoapplication with

a balloon temperature lower than −30°C within 40 s showed

good acute outcomes of PVI and comparable clinical efficacy

and safety profiles (17). Accordingly, it is well recognized that

balloon temperature is an important indicator of durable PVI as

well as procedural success. In addition, the optimal criteria for

nadir temperature of each PV differed among the four PVs
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(18). Therefore we determined the optimal cutoff of TTI and

balloon temperature for the four PVs. This is believed to

represent the biophysical characteristics of CBA efficiency. In

our nomogram model, we included the balloon temperature and

calculated the Tempnadir score. The result of our study also

emphasizes the importance of monitoring balloon temperature

during CBA.
Advantages of the nomogram model

The monogram model was superior to the general score

(CHA2DS2-VASc) and specific scores (SCALE-CryoAF, MB-

LATER, CAAP-AF, and BASE-AF2) in predicting and

discriminating recurrence. These scores were basically calculated

using clinical factors such as age, type of AF, duration of AF in

the past, history of coronary heart disease, left ventricular

ejection fraction, LA diameter, and other factors. However, the

biophysical parameters of CBA were not included in those

scores, although it has been reported that these biophysical

parameters are associated with acute outcome of PVI (4). Our

study shows that the C-index of our nomogram model was

larger in either the training cohort or the validation cohort than

that of other prediction models. In addition, this supported the

fact that high quality of PVI was equally crucial for the

outcome as clinical factors. In recently published studies,

radiofrequency ablation using AI technology yield higher PVI

durability and better efficacy outcome (19, 20). Although those

studies were performed in radiofrequency ablation, it is

undoubtable that durable PVI after CBA was similarly

associated with a favorable efficacy outcome.

Furthermore, our monogram model balanced the contribution

of each factor to CBA outcome. In conventional risk scores, the

coefficient of each risk factor usually comprised an integer. In

our nomogram model, however, the coefficients were calculated

based on the significance of the risk factor. Therefore, it is

reasonable that the monogram model had an advantage over

conventional risk scores. In addition, our model uses only four

factors, which are available and easy to calculate during

procedure. In specific patients with high scores, the

electrophysiologist performing CBA should pay more attention to

non-PV triggers or the arrhythmogenic substrate and acute PV

reconnection. It may also be necessary to extend the ablation

range and verify PVI durability. In summary, our nomogram

model combines both clinical factors and biophysical parameters,

which raises its predictive performance compared with

conventional risk scores and implies its clinical significance for

the guidance of CBA.
Limitations

Our study has several limitations. First, this was a retrospective

analysis in which selection bias may have existed; therefore, a future

prospective study is warranted. Second, the patients’ data were

obtained from our center only, and no external validation was
Frontiers in Cardiovascular Medicine 10376
applied. Although we have separated the total patients into two

cohorts, external validation of our results was still required

before our findings could be applied clinically. Finally, the

variables included in our study were based on our routine

clinical practice. Regarding biophysical parameters, we collected

only real-time recordings of PVP, CB temperature during freezes,

TTI, and number of unsuccessful freezes. Other parameters such

CB warming time were not included. The inclusion of more

parameters might further improve the accuracy of the model.
Conclusions

This study presents a nomogram that is easy to apply and can

predict the long-term efficacy and outcome of CBA. Biophysical

parameters such as TTI and cryoballoon temperature have a

great impact on AF recurrence. The nomogram has been shown

to be superior in its predictive accuracy as compared with

assessments based on conventional risk scores.
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