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1 INTRODUCTION
The human heart, a marvel of precision and complexity, is governed by rhythmic electrical impulses that orchestrate its regular contractions, propelling life-sustaining blood throughout the body. However, disruptions to this intricate electrical system can lead to arrhythmias (i.e., heart rhythm disorders), which can have serious consequences for an individual’s health and wellbeing. Heart rhythm disorders encompass a wide range of conditions that affect the heart’s electrical system, leading to irregular heartbeats, either too fast (tachycardia) or too slow (bradycardia), or chaotic rhythms. These disorders can cause symptoms and predispose to conditions ranging from palpitations, dizziness, and shortness of breath to more severe consequences, such as heart failure, stroke, or sudden cardiac death (Conti, 2019). As a leading cause of morbidity and mortality worldwide, heart rhythm disorders pose a substantial burden on healthcare systems and society at large (Nabel, 2003).
Arrhythmias remain a complex and challenging area in medicine. While significant progress has been made in understanding and treating arrhythmias, there are several reasons that contribute to the ongoing challenges in diagnosing and treating these conditions effectively (Offerhaus et al., 2020): 1) The cardiac electrical system is intricate, and arrhythmias can arise from various mechanisms, making their diagnosis and treatment challenging (Zeppenfeld et al., 2022); 2) Despite advancements in cardiac electrophysiology, substantial gaps still exist in our understanding of the precise mechanisms that lead to certain arrhythmias (Dobrev et al., 2019); 3) Arrhythmias can present in different forms and affect different regions of the heart, making it challenging to develop a one-size-fits-all treatment approach; 4) Some forms of arrhythmias may be intermittent and thus difficult to capture during routine clinical evaluation, leading to underdiagnosis or delayed diagnosis (Kirchhof, 2017); 5) Each patient’s response to treatment can vary substantially due to differences in their physiology, genetics, and co-existing medical conditions (Ni et al., 2018); 6) Anti-arrhythmic medications may even cause or worsen arrhythmias, requiring a carefully balanced evaluation between risk and benefit (Vicente et al., 2018); 7) While invasive procedures like catheter ablation can be effective, they come with inherent risks and may not be suitable for all patients (Ramanathan et al., 2004); 8) The current treatment strategies often rely on a trial-and-error approach, and there is a need for more personalized and targeted therapies; 9) Some arrhythmias are caused by scar tissue in the heart, which can be challenging to treat and manage effectively; and 10) Detecting and diagnosing arrhythmias can be challenging if patients are not aware of their symptoms or do not seek medical attention promptly. Therefore, this Research Topic collected a series of reviews and original research articles presenting recent advances toward a better understanding, diagnosis and treatment of cardiac arrhythmias, including: 1) structure-detailed computer modelling; 2) biophysics-based computer modelling; 3) biosignal-based diagnostic and monitoring; and 4) population-based statistics and new therapeutic frameworks. A total of 28 accepted articles were published under this Research Topic. Here in this editorial, we summarize the new knowledge and approaches generated, and discuss how these can contribute to an improved understanding of heart rhythm and clinical treatment, as well as how they may provide insights into future research directions.
2 STRUCTURE-DETAILED COMPUTER MODELLING
The heart’s complex structure and function play a central role in maintaining blood circulation, making it crucial to understand its mechanisms and potential dysfunctions (Hansen et al., 2015). Over the years, advancements in technology have paved the way for sophisticated computer modelling techniques, enabling researchers to create detailed simulations of the heart’s structure and function. Structure-detailed computer modelling allows for the creation of highly accurate representations of the heart’s anatomy. By combining medical imaging data, such as magnetic resonance imaging (MRI) and computed tomography scans, with computational techniques, researchers can build three-dimensional models that precisely mimic the heart’s architecture (Bai et al., 2023). These models provide a valuable tool for visualizing and analyzing the intricate organization of cardiac tissues (Zhao et al., 2012), including the ventricles, atria, valves, and the conduction system (Xiong et al., 2021). In order to accurately obtain the anatomical structure of human heart from MRI, researchers proposed deep learning models. For example, Xiong et al. proposed a novel deep learning framework for 3D surface reconstruction of the left atrium directly from point clouds acquired through clinical mapping systems during cardiac ablation. In contrast, Chen et al. focused on accurate segmentation of the ventricle and myocardium in cardiac MRI proposed a dilated convolution network with an edge fusion block and directional feature maps. This is a critical step in evaluating cardiac function. It is important to note that while artificial intelligence (AI) holds great promise in cardiac imaging, its integration into clinical practice requires rigorous validation and regulatory approval to ensure safety and efficacy. Collaborative efforts between AI developers, medical professionals, and regulatory bodies are crucial to harness the full potential of AI in cardiac imaging and other medical domains.
3 BIOPHYSICS-BASED COMPUTER MODELLING
Biophysics-based modelling of the heart represents an innovative approach that combines principles from physics, mathematics, and biology to create comprehensive simulations of the heart’s behavior (Clayton et al., 2020). By leveraging biophysical data and computational techniques, researchers can gain a deeper understanding of the heart’s intricate dynamics at various scales. Many researchers conducted multi-scale cardiac electrophysiology modeling, providing valuable insights into the underlying physiological processes and helping guide the development of new therapeutic approaches for cardiac arrhythmias and other related conditions (Colman et al., 2017; Ni et al., 2020; Morotti et al., 2021). For example, Jin et al. used computational modeling to explore the effects of ablation and antiarrhythmic drugs on patients with PITX2 gene deficiencies in atrial fibrillation (AF) (Bai et al., 2019; 2020b; Bai et al., 2021a; Zhu et al., 2021). Virtual simulations demonstrate that certain antiarrhythmic drugs have more significant effects in patients with PITX2 deficiencies (Bai et al., 2021b), providing insights into tailored treatment strategies (Bai et al., 2020a). Jiang et al. also evaluated the efficacy of common antiarrhythmic drugs and specific IKr activators for treating arrhythmias induced by carbon monoxide (CO) in healthy and failing hearts. Simulation results indicate that the tested antiarrhythmic drugs are not effective against CO-induced arrhythmias, whereas IKr activators show promise for treatment. In a study by Li et al., a mathematical model was developed to simulate the effect of arsenic trioxide (ATO) on ventricular electrical excitation at cellular and tissue levels. The study revealed how ATO-induced alterations in ion channels lead to prolonged action potential duration and increased risk of arrhythmias, providing insights into potential pharmacological intervention.
Some studies aimed to develop powerful tools for researchers and clinicians to gain insights into the complex electrical behavior of the heart from cellular level to the organ level. For instance, Yang et al. proposed a WebGL-based framework to visualize the three-dimensional synergetic biological modality of the heart, combining physical volume data and electrophysiological modality. Galappaththige et al. developed a computational modeling framework to rigorously evaluate the performance of cardiac mapping systems. The framework provides a quantitative analysis of mapping system performance, aiding in system accuracy estimation. In personalized medicine, Bai et al. discussed the role of digital twin techniques, combining mechanistic and statistical models, in advancing research on atrial fibrillation. It highlighted their applications in understanding AF mechanisms, screening anti-AF drugs, and optimizing ablation strategies, emphasizing the potential transition from AF description to response prediction. Aside from focusing on the electrical properties of the heart, Sanatkhani et al. used computational fluid dynamics to examine the effects of subject-specific factors on the residence time distribution of blood particles in the left atrial appendage in atrial fibrillation. These modeling studies showcase the power of computational techniques in improving our understanding of cardiac arrhythmias and their treatment, potentially paving the way for more personalized and effective therapeutic approaches in the future.
4 BIOSIGNAL-BASED DIAGNOSTIC AND MONITORING
With the advent of advanced signal processing techniques, researchers have been able to extract valuable insights from electrocardiogram (ECG) data and other cardiac signals. Several studies of this Research Topic developed AI-powered algorithms for detecting arrhythmias using ECG data. For example, Wu et al. presented an automatic system combining denoising and segmentation modules to detect ST-segment and J-point deviation from Holter ECG data. The ECG Bidirectional Transformer network was used for denoising and segmentation tasks, achieving high precision in detecting subtle ST-segment changes in noisy ECG signals. Different from the feature extraction of ECG, Huang et al. developed diagnostic models to identify individuals with AF using amplified sinus-P-wave analysis. Zhang et al. designed a screening algorithm to distinguish different types of premature beats from paroxysmal AF in ECG segments. The proposed method effectively eliminates single and other types of premature beats to improve the accuracy of paroxysmal AF detection. The algorithm was validated on different databases and achieved high accuracy, providing potential for real-time analysis using wearable devices. Based on ECG data, different perdition models based on deep learning also were proposed (Zhang et al.; Zhang et al.). Recently, internet of things (IoT)-based ECG monitoring shows a great potential for patient-centric, connected, and data-driven cardiac care. However, signal quality is a critical factor that can significantly impact the overall performance and functionality of the IoT system. Therefore, Liu et al. introduce a new method for assessing the quality of wearable ECG signals using wavelet scattering and long short-term memory network. Different from ECG signals, signals of arterial blood pressure Chou et al., pulsed ultrasound (Xiao et al.; Deng et al.), skin sympathetic nerve activity Cai et al., impulse radio ultra-wideband radar Qiao et al. and photoplethysmogram Sološenko et al. were also used to improve the understanding the function of the heart and diagnosing abnormal heart rhythms. These new monitoring and diagnostic methods continued to advance, offering more efficient and powerful techniques to extract valuable information from cardiac signals.
5 META-ANALYSIS AND CLINICAL STUDIES
Meta-analysis and clinical studies in heart rhythm have been pivotal in advancing our understanding of cardiac arrhythmias (Wang et al., 2021) and guiding evidence-based clinical decision-making. Several novel key findings on arrhythmias were noted in this Research Topic. Hashimoto et al. investigated the incidence of arrhythmias in healthy volunteers of varying ages using ambulatory electrocardiography. Their study revealed that ventricular and supraventricular ectopy increased with age, and aging significantly influenced the frequency of ventricular ectopy. Additionally, age, body mass index, and heart rate variability were associated with supraventricular ectopy, providing age-specific reference intervals for ectopy in healthy individuals. Wei et al. conducted a retrospective analysis on post-cryoballoon ablation (CBA) patients and developed a machine learning-based nomogram to predict the risk of atrial fibrillation (AF) recurrence. Their predictive model outperformed conventional risk scores, offering a valuable tool for personalized treatment decisions and improved patient outcomes. A meta-analysis by Liu et al. evaluated the effect of sacubitril/valsartan therapy on cardiac arrhythmias and the risk of sudden cardiac death in heart failure patients. The analysis demonstrated a promising reduction in the risk of sudden cardiac death compared to the control group, suggesting potential anti-arrhythmic properties of sacubitril/valsartan in heart failure management. Li et al. developed a nomogram to predict the risk of new-onset atrial fibrillation in septic patients. The model, which incorporated various clinical risk factors, demonstrated excellent predictive accuracy, particularly in septic shock patients, aiding early risk assessment and individualized treatment strategies. Han et al. developed the HASBLP score, a predictive model to identify AF patients at higher risk of recurrence after catheter ablation. The score outperformed existing risk scores and provides clinicians with a valuable tool for predicting AF recurrence and guiding personalized follow-up and treatment plans. Liu et al. investigated the role of I-κB kinase-ε (IKKε) in doxorubicin-induced dilated cardiomyopathy (DCM). Their experiments showed that IKKε deficiency improved cardiac function, suggesting IKKε as a potential therapeutic target for managing this condition. Finally, Wang et al. provided a systematic review of scTdP (short-coupled variant of torsade de pointes), exploring its clinical features, diagnosis, and management. Further large-scale studies are needed to clarify existing arrhythmogenic entities. Overall, these studies collectively advance our knowledge of heart rhythm disorders, enhancing patient outcomes, and guiding clinical guidelines and practice in the field of cardiology.
6 CONCLUSIONS AND FUTURE DIRECTIONS
The research presented in this Research Topic has contributed significantly to our understanding of cardiac arrhythmias and has shed new lights on potential improvements in diagnosis and treatment. Continued efforts in multidisciplinary research, technology integration, and personalized approaches hold the potential to revolutionize arrhythmia care and improve the quality of life for millions of patients worldwide. Through collaboration and continued exploration, we can look forward to a future where arrhythmia diagnosis and treatment are more accurate, effective, and accessible to all individuals in need.
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Paroxysmal atrial fibrillation (PAF) may related to the risk of thromboembolism and is the most common cardiac risk factor of cryptogenic stroke (CS). Due to its paroxysmal characteristics, it is usually diagnosed by continuous long-term ECG. Patients with paroxysmal atrial fibrillation usually have premature beats at the same time which is easy to be confused with the rhythm of atrial fibrillation. Therefore, in this article, we designed a screening algorithm for single premature beat, multi premature beats, bigeminy and trigeminy premature beats, according to their rhythm characteristics to reduce false detection caused by premature beats during the PAF detection process. The proposed elimination method was verified on ECG segments with different types of premature beats, and tested on long-term ECG data of PAF patients. ECG segments of different kinds of premature beats were selected from MIT Atrial Fibrillation database (MIT-AFDB), MIT-BIH Arrhythmia database (MIT-AR) and wearable ECG data from the China Physiological Signal Challenge 2021 (CPSC 2021). The proposed method can effectively eliminate single premature beat segments with 99.5% accuracy, and it also can eliminate more than 95% of ECG segments with other types of premature beats. We designed PAF-score as a new index to evaluate the accuracy of detection, and we also calculate the misjudged and missed segments to comprehensively evaluate the PAF detection algorithm. The proposed method get a PAF-score of 0.912 on MIT-AFDB. The proposed method also has the potential to implant low computing power wearable devices for real-time analysis.
Keywords: paroxysmal atrial fibrillation, paroxysmal atrial fibrillation detection, premature beats, ECG, low complexity
1 INTRODUCTION
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice and is associated with increased morbidity and mortality that primarily occur as a result of complications (1). AF may lead to stroke and congestive heart failure (CHF) and increase the death rate for AF patients (Gillis et al., 2013; Odutayo et al., 2016). For instance, up to a third of strokes have no known cause—so-called embolic stroke of undetermined source (ESUS) (Attia et al., 2019). Many of these strokes are related to atrial fibrillation, which can be under detected due to its paroxysmal and often asymptomatic nature. Paroxysmal atrial fibrillation (PAF) may be associated with risks of stroke and thromboembolism similar to those for sustained AF, and many patients suffer significant morbidity (Attia et al., 2019). The hazards of Paroxysmal atrial fibrillation are large, and because their own characteristics need to perform multiple long-term electrocardiography (ECG), qualitative parity atrial fibrillation for patients. The occurrence of PAF often cannot be detected within the first 48 h of ambulatory ECG monitoring (Solomon et al., 2016). Therefore, it is necessary to design an accurate paroxysmal atrial fibrillation detection algorithm and eliminate the false alarms caused by other arrhythmia to reduce the workload of doctors.
The ECG in AF duration has two main characteristics: 1) the absence of p waves and presence of undulating atrial activity, also known as fibrillatory waves or f waves. 2) highly irregular variation of RR intervals (Clifford et al., 2017; Platonov and Corino, 2018; Hayano et al., 2019). Most AF detection methods in previous literature was designed based on these two aspects. RR-intervals based classification method usually extracted features from RR intervals and use machine learning methods as classifiers, or use deep-learning based classification model and use RR interval sequences as input data directly (Lee et al., 2012; Zhou et al., 2014; Xiong et al., 2017; Dharmaprani et al., 2018; Kumar et al., 2018; Liu et al., 2018). Lake (Lake and Randall Moorman, 2011) verified that the coefficient of sample entropy (COSEn) of 12 RR intevals can accurately distinguish atrial fibrillation from normal ECG. Dash (Dash et al., 2009) calculate the randomness, variability and complexity of the RR intervals and use turning points ratio combination with the root mean square of successive RR differences and Shannon entropy to characterize AF. Faust used LSTM based deep learning model and used RR interval as input data to detect AF (Faust et al., 2018). Some deep-learning based methods also convert the ECG signal to a 2D representation. Xia et al. applied short-term Fourier transform (STFT) and stationary wavelet transform (SWT) to obtain the 2D matrix input suitable for deep 2D CNN models (Xia et al., 2018). Qayyum et al. converted ECG signals into 2D images by STFT, and used pre-trained CNN models for transfer learning (Qayyum et al., 2018). Lorenz plot imaging of ECG RR intervals was also used as input images to training a 2D CNN based model for AF classification (Hayano et al., 2019).
However, these method in previous literature usually divides the ECG signal into segments according to a certain length of time or certain length of RR intervlas (Kiranyaz et al., 2016; Chang et al., 2018; Tan et al., 2018; Kim and Pan, 2019; Yildirim et al., 2019). And then these segments are detected and classified as atrial fibrillation and non-atrial fibrillation. Most AF detection based on deep learning must require a fixed length of input data (Qayyum et al., 2018; Xia et al., 2018). Some AF detection devices are also designed to collect ECG signals for a specific length of time. Haberman (Haberman et al., 2015) detects atrial fibrillation by collecting a patient’s 30-s lead I ECG waveform using an iPhone case or iPad. Brasier acquire 1 min or 5 min ECG recordings for AF detection by smart-phones (Brasier et al., 2019). All of these methods are effective in detecting patients with permanent atrial fibrillation. However, there were usually premature beats in the ECG segments of PAF patients, which may result in some non-AF segments containing premature beats being misidentified as premature beats. These methods need to be further test of their ability to accurate classify the ECG segments containing premature rhythms.
In this paper, we designed a screening algorithm for single premature beat, frequent premature beats, bigeminy and trigeminy premature beats, according to their rhythm characteristics to reduce false alarms caused by premature beats during the PAF detection process. And we also selected ECG segments with these different types of premature beats from MIT-BIH Arrhythmia database (Moody and Mark, 2001), to verify the accuracy of the designed premature beat elimination algorithm. We designed PAF-score as a new index to evaluate the accuracy of detection and test the proposed PAF screening algorithm on MIT-BIH atrial fibrillation database (Moody and Mark, 1983).
2 DATA
2.1 Definition of Different Premature Beats Types
In this paper, the proposed screening algorithm was designed for the rhythm characteristics of single premature beat, frequent premature beat, double premature beat, and triple premature beat. The definition of the four different premature beats types is as follow:
1) Single-PB: as shown in the sub-figure 1A of Figure 1, there was Only one premature beat in the ECG segment;
2) multi-PB: as shown in the sub-figure 1B of Figure 1, there were more than one premature beats in the ECG segment and the distribution of different premature beats is irregular;
3) Bigeminy: as shown in the sub-figure 1C of Figure 1, there were normal beats and premature beats appear alternately with more than six consecutive beats;
4) Trigeminy: as shown in the sub-figure 1D of Figure 1, there were two normal beats and premature beats appear alternately with more than six consecutive beats.
[image: Figure 1]FIGURE 1 | The definition of different premature beats types. (A) single premature beat; (B) multi premature beats; (C) Bigeminy; (D) Trigeminy.
2.2 Database
2.2.1 MIT-BIH Arrhythmia Database
The MIT-BIH Arrhythmia database (Moody and Mark, 2001) contains 48 half-hour excerpts of two-channel ambulatory ECG recordings, obtained from 47 subjects. The recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 10 mV range. Two or more cardiologists independently annotated each record; disagreements were resolved to obtain the computer-readable reference annotations for each beat (approximately 110,000 annotations in all) included with the database. In this work, the ECG segments with heart beats marked as premature beats in the database was selected as test data to verify the accuracy of the designed premature beat elimination algorithm((Asgari et al., 2015; Ladavich and Ghoraani, 2015; García et al., 2016; Andersen et al., 2019))
The heart beats which was marked as premature beat (PB) in the annotation of the database and its surrounding heart beats were extracted as ECG segments with 31 beats (30 RR). Then the extracted segments were divided into four categories: Single premature beat (single-PB), multi premature beats (multi-PB), Bigeminy and Trigeminy.
1) Single-PB: Only one beat in the ECG segment is marked as PB;
2) multi-PB: The number of heart beats marked as PB in the ECG segment is more than 2;
3) Bigeminy: The ECG fragment contains the sequence “*N*N*N″ or “N*N*N*”;
4) Trigeminy: The ECG fragment contains the sequence “*NN*NN”, “N*NN*N″ or “NN*NN*“, where “*” indicates that the heartbeat is marked as PB, and the “N” mark means that the heartbeat is a normal heartbeat or other rhythms except PB and AF.
2.2.2 MIT-BIH Atrial Fibrillation Database
In this study, we selected the MIT-AFDB as database which consists of 25 long term ECG recordings of human subjects with AF (mostly paroxysmal) (Moody and Mark, 1983). Each recording is 10-h duration, and contains two leads of ECG signals sampled at 250 Hz. The rhythm annotation files were prepared manually; they contain rhythm annotations of the following types, i.e., “AFIB” (atrial fibrillation), “AFL” (atrial flutter), “J” (AV junctional rhythm), and “N” (all other rhythms). In order to detect the start and end points of atrial fibrillation segments, the signals labeled as “AFIB” were used as the AF ECG samples and ECG signals labeled as other rhythm were referring to the non-AF ECG data. After this, these ECG recordings can be regarded as long-term ECG recordings composed of non-atrial fibrillation segments and atrial fibrillation segments connected to each other. The QRS detection method was performed on all recordings, and the detected beats were labeled to AF/non-AF according to the rhythm annotation. Thus, each segment of AF or non-AF can be composed of consecutive QRS waves of the same type, and the start and end points of each rhythm segment can be located on a certain QRS wave.
2.2.3 China Physiological Signal Challenge 2021 (CPSC 2021)
The ECG data of CPSC 2021 are recorded from 12-lead Holter or 3-lead wearable ECG monitoring devices. The challenge ECG data provides variable-length ECG records fragments extracted from lead I and lead II of the long-term dynamic ECGs, each sampled at 200 Hz.
3 METHODS
As shown in Figure 2, the proposed PAF screening method is composed of three parts: pre-processing, suspicious AF segment screening, and premature beat screening method.
[image: Figure 2]FIGURE 2 | The flow chart of RR-interval based premature rhythms elimination method from PAF detection
3.1 Pre-processing Method
In this study, ECG recordings were firstly remove their baseline drift through a sliding median filter. And QRS detection method was performed on the filtered ECG data. Then signal quality assessment method was utilized to remove the ECG segments with poor signal quality. The ECG segments with poor signal quality means that these ECG segments only contained noise without any ECG information. And the detected QRS locations in these bad quality were removed from the QRS sequences of the ECG recordings. Then, we fine-tune the detected QRS wave to ensure that the QRS wave is at the position of the maximum absolute value of the waveform in the neighboring area.
3.2 Suspicious AF Segment Screening Method
Threshold-based suspicious segment screening method was used to define the rhythm changes of the ECG segment. In order to assess the rhythm changes in a short period of time, we used the ratio of short-term RR interval’s standard deviation to its average value. For each QRS wave, we use six adjacent RR intervals to evaluate it is rhythm change. And the calculation method is shown in expression (Ogawa et al., 2018).
[image: image]
where Rc refers to the rhythm change feature of the QRS. [RR1, RR2, … , RR6] refers to the array of 6 adjacent RR intervals after each QRS.
When the value of Rc exceeds the threshold, representing the difference between these RR intervals was large. Therefore, it is considered to have large rhythm changes. QRS segments which contained few rhythm changes in a short time were regard as non-AF segments and the QRS segments which contained large rhythm changes were regard as suspected AF segments. In this step, we remove the low rhythm change parts in the detected QRS sequence and the remaining QRS fragments will be further screened.
3.3 Premature Beats Reject Method
In this step, we mainly screen for ECG segments with premature beats that were easily confused with the atrial fibrillation rhythm. The rhythm recheck contains three screening aspects: single-PB recheck, multi-PB recheck, and premature beats recheck of bigeminy or trigeminy.
3.3.1 Single Premature Beat Recheck
The effect of single-PB on the RR interval sequence is as follows: one smaller RR interval appears in the normal RR interval sequence, followed by one larger RR interval. Therefore, its impact on rhythm changes was relatively limited. From the first appearance of the small RR interval to the last appearance of the larger RR interval, the screening window with a length of 6 RRs slides Seven times. So theoretically, a single-PB usually only affects Rhythm assessment result for 7 Rc values of the consecutive RR intervals. Therefore, it is easy to filter out all single-PB by verifying whether the duration of continuous rhythm changes exceeds 10 beats.
For ECG segments passed single-PB recheck, their RR interval sequences were clustered into three categories by K-Medoids clustering algorithm. Each RR and the ratio of its first-order difference value to the RR were used as clustering features. And fine-tune the clustering results to reduce the standard deviation of the RR intervals within each group.
3.3.2 Multi Premature Beats Recheck
Compared with single-PB, multi-PB have a higher probability of occurring in a short time, so the rhythm screening results will show continuous long-term large rhythm changes. However, when premature beats occur frequently, the proportion of normal heart beats is still the largest. Therefore, in order to reduce the influence of the abnormal RRs on the rhythm screening result, we selected the RR interval group with the closest mean RR interval to the median of the entire segment signal among the three categories, and then performed rhythm screening again. If the rechecked rhythm change screening result drops below the threshold, it means that the ECG segment being detected was with frequent premature beats.
3.3.3 Premature Beat Recheck of Bigeminy and Trigeminy
Bigeminy and trigeminy are two special premature beats rhythm. Among them, the RR interval of bigeminy usually with one alternate change of long and short RR intervals, while trigeminy usually with one alternate change of three length RR intervals: short, long and normal. Therefore, when the number of larger and smaller RR intervals is consistent and both occurs more than two times in any 6 consecutive RRs, we believe that the ECG segments was with bigeminy or trigeminy rhythm. It is worth noting that, there was only little difference between the larger RR intervals in the ECG segments of bigeminy and trigeminy, so as the smaller RR intervals. Thus, we selected the larger RR intervals group of the clustering results, and then performed rhythm screening on the selected RR intervals. Then, the bigeminy and trigeminy premature beats can be removed from the suspected AF segments.
4 RESULT
4.1 Classification Result of ECG Segments With Premature Beats
The four different premature beat rhythm ECG segments were classified by the proposed elimination method, and the classify accuracy (Acc), error rate (Er) of the proposed method was showed in Table 1. The proposed method can eliminate 96.83% of the ECG segments with premature beat. Although the rigorous screening method resulted in 2.83% of the 3,000 test af ECG segments being erroneously eliminated, the overall accuracy of the proposed method in the 6,000 fragments also reached 97.00%. Moreover, the proposed method can eliminate ECG segments with single-PB with 99.5% accuracy.
TABLE 1 | Result of ECG segments with four different kinds of premature beats.
[image: Table 1]4.2 Result of PAF Detection
To evaluate the PAF detection capability of the proposed method, we designed an PAF evaluation score (PAF-score) based on the annotated PAF time and the detected PAF time. We evaluate each PAF segment in the ECG records and give evalution score between 0 and 1. For each recording, its PAF-score was calculated as the average score of the annotated paf segments. As shown in Figure 3, only the difference between the labeled PAF time and the detected PAF time less than three heart-beats, it was considered that the detection result is consistent with the annotation and get the maximum score 1. Otherwise, it is considered that there is a non-negligible difference between the detection result and the annotated PAF time. And the score of these segments was calculated by the intersection and the union of the detected PAF time and the annotated PAF time. As shown in Table 2, the proposed method get a average PAF-score 0.912 on MIT-AFDB.
[image: Figure 3]FIGURE 3 | The evaluation scheme of PAF detection result. L: labeled PAF duration; D: detected PAF duration; L⋂D: the intersection of L and D; L⋃D: the union of L and D; L⊕D: the exclusive-OR of L and D.
TABLE 2 | Result of the proposed method test on MIT-AFDB.
[image: Table 2]This PAF-score is intended to reflect the accuracy of the algorithm for PAF segments detection. In order to comprehensively evaluate the performance of the algorithm, we have also counted the misjudgment segments and missing segments of the detection algorithm. The error segments in Table 2 means that the detected segments whithout QRS which were annotated as PAF rhythm. The missed segments refer to the labeled PAF segments which was completely detected as non-af rhythm. The proposed PAF detection method get an accuracy of 96.87% on the 23 recordings of MIT-AFDB. And the sensitivity and specificity of the proposed method were 96.43 and 97.24%, respectively.
5 DISCUSSION
5.1 Suspicious AF Segment Screening Method
In order to verify the ability of Rc on rejecting premature beats in atrial fibrillation detection, we selected CosEn (15), a common atrial fibrillation monitoring function, for comparative analysis. We tested the Rc and CosEn on the selected 3,000 ECG segments with PB and 3,000 AF segments from MIT-BIH Arrhythmia database. Since the Rc was calculated by 6 RR and there were 30 RR in the test segments, we used the median Rc value of each ECG segments. As shown in Figure 4, the CosEn value distributions of the four types of premature beats and AF segments are approximately the same. While the distribution of Rc values of the four types of premature beats and AF segments was different. Therefore, compared with CosEN, the proposed Rc value is more conducive to eliminating false detections caused by premature beats.
[image: Figure 4]FIGURE 4 | The feature value distribution in ECG segments with PB and AF. (A) CosEn; (B) Rc.
5.2 RR-Interval Based Cluster Analysis
Figure 5 shows the RR-interval-based cluster analysis results for four different rhythms. After cluster analysis, the RR interval sequences of ECG segments with multi-PB or trigeminy rhythm were divided mainly according to the numerical value of the RR interval. The mean values of the three types of RR after clustering are quite different. Although the smaller RR interval in the RR sequences of ECG segments with bigeminy were divided into to two classes, the difference between the mean value of the larger RR intervals and the other two categories is sufficiently significant. However, the AF RR intervals of 3 cluster analysis categories did not have clear classification boundaries, and the mean RR of the three categories were nearly equal. Therefore, the possibility of ECG with AF rhythms entering subsequent premature beat reject analysis steps through cluster analysis is negligible.
[image: Figure 5]FIGURE 5 | The RR-interval based cluster analysis result of four different rhythm. (A): multi-PB, (B): trigeminy, (C): bigeminy, (D): AF.
5.3 Premature Beat Reject Method
5.3.1 Single Premature Beat Recheck
As shown in Figure 6, the RR intervals and suspicious segment screening result were shown in sub-figure 6B. The blue straight line represents the threshold, and the black triangle corresponds to the result of the rhythm screen. If the rhythm screen result exceeded threshold, it is considered to be a suspected atrial fibrillation rhythm. It can be concluded that suspicious AF segments screen method indeed consider the rhythm change caused by a single-PB as suspicious AF. However, the duration of the short-term rhythm changes caused by single premature no longer than 10 beats. Thus, the proposed single-PB recheck method can accurate remove the single premature from suspect AF segments.
[image: Figure 6]FIGURE 6 | The rhythm recheck result of ECG with single PVC. (A) ECG segment with single PVC beats; (B) RR intervals and suspicious segment screening result.
5.3.2 Multi Premature Beats Recheck
As shown in sub-figure 7A of Figure 7 , there are 4 PAC beats in the 29 beats. In sub-figure 7B, the ECG segment with multi-PB was classified as suspicious AF by the proposed screen method and the duration of rhythm change exceeds 10 beats. As shown in sub-figure 7C the RR intervals around median value of the RR interval sequence were reselected for rhythm screen and were marked as “red *”. The rhythm screen result of the re-selected RR intervals were all below the threshold. Thus, the ECG segments with multi-PB can also be removed by the multi-PB recheck method.
[image: Figure 7]FIGURE 7 | The rhythm recheck result of ECG with multi premature beats. (A) ECG segment with multi PAC beats; (B) RR intervals and suspicious segment screening result. (C) the rechecked RR intervals and suspicious segment screening result
5.3.3 Premature Beat Recheck of Bigeminy and Trigeminy
As shown in Figure 8, the ECG segments in sub-figure 8A was ECG with trigeminy premature rhythm. The RR intervals of the ECG segments, which was shown in sub-figure 8B, marked as red and black triangles represent the rhythm scan results of each QRS. The blue line in the sub-figure 8B was the threshold of the rhythm screen method. As shown in sub-figure 8C, the red points refer to the selected larger RR intervals for further recheck while the blue points are the RR intervals with small value and were filtered. The black triangles represent the recheck rhythm screen results of the selected larger RR intervals. It can be concluded that after selecting larger RR intervals, the rechecking rhythm screen result of the trigeminy ECG has been less than the threshold value. Thus, the proposed method can reduce the influence of bigeminy and trigeminy on PAF detection.
[image: Figure 8]FIGURE 8 | The rhythm recheck result of ECG with trigeminy PVC. (A) ECG segment with trigeminy PVC; (B) RR intervals and suspicious segment screening result. (C) the rechecked RR intervals and suspicious segment screening result
5.4 PAF Rhythms Detection
The ECG segments with premature beats, which is common in patients with PAF, which is easy to be misjudged as AF. The proposed method is dedicated to eliminating the false alarms caused by ECG with premature beats being misjudged as AF rhythms. Compared with traditional machine learning algorithms, the proposed method does not divide the ECG signal into segments, but evaluates each heartbeat. And finally, we determine the continuous heartbeat segment for PAF. Therefore, even if the proposed method has false alarms, it will behave as a continuous ECG segment, which is convenient for doctors to recheck. The PAF-score was designed to test the overlap ratio of the detection result and the labeled PAF time. Compared with sensitivity and specificity, PAF-score scores each PAF segment, and short paf segment have the same effect on the final score with the long paf segment. As shown in Table 2, the rule-based detection method was utilized to locate the paroxysmal AF of 23 recordings from MIT-AFDB and the average PAF-score was 0.912. The PAF-score of the four recording with most PAF segments were lower than the average score. This is mainly because some of the PAF segments in these recordings only have a short duration, but the duration of detected results are longer, which is resulting in the PAF-scores of these segments lower than 0.5.
In addition, we also count the missed segments and misjudged segments to comprehensively evaluate the performance of PAF detection method. The total number of PAF segments detected was 356, of which 90.73% had PAF ECG. This means that the detected AF segment will increase the workload of the re-examiner by about 10%. Nevertheless, the proposed method achieved 96.43% cove rate (sensitivity) and 97.24% specificity on the 23 records of MIT-AFDB. Thus, although there were some misjudged segments, they only account for 2.76% of non-AF heartbeats. Compared with misjudged segments, the missed segments are relatively fewer, and they are all short duration PAF segments. Therefore, the detection of short duration PAF segments poses a greater challenge to the PAF detection algorithm.
We also test on wearable ECG recordings, and five PAF patients from CPSC 2021 were selected as test ECG recordings. However, the complex noise in the wearable ECG signal which can easily lead to QRS location errors. Therefore, the result of wearable ECG has more misjudgement, and the proposed method obtained an accuracy of 95.74% on the wearable ECG. As shown in Figure 9, the ECG waveform with blue color was normal ECGs and the red ECG waveform were the labeled PAF ECGs. The short line with green color were detected PAF result of the proposed method while the red line was the annotated PAF time. The ECG recording, shown in Figure 8, is one 30-min ECG recording with six PAF segments. There was only very few beats difference between detected PAF results and the labeled result, which indicated that the proposed detection method can effectively locate PAF segment. However, the decrease in accuracy also shows that the proposed method has relatively higher requirements for signal quality.
[image: Figure 9]FIGURE 9 | The rhythm recheck result of wearable ECG segments in CPSC 2021
5.5 Limitation
Although this method shows a good performance in detecting PAF, it has certain shortcomings and needs subsequent improvement. The main defects include: 1) This method relies on the accuracy of the QRS detection algorithm. 2) This method may not be suitable for analyzing wearable ECGs with poor signal quality.
6 CONCLUSION
The present study shows that although the proposed PAF detection method is simple, it has good performance in the PAF detection of long-term ECGs. The proposed detection method can effectively eliminate arrhythmias that are easily confused with atrial fibrillation, such as single-PB, multi-PB, premature beat recheck of bigeminy and trigeminy. The proposed model with low computational complexity, and has great potential in the low-complexity analysis of wearable ECG devices.
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Point clouds are a widely used format for storing information in a memory-efficient and easily manipulatable representation. However, research in the application of point cloud mapping and subsequent organ reconstruction with deep learning, is limited. In particular, current methods for left atrium (LA) visualization using point clouds recorded from clinical mapping during cardiac ablation are proprietary and remain difficult to validate. Many clinics rely on additional imaging such as MRIs/CTs to improve the accuracy of LA mapping. In this study, for the first time, we proposed a novel deep learning framework for the automatic 3D surface reconstruction of the LA directly from point clouds acquired via widely used clinical mapping systems. The backbone of our framework consists of a 30-layer 3D fully convolutional neural network (CNN). The architecture contains skip connections that perform multi-resolution processing to maximize information extraction from the point clouds and ensure a high-resolution prediction by combining features at different receptive levels. We used large kernels with increased receptive fields to address the sparsity of the point clouds. Residual blocks and activation normalization were further implemented to improve the feature learning on sparse inputs. By utilizing a light-weight design with low-depth layers, our CNN took approximately 10 s per patient. Independent testing on two cross-modality clinical datasets showed excellent dice scores of 93% and surface-to-surface distances below 1 pixel. Overall, our study may provide a more efficient, cost-effective 3D LA reconstruction approach during ablation procedures, and potentially lead to improved treatment of cardiac diseases.
Keywords: convolutional neural network, left atrium, point cloud, sparse data, 3D surface reconstruction
1 INTRODUCTION
Point clouds are a widely used method of storing information acquired in the ever-growing world of data (Rusu et al., 2008; Guo et al., 2020). Current advancements in 3D acquisition technology in the form of sensors, scanners, and imaging capture high-quality data to allow for more refined research of their components and properties (Pomerleau et al., 2015). In particular, the acquisition of 3D data in the medical field is an increasingly important area of study in terms of visualizing organ structures, recording real-time anatomical information during surgery, and physiological mapping (Ptaszek et al., 2018; Kim et al., 2020). Compared to 3D imaging, point clouds are significantly more memory-efficient by storing information in a compact and vectorized form. This data format also enables efficient manipulation using simple mathematical operations with low computational costs.
In recent years, medical recording technology, particularly devices in cardiology, has integrated point clouds into the systems for various applications. Catheter ablation is one of the most common clinical procedures for treating complex cardiac diseases such as arrhythmia. During the procedure, an estimated geometry of the cardiac chamber is initially constructed using point-by-point catheter recordings on the endocardial surface (Rolf et al., 2014). The geometry formed from the point cloud is then used to guide and target specific regions containing diseased heart tissue for ablation (Hansen et al., 2015). Therefore, accurate reconstruction of cardiac chambers from point clouds is vitally important for the effectiveness of the procedure. This is especially the case for atrial chamber reconstruction during catheter ablation of atrial fibrillation, the most common cardiac arrhythmia (Xiong et al., 2018; Xiong et al., 2021).
Current methods of point cloud to atrial chamber reconstruction, particularly left atrium (LA), are heavily commercialized and not openly accessible. The two most widely used commercial anatomical mapping systems are the EnsiteNavX (St Jude Medical, Minnesota, United States) and CARTO 3 (Biosense Webster, California, United States). To ensure accurate LA models are produced, clinicians further merge the point cloud with anatomical LA segmentations obtained from magnetic resonance imaging (MRI) or computed tomography (CT) in advance of the procedure. There is limited research aiming to improve the efficiency and accuracy of LA reconstruction algorithms. The only notable study is Baram et al. who proposed an auto-encoder to perform LA reconstruction from simulated catheter points and LA geometries (Baram et al., 2018). The methods proposed were not tested directly on real data and lacked rigorous validation. Therefore, there is a need for a more accurate and robust algorithm capable of fully automatic LA reconstruction directly from point clouds.
Convolutional neural networks (CNNs) are currently the main driver of modern analytical methods for structured data (Zhang et al., 2019). The major differences when implementing CNNs for point clouds as opposed to traditional pixels or voxels are the variable lengths and unordered structure of point cloud vectors. This has led many studies to design specialized approaches that adapt CNNs to their respective task, as they have already been proven to be extremely robust in imaging analysis (Ronneberger et al., 2015; Milletari et al., 2016). As the point cloud data is required to be standardized into a consistent shape for the CNN, approaches mainly focus on normalizing the data with pre-processing. Projection-based methods involve mapping 3D point clouds onto 2D surfaces at different angles (Yu et al., 2018), or onto standardized spherical representations (Lawin et al., 2017), which can be then analyzed directly. These studies have focused on selecting the best projection approach, such as using CNNs to analyze multiple projections of the same set of points and aggregating the results to obtain a more robust prediction (Audebert et al., 2016). Some studies also use CNNs to perform predictions on projections of local points due to the more consistent geometry in a regional area, followed by aggregation of the local outputs into a global prediction (Tatarchenko et al., 2018). Spherical projections have been more commonly used as more information can be retained in a single 2D representation, although this results in a loss of local details (Milioto et al., 2019). A more straightforward method is discretization, in which the 3D point clouds are converted into volumetric images which can be directly analyzed by CNN (Tchapmi et al., 2017). Studies have investigated ways to optimize methods of discretization due to the computationally expensive nature of this type of volume-based analysis. Some approaches have partitioned point clouds into a lattice of voxels, in which each voxel is processed differently depending on the number of points present (Meng et al., 2019). To improve accuracy, studies have used adaptive voxel sizes to target regions of high point density and ignore low-density regions (Graham et al., 2018). This increases the resolution of the discretized representation of the point set in the regions containing interest without increasing the computational burden.
The recent advancements in CNNs for point cloud analysis have provided a solid baseline for developing a LA point cloud analysis approach. Despite these studies, there still lacks research progress for converting sparse point clouds to volumetric geometries, especially in the medical field. Potential solutions for this complex task could involve state-of-the-art CNNs for 3D medical image segmentation, which specialize in the image reconstruction of extremely fine structures (Ronneberger et al., 2015; Milletari et al., 2016). The popular 3D U-Net architecture (Ronneberger et al., 2015) has been implemented for a wide range of tasks including heart segmentation (Zhuang et al., 2019), and its enhanced version, V-Net (Milletari et al., 2016), achieves further performance improvements. A recent global benchmarking study has also experimentally deduced the most optimal U-Net CNN configuration for LA segmentation from 3D MRIs (Xiong et al., 2021), surpassing traditional and other CNN methods. A 2019 benchmarking study for ventricular segmentation also demonstrated the highest-scoring team utilizing an enhanced U-Net approach (Wu et al., 2021). Furthermore, a recent review by Wu et al. outlined the advantages of CNNs, particularly those with U-Net backbones, over conventional atlas and registration-based methods for LA and scar segmentation (Yang et al., 2020). A Multi-view attention CNN was further developed to improve accuracies over standard CNNs (Kingma and Ba, 2014). Thus, we believe an approach which leverages both leading point cloud analytical techniques and medical imaging CNNs is the best strategy for tackling the task in this study.
In this study, we proposed the first deep learning pipeline for fully automatic surface reconstruction of the LA from point cloud data. Our method achieved anatomically accurate LA predictions directly from point clouds without the need for additional imaging. We tested the framework on independent clinical datasets acquired using the two most widely used commercial mapping systems. Our study may potentially be used to improve current mapping systems for guiding ablation procedures to treat cardiac diseases.
2 METHODS
2.1 CNN for LA Reconstruction
A CNN was developed to predict the 3D surface LA geometry given the point-cloud recording of the LA during clinical mapping. The architecture is shown in Figure 1, and the full summaries of parameters are shown in Table 1. The point cloud was first pre-processed into a fixed input volume. All inputs were then cropped to a standard size of 128 × 208 × 88 pixels, removing background pixels to alleviate class imbalance. The CNN architecture consisted of a modified 3D U-Net architecture with additional residual connections to improve the convergence. We used a fully convolutional network to decrease computational costs and ensure the CNN operates independent of input size. The CNN was relatively light-weight as the maximum number of convolutional kernels per layer was 128. This further ensured faster training and convergence, as well as being significantly less memory intensive.
[image: Figure 1]FIGURE 1 | The architecture of the proposed 3D convolutional neural network (CNN) for predicting the left atrial (LA) geometry from a point cloud obtained during clinical mapping. The number of kernels in each convolutional layer is shown, along with the type of convolution. The flow of the gradients between layers is also shown, with different operations for merging two layers. The legend shows the exact operations of each layer labelled with different colors. All parameters can be found in Table 1. BN, batch normalization; conv, convolution; PReLU, parametric rectified linear unit.
TABLE 1 | The configurations of the convolutional neural network.
[image: Table 1]The first half of the CNN was an encoder to learn dense features from the input through several convolutional layers of increasing depth. The convolutional layers contained 5 × 5 × 5 kernels and a stride of 1 for an increased receptive field over traditional 3 × 3 × 3 kernels, and the number of feature maps increased from 8 to 128. At every 1 to 3 convolutional layers, residual connections were added to improve feature learning and 2 × 2 × 2 convolutions with a stride of 2 were used to progressively down-sample the input by a factor of 2. The additional residual connections did not contribute to an increase in parameters but greatly increased information flow throughout the network, allowing important features to be retained as the input is down-sampled. The use of convolutions to down-sample the input as opposed to traditional pooling also implicitly enabled the CNN to learn the important features while removing unimportant information during compression.
The second half of the CNN was a decoder used to reconstruct the input back to the original resolution through several 5 × 5 × 5 convolutional layers of decreasing depth. This was done to facilitate subsequent segmentation. The number of feature maps of the convolutions in this part of the network decreased from 64 to 16. The input was progressively up-sampled by a factor of 2 with 2 × 2 × 2 deconvolutional, or transpose convolutional, layers with stride of 2. Residual connections were added at every 1–3 convolutional layers. In order to directly preserve high-resolution features from the input, feature forwarding connections were also used to concatenate the outputs of the convolutional layers in the encoder path to those in the decoder path at four different points along the CNN. This allowed the CNN to learn from both raw high-level features as well as condensed low-level features. This also greatly improved the consistency of reconstruction by essentially guiding the output to be representative of the input information. Overall, apart from the final output layer, batch normalization and parametric rectified linear units (PReLU) were used after every convolutional layer along with the entire CNN for normalization, and 50% dropout was used at every layer for regularization to decrease overfitting. The final output layer of the CNN contained a 1 × 1 × 1 convolution with a stride of 1 and a softmax activation function to predict for zeros (background) and ones (LA pixel).
The hyper-parameters in the CNN were selected through controlled experimentation to determine the optimal configuration for the task. The number of convolutional kernels was tuned using 4, 8, and 16 kernels for the first layer, with the remaining layers doubling as described. Experiments showed that using four kernels did not provide the network with sufficient depth to predict the LA accurately while 16 kernels were too computationally intensive with minimal improvement over eight kernels. The number of steps in the encoder and decoder paths was also adjusted to find the degree of compression needed. Similar with the number of kernels, CNNs without sufficient down-sampling steps were too shallow for the task, while the number of down-sampling steps above the optimal four steps did not contribute to an increase in accuracy. We implemented a CNN with 3 × 3 × 3 kernels and compared the results with the 5 × 5 × 5 kernels. Surprisingly, the network had difficulty converging when using size 3 kernels, potentially due to the lack of receptive field which could not effectively process the sparse inputs provided. We found PReLU activations worked more harmoniously with the network architecture compared with ReLU and leaky ReLU as it produced the best performances. The percentage of the dropout was also tuned with dropout rates of 25%, 50%, and 75%. While the performance did not significantly vary, a drop out of 50% provided sufficient regularization without reducing the training time as when applying 75% dropout.
To alleviate class imbalance, a dice loss function was used during training to assign higher priorities to the pixels containing the atria during prediction. The dice loss also increased the speed of convergence, significantly reducing computational costs. The formulation of the dice loss, Fdice(p, g), where p and g represents the predicted and ground truth 3D binary masks, was
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where p and g were of dimensions of x and y.
The adaptive moment estimation (ADAM) gradient descent optimizer (McGann et al., 2014) was used to minimize the loss function during training with a constant learning rate of 0.0001 and the exponential decay rates of the 1st and 2nd moment estimates were set to 0.9 and 0.999, respectively. To reduce the computational burden of the large images that needed to be processed, all data was stored in the hierarchical data format after pre-processing. The CNN was trained with a maximum limit of 1,000 epochs, with a criterion to stop training if the accuracy on the validation set did not improve after 50 epochs. A batch size of 1 was used due to the high memory costs associated with 3D volumes. The training set was also shuffled for each epoch to increase randomness. After every epoch, the performance of the CNN was evaluated on the validation set with the dice score. The parameter set of the CNN which achieved the highest validation accuracy was saved and used on the testing set. The CNN was developed in TensorFlow, an open-source Python deep learning library, and TFLearn, a high-level Python API for Tensorflow. The training step was performed on an Nvidia Titan V GPU with 5120 CUDA cores and 12 GB RAM. The training phase took approximately 10 hours. Predictions took approximately 10 s for each partial shell input.
3 EXPERIMENTAL SETUP
3.1 Data and Pre-Processing
A summary of the three datasets (paired training data, test #1, test #2) used in this study is shown in Table 2. The CNN was initially trained on a generated dataset (paired training data) and tested on two clinical datasets (test #1 and test #2). The generated dataset was simulated to provide sufficient samples to train the CNN, as clinical data is time-consuming and expensive to acquire. The two clinical datasets both contained LA surface geometries segmented from MRIs or CTs and point clouds acquired with the most widely used commercial mapping systems merged into the same coordinates as the imaging. This provided matching pairs of input point clouds and output LA for testing the CNN. The following sub-sections describe the generation and acquisition of the three datasets in detail.
TABLE 2 | Summary of the data used in this study.
[image: Table 2]The Waikato clinical study was approved by New Zealand Health and Disability Ethics Committees (Ref: 16/STH/130) and the ethics approval for the studies at other centers at Utah (Xiong et al., 2018; Yang et al., 2020), Beijing (Kingma and Ba, 2014) and Melbourne (Edelsbrunner and Mücke, 1994) were already obtained.
3.1.1 Paired Training Data
The paired training dataset was generated by merging two separate datasets: 154 LA surface geometries manually segmented from MRIs (Yao et al., 2007) and 10 sets of point clouds of the LA recorded with clinical mapping (Edelsbrunner and Mücke, 1994). The point clouds were transformed to fit the same spatial coordinates as the LA segmentations, forming matching pairs of point cloud and LA geometries available for the CNN. Overall, 1,540 data samples were generated by exhausting all pairing combinations of the two datasets.
The 154 3D MRIs with a spatial resolution of 0.625 mm × 0.625 mm × 0.625 mm were acquired from patients with atrial fibrillation at the University of Utah, United States (Yao et al., 2007). The LA geometries were manually segmented in agreement with three expert observers for each scan. Segmentations were initially performed by one observer and modified by a second observer in agreement with the first observer to ensure accuracy and consistency. Where there was a disagreement between the first two observers, a third observer was consulted to mediate and further refined the segmentation. The LA was defined as the pixels contained within the LA endocardial surface, including the four pulmonary veins (PVs). The 3D coordinates of each PV in each LA were also recorded for landmark registration.
The 10 point cloud data were created with clinical mapping during catheter ablation to treat patients with atrial fibrillation in Beijing, China (Edelsbrunner and Mücke, 1994). Similar to the MRIs, the coordinates of the four PVs were annotated in the maps. The average number of coordinates recorded for the point clouds were 3,703 ± 1,043.
The two datasets were merged by transforming the point cloud data using three stages: registration, projection, and discretization. For illustrative purposes, the three stages of the data generation process have been further outlined in Figure 2. As the coordinates of the PVs were labelled in both datasets, they were first used to register the point cloud through a series of translational, rotational and scaling matrix operations, obtaining the closest possible match of the landmarks. Since the aim of this initial step was to generate an approximate match between the two geometries, only rigid registration was performed. The registered point cloud was then spherically projected onto the surface of the 3D LA geometry using its center-of-mass as a reference point to produce an exact match between the two geometries. Finally, the projected point cloud was discretized using the alpha-concave hull algorithm (Foo et al., 2020) to generate a dense mesh of the point cloud. An alpha value of 5 was manually selected to produce an output which maintained the natural curvature of the LA. The concave hull algorithm was then iteratively applied three times such that in each iteration, points along all edges of the generated concave hull were added to the point cloud and inputted into the next iteration. This resulted in an exponential increase in the number of points after each iteration, transforming a point cloud vector of ∼4,000 samples to over 250,000 samples. Ultimately, this produced a dense mesh which was then discretized into integers forming a 3D image representing a partial shell of the LA.
[image: Figure 2]FIGURE 2 | Illustration of the (A) registration, (B) projection, and (C) discretization stages for data generation from pairs of 3D left atrial (LA) geometry segmented from magnetic resonance imaging (MRI) and point clouds of the LA recorded during clinical mapping. Landmark registration was first performed to approximately match the pulmonary veins (PV) of the two LA geometries. This was performed by centering the center of mass (COM) of the point cloud PVs to the MRI. The point cloud was then rotated such that the PVs was able to closely match that of the MRI. The point cloud was lastly scaled for further refinement. The registered point cloud was spherically projected radially from the COM to the LA wall of the MRI to simulate a surface-point cloud recording on the MRI. The point cloud was lastly converted into a dense mesh using the concave hull.
The paired training dataset was split into training (N = 1,000), validation (N = 240), and testing (N = 300). The input data and labels were the point clouds and the LA segmented from the MRI dataset, respectively. The data was split such that an LA geometry from a given MRI was only present in one of the three datasets to avoid repeating labels.
3.1.2 Test #1: Clinically Paired MRI and Point Cloud Data
MRIs with a resolution of 0.625 mm × 0.625 mm × 0.625 mm were acquired from 4 patients at Waikato Hospital, New Zealand, undergoing catheter ablation with the CARTO 3 mapping system (Prabhu et al., 2018). The average number of points recorded for the patients was 2,230 ± 790. Prior to the ablation procedure, the corresponding MRI scans were manually annotated by a team of experts to define the LA geometries. During clinical assessment, the LA was merged with the point clouds recorded during ablation mapping to spatially match the two data. For pre-processing, the point clouds were discretized using the method described above to create a 3D input LA shell for the CNN. The corresponding LA geometries from the MRIs were used as the ground truth for evaluation.
3.1.3 Test #2: Clinically Paired CT and Point Cloud Data
CTs were obtained from 2 patients at The Royal Hospital Melbourne, Australia, undergoing catheter ablation with the EnsiteNavX mapping system (Njoku et al., 2018). The average number of mapped points was 2,818 ± 206. Similar to the test #1 dataset above, the LA were manually segmented from the CTs and merged in the clinic with the point clouds. The point clouds were then discretized to create a 3D input LA shell for the CNN, and the respective LA geometries from the CTs were used as the ground truth for evaluation.
3.2 Evaluation
Several evaluation metrics were used to determine the accuracy of the CNN predictions. Evaluation was performed on all three of the paired training, test #1, and test #2 datasets. The technical analysis included the dice score, surface-to-surface distance (STSD), sensitivity, and specificity. The dice score was defined similarly to the loss function in Eq. 1. STSD between the prediction, A, and ground truth, B, was defined as
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where a and b are all the pixels locations within A and B, nA is the number of pixels in A, nB is the number of pixels in B. The sensitivity was defined as the number of true positives divided by the sum of the number of true positives and false negatives. The specificity was defined as the number of true negatives divided by the sum of the number of true negatives and false positives.
To measure the biological accuracy of the CNN predictions, we used the error in the LA diameter and volume. These are important biomarkers which have been shown to provide reliable information during clinical diagnosis and treatment stratification of atrial fibrillation (Zhuang et al., 2011; Njoku et al., 2018; Chen et al., 2022). The LA diameter was defined as
[image: image]
for a 2D slice of the 3D LA geometry with the maximum 2D width to obtain the overall maximum LA diameter, M, with dimensions I × J, where J was the anterior-posterior axis of the LA chamber. The atrial volume, VLA, was calculated by
[image: image]
for a 3D mask, M, with dimensions X × Y× Z. The diameter and volume errors were then calculated by simply comparing the measures in the predictions with those from the ground truths. We also evaluated the coverage of the point cloud in the LA to measure its impact on the technical and biological accuracies. This was computed by
[image: image]
given the point cloud, PT, with a length of n, and the outer surface of the LA, LAsurface, with m pixels, and n < m.
4 RESULTS
4.1 Accuracy for Predicting the LA From Point Clouds
Tables 3, 4 show the complete evaluation results for the 3D LA reconstruction from point clouds in generated paired training dataset, and clinical test #1 and test #2 datasets. Overall, the proposed CNN achieved excellent accuracies for LA prediction, with dice scores of 93.2% for the paired training set, 92.4% for the test #1 set, and 93.4% for the test #2 set. These high accuracies showed that the CNN was able to successfully reconstruct the LA from the sparse inputs provided. The relatively low standard deviation of 2.3% on the 300 testing samples in the paired training set showed that the predictions were also very consistent. This was particularly seen in the two test sets with standard deviations of below 1% for the dice score. The CNN achieved an STSD of 1.1 pixels on the paired training set, and a more impressive 0.8 and 0.7 pixels on the test #1 and test #2 sets, showing the predicted LA was on average within 1 pixel of the ground truth. The high sensitivity of above 90% and the specificities of 99% showed that the CNN was able to distinguish between the positive and negative pixels with high certainties. Surprisingly, the approximately 4% higher sensitivity on the two clinical test sets indicated the CNN was able to capture the LA pixels much more effectively than in the paired training set.
TABLE 3 | Technical evaluation for left atrium reconstruction from point clouds in the 300 generated (Paired training), 4 clinical MRI (Test #1), and 2 clinical CT (Test #2) data.
[image: Table 3]TABLE 4 | Biological evaluation for left atrium reconstruction from point clouds in the 300 generated (Paired training), 4 clinical MRI (Test #1), and 2 clinical CT (Test #2) data.
[image: Table 4]The predicted LA were also biologically accurate on average, obtaining low diameter and volume errors of 4.4% and 5.9%, respectively (Table 4). The higher sensitivities in the two test sets also resulted in lower diameter and volume errors with 2.6% and 3.0% errors for the diameter, and 5.2% and 3.3% for the volume in the test #1 and test #2 sets, respectively. We also compared the biological measurements between the ground truth and predicted LA to determine the error source. We found that the mean predicted diameter of 39.9 mm and volume of 49.0 cm3 were lower when compared to the 41.5 mm and 52.4 cm3 ground truth measurements. This revealed the CNN had a tendency to slightly underestimate the LA when analyzing point clouds.
4.2 Visualization and Error Analysis
3D visualizations of the ground truth and predictions produced by the CNN were produced for further error analysis. Figure 3 shows five samples of predictions made by the CNN in order of increasing accuracy, representing the range of accuracies obtained in the paired training set. The input point cloud was also shown with the corresponding ground truth LA geometry. From the samples shown, it was observed that the degree of coverage depicted by the input data had a significant impact on the accuracy of prediction. This was clearly visible in the first row where the input point cloud had low coverage. The CNN was therefore forced to generate many anatomical features without guidance, based only on the shape of the existing input. The fifth row showed an input containing extremely good coverages, naturally making the prediction much more accurate. However, rows one to four also revealed the power of the CNN for data generation, as the outputs, regardless of dice score, were all anatomically similar to the ground truths. This also showed that the CNN would be effective on clinically recorded point clouds which do not fully cover the entire LA surface. Expectedly, the most erroneous regions were the PVs when a distance-error map was computed between the predictions and ground truths. This was due to the PVs having a thin and inconsistent shape compared to the rest of the LA, creating difficulties for the CNN to consistently define.
[image: Figure 3]FIGURE 3 | 3D visualizations of the left atrial (LA) reconstructions of five samples in the paired training dataset. The reconstructions with the highest dice scores are in the bottom row and the top row contains the reconstructions with the lowest dice scores. The point-clouds inputs are shown in the first column. The ground truths obtained by manually segmenting the LGE-MRIs are shown in the second column. The reconstructions predicted by the convolutional neural network (CNN) are shown in the third column. The surface-to-surface distance (STSD) error maps between the ground truths and the predictions are shown in the fourth column, with the colors being normalized between 0 and 7 mm for the five samples. LAA, left atrial appendage; PV, pulmonary vein.
To demonstrate our method is adaptable and feasible on the two real clinical datasets (test #1 and test #2). we displayed the prediction and ground truth of one sample from each dataset in Figure 4. In general, it can be seen the point cloud in these datasets covered a significantly larger proportion of the LA compared to the paired training dataset. This led to the CNN performing better given the more complete LA shells which were generated from the point clouds. Furthermore, the adaptability of our CNN can be seen in the results for the test #2 data. The LA was acquired from CTs, as opposed to MRIs which were used in both the paired training and test #1 datasets, leading to a significantly different geometry. Nevertheless, our CNN effectively predicted the CT geometry although it was only trained on MRIs geometries, showing our approach was independent of the mapping system and image modality.
[image: Figure 4]FIGURE 4 | 3D Visualizations of the left atrial (LA) reconstruction for one sample each from test #1 (left column) and test #2 (right column) clinical datasets. The point cloud recorded with the commercial mapping systems are shown in the first row, along with the LA geometry obtained from segmenting magnetic resonance imaging (MRI) and computed tomography (CT) in the second row. The predicted LA are shown in the third row, and the surface-to-surface distance (STSD) error maps between the ground truths and the predictions are shown in the fourth row. The individual dice and STSD scores are shown for each sample. PV, pulmonary vein.
4.3 Impact of Point Cloud Coverage on the Accuracy
We analyzed the impact of the coverage of the point cloud over the target output LA on the evaluation scores obtained in our results (Table 5). The average coverage across the paired training dataset was 30%, while the test #1 and test #2 sets had coverages of 40% and 44%, respectively. The standard deviation of the coverage on the paired training set was 5.4% and contained a range of 19%–40%. This indicated there was a wide range of point cloud coverages for the CNN during training, allowing it to be applicable to a range of distributions during prediction. Interestingly, the mean coverages of the two test sets were above and outside the range of the paired training set, showing the point clouds acquired in the clinical sets were of higher quality. This was a potential explanation for the increased sensitivities on the two clinical sets, as the higher coverage allowed the CNN to predict the entire LA geometry with slightly greater precision compared to the training set. Although this did not result in an increased dice score as the specificities of the two clinical datasets were lower compared to that of the training set. This was also visible in Figures 3 vs. Figure 4 which showed a smoother point cloud distribution for the test #1 and test #2 data. The 5% higher coverage in test #2 compared to test #1 was also a potential reason for the 1% higher dice score between the two clinical testing sets.
TABLE 5 | The point cloud coverage over the left atrium for the generated (Paired training), clinical MRI (Test #1), and clinical CT (Test #2) datasets.
[image: Table 5]We then computed the Pearson’s correlation between the point cloud coverage in all data and the accuracies obtained by our CNN (Figure 5). Overall, the coverage was significantly and strongly correlated to both the dice score and sensitivity, with correlations of 0.7. This was a potential explanation for the increased sensitivity on the two clinical sets, as the higher coverage allowed the CNN to predict the entire LA geometry with greater precision. The coverage was also moderately correlated to the STSD with a value of 0.6 and statistical significance. Expectedly, the errors for the diameter and volume were both negatively correlated with the coverage, as higher coverages resulted in better predictions of the biological measurements, and thus lower errors. While the diameter error had a low correlation of −0.1, the volume error had a moderate negative correlation of −0.6. This was due to the diameter only being measured in one dimension, and thus being impacted less by the overall LA reconstruction accuracy, while the volume was influenced by all three dimensions.
[image: Figure 5]FIGURE 5 | Correlation of the point cloud coverage with the dice score in the testing datasets. The line of best fit is shown, along with the Pearson’s correlation value and p-value. The band shows the standard deviation of the points along the line.
5 DISCUSSION
Direct surface reconstruction of organs, such as the LA, from point clouds is a challenging task. Prevailing methods of analysis primarily focus on the application of CNNs for the classification and segmentation of point cloud representations of 3D objects or scenery. Well-established research into the reconstruction of 3D surface geometries directly from sparse inputs such as point cloud is therefore limited. Furthermore, the current commercial software used to perform clinical mapping and the subsequent LA reconstruction from the point clouds recorded is inefficient by requiring additional imaging prior to the procedure. The efficacy of the proprietary software also remains difficult to validate, and open research in the area is lacking.
To address the current issues, our study is one of the first to propose a fully automated framework for the reconstruction of the LA geometry directly from point clouds. Our study is also one of few to develop a CNN for the surface reconstruction of 3D geometries given a set of partially complete information such as the sparse point clouds data described. Overall, the proposed CNN produced LA predictions with high-performance accuracies across multiple metrics for both technical and biological evaluation. The CNN obtained dice scores surpassing a prior study which investigated a similar task with over 7% accuracy improvements (Baram et al., 2018). The low surface-to-surface distance, LA diameter, and LA volume errors showed our approach produced anatomically accurate predictions, which is a highly important feature for clinical applications. The clinical applicability of our approach was further demonstrated on the two clinical point cloud datasets acquired with the most commonly used CARTO and EnSiteNavX mapping systems. Experimental results showed the CNN achieved similarly accurate and consistent predictions when compared to LA geometries segmented from the MRIs and CTs in the clinical datasets. By conducting the first study which utilized real patient data for both training and testing, this study would ideally establish a solid benchmark in this under-investigated field.
An important component of CNN pipelines for point cloud analysis involves the pre-processing of the point clouds data into fixed-sized inputs. Similar to prior studies, we retained the original dimensionality and important spatial information of the inputs by directly discretizing the 3D point cloud into an image volume (Tchapmi et al., 2017). However, the pre-processing step in our study was significantly enhanced by the proposed iterative concave-hull algorithm, which exponentially increased the number of data points with low computational costs. The increased number of points resulted in smooth image volumes after discretization. This was an improvement on past methods which attempted to directly discretize low-density point clouds to produce sparse images which were difficult and computationally expensive to analyze by the CNN. As the pre-processed volumes contained a high density of information, this also benefited the performance of the CNN by providing concentrated data with a relatively low memory cost, leading to more precise predictions with greater efficiency. A further step for ensuring effective feature learning on the pre-processed point clouds involved the utilization of larger convolutional kernels to increase the receptive field of the CNN. The CNN was also enhanced with the use of feature forwarding connections, allowing it to retain and combine features at multiple receptive levels, maximizing the information extracted from the relatively sparse input information provided. Due to the high class-imbalance of the point clouds which often induces CNNs to produce completely empty predictions, we implemented a dice loss to prioritize non-background pixels. Residual blocks and batch normalization were also included to increase the ease of convergence and decrease the likelihood that the parameter optimization process does not stall at an undesirable local minimum during training.
Our study contains several limitations, which can potentially be addressed in future studies. Experiments on our CNN showed that although it performed excellently overall, its accuracy was directly dependent on the coverage of the point cloud. While most clinical point cloud recordings nowadays maintain good coverage over the entire LA chamber as seen in the samples in this study, future methods should specifically be aimed to address low coverage maps. Such methods could involve statistical shape models which artificially enhance the coverage by using aggregated anatomical features from past data to estimate the location of potential landmarks. Future research should also investigate changes to the CNN architecture to improve its accuracy in general, such as introducing adversarial pathways or auxiliary outputs which are commonly used for image reconstruction. The loss function could be improved by introducing anatomical constraints to ensure the outputs contain all key anatomical landmarks which would be very beneficial in clinical applications. Methods for directly analysing point clouds would also be explored in future studies including graph convolutional networks which would save computational time during the data preparation and remove the need for the points to be converted into image volumes. Direct learning on the point cloud data may also decrease potential biases introduced during the current discretization step, as well as provide more flexibility when handling different datasets in the future. Such methods may also be used in conjunction with our current pipeline as an additional pathway to further strengthen our approach. Finally, future studies should ideally utilize larger samples of clinical data through more extensive collaborations with international clinical centers to further validate the robustness of the framework. Such clinical trials would ideally involve both LGE-MRI scanning and anatomical mapping in every patient, with further processing using EnsiteNavX or CARTO 3 to merge and match the geometries of the atrium in both acquisitions. Generative neural networks could also potentially mitigate these issues by allowing semi-supervised learning on unlabeled datasets which are more widely available (Chen et al., 2021) and providing greater learning capacities when training on limited labelled data [36].
6 CONCLUSION
In this study, we have developed and evaluated a 3D CNN for robust automatic LA reconstruction from point clouds recorded with clinical mapping during ablation. Our algorithm enables the reconstruction of the LA in 3D with a dice accuracy of 93%, STSD of approximately 1 pixel, and accurate estimations of clinical measures. The framework was further tested on two independent cross-modality clinical datasets, and produced similarly impressive evaluation results. Our study may lead to the development of a more accurate and efficient real-time LA reconstruction approach, which can potentially be used to improve clinical guidance during ablation procedures for the treatment of cardiac diseases.
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Artificial intelligence is increasingly being used on the clinical electrocardiogram workflows. Few electrocardiograms based on artificial intelligence algorithms have focused on detecting myocardial ischemia using long-term electrocardiogram data. A main reason for this is that interference signals generated from daily activities while wearing the Holter monitor lowered the ability of artificial intelligence to detect myocardial ischemia. In this study, an automatic system combining denoising and segmentation modules was developed to detect the deviation of the ST-segment and J point. We proposed a ECG Bidirectional Transformer network that applied in both denoising and segmentation tasks. The denoising model achieved RMSEde, SNRimp, and PRD values of 0.074, 10.006, and 16.327, respectively. The segmentation model achieved precision, sensitivity (recall), and F1-score of 96.00, 93.06, and 94.51%, respectively. The system’s ability to distinguish the depression and elevation of the ST-segment and J point was also verified by cardiologists as well. From our ECG dataset, 103 patients with ST-segment depression and 10 patients with ST-segment elevation were detected with positive predictive values of 80.6 and 60% respectively. Using Holter ECG and transformer-based deep neural networks, we can detect subtle ST-segment changes in noisy ECG signals. This system has the potential to improve the efficacy of daily medicine and to provide a broader population-level screening for asymptomatic myocardial ischemia.
Keywords: holter, electrocardiogram, ST-Segment, deep learning, multi-task learning
1 INTRODUCTION
Cardiovascular disease management is becoming increasingly standardized, such as by establishing chest pain centers and improving regional collaborative treatment networks. However, at least 290 million Chinese people are suffering from cardiovascular diseases, particularly ischemic heart disease (IHD), and the morbidity and mortality of cardiovascular diseases are increasing annually (Du et al., 2019; Ma et al., 2020). There are two points that cannot be ignored. The awareness rate of IHD risks is lower than the prevalence rate (Garrido et al., 2020; Daponte-Codina et al., 2022), and the difficulty in treating ischemia comes from poor regeneration of cardiomyocytes after IHD and myocardial infarction (MI). Although the myocardium of the patients with chronic coronary syndrome has been damaged, the tolerance of myocardial cells to ischemia increases due to the formation of coronary collateral circulation. ST-segment changes of chronic coronary syndrome usually appear on the ECG when the patients have increased oxygen consumption of the body, such as during exercise, while ST-segment changes of acute myocardial infarction can appear when patients are at rest. However standard ECG records myocardial electrical activity when patients are in a calm state, such that an abnormal ECG is less likely to be identified. Holter has the advantage of recording heart electrical activity for longer periods, and the ischemic alterations seen on Holter simultaneously during chest pain bouts can assist in the diagnosis of angina. It also offers higher diagnostic performances for painless myocardial ischemia as well. Therefore, long-term monitoring and early detection are critical.
Artificial intelligence (AI) has presented its ability to solve complex and time-consuming problems, freeing cardiologists from their heavy lifting. Our previous research (Du et al., 2021) had proposed an FM-ECG AI-based model to identify various cardiac abnormalities in 12-lead standard ECG data. Furthermore, we believe that large-capacity long-term dynamic electrocardiograms, Holter, are better suited to AI algorithms for precisely analyzing every heartbeat to manually interpreting IHD from such a large volume of ECG data, which is a time-consuming task. Various automated algorithms for identifying IHD and MI have been advocated because of the in-depth integration of AI in medicine. Tadesse et al. (2021) proposed an end-to-end algorithm for identifying the time occurrence of MI using a 10 s 12-lead ECG. Their model could classify normal, acute, recent, and old onset cases of MI, with AUROCs of 96.7, 82.9, 68.6, and 73.8%, respectively. Cho et al. (2020) developed an algorithm to classify MI and non-MI using 12-lead and 6-limb lead ECG data (500 Hz, 10s) with AUROCs of 0.902 and 0.880, respectively. Zhao et al. (2020) developed an algorithm to detect ST-segment elevated myocardial infarction (STEMI) using 667 STEMI ECG data. In the comparison test, their model outperformed cardiologists. Martin et al. (2021) used lead II ECG data from the PTB-XL database to develop a Deep-LSTM network for detecting real-time MI. The proposed model achieved an accuracy, recall, and specificity of 77.12, 75.85, and 83.02%, respectively. Makimoto et al. (2020) developed a CNN to recognize MI using 289 ECG data from the PTB database. They then examined the abilities of the model and physicians to identify MI and non-MI. The CNN achieved a higher f1 and accuracy. In cardiovascular diseases, changes in the ST-segment on ECG are closely related to myocardial ischemia. Xiao et al. (2018) proposed a CNN model to detect ST changes for examining ischemia using ECG data selected from the long-term ST Database that contains 65 24 h two-and fifteen three-lead ambulatory records. Their CNN model achieved an AUC, sensitivity, and specificity of 89.6, 84.4, and 84.9%, respectively.
The studies mentioned above have contributed to AI-enabled ECG analysis. Some studies included coronary angiography as the gold standard for myocardial infarction (Cho et al., 2020; Zhao et al., 2020), which makes the MI training data more reliable. Moreover, we also found that most of the duration of the ECG data used for analysis was 10s. Long-term ECG can help capture discontinuous ECG abnormalities, such as the ST-segment deviation of unstable angina and other myocardial lesions. However, some challenges arise when analyzing ST-segment changes on long-term ECG. First, although detecting subtle changes in ECG waves early and with great precision is necessary to reduce the risk of acute myocardial ischemia, a significant amount of research has concentrated on arrhythmia classification rather than on MI detection (Hong et al., 2020). A main reason for this, we assume, is that interfered signals from daily activities while wearing the Holter reduced the AI’s capacity to diagnose IHD. Second, 12-lead ECG data should be used to diagnose myocardial ischemia and MI, but some researchers have only used the single-lead ECG data. Third, although public datasets have ready-labeled and less noisy ECG signal, public data are sometimes too clean to apply to the real world owing to individual differences and the diversity and complexity of diseases. Moreover, existing publicly accepted public datasets for long-term ECG have been collected from abroad. Regional differences may affect model results.
To alleviate the problems mentioned, we collected real-world Holter ECG data, and the ECG Bidirectional Transoformer network (EBTnet), which is a transformer-based structure, was proposed to precisely detect the location and deviation of the ST-segment and J point on 12-lead Holter ECG data at the beat level and provide cardiologists with more accurate information about myocardial ischemia.
To the best of our knowledge, this is the first study to examine the prospect of combining ECG signal denoising and wave segmentation in the same model structure with exceptional accuracy to determine the position and the degree of IHD.
2 MATERIALS AND METHODS
2.1 Model
2.1.1 Overall Workflow
Figure 1 presents a schematic of the system workflow. The system starts by cropping the long-term ECG signal into patches of 7168 sampling points. In every patch, each lead is processed using the following procedures. Noises in the ECG signal is first eliminated using a denoising model, followed by a segmentation model to detect the QRS complex of the denoised ECG signal. Then, the filtered denoised QRS complex was segmented from every beat. The ST-segment and J point amplitude of deviation of each denoised QRS complex were calculated to determine any abnormal results. Abnormal results were recorded once all leads were evaluated. The pre-setting rules are used to determine the location and deviation of the ST-segment depression and elevation and J point elevation. The frequency and last times of the prediction were calculated in a straightforward manner.
[image: Figure 1]FIGURE 1 | Schematic workflow of diagnosing ST-segment depression and elevation, and J point elevation from Holter electrocardiogram signal.
2.1.2 EBTnet Network Structure
In this section, we proposed EBTnet for both ECG denoising and segmentation tasks. ECG classification models usually need to capture the subtle changes in both rhythmic and waveform characteristics to improve performance. The results of ECG denoising and segmentation models are more dependent on the learning of local waveform attributes (e.g., P-waves, QRS complexes, and T waves) and less sensitive to rhythmic attributes. Inspired by a swin transformer, a shifted window attention mechanism was applied, which exhibited a strong capacity to capture feature representations in images. Our network applies one-dimensional (1D) bidireciton-shifted window-based transformer blocks (1D bidirectional SWT Blocks) to enhance the learning of ECG characteristic waveform representations.
As shown in Figure 2, EBTnet comprised an encoder, a decoder, and skip connections following a U-Net design (Ronneberger et al., 2015). Given an input ECG signal, a patch embedding layer with a stride of 2 was used to downsample the input and learn low-level features. The encoder contained a series of 1D bidirectional SWT Blocks and downsampling layers. The 1D bidirectional SWT Blocks were used to learn the relative local morphological characteristics from the ECG representational features. Downsampling layers reduced the length of ECG features, resulting in two benefits: increasing the attention field of each ECG feature patch because the window size was fixed for the entire network, and improving computational efficiency. The symmetric decoder was built with 1D bidirectional SWT Blocks, upsampling layers, and skip connections. The length of the ECG featureswas doubled by an upsampling layer, which aimed to restore the spatial information. The 1D bidirectional SWT Block in the decoder mainly fuses the upsampling features and representational features from the corresponding encoder layer through a skip connection. Eventually, the decode would restore the size of the ECG representational features from the encoder to the original input size. The last layer was a linear projection to either the denoising ECG signal task or QRS complex semantic segmentation task.
[image: Figure 2]FIGURE 2 | The architecture of the EBTnet.
2.1.3 1D Bidirectional SWT Block
A 1D SWT bidirectional block was built by extending the one-way window-partitioning strategy of the shifted window-based multi-head self-attention (SW-MSA) module from a swin transformer block using a bidirectional strategy. This shifted operation was designed to add information connections between neighboring ECG patches. However, we noticed that this connection was not fully utilized because the shift was only forward. Therefore, we added a backward shift to further increase the number of neighboring connections. The combination of the forward and backward shift directions in succession was called bidirectional.
Figure 3 shows three successive 1D bidirectional SWT blocks, each block built by SW-MSA, followed by two multilayer perceptron (MLP) layers with GELU non-linearity. A residual connection was applied, and LayerNorm (LN) layer was used before each MSA and MLP layer. The SW-MSA was configurated with unshifted, forward-shifted, and backward-shifted directions respectively. The transformer block can be formulated as follows:
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where [image: image] and [image: image] are the outputs of the SW-MSA module and MLP module of block l, respectively. Self-attention was defined similarly as in previous study (Vaswani et al., 2017), which is:
[image: image]
Where [image: image] represent the query, key, and value matrices, respectively.
[image: Figure 3]FIGURE 3 | Three successive 1D bidirectional SWT blocks. Each SW-MSA is configured with unshifted, forward-shifted, backward-shifted, respectively.
The unshifted SW-MSA is a regular window-based multihead self-attention. As shown in Figure 4A, the input feature with length L was evenly partitioned into 112 windows of size [image: image] in a nonoverlapping manner. The forward-shifted SW-MSA is shown in Figure 4B, where each ECG patch was shifted forward by half of one window length, which is [image: image]. This operation was implemented by arranging 56 lengths from the beginning to appending the ending of the feature. This was followed by regular window partitioning. Figure 4C shows the backward-shifted SW-MSA. Each ECG patch was shifted backward by half of the window. This operation is implemented by arranging 56 lengths from the end to appending the beginning of the feature. The window size parameter chosen was purely result-oriented, which details are shown in Supplementary Table S1. And the comparison between our 1D Bidirectional SWT Block and the regular SWT Block in denoising and segmentation tasks are shown in Supplementary Table S2.
[image: Figure 4]FIGURE 4 | The illustration of SW-MSA module with (A) unshifted (B) forward-shifted, and (C) backward-shifted.
2.1.4 Multitask Inheritance Training Scheme
Although the denoising and segmentation tasks shared the same architecture, training was performed separately. To enhance connections between the two tasks, we applied a multitask inheritance training scheme. First, the two tasks were trained from scratch, where both the encoder and decoder use a random weight initialization. Next stage, we repeated the training task. The difference was that the weights of the encoder from each task were initialized from the weights of another task encoder in stage one. For example, the encoder weights of the model trained from the denoising task in first stage were used as the initialization encoder weights of the segmentation task model in the next stage. We believed that both denoising and segmentation models required a strong encoder to capture deeper ECG characteristic waveform representations. Thus, the encoder of each model was learned from the current task and inherits the knowledge of another task. As for the data corruption concern between the two tasks, when splitting the training, validation, and testing datasets for the two tasks, we ensured that the training set from one task will not be corrupted by another task’s validation and test set.
2.2 Data Collection and Processing
2.2.1 Development Data Preparation
In this study, our ECG data comprised retrospective data from adult patients (age ≥18 years). We collected two Holter ECG (paper speed, 25 mm/s; amplification, 10 mm/mV; sampling rate, 500 Hz) datasets: the R-ECG and the E-ECG. The R-ECG dataset was used to develop the entire system, involving 276 12-lead Holter ECG records from the Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. The E-ECG dataset, as the external test dataset, was collected from the Department of Cardiovascular Medicine Ruijin Hospital Yuanyang Brunch, involving 155 12-lead Holter ECG records. All the Holter data were recorded using the same Holter electrocardiograph device. All subjects wore the Holter monitoring device for at least 12 h. The age distribution of the R-ECG dataset was 62.79 ± 14.78 years, with female and male percentages of 50.86 and 49.14%, respectively, in the R-ECG dataset. In the E-ECG dataset, the age distribution of 155 subjects was 63.43 ± 14.06 years, with female and male percentages of 43.87 and 56.13%, respectively (Table 1). Figure 5 provides the structure of our dataset.
TABLE 1 | Characteristics of R-ECG and E-ECG
[image: Table 1][image: Figure 5]FIGURE 5 | The structure of our datasets.
Anonymized data were used to ensure patient confidentiality. The algorithm team received anonymized data with only patients’ age and sex information for the subsequent model development. Informed consent was not required, because the ECG data were anonymized and deidentified.
2.2.1.1 Denoising Dataset
We built a mixed noise dataset to eliminate the various noise types in the Holter ECG, which included the following:
i. The MIT-BIH Noise Stress Test Database (NSTDB) contains two noisy leads with a length of 650,000 sampling points and 360 Hz with three common nose types: muscle artifacts, electrode motion, and baseline wander (Moody et al., 1984; Goldberger et al., 2000). The data were resampled to 500 Hz to match our dataset standard.
ii. The Holter noise dataset was selected from 107 subjects, including clean and noisy signals. Each period of the signals lasted approximately 5 min.
iii. Holter noise signals were collected from daily exercise such as jogging, climbing stairs, sitting, walking etc. These data lasted approximately 2 h and were recorded from one subject. This dataset (recorded in 12 leads with 500 Hz sampling rate) represents noise types produced from daily exercise to some extent.
The generation of noisy signals is as follows:
[image: image]
where [image: image] and [image: image] were cropped from clean and noise period signals separately under the same lengths; the period was randomly cropped during training and fixed cropped during validation and testing. In addition, [image: image] were randomly generated between 0–0.5 during training, using a fixed random seed during the validation and test stages. The synthesized noise ECG was used as the input and the clean ECG was the ground truth of the model.
The de-noising dataset contains 1626 clean samples and 678 noise samples from 108 subjects, the length of a sample is 7168 sampling points (14.336 s). In the inter-analysis, the data of the 107 subjects were randomly grouped by a 7:1:2 ratio into training set (n = 75), validation set (n = 10), and testing set (n = 22). And in the intra-analysis, the data of 1626 clean samples and 678 noise samples were randomly grouped by a 7:1:2 ratio into training set (1138 clean, 474 noise), validation set (163 clean, 68 noise), and testing set (136 clean, 325 noise).
2.2.1.2 QRS Complex Segmentation Dataset and Annotation Creation
The QRS complex segmentation dataset contains 276 samples from 116 subjects, with a sample length of 7168 sampling points (14.336 s). In the inter-analysis, the data of the 116 subjects were randomly grouped in a 7:1:2 ratio into the training set (n = 80), validation set (n = 12), and testing set (n = 24). In the intra-analysis, the data of 276 samples were randomly grouped in a 7:1:2 ratio into a training set (n = 193), validation set (n = 27), and testing set (n = 56).
This dataset was labeled by a primary cardiologist and a post-graduate student and then reviewed by two senior cardiologists. Two labels were created to annotate the QRS complex: Calculated-QRS (CQRS) and Noised-QRS (NQRS). CQRS denotes that the ECG signal quality of the currently labeled heartbeat is sufficient to calculate the amplitude of the ST-segment. In contrast, NQRS indicates that the current heartbeat will be culled from the calculation process because noise inference around the currently labeled heartbeat will influence the calculation of the ST-segment and J point amplitude. Further, Not-QRS (NOQRS) is used to mark points that do not belong to the QRS complex.
2.2.2 Prediction Post-processing
To determine the position of the J point to confirm the location of the ST segment and isoelectric reference line (IRL), to then calculate the ST-segment and J point amplitude of deviation, we labeled QRS complexes beats by beats. The ST segment was defined from the J point to 60–80 ms after the J point. And We used the position of the Q-Q interval of each heartbeat as the IRL:
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where [image: image] denotes the heart beat number, [image: image] the lead number, and [image: image] the onset point of the QRS complex.
The position of the ST segment changes with the heart rate (HR). As the heart rate increases, the ST-segment shortens. The position of the ST-segment should be adjusted by the HR, as follows (Smrdel and Jager, 2008; Sharma et al., 2017):
[image: image]
According to the anatomy of the heart, leads I, aVL, and -aVR are lateral limb leads; leads II, III, and aVF are inferior limb leads; leads V1 and V2 are septal leads; leads V3 and V4 are anterior leads; and leads V5 and V6 are anterolateral leads. On this basis, we divided them into six groups; lead aVR was divided into one group separately, while the other groups remained unchanged. Outliers are defined as follows (Crawford et al., 1999; Ibanez et al., 2018):
i. ST-segment elevation (STE): At least two adjacent leads with ST-segment elevation at J point ≥0.25 mV when a male is younger than 40  years old, ≥0.2 mV in males aged ≥40 years or ≥ 0.15 mV in females in leads V2–V3 and/or ≥0.1 mV in the other leads.
ii. ST-segment depression (STD): At least two contiguous leads in each group with ST-segment depression ≥0.05 mV.
iii. J point elevation: Compared with the earlier electrocardiogram, new J point elevation ≥0.1 mV in all leads (in the absence of V2 and V3 leads).
All outliers should last for a minimum period of 1 min after the first outlier appeared.
2.2.3 Model Comparison and Validation on Public Databases
We further validated the performance of the proposed models. We chose DENS-ECG (Peimankar and Puthusserypady, 2021), FCN (Chiang et al., 2019), Unet_LUDB (Moskalenko et al., 2020), 1D CNN Unet and DRnet (Qiu et al., 2021) to compare the models’ performance on denoising and segmentation tasks. We further validated the performance of our proposed system on Long-term ST database (LTST DB) (Jager et al., 2003). The Long-term ST database contains 20–24-h ambulatory 2- or 3- lead ECG recordings sampled at 250 Hz from 80 subjects. Each record includes beat-by-beat QRS complex annotations and ST-segment measurements. In our study, the outliers were defined in line with guideline and the standards differed across leads. Therefore, the data without lead name were excluded. 46 2-lead and 3 3-lead ECG recordings were chosen as external validation. To match our standard and model input size, we chose the protocol C (Vmin = 100 μV and Tmin = 60 s) as annotation information and all data were resampled to 500 Hz.
2.2.4 Statistical Analysis
The difference between the denoised and original groups before and after denoising was assessed using a paired t-test. The difference in segmentation model performance between the test dataset from R-ECG and E-ECG was assessed using an independent-samples t-test. The two-sided statistical significance was set at p < 0.05. All data were analyzed using IBM-SPSS® version 26.0 (IBM Corp., Armonk, NY, United States, 2019).
2.3 Performance Evaluation
In denoising task, we chose the AdamW optimizer for 300 epochs under a cosine decay learning rate scheduler (Kingma and Ba, 2014). An initial learning rate of 0.0001, and batch size of 64 were used. The mean absolute error (MAE) was selected as the loss function. The evaluation metrics included the root mean square error decrease ([image: image]), improvement of signal-to-noise ratio ([image: image]), and percentage root mean square difference (PRD). [image: image] is calculated using [image: image] to reduce [image: image], and a larger [image: image] indicates a better noise reduction performance. [image: image] was obtained using the following expression:
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[image: image] is calculated using [image: image] to reduce [image: image], and a large [image: image] indicates better noise reduction performance. [image: image] was obtained using the following expression:
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The RPD measures the quality of recovery from the noise signal. A lower PRD value indicates better design quality. The RPD is expressed as follows:
[image: image]
where [image: image] is the value of sampling point [image: image] in the clean signal, and [image: image] is the value of sampling point [image: image] in the input noise signal. [image: image] is the value of sampling point [image: image] in the output denoised signal, and N is the length of the ECG signal.
In the segmentation task, the optimizer was AdamW for 300 epochs using a cosine decay learning rate scheduler. And initial learning rate of 0.0001 and batch size of 64 were used. The loss function chosen was cross-entropy loss function. This study used precision, recall, and [image: image] are defined as follows:
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where each sampling point is calculated individually.
3 RESULTS
3.1 Denoising Model
We compared the performance between our model and the comparison models in inter- and intra-analyses, as well as in one-stage and two-stage (shown in Table 2). All four encoder and decoder models gain a better performance on multitask inheritance training scheme than training from scrath in both inter- and intra-analyses. All models gained better performance of [image: image], [image: image] and [image: image] on intra-analysis than inter-analysis in both training schemes. In inter-analysis, compared with other models, our model achieved better performances in both one- and two-stage training schemes with [image: image], [image: image] and [image: image] values of 0.074, 9.851, and 16.550 and 0.078, 10.903, and 14.726, respectively. Figure 6 shows the inter-analysis denoising results of different methods on multitask inheritance training scheme. The Five-fold Cross validation of inter-analysis in denoising task is shown in Supplementary Tables S3, S4.
TABLE 2 | The comparison results of denoising models.
[image: Table 2][image: Figure 6]FIGURE 6 | The inter-analysis denoising results of different methods on multitask inheritance training scheme. (A) Ground-truth ECG. (B) Noise-convolved ECG. (C) Denoised ECG by 1D CNN Unet. (D) Denoised ECG by FCN. (E) Denoised ECG by Unet_LUDB. (F) Denoised ECG by EBTnet.
We then compared the distribution of NQRS and CQRS between original ECG signals (original group) and denoised ECG signals (denoised group) in the same dataset (Figure 7). The denoised group showed significantly more CQRS labels and less NQRS lables than the original group (p < 0.0001). In this work, we demonstrated that the great performance of our denoising model and the impact of signals quality on the segmentation model results. Good signal quality is essential to improve the performance of segmentation model.
[image: Figure 7]FIGURE 7 | The distribution of NQRS and CQRS before and after denoising in R-ECG and E-ECG datasets. Data are expressed as mean ± SD. The difference between un-denoise and denoise groups was analyzed by paired t-test, and the difference between R-ECG and E-ECG was analyzed by independent-samples t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns denoted no significance difference.
3.2 QRS Complex Segmentation Model
Tables 3, 4 present the segmentation performances between our model and the comparison models in inter- and intra-analyses, as well as training from scratch and multitask inheritance training schemes. All four encoder and decoder models performed better in the multitask inheritance training scheme than in the training from scratch in both inter- and intra-analyses. Our model achieved better performances than the other models in both inter- and intra-analyses. The precision, recall, and F1 of CQRS in the inter-analysis were 96.00, 93.06, and 93.17%, respectively. The precision, recall, and F1 of CQRS in the intra-analysis were 95.68, 96.04, and 95.86%, respectively. Figure 8 shows the inter-analysis segmentation results of different methods on multitask inheritance training scheme. The results showed that our model was sufficiently accurate in distinguishing the QRS complex, which laid the foundation for our subsequent processing. The Five-fold Cross validation of inter-analysis in segmentation task is shown in Supplementary Tables S3, S4.
TABLE 3 | The comparison results of segmentation models in the inter-analysis.
[image: Table 3]TABLE 4 | The comparison results of segmentation models in the intra-analysis.
[image: Table 4][image: Figure 8]FIGURE 8 | The inter-analysis segmentation results of different methods on multitask inheritance training scheme. (A) Ground-truth ECG. (B) 1D CNN Unet. (C) FCN. (D) Unet_LUDB. (E) EBTnet.
3.3 Model’s Prediction Result
Table 5 presents the statistical outcome of our model’s prediction of STD and STE in every lead group of the-ECG and R-ECG test datasets. From the R-ECG dataset, our model detected STD in 2 patients in the lateral limb leads (I, aVL), 100 patients in the inferior limb leads (II, III, aVF), 11 patients in the aVR lead, 6 patients in the septal leads (V1, V2), 19 patients in the anterior leads (V3, V4), and 97 patients in the anterolateral leads (V5,V6). Four patients had inferior leads (II, III, aVF),3 patients had aVR lead, 3 patients had septal leads (V1, V2), 4 patients had anterior leads (V3, V4), and 1 patients had anterolateral leads (V5,V6) with STE. In the E-ECG dataset, our model detected STD in 2 patients in the lateral limb leads (I, aVL), 23 patients in the inferior limb leads (II, III, aVF),1 patients in the aVR lead, 2 patients in the septal leads (V1, V2), 4 patients in the anterior leads (V3, V4), and 20 patients in the anterolateral leads (V5,V6). One patients had inferior leads (II, III, aVF), 1 patient had septal leads (V1, V2), 2 patient had anterior leads (V3, V4) with STE.
TABLE 5 | The distribution of the ST-segment depression and elevation in every lead group.
[image: Table 5]The prediction of the model was then double-checked to ensure that the outliers were correct (Table 6). In the R-ECG dataset, 103 patients with STD and 10 patients with STE were detected with positive predictive values of 80.6 and 60%, respectively. In the E-ECG dataset, 68 patients with STD and 4 patients with STE were detected with positive predictive values of 76.5 and 50%, respectively. The performance of our model on LTST DB is shown in Supplementary Table S5. And our model achieved positive predictive values (precision) of STD and STE with 97.37 and 82.35%, respectively. This result shows the robustness and generalization of our model.
TABLE 6 | The result of cardiologist’s manual verification to validate the result of our model.
[image: Table 6]4 DISCUSSION
With the rapid development of computer vision and its in-depth application in the medical field, we discovered that AI can capture higher-dimensional information that is different from human thinking habits. A medical student must study for several years before becoming a physician. Qualified cardiologists require substantial professional training and experience to develop the ability to identify complicated ECG information independently. Furthermore, objective issues such as the unequal distribution of medical resources may affect the diagnosis quality. In contrast to doctors’ traditional learning methods, AI shows excellent homogeneity and accuracy, potentially narrowing the gap between outstanding physicians and rural doctors. Our previous research (Du et al., 2021) proposed an FM-ECG AI-based model to identify various cardiac abnormalities using 12-lead standard ECG data, with ECG images as the model input. It can also prove that AI can discover more information hidden in subtle ECG waveform changes, or that AI is a microscope in the world of data.
Some studies divided their datasets based on samples (Zhao et al., 2020), while others based on subjects (Xiao et al., 2018; Cho et al., 2020; Makimoto et al., 2020; Martin et al., 2021). In our study, we compared inter- and intra-analyses. Our models achieved impressive performances in both inter- and intra-analyses. The models’ performance on the intra-analysis of denoising and segmentation was better than inter-analysis. However, splitting datasets based on samples may have cross-contaminated the training, validation, and testing datasets, particularly in standard 10s 12-lead ECG. Therefore, we preferred the inter-analysis results.
Based on our research, we wanted to further explore the application value of AI algorithms in Holter ECG, thus, we developed an automatic system to detect ST-segment and J point using Holter ECG data. To learn characteristic waveform representations from ECG signals, we proposed a 1D bidirectional SWT Block that employs a window-based transformer mechanism for signal data. We discovered that using only one time-series dimension is sufficient for position embedding in a 1D bidirectional SWT Block, which preserves the properties of the ECG signal and brings it closer to the transformer’s native input. According to the results, our models outperformed the other models in both denoise and segmentation tasks. The denoising model achieved [image: image], [image: image] and [image: image] values of 0.074, 10.006, and 16.327, respectively. Our segmentation model achieved precision, recall, and F1 scores of 94.51, 96.00, and 93.06%, respectively. These result reveals that developing a high specificity model to detect ST-segment deviation and J point elevation is possible. Hypothesizing that AI explores higher-dimension information that humans cannot paraphrase and AI can provide more novel ECG digital labels that are different from our knowledge systems to diagnose cardiac disease are reasonable.
The Holter ECG is recorded for a long time, and dividing it into a image every 10 s as model input would require a lot of computing resources. Therefore, we chose a 1D original ECG signal as the model input. Another advantage for using a 1D signal is that it contains the most primitive unprocessed information, whereas 12-lead ECG images are pre-processed by its ECG recording machine.
Prior deep learning studies have achieved strong performances in clinical medicine (Hamet and Tremblay, 2017). With the rapid development of mobile and wearable ECG technologies, several excellent ECG algorithms have emerged (Attia et al., 2019). Most existing AI-based ECG studies use public data sets to train their models. Unexpectedly, when applied in the clinical environment, the performance of the model still cannot satisfy clinical demands. To a certain extent, this can be attributed to the quality of real-world ECG data, which are more complex and variable than public datasets. Caused by daily activities such as body movement and clothing friction while wearing the ECG recorder, particularly the Holter recorder, more interfered signals would be in the 1D original ECG data. However, it requires high-quality signal data to precisely detect subtle changes in J point and ST-segment deviation. Therefore, we collected Holter ECG from the Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Then, we proposed a denoising model to reduce the disturbance of the interfered signals. We compared the distribution of NQRS and CQRS before and after denoising using the same dataset (Figure 7). A significant difference was observed between the two groups. The denoised group showed more CQRS and less NQRS labels than the original group (p < 0.0001). These results suggest that our denoising model has sufficient capacity to handle noisy signals and is conducive to the subsequent detection accuracy. There is no significant difference between R-ECG and E-ECG in each group, indicating that our model is sufficiently robust enough to handle different datasets.
Since AI has been applied to ECG diagnosis in recent years, arrhythmia has attracted the attention of several research teams. Andrew et al. (Hannun et al., 2019) used a deep neural network to analyze ECG data collected by a single lead ambulatory ECG monitoring device, and the performance of their model was better than that of professional physicians. Some researchers have developed a CNN deep learning algorithm to classify AF, I-AVB, left and right bundle branch blocks, atrial premature beats, and premature ventricular contraction on standard 12-lead ECG records (Oh et al., 2018; Jeong and Lim, 2021). However, in terms of shifting the detection yield to myocardial ischemia and MI, however, certain flaws have been encountered. Arrhythmia can be diagnosed with two or three leads, whereas myocardial ischemia requires at least 12 leads to affirm that the myocardial damaged position, as ECG waveforms can be different in each lead when coronary artery damage occurs in different locations. Moreover, the dynamic change of the ST-segment in myocardial ischemia and MI is difficult to be captured by standard 12 leads ECG continuously, particularly in unstable angina.
To precisely identify the IHD, the proposed model is designed to recognize the QRS complex to calculate the ST-segment and J point deviation on 12 leads Holter ECG. Table 5 presents the statistical results of our model. The J point masks the end of the ventricular depolarization and the start of repolarization. The deviation of the J point generally does not exceed 0.1 mV, it might suggest cardiac injury otherwise. The precise positioning of the J point is also of great significance. For example, it can be used to calculate PJ interval, which indicates the conduction abnormalities when it is prolonged more than 0.27 s. Although we did not find patients with J point elevation in our dataset, we found patients with STE and STD, which proves that our system can positioning J point with excellent ability. Inferior wall myocardial injuries are more common in patients with myocardial injuries (Warner and Tivakaran, 2021). More STDs were detected in the inferior leads (II, III, aVF) (Shah et al., 1983). Although inferior myocardial infarction has a better prognosis than other cardiac locations, we should note that it can be associated with right ventricular infarction, which portends a worse outcome. STE was always detected during the super-acute and acute periods of STEMI; therefore, we captured less STE in our dataset than STD. We double-checked the model’s prediction to confirm whether the outliers were correct (Table 6). In the R-ECG dataset, STD and STE were detected with positive predictive values of 76.9 and 64%, respectively. In the E-ECG dataset, STD and STE were detected with positive predictive values of 85.7 and 55.5%, respectively. STEMI accounts for 30% of acute coronary syndromes, whereas acute coronary syndrome without significant STE accounts for 70%. Patients with STD accounted for approximately 31% of acute coronary syndromes without significant STE, whereas STD combined with T-wave inversions accounted for 16% (Bhatt et al., 2022). Our results are consistent with the distribution of disease characteristics. STE can present as MI, acute pericarditis, myocarditis, vasculitis, and hyperkalemia. However, the cases presenting with STE were assumed to be STEMI. STEMI is the primary cause of STE and is a medical emergency that requires prompt recognition and treatment (Chandra et al., 2011). Therefore, fewer STEs were found among Holter-wearing patients. In our dataset, the number of patients with STE was small, and the results may have improved if the dataset had a larger positive sample size.
For unstable angina and stable angina pectoris, approximately half of the 12-lead standard ECG is normal when the diseases is resting. Holter can record ECG for at least 24 h, and the ischemic changes shown on ECG at a corresponding time during chest pain attacks can determine the diagnosis of angina. In addition, painless myocardial ischemia can be detected using a Holter ECG recorder. Moreover, it would benefit patients with slight myocardial ischemic symptoms who have a high risk of cardiovascular or sudden cardiac death. Although Holter has the above advantages for detecting myocardial ischemia, it is rarely applied to automated myocardial ischemia monitoring. Owing to the existing Holter equipment failure to detect ST-segment with high precision, the result of the deviation of the ST-segment does not help in diagnosis. That is, diagnosing silent myocardial ischemia is still challenging since physicians cannot analyze each heartbeat from 24 h of Holter ECG data.
The proposed system can provide more accurate information with an excellent ability to handle large amounts of data to cardiovascular system regarding whether the patients suffer from myocardial ischemia while wearing Holter ECG recorders. Furthermore, the accurate detection of the ST-segment and J point may be a powerful force in resolving the excessive false alarms that afflict current ST monitoring software.
4.1 Limitation
Several limitations of this study should be noted. First, it was performed at a single center in Shanghai, China. Using external real-word data sets from other regions is necessary for further verification and analysis to ensure the validity of our AI model worldwide. Second, the proposed model trained with ECG data only incorporated age, sex, with biomarkers, medicines, or other history information. Additional patient data may have further improved the diagnostic value of our model and led to the discovery of previously unknown conscious ECG information. Third, rather than using the gold standard of coronary heart disease, such as coronary angiography, our system’s conclusions were confirmed only by cardiologists. In terms of models, the proposed denoising model performes well in some inferred signals, but it is powerless with severe noise signals, such as part of the lead falling off or vigorous clothing friction. Moreover, to a certain degree, our model’s diagnostic result may lack continuity and the period of STD is discontinuous. This is because of our model judgment rules: an abnormal condition is assessed as the associated abnormal label and noted on the table only if it lasts for at least 1 min. The present QRS complex is not be included in the computation if the model deems a QRS complex as NQRS. Therefore, once an NQRS label appears in a segment of the ST-segment abnormal ECG signal, our results show the characteristics of the discontinuous distribution.
4.2 Future Study
We have investigated the possibility of applying AI to analyze ECG images and 1D signals. Future directions are related to improving the establishment of the Holter ECG dataset and merging of illness information in more dimensions. First, more information about the patient history and various inspection results will be recorded. Patients who have a gold standard for CHD will be chosen as the control group to verify our results. Other information such as echocardiogram, electrolyte, blood lipid level, blood pressure, and blood sugar can provide model more dimensional information to diagnose and further predict potential diseases. Second, in the current study, we failed to find patients with J point elevation, but we expect that with additional Holter ECG data, we can screen patients with J point elevation and follow them for years. We may then look for a link between J point elevation and heart diseases end events, as well as predict critical events such as ventricular fibrillation and SCD. Third, in terms of AI models, we will build a multi-label AI model to classify arrhythmia, MI, and other disorders such as myocarditis and hyperkalemia using long-term ECG data. Finally, future studies, particularly large multicenter prospective cohort studies, would be conducted to assess the prediction level of the AI model.
5 CONCLUSION
In conclusion, we proposed a transformer-structure-based automatic system combining denoising and segmentation modules, which can be applied to identify ST-segment and J point abnormalities in patients from long-term Holter ECG data. The proposed system has the potential to assist in clinical decisions while reducing the burden on doctors with fewer medical resources.
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As the fast development of wearable devices and Internet of things technologies, real-time monitoring of ECG signals is quite critical for cardiovascular diseases. However, dynamic ECG signals recorded in free-living conditions suffered from extremely serious noise pollution. Presently, most algorithms for ECG signal evaluation were designed to divide signals into acceptable and unacceptable. Such classifications were not enough for real-time cardiovascular disease monitoring. In the study, a wearable ECG quality database with 50,085 recordings was built, including A/B/C (or high quality/medium quality/low quality) three quality grades (A: high quality signals can be used for CVD detection; B: slight contaminated signals can be used for heart rate extracting; C: heavily polluted signals need to be abandoned). A new SQA classification method based on a three-layer wavelet scattering network and transfer learning LSTM was proposed in this study, which can extract more systematic and comprehensive characteristics by analyzing the signals thoroughly and deeply. Experimental results (mACC = 98.56%, mF1 = 98.55%, SeA = 97.90%, SeB = 98.16%, SeC = 99.60%, +PA = 98.52%, +PB = 97.60%, +PC = 99.54%, F1A = 98.20%, F1B = 97.90%, F1C = 99.60%) and real data validations proved that this proposed method showed the high accuracy, robustness, and computationally efficiency. It has the ability to evaluate the long-term dynamic ECG signal quality. It is advantageous to promoting cardiovascular disease monitoring by removing contaminating signals and selecting high-quality signal segments for further analysis.
Keywords: dynamic electrocardiogram, signal-quality assessment, wavelet scattering, signal-quality index, long short-term memory network
INTRODUCTION
Cardiovascular diseases (CVDs) are the most common non-communicable diseases globally, responsible for an estimated 17.8 million deaths in 2017, accounting for 31% of all global deaths, of which more than three quarters were in low income and middle-income countries (Liu et al., 2018; Roth et al., 2018). Therefore, early continuous monitoring and prevention for CVDs are very urgent. The recent commercial availability of wearable devices and Internet of things (IoT) technologies with cardiovascular disease detection capabilities has revolutionized the diagnosis and management of these common medical issues, as it has placed the power of arrhythmia detection into the hands of the patient (Liu et al., 2019b). However, the dynamic long-term ECG signals suffer from extremely serious noise pollution due to the dynamic long-term unsupervised free-living monitoring environment (Huerta et al., 2019). A recent study of 100 patients undergoing cardioversion for atrial fibrillation showed that 34% of wearable devices’ ECG recordings were categorized as “unclassified” by the device algorithm due to unclear reasons or baseline artifacts and low amplitude recordings (Kaptoge et al., 2019). Poor electrocardiographic signal quality can result in misinterpretation and inappropriate results, hazard the correct diagnosis information (Andrea et al., 2018), increases the risk of false alerts (Liu et al., 2011), which may lead to unnecessary medical referrals and testing (Ip, 2019), and increase the workload of physicians (Zhao and Zhang, 2018). Consequently, it is quite urgent to evaluate the quality of wearable dynamic ECG signals, to eliminate signals with serious noise pollution, to distinguish between clean signals that can be used for disease diagnosis and mildly contaminated signals that can only be used for heart rate extraction, which can effectively reduce false alarm and avoid interference with CVD diagnosis (Xu et al., 2021).
The quality evaluation of wearable dynamic ECG signals has aroused the researchers’ extensive attention (Satija et al., 2018; Liu et al., 2019a; Huerta et al., 2019; Liu F. et al., 2020). As early as in 2011, the PhysioNet Cardiology Challenge addressed the issue of developing an efficient algorithm being able to run in real-time on a mobile phone, which can be able to indicate within a few seconds, while the patient is still present, if the ECG is of adequate quality for interpretation, or if another recording should be made (Silva et al., 2011). From then on, many wearable ECG signal-quality assessment (SQA) methods have been developed, and a variety of signal-quality indexes (SQI) have been explored based on the extraction of statistical, morphological, nonlinear, or time-frequency domain features etc. from the signals (Smital et al., 2020). For instance, Li et al. (2008) proposed a bSQI index based on the principle that different R-wave detectors should be nearly the same for clean ECG signals, while they should have different results for ECG signals polluted by noises, and got a good grade in the 2011 PhysioNet/CinC Challenge (Clifford and Moody, 2012). Based on this index, Liu et al. (2018) proposed the generalized bSQI index, generalized the two QRS detector–based bSQI to multiple QRS detector–based bSQI, and mainly studied the effects of type and number of R wave detectors on signal-quality assessment performances. Smital et al. (2020) proposed continuous signal-to-noise ratio curve using the time-frequency domain approach, including the Wavelet Wiener Filtering method and short-time Fourier transform frequency approach, to estimate real-time quality assessment of long-term ECG signals recorded by wearables in free-living conditions. He et al. (2020) proposed a fuzzy comprehensive evaluation algorithm based on characteristics of ECG waveform and each band, to comprehensively evaluate the quality of ECG signals.
However, existing SQA methods highly demand robust methods for accurate and reliable detection and measurement of morphological and RR-interval features from noise-free and noisy ECG signals. Although the ECG morphology feature–based methods have shown promising results in noise-free ECG recordings, accuracy and robustness of QRS complex detection and waveform delineation methods are significantly degraded in the presence of severe muscle artifacts and other external noise (Satija et al., 2017). Also, most SQA methods graded the dynamic ECG signal quality into two groups: acceptable versus unacceptable (or good versus bad). In fact, in some wearable ECG signals only R wave could be detected, other waves such as P or ST were drowned out by the noise (Xu et al., 2021). These signals cannot be used for some CVD detection, but they also cannot be abandoned as heart rate information can be obtained. Therefore, these signals could not be simply divided into acceptable or unacceptable. In this study, a wearable ECG quality database with 50,085 recordings was built, which included A/B/C (or high quality/medium quality/low quality) three quality grades (A: high-quality signals can be used for CVD detection; B: slightly contaminated signals can be used for heart rate extracting; C: heavily polluted signals need to be abandoned). The research has revealed that traditional indexes merely based on morphological, nonlinear, or time-frequency domain features did not perform well on this database, as class B signals were easily confused with class A signals. It is essential to extract more systematic and comprehensive characteristics by analyzing the signals thoroughly and deeply.
The wavelet scattering algorithm, proposed by Mallat (2012), Bruna and Mallat (2013), and Anden and Mallat (2014) using the deep convolutional network architecture, iterated over wavelet convolution, nonlinear modulus, and averaging operators to compute higher-order scattering coefficients, which can build the translation invariant, stable and informative signal representation. The wavelet transform method provided stability under the action of small diffeomorphism, while the nonlinear operation and the integration over time give translation invariance (Tang et al., 2015). Cascading wavelet transforms allowed the recovery of high frequencies lost when averaging the absolute values of coefficients of previous wavelet transforms (Destouet et al., 2021). These preprocessing methods provided an in-depth analysis of signals. First-order scattering coefficients characterize persistent phenomena such as tendency and envelope, while second-order scattering coefficients characterize transient phenomena such as shock signals and amplitude modulation (Anden and Mallat, 2014). The wavelet scattering method has been wildly used for acoustic scene classification (Li et al., 2019), speech recognition (Fousek et al., 2015; Joy et al., 2020), and heart sound classification (Mei et al., 2021), which yielded efficient representations for audio processing. However, wavelet scattering currently was seldom used in ECG analysis and application. Sepúlveda et al. (2021)extracted features of the signal at different time scales using the wavelet scattering algorithm for emotion recognition. Also, Liu Z. et al. (2020) employed wavelet scattering transform for ECG beat classification.
In this study, in order to address the classification issue of A/B/C three quality levels wearable ECG signals, a new SQA classification model was proposed based on a three-layer wavelet scattering network and transfer learning long short-term memory (LSTM) method. As the result shows, it performed very well on the quality assessment of wearable dynamic ECGs.
MATERIALS AND METHODS
Figure 1 displays the flowchart of the proposed method. It first established a wearable ECG quality database with 50,085 recordings from two public databases. Then, a quality pre-assessment was established, to delete the lead-fall signals and pure noise, and to avoid the adverse impact of invalid samples on the training models. Also then, the scattering characteristic matrix was extracted by applying a three-layer wavelet scattering network. Finally, a bi-directional long short-term memory (Bi-LSTM) network was employed to train the classification model.
[image: Figure 1]FIGURE 1 | Flowchart of the proposed method.
Database
A total of 50,085 recordings of wearable ECGs were used in this study, which were from the Brno University of Technology ECG Quality Database (BUTQDB) (Nemcova et al., 2020) and the 2011 PhysioNet/CinC Challenge (Goldberger et al., 2000; Silva et al., 2011). In the Brno University of Technology ECG Quality Database, the data comprise 18 long-term recordings of single-lead ECGs, collected from 15 subjects (9 females, six males) aged between 21 and 83 years. The signals are longer than 24 h which were detected using the Bittium Faros 180 device (mobile ECG recorder) under free-living conditions. All patients on the datasets did not have any diagnostics. The database contains signal-quality labels for partly data provided by three ECG experts, as well as the consensus of these experts, who grouped the signals into three quality classes.
Class A (high quality): all significant waveforms (P\QRS\ST\T waves) are clearly visible and the onsets and offsets of these waveforms can be detected reliably. The recording with no obvious noise can be used for the diagnosis of cardiovascular disease.
Class B (medium quality): the noise level is increased and significant points in the ECG are unclear (for example, PR interval and/or QRS duration cannot be measured reliably), but QRS complexes are clearly visible and the signal enables reliable QRS detection. Heart rate can be measured correctly.
Class C (low quality): QRS complexes cannot be detected reliably and the signal is unsuitable for any analysis. Heart rate cannot be measured correctly. These signals will interfere with the diagnosis of the cardiovascular disease and need to be removed.
In this study, the annotated recordings and segments have been divided into many fragments of unequal length based on the signal-quality labels provided by ECG experts. Each fragment has an independent label. Also, we segmented the annotated fragments into 10-s fragments with no overlap. Also, a sample of 10-s is the input data to the classification model. The number of class A is 11,708, class B is 7,860, and class C is only 657. It was obvious that data distribution was unbalanced. As we know, imbalanced classes will greatly reduce the generalization ability of the classification model (Clifford et al., 2012). Balancing the database classes can overcome this problem. In this study, we balanced the dataset by expanding the class C data using two ways: one is importing same class data from other databases, and the other is adding noise to clean data.
A total of 1,000 recordings of standard 12-lead ECGs were provided by the 2011 PhysioNet/CinC Challenge (Silva et al., 2011). In 1,000 12-lead ECGs, 773 were labeled as “acceptable,” 225 were “unacceptable,” and two were “intermediate.” Each signal had a length of 10 s. All patients on the datasets did not have any diagnostics. In Liu et al. (2018), every single channel of ECGs had been scored and re-labeled by five researchers, and a total of 9,941 acceptable and a total of 2,059 unacceptable 10-s ECG segments were obtained. In this study, based on the scores in the Liu et al. (2018) and Liu et al. (2019b), we annotated all the leads (10 s segments) individually. For every single channel of ECGs, five scores [image: image] were given by five researchers as presented in Table 1. Also, the average score [image: image] was used as a threshold. The signals were re-labeled as “class A” if it was higher than 0.75, as “class B” if it was higher than 0.25 and lower than 0.75. Otherwise, the signal was labeled as “class C”. We obtained a total of 4,455 “class A,” a total of 5,486 “class B,” and a total of 2,059 “class C” 10-s ECG segments.
TABLE 1 | Five signal quality scores for the 10-s ECG segments.
[image: Table 1]If all signals from these two databases were used together simply, the number of class A would be 16,163, class B would be 13,346, and class C would be only 2,716. It was obvious that data distribution was also extremely unbalanced. In this way, class B 7860 signals from the Brno University of Technology ECG Quality Database were employed to expand the class C data by adding noise from the PhysioNet noise stress test database (NSTDB) (Moody et al., 1984). Also, 10,000 recordings chosen randomly form class A were also used to expand the class B database (3,000) and class C database (7,000) by adding noise from NSTDB, for class B; the signal-to-noise ratio (SNR) was equal to 10db, for class C was -10bd. In the NSTDB database, three types of noise were exiting, record bw contains baseline wander noise, record em contains electrode motion artifact with a significant amount of baseline wander and muscle noise as well, and record ma contains mainly muscle noise (Clifford et al., 2012). Because the baseline wander (bw) has little effect on signal quality, Gaussian noises were added to this type of noise to generate new noisy records gbw. Table 2 shows the details of dynamic ECG quality assessment database composition.
TABLE 2 | Dynamic ECG quality assessment database composition.
[image: Table 2]Signal-Quality Pre-assessment
Signals from different databases need to be preprocessed. First, each ECG signal was down-sampled to 250 Hz. Then, the min–max standardization method was used to map the original ECG signal data to [0–1]. Lead fall is very common in wearable dynamic ECG signals. Lead fall detection was an important way to decrease data storage costs and computing overhead for wearable devices. Figure 2 shows several typical cases of lead-fall signals. In this study, if one ECG signal was present with a constant voltage of more than 80% of the recording, it was defined as lead falling. Occasionally, detached electrodes were adhered to clothing and received Gaussian noise signals. If the signal was pure noise, it was needed to be eliminated. Based on the spectrum range of ECG signal, that is, 0–40 Hz, if the ratio of power spectrum energy of the signal in the range of 0–40 Hz to the total energy is less than 30%, it indicates that the main component of the signal is not the ECG signal but the noise signal, which can be directly discarded. By pre-assessment, 1,029 lead off and pure noise signals were eliminated, which belong to the class C. The calculation formula is as follows:
[image: image]
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[image: Figure 2]FIGURE 2 | Typical cases of lead-fall signals.
Wavelet Scattering Analysis
The wavelet scattering network has the characteristics of translation invariance, deformation stability, and high frequency preservation (Bruna and Mallat, 2013), and it is very sensitive to the deformation of wearable dynamic ECG signals. In this study, the scale function [image: image] and Morlet wavelet function [image: image] were employed to construct a three-layer wavelet scattering network. Through this network, ECG signals generate scattering coefficients of order 0, 1, and 2, which can cover the whole frequency domain of the signal. The network constructing steps are as follows:
1) ECG signal X(t) was convoluted with the scale function [image: image] to obtain the 0-order wavelet scattering coefficient [image: image].
[image: image]
2) ECG signal X(t) were convoluted with the first-order wavelet functions, [image: image], and the first-order scattering propagation operators [image: image] were generated by nonlinear modulus operation.
[image: image]
3) The first-order wavelet scattering coefficients [image: image] are obtained by the convolution of propagators [image: image] and scaling function [image: image].
[image: image]
4) The first-order scattering propagator [image: image] were convoluted with the second-order wavelet functions [image: image], and the second-order scattering propagators [image: image] were generated by the nonlinear modulus operation.
[image: image]
5) The second-order wavelet scattering coefficients [image: image] are obtained by the convolution of the second-order scattering propagators [image: image] and scaling function [image: image].
[image: image]
The scattering network can contain more than three layers, but in practice, energy is dissipated with each iteration. Therefore, in this study, three layers were employed. The zero-order wavelet scattering coefficient [image: image] mainly average the input ECG signal. The first-order wavelet scattering coefficient [image: image] captures details lost in the first step, similar to the scale-invariant feature transformation function. The second-order wavelet scattering coefficient [image: image] provides supplementary information that improves classification. The scattering characteristic matrix is composed of these three-layer scattering coefficients [image: image]. Figure 3 displayed the three-layer wavelet scattering network, and three classes of signals.
[image: Figure 3]FIGURE 3 | Three-layer wavelet scattering network.
Figure 4(A) shows that time-domain plots of the scale function [image: image] and Morlet wavelet function [image: image] were employed in the study. Invariance scale I in the scale function needs to be confirmed based on the length of data and sampling frequency. A total of 41 first-order wavelet functions and 7 second-order wavelet functions were used to build this wavelet scattering network, as shown in Figures 4 (C) and (D). Also, Figure 4 (B) described the Littlewood–Paley sums for these scattering filter banks. Wavelet scattering networks could automatically extract feature extraction and could also reduce the signal dimension. The scattering characteristic matrix with dimension [image: image] was generated by this wavelet scattering network for one ECG signal with a length of 2,500 samples. For scattering coefficients of order 0, an input signal was first averaged using the scale function, which was the first matrix 1 × 20. For scattering coefficients of order 1, performing a continuous wavelet on the input signal yield a set of scalogram coefficients. Also, a modulus was applied to these coefficients and then the outputs were filtered with the wavelet low-pass filter yielding a set of order-1 scattering coefficients. It was the second matrix 41 × 20. For scattering coefficients of order 2, the same process was applied to the scalogram coefficients to obtain the third matrix 39 × 20. These three matrixes formed a scattering characteristic matrix with a dimension of 81 × 20. The columns (20) can be considered as the time dimension and 81 can be considered as the scale dimension. But this time dimension was after processed by average operation. Also, this scale dimension was also after processed by nonlinear modulus and averaging operators. It was different from the time-frequency map generated by the wavelet transform. A long short-term memory (LSTM) classifier with ADAM solver was used for classification.
[image: Figure 4]FIGURE 4 | (A) Time-domain plots of the scale function and Morlet wavelet function; (B) Littlewood–Paley sums; (C) 41 first-order wavelet functions; (D) 7 second-order wavelet functions.
EVALUATION METHOD
The evaluation indexes used in this study are sensitivity (Se), precision (+P), comprehensive index F1 measure for A\B\C three quality grades, and modified accuracy (mACC). Se is the proportion of a certain class that has correctly predicted the total number of all real classes in the test dataset, including [image: image] . +P is the proportion of the certain class that has correctly predicted the total number of predicted to be this class in the test set, including [image: image]. F1 measure includes [image: image] for class A/B/C, respectively. [image: image] is an average value of these three indexes.
[image: image]
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where TNA, TNB, and TNC are the number of signals accurately predicted as classes A, B, and C, respectively. NA, NB, and NC are the number of all real class A, B, and C signals in the test set, respectively. TA, TB, and TC are the number of all predicted to be class A, B, and C signals in the test set, respectively.
Classification Model
The total number of signals in the database was 50,085. By pre-assessment, 1,029 lead-off and pure noise signals were eliminated. Remaining 49,056 signals were used to study the classification performance of the wavelet scattering network. In this study, a bi-directional long short-term memory (Bi-LSTM) network with the adaptive moment estimation (ADAM) solver was employed to train the classification model. The maximum number of epochs was 1,000. To reduce the amount of padding in the mini-batches, choose a mini-batch size of 490. The 10-fold cross-validation was employed to evaluate the classification performance of the model. All the segments were randomly divided into 10 groups. Also, the number of signals for each fold was 4,905.
Real-Time Validation
For real-time SQA performance analysis, the reliability of the whole wavelet scattering network method on real wearable dynamic ECG signals was tested. A Lenovo H3 dynamic ECG device was used for this experiment. Figure 5 shows the schematic diagram of device wearing. There were 60 subjects (24 females, 36 males) aged between 19 and 24 years in this experiment. For each subject, a 10-min duration of dynamic ECG signals was recorded under different physical activity conditions. The subjects wearing Lenovo H3 dynamic ECG devices were asked to perform different activities for 10-min duration, including sitting, walking, jogging, sitting, running, sitting, jumping, and sitting. In order to eliminate the interaction between two different physical activities, the subject was asked to sit and rest after strenuous exercise, such as running and jumping. The continuous wearable ECG signals collected by the Lenovo H3 device were transmitted to the phone via Bluetooth. The ECG signal was segmented with a frame length of 10 s and a hop-size of 1 s. The proposed wavelet scattering network SQA classifier evaluated the quality of the whole signal. The scattering characteristic matrix of the segment signals was generated by the proposed three-layer wavelet scattering network. A classification model was trained by all the signals (a total of 49,056) in the constructed database. By this classifier, the segmented signal was classified into different quality levels.
[image: Figure 5]FIGURE 5 | Schematic diagram of device wearing.
RESULT
Tables 3 shows the confusion matrices of the classification results for an independent test set, and table 4 displays 11 evaluation indexes ([image: image]) of the average classification results for 10 cross-validation. As it turns out, the classification performance of the wavelet scattering network classifier was very great. The mean values of 11 evaluation indexes were nearly all greater than 98% (mACC = 98.56%, mF1 = 98.55%, SeA = 97.90%, SeB = 98.16%, SeC = 99.60%, +PA = 98.52%, +PB = 97.60%, +PC = 99.54%, F1A = 98.20%, F1B = 97.90%, F1C = 99.60%), only 97.90% for [image: image], 97.6% for [image: image]. Particularly for class C, [image: image] were all greater than 99%.
TABLE 3 | Confusion matrices of the classification results for an independent test set.
[image: Table 3]TABLE 4 | Classified results of 27 SQI-based SVM classifiers and proposed method.
[image: Table 4]For classification performance comparisons, 27 typical SQA methods were selected (picaSQI (Li et al., 2014), tSQI (Liu F. et al., 2020), kSQI (Clifford et al., 2012), ELZ_compl_SQI (Zhang et al., 2014), sSQI (Clifford et al., 2012), bSQI_4 (Liu et al., 2018), DisEn_SQI (Li et al., 2015), pSQI (Li et al., 2008), bsSQI (Li et al., 2014), iSQI (Liu et al., 2019b), basSQI (Li et al., 2014), ApEn_SQI (Pincus et al., 1991), bSQI_2 (Li et al., 2008), HpSQI (Liu F. et al., 2020), FuzzyEn_SQI (Di Marco et al., 2012), SampEn_SQI (Chen et al., 2009), SDN_SQI (Everss-Villalba et al., 2017), eSQI (Li et al., 2014), MSQI (Tobon Vallejo et al., 2014), MpSQI, LpSQI (Liu F. et al., 2020), rsdSQI (Li et al., 2014), purSQI (Nemati et al., 2010), pcaSQI (Behar et al., 2013), PLI_SQI (Everss-Villalba et al., 2017), LZ_compl_SQI (Zhang et al., 2016), and hfSQI (Li et al., 2014)). These SQA methods were mainly based on the SQI indexes extracted from the time domain, frequency domain features, QRS waves, nonlinear characteristic, and others. The support vector machine (SVM) classifier was employed to train the classification model. As shown in Table 4, the classification accuracy of multi SQIs for 10-fold cross-validation was 85.33%.
Considering the overfitting influence of deep learning, cross-database validation was carried out to verify the generalization ability of this proposed method. All signals from BUTQDB were used as training data, while all signals from the 2011 PhysioNet/CinC were used as testing data, and vice versa, all signals from the 2011 PhysioNet/CinC were used as training data, while all signals from BUTQDB were used as testing data. Table 4 also displays the results of cross-database validation. For these two classifiers, classification accuracies were all greater than 80%. It was not as good as 10-fold cross-validation. The classification accuracy of multi SQIs for cross-database validation was about 75%.
DISCUSSION
In this study, we proposed a new SQA classification method based on a three-layer wavelet scattering network and built a wearable ECG quality database with 50,085 recordings for A/B/C three quality levels. The proposed SQA classifier had an excellent performance on this database ([image: image]) for 10 cross-validation after all signals mixing. Particularly for class C signals, the proposed approach worked very well and the evaluation indexes were all greater than 99%. For class A and B signals, the results were slightly worse, but all greater than 97%. The wavelet scattering network used the deep convolution network architecture, but filter parameters were predefined. In this study, only the influence of the invariance scale was considered. Meanwhile, for performance comparisons, 27 typical SQA methods were selected to test the performance of this new database. Considering the overfitting influence of deep learning, cross-database validation and real-time validation were also carried out. The classification performance of cross-database validation was also admissible ([image: image] ≥ 80%).
Influence of Invariance Scale
In this study, the proposed three-layer wavelet scattering network was a deep learning framework which could extract complementary compact information automatically. The wavelet scattering network used the deep convolutional network architecture iterates over wavelet convolution, nonlinear modulus, and averaging (pooling) operators to compute higher-order scattering coefficients, which build translation invariant, stable, and informative signal representations. But the filters of the wavelet scattering network were predefined Morlet wavelets (Bruna and Mallat, 2013), which did not need to be learned from data. The Morlet wavelets were a localized waveform, having a better frequency resolution and stability to deformations, which could impose the separation of the different quality signals. The nonlinear modulus propagator recombines real and imaginary parts of complex wavelet coefficients, which could keep the low frequency averaging and obtain the translation invariant representation. Although the modulus operator removed the complex phase and lost information about the high frequencies, it kept the temporal variation of the multiscale envelopes. Also, the high frequencies information lost by the pooling can be recovered as wavelet coefficients in the next layers as the wavelet transform was a redundant representation. High order scattering coefficients could characterize transient phenomena of the different noises from free living. To recover this high-frequency information, a new wavelet transform was implemented to the signal in the next layers before the nonlinear modulus and pooling were performed.
The invariance scale was also termed as the interval of time-shift invariance, which was defined by the size of the time averaging window. The influence of this parameter was also considered in this study. Also, the scattering coefficients were computed at scales [image: image] Figure 6 displayed the classification results. As shown in Figure 6, the invariance scale I changing had less influence on the accuracy. All 11 evaluating indexes were above 93%. But obviously, when the invariance scale was set to be 2s, the classification performance was best. The scale I controlled the amount of translation invariance. When it was too small, noises produced by gross movements, such as severe drifting baselines, would miss some. When it was too large, the convolution would lose partly high frequency information. In this study, 2s was the best choice for the invariance scale. The classification performances showed small differences in the changing of the invariance scale. The variability within each class A/B/C was not due to translation, but due to time-domain deformations and spectrum noise.
[image: Figure 6]FIGURE 6 | Classification results for invariance scale [image: image].
Comparing With Other SQA Methods
At present, most studies about the signal-quality assessment divided the ECG signals into acceptable and unacceptable. There are fewer public databases with three quality levels. For performance comparisons, 27 typical SQA methods were selected to test the performance of this new database. These methods mostly had better performance on the database including two classes of ECG signals. Multiple SQI feature–based classifiers were lower than the proposed novel classification method. In order to analyze the performances of these SQIs better, Figure 7 displays the distribution of these SQIs on the A/B/C quality levels signals. Green, orange, and blue dots represent class A/B/C signals, respectively. The SQIs, which are only based on the QRS waves, such as bSQI-4 and bSQI-2, were defined by the comparison of four or two QRS wave detectors on a single-lead signal. They had good performance on the database with two classes of ECG signals ([image: image] ) (Liu et al., 2018), but class A signals are mixed up with class B signals, as shown in Figure 7. It is because that QRS wave of class B signals also could be detected accurately. The performance of tSQI and picaSQI was slightly better. These two SQIs were computed not only based on the QRS wave but also based on morphology consistency and nonlinear characteristic (Li et al., 2014; Liu F. et al., 2020). The tSQI was defined as the morphology consistency of any two ECG beats within a fixed time window (Li et al., 2014), and the picaSQI was defined as a periodicity measure of the ECG waveform nonlinear characteristic (Liu F. et al., 2020). For other SQIs based on time and frequency domain features, the distribution ranges for A/B/C quality level signals had a large overlap region. The class B signals were mostly contaminated by the noise with high frequency and low amplitude, which can make partly class B signals detected to be class A or C.
[image: Figure 7]FIGURE 7 | Distribution of 27 SQIs on the A/B/C quality levels signals. Green, orange, and blue dots represent class A/B/C signals, respectively.
It should be noted that all these 27 SQIs that we selected were unlikely to be the optimal indexes. We tried to pick as many quality metrics as possible, but it is impossible to pick all of them. Meanwhile, because some SQIs were published in a theoretical way without the executable program, and some literature works lacked detailed necessary preprocessing operations, some SQIs were coded by us. Thus, the classing results in this study could be different from those in the other studies, but the differences are unimportant.
In this study, all the programs were implemented using MATLAB 2020a. Table 5 illustrates the mean time costs and standard deviation values of the 12 SQIs and the proposed method by analyzing 49,056 10-s ECG segments in the database. As shown in Table 5, the proposed method was the most time-efficient compared with 12 SQIs. Also, 18.25 ms was not a long-time cost for 10-s ECG segments.
TABLE 5 | Mean time costs and standard deviation values of 12 SQIs and proposed method.
[image: Table 5]Real-Time Validation and Cross-Database Validation Analysis
For real-time SQA performance analysis, the reliability of the whole wavelet scattering networks method on real wearable ECG signals was tested. Figure 8 displays two segments of 10-min duration of dynamical ECG signals, physical activities, and evaluation results. As it turns out, under the sitting and walking conditions, the quality of the ECG signal was very good and all signals are assessed as class A, which can be used for the cardiovascular disease diagnosis. In the jogging condition, some signals were contaminated by weak artifacts and assessed as class B. But they could not affect the R wave identification, which can be used for the heart rate measure. In the running and jumping conditions, most of the signals were contaminated by seriously large noises caused by violent motion and assessed as class C. These signals will interfere with the diagnosis of the cardiovascular disease and need to be removed. Also, the proposed SQA method could identify the changing of the position. During the changing stage, there were some fluctuations in the signal. These signals were assessed as class B. The evaluation results show that the proposed wavelet scattering network SQA classifier framework has capability to assess wearable dynamic ECG signal quality.
[image: Figure 8]FIGURE 8 | Two records about 10-min duration of dynamical ECG signals, physical activities, and evaluation results.
In this study, cross-database testing was also carried out to verify the generalization ability of this proposed method. As the results show, classification accuracy was greater than 80%. The performance of cross-database validation was not good as 10-fold cross-validation. But for class C, [image: image] were all greater than 90%. The reason for this phenomenon is the great difference between these two databases. The signals from BUTQDB were single-lead ECGs with three quality classes, while the signals from the 2011 PhysioNet/CinC Challenge were 12-lead ECGs with two quality classes. Although we, based on the scores in Liu et al. (2018), annotated all the leads individually, there are still differences in the re-annotating. The morphological characteristics of class C signals are obvious, and the evaluation of experts is relatively consistent. However, the difference in morphological characteristics between class A and class B signals is not particularly obvious, the evaluations between different experts are different. If all the signals from the 2011 PhysioNet/CinC Challenge were re-annotated based on the criteria of BUTQDB strictly, the performance of cross-database validation will be better. However, it will need more time cost.
In this study, the approach adding noise to clean data was used to balance the database classes. Also, those clear recordings from classes A and B used to upsample class C, were put back into the original classes. It needs to be considered if this synthetic noise is going to play a role in the classification results. If one clear recording from class A is in the training set and it was also corrupted by noises used to upsample the class C in the test set. If this recording includes some information on the test set, this information will tend to judge this recording as class A. However, it was a contaminated recording and labeled as class C. Therefore, if there is some information generated by balancing the dataset on the test set, classification accuracy will be reduced. However, the classification performance of this method was very good. Therefore, the approach used to balance the dataset did not influence the classification results. The testing of real signals without synthetic addition was also carried out to consider the influence of this balancing data approach. A new database was built with 5,687 recordings without any synthetic noise added, class A: 2,000, class B: 2,000, and class C: 1,687. We used 30% of the data for testing and the remaining 70% of the data for training. The values of 11 evaluation indexes were nearly all greater than 90%, mACC = 94.05%, mF1 = 94.03%, SeA = 93.35%, SeB = 91.25%, SeC = 97.55%, +PA = 94.44%, +PB = 92.73%, +PC = 94.94%, F1A = 93.89%, F1B = 91.98%, and F1C = 96.23%. The reduction in the data volume reduced the accuracy of the model, which was also acceptable. The approach of adding noise to clean data to balance the database classes was also used in Clifford et al. (2012).
Most notably, there is no unified evaluation criterion to determine the quality levels of wearable ECG at present. Different databases provide different evaluation methods. For example, the data in the 2011 PhysioNet/CinC Challenge are 12-lead recordings, having a length of 10 s 3–18 annotators marking each signal, and each record was assigned to one of the three groups (acceptable 773, indeterminate 2, and unacceptable 225) based on the average score. Some studies considered that the label of “acceptable” or “unacceptable” was for the whole 12 channels, not for the single channel. Therefore, they re-labeled each channel (Clifford et al., 2012; Liu et al., 2018), and balanced the classes by adding noise to some of the clean data. However, in the BUTQDB database, 18 single-lead signals longer than 24 h were recorded using the Bittium Faros 180 device. The parts of signals were selected to be grouped into three quality levels based on the labels annotated by three experts. Also, some studies constructed a manually annotated gold standard, collected and annotated ECG recordings by themselves (Redmond et al., 2012; Satija et al., 2017; Liu et al., 2019b; Smital et al., 2020). Different classification standards and annotating methods could have great influence on the SQA performance.
Limitations and Prospects
Wearable electrocardiogram quality assessment is quite crucial for cardiovascular disease prevention and diagnosis. It is also an important issue for wearable device development. Although the proposed new method had great performance on the quality assessment, it was not very well for cross-database validation. The main reason is the difference between annotation methods and classification grades. For future work, uniform and standardized evaluation criterion is quite crucial for the wearable ECG quality assessment.
CONCLUSION
This study aimed to provide a method to classify wearable dynamic ECG signals into three grades: high quality (A), medium quality (B), and low quality (C). A new SQA classification method based on a three-layer wavelet scattering network and transfer learning LSTM was proposed, and a wearable ECG quality database with 50,085 recordings for three quality grades was built. In order to avoid the adverse impact of invalid samples on the training models, the quality pre-assessment was used to delete the lead-fall signals and pure noise. A three-layer wavelet scattering network was performed on the selected 10-s-long signal segments, which can extract more systematic and comprehensive characteristics by analyzing the signals thoroughly and deeply. The Bi-LSTM network with ADAM solver was employed to train the classification model. The 11 evaluating indexes ([image: image]) were 98.56%, 98.55%, 98.52%, 97.60%, 99.54%, 98.20%, 97.90%, 99.60%, 97.90%, 98.16%, and 99.60%, respectively, suggesting that the proposed method can effectively separate three quality grades of wearable ECG signals. For efficacy validation, this method was applied on the real-world data collected using the Lenovo H3 dynamic ECG device. This method had the ability to detect noise signals produced by vigorous activities. With the high computational efficiency, it will have a good application on wearable ECG devices, including removing contaminating signals and selecting high-quality signal segments for CVD diagnosis and analysis. This study verified the feasibility of applying the wavelet scattering network model to wearable ECG signal-quality assessment. Also, the general framework of this classification method proposed in this study was sufficiently flexible to be used in any given situation.
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Objective: To develop a method for detection of bradycardia and ventricular tachycardia using the photoplethysmogram (PPG).
Approach: The detector is based on a dual-branch convolutional neural network (CNN), whose input is the scalograms of the continuous wavelet transform computed in 5-s segments. Training and validation of the CNN is accomplished using simulated PPG signals generated from RR interval series extracted from public ECG databases. Manually annotated real PPG signals from the PhysioNet/CinC 2015 Challenge Database are used for performance evaluation. The performance is compared to that of a pulse-based reference detector.
Results: The sensitivity/specificity were found to be 98.1%/97.9 and 76.6%/96.8% for the CNN-based detector, respectively, whereas the corresponding results for the pulse-based detector were 94.7%/99.8 and 67.1%/93.8%, respectively.
Significance: The proposed detector may be useful for continuous, long-term monitoring of bradycardia and tachycardia using wearable devices, e.g., wrist-worn devices, especially in situations where sensitivity is favored over specificity. The study demonstrates that simulated PPG signals are suitable for training and validation of a CNN.
Keywords: photoplethysmogram, bradycardia, tachycardia, convolutional neural networks, detection, simulated signals
1 INTRODUCTION
Continuous, long-term monitoring of atrial fibrillation using the photoplethysmogram (PPG) has received considerable attention in recent years, with early detection and prevention of serious health consequences, e.g., stroke, as main motivations Freedman et al. (2017); Pereira et al. (2020). Thanks to its simplicity, noninvasive PPG technology can be easily incorporated at a low cost in wearable digital devices for use in daily life. Among these devices, the wrist-worn is particularly attractive for continuous long-term monitoring Eerikäinen et al. (2020), relying on either traditional machine learning or deep learning for detection, e.g., Corino et al. (2017); Harju et al. (2018); Eerikäinen et al. (2018); Sološenko et al. (2019); Fallet et al. (2019); Selder et al. (2020); Väliaho et al. (2021). However, performance has so far only been established on short-term data due to the lack of public, annotated databases with long-term PPG recordings Eerikäinen et al. (2020).
While most research has focused on developing methods for PPG-based detection of atrial fibrillation, just a handful of studies has dealt with detection of other arrhythmias, notably premature atrial and/or ventricular beats Gil et al. (2013); Sološenko et al. (2015); Han et al. (2020) and bradycardia and ventricular tachycardia Bonomi et al. (2017). While neither bradycardia nor ventricular tachycardia are life-threatening arrhythmias, their extreme manifestations are known to be risk factors of serious conditions such as sudden cardiac death Harris and Lysitsas (2016). Using a wrist-worn device for continuous, long-term monitoring of bradycardia and tachycardia, valuable information may be acquired on initiating factors such as stress, medication, physical activity, and sleep Bonomi et al. (2017). Patients suffering from end-stage kidney disease undergoing hemodialysis treatment is a group of particular interest for such monitoring. Most studies point to that bradycardia, rather than tachycardia, is the pre-eminent pattern of serious arrhythmias and sudden cardiac death, with the highest incidence occurring during the interdialytic periods of conventional thrice-weekly hemodialysis Kalra et al. (2018); Foley et al. (2011); Boriani et al. (2015); Wong et al. (2015); Roy-Chaudhury et al. (2018). Continuous, long-term monitoring of extreme bradycardia in hemodialysis patients was recently established as an important procedure, accomplished using an implantable loop recorder Kalra et al. (2018). However, as an alternative, a wrist-worn device may be preferred as it offers the important advantages of low cost, low risk of infection, and avoidance of discomfort often experienced after insertion of the implantable loop recorder.
To detect bradycardia and tachycardia may seem like a simple problem solved by testing whether the heart rate is below/above a certain fixed limit for a certain minimum number of beats. However, such an approach tends to favor specificity over sensitivity Bonomi et al. (2017), without any means to alter the balance between the two performance measures. Irrespective of the approach taken to detection, the problem is made complicated by noise causing false detections. In addition, tachycardia with decreased hemodynamics is manifested in the PPG signal as much reduced or no pulsations, leading to missed beats when pulse-based detection is employed. These observations represent important incentives to explore new approaches to detection.
The present paper investigates the use of a dual-branch convolutional neural network (CNN) for PPG-based detection of bradycardia and tachycardia. The scalograms of successive signal segments, accounting for temporal and spectral information, constitute input to the network. To reduce the number of false alarms due to motion artifacts, a simple signal quality assessment is included in the detection process.
The main novelties of the present study are that, for the first time, a CNN is used to detect bradycardia and tachycardia, and that simulated PPG signals are employed for network training and validation. The performance of the CNN-based detector is also compared to that of a reference pulse-based detector.
The paper is organized as follows: Section 2 describes the datasets used for training, validation, and testing, Section 3 describes the proposed detector and the reference detector, Section 4 presents the results obtained on a clinical dataset, followed by a discussion in Section 5.
2 DATASETS
Due to the lack of public PPG databases with annotated episodes of bradycardia and tachycardia, an unconventional approach is adopted in which simulated PPG signals are used for training and validation, whereas real, manually annotated PPG signals are used for testing. In the following, since the study focuses on ventricular tachycardia, tachycardia refers to ventricular tachycardia.
2.1 Datasets for Training and Validation
The simulator, originally developed to model PPG signals in paroxysmal atrial fibrillation using RR intervals alone as input Sološenko et al. (2017); Paliakaitė et al. (2019), is equally well-suited to model PPG signals with episodes of bradycardia or tachycardia; the simulator is freely available at Physionet Sološenko et al. (2021). The model signal is created by placing individual pulses according to the RR intervals so that a connected signal is formed, where each pulse is defined by a linear combination of a log-normal and two Gaussian waveforms. Stationary simulated noise, described in Sološenko et al. (2017), was added.
Different RR interval series with one episode of extreme bradycardia were created by concatenating three subseries of RR intervals, i.e., normal sinus rhythm, bradycardia, and normal sinus rhythm. The two subseries with normal sinus rhythm were randomly selected from the MIT–BIH Normal Sinus Rhythm Database Goldberger et al. (2000) so that 50–100 RR intervals appeared before the episode and 1–100 RR intervals after (the actual number of intervals before and after were selected randomly); in all subseries of sinus rhythm, the heart rate was above 60 beats per minute (bpm). In total, 147 RR interval subseries with bradycardia were selected from the PhysioNet/Computing in Cardiology (CinC) 2017 Challenge Database Clifford et al. (2017). Each series was approved by visual inspection to ensure that no aberrant RR intervals were included.
On the other hand, RR interval series with one episode, and in a few cases a handful of episodes, of tachycardia are contained in the Spontaneous Ventricular Tachyarrhythmia Database Goldberger et al. (2000). Since this database is not annotated, episode onset and end were determined manually, assuming a minimum episode length of three beats. In all recordings, tachycardia was surrounded by sinus rhythm, and, therefore, concatenation was superfluous. From the 135 recordings, a total of 94 RR interval series were selected with episodes having a heart rate of at least 120 bpm. The definitions of tachycardia and bradycardia are discussed in Section 5.
Table 1 summarizes the main characteristics of the dataset of simulated signals containing episodes of bradycardia and tachycardia.
TABLE 1 | Main characteristics of the datasets used for training, validation, and testing.
[image: Table 1]2.2 Dataset for Testing
The PhysioNet/CinC 2015 Challenge Database Clifford et al. (2015); Goldberger et al. (2000) is one of the very few PPG databases containing episodes of bradycardia and tachycardia and therefore used for testing. While each 5-min recording was originally assigned a rhythm label, indicating whether the recording contains bradycardia or tachycardia, episode onset and end was not annotated. Therefore, in the present study, episodes have been annotated using the simultaneously recorded ECG signals by relying on information on heart rate and beat morphology, assuming a minimum episode length of 3 beats. Figures 1A,B shows two excerpts from PPG and ECG recordings with bradycardia and tachycardia. In total, 15 recordings with bradycardia and 39 with tachycardia are used for testing, referred to as test set I; the Supplementary Table S1 lists all recordings. The total episode lengths of bradycardia and tachycardia are 79 and 204 min, respectively.
[image: Figure 1]FIGURE 1 | Synchronous ECG and PPG signals together with heart rate during (A) bradycardia ([image: image] bpm) and (B) tachycardia ([image: image] bpm). The ECG-based annotation is marked with a red dashed line. The signals are extracted from the PhysioNet/CinC Challenge 2015 Database.
Due to decreased hemodynamics during tachycardia, much reduced or no periodic pulsations were observed in 10 of the 39 recordings, illustrated in Figure 2. Therefore, a subset of test set I is defined excluding these 10 recordings, referred to as test set II.
[image: Figure 2]FIGURE 2 | ECG and PPG signals with much reduced or no periodic pulsations during tachycardia. The ECG-based annotation is marked with a red dashed line. The signals are extracted from the PhysioNet/CinC Challenge 2015 Database.
Table 1 summarizes the main characteristics of the two test sets containing episodes of bradycardia and tachycardia.
3 METHODS
The method proposed for detecting bradycardia and tachycardia is composed of signal preprocessing and segmentation, signal quality assessment, and computation of the scalogram serving as input to the CNN-based detector. The block diagram in Figure 3 summarizes the detector structure as well as the datasets for training, validation and testing of the CNN-based detector.
[image: Figure 3]FIGURE 3 | Block diagram of the method proposed for detection of bradycardia and tachycardia, including information on the datasets used for training, validation, and testing.
3.1 Signal Preprocessing and Segmentation
The PPG signals, sampled at a rate of 100 Hz, are preprocessed using a bandpass filter with cut-off frequencies at 0.5 and 40 Hz. To further reduce the influence of baseline wander, an adaptive, normalized least mean squares filter is employed, with the reference input set to 1 Sološenko et al. (2019). Subsequent analysis is performed in non-overlapping 5-s segments.
3.2 Signal Quality Assessment
To reduce the number of false alarms due to motion artifacts, signal quality is assessed by performing spectral analysis of the PPG signal. The location of the largest spectral peak within each 5-s segment is determined. If the peak is outside 0.6–3 Hz range, equivalent to 3–15 beats, which is a reasonable number of beats to occurs within a 5-s segment, the segment is assessed to be of poor quality and excluded from further analysis. Figure 4 shows examples of PPG segments excluded after signal quality assessment.
[image: Figure 4]FIGURE 4 | Examples of poor-quality PPG segments excluded after signal quality assessment, with the largest spectral peak at (A) 0.4 Hz and (B) 5 Hz, i.e., both frequencies outside the 0.6–3 Hz range.
3.3 CNN-Based Detection
The continuous wavelet transform (CWT), offering good resolution in both time and frequency, is computed in each 5-s segment assessed to be of good quality. Using the generalized Morse wavelets, the resulting scalograms are treated as images with a size of 500, ×, 61 pixels, i.e., 500 samples and 61 scales. The minimum and maximum scales are determined by the distribution of the energy across the different scales. Figure 5 presents two examples of simulated and real PPG signals whose scalograms exhibit similar characteristics.
[image: Figure 5]FIGURE 5 | Examples of PPG signal segments and related scalograms: (A) real and (B) simulated signals in bradycardia, (C) real and (D) simulated signals in tachycardia. Since most of the power of a PPG signal is confined to lower frequencies, the vertical scale of the displayed scalograms is upper limited to 10 Hz. The annotation is marked with a red dashed line. The real signals are extracted from b124s and v837l of the Physionet/CinC 2017 Challenge Database, whereas the simulated signals are generated using A07531 of the Physionet/CinC 2017 Challenge Database and RRt3 of the Spontaneous Ventricular Tachyarrhythmia Database 1.0. The PPG signals have been normalized to [0,1] to facilitate comparison.
The detection of bradycardia and tachycardia relies on two CNNs (Supplementary Figure S1), where each arrhythmia is handled by its own particular model. Each model consists of two 2D convolutional layers with 32 kernels, where each kernel is followed by average pooling layers (size of 2 × 2 and a stride of 2) and two fully connected layers (input layer with 256 neurons and output layer with 2 neurons for segment classification). The kernel size of the two CNN models differ since bradycardia is composed of lower frequencies than tachycardia and therefore calls for a larger kernel size, here set to 13 × 13 (bradycardia) and 5 × 5 (tachycardia). The stride of the convolutional kernels is set to 1. All layers, except the output layer, are activated using rectified linear unit (ReLU) functions followed by a dropout rate of 0.5 to minimize overfitting; the output layer is softmax activated.
Before training the CNNs, the dataset of simulated signals is balanced by under-sampling the majority class, i.e., by randomly removing non-bradycardia (non-tachycardia) segments to match the number of bradycardia (tachycardia) segments. Then the dataset is split so that 70% is used for training and 30% for validation. The CNNs are trained using the Adam optimizer described in Kingma and Ba (2014) with a learning rate of 0.01. Training is stopped when the classification accuracy on the validation set stops improving.
Whenever the output of the bradycardia-trained CNN exceeds a certain threshold, the segment is classified as bradycardia, otherwise as other rhythm; the same applies to the output of the tachycardia-trained CNN except that another threshold is used. Both thresholds are chosen so that sensitivity is favored over specificity.
3.4 Reference Detector
For comparison, the pulse-based bradycardia and tachycardia detector described in Paliakaitė et al. (2021) was chosen. The PPG signal is bandpass filtered with cut-off frequencies at 0.5 and 6 Hz (instead of 40 Hz) to suppress high-frequency noise. The heart rate is obtained from the pulse-to-pulse intervals, where the occurrence times of the pulses are determined using a threshold-based detector similar to the one described in Aboy et al. (2005). The signal quality of each pulse is assessed by correlating it to a pulse template using the sample correlation coefficient. The quality is assessed as acceptable when the maximum correlation coefficient exceeds the threshold ηc = 0.6; for more details, see Sološenko et al. (2019); Paliakaitė et al. (2021). An episode of bradycardia is detected if the heart rate drops below 40 bpm for at least 3 high-quality beats, and an episode of tachycardia is detected if pulse rate exceeds 120 bpm for at least 3 high-quality beats. The output of the reference detector is divided into 5-s segments to facilitate a comparison of performance with the CNN-based detector.
3.5 Labeling of PPG Segments
Based on the annotation, each 5-s segment is labeled as either bradycardia, tachycardia, or other rhythm. Bradycardia is assigned if the episode lasts for at least 50% of the 5-s segment. Since tachycardia is characterized by higher frequencies, tachycardia is assigned if the episode lasts for at least 25% of the 5-s segment. The lower percentage reflects the obvious fact that more beats are contained in an episode of tachycardia than in an episode of bradycardia when both episodes have the same length in seconds.
3.6 Performance Measures
Detection performance is evaluated in terms of sensitivity and specificity by segmentwise comparison of the detector output to the labeling of the annotation described above. Sensitivity is defined by the number of correctly detected bradycardia (tachycardia) segments divided by the total number of bradycardia (tachycardia) segments, whereas specificity is defined by the number of correctly detected non-bradycardia (non-tachycardia) segments divided the total number of non-bradycardia (non-tachycardia) segments. These two measures are computed from the entire recordings, not just from segments assessed to be of good quality. The agreement between the CNN-based and reference detectors is evaluated in terms of Cohen’s kappa coefficient McHugh (2012).
4 RESULTS
4.1 Performance as a Function of SNR
Figure 6 shows detection performance when the CNN was trained with simulated PPGs at different SNRs. For each SNR, 50 training sessions were performed and the average sensitivity ans specificity were obtained. Lowering the SNR of the training signals results in a decrease in sensitivity and an increase in specificity irrespective of whether bradycardia or tachycardia is detected. Since the best performance in terms of both sensitivity and specificity were obtained for noise-free PPGs when training the CNN, the CNN was trained with noise-free simulated PPGs before analyzing test sets I and II, see below.
[image: Figure 6]FIGURE 6 | (A) Bradycardia and (B) tachycardia detection performance for a CNN trained with simulated PPGs at different SNRs. The results are based on test set II.
4.2 Detection Performance on Test set I
Figure 7 presents the receiver operating characteristics (ROCs) of CNN-based detection of bradycardia and tachycardia, obtained by varying the two detection thresholds. No ROC is presented for the reference detector as its structure does not embrace a detection threshold.
[image: Figure 7]FIGURE 7 | ROCs of CNN-based detection of (A) bradycardia and (B) tachycardia using test sets I and II.
Table 2 presents the performance of the CNN-based detector, using thresholds that put more emphasis on sensitivity, and the reference detector. Without signal quality assessment, the CNN-based detector offers higher sensitivity for both bradycardia and tachycardia and considerably higher specificity for tachycardia than does the reference detector. The exception is bradycardia specificity which is better for the reference detector.
TABLE 2 | Performance and agreement of the CNN-based and reference detectors on test set I, without and with signal quality assessment (SQA).
[image: Table 2]With signal quality assessment, the specificity increases for both detectors, although the increase is somewhat larger for CNN-based detection. The sensitivity decreases slightly for both detectors and arrhythmias, except for CNN-based bradycardia detection. This decrease is primarily due to the segments in which tachycardia is either contaminated with artifacts or the signal quality is low because of decreased cardiac output and perfusion leading to lack of periodic pulsations.
4.3 Detection Performance on Test set II
Table 3 presents the performance on test set II, i.e., test set I but excluding 10 problematic tachycardia recordings with much reduced or no periodic pulsations. As expected, the exclusion leads to improved sensitivity and specificity of both detectors. However, the increase in sensitivity of CNN-based detection is substantially larger than that of the reference detector. This is likely due to that the reference detector relies on pulse detection rather than on analysis of the whole 5-s PPG segment as does the CNN-based detector. For both detectors, signal quality assessment has only a minor effect on performance.
TABLE 3 | Performance and agreement of the CNN-based and the reference detectors on test set II, without and with signal quality assessment (SQA).
[image: Table 3]Figure 8 illustrates the outputs of the CNN-based and reference detectors together with correct labels. The Cohen’s kappa coefficient sheds some light on the disagreement between the detector outputs, mostly dictated by a small number of 5-s segments with arrhythmias in the two test sets, and different patterns of false alarms in either of the detectors.
[image: Figure 8]FIGURE 8 | Outputs of the CNN-based and reference detectors for (A) bradycardia and (B) tachycardia detection on test set II, with signal quality assessment.
5 DISCUSSION
The present study shows that simulated PPG signals, based on real RR interval series, are practicable for training and validation of the CNN-based detector. Although the simulator offers the option to generate signals with realistic noise, noise-free signals were used for training and validation as this choice was found to produce better performance on the test set consisting of real PPG signals with occasional artifacts. However, if specificity is to be favored, noise should be added to the signals used for training and validation. On the other hand, randomly distributed noise episodes (i.e., nonstationary noise) may bias the training of the CNN-based detector, resulting in reduced performance.
A large bandwidth (0.5–40 Hz) of the bandpass filter was chosen so as to provide the CNN with rich training information. While a reduced bandwidth, e.g., 0.5–6 Hz used in the reference detector, may be motivated from a noise suppression standpoint, initial trials showed that the training and validation performance did not improve.
Thanks to the input segmentation, the CNN-based tachycardia detector is less sensitive to situations with reduced-amplitude pulsations than is the pulse-based reference detector since the scalogram carries additional information on tachycardia which helps to improve performance. This improvement is supported by the results in Table 2 which show that the sensitivity of the CNN-based tachycardia detector on test set I is superior to that of the reference detector, combined with better specificity of the CNN-based detector. The advantage of the CNN-based tachycardia detector becomes even more pronounced on test set II, see Table 3. Still, the CNN-based detector is susceptible to pulseless episodes as indicated by low sensitivity of tachycardia detection on test set I (see Table 2), which contained 10 recordings with much reduced or no periodic pulsations during tachycardia. Since these recordings are excluded from test set II, the sensitivity of the CNN-based tachycardia detector reported in Table 3 is considerably higher.
Pairs of pulses with a rate below 40 bpm or above 120 bpm are not considered an arrhythmia. However, the CNN-based detector may falsely detect bradycardia/tachycardia in segments where a single or a slow/fast pulse pair appears, resulting in lower specificity for bradycardia. Such behavior of the CNN may be the source of disagreement between the two bradycardia detectors, resulting in Cohen’s kappa values of 0.42–0.50. When detecting tachycardia, the CNN-based and reference detectors also exhibit different detection patterns as illustrated in Figure 8. Apparently, sensitivity of the reference detector is highly affected by the tachycardia-caused decrease in pulse amplitude resulting in missed beats. Even though the specificity for tachycardia detection is comparable, the sources of false alarms of the two detectors are different, and thus, the agreement in terms of Cohen’s kappa is low. Noise mimicking tachycardia misleads the reference pulse-based detector, whereas frequent premature beats might trick the CNN-based detector.
When reporting on detection performance, it is essential to state whether performance is computed using the annotations of all segments of the recordings or only the annotations of the segments which remain after signal quality assessment; the latter alternative tends to exaggerate the performance by ignoring false negatives corresponding to arrhythmia segments excluded due to poor quality Paliakaitė et al. (2021). In the present study, the performance measures are computed independently of segment exclusion since the annotations were determined from good-quality ECG signals, not from the PPG signals.
Several architectures of neural networks, including 1D CNNs, 2D CNNs, long short-term memory networks, and their combinations using either raw PPG signal or scalograms were investigated as a first step of the study. However, the best performance was achieved by using scalograms as input to the 2D CNNs. A rather basic CNN architecture was adopted in this study because its major objective was to demonstrate that a machine learning algorithm, trained on simulated data, can be employed to detect bradycardia and tachycardia in PPG signals. Thus, the comparison of different machine learning architectures and extensive testing of hyper-parameters were outside the scope of this study. Even though the proposed CNN-based detector is not complex, feasibility to implement and run it on a portable device should be investigated in the future.
A dual-branch CNN was selected for detection of tachycardia and bradycardia. Initial efforts showed that separate training of shallow network branches resulted in better performance than did one deep CNN. This result agrees with other studies proposing multi-branch structures of multi-class classifiers, e.g., Zhao et al. (2019). It has been argued that such structures are more robust in mitigating overfitting issues due to a small training dataset. Another advantage is that two parallel branches of the classifier allow parallel execution on separate kernels of the CPU or different threads in the software, resulting in reduced time to decision. Moreover, each branch of a dual-branch detector can function as an independent detector adapted to tachycardia or bradycardia detection.
In the present study, the output labels of the CNN branches were not merged, and the performance was reported separately for bradycardia and tachycardia detection. In no case was a segment labeled both tachycardia and bradycardia. However, in the extremely unlikely case when the same segment is labeled both bradycardia and tachycardia, the arrhythmia corresponding to the largest output should be selected.
CNN training with different segment lengths was not performed due to that bradycardia and tachycardia episodes are very brief. Segment labelling was defined so that bradycardia should occupy at least 50% of 5 s segment, while tachycardia should occupy at least 25% of 5 s segment. Therefore, using a different length, a segment containing bradycardia or tachycardia may not be labelled as an arrhythmia.
The prevailing clinical definition of bradycardia and tachycardia is a heart rate lower than 60 bpm and higher than 100 bpm, respectively, whereas no minimum duration is specified, see, e.g., Wagner and Strauss (2016). In the context of automated ECG analysis, various definitions can be found relating to the extreme manifestations of these two arrhythmias: extreme bradycardia is defined by a heart rate lower than 40 bpm with fewer than five beats within a period of 6 s, and extreme tachycardia is defined by a heart rate higher than 140 bpm with at least 18 beats within a period of 6.85 s Clifford et al. (2016). Yet another definition of extreme tachycardia can be found in Paliakaitė et al. (2021), replacing 18 with 5 beats, whereas the definition of extreme bradycardia remains unchanged; episodes has to be separated by at least 3 non-arrhythmic beats.
In the present study, the following definition is used to annotate the Spontaneous Ventricular Tachyarrhythmia Database and to evaluate the performance of the reference detector: bradycardia is defined by a heart rate lower than 40 bpm for at least 3 beats and tachycardia is defined by a heart rate higher than 120 bpm for at least 3 beats. One reason for using 120 bpm is due to that tachycardia slower than 140 bpm can still be life-threatening Roy-Chaudhury et al. (2018). It should be noted that none of these criteria apply to CNN-based detection as the scalogram serves as the basis for making informed decisions.
Tachycardia can have ventricular or supraventricular origin. In the present study, only ventricular tachycardia was investigated as it is more serious. Whether the PPG can be used to distinguish ventricular from supraventricular tachycardia remains to be demonstrated. Since the hemodynamics is more compromised by fast ventricular pacing, the amplitude of PPG pulses should in theory be less affected during supraventricular tachycardia. Still, the difference in PPG characteristics during ventricular and supraventricular tachycardia deserves to be investigated in future studies. The CNN-based detector may be trained to use such information, while the pulse-based reference detector is poorly suited for this purpose as it relies on heart rate only.
In the pioneering study on PPG-based detection of bradycardia and tachycardia Bonomi et al. (2017), only 3-min episodes and longer were detected. However, when the aim is to detect life-threatening episodes of extreme bradycardia and tachycardia, as is the goal of the present study, the minimum duration needs to be much shorter to ensure that an episode is composed of just a few beats. As a consequence, it is not meaningful to compare the present results to those in Bonomi et al. (2017). Of course, the intention to detect shorter arrhythmia episodes leads to increased number of false alarms or missed cases. However, since PPG-based detection is better suited for long-term monitoring outside the clinical setting, it could serve as a screening tool to initiate a clinical investigation of those at risk for life-threatening arrhythmias.
Using the arterial blood pressure signal as input, the problem of detecting bradycardia and tachycardia has been addressed by synthesis-by-analysis modeling Chou et al. (2019)—a technique closely related to the mixture models proposed in Liu et al. (2013); Sološenko et al. (2017); He et al. (2017). Such modeling results in a feature vector describing each pulse used for the classifier training [probabilistic neural network and random forest were investigated in Chou et al. (2019)]. This approach was found useful to the arterial blood pressure signal, however, it may be equally useful when applied to a PPG signal.
A limitation of the present study is the relatively small subset of short recordings from the PhysioNet/CinC 2015 Challenge Database used for the testing. Also, this subset does not include clinical data, and thus, it is unclear if some confounding factors can influence the performance of the CNN-based detector. However, to our knowledge, it is the only publicly available database with synchronous ECG and PPG signals with labeling of extreme bradycardia and tachycardia. Since the CNN-based detector was tested on recordings containing baseline sinus rhythm with episodes of bradycardia and tachycardia, it is unclear how the network generalizes to discriminate other arrythmias, e.g., atrial fibrillation. This issue deserves to be investigated in a future study.
6 CONCLUSION
A PPG-based bradycardia and tachycardia detector based on a dual-branch CNN is proposed, trained and validated on simulated PPG signals while tested on a dataset of real PPG signals. The results suggest that the proposed detector can be used for continuous, long-term monitoring, especially in situations where sensitivity is favored over specificity. In contrast to the reference detector, the CNN-based detector makes it possible to chose different operating points on the ROC. The study demonstrates that the use of simulated PPG signals is practicable for training and validation of a CNN.
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Introduction: Atrial fibrillation (AF) is a heritable disease, and the paired-like homeodomain transcription factor 2 (PITX2) gene is highly associated with AF. We explored the differences in the circumferential pulmonary vein isolation (CPVI), which is the cornerstone procedure for AF catheter ablation, additional high dominant frequency (DF) site ablation, and antiarrhythmic drug (AAD) effects according to the patient genotype (wild-type and PITX2+/− deficient) using computational modeling.

Methods: We included 25 patients with AF (68% men, 59.8 ± 9.8 years of age, 32% paroxysmal AF) who underwent AF catheter ablation to develop a realistic computational AF model. The ion currents for baseline AF and the amiodarone, dronedarone, and flecainide AADs according to the patient genotype (wild type and PITX2+/− deficient) were defined by relevant publications. We tested the virtual CPVI (V-CPVI) with and without DF ablation (±DFA) and three virtual AADs (V-AADs, amiodarone, dronedarone, and flecainide) and evaluated the AF defragmentation rates (AF termination or changes to regular atrial tachycardia (AT), DF, and maximal slope of the action potential duration restitution curves (Smax), which indicates the vulnerability of wave-breaks.

Results: At the baseline AF, mean DF (p = 0.003), and Smax (p < 0.001) were significantly lower in PITX2+/− deficient patients than wild-type patients. In the overall AF episodes, V-CPVI (±DFA) resulted in a higher AF defragmentation relative to V-AADs (65 vs. 42%, p < 0.001) without changing the DF or Smax. Although a PITX2+/− deficiency did not affect the AF defragmentation rate after the V-CPVI (±DFA), V-AADs had a higher AF defragmentation rate (p = 0.014), lower DF (p < 0.001), and lower Smax (p = 0.001) in PITX2+/− deficient AF than in wild-type patients. In the clinical setting, the PITX2+/− genetic risk score did not affect the AF ablation rhythm outcome (Log-rank p = 0.273).

Conclusion: Consistent with previous clinical studies, the V-CPVI had effective anti-AF effects regardless of the PITX2 genotype, whereas V-AADs exhibited more significant defragmentation or wave-dynamic change in the PITX2+/− deficient patients.

KEYWORDS
 atrial fibrillation, computational modeling, PITX2, dominant frequency, antiarrhythmic drug
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GRAPHICAL ABSTRACT. AF, atrial fibrillation; ECG, electrocardiogram; CPVI, complete pulmonary vein isolation; AAD, antiarrhythmic drug; AT, atrial tachycardia.



Main discoveries

• Compared with wild-type, the PITX2+/− deficient AF model exhibited different electrophysiology and AF wave dynamics.

• Ablation resulted in a higher AF defragmentation rate than AADs in human AF computational modeling.

• AF defragmentation rate did not differ depending on the PITX2 genotype after a virtual AF ablation.

• Virtual AADs exhibited more significant defragmentation in the PITX2+/− deficient genotype with a lower mean DF and Smax than wild type.



Introduction

Atrial fibrillation (AF) is a common arrhythmia disease with a prevalence of 1.7% in the Korean population. AF numbers are expected to increase; therefore, AF is considered a major health care issue in Korea (1). Recently, the EAST-AFNET4 trial demonstrated that active AF rhythm control reduced morbidity and mortality risk (2). Multiple randomized clinical trials documented the superior efficacy of AF rhythm control by AF catheter ablation (AFCA) relative to the treatment with antiarrhythmic drugs (AADs) (3). Nevertheless, about 40% of patients with AF achieve effective rhythm control with AADs (4).

Atrial fibrillation is a heritable disease, and the paired-like homeodomain transcription factor 2 (PITX2) gene is highly associated with AF (5). Several clinical studies have reported the difference in the efficacy of AF rhythm control treatment according to the PITX2 genotype, but those were small retrospective studies, and the underlying mechanism is still not understood (6–13). AF computational modeling is useful for AF mechanism research, which is difficult to reveal through clinical or experimental studies (14). With recent improvements in computational technology and power, sophisticated AF computation modeling has become possible. Virtual ablation or virtual AAD responses can be tested on a virtual twin that reflects the anatomy, fibrosis, fiber orientation, and electrophysiological characteristics of patients with AF, and the wave dynamics generated from hundreds of thousands of nodes can also be evaluated (15–18).

In this study, we explored the response and mechanism of AFCA and AADs according to the patient PITX2 genotype. We used AF computational modeling integrated with clinical electroanatomical maps of 25 AAD-resistant or intolerable patients with AF who underwent AFCA, and the effects of various virtual interventions (AFCA and three different AADs) attempted under the same conditions were compared and evaluated. The ion currents associated with baseline AF and AADs (amiodarone, dronedarone, and flecainide) according to the genotype (wild type and PITX2+/− deficient) were defined by the relevant publications.



Methods


Ethical approval

This study protocol adhered to the Declaration of Helsinki and was approved by the Institutional Review Board of Severance Cardiovascular Hospital, Yonsei University Health System. All patients included in the Yonsei AF Ablation Cohort Database (ClinicalTrials.gov Identifier: NCT02138695) provided written informed consent for use of their clinical data for computational modeling studies.



A 3D computational model of the left atrium

Figures 1A,B illustrate the protocol for computational atrial modeling. To obtain the clinical electroanatomical data, we collected the bipolar electrogram data on the LA surface to produce clinical voltage data of 25 patients who underwent AFCA. The interpolated voltage data were generated from bipolar electrograms recorded from >500 points on the atrial surface using a circular mapping catheter and CT images (Figure 1A). The coordinates of the electroanatomical map (NavX, Abbott, Inc., Chicago, IL, USA; CARTO System, Biosense Webster, Diamond Bar, CA, USA) were precisely aligned with patient clinical heart CT images, followed by registration between the electroanatomical maps and clinical CT data (Figure 1A).


[image: Figure 1]
FIGURE 1
 Study protocol of the computational atrial modeling, AF simulation, and virtual interventions. (A) Integration of the CT imaging and electroanatomical map. (B) Computational modeling integrating the anatomy, fibrosis, fiber orientation, and LAT map. (C) Protocol of the AF simulation and wave-dynamic analysis. AF was induced in each case using AF pacing from 200 to 120 ms with eight beats per cycle lasting a total of 11,520 ms based on the wild-type PITX2+/− deficient AF baseline ion current settings. AF maintenance was observed for 20,480 ms after induction (overall 32 s including pacing), and the wave dynamics of the DF and Smax were analyzed from 17,000 to 23,000 ms. (D) Baseline AF induction under wild-type and PITX2+/− deficient backgrounds. The voltage maps and ECGs indicate a successful AF induction during the wild-type and PITX2+/− deficient baselines. (E) 3D DF map of the baseline AF under wild-type and PITX2+/− deficient backgrounds. The black arrows indicate the locations of the high DF sites on the 3D DF map. (F) Virtual CPVI with a high DF site ablation. The green lines indicate the CPVI and yellow arrows indicate the ablated regions of the high DF sites. The pink sites indicate the pacing site. (G) Ion current changes with the high and low doses of the three types of AADs. Ion current changes with the high and low doses of the three types of AADs under the wild-type and PITX2+/− deficient backgrounds. For PITX2+/− deficiency, the IK1 decreased by 25% and the IKr increased by 100% as compared to that with the wild-type status, while the other ion currents remain the same as the wild-type. (H) Smax and DF analysis after AADs and the CPVI. The ECGs indicate AF was maintained after AADs, and AF converted to AT after the CPVI. CT, computed tomography; EP, electrophysiology; LAT, local activation time; PITX2, paired-like homeodomain transcription factor 2; CPVI, complete pulmonary vein isolation; DF, dominant frequency; Smax, the Maximal slope of the restitution curves; AF, atrial fibrillation; AT, atrial tachycardia; ECG, electrocardiogram; AAD, antiarrhythmic drug.


To reflect the tissue characteristics in the 3D left atrium (LA) model, we performed electroanatomical modeling and fibrosis and fiber orientation modeling. Electroanatomical modeling combining personalized CT images with the clinical voltage data was used to obtain a personalized 3D LA model of each patient. The surface of the 3D LA model was composed of triangular meshes containing 400,000–500,000 geometric elements, and the mean distance between the adjacent elements was 235.1 ± 32.1 μm. Interpolation of the clinical voltage data was used to create the virtual voltage data. We used the inverse distance weighting method (19) to represent the interpolation of the electroanatomical map values during the simulation procedures.

Integrating the electroanatomical maps containing the clinical voltage data and 3D LA maps onto the CT-based mesh models was conducted over four steps: geometry, trimming, field scaling, and alignment (15). The geometry was generated during the electroanatomical map creation using a catheter. After the geometry step, unnecessary artifact was removed, and the ostial position was used for the separation of the LA appendage and pulmonary vein (PV) regions during the trimming step. The field scaling step indicated the optimal scaling of the inter-electrode spacing and CT images. Lastly, the alignment step involved the registration of the alignment points through a coordinate transformation using an accurately defined ostium, along with the integration of CT images and anatomical maps. We used the Courtemanche-Ramirez-Nattel model (20–22) for the wild-type sinus rhythm (SR) status. All ion currents for the wild-type SR status were set to 100%. For the wild-type AF atrial ionic remodeling, the sodium current (INa), transient outward potassium current (Ito), L-type calcium current (ICaL), ultrarapid outward current (IKur), and calcium current concentration in the uptake compartment (ICaup) decreased by 10, 70, 70, 50, and 20% respectively, and the inwardly rectifying potassium current (IK1) increased by 110% as compared to the Courtemanche-Ramirez-Nattel model (23).

We simulated the clinical local activation data using the 3D LA model, which reflected the cardiac structural and fiber orientation (Figure 1B). To achieve each personalized virtual LA model, synchronization of the clinical local activation time (LAT) map and the virtual LAT map was performed (Figure 1B). The virtual LAT map diffusion coefficient was adjusted to accurately match the conduction velocity (CV) of the clinical LAT map (15). Bipolar voltage data obtained from catheter ablation mapping were matched onto the computational nodes of the 3D LA model, and the fibrotic area locations were determined using the map (Figure 1B). The fibrosis status of each node was numerically defined and determined using the relationship between the probability of fibrosis and bipolar voltage (24, 25). The fiber orientation was defined in the meshes of each patient geometry and adjusted based on the clinical local activation time map (26, 27). Parallel tasking was used for the fiber tracking step and a visual display of the fiber orientation onto the 3D LA map was conducted during the visualization step (Figure 1B). For the ion currents of the fibrotic cells, the IK1, ICaL, and INa were decreased by 50, 50, and 40%, respectively, as compared to normal cells (25). The conductivity of the model was based on the status and shape of the fibrosis (25). The reaction-diffusion equation for the cardiac wave propagation was solved numerically and adjusted based on the specific conduction velocity in each case to represent personalized AF simulations (23).



PITX2+/− deficient incorporation

The Syeda et al. model (13) was used for the PITX2+/− deficiency status. The IK1 was decreased by 25% and the rapidly activating delayed rectifying potassium current (IKr) was increased by 100% as compared to the wild-type status. Therefore, for the PITX2+/− deficiency AF baseline status, the INa, Ito, ICaL, IKur, ICaup were decreased by 10, 70, 70, 50, 20%, respectively, whereas the IK1 and IKr, were increased by 58 and 100%, respectively, as compared to the Courtemanche-Ramirez-Nattel model.



AF simulation

Our graphical user interface software (Model:SH01, CUVIA; Laonmed Inc., Seoul, Korea) integrated the fibrosis formation and fiber orientation into the LA surface and enabled virtual AF induction and AF wave-dynamic changes (28). Figure 1C shows the process used in the study protocol. We induced AF in each case using AF pacing from 200 to 120 ms with eight beats per cycle lasting a total of 11,520 ms, based on the appropriate ion current settings. Each virtual pacing location corresponded to the clinical activation time map for realistic LA modeling, and the pacing sites were matched precisely to reflect each personalized LA model. AF maintenance was observed for 20.48 s after the induction (overall 32 s including pacing). Figure 1D indicates the successful AF induction during the baseline status under wild type and PITX2+/− deficient backgrounds. We defined a successful AF induction according to the electrograms in each LA model, and AF defragmentation involved AF termination and AF conversion to atrial tachycardia (AT).



Virtual ablations

We applied virtual ablation and virtual AADs to our realistic AF model. For the virtual ablation, the membrane potential of the ablated regions was set at zero to produce a permanent conduction block interrupting the cardiac wave propagation. First, we performed a virtual circumferential pulmonary vein isolation (CPVI; V-CPVI). Under conditions of a CPVI alone, we initiated the AF induction as described in Figure 1C under wild type and PITX2+/− deficient backgrounds. Then, we applied a virtual high dominant frequency (DF) site ablation to failed AF defragmentation episodes after the CPVI alone and initiated AF induction again. High DF sites were targeted based on the 3D DF map during baseline AF under wild-type and PITX2+/− deficient backgrounds (Figures 1E,F).



Virtual AADs

Three types of AADs were used for the study: amiodarone, dronedarone, and flecainide. We tested the high and low dose effects of each AAD; 5 and 10 μM amiodarone, 3 and 10 μM dronedarone, and 5 and 15 μM flecainide. All ionic changes for each drug were derived from previously reported references (Supplementary Table 3) and the AADs were designed by changing them relative to the AF baseline model under wild-type or PITX2+/− deficient backgrounds (Figure 1G). The degree of change in the value varied within each AAD to resemble low and high dosage. Supplementary Table 2 shows the complete list of ion currents for the baseline AF status and AADs under wild type and PITX2+/− deficient backgrounds, and the references for each AAD ion current setting are listed in Supplementary Table 3.



Analysis of the spatial changes in the AF wave-dynamics

Our graphic processing unit (GPU)-based customized software (CUVIA, Model: SH01; Laonmed Inc., Seoul, Korea) was used virtually to define the ablated regions and apply appropriate ion current settings for the baseline AF and AADs. The DF and Smax were analyzed using this same GPU-based software (Figure 1H). During baseline AF, we additionally analyzed the action potential duration at 90% repolarization (APD90), conduction velocity (CV), and AF cycle length. A pacing cycle length of 600 ms was used to measure the APD90 (29) and CV. The region of interest for the APD90 and CV was from the LA high septum (pacing sites) to the LA appendage. The action potential duration (90%) was measured in the single-cell environment. However, at the tissue level, the APD90 values were heterogeneous among patients due to electroanatomical characteristics and LA tissue curvature (29). The APD90 and CV were measured using the SR ion currents while the mean Smax, DF, and AFCL were calculated using AF ion currents.



Statistical analysis

Categorical variables are reported as numbers (percentages). To investigate the normal distribution, continuous variables were tested using the Shapiro-Wilk or Kolmogorov-Smirnov tests. Continuous variables without a normal distribution are expressed as medians with interquartile range (IQR), while those with a normal distribution are expressed as means ± standard deviations. The proportion of categorical variables was compared among the groups using a Chi-square or Fisher's exact test. Continuous variables without a normal distribution were analyzed using the Mann-Whitney U test between two groups and the Kruskal-Wallis test among three groups. Continuous variables with a normal distribution were tested using ANOVA tests among three groups. A p-value <0.05 was considered statistically significant. All statistical analyses were performed using SPSS (Statistical Package for Social Sciences, Chicago, IL, USA) software for Windows (version 26).




Results


Characteristics of PITX2+/− deficient AF

We applied two different genotypes (wild type and PITX2+/− deficient) to the realistic AF computational modeling of 25 patients who underwent AFCA (68% men, 59.8 ± 9.8 years of age, 32% paroxysmal AF; Supplementary Table 1). We evaluated the effects of two different ablation protocols (CPVI and CPVI+DF ablation) and two different doses of three AADs (amiodarone, dronedarone, and flecainide). After measuring the APD90, we induced AF by virtual ramp pacing and there was no AF defragmentation of the baseline AF during the 32 s waiting period. In the PITX2+/− deficient AF condition, the APD90 was shorter (233 ms [231, 240] to 179 ms [177, 183], p < 0.001), AF cycle length longer (135.62 ms [130.13, 154.04] to 152.62 ms [148.36, 182.41], p = 0.001), DF (7.025 Hz [6.085, 7.478] to 6.411 Hz [5.744, 6.693], p = 0.003) and Smax (0.785 [.644,0.973] to.531 [.411,0.646], p < 0.001) significantly lower than that in the wild-type AF condition (Figure 2).
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FIGURE 2
 Characteristics of wild-type and PITX2+/− deficient baseline AF. Genotype-dependent comparisons of the APD90, CV, mean Smax, mean DF, and AFCL depend on the baseline AF. Every group includes an identical number of samples (n = 25). APD90, action potential duration 90%; CV, Conduction velocity; Smax, the Maximal slope of the restitution curves; AFCL, AF cycle length; DF, Dominant frequency; PITX2, paired-like homeodomain transcription factor 2.




Anti-AF effects of virtual ablation and AADs

Table 1 summarizes the AF defragmentation or termination rates and wave-dynamics changes after 100 virtual ablations (CPVI with or without DF ablation) and 300 virtual AAD interventions. Overall interventions including a CPVI ± DF ablation and AADs significantly increased the AF termination (22.3%, p < 0.001) and defragmentation (47.8%) rates as compared to the baseline AF (0%). When we compared the overall virtual interventions and overall AADs, CPVI±DF ablations resulted in a significantly higher AF defragmentation rate than AADs (65 vs. 42%, p < 0.001, Figure 3) without changing the DF or Smax (Table 1). In contrast, AADs significantly reduced the mean DF (6.625 Hz [5.88, 7.045] to 5.903 Hz [5.109, 6.388], p < 0.001). There were no significant differences in the AF defragmentation or termination rates, or the DF or Smax between the CPVI and CPVI+DF ablation or among amiodarone, dronedarone, and flecainide (Table 1).


TABLE 1 Defragmentation rate and wave-dynamic changes in the overall AF episodes (Wild type and PITX2+/− deficient).
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FIGURE 3
 Wave-dynamic change after a virtual CPVI and AADs. (A) The ECGs were obtained at the black * sites in the DF maps and indicate that AF converted to AT after the CPVI during a wild-type condition was still maintained during a PITX2+/− deficient condition. (B) The ECGs were obtained at the black * sites in the 3D DF maps and indicate that AF was still maintained after high dose amiodarone under both wild-type and PITX2+/− deficient backgrounds. (C) The ECGs were obtained at the black * sites in the DF maps and indicate that the AF was still maintained after high dose flecainide under both wild-type and PITX2+/− deficient backgrounds. DF, dominant frequency; Smax, the maximal slope of the restitution curves; CPVI, complete pulmonary vein isolation; AF, atrial fibrillation; AT, atrial tachycardia; ECG, electrocardiogram; PITX2, paired-like homeodomain transcription factor 2.




PITX2+/− genotype-dependent responsiveness to anti-AF interventions

We summarize the PITX2+/− genotype-dependent changes after a virtual intervention or AADs in Table 2. Overall, the virtual ablation (72%, p < 0.001) or CPVI alone (68%, p = 0.003) exhibited better AF defragmentation rates than the overall AADs (34.7%) in the wild-type AF, but not the PITX2+/− deficient AF. Virtual ablation did not exhibit any difference in the defragmentation rate (p = 0.208) or changes in the DF (p = 0.965) depending on the genotype but resulted in a lower Smax in the PITX2+/− deficient genotype than wild-type control (p = 0.023). After the overall AADs, PITX2+/− deficient AF was more easily defragmented (49.3 vs. 34.7%, p = 0.014) and had a greater significant reduction in the mean DF (p < 0.001) and mean Smax (p = 0.001) as compared to the wild type (Table 2; Figure 3).


TABLE 2 Defragmentation rate and wave-dynamic changes after virtual interventions according to the genotype.
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We compared the genotype-dependent comparisons of the AF defragmentation and termination rates and mean DF and Smax depending on the AADs and their dosages (Figure 4). There was a significant difference in the genotype-dependent AF defragmentation rate with low dose dronedarone (p = 0.038, Figures 4A,B). The post-AAD mean DF was significantly lower under the PITX2+/− deficient condition than in the wild type (p < 0.001, Table 2). The post-amiodarone Smax was significantly lower in the PITX2+/− deficient condition than wild type (low dose p = 0.024; high dose p = 0.02), but not with dronedarone or flecainide (Figure 4C).
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FIGURE 4
 Genotype-dependent comparisons of the AF defragmentation (A) and AF termination (B) rates, mean Smax (C), and DF (D) depending on the high and low doses of the three types of AADs. Every group includes identical number of samples (n = 25). Smax indicates the maximal slope of the restitution curves; DF, Dominant frequency; PITX2, paired-like homeodomain transcription factor 2.




PITX2+/− genotype-dependent clinical outcomes

We calculated the weighted genetic risk score (wGRS) in all 25 patients by multiplying the number of AF risk alleles by the beta coefficient for each single nucleotide polymorphism (SNP) and adding them (rs2595107, rs2200733, rs6843082, and rs10033464) together (Table 3). The 1- and 2-year clinical AF recurrence rates were compared depending on the PITX2+/− wGRS. Although the patients with a higher wGRS tended to have a higher one-year AF recurrence, it was not statistically significant (p = 0.342, Log-rank p = 0.273, Supplementary Figure 1A). All 25 patients were one-AAD resistant (n = 22), two-AAD resistant (n = 1), or AAD-intolerable (n = 2) patients (Supplementary Table 1). We could not compare the genetic effects on the AAD responsiveness because of an AAD selection bias in the clinical setting.


TABLE 3 Clinical AF recurrence based on the PITX2+/− risk score.
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Discussions


Main findings

In this study, we explored the anti-AF effects of virtual AF ablation and AADs according to the genotypes using realistic human AF computational modeling. Virtual AF ablations resulted in a higher AF defragmentation rate than virtual AADs in the overall AF episodes. Comparing the PITX2+/− deficient and wild-type AF types, the AF defragmentation rate did not differ depending on the genotype after a virtual AF ablation. With consistency, the genetic risk score of the PITX2+/− patients did not affect the rhythm outcome of the AF ablation in the clinical condition. However, PITX2+/− deficient AF was more easily defragmented with a lower mean DF and Smax than the wild type after virtual AADs. Therefore, consistent with the previous clinical studies, virtual AF ablation exhibited an effective anti-AF effect regardless of the PITX2 genotype, whereas virtual AADs exhibited more significant defragmentation or wave-dynamics change in the PITX2+/− deficient genotype.



Electrophysiological characteristics of PITX2+/− deficient AF

Genome-wide association studies (GWASs) have identified a number of SNPs that are associated with AF (5). Some SNPs located on chromosome 4q25 specifically increase AF susceptibility by modulating the activity of paired-like homeodomain transcription factor 2 (PITX2) in European, Japanese, Korean, and multi-ethnic populations with consistency (30). In the experimental models, variants in the PITX2 gene create AF vulnerable conditions by changing the electrophysiological characteristics. The PITX2+/− deficient murine atrial model exhibited a slightly depolarized resting membrane potential, reduced APD and AP amplitude (13), and low-voltage P waves and irregular beats, which indicated an impaired atrial conduction (31). The PITX2+/− deficiency is related to triggered activity caused by abnormal calcium management (32) and provokes AF by causing a modification of the calcium handling and cell-cell communication. In this study, we applied the electrophysiological characteristics of the PITX2 variant known by previous experimental studies to realistic computational modeling and generated a tissue or organ level PITX2+/− deficient condition. In addition, we tested multiple virtual interventions under the same conditions with very high-resolution wave-dynamics parameters that are difficult to compare with clinical or experimental studies using computational modeling (33).



Comparisons of the clinical studies and modeling studies on PITX2+/− deficient AF

There have been multiple clinical studies regarding the genotype-specific responsiveness of AF treatment. In particular, there is controversy about the effect of the PITX2 variant on AF recurrence after AFCA. Husser et al. and Shoemaker et al. reported that the recurrence rate after AFCA was significantly higher in PITX2 variants, especially rs2200733 (6–8), but the Korean AF Network registry study, which includes the highest number of patients, did not show any genotype-dependent differences after AFCA (9). Although the reason is not clear, ethnic differences may exist in the frequency of AF-related SNPs.

Parvez et al. reported a higher recurrence of AF after electrical cardioversion in patients with PITX2 rs2200733 variants and 55% of the included patients were under AADs (11). They also reported that variants of rs10033464 at the PITX2 gene were independent predictors of a successful AF rhythm control by AADs (12). Bai et al. and Syeda et al. reported that the class I AAD flecainide was more effective in suppressing atrial arrhythmias in PITX2 variants than in the wild type (13, 17). In contrast, Holmes et al. reported that the class III AAD dronedarone offered a more prominent anti-AF effect than flecainide or propafenone in a murine PITX2+/− heart model than in the wild type (10). In this study, we confirmed that class I AAD was more effective in PITX2 variants, consistent with the previous studies by Bai or Syeda (13, 17). In addition, we found the differences in AF wave dynamics and effects under class III AADs according to the PITX2 genotype. However, there was no significant difference after AF ablation.

In this modeling study, virtual AF ablation tended to have a lower defragmentation rate in the PITX2+/− deficient condition than in the wild type without a statistical significance. With consistency, clinical recurrence of AF after clinical AF ablation tended to be higher in patients with a high genetic risk score of the PITX2+/− without statistical significance. The AF defragmentation rate was significantly higher in the PITX2+/− deficient patients than in the wild-type patients after a virtual AAD administration.



Potential role of computational modeling in AF management

Since Moe et al. presented the first human AF computational modeling (34), various atrial modeling approaches have been developed, with advancements in both higher-dimensional and realistic geometry models (14). The advantages of AF computational modeling include a high-density entire chamber map, reproducible condition control, virtual intervention trials, and prediction of the clinical outcome (33). With the development of computational technology, AF modeling has come to a point where it can be used in clinical AF treatment based on precision medicine. Boyle et al. have presented a clinically applicable rotor map as a proof of concept study by applying fibrosis reflected by cardiac MRI late gadolinium enhancement to AF computational modeling (35). We also developed realistic AF computational modeling (36) while considering the patient anatomy (cardiac computed tomogram), electrophysiology (3D-electroanatomical map), fibrosis (voltage map), and fiber orientation (LAT map) (16). By utilizing this realistic AF modeling (CUVIA, Laon Med Inc.), Kim et al. (37) and Baek et al. (38, 39) reported an improved rhythm outcome after modeling-guided linear ablation or DF ablation compared to an empirical AF ablation by multi-center randomized clinical trials. In this study, we showed that the effects of virtual ablation or virtual AADs according to the genotype can be evaluated by utilizing AF computational modeling based on the AF wave-dynamics mechanism.



Limitations

This study had some limitations in the computational simulations. First, the right atrium was not incorporated in the personalized modeling because it is not possible to define interatrial connections using the current image resolution. Second, the LA wall thickness was not implemented in the 3D LA model. Third, it was not clear whether the atrial fibrosis area obtained using a bipolar voltage map reflected the pathological replacement fibrosis. Fourth, we utilized the monolayer in the 3D LA model, but not multi-layers that could perform as endocardial and epicardial layers.




Conclusion

Consistent with the previous clinical studies, the virtual CPVI had effective anti-AF effects regardless of the PITX2 genotype, whereas virtual AADs exhibited more significant defragmentation or wave-dynamic changes in the PITX2+/− deficient genotype.
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SUPPLEMENTARY FIGURE 1. Association of AF recurrence with the PITX2 genetic risk score. (A) 1-year AF recurrence and PITX2 risk score. (B) 2-year AF recurrence and PITX2 risk score. AF indicates atrial fibrillation; PITX2 risk score, Paired-like homeodomain transcription factor 2 (PITX2) gene risk score, calculated by multiplying the number of AF risk alleles by the beta coefficient for each single nucleotide polymorphism (SNP), and adding them (rs2595107, rs2200733, rs6843082, and rs10033464) together.

SUPPLEMENTARY TABLE 1. Baseline characteristics of the patients.

SUPPLEMENTARY TABLE 2. AAD ion current setting for the wild-type and PITX2+/− deficiency.

SUPPLEMENTARY TABLE 3. References for the atrial cell ion currents depending on the AADs.



Abbreviations

AAD, antiarrhythmic drug; AF, atrial fibrillation; AFCA, atrial fibrillation catheter ablation; AFCL, atrial fibrillation cycle length; APD90, action potential duration at 90% repolarization; AT, atrial tachycardia; CPVI, circumferential pulmonary vein isolation; CV, conduction velocity; DF, dominant frequency; IRQ, interquartile range; PITX2, paired-like homeodomain transcription factor 2; LA, left atrium; LAT, local activation time; Smax, maximal slope of action potential duration restitution curve; SR, sinus rhythm.



References

 1. Kim D, Yang PS, Jang E, Yu HT, Kim TH, Uhm JS, et al. 10-Year nationwide trends of the incidence, prevalence, and adverse outcomes of non-valvular atrial fibrillation nationwide health insurance data covering the entire Korean population. Am Heart J. (2018) 202:20–6. doi: 10.1016/j.ahj.2018.04.017

 2. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. (2020) 383:1305–16. doi: 10.1056/NEJMoa2019422

 3. Kaba RA, Cannie D, Ahmed O. Raaft-2: Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation. Glob Cardiol Sci Pract. (2014) 2014:53–5. doi: 10.5339/gcsp.2014.26

 4. Singh BN, Singh SN, Reda DJ, Tang XC, Lopez B, Harris CL, et al. Amiodarone versus sotalol for atrial fibrillation. N Engl J Med. (2005) 352:1861–72. doi: 10.1056/NEJMoa041705

 5. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. (2007) 448:353–7. doi: 10.1038/nature06007

 6. Shoemaker MB, Bollmann A, Lubitz SA, Ueberham L, Saini H, Montgomery J, et al. Common genetic variants and response to atrial fibrillation ablation. Circ Arrhythm Electrophysiol. (2015) 8:296–302. doi: 10.1161/CIRCEP.114.001909

 7. Husser D, Adams V, Piorkowski C, Hindricks G, Bollmann A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. (2010) 55:747–53. doi: 10.1016/j.jacc.2009.11.041

 8. Benjamin Shoemaker M, Muhammad R, Parvez B, White BW, Streur M, Song Y, et al. Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm. (2013) 10:394–400. doi: 10.1016/j.hrthm.2012.11.012

 9. Choi EK, Park JH, Lee JY, Nam CM, Hwang MK, Uhm JS, et al. Korean atrial fibrillation (Af) network: genetic variants for Af do not predict ablation success. J Am Heart Assoc. (2015) 4:e002046. doi: 10.1161/JAHA.115.002046

 10. Holmes AP, Saxena P, Kabir SN, O'Shea C, Kuhlmann SM, Gupta S, et al. Atrial resting membrane potential confers sodium current sensitivity to propafenone, flecainide and dronedarone. Heart Rhythm. (2021) 18:1212–20. doi: 10.1016/j.hrthm.2021.03.016

 11. Parvez B, Shoemaker MB, Muhammad R, Richardson R, Jiang L, Blair MA, et al. Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm. (2013) 10:849–55. doi: 10.1016/j.hrthm.2013.02.018

 12. Parvez B, Vaglio J, Rowan S, Muhammad R, Kucera G, Stubblefield T, et al. Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. J Am Coll Cardiol. (2012) 60:539–45. doi: 10.1016/j.jacc.2012.01.070

 13. Syeda F, Holmes AP Yu TY, Tull S, Kuhlmann SM, Pavlovic D, et al. Pitx2 modulates atrial membrane potential and the antiarrhythmic effects of sodium-channel blockers. J Am Coll Cardiol. (2016) 68:1881–94. doi: 10.1016/j.jacc.2016.07.766

 14. Trayanova NA. Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. Circ Res. (2014) 114:1516–31. doi: 10.1161/CIRCRESAHA.114.302240

 15. Lim B, Kim J, Hwang M, Song JS, Lee JK Yu HT, et al. In situ procedure for high-efficiency computational modeling of atrial fibrillation reflecting personal anatomy, fiber orientation, fibrosis, and electrophysiology. Sci Rep. (2020) 10:2417. doi: 10.1038/s41598-020-59372-x

 16. Lim B, Park JW, Hwang M, Ryu AJ, Kim IS Yu HT, et al. Electrophysiological significance of the interatrial conduction including cavo-tricuspid isthmus during atrial fibrillation. J Physiol. (2020) 598:3597–612. doi: 10.1113/JP279660

 17. Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, et al. In silico assessment of class i antiarrhythmic drug effects on Pitx2-induced atrial fibrillation: insights from populations of electrophysiological models of human atrial cells and tissues. Int J Mol Sci (2021) 22(3). Epub 2021/01/31. doi: 10.3390/ijms22031265

 18. Jin Z, Hwang I, Lim B, Kwon OS, Park JW Yu HT, et al. Anti-atrial fibrillation effects of pulmonary vein isolation with or without ablation gaps: a computational modeling study. Front Physiol. (2022) 13:846620. doi: 10.3389/fphys.2022.846620

 19. Ugarte JP, Tobon C, Orozco-Duque A, Becerra MA, Bustamante J. Effect of the electrograms density in detecting and ablating the tip of the rotor during chronic atrial fibrillation: an in silico study. Europace. (2015) 17 Suppl 2:ii97–104. doi: 10.1093/europace/euv244

 20. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol. (1998) 275:H301–21. doi: 10.1152/ajpheart.1998.275.1.H301

 21. Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, et al. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res. (2011) 109:1055–66. doi: 10.1161/CIRCRESAHA.111.253955

 22. Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, et al. Altered Na(+) Currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol. (2010) 55:2330–42. doi: 10.1016/j.jacc.2009.12.055

 23. Lee YS, Hwang M, Song JS Li C, Joung B, Sobie EA, et al. The contribution of ionic currents to rate-dependent action potential duration and pattern of reentry in a mathematical model of human atrial fibrillation. PLoS ONE. (2016) 11:e0150779. doi: 10.1371/journal.pone.0150779

 24. Hwang M, Kim J, Lim B, Song JS, Joung B, Shim EB, et al. Multiple factors influence the morphology of the bipolar electrogram: an in silico modeling study. PLoS Comput Biol. (2019) 15:e1006765. doi: 10.1371/journal.pcbi.1006765

 25. Zahid S, Cochet H, Boyle PM, Schwarz EL, Whyte KN, Vigmond EJ, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res. (2016) 110:443–54. doi: 10.1093/cvr/cvw073

 26. Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA, et al. Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circ Arrhythm Electrophysiol. (2016) 9:e004133. doi: 10.1161/CIRCEP.116.004133

 27. Ho SY, Anderson RH, Sanchez-Quintana D. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res. (2002) 54:325–36. doi: 10.1016/S0008-6363(02)00226-2

 28. Lim B, Hwang M, Song JS Ryu AJ, Joung B, Shim EB, et al. Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: an in-silico 3-dimensional modeling study. PLoS ONE. (2017) 12:e0190398. doi: 10.1371/journal.pone.0190398

 29. Song JS, Kim J, Lim B, Lee YS, Hwang M, Joung B, et al. Pro-arrhythmogenic effects of heterogeneous tissue curvature-a suggestion for role of left atrial appendage in atrial fibrillation. Circ J. (2018) 83:32–40. doi: 10.1253/circj.CJ-18-0615

 30. Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet. (2018) 50:1225–33. doi: 10.1038/s41588-018-0133-9

 31. Tao Y, Zhang M, Li L, Bai Y, Zhou Y, Moon AM, et al. Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes. Circ Cardiovasc Genet. (2014) 7:23–32. doi: 10.1161/CIRCGENETICS.113.000259

 32. Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, et al. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. (2018) 9:1380. doi: 10.3389/fphys.2018.01380

 33. Kwon O-S, Hwang I, Pak H-N. Computational modeling of atrial fibrillation. Int J Arrhythmia. (2021) 22:21. doi: 10.1186/s42444-021-00051-x 

 34. Moe GK, Rheinboldt WC, Abildskov JA, A. Computer model of atrial fibrillation. Am Heart J. (1964) 67:200–20. doi: 10.1016/0002-8703(64)90371-0

 35. Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH, et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng. (2019) 3:870–9. doi: 10.1038/s41551-019-0437-9

 36. Kwon SS, Yun YH, Hong SB, Pak HN, Shim EB. A patient-specific model of virtual ablation for atrial fibrillation. Annu Int Conf IEEE Eng Med Biol Soc. (2013) 2013:1522–5.

 37. Kim IS, Lim B, Shim J, Hwang M, Yu HT, Kim TH, et al. Clinical usefulness of computational modeling-guided persistent atrial fibrillation ablation: updated outcome of multicenter randomized study. Front Physiol. (2019) 10:1512. doi: 10.3389/fphys.2019.01512

 38. Park JW, Lim B, Hwang I, Kwon OS Yu HT, Kim TH, et al. Restitution slope affects the outcome of dominant frequency ablation in persistent atrial fibrillation: cuvia-Af2 post-hoc analysis based on computational modeling study. Front Cardiovasc Med. (2022) 9:838646. doi: 10.3389/fcvm.2022.838646

 39. Baek YS, Kwon OS, Lim B, Yang SY, Park JW Yu HT, et al. Clinical outcomes of computational virtual mapping-guided catheter ablation in patients with persistent atrial fibrillation: a multicenter prospective randomized clinical trial. Front Cardiovasc Med. (2021) 8:772665. doi: 10.3389/fcvm.2021.772665



		ORIGINAL RESEARCH
published: 22 July 2022
doi: 10.3389/fphys.2022.956320


[image: image2]
Cardiac Arrhythmia classification based on 3D recurrence plot analysis and deep learning
Hua Zhang1, Chengyu Liu2, Fangfang Tang1, Mingyan Li1, Dongxia Zhang3, Ling Xia4, Nan Zhao1, Sheng Li5, Stuart Crozier1, Wenlong Xu6* and Feng Liu1*
1School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
2School of Instrument Science and Engineering, Southeast University, Nanjing, China
3Zhejiang Provincial Centre for Disease Control and Prevention CN, Hangzhou, China
4Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
5The College of Science, Xijing University, Xi’an, China
6Department of Biomedical Engineering, China Jiliang University, Hangzhou, China
Edited by:
Rajesh Kumar Tripathy, Birla Institute of Technology and Science, India
Reviewed by:
Lakhan Dev Sharma, VIT-AP University, India
Reinaldo Roberto Rosa, National Institute of Space Research (INPE), Brazil
* Correspondence: Wenlong Xu, wenlongxu@cjlu.edu.cn; Feng Liu, feng@itee.uq.edu.au
Specialty section: This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology
Received: 30 May 2022
Accepted: 27 June 2022
Published: 22 July 2022
Citation: Zhang H, Liu C, Tang F, Li M, Zhang D, Xia L, Zhao N, Li S, Crozier S, Xu W and Liu F (2022) Cardiac Arrhythmia classification based on 3D recurrence plot analysis and deep learning. Front. Physiol. 13:956320. doi: 10.3389/fphys.2022.956320

Artificial intelligence (AI) aided cardiac arrhythmia (CA) classification has been an emerging research topic. Existing AI-based classification methods commonly analyze electrocardiogram (ECG) signals in lower dimensions, using one-dimensional (1D) temporal signals or two-dimensional (2D) images, which, however, may have limited capability in characterizing lead-wise spatiotemporal correlations, which are critical to the classification accuracy. In addition, existing methods mostly assume that the ECG data are linear temporal signals. This assumption may not accurately represent the nonlinear, nonstationary nature of the cardiac electrophysiological process. In this work, we have developed a three-dimensional (3D) recurrence plot (RP)-based deep learning algorithm to explore the nonlinear recurrent features of ECG and Vectorcardiography (VCG) signals, aiming to improve the arrhythmia classification performance. The 3D ECG/VCG images are generated from standard 12 lead ECG and 3 lead VCG signals for neural network training, validation, and testing. The superiority and effectiveness of the proposed method are validated by various experiments. Based on the PTB-XL dataset, the proposed method achieved an average F1 score of 0.9254 for the 3D ECG-based case and 0.9350 for the 3D VCG-based case. In contrast, recently published 1D and 2D ECG-based CA classification methods yielded lower average F1 scores of 0.843 and 0.9015, respectively. Thus, the improved performance and visual interpretability make the proposed 3D RP-based method appealing for practical CA classification.
Keywords: cardiac arrhythmia classification, electrocardiogram, recurrence plot, vectorcardiography, deep learning
INTRODUCTION
Cardiovascular Diseases (CVD) are a leading cause of death globally (Sahin and Ilgun, 2020; Amini et al., 2021). Cardiac arrhythmia is a common CVD associated with disorganized electrical activities of the heart. Several main types of arrhythmias include Atrial Fibrillation (AF), First-degree Atrioventricular Block (I-AVB), Bundle Branch Block (BBB), and so on. Some arrhythmias can significantly impact the patient’s health, such as AF, which can pose a significant risk for stroke (Ye et al., 2012; Siontis et al., 2021), while others are common and relatively harmless. It is essential to classify the risk types as early as possible to manage and treat arrhythmia-associated heart diseases. Manual interpretation of the electrocardiogram (ECG) is an effective and non-invasive way for arrhythmia classification and diagnosis. Traditional ECG-based arrhythmia diagnostics require considerable expertise; recently, computer-aided ECG diagnosis for arrhythmia based on machine learning and deep learning has become an active research area (Siontis et al., 2021).
In traditional machine learning methods, a set of timing and morphology features of ECG signals were extracted and discriminated by learning-based classifiers (De Chazal et al., 2004; De Chazal and Reilly, 2006; Ince et al., 2009; Ye et al., 2012). (Asl et al., 2008) extracted the R-R interval features from the raw ECG signals and then employed a support vector machine classifier to discriminate six types of arrhythmias. (Llamedo and Martinez, 2011). used features extracted from the R-R series and computed from different scales of the wavelet transform for arrhythmia classification by a linear classifier. In general, these methods heavily rely on in-depth domain knowledge. Furthermore, the extracted hand-crafted features from the ECG signals can vary among patients, making it challenging to maintain both the accuracy and generalization of arrhythmia classification.
Deep learning networks have been widely utilized to perform automated feature extraction based on raw or low-level processed ECG data and achieve end-to-end arrhythmia classification (Siontis et al., 2021). Existing studies have demonstrated the effectiveness of ECG feature detection in predicting arrhythmia. Most of them focus on features of ECG signals, including one-dimensional (1D) time-domain features (e.g., directly taking ECG series as input signals), frequency and time-frequency domain features (e.g., Fourier transform, wavelets transform), and ECG morphology-based image features (e.g., using 2D grayscale images). For the 1D time-domain features, Hannun et al. developed a deep neural network to classify 12 types of arrhythmias based on single-lead ECG time signals. The prediction performance exceeds that of the average cardiologist (Hannun et al., 2019). Some other studies combined a recurrent neural network, such as the long-short term memory (LSTM), with a convolution neural network (CNN) to capture the historical information of the ECG (He et al., 2019; Chen et al., 2020; Yao et al., 2020; Rahul and Sharma, 2022b). For the frequency and time-frequency domain features of ECG, researchers attempted to convert the 1D ECG signals into 2D images to predict different types of CA. Huang et al. transferred the 1D ECG time signals to 2D time-frequency spectrograms, then transformed the arrhythmia identify task into an image classification task based on a 2D CNN(Huang et al., 2019). Jagdeep Rahul et al. transformed the 1D ECG into 2D time-frequency representation as the input, then fed it into the Bi-directional LSTM model for AF prediction (Rahul and Sharma, 2022a). (Li et al., 2019) developed an approach based on three types of wavelets transform and the 2D CNN to detect Ventricular ectopic beat in the image domain. For the ECG morphology-based image features, 1D ECG signals were converted into 2D grayscale images and then fed into 2D CNN to classify different arrhythmia types (Izci et al., 2019). Most of these classification methods have been designed for detecting linear, time-frequency features of ECG signals. However, the human heart is a complex, dynamic system (Zbilut et al., 2002), generating ECG signals naturally nonstationary and nonlinear (Acharya et al., 2011). Therefore, the methods mentioned above might be incapable of fully characterizing the dynamical nature of the ECG signals.
To study nonlinear dynamic spatial features of the cardiac system for arrhythmia classification, the recurrence plot (RP) technique has been used to discover the recurrence pattern buried in the time series of ECG signals and then successfully applied to the detection of ventricular fibrillation, as well as the prediction of premature atrial complex, premature ventricular complex, and AF (Mathunjwa et al., 2021). In our recent work (Zhang et al., 2021), we successfully utilized the 2D RPs to distinguish various arrhythmias, leading to better solutions than linear approaches.
This work aims to develop further the RP technique into a 3D framework for improved arrhythmia classification. In our recent study (Zhang et al., 2021), the 2DRP images offer a unique feature detection mechanism for arrhythmia classification compared with conventional approaches. However, those 2DRP maps are directly fed into the neural network in a decoupled manner, without sorting and directly analyzing shared features and nonlinear alterations between these 2D images in the training process. The new 3DRP maps-based deep learning training process allows the neural network to extract the correlation between the ECG leads, thus explicitly offering more comprehensive recurrence features in the phase space that help identify the uniqueness of each type. In implementing 3D RP-based arrhythmia classification, we compared two 3D transforms, namely the ECG-based and VCG-based methods.
The contributions of this work include: 1) this is the first study using the RP technique for mapping 12 lead ECG signals to 3DRP texture images and performing deep learning-based arrhythmia classification; 2) the 3 lead VCG was introduced into the RP method to efficiently extract the nonlinear features of the ECG signals for optimized arrhythmia prediction; 3) the proposed 3D Inception Resnet model was used to extract the spatial pattern features and textural alternations from the 3D RP images.
The rest of the paper is organized as follows: the approach and the network architecture are described in Methodology Section, the experiments are detailed in Experiment Section, the discussion on results is provided in Discussion Section, and conclusions are drawn in Conclusion Section.
METHODOLOGY
In this section, the arrhythmia classification task is treated as a 3D ECG image classification problem using the proposed 3D RP technique and the 3D Inception Resnet model.
Recurrence plot
Recurrence is one of the fundamental properties of a dynamic system, such as the electrical signals generated by the human heart, and is difficult to detect in serial time-domain signals (Marwan et al., 2007; Debayle et al., 2018). The Recurrence Plot (RP) approach was proposed to explore the phase space trajectory in a higher-dimensional space and to show the recurrent behaviors of the time series (Eckmann et al., 1987; Eckmann et al., 1995).
An RP can be formulated as follows:
[image: image]
where N is the number of time series [image: image], [image: image] is a predefined distance, [image: image] is an L2 norm, and [image: image] is the Heaviside function.
[image: image] is defined as:
[image: image]
Eq. 1 is considered binary because of the predefined distance. For this study, an un-threshold approach (Faria et al., 2016) was applied to obtain more information contained in the RP images. Specifically, The R-matrix can be defined as:
[image: image]
Vectorcardiography
To reduce the data size for neural network training, we consider converting the standard 12-lead ECG signals into VCG signals for deep learning-based arrhythmia classification. VCG was introduced by (Frank, 1956). Since the human body is a 3D structure, the basic idea of VCG is to construct three orthogonal leads containing all the electric information of the human heart. The three leads are represented by the right-left axis (Vx), head-to-feet axis (Vy), and front-back (anteroposterior) axis (Vz). Based on the standard 12-lead system, the following expressions are used to calculate Frank’s leads Vx, Vy, and Vz (Daniel et al., 2007).
[image: image]
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where DΙ and DΙΙ are the leads I and II, and V1-V6 are the chest leads (V1, V2, V3, V4, V5, V6) of 12-lead ECG. Even though the converted VCG is not widely used as the ECG, it records essential features of cardiac electrical excitation changes over time. It has been shown that over 90% of ECG energy can be reserved by the 3-lead VCG (Hasan et al., 2012). As illustrated in Figure 1, VCG signals reflect the heart’s electrical activities in both spatial and temporal domains through three orthogonal planes of the body (Yang et al., 2012). The dynamic differences between the VCG signals can thus be used for arrhythmia classification.
[image: Figure 1]FIGURE 1 | Frank’s three leads signal Vx, Vy, and Vz of four types of VCG waveforms (top) and corresponding 3D dynamic feature plots (bottom).
3DRP Inception Resnet architecture
The proposed 3DRP Inception Resnet network was designed based on the Inception-ResNet-v2 (Szegedy et al., 2017). In this study, we expanded the network from 2D to 3D and improved the Inception Resnet models, as shown in Figure 2. It contains the 3D Stem, the 3D Inception Resnet models, and the 3D prediction part. In the first part, the 3D Stem model contains deep convolutional layers with 1 × 1 × 1, 3 × 3 × 3, 1 × 1 × 7, 1 × 7 × 1 convolutions, and two max-pooling layers, which are used to pre-process the original data before entering the 3D Inception Resnet blocks. The following part has the 3D Inception Resnet models, including 3D Inception Resnet A and 3D Reduction A with 1 × 1 × 1, 3 × 3 × 3 convolution layers; 3D Inception ResNet B and 3D Reduction B with 1 × 1 × 1, 3 × 3 × 3 convolutions, and 1 × 1 × 7, 1 × 7 × 1 asymmetric filter; 3D Inception ResNet C with 1 × 1 × 1 convolutions, 1 × 1 × 3 and 1 × 3 × 1 asymmetric filter. The network enhances the diversity of the filter patterns by asymmetric convolution splitting. The last part is the prediction layer, including 3D Global Average pooling and SoftMax layers.
[image: Figure 2]FIGURE 2 | The architecture of 3DRP Inception ResNet (Stem, Inception ResNet models A-C, Reduction models A and B, and Prediction layers).
EXPERIMENT
Experimental setup
ECG database
The dataset Physikalisch-Technische Bundesanstalt (PTB-XL) (Wagner et al., 2020) from the PhysioNet/Computing in Cardiology Challenge 2020 (Alday et al., 2021) was used in this study. It was illustrated in Table 1, which is composed of four typical CA types labelled as Sinus rhythm (NSR), Atrial fibrillation (AF), 1st degree AV block (I-AVB), and Left bundle branch block (LBBB). Each data contains 12-lead ECG recordings with a sampling frequency of 500 Hz and a mean duration of 10 s. NSR is a normal heart rhythm; AF is related to irregular heart rate, which can lead to an increase in the risk of strokes; I-AVB is a condition of abnormally slow conduction through the atrioventricular node; LBBB is a condition of delay or blockage of electrical impulses along the left side pathway of the heart ventricles bottom.
TABLE 1 | Data profile for the ECG dataset.
[image: Table 1]Data splitting and augmentation
The data from the PTB-XL database were pre-processed and augmented. The raw ECG data were downsampled to 200 Hz. In the first phase, the data with multi-labels were removed initially because we mainly focused on single-labelled arrhythmia classification in this study. After then, the number is 16801 for NSR, 1396 for AF, 370 for LBBB, and 689 for I-AVB. The number of four types of arrhythmias is unbalanced, which brings challenges to the arrhythmia classification. In the second phase, we randomly picked up 1200 data on Sinus rhythm and 1200 data on AF. Four in five of each type of data were used as the training and validation dataset, and one in five was used as the test dataset. Thus, the training set is independent of the testing set, usually called inter-patient classification (Huang et al., 2014). In the third phase, to balance the data in different types, the data was split into a set of 5 s (1000 samples) recordings. Regarding the NSR and AF, we picked up the data from 1st to 1000th; for the LBBB, the data was split into 1st to 1000th, 500th to 1500th, and 1001th to 2000th three segments; for the I-AVB, the data were split into 1st to 1000th and 1001th to 2000th two segments. Thus, 1200 segments of NSR, 1200 of AF, 1100 of LBBB, and 1378 of I-AVB were obtained for experiments. The details of the training, validation and test datasets are provided in Table 1.
Classification computing environment
The experiments were performed on the University of Queensland’s computer cluster with 4 × Nvidia Volta V100 SXM2 connected GPUs per node. Each node contains 5,120 CUDA cores, 640 TensorFlow hardware cores, and 32 GB of HBM2 class memory. This model was implemented using the TensorFlow 3.6 and Karas DL framework.
Performance of experiments
To assess the effectiveness of the proposed method, several parameters, including Precision, Recall, and F1-score, are defined as follows, respectively.
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where TP is the number of true positives data; FP is the number of false positives data; FN is the number of false-negative data. Here, Precision is the fraction of all predicted data that are real labeled data, whereas Recall is the fraction of all real labeled data that are successfully detected. The average F1-score among classes is computed to evaluate the final performance of the model. Arrhythmia classification experiments based on ECG and VCG 3DRP methods.
Arrhythmia classification experiments based on ECG and VCG 3DRP methods
Experimental design
This study aims to investigate the ability of 3DRP to identify pattern differences between various arrhythmia groups. As shown in Figure 3, firstly, the raw ECG data were pre-processed via two steps. In step one, the multi-label data were filtered and divided into four in five for training and validation and one in five for testing. In step two, the data were resampled to 200 Hz and then was augmented by splitting into 5-s recordings to balance the four types of arrhythmias (see section A: Data splitting and augmentation). Then, to explore nonlinear and channel correlation features from the 3D RP images for the arrhythmia classification, ECG-based and VCG-based 3DRP experiments were designed.
[image: Figure 3]FIGURE 3 | The flow chart of CA classification experiments.
Regarding the ECG-based experiments, the 12-lead ECG signals were transformed into 2DRP images and stacked together to form 3D images, as illustrated in Figure 4. The method of converting 1D ECG signals into the corresponding 2DRP images is reported in our previous work (Zhang et al., 2021). Then we applied with (min-max and z-score normalization) and without normalization to pre-process the 2D RPs, respectively, which are defined as follows.
[image: image]
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where RP is the original data, and min and max are the minima and maximum values of the data. [image: image] and [image: image] refer to its mean value and standard deviation. After normalization, these 12 leads images were placed with the lead-index order of limb leads (lead I, II, III, aVR, aVL, aVF) followed by the chest leads (V1, V2, V3, V4, V5, V6) to form as a 3DRP image. In our previous work (Zhang et al., 2021), we used those 2D RP plots (see Figure 4) to train the network and detect 2D RP features for classification. The relationship between the leads is implicitly investigated by the network, which is essential to explore but less obvious to learn from the 2D textures. In contrast, by setting the 3D RP images as input signals, one can more explicitly discover the inherent signal correlations between the leads in addition to the 2D features within each lead, thus providing higher dimensional, visually interpretable information for prediction. As depicted in Figure 5, significantly different RP patterns can be observed in those 3DRP images obtained from 12-lead ECG data of different arrhythmia types. The texture variations occur within the RP plots and between the leads, which the 3D neural network can easily learn and discriminate the arrhythmia types.
[image: Figure 4]FIGURE 4 | The 3DRP image reconstructed based on ECG.
[image: Figure 5]FIGURE 5 | The 3DRP images of NSR/AF/LBBB/I-AVB based on ECG.
Regarding the VCG-based experiments, we investigated VCG-based arrhythmia classification. As shown in Figure 6, we first transformed the pre-processed 1D 12-lead ECG signals to 3-lead VCG signals (Vx, Vy, Vz). Then VCG signals were converted into 2D RP images with no-normalization, min-max normalization, and z-scores normalization, respectively. These 2D RP maps were used to build 3DRP images, which were considered as the input data of the 3D neural network for training. As shown in Figure 7, it can be demonstrated apparent pattern differences between the VCG-based 3DRP images. The 3D networks learned feature maps embedded within these RP plots and between the leads, which contain arrhythmia type-dependent signatures, thus facilitating disease classification. The five-fold cross-validation was introduced in the training and validation processing, with the default parameters of Adam optimizer, a learning rate of 0.001, and a batch size of 64.
[image: Figure 6]FIGURE 6 |  The 3DRP image reconstructed based on VCG.
[image: Figure 7]FIGURE 7 | The 3DRP images of NSR/AF/LBBB/I-AVB based on VCG.
Experimental results
The classification results of ECG-based and VCG-based 3DRP experiments are presented in Table 2. In this table, the method with z-score normalization achieved an Avg F1 score of 0.9254 for the ECG-based experiment and 0.9350 for the VCG-based experiment, outperforming other schemes. As shown in Table 3, the ECG-based experiment with z-score normalization obtained 0.9246 of the average Precision and 0.9269 of the average Recall. Besides, the highest F1-score was obtained for LBBB (0.9843), followed by AF (0.9472). In the VCG-based experiment with z-score normalization, the proposed method achieved the avg F1 score of 0.9350, the average Precision of 0.9344, and the average Recall of 0.9358. Besides, the highest F1 score was obtained for LBBB (0.9712), followed by AF (0.9668). Figure 8 is the arrhythmia classification confusion matrix of these two methods with z-score normalization. It outlines the data number of predicted and true labels. Note that there is a relatively small error between AF and LBBB, implying that the proposed method better predicts AF and LBBB.
TABLE 2 | Classification performance based on ECG and VCG 3DRP methods with No/Min-max/Z-score normalization datasets.
[image: Table 2]TABLE 3 | Classification Precision/Recall/F1-score of experiments.
[image: Table 3][image: Figure 8]FIGURE 8 | The confusion matrix of CA classification based on 3DRP ECG-based, and VCG-based.
Comparison of ECG-based and VCG-based 3DRP methods
This section compared the ECG-based experiment with the VCG-based experiment, focusing on network training and classification performance. Table 4 presents details of the training processing of each experiment. As indicated in the table, an equal number of trainable parameters were used in both methods. However, the training time of the 3-lead VCG-based method is 93 min, which is less than half of the 12-lead ECG method. The following columns show the fivefold cross-validation processing in terms of time and epochs used. Once the network is trained, it takes only 7ms and 16 ms for each prediction using the VCG-based and ECG-based methods, respectively. Table 3 compares the arrhythmia classification performances of these two methods. The optimal avg F1 score with VCG-based method is 0.9350, slightly better than the optimal ECG-based method (0.9254). The results highlight that the VCG-based method achieved a superior classification performance with less training time.
TABLE 4 | Training information of the ECG-based and the VCG-based 3DRP methods.
[image: Table 4]Comparison with different reference models
To study the reliability and effectiveness of the proposed method, we compared the performance of different reference models, including Resnet 50 (He et al., 2016), Inception-v3, and Inception-v4 (Szegedy et al., 2017). For a fair comparison, the same 3D VCG-based RP images were taken as the input of different models. The data were divided into training, validation, and testing sub-datasets using the same rule. Then, the same hyperparameters, including learning rate and batch size, were used to train and test the models separately. The average F1 score, Precision, and Recall of each class were calculated for comparison.
As illustrated in Table 5, the proposed method achieved the average F1 score of 0.9350, the average Precision of 0.9344, and the average Recall of 0.9358, which were all higher than those of other reference models. Moreover, it was shown that the proposed method outperformed the Resnet50, Inception V3, and Inception V4 in the F1 score of all classes. Interestingly, in the case of identifying the LBBB class, almost all the models achieved significantly higher F1 scores compared with other classes. Table 6 illustrates the computational costs of compared models. In five-fold cross-validation experiments, the training time of the proposed method is 93 min, which is less than that of other models except for the Inception V3 (71 min). And the number of trainable parameters of the proposed method is comparable with the Resnet 50 and the Inception V3, and less than the Inception V4 model.
TABLE 5 | Comparison of different reference models for CA Classification.
[image: Table 5]TABLE 6 | Comparison of the computational cost of the proposed 3D method VS. reference models.
[image: Table 6]Comparison of the proposed 3D method with recently published 1D and 2D methods
In this section, we compared the 3D RP VCG-based method with some recent CA classification studies, including the 1D raw ECG-based method (Hannun et al., 2019) and the 2D image-based method (Zhang et al., 2021), all are based on the same dataset PTB-XL. In the 1D case, the raw ECG time series were taken as the input to the model with 33 convolutional layers, and it outputs a prediction of one out of 4 possible rhythm classes every 256 input samples. In the 2D case, the 1D ECG data were converted into a set of 2DRP images fed into the 2D classification networks as the input, and the output was the prediction rhythm.
Table 7 and Table 8 show the comparison results, including the input, performance, and computing cost based on the five-fold cross-validation experiments. The 3D method obtained the highest average F1 score than the 1D and 2D approaches, with slightly longer training time than the 2D method and more complex networks than the 1D method. The proposed 3D method achieved better prediction performance for AF, LBBB, and I-AVB arrhythmia than the compared methods. At the same time, the 1D method achieved better performance for NSR, while the performance of the F1 score for the I-AVB (0.5833) is relatively low compared with the 2D approach (0.8503) and 3D method (0.8991), and the LBBB (0.8658) compared with the 2D approach (0.9267) and 3D method (0.9712), respectively.
TABLE 7 | Comparison of performance of the proposed 3D method VS. 2D and 1D classification methods.
[image: Table 7]TABLE 8 | Comparison of the computational costs of the proposed 3D method VS. 2D and 1D classification methods.
[image: Table 8]Testing the generalization of the proposed 3D method
In this section, we evaluated the generalization of the proposed approach by studying two more ECG datasets of the PhysioNet/Computing in Cardiology Challenge 2020. The detailed information of these two datasets is listed in Table 9. The data source CPSC (Liu et al., 2018) is the public training dataset from the China Physiological Signal Challenge (CPSC 2018). Georgia is a 12-lead ECG Challenge Database, Emory University, Atlanta, Georgia, United States, representing a large (Alday et al., 2021) population from the South-eastern United States.
TABLE 9 | Generalization ability of the proposed method for CA classification on extra datasets.
[image: Table 9]In this experiment, raw ECG datasets were pre-processed and transformed into 3 lead VCG signals with the z-score normalization. As shown in Table 9, the proposed method achieved an average F1 score of 0.9412 on CPSC and 0.8881 on Georgia. The F1 score of each classification in CPSC is higher than in Georgia. The best prediction was obtained with an AF of 0.9497 on CPSC. For these two datasets, the proposed 3DRP method can effectively predict the AF, I-AVB, LBBB, and NSR. These testing results indicate that the 3DRP method has a good generalization for arrhythmia classification.
DISCUSSION
This work proposed a 3D method via extracting ECG signals’ dynamic, nonlinear recurrence features for deep learning-based arrhythmia classification. Instead of using 1D ECG and 2D ECG-based images, the 3D RP maps were reconstructed from 12 leads ECG and 3 leads VCG and then fed into the 3D CNN model for neural network training, validation, and testing. The superiority and effectiveness of the proposed method are validated by various experiments.
The advantage of using the 3D method for CA classification
In 1D temporal ECG signals, dynamic nonlinear features and space-time characteristics are not directly observable. In our previous work (Zhang et al., 2021), the 2DRP method has demonstrated that recurrence plots help identify the nonlinear dynamic recurrent features hidden in the 1D ECG signal for better arrhythmia classification. We explore the feature differences between arrhythmia types from a novel 3D perspective, beyond the standard 1D ECG time series-based approach and the 2D images-based method. In this work, we compared the proposed 3D method with recently published studies based on the 1D raw ECG and 2D ECG-based images for CA classification in terms of the F1 score. The 3DRP method outperformed both the 1D method and the 2DRP approach considering both avg F1 score and the prediction for each type of arrhythmia (see Table 7). The avg F1-score is 0.9350 for the 3DRP method, significantly better than 0.8483 for the 1D method and 0.9015 for the 2D approach. The 3DRP method better characterizes the dynamic cardiac system in spatial/lead and temporal domains by exploiting higher-dimensional image information. They effectively identify the latent features of each arrhythmia type in the training processing. This working mechanism has effectively boosted the arrhythmia prediction performance.
The use of VCG-based 3DRP plots for deep learning-based CA classification
As mentioned in Vectocardiography Section, VCG possesses several advantages over the standard ECG in representing spatiotemporal information of cardiac electrical activities (Meyers et al., 2020). Also, the 3 lead VCG based 3DRP image dataset is much smaller than the 12 lead ECG-based one. Our experiment (see Table 4) shows that the VCG-based 3DRP method achieved optimal performance with an average F1-score of 0.9350 over that of 0.9254 in ECG-based 3D method with less training time (93 min) than the ECG-based (262 min). In addition, the confusion matrix in Figure 8 illustrates that the VCG-based method can accurately classify AF and LBBB. Further investigation is required to study arrhythmia-specific prediction/classification.
Two extra ECG datasets of the PhysioNet/Computing in Cardiology Challenge 2020 were adopted to study the generalization of the proposed method. It achieved an average F1 score of 0.8881 on Georgia, and 0.9412 on CPSC, respectively. The results demonstrated that the 3D method has excellent generalization ability. In addition, the comparison among several neural networks is shown in Table 5 and Table 6; the proposed 3D Inception ResNet model offers better solutions with comparable computational cost over others, as measured by major assessment indicators.
Computational cost
The 3D image-based learning scheme implemented in this work may lead to a concern of computational cost. The 3D model has fewer trainable parameters than 2D Inception-ResNet V2 models, as it practically improves the model structure and decreases the depth of layers. On the other hand, the 3D model has more trainable parameters than the 1D network. As demonstrated in Table 8, based on 3DRP reconstructed with 3 leads VCG, the five-fold cross-validation training time is 93 min, which is longer than the 2DRP-based method (79 min), but less than the 1D method (107 min). Thus, the computational cost is comparable among these 1D, 2D, and 3D methods. Moreover, as shown in the result section, 3DRP-based solutions offered significantly improved average F1 score and visual interpretability and boosted the prediction of types of arrhythmias (see Table 7). In particular, the VCG-based 3DRP solution provides the best performance in balancing accuracy and efficiency, making it appealing for clinical aid diagnosis.
CONCLUSION
In this work, a 3D recurrence plot-based method was proposed for arrhythmia classification, achieving promising prediction performance with an inter-patient scheme. Compared with lower-dimensional classification methods, the proposed approach allows the learning algorithm to detect richer, nonlinear spatial-time features for better arrhythmia discrimination. Our simulation study confirmed that the 3D method offers superior performance to 1D/2D solutions and has a comparable computational cost.
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Dilated cardiomyopathy (DCM) can lead to heart expansion and severe heart failure, but its specific pathogenesis is still elusive. In many cardiovascular diseases, I-κB kinase-ε (IKKε) has been recognized as a pro-inflammatory molecule. In this study, wild-type mice (WT, n = 14) and IKKε knockout mice (IKKε-KO, n = 14) were intraperitoneally injected with a cumulative dose of 25 mg/kg with Dox or Saline five times in 30 days. Finally, the experimental mice were divided into WT + Saline group、WT + DOX group、IKKε-KO + Saline group and IKKε-KO + Dox group. Echocardiography was performed to assess cardiac structure and function. Moreover, the mechanism was validated by immunohistochemistry and western blotting. Our results demonstrated that compared to WT + Dox mice, IKKε-KO + Dox mice exhibited attenuation of dilated cardiomyopathy-related morphological changes and alleviation of heart failure. Additionally, compared to the WT mice after Dox-injected, the expression of fibrosis and proinflammatory were decreased in IKKε-KO mice, and the expression of cardiac gap junction proteins was much higher in IKKε-KO mice. Further testing found that pyroptosis and apoptosis in the myocardium were also ameliorated in IKKε-KO mice compared to WT mice after Dox was injected. Mechanistically, our results showed that deficiency of IKKε might inhibit the phosphorylation of IκBα, p65, RelB, and p100 in mouse heart tissues after Dox stimulation. In summary, our research suggests that IKKε might play an essential role in the development of Dox-induced dilated cardiomyopathy and may be a potential target for the treatment of dilated cardiomyopathy in the future.
Keywords: IKKε, doxorubicin, dilated cardiomyopathy, pyroptosis, connexin43
1 INTRODUCTION
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure and the most number of heart transplants (Maron et al., 2006; Weintraub et al., 2017). Its etiology includes gene mutation, drugs, poisons, and alcohol, and the pathogenesis of dilated cardiomyopathy is unexplained. Although the causes of DCM vary, the phenotype and pathological characteristics of DCM are consistent (Schultheiss et al., 2019). Doxorubicin is a cancer chemotherapy agent whose dose-dependent cardiotoxicity has limited clinical use (Chang H. M. et al., 2017). This toxicity is of particular concern in patients with cancer susceptible to anthracyclines, such as breast cancer, many of whom die from heart failure (Singal and Iliskovic, 1998; Carvalho et al., 2009; Mehta et al., 2018). Moreover, an increasing number of studies have shown that Dox-induced cardiac pathology is similar to that of DCM (Kankeu et al., 2016; Wu et al., 2016; Xia et al., 2017).
IKKε (also known as IKK-inducible or IKK-i) was known as a non-canonical IKKs (Peters et al., 2000), which was involved in the regulation of many biological events including inflammatory responses, fibrosis, oncogenesis, apoptosis, and autophagy (Baldwin, 2012; Hsu et al., 2012; Patel et al., 2015; Zhou et al., 2019). Evidence has shown that IKKε can promote the phosphorylation of IκBα to activate the NF-κB signaling pathway (Shimada et al., 1999; Kravchenko et al., 2003; Solt and May, 2008). A previous study has suggested that IKKε can be activated by pro-inflammatory cytokines such as TNF-α(Tumor necrosis factor-α), IL-1β(Interleukin-1β), and IL-6(Interleukin-). Inhibiting IKKε could enhance the immunity of T cells to thwart tumor development and metastasis (Zhang et al., 2016). IKKε deficiency attenuated inflammation in Inflammatory Hyperalgesia by regulating the NF-κB pathway (Moser et al., 2011).
Activation of NF-κB–dependent transcription has been found in numerous heart diseases, including hypertrophic cardiomyopathy, myocardial infarction, ischemia/reperfusion injury, and so on (Jones et al., 2005; Hall et al., 2006; Baldwin, 2012; Kumar et al., 2012; Maier et al., 2012; Cao et al., 2021). In our previous studies, the role of IKKε in atherosclerotic lesions and aortic stenosis has been suggested (Cao et al., 2013; He et al., 2019). The IKKε-KO could attenuate mice’s pathological progression in Angiotensin II-Induced Myocardial Hypertrophy and aortic valve thickening (He et al., 2019; Cao et al., 2021). However, the role of IKKε in dilated cardiomyopathy is unclear. Herein, we aimed to investigate the potential role and molecular basis of IKKε in DOX-induced cardiotoxicity.
2 MATERIALS AND METHODS
2.1 Animals
The experiments on animals were performed to comply with the Institute of Laboratory Animal Research Guide for the Care and Use Laboratory Animals of the National Institutes of Health and approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (Ethics Committee of Nanjing First Hospital). IKKε knockout mice (B6. Cg-Ikbketm1Tman/J (male; 8 weeks old; 22–27 g; n = 14) were obtained from the Jackson Laboratory (Bar Harbor, ME, United States) and rederived to achieve pathogen-free status in the Model Animal Research Center of Nanjing University (Nanjing, China). C57BL/6 mice (male; 8 weeks old; 22–27 g; n = 14) were netted from the Institutional Animal Care and Use Committee of Nanjing Medical University (Nanjing, China). All the mice were housed in specific pathogen-free box cages at room temperature, on a 12-h light/12-h dark cycle with free access to a regular diet and water.
2.2 Dox-induced mouse model of cardiotoxicity
As described in previous studies (Liu et al., 2020), the mice were intraperitoneally injected with a cumulative dose of 25 mg/kg doxorubicin (25316-40-9, Sigma-Aldrich) or saline via five times intraperitoneal injections (5 mg/kg i. p.) in 30 days. All the mice were divided into four groups, including the WT + Saline group, The WT + Dox group, the IKKε-KO + Saline group, and the IKKε-KO + Dox group. All the mice were housed in specific pathogen-free box cages at room temperature, on a 12-h light/12- h dark cycle with free access to a regular diet and water. The cardiac function was detected by echocardiography after the Dox injection. After the echocardiographic assessment, all mice were weighed and sacrificed under anesthesia, hearts were harvested immediately and heart weights were measured. Immediately after rinsing the heart in saline, protein and RNA sample extraction and dehydrated paraffin embedding were performed on another heart sample. The sample of protein and RNA was stored at −80°C.
2.3 Echocardiography evaluation
Mice were anesthetized with 1.5–2% isoflurane by inhalation and placed in supine position. Then, echocardiography was performed using a Vevo2100 ultrasound with a 30-MHz linear array ultrasound transducer (VisualSonic Inc., Toronto, Canada). Echocardiographic measurements were taken on M-mode to determine the left ventricular ejection fraction (LVEF), fractional shortening (FS), left ventricular end-diastolic diameter (LVEDd), and left ventricular end-systolic diameter (LVEDs) of each animal.
2.4 Western blotting analysis
Total protein samples were extracted from left ventricular tissue and 30 ug of protein separated by SDS-PAGE. Nuclear and cytoplasmic proteins were prepared from the cells using nuclear and cytoplasmic extraction reagent kits (Cayman Chemical, Ann Harbor, MI, United States) according to the manufacturer’s instructions. The proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Millipore), washed third in Tris-buffered saline (TBS) with Tween diluted 1:1000 (TBST; Promega), for 10 min each time, then blocked with TBST containing 5% BSA for 1 h. The membranes were incubated with the following primary antibodies in TBST with Tween plus 5% BSA overnight at 4°C: anti-phosphorylated IKKε (1:1000, 3,416, CST), anti-Connexin43 (1:1000, ab11370, Abcam), anti-Bax (1:1000, 2772S, CST), anti-Caspase1 (1:1000, 2225T, CST), anti-Cleaved-Caspase3 (1:1000, 9661S, CST), anti-Caspase6 (1:1000, 9762T, CST), anti-Caspase9 (1:1000, 9508T, CST), anti-GSDMD (1:1000, ab219800, Abcam), anti-phosphorylated p65 (1:1000, cs3033, CST), anti-p65 (1:200; sc8008, Santa Cruz), anti-phosphorylated IκBα (1:1000, 2859s, CST), anti-IκBα (1:200; sc371, Santa Cruz), anti-phosphorylated p100/p52 (1:500, ab31474, Abcam), anti-p100/p52 (1:500, ab109440, Abcam), anti-phosphorylated RelB (1:500, ab47366, Abcam), anti-RelB (1:1000, ab180127, Abcam), HRP-conjugated Monoclonal Mouse Anti-glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) (1:5000, KC-5G5, Kang Chen) and anti-Histone H3 (1:1000, ab1791, Abcam). The next day, the PVDF membranes were washed for 10 min each time with TBST three times. whereafter, the PVDF membranes were incubated with Goat Anti-Mouse IgG/HRP (1:5000, bs-0296G-HRP, Bioss) or anti-rabbit IgG, HRP-linked Antibody (1:5000, 7074P2, cell signaling technology) for 1 h at room temperature. Specific proteins were detected using an Immobilon Western chemiluminescent HRP substrate (WBKLS0500, Millipore) and captured on ChemiScope (3,300 Mini, Clinx Science Instruments). The mean gray value of each band was then semi-quantified with Chemi analysis software. All presented results are representative of at least three independent experiments.
2.5 Total RNA extraction and quantitative real-time PCR (q RT-PCR)
Total RNA was extracted from the left ventricle tissues using the TRIzol Reagent (Invitrogen, 15596-026). equal amounts of RNA (1 μg) were transformed into cDNA with the PrimScriptTM RT reagent Kit with gDNA Eraser (Takara, RR047A). Quantitative TaqMan PCR was conducted with SYBR Premix Ex TaqTM II (Takara, RR082A) by the Applied Biosystems 7,500 Real-Time PCR System. All data were normalized to GAPDH content and are expressed as fold increase relative to the expression level in a sham-operated control littermate mouse.
2.6 Histological and immunohistochemical staining and imaging
Mouse hearts were immediately immersed in 4% neutral phosphate-buffered paraformaldehyde (12 h), embedded in paraffin, and sectioned (4 μm). The sections of the specimens were evaluated under a light microscope after were stained with hematoxylin-eosin (HE), Masson’s trichrome, or wheat germ agglutinin (WGA) and were then observed for morphological changes and fibrosis in the myocardium.
For immunohistochemical staining, mouse heart tissues were gathered for morphological analysis with mice hearts prepared as 4-µm thick serial paraffin-embedded sections and rehydrated in graded alcohol. We treat the sections with 3% hydrogen peroxide for 15 min to block endogenous peroxidase activity and incubate them in imported goat serum (ZLI-9022, Beijing Zhongshan Biotechnology) to prevent nonspecific binding of the antibodies. The sections were then incubated separately for 14 h with antibodies against IKKε (1:100, 3,416, CST), connexin43 (1:100, ab11370, Abcam), IL-1β (1:50, sc7884, Santa Cruz), and IL-18 (1:100, ab71495, Abcam), and then with goat anti-rabbit or anti-mouse IgG (KIT-5004 and KIT-5001, MXB) for 1 h at 37°C in a humidified box. Each antibody’s signal was developed using the substrate diaminobenzidine (DAB, ZLI-9018, Beijing Zhongshan Biotechnology). The sections were counterstained with hematoxylin, and photomicrographs were taken with a Zeiss SCOPE. A1 camera. The immunohistochemistry results were analyzed based on Fromowitz semiquantitative analysis scores used to score the brown chromogen intensity (range: 0–7). The average score of each slice determined by two independent observers was used for later comparison.
2.7 TUNEL staining
Frozen mice ventricular tissues were cut into 4 μm‐thick sections and fixed in 4% paraformaldehyde at room temperature for 16 min. We performed the TUNEL assay according to the in situ apoptosis detection kit (Roche Diagnostics (Shanghai) Co., Ltd.). The sections are intubated with protease K for 20 min, followed by equilibration buffer for 30 min and TUNEL reaction mixture for 1 h in a dark humidified box at room temperature. The last, the sections were stained with Hoechst to label nuclei and examined using a fluorescence microscope. Only nuclei that were located in cardiac myocytes were considered.
2.8 Statistical analysis
The data of experiments are presented as the mean ± SE. Differences among groups were evaluated by an analysis of variance followed by a post hoc Tukey’s test. The two groups’ differences were assessed using Student’s t-test. All statistical analysis used SPSS software (version 17.0; SPSS, Inc.). A value of p < 0.05 was considered to indicate a statistically significant difference.
3 RESULT
3.1 I-κB kinase-ε was evaluated in mice with dilated cardiomyopathy
The western blotting analysis showed that the expression of IKKε was increased in the WT + Dox group compared with the WT + Saline group (Figure 1A, C). The images of IHC showed the same increasing expression of IKKε (Figure 1B, D). So, we found an apparent increasing expression of IKKε in the heart tissues of WT mice injected with Dox for 30 days compared to those of mice injected with saline.
[image: Figure 1]FIGURE 1 | The expression of IKKε was increased in WT mice’ hearts after injection of Dox (A). Representative western blot showing expression of IKKε in heart tissue after Dox injection (n = 4 mice per experimental group). (B). Representative images of IHC staining of IKKε in WT mice’ hearts after Dox injection (n = 4 mice per experimental group, 400x; vs. Saline, *p < 0.05). (C). Quantitative analyses of western blot of IKKε (vs. Saline, *p < 0.05). (D). Quantitative analyses of IHC of IKKε (vs. Saline, *p < 0.05).
3.2 I-κB kinase-ε knockout attenuated dox-induced cardiac dilatation and left ventricular dysfunction in mice
To examine the function of the IKKε in the development of DCM in vivo, we established a mouse model of DCM by intraperitoneally injecting Dox into WT and IKKε-KO mice. After Dox injection, WT mice’s hearts showed significant enlargement compared to Dox-induced IKKε-KO mice hearts (Figure 2A). The ratio of heart weight to body weight (HW/BW) among the four groups was evaluated, and the ratio in the WT + Dox group mice was higher than in the IKKε-KO + Dox group mice. (Figure 2B, Table 1). Left ventricular ejection fraction (LVEF) and fractional shortening (FS) were significantly lower in the WT + Dox group than in the IKKε-KO + Dox group mice. Moreover, left ventricular end-diastolic diameter (LVEDd) and left ventricular end-systolic diameter (LVEDs) were significantly increased in the WT + DOX mice compared to WT + Saline mice and IKKε+Saline mice, and this change was attenuated in IKKε-KO + Dox group mice (Figure 2C, D). The results of PCR showed that heart exhaustion markers, including atriopeptin (ANP), brain natriuretic peptide (BNP), β -cardiac myosin heavy chain (β-MHC), and skeletal muscle α-actin gene (Acta-1) significantly decreased in the IKKε-KO + Dox group mice when compared with the WT + Dox mice (Figure 2E). HE and WGA staining showed cardiomyocyte hypertrophy, myocardial structure destruction, and inflammatory cell infiltration in the WT + Dox group mice, but these were alleviated in the hearts of the IKKε-KO + Dox group mice (Figure 2F). Furthermore, Masson’s trichrome staining also showed that the collagen-stained area was remarkably larger in the WT + Dox group mice than in the IKKε-KO + Dox group mice (Figure 2F).
[image: Figure 2]FIGURE 2 | Deficiency of IKKε attenuated the development of Dox-induced dilated cardiomyopathy. (A). Representative images of the hearts of WT and IKKε-KO mice. (B). The ratio of heart weight/body weight between WT and IKKε-KO mice under Dox stimulation (n = 6 mice each group in HW/BW; vs. Saline or WT Dox, *p < 0.05) (C,D). Representative images and parameters of echocardiography (LVIDd, LVIDs, FS, and EF) of WT and IKKε-KO mice injected with saline or Dox (n = 6 mice per experimental group; vs. Saline or WT Dox, *p < 0.05). (E). The mRNA analysis of markers of heart failure (ANP, BNP, Acta-1, and β-MHC) in the heart of WT or IKKε-KO mice after Dox injection (n = 4 mice per experimental group; vs. Saline or WT Dox, *p < 0.05). (F). Representative images of WGA staining, HE staining and Masson staining of WT and IKKε-KO mice (n = 4 mice per experimental group, 400x for HE and WGA staining; 200x for Masson). The small arrows in HE refer to the changed nuclei after doxorubicin stimulation. Analysis of collagen content of WT and IKKε-KO mice (n = 4 mice per experimental group, vs. Saline or WT Dox, *p < 0.05).
TABLE 1 | heart weight and body weight of mice after Dox-induced.
[image: Table 1]3.3 I-κB kinase-ε knockout relieved fibrosis, inflammation, and destruction of gap junction structure after dox induction
Subsequently, we extensively examined the effect of IKKε on inflammation, and collagen deposition. The expression of proinflammatory factors (including TNF-α, IL-6, and IL-1β) and fibrosis markers (including CTGF, Collagen 1a1, and Collagen 3a1) showed the same trend in the two groups (Figure 3A). Furthermore, both western blots and IHC staining revealed that Cx43 expression significantly decreased in WT + Dox group mice compared with IKKε-KO + Dox group mice (Figures 3B–E). Thence, IKKε knockout might alleviate inflammation, collagen deposition, and destruction of gap junction structure after Dox induction.
[image: Figure 3]FIGURE 3 | IKKε knockout relieved heart failure, fibrosis, inflammation, and destruction of gap junction structure after Dox induction. (A). The mRNA analysis of markers of Inflammatory cytokines (IL-6, IL-1β, TNF-α, and IL-10), and collagen-related factors (CTGF, TGF-β1, Collagen 1a1, and Collagen 3a1) in the heart of WT or IKKε-KO mice after Dox injection (n = 4 mice per experimental group; vs. Saline or WT Dox, *p < 0.05). (B,D). Representative IHC images and analyses of Cx43 in the heart tissues of WT and IKKε-KO mice after Dox stimulation (n = 4 mice per experimental group, 400x, vs. Saline or WT Dox, #p/*p < 0.05). (C,E) Representative western blot images and analysis of Cx43 in heart tissue after Dox injection (n = 4 mice per experimental group, #vs. Saline or WT Dox, p/*p < 0.05).
3.4 I-κB kinase-ε knockout ameliorated pyroptosis and apoptosis in myocardial tissue after dox stimulation
The TUNEL result and the expression of apoptosis-marked proteins suggested that apoptosis was more severe in WT + Dox mice than in IKKε-KO + Dox mice (Figures 4A–C). Moreover, the expression levels of IL-1β and IL-18 were significantly higher in the WT + Dox group than in the IKKε-KO + Dox group, which were determined by IHC staining (Figure 4D, E). Additionally, western blot analysis showed the same tendency of caspase1 and GSDMD, which are the markers of pyroptosis, between the two groups (Figure 4F). In conclusion, the lack of IKKε might alleviate apoptosis and pyroptosis in Dox-induced DCM.
[image: Figure 4]FIGURE 4 | IKKε knockout ameliorated pyroptosis and apoptosis in myocardial tissue after Dox stimulation. (A). Representative figures and analysis of TUNEL staining of tissue from WT and IKKε-KO mice after Dox injection (n = 4 mice per experimental group, vs. Saline or WT Dox, #p/*p < 0.05). (B,C). The western blotting images and analysis of apoptosis-related proteins in the heart tissue of WT and IKKε-KO mice injected with Dox for 30 days (n = 4 mice per experimental group, vs. Saline or WT Dox, #p/*p < 0.05). (D,E). Representative Immunohistochemistry images and analysis of IL-18 and IL-1β in the heart tissues of WT and IKKε-KO mice after Dox injection (n = 4 mice per experimental group, 200x, vs. Saline or WT Dox, #p/*p < 0.05). (F). Representative western blot images and analysis of proteins associated with pyroptosis in heart tissue of WT and IKKε-KO mice injected with Dox for 30 days (n = 4 mice per experimental group, vs. Saline or WT Dox, #p/*p < 0.05).
3.5 I-κB kinase-ε knockout inhibited the NF-κB signaling pathway in dox-induced dilated cardiomyopathy
Due to the significant differences in the inflammatory reaction, we evaluated the inflammation-related NF-κB signal pathways in WT and IKKε-KO mice’s hearts after Dox stimulation. Interestingly, we found apparent differences in IκBα, p65, RelB, and p100 in the NF-κB pathways between the two groups after intraperitoneal injection of Dox. The p-IκBα, p-P65, p-RelB, and p-p100 were higher expressed in the WT + Dox group compared with the IKKε-KO + Dox group (Figure 5A, B). Moreover, the nuclear translocation of p65 was increased in the WT + Dox group when compared to the IKKε-KO + Dox group (Figure 5C, D). The western blot results suggested that IKKε deficiency might inhibit the NF-κB signaling pathway in mouse hearts after Dox injection for 30 days.
[image: Figure 5]FIGURE 5 | IKKε knockout inhibited the NF-κB signaling pathway in Dox-induced DCM. (A). Representative western blots showing total protein and the phosphorylation levels of IκBα, RelB, p65, and p100 in the NF-κB pathway in heart tissues of WT and IKKε-KO mice injected with Dox (n = 6 mice per experiments). (B). Quantitative analysis of western blotting of proteins related to the NF-κB pathway (n = 6 mice per experimental group; #p/*p < 0.05 vs. Saline or WT DOX). (C). Representative western blots showing the nuclear and cytoplasmic protein levels of p65 in the NF-κB pathway in heart tissues from WT and IKKε-KO mice injected with Dox (n = 6 independent experiments). (D). Relative quantitative analysis of nuclear translocation of p65 (n = 6 mice per experimental group; #p/*p < 0.05 vs. Saline or WT DOX).
4 DISCUSSION
In this study, we demonstrated the role of IKKε on the development of DCM by intraperitoneal injection of doxorubicin in WT or IKKε-KO mice. Our study indicated that the knockout of IKKε alleviated Dox-induced cardiac dilatation and left ventricular dysfunction in mice. Moreover, the IKKε knockout protected the heart against inflammation, fibrosis, apoptosis, pyroptosis, destruction of gap junction structure, and pathological cardiac remodeling in response to long-term Dox stimulation. Thus, we provide the first time that IKKε might play a critical role in aggravating Dox-induced DCM.
Our previous study found that mice injected with doxorubicin showed pathophysiological changes related to dilated cardiomyopathy (Liu et al., 2020). In this study, the ratio of heart weight to body weight in the WT + Dox group was higher than that in the other groups. To examine whether IKKε knockout has cardioprotective effects in Dox-induced DCM, we examined murine cardiac function by echocardiography under steady-state conditions. Our echocardiographic data showed that the WT mice exhibited worst cardiac function with a lower EF and FS after Dox injection.
Moreover, echocardiographic examination revealed that the Dox-injected WT mice’s ventricular cavity was more extensive, and the ventricular wall was thinner than those of untreated WT mice. However, this change was alleviated in IKKε-KO + Dox group mice. As shown in Figure 3A, PCR also showed that heart failure markers (ANP, BNP, β-MHC, and Acta-1) were higher in the WT + Dox group than in the WT + Saline group. However, this deterioration of cardiac function was alleviated in the IKKε-KO + Dox group mice, which indicated a better cardiac function in IKKε-KO + Dox group mice compared to WT + Dox group mice.
Additionally, the IKKε is a non-canonical IκB kinase that plays a significant role in fibrosis and inflammation (Verhelst et al., 2013; Zhou et al., 2019). Previous studies (Cao et al., 2014; He et al., 2019) have shown that IKKε deficiency inhibits the inflammatory response and fibrosis in cardiovascular disease. IKKε knockout attenuates inflammation to promote cardiac protection in mice treated with a high-fat diet. Moreover, IKKε deficiency inhibits the fibrosis of cardiac remodeling and attenuated aortic valve thickening in apolipoprotein E deficient mice after angiotensin II-induced. As shown in Figure 2E, cardiomyocyte hypertrophy and inflammatory cell infiltration were evidenced in HE and WGA staining, which was alleviated in the hearts of IKKε-KO mice with Dox-induced. Moreover, Masson’s trichrome staining showed that the collagen area was remarkably larger in the WT + Dox group compared to IKKε-KO + Dox group mice. Consistent with previous studies (Corr et al., 2009; Bulek et al., 2011), we found an increased expression of anti-inflammatory factors (IL-10) and a decreased expression of proinflammatory factors (IL6, IL-1β, and TNF-α) in IKKε-KO mice after Dox injection. Therefore, IKKε knockout inhibits the inflammation during the process of Dox-induced DCM.
Dilated cardiomyopathy is often accompanied by arrhythmia. Reducing fibrosis is a primary therapeutic strategy because heart electrophysiology can be disrupted by fibrotic tissue and triggered life-threatening arrhythmias (Piek et al., 2019). Connexin43 is a cardiac gap junction protein that plays a vital role in the proper coordination of electrical conduction and mechanical contractility. Connexin 43 (Cx43), the most abundant cardiac gap junction protein, decreased in the decompensatory stage, or dilated cardiomyopathy might be associated with the destruction of gap junction structure (Kostin et al., 2003; Chang K. T. et al., 2017; Le Dour et al., 2017). In our study, the PCR analysis of fibrosis markers (CTGF, Collagen 1a1, and Collagen 3a1) showed that the IKKε-KO alleviated fibrosis in murine hearts after Dox stimulation. Additionally, the result of connexin43 tested by western blot and IHC staining suggested that destruction of cardiac gap junction structure was significantly attenuated in IKKε-deficient mice. Taken together, our results reveal that IKKε deficiency can reduce fibrosis and disruption of gap junction structures to protect the cardiac electrophysiological functions in Dox-induced DCM.
Numerous previous researches have revealed that apoptosis is associated with dilated cardiomyopathy (Zhang et al., 2017; Mazelin et al., 2016; Yin et al., 2022). Moreover, Dox increases ROS production in cardiomyocytes, which leads to mitochondrial damage and promotes apoptosis (Wu et al., 2016; Xia et al., 2017). The TUNEL staining and western blotting results of Bax, cleaved-caspase3, caspase6, and caspase9 showed a significantly higher expression of apoptosis in WT + Dox group mice than those of the group to IKKε-KO + Dox group mice, which suggested that the IKKε knockout could inhibit apoptosis in Dox-induced DCM. Pyroptosis is known as a form of programmed cell death, accompanied by inflammation. The characteristics of pyroptosis are disruption of the plasma membrane and release of cellular contents and proinflammatory mediators, including IL‐1β and IL‐18 (Ge et al., 2018).
Moreover, pyroptosis plays a role in many cardiovascular diseases, including atherosclerosis, heart failure, and cardiomyopathy (Vande Walle and Lamkanfi, 2016). Gasdermin-D (GSDMD) is known as the critical executioner of pyroptosis (Vande Walle and Lamkanfi, 2016). In addition, a previous study suggested that NF-kB was an essential transcription factor of GSDMD (Liu et al., 2017). Promoting the phosphorylation of the NF-κB subunit p65 increases the production and release of IL‐1β(Denkers et al., 152019). We detected the pyroptosis-related proteins and found that the expression of representative factors of pyroptosis (IL-1β, IL-18, caspase1, and GSDMD) was higher in WT + Dox mice than in IKKε-KO + Dox mice. Consequently, deficiency of IKKε could attenuate apoptosis and pyroptosis in Dox-induced DCM.
IKKε is a member of the IKK complex, which regulates the NF-κB pathway. Numerous previous studies have verified that IKKε is associated with phosphorylation of p65 in the classical NF-κB pathway (Moser et al., 2011; Yi et al., 2013; Changchun et al., 2014; Yang et al., 2018). In our study, the western blotting showed that the phosphorylation of IκBα, p65, RelB, and p100 was increased in WT mice after Dox injection. However, this trend was not found in Dox-treated IKKε knockout mice; and the nuclear translocation of p65 which is a significant member of the NF-κB pathway was inhibited by IKKε knockout in Dox-induced mice. Thus, we hypothesized that IKKε has a relationship with the NF-κB pathway in Dox-induced murine DCM.
The Dox-induced DCM in mice occurs mainly through the direct lesion of cardiomyocytes, leading to inflammation, cardiomyocyte apoptosis, and pyroptosis. Although this model is similar to human DCM, it does not fully simulate many human DCM aspects. Limited by time, this study only performed the research in vivo, which revealed IKKε as an essential regulator in Dox-induced DCM development. In the future, we will clarify the exact mechanism of IKKε in Dox-induced rat cardiomyocytes in vitro.
In conclusion, IKKε-KO attenuates Dox-induced DCM in. mice and reduces the inflammatory reaction, apoptosis, pyroptosis, and destruction of gap junction structure by inhibiting the NF-κB pathway. Therefore, our study might find a novel therapeutic target for the treatment of DCM.
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Background: The short-coupled variant of torsade de pointes (scTdP) is characterized by a particular electrocardiogram (ECG) pattern that shows a short-coupling interval of the initial Tdp beat and that can degenerate into ventricular fibrillation without the presence of structural heart disease. However, its etiology, epidemiology, clinical characteristics, underlying mechanism, treatment, and prognosis remain unclear. This study aimed to systematically review case reports and series of scTdP to synthesize existing data on the demography, clinical characteristics, ECG features, management, and outcomes.

Methods: A literature search was conducted for eligible published articles using the Medline, Embase, and PubMed databases. All eligible case reports and case series were included without any language restrictions. SPSS 24 was used for statistical analysis.

Results: A total of 22 case reports and 103 case series of patients with scTdP were identified and included in the analysis. All selected cases had acceptable quality of evidence. Most young patients without sex differences had no trigger or a negative programmed simulation. The ECGs of all selected patients showed a short first-coupling interval (302 ± 62 ms) and a long QRS duration of ventricular extrasystole (VE) (135 ± 17 ms). The first coupling interval levels and QRS duration levels of VE were significantly longer and wider in patients with scTdP originating from the right ventricular outflow tract (RVOT) than in those with scTdP originating from the Purkinje fibers (380 ± 70 vs. 274 ± 28 ms, P < 0.001; 147 ± 8 vs. 131 ± 17 ms, P < 0.001), respectively. The receiver operating characteristic curve showed that the optimal cutoff values of the first coupling interval triggering TdP and QRS duration of VE were more than 319 ms and 141 ms (92% sensitivity, 95.7% specificity; 82.6% sensitivity, 77.8% specificity) for predicting the RVOT origin, respectively. The Kaplan-Meier survival curve revealed increased survival in patients with implantable cardioverter defibrillator (ICD) implantation than in patients without ICD implantation (log-rank =10.127, P = 0.001).

Conclusion: Some agreements were confirmed in selected case reports regarding the clinical features, diagnosis, and management of scTdPs. Further large-scale and long-term follow-up studies are required to clarify the existing arrhythmogenic entities.

KEYWORDS
 short-coupled variant of torsade de pointes, first-coupling interval, QRS duration of ventricular extrasystole, implantable cardioverter defibrillator, systematic review


Introduction

Idiopathic polymorphic ventricular tachycardia (PMVT)/ventricular fibrillation (VF) is the leading cause of unexplained sudden cardiac death (SCD) in the absence of structural heart disease, particularly in young adults (1). The short-coupled variant of torsades de pointes (scTdP) is a rare cause of idiopathic PMVT/VF and is defined as a new electrocardiogram (ECG) entity that exhibits TdP/VF secondary to a short-coupled premature ventricular complex (PVC) with a normal QT interval, mimicking the R-on-T phenomenon (2). TdP, which means twisting of the points, is a potentially life-threatening form of PMVT, which appears on the ECG as a characteristic beat-to-beat varying QRS morphology that is prone to spontaneous reversal. Occasionally, the clinical presentation of TdP is an electrical storm, that is, a cluster of arrhythmic episodes that sometimes degenerates into VF (3). TdP is usually not induced by programmed electrical stimulation during electrophysiological studies. In 1994, Leenhardt et al. first described a series of 14 patients with normal heart structure and a history of syncope, whose electrocardiographic monitoring showed TdP with normal QT intervals initiated by ventricular extrasystole (VE) with a short coupling interval (200–300 ms) (2). Despite the unique ECG features at the TdP onset, other ECG findings specific to Brugada, long QT, or short QT syndrome are lacking. Therefore, it is often difficult to diagnose scTdP after the disappearance of PVCs. ScTdP should be considered as a diagnosis when the etiology of aborted SCD is unknown. Thus, the clinical features of this disease differ from those of long or short QT syndrome in many respects, and the underlying mechanisms have not yet been fully elucidated. In recent years, few reports have been published on this disease. It is important to identify this characteristic electrocardiographic pattern to prevent SCD. In the long term, the spontaneous behavior of arrhythmia is unpredictable. Placement of an automatic implantable cardioverter defibrillator (ICD) is the only confirmed therapy, since no medication can entirely prevent SCD in this disease. Verapamil is the only effective drug that can partially suppress arrhythmias, but it does not prevent SCD. If ventricular arrhythmia recurs despite drug therapy, catheter ablation to initiate premature ventricular beats may be warranted. The feasibility of ablation has been demonstrated in a small series of patients in expert centers, and long-term follow-up data on catheter ablation are lacking. Successful ablation does not invalidate the need for an ICD.

As this is an uncommon condition, there are only short descriptive series and isolated case reports. Our aim was to systematically review case reports and series of scTdP to synthesize existing data on the demography, clinical characteristics, ECG features, management, and outcomes about the disease.



Methods

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.


Search strategy

A literature search was performed for eligible articles published between January 1994 and December 2021 using the MEDLINE/PubMed and Embase databases. Subsequently, we performed a search using the term “short-coupled variant of torsade de pointes.” The search strategy yielded a total of 36 articles. Eligibility of the case reports was determined by assessing the titles and abstracts. In order to find additional qualifying reports, the reference lists of the included studies and related literature were manually checked. The detailed PRISMA flow diagram is shown in Figure 1.


[image: Figure 1]
FIGURE 1. Flow diagram.




Eligibility criteria

All eligible case reports and case series from around the world were included, without any language restrictions. For this review, the inclusion criteria were (1) age and sex of the scTdp patients, (2) clinical and ECG features, (3) results of electrophysiological studies, (4) specific treatment strategies, and (5) patient outcomes. Articles, such as review articles, hypothesis articles, and commentaries, were discarded.



Study selection and quality assessment

The titles and abstracts of studies from the aforementioned databases were evaluated by three authors (GQW, CXW, and XFZ). The authors assessed the studies based on predetermined eligibility criteria. The critical appraisal checklist for case reports developed by Moola et al. (4) was used to perform a quality check of the systematic review of case reports. If five of the eight evaluation criteria were met, the quality was judged to be sufficient. All researchers agreed on the included studies.



Data extraction

From these selected studies, three authors (GQW, HXC, and CXW) manually retrieved the data. The following details were extracted from each report: author, country of origin, study design, sample size, mean age, sex, past medical history, family history of sudden death, presenting symptoms, ECG findings, electrophysiological study, treatment, recurrence, follow-up, and outcomes.



Statistical analysis

Continuous variables are presented as mean ± standard deviation, and categorical variables are expressed as frequency and percentage. A chi-square test and Fisher's exact probability test were used to compare qualitative parameters, and Student's t-test and the Mann-Whitney U-test were used to compare quantitative parameters. A receiver operating characteristic (ROC) curve was used to evaluate the sensitivity and specificity of the scTdP test. An area under the ROC curve (AUC) of 1.0 indicates perfect discrimination, whereas an area of 0.5 indicates that the test discriminates no better than chance. Kaplan-Meier analysis was performed to plot survival curves. The log-rank test was used to compare event-free survival between groups. In all statistical tests, P < 0.05 was regarded as statistically significant. All statistical analyses were performed using SPSS software version 24.0.




Results


Study selection

In this review, 103 patients diagnosed with scTdP were included from 22 published studies (2, 3, 5–24). The median age of the included patients was 38 ± 12 years, and 52% of them were female. Most of the reports were from Asia (54.5%), followed by Europe (41%) and America (4.5%). Table 1 presents the patients demographic and clinical characteristic features of each report.


Table 1. Characteristics of the case reports.
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Evaluating the risks of biases

Table 2 shows the risk of bias evaluated in this study by using the critical appraisal checklist for case reports. In the evaluated case reports, the demographic characteristics of selected patients, medical history, current clinical status, diagnostic test or evaluation method, and results were all appropriately reported.


Table 2. Critical appraisal checklist for case reports included in this review.
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Clinical characteristics

Syncope was the most prevalent presenting symptom in 76% of patients with scTdP, followed by sudden cardiac arrest (6%). A majority of patients without sex differences had no high-risk factors for coronary artery disease (97%), no presence of structural heart disease (99%), no family history of cardiac disease or sudden death (85%), and no emotional stress (94%) (Table 1). The exercise stress test and provocative testing were negative in 78 and 91% of the enrolled patients, respectively. In addition, the programmed simulation was also negative in 78% of the selected patients.



ECG findings

Significant clues suggesting the PVC triggering TdP were often found upon analysis of telemetry and ambulatory monitor tracings. Then, a meticulous inspection of the 12-lead ECG indicating different characteristic morphologies of PVCs should be done to distinguish the PVC origin between the right ventricular outflow tract (RVOT) and Purkinje fibers. The 12-lead ECGs of all selected patients showed sinus rhythm, normal QRS-ST-T morphology, and QT intervals. Among them, the inferior J-wave in only two cases may not be a critical finding but rather a sign of clinical or genetic heterogeneity (17). The first coupling interval was 302 ± 62 ms (<400 ms) and the QRS duration of VE was 135 ± 17 ms (<153 ms). Around 24% of selected patients showed a left bundle branch block (LBBB) pattern with a right axis deviation, suggesting that the origin of the PVCs was RVOT localizing along the RV papillary muscle, carrying within its muscular bundle a major fascicle of the right bundle branch. Most of the selected patients (67%) showed a right bundle branch block (RBBB) or LBBB configuration with a left axis deviation, suggesting that the origin of the PVCs was the Purkinje fibers (Figure 2). However, there were only a few cases in which the PVC origin estimated by the ECG pattern differed from the site of successful PVC ablation (10, 21).


[image: Figure 2]
FIGURE 2. Distribution of the different origins of short-coupled variant of torsade de pointes (scTdP).




PVC origins

The PVC origins could not be identified because of the fragmentary inspection of recorded ECGs in nine patients. In total, the data of 94 patients with different origins of Purkinje fibers and RVOT were analyzed (Table 3). Significant differences were found in the values of the selected parameters, including the first coupling interval triggering Tdp, QRS duration of VE, VF, radiofrequency catheter ablation (RFCA) monotherapy or combination therapy, and ICD monotherapy/combination therapy (P < 0.05). No significant differences were observed between the two groups in terms of age, male sex, no structural heart disease, family history of sudden death, emotion, electrical storm, medication treatment alone, and death (P > 0.05). The scTdp originating from the Purkinje fibers is more likely to be generated in VF. RFCA and ICD monotherapy/combination therapy are more effective for scTdp originating from the RVOT and Purkinje fibers, respectively.


Table 3. Clinical characteristics of the different ventricular extrasystole's origins.
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ROCs were performed, and the optimal threshold was obtained when the Youden index was maximal. The optimal cut-off values of the first coupling interval triggering Tdp and QRS duration of VE for predicting RVOT origin were 319 ms (sensitivity 92%, specificity 95.7%) and 141 ms (sensitivity 82.6%, specificity 77.8%), respectively. ROC curves were established to assess the potential value of the first coupling interval triggering TdP and QRS duration of VE as electrocardiographic markers for predicting RVOT origin (Figure 3). There were remarkable differences between the first coupling interval triggering TdP and the QRS duration of VE, with an AUC of 0.928 [P < 0.001, 95% confidence interval (CI): 0.838–1.000], and 0.824 (P < 0.001, 95% CI: 0.731–0.917), respectively. The potential electrocardiographic markers were distinguished between different scTdp origin.
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FIGURE 3. ROC analyses of the optimal cutoff values of the short-coupled interval triggering torsade de pointes (TdP) (A) and QRS duration of ventricular extrasystole (VE) (B) for predicting the right ventricular outflow tract (RVOT) origin.




Management and outcomes

During the follow-up period, 58% of the selected patients underwent ICD implantation, 22% had arrhythmia recurrence, and 92% were alive. In this research, the median survival time was 72 ± 38 months in patients without ICD implantation, and the median survival time was 24 ± 5.5 months in patients with only medication. In the Kaplan–Meier curve (Figure 4), patients on medication showed higher mortality rates than patients with RFCA and ICD implantation (log-rank = 7.682, P = 0.006; log-rank = 19.7, P < 0.001). Moreover, patients without ICD implantation had higher mortality rates than those with ICD implantation (log-rank = 10.127, P = 0.001). It can be seen that both RFCA and ICD implantation may prevent the occurrence of sudden death, but the efficacy of ICD implantation is better (Figures 4, 5).


[image: Figure 4]
FIGURE 4. Comparison of Kaplan-Meier survival curves in short-coupled variant of torsade de pointes (scTdP) patients with different treatments. (A) implantable cardioverter defibrillator (ICD) vs. medication (P < 0.001); (B) radiofrequency catheter ablation (RFCA) vs. medication (P = 0.006); (C) ICD vs. non-ICD (P = 0.001).
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FIGURE 5. Application distribution (A) and constitution (B) of different treatment strategies, including radiofrequency catheter ablation (RFCA), implantable cardioverter defibrillator (ICD), and drugs, in patients with short-coupled variant of torsade de pointes (scTdP).





Discussion

This systematic review analyzed the case reports of scTdp. Of the 36 studies searched in the databases, only 22 were selected and analyzed. The results of the quality assessment showed that all of the selected studies were sufficient. To the best of our knowledge, only a limited number of similar cases with sufficient information to recognize the major features of scTdP have been published.

Young patients (<60 years), without differences in sex, often had no high-risk factors for coronary artery disease, no structural heart disease, no family history of sudden death, and no emotional stress. A meticulous inspection of the 12-lead ECG should be performed to exclude any pathological ECG findings, including early repolarization J-wave syndrome phenotypes and QT syndromes (25). The ECG pattern was reportedly uniform, with a normal QT interval. The most valuable finding in the ECG was that a short coupling interval triggered TdP. However, there is no consensus in the literature regarding the normal value of the PVC coupling interval (6), which refers to the interval from the onset of normal QRS complex to the beginning of PVC on an ECG signal. Such ECG data should be interpreted with caution before claiming that TdP has a limited specificity.

The origin of the scTdP remains unknown. PVCs often precede VF but do not induce spontaneous VF, and malignant PVCs that induce VF usually originate in the same way (26). This indicates that the VF trigger mechanism has unique characteristics. The two primary sources of malignant PVCs triggering Tdp or VF are: (1) the Purkinje system and its distal arborized fibers and (2) the myocardium of the RVOT and left ventricular outflow tracts (LVOT) (27). In general, malignant PVCs originating from the Purkinje system are differentiated from their myocardial analogs by their coupling intervals. In this systematic review, we found that short PVC coupling intervals (<400 ms) indicate high-risk PVCs that trigger fatal arrhythmias. Among them, the malignant PVC coupling interval values of RVOT sources are usually ≥319 ms, and the short PVC coupling interval values of Purkinje sources are <319 ms. The cut-off value of a typically short QT interval is ≤ 320 ms, which is the main electrocardiographic marker of short QT syndrome (28, 29). The similar thresholds of the two different ECG entities can further confirm that Purkinje fibers as arrhythmogenic substrates play an important role in the occurrence of malignant ventricular arrhythmias. Moreover, the malignant PVC coupling intervals of left ventricular Purkinje sources are even shorter, usually ≤ 300 ms. It was demonstrated that the smaller the coupling interval of these extrasystoles, the greater the risk of spontaneous PMVT, and, therefore, of sudden death due to VF (6). Thus, the available data suggest that a shorter coupling interval of initiating PVCs correlates with the more malignant form of RVOT ventricular tachycardia (VT). However, a cutoff value that would reliably differentiate malignant RVOT VT from benign RVOT VT remains to be defined (30). Unlike the relatively short PVC coupling intervals associated with malignant arrhythmogenic PVCs, the absence of risk is not necessarily guaranteed by relatively long PVC coupling intervals. In general, malignant RVOT/LVOT PVCs have longer initiating coupling intervals than malignant Purkinje PVCs. Patients with malignant Purkinje PVCs more frequently present with VF than those with PVCs that originate from the RVOT. PVC morphology can also be pleomorphic.

The particular morphology of malignant PVCs [LBBB, left axis deviation, and late precordial transition (>V4)] suggests a Purkinje origin, one originating from the moderator band of the right ventricle. Notably, the coupling interval of the PVC that triggered VF was usually (however, not always) <300 ms. Malignant PVCs originating from the left ventricular Purkinje system localized along the ventricular septum and that morphologically resembled fascicular beats, presented with a relatively narrow QRS complex, an RBBB configuration, and a superior, inferior, or intermediate axis. In addition, the myocardium can give rise to PVCs that can produce a malignant phenotype. These sites correspond precisely to the regions of the myocardium that generate benign PVCs, for example, the RVOT and LVOT, and mirror the frequency of origin of benign PVCs. Malignant RVOT PVCs presenting with a relatively wide QRS complex, an LBBB configuration, and a right axis deviation, are more common than those that originate from LVOT sites. Our study also revealed that the LVOT PVC coupling interval triggering life-threatening arrhythmia is scarce (Figure 2).

A PVC-QRS duration of ≥153 ms and non-outflow tract origin (possibly related to a greater degree of dyssynchrony) were associated with the greatest risk of developing left ventricular dysfunction. In contrast, a PVC-QRS duration <153 ms and right ventricular outflow tract origin might be almost irrelevant to progressive left ventricular dysfunction, which is reversible and functional. Patients can benefit from ablation especially in ROVT PVC-induced cardiomyopathy, which is related to the amount and duration of PVC. In addition, our research confirmed that PVCs originating from the RVOT could be identified by the cut-off value of PVC-QRS duration (>140 ms) for predicting the triggering of PMVT or Tdp. Nevertheless, PVCs originating from the Purkinje fibers (<140 ms) could be distinguished from those originating from the RVOT. Almahameed et al. revealed that a PVC-QRS duration <140 ms was a significant feature of malignant PVCs in patients with unexplained syncope and apparently normal hearts (25). Therefore, the anatomical origin of the PVC and PVC-QRS duration is essential to predict left ventricular dysfunction and impending malignant arrhythmia. More importantly, current imaging modalities do not consistently and reliably differentiate between patients with PVC-induced cardiomyopathy and those with frequent PVCs and pre-existing non-ischemic cardiomyopathy.

TdP/VF in the absence of identifiable structural heart disease is usually the result of short coupled PVCs arising from the outflow tracts or the Purkinje system within either the right or left ventricles or, less commonly, from the ventricular myocardium. The typical PVCs initiating TdP/VF usually have a consistent QRS morphology and a short coupling interval and can be targeted for ablation to control the arrhythmia. For PVCs from the Purkinje system, the ablation target is a high-frequency Purkinje potential preceding the PVCs. When episodes are induced by short-coupled PVCs arising from the outflow tracts, the ablation target is the site of earliest ventricular activation (31). However, the detailed mechanism of scTdP remains unclear. Several reports have described triggered activity, abnormal automaticity, or reentry, as possible underlying mechanisms of idiopathic PMVT/VF originating from the Purkinje system (23). One study suggested that the scTdP mechanism might be reentry into the papillary muscles and the Purkinje network (15). Although the mechanism of benign idiopathic monomorphic VT arising from RVOT is considered to be triggered activity, that of idiopathic PMVT or TdP originating from RVOT is unknown, due to limited investigation of the electrophysiological characteristics during the ablation procedure. It is speculated that functional block and/or delayed conduction by rapid firing (caused by triggered activity or microreentry arising from a single focus) leads to chaotic ventricular conduction, thus causing PMVT and/or VF (8). However, it is also speculated that rapid firing from close multiple foci one after another produces polymorphic morphological changes in the QRS configuration, since other PVCs with slightly different QRS morphologies often appear after eliminating the initial target PVCs by RFCA (10, 30). In addition, scTdP is observed in the context of a particular autonomic nervous system profile, with low heart rate variability and a high sympathetic to parasympathetic ratio (9, 14).

A clinical hypothesis is that scTdP arises from the same genetic mutation with varying degrees of gene penetration, and consequently, different clinical expressions. Therefore, individuals with a more severe form of the disease could potentially develop malignant arrhythmias without necessarily having a coupling interval <300 ms (6). VE patients with short coupling may carry an uncommon syndrome, probably of genetic etiology, which can result in TdP. Most idiopathic PMVT/VF cases are sporadic; however, a subset of patients have a family history of SCD, which is suggestive of a genetic origin. Genetic screening of known genes responsible for arrhythmias has led to the identification of only a few ryanodine receptor 2 variants in a small percentage of cases (17). This suggests that these patients are genetically heterogeneous and that idiopathic PMVT/VF is possibly oligogenic in the origin of the Purkinje fibers, which could explain the low penetrance in families. Multiple genetic variants may be responsible, as is the case in other channelopathies (7). In addition, the scTdP may also be caused by many kind of inheretory channelopathies without structural heart abnormalities. Consequently, the further evaluation for genetic arrhythmia syndromes is recommended.

The diagnosis of scTdP is clinically and therapeutically important. It is critical to enhance the fundamental understanding of the relative importance of the PVC site of origin and PVC coupling interval in the triggering of fatal arrhythmias, as well as the dynamic interplay between the PVC and the underlying myocardial substrate. Several drugs, such as verapamil and β-blockers, and catheter ablation can reduce or suppress arrhythmic episodes in the short-term. However, this beneficial effect of medication does not prevent sudden death due to spontaneous and unpredictable arrhythmias (12). Decreasing the incidence of VF with localized ablation may reduce the requirement of defibrillation and ICD replacement, and improve the patient's quality of life (10). However, RFCA may be ineffective, because the same or similar PVCs may recur, or an ill-defined underlying electrical substrate or unidentified channelopathy may coexist. For example, idiopathic RVOT VT, a significant sign of arrhythmogenic right ventricular cardiomyopathy (ARVC), developed in one patient 10 years after RFCA. This suggests that RFCA seems to be effective in curing the malignant form of idiopathic VT arising from RVOT; however, a backup for ICD implantation is required in patients with the malignant form of idiopathic RVOT VT, especially in those with ARVC. In addition, when the PVCs can be identified, ablation is highly successful, but late recurrences are observed in ~10% of patients such that implantation of an ICD is prudent even if ablation is acutely successful (31). Moreover, the efficacy of catheter ablation has not been verified due to the lack of long-term follow-up data in the prevention of sudden death (30). Therefore, we strongly recommend the use of ICD therapy. However, limited data suggests that the subcutaneous ICD may not be a good therapy for these patients due to the higher risk of T-wave oversensing seenin this population (31). Due to the limited data in the literature on asymptomatic individuals, we chose to institute a clinical follow-up and prophylactic and empirical prescription of verapamil (6).



Limitations

First, the electrocardiographic details of this rare heart rhythm disorder are undefined, and the underlying mechanism is unknown in sick individuals. Moreover, these reports were small-scale studies based on early restricted understanding, rather than large-scale clinical trials; hence, these data may not be decisive and relevant for the entire population. Second, there was a selection bias, as PVCs originating from the LVOT were not included. Third, the limitations of our results are due to incomplete information on some case descriptions. Further long-term follow-up studies are necessary to verify whether RFCA can prevent SCD.



Conclusions

This systematic review was performed to synthesize and analyze case reports of scTdP. The main clinical features of scTdp include a normal cardiac structure and unexplained syncope in young patients. Short PVC coupling (<400 ms, especially ≤ 320 ms) and long PVC-QRS durations (<140 ms) are more likely to predict impending scTdp. Moreover, according to the cut-off values, we could distinguish between different origins of PVC triggering TdP and take effective treatments. Thus far, ICD implantation has been the only effective way to prevent SCD in these patients. Further large-scale and long-term follow-up studies, especially addressing the definitive diagnosis, risk stratification, and management of scTdP, are warranted.
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Objective: New-onset atrial fibrillation (NOAF) is a common complication and one of the primary causes of increased mortality in critically ill adults. Since early assessment of the risk of developing NOAF is difficult, it is critical to establish predictive tools to identify the risk of NOAF.

Methods: We retrospectively enrolled 1,568 septic patients treated at Wuhan Union Hospital (Wuhan, China) as a training cohort. For external validation of the model, 924 patients with sepsis were recruited as a validation cohort at the First Affiliated Hospital of Xinjiang Medical University (Urumqi, China). Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analyses were used to screen predictors. The area under the ROC curve (AUC), calibration curve, and decision curve were used to assess the value of the predictive model in NOAF.

Results: A total of 2,492 patients with sepsis (1,592 (63.88%) male; mean [SD] age, 59.47 [16.42] years) were enrolled in this study. Age (OR: 1.022, 1.009–1.035), international normalized ratio (OR: 1.837, 1.270–2.656), fibrinogen (OR: 1.535, 1.232–1.914), C-reaction protein (OR: 1.011, 1.008–1.014), sequential organ failure assessment score (OR: 1.306, 1.247–1.368), congestive heart failure (OR: 1.714, 1.126–2.608), and dopamine use (OR: 1.876, 1.227–2.874) were used as risk variables to develop the nomogram model. The AUCs of the nomogram model were 0.861 (95% CI, 0.830–0.892) and 0.845 (95% CI, 0.804–0.886) in the internal and external validation, respectively. The clinical prediction model showed excellent calibration and higher net clinical benefit. Moreover, the predictive performance of the model correlated with the severity of sepsis, with higher predictive performance for patients in septic shock than for other patients.

Conclusion: The nomogram model can be used as a reliable and simple predictive tool for the early identification of NOAF in patients with sepsis, which will provide practical information for individualized treatment decisions.

KEYWORDS
new-onset atrial fibrillation, nomogram, predictive model, sepsis, SOFA score


Introduction

Atrial fibrillation (AF) is one of the common types of arrhythmia with a high prevalence, and it is involved in the development of heart failure, stroke, myocardial infarction, and death (1–3). In the intensive care unit (ICU), approximately 10–15% of patients in critical illness may develop new-onset atrial fibrillation (NOAF) (4, 5). NOAF signals the criticality of the disease and a possible factor for adverse outcomes (4, 6). Furthermore, NOAF increases the cost of treatment (cost ratio: 1.09, 1.02–1.20), length of stay in the ICU (median IQR: 6.7, 4.8–12.1), and the mortality rate (OR: 1.28, 1.09–1.36) of patients (7, 8). Although the prognosis for patients with NOAF is poor, there is no early and effective tool to predict NOAF.

Unlike AF in non-critical patients, the pathogenesis of NOAF in sepsis may be more complex. Inflammatory factors increase CD31 expression in cardiomyocytes (9) and inhibit K+ channel currents, enhance Na+/Ca2+ exchange, prolong action potential duration, and increase the risk of arrhythmogenesis (10). At the same time, increased body temperature due to infection affects the effect of sodium channel blockers on Na+ currents, decreases the efficacy of some antiarrhythmic drugs, and increases patient mortality (11). Previous studies have suggested various risk factors for NOAF, such as age, vasopressor selection, inflammatory indicators, etc (6, 12, 13). In addition, stress on the myocardium is an important factor, such as takotsubo syndrome. Increased ventricular load causes stretching of the cell membrane and changes in ion channels and electrical activity in cardiac myocytes, causing mechanical-electrical feedback and inducing arrhythmias (14, 15). However, a set of practical and convenient prediction models of NOAF have not been developed after various risk factors have been put forward. The application value of dispersed risk factors in clinical work is limited.

We believe that early identification of people at high risk for NOAF in sepsis is the most appropriate investment to save lives and alleviate the strain on healthcare resources. Firstly, we mainly conducted a retrospective analysis of previous case data to determine the risk factors of NOAF in patients with sepsis. Secondly, we established a predictive model of NOAF based on risk factors. Furthermore, we evaluate this predictive model’s validity and application value to inform decisions for individualized treatment.



Materials and methods


Study design and setting

This project retrospectively reviewed 1,827 patients diagnosed with sepsis at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology between January 2015 and December 2019. Based on the inclusion and exclusion criteria, 1,568 adults with sepsis were ultimately enrolled in the training cohort (994 (63.39%) male; mean [SD] age, 59.26 [6.23] years). From January 2015 to December 2019, an independent validation cohort of 924 patients (598 (64.72%) male; mean [SD] age, 59.84 [16.72] years) was screened from 1,088 patients using the same criteria at The First Affiliated Hospital of Xinjiang Medical University. The flow diagram for developing and validating the prediction model was illustrated in Figure 1. The current project followed the principle of the Declaration of Helsinki. The work was approved by the Ethics Committee of the Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, and written informed consent was not required (No.2021-0956).
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FIGURE 1
The flow diagram of developing and validating the prediction model.




Participants and data collection

The diagnostic criteria of sepsis are based on the 2016 edition of Sepsis-3. The diagnostic criteria are as follows: (i) patients with confirmed or suspected infection; (ii) SOFA score ≥ 2 (16). The determination of NOAF was based on the electrocardiogram report in the case data and the hourly rhythm record in the nursing record. NOAF was defined as (i) no history of AF; (ii) AF lasting > 1 h; or (iii) paroxysmal AF or atrial flutter intervened with pharmacological therapy or electrical resuscitation (6). Patients with the following conditions were excluded: incomplete clinical data, age < 18, death within 24 h, history of AF, congenital coagulation disorders, congenital heart diseases, valvular heart diseases, post-cardiac surgery, implanted cardiac devices, and pregnancy.

The following clinical data were collected within 24 h of patient admission: gender, age, body mass index (BMI), pre-admission comorbidities, coagulation, liver and renal function, B-type natriuretic peptide (BNP), procalcitonin, international normalized ratio (INR), cardiac troponin I, C-reaction protein (CRP), sequential organ failure assessment (SOFA) score, site of infection, and pathogens, etc. If a variable reported more than one value in the first 24 h, the worst was selected for analysis.



Outcomes

The primary observation was the incidence of NOAF in patients with sepsis. Secondary observations were the length of stay in the hospital, in-hospital mortality, length of ICU stay, and readmission to the ICU during hospitalization.



Statistical analysis

The baseline information of the study population was analyzed by descriptive statistics. The Kolmogorov–Smirnov test accomplished the normality distribution of continuous variables. Normally distributed continuous variables were expressed as mean and standard deviation and vice versa as median and interquartile range. For categorical variables, frequencies and percentages are the best way to represent them. The least absolute shrinkage and selection operator (LASSO) is a powerful method for regression with high-dimensional predictors. Our study used the LASSO binary logistic regression model for risk factor selection, and factors with non-zero coefficients were selected. Multivariate logistic regression analysis assessed the association between risk factors and NOAF and created a nomogram based on selected variables.

The accuracy of the nomogram model can be performed by internal and external validation. The area under the ROC curve (AUC) is used to assess the model’s discrimination. Calibration plots are more meaningful for evaluating the degree of model fit, which assesses how close the actual results of each nomogram are to the predicted results (17). Decision curve analysis (DCA) shows the standardized net benefit relative to the risk threshold probability and is used to assess the clinical utility of the model (18). The clinical impact curves show the number of high-risk and true-positive patients at different threshold probabilities. In addition, Kaplan–Meier curves and log-rank tests were used in the survival analysis.

Statistical analysis was conducted with SPSS (IBM SPSS Statistics 26.0, SPSS Inc., Chicago, IL, United States) and R language (version 4.1.3).1 The R packages used in our study were displayed in Supplementary Table 1. All statistical tests were two-sided, and statistical significance was set at 0.05.




Results


Demographic and baseline characteristics

In this study, 2,492 patients with sepsis were enrolled, of whom 269 (10.8%) had NOAF. The median age was 59, ranging from 18 to 94 years old. Male patients comprised 63.9% of the total. The demographic data between the training and validation cohorts were described (Table 1). The variables were well balanced between the two cohorts, except for the prevalence of chronic obstructive pulmonary disease, the rate of skin soft tissue infections, and albumin levels. No statistical differences were observed in the training cohort for the three variables mentioned above when compared between the NOAF and non-NOAF groups (Supplementary Table 2).


TABLE 1    Comparison of characteristics between the training and validation cohorts.
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The construction of predictive model based on risk factors

Forty-eight variables in the training cohort of 1,568 patients with sepsis (167 with NOAF) were screened by the LASSO binary logistic regression model, which selected 7 predictors with non-zero coefficients (Figures 2A,B and Supplementary Table 3). After multivariate logistic regression analysis, age, congestive heart failure (CHF), SOFA score, INR, fibrinogen, CRP, and dopamine use were independent risk factors for NOAF (Figure 3). We weighted the regression coefficients of risk factors in multivariate logistic regression and developed a risk score formula to predict NOAF. Risk score = −8.296 + 0.022 (age) + 0.539 (if CHF is positive) + 0.267 (SOFA score) + 0.608 (INR) + 0.429 (fibrinogen) + 0.011 (CRP) + 0.629 (if dopamine is used). Predicted risk = 1/(1 + e–riskscore) (Table 2). The nomogram model for predicting the probability of NOAF was developed based on the above risk factors. A true case is presented in Figure 4.
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FIGURE 2
Variable selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) The tuning parameter (λ) in the LASSO model was selected for 10-fold cross-validation by the minimum criteria. The dotted vertical lines were drawn at the best values using the minimum criteria and 1 standard error of the minimum criteria (the 1-SE criteria). A λ-value of 0.021, with log (λ), –3.855 was chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coefficient curves of the 48 variables. A coefficient profile plot was produced against the log (λ) sequence. Vertical line was drawn at the value selected using 10-fold cross-validation, where optimal λ resulted in 7 non-zero coefficients.
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FIGURE 3
Forest plot showing the relationship between risk factors and the development of new-onset atrial fibrillation in patients with sepsis.



TABLE 2    Association between risk factors and new-onset atrial fibrillation in multivariate logistic regression.
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FIGURE 4
Nomogram for predicting the risk of new-onset atrial fibrillation in patients with sepsis. A 70-year-old patient with sepsis and no history of congestive heart failure. During hospitalization INR was 0.83, fibrinogen was 4.87 g/L, C-reactive protein was 108 mg/L, SOFA score was 11, and dopamine was not used during treatment. This patient had a total score of 163 and a 33.0% risk of developing new-onset atrial fibrillation.




Validation and evaluation of the nomogram

The validation of the nomogram in this study was performed using internal and external validation.


Internal validation

The calibration curve of the nomogram is used to show the agreement between the predicted and observed results. The agreement between the two results performs well in the training cohort (Figure 5A). The Hosmer–Lemeshow results indicated no significant difference, which suggested a good fit in the training cohort (Hosmer–Lemeshow χ2 = 3.423, p = 0.891). The predictive performance of the nomogram was evaluated by the ROC curve, which had an AUC of 0.861 (95% CI, 0.830–0.892) (Figure 5C).
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FIGURE 5
Discrimination and calibration of nomogram prediction models in the training and validation cohorts. (A) Calibration plot in the training cohort. (B) Calibration plot in the validation cohort. (C) ROC curves in both the training and validation cohorts.




Independent validation

We also observed an excellent calibration effect in the validation cohort (Figure 5B) and no statistical difference in the Hosmer-Lemeshow results (Hosmer–Lemeshow χ2 = 4.653, p = 0.794). Meanwhile, the area under the ROC curve was 0.845 (95% CI, 0.804–0.886) (Supplementary Table 4). There was no statistically significant difference between the AUCs of the two cohorts (P = 0.535) (Figure 5C).



Predictive performance of different sepsis severity

To test the performance of the prediction model in different sepsis severity, we divided the patients into sepsis group, severe sepsis group and septic shock group. In the training cohort, CRP, dopamine use, the incidence of NOAF, and in-hospital mortality were higher in the septic shock group than in the other groups (Supplementary Table 5). In addition, the predictive performance of the nomogram model improved with increasing disease severity (Supplementary Figure 1A). The AUC in the septic shock group was 0.913 (0.873–0.953), which was significantly higher than that in the sepsis group (AUC: 0.812, 0.755–0.870) and severe sepsis group (AUC: 0.885, 0.830–0.939) (Supplementary Table 7). We obtained the same conclusion in the validation cohort (Supplementary Figure 1B and Supplementary Table 6).




Clinical usefulness

Decision curve analysis (DCA) is a method to assess the benefits of a diagnostic test by quantifying the net benefit at different threshold probabilities to determine the clinical usefulness of the nomogram. DCA was applied in this study to assess the nomogram’s clinical utility. Both the training and validation cohorts demonstrated higher clinical net benefit compared to the two thresholds of “no intervention” and “intervention for all” (Figure 6A). The clinical impact curves revealed a convergence between the number of patients considered at high risk of NOAF and those with a NOAF event within this risk threshold (Figures 6B,C). The prediction model had good clinical application.
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FIGURE 6
Evaluation of clinical utility of nomogram prediction models in the training and validation cohorts. (A) Decision curves in both the training and validation cohorts. (B) Clinical impact curve in the training cohort. (C) Clinical impact curve in the validation cohort.




Outcomes

A total of 2,492 septic patients were included in this study, of whom 269 septic patients developed NOAF. The length of hospitalization, length of ICU stay, and in-hospital mortality were significantly increased by univariate analysis in the NOAF group versus the non-NOAF group. However, no significant difference was observed in the rate of ICU readmission during hospitalization (Table 3). We found that in-hospital mortality in patients with sepsis increased dramatically in the early stages of hospitalization (Figure 7A). Moreover, in-hospital mortality was significantly higher in the NOAF group than in the non-NOAF group (Figure 7B).


TABLE 3    Outcomes in patients with or without new-onset atrial fibrillation.
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FIGURE 7
Cumulative mortality in patients with sepsis based on kaplan-meier curves. (A) Cumulative mortality in all patients with sepsis. (B) Comparison of cumulative mortality between new-onset atrial fibrillation and non-new-onset atrial fibrillation.





Discussion

Our study developed and validated a predictive model for NOAF using clinical data from 2,492 patients with sepsis at two institutions. We identified age, INR, fibrinogen, CRP, SOFA score, CHF, and dopamine use as independent predictors of NOAF by multivariate logistic regression analyses. We developed a nomogram based on these predictors. After validation by multiple methods, the model showed good calibration, discrimination, and clinical utility.

Investigators have conducted in-depth studies on sepsis to manage patients with NOAF in sepsis better. In a study by Moss TJ et al. that included 8,356 critically ill patients, advanced age and sepsis were noted as significant risk factors for NOAF, yet no predictive models were constructed (19). In the systematic analysis by Wetterslev M’s team, risk factors for NOAF were systematically analyzed and discussed, but no easy and practical prediction model was developed (5). Furthermore, one study developed a risk factor scoring system for NOAF in sepsis, but the scoring system was more complex to operate and had a C statistic of 0.81 (95% CI, 0.79–0.84), with poor predictive performance (6). Therefore, the present study applied the visualized nomogram model to predict NOAF in sepsis, and the model’s predictive performance was better than the studies above, which was more applicable in clinical practice.

Advancing age is one of the prominent risk factors for the development of AF, and epidemiological studies have found a progressive increase in the prevalence of AF with increasing age. With aging, the myocardium will undergo anatomical and electrophysiological changes. The atrial myocardium may lose lateral electrical connections between myofibers, and electrical conduction in the sinoatrial node, atrioventricular node, and atria may be reduced. A multicenter cohort study of a Chinese community population found a prevalence of 0.13% for AF in 51–60 years old (20). The prevalence was 0.11% in the Scottish aged 55–64 (21). In contrast, the mean age of septic patients in this study was 59 years. The prevalence of AF was 10.8%, significantly higher than the prevalence in the community population of the same age. In addition, some studies have shown that gender, BMI, and hypertension were risk factors for the development of AF (6, 12, 19). However, the above variables were not statistically different in this study, which may be related to the different populations included in the study, such as septic patients combined with multi-organ dysfunction. Therefore, NOAF may result from multiple factors.

It is well known that AF contributes to heart failure and vice versa. The pathogenesis of AF is structural remodeling and abnormal electrical activity of the atria (22, 23). The prevalence of AF in patients with congestive heart failure was 26–35%, and its pathogenesis may be caused by intracellular calcium dysregulation, elevated cardiac filling pressures, abnormal autonomic function, and neuroendocrine dysfunction (24). Thus, CHF may provide an “arrhythmogenic substrate” for the development of AF. In this study, CHF was identified as a significant risk factor for NOAF, with a 1.714-fold risk of AF, which was consistent with previous studies (25). However, a meta-analysis proposed that CHF was a significant risk factor for community-associated AF, with a diminished role in patients with sepsis (12). Patients with sepsis often have internal environmental disturbances and multi-organ dysfunction, and the combined effect of multiple factors may diminish the predictive value of CHF.

Our findings indicated that the risk of NOAF during sepsis was driven more by sepsis-related events and therapy, except for non-modifiable factors (age and history of CHF). Currently, more studies suggest that inflammation promotes the development of AF (26, 27). Inflammatory indicators can reduce myocardial contractility by upregulating myocardial nitric oxide synthase and downregulating sarcoplasmic reticulum Ca2+ATPase (28). In addition, inflammatory cell infiltration in cardiac myocytes leads to myocardial microabscesses and promotes myocardial fibrosis (29). Some studies have noted an association between leukocyte counts and AF (30). However, more studies focus on CRP as a primary predictor of NOAF (31, 32). CRP could act on monocytes/macrophages, vascular endothelial cells, and smooth muscle cells to secrete pro-inflammatory molecules to induce cardiovascular disease (33). The prevalence of AF was increased during sepsis when CPR was ≥ 70 mg/L (12). In this study, the CRP level in the NOAF group was 67.11 (95%CI, 30.58–110.00) mg/L, which was lower than 70 mg/L but significantly higher than the CRP level in the community population with NOAF (<10 mg/L) (34). The main reason was the greater degree of infection in septic patients compared to the community population. Moreover, the incidence of pulmonary infection was 67.1% in the NOAF group, which was higher than that in the non-NOAF group (P < 0.001), the result consistent with the findings of previous studies (35). The specific pathogenesis might be related to cytokine production and secondary myocardial suppression, but confirmation by further studies is needed.

Another indicator of inflammation, IL-6, is a cytokine with multiple biological functions. Not only associated with left ventricular hypertrophy and systolic dysfunction, but it is also a risk factor for the development of AF in patients with coronary artery disease (36). IL-6 increases AF susceptibility by mediating Ca2+ handling in cardiomyocytes, leading to RyR2 dysfunction (37). In a study that included 371 patients with coronary artery bypass grafting, IL-6 gene expression levels were higher in the postoperative AF group than in the non-AF group and were independently correlated with postoperative AF (odds ratio: 2.01, 95% CI: 1.15–3.52) (38). Moreover, increased IL-6 levels were also related to an increased risk of death in patients with AF (39, 40). However, the absence of IL-6 data in this study did not allow exploring the relationship between it and AF. We will study the relationship between IL-6 and AF at a later stage.

The SOFA score is widely used in clinical work as an essential criterion for diagnosing sepsis (16). It includes an assessment of dysfunction in six organ systems and a scoring system to assess the severity of disease and prognosis in critically ill patients (41). A prospective study identified the SOFA cardiovascular score as an independent risk factor for NOAF (42). The median SOFA score in the NOAF group was 6 in this study. It was proved to be one of the risk factors predicting NOAF, similar to the findings of the above studies, but we did not compare the scores of each organ system.

Dysfunction of the coagulation system, known as sepsis-associated coagulopathy, also occurs during sepsis. Sepsis-associated coagulopathy consists of a prolonged INR and a reduced platelet count, which was related to 28-day mortality in septic patients and was one way to assess disease severity (43, 44). In a retrospective study of sepsis, coagulopathy within 24 h of admission was an independent risk factor for AF, with an INR of 1.5 (95%CI, 1.2–2.2) in the AF group (45). The INR was 1.46 (95%CI, 1.20–3.26) in this study, consistent with the above findings. The INR values were higher than those in the non-NOAF group. We also found a significant decrease in platelet count, a higher incidence of sepsis-associated coagulopathy, and higher disease severity in the NOAF group. Furthermore, fibrinogen was also related to the development of AF in this study. Fibrinogen levels were significantly higher in septic patients, and fibrinogen production was more than three times higher than in non-septic patients (46). Fibrinogen was elevated in permanent and paroxysmal AF in a prospective study (47). In addition, the fibrinogen level was 3.33 ± 0.9 in the idiopathic AF group, which was higher than in the control group (P < 0.05) (48). These results were consistent with our finding that fibrinogen was associated with AF development. Therefore, we should not ignore the coagulation indicators as a risk factor.

Sometimes sepsis-related therapy can also be a risk factor for the development of AF. Dopamine, a vasoactive drug, is widely used in patients with sepsis. However, the cardiac adverse events with dopamine use have also attracted more attention (49). In patients undergoing coronary artery bypass graft surgery, the incidence of AF was 23.3% with postoperative dopamine use, higher than the 14.1% rate in the non-dopamine group (50). In a meta-analysis that included 2,768 patients in septic shock, the dopamine use resulted in a higher incidence of arrhythmic events and patient mortality than norepinephrine (51); the same conclusion was obtained in 1,679 patients in shock (52). Our study further confirmed dopamine as a risk factor for NOAF. Hemodynamic instability often accompanies patients with sepsis and requires maintenance therapy with vasoactive drugs. Dopamine may cause positive inotropic and positive chronotropic effects (increased contractility and rate) by activating β1-adrenergic receptors in the heart (53). The incidence of arrhythmias, most commonly in AF, is increased at high doses (>10 μg kg–1 min–1). Therefore, more caution is needed in using dopamine when treating patients with sepsis.

Currently, much more studies are focusing on genomics (54) and extracellular vesicles (55) in the development of AF. As more relevant studies are explored, more new therapeutic targets for AF will be identified, which will help improve the prevention and management of AF. This study also has some limitations. First, it was a non-randomized retrospective analysis and may have potential comparison biases such as sample selection and patient inclusion bias. Second, although the study found a higher mortality rate in the NOAF group than in the non-NOAF group, it does not equate to a causal relationship between NOAF and sepsis prognosis, which needs further confirmation by prospective studies with large samples. Finally, relevant results from advanced genomics and cardiac magnetic resonance imaging were not included. However, our findings are expected to combine with genomics or other markers to enable AF prediction models to achieve higher predictive power.



Conclusion

In this study, we developed and validated a nomogram model to predict the prevalence of NOAF during sepsis. The model achieves individualized prediction of NOAF during hospitalization in patients with sepsis and offers the possibility of early intervention and reduction of the prevalence of AF.
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Atrial fibrillation (AF) with multiple complications, high morbidity and mortality, and low cure rates, has become a global public health problem. Although significant progress has been made in the treatment methods represented by anti-AF drugs and radiofrequency ablation, the therapeutic effect is not as good as expected. The reason is mainly because of our lack of understanding of AF mechanisms. This field has benefited from mechanistic and (or) statistical methodologies. Recent renewed interest in digital twin techniques by synergizing between mechanistic and statistical models has opened new frontiers in AF analysis. In the review, we briefly present findings that gave rise to the AF pathophysiology and current therapeutic modalities. We then summarize the achievements of digital twin technologies in three aspects: understanding AF mechanisms, screening anti-AF drugs and optimizing ablation strategies. Finally, we discuss the challenges that hinder the clinical application of the digital twin heart. With the rapid progress in data reuse and sharing, we expect their application to realize the transition from AF description to response prediction.
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1 INTRODUCTION
The most common sustained arrhythmia atrial fibrillation (AF) not only has high morbidity and mortality, but also is very difficult to prevent, diagnose and treat, bringing a huge economic burden to individuals, countries and society (Hindricks et al., 2020). AF is often asymptomatic and frequently undetected clinically (Gibbs et al., 2021), but it increases the risk of stroke by fivefold (Freedman et al., 2016), heart failure by threefold (Kotecha and Piccini, 2015), and mortality by twofold (Tsao et al., 2022). Occurring in less than 0.16% in patients aged≤ 49 years, AF has a prevalence that increases steadily with advancing age, affecting up to 9% in those aged ≥65 years and 17% in patients beyond the age of 80 years (Freedman et al., 2021); the overall lifetime risk is at least 37.8% (Staerk et al., 2018). The number of individuals affected by AF had exceeded 46.3 million in 2016, with more than five million each year new cases diagnosed, as well as the number will double by 2060 (Krijthe et al., 2013). The costs associated with AF are large: in the U.S. alone, the incremental cost of AF treatment exceeds $26.0 billion (Kim et al., 2011), while the incremental cost of asymptomatic AF exceeds $3.1 billion (Turakhia et al., 2015). Thus, AF has become a global public health problem.
The 2020 European Society of Cardiology guidelines endorse the Atrial Fibrillation Better Care (ABC) pathway as a structured approach for AF management, addressing three principal elements: “A” - avoid stroke (with oral anticoagulation), “B” - patient-focused better symptom management, and “C” - cardiovascular and comorbidity risk factor reduction and management (Hindricks et al., 2021). The mobile AF application randomized trial confirmed that the ABC approach could reduce adverse outcomes more significantly than usual care (Guo et al., 2020). In addition, several studies found that implementing the ABC pathway can improve cure rates, decrease related costs and the risk of complications, and reduce mortality and morbidity (Pastori et al., 2019; Yoon et al., 2019; Wijtvliet et al., 2020). Despite significant advances in the management and treatment of AF using the ABC pathway, AF continues to pose a significant risk of death, partly due to knowledge gaps in the fundamental AF mechanisms and treatment strategies (Goette et al., 2019). Developing a personalized digital twin of the heart, which integrates coherently and dynamically the patient’s clinical data over time, will likely be essential to overcome current challenges (Corral-Acero et al., 2020; Lindemans, 2020; Gerach et al., 2021). Over the last decades, the digital twin heart has emerged as a modality to diagnose, understand and therapy complex arrhythmias (Gillette et al., 2021a; Gillette et al., 2021b). This mini-review is structured as follows: Section 2 briefly summarizes the AF pathophysiology and current therapeutic modalities. Section 3 summarizes the achievements of synergy between mechanistic and statistical models in three aspects: understanding AF mechanisms, screening anti-AF drugs and optimizing ablation strategies. Finally, we discuss the challenges that hinder the clinical application of synergy between mechanistic and statistical models. More methodological details on mechanistic and (or) statistical models can refer to other reviews (Nattel et al., 2021a; Heijman et al., 2021b; Nattel et al., 2021b; Leblanc et al., 2021; Trayanova et al., 2021).
2 ATRIAL FIBRILLATION PATHOPHYSIOLOGY AND CURRENT THERAPEUTIC LANDSCAPE
Many dynamic predisposing factors, including modifiable and non-modifiable risk factors, contribute to the onset and progression of AF. The identified non-modifiable risk factors include age, sex, ethnicity and genetics, while modifiable factors consist of smoking, alcohol consumption, hypertension, lipid profile, diabetes, vascular disease, coronary artery disease, heart failure, obesity, physical inactivity, chronic kidney disease, obstructive sleep apnoea, chronic obstructive pulmonary disease, valve disease and inflammatory diseases (Benjamin et al., 1994; Mont et al., 2008; Lau et al., 2017; Roselli et al., 2020). These risk factors can lead to atrial remodeling through various pathways facilitating the development of AF. The atrial remodeling can be grouped into electrical, structural, and autonomic remodeling that allows for the initiation and maintenance of AF. Recent reviews detailing the role of each risk factor in the pathophysiology of AF and various underlying mechanisms can be summarized as follows (Dobrev et al., 2019; Nattel et al., 2020): Complex electrical defects in the atria, including reentrant waves and localized premature atrial contractions, contribute to the development of AF. Among them, premature atrial beats are mainly derived from the early and late afterdepolarization (EAD/DAD) of atrial cells, and reentrant waves are related to the shortening of the effective refractory period, slow conduction and conduction barriers (Hansen et al., 2015; Mikhailov et al., 2021). AF is not only a complex multifactorial disease, but also a progressive condition, moving from paroxysmal AF (self-terminating in <7 days), persistent AF (lasting >7 days and requiring termination by cardioversion) to long-standing persistent AF (lasting >1 year and requiring a rhythm control strategy) and, may become resistant to antiarrhythmic drugs (AADs) (Chiang et al., 2012) and ablation therapies (Wyse et al., 2014; Ogawa et al., 2018). In addition to advancing age and the progressive remodeling caused by modifiable risk factors (Mountantonakis et al., 2012), AF progression also has a substantial genetic component (e.g., the most common ones at 4q25 near PITX2) (Gudbjartsson et al., 2007) (Figure 1). However, the contribution of each factor in a specific patient to AF occurring and progression remains incompletely understood.
[image: Figure 1]FIGURE 1 | Schematic overview of mechanisms underlying AF development and progression. This figure depicts the interrelationships between risk factors, time-dependent atrial remodeling and progression from sinus rhythm (SR) through paroxysmal and persistent to permanent AF. ECV = electrical cardioversion; ERP = effective refractory period; AADs = antiarrhythmic drugs; EADs = Early afterdepolarization; DADs = Delayed afterdepolarization.
Potential AF patients are usually diagnosed with long-term electrocardiogram (ECG) monitoring to determine the temporal patterns (Hindricks et al., 2020). In addition to AF patients with distinct ECG features, up to 40% of AF patients have no obvious symptoms (Page et al., 2003; Jones et al., 2020). A large number of undiagnosed AF patients cannot receive the necessary risk management (Davidson et al., 2022), resulting in irreversible AF-causing structural remodeling, increasing the difficulty of later treatment and reducing therapeutic efficacy. The EAST-AFNET4 trial has confirmed that early rhythm-control therapy can reduce the risk of adverse outcomes (Kirchhof et al., 2020). Although AF screening is also recommended, the best way to screen is uncertain.
Rate and rhythm control strategies are two cornerstones of symptomatic AF management. For preventing mortality and morbidity from cardiovascular causes, the effectiveness of the two strategies is comparable (Van Gelder et al., 2002; Wyse et al., 2002). Due to the limited efficacy and proarrhythmic side effects. AADs are widely used but cannot effectively control sinus rhythm (Heijman et al., 2021a). Although pulmonary vein isolation (PVI) via catheter ablation (CA) can improve sinus rhythm maintenance compared to AADs (Marrouche et al., 2018; Kelly et al., 2019), many AF recurrence cases illustrate that the one-size-fits-all approach is still suboptimal (Andrade et al., 2019). These studies found patients with later AF recurrences respond better to AADs and repeat ablation, providing metrics to assess different CA strategies (i.e., the time to AF recurrence) (Gaztañaga et al., 2013). Despite the increasing importance of CA strategies (Asad et al., 2019; Blomström-Lundqvist et al., 2019), AADs remain an important component of AF management (Markman et al., 2020; Andrade et al., 2021), since a large number of AF patients, and the costs and risks of the invasive procedures of CA should be considered. However, the choice of AADs is limited by their proarrhythmic and toxic properties (Zimetbaum, 2012). Therefore, specific rate or rhythm control strategies for distinct fundamental molecular and cellular determinants of AF are likely to yield better therapeutic outcomes (Garvanski et al., 2019). Nevertheless, it is challenging to predict which AF patients are likely to recur and thereby require more aggressive therapy.
3 APPLICATIONS OF DIGITAL TWIN TECHNIQUES IN ATRIAL FIBRILLATION MANAGEMENT
Digital twin technologies are expected to overcome existing difficulties. The digital twin was firstly presented by Michael Grieves in 2003 and was initially described as a virtual representation of a physical product (Grieves, 2005). Its definition was expanded to consist of three components: a physical product, its virtual representation and a two-way data connection between the virtual and the physical representations (Haag and Anderl, 2018). The digital twin in health care denotes the vision of “a comprehensive, virtual tool that integrates coherently and dynamically the clinical data acquired over time for an individual using statistical models and mechanistic modeling and simulation” (Alber et al., 2019). Using digital twin techniques, precision cardiology will be provided in a collaborative way, through mechanistic modeling and simulation of multiscale heart and the use of statistical models learned from massive raw data (including simulated, experimental and clinical data) (Bai et al., 2016; Bai et al., 2017a; Bai et al., 2017b). Following fundamental biophysical laws and concepts, mechanistic models integrate fragmented data into a “biologically functional heart” that can be used to simulate cardiac electrophysiological dynamics to explore underlying mechanisms (Bai et al., 2021a). However, it is a difficult task to reduce hundreds of thousands of multiscale simulation data to meaningful predictive biomarkers, and clinical biomarkers or quantitative measures of structural remodeling derived from raw imaging data were not considered in mechanistic modeling. Statistical models are ideal for identifying meaningful predictive biomarkers in high-dimensional simulation and clinical data (Corral-Acero et al., 2020; Liu et al., 2021; Zeng et al., 2021; Zhong et al., 2022). Therefore, digital twin techniques have value in evidence generation, diagnosis and treatment.
Although personalized atrial computer models from either imaging data or electroanatomical maps have been developed, their standardization has just begun. Lately, Razeghi et al. published the CemrgApp platform for image processing to provide MRI segmentation, including fibrotic tissue distribution derived from late gadolinium enhancement (LGE) intensity in a semi-automatic and userfriendly way (Razeghi et al., 2020). In addition, Williams et al. presented the OpenEP framework for evaluating electroanatomic mapping data (Williams et al., 2021). Considering the advantages of CemrgApp and OpenEP, Azzolin et al. proposed a patient-specific Augmented Atria generation pipeline (AugmentA) that ingests the tomographic segmentations and (or) the electroanatomic map, and provided ready-to-use atrial personalized computational models from clinical data. AugmentA consists of a preprocessing step (Azzolin et al., 2021a), atrial orifices’ annotation, a statistical shape model fitting procedure, fiber generation (Zheng et al., 2021) and conduction velocity (CV) estimation. AugmentA offers an automated and comprehensive pipeline delivering personalized atrial computer models from clinical data in procedural time (Azzolin et al., 2022a). This is a step forward toward standardized assessment of arrhythmia vulnerability and testing of ablation strategies. The following part of the review addressed studies using digital twin techniques for understanding AF mechanisms, screening anti-AF drugs and optimizing AF ablation strategies.
3.1 Understanding AF mechanisms using digital twin techniques
Recently, several hybrid studies utilizing both mechanistic and statistical approaches investigated AF mechanisms. An example of the use of digital twin techniques is investigations of atrial electrophysiological variability (Muszkiewicz et al., 2016). Although the variability is manifested through functional differences between individuals and has important implications for AF progression, it is often ignored in traditional studies by averaging samples from multiple individuals (Bai et al., 2018). Recently, a digital twin framework has been designed to study its underlying mechanisms and arrhythmogenic risks under different conditions (Ni et al., 2020). Based on the common assumption of heterogeneous current properties and an appropriate atrial cell model, parameters of the baseline model are varied to construct a population of candidate models by using different sampling methods (e.g., Latin Hypercube sampling (Burrage et al., 2015), sequential Monte Carlo (Lawson et al., 2018) and Bayesian history matching (Coveney and Clayton, 2018)). Populations of models (POMs) are directly calibrated to experimental data distributions to provide valuable tools for investigating the factors that underlie emergent atrial electrophysiology. In detail, experimentally-calibrated POMs are used to conduct simulations of atrial electrophysiology, whereas statistical models are used to identify how variability in in-silico atrial electrophysiology modulates the dynamics of AF.
At the cellular level, several studies concentrated on identifying potential determinants of inter-subject variability in calcium transient (Muszkiewicz et al., 2018; Vagos et al., 2021), action potential (AP) duration (APD) (Sánchez et al., 2014; Chang et al., 2017; Coveney and Clayton, 2020; Nesterova et al., 2020), triggered activity (Morotti and Grandi, 2017; Zhu et al., 2021) and dynamic AP restitution (Vagos et al., 2017). In these studies, the kinetic parameters influencing ion currents (Chang et al., 2017) and ionic conductances (Sánchez et al., 2014; Coveney and Clayton, 2020; Nesterova et al., 2020) were identified to have a strong influence on APD and Dome potential. In addition to ionic current properties, external factors (e.g., stimulus strength) were also found to modulate AP amplitude and APD (Muszkiewicz et al., 2014). Digital twin techniques were also used to classify different AF types, such as AFs at different ages (Nesterova et al., 2020), as well as upregulated vs downregulated Pitx2-induced AFs (Zhu et al., 2021). At the tissue level, factors related to the maintenance and formation of reentrant waves were investigated. For example, the study of Simon et al. employed a population of tissue models to identify inter-subject variability that modulates CV that is critical for arrhythmia inducibility (Simon et al., 2017), while the study of Clayton et al. investigated the influence of the spatial scale of fibrosis regions on the APD dispersion and vulnerability to re-entry (Clayton, 2018). They found that the specific balance between sodium current and diffusion coefficient can promote the formation of reentrant waves, and small fibrosis areas favor the maintenance of reentrant waves. The potential of the digital twin heart in exploring AF mechanisms was directly highlighted in these studies reviewed in this section.
3.2 Screening anti-AF drug using the digital twin techniques
A variety of computational models have been used to screen anti-AF drugs. Some of them are related to potential drug targets, as is the case of Liberos et al., who used chronic AF-induced remodeling tissue models to investigate the effect of each remodeled target on rotor dynamics. The study found that the effectiveness of ICaL block as a rhythm control strategy depends on the availability of Na+ and Ca2+ currents (Liberos et al., 2016; Liberos et al., 2017). In addition, special ion channels as drug targets (including INa and/or INaL, IKr, IKur, IK,Ach, IK,2P and IK,Ca) were investigated by altering the conductance or the gating kinetics. Scholz et al. introduced a mathematical description of IKur blockade into models of normal and remodeled atrial electrophysiology and found antiarrhythmic effects of IKur inhibitors are dependent on kinetic properties of blockade (Scholz et al., 2013). Schmidt et al. changed the conductance of IK,2P to investigate the effects of genetic ablation of TASK-1 and found antiarrhythmic effects of anti-TASK-1-siRNA were associated with APD prolongation (Schmidt et al., 2019). Using a population of virtual whole-atria human models, Sánchez et al. found specific inhibitions of IK1, INaK, or INa may be a promising rhythm control strategy by enlarging wave meandering to reduce the dominant frequency (Sánchez et al., 2017). Another interesting study by Ni et al. investigated the synergistic anti-AF effects of the combined block of multiple atrial-predominant K+ currents using populations of cell and tissue models. The study found that the proposed strategy can promote favorable positive rate-dependent APD prolongation, illustrating its potential anti-AF effects (Ni et al., 2020). Some other studies concentrated on predicting the risk of anti-AF drugs. In the study by Bai et al., the focus was on evaluating the efficacy of disopyramide, quinidine, and propafenone on Pitx2-induced AF. The study found that disopyramide is most effective in the three drugs for Pitx2-induced AF by prolonging the wavelength (Bai et al., 2021b). Wiedmann et al. tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF and multicellular tissue modeling predicted that the antiarrhythmic effect of TASK-1 inhibition by A293 was strongly dependent on the tissue conductivity and the resulting CV (Wiedmann et al., 2020). Loewe et al. evaluated the dynamic effects of amiodarone and dronedarone on human atrial patho-electrophysiology and simulated results provided possible explanations for the superior efficacy of amiodarone (Loewe et al., 2014). The digital twin techniques also were used to classify drugs. For example, Sanchez et al. predicted the effects of isoproterenol, flecainide and verapamil using in silico simulations and then classified these drugs based on proarrhythmic patterns using a random forest algorithm. The study found that IK1 is the most important current for classifying the proarrhythmicity of a given profile (Sanchez de la Nava et al., 2021). These initial results point to future developments where the combination of mechanistic and statistical models could create efficient platforms for drug screening and cardiotoxicity studies, and, importantly, platforms for individualized medication.
3.3 Optimizing AF ablation strategies using the digital twin techniques
Pulmonary vein isolation (PVI) by cardiac ablation emerged as a feasible strategy in AF ablation and has evolved from segmental ostial pulmonary vein ablation to the guide ablation with the 3D electroanatomical mapping, to wide-area circumferential ablation with verification of conduction block. For long-term ablation success, PVI using point-by-point radiofrequency or with the cryoballoon has evolved substantially, with multiple energy sources and a variety of ablation tools being available to make it safe and effective. These emerging tools include numerous novel radiofrequency catheters (such as Satake HotBalloon, Heliostar, Luminize-RF, Sphere-9 catheter and NADH autofluorescence-guided ablation catheter) and alternative energy sources (e.g., endoscopic laser balloon and pulsed field electroporation). Although PVI has been shown to have a high success rate in patients with paroxysmal AF in proximity to the PV regions, it is insufficient in the most patients with persistent AF outside the PV regions. Over the past 2 decades, numerous anatomical structures have been suggested as sites from which non-pulmonary vein triggers might occur, including the posterior wall of the left atrium, the left atrial appendage, the superior vena cava, the crista terminalis, the fossa ovalis, the coronary sinus, the ligament of Marshall and adjacent to the atrioventricular valve annuli. Unfortunately, strong evidence to support improved clinical outcomes for any adjunctive ablation strategies is lacking and identifying functional localized target sites for ablation remains challenging (Wu et al., 2021). This may be optimized by using digital twin techniques.
One of the applications of digital twin techniques is to link biomarkers to tissue properties. For example, Corrado et al. found combing CV and APD with the atrial surface area can improve the accuracy in identifying regions that tether re-entrant activation patterns using both biophysically detailed computational models of the atria and a support vector machine classifier (Corrado et al., 2021). Godoy et al. linked body surface potential mapping (BSPM) derived indexes to the location of ectopic foci, indicating its potential application of these biomarkers in targeting ectopic foci (Ferrer-Albero et al., 2017; Godoy et al., 2018a; Godoy et al., 2018b).
Another application is to identify potential ablation targets. In these studies, mechanistic models were used to simulate the typical AF scenarios and statistical models were used to find the regions in the atria where arrhythmias are inducible (Sha et al., 2022). For example, Ravikumar et al. evaluated the performance of multiscale frequency [MSF], Shannon entropy [SE], kurtosis [Kt], and multiscale entropy [MSE] techniques to identify the pivot point of the rotor using unipolar and bipolar EGMs obtained from numerical simulations (Ravikumar et al., 2021). Ganesan et al. developed and evaluated the AF source area probability (ASAP) mapping algorithm in 2D and 3D atrial simulated tissues with various arrhythmia scenarios and a retrospective study with three cases of clinical human AF. They found that ASAP delineated the AF source in over 95% of the simulated human AF cases within less than eight catheter placements regardless of the initial catheter placement (Ganesan et al., 2020). The study of Sánchez et al. characterized atrial fibrotic substrate with a hybrid in silico and in vivo dataset and found the digital twin techniques can overcome a single voltage cut-off value to identify fibrotic tissue from intracardiac signals (Sánchez et al., 2021). Using personalized biophysically detailed computational models of the atria based on the patient’s LGE-MRI, Zahid et al. employed mechine learning to determine the characteristics of fibrosis distribution and found the ablation targets may be the regions with high fibrosis density and entropy (Zahid et al., 2016). And this approach has been shown to be more accurate than these purely image-driven learning schemes for identifying ablation targets (Lozoya et al., 2019). These findings have important consequences for clinical decision-making as they indicate how mechanistic and statistical models work together to determine ablation targets (Ali et al., 2019; Muffoletto et al., 2019; Cámara-Vázquez et al., 2021; Gander et al., 2022).
Moreover, a digital twin heart may indicate a CA strategy is appropriate for a patient by predicting the likelihood of AF recurrence before a specific therapy is selected (Muffoletto et al., 2019; Shade et al., 2020; Seno et al., 2021; Roney et al., 2022). For example, in the study of Roney et al., AF patient-specific models incorporating fibrotic remodeling from LGE-MRI scans were constructed to test six different ablation approaches. A random forest classifier was subsequently trained to predict ablation response. The study found the surface areas of pre-ablation driver regions and of fibrotic tissue not isolated by the proposed ablation strategy are both important for predicting ablation outcome (Roney et al., 2020). In addition, Azzolin et al. developed a technology to tailor ablations in AF patient-specific models aiming to identify the most successful ablation strategy. They used the Pacing at the End of the Effective Refractory Period (PEERP) protocol to localize emergent AF episodes, and then connected localized ablations to the closest non-conductive barrier to prevent recurrence of AF (Azzolin et al., 2021b). This study found that the proposed Personalized Ablation Lines (PersonAL) plan, consisting of iteratively targeting emergent high dominant frequency regions, outperformed state-of-the-art anatomical and substrate ablation strategies (Azzolin et al., 2022b).
4 CHALLENGES AND PERSPECTIVES FOR THE DIGITAL TWIN HEART IN AF
Before considering the digital twin techniques to improve the clinical treatment strategy, it may be beneficial to assess the sources of current therapies. Currently, most drugs used for the treatment of AF, such as quinidine, flecainide, propafenone, amiodarone, dofetilide, sotalol, and dronedarone, are not developed specifically to target AF (Nattel et al., 2021b). This fact is related to the importance of ventricular tachyarrhythmia as a potentially fatal clinical target. However, as the importance of AF to public health becomes apparent, drug development targeting AF is booming. In the major interventional approaches, the surgical maze procedure is the first mechanism-targeted approach to AF pathophysiology, whereas the empirical PVI is the most effective catheter-based procedure (Noheria et al., 2008). However, the apparent failure of AF treatment has primarity been attributed to the limited efficacy of AADs and the suboptimal PVI.
A digital twin heart that promises to transform from AF description to response prediction (i.e., from understanding AF mechanisms to screening anti-AF drugs and optimizing AF ablation strategies). In the digital twin heart, on the one hand, potential pathological mechanisms are explored through personalized multi-scale modeling and simulation; on the other hand, AF phenotypes are identified through a data-driven statistical model. Mechanistic and statistical models complement each other’s strengths to facilitate AF mechanism understanding and therapeutic evaluation. As experimental methods and imaging techniques continue to advance, more abundant and high-quality data will facilitate the development of digital twin hearts. Standardization of data acquisition and improved attention to re-usability will accelerate the development of digital twin technologies (Strocchi et al., 2020), while their integration into existing workflows will facilitate its clinical application. In the future, AF patients can be screened based on ECG biomarkers using statistical models (Xiong et al., 2018), while personalized biophysically detailed computational models of the atria based on the patient’s LGE-MRI can be used to interpret AF phenotypes (Figure 2) (Aslanidi et al., 2011).
[image: Figure 2]FIGURE 2 | Digital twin heart in exploring the AF mechanisms. Clinical data are used to create and validate statistical and mechanistic models. Synergy between mechanistic and statistical models gives valuable insight that is clinically interpreted and combined with traditional data to aid in the process of clinical decision-making.
Although there is a palpable exuberance in AF research regarding the potential of digital twin techniques, limitations of the various approaches and challenges in ensuring their clinical application remain. Whether it is the development of digital twin hearts or their clinical applications, the main challenge is the limited availability of experimental data at present. In order to achieve tailored AF treatment, we need to develop a more detailed personalized mechanistic model, but the functional and structural data required to build personalized atria are lacking. Except for the electrophysiological function data of the right atrial appendage of AF patients, other microstructural data, especially from the healthy atrium, are currently very scarce. Although individual structural data represented by patient-specific anatomy and fibrosis distribution can be obtained with LGE-MRI, the limited spatial resolution makes modeling fiber orientations and atrial fibrosis patterns difficult. Even if patient-specific models of the heart can be personalized, we still need to address the issue of intra-individual heterogeneity, including variability in atrial structural and functional properties. Due to the lack of massive experimental and clinical data, these heterogeneous features and their effect on the overall behavior of AF are poorly understood. For statistical models, supervised algorithms require significant amounts of high-quality labeled data. Annotation of data with labels is labor-intensive and datasets with poor data seriously affect the performance of algorithms. Therefore, data with its many aspects presents challenges to the digital twin heart adoption in AF management.
5 CONCLUSION
AF continues to pose a significant risk of death, in part due to knowledge gaps in the fundamental AF mechanisms and treatment strategies. These clinical challenges in understanding AF mechanisms, screening anti-AF drugs and optimizing AF ablation strategies might benefit from the digital twin techniques. Although limited by the availability of experimental data, the digital twin heart remains a promising path towards the vision of precision cardiology and its clinical applications are emerging.
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Background: Sacubitril/valsartan therapy reduced the risks of death and of hospitalization for heart failure (HF). HF and cardiac arrhythmias have shared physiological mechanisems. Therefore, sacubitril/valsartan may exhibit anti-arrhythmic properties in HF. The purpose of this study was to evaluate the effect of sacubitril/valsartan on the occurrence of cardiac arrhythmias and the risk of sudden cardiac death (SCD) in HF.

Methods: This meta-analysis was performed according to PRISMA guidelines. We searched PubMed and Embase (from inception up to 6 February 2022) to identify randomized control trials (RCTs) on the effect of sacubitril/valsartan on the occurrence of cardiac arrhythmias and the risk of SCD in HF. Primary outcomes were the occurrence of atrial arrhythmias, ventricular arrhythmias, and SCD. Risk ratios (RRs) with 95% confidence intervals (CIs) were pooled using a random-effects model for meta-analysis.

Results: We included 9 RCTs (published between 2012 and 2021) with 18,500 patients (9,244 sacubitril/valsartan vs. 9,256 active control). Enalapril and valsartan were used as active control in six and two studies, respectively. Follow-up ranged from 2 to 35 months. The cumulative occurrence of events was 76, 13, and 48 per 1,000 patient-years for atrial arrhythmias, ventricular arrhythmias and SCD, respectively. There was no significant association between sacubitril/valsartan therapy and the occurrence of atrial arrhythmias (RR 1.06; 95% CI: 0.97–1.17; P = 0.19) and ventricular arrhythmias (RR 0.86; 95% CI 0.68–1.10; P = 0.24). However, sacubitril/valsartan therapy significantly reduced the risk of SCD (RR 0.79; 95% CI 0.70–0.90; P = 0.03) compared with control.

Conclusion: No association between sacubitril/valsartan therapy and the occurrence of atrial and ventricular arrhythmias was found, but sacubitril/valsartan therapy significantly reduced the risk of SCD.
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sacubitril/valsartan, cardiac arrhythmia, sudden cardiac death, heart failure, meta-analysis


Introduction

Heart failure (HF) is associated with substantial morbidity and mortality. Cardiac arrhythmias are common in HF, and HF predisposes cardiac arrhythmias and vice versa (1). Cardiac arrhythmias, including atrial arrhythmias and ventricular arrhythmias, are important causes of adverse outcomes in HF patients (1–3). Sudden cardiac death (SCD) is also a major cause of mortality among HF patients and is commonly related to ventricular arrhythmias, particularly ventricular tachycardia (VT) and ventricular fibrillation (VF) (4). The management of cardiac arrhythmias in HF depends on the type and etiology of arrhythmia, the severity of HF, and the range from medical therapy to cardiac implantable electronic devices (CIEDs) (2, 4). Previous studies suggest that drugs blocking the rennin-angiotensin-aldosterone system (RAAS) and natriuretic peptide (NP) system have various beneficial effects on arrhythmia mechanisms (4, 5).

Sacubitril/valsartan, an angiotensin receptor-neprilysin inhibitor (ARNI), has been shown to reduce the risk of cardiovascular death or HF hospitalization in patients with HF compared with enalapril (6). The advantages of sacubitril/valsartan are likely to result from reduced cardiac remodeling, improved left ventricular ejection fraction (LVEF), and increased NP availability (7). Therefore, sacubitril/valsartan may exhibit anti-arrhythmic properties and modulate the risk of cardiac arrhythmias in HF.

Two recent meta-analyses on the similar topic have been published (8, 9). The meta-analysis by Fernandes et al. found that ARNI therapy was associated with a reduction in SCD and ventricular arrhythmias compared with control in HF with reduced ejection fraction (HFrEF) (8). However, the role of sacubitril/valsartan in HF with preserved ejection fraction (HFpEF) remains unclear. Another meta-analysis by Liu et al. found that sacubitril/valsartan was similar to control in preventing the occurrence of atrial fibrillation (AF) in HF (9). The effect of sacubitril/valsartan on the risks of ventricular arrhythmias and SCD was not evaluated. Recently, several randomized controlled trials (RCTs) (10–12) involving more evidence have been published. Thus, a comprehensive evaluation of the effect of sacubitril/valsartan on this topic is needed. The purpose of this meta-analysis was to evaluate the effect of sacubitril/valsartan on the occurrence of cardiac arrhythmias and risk of SCD in patients with HF.



Methods

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (13).


Search strategy

PubMed and Embase were searched from inception up to 6 February 2022. Search terms included “sacubitril,” “sacubitril/valsartan,” “LCZ696,” “neprilysin,” and “randomized controlled trial.” No language restriction was applied. References of included trials and previous reviews were checked for potentially eligible trials.



Study selection and eligibility criteria

Two authors independently reviewed the titles and abstracts of all articles initially identified, according to the inclusion criteria. Disagreements were resolved by discussion.

Studies were included if they met the following criteria: (1) randomized controlled trials; (2) adult patients older than 18 years; (3) presented of a control group (either placebo or active controlled); and (4) reported the outcomes of interest as an endpoint or adverse events (AEs). The outcomes included the occurrence of atrial arrhythmias [AF, atrial flutter (AFL), and atrial tachycardia (AT)], ventricular arrhythmias [VF, ventricular flutter (VFL), and VT], and SCD (sudden cardiac death, sudden death, and cardiac arrest).



Data extraction

Two authors independently extracted the following data from the included trials: first author, publication year, ClinicalTrials.gov unique identifier, study characteristics, and outcomes of interest. When multiple publications of the same trial were found, data from the most complete dataset were extracted for analysis. If no outcomes of interest were reported in the manuscript, we searched the supplementary material and the adverse event of the trial on ClinicalTrials.gov. Disagreements were resolved by discussion.



Assessment of risk of bias

The risk of bias of included trials was assessed by using the Reviews Manager 5.4.1, which included the following sections: selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias. Trial with one or more key domains at high risk of bias was judged to high risk of bias; trial with all key domains at low risk of bias was judged to low risk of bias; otherwise it was judged to unclear risk of bias (14). The results were presented as a risk of bias graph and a risk of bias summary figure.



Statistical analysis

Risk ratios (RRs) with 95% confidence intervals (CIs) were used to calculate the pooled effects. Meta-analyses were conducted using a random-effects model regardless of heterogeneity. Statistical heterogeneity across studies was assessed by the I2 statistic (15). An I2 value greater than 50% indicates significant heterogeneity. Publication bias was not performed because the number of included trials was too small (<10) to detect an asymmetric funnel. Subgroup analyses were pre-specified according to the type of HF (HFrEF vs. HFpEF), control agent used, follow-up duration (<1 year vs. >1 year). A two-sided P-value < 0.05 was considered statistically significant. All analyses were performed using Review Manager Software (RevMan version 5.4; The Nordic Cochrane Centre, Cochrane Collaboration).




Results


Study search

A total of 410 articles were initially identified, of which 9 RCTs (6, 10–12, 16–20) were included in the meta-analysis, comprising a total of 18,500 patients, of whom 9,244 were in the sacubitril/valsartan group and 9,256 in the control group. The search strategy is presented in Figure 1.
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FIGURE 1
Flow diagram of search strategy.




Characteristics of eligible studies

The baseline characteristics of the included studies are summarized in Table 1. All trials were randomized, double-blind, and active-control. The trials were published between 2012 and 2021. Among the included trials, 6 trials (6, 10, 12, 17, 19, 20) used enalapril as a comparator, 2 (16, 18) used valsartan as a comparator, and 1 (11) used individualized medical therapy (IMT) as a comparator. Of included nine trials, 6 trials (6, 10, 12, 17, 19, 20), including 1 (19) enrolled patients with acute decompensated HF, enrolled patients with HFrEF the others (11, 16, 18) enrolled patients with HFpEF. The sample size ranged from 201 to 8,432. The mean age ranged from 62 to 72.8 years, and the percentage of women ranged from 13.9 to 56.5%, with a mean follow-up duration between 2 and 35 months. All included trials did not describe the definition of cardiac arrhythmias and the methods used to document cardiac arrhythmias. All included trials were funded by industry.


TABLE 1    Baseline characteristics of the included trials.
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Assessment of risk of bias

Details of risk of bias assessment are summarized in Figure 2. Eight trials (6, 10, 11, 16–21) were judged to be at low risk of bias, and one trial (12) was judged to be at unclear risk of bias.
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FIGURE 2
Assessment of risk of bias. (A) Risk of bias graph, (B) risk of bias summary.




Atrial arrhythmias

Atrial arrhythmias were reported in 9 RCTs (6, 10–12, 16–20), of which 6 compared sacubitril/valsartan with enalapril, 2 with valsartan, and 1 with IMT. During an average follow-up of 1.13 years, the cumulative occurrence of atrial arrhythmias was 78 per 1,000 patient-years in the sacubitril/valsartan group and 73 per 1,000 patient-years in the control group. The occurrence of atrial arrhythmias was not significantly different between the sacubitril/valsartan and control group (RR 1.06; 95% CI: 0.97–1.17; P = 0.19; Figure 3). There was no heterogeneity across the studies (I2 = 0%, P = 0.46). The pooled effects of 3 pre-specified components of atrial arrhythmias (AF, AFL, AT) were individually presented in Figure 3.
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FIGURE 3
Forest plot comparing the occurrence of atrial arrhythmias between sacubitril/valsartan and control.


To assess the effect of sacubitril/valsartan therapy in HFrEF and HFpEF, we conducted corresponding subgroup analyses. However, neither HFrEF (RR 1.08; 95% CI: 0.92–1.26; P = 0.33) nor HFpEF (RR 1.00; 95% CI: 0.78–1.30; P = 0.98) showed a significant association.

In subgroup analysis based on comparator used, sacubitril/valsartan therapy was associated with no significant difference in the occurrence of atrial arrhythmias compared with enalapril (RR 1.08; 95% CI: 0.92–1.26; P = 0.33) or valsartan (RR 0.73; 95% CI: 0.25–2.16; P = 0.57).

Regarding the follow-up duration, we defined two subgroups, shorter duration (<1 years; RR 0.98; 95% CI: 0.73–1.33; P = 0.90) and longer duration (>1 years; RR 1.08; 95% CI: 0.98–1.19; P = 0.12), and neither affected the occurrence of atrial arrhythmias.



Ventricular arrhythmias

Ventricular arrhythmias were reported in 7 RCTs (6, 10, 12, 17–20), of which 6 compared sacubitril/valsartan with enalapril, and 1 with valsartan. A total of 262 events of ventricular arrhythmias were reported as AEs. During an average follow-up of 1.27 years, the cumulative occurrence of ventricular arrhythmias was 12 per 1,000 patient-years in the sacubitril/valsartan group and 14 per 1,000 patient-years in the control group. The occurrence of ventricular arrhythmias was not significantly different between the sacubitril/valsartan and control group (RR 0.86; 95% CI 0.68–1.10; P = 0.24; Figure 4). There was no significant heterogeneity across studies (I2 = 0%, P = 0.75). The 3 pre-specified components of ventricular arrhythmias (VF, VFL, VT) were individually presented in Figure 4.
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FIGURE 4
Forest plot comparing the occurrence of ventricular arrhythmias between sacubitril/valsartan and control.


To assess the effect of sacubitril/valsartan therapy in HFrEF and HFpEF, we conducted corresponding subgroup analyses. However, neither HFrEF (RR 0.89; 95% CI: 0.60–1.33; P = 0.58) nor HFpEF (RR 1.43; 95% CI: 0.61–3.35; P = 0.40) showed a significant association.

In subgroup analysis based on comparator used, sacubitril/valsartan therapy was associated with no significant difference in the occurrence of ventricular arrhythmias compared with enalapril (RR 0.89; 95% CI: 0.60–1.33; P = 0.58) or valsartan (RR 1.43; 95% CI: 0.61–3.35; P = 0.40).

Regarding the follow-up duration, we defined two subgroups, shorter duration (<1 years; RR 1.91; 95% CI: 0.56–6.47; P = 0.30) and longer duration (>1 years; RR 0.83; 95% CI: 0.65–1.07; P = 0.16), and neither affected the occurrence of ventricular arrhythmias.



Sudden cardiac death

Sudden cardiac death was reported in 6 RCTs (6, 11, 17–20). During an average follow-up of 1.06 years, the cumulative occurrence of SCD was 43 per 1,000 patient-years in the sacubitril/valsartan group and 54 per 1,000 patient-years in the control group. The overall analysis of the composite SCD outcome demonstrated a 21% reduction when compared with control (RR 0.79; 95% CI 0.70–0.90; P = 0.03; Figure 5). The 3 pre-specified components of SCD (sudden cardiac death, sudden death, and cardiac arrest) were individually presented in Figure 5.
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FIGURE 5
Forest plot comparing the risk of sudden cardiac death between sacubitril/valsartan and control.





Discussion

To our knowledge, this is the largest and most comprehensive meta-analysis that evaluates the association between sacubitril/valsartan and the risk of arrhythmic events. Our meta-analysis found no association between sacubitril/valsartan therapy and the occurrence of atrial and ventricular arrhythmias. But it significantly reduced the risk of SCD in patients with HF.

Two previous meta-analyses on the similar topic have been published. One meta-analysis of six RCTs by Liu et al. showed no association between sacubitril/valsartan therapy and the occurrence of AF in patients with HF compared with control (9). In comparison, this meta-analysis added three latest published trials (10–12) and evaluated the effect of sacubitril/valsartan on the occurrence of ventricular arrhythmias and the risk of SCD in HF. Similar to previous meta-analysis, no significant association between sacubitril/valsartan and the occurrence of atrial arrhythmias, including AF, was observed. Another meta-analysis by Fernandes et al. concluded that ARNI therapy was associated with lower SCD events and ventricular arrhythmias compared with control in HFrEF (8). However, the finding was underpowered limited to the included observational studies. Observational studies are highly subject to selection bias. If only RCTs were included in their meta-analysis, there was no significant difference between groups regarding of the occurrence of ventricular arrhythmias. Besides, the association between sacubitril/valsartan and the risk of cardiac arrhythmias in HFpEF was not evaluated. In contrast with the previous ones, our meta-analysis is the latest and the most comprehensive.

It is well known that HF is associated with increased risk of cardiac arrhythmias and SCD, which is related to multiple potential mechanisms, including the RAAS and NP system (4, 5). The RAAS and NP system play important role in the development of structural and electrical remodeling (5), potentially explaining the occurrence of cardiac arrhythmias. Sacubitril/valsartan has been shown positive results on patients’ outcome, particularly in those with HF (22). In the PARAMOUNT study, sacubitril/valsartan therapy resulted in greater reduction in NT-proBNP at 12 weeks and greater reduction in left atrial size after 36 weeks compared with valsartan (16). In the PARADIGM-HF study, the further reduction of cardiovascular mortality, including SCD, observed in HFrEF received sacubitril/valsartan is likely due to a combined protective effect against death from HF and fatal ventricular arrhythmias (6, 23, 24). A retrospective study demonstrated sacubitril/valsartan therapy was associated with improvements in echocardiographic parameters, including LVEF, pulmonary atrial pressure and cardiac valvular insufficiency, in patients with HFrEF (25). To date, increasing evidence suggests that sacubitril/valsartan may have anti-arrhythmic properties, either by limiting pro-arrhythmic remodeling or through direct anti-arrhythmic effects on cardiomyocytes (Figure 6) (5, 26–28). Although these mechanisms of sacubitril/valsartan are potential contributors to the observed in vivo anti-arrhythmic effects, there is no conclusive mechanism regarding sacubitril/valsartan mediated cardiac arrhythmia suppression in patients.
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FIGURE 6
Potential mechanisms regarding the anti-arrhythmic effects of sacubitril/valsartan. AT1R, angiotensin II type1 receptor; LVEF, left ventricular ejection fraction; NEP, neprilysin.


Based on the results of our meta-analysis, sacubitril/valsartan therapy does not reduce the occurrence of cardiac arrhythmias in patients with HF. One possible explanation is that all included RCTs were active-control trials. The renin-angiotensin system inhibitions are associated with reduction in cardiac arrhythmias (2, 29–31), and the incremental benefit of sacubitril/valsartan therapy for this outcome may have been minimal. Another possible explanation is that all included RCTs were not designed to evaluate the effect of sacubitril/valsartan on cardiac arrhythmias and the actual occurrence of cardiac arrhythmias may have been underestimated since not all patients underwent continuous rhythm monitoring. In HFrEF patients with CIEDs, previous studies have suggested that sacubitril/valsartan could decrease atrial arrhythmia burden and reduce the recurrence of atrial arrhythmias in patients with non-permanent AF (32, 33). Diego et al. found that sacubitril/valsartan could decrease ventricular arrhythmias in HFrEF patients under continuous monitoring of ICD compared with angiotensin inhibition (34). Furthermore, appropriate ICD shocks were significantly reduced. However, a study presented that sacubitril/valsartan does not reduce the risk of ventricular arrhythmias in HFrEF patients over 12 months of follow-up (35). In addition, another retrospective study reported that male and previous episodes of ventricular arrhythmias could be associated with an increased risk of sustained ventricular arrhythmias after sacubitril/valsartan initiation (36). Overall, most studies suggest sacubitril/valsartan might reduce the risk of cardiac arrhythmias in HF patients.

Sudden cardiac death is the leading cause of mortality in HF (37). In most cases, SCD is triggered by ventricular arrhythmias (38). Implantable cardioverter defibrillator (ICD) and wearable cardioverter defibrillator (WCD) are recommended for the prevention of SCD in selected populations (39, 40). Our meta-analysis showed that there was a 21% reduction in the risk of SCD. A post-hoc analysis of PARADIGM-HF demonstrated that sacubitril/valsartan reduced SCD risk regardless of ICD use (HR 0.49; 95% CI 0.25–0.99) or eligibility criteria (HR 0.81; 95% CI 0.67–0.98) in HFrEF (23). Given this outstanding advantage, sacubitril/valsartan is recommended to reduce SCD in HFrEF (2). The possible explanation is that sacubitril/valsartan could lead to reverse cardiac remodeling and attenuation of myocardial fibrosis (17, 41), both of which may reduce the risk of ventricular arrhythmias.

Because of the potential adverse outcomes of HF patients who develop cardiac arrhythmias, an upstream therapy with sacubitril/valsartan may prevent or delay the development of cardiac arrhythmias. According to our meta-analysis, it is premature to recommend sacubitril/valsartan solely for the prevention of cardiac arrhythmias, but our findings raise the possibility of an added benefit in HF patients receiving ARNI therapy. For selected patients, WCD in addition to sacubitril/valsartan treatment of HF is a possible approach to bridge the time until improvement of LVEF.

There are several potential limitations to our meta-analysis. First, events of cardiac arrhythmias and SCD in the included RCTs were reported as adverse events, and not as pre-specified endpoints. Although the number of cardiac arrhythmias was coded by reported adverse events, it is difficult to exclude the fact that some of the patients had asymptomatic arrhythmias that converted spontaneously. Second, there were no standardized definition and routine monitoring for the cardiac arrhythmias in the included RCTs, which may lead to reporting bias. It is not known whether the sudden death and cardiac arrest represented death from an arrhythmia or from another mechanism. Third, cardiac arrhythmias were not described in terms of sustained or non-sustained, fast or slow. Forth, data have shown a possible different effects of sacubitril/valsartan according to the HF etiology and age (42, 43). Due to lack of data, the effects of sacubitril/valsartan on the risk of cardiac arrhythmias and SCD according to HF etiology and age remain unclear. Finally, no cardiac MRI was done to correlate arrhythmias with fibrosis. These limitations should be considered when interpreting our findings.



Conclusion

No association between sacubitril/valsartan therapy and the occurrence of atrial and ventricular arrhythmias was found, but it significantly reduced the risk of SCD. On the basis of our findings, we suggest that future RCTs systematically detect cardiac arrhythmias with routine ambulatory monitoring and define them as primary endpoints.
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Background: At present, catheter ablation is an effective method for rhythm control in patients with atrial fibrillation (AF). However, AF recurrence is an inevitable problem after catheter ablation. To identify patients who are prone to relapse, we developed a predictive model that allows clinicians to closely monitor these patients and treat them with different personalized treatment plans.

Materials and methods: A total of 1,065 patients who underwent AF catheter ablation between January 2015 and December 2018 were consecutively included in this study, which examines the results of a 2-year follow-up. Patients with AF were divided into development cohort and validation cohort. Univariate and multivariate analyses were carried out on the potential risk factors. Specific risk factors were used to draw the nomogram according to the above results. Finally, we verified the performance of our model compared with CHADS2 and CHA2DS2-Vasc scores by receiver operating characteristic (ROC) curve and calibration curve and plotted the decision analysis curve (DAC).

Results: A total of 316 patients experienced AF recurrence. After univariate and multivariate analyses, AF history (H), age (A), snoring (S), body mass index (BMI) (B), anteroposterior diameter of left atrial (LA) (L), and persistent AF (P) were included in our prediction model. Our model showed a better performance compared with CHADS2 and CHA2DS2-Vasc scores, and the area under ROC curve (95%CI) was 0.7668 (0.7298–0.8037) vs. 0.6225 (0.5783–0.6666) and 0.6267 (0.5836–0.6717).

Conclusion: We established a nomogram (HASBLP score) for predicting AF recurrence after the first catheter ablation at a 2-year follow-up, which can be used as a tool to guide future follow-up of patients. However, its usefulness needs further validation.

KEYWORDS
atrial fibrillation, catheter ablation, recurrence, prediction model, nomogram


Introduction

Atrial fibrillation (AF) is the most common arrhythmia in adults worldwide (1). AF is associated with substantial morbidity and mortality, placing a significant burden on patients, families, and healthcare systems. The estimated prevalence of AF in adults is between 2% and 4% (2), and it will continue to rise due to the lengthening of life expectancy and improvement of screening methods (3–5). Catheter ablation of AF has been recommended by several important guidelines as an effective rhythm control strategy (1, 6), since it reduces hospitalization rate and improves the quality of life; however, its most significant disadvantage is recurrence. Recurrence of AF would not only affect enthusiasm for catheter ablation in patients with AF but also bring some potential risks.

According to several studies, both individuals with and without an AF recurrence have a different chance of developing thromboembolism (7–10). Nevertheless, AF recurrence is usually asymptomatic (11), causing an unawareness of the episode in a considerable number of patients. Therefore, the continued use of oral anticoagulation in patients with AF after catheter ablation remains controversial (12). The objective world needs a prediction model to predict the probability of AF recurrence to guide the follow-up after AF catheter ablation. At the same time, a recurrence prediction model could also assist in screening patients undergoing catheter ablation. Several predictors of arrhythmia recurrence, including left atrial (LA) size, LA fibrosis, non-paroxysmal AF, hypertension, and sleep apnea syndrome, had been proposed in previous studies (13). CHADS2 and CHA2DS2-Vasc scores have been shown to predict the recurrence of AF to some extent (14); however, as a prediction model, the result does not seem ideal.

In this study, we attempted to develop a predictive model for recurrence after the first catheter ablation in patients with AF by following and reviewing clinical data from those with AF and compared our predictive model with the CHADS2 and CHA2DS2-Vasc score models.



Materials and methods


Study design

We aimed to establish a prediction model with the outcome of 2-year follow-up of patients with AF after catheter ablation. This study was based on data from a prospective observational study (Chinese Clinical Trial Registry: ChiCTR-OCH-14004674) of patients who underwent ablation at our center. The primary endpoint of this study was AF recurrence, defined as symptomatic or documented AF, atrial flutter, or atrial tachycardia >30s after a 3-month blanking period after the first catheter ablation.



Patients selection

All patients who underwent AF catheter ablation between January 2015 and December 2018 were consecutively included in this study unless they met any of the following exclusion criteria: (1) patients with a previous history of catheter ablation; (2) patients with < 24 months of follow-up; or (3) patients who underwent cardiac surgery during the follow-up period. Prior to catheter ablation, coronary computed tomography (CTA) or transesophageal echocardiography was performed to rule out cardiac thrombosis.



Data collection

Age, gender, course of AF, type of AF, history of related diseases, LA size, and left ventricular ejection fraction (LVEF) were collected before the procedure, and AF history (years) was found based on medical records or according to patient-reported time of first documented AF. The types of AF were divided into paroxysmal AF and persistent AF (e.g., long-standing persistent AF). LA size was represented by its anteroposterior diameter measured by echocardiography. Patients with heart failure were defined as ≥ class 2 (classification of NYHA heart function) according to the admission diagnosis.

Oral anticoagulant (OAC; warfarin, rivaroxaban, or dabigatran) was used at least 3 months after catheter ablation. All patients had a follow-up of at least 24 months after the procedure. Documented AF was evaluated by electrocardiography (ECG) and a 24-h Holter monitoring at the first, third, and sixth months and every 6 months thereafter. If the patient did not show up for a scheduled follow-up, our office contacted them telephonically to recommend 24-h Holter monitoring at the local hospital and collect information on recurrence. Time and outcome of primary events were recorded during follow-up.



Statistical analysis and nomogram

Data analysis was performed using IBM SPSS Statistic 25 and R,1 and the significance level was set at p < 0.05. Two-thirds of all patients were taken as development cohort and one-third of patients as validation cohort by random sampling. The rank sum test was used for numerical variables with non-normal distribution, independent t-test random was used for numerical variables with normal distribution, and categorical variables were tested by chi-square test (χ2 test). Univariate analysis was performed using the abovementioned methods and variables with p < 0.05 were included in the subsequent logistic regression. Iteratively reweighted least squares (IWLS) were used to fit the logistic regression model based on development cohort data (model 1); then, according to the results of logistic regression, the variables with p < 0.05 were selected to form model 2.

Nomogram was constructed in accordance with the results of model 2. A nomogram is valuable because it converts anticipated probabilities into points on a scale of 0–100 in a user-friendly graphic interface (15). The total number of points accumulated by various factors corresponds to a patient’s expected likelihood (16, 17). The point system ranks effect estimates irrespective of statistical significance, and it is modified by the existence of other factors.

The total score of the nomogram was the sum of the corresponding score assigned to each risk factor, which corresponds to the recurrence risk.



Prediction performance of the nomogram

Receiver operating characteristic (ROC) and calibration curves were plotted using development cohort data and validation cohort data, respectively. Subsequently, a decision curve analysis (DCA) diagram was drawn from development cohort data to guide clinical decision-making. Risk factors included in CHADS2 and CHA2DS2-Vasc scores were used to form model CHADS2 and CHA2DS2-Vasc. Using development cohort data, ROC curves for the CHADS2 and CHA2DS2-Vasc models were created, and the area under the curve (AUC) was calculated.




Results


Basic information

As shown in Table 1, a total of 1,065 patients (no recurrence: recurrence = 749:316) were included in this study; the development cohort consisted of 710 patients (no recurrence: recurrence = 490:220), while the validation cohort consisted of 355 patients (no recurrence: recurrence = 259:96). Non-normally distributed continuous data were presented as median (Q1, Q3), normally distributed data were presented as mean ± standard (SD), and categorical variables were presented as percentages. Finally, after univariate analysis, age (p < 0.01), body mass index (BMI; p < 0.01), AF history (p < 0.01), snoring (p < 0.01), hypertension (p = 0.04), coronary heart disease (p < 0.01), diabetes (p = 0.01), heart failure (p < 0.01), valve diseases (p = 0.02), cardiomyopathy (p = 0.03), persistent AF (p < 0.01), and the anteroposterior diameter of the LA (p < 0.01) were found to be statistically significant with AF recurrence.


TABLE 1    Baseline characteristics of all patients.
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Atrial fibrillation recurrence nomogram and other prediction models

The abovementioned statistically significant risk factors were used to build model 1 (recurrence∼age + snoring + BMI + AF history + hypertension + coronary heart disease + diabetes + heart failure + valve diseases + cardiomyopathy + persistent AF + LA).

According to the results of logistic regression, the variables with p < 0.05 were selected to form model 2 (recurrence∼age + snoring + BMI + AF history + persistent AF + LA) to facilitate the clinical application, age was divided into five segments (< 40 years, 40–49 years, 50–59 years, 60–69 years, and ≥ 70 years), LA anteroposterior diameter was divided into four segments (<35 mm, 35–39.99 mm, 40–44.99 mm, and ≥ 45 mm), and BMI was divided into four segments according to the Chinese standard (< 24, 24–26.99, 27–29.99, and ≥ 30). In addition, the result of model 2, which we termed the HASBLP score (AF history, age, snoring, BMI, LA, and persistent AF), was used to plot the nomogram (Figure 1).
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FIGURE 1
Atrial fibrillation (AF) recurrence nomogram. The nomogram was developed in the development cohort. The total score of the nomogram was the sum of the corresponding score assigned to each risk factor, and the total score corresponds to the recurrence risk.




Prediction performance of the nomogram

The ROC curve of model 1, model HASBLP, and model CHADS2 and CHA2DS2-Vasc in the development cohort data is shown in Figure 2A, and their AUCs, shown in Table 2, were 0.7766 (95%CI, 0.7397–0.8135), 0.7668 (95%CI, 0.7298–0.8037), 0.6225 (95%CI, 0.5783–0.6666), and 0.6267 (95%CI, 0.5836–0.6717), respectively. Based on this result, we found that the CHADS2 and CHA2DS2-Vasc scores predict AF recurrence with suboptimal results, and the HASBLP score was better able to predict AF recurrence. The ROC curves of model 1 and HASBLP score with validation cohort data are shown in Figure 2B; calibration curves of model 1 and HASBLP score with development and validation cohort data are shown in Figures 3A–D. The analysis of DCA showed that the recurrence probability of patients was in the range of about 5 to 80%, and this model has the highest accuracy and net benefit in clinical application (Figure 4).
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FIGURE 2
Receiver operating characteristic (ROC) curve of prediction model. (A) Development cohort; (B) Validation cohort. Model 1: Recurrence∼ age + snoring + BMI + AF history + hypertension + coronary heart disease + diabetes + heart failure + valve diseases + cardiomyopathy + persistent AF + LA. HASBLP: Recurrence∼age + snoring + BMI + AF history + persistent AF + LA. CHADS2: Recurrence∼heart failure + hypertension + age + diabetes + stroke. CHA2DS2-Vasc: Recurrence∼heart failure + hypertension + age + diabetes + stroke + vascular disease + female.



TABLE 2    Area under curve of receiver operating curve.
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FIGURE 3
Calibration curve of prediction models. (A) Model 1 (development cohort); (B) model HASBLP (development cohort); (C) model 1 (validation cohort); and (D) model HASBLP (validation cohort).
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FIGURE 4
Decision curve analysis curve of model HASBLP.





Discussion

Using clinical data and follow-up results of patients with AF in our center, we constructed a prediction model to predict AF recurrence after the first catheter ablation, which showed better performance compared with CHADS2 and CHA2DS2-Vasc scores. Several other scores, such as DR-FLASH (AUC 0.801) (18), CAAP-AF (AUC 0.691) (19), ATLAS (AUC 0.750) (20), APPLE (AUC 0.634) (21), and MB-LATER (AUC 0.782) (22), have shown good predictive effectiveness in their respective studies. However, there are differences in the overall variables included in our study compared with these studies, so it is difficult to compare them directly.

It is reported that age is the most common risk factor for AF recurrence in several trials and other prediction models (20, 21, 23, 24), which indicated that younger patients with AF may have a lower risk of recurrence following catheter ablation and thereby may be more suitable for the procedure. Being overweight or obese not only promotes the development of AF but also increases the risk of recurrence after catheter ablation (25–28). This may be associated with an increase in epicardial adipose tissue, which is a source of pro-inflammatory adipocytokines, leading to microvascular dysfunction and myocardial fibrosis (29). Inflammation has been proven to affect the occurrence of AF through multiple pathways (30). Obesity was also accompanied by other cardiovascular disease risk factors, such as hypertension, diabetes, and sleep apnea syndrome (31, 32), so weight loss could not only reduce the AF load (33) but also reduce AF recurrence after catheter ablation (34). Other studies have mentioned a history of AF as a risk factor for recurrence of AF after catheter ablation (35, 36); this may be due to the changes in the atrial matrix caused by risk factors over time. Jens Cosedis Nielsen’s trial proved that the efficacy of catheter ablation in patients with paroxysmal AF is better than that of patients with persistent AF (37). Although catheter ablation is effective for patients with persistent AF, the risk of recurrence is higher than that of patients with paroxysmal AF. Age, AF burden, obesity, smoking, renal insufficiency, and other cardiovascular risk factors promote atrial remodeling (38). While atrial enlargement is more likely a result of multiple factors, it often reflects atrial fibrosis. A study on MRI evaluation of atrial fibrosis and AF recurrence suggested that atrial fibrosis may be an independent risk factor for recurrence of AF after catheter ablation (39). In our study, the LA anteroposterior diameter measured by echocardiography represented the atrial size, which was slightly less accurate than the LA volume measured by CT or echocardiography. Still, it could increase the applicability of the model. Previous studies have shown that snoring is related to sleep apnea (SA) (40, 41). While snoring does not represent SA, habitual snoring is often a form of SA (42). Obstructive sleep apnea syndrome (OSAS) could promote the occurrence and progress of cardiovascular diseases, such as hypertension and arrhythmia (40, 41). A meta-analysis had shown OSAS could promote AF recurrence (43), and continuous positive airway pressure ventilation had a positive effect on preventing AF recurrence, which may be related to the correction of hypoxemia during sleep (44). In addition, a recent study showed that a healthy sleep pattern is associated with lower risks of AF and bradyarrhythmia, independent of traditional risk factors (45). An AF patient with snoring may be comorbid with OSAS or hypoxemia (44); however, some patients rarely get a proper diagnosis and treatment for a variety of reasons. Therefore, in our prediction model, OSAS was replaced by snoring. Snoring during sleep may be inaccurate and ambiguous compared with OSAS, but snoring as a common phenomenon is more practical in our opinion.

The present model might guide patients with AF to correct reversible risk factors after catheter ablation, such as weight loss, improvement of hypoxemia during sleep, and drug intervention for the process of cardiac fibrosis. It proposes that early treatment with catheter ablation not only allows for better symptom control but may also reduce the probability of AF recurrence. With the exploration of recurrence risk factors and the prediction models, we could screen patients who intend to undergo catheter ablation. For patients with a high risk of recurrence, catheter ablation should be carefully examined.

In addition, a long-term use of OAC or cessation of OAC after 3 months post-ablation remains controversial (46, 47). In our previous study, we concluded that cessation of OAC in non-recurrent AF may be reasonable; however, cessation appeared unsafe in recurrent AF with a high thromboembolism risk (10). With the help of the prediction model, patients at a high risk of recurrence could be identified after catheter ablation, allowing us to monitor these patients closely and encourage them to continue OAC.

There are several other limitations to our study. Due to following up with 24-h Holter ECG only, it might miss some patients with asymptomatic recurrence, which was inevitable in our study. This was a single-center study and the sample size should be expanded for more robust conclusions. Our prediction model needs to be verified by multicenter research. In this model, two variables (LA size and snoring) may be questioned for inaccuracies.



Conclusion

This study established a model (HASBLP score) for predicting AF recurrence after the first catheter ablation, which can be used as a tool to guide patients’ follow-up. Compared with CHADS2 and CHA2DS2-Vasc scores, this model showed a better performance in predicting AF recurrence. However, its role requires further validation.
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Background: Autonomic nerve system (ANS) plays an important role in regulating cardiovascular function and cerebrovascular function. Traditional heart rate variation (HRV) and emerging skin sympathetic nerve activity (SKNA) analyses from ultra-short-time (UST) data cannot fully reveal neural activity, thereby quantitatively reflect ANS intensity.
Methods: Electrocardiogram and SKNA from sixteen patients (seven cerebral hemorrhage (CH) patients and nine control group (CO) patients) were recorded using a portable device. Ten derived HRV (mean, standard deviation and root mean square difference of sinus RR intervals (NNmean, SDNN and RMSSD), ultra-low frequency (<0.003 Hz, uLF), very low frequency ([0.003 Hz, 0.04 Hz), vLF), low frequency ([0.04 Hz, 0.15 Hz), LF) and high frequency power ([0.15 Hz, 0.4 Hz), HF), ratio of LF to HF (LF/HF), the standard deviation of instantaneous beat-to-beat R-R interval variability (SD1), and approximate entropy (ApEn)) and ten visibility graph (VG) features (diameter (Dia), average node degree (aND), average shortest-path length (aSPL), clustering coefficient (CC), average closeness centrality (aCC), transitivity (Trans), average degree centrality (aDC), link density (LD), sMetric (sM) and graph energy (GE) of the constructed complex network) were compared on 5-min and UST segments to verify their validity and robustness in discriminating CH and CO under different data lengths. Besides, their potential for quantifying ANS-Load were also investigated.
Results: The validation results of HRV and VG features in discriminating CH from CO showed that VG features were more clearly distinguishable between the two groups than HRV features. For effectiveness evaluation of analyzing ANS on UST segment, the NNmean, SDNN, RMSSD, LF, HF and LF/HF in HRV features and the CC, Trans, Dia and GE of VG features remained stable in both activated and inactivated segments across all data lengths. The capability of HRV and VG features in quantifying ANS-Load were evaluated and compared under different ANS-Load, the results showed that most HRV features (SDNN, LFHF, RMSSD, vLF, LF and HF) and almost all VG features were correlated to sympathetic nerve activity intensity.
Conclusions: The proposed autonomic nervous activity analysis method based on VG and SKNA offers a new insight into ANS assessment in UST segments and ANS-Load quantification.
Keywords: autonomic nerve system, cerebral hemorrhage, heart rate variation, skin sympathetic nerve activity, visibility graph analysis
1 INTRODUCTION
The autonomic nerve system (ANS), composed of the sympathetic nervous system and the parasympathetic nervous system, plays an important role in regulating cardiovascular function and cerebrovascular function. Dysregulation of the ANS can affect the brain’s perception of various stressors, disrupt the adaptive capacity of homeostasis restoration, and ultimately increase the risk of stress-related disorders such as cardiac arrhythmia, hypertension, atherosclerosis, and stroke (Sternberg and Schaller, 2020). More recently, ANS modulation has been proposed as a promising therapeutic strategy for the management of autonomic dysfunction-related stroke (Mo et al., 2019). Therefore, ANS monitoring and analysis before the development of stress-related disorders is of paramount importance for improving the prognosis of patients with dysfunction-related stroke.
The most widely used clinical assessment method of sympathetic nerve activity (SNA) is evaluating end-organ responses to ANS physiological stimuli, such as tilt table testing, valsalva maneuver, plasma catecholamines, baroreflex sensitivity, thermoregulatory sweat test, and heart rate variation (HRV) (Thomas et al., 2019). Among these tests, HRV analysis is a widely accepted and implemented method to non-invasively and conveniently assess sympatho-vagal balance (Thomas et al., 2019). In general, HRV is generated and analyzed from the long-term electrocardiogram (ECG) waves, such as 24-h Holter, and its change can reflect the dynamic/trend of ANS activity over time (Bodapati et al., 2017; Schneider et al., 2018). It is reported that poststroke patients with raised SNA and low HRV are at higher risk for arrhythmias (atrial fibrillation, ventricular tachyarrhythmia) or other ECG changes (prolonged QT, inversed T wave) (Constantinescu et al., 2018). In addition, HRV is also used as a biomarker for classifying acquired brain injury patients and healthy controls (Galea et al., 2018). Meanwhile, multiple functional outcomes (cognitive functions, physical activity, and emotional expression) can be manifested in HRV (Forte et al., 2019; Sharma et al., 2019). Thus, HRV can not only serve as an indicator of cardiac function, but also reflect the central modulation capacity to stress (Yperzeele et al., 2015; Fyfe-Johnson et al., 2016; Kim et al., 2018). However, HRV quantifies ANS modulation at the sinoatrial level, which is difficult to generalize to cardiac patients with abnormal rhythms (atrial fibrillation, premature beats, etc.) (Zhao et al., 2020).
As a non-invasive and versatile SNA assessment method, skin sympathetic nerve activity (SKNA) has been applied to many clinical events (Doytchinova et al., 2017; Kusayama et al., 2020) and been proven to have the potential to predict sympathetic tone in many applications (i.e., acute myocardial infarction (He et al., 2020), neurologic recovery patients (Liu et al., 2021a), and sleep apnea (Kutkut et al., 2021)). To this juncture, several parameters have been derived from SKNA to quantify SNA. The average voltage of SKNA (aSKNA) is validated to be correlated with heart rate, and can be used as a biomarker for fitness level and efficacy of exercise training (Liu et al., 2021b). The burst numbers of SKNA (bSKNA) and variable value of SKNA (vSKNA) (Zhang et al., 2019) are higher in ventricular arrhythmia patients than in control groups, indicating SKNA can be used to predict the ventricular arrhythmogenesis recurrence. The envelope of SKNA (eSKNA) is extracted to depict the temporal pattern of SKNA, and the cross-comparison results between SKNA clustering groups and non-SKNA clustering groups demonstrate that eSKNA can act as a valid surrogate marker to classify ANS regulation ability in acute myocardial infarction patients (Liu et al., 2021a). Although these parameters can reflect the ANS changes by empirical threshold-based nerve bursts detection, the low signal-to-noise ratio of SKNA will lead to misjudgments (Xing et al., 2022a). In addition, the low amplitude SKNA signal (0.5–80 µV) is susceptible to noise, increasing the difficulty of extracting sympathetic-related information (Zhang et al., 2022). Therefore, more work is still needed to effectively analyze the autonomic nervous activity from SKNA, especially in real-time application.
Complex network is an emerging nonlinear dynamics analysis method for complex systems. It has been employed in a variety of physical and engineering systems: weather conditions (Fang et al., 2017), finance (Zhao et al., 2018), biomedical applications (Gao et al., 2021). Recently, several network-based approaches have been proposed to map time series into complex networks, such as visibility graph (Xu et al., 2018), recurrence plot (Eroglu et al., 2018), ordinal partition network (Santos et al., 2022). In particular, visibility graph (VG) is a simple and fast computational framework for us to bridge the gap between time series and complex networks, and it has been successfully implemented in different fields. Bhaduri and Ghosh (2016) studied cardiac dynamics during meditation through multi-fractal detrended fluctuation and RR interval-based VG, and they found that VG was superior to multi-fractal detrended fluctuation in reflecting physiological effects on subjects undergoing meditation. Gao et al. (2017) developed a time-dependent limited penetrable VG, and applied it to RR intervals for classifying heart states of healthy, congestive heart failure and atrial fibrillation. León et al. (2020) used HRV features and VG features derived from the heart rate time series for the prediction of late onset sepsis in preterm infants, the results showed that the VG features in HRV analysis were useful for sepsis prediction in newborns. From these studies, VG complex networks are often constructed from RR intervals for heart rate-related applications, while no work has focused on the application of VG analysis in evaluating ANS with SKNA.
In this study, an autonomic nervous activity analysis method was proposed based on VG complex network and SKNA. Based on previous studies (Naredi et al., 2000; Chun-jing et al., 2013), we hypothesized that SNA was elevated in patients with cerebral hemorrhage (CH). Therefore, we collected ECG and SKNA from CH patients and control group (CO), and compared the derived HRV and VG features to evaluate their effectiveness in distinguishing CH from CO. In addition, the ANS analysis performance of HRV and VG features on ultra-short-time (UST) segments were evaluated to verify their robustness under different data lengths. Finally, the correlations between HRV and VG features and ANS-Load were investigated under different data lengths to explore their potential for quantifying the intensity of SNA.
2 METHODS
2.1 Data acquisition
The ECG and SKNA were recorded by a portable data acquisition device designed in our previous work (Xing et al., 2022b). It consists of low-noise analog-front-end (ADS1299, Texas Instruments, Dallas, TX) for bio-potential signal acquisition, a microcontroller (STM32L476, STMicroelectronics) for the management of the whole system, and a power management circuits (powered by a 3.7 V rechargeable lithium polymer battery). In order to reduce the system noise floor, a low-noise first-stage amplifier (INA128) was implemented with the ADS1299 chip. The clinical signals were measured at 4 kHz sampling frequency using conventional disposable silver/silver-chloride (Ag/AgCl) electrodes attached to the users’ chest. The signal measurements were carried out in a noise-free sound insulation room. After an adjustment period of at least 10-min, the 10-min signal of each subject was acquired in a supine position. The recorded signals were stored on a local trans-flash card, and processed off-line by MATLAB.
2.2 Patients
Patients with spontaneous CH who had a history of hypertension were recruited. All patients were male and had no definite cardiovascular and cerebrovascular events other than hypertension. The location of cerebral hemorrhage in all patients was located in the basal ganglia, and the hemorrhage did not break into the ventricle. The course of cerebral hemorrhage had passed through the acute phase and was in the subacute phase. Age- and sex-matched normal volunteers, no other obvious cardiovascular and cerebrovascular diseases except hypertension, were recruited as CO from the hypertension clinic. All the patients were enrolled from the Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University from October 2021 to December 2021. Exclusion criteria included: 1) patients with traumatic cerebral hemorrhage, ischemic stroke or hemorrhagic conversion; 2) cerebral hemorrhage patients underwent the unstable phase (with shock, large fluctuations in heart rate or blood pressure); 3) patients with thyroid disease, diabetes, cardiac arrhythmia, and other disorders that may affect ANS.
Sixteen patients were enrolled in this study, including seven CH patients and nine CO patients. A 10-min single-lead ECG and SKNA were recorded in a supine position for each patient, and they were asked to avoid unnecessary movement during the recording. Three Ag/AgCl electrodes were placed in the left subclavian, right subclavian, and right lower abdomen, and the sampling rate was 4 kHz.
2.3 Data process
2.3.1 Signal pre-processing
Due to the small amplitudes of ECG and SKNA, the signal is easily contaminated by various noises. Therefore, the signal quality is visually assessed before signal processing. Those episodes that are corrupted by severe background noise and cannot distinguish QRS complexes are eliminated. Afterwards, only 5-min segments with more than 90% high signal quality are reserved, and the ECG and SKNA are extracted from these segments by 10th-order Butterworth bandpass filters with cutoff frequencies of 0.5–150 Hz and 500–1,000 Hz, respectively. For further HRV analysis, the QRS complexes are identified by P&T method (Pan and Tompkins, 1985), and false and missing detection are calibrated artificially. To clearly label neural clusters, eSKNA was extracted by performing moving average (MA) and root mean square (RMS) on SKNA (Eqs. 1, 2). Referring to (Liu et al., 2021a), the window size and sliding step of MA are 100-ms and 2-ms, respectively.
[image: image]
[image: image]
where [image: image] is the array of input signal after MA; [image: image] is the kth sample of [image: image]; j is the number of [image: image]; w is the window size; s is the sliding step; [image: image] is the ith sample of the input signal; Fs is the sampling frequency; T is the duration in second of selected data.
In RMS calculator (Eq. 3), the [image: image] is extracted from [image: image] with a window size of 100-ms and a sliding step of 2-ms:
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where n is the number of samples in a window; [image: image] is the kth sample value of RMS; j is the number of samples of [image: image]; [image: image] is the ith sample value of the array [image: image].
The [image: image] is defined as eSKNA, and a threshold-based method is performed on it for SKNA bursts determination. The threshold is calculated as follows:
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where Baseline is the average of the lower 20% samples in the selected window; Min is the minimum of the selected window.
In order to analyze the effectiveness of VG features in quantifying ANS from UST segments, the 5-min signals were split into 10-s, 20-s, 30-s, 40-s, 50-s and 60-s segments, respectively. The burst load of each segment was calculated as the ratio of burst time to total time, and partitioned to 5 equal intervals from 0 to 1 ([0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0]). Then, the segments were marked as activated (burst load > 0) and inactivated (burst load = 0) according to the burst load. Thereafter, the HRV and VG analysis were conducted on these data. The flowchart of this paper is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | The flowchart of data process in this paper. MA and RMS mean the operation of moving average and root mean square, respectively.
2.3.2 Heart rate variation analysis
The time-domain features, frequency-domain features, and nonlinear features were extracted by the PhysioNet Cardiovascular Signal Toolbox (Vest et al., 2018). The time-domain analysis included sinus RR intervals-related features (mean (NNmean), standard deviation (SDNN), and root mean square difference (RMSSD)). The frequency-domain features consisted of the power in different frequency range (ultra-low frequency power (<0.003 Hz, uLF), very low frequency power ([0.003 Hz, 0.04 Hz), vLF), low frequency power ([0.04 Hz, 0.15 Hz), LF), high frequency power ([0.15 Hz, 0.4 Hz), HF), ratio of LF to HF (LFHF)). The nonlinear features consisted of the standard deviation of projection of the Poincaré Plot on the line perpendicular to the line of identity (y = −x, SD1), and approximate entropy (ApEn). The standard deviation of the projection of the Poincaré Plot on the line of identity (y = x, SD2) was not included in this study because it was not suitable for UST HRV analysis.
2.3.3 Visibility graph features extraction of envelope of SKNA
As a natural graph-theoretical description of nonlinear systems, VG can simply convert a time series into a scale-free network. The statistical measures from the constructed network can demonstrate the dynamic behaviors of the nonlinear systems, and have been proven to be related to the self-similarity and complexity of the time series (Bhaduri and Ghosh, 2016). Every data point of time series is mapped to a node in its associated VG network, and an edge between two nodes is connected if the corresponding time samples can view each other. Suppose the original time series is X, and the ith point of X is Xi. Two data points (ta, Xa) and (tc, Xc), at time ta and tc, are connected if and only if any other data (tb, Xb) between them (ta < tb < tc) satisfies the following criterion:
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The VG network are applied on eSKNA, and ten network measures (Pan and Tompkins, 1985; Hou et al., 2016; Vest et al., 2018; Xing et al., 2022b; Santos et al., 2022) are extracted for further analysis in this study:
2.3.3.1 Diameter
The longest shortest path between any two nodes in the network (Eq. 6).
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where Dij is the length of the shortest path between node i and node j.
2.3.3.2 Average node degree
The degree of a node in a graph is defined as the number of connected edges to this node, and the mean degree (Eq. 7) is the average value of all node’s degree in this graph (León et al., 2020).
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where N is the total number of nodes, and dn is the degree of node n.
2.3.3.3 Average shortest-path length
The shortest path is a reflection of transmission and communication in the graph, the average shortest path length (Eq. 8) is the average of shortest path over all couples of nodes (Hou et al., 2016).
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where N is the total number of nodes, and V is the set of N nodes.
2.3.3.4 Clustering coefficient
The cluster coefficient of a node in a graph is the ratio of all triangles involving that node to the number of connected triples centered on that node, and the cluster coefficient of a graph (Eq. 9) is the average of the cluster coefficient of all nodes (León et al., 2020).
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where ei is the actual number of edges between all the couples of neighbors of node i, and ki*(ki-1) is the maximum possible number of edges between all the ki neighbors of node i.
2.3.3.5 Average closeness centrality
Closeness centrality is the sum of the distances from a node to other nodes, representing the convenience and ease of connection between the focal node and other nodes (Zhang and Luo, 2017).
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2.3.3.6 Transitivity
The transitivity (Eq. 11) is the ratio between the triangle numbers and the connected triple numbers in a graph to obtain the global information of CC (León et al., 2020).
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2.3.3.7 Average degree centrality
Degree centrality is defined as the ratio between the number of nodes connected to the current node, and the total number of all nodes in the network (Zhang and Luo, 2017).
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2.3.3.8 Link density
Link density (Eq. 13) is the ratio between the number of edges and the maximum possible number of edges (N*(N-1)/2) (Liu et al., 2015).
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2.3.3.9 sMetric
The sMetric (Eq. 14) is the sum of products of degrees across all edges (Li et al., 2005).
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2.3.3.10 Graph energy
Graph Energy (Eq. 15) is defined as the sum of the absolute values of the real components of the eigenvalues ([image: image]) of the graph (Balakrishnan, 2004).
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3 EXPERIMENTS AND RESULTS
3.1 Comparison of heart rate variation and visibility graph on autonomic nerve system analysis
The eSKNA segments are converted into a scale-free graph by natural VG method. The typical 10-s eSKNA of CH and CO segments are illustrated in Figure 2A, and their corresponding VG complex networks are shown in Figures 2B,C, respectively. For clear demonstration, the communities of these complex networks are colorized according to their modularity classes by Gephi software. It can be seen that the amplitudes of CH eSKNA fluctuate smoothly, while there is a clear burst in CO eSKNA around about 6-s time point (Figure 2A). The communities of the CH complex network are dispersed as all intermediate peaks obstruct the visible range between the front and rear peaks (Figure 2B). Conversely, the CO complex network consists of several small communities crowded with a central community, since the burst can view almost all other nodes in the network (Figure 2C).
[image: Figure 2]FIGURE 2 | The typical eSKNA signals and their corresponding VG complex networks of CH and CO segments. (A) The typical eSKNA and their VG, (B) and (C) are the complex networks of CH and CO with colored communities.
To evaluate the validity of HRV and VG features from the 5-min signal, these features are normalized to [0, 1], and the comparisons between CH and CO for these features are illustrated in Figure 3. To further quantify the distribution differences between CH and CO, the WRS test is carried out for each feature. Significant difference (p < 0.05) between two groups is marked with red “*”, and extremely significant difference (p < 0.01) is marked with red “**“. In this paper, p values less than 0.05 were regarded as statistically significant for each test. Statistical analyses were performed using MATLAB (R2022a) on a PC with Intel® Core™ i7-7700 3.6 GHz processor and 32 GB RAM.
[image: Figure 3]FIGURE 3 | HRV and VG features between CH and CO. “*” stands for significant difference between two groups (p < 0.05) and “**” stands for extremely significant difference (p < 0.01). ANS Analysis Performance of VG on UST Segments.
It can be seen from Figure 3, the distributions of most HRV features between CH and CO are overlapped, indicating the difficulty to distinguish CH from CO by these features. In contrast, the distribution differences between CH and CO are evident in most VG features, validating the effectiveness of VG features in classifying CH from CO. In addition, almost all p-values calculated from VG features are < 0.01 (except Trans and Dia), while only SDNN, vLF and ApEn show significant difference in HRV features.
The ANS function assessment by HRV analysis is typically performed on either 5-min ECG recordings or nominal 24-h recordings, which limits its application in dynamic conditions, such as dynamic sympathetic assessment in athletes. To investigate the ANS analysis performance of these parameters on UST signals, the 5-min signals are split to 10-s, 20-s, 30-s, 40-s, 50-s and 60-s segments, respectively. In addition, these segments are marked as ANS activated and inactivated depending to whether they contain ANS bursts labeled from eSKNA. Note that segments without valid QRS complexes are removed. The final number of each data length is illustrated in Table 1. The distribution of each feature among different data length is compared and quantified by KW test. Furthermore, the total runtime of VG feature extraction for each data length is compared.
TABLE 1 | The number of data segments according to different data length, ANS status and burst load.
[image: Table 1]Figure 4 depicts the distribution differences of each feature (HRV and VG) for activated and inactivated segments under different data lengths. For almost all HRV features (except ApEn), the distribution for activated segments seldom changes with the data length increase, and the distribution for inactivated segments varies sightly in uLF, vLF and SD1. The ApEn for both activated and inactivated segments increases with data length expands. For VG features, the distributions for both activated and inactivated segments remain stable in CC, Trans, Dia and GE, and change slightly in aSPL and aCC. However, they decrease (increase) sharply with the data length increases in aND and aDC (sM).
[image: Figure 4]FIGURE 4 | The distribution of features (HRV and VG) for different data length. Effectiveness of HRV and VG on ANS-Load Determination.
To quantitatively characterize the stability of features (HRV and VG) in UST segments, their distribution differences (for activated and inactivated segments, respectively) in different data lengths (10-s, 20-s, 30-s, 40-s, 50-s and 60-s) are compared by KW test. The results are shown in Table 2. It is clear that the p-values of NNmean, SDNN, RMSSD, LF, HF, LFHF and SD1 are > 0.05 in both activated and inactivated segments, indicating that these features are not distributed differently across segments with different length. Similarly, the VG features of CC, Trans, Dia and GE also show no distribution differences in both activated and inactivated segments, as they all had p-values > 0.05. However, the p-values for vLF and ApEn of HRV features and aND, aDC, LD and sM of VG features are all < 0.01 for both groups, implying that their distribution varies significantly during data length increase.
TABLE 2 | The KW test results of feature distribution differences in different data lengths.
[image: Table 2]Although several features (HRV and VG) show stable performance in short-term segments, their efficiency still needs to be investigated to ensure their practical application. As we all known that the computational complexity of HRV features is very low, therefore, we only compare the running time of VG features under different data lengths. Figure 5 shows the histogram based on empirical cumulative distribution function and kernel density estimation of the running time for VG features extraction from different data lengths. The distribution is heavy-tailed in 10-s and 30-s segments, but appears approximately normal distribution in the remaining segments. The average time for each data length is around 15-s, 80-s, 210-s, 360-s, 565-s and 1,420-s, respectively. Obviously, the average runtime increases rapidly with data length expands and shows an exponential growth trend. The reason is that the nodes of the VG complex network increase with data length, resulting in a rapid growth of computational complexity for extracting features from the constructed adjacent matrix.
[image: Figure 5]FIGURE 5 | The running times of VG feature extraction under different data lengths.
In order to evaluate the capability of HRV and VG features in quantifying ANS-Load, the burst of each segment is determined by a threshold-based method. Furthermore, the burst load (ANS-Load) is extracted by calculating the ratio of the burst time to total time of the segment. The burst load is coarse-grained to 5 equal partitions from 0 to 1, the segment number of each partition under different data lengths is listed in Table 1. Then, the correlations between features and segment length under different burst load are quantified by Kendall rank correlation coefficient. As there are not enough ANS-Load in partitions [0.6, 0.8) and [0.8, 1.0], we only compare the correlation coefficient in ANS-Load among (0, 0.6).
The distributions between each HRV and VG feature and data lengths under different ANS-Load, associated with their mean values, are shown in Figure 6. In HRV features, the SDNN and LFHF (RMSSD, vLF, LF and HF) decrease (increase) with the ANS-Load increase in different data lengths, implying that the variation of ANS-Load would influence the time-domain and frequency-domain features of HRV. Meanwhile, almost all the VG features present an increasing or decreasing trend with the ANS-Load increase. The reason may be that the increased autonomic activity is reflected in increased bursts in eSKNA, resulting in the variation of connections between two nodes.
[image: Figure 6]FIGURE 6 | The distributions between each HRV and VG features and data lengths under different ANS-Load and their corresponding mean values.
The Kendall rank correlation coefficients for HRV and VG features are illustrated in Figure 7, and the red “*” and “**” represent p-values < 0.05 and < 0.01, respectively. In this study, we only focus on the degree of correlation other than its direction, therefore the positive correlation and negative correlation share the same color in Figure 7. It is obvious that there is a weak correlation between HRV features and ANS-Load, most correlation coefficients are around 0, and the maximum is 0.273 for uLF in 60-s segment. On the contrary, the VG features show a stronger correlation with ANS-Load, especially the correlation coefficient of aND reaches 0.526 in 60-s. In addition, the absolute values of the correlation coefficients are all above 0.13. Besides, only few HRV features show significant correlation between features and ANS-Load (i.e., NNmean in 10-s, LFHF in 20-s, vLF in 40-s). However, almost all the correlations between VG features and ANS-Load are extremely significant, indicating the potential of VG features for ANS-Load quantification.
[image: Figure 7]FIGURE 7 | The Kendall rank correlation coefficients between features and segment length under different burst load. “*” stands for significant correlation between features and ANS-Load (p < 0.05) and “**” stands for extremely significant correlation (p < 0.01).
4 DISCUSSION
A VG and SKNA based autonomic nervous activity analysis method was proposed in this paper. SKNA overcomes the sinoatrial level limitations of traditional HRV analysis, and a number of SKNA-derived metrics had been proposed for SNA quantification. However, the noise-susceptibility of these metrics required new methods for quantitatively ANS assessment, especially for short-time segment application. As a nonlinear analysis method, VG offered a new insight into ANS assessment in short-term segments and ANS-Load quantification.
The unique contribution of this paper was the first application of VG on eSKNA for ANS assessment. HRV was the most widely used ANS assessment method, and its indices from time-domain, frequency-domain and nonlinear-domain had been proved to be biomarkers for cardiac arrhythmias, brain injury and emotion (Fyfe-Johnson et al., 2016; Constantinescu et al., 2018; Galea et al., 2018). However, HRV from UST data could not fully show the nerve activity. The newly proposed noninvasive cardiac SNA assessment method (SKNA) and its derived metrices has been widely used in clinical events, such as acute myocardial infarction (He et al., 2020), neurologic recovery patients (Liu et al., 2021a), and sleep apnea (Kutkut et al., 2021). Nevertheless, these SKNA-derived metrics could only qualitatively analyze ANS and could not quantitatively reflect ANS intensity or ANS-Load. Thanks to the nonlinear dynamics analysis method–VG complex networks, we could evaluate the ANS from network aspect. Although many previous studies had investigated and compared VG and HRV in meditation analysis (Bhaduri and Ghosh, 2016), sleep assessment (Hou et al., 2016) and congestive heart failure (Gao et al., 2017), this paper was the first to employ VG on eSKNA for ANS assessment. The comparison of HRV and VG features between CH and CO (Figure 2) showed that VG features are superior to HRV features in the ANS analysis. There were no significant distribution differences between CH and CO for most HRV features, while almost all VG features were clearly distinguishable between the two groups.
The stability of HRV and VG features in UST segments were compared by quantifying their distribution differences against different data lengths. Most HRV features remained stable for both activated and inactivated segments under all data lengths. In addition, the time-domain features (NNmean, SDNN, RMSSD) and most frequency-domain features (LF, HF, LFHF) manifested conformity in these segments, indicating that most UST HRV features could be used as surrogates for short-term HRV features. These results were consistent with Castald’s (Castaldo et al., 2019) investigation that NNmean and HF displayed consistency across all of the excerpt lengths (30 s, 1 min, 2 min, 3 min, and 5 min) for mental stress assessment. However, Jin Woong et al. (Kim et al., 2021) studied UST HRV in non-static conditions by comparing UST HRV features (10, 30, 60, 120, 180, and 240-s) with those from 5-min HRV, the results showed that UST HRV variables derived from the static condition could not applied to the non-static conditions of daily life. Similarly, the CC, Trans, Dia and GE of VG features remained stable in both activated and inactivated segments across all data lengths, implying that these VG features could reveal the dynamical changes caused by the adjustment of autonomous neural system from UST segments. Likewise, Jiang et al. (2013) applied VG to heartbeat interval time series for meditation investigation, and they also tested the stability of VG features on different length data, the results showed that the data length had no prominent effect on the VG analysis. The reason may be that the degree distribution persisted the same form for different length of data in any activated and inactivated segments.
HRV had been used as a biomarker for SNA measurement, but seldom been used for quantifying ANS-Load. The correlations between HRV features and ANS-Load were studied at different data lengths, and the comparison results showed that time-domain and frequency-domain features (SDNN, LFHF, RMSSD, vLF, LF and HF) had the potential to quantify ANS in UST segments. From a multimodal perspective, Debnath et al. (2021) designed a template matching algorithm to calculate scaled and stretched HRV features, associated with other features, for sympathetic and parasympathetic parameters determination. However, the acquisition of these employed features was complicated, and it still required more other biomarkers or calculated features to improve the quantification accuracy for practical clinical applications. The SKNA had been applied to evaluate the ANS as a non-invasive method in many clinical applications (Zhang et al., 2022), and many SKNA-derived metrices (e.g., aSKNA, bSKNA) had been validated and used for ANS qualification. Nevertheless, these parameters were susceptible to noise. In this paper, the VG features on eSKNA were extracted and compared across different ANS-Load, the results showed that almost all the VG features were correlated to ANS-Load. The link-related features (CC, aPL, Dia and LD) increased as ANS-Load grow, while the degree-related features (aCC, Trans, aND, aDC and sM) presented a decreasing trend across increasing ANS-Load. The increase in SNA intensity was manifested as the rising number and duration of bursts in eSKNA, which leads to a growth in the possibility of links between any two nodes in the VG. However, these links only concentrated on certain nodes (peak points of bursts), it meant that the node degrees of the entire VG would be aggregated into these nodes, resulting the increase of community numbers and the decrease of average degree. In addition, the total number of links grow exponentially with the total number of nodes in the network, while the degree distribution did not change with the node numbers (Tessone et al., 2011).
One limitation of our study is the small number of participants, further studies with larger cohorts are needed to confirm and strengthen these results. Another limitation is the VG features are only compared with HRV features, its validity still needs comparison with demographic information and laboratory tests for practical clinical applications. In addition, the robustness against noise of this method needs more efforts.
5 CONCLUSION
In summary, a VG on eSKNA based autonomic nervous activity analysis method was proposed in this paper. The comparison results of the HRV and VG features on CH and CO segments showed the superiority of VG features in ANS analysis. Furthermore, the ANS analysis performance of VG features on eSKNA signals with different data lengths demonstrated the stability of VG features (aND, aDC, LD and sM) in discriminating activated and inactivated segments at different data lengths. In addition, the capability of HRV and VG features to quantify SNA intensity was also evaluated, and the results showed that VG features had the potential to determine ANS-Load.
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Extreme bradycardia (EB), extreme tachycardia (ET), ventricular tachycardia (VT), and ventricular flutter (VF) are the four types of life-threatening arrhythmias, which are symptoms of cardiovascular diseases. Therefore, in this study, a method of life-threatening arrhythmia recognition is proposed based on pulse rate variability (PRV). First, noise and interference are wiped out from the arterial blood pressure (ABP), and the PRV signal is extracted. Then, 19 features are extracted from the PRV signal, and 15 features with highly important and significant variation were selected by random forest (RF). Finally, the back-propagation neural network (BPNN), extreme learning machine (ELM), and decision tree (DT) are used to build, train, and test classifiers to detect life-threatening arrhythmias. The experimental data are obtained from the MIMIC/Fantasia and the 2015 Physiology Net/CinC Challenge databases. The experimental results show that the DT classifier has the best average performance with accuracy and kappa coefficient (kappa) of 98.76 ± 0.08% and 97.59 ± 0.15%, which are higher than those of the BPNN (accuracy = 94.85 ± 1.33% and kappa = 89.95 ± 2.62%) and ELM (accuracy = 95.05 ± 0.14% and kappa = 90.28 ± 0.28%) classifiers. The proposed method shows better performance in identifying four life-threatening arrhythmias compared to existing methods and has potential to be used for home monitoring of patients with life-threatening arrhythmias.
Keywords: pulse rate variability, arterial blood pressure, cardiovascular diseases, life-threatening arrhythmias, decision tree, intelligent recognition
1 INTRODUCTION
In recent years, cardiovascular diseases have the highest mortality rate and are the “number one killer” of human beings (Roberts and Fair 2021). Among them, acute cardiovascular diseases such as myocardial infarction (MI) and cerebral infarction (CI) have the high suddenness and lethality (Du et al., 2021). If MI and CI are not effectively treated within a few hours after the sudden onset, it will directly lead to the patient’s death.
Life-threatening arrhythmias are a common symptom in patients with CI and MI, and the common life-threatening arrhythmias include EB, ET, VT, and VF (Deaconu et al., 2021), and the definitions of those four life-threatening arrhythmias are given in Table 1 according to the beating rhythm of the heart rate (Alinejad et al., 2019; Paliakaitė et al., 2019). In the initial period of suddenness of life-threatening arrhythmias, patients sometimes experience sudden heart pain that is slight and rapid and disappears after a short rest such as sitting or lying down, which is called “transient” (Chorin et al., 2021). The “transient” of life-threatening arrhythmias is often ignored by patients, which can lead to the sudden illness of dangerous MI, CI, and other acute cardiovascular diseases. On the eve of acute cardiovascular diseases such as MI and CI, significant abnormal changes in physiological parameters such as electrocardiographic (ECG) and blood pressure occur (Jahmunah et al., 2021; Shuvo et al., 2021). Moreover, if these abnormalities can be monitored in time, then patients can be warned of the risk so that they can seek medical help, which would significantly reduce the rate of death from acute cardiovascular disease.
TABLE 1 | Types and definition of four life-threatening arrhythmias.
[image: Table 1]At present, the main detection method is hospital ECG, while the acquisition of ECG signal requires multiple electrodes and cable connection and the process needs professional medical staff’s guidance. If one electrode is wrongly attached, the whole signal is no longer valuable. In addition, the prolonged electrode connection can cause skin irritation (Chou et al., 2019). It is difficult for short-time ECG monitoring to effectively recognize life-threatening arrhythmias with transient; thus, long-term tracking and detection of physiological signals is required to achieve recognition of acute cardiovascular disease outbreaks.
The beat rhythm of the heart is transmitted to the pulse with the blood, and both ECG and pulse period sequences can effectively reflect heartbeat rhythm changes (Mitchell and Schwarzwald, 2021). Heart rate variability (HRV) is calculated from ECG, which reflects the rate of the heartbeat and is used to assess the autonomic nervous system of the heart (Ishaque et al., 2021); thus, HRV can be used for the diagnosis of cardiovascular diseases (Saul and Valenza, 2021). The PRV is extracted from the ABP signal, which reflects the subtle changes in the vascular pulse cycle (Jan et al., 2019). Moreover, the PRV can be utilized to assess cardiovascular autonomic activity (Mejía-Mejía et al., 2021). Studies have shown that the PRV extracted from the ABP signal and HRV obtained from the ECG signal have a strong correlation and are interchangeable in cardiovascular disease monitoring in the supine or resting state (Mejía-Mejía et al., 2020; Hejjel and Béres, 2021). Compared with the ECG signal, the ABP signal acquisition does not require the affixing of multiple electrodes and can be easily affixed to multiple parts of the body, which is easy to operate and can be self-measured (Jan et al., 2019; Mejía-Mejía et al., 2022). Thus, ABP signals are widely used in wearable devices such as bracelets and smart watches (Zhu et al., 2021). The study of the life-threatening arrhythmia detection method based on the PRV signal is expected to be used for home monitoring of life-threatening arrhythmias.
Therefore, based on the PRV signal, this study studies techniques for the recognition of four life-threatening arrhythmias: EB, ET, VT, and VF. First, the interference and noise in the pulse signal are filtered out, and then, the PRV signal is extracted from ABP. Next, the parameters of physiological and pathological changes caused by these four life-threatening arrhythmias are extracted from the PRV signal, and the parameters with high importance and contribution are obtained as feature vectors by RF to train classifiers of BPNN, ELM, and DT to detect these four life-threatening arrhythmias.
This study is structured as follows: Section 2 gives the experimental data we used and describes the process and methods of the experiments; Section 3 describes the experimental results, including signal preprocessing, PRV extraction, feature parameter extraction and dimensionality reduction, and classification results; the discussion of the experimental results is given in Section 4; and the conclusions of the study are presented in Section 5.
2 MATERIALS AND METHODS
2.1 Materials
The experimental data consisted of two groups, both of them from the international physiological signal database: PhysioBank. One group has 10 young (aged 21–31) and 10 elderly (aged 70–85) healthy subjects with equal males and females, which comes from the sub-database “MIMIC/Fantasia” (Iyengar et al., 1996; Goldberger et al., 2000). The other group has patients with four life-threatening arrhythmias consisting of 17 EB, 39 ET, 47 VT and 6 VF subjects, which comes from the sub-database “2015 Physiology Net/CinC Challenge” (Clifford et al., 2015).
The data of healthy subjects: the data of healthy subjects are the PRV signal extracted from the ABP signal in the MIMIC/Fantasia database. Before the data recording, every non-smoking subject underwent a physical examination, and only the healthy subjects were allowed to participate. In addition, each recording includes the continuous ECG, respiration, ABP signals with a sampling rate of 250 Hz, and a duration of 2 h.
The data of patients with four life-threatening arrhythmias: the data are the PRV signal extracted from the ABP signal in the 2015 Physiology Net/CinC Challenge database, which was recorded from patients in the intensive care unit of hospitals. During data recording, two ECGs and one ABP signal were collected from the patients, and all signals were sampled at 250 Hz with a duration of 5 or 5.5 min.
The simulation software is MATLAB 2020b, installed on an Intel(R) Core (TM) i5-6300HQ CPU at 2.30 GHz, Windows-10 64-bit operating system, and installed on a laptop with 8 GB RAM.
2.2 Methods
Figure 1 depicts the processing of the intelligent recognition of those four life-threatening arrhythmias, which includes six steps: the preprocessing of the ABP signal, extraction of PRV, extraction of features, dimensionality reduction of features by RF, life-threatening arrhythmia recognition, and evaluation of results. The details are displayed in the following subsections.
[image: Figure 1]FIGURE 1 | Process of four life-threatening arrhythmias.
2.2.1 The preprocessing of the arterial blood pressure signal
Noise such as electromyographic (EMG) interference, alternating current (AC) interference, and baseline drift can be generated in the ABP signal acquisition, for example, the ABP signal from an ET patient with noise is displayed in Figure 2. The purpose of ABP signal preprocessing is to wipe out these noises and obtain a clean ABP signal in order to improve the accuracy of PRV extraction. According to the range of frequencies, an integer coefficient notch filter with a stop frequency of 0 Hz, 50 Hz, and its integer multiples are used for de-noising the AC interference and the baseline drift, and an integral coefficient low-pass filter is utilized to eliminate the EMG interference in this study (Chou et al., 2020).
[image: Figure 2]FIGURE 2 | ABP signal of an ET patient with noise.
The transfer function F1(Z) of the integer coefficient notch filter is,
[image: image]
In Equation 1, FAP(Z) is the transfer function of the all-pass filter; FBP(Z) is the transfer function of the band pass filter; N is the order of the filter; R and P are the order of the numerator polynomial and denominator polynomial of the transfer function, respectively, where P = fs/f1, fs is the sampling rate of the signal and is 250Hz and f1 is the notch frequency and is 50 Hz here; and Q is the gain of the filter (i.e., the amplification) and should be 2N, which is proportional to the steepness of the notch band, and Q = R/P. In this study, N = 2, P = 5, and Q = 64 by trial and error, and R = PQ = 320. Therefore, Equation 1 becomes
[image: image]
Then, Equation 3 is the difference equation, which is calculated to eliminate the ABP signal containing the AC interference and the baseline drift in real time by Equation 2.
[image: image]
where x1(n) is the latest data of the ABP signal, x1 (n-r) is the r-th sampling data before x1(n), and y1(n) is the output of the integer coefficient notch filter.
The frequency response of the integer coefficient notch filter is
[image: image]
The frequency response is illustrated in Figure 3. The filter with notch frequencies of 0Hz, 50Hz, and 100 Hz can effectively de-noise the AC interference and the baseline drift, and it has linear phase in the passband.
[image: Figure 3]FIGURE 3 | Frequency response of the integer coefficient notch filter.
The transfer function F2(Z) of integer coefficient low-pass filter is
[image: image]
where N is the order of the filter, fs is the sampling frequency, f2 is the first-order cut-frequency, and C must be an integer and is fs/f2. Here, fs = 250Hz, f2 = 62.5Hz, N = 2, so C = 4. Therefore, Equation 5 becomes
[image: image]
Then, as displayed in Equation 7, the difference equation is calculated to de-noise the ABP signal containing the EMG interference in real time.
[image: image]
where x2(n) is the latest datum of the ABP signal, x2 (n-c) is the c-th sampling datum before x2(n), and y2(n) is the output of the integer coefficient low-pass filter.
The frequency response of the integer coefficient low-pass filter is
[image: image]
The frequency response is illustrated in Figure 4. The filter with a stop band frequency of 62.5 Hz can effectively suppress the EMG interference, and it has linear phase in the passband.
[image: Figure 4]FIGURE 4 | Frequency response of the integer coefficient low-pass filter.
2.2.2 The extraction of pulse rate variability
Since the cardiac cycle corresponds to the pulsation period, one heartbeat produces one pulse wave. An ABP signal consisting of a series of pulse waves (the red curve) is displayed in Figure 5. The start and end points are two pulse troughs (the solid green dots) corresponding to a complete pulse wave, respectively, where the end point of one pulse wave is the start point of the next pulse wave. In general, the PRV can be calculated by computing the first-order difference between the start points and end points, that is, pulse-to-pulse intervals (PPIs). However, it is not easy to detect troughs due to the small amplitude of the waves corresponding to the pulse troughs, while the waves corresponding to the pulse peaks (the blue hollow cycle) have notable characteristics and are easy to detect. Therefore, in this study, the frequency domain extraction method based on sliding window iterative discrete Fourier transform (SWIDFT) is used to detect the wave peaks (Chou et al., 2014), which can be corrected using a manual calibration method if there are incorrect or missing sampling points. Two adjacent pulse peaks are utilized as the boundary to divide the PRV signal, which is calculated by the time interval between two adjacent peaks, and the equation is as follows
[image: image]
where t is the sampling time of the ABP signal, and fs is the sampling frequency of the ABP signal.
[image: Figure 5]FIGURE 5 | ABP signal.
2.2.3 Pulse rate variability feature extracted
So far, the main methods for analyzing physiological signals include time domain analysis, frequency domain analysis, and nonlinear domain analysis, from which some features are extracted to describe changes in heartbeat rhythm for the diagnosis of cardiovascular diseases (Sluyter et al., 2019; Mandal et al., 2021). In this study, 19 features were extracted from the PRV signal based on the description of heart rhythm changes.
2.2.3.1 Feature extraction based on time domain analysis
The PRV signal is quantified in the time domain, and some useful information is extracted from the PRV signal by the statistical analysis method to analyze the temporal variation among the PRV signal and obtain the abnormalities and stability of the cardiovascular system. We extracted seven indexes in the time domain, which are calculated as follows.
1) Mean: the average of the PRV signal, and the equation is
[image: image]
where S(i) is the ith datum of the PRV signal, and n is the length of the PRV signal.
2) Std: the standard deviation of the PRV signal, which can reflect the dispersion of the Mean and the datum of the PRV signal. The equation is
[image: image]
3) RMSD: the root mean square of PRV signal’s difference, which can reflect the degree of rapid change in the PRV signal. The equation is
[image: image]
4) nRMSD: the normalized RMSD, and the equation is
[image: image]
5) PNN40: the percentage of difference in time intervals between adjacent sampling points of a PRV signal greater than 40 ms. The higher the value, the higher the nervous system tension. The equation is
[image: image]
where NN40 is the number of time intervals between two adjacent sampling points in a PRV signal that exceed 40 ms, and TotalNN is the number of sampling points intervals of a PRV signal.
6) PNN70: the percentage of difference in time intervals between adjacent sampling points of a PRV signal greater than 70 ms. The equation is
[image: image]
where NN70 is the number of time intervals between two adjacent sampling points in a PRV signal that exceed 70 ms.
7) Mid: the median of the PRV signal, which represents a value in the PRV signal distribution that can divide the PRV signal into two groups. For a sequence of PRV signal from small to large, when n is an odd number, the equation is
[image: image]
When n is an even number, the equation is
[image: image]
8) IQR: the interquartile range of the PRV signal, which describes the dispersion of the PRV signal. The equation is
[image: image]
where S75 is the third quartile, and S25 is the first quartile.
9) RMSD_APM: the root mean square of amplitude’s (APM) difference, which can reflect the degree of rapid change in APM. The calculation method is the same as Equation 12.
2.2.3.2 Feature extraction based on frequency domain analysis
The power spectrum is calculated using the autoregressive (AR) model for the PRV signal, from which the features are extracted according to the frequency range to reflect the stability of cardiovascular activity within the human body and to obtain information about the variability of the cardiovascular system (Fallet et al., 2019).
1) LF_HF: the ratio of low frequency (LF) to high frequency (HF), which can reflect a balanced state of sympathetic and parasympathetic tone.
[image: image]
where the range of LF is 0.04–0.15, and the range of HF is 0.15–0.4.
2.2.3.3 Feature extraction based on nonlinear domain analysis
The methods of nonlinear domain analysis are Poincaré plot (Nordin et al., 2019) and entropy (Rohila and Sharma, 2019), where the Poincaré plot can be approximated as an ellipse with the horizontal axis of a single time interval of the PRV signal and the vertical axis of time interval of two adjacent PRV signals, which can be utilized to reflect the variation of different PRV signals. The following are some relevant features of the calculation.
1) Sd1:Sd2: the ratio of the long half-axis (Sd1) to the short half-axis (Sd2) of the ellipse. The equation is
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where Sd1 is defined as
[image: image]
and Sd2 is defined as
[image: image]
2) Se: the area of the ellipse is
[image: image]
3) TPR_PR: the turning point ratio of the PRV signal, which can measure the randomness of the PRV signal. The equation is
[image: image]
where Num is used to count the number of turning point.
4) ShE: the Shannon entropy of the PRV signal, and the equation is
[image: image]
where P(i) is the probability of the i-th datum in the PRV signal.
5) SamE_PR: the sample of the PRV signal, and the calculation is as follows:
[image: image]
where Bm(r) is the average probability of the PRV signal when the embedding dimension is m, and Bm+1(r) is the average probability of the PRV signal when the embedding dimension is m+1. Here, m is equal to 2.
6) CSampEn: the coefficients of sample entropy, and the calculation is as follows (Eerikäinen et al., 2018)
[image: image]
where r is the tolerance and is equal to 0.25 here, and S is the PRV signal in the buffer.
7) PE_PR: the permutation entropy of the PRV signal, and the equation is
[image: image]
where P(i) is the probability of occurrence of mode i.
8) SamE_APM: the sample entropy of APM, and the calculation method is the same as that of Equation 26.
9) TRP_APM: the turning point ratio of APM, and the calculation method is the same as that of Equation 24.
2.2.4 Feature dimensionality reduction
In this study, a method of RF is used to measure the importance of the feature parameters and to reduce the feature dimensionality with less information loss (Qi, 2012), which will make the subsequent recognition of life-threatening arrhythmias more efficient without overfitting due to too many features. The method of RF in the “neural network toolbox” of MATLAB 2020b is exploited to calculate the importance of feature parameters for feature dimensionality reduction. The related functions are as follows:
RF_model = classRF_train (p_train, t_train, ntree, mtree, extra_options);
Feature_measure = RF_model.importance.
The function “classRF_train” is engaged to train the RF model. The input parameters p_train and t_train are the features and labels of the training set, respectively. The input parameter ntree is the number of trees; here, it is 100. The input parameter mtree is the number of predictors used for segmentation at each node; here, it is a rounding down for the number of features, that is, 4. The input parameter extra_options is used to control the RF model.
The function “RF_model.importance” allows to calculate feature weights using accuracy and Gini index. The accuracy and Gini index reflect the importance of the features, and the larger the value of accuracy and Gini index, the more important the feature is.
2.2.5 Life-threatening arrhythmia classification
In this study, supervised learning methods, which include BPNN, ELM, and DT, are engaged to design classifiers to identify four life-threatening malignant arrhythmias. The BPNN and DT classifiers are built, trained, and tested with the “neural network toolbox” in MATLAB 2020b. In addition, the classification performance is analyzed using Kappa coefficients, accuracy, and time consumption.
2.2.5.1 BPNN classifier
A BPNN classifier consists of an input layer, one or more hidden layers, and an output layer. After entering the training set into the input layer, the training set is calculated by weights and thresholds in the hidden layer, and the result is transported to the output layer to calculate a prediction value. If the error between the predicted value and the expected value is too large, the error is passed to the input layer and calculated again until the predicted value and the expected value meet the requirements (Hamdani et al., 2022). The BPNN classifier is composed of the following three functions:
Net = feedforwardnet (option);
Net_BP = train (Net, p_train, t_train);
Error_sim_BP = sim (Net_BP, p_test).
The function “feedforwardnet ( )” is utilized to build the BPNN classifier. The option is the number of nodes in every layer of the BPNN; here, the number of nodes in one input layer, two hidden layers, and one output layer is 5, 15, 15, and 1, respectively. In addition, the number of training sessions, the minimum error of the training target, and the learning rate are set to 3,000, 0.001, and 0.1, respectively. The training function and the transfer function of the second hidden layer use “BFGS Quasi-Newton” and “sigmoid,” respectively. The parameter Net is the design result of the classifier.
The function “train ( )” is exploited to train the BPNN classifier. The input parameters p_train and t_train are the features and labels of the training set, respectively. The output parameter Net_BP is the predicted value of the BPNN after training.
The function “sim ( )” is engaged to test the BPNN classifier. The feature of the test set p_test is compared with the predicted value until the training parameters are satisfied, and the classification result Error_sim_BP is obtained.
2.2.5.2 ELM classifier
The ELM classifier has the same structure as the BPNN classifier, and they both belong to the feed-forward neural network, while the hidden layer of ELM classifier is one. The weights and thresholds of the BPNN classifier are constantly changing, while the ELM classifier generate the unchanged weights and thresholds initially, which will save a lot of time compared to the training of BPNN classifier (Wang et al., 2021).
The key points in the building and training ELM classifier are the calculation of the connection weights (IW) between the hidden layer and the input layer, the thresholds (B) of the hidden layer neurons and the connection weights (LW) between the hidden layer and the output layer. Here, the number of nodes in the input layer, hidden layer, and output layer are 12, 300, and 5, respectively. In addition, IW and B are randomly generated by function “rand ( )” in MATLAB 2020b, where IW = rand (300,15) * 2–1, B = rand (300,1), and LW is calculated with the help of the function “pinv ( ).” The predicted value Y is computed by performing the classification using the sinusoidal transfer function based on parameters IW, B, and LW, and Y is equal to the inverse matrix of the inverse matrix of the output in the hidden layer (H) by LW; then, the maximum value of all the features of Y is used as the label, marked as 1, the others are 0, and the new predicted value is output.
2.2.5.3 DT classifier
The DT has a top-down structure, growing down from the root to the nodes in a certain order to make a decision, and getting results at the leaves (Charbuty and Abdulazeez, 2021). The two functions of the DT classifier are as follows:
Ctree = fitctree (p_train, t_train);
T_sim_tree = predict (Ctree, p_test).
The function “fitctee ( )” is exploited to build and test the DT classifier, and the output parameter Ctree is the trained decision tree. The function “predict” is utilized to test the trained decision tree. Here, the feature space of the training and testing sets for the input parameters p_train, t_train, and p_test is different from that of BPNN and the ELM classifiers, which should be the number of samples ×feature properties.
3 RESULTS
3.1 The preprocessing results
After de-noising the ABP signal using an integer coefficient notch filter and an integer coefficient low-pass filter, a clean ABP signal is obtained. Figure 6 displays the ABP before and after filtering for an ET patient. The AC interference and baseline drift are presented in Figure 6A, and the red box of Figure 6A is enlarged to Figure 6B in order to clearly observe these noises. It can be observed that the AC interference and the baseline drift have been wiped out in Figure 6C, the EMG interference has been eliminated in Figure 6D based on Figure 6C, and it can be clearly observed that the burr is eliminated in Figure 6C.
[image: Figure 6]FIGURE 6 | ABP signal before and after filtering for an ET patient. (A) ABP signal before filtering. (B) Enlargement of the red box (A). (C) De-nosing the ABP signal by an integer coefficient notch filter. (D) De-nosing the ABP signal obtained (C) by an integer coefficient low-pass filter.
3.2 Pulse rate variability extraction results
The results of Peaks in subjects extracted from the ABP signal of different groups by the methods of SWIDFT and manual calibration are illustrated in Figure 7. Also, it can be observed that the method is highly accurate and robustly stable, which can be engaged effectively for PRV calculations.
[image: Figure 7]FIGURE 7 | Peaks of ABP signal extracted. (A) Peak detection of a healthy young subject. (B) Peak detection of a healthy old subject. (C) Peak detection of an EB subject. (D) Peak detection of an ET subject. (E) Peak detection of a VT subject. (F) Peak detection of a VF subject.
The PRV results of subjects extracted based on the Peaks detection are illustrated in Figure 8, from which it is obvious that the amplitudes of those PRV signals are different. The PRV signals’ average of healthy young, healthy old, EB, ET, VT, and VF are 75.902 beat per minute (bpm), 60.282 beat per minute (bpm), 44.462 bpm, 137.598 bpm, 112.760 bpm, and 84.714 bpm, respectively. The average heartbeat of EB is the lowest, while that of ET is the highest. The average heartbeat of VF is higher than that of the EB subjects and lower than that of the VT subjects.
[image: Figure 8]FIGURE 8 | PRV extracted. (A) PRV of a healthy young subject. (B) PRV of a healthy old subject. (C) PRV of an EB subject. (D) PRV of an ET subject. (E) PRV of a VT subject. (F) PRV of a VF subject.
3.3 Feature extraction results
A total of 19 features (defined in Section 2.2.3) were extracted from the PRV signal, and the statistical results of the features are presented as “mean ± standard deviation” in Table 2. In total, we extracted the 143853 PRV signal from the ABP signal, for which we calculated a feature vector of 19 × 139719. Among them, the feature vectors for healthy, EB, ET, VT, and VF subjects are 19 × 93516, 19 × 6475, 19 × 16124, 19 × 22083, and 19 × 1521, respectively.
TABLE 2 | Results of feature extraction.
[image: Table 2]3.4 Feature dimensionality reduction results
To reduce the complexity of the algorithm without affecting the accuracy as much as possible, the features extracted from the PRV signal need to be dimensionalized by the method of RF.
The magnitude of the features calculated with RF is displayed in Figure 9, the mean decrease of accuracy is given in Figure 9A, and the mean decrease of Gini index is given in Figure 9B. For each feature, the trend of the Gini index and accuracy is essentially the same, which ensures the correctness of feature importance on both sides. The feature values of the accuracy and Gini index are illustrated in the third and fourth columns of Table 3. Table 3 displays the result of feature dimensionality reduction with RF, and the statistical results of healthy and four life-threatening arrhythmia patients are shown in column 2. According to Figure 8 and the feature values of accuracy and Gini index, 15 feature parameters are selected, which contains most of the information about the PRV signal. In addition, the results of feature selection (h) shows in the last column of Table 3, where h = 1 is the feature accepted and h = 0 is the feature rejected. Therefore, in this study, 15 features can be exploited to detect life-threatening arrhythmias, and the feature vector becomes 15 × 139719.
[image: Figure 9]FIGURE 9 | Magnitude of feature. (A) Mean decrease in accuracy. (B) Mean decrease in the Gini index.
TABLE 3 | Results of feature dimensionality reduction with RF.
[image: Table 3]3.5 Classification results
In this study, kappa coefficients (Islam et al., 2018) and accuracy (Sabut et al., 2021) were exploited to calculate the average performance of supervised learning to recognize the life-threatening arrhythmia results. The accuracy is calculated as follows
[image: image]
where the parameters “TN,” “FP,” “TP,” and “FN” are true negative, false positive, true positive, and false negative of the classification result, respectively.
The kappa coefficient (kappa) is calculated as follows
[image: image]
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Moreover, the kappa(i) is utilized to evaluate the average performance of the classification results for the healthy and the four life-threatening arrhythmia subjects, and the i is the label of five types of subjects.
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where “p1” is the rate of correct classification, “p2” is the rate of incorrect classification, “Qtt” is the sum of elements on the diagonal of the column matrix, “r” is the number of features, “M” is the number of classes, and “Qt+” and “Q+t” are the sum of elements on tth row and column, respectively. Here, “r” and “M” are equal to 15 and 5, respectively. The kappa∈[-1,1], and the closer the value to 1, the better the classification result.
In Table 3, 15 features were selected by RF to form the feature vector. Therefore, the size of the feature vector becomes 15 × 139,719. We randomly selected 80 and 20 percent of the features as the training set and the test set, respectively. The features of the training and test sets were randomly changed 100 times to minimize the influence of input data differences, and the procedure was run 100 times in order to verify the classification accuracy of BPNN, ELM, and DT. The results of classification performance are displayed as “mean ± standard deviation” in Table 3, and 1, 2, 3, 4, and 5 are the labels for healthy, EB, ET, VT, and VF subjects, respectively.
As demonstrated in Table 4, the average performance of the classifier was verified with accuracy and kappa coefficient, whose result of BPNN is 94.85 ± 1.33% and 89.95 ± 2.62%, that of ELM is 95.05 ± 0.14% and 90.28 ± 0.28%, and that of DT is 98.76 ± 0.08% and 97.59 ± 0.15%. Therefore, the DT classifier has the best average performance in identifying those four life-threatening arrhythmias. In addition, the time consumption of BPNN is 100.58 ± 26.49 s, that of ELM is 8.63 ± 0.22 s, and that of DT is 1.12 ± 0.09 s. In brief, the performance of the DT classifier is optimal in the detection of the four arrhythmias. For identifying these life-threatening arrhythmias with the DT classifier, healthy subjects have the highest average performance with kappa (1) of 99.94 ± 0.05%, and VF patients have the lowest average performance with kappa (5) of 77.87 ± 2.39%. In addition, the average performance to detect EB, ET, and VF are all over 95.00%. With regard to time consumption, the DT and ELM classifiers take significantly less time than the BPNN classifier, which is because the BPNN classifier needs to constantly adjust the weights and thresholds.
TABLE 4 | Classification results.
[image: Table 4]4 DISCUSSION
In this study, we propose a method to recognize four life-threatening arrhythmias based on the PRV signal calculated from the ABP signal of 2015 “PhysioNet/CinC” and “Fantasia” databases. A total of 19 features were extracted, and 15 of them were selected after feature dimensionality reduction to train and test the classifier. It can be illustrated that the DT classifier has the best average performance with accuracy and kappa of 97.59 ± 0.15% and 99.94 ± 0.05% in Table 4, respectively.
Figure 10 presents the ABP and PRV signals in different types of patients, where the green line is the standard of whether the disease is present or not, and the EB (1), EB (2), ET (1), VT (1), and VF (1) are the signals of those four life-threatening burst periods. In general, the sudden segment signals EB (1), EB (2), ET (1), VT (1), and VF (1) in patients are used for the recognition of life-threatening arrhythmias. However, since the “transient” of life-threatening arrhythmias can paralyze the patient and the signal can change rapidly and return to normal values, it is more important to confirm for the patient before the burst, which can alert the patients and send them to the hospital in time. The method we used detects not only the burst segment signal but also the normal segment signal before and after the burst, that is, the complete PRV signal in Figure 10, which is effective in identifying episodes of life-threatening arrhythmias.
[image: Figure 10]FIGURE 10 | ABP and PRV signals of patients. (A) ABP and PRV signals of a patient with EB. (B) ABP and PRV signals of a patient with ET. (C) ABP and PRV signals of a patient with VT. (D) ABP and PRV signals of a patient with VF.
So far, some researchers have studied the recognition of life-threatening arrhythmias. For example, Lee, K. et al. utilized feature parameters RMSD and ShE to identify AF (Lee et al., 2017), Eerikäinen, L.M. et al. used feature parameters PNN40, PNN70, ShE, RMSD, nRMSD, SampEn, and CSampEn to detect AF (Eerikäinen et al., 2018). Although these methods detect other cardiovascular diseases rather than those four life-threatening arrhythmias described in this study, they can provide ideas for our study. Therefore, the recognition of life-threatening arrhythmias is performed by the method used in this work for the extracted features of these researchers.
The average performance results of training and testing the DT classifier with the features extracted by Lee, K. et al. and Eerikäinen, L.M. et al. are displayed in Table 5. For the features extracted by Lee, K. et al., the performance of the DT classifier gives an accuracy of 83.32 ± 0.22% and kappa of 65.88 ± 0.42%, and the best average performance is ET with the kappa of 68.81 ± 0.92%. For the features extracted by Eerikäinen, L.M. et al., the performance of the DT classifier gives an accuracy of 95.27 ± 0.16% and kappa of 90.72 ± 0.32%, and the best average performance is healthy with the kappa of 95.90 ± 0.37%. In addition, the average performance of identifying those four life-threatening arrhythmias using the features utilized in Eerikäinen, L.M. et al. is better than that of Lee, K. et al., and the difference between them for accuracy and kappa is 11.95% and 24.84%, respectively, which is due to the fact that more features are engaged by Eerikäinen, L.M. et al. However, the accuracy and kappa values of Eerikäinen et al. are 3.49% and 6.87% lower than those of the method we used, which proves that the more features there are, the more comprehensive the information contained, and the higher the classification performance. However, it is not better to use more features if these features are correlated; it will cause a dimensional disaster which will affect the training of the model, reduce the average performance of the classification, and be more time consuming.
TABLE 5 | Classification results of different features.
[image: Table 5]5 CONCLUSION
In this study, a method is presented to identify four types of life-threatening arrhythmia identification based on the PRV signal. First, the noise of ABP signals is eliminated during preprocessing to de-noise the EMG interference, AC interference, and baseline drift. Then, PRV signals are extracted, and 15 features are obtained and downscaled from the PRV signal to form a feature vector. Finally, the BPNN, ELM, and DT classifiers are trained and tested based on the feature vector. The results show that DT has the best average performance with an accuracy of over 98.50% and a kappa of over 97.50%, which is better than some previous studies. Therefore, the method we used can effectively detect EB, ET, VT, and VF and has a potential for monitoring at home. In subsequent studies, the detection of motion artifacts will be added to the preprocessing part to improve the signal availability, and some algorithms such as feature extraction will be optimized. In the future, the DT model based on PRV signals is expected to be used for the recognition of other life-threatening arrhythmias.
DATA AVAILABILITY STATEMENT
The datasets for this study can be found at the https://www.physionet.org/content/fantasia/1.0.0/ and https://www.physionet.org/content/challenge-2015/1.0.0/.
AUTHOR CONTRIBUTIONS
LC and YC provided ideas, designed the study, and designed the algorithm. LC, JL, and SG reviewed relevant literature and organized data. All authors have read and approved the final manuscript.
FUNDING
This work was supported by the National Natural Science Foundation of China (grant 61901062 and 62003057).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2022.1008111/full#supplementary-material
REFERENCES
 Alinejad G. M., Rasoulinezhad S., Shamsollahi M. B. (2019). “Prediction of life-threatening heart arrhythmias using obstructive sleep apnoea characteristics,” in Proceeding of the 2019 27th Iranian Conference on Electrical Engineering (ICEE),  (Yazd, Iran, April 2019) ( IEEE), 1761–1764.
 Charbuty B., Abdulazeez A. (2021). Classification based on decision tree algorithm for machine learning. Appl. Sci. Technol. Trends 2, 20–28. doi:10.38094/jastt20165
 Chorin E., Hochstadt A., Schwartz A. L., Matz G., Viskin S., Rosso R. (2021). Continuous heart rate monitoring for automatic detection of life-threatening arrhythmias with novel bio-sensing technology. Front. Cardiovasc. Med. 748, 707621. doi:10.3389/fcvm.2021.707621
 Chou Y. X., Gu J., Liu J. C., Gu Y., Lin J. (2019). Bradycardia and tachycardia detection using a synthesis-by-analysis modeling approach of pulsatile signal. IEEE Access 7, 131256–131269. doi:10.1109/ACCESS.2019.2940921
 Chou Y., Zhang A., Wang P., Gu J. (2014). Pulse rate variability estimation method based on sliding window iterative DFT and hilbert transform. J. Med. Biol. Eng. 34, 347–355. doi:10.5405/JMBE.1684
 Chou Y., Zhang A., Gu J., Liu J., Gu Y. (2020). A recognition method for extreme bradycardia by arterial blood pressure signal modeling with curve fitting. Physiol. Meas. 41, 074002. doi:10.1088/1361-6579/ab998d
 Clifford G. D., Silva I., Moody B., Li Q., Kella D. Shahin A., et al. (2015). “The PhysioNet/computing in cardiology challenge 2015: Reducing false arrhythmia alarms in the ICU,” in 2015 computing in Cardiology conference . (Nice, France: CinC), 273–276. doi:10.1109/CIC.2015.7408639
 Deaconu A., Deaconu S., Radu A., Dorobantu M. (2021). Pharmacological treatment of tachyarrhythmias in acute myocardial infarction-a review. Romanian J. Cardiol. 31, 311–317. doi:10.47803/rjc.2021.31.2.311
 Du H., Feng L., Xu Y., Zhan E., Xu W. (2021). Clinical influencing factors of acute myocardial infarction based on improved machine learning. J. Healthc. Eng. 2021, 5569039. doi:10.1155/2021/5569039
 Eerikäinen L. M., Bonomi A. G., Schipper F., Dekker L. R., Vullings R. de Morree H. M., et al. (2018). Comparison between electrocardiogram-and photoplethysmogram-derived features for atrial fibrillation detection in free-living conditions. Physiol. Meas. 39 (8), 084001. doi:10.1088/1361-6579/aad2c0
 Fallet S., Lemay M., Renevey P., Leupi C., Pruvot E., Vesin J. M. (2019). Can one detect atrial fibrillation using a wrist-type photoplethysmographic device?Med. Biol. Eng. Comput. 57, 477–487. doi:10.1007/s11517-018-1886-0
 Goldberger A. L., Amaral L., Glass L., Hausdorff J. M., Ivanov P. C. Mark R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation 101, e215–e220. doi:10.1161/01.cir.101.23.e215
 Hamdani H., Arifin Z., Septiarini A. (2022). Expert system of dengue disease using artificial neural network classifier. J. Inform. 10, 59–66. doi:10.30595/juita.v10i1.12476
 Hejjel L., Béres S. (2021). Comment on ‘pulse rate variability in cardiovascular health: A review on its applications and relationship with heart rate variability. Physiol. Meas. 42, 018001. doi:10.1088/1361-6579/abd332
 Islam M. S., Khreich W., Hamou-Lhadj A. (2018). Anomaly detection techniques based on kappa-pruned ensembles. IEEE Trans. Reliab. 67, 212–229. doi:10.1109/TR.2017.2787138
 Iyengar N., Peng C. K., Morin R., Goldberger A. L., Lipsitz L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. 271, R1078–R1084. doi:10.1152/ajpregu.1996.271.4.R1078
 Ishaque S., Khan N., Krishnan S. (2021). Trends in heart-rate variability signal analysisFrontiers in Digital Health 3, 13doi:10.3389/fdgth.2021.639444
 Jahmunah V., Ng E. Y. K., San T. R., Acharya U. R. (2021). Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput. Biol. Med. 134, 104457. doi:10.1016/j.compbiomed.2021.104457
 Jan H. Y., Chen M. F., Fu T. C., Lin W. C., Tsai C. L., Lin K. P. (2019). Evaluation of coherence between ECG and PPG derived parameters on heart rate variability and respiration in healthy volunteers with/without controlled breathing. J. Med. Biol. Eng. 39, 783–795. doi:10.1007/s40846-019-00468-9
 Lee K., Choi H. O., Min S. D., Lee J., Gupta B. B., Nam Y. (2017). A comparative evaluation of atrial fibrillation detection methods in Koreans based on optical recordings using a smartphone. IEEE Access 5, 11437–11443. doi:10.1109/ACCESS.2017.2700488
 Mandal S., Mondal P., Roy A. H. (2021). Detection of Ventricular Arrhythmia by using Heart rate variability signal and ECG beat image. Biomed. Signal Process. Control 68, 102692. doi:10.1016/j.bspc.2021.102692
 Mejía-Mejía E., May J. M., Torres R., Kyriacou P. A. (2020). Pulse rate variability in cardiovascular health: A review on its applications and relationship with heart rate variability. Physiol. Meas. 41, 07TR01. doi:10.1088/1361-6579/ab998c
 Mejía-Mejía E., May J. M., Elgendi M., Kyriacou P. A. (2021). Differential effects of the blood pressure state on pulse rate variability and heart rate variability in critically ill patients. NPJ Digit. Med. 4, 82. doi:10.1038/s41746-021-00447-y
 Mejía-Mejía E., May J. M., Kyriacou P. A. (2022). Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of Pulse Rate Variability from Photoplethysmography. Comput. Methods Programs Biomed. 218, 106724. doi:10.1016/j.cmpb.2022.106724
 Mitchell K. J., Schwarzwald C. C. (2021). Heart rate variability analysis in horses for the diagnosis of arrhythmias. Vet. J. 268, 105590. doi:10.1016/j.tvjl.2020.105590
 Nordin A. D., Hairston W. D., Ferris D. P. (2019). Faster gait speeds reduce alpha and beta EEG spectral power from human sensorimotor cortex. IEEE Trans. Biomed. Eng. 67, 842–853. doi:10.1109/TBME.2019.2921766
 Paliakaitė B., Petrėnas A., Sološenko A., Marozas V. (2019). “Photoplethysmogram modeling of extreme bradycardia and ventricular tachycardia,” in Mediterranean conference on medical and biological engineering and computing (Cham: Springer), 1165–1174. 
 Qi Y. (2012). Random forest for bioinformatics. Springer, Boston: Ensemble machine learning, 307–323. doi:10.1007/978-1-4419-9326-7_11
 Roberts R., Fair J. (2021). Genetics, its role in preventing the pandemic of coronary artery disease. Clin. Cardiol. 44, 771–779. doi:10.1002/clc.23627
 Rohila A., Sharma A. (2019). Phase entropy: A new complexity measure for heart rate variability. Physiol. Meas. 40, 105006. doi:10.1088/1361-6579/ab499e
 Sabut S., Pandey O., Mishra B. S. P., Mohanty M. (2021). Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network. Phys. Eng. Sci. Med. 44, 135–145. doi:10.1007/s13246-020-00964-2
 Saul J. P., Valenza G. (2021). Heart rate variability and the dawn of complex physiological signal analysis: Methodological and clinical perspectives. Philos. Trans. A Math. Phys. Eng. Sci. 379, 20200255. doi:10.1098/rsta.2020.0255
 Shuvo S. B., Ali S. N., Swapnil S. I., Al-Rakhami M. S., Gumaei A. (2021). CardioXNet: A novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings. IEEE Access 9, 36955–36967. doi:10.1109/ACCESS.2021.3063129
 Sluyter J. D., Camargo C. A., Lowe A., Scragg R. K. R. (2019). Pulse rate variability predicts atrial fibrillation and cerebrovascular events in a large, population-based cohort. Int. J. Cardiol. 275, 83–88. doi:10.1016/j.ijcard.2018.10.026
 Wang J., Lu S., Wang S. H., Zhang Y. D. (2021). A review on extreme learning machine. Multimed. Tools Appl. 22, 1–50. doi:10.1007/s11042-021-11007-7
 Zhu H. T., Zhan L. W., Dai Q., Xu B., Chen Y. Lu Y. Q., et al. (2021). Self-assembled wavy optical microfiber for stretchable wearable sensor. Adv. Opt. Mat. 9, 2002206. doi:10.1002/adom.202002206
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Chou, Liu, Gong and Chou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		CORRECTION
published: 29 November 2022
doi: 10.3389/fphys.2022.1102527


[image: image2]
Corrigendum on: A life-threatening arrhythmia detection method based on pulse rate variability analysis and decision tree
Lijuan Chou1,2, Jicheng Liu1, Shengrong Gong2,3 and Yongxin Chou1*
1School of Electrical and Automatic Engineering, Changshu Institute of Technology, Suzhou, China
2School of Computer and Information Technology, Northeast Petroleum University, Daqing, China
3School of Computer Science and Engineering, Changshu Institute of Technology, Suzhou, China
Approved by:
Frontiers Editorial Office, Frontiers Media SA, Switzerland
* Correspondence: Yongxin Chou, cslgchouyx@cslg.edu.cn
Specialty section: This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology
Received: 19 November 2022
Accepted: 24 November 2022
Published: 29 November 2022
Citation: Chou L, Liu J, Gong S and Chou Y (2022) Corrigendum on: A life-threatening arrhythmia detection method based on pulse rate variability analysis and decision tree. Front. Physiol. 13:1102527. doi: 10.3389/fphys.2022.1102527

Keywords: pulse rate variability, arterial blood pressure, cardiovascular diseases, life-threatening arrhythmias, decision tree, intelligent recognition
A Corrigendum on 
A life-threatening arrhythmia detection method based on pulse rate variability analysis and decision treeby Chou L, Liu J, Gong S and Chou Y (2022). Front. Physiol. 13:1008111. doi: 10.3389/fphys.2022.1008111


In the published article, there was an error in Affiliation(s) [1]. Instead of “[Country School of Electrical and Automatic Engineering, Changshu Institute of Technology, Suzhou, China],” it should be “[School of Electrical and Automatic Engineering, Changshu Institute of Technology, Suzhou, China].”
The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2022 Chou, Liu, Gong and Chou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 16 November 2022
doi: 10.3389/fphys.2022.1018299


[image: image2]
In silico assessment of pharmacotherapy for carbon monoxide induced arrhythmias in healthy and failing human hearts
Huasen Jiang1, Shugang Zhang1*, Weigang Lu2, Fei Yang3, Xiangpeng Bi1, Wenjian Ma1 and Zhiqiang Wei1*
1College of Computer Science and Technology, Ocean University of China, Qingdao, China
2Department of Educational Technology, Ocean University of China, Qingdao, China
3School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai, China
Edited by:
Jieyun Bai, Jinan University, China
Reviewed by:
Yacong Li, Beijing Academy of Artificial Intelligence (BAAI), China
Lidia Gómez Cid, Gregorio Marañón Hospital, Spain
Henry Sutanto, Airlangga University, Indonesia
* Correspondence: Shugang Zhang, zsg@ouc.edu.cn; Zhiqiang Wei, weizhiqiang@ouc.edu.cn
Specialty section: This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology
Received: 13 August 2022
Accepted: 16 November 2022
Published: 16 November 2022
Citation: Jiang H, Zhang S, Lu W, Yang F, Bi X, Ma W and Wei Z (2022) In silico assessment of pharmacotherapy for carbon monoxide induced arrhythmias in healthy and failing human hearts. Front. Physiol. 13:1018299. doi: 10.3389/fphys.2022.1018299

Background: Carbon monoxide (CO) is gaining increased attention in air pollution-induced arrhythmias. The severe cardiotoxic consequences of CO urgently require effective pharmacotherapy to treat it. However, existing evidence demonstrates that CO can induce arrhythmias by directly affecting multiple ion channels, which is a pathway distinct from heart ischemia and has received less concern in clinical treatment.
Objective: To evaluate the efficacy of some common clinical antiarrhythmic drugs for CO-induced arrhythmias, and to propose a potential pharmacotherapy for CO-induced arrhythmias through the virtual pathological cell and tissue models.
Methods: Two pathological models describing CO effects on healthy and failing hearts were constructed as control baseline models. After this, we first assessed the efficacy of some common antiarrhythmic drugs like ranolazine, amiodarone, nifedipine, etc., by incorporating their ion channel-level effects into the cell model. Cellular biomarkers like action potential duration and tissue-level biomarkers such as the QT interval from pseudo-ECGs were obtained to assess the drug efficacy. In addition, we also evaluated multiple specific IKr activators in a similar way to multi-channel blocking drugs, as the IKr activator showed great potency in dealing with CO-induced pathological changes.
Results: Simulation results showed that the tested seven antiarrhythmic drugs failed to rescue the heart from CO-induced arrhythmias in terms of the action potential and the ECG manifestation. Some of them even worsened the condition of arrhythmogenesis. In contrast, IKr activators like HW-0168 effectively alleviated the proarrhythmic effects of CO.
Conclusion: Current antiarrhythmic drugs including the ranolazine suggested in previous studies did not achieve therapeutic effects for the cardiotoxicity of CO, and we showed that the specific IKr activator is a promising pharmacotherapy for the treatment of CO-induced arrhythmias.
Keywords: carbon monoxide, pharmacotherapy, simulation, arrhythmia, air pollution
1 INTRODUCTION
Carbon monoxide (CO) is one of the major gaseous pollutants in traffic pollution. Epidemiological studies have substantiated the association of urban air pollution with cardiovascular events, among which CO is considered as a critical contributor (Hoek et al., 2002; Hoffmann et al., 2007; Allen et al., 2009; Bell et al., 2009). The traditional theory of CO poisoning attributes CO-induced arrhythmias to tissue hypoxia, a condition that arises from the high-affinity binding of CO to hemoglobin, which may predispose to arrhythmias (Hantson, 2019). However, accumulating evidences have demonstrated that CO can also impair cardiac electrophysiology by exerting direct effects on multiple ion channels. For sodium channels, Dallas et al. demonstrated that CO could enhance the late Na+ current (INaL) by increasing the production of NO and the subsequent nitrosylation of the NaV1.5 channel protein (Dallas et al., 2012). In addition, CO could inhibit the INa and the process was dependent on the NO formation and channel redox states (Elies et al., 2014). For calcium channels, Scragg et al. found that CO inhibited L-type Ca2+ channels (ICaL) via redox modulation of key cysteine residues by mitochondrial reactive oxygen species (Scragg et al., 2008). Finally, for potassium channels, CO inhibited inward rectifier K+ current (IK1) by modulating the interaction between Kir2.0 channels and phosphatidylinositol (4, 5)-diphosphate (Liang et al., 2014), and inhibited the rapid delayed rectifier K+ current (IKr) by promoting the production of peroxynitrite (ONOO−) (Al-Owais et al., 2017). These remodeling effects together contributed to a prolonged QT interval and predisposed to severe ventricular arrhythmias like Torsades de Pointes (TdP) (Jiang et al., 2022). Such arrhythmogenic influences may get even worse in susceptible populations like heart failure (HF) patients. This is because the repolarization reserve has been reduced in failing hearts, and the further depression of IKr by CO can easily lead to early-afterdepolarization (EAD) activities in cardiomyocytes and ectopic beats at the organ level, which act as triggers for reentry arrhythmias (Al-Owais et al., 2021).
The serious consequence of CO cardiotoxicity has raised concerns on finding an effective pharmacotherapy for it. In this regard, potential drugs have been raised to deal with the proarrhythmic effects of CO. For instance, the antianginal drug ranolazine was suggested by Dallas et al. for its significant therapeutic effects on CO-induced arrhythmias (Dallas et al., 2012). In vivo experiments showed that ranolazine corrected QT variability and arrhythmias induced by CO, and further cellular investigations reported that ranolazine abolished CO-induced early after-depolarizations (EADs) in rat myocytes via the inhibition of INaL. This study highlighted a potential pharmacological strategy for the treatment of CO-induced arrhythmias; however, the efficacy of ranolazine was evaluated in rats, and the significant discrepancy between rats and human action potentials may limit their conclusions. Despite that ranolazine can inhibit INaL and correct CO-induced arrhythmias in rat ventricular myocytes, the drug is also known to block IKr (IC50 12 μM) (Rajamani et al., 2008) in an overlapped range with INaL (IC50 5–21 μM) (Moreno et al., 2013). Therefore, considering the complicated multi-channel blocking effect of ranolazine, whether it still exerts antiarrhythmic effects in the human ventricle needs to be re-assessed. In addition to ranolazine, our previous simulation study on CO exposure showed that the inhibition of IKr by CO is the main factor responsible for the substantial prolongation of the QT interval in patients (Jiang et al., 2022). Therefore, specific IKr activators such as HW-0168 (Dong et al., 2019) might benefit the treatment of CO-induced arrhythmias.
In this study, we conducted an in silico assessment of pharmacotherapy for the treatment of CO-induced ventricular arrhythmias in healthy and failing hearts. First, human myocardial cell and tissue models with the effects of CO incorporated were constructed on healthy and heart failure conditions, respectively, to act as baseline pharmacological models for the screening of drugs. Next, we evaluated several of the clinically available antiarrhythmic drugs described above by incorporating their experimentally-measured dose-dependent effects on various ion channels. The class IV antiarrhythmic drugs (i.e., calcium channel blockers including verapamil, nifedipine, and bepridil) were mainly focused on due to their ability of attenuating depolarization forces. We also tested three other multi-channel drugs for a wide coverage of the antiarrhythmic drug classification. These drugs are namely quinidine (class I), amiodarone (class III), and vanoxerine (class III). Noted that, like the case of ranolazine, all these six drugs are multi-channel blockers and can block some critical channels concurrently. Action potentials and pseudo-ECGs after the application of drugs were simulated and used as the criteria for drug efficacy. In addition, due to the critical role of IKr in mediating CO-induced arrhythmogenesis, we also evaluated multiple IKr activators for potential pharmacotherapy. Comprehensive Simulations were conducted on cell populations, 1D transmural strands, and 2D ventricular slice models to verify the robustness of the reported findings.
2 METHODS
2.1 Modeling action potentials of human ventricular myocytes
The O'Hara-Rudy dynamics (ORd) model (O’Hara et al., 2011) was utilized to simulate the electrophysiology of human ventricular myocytes in this study. The ORd model is a comprehensive human cell model that was created using human experimental data. To overcome its unphysiologically slow conduction velocity (Elshrif and Cherry, 2014), the original INa in the ORd model was substituted with that in the Tusscher et al. biophysically detailed model (TNNP06 model) (Ten Tusscher and Panfilov, 2006).
A conventional Hodgkin-Huxley model of a cardiac cell was implemented at the cellular level, with the model equation being:
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where Vm is the membrane potential, Iion is the sum of all transmembrane ionic currents, and Istim is the externally applied stimulus current. Cm is the membrane capacitance.
The cell model of heart failure (HF) used in this study was based on Elshrif et al.’s research (Elshrif et al., 2015), where a collection of HF-induced ion channel remodeling effects were incorporated into the ORd model. Similarly, the effects of CORM-2 (i.e., a CO-releasing molecule) were modeled based on previous research by Al-Owais et al. (Al-Owais et al., 2021) and were incorporated into the healthy and HF cell models. The reason we chose CORM-2 rather than CO is that CORM-2 is one of the most common CO-releasing molecules in biological research, and is safer and more controllable than CO. More details can be found in Sections SII and SIII in the Supplementary Material.
2.2 Modeling the effects of ranolazine and HW-0168 on ion channels
Available experimental data regarding the effects of ranolazine and HW-0168 from previous studies have been summarized in Table 1 (Antzelevitch et al., 2004; Rajamani et al., 2008; Beyder et al., 2012; Moreno et al., 2013; Dong et al., 2019). Specifically, ranolazine has been shown to exert dose-dependent blocking effects on INa (Beyder et al., 2012), INaL (Antzelevitch et al., 2004), INaCa (Antzelevitch et al., 2004), ICaL (Antzelevitch et al., 2004), IKr (Rajamani et al., 2008). Dose-response curves for ranolazine-affected ion channels were fitted using the following Hill functions:
TABLE 1 | Summary of data for ranolazine and HW-0168.
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where [RAN] is the dose of ranolazine used in experiments.
The fitting results are illustrated in Figure 1A. For the IKr activator, HW-0168, only IKr was reported to be affected by the drug (Dong et al., 2019); therefore, the data were fitted using Eq. 7:
[image: Figure 1]FIGURE 1 | Dose dependent effects of ranolazine and HW-0168 on ionic currents. (A) Effects of ranolazine on INa, INaL, INaCa, ICaL and IKr. (B) Effects of HW-0168 on IKr. Green boxes indicate therapeutic ranges of ranolazine (5–10 μM) and HW-0168 (0.5–1 μM).
IKr
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where [HW] is the dose of HW-0168 used in the experiment.
The fitted dose-dependent curve is illustrated in Figure 1B. In this study, we used 10 μM and 0.5 μM for ranolazine and HW-0168, respectively. The above-fitted equations were finally incorporated into the ‘Healthy + CO’ and ‘HF + CO’ cell models.
The ionic current under the action of the drug is calculated by Eq. 8:
[image: image]
where [image: image] represent the effect of a drug on a certain ionic current.
2.3 Simulating the efficacy of multi-channel blockers and specific IKr channel activators
In addition to ranolazine and HW-0168, we also selected six multi-channel blockers (i.e., amiodarone, verapamil, nifedipine, quinidine, vanoxerine, and bepridil) and four specific IKr activators (i.e., KB130015, ICA-105574, NS1643, NS3623) for efficacy simulation and screening of the drugs. A simple pore block theory (Brennan et al., 2009) was used in this study to model the interactions between drugs and ion channels. Based on this theory, the effect of drugs blocking ion channels was fitted by the following formula:
[image: image]
where θ is the blocking efficiency, [D] is the concentration of a drug, IC50 is the half-maximal inhibitory concentration, and nH is the Hill coefficient.
The effect of drugs activating ion channels was fitted by Eq. 11:
[image: image]
where Y is the activation efficiency, and Actmax is the maximum activation efficiency, EC50 is the compound concentration resulting in 50% of the Actmax.
The six multi-channel blockers act on related ion channels in a dose-dependent manner, and the related parameters are listed in Table 2. To evaluate the drug efficacy more objectively, we explored all drugs at three doses based on their Cmax, as shown in Table 3. The four specific IKr activators activated IKr currents in a dose-dependent manner as well, and the relevant parameters are shown in Table 4.
TABLE 2 | Summary of data for six multi-channel blockers.
[image: Table 2]TABLE 3 | Cmax and experimental dose allocation for six multi-channel blockers.
[image: Table 3]TABLE 4 | Summary of data for four specific IKr activators.
[image: Table 4]2.4 Modeling the conduction of action potentials in one-dimensional (1D) transmural ventricular strands
The 1D transmural ventricular strand model, which is a linear syncytium formed by coupling multiple cells, can be calculated by adding a diffusion term to the cell model equation:
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where D is the scalar diffusion coefficient that decides the conduction velocity of APs.
The 1D transmural strand was 15 mm long, which was close to the normal range of the human transmural ventricle width (∼4.0–14.0 mm) (Drouin et al., 1995; Yan et al., 1998). The strand was discretized into 100 interconnected nodes with a spatial precision of 0.15 mm, which was consistent with the reported cell length [i.e., 80–150 μm (Hinrichs et al., 2011)]. The proportions for transmural cell types were set to 25:35:40 for ENDO, MID, and EPI cells, which were identical to that used in previous studies (Zhang and Hancox, 2004; Luo et al., 2017). Such proportions reliably reproduced a positive T wave in the computed pseudo-ECG under control (healthy) conditions. The diffusion coefficient D was set to 0.127 mm2/ms, giving a CV of planar excitation waves of 70 cm/s through the strand, which matched well with the experimental data from human ventricles (Taggart et al., 2000).
2.5 Modeling the conduction of action potentials in the 1D strand with CO-affected regions
To further quantify the critical size of EAD cells for overcoming the source-sink effect and initiating triggers in ventricular tissue, we simulated a 15 mm homogenous ventricular strand consisting of only MID cells for the failing heart, with the center of the strand (Figure 2, red region) containing a variable number of contiguous cells affected by CO. The number of cells in the susceptible region was gradually increased until the synchronously occurred EADs overcame the source-sink effect and trigger a premature beat. The critical cell number was recorded as a metric for measuring the susceptibility to arrhythmias.
[image: Figure 2]FIGURE 2 | Schematic of 1D homogenous ventricular strand model with CO-affected regions. The tissue is 15 mm in length and contains 100 cells. The red part in the middle indicates the susceptible region where the number of cells varies from 0 to 100.
2.6 Generating pseudo-ECGs using the 1D model
The pseudo-ECG was calculated from the constructed 1D strand model by the following equation (Gima and Rudy, 2002):
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where [image: image] is a unipolar potential generated by the strand, a is the radius of the strand, dx is the spatial resolution, and r is the Euclidean distance from a point x to another point x′.
As shown in Figure 3, the period from the earliest appearance of the QRS complex to the end of the T-wave was defined as the QT interval, measured in milliseconds. The end of the T-wave was defined as the return of the descending limb to the TP baseline.
[image: Figure 3]FIGURE 3 | Schematic diagram of the QT interval measuring method.
2.7 Modeling cell populations
To demonstrate the robustness of the reported findings, we constructed cell population models with reference to previous studies (Britton et al., 2013; Sutanto and Heijman, 2020). Specifically, the maximum conductance of the nine major ionic currents (INa, INaL, ICaL, IKr, IKs, IK1, Ito, INaCa, and INaK) in the original deterministic model was scaled by a group of factors that follow a normal distribution with mean 1.0 and standard deviation 0.2. In this way, 1,000 population model variants were obtained.
2.8 Dynamic restitution protocol
The CV dynamic restitution curves were obtained using a dynamic pacing protocol. Specifically, the 1D strand model was paced with a certain basic cycle length (BCL) until reading its steady state upon which the CV value was recorded for that BCL. The initial BCL was set to 3,000 ms and was decreased gradually until the model failed to produce excitation waves. Based on the ‘CV-BCL’ pairs generated by the above protocol, CV restitution curves could be plotted against BCL.
2.9 Modeling the conduction of excitation waves on a two-dimensional (2D) realistic ventricular slice
Similar to the 1D strand model, the monodomain equation (Eq. 11) was adopted to describe the propagation of excitation waves in the ventricular slice. Isotropic propagation was assumed, and the diffusion coefficient D was set to 0.154 mm2/ms, to produce a CV of 0.74 m/s (Taggart et al., 2000). The spatial step was set to 0.15 mm to be consistent with that in 1D models. To mimic the physiological characteristics of the Purkinje fibers, a series of supra-threshold stimuli were applied to several pacing sites on the endocardium of the slice.
3 RESULTS
3.1 Assessing the drug efficacy of multi-channel blockers on CO-affected hearts
3.1.1 Effects of ranolazine on AP and ECG
Previous studies have suggested the drug ranolazine to be a potential pharmacotherapy for the treatment of CO-induced arrhythmias (Dallas et al., 2012). Therefore, we first tested the efficacy of ranolazine on the baseline model of ‘healthy + CO’. Simulation results are illustrated in Figure 4. Interestingly, ranolazine aggravated the arrhythmogenesis of CO. At the cellular level, it can be observed that ranolazine (10 μM) further extended APDs of all cell types, and APD90 values of ENDO, MID, and EPI cells were increased by 15.7%, 14.6%, and 20.3% based on CO conditions, respectively (Figure 4A). At the tissue level, generated pseudo-ECGs using 1D transmural ventricular strand models showed that ranolazine further prolonged the QT interval and decreased the T-wave amplitude (Figure 4Bii). The effect of ranolazine was also reflected in conduction properties, where the tissue with ranolazine owned a wider wavelength (Figure 4Bi) than the control condition.
[image: Figure 4]FIGURE 4 | Actions of ranolazine (RAN) on CO-affected myocardial cells and tissues. (A) The comparison of action potentials of three cell types under ‘healthy’, ‘healthy + CO’, and ‘healthy + CO + RAN’ conditions. (B) Spatial-temporal plots under the ‘healthy + CO + RAN’ condition (Bi), and the corresponding pseudo-ECG (Bii).
3.1.2 Effects of six multi-channel blockers on ECG
To find out if there are any available medications for the treatment of CO-induced arrhythmias, we collected the experimental data regarding the blocking effects of drugs on various channels as possible (see Table 2 in the Method section), and incorporated them into the baseline model to explore their potential treatment to CO-induced arrhythmias. In this study, three experimental doses were designed based on the Cmax of these drugs (as shown in Table 3). The simulated pseudo-ECGs are shown in Figure 5.
[image: Figure 5]FIGURE 5 | Effects of six multi-channel blockers at three doses on ECG morphology under healthy conditions. (A) amiodarone, (B) quinidine, (C) nifedipine, (D) verapamil, (E) vanoxerine and (F) bepridil. Blue ‘↓’ indicates the magnification of the rectangular area; red ‘↓’ indicates the failed depolarization in ECG.
It can be observed that all six drugs failed to restore the prolonged QT interval even at their ‘high’ doses that are remarkably higher than the Cmax level (i.e., ‘high dose’ = 10×Cmax). Specifically, low doses of amiodarone, nifedipine, verapamil, vanoxerine, and bepridil had no effects on the QT interval, while a low dose of quinidine exerted mild QT prolongation effects. When moderate doses were applied, quinidine and vanoxerine considerably prolonged the QT interval, while the other drugs still had no sensible effects. Finally, at high doses, all drugs except nifedipine prolonged the QT interval to varying degrees. Among them, vanoxerine and bepridil considerably prolonged the QT interval, and quinidine led to ECG repolarization failure.
3.1.3 Independent component analysis of ion channels
To determine the independent role of each drug-affected ion channels, we performed an ion mechanism analysis with ranolazine as a representative case. First, we quantitatively analyzed the individual role of each ion channel involved in the action of ranolazine. APD90 was used as the metric, and the results are summarized in Table 5. It can be observed that the effects of ranolazine on INa, INaCa, and ICaL have no effect on APD90. On the other hand, the inhibition effect of ranolazine on INaL shortened the APD90 of all three cell types, demonstrating an antiarrhythmic action; however, the simultaneously inhibited IKr by ranolazine led to a more pronounced prolonging of APD, which offset the effects of INaL and aggravated the CO-induced arrhythmogenesis at the cellular level.
TABLE 5 | Effects of ranolazine-induced changes in single ion channels on APD90.
[image: Table 5]Next, we analyzed the individual role of each ion channel in the ECG changes, as shown in Figure 6A. Consistent with the results at the cellular level, the effects of ranolazine on INa, INaCa, and ICaL did not cause any obvious ECG changes. More specifically, the IC50 values of ranolazine for INa, INaCa, and ICaL were 53.6 μM, 91.0 μM, and 296.0 μM, and ranolazine at 10 μM inhibited only 1.8%, 3.7%, and 3.3% of INa, INaCa, and ICaL, respectively, which had almost no effect on APD and ECG. As for the INaL, the QT interval shortening effect caused by the inhibition of INaL could not offset the QT interval prolongation by the attenuation of IKr. So overall, ranolazine eventually led to QT prolongation.
[image: Figure 6]FIGURE 6 | Simulation results of ranolazine single-channel analysis and Vulnerable Window (VW) in a 1D transmural ventricular strand model. (A) Pseudo-ECG under the single-channel effect of ranolazine. (B) Simulation results for VW. (Bi) Distribution of VWs across the strand. Black and red belts stand for the ‘CO’ and ‘CO + ranolazine’ conditions, respectively. (Bii) Comparisons of the average width of VWs in the two conditions.
3.1.4 Effects of drugs on the transmural dispersion of repolarization
In this part, we assessed the role of heterogeneity among different ventricular cells on arrhythmias. Simulations at the cellular level show that, under the action of ranolazine, the APD difference between MID and ENDO cells (ΔAPDMID-ENDO) decreased from 63 ms to 61 ms, and ΔAPDMID-EPI reduced from 111 ms to 109 ms. The decreased ΔAPD among different cell types suggested that the drug decreased the vulnerability in terms of transmural heterogeneity. The following experiments of vulnerable window measurements using transmural 1D strand further confirmed this. As shown in Figures 6Bi,Bii, the average width of the VW under the ‘CO + RAN’ condition is apparently narrower compared to that in the CO condition (from 7.04 ms to 4.28 ms). The decreased temporal risk evidenced by the vulnerable window changes is consistent with the cellular level simulation results.
3.1.5 Effects of drugs on conduction velocity
Simulations demonstrated that the CV under ‘CO’ and ‘CO + drug’ conditions were lower for all BCLs compared to the healthy conditions (Figure 7A). Specifically, after the addition of amiodarone, verapamil, nifedipine, and bepridil, the CV dynamic restitution curves were almost unchanged compared to CO conditions, suggesting that amiodarone, verapamil, nifedipine, and bepridil had no effect in terms of the tissue conduction properties (Figure 7B). Vanoxerine caused a further decrease in CV on the basis of CO, and ranolazine led to a right shift of the CV curve and an increase in the curve slope. Quinidine caused a mild decrease in CV and impaired the adaptability of tissue to fast heart rates (small BCLs).
[image: Figure 7]FIGURE 7 | Simulated CV restitution curves in different conditions. (A) CV restitution curves under ‘healthy’, ‘CO’, and ‘CO + drug’ conditions. The magnified view inside the blue rectangle was shown in (B).
In general, none of these drugs could restore the decreased CV by CO, and some of them even aggravated this situation. Furthermore, the decreased CV also contributed to a smaller wavelength (calculated as CV×ERP) and might therefore help to maintain the reentrant waves within a limited tissue size.
3.2 Assessing the drug efficacy of multi-channel blockers on CO-affected hearts accompanied by heart failure
The influences of the aforementioned drugs were also evaluated under the heart failure condition. Simulated actions of ranolazine on CO-affected cells and tissues of heart failure are presented in Figure 8. Overall, ranolazine exacerbated the CO and heart failure-induced arrhythmias. In detail, the CO-induced 2:1 alternated EADs in MID cells became 1:1 consecutive EADs (Figure 8Aii), resulting in complete repolarization failure. Ranolazine also led to the occurrence of EAD in EPI cells (Figure 8Aiii). Above EAD activities in single cells did not develop into ectopic beats in 1D ventricular strands due to the ‘source-sink’ effect (Xie et al., 2010); however, ranolazine resulted in the 1:1 conduction failure of excitation waves at the pacing frequency of 1.25 Hz (Figure 8Bi). For the pseudo-ECG, ranolazine did not eliminate the CO-induced ECG morphological changes in heart failure tissue and further led to failed depolarization due to the considerably prolonged repolarization phase of the last cycle (Figure 8Bii).
[image: Figure 8]FIGURE 8 | Actions of ranolazine (RAN) on CO-affected myocardial cells and tissues accompanied by heart failure (HF). (A) The comparison of action potentials of three cell types under ‘HF’, ‘HF + CO’, and ‘HF + CO + RAN’ conditions. (B) Spatial-temporal plots under the ‘HF + CO + RAN’ condition (Bi), and the corresponding pseudo-ECGs (Bii).
Figure 9 shows the effects of the other six multi-channel blockers on ECG morphology in heart failure conditions. Due to the remodeled transmural gradient of repolarization in the heart failure condition, the T-wave was almost flattened. In terms of the QT-interval, amiodarone (0.0005 μM), nifedipine (0.005 μM), and verapamil (0.03 μM) had almost no effect on the QT interval, and bepridil (0.01 μM) slightly prolonged the QT interval. In addition, quinidine (1 μM) and vanoxerine (0.005 μM) caused depolarization failure. Overall, all six drugs were not effective against CO-induced arrhythmias in heart failure conditions.
[image: Figure 9]FIGURE 9 | Effects of six multi-channel blockers on CO-affected ECG morphology by heart failure (HF). ECG morphology of (A) amiodarone (0.0005 μM), (B) quinidine (1 μM), (C) nifedipine (0.005 μM), (D) verapamil (0.03 μM), (E) vanoxerine (0.005 μM) and (F) bepridil (0.01 μM).
3.3 Investigating the critical cell number for triggering ectopic beats
The baseline model of HF + CO showed that CO could induce pronounced EAD activities in MID cells, but these EADs did not evolve into ectopic beats in 1-D tissue due to the ‘source-sink’ effect (i.e., the depolarization force of EAD is not able to trigger an excitation due to the limited number of EAD cells) (Xie et al., 2010). Applying ranolazine did not trigger ectopic beats in the tissue either; however, it did diminish the repolarization ability in terms of the cellular action potential (Figure 8A). To give a more intuitive presentation of the increased proarrhythmic risk of ranolazine, we quantified the risk by measuring the critical number for generating the ectopic beat. Specifically, we constructed a 1D model of HF MID cells, with its central segment being set to CO-affected, and the minimum number of affected cells that could overcome the source-sink effect and lead to ectopic beats was recorded as the critical cell number. As shown in Figure 10, simulations suggested that the critical cell number under CO conditions was 68, corresponding to a tissue length of 10.2 mm. In contrast, the critical cell number was only 58 after the addition of ranolazine, which suggested an increased susceptibility to ectopic beats. Action potentials of representative cells within the CO-affected region (marked ‘*’ and ‘**’ in Figure 10) were plotted in the right panels of Figure 10.
[image: Figure 10]FIGURE 10 | The critical size for initiating ectopic beats in failing 1D homogenous ventricular strands. (A) Simulated effects of CO on the failing 1D tissue: (Ai) Schematic of the model infected by CO region, the red region represents CO-affected cells, whereas the yellow regions at both ends represent cells that were not affected by CO; (Aii) Schematic of the 1D excitation wave conduction in the CO-affected tissue model (left) and the corresponding APs of the cells marked ‘*’ or ‘**’ (right). The red arrows (‘↑’) represent the location of ectopic beats and the corresponding EADs. (B) Simulation results under CO + ranolazine conditions.
3.4 Assessing the drug efficacy of specific IKr activators on CO-affected hearts in healthy and concomitant heart failure
In our previous study (Jiang et al., 2022), we have shown that the suppression of IKr is the main factor responsible for the CO-induced prolongation of APD and QT interval. Considering the critical role of IKr in the pathological pathway and the bad efficacy of multi-channel blockers, we evaluated several specific IKr activators in this section. For simplicity, the simulation results of a representative drug HW-0168 (full name: N-(2-(tert-butyl)phenyl)-6-(4-chlorophenyl)-4-(trifluoromethyl) nicotinamide) (Dong et al., 2019) are presented in detail (Figures 11, 12), whereas only the effective dose is recorded for the other activators (Table 4).
[image: Figure 11]FIGURE 11 | Actions of HW-0168 (HW) on CO-affected myocardial cells and tissues. (A) The comparison of action potentials of three cell types under ‘healthy’, ‘healthy + CO’, and ‘healthy + CO + HW’ conditions. (B) Spatial-temporal plots under the ‘healthy + CO + HW’ condition (Bi), and the corresponding pseudo-ECGs (Bii). Noted that the HW-0168 restored the QT interval almost to the control level.
[image: Figure 12]FIGURE 12 | Actions of HW-0168 (HW) on CO-affected myocardial cells and tissues accompanied by heart failure. (A) The comparison of action potentials of three cell types under ‘HF’, ‘HF + CO’, and ‘HF + CO + HW’ conditions. (B) Spatial-temporal plots under the ‘HF + CO + HW’ condition (Bi), and the corresponding pseudo-ECGs (Bii).
On the ‘healthy + CO’ condition, it can be observed that the HW-0168 at a dose of 0.5 μM [therapeutic range suggested in clinical: 0.5–1 μM (Dong et al., 2019)] effectively shortened the APD prolongation caused by CO and reversed the prolonged APD90 to almost the same as the healthy condition. Generated pseudo-ECGs using 1D transmural ventricular strand models showed consistent results——HW-0168 restored the prolonged QT interval to a level that was almost identical to the control condition (Figure 11Bii). In addition, HW-0168 also improved the conduction properties of excitation waves and shortened the conduction wavelength of the tissue (Figure 11Bi).
The efficacy of HW-0168 under heart failure conditions is presented in Figure 12. Simulation results showed that HW-0168 effectively reversed the proarrhythmic effects (i.e., prolonged APDs and EADs) of CO in all three cell types (Figure 12A), and shortened the excitation wavelength in the heart failure tissue (Figure 12Bi). For the ECG, although the drug did not restore the altered T-wave morphology in heart failure, it eliminated the QT interval prolongation effects by CO.
According to the above results, the selective IKr activator achieved desired treatment for CO-induced arrhythmias. Therefore, more existent IKr activators (i.e., KB130015 (Gessner et al., 2010), ICA-105574 (Asayama et al., 2013), NS1643 (Casis et al., 2006), NS3623 (Hansen et al., 2006)) were tested and the doses of drugs under which the QT-interval was restored were recorded in Table 6. According to our simulation results, ICA-105574 was the most sensitive one, which restored the QT-interval and suppressed EADs (under heart failure conditions) at a dose of only 0.25 μM.
TABLE 6 | Simulated therapeutic doses of four specific IKr activators.
[image: Table 6]3.5 Simulating drug efficacy based on cell population models
Considering the potential influence of intercellular or intersubject variability on the reported findings, we built cell population models and performed additional simulations based on them. The simulation results are shown in Figure 13. It can be observed that EADs occurred occasionally under the HF condition, with a ratio of only 2.6%. Next, after considering the effects of CO, APDs of cell populations were generally prolonged, and the ratio of cells with EAD increased to 18.5%. The administration of ranolazine aggravated the situation, and the ratio of EAD cells increased dramatically to 58.2% (as shown in panel Aiii). In contrast, the addition of HW effectively alleviated the above arrhythmogenesis at the cellular level, which was evidenced by the complete suppression of EAD activities and the generally shortened APDs.
[image: Figure 13]FIGURE 13 | Population-based modeling for four conditions in heart failure human ventricular MID cells. (A) Population-based modeling of 1,000 variants for (Ai) HF, (Aii) HF + CO, (Aiii) HF + CO + RAN, and (Aiv) HF + CO + HW conditions. (B) EAD ratios under the four conditions.
3.6 Simulating pseudo-ECGs based on a 2D realistic ventricular slice
To avoid the potential difference caused by the simplified model geometry, we conducted simulation experiments for two representative drugs, i.e., ranolazine and HW-0168, using a 2D realistic ventricular slice model. The simulation results are shown in Figure 14. It can be observed obviously that the tissue slice with ranolazine took more time to repolarize than that with HW-0168 (Figure 14A). In terms of the ECG, the 2D-based ECGs are consistent with the 1D-based ones (Figure 14B). For example, ranolazine further prolonged the QT interval based on CO and therefore exacerbated the proarrhythmic effect. On the other hand, HW-0168 still exerted the antiarrhythmic effects of ranolazine by restoring the QT interval.
[image: Figure 14]FIGURE 14 | Simulation results of the influences of ranolazine and HW-0168 using a 2D realistic ventricular slice. (A) Propagation of excitation waves after applying ranolazine (Ai) or HW-0168 (Aii). (B) Pseudo-ECGs under different conditions.
4 DISCUSSION
4.1 Main findings
The severe cardiotoxic consequences of CO urgently require an effective therapeutic strategy to treat them. In this study, we evaluated the efficacy of various multi-channel blockers and specific IKr activators against CO-induced ventricular arrhythmias in healthy and failing hearts. The major findings are as follows: 1) The tested existent antiarrhythmic drugs failed to rescue the heart from CO-induced arrhythmias, and most of them even aggravated the arrhythmogenic condition, which was evidenced by the more frequent EAD activities and decreased critical cell numbers for triggering ectopic beats. 2) In contrast, specific IKr activators demonstrated good efficacy according to the improved biomarkers at both cellular and tissue levels. All of the tested IKr activators restored the prolonged QT intervals in both healthy and heart failure conditions, and the EADs in MID cells were successfully suppressed as well. 3) In-depth case analysis with ranolazine and HW-0168 revealed the critical role of IKr in the CO-induced functional changes in cardiac electrophysiology, and neither ICaL nor INaL blockers were able to offset the decreased repolarization forces caused by the CO-induced IKr inhibition. 4) Of note, the drug ranolazine was previously suggested as a potential strategy in dealing with CO-induced arrhythmogenesis due to its good efficacy demonstrated in rats, and the failure of ranolazine in the human tissue in this study hinted the crucial role of inter-species variances when determining the pharmacotherapeutic strategy.
4.2 Species-dependent effects of ranolazine for the treatment of CO-induced arrhythmias
Ranolazine was first suggested in Dallas et al.’s study (Dallas et al., 2012) for the treatment of CO-induced arrhythmias. Based on the experimental results obtained from rats, they proposed that CO-induced EADs arouse from the activation of NO synthase, which in turn leads to the NO-mediated nitrosylation of NaV1.5 and the enhanced INaL. Correspondingly, the INaL inhibitor ranolazine abolished the EADs and was considered to be effective in dealing with CO-induced arrhythmias. Similarly, Morita et al. also observed the antiarrhythmic effects of ranolazine for its suppression of reentrant and multifocal ventricular fibrillation in rat ventricles (Morita et al., 2011). However, APs in rats are distinctly different from those in humans, and the such discrepancy may lead to species-dependent effects of the same drug. This hypothesis was explored in Al-Owais et al.’s study (Al-Owais et al., 2017), where the effects of ranolazine were examined in guinea pigs—a species with action potentials more closely resembling that of humans. Interestingly, ranolazine failed to abolish CO-induced EAD and even exacerbated such proarrhythmic factors.
Our simulations suggested that ranolazine exerted similar proarrhythmic effects in human hearts. Specifically, ranolazine further prolonged AP durations and QT intervals in healthy human simulations (Figure 4), while in heart failure conditions it led to more pronounced EADs in MID and EPI cells (Figure 6). The above model-dependent effects of ranolazine arose from the differences of IKr, a major outward current responsible for the repolarization in human APs but are almost negligible in rat myocytes (Pandit et al., 2001). Although the INaL inhibition effects of ranolazine tend to suppress EAD, the drug can also reduce the repolarization force by inhibiting IKr. Further assessment using a 1D homogenous ventricular strand consisting of only MID cells found that ranolazine decreased the critical cell number for triggering ectopic beats (from 68 to 58), which also suggested the increased arrhythmogenic risk of the drug. These findings provide new insights into the side effects of ranolazine on the treatment of CO-induced arrhythmias. They also highlighted that the drug effects obtained in rats need to be carefully interpreted in clinical trials due to the species-dependent differences.
4.3 IKr activator—A promising pharmacotherapy for the treatment of CO-induced arrhythmias
In addition to ranolazine, we evaluated more existent antiarrhythmic drugs to find potential drug strategies for CO-induced arrhythmias. Calcium current blockers were focused on in hopes of attenuating the depolarization force in the plateau phase and therefore shortening the action potential and the QT interval. However, none of the six drugs was able to rescue the heart from arrhythmogenesis, and most of them even worsened the conditions, evidenced by the further prolonged QT intervals and more frequently observed EAD activities. By analyzing the separate role of each channel current in the integral effect of multi-channel drugs, we found that blocking ICaL and INaL was not able to offset the reduction of IKr by CO; furthermore, most of these multi-channel blockers also inhibited IKr with a relatively low affinity. Indeed, the hERG channel that conducts IKr is a highly sensitive target and it accounts for the majority of drug withdrawal events in the last 2 decades (Brown, 2004; Stockbridge et al., 2013; Villoutreix and Taboureau, 2015). On the other hand, there are few drugs available in the current antiarrhythmic category exerting IKr activating effects (Lei et al., 2018), making it difficult to find a proper drug strategy. We have also tried pinacidil (an IKATP activator) in the model, but it did not produce any significant efficacy as well (data not shown). This can be attributed to the fact that the K-ATP channel barely opens under normoxic conditions due to its ATP-sensitive characteristic (Dart and Standen, 1995); therefore, the IKATP would not make obvious differences even a high magnification ratio was used in the model.
In-depth analysis has demonstrated that IKr plays a major role in CO-induced arrhythmogenesis (Jiang et al., 2022). Considering that existent multi-channel antiarrhythmic drugs did not achieve idealized efficacy, we turned to evaluate the potential phrenological effect of specific IKr activators. In line with expectations, the simulation results showed that IKr activators could effectively reverse the proarrhythmic effects of CO. All the tested drugs notwithstanding in different doses restored AP and ECG morphologies almost to their control levels in healthy human simulations, and they also suppressed EADs and ectopic beats in heart failure human simulations. These findings suggest that the IKr activator is a promising pharmacotherapy for the treatment of CO-induced arrhythmias.
4.4 Potential limitations of this study
This study lacks validation of heart failure models. Though we have adopted a well-established cell model under heart failure conditions and replicated several known electrophysiological changes in failing hearts, for example, the prolonged APD (Akar and Rosenbaum, 2003; Lou et al., 2012), the decreased conduction velocity (Akar et al., 2004), the widened QRS complex (Shenkman et al., 2002; Sandhu and Bahler, 2004), and the prolonged QT interval (Davey et al., 2000; Medina-Ravell et al., 2003); however, we did not find enough tissue-level experimental data to validate other observations such as the flattened T-wave.
The above limitations shall not change the main conclusions of this study. Specifically, most of the observations and conclusions in the present study were based on the damaged cellular repolarization and the consequent QT prolongation in failing hearts, which were well-established in biological experiments (Davey et al., 2000; Medina-Ravell et al., 2003; Lou et al., 2012; Ng et al., 2014). In addition, for the EAD phenomenon, we adopted relatively conservative parameters (i.e., no EAD phenomenon occurred in pure heart failure conditions) to avoid exaggeration of the experimental results.
The experimental data on CO effects, drugs, and currents used in this study were obtained from different species, and the CO effects were obtained at room temperature. Interspecies differences and temperature dependence should be taken into account when interpreting and translating the results. The effects on APD in this study were measured in individual isolated ventricular myocytes, and the potential cell-coupling effects on the APD in high-dimensional models were not considered. Besides, the pathological model of CO was constructed based on experimental data obtained from different CORM-2 doses (10–30 μM) (Al-Owais et al., 2021), which should be considered in future studies. As for the drugs, the IKr activators proposed in this study for the treatment of CO-induced arrhythmias currently face some disadvantages and unknowns. Specifically, compared with the FDA-approved drugs such as ranolazine and amiodarone, IKr activators represented by HW-0168 are currently only used in biological experiments and simulation experiments, and their effective doses have not been clinically verified and side effects are not being disclosed. Moreover, whether these IKr activators interact with ion channels other than IKr remain unknown. If this is the case, then they must be treated as multiple-channel drugs and the potential offset or synergy effects among the involved ion currents should be considered.
Finally, according to our previous research review (Zhang et al., 2021), CO was also known to affect multiple cellular pathways other than the ion channels in this study. The present study mainly considered arrhythmias caused by changes in ionic currents directly induced by CO, without considering the mitochondrial toxicity of CO and some other complicated electrophysiological remodeling induced by cellular ischemia. Specifically, CO poisoning will increase ROS and RNS (Piantadosi, 2008), which further impair the chondrial energetics and can alter the intracellular calcium handling as well (Hegyi et al., 2021). This alteration will subsequently impact the expression and trafficking of channels (Sutanto et al., 2020). These cellular pathways warrant further investigations in the future.
5 CONCLUSION
In this study, we conducted an in silico assessment of the efficacy of some common antiarrhythmic drugs and specific IKr activators on CO-induced arrhythmias under healthy and heart failure conditions. We showed that existent antiarrhythmic drugs like ranolazine failed to exert therapeutic effects, and even worsened the arrhythmogenic situation in failing hearts. In contrast, specific IKr activators such as HW-0168 can effectively alleviate the proarrhythmic effects of CO, providing a promising pharmacotherapy for the treatment of CO-induced cardiotoxicity.
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CTG (cardiotocography) has consistently been used to diagnose fetal hypoxia. It is susceptible to identifying the average fetal acid-base balance but lacks specificity in recognizing prenatal acidosis and neurological impairment. CTG plays a vital role in intrapartum fetal state assessment, which can prevent severe organ damage if fetal hypoxia is detected earlier. In this paper, we propose a novel deep feature fusion network (DFFN) for fetal state assessment. First, we extract spatial and temporal information from the fetal heart rate (FHR) signal using a multiscale CNN-BiLSTM network, increasing the features’ diversity. Second, the multiscale CNN-BiLSM network and frequently used features are integrated into the deep learning model. The proposed DFFN model combines different features to improve classification accuracy. The multiscale convolutional kernels can identify specific essential information and consider signal’s temporal information. The proposed method achieves 61.97%, 73.82%, and 66.93% of sensitivity, specificity, and quality index, respectively, on the public CTU-UHB database. The proposed method achieves the highest QI on the private database, verifying the proposed method’s effectiveness and generalization. The proposed DFFN combines the advantages of feature engineering and deep learning models and achieves competitive accuracy in fetal state assessment compared with related works.
Keywords: cardiotocography, computer-aided diagnosis algorithm, feature fusion network, fetal state assessment, convolutional neural network
1 INTRODUCTION
Many studies confirm that fetal hypoxia and acidosis are more likely to occur during childbirth, leading to fetal asphyxia, brain damage, and even death (Muccini et al., 2022), (Kanagal and Praveen, 2022), (Giussani, 2021). Continuous fetal monitoring during birth is crucial for detecting early signs of fetal hypoxia and preventing irreversible damage. CTG (cardiotocography) is a combined recording of fetal heart rate (FHR) and uterine contractions (UC). These time-series signals comprise the features of fetal state. When FHR features indicative of fetal oxygen deficiency are identified early, they can aid in fetal state prediction (Gupta et al., 2022), (Al-Yousif et al., 2021) and decrease respiratory acidosis in newborns and fetal brain injury (Castro et al., 2021), (Miller et al., 2021), (Gunaratne et al., 2022). CTG is sensitive in predicting the acid-base balance of fetuses but lacks specificity in identifying fetal acidosis and neurological disorders. Due to the complexity of CTG signals, visual interpretation based on guidelines result in diagnostic errors. Additionally, owing to observer variability, the false-positive rate of CTG is relatively high, leading to an increase in unnecessary Cesarean deliveries (Garabedian et al., 2017), (Ogasawara et al., 2021). The computerized data-driven analysis of CTG can assist obstetricians in reducing subjective errors and making objective medical decisions. There are two classification methods for CTG signals: machine learning and deep learning (Georgieva et al., 2019).
Machine learning identifies essential morphological features by imitating obstetricians’ inspection techniques (Nunes and Ayres-de Campos, 2016). Baseline, acceleration, deceleration, and variability are visual morphological features that represent the macroscopic aspects of FHR pattern (Akkanapalli and Mudigonda, 2022). Furthermore, several statistical approaches are used with machine learning methods to recognize potential features of CTG signal (Ponsiglione et al., 2021). On the one hand, there are several signal-based approaches as follows. Nonlinear features, such as Approximation Entropy (ApEn) (Pincus, 1995), Sample Entropy (SampEn) (Richman et al., 2004), and Lempel Ziv Complexity (LZC) (Lempel and Ziv, 1976), have been employed as diagnostic features primarily for analyzing the nonlinearity and complexity of FHR signal. Fetal heart rate variability (FHRV) offers essential information on acidosis during delivery (Gatellier et al., 2021). Long-Term Variability (LTV) and Short-Term Variability (STV) have been developed mainly for FHRV analysis (Malik, 1996). On the other hand, transform-based methods such as empirical mode decomposition, discrete wavelet transform, and Fourier transform have been applied to extract implicit CTG features (Cömert et al., 2018b). Fetal state assessment also utilizes the features derived from fast Fourier transform and continuous wavelet transform (Bursa and Lhotská, 2017).
Machine-learning algorithms are applied to classify fetal states after features are extracted and selected. Several classifiers have been used, such as support vector machine (SVM), logistic regression, K-nearest neighbors, random forest, and decision tree. Karabulut and Ibrikci. (2014) classified CTG recordings using a decision tree. Spilka et al. (2016) categorized fetal states by adopting a sparse subset of features. Likewise, Subasi et al. (2020) conducted a study with the same purpose while using more machine learning methods. Differently, Cömert and Kocamaz. (2016b) sought to categorize hypoxic fetuses. Cömert et al. (2018b) assessed fetal state through SVM. They proposed an innovative image-based time-frequency feature extraction method (IBTF) (Cömert et al., 2018a). Zeng et al. (2021) used time-frequency features and an ensemble cost-sensitive SVM classifier to classify CTG recordings. Nevertheless, machine learning algorithms involve intricate feature engineering. The model’s performance is primarily determined by the quality of feature engineering, which has a heavy workload and is prone to ignoring correlations between features.
Deep learning is a form of sophisticated machine learning that employs neural networks. Deep learning does not require feature extraction and selection, whose models extract useful features automatically by training data. Li et al. (2018) and Ogasawara et al. (2021) compared and analyzed the performance of convolutional neural network (CNN) and traditional machine learning algorithms for fetal state assessment. Their studies indicated that CNN algorithms outperformed conventional machine learning algorithms. Petrozziello et al. (2018) compared the performance of RNN and CNN in assessing fetal states, and their research suggested that CNN was more advantageous. Cömert and Kocamaz. (2018) proposed using a short-time Fourier transform to convert a signal into a visual for fetal state evaluation through CNN. Zhao et al. (2019b) combined recursive graph and CNN in order to turn signals into images that could be used to categorize fetal states. It was shown that transforming signals into images and processing them was a more effective way of predicting fetal hypoxia than merely processing the signals. Das et al. (2018) then presented a Long Short-Term Memory (LSTM) network to adjust the weights of normal and pathological recordings and improve detection accuracy. Ogasawara et al. (2021) employed CNN and LSTM architecture for analyzing CTG time series. Liu et al. (2021) proposed a CNN-BiLSTM network based on attention to obtaining the complex nonlinear spatial and temporal relationships of FHR. However, using a single-scale convolution kernel in CNN may neglect some of the signal’s latent and timing information. Unlike traditional CNN, the Multiscale Convolutional Neural Network (MSCNN) network retains global and local information synchronously. Moreover, MSCNN is capable of increasing the accuracy of medical image segmentation and provides an effective solution (Teng et al., 2019). Most studies use single feature engineering or deep learning. Clinicians are more likely to base their diagnosis on physiological parameters, given the complexity of physiological phenomena influencing fetal heart rhythm. Computer-aided CTG analysis can be a potential solution for improving CTG interpretation accuracy (Sbrollini et al., 2017).
Toward accurate and practical fetal state assessment, a feature fusion network is introduced to capture the complex features frow CTG signals. The chief contributions are summarized as follows. 1) As far as we know, this work is the first to use a deep feature fusion network (DFFN) that combines a multiscale CNN-BiLSTM model with linear and nonlinear features to improve the classification performance. 2) The multiscale CNN-BiLSTM model simultaneously derives spatial features and temporal information from CTG signals to capture complex fetal vital signs. 3) We construct the JNU-CTG database and use it to validate the generalizability of the proposed method. Compared to other researches, the present method has the best generalization performance.
2 MATERIALS AND METHODS
The public CTG database CTU-UHB and the private CTG database Jinan University cardiotocography (JNU-CTG) are employed to demonstrate the validity of methods. We propose a novel DFFN for fetal status assessment. A multiscale CNN-BiLSTM network extracts spatial and temporal information from FHR signal. The multiscale CNN-BiLSM features combined with linear and nonlinear features is used to classify fetal states.
2.1 Database description
In this study, we use 552 recordings from the public database and 784 recordings from the private database for fetal state assessment. There are two types of recordings: normal and pathological. The recordings with pH < 7.15 are considered pathological, while the rest are considered normal. CTU-UHB is unable to provide UC signals of sufficient quality for this experiment. This problem is also mentioned in the study of Zeng et al. (Zeng et al., 2021), which select 469 UC signals from 552 UC signals that meet the signal quality requirements (i.e., some UC signals are available) and directly delete the missing parts of 469 UC signals, resulting in a discontinuity in the signal. For the following reasons, UC signals are not used in this study: 1) A low-quality UC signal will severely reduce classification accuracy. 2) Most current studies use FHR signals for fetal state assessment. In order to demonstrate the validity of the proposed method under the same benchmark (i.e., without UC signal), we only use FHR signal for fetal state assessment.
2.1.1 The public CTG database CTU-UHB
Based on clinical and technical criteria, the 552 recordings are chosen from 9164 intrapartum recordings obtained at the University Hospital in Brno, the Czech Republic (Chudáček et al., 2014). The raw data recordings are publicly available in Physionet (https://physionet.org/content/ctu-uhb-ctgdb/1.0.0/). A summary of patient and labor outcome measure statistics is also available in the database. Table 1 lists the statistical properties of CTU-UHB database. The signal has a sampling frequency of 4 Hz and a maximum recording time of 90 min. All the records are singleton pregnancies with a signal loss of 50% or less per 30-min time window and gestational weeks longer than 36 weeks.
TABLE 1 | The statistical properties of CTU-UHB database.
[image: Table 1]2.1.2 The private CTG database JNU-CTG
The JNU-CTG database is developed to help with CTG classification and fetal state evaluation. We use JNU-CTG database to develop, test, and compare algorithms for automatic CTG analysis. Table 2 summarizes the statistical properties of JNU-CTG database. The recordings in JNU-CTG database were collected between 2015 and 2020 at the obstetrics ward of the first affiliated hospital of Jinan University. Intrapartum CTG recordings and medical records are two main components of the data. The OB TraceVue®system (Philips) stores all CTG recordings in an electronic format in a proprietary form. Furthermore, the system uses the anonymized unique identifier generated by the hospital information system to match the CTG recordings and medical records. To ensure the integrity and correctness of the database, data that does not fit clinical criteria are removed. The selection procedure is depicted in Figure 1.
TABLE 2 | The statistical properties of JNU-CTG database.
[image: Table 2][image: Figure 1]FIGURE 1 | JNU-CTG database selection procedure.
Step 1: Unqualified recordings should be excluded according to the following guidelines. 1) Recordings that lack maternal or fetal medical records are eliminated. 2) A fetal state classification involves pH value, which determines whether CTG recording is normal or pathological. The fetal medical records without the fetal umbilical artery blood pH are excluded.
Step 2: We use the following criteria to determine which CTG recordings should be included in the final database. 1) Maternal age: Although maternal age plays a significant role in the risk of congenital disorders, there are no significant differences at delivery. The records with a low maternal age (under 18 years) are excluded since there may have been an adverse effect. 2) Gestational weeks: Fetal maturity significantly impacts the morphology and behavior of FHR before and during delivery. Thus, full-term fetuses are chosen based on their last menstrual count (37 weeks of gestation), determined by ultrasound measurements during prenatal examinations.
Step 3: CTG recordings should comply with the following rules to ensure quality. 1) The recording time for CTG is more than 60 min 2) The loss rate of fetal heart rate signals is less than 15% per 30 min.
2.2 Signal preprocessing
In this paper, we use the FHR signal 20 min before delivery, detect and interpolate the outliers, and finally obtain the FHR signal required for the experiment. The 20-min FHR signal is usually used to assess the state of a fetus in clinical practice since FHR signals closer to delivery are highly associated with fetal hypoxia (Chudáček et al., 2011). In our study, we use 20-min CTG recordings at the end of the first stage of labor. The signal is divided into 20-min segments, has 4,800 samples, and is sampled at a rate of 4 Hz.
Preprocessing is an essential step in almost all biomedical signal processing applications. The value of extracted features and classification performance are both affected by this process. The main preprocessing processes are signal fragment selection, outlier detection, and interpolation. Our work uses the same FHR signal preprocessing method as AH del’Aulnoit et al. (de l’Aulnoit et al., 2019) for outlier detection and interpolation. These anomalous data points are recognized first, eliminated, and replaced with a linear interpolation between valid data points. Invalid data points are defined as follows. 1) The signal values are outside the acceptable range (50–220 bpm). 2) Abrupt and large deviations in FHR signal (absolute value of two adjacent points exceeding 25 bpm). A comparison of a signal (No. 1008 FHR signal) before and after preprocessing is shown in Figure 2. It suggests that this interpolation technique is capable of effectively removing noise.
[image: Figure 2]FIGURE 2 | A comparison of a signal (No. 1008 FHR signal) before and after preprocessing. (A) is the original signal, whereas (B) is the denoised signal.
2.3 Deep feature fusion network
A deep neural network works like a feature learning process, where the initial input is abstracted step-by-step through a hidden layer. As a result, it can extract more valuable features from the original input data. An end-to-end deep learning model extracts latent representation vectors from the input FHR signal and automatically assesses the fetal status based on this information. The proposed DFFN’s structure is shown in Figure 3. The feature fusion network receives the preprocessed FHR signal as input. The complex invisible features in the FHR signal are extracted using a multiscale CNN-BiLSTM network. The multiscale CNN-BiLSTM network is used to obtain the deep neural network feature vector. The multiscale features then are spliced with the linear and nonlinear features. The fused features are transmitted to the fully connected layer. A 32-dimensional vector is extracted from the multiscale CNN-BiLSTM network via a fully connected layer with 32 nodes. Training and testing are relatively straightforward with the DFFN since multiscale features and feature fusion are integrated into a network. The DFFN framework consists of two stages of training. In the first stage, we obtain the optimal model for each scale, and then we extract the features of the residual block of each scale. In the second stage, the multiscale, linear, and nonlinear features are combined to train a new model. The fused features are input into a new model that learns more discriminative features for final classification. The hierarchy information in parallel is used to calculate the corresponding weight through learning. Consequently, the fused features tend to favor the features that are useful for classification, which is the weight that indicates the importance of multiscale features.
[image: Figure 3]FIGURE 3 | The proposed deep feature fusion network’s structure.
2.4 Extracting multiscale CNN-BiLSTM features
Figure 4 depicts the architecture of the multiscale CNN-BiLSTM hybrid network. Multiscale CNN provides a greater diversity of features than CNN. The multiscale CNN-BiLSTM network contains one multiscale layer and three convolutional layers. A batch normalization (BN), an exponential linear unit (ELU), an average pooling layer, and a dropout layer follow each convolutional layer. Dropout is valuable to the hybrid network since it reduces overfitting and improves the model’s generalization capabilities. The rate of dropout is 0.25. The hybrid neural network receives the preprocessed FHR signal as input.
[image: Figure 4]FIGURE 4 | The architecture of multiscale CNN-BiLSTM network.
FHR signals have various waveforms, resulting in huge differences between them. Therefore, it is difficult to choose a suitable convolution kernel size for the convolution operation. The single-scale convolutional kernel size limits network feature extraction. FHR signals with more global information distribution prefer larger convolution kernels, and FHR signals with more local information distribution prefer smaller convolution kernels. In multiscale layers, convolution kernels of different sizes are employed to extract different information from the FHR signal, and these operations are performed in parallel and then merged to provide a more accurate representation. In this paper, two convolution kernels of different sizes (KS = 32, 64) are used to extract features from the FHR signal, and the extracted features are dimensionally spliced to fuse features of different scales.
There is a particular type of recurrent neural network known as LSTM, which is capable of solving the vanishing gradient problem and learning long-term dependencies in neural networks. The FHR signal is a time series. The classification results will be more robust if information from past and future time points is taken into account simultaneously. In standard LSTM networks, sequences are processed chronologically, but future point-in-time information is not considered. In this paper, two independent hidden LSTM layers are combined in opposite directions as BiLSTM to compensate for this weakness. With this structure, the output layer is able to utilize information from past and future time points. The spatial features of the FHR signal are extracted using the multiscale CNN to enhance the variety of features. The temporal information features are extracted using the BiLSTM. The residual connection efficiently merges the spatial and temporal information features. The gate mechanism determines the transmission of information and can learn relevant information regarding the current information. The forget gate determines which information is irrelevant for classification and should be discarded, the input gate determines which information requires updating, and the output gate decides which information to output.
2.5 Linear features
It has been a consensus for a long time that linear features have been regarded as the primary indicators for evaluating FHR signals. FHR linear features are the most efficient prognostic indicators for detection of fetal distress (Cömert and Kocamaz, 2016a). The morphological and time-domain features constitute the conventionally used linear features essential for interpreting FHR signals (Cömert et al., 2018a) (Akkanapalli et al., 2022) (Fergus et al., 2018).
Morphological features are the significant indicators to ascertain fetal state in clinical practice. Obstetricians have attempted to identify specific FHR patterns that can be seen visually as morphological features (Haweel et al., 2021). Baseline, acceleration, deceleration, and variability in short and long terms represent the gross features of the FHR patterns (Cömert et al., 2018a). In this paper, they are calculated based on FIGO guidelines (Ayres-de Campos et al., 2015).
Stationary information of CTG signals is often measured with time-domain features. In clinical practice, time-domain features are easy to understand and recognize by clinicians since they have good clinical interpretability. The time-domain features are formulated as follows (Cömert and Kocamaz, 2016a) (Zhao et al., 2018). Time-domain features are physiologically closely related to physiological activities such as fetal control mechanisms, sympathetic and parasympathetic nerve activity, fetal movement, and fetal respiration (Akkanapalli et al., 2022), (Feng et al., 2018). FHRmean denotes FHR’s mean value, whereas FHRstd denotes FHR’s standard deviation. x(i) is an FHR signal of length N, i = 1, … , N.
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LTV and STV are two kinds of FHRV. LTV is critical to determining the stability of fetal heart rate. A large LTV of the FHR signal within 10 min may contribute to the instability of the fetal intrauterine environment (Gonçalves et al., 2007). First, the FHR signal is separated into 60-s segment blocks denoted by v(i) to calculate LTV. The difference between these fragment blocks’ maximum and minimum values is then calculated as a sum. After that, M is used to divide this value. The M represents the total amount of minutes.
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The difference in FHR signal between 2.5 s connected within a minute is used to calculate STV, reflecting the FHR signal’s variability due to beat-by-beat differences (Dawes et al., 1992). Low STV has a direct correlation with the occurrence of metabolic acidemia and imminent intrauterine death (Kouskouti et al., 2018). The FHR signal is first divided into 2.5-s fragment blocks to calculate the STV. The mean sm(i) is calculated for each fragment block, consisting of 10 sample points. FHR signal frequency is 4 Hz. The difference between the mean sm(i) and sm (i + 1) of two consecutive fragment blocks is then calculated as the sum of the differences. Finally, M is divided by this value.
[image: image]
LTI identifies a long-term irregularity. Calculate the square root of the sum of sm(i) and sm (i + 1). M is divided by this value.
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The interval index, denoted by II, indicates FHR variability over a short period.
[image: image]
The absolute value of the FHR signal x(i) from the mean value of the FHR signal. FHRmean is averaged to get FHRmean AD.
[image: image]
The deviation between the FHR signal value x(i) and the median of the FHR signal (x(N)) is computed, followed by the median of the absolute magnitude of the deviation FHRmedian AD.
[image: image]
2.6 Nonlinear features
Nonlinear analysis is conducted to identify the essence of complex phenomena, effectively addressing the complexity of the FHR time series. A nonlinear approach may reveal relevant clinical information of FHR that cannot be revealed by conventional time series analyses, such as abnormalities in heart rate (Spilka et al., 2012). The methods of ApEn, SampEn, and LZC for the analysis of nonlinear time series have been found to increase the accuracy of the fetal status assessment significantly (Zhao et al., 2019a), (Usha Sri et al., 2020), (Marques et al., 2020). These features allow for the measurement of FHR variability, which is beneficial for clinically interpreting the fetal wellbeing during the final stage of delivery (Georgoulas et al., 2006).
2.6.1 Approximate entropy
The degree of data disbandment in a system is calculated by ApEn. ApEn is a nonlinear parameter that measures the unpredictability and regularity of physiological time series. It is used to assess the internal complexity of time series and anticipate the possibility of new information arriving in them. A N-length time series indicated by xn is divided by a collection of m-length vectors represented by um(i). The um(i) and um(j) vectors are then written as [image: image] in terms of Euclidean sense [image: image]. As stated [image: image], the number is used to compute the possibility of vectors being near. Define the function: [image: image]. ApEn is defined as follows.
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2.6.2 Sample entropy
For the SN time series, SampEn is calculated by the same process and metrics as ApEn. It provides a quantitative measure of the complexity of time series, similar to ApEn. The fundamental difference between the two methods is that ApEn considers self-matches, whereas SampEn does not. SampEn also has fewer biases. Due to the elimination of self-matches, SampEn requires a lower computational time and is remarkably independent of signal length. Its definition is as follows.
[image: image]
The m and r parameters are set to the same values as with ApEn in our work: m = 4, r = 0.15, and r = 0.2.
2.6.3 Lempel ziv complexity
LZC predicts recurring patterns in time series. It is applicable in the non-stationary signal. As a result, each time series may be described with fewer data. The number of patterns in the sequence is counted, and each time a new pattern emerges, the complexity value c(n) increases by one. The upper constraint on the complexity c(n) is known from the current work, which is [image: image], where a represents the number of distinct patterns in the time series. To address the issue of varying complexity caused by sequence length, the LZC is defined as follows.
[image: image]
Our experiment use a 20-min FHR signal with a rate of 4 Hz and a total data length of 4,800. N is set to 4,800 for calculating LZC.
2.7 Performance metrics
Four umbilical artery pH cutoffs are used to categorize fetuses as acidemic or non-academic: 7.05, 7.10, 7.15, and 7.20 (Castro et al., 2021). The pH value of 7.15 is determined as the threshold value in this paper after extensive research (Sholapurkar, 2020) (Singh et al., 2021). Blood with a pH of less than 7.15 is regarded as hypoxia, whereas blood with a pH of more than 7.15 is considered normal. This work uses a sigmoid function to do binary classification for fetal status assessment since its results are in two categories (hypoxia and normal). The function’s input is the integrated expression of FHR signal features fz. The p denotes the output. The function is calculated as follows. The weight matrix is WP, and the bias matrix is bP.
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The cross-entropy cost function is the loss function in the training process. The expected output is y, and [image: image] is the actual output.
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We use the Sensitivity (SE), Specificity (SP), and Quality Index (QI) calculated from the confusion matrix to assess the proposed method’s performance. SP is the percentage of normal samples that are correctly recognized. SE measures the discriminative power of the model on hypoxic samples. QI is defined as the geometric mean of SE and SP. An unbalanced database can harm the overall performance of any classifier. The ratio of normal to hypoxic samples is about 4:1 in this study. As a result, QI is used to assess overall classification performance. These metrics are formulated as follows:
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Where TP, FP, FN, and TN represent true positive, false positive, false negative, and true negative.
3 EXPERIMENTAL RESULTS
The proposed DFFN is built using Python, the Keras library, and TensorFlow as a backend. The model is trained and tested on a computer with a 2.60 GHz CPU, an NVIDIA GeForceRTX2080Ti GPU, and a 128 GB memory stick. Signal preprocessing is performed in MATLAB Aulnoit et al. (2019).
3.1 Determination of class weight and network parameters
It is generally acknowledged that neural networks contain many factors that might influence their performance. The settings are tweaked in the following method in our experiment. The network is trained for 130 epochs with an initial learning rate of 0.01, which declined by ten at 15 and 90 counts. The network is optimized using stochastic gradient descent with momentum, with the momentum set at 0.9 in this experiment. To assess the algorithm’s accuracy, we employ a 10-fold cross-validation procedure. The complete FHR signal of the CTU-UHB database is randomly divided into 10 folds. Stratified sampling is used to combine nearly the same proportion of normal and pathological samples in each fold. The training set consists of 90% of recordings (395 normal and 101 pathological), while the remaining 10% (44 normal and 12 pathological) are utilized to test the proposed approach’s performance. The process is repeated ten times, reinitializing and testing the model with a new subset of data before averaging the final findings. The weights of normal and pathological sample categorization are changed in this experiment due to data imbalance (the number of normal and pathological samples is roughly 4:1). To verify the generalization of methods, JNU-CTG database is used as an independent test dataset.
Experiments are carried out using various classification weights, as indicated in Table 3. Furthermore, QI is used as the final metric for evaluating model performance. Higher QI values indicate better performance. This experiment shows that the QI values vary for different classification weights. The model’s QI increases as the weight of normal samples decreases. The model’s QI decreases as the weights of pathological samples increase further. The proposed DFFN focuses on recognizing hypoxia FHR recordings when the weight of pathological samples increases and the detection rate of normal samples is dramatically lower. When the classification weights ratio is 0.21 : 0.79, the QI value is the highest. The DFFN with a ratio of 0.21 : 0.79 enhances the likelihood of identifying aberrant signals while preserving its capacity to detect normal signals. It maintains sensitive detection of both normal and pathological samples. As a consequence, 0.21 : 0.79 is chosen as the classification weight.
TABLE 3 | Performance of DFFN on CTU-UHB database with different class weights.
[image: Table 3]The DFFN parameters are modified layer by layer based on the QI value. The parameters for each layer in Figure 3 are listed in Table 4. Table 4 lists the parameters for each layer in Figure 3. Figure 5 depicts experimental results obtained with the settings in Table 4. For imbalanced data sets, Precision-Recall (P-R) curves outperform receiver operation characteristic curves in comparing the performance of different models. Consequently, the P-R curve has been used to illustrate the experimental results. Figure 5A depicts the confusion matrix for the test set, whereas Figure 5B depicts the P-R curve for the test set.
TABLE 4 | Network parameters.
[image: Table 4][image: Figure 5]FIGURE 5 | The experimental results of the test set. (A) is the confusion matrix using the parameters listed in Table 4, whereas (B) is the P-R curve using the parameters listed in Table 4.
3.2 Performance of different features
Experiments are conducted on the public CTU-UHB database to compare the outcomes of fetal state classification for different features. A SVM classifier is derived from structural risk minimization theory. It transforms the classification problem of samples into the optimization problem of classification hyperplane in the sample feature space. Table 5 compares performance utilizing SVM for linear and nonlinear features and their combinations. Linear and nonlinear features have a QI of 61.12% and 57.70%, respectively, for the evaluation index for fetal status assessment. The performance of linear features outperforms that of nonlinear features in the SVM classifier. Additionally, the QI value for their combination is 64.90%, which suggests that combining both features could increase the accuracy of fetal status assessment. And their combination achieves highest SE. The SP of linear features reaches the highest value, 80.87%, which indicates that the linear feature can discriminate hypoxic samples exceptionally well.
TABLE 5 | Performance of SVM on CTU-UHB database.
[image: Table 5]Logistic Regression classifiers are normalized linear regression models that incorporate a logistic function based on linear regression. Table 6 shows the classification performance of different feature sets in the logistic regression classifier. The QI of linear and nonlinear features is 61.72% and 59.87%, respectively. The QI value of 63.91% indicates that combining linear and nonlinear features improves fetal state classification accuracy. The SP of linear features also reaches the highest value in logistic regression, 74.95%, indicating that linear features can distinguish hypoxic samples extremely well. In the logistic regression classifier, nonlinear features achieved the highest SE, 58.48%. This indicates the use of nonlinear features can be beneficial in identifying normal fetuses.
TABLE 6 | Performance of Logistic Regression on CTU-UHB database.
[image: Table 6]As shown in Tables 5, 6, logistic regression classifier outperforms SVM classifier for classification using just linear or nonlinear features. SVM classification is superior to logistic regression when used with their combination.
3.3 Performance of various networks structures
The classification performance of different network structures on CTU-UHB database is shown in Table 7. CNN has been found to outperform traditional machine learning methods for image processing in previous studies. The CNN is capable of not only extracting low-level features and local features from the original signal, but also integrating those features into high-level features for analysis. The overall outcome of FHR signal diagnosis is closely related to some local waveforms. The purpose of CNN is to extract visible waveform features from the raw waveform signal and integrate these features into high-level features related to fetal hypoxia. Compared with CNN, multiscale CNN can increase the diversity of features. The experimental results prove that the classification performance of multiscale CNN(i.e., 65.12%) outperforms that of CNN (i.e., 63.90%). BiLSTM networks are widely used in time series forecasting and classification research because of their unique ability to capture long-term and short-term temporal relationships. The multiscale CNN-BiLSTM achieves the best performance (i.e., 65.74%) and is senstive to recognize pathlogical recrodings (i.e., 66.92%), indicating the model can integrate both spatial and temporal information features of the FHR signal to maximize the classification performance.
TABLE 7 | Performance of different network structures on CTU-UHB database.
[image: Table 7]3.4 Performance of related works on two databases
We present a neural network with feature fusion to assist obstetricians in making objective clinical judgments on fetal state. In order to analyze the experimental results of this paper more comprehensively, Table 8 presents the results of a comparison between the proposed methods and previous works on the CTU-UHB database. Numerous variables, such as the FHR signal properties and the selection of signal fragments from the database, lead to varied experiment outcomes. The research evaluated in Table 8 employs the identical processing steps: signal preprocessing, feature extraction, feature selection, and final classification. To verify the validity of the proposed method, the work of (Liang and Li, 2021), (Li et al., 2018), (Zhao et al., 2019b), and (Baghel et al., 2022) are repeated in this paper. Experiments are conducted under identical settings and identical databases.
TABLE 8 | Performance of previous works on CTU-UHB database.
[image: Table 8]We employ a multiscale network to classify the fetal state and compare it to other works on the public database.
1) Comparing with (Cömert et al., 2018a), (Cömert et al., 2018b), the proposed multiscale model is more effective since it did not use complicated features. The proposed multiscale CNN-BiLSTM model has the highest SE and slightly lower SP for the same FHR signal classification criterion. The evaluation index QI is increased by 1.09% and 2.3% compared with the IBTF and BFS + DWT techniques, respectively, highlighting the hybrid model’s benefits.
2) (Liang and Li, 2021) and (Li et al., 2018), who separate the FHR signal into several sub-segments before processing the data in parallel using CNN. After that, the fetal status is determined utilizing a voting system. The difference is that (Liang and Li, 2021) utilized a system based on weighted voting. Using the same deep learning method (CNN), the QI and SE for fetal hypoxia detection of the proposed multiscale model are much superior to their method.
3) (Zhao et al., 2019b) employ recursive graphs to turn signals into images and CNN for fetal status evaluation. All the metrics of the proposed multiscale model are higher than RP + CNN, indicating that the multiscale model suggested in this study could capture the FHR signal’s hidden features more sensitively.
4) The direct input of the FHR signal is used to assess the fetal state by a neural network and automatically learn essential features in the work of (Baghel et al., 2022). We apply the same procedure and employ a multiscale model that can account for spatial features and temporal data extraction. The SP, SE, and QI of the proposed multiscale model are higher than their method, showing that our work is more accurate in fetal status classification.
We propose the DFFN, including linear and nonlinear features with the multiscale CNN-BiLSTM network. The experimental results of DFFN and other work on the public database are shown in Table 8.
1) (Cömert et al., 2018a), (Cömert et al., 2018b), utilize some time-domain, and nonlinear features. These features perform better for fetal hypoxia identification (i.e.,SE) but are less efficient for normal fetal detection (i.e.,SP). We integrate more complex features automatically retrieved by deep learning to increase the model’s capacity to recognize normal fetuses while retaining superior performance for fetal hypoxia identification.
2) In comparison to (Liang and Li, 2021), (Li et al., 2018), (Zhao et al., 2019b), and (Baghel et al., 2022), who all utilize the deep learning approach. Deep learning is sensitive for normal fetal detection but less sensitive for fetal hypoxia detection. The proposed DFFN contains both linear and nonlinear features. Therefore, the expressive capacity of DFFN and the model’s ability to identify fetal hypoxia have been improved. Meanwhile, the performance of normal fetal detection has been preserved.
3) The proposed DFFN in this study has the highest classification accuracy compared to previous fetal state assessment methods. It overcomes the constraints of a single model and compensates for the shortcomings of feature engineering and deep learning model. In addition, the performance of the proposed feature fusion approach is superior to that of the proposed multiscale CNN-BiLSTM network. The QI of the proposed DFFN method is 66.96%, 1.22% higher than the multiscale CNN-BiLSTM network.
The generalization of the proposed DFFN and multiscale CNN-BiLSTM network is tested by an independent test set of JNU-CTG database. The experimental results are shown in Table 9. The experiment is more challenging in the independent test set. However, the proposed DFFN still performs best on the test set with a QI of 53.60%. The generalization ability of the fusion network is enhanced compared to other methods. The SE and SP of the proposed DFFN method are 43.94% and 65.53%, respectively. The proposed models are capable of identifying both normal and hypoxic fetal states.
TABLE 9 | Performance of different methods on JNU-CTG database.
[image: Table 9]4 DISCUSSION
Previous studies have pointed out that imbalanced dataset is a problem for machine learning since they are biased toward majority classes and tend to miss minority class cases (Ahsan and Siddique, 2022). Therefore, we focus more on SE (i.e., the minority cases) when evaluating classification performance. We propose a DFFN model to classify CTG recordings. The model includes multiscale feature extraction, fusion, and classification and automatically fuses different features through end-to-end learning.
In this work, we integrate linear and nonlinear features. The combination of linear and nonlinear features can achieve better classification performance compared to a single feature set, as shown in Tables 5, 6. Tables 5, 6 show the performance of logistic regression and SVM on the public database. There is a relatively high accuracy rate for classifying normal fetuses but poor accuracy for classifying acidosis fetuses for two classifiers. This difference is more pronounced when experiments are conducted using private databases (see Table 9). According to Tables 5, 6, 9, SVM outperforms logistic regression with combined features on the public dataset, while on the private dataset, logistic regression outperforms SVM. It suggests that machine learning and traditional features are not very feasible. One of the limitations of machine learning is its instability. Classifiers that perform well on old data rarely perform consistently on new data, necessitating continual model development and tuning. The experimental results on the public database are presented in Tables 5, 6, 8. They demonstrate that (Cömert et al., 2018a) uses IBTF features, which can distinguish normal and acidic fetuses more accurately than other machine learning methods (combination of linear and nonlinear features, BFS + DWT). It is temporarily unable to test (Cömert et al., 2018b) and (Cömert et al., 2018a) on the private database since the essential details of their works are unavailable.
The experiments on two databases clearly demonstrate that our proposed model is superior to other deep learning-based fetal state classification models, as shown in Tables 8, 9. In the experiment of the public dataset (Liang and Li, 2021), and multiscale CNN-BiLSTM perform best at identifying normal fetuses and acidic fetuses, respectively. And DFFN has the highest QI value. The model of (Baghel et al., 2022) outperforms other methods on the private database when identifying normal fetuses, while DFFN outperforms other methods when identifying acid fetuses and has the highest QI value. Based on the experimental results of two databases, (Cömert et al., 2018a), (Zhao et al., 2019b), and DFFN are more capable of distinguishing normal and acid fetuses. Despite having good accuracy in identifying normal fetuses, the studies of (Baghel et al., 2022), (Liang and Li, 2021) and (Li et al., 2018) are grossly insufficient in identifying acid fetuses. The proposed multiscale CNN-BiLSTM network and DFFN achieve higher classification accuracy when compare to the single-scale networks used by (Zhao et al., 2019b), (Baghel et al., 2022), (Liang and Li, 2021), and (Li et al., 2018). It is attributed to the fact that many regional features in FHR signal are preserved during multiscale feature fusion process. These features are weighted and calculated as the final features of fetal status classification. (Cömert et al., 2018a), (Zhao et al., 2019b), DFFN, and multiscale CNN-BiLSTM network are better able to capture the timing-related information of FHR signals. The signal is transformed into a picture by (Cömert et al., 2018a) and (Zhao et al., 2019b), from which time-frequency features can be extracted that more accurately reflect the non-stationarity of FHR. The proposed multiscale CNN-BiLSTM network and DFFN have a BiLSTM module that extracts forward and backward information simultaneously from the FHR signal sequence. Rather than treating the data having time steps, CNN treats it as a sequence that can be read using convolutional operations. Consequently, it is difficult for CNN to acquire the time-domain features of FHR signals automatically. By incorporating BiLSTM, FHR signals can be classified more accurately and time-series features can be captured. The QI value of DFFN is higher than that of multiscale CNN-BiLSTM network on two databases. The DFFN can more precisely express the original features of signal because feature fusion realizes the complementary advantages between features.
Computerized CTG analysis can reduce the inter- and intra-observer variability caused by pattern recognition based solely on existing guidelines. However, most proposed models focus only on improving classification accuracy, ignoring the clinical relevance of parameters and the obstetrician’s decision-making mechanism. In clinical decision-making, obstetricians are more inclined to make diagnoses based on objective parameters of specific physiological significance. Obstetricians are unlikely to trust black-box deep learning model. In this study, traditional and multiscale network features are combined for the first time, maximizing fusion features and improving fetal state accuracy significantly. Morphological features, which are used in clinicians’ diagnoses, are combined in order to provide interpretability of proposed fetal status assessment model. Meanwhile, the experimental results validate the generalization of DFFN, making it more applicable in clinical practice.
We intend to integrate clinical parameters into deep learning algorithms in the future, such as maternal tachycardia and maternal pyrexia, which are collected from maternal records. Further research can include UC and FHR signals as inputs to the neural network. The more comprehensive input information may allow network models to extract more valuable features Furthermore, we hope to study our model on a larger dataset to develop a lightweight algorithm that can be applied to large-scale data. Since the two databases have similar selection criteria, further work might increase the model’s generalization using data of diverse quality.
5 CONCLUSION
This paper proposes a novel deep feature fusion network for diagnosing fetal acidosis from FHR signals. A multiscale CNN-BiLSTM hybrid network is developed to extract the signal’s temporal and spatial features adequately. In order to account for clinical physiological parameters and assessment accuracy, a feature fusion network is used to splice the multiscale CNN-BiLSM features, as well as the currently popular linear and nonlinear features. Encouraging results are obtained, with a SE of 61.97%, SP of 73.82%, and QI of 66.93% on the public database. The proposed DFFN has the highest QI value on two databases, which indicates that the proposed feature fusion model has good generalization. The experimental results on two databases show that DFFN achieves better performance than previous works. The accuracy of fetal state classification as well as the generalization of DFFN are improved by merging the FHR features from multiscale layers with the extra features. In the future, we will work to optimize the interpretability of our model as well as its accuracy and generalizability. Through these advancements, we will be able to gain a deeper understanding of particular disease state of the fetus.
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Introduction: A contactless multiscale cardiac motion measurement method is proposed using impulse radio ultra-wideband (IR-UWB) radar at a center frequency of 7.29 GHz.

Motivation: Electrocardiograph (ECG), heart sound, and ultrasound are traditional state-of-the-art heartbeat signal measurement methods. These methods suffer from defects in contact and the existence of a blind information segment during the cardiogram measurement.

Methods: Experiments and analyses were conducted using coarse-to-fine scale. Anteroposterior and along-the-arc measurements were taken from five healthy male subjects (aged 25–43) when lying down or prone. In every measurement, 10 seconds of breath-holding data were recorded with a radar 55 cm away from the body surface, while the ECG was monitored simultaneously as a reference.

Results: Cardiac motion detection from the front was superior to that from the back in amplitude. In terms of radar detection angles, the best cardiac motion information was observed at a detection angle of 120°. Finally, in terms of cardiac motion cycles, all the ECG information, as well as short segments of cardiac motion details named blind ECGs segments, were detected.

Significance: A contactless and multiscale cardiac motion detection method is proposed with no blind detection of segments during the entire cardiac cycle. This paves the way for a potentially significant method of fast and accurate cardiac disease assessment and diagnosis that exhibits promising application prospects in contactless online cardiac monitoring and in-home healthcare.
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 radar cardiogram (RCG), cardiac motion, anteroposterior measurements, along-the-arc measurements, diastasis measurement


1. Introduction

In recent years, physiological signal measurements and perceptions have always been among the most popular research topics in auxiliary diagnosis medical technology (1). As the most important organ and the “engine” of the human body, heart status detection undoubtedly holds great significance in human health monitoring. With the development of sensor technology, numerous sensor-based applied studies have been oriented toward cardiac signal measurements. At present, classical cardiac information detection technologies mainly include electrocardiography (ECG) (2) and photoplethysmography (PPG) (3), which are relatively mature and widely used in clinical practice. ECG detects electrophysiological signals generally using metal electrodes placed on the body surface, and PPG detects optical signals at the wrist or finger (which are affected by blood volume changes) through optical sensors. However, both of the above methods require bodily contact, especially ECG, which requires electrode attachment and is not suitable for future round-the-clock real-time home health monitoring and diagnosis monitoring for burn or infected patients. Therefore, if contactless and unconstrained cardiac motion information detection technology can be developed, this would be highly promising to serve as core contactless physiological measurement technology for next-generation smart medical detection and smart home health monitoring.

Bio-radar research originated in the 1970s (4) and has been widely studied over the last 20 years because of its unique advantages. The basic principle of bio-radar for detecting vital signs is that cardiopulmonary activity (heartbeat and respiration) causes micro-movements of the body surface. These micro-movements generate specific modulation of the electromagnetic waves transmitted by radar sensors which are then reflected. Consequently, human heartbeat and respiration signals can be obtained through demodulation operations on radar echoes. More importantly, considering its unique advantages, such as privacy preservation, penetrating nonmetallic obstacle detection, and sensitivity to finer motion, bio-radar technology has been widely applied in vital sign detection (5, 6) and target localization (7), especially in the field of non-contact detection of respiratory and heartbeat signals for broad applications (8–13).

In terms of cardiac motion information detection, in recent years, although many bio-radar-based studies on physiological information (such as heartbeat and respiration) have been carried out, most of these are mainly concentrated on coarse-grained information such as heart rate (14), heart rate variability (2) and other statistical indexes. This coarse-grained information can partly reflect the target's physiological state and health status, but we prefer to obtain more specific and detailed information of cardiac movement similar to the ECG waveform signal, which is more conducive to facilitating deep and careful observation of the time-varying state of heartbeats and even for assessing relevant cardiovascular function and diseases. Unfortunately, only a few exploratory studies have been conducted to date. For example, Aardal et al. (15) stated that the bio-radar was first exploited to detect the two main and detailed cardiac activities of ventricular ejection and filling. Wang et al. (16) used a bio-radar to extract two geometric feature points corresponding to the atrial and ventricular contractions of an atrial-ventricular co-motion simulator. Furthermore, Gao et al. (17) found that time delays between contractions and relaxations of the atrium and ventricle can be observed in radar echoes. In contrast, Zhu et al. and Dong et al. (18, 19) verified that five feature points of radar heartbeat signals detected from the back of the body could be extracted, which consistently corresponds to five points in the ECG. Moreover, four different body orientations for heartbeat signal detection during normal breathing were investigated, and the results showed that the amplitude ratio of the heartbeat to the respiratory harmonic in the frequency domain from the back was greater than that from the front (20).

Generally, preliminary studies have obtained time-varying signals of cardiac motion and principally found corresponding relations between the radar cardiogram (RCG) and ECG in physiological feature points. However, three significant points remain unexplored: (1) The influence of some key factors on the RCG detection, such as the heart anatomical position, posture, and atrial and ventricular motion characteristics; (2) The corresponding relationships between the features of the electrical signal, radar echo signal, and physiological process-oriented cardiac motion; (3) In the ECG signal, there is a period with no electrical stimulation or conduction in a cardiac motion cycle (from the last T-wave to the next P-wave), resulting in a flat waveform, which is called diastasis (21). During diastasis, the ECG does not contain information about cardiac motion, but the heart still undergoes corresponding blood flow movement and volume changes during this period. Therefore, it is worth exploring whether motion-sensitive RCG can detect cardiac motion during this special period.

Based on the physiological characteristic analysis of cardiac three-dimensional motions and the proposal of classical signal processing schemes for RCG, this study designed and implemented multiscale cardiac motion measurement experiments based on the IR-UWB radar system to investigate the three significant points mentioned above. Leveraging the anteroposterior measurements, along-the-arc measurements, and comparative experiments with ECG focusing on diastasis detection, the rationality and advantages of bio-radar for cardiac detail monitoring and cardiovascular disease diagnosis are thoroughly discussed.

This paper is organized as follows: Section 2 introduces the principle of radar cardiac motion detection. Subsequently, the physiological process of cardiac movement alone with three dimensions and the advantages of RCG for cardiac motion detection were analyzed, and the radar sensor and experimental scheme are described. In Section 3, signal processing and feature extraction methods are presented. The experiments and results are presented in Section 4. In Section 5, the discussion and conclusions are presented.



2. Materials and protocol

This section contains four parts, including the principle of bio-radar-based heartbeat detection, the three-dimensional motion mechanism of the heart, the advantages of RCG over ECG in heart motion detection, and a corresponding experimental scheme illustration.


2.1 Principle of cardiac motion detection based on IR-UWB

The IR-UWB radar acquires physiological information by analyzing the time and amplitude variations of reflected pulses. When the transmitting antenna transmits very short pulses at the carrier frequency to illuminate the human chest, the receiving antenna receives the corresponding reflected electromagnetic wave modulated by the thoracic motion caused by respiratory and heartbeat organ behavior. Consequently, the micro-motion Doppler signal can be derived from (1).

[image: image]

where d0 is the fixed distance between the antenna and human chest wall, dris the displacement amplitude of respiration, dh is the displacement amplitude of the heartbeat, and fr and fh represent the respiratory and heartbeat frequencies, respectively.

Denoting the normalized received pulse as δ(t), the total response can be expressed as follows:

[image: image]

where t is the observation time, and τ is the propagation time. where δ(t, τ) is the generated short pulse centered at the carrier frequencyVc. Ak and Aidenote the amplitudes of the target response and the multipath components, respectively, while τk(t) and τi are the corresponding delays.τk(t) is determined by the antenna distance to the target, which is expressed as

[image: image]

where the speed of light c is ~3 × 108m/s, τ0 = 2s/c,τr = 2dr/c, τh = 2dh/c.

Radar converts the received signal into a matrix of mrows and ncolumns, denoted as R[m, n],

[image: image]

where m and n represent the sampling numbers of slow time and fast time, respectively. Ts is the pulse duration of slow time, and Tfis the sampling interval of fast time. The row vector records the echo signals received at different observation times in each range interval, whereas the column vector records the echo signals received at different distance intervals in each time interval. Conventionally, vital sign information can be extracted by directly applying a Fourier transform to the cross-range slow time samples fixed at the range bin that contains most of the energy from chest movement.



2.2 Analysis of physiological characteristics of three-dimensional cardiac exercise

The complex three-dimensional structure and its relative position in the thoracic cavity cause the heart to beat uniquely, making the observation results of heart pulsation vary greatly from different perspectives. As illustrated in Figure 1, the heart is located in the lower part of the anterior mediastinum of the thoracic cavity, and is wrapped with pericardium outside, about 2/3 on the left side of the anterior median line, and 1/3 on the right side. Heart contractions and relaxations cause the heart to twist from right to left along the long axis. In terms of mechanics, the longitudinal force of the myocardium impels the heart to vibrate (xs(t)) along the sagittal axis, and the transverse force contributes to shape changes (xv(t)) in the vertical axis direction. Consequently, the vector sum (x(t)) of the forces in three directions maximizes the amplitude of the heart movement in a certain direction in three-dimensional space. In addition, from an anatomical perspective, the heart consists of four parts: the left atrium, left ventricle, right atrium, and right ventricle, which cooperate to complete systemic circulation and pulmonary circulation. The key process is that the left ventricle pumps blood into the aorta and then transports it to all organs and tissues within the body; thus, the left ventricle beats most violently during this duration. However, the front heart is mostly blocked by the lung and pleura, and the other parts are also connected to adjacent organs and tissues, leaving only the apical part attached to the lower half of the sternum and left 4–6 costal cartilage. Consequently, the anatomical features described above resulted in movement of the apical part of the heart to be directly transmitted to the chest surface through the intercostal space, thus generating an obvious apical beat in the fifth intercostal space (7–9 cm to the left of the midline). In summary, based on the dynamic and static indicators, we speculate that there may be an optimal position and angle for cardiac pulsation observation in three-dimensional space.


[image: Figure 1]
FIGURE 1
 Schematic diagram of radar cardiac motion detection and the physiological structure of the heart.


Driven by blood flow and electrical stimulation-induced myocardial contraction and relaxation, different chambers of the heart generate regular volume changes and micromotion rhythms at different stages during a single cardiac cycle, namely mechanical motion patterns. As shown in Figure 2, each cardiac motion cycle consists of five distinct stages including: (1) ventricular filling (VF), (2) atrial systole (AS), (3) isovolumetric ventricular contraction (IC), (4) ventricular ejection (VE), and (5) isovolumetric ventricular relaxation (IR). In the first stage, ventricular filling (VF) occurs when the semilunar valves (SV) are closed and the atrioventricular valves (AV) are open because the ventricular pressure is less than the atrial pressure. At this stage, the whole heart is relaxed, the blood in the atrium charges into the ventricle, and the ventricular filling accounts for 2/3 of the total filling, resulting in the rapid outward expansion of the heart. The second stage, atrial systole (AS), occurs when atria contract to pump their contained blood into ventricles, namely, the residual 1/3 ventricular filling. Although the heart contracts inward first because of the emptying of the atria, it expands outward immediately after because the extra blood in the atria is squeezed into the ventricles. The third stage, isovolumetric ventricular contraction (IC), occurs when the ventricles begin to contract and the SV/AV close. Although the ventricular pressure increases, no significant displacement occurs because there is no change in volume. Lastly, ventricular ejection (VE) occurs when the SV opens and ventricles contract and force blood into the arteries. This is because ventricular pressures rise to be higher than arterial pressures as the ventricle continues to contract, following which the SV is forced to open. During this process, the heart contracts inward because of the significant decrease in ventricular pressure and volume. During the fifth stage, isovolumetric ventricular relaxation (IR), ventricles finish the blood ejection, and SV/AV close when the ventricular pressure is lower than the aortic pressure and atrial pressure, respectively. The heart stops contracting and is relaxed, which ends the cycle. According to our analysis above, if we compare it with the electrophysiological activity of the heart, we speculate that there may be a certain correspondence between the mechanical activity and electrophysiological activity of the heart.


[image: Figure 2]
FIGURE 2
 Motion characteristics during a cardiac cycle.




2.3 Analysis of the advantages of RCG and ECG cardiac physiological motion detection

The principle of ECG is to observe the change rule of cardiac current during a cardiac cycle, namely, the depolarization and repolarization processes of the atrial ventricle, which could help reverse the movement process and functional execution state of each chamber of the heart. Under the regulation of sympathetic and parasympathetic nerves, the heart transmits electrical signals generated usually by the sinoatrial node, atrioventricular node, and other nodes, to trigger heart muscle contraction, which in turn results in coordinated rhythmic contraction and relaxation of the heart throughout each cardiac cycle. Specifically, there is a special segment called the heart rest period between the rapid filling period and the atrial contraction period, similar to the interval marked by the green box in the ECG curve shown in Figure 3. Nevertheless, during heart blood flow, blood flow still occurs even during the heart rest period, so it still causes heart volume changes and mechanical motion, which undoubtedly contains (conveys) a large amount of information (abnormal heart disease) about the structure and function of the heart. Unfortunately, the ECG measurement method fails to detect the corresponding cardiac motion; thus, we refer to this interval as the blind segment.


[image: Figure 3]
FIGURE 3
 Rule of electrical activity and atrioventricular volume during a cardiac cycle.


As a novel non-contact measurement method, bio-radar mainly exploits the Doppler principle to measure the surface micro-motion caused by atrial ventricular contraction and relaxation movement transmitted to the body surface, namely the radar cardiogram. In other words, RCG measures cardiac mechanical motion instead of electrical activity. According to our analysis of the physiological characteristics of three-dimensional cardiac motion in Section Analysis of physiological characteristics of three-dimensional cardiac exercise, it can be guaranteed that the RCG could also contain similar information about the structure and function of the heart to the ECG and even detect cardiac mechanical motion during the blind segment. Therefore, the RCG holds two natural and critical superiorities to the ECG in the theory of non-contact and no-blind segment, which is expected to serve as a novel and refined measurement for whole-process cardiac detection.



2.4 Experimental scheme

For multiscale measurements of cardiac motion, three types of experiments were designed along with coarse-to-fine scales, as shown in Figure 4. The experimental setup of anteroposterior measurements is illustrated in Figures 4A,B, and cardiac motion detection was performed from the front and back of the body. Second, cardiac signal detection from multiple perspectives of the front body experiment was performed, as shown in Figure 4C, which aimed to find the optimal position and angle for cardiac pulsation observation in a three-dimensional space. Finally, as illustrated in Figure 4D, contact (ECG) and non-contact (RCG) detections were used to simultaneously measure cardiac signals for performance comparison of the methods.


[image: Figure 4]
FIGURE 4
 Schematic diagram of multiscale detection of a cardiac signal. (A) Front orientation measurement, (B) back orientation measurement, (C) along-the-arc measurements, and (D) reference measurement.




2.5 Cardiac signal acquisition system

The X4M200 pulse UWB radar system developed by Novelda was adopted in this study for human vital sign detection. The transmitting antenna of the radar adopts direct sampling technology and radio frequency (RF) interference suppression technology. The structure and radar system are shown in Figure 5, and its key parameters are listed in Table 1.


[image: Figure 5]
FIGURE 5
 (A) Radar structure diagram and (B) radar object diagram.



TABLE 1 Key parameters of the UWB radar system.

[image: Table 1]

Similar to the system schematic in Figure 5, the transmitting antenna transmits pulses at a certain interval with a certain pulse repetition rate. After the pulse signal reaches the target, it is modulated and reflected by the target, and then received by the receiving antenna. Simultaneously, the system creates a frame of data that contains the motion information of the target. In a radar system, the phase-locked loop (PLL) of the transmitting antenna synthesizes the transmitting pulse. The front-end of the differential receiving antenna includes a high-pass filter (HPF), low-noise amplifier, and sampler for preliminary hardware filtering. A serial peripheral interface (SPI) was used to communicate with the host computer, and the power management unit (PMU) was responsible for the power supply of the radar system.

This radar system could operate under two modes with different bandwidths of 1.4 and 1.5 GHz respectively, and the corresponding center frequencies are 7.29 and 8.748 GHz, respectively. In our study, a mode with 7.29 a center frequency of 1.4 GHz bandwidth was chosen. It should be noted that the average output power (dBm/MHz) was >-44 dBm and the distance between human and radar antenna is about 0.55 m during measurement, thus the maximum power density of our bio-radar system is much lower than the accepted safe power density level of 10 mW/cm2, which would poses no threat to human health according to previous studies (22–24). Moreover, The Medical Ethic Committee of the First Affiliated Hospital of the Fourth Military Medical University approved the study. The informed consent of all subjects were obtained prior to volunteers' participation in the experiments.




3. Signal processing

Based on the fact that the reflected radar echo has been modulated by the chest movement, cardiac motion information can be obtained through a series of signal processing and demodulating on the radar echo. The signal processing flow chart of the cardiac radar signal shown in Figure 6 includes the following steps.


[image: Figure 6]
FIGURE 6
 Processing flow chart of a cardiac radar signal.



3.1 Preprocessing

The original time-range 2D radar echo signal contains DC components caused by static objects such as tables and ground, as well as the baseline drift of the echo caused by environmental factors, which cause strong interference in heartbeat extraction. In this study, the 100-order slide-window average subtraction method was used to remove the DC component and baseline drift, as shown in Equation (5):

[image: image]

where Raw(m, n) is the raw data and RDC(m, n) is the radar echo after removing the DC and baseline drift.

Subsequently, a low-pass filter with a cutoff frequency of 5 Hz was used to filter out high-frequency noise interference to obtain mixed signals of respiration and heartbeat, as shown in Equation (6):

[image: image]

where RLP(m, n) is the data after removing the high-frequency noise and HLP(t) is the finite impulse response function of the low-pass filter.

Here, sample data were used to verify the effect of this preprocessing method. The time-range 2D radar echo (Figure 7A) was from a static lying human subject whose heart was directly in line with the UWB radar at a distance of 0.55 m. Obviously, except for the strong echo around the 0.55 m position, the 2D echo is also filled with various noise and interference. Nevertheless, this noise and interference can be removed effectively after preprocessing, as shown in Figure 7B.


[image: Figure 7]
FIGURE 7
 The preprocessing performance on heartbeat UWB radar echo (A) before and (B) after preprocessing.




3.2 Cardiac motion separation from radar cardiopulmonary physiological motion echo

For the time-range-preprocessed radar echo, the characteristics of IR-UWB allow cardiac motion information to exist in multiple range bins. Thus, before extracting cardiac signals, we must first select and locate the optimal range unit in which the human body lies. Here, the range bin with the maximum energy is selected as the optimal range bin signal, as shown in Equations (7) and (8):

[image: image]

[image: image]

where [image: image] is the slow time signal in the jth range bin, S(j)j = 1 is its energy sum, and RTP is the optimal range bin signal.

Additionally, because the chest wall vibration detected by radar is a mixture of pulmonary motion (breathing) and cardiac motion (heartbeat), the next key step is to separate the heartbeat signal from the echo. The classic band-pass filter with the cut-off frequency of 0.85 and 3.3 Hz is exploited here, assuming the human heart rate to be 50–220 times per minute. The principle of this method can be expressed by Equation (9):

[image: image]

where RBPis the obtained cardiac signal, HBP(t) is the finite impulse response function of the bandpass filter.RLP is the obtained respiration signal, and HLP(t) is the finite impulse response function of the low-pass filter.




4. Experiments and results


4.1 Experimental setup

According to the anatomical structure of the heart, cardiac apex motion, such as systole, diastole, or torsion, is conducted through the gap between the fourth and fifth ribs to generate micro-movement at the skin surface. Therefore, it is reasonable to speculate that there is an optimal observation position for micromotion signals. Clinically, the fifth intercostal space can be localized using one notch counting down from the fourth intercostal space, which is located on the line connecting the two nipples. The skin surface area of the micro-movement originating from the heartbeat is an approximate circle with a diameter of 2–2.5 cm. This circular area is the right position that needs to be aimed at by the radar.

Then, anteroposterior and arc measurements were carried out. Radar cardiac signals of five male subjects aged 24–43 years were collected. For anteroposterior measurements, human subjects lay on the ground in a supine or prone position while holding their breath. The radar was placed 55 cm away from the human body. Eight traits of 10-s signal for each person were recorded, four collected from the front side and four from the back side.

The along-the-arc measurement was designed to determine the optimal observation angle that could ensure the acquisition of the best radar echo signal. To avoid inconsistencies caused by side-lobe energy attenuation or further distance energy attenuation, an equal-radius measuring method is proposed to maintain the detection distance between the body surface area of the cardiac apex and the radar constant. A laser pointer was used to ensure that the radar is always aimed at the cardiac apex. Each human target was detected eight times along an arc in the sagittal plane with the circle center of the cardiac apex and an angle step of 20°each time. The along-the-arc measurement ensured that the best radar echo signal was obtained at each observation angle.

Due to support from the ground, body shaking was minimal when the human target is measured in a lying posture. In this study, the lying position was used for cardiac signal collection. Respiratory harmonics cause serious interference to heartbeat signals (respiratory harmonics could be close or even coincide with the cardiac signal in the frequency domain), which were difficult to remove. To eliminate this harmonic interference, the cardiac signals were recorded under breath-holding conditions.



4.2 Anteroposterior measurements

Radar echo data are a 2-dimensional array alone with range (fast time) and slow time, which can be divided into a limited number of range bins along the range dimension. If the motion amplitude of the target is beyond the width of a single range bin, the motion will appear in several adjoining range bins and influence the neighbors, which is called the range bin effect (25). Therefore, an experiment was performed to explore whether the proposed radar has a range-bin effect. Five range bins, TD−2, TD−1, TD, TD+1, and TD+2, centered symmetrically on the range bin signal with maximum energy were collected. According to the results, no morphological differences were observed, except for the difference in amplitude among the five collected range bins. This demonstrates that there is no range-bin effect, and the cardiac motion signal at the range point with the largest energy can represent the overall range bins. The cardiac signals of the five range bins are shown in Figure 8.


[image: Figure 8]
FIGURE 8
 RCG results from five adjacent range bins.


To study the detection performance from the front and back orientations, we collected the radar cardiac signals of five male subjects who held their breath while lying in a supine or prone position. As shown in Figure 9, 40 groups of eight traits for each person were collected under the anteroposterior measurement scenario. Li et al. (20) found that the energy ratio of heartbeat to respiration detected from the back was larger than that from the front, cardiac signal feature extraction for disease diagnosis requires critical characteristics of large amplitude and more detailed information.


[image: Figure 9]
FIGURE 9
 Anteroposterior measurements, (A) measured from back side, (B) measured from front side.


The measurement results from the front side and back side are shown in Figure 10. The median of all RCG time-domain amplitudes detected from the front side was 3.67 × 10−4 and the standard deviation (STD) was 4.05 × 10−6. The median and STD of the RCG amplitude from the back side were 1.53 × 10−4 and 4.04 × 10−6 respectively. We can see that the RCG amplitude detected from the front side was larger than that from the back side, and superiority also existed with respect to the detailed information. The reasons for this are as follows: The cardiac movement just needs to pass through the fifth intercostal space to reach the skin surface and be detected by radar from the frontal detection perspective when the attenuation is weak. However, from the backside detection view, cardiac motion needs to be conducted through the spine, lungs, muscles, skin, and other tissues and organs, and then detected by radar, so the attenuation was much greater than that of front side detection.


[image: Figure 10]
FIGURE 10
 RCG results of anteroposterior measurements from the back and front side, (A) time domain RCG amplitude results, (B) box plot of RCG amplitude results.




4.3 Along-the-arc measurements

To find the optimal detection angle of the view from the front side, measurements from eight different angles were carried out when the human target was lying in a supine posture and holding their breath. The angles, 20, 40, 60, 80, 100, 120, 140, 160°, within sagittal plane, were adopted. The radar changed the angle along an arc with a radius of 55 cm. The scenario is shown in Figure 11. Each person at each angle was detected once, and five subjects amounted to 40 sets of data. The results are shown in Figures 12, 13. The best cardiac signal was observed at 120° both in amplitude and morphology. When the radar detection angle increasing from 20 to 160°, the amplitudes, representing echo energy, gradually increased and then decreased. The RCG reached its maximum energy at an angle of 120°. Morphologically, the average difference between the second peak and second trough in RCG cardiac cycles, denoted as Dspsr, moved from unobvious to obvious and then unobvious again along with the increase in the detecting angle. As shown in Figure 13, the second most obvious peak also appeared at 120°. The RCG results, both in energy and morphology, indicated that the vector sum of the three-dimensional motion of the heart was in the direction of 120°.


[image: Figure 11]
FIGURE 11
 Scenarios of the along-the-arc measurements.



[image: Figure 12]
FIGURE 12
 RCG results at different angles.



[image: Figure 13]
FIGURE 13
 Results of RCG at different angles from front side (A) overall results (mean of peak amplitude), (B) detailed results (mean of Dspsr).




4.4 Comparison of diastasis measurements between RCG and ECG

To study the similarities and differences between the RCG and ECG, simultaneous acquisition experiments using a radar sensor and ECG are illustrated in Figure 14. A comparative analysis of the features and cardiac cycle staging between ECG and RCG is shown in Figure 15. The maximum RCG value indicated that ventricular relaxation corresponded to the T wave in the ECG. The stage after this maximum value was the change in ventricular volume from small to large. The second peak of the RCG represents the start of atrial contraction and corresponds to the P wave in the ECG. The stage related to the time interval from second peak to second trough was the change in atrial volume from large to small.


[image: Figure 14]
FIGURE 14
 Synchronous acquisition experiment of RCG and ECG.



[image: Figure 15]
FIGURE 15
 Comparison of RCG and ECG.


With regard to the ECG results in Figure 15, there is a period after the stage of ventricular filling before the next P-wave presents a straight line without any fluctuation, which is called diastasis. During diastasis, the heart maintains systole and diastole phases, and the heart volume keeps changing, which means that the heart still has motion in the diastasis period. The motion in diastasis is transmitted to the body surface and detected by the radar, which appears as a fluctuation in the RCG. Therefore, the RCG can detect and obtain cardiac motion information from a blind segment that has no ECG information. Considering that the cardiac motion signal in the blind area contains information on heart motion status and disease, RCG contains more information than ECG and can provide real-time whole-cardiac cycle health monitoring.

The position of the cardiac apex beat is affected by various physiological and pathological factors. For example, when the human body is in a lying position, the surface beating position where the cardiac motion is conducted changes with different lying postures. Furthermore, different body shapes, enlargement of the heart, and displacement of the mediastinum and diaphragm also affect the surface-beating position. Research on disease diagnosis based on radar cardiac motion signals is still in its infancy. In practical application scenarios, the human breathing signal causes severe interference with the RCG. Body shaking is another great challenge to RCG measurement that needs to be suppressed. In addition, the correspondence between RCG features and cardiac pathological changes needs to be studied further. Further research should be conducted to address these issues.




5. Conclusion

This study systematically investigated the influence of the detecting position, orientation, and angle on cardiac motion measurements. Considering the anatomical position, posture, physiological structure, and motion characteristics of the atrium and ventricle, multiscale measurements were designed and performed. The best location, optimal orientation, and angle of detection were first found and experimentally verified. In anteroposterior measurements, a better RCG amplitude was obtained when the radar was aimed at the fifth intercostal space and illuminated the human body from the front side. For along-the-arc measurements, an optimal RCG result was observed with a detection angle of 120° both in overall amplitude and detailed information, which means that the vector sum of three-dimensional cardiac motion is in the direction of 120°. It is worth mentioning that, some non-absolute-amplitude-based-features of RCG, such as time interval between two points, relative amplitude and magnitude ratio, etc. are also important diagnostic basis for heart disease and these features do not require high accuracy detection angle. Furthermore, due to differences in detection theory, RCG can detect information in the blind area (diastasis) where ECG cannot.

The new discoveries of this study lay a theoretical foundation for RCG measurements and are of great significance for RCG applications in cardiovascular disease diagnosis. This could also serve as a foundation for subsequent RCG-based studies.
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It has been found that arsenic trioxide (ATO) is effective in treating acute promyelocytic leukemia (APL). However, long QT syndrome was reported in patients receiving therapy using ATO, which even led to sudden cardiac death. The underlying mechanisms of ATO-induced cardiotoxicity have been investigated in some biological experiments, showing that ATO affects human ether-à-go-go-related gene (hERG) channels, coding rapid delayed rectifier potassium current (IKr), as well as L-type calcium (ICaL) channels. Nevertheless, the mechanism by which these channel reconstitutions induced the arrhythmia in ventricular tissue remains unsolved. In this study, a mathematical model was developed to simulate the effect of ATO on ventricular electrical excitation at cellular and tissue levels by considering ATO’s effects on IKr and ICaL. The ATO-dose-dependent pore block model was incorporated into the IKr model, and the enhanced degree of ATO to ICaL was based on experimental data. Simulation results indicated that ATO extended the action potential duration of three types of ventricular myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells (MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity among them. ATO could also induce alternans in all three kinds of VMs. In a cable model of the intramural ventricular strand, the effects of ATO are reflected in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable window, thus increasing the possibility of spiral wave formation in ventricular tissue. In addition to showing that ATO prolonged QT, we revealed that the heterogeneity caused by ATO is also an essential hazard factor. Based on this, a pharmacological intervention of ATO toxicity by resveratrol was undertaken. This study provides a further understanding of ATO-induced cardiotoxicity, which may help to improve the treatment for APL patients.
Keywords: arsenic trioxide, drug cardiotoxicity, ionic channel, cardiac modeling, long QT
INTRODUCTION
Arsenic trioxide (ATO), a traditional Chinese medicine, has been reported to be used to treat acute promyelocytic leukemia (APL) in 1997 (Chen et al., 1997). After that, scientists discovered that a combination of ATO and all-trans retinoic acid (ATRA) almost cured APL (Shen et al., 2004), whose molecular and cellular mechanisms have also been elucidated (Zhang et al., 2010). In recent years, ATO was screened to rescue the p53 folding function (Chen et al., 2021). In oncology, this is a breakthrough, since the p53 mutation is the most common mutation among cancer patients, which has shown great therapeutic potential but had never been rescued before this research. As a result, ATO is a promising drug in oncotherapy and deserves to be further investigated and applied.
In addition to the efficacy, the safety of ATO also needs to be assessed in clinical trials. It has been reported that ATO may generate cardiotoxicity as well as hepatotoxicity (Mathews et al., 2006; Alexandre et al., 2018). Cardiotoxicity is reflected in the prolonged QT interval of electrocardiograms (ECGs) (Soignet et al., 2001), called long QT syndrome (LQT), which may lead to torsade de pointes tachycardia (TdP) (Unnikrishnan et al., 2001; Hai et al., 2015) and even threaten life (Westervelt et al., 2001; Lenihan and Kowey, 2013). There was also a case of ventricular tachycardia with a normal QT interval in ATO therapy (Ducas et al., 2011), which further warned of the potential arrhythmia risk. A study manifested that the combination of ATRA and ATO therapy can reduce side effects and has less toxicity than ATO treatment alone (Hu et al., 2009). Nevertheless, a Position Paper published by the European Society of Cardiology emphasized that ATO was more related to QT prolongation than other reported anticancer drugs, and it also has a higher chance of causing sudden death due to TdP (Zamorano et al., 2016). Therefore, there is a strong need to further investigate the mechanisms of ATO-induced cardiotoxicity.
Because of the clinical observation of ATO-induced cardiotoxicity, a series of animal studies, including subcellular and cellular experiments, were carried out. According to experimental research, ATO acts on cardiomyocytes (CMs) mainly via potassium channels and calcium channels. The human ether-à-go-go-related gene (hERG) codes rapid delayed rectifier potassium current (IKr) in the human heart, which is susceptible to ATO. Exposure to ATO for 20 min can suppress the hERG channel in hERG-transfected CHO cells (Drolet et al., 2004), whereas an experiment in HEK293 cells (Ficker et al., 2004) indicated that short-term application of ATO did not affect the hERG current and could not alter the action potential duration (APD) in guinea pig ventricular myocytes (VMs). This study revealed that long-term ATO suppressed the IKr current in HEK293 cells, and the dosage of ATO directly determined the reduction degree of IKr (Ficker et al., 2004). The same phenomenon can also be observed in other HEK293 experiments (Zhao et al., 2015; Yan et al., 2017), and the inhibiting effect of ATO on the hERG channel has also appeared in rodent animals, such as guinea pig VMs (Ficker et al., 2004; Zhao et al., 2014), neonatal rat VMs (NRVMs) (Zhao et al., 2015), and neonatal mouse cardiomyocytes (Liu et al., 2017). In addition, the underlying RNA regulation mechanisms of ATO-impaired hERG were revealed (Shan et al., 2013; Zhao et al., 2015). The effect of ATO on slow delayed rectifier potassium current (IKs) is controversial. The IKs of CHO cells were susceptible to short-term exposure to ATO (Drolet et al., 2004), but in guinea pig VMs, ATO did not have an apparent influence on IKs density (Ficker et al., 2004). A similar controversy also appeared in the inward rectifier potassium current (IK1). Chronic ATO administration inhibited IK1 significantly by reducing Kir2.1 protein expression levels in guinea pig CMs (Chu et al., 2012; Shan et al., 2013) and neonatal rat CMs (Chen et al., 2010; Chu et al., 2012). However, a guinea pig experiment did not show an obvious change in IK1 after overnight ATO treatment (Ficker et al., 2004). The drug-delivery method and its dosage should be responsible for this difference between the results. Furthermore, calcium channels are sensitive to ATO. Experiments in guinea pig VMs (Sun et al., 2006) and NRVMs (Chen et al., 2010; Yan et al., 2017) reported an increase in L-type calcium current (ICaL) under the action of ATO at different dosages. The peak of intracellular calcium concentration ([Ca2+]i) was also markedly increased in the presence of ATO (Yan et al., 2017), while the diastolic [Ca2+]i level did not change (Chen et al., 2010). Consistently, it has been verified that ATO can prolong APD in different cell types, including guinea pig VMs (Sun et al., 2006), NRVMs (Chen et al., 2010), HEK293 cells (Ficker et al., 2004), and human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) (Yan et al., 2017). This finding was consistent with the clinical observation that ATO caused LQT in animal studies (Chen et al., 2010). Research on the potential signaling mechanisms of ATO-induced LQT revealed that ATO promoted the secretion of transforming growth factor-β1 (TGF-β1), which led to fibrosis and inhibited hERG and Kir2.1 protein in CMs, thus causing LQT syndrome (Chu et al., 2012). Although the above experimental results greatly helped understand ATO-induced cardiotoxicity, most studies have been conducted on a single ion channel and have not directly examined using human cardiomyocytes.
It is of great significance in clinical practice to find a way to ameliorate the side effects of ATO. To date, several drugs have been attempted to do this, including antiallergic drugs [such as fexofenadine and astemizole (Yan et al., 2017)], hypoglycemic drugs [such as glibenclamide (Drolet et al., 2004)], cardiovascular drugs [such as nisoldipine (Ficker et al., 2004), ranolazine (Yan et al., 2017) and choline (Sun et al., 2006)], antagonists (Chu et al., 2012) and organic compounds [such as resveratrol (Zhao et al., 2014; Yan et al., 2017), eugenol (Binu et al., 2017) and omega-3 fatty acid (Varghese et al., 2017)]. Fexofenadine can increase the IKr of HEK293 cells and shorten APD in both NRVMs and hiPS-CMs treated with 3 μM ATO (Yan et al., 2017). Ranolazine, astemizole and glibenclamide also acted on potassium channel proteins. Ranolazine corrected hERG expression in HEK293 and NRVMs but failed to reverse the damaged hERG channel in hiPS-CMs (Yan et al., 2017). However, astemizole did not have remarkable assuasive effects on the long APD caused by ATO (Yan et al., 2017). Resveratrol (Yan et al., 2017) and choline (Sun et al., 2006) attenuated ATO toxicity by inhibiting the ICaL channel, and resveratrol exerted a better rescue effect than potassium-intervened agents (Yan et al., 2017). Moreover, lead compound optimization was also reported to be a strategy that alleviated ATO toxicity (Zhou et al., 2016). In addition, the regulatory mechanism of TGF-β1 under ATO treatment (Chu et al., 2012; Liu et al., 2017) provided new methods for preventing hERG and Kir2.1 protein damage by treatment with the protein kinase A (PKA) antagonist H89 and the TβR-I inhibitor LY364947 (Chu et al., 2012).
ATO is a vital agent in the field of clinical oncotherapy. Research is being conducted to unravel and alleviate ATO-induced cardiotoxicity. However, the mechanism of ATO-induced cardiotoxicity is not well understood, especially at the myocardial tissue level. In the present study, we constructed a multiscale mathematical model to simulate cardiac electrical activity in the presence of ATO, by which the generating process of arrhythmia induced by ATO treatment can be delineated from ionic channels to cardiac tissue. In this way, the effect of ATO on single CMs can be extended to a macroscopic level to further predict and analyze its underlying risks. Using the results from this study, we gained a new perspective on ATO-induced cardiotoxicity, such as tissue electrical heterogeneity, vulnerability to arrhythmogenesis and electrical alternans, and provided a method for finding the right dose and a pharmacological rescue scheme for ATO treatment.
METHODS
Modeling single VMs and the binding interaction between ATO and the IKr/ICaL channel
The human VM models, including endocardial cells (ENDO), midmyocardial cells (MCELL) and epicardial cells (EPI), followed ten Tusscher’s model (TNNP06) because of its application in alternans and reentry (ten Tusscher and Panfilov, 2006). The membrane potential of a single VM can be described by the following ordinary differential equation:
[image: image]
where V is the membrane potential; t is time; Istim is the stimulation current; Cm is the cell capacitance. Iion is the sum of transmembrane ionic currents, including:
[image: image]
Here, we simulated the electrophysiological activities of VMs incubated with ATO by modifying a potassium channel, IKr, and a calcium current, ICaL. The formulations of all ionic channel currents can be referenced in the TNNP06 model (ten Tusscher and Panfilov, 2006).
According to a simple pore block theory (Yuan et al., 2014), the binding interaction between ATO and IKr can be modeled by a blocking factor λ that denoted the blocking degree of ATO to the maximum conductance of the targeted ion channel. This blocking factor λ can be described by a Hill equation as follows:
[image: image]
where D is the concentration of ATO, IC50 is the ATO concentration at which 50% blockade of the binding site occurs and nH is the Hill coefficient. As a result, the remaining maximum conductance index of IKr is:
[image: image]
Consequently, the formulation of IKr can be described as follows:
[image: image]
where GKr is the conductance of IKr, Ko is the extracellular K+ concentration, xr1 is an activation gate, xr2 is an inactivation gate, and EK is the reversal potential.
According to the experimental data (Ficker et al., 2004), IC50 was 1.5 μM and nH was fitted at −1.2, so the interaction between ATO concentration and k is demonstrated in Figure 1A. The tail currents of IKr under control and 3 μM ATO in the present simulation model and experimental measurement (Yan et al., 2017) are shown in Figure 1B. Our model could well fit the experimental data, which indicated the accuracy of the present model.
[image: Figure 1]FIGURE 1 | Effects of ATO and the hERG channel current. (A) The normalized remaining maximum conductance of IKr blocked by ATO. (B) Tail current of IKr under the conditions of control and 3 μM ATO in the simulation model (black lines) and an experiment (red circle and square), respectively.
Experiments indicated that exposure to 3 μM ATO for 24 h tripled the density of ICaL in guinea pig VMs (Ficker et al., 2004) or doubled it in NRVMs (Yan et al., 2017). Another animal experiment showed that when ATO administration led to a double ICaL density, the activation curve of ICaL was shifted negatively (Chen et al., 2010).
In the present model, the formulation of ICaL was as follows:
[image: image]
where d is a voltage-dependent activation gate:
[image: image]
Two parameters that were modified to simulate the effect of ATO on ICaL were θ and V1/2, which represented the change in the conductance of ICaL (GCaL) and the half activation voltage (V1/2) of the activation gate d) respectively. They were estimated according to the above biological experimental results, and the corresponding values are listed in Table 1. The meanings of the other parameters in Eq. (6) can be seen in Ref. (ten Tusscher and Panfilov, 2006).
TABLE 1 | The effect of ATO on ICaL.
[image: Table 1]Experiments observed that resveratrol can suppress the ICaL channel current, thus shortening APD (Zhang et al., 2006), and it was shown to increase the IKr channel current (Zhao et al., 2014). Consequently, it was suitable to alleviate cardiotoxicity caused by ATO (Zhao et al., 2014; Yan et al., 2017). The effect of resveratrol on the VMs treated with 3 µM ATO was simulated by manipulating the conductance of ICaL and IKr. According to experimental data, under the condition of 3 µM ATO, 10 µM resveratrol decreased the ICaL density from twice the original value to approximately 1.3 times (Yan et al., 2017). And 10 µM resveratrol recovered IKr by approximately 33% of its density under the impact of 3 µM ATO (Zhao et al., 2014). The same rescue ratio of resveratrol was applied in the present model; thus, the formulation of IKr and ICaL was changed as follows:
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where nRes and mRes are the coefficients of resveratrol’s effect on IKr and ICaL, whose values were 1.33 and 1.3, respectively, under 10 µM resveratrol.
To assess the degree of pharmacological rescue, we defined the rescue ratio as follows:
[image: image]
In which APD90 means time duration from depolarization to 90% repolarization, [image: image] is the APD90 of original VM cells with 0 µM ATO, [image: image] is the APD90 with 3 µM ATO, and [image: image] is the APD90 with 3 µM ATO as well as drug. The greater r is, the better the therapeutic effect of the drug. Particularly, when r is equal to 0, the drug does not work. When r is equal to 1, the side effect of ATO is completely rescued.
Eq. (1) was solved by the forward Euler method with a time step of 0.02 m. The single VM model was pulsed under stimulus currents of −52 pA/pF with a basic cycle length (BCL) of 800 m. The S1-S2 standard protocol was used to depict the restitution curve of a single cell. Ten S1 stimulation currents were applied under a BCL of 800 m, following an S2 stimulation current after a dynamic shortening period. This period was called the S1-S2 interval, and the corresponding APD90 of the last cycle was calculated. A dynamic protocol was used to estimate the risk of alternans of VMs, which was conducted by a series of S1 with tapering BCL and corresponding APD90 being calculated.
Modeling ventricular tissue
Non-linear cable theory was applied to build a monodomain ventricular tissue model. As such, the electrical activity of ventricular tissue can be described by a partial differential equation as follows:
[image: image]
where [image: image] is the spatial gradient operator, [image: image] in the ventricular cable model and [image: image] in the ventricular tissue model; V is the membrane potential; t is time; D is the diffusion coefficient; Iion is the sum of transmembrane ionic currents; Cm is the cell capacitance.
Eq. (11) was solved by the finite difference method with a time step of 0.02 m and a space step of 0.25 mm. The D was set at 0.08 mm2/ms (Luo et al., 2017) so that the conductivity velocity of electrical waves in ventricular tissue was 0.7 m/s, which was consistent with experimental observations (Taggart et al., 2000).
ECG is used to describe the body surface potential in the clinic. It can be estimated according to cellular electrophysiological processes (Gima and Rudy, 2002). Here, we calculated a pseudo-ECG by the following equation:
[image: image]
where k is a constant; V is the membrane potential; [image: image] is a vector from any point in tissue to the electrode; r is the length of [image: image].
S1-S2 stimuli were used to evaluate the vulnerability of ventricular cables and tissues via the genesis of unidirectional conduction block. In the ventricular cable, S1 stimuli were applied at first five ENDO cells, and S2 stimuli were applied at five EPI cells. Different locations of EPI that applied S1 stimuli were from the site that neighboring MCELLs to the site that was far away from 5 MCELLs, i.e., the 61–65th cells to 65–69th cells. In ventricular tissue, S1 stimuli were also located at ENDO cells, while S2 stimuli were applied at a block of epicardial tissue whose width was less than the whole cardiac width so that spiral waves could be motivated.
The dynamic protocol was conducted in a heterogeneous ventricular cable, in which the S1 stimuli were applied at the first five ENDO cells with a variable cycle length from 300–500 m.
RESULTS
Effects of ATO on the action potential of VMs
There were experimental data of VMs incubated with 3 µM ATO (Ficker et al., 2004; Yan et al., 2017), in which the subcellular effects of ATO on IKr and ICaL were provided. As a result, we simulated the electrophysiology of three types of VMs in the presence of 3 μM ATO and exerted different stimulation protocols to investigate the change in single-cell membrane potential under ATO intervention. First, a series of periodic stimulation protocol with a BCL of 800 m was conducted, whose corresponding heartbeat was 75 times per minute. According to Eq. (3), 3 μM ATO inhibited the conductance of IKr by 70%, thus suppressing IKr density in ENDO, MCELL and EPI (Figure 2A(ii)–C(ii)). The administration of 3 μM ATO also doubled the conductance of ICaL and shifted the activation curve, thus increasing ICaL density (Figure 2A(iii)–C(iii)). The increased ICaL also accumulated the intracellular calcium concentration ([Ca2+]i) via the calcium dynamics in VMs, thus increasing the Na+/Ca2+ exchanger current (INaCa) as shown in Supplementary Figure S1. As expected, the decrease in IKr and increase in ICaL and INaCa prolonged the APD of VMs to different degrees. ATO increased the APD90 of ENDO from 306 m to 391 m, that of MCELL from 410 m to 602 m, and that of EPI from 307 m to 394 m. The increase ratio of APD90 were approximately 27.8%, 46.8%, and 28.3%, respectively, in the three types of VMs. It was noteworthy that the APD90 increase ratio showed a great difference among different VMs, which may increase the risk of arrhythmia in ventricular tissue. Specifically, the difference in the action potential properties between two adjacent VMs can extend the time window that one kind of cell was in the resting state and the other was in the refractory period, which may lead to unidirectional conduction block, thus producing reentry in cardiac tissue. This will be further analyzed in the following section.
[image: Figure 2]FIGURE 2 | The effect of ATO on the action potentials of different ventricular myocytes. (A–C) The membrane potential, (i) (V), IKr (ii) and ICaL (iii) of endocardial cells (ENDO), middle cells (MCELL) and epicardial cells (EPI) on the condition of control and 3 μM ATO. (D) The APD90 of the action potentials in Figure A.
The APD restitution curve of a single cell was deemed to relate to the dynamical behavious of spiral waves in cardiac tissue. Here, we drew an APD restitution curve via the S1-S2 stimulation protocol, as shown in Figure 3A. Ten uniform S1 stimuli with a BCL of 800 m were applied before the S2 stimulus (only five S1 stimuli are shown in Figure 3A). With the reduction of the S1-S2 interval, the APD90 of the action potential triggered by the S2 stimulus declined until the S2 stimulus could not ignite depolarizing activity. The relationship between the S1-S2 interval and the corresponding APD90 formed the restitution curve as shown in Figure 3B. The restitution curve was shifted rightward slightly in ENDO and EPI and dramatically in MCELL, implying that the ATO-incubated VMs cannot support high-frequency pacing activity. The slope of the restitution curve reflects the stability of spiral waves. Results showed that ATO steepened the restitution curves of all kinds of VMs to varying degrees, whose slope is shown in Figure 3C, indicating unstable electrical activities.
[image: Figure 3]FIGURE 3 | The restitution curves of ventricular myocytes. (A) The S1-S2 stimulation protocol. (B) The restitution curves of endocardial cells (ENDO), middle cells (MCELL) and epicardial cells (EPI) on the condition of control and 3 μM ATO. (C) The maximum slope of restitution curves in Figure (B).
To inspect the electrical activity of ATO-induced VMs under the high-frequency stimulus, a dynamic stimulation protocol was executed by gradually shortening the BCL. In the normal VM model, APD90 was unchanged under a specific BCL no matter how small the BCL was (results not shown). In the presence of 3 μM ATO, the APD90 in two consecutive beats may be different when BCL was reduced to a threshold. For example, when the BCL was 360 m, the membrane potential of ENDO had two alternans APD90 with a long APD90 at 334 m and a short APD90 at 238 m (Figure 4A(ii)). This kind of periodic APD90 change in a fixed BCL is called alternans. Figure 4 indicates that the alternans occurred during a BCL of 350–375 m in ENDO, that of 550–600 m in MCELL and that of 350–380 m in EPI, whose corresponding representative membrane potentials are given in Figure 4A(ii)–C(ii).
[image: Figure 4]FIGURE 4 | Alternans induced by ATO. [A(i)–C(i)] APD90 rate-dependent curves of endocardial cells (ENDO), middle cells (MCELL) and epicardial cells (EPI) incubated with 3 μM ATO. [A(ii)–C(ii)] The representative membrane potentials of Figure [A(i)–C(i)] with the basic cycle lengths at 360, 585, and 360 ms, respectively.
Effects of ATO on the vulnerability of heterogeneous ventricular cables
A heterogeneous ventricular cable including ENDO, MCELL and EPI with a ratio of 25:35:40 (Luo et al., 2017) was designed, and its electrical activities were simulated by solving Eq. (11). According to the membrane potential of the ventricular cable, the pseudo ECG, whose virtual electrode was placed 2.0 cm away from the last EPI, was calculated by Eq. (12). The ECG under different ATO concentrations is shown in Figure 5A. With the increase in ATO concentration, the QT interval rose from 362 m at 0 μM ATO to 477 m at 3 μM ATO, and the amplitude of the T wave slightly increased.
[image: Figure 5]FIGURE 5 | The effect of ATO on the heterogeneous ventricular cable. (A) ECG of ventricular cables with varying ATO concentrations. (B) Spatial distribution of APD90 across the ventricular cable with varying ATO concentrations. (C) Space-time plot of normal and unidirectional conduction. (D) Vulnerable windows of ventricular cables under varying ATO concentrations.
The dispersion of APD in the ventricular cable directly influenced the vulnerability of the cable. Compared with the isolated single cell, the gap junction between VMs decreased the difference in membrane potential duration between cells. Nevertheless, there was still an obvious difference in APD90 in space, particularly between MCELL and EPI, as shown in Figure 5B. The incorporation of ATO exacerbated the dispersion. The maximum gap of APD90 between two adjacent cells was 17 m in the control and 26 m on the condition of 3 μM ATO (Figure 5B). An S1-S2 stimulation protocol was applied to heterogeneous ventricular cables to detect vulnerability under varying ATO concentrations. Under the condition of long S1-S2 intervals, S2 inspired an electrical wave that can propagate into both MCELL and EPI tissue, as shown in the left panel in Figure 5C. However, in a short S1-S2 interval, the S2-inspired wave can only propagate into EPI tissue because the MCELL was in the refractory period and could not depolarize, as shown in the right panel of Figure 5C. This kind of unidirectional conduction may lead to the formation of reentry in ventricular tissue. As a result, the S1-S2 interval that led to unidirectional conduction was measured to evaluate the underlying arrhythmia risk, which was called the vulnerable window. Figure 5D presents the results. With the increment of ATO dosage, the vulnerable window expanded from 37 m at 0 μM ATO to 62 m at 3 μM ATO, demonstrating an increasing possibility of reentry at the tissue level. The value of the vulnerable window also increased from 376–413 m at 0 μM ATO to 461–532 m at 3 μM ATO. This was because extra ATO prolonged the APD in single VM cells; thus, the refractory period extended. As a result, the S1-S2 interval with a unidirectional conduction block was greater, which was reflected in the increase in the value of the vulnerable window. In addition, S2 was exerted at more locations as described in the Method section. The results at all locations had a coincident density of VM as shown in Table 2.
TABLE 2 | Effect of ATO on VM in the ventricular cable model.
[image: Table 2]The results of the dynamic protocol indicated that discordant alternans can be induced in a heterogeneous ventricular cable. A representative result with a BCL of 410 m is shown in Supplementary Figure S2. The ENDO cells presented alternans APD, while some of the short APD was blocked by the MCELL because of its long refractory period.
Effects of ATO on the vulnerability of heterogeneous ventricular tissue
We designed a heterogeneous ventricular tissue with a size of 100 × 400 cells (Figure 6A). The length of the tissue included 100 heterogeneous VMs with an ENDO:MCELL:EPI ratio of 25:35:40. Electrophysiology activity with time can be solved by Eq. (11). An essential evaluation index in the two-dimensional (2D) ventricular tissue was reentry, i.e., spiral wave. It was a curved wavefront generated due to unidirectional conduction in tissue. We induced spiral waves through an S1-S2 stimulation protocol in ventricular tissue. A case in the control condition is shown in Figure 6C and the complete videos were attached in the supplementary materials. A case of reentry under the 3 μM ATO condition is also shown in the supplementary materials. An S1 stimulus was applied to the peripheral ENDO tissue with a length of five cells and a width of 400 cells (whole tissue width) to induce a plane wave (the first panel in Figure 6C(i)). During the refractory period of MCELL, an S2 stimulus was applied to the EPI cells that neighbored MCELL, whose width was less than that of the whole tissue (the second panel in Figure 6C(i)). With a specific S1-S2 interval and sufficient S2 stimulus width, a spiral wave can be provoked. The S1-S2 interval in Figure 6C(i) were 378 m. The membrane potentials of horizontal cells in 2D tissue are shown in Figure 6C(ii)), in which a single S2 stimulus could provoke more than one depolarizing potential. In the control condition (the ATO concentration was 0 μM), the S1-S2 interval that can induce spiral waves was from 376 m to 414 m, with a time window of 38 m. When the ATO concentration increased to 3 μM, reentry occurred during the S1-S2 interval of 461–507 m, whose vulnerable window rose to 46 m (Figure 6B).
[image: Figure 6]FIGURE 6 | The effect of ATO on heterogeneous ventricular tissue. (A) The structure of heterogeneous ventricular tissue. (B) The vulnerable window of ventricular tissue in control and 3 μM ATO conditions. (C) Snapshots of reentrant excitation waves in the control condition with S1-S2 intervals at 378 m and sequence diagram of the membrane potential of horizontal continuous ventricular myocytes.
Effects of resveratrol on ATO-induced cardiotoxicity
When treated with 3 μM ATO in VMs, 10 μM resveratrol can surpress the excessive ICaL conductance from twice to 1.3 times (Yan et al., 2017) and increase the remaining maximum conductance index k of IKr (Eq. (4)) to 1.3 times (Zhao et al., 2014). The membrane potential of three types of VMs in the presence of 3 μM ATO and 10 μM resveratrol were simulated. The results showed that resveratrol shortened the APD90 from 391 to 357 m in ENDO cells, from 602 to 511 m in MCELL cells and from 394 to 360 m in EPI cells. Resveratrol also narrowed the maximum gap of APD90 between the three types of VMs from 211 to 154 m. The action potentials of different types of VMs treated with ATO and resveratrol are shown in Supplementary Figure S3.
The effect of resveratrol was further predicted in a ventricular cable model. The S1-S2 stimulation protocol was conducted with 3 μM ATO and 10 μM resveratrol. Simulation results showed that the time window that produced unidirectional conduction was narrowed from 62 m to 45 m under the action of resveratrol. The vulnerable window in different conditions is presented in Table 3.
TABLE 3 | Effect of resveratrol on the ATO-induced ventricular cable model.
[image: Table 3]DISCUSSION
Summary of major findings
As has been widely reported, ATO may cause severe cardiotoxicity when applied to treat APL (Haybar et al., 2019) by interfering with hERG channels (Zhao et al., 2015) as well as ICaL channels (Chen et al., 2010). Even so, ATO remains one of the most effective drugs for rescuing cancer patients since it has a high long-term survival rate in newly diagnosed APL patients (Hu et al., 2009). As a result, the mechanisms of ATO-induced cardiotoxicity need to be elucidated, based on which more methods can be developed to improve the safety of ATO therapy. The in silico method provided an efficient approach to do this. Some mature models have been widely used in drug screening, such as the CiPA model (Park et al., 2019; Han et al., 2020; Ridder et al., 2020; Strauss et al., 2021) and a virtual heart model (Yuan et al., 2014). In this study, a mathematical model was built to delineate the cardiotoxicity of the human ventricle implicated in ATO by modulating the IKr and ICaL channels according to corresponding patch clamp data (Ficker et al., 2004; Chen et al., 2010; Yan et al., 2017). Based on the constructed model, we explored the process of ATO-induced arrhythmia from the subcellular level to the tissue level. The long APD in cells and LQT in cables were triggered by ATO-induced inhibition of IKr and facilitation of the ICaL channel, coinciding with clinical ECG diagnosis (Soignet et al., 2001). Beyond ATO’s explicit side-effect on LQT, it was first uncovered that ATO could augment the heterogeneity between different types of ventricular tissue, which was also an essential predisposing factor of tachycardia. In addition, ATO may induce alternans in all three types of VMs, which indicated an increase in the arrhythmia risk. Moreover, the vulnerability of ventricular tissue increased under the action of ATO, which was a direct factor of cardiac arrhythmia. Despite the underlying detrimental effects of ATO on the human heart, this study demonstrated a potential pharmacological remedy by resveratrol, which is expected to be beneficial for the safety of ATO therapy and provided better prognosis for newly diagnosed APL patients.
ATO-induced cardiotoxicity
In clinical trials, APL patients who received ATO had a higher risk of suffering from LQT syndrome and even sudden cardiac death (Westervelt et al., 2001). Biologists tried to explain the underlying ionic mechanisms of ATO-induced arrhythmia and found that K+ channels (including IKr, IKs and IK1) (Ficker et al., 2004) and Ca2+ dynamics (including ICaL and [Ca2+]i) (Chen et al., 2010) might be responsible for this. The effect of ATO on IK1 and IKs is controversial. An experiment in CHO cells claimed that ATO could inhibit the IKs channel (Drolet et al., 2004). ATO can also impair the expression of Kir2.1 in guinea pigs (Shan et al., 2013) and reduce the IK1 density in guinea pig VMs (Shan et al., 2013) and rat VMs (Chen et al., 2010). However, another study announced that the IKs and IK1 of guinea pig VMs had no obvious changes with overnight ATO incubation (Ficker et al., 2004). There were unified results of the inhibitory effect of ATO on IKr and its promotive effect on ICaL, whose experimental data were more abundant. As a result, we mainly focused on ATO’s effect on the ventricle via IKr and ICaL channels.
The relationship between several ATO dosages and the degree of inhibition of IKr was given in an experiment (Ficker et al., 2004), which provided basic data to depict the binding interaction between ATO and IKr in the present model. The I-V curve data of ICaL were usually measured in the condition of 3 µM ATO. Experiments displayed that long-term exposure to ATO facilitated ICaL density to approximately 2–3 times and negatively shifted the V1/2 of the activation curve (Ficker et al., 2004; Chen et al., 2010; Yan et al., 2017). According to this, we estimated the subcellular effect of ATO on human VMs and simulated the electrical activity of ATO-disrupted ventricular single cells, cables, and tissue. The simulation result implied a high risk of arrhythmia due to the steep restitution curve and electrical alternans in single VMs. Additionally, beyond the biological experiments, we found that ATO-reconstructed ionic channels not only prolonged the action potential of ventricular cells, but also aggravated the heterogeneity between the three types of VMs. On the one hand, in the present simulation, the QT interval of heterogeneous ventricular cable was 362 m in control and treated with 3 μM ATO prolonged QT interval to 477 m. Clinically, the normal QT interval should range from 350–420 m, over 460 m in women and 440 m in men can be diagnosed with LQT (Vadavanath et al., 2019). Particularly, when QT is more than 500 m, the risk of TdP increases dramatically (Zamorano et al., 2016). This means that the present simulation result with 3 μM ATO was in a hazardous range of QT intervals, which was coincident with clinical manifestations and thus reliable. In addition, simulation studies also reported the underlying risk of long APD. A study indicated that the prolonged APD impaired the repolarization of action potential, so in a short cycle length, the early afterdepolarizations may be evoked (Bai et al., 2017). Another study also proved that the adaptability of ventricular tissue was impaired because of the prolonged APD (Bi et al., 2022). On the other hand, increased ventricular heterogeneity among single VM cells can result in a further detriment in the ventricle, raising the possibility of reentry within the heart. Both factors led to a wide vulnerable window in ventricular tissue, indicating a higher risk of arrhythmia in the heart.
An uncharacteristic discordant alternans can be observed under the action of ATO (Supplementary Figure S2). The tissue alternans in this study were not as obvious as those in heart failure-associated atrial alternans research (Zhao et al., 2020) because except for single cell characters, the decreased CV in atrial tissue was also an essential factor in inducing tissue alternans. There is no evidence that ATO reduced the CV in ventricular tissue, so the alternans did not easily occur in this present simulation.
The ATO concentration in plasma reached 0.34–2 µM with intravenous treatment for APL and acute myeloid leukemia (AML) patients at a dosage of 10 mg/day (Siu et al., 2006). As a result, although there were animal experimental data with ATO concentrations of 0.1–50 µM (Ficker et al., 2004; Sun et al., 2006), we mainly adopted and modeled the data within 0.1–3 µM ATO. As a result, the present model was clinically valuable, based on which ATO-induced arrhythmogenesis can be investigated.
Pharmacological rescue of ATO toxicity
Despite the possibility of cardiac arrhythmia after administering ATO in both experiments and the simulation, it was still crucial for APL patients. Consequently, drug combinations have been proposed as a means of reducing cardiotoxicity resulting from ATO. Various kinds of drugs have been investigated to attenuate ATO-induced toxicity, but only a few have shown remarkable rescue properties. Fexofenadine is an antiallergic agent. Experiments have shown that 1 μM fexofenadine can increase IKr from 30% of the original density to approximately 60% in HEK293 cells incubated with 3 µM ATO (Yan et al., 2017). It was verified to shorten the APD90 from 396.43 ± 25.33 (with 3 µM ATO) to 233.30 ± 18.75 m in NRVMs and from 1164.71 ± 40.25 to 942.86 ± 103.11 m in hiPS-CMs (Yan et al., 2017). Nisoldipine, a hypotensive drug, could shorten the APD90 of guinea pig VMs with 3 µM ATO treatment from 880 ± 61 to 686 ± 36 m (Ficker et al., 2004). It is known to be the ICaL blocker, but the quantitative relation between Nisoldipine concentration and ICaL properties was not given on the condition of ATO. Resveratrol is a natural antioxidation ingredient that can protect the cardiovascular system (Sulaiman et al., 2010; Dudka et al., 2012) by ameliorating structural abnormalities and oxidative damage (Zhao et al., 2008). It can act on both the IKr (Zhao et al., 2014) and ICaL (Yan et al., 2017) channels and shorten the APD90 of ATO-incubated cells from 948.3 ± 63.7 m to 522.6 ± 26.3 m in guinea pig VMs (Zhao et al., 2014) and from 1164.71 ± 40.25 to 942.86 ± 103.11 m in hiPS-CMs (Yan et al., 2017). It can be found that resveratrol performed the best rescue effect among all three drugs that had significant protective effects on ATO-incubated CMs, and the rescue ratio was less in hiPS-CMs than in rodent VMs. The data on drug rescue in ATO-incubated CMs are summarized in Table 4.
TABLE 4 | Effect of drugs on the APD of cardiomyocytes incubated with 3 μM ATO.
[image: Table 4]To further predict the effect of resveratrol on human VMs incubated with ATO, we simulated ATO/resveratrol-incorporated ventricular models by modifying the IKr and ICaL channels. Although the rescue ratio of resveratrol declined in human VMs, it still remarkably ameliorated ATO cardiotoxicity (Table 4). In the present model, resveratrol not only shortened the APD90 of ENDO, MCELL and EPI but also narrowed the difference in APD90 between VMs, thus decreasing the vulnerable window of the ventricular cable (Table 3). This study verified that resveratrol has the potential to be applied in clinics to protect the cardiovascular system in ATO-treated patients.
Limitations
Except for the intrinsic limitations of the basic TNNP06 model (ten Tusscher and Panfilov, 2006), the pharmacological model in this study was not completely accurate due to a lack of abundant experimental data. The patch clamp experiment was performed on HEK293 (Yan et al., 2017) or rodent VMs (Chen et al., 2010), so it was only a prediction of the binding interaction between ATO and human VMs. In another human VM model (O'Hara et al., 2011), the IKr channel model was built by the Markov chain model, and the corresponding drug model was extended by incorporating two drug states (Whittaker et al., 2017). In this study, the simple pore block theory was used to depict the effect of ATO on the IKr channel because it was suitable for the IKr model of TNNP06.
Experiments reported that ATO had an underlying effect on calcium homeostasis by upregulating the expression of CaMKII, which finally caused abnormal CM contraction (Zhang et al., 2016; Zhang et al., 2017). The change in calcium dynamics caused by extra ATO is worth discussing in silico after more specific ionic data are obtained.
ATO may also have an impact on other ionic currents, such as IK1 (Chen et al., 2010), IKs (Drolet et al., 2004) and INa (Ficker et al., 2004), but the literature shows that their effect is not obvious. So did the present model study. We did not perform further study in this paper because of insufficient biological evidence as well as the minor effect. A related study can be conducted if more data are provided.
This simulation study revealed the acute effect of ATO on ionic channel currents rather than on protein expression. In the future, a Markov pharmacological model of IKr can be built to simulate the effect of ATO on hERG protein, which can refer to the previous short-QT simulation work (Whittaker et al., 2017; Zhang et al., 2022).
Many drugs or chemical compounds have been explored to relieve ATO toxicity (Haybar et al., 2019), but most of their ionic reactions were not clear, so only two drugs were modeled in this study. Nevertheless, this study provided an approach for simulating and evaluating the effectiveness of new drugs that can ameliorate ATO toxicity. Drugs that can protect the hearts treated with ATO should be compared in the future so that the optimal medication regimen can be screened.
CONCLUSION
This study provided a computational method for investigating the cardiotoxicity induced by ATO. The mechanisms of arrhythmia attributed to ATO were investigated from the ionic level to the tissue level. Simulation results showed that ATO not only extended the QT interval of ECG but also aggravated the heterogeneity of VM cells and led to alternans, thus raising the possibility of reentry in the human ventricle. Under the actions of ATO, resveratrol was incorporated into the ventricular model by intervening in the ionic channel, by which the side effects of ATO were ameliorated. The method of this study can also be used to screen drugs that may ameliorate ATO toxicity. This study elucidated ATO cardiotoxicity pathogenesis and its attenuation mechanisms, which is expected to improve ATO treatment in its clinical use.
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Supplementary Figure S1 | The calcium dynamic in VMs under the action of ATO. (A–D) The membrane potential (V), ICaL, [Ca2+]i, and INaCa of endocardial cells (ENDO) on the condition of control and 3 μM ATO.
Supplementary Figure S2 | The action potential of heterogeneous ventricular cable with a BCL of 410 ms.
Supplementary Figure S3 | The action potential of endocardial cells (ENDO), middle cells (MCELL) and epicardial cells (EPI) incubated with 3 µM ATO on the condition of pharmacological rescue.
Supplementary Video S1 | Control reentry in heterogeneous ventricular tissue. This video shows the generation and elimination of a reentrant excitation wave in a control condition. At the beginning of the simulation, an S1 stimulus was conducted at the peripheral endocardial cells so that a planar wave was initiated. At 378 m, a S2 stimulus was applied at a piece of epicardial cells neighboring the middle cells so that a series of spiral waves were provoked.
Supplementary Video S2 | ATO reentry in a heterogeneous ventricular tissue. This video shows the generation and elimination of a reentrant excitation wave in 3 µM ATO. At the beginning of the simulation, an S1 stimulus was conducted at the peripheral endocardial cells so that a planar wave was initiated. At 475 ms, an S2 stimulus was applied at a piece of epicardial cells neighboring the middle cells so that a series of spiral waves were provoked.
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Cardiac magnetic resonance imaging (MRI) segmentation task refers to the accurate segmentation of ventricle and myocardium, which is a prerequisite for evaluating the soundness of cardiac function. With the development of deep learning in medical imaging, more and more heart segmentation methods based on deep learning have been proposed. Due to the fuzzy boundary and uneven intensity distribution of cardiac MRI, some existing methods do not make full use of multi-scale characteristic information and have the problem of ambiguity between classes. In this paper, we propose a dilated convolution network with edge fusion block and directional feature maps for cardiac MRI segmentation. The network uses feature fusion module to preserve boundary information, and adopts the direction field module to obtain the feature maps to improve the original segmentation features. Firstly, multi-scale feature information is obtained and fused through dilated convolutional layers of different scales while downsampling. Secondly, in the decoding stage, the edge fusion block integrates the edge features into the side output of the encoder and concatenates them with the upsampled features. Finally, the concatenated features utilize the direction field to improve the original segmentation features and generate the final result. Our propose method conducts comprehensive comparative experiments on the automated cardiac diagnosis challenge (ACDC) and myocardial pathological segmentation (MyoPS) datasets. The results show that the proposed cardiac MRI segmentation method has better performance compared to other existing methods.
Keywords: automatic segmentation method, cardiac MRI, dilated convolution, medical image processing, deep learning
1 INTRODUCTION
Cardiovascular disease has been widely concerned by the medical community because of its harmfulness Cai et al. (2015). With the development of cardiac imaging technology, medical staff have been able to further study this disease. Among them, short-axis cardiac magnetic resonance imaging (MRI) is adopted by medical staff due to its non-invasive imaging characteristics, and is often used for the diagnosis of cardiovascular diseases Ripley et al. (2016). In clinical cardiology, clinicians need to distinguish left ventricle (LV), right ventricle (RV), and myocardium (MYO) from short-axis cardiac MRI. Manually identifying the parts of the heart is time-consuming, tedious and susceptible to external influences. Therefore, a great method that can automatically perform cardiac MRI segmentation task is very necessary. It allows an inexperienced person to easily complete the segmentation job.
In recent years, with the development of deep convolutional networks (CNNs), many natural image segmentation (Cheng and Li, 2021; Aganj and Fischl, 2021) and medical image segmentation (Pang et al. 2021; Oksuz et al. 2020) methods have been proposed in the field of computer vision and achieved great success. U-Net Ronneberger et al. (2015) is one of the seminal works in medical image segmentation task. It has been demonstrated that segmentation of cardiac MRI with deep neural network is better than other traditional computer vision and machine learning methods Bernard et al. (2018). After U-Net was proposed, many works were improved based on u-shaped network. Most of the best performing ventricular segmentation algorithms can be roughly divided into 2D methods and 3D methods. 2D methods take a single 2D slice as input, while 3D methods utilize entire volumes. NnU-Net Isensee et al. (2019) adopts two different fusion strategies of 2D and 3D to obtain the best model. Subsequently, Ke et al. (2018) propose a method that utilizes the optimal neighborhood size of each semantic class to optimize the adversarial loss in various situations. Dangi et al. (2019) propose a network that could predict the uncertainties associated with semantic segmentation and pixel-level distance graph regression, and the loss of the network is weighted by the reciprocal of the corresponding uncertainties. Painchaud et al. (2019) propose an adversarial variational autoencoder that can be adapted to any heart segmentation method. The encoder can automatically bend an inaccurate heart shape to a close but correct shape. Oksuz et al. (2020) propose a network that could automatically correct motion-related artifacts, and the network achieved good image quality and high segmentation accuracy in the presence of synthetic motion. Yang et al. (2021) propose a deep dilated block adversarial network, which uses the properties of dilated convolution to acquire and connect multi-scale features.
However, there is still room for improvement in existing methods. The existing networks (Ronneberger et al., 2015; Cheng et al., 2020) usually use ordinary convolutional networks. In this way, it is easy to lose information or add too much information so that the features can not be fully utilized. Some methods (Dangi et al., 2019; Painchaud et al., 2019) do not take into account the fuzziness and inhomogeneity of MRI artifacts, which can easily lead to the problem of blurring between classes and unclear boundaries. In addition, some models (Isensee et al., 2019; Zhou et al., 2021) require high memory and computational costs, making their usefulness limited.
In order to solve the problem that feature information cannot be fully utilized due to the loss of effective information or the increase of invalid information, we propose a dilated convolutional network with directional feature mapping inspired by Wang et al. (2018); Cheng et al. (2020). The network is based on the U-Net architecture, which we call DDFN. In DDFN, a dilated convolution module processes the characteristics of each layer of input in the U-Net encoder and decoder. The dilated convolution module consists of three dilated convolution with different dilated rates. Note that the dilated convolution module does not change the feature size. The dilated convolution block can extract multi-scale features effectively, and it is not easy to cause feature information loss. In the decoder, the features of each layer are up-sampled to the size of the original image and then concatenated to make full use of the feature information at different stages. In addition, we propose an edge fusion block (EFB) to preserve the image boundary. In the decoding phase, EFB integrates the edge feature into the side output feature of the encoding layer. Then it is concatenated with the upsampled features in the decoding layer. Finally, we add a direction field module before the output layer of U-Net. This module uses the learned direction field to improve the original segmentation features and serves as the input to the final output module to get the final segmentation result. Experimental results show that our proposed model is more competitive than other models.
The main contributions of this paper are as follows.
1) We propose a deep learning-based cardiac MRI segmentation network. The network can effectively extract and utilize multi-scale information, and is not easy to cause loss of feature information or increase of useless information.
2) We propose an edge fusion block to integrate edge feature maps into U-Net. The purpose is to preserve more boundary information for better cardiac MRI segmentation.
3) The network combines the direction field module to enhance the differences between classes and the similarity within classes. This module uses directional feature to improve the original network features and generate the final segmentation results.
The rest of the article follows. Section 2 describes the related work. In Section 3, we describe the proposed network structure in detail. The experimental results are presented and analyzed in section 4. Finally, the conclusion is drawn in Section 5 and future work is discussed.
2 RELATED WORK
In this section, we will outline the related efforts from three aspects.
2.1 Development of medical image segmentation
Since 2000, some researchers have been trying to use computers to automatically divide different parts of the heart. Therefore, the cardiac segmentation method based on machine learning came into being. For example, Codella et al. (2008) propose a semi-automatic segmentation method to segment LV, which utilizes region growing to improve performance. In order to overcome the influence of nipple muscle on segmentation effect, Pluempitiwiriyawej et al. (2005) propose a new stochastic active contour scheme. Zhang et al. (2020) propose a new external gradient vector manifold flow over manifold. Subsequently, some scholars propose to use prior probabilistic atlas to obtain more efficient models Mitchell et al. (2001); Lorenzo-Valdés et al. (2004). The model can achieve good performance under the premise of sufficient prior knowledge. Machine learning methods have certain shortcomings, such as the need for human assistance and the difficulty of improving accuracy.
With the development of deep learning in the field of computer vision, some scholars have proposed many automatic segmentation methods based on deep learning. Shelhamer et al. (2016) propose the full convolutional machine network (FCN), which has had a profound impact on the task of semantic segmentation. For medical image segmentation task, Ronneberger et al. (2015) propose U-Net. U-Net is also a fully convolutional network, which solves the problem of small amount of medical image data. It learns feature content better by connecting features of the same size. Subsequently, for small training sets, Ngo et al. (2017) propose to combine deep learning and level sets to solve the problem. Wang W. et al. (2019) use a subdivision component and a regression component to solve the problem caused by different ventricular heights in heart segmentation. Uslu et al. (2022) propose a multi-task network to generate left atrial segmentation image and edge mask simultaneously. The network can segment edge pixels well. In the unsupervised field, Vesal et al. (2021) propose a new multi-modal MRI segmentation model based on unsupervised domain adaptation. This party can adapt network characteristics between source target domains. Wu and Zhuang (2021) designed two networks based on variational autoencoders and regularized them to reduce the difference between segmentation results and ground truth.
All the above methods are based on deep learning, which proves that deep learning can further improve the segmentation performance.
2.2 Dilated convolution
Holschneider et al. (1990) first propose the concept of dilated convolution and applied it to wavelet decomposition. Dilated convolution is to insert different distances between the pixels of the ordinary convolution kernel to enlarge the receptive field of the convolution layer. Dilated convolution can effectively extract features in deep learning without increasing the number of parameters. Yu and Koltun (2015) propose to introduce dilated convolutions into the model to aggregate feature information at multiple scales. Chen et al. (2017) propose a spatial pyramid pooling module to obtain multi-scale feature information through dilated convolutions of different rates in parallel. Dilated convolutions can also be applied to computer vision fields such as object tracking Hsu and Chen (2022), audio generation Oord et al. (2016), and image super-resolution Song et al. (2022).
2.3 Directional feature
In addition, some scholars try to improve the semantic segmentation model by using directional information. Wang Y. et al. (2019) propose a model that could learn image context information, which can explicitly encode the relative positions of semantically meaningful entities to better deal with large object portions. Xu et al. (2019) propose a new text detector for irregular scene text detection, which uses a full convolutional network to learn the direction field from the nearest text boundary to each text point. However, semantic segmentation methods for natural images often produce inaccurate results for cardiac MRI segmentation tasks. Therefore, it cannot be directly used in the field of cardiac MRI segmentation. Influenced by Cheng et al. (2020), we use the directional information to improve segmentation features to improve the performance of the model.
3 PROPOSED METHOD
In this section, we will detail the structure of our model.
3.1 Network architecture
As shown in Figure 1, our proposed model follows the U-Net model architecture. The model consists of an encoder, a decoder, EFBs and a directional field module. First, in the decoder and encoder, we replace the two consecutive 3 × 3 convolutional layers in the original U-Net with a more efficient dilated convolutional module. The purpose is to use dilated convolution to obtain larger receptive field and multi-scale feature information. In addition, we propose EFB to preserve image boundaries. In the decoding stage, EFB embeds the edge features into the downsampled features of the same size as the upsampled features, and concatenates them with the upsampled features. Second, the model upsamples the feature size of each layer of the decoder to the same size as the original image size. They are then concatenated and fused through a 1 × 1 convolutional layer. Final, the fused features are used as the input of the directional field module. The model uses the directional field to refine the fused features and generate the final segmentation result. The output segmentation map has four channels representing the probabilities of LV, RV, MYO and background.
[image: Figure 1]FIGURE 1 | Overall structure of the proposed DDFN model.
3.2 Dilated convolutional module
Blurred shadows are created during MRI acquisitions due to the beating of the heart. To solve this problem effectively, we use dilated convolution to obtain multi-scale features. This reduces the impact of blurry shadows and increases prediction accuracy. Because different receptive fields can obtain different scale features, multi-scale features can reduce the error caused by heart beating. However, if large convolution kernels are used to learn large-scale features, the computational cost and number of parameters will increase significantly. In limited data sets, this situation can easily lead to overfitting. Therefore, by using dilated convolution, the acceptance domain can be extended without adding too many parameters and computing costs. Therefore, we ended up choosing dilated convolutions. The definition of dilated convolution is as follows:
[image: image]
where [image: image] represents the input of the dilated convolution. The convolution kernel of size (2r + 1)2 is represented by [image: image] and [image: image]. D(⋅) represents the output of the convolution operation, where l represents the dilation rate, s is the stride, and p is an element of D(⋅).
Figure 2 is a schematic diagram of 3 × 3 dilated convolutions with different dilation rates. Their receptive fields are 3 × 3 and 7 × 7, respectively. Note that a dilated convolution with a dilation rate of one is equivalent to a normal convolution. Compared with the simple stacked ordinary convolution, the dilated convolution can reduce the number of convolutional layers while obtaining a larger receptive field. Therefore, the model employs dilated convolutional blocks to extract multi-scale features of cardiac MRI.
[image: Figure 2]FIGURE 2 | Schematic diagram of dilated convolution. The dark blue points represent the convolution kernel, and the light blue area is the receptive field.
The structure of the dilated convolution module is shown in Figure 3, which uses 3 × 3 convolution kernels with different dilation rates for multi-scale feature extraction, and forms a parallel structure with the double convolution layer of the original U-Net. The purpose of the dilated convolution is to extract the multi-scale features of the image. We set the rates to 1, 2, and 3, respectively. The resulting multi-scale features are then concatenated and then passed through a 1 × 1 convolutional layer for feature fusion. Compared with traditional convolutional layers, dilated convolutions can use fewer parameters to obtain a larger receptive field. This is very beneficial for data-limited cardiac MRI segmentation tasks. The receptive field of the Dilated block in Figure 3 is shown in Figure 4. The numbers in the grid represent the number of convolutions.
[image: Figure 3]FIGURE 3 | The structure of the dilated convolution module.
[image: Figure 4]FIGURE 4 | Schematic diagram of the receptive field of the dilated block. The numbers in the grid represent the number of convolutions.
As shown in Figure 1, the overall U-Net infrastructure is adopted. We replace all double-layer 3 × 3 convolutions in the encoder and decoder with dilated convolution blocks to extract and fuse multi-scale features. And in the decoder, we upsample the features produced by each layer to the original image size, then concatenate them and perform feature fusion through a 1 × 1 convolution. The feature fusion layer does not change the size of the input features, but takes the concatenated features as the input of the 1 × 1 convolution block to generate the fused features. After this step, the feature fusion is completed, and the number of channels changes from 512 to 64.
3.3 Edge fusion block
We propose an edge fusion module to effectively utilize edge features, as shown in Figure 1. First, we use the existing method Zitnick and Dollár (2014) to extract the edge map and take it as one of the inputs of DFB. Second, in the decoding stage, EFB embeds the edge features into the downsampled features of the same size as the upsampled features, and concatenates them with the upsampled features. The DFB is a two-step process. First, the edge map passes through four convolution layers of size 3 × 3 to generate conditional features. Second, in order to make better use of the edge features, EFB outputs two independent branch features (γ, β) based on the conditional features. We use (γ, β) to transform the feature Xec in the encoding stage into a feature Xes with edge sensing capability as follows:
[image: image]
where ⊙ and + represent the element-wise product operation and the element-wise addition operation, respectively. The EFB performs spatial transformations as well as feature operations. As shown in Figure 1, our model uses four EFBs to integrate edge features.
3.4 Directional field module
We use a direction field module composed of 1 × 1 convolution to learn the direction field. Its input is the final output feature of the model decoder, and the output is the direction field with channel number of two. The background pixel of the direction field is (0, 0), which is defined as follows:
[image: image]
where a represents the foreground pixel, b represents the pixel where a is located closest to the border of the cardiac tissue, and [image: image] is the direction vector between b and a, which we normalize by distance.
The direction field module provides a direction vector for each pixel to point to the central region, which predicts the relationship between pixels. After generating the direction field, the model uses the generated direction field [image: image] to improve the output feature [image: image] to obtain the improved feature [image: image]. The features in the central region are error corrected for [image: image], and each pixel is updated iteratively. The operation is defined as follows:
[image: image]
where Ω is the image domain, k represents the kth step, N is the total number of iterations, and px and py represent the x and y coordinates of pixel a, respectively. Subsequently, [image: image] and [image: image] are concatenated as the input of the final classifier to generate segmentation results.
3.5 Loss function
The loss function involved in this method includes the segmentation [image: image] with U-Net as the architecture, the segmentation [image: image] after the direction field, and the direction field module LF. The segmentation model based on U-Net uses cross-entropy LCE as the segmentation loss. LCE is defined as follows
[image: image]
where pi is the ground truth and qi is the predicted value. Then the model selects L2-norm distance and angle distance as the loss for direction field learning
[image: image]
where F and [image: image] are the ground truth and the corresponding predicted direction field respectively. The hyperparameter α is set to one to balance L2-norm distance and angular distance. The weight on pixel a is represented by w(a), which is defined as
[image: image]
where [image: image] is the total number of pixels with label i, and Ncls is the number of classes. The total loss Lall contains LCE and LF, where the balance factor λ = one
[image: image]
The training loss of the model is shown in Figure 5. The loss function value decreases significantly in the first 20 epochs and then becomes slow. At the 60th epoch, the model’s loss cannot continue to decrease.
[image: Figure 5]FIGURE 5 | Overall structure of the proposed DDFN model.
4 EXPERIMENT AND ANALYSIS
In this section, we describe the processing of the dataset and the experimental environment. Then, we conduct ablation experiments to demonstrate the effectiveness of the model and analyze it. Finally, we compare our method with other methods on ACDC and MyoPS datasets.
4.1 Datasets
In this section, we introduce three different datasets: ACDC, MS-CMRSeg, and MyoPS. The datasets are all derived from challenges, and all data labels are done by experts in the relevant fields.
ACDC 2017: The ACDC dataset Bernard et al. (2018) contains 100 training images. These data included groups for normal cases, heart failure with infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, and right ventricular abnormalities. The dataset provides LV, RV, and MYO labels.
MS-CMRSeg 2019: Multi-sequence cardiac mr segmentation (MS-CMRSeg) Zhuang (2016); Zhuang (2018) dataset contains data of 45 cases. This dataset provides cardiac MRI images with three different sequences: bSSFP, LGE and T2. The sFFPS MRI is an equilibrium steady state free precession sequence. The LGE MRI is a T1-weighted gradient echo sequence. The T2 MRI is a T2-weighted, black blood spectral presaturation attenuated inversion-recovery (SPAIR) sequence. The dataset provides LV, RV, and MYO labels.
MyoPS 2020: The myocardial pathological segmentation (MyoPS) Zhuang (2016); Zhuang (2018) dataset provides 25 labelled MRI data. MyoPS is similar to the MS-CMRSeg dataset in that it provides cardiac MRI images with three different sequences. This dataset includes left ventricular blood pool, left ventricular blood pool, left ventricular normal myocardium, left ventricular myocardial edema, and left ventricular myocardial scar.
We use the ACDC dataset as the model training dataset and part of it as the test set. Due to the similarity and small size of MS-CMRSeg and MyoPS datasets, we take MS-CMRSeg as the training set and MyoPS as the test set. Since only LV, RV, and Myo were labeled in the MS-CMRSeg dataset, myocardial scarring and myocardial edema in the MyoPS dataset were included in the MYO classification. For the ACDC dataset, we use one-fifth of the training images as validation images and perform experiments with 5-fold cross-validation. In the validation set, we use the dice coefficient and hausdorff distance (HD) to evaluate the model. The formula of the Dice and HD evaluation index is as follows
[image: image]
where, RG represents the ground truth and R represents the segmentation result. The formula of the HD evaluation index is as follows
[image: image]
where, OR and OG represent the contour of segmentation result and ground truth respectively, and d represents the Euclidean distance between two points.
4.2 Implementation details
The thickness of slices in MRI is large, which easily leads to insufficient connectivity information between slices Jang et al. (2017). Therefore, the cardiac MRI was first converted into a two-dimensional image through slices. Then, in order to make better use of the batch processing mechanism, all images with a width and height greater than 256 are cropped to 256 × 256. For images less than this size, we fill them with the minimum gray value of each image.
The proposed model is trained on Nvidia RTX3090Ti GPU. We adopt Adam optimizer Kingma and Ba (2014) to assist training, and the initial learning rate is set to 10−4. We set up an early stop mechanism. Within 15 epochs, the evaluation dice index on the validation set does not increase by more than 0.1%, then the training is stopped, and the best model on the validation set is saved. HD can assess the difference between two sets of points. The smaller the HD value, the better the effect of the model.
The hyperparameter Settings of the model are shown in Table 1. Where, max_epoch represents the maximum number of training epochs, and early_stop_epoch represents the stop of training when loss does not decrease during continuous training for 15 epochs.
TABLE 1 | Hyper-parameter setting of the model.
[image: Table 1]4.3 The overall performance of the proposed method
Table 2 and Figure 6 shows the performance of the proposed cardiac MRI segmentation algorithm on the ACDC and MyoPS datasets. As shown in Table 2, the average dice index and average HD index of LV, RV and MYO all reach a relatively good standard. In the ACDC dataset, the dice index of LV reaches 0.947, showing good a performance of the model. For the three different parts of the heart, the LV segmentation accuracy is the highest, while the MYO segmentation accuracy is lower. This is due to the presence of some diseases (such as myocardial infarction) in MYO, which cause changes in its appearance, which in turn increases the difficulty of segmentation. However, our proposed method still achieves a decent accuracy. The MYO value in the average HD index is larger, and it is speculated that the segmentation difficulty was increased due to the low contrast of cardiac MRI and the large change in MYO size. For the MyoPS dataset, the segmentation results are different due to the different intensity distributions of three different sequences of MRI. The intensity distribution of LGE sequence images is similar to that of bSSFP sequence images, so the variation trend of experimental results is the same. Among the segmentation results of these two sequences, the LV segmentation task achieved the highest Dice score and the lowest HD score. Among the segmentation results of T2-SPAIR sequence, LV segmentation results obtained the highest Dice score, but RV was relatively low.
TABLE 2 | Overall performance of the proposed method.
[image: Table 2][image: Figure 6]FIGURE 6 | In order to obtain better visual effects, the segmentation parts and evaluation indexes are displayed in the form of three-dimensional bar charts. Dice’s score is on the left and HD’s score is on the right.
4.4 Network structure analysis
In this section, we perform ablation experiments on the proposed model for detailed analysis. Our model design is based on U-Net, which is a popular network for medical image segmentation tasks. Therefore, in the ablation experiments, we use U-Net as the baseline comparison model.
4.4.1 Study on the dilated convolution module
The proposed model adopts a dilated convolution module to expand the receptive field and obtain multi-scale feature information. To demonstrate the effectiveness of the dilated convolution block, we change the module to the U-Net initial double convolution module and keep other configurations unchanged. It is then compared with the original model. Table 3 shows the comparison results on the ACDC dataset. As can be seen from the table, the performance of the model after removing the dilated convolution block is significantly degraded. Dice’s mean decreased from 0.918 to 0.900, while HD’s mean increased from 9.892 to 10.494. This is because the dilated convolution module can effectively expand the receptive field and extract multi-scale feature information.
TABLE 3 | Dice/HD of our methods on ACDC dataset.
[image: Table 3]In addition, we also conduct ablation experiments for the effect of different dilated rates on the experimental results. In the dilated convolution module, we set the dilated rate to three groups of {1, 2, 3}, {1, 2, 5}, {1, 3, 5} respectively for comparison. The experimental results are shown in Table 4. The results show that the model performs the best when the dilated rate is set to (1, 2, 3). Therefore, we apply this setting to our model.
TABLE 4 | Ablation experiments with different dilation rate settings.
[image: Table 4]4.4.2 Study on the multi-scale fusion module
To demonstrate the effectiveness of the multi-scale fusion module, we remove the entire multi-scale module and keep other processing steps unchanged. The experimental results on the ACDC dataset are shown in Table 3. The Dice and HD values of the model using multi-scale modules have been improved. Therefore, the experimental results can prove that multi-scale fusion module is beneficial to cardiac MRI segmentation task. This is because the multi-scale fusion module can fully utilize the features of each layer of the decoder.
4.4.3 Study on the edge fusion block
The role of the EFB is to use edge features for more accurate segmentation of MRI. To demonstrate the effectiveness of the EFB, we performed an ablation experiment on the EFB. The ablation results of EFB are shown in Table 3. We deleted the EFB and kept the other procedures unchanged for comparison. As can be seen from the table, both Dice and HD values have been improved. The results show that the module effectively uses edge features, which is conducive to cardiac MRI segmentation.
4.4.4 Study on the direction field module
Our method utilizes the direction field module to learn a direction field, which represents the direction relationship between each pixel. Its function is to improve the segmentation feature map. To demonstrate the effectiveness of this module, we analyze the impact of the direction field module on the segmentation task. In ablation experiments, we remove the direction field module of DFFN and keep other settings unchanged. It can be seen from Table 2 that the precision of the model decreases significantly after the direction field module is removed. In particular, the average of HD increased from 9.892 to 11.104. This proves that the direction field module can effectively improve the output features and obtain better cardiac segmentation results.
4.5 Comparison with existing methods
In this section, the proposed cardiac MRI segmentation method is compared with other mainstream networks. Including U-Net Ronneberger et al. (2015), U-Net++ Zhou et al. (2018), DeeplabV3+ Chen et al. (2018), Segnet Badrinarayanan et al. (2017), Distance Map Regularized (DMR) Dangi et al. (2019) and SK-Unet Wang et al. (2021). The above methods are encoder - decoder structure. U-Net is a very classical model in medical image segmentation, while Segnet is one of the earliest multi-pixel segmentation models. DeeplabV3+ is a conventional semantic segmentation method and has achieved very good results in VOC2012 dataset. U-Net ++ is an improvement on the basis of U-Net, which alleviates the unknown network depth through effective integration of features of different depths. CE-Net integrates dense convolution and residual structure into the model to improve the segmentation performance. DMR is a distance graph regularized image segmentation model. SK-Unet utilizes the selection kernel module and residual module to improve the U-Net model. This section compares the above methods with our proposed ones. To be fair, the parameter settings are all the same as the proposed method.
4.5.1 Experiments on ACDC dataset
Table 5 shows the comparison results of all methods on the ACDC dataset. Experimental results show that compared with other methods, our proposed method has certain advantages and dice value has been significantly improved. Among them, DeeplabV3+ performs poorly, and it can be seen that it is not suitable for medical image segmentation. As a baseline model, U-Net has better performance, but there is still room for improvement. U-Net++ has achieved obvious results after improving U-Net, and the Dice value has increased from 0.912 to 0.928. DMR and SK-Unet are very effective as recent cardiac segmentation methods. Compared with these methods, the average dice value and average HD value of our method reached 0.918 and 9.892. Among them, the dice value of LV reached 0.947, the RV reached 0.908, and the segmentation of MYO is difficult due to heart disease, which is 0.899. Overall, our method achieves competitive results for segmentation of various parts of the heart. This is because our model can effectively extract and utilize multi-scale information without causing the loss of feature information or the increase of useless information. In addition, the model retains the edge information to make the results more accurate.
TABLE 5 | Dice and HD of different segmentation models on ACDC dataset are compared quantitatively.
[image: Table 5]Figure 7 presents a visual comparison of the proposed cardiac MRI segmentation method against other methods. We select the segmentation results of three different slices for comparative display. Among them, U-Net can accurately segment LV parts, but cannot segment RV and MYO well. The remaining other models can segment the three parts of the heart well, but there are still some shortcomings. The segmentation results of DMR are prone to omissions, and SK-Unet is prone to over-segmentation. Our segmentation result is the closest to ground truth. However, for some very fine edge structures, our method still falls short. With the deepening of the layer number of convolutional network, the edge information is easy to be gradually blurred. Briefly, the deep convoluted layer cannot obtain better boundary information. Therefore, fine edges are not easy to recover. These fine edge structures are difficult to segment manually even for experienced experts.
[image: Figure 7]FIGURE 7 | The variation of loss.
4.5.2 Experiments on MyoPS dataset
Since the MyoPS dataset contains MRI with three different sequences: bSSFP, LGE, and T2-SPAIR, we designed three sets of comparative experiments to verify the effectiveness of the model.
4.5.2.1 Comparison of results on bSSFP sequence MRI
Table 6 shows the experimental comparison results of our method and other methods on bSSFP sequence images. It can be seen that compared with the classical U-Net method, our method improves the RV segmentation accuracy by 2.11%. The segmentation accuracy was also improved in MYO and LV segmentation tasks. And compared with other methods, our method can segment more accurately.
TABLE 6 | Dice and HD of different segmentation models on MyoPS dataset are compared quantitatively.
[image: Table 6]4.5.2.2 Comparison of results on LGE sequence MRI
The comparison results are shown in Table 6. The intensity distribution of MRI of LGE sequence is similar to that of bSSFP sequence, so the trend of MRI segmentation accuracy of the two sequences is similar. Our method outperforms other methods on cardiac MRI segmentation tasks. In addition, the proposed method achieves the highest Dice score on LV, RV and MYO segmentation, and the lowest Hausdorff distance score.
4.5.2.3 Comparison of results on T2-SPAIR sequence MRI
The intensity distribution of T2-SPAIR MRI was different from that of the previous two sequences. Table 6 shows the experimental results. It can be seen that all segmentation methods perform poorly when segmenting RV. When segmenting lv, the segmentation accuracy of the proposed method is slightly higher than that on the other two sequences. For the MYO site, the proposed method performed well on all three sequences of MRI. Similarly, in the MRI segmentation task of T2-SPAIR sequence, our proposed method performs well.
5 CONCLUSION
This paper proposes a cardiac MRI segmentation method utilizing multi-scale features and orientation field modules. This method makes full use of multi-scale features, and effectively improves the output features through the directional field module, thereby obtaining better segmentation accuracy. In addition, the model also uses edge features to further improve the segmentation performance. Our limitation is that with the deepening of the convolution layer, some small details are easily lost and cannot be recovered. In the future work, we will try to provide global context information for all the convolutional layers in the decoder to preserve the more easily ignored details.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its early detection is critical for preventing complications and optimizing treatment. In this study, a novel AF prediction method is proposed, which is based on investigating a subset of the 12-lead ECG data using a recurrent plot and ParNet-adv model. The minimal subset of ECG leads (II &V1) is determined via a forward stepwise selection procedure, and the selected 1D ECG data is transformed into 2D recurrence plot (RP) images as an input to train a shallow ParNet-adv Network for AF prediction. In this study, the proposed method achieved F1 score of 0.9763, Precision of 0.9654, Recall of 0.9875, Specificity of 0.9646, and Accuracy of 0.9760, which significantly outperformed solutions based on single leads and complete 12 leads. When studying several ECG datasets, including the CPSC and Georgia ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the new method achieved F1 score of 0.9693 and 0.8660, respectively. The results suggested a good generalization of the proposed method. Compared with several state-of-art frameworks, the proposed model with a shallow network of only 12 depths and asymmetric convolutions achieved the highest average F1 score. Extensive experimental studies proved that the proposed method has a high potential for AF prediction in clinical and particularly wearable applications.
Keywords: atrial fibrillation identification, electrocardiogram, recurrence plot, non-deep neural network, optimal subset
1 INTRODUCTION
Atrial fibrillation (AF) is a supraventricular tachyarrhythmia caused by uncoordinated atrial electrical activation and ineffective atrial contraction (Hindricks et al., 2021). As the most common cardiac arrhythmia and a major risk factor that can lead to ischemic, the AF incidence and prevalence have increased over the last 20 years, becoming one of the largest epidemics and public health challenges (Lippi et al., 2021). The diagnosis of AF at an early stage is essential for the timely inception of treatment, which is usually realized by analyzing Electrocardiogram (ECG) signals. In clinical practice, the body surface ECG is a powerful tool to reveal the occurrence, maintenance, and termination of AF. However, manual analysis of continuous rhythm registrations is time-consuming and needs cardiologists with expertise in ECG-based diagnosis.
In recent years, automated AF detection based on traditional methods and neural networks has been actively developed (Wesselius et al., 2021). Traditional methods mainly focus on atrial and ventricular signal features obtained from single-lead or standard 12-lead ECG recordings. The atrial features are primarily based on the P-wave disappearance or f-waves appearance. Typical methods include the wavelet energy method (Garcia et al., 2016; Serhal et al., 2022), the frequency and amplitude features of the f-wave (Henriksson et al., 2018), and the time between P-waves as a measure of the atrial rate (Huang et al., 2020). The ventricular features mainly describe irregularity of intervals between subsequent R-peaks (R-R intervals). Conventional methods also study wavelet sample entropy (Serhal et al., 2022), normalized fuzzy entropy (Liu C. et al., 2018), Shannon entropy (Dharmaprani et al., 2018), R-R interval features (Lown et al., 2020; Luo et al., 2021), and heart rate variability analysis (Nguyen et al., 2018). The signal features describe other characteristics buried in ECG and are related to AF’s clinical presentation and pathophysiology (e.g., signal quality and frequency components). A bimodal analysis of physiological time and frequency components is used to detect AF (Kruger et al., 2019). The ECG signals are transformed into the frequency domain (Khadra et al., 2005), time-frequency domain (Asgari et al., 2015), and phase space (Parvaneh et al., 2018) to predict AF.
The standard 12-lead ECG provides a complete evaluation of cardiac electrical activity, commonly employed across clinical settings. Existing neural network studies have mostly addressed the task of automatic AF classification based on the standard 12-lead ECG in different ways. For example, Ribeiro et al. presented a DNN framework to diagnose AF and other five types of rhythms recordings with an F1 score above 80% (Ribeiro et al., 2020). Yao et al. developed an attention-based time-incremental convolutional neural network to detect AF and other arrhythmias from the 12-lead ECG with varied-length (Yao et al., 2020). Zheng et al. proposed an optimal multi-stage arrhythmia classification approach to predict AF and other types at a cardiologist-level accuracy (Zheng et al., 2020). Many works developed neural network methods based on the popular dataset from the first China Physiological Signal Challenge 2018 involving AF and other eight types of different rhythms (Runnan He et al., 2019; Tsai-Min Chen et al., 2020).
However, information redundancy exists in standard 12-lead ECG signals, which could induce systematic overfitting in deep learning, causing poor generalization, performance, and unnecessary computational costs. Thus, some recent studies have explored the optimal selection of ECG leads for cardiac arrhythmia classification. Lai et al. proposed a deep learning model using the optimal 4-lead subset that outperformed the classification performance of the complete 12-lead ECG on normal and eight arrhythmias (Lai et al., 2021). References (Jimenez-Serrano et al., 2022; Xu et al., 2022) used deep learning-based methods to discriminate multiple cardiac conditions with various lead combinations, namely six leads (I, II, III, aVR, aVL, aVF), four leads (I, II, III, V2), three leads (I, II, V2) and two leads (I, II) vs the standard 12-lead ECG, and the data were provided during the PhysioNet/Computing in Cardiology Challenge 2021. In our previous work (Zhang et al., 2021), we addressed the classification of AF and eight other types of arrhythmias utilizing RP representation of ECG signals based on the identified optimal leads (lead II and aVR) via the Inception-ResNet V2 framework in which general optimal leads were selected for nine types of arrhythmia classification. These earlier works explored the optimal ECG-lead subsets on multiple prevalent arrhythmias classification tasks.
AF prediction has recently been investigated based on single-lead ECG data. Hannun et al. developed a deep neural network to classify 12 rhythm classes, including AF and other arrhythmias, based on single-lead ECG records obtained from an ambulatory monitor with high diagnostic performance, similar to cardiologists (Hannun et al., 2019). Ma et al. proposed a multi-step method that combined the support vector machine classifier and an auto-encoding network to predict the paroxysmal AF based on single-lead long-term ECG data from the fourth China Physiological Signal Challenge (CPSC 2021) database (lead II) and the wearable ECG database collected by the wearable ECG device (Ma et al., 2022). Athif et al. proposed an algorithm to discriminate AF from normal and other arrhythmias based on a short single-lead ECG (lead I), obtained from the Computing in Cardiology Challenge 2017 (Clifford et al., 2017). Mathunjwa et al. developed an approach to classify AF from VF, PAC, and PVC arrhythmia in two steps using a convolutional neural network based on the datasets from the MITDB, MIT-NIH AFDB, and MIT-BIH VFDB, in which the data is from the lead II recording channel (Mathunjwa et al., 2021).
Nevertheless, accurate diagnosis of AF using single-lead ECG data (lead I or II) is still challenging. Despite the above studies reporting promising AF detection results, one main challenge of these methods is the loss of certain morphologic features and patterns only visible in specific leads. For example, the low amplitudes of the f wave are mainly observable in lead V1 and aVF, whereas they barely appear in lead I (Cheng et al., 2013).
The clinical diagnosis of cardiac arrhythmia types is often task-specific. To improve AF detection performance and efficiency, it is essential to identify a minimal number of leads and which leads should be included in the analysis. In this work, we developed a novel method to explore the minimal subset of ECG leads dedicated to AF prediction. Furthermore, to achieve better classification results, we use the recurrence plot (RP) technique to represent ECG signals. The RP technique (Eckmann et al., 1987; Eckmann et al., 1995) has been widely used to explore the recurrence features and irregular cyclicities properties of time series dynamic information in the phase space. It is a visualization method that transforms the 1D time signals into 2D RP images (Izci et al., 2019). Zeng et al. developed a recurrence plot-based densely connected convolutional network to classify the epileptiform based on EEG (Zeng et al., 2021). Afonso et al. proposed an RP-based approach for identifying Parkinson’s disease (Afonso et al., 2019). The RP method was also combined with deep learning models for arrhythmias classification based on ECG (Zbilut et al., 2002; Mathunjwa et al., 2021; Zhang et al., 2021; Labib and Nahid, 2022).
Moreover, in this work, we attempted to achieve higher AF prediction performance with “non-deep” neural networks. In our previous study, we found that the Inception-ResNet V2 could enhance the diversity of the filter patterns by asymmetric convolution splitting, thus improving arrhythmia classification performance (Zhang et al., 2021). However, it requires training deep networks involving large-scale sequential processing and higher computing cost. This is challenging and less suitable for those applications requiring fast responses. Here, we improved the non-deep ParNet (Goyal et al., 2021) (Parallel Networks), combining the asymmetric filters for this RP-based AF prediction task.
The main contribution of our work is as follows: 1) A novel neural network method combining the recurrence plot technique and ParNet-adv model was proposed for AF classification. 2) We find the minimal subset of ECG leads for AF prediction. 3) We proposed a shallow network with only 12 depths and asymmetric convolutions for AF prediction. Our method, combined with a tailored ECG subset and a light framework, can be used as a screening tool for automatic and early detection of AF problems, particularly useful for portable or wearable ECG devices.
The rest of the paper is organized as follows: methods and materials are described in Section 2, experiments and results are detailed in Section 3 and 4, validation of the proposed method is provided in Section 5, a discussion is presented in Section 6, and conclusions are drawn in Section 7.
2 METHODOLOGY AND MATERIALS
In this work, we develop a novel neural network method for ECG-based AF prediction. The method selects the minimal subset ECG leads for AF prediction by combining the light ParNet-adv architecture and the recurrence features buried in AF and normal ECG signals. As shown in Figure 1, the system includes three steps: 1D ECG data pre-processing, conversion of 1D ECG into 2D RP images, and AF prediction.
[image: Figure 1]FIGURE 1 | The flow chart of the automatic AF prediction system. ECG, electrocardiogram; AF, atrial fibrillation; NSR, normal sinus rhythm; 1D, one dimensional; 2D, two dimensional; RP, recurrence plot. (A) ECG data pre-processing. (B) ECG data were transformed into RP images. (C) AF prediction experiments based on 12-lead ECG and selected the minimal ECG-lead subsets. The validation superiority of the proposed method and testing the generalization on different extra databases.
2.1 ECG database
The dataset Physikalisch-Technische Bundesanstalt (PTB-XL) (Wagner et al., 2020) was used for training, validation, and testing. Another two ECG datasets (including CPSC and Georgia) were used to evaluate the generalization of the proposed approach. The data source CPSC (Liu F. et al., 2018) is the public training dataset from the China Physiological Signal Challenge (CPSC 2018). Georgia is a 12-lead ECG Challenge Database, Emory University, Atlanta, Georgia, United States, representing a large population from the South-eastern United States. These datasets were publicly accessible from the PhysioNet/Computing in Cardiology Challenge 2020 (Perez Alday et al., 2021) and detailed in Table 1. Each data contains 12-lead ECG recordings (I, II, III, aVL, aVR, aVF, V1–V6) sampled at 500 Hz with the mean duration of 10 s for PTB_XL and Georgia, and 16.2 s for CPSC.
TABLE 1 | The profile of ECG Datasets.
[image: Table 1]2.2 Data pre-processing for network input
2.2.1 1D ECG data pre-processing
In the data pre-processing stage, as illustrated in step 1 of Figure 1A, the data with multi-labels were removed to focus on the single-labelled AF classification. 16,801 Normal sinus rhythm (NSR) and 1396 AF in the PTB-XL, 918 NSR and 1000 AF in the CPSC, and 1000 NSR and 527 AF in Georgia were obtained after data-pre-processing. The proportion of AF and NSR is unbalanced in PTB-XL. To balance the data proportion, 1200 AF and NSR data were randomly picked up. Four in five of the data labelled AF(NSR) were used as the training & validation dataset, and one in five was used as the test dataset. Thus, the training & validation set is independent of the testing set without overlap, usually called inter-patient classification (Huang et al., 2014). Afterward, each ECG data was split into 12 subsets corresponding with the 12 leads.
Converting 1D ECG signals to 2D Recurrence plot (RP) images.
Cardiac activity has temporal evolutions, including polarization and depolarization, which can be considered as a dynamic system (Labib and Nahid, 2022). Using electrodes, ECG records dynamic features of the cardiac electrical activities in the form of time-varying voltages, which is not easy to visualize whole aspects of the system dynamics in the time domain (Debayle et al., 2018). A recurrence plot (RP) is a widely used graphical tool to visualize the recurrent behaviors of the time series in phase space (Eckmann et al., 1995). It enables analyzing the dynamic recurrence features buried in ECG. The RP is obtained as follows.
Step 1:. A 1D time series [image: image] phase space reconstruction is performed via Takens’ delay coordinate method (Takens, 1981). One consecutive time series is generated from the original time series, where [image: image] is a constant delay taken as 1.
[image: image]
Step 2:. The 2D phase space trajectory is constructed from [image: image] and [image: image]. The constructed vector is generated in the phase space as S1(x1, y1), S2(x2, y2), ……Sn−1 (xn−1, yn−1) (Debayle et al., 2018).
Step 3:. The distance between [image: image] and [image: image] on the trajectory can be formulated as:
[image: image]
Where [image: image] is the length of the time series, [image: image] is a threshold distance, [image: image] is a norm (e.g., Euclidean norm), and [image: image] (.) is the Heaviside function and defined as:
[image: image]
As a result, an RP image is obtained based on the matrix [image: image], which is a reconstructed recurrence representation in 2D phase space. As can be seen from Eq. 2, the RP is a binary matrix because of the threshold distance [image: image]. This processing may lose some detailed information. In this work, an un-threshold approach proposed by (Faria et al., 2016) was adopted to avoid information loss by the R-matrix binarization, to obtain an RGB image, and to make use of the color information in RP images. Then the R-matrix can be defined as:
[image: image]
In the present study, as illustrated in Figure 1B, the 1D ECG signals were converted to 2D RP images as the input signals of the 2D network for AF prediction.
2.3 ParNet-adv-based AF classification
In this work, we modified the ParNet (Goyal et al., 2021) (Parallel Networks) as a “non-deep” neural network for this RP-based AF prediction task. The classification network with a shallow depth and asymmetric filters is called ParNet-adv. The schematic architecture of the ParNet-adv used for AF prediction is represented as follows.
As illustrated in Figure 2, the shallow ParNet-adv model with a depth of 12 layers is a parallel model with three streams, including four parallel sub-networks (Downsampling, ParNet-adv Block, Fusion, Avg pool + FC). Downsampling Blocks in Figure 3A reduce resolution and increase the width to enable multi-scale processing. For the ParNet-adv Block in Figure 3B, the key design choice is the use of 1 × 7 and 7 × 1 asymmetric convolutions. The ParNet has only 3 × 3 convolutions, which is challenging as the receptive field is somewhat limited. To address this, we build asymmetric filters inspiring from the Inception-ResNet V2 design with 1 × 7 and 7 × 1 convolutions providing a large and diverse reception scale in the proposed ParNet-adv model. Fusion Blocks in Figure 3C combine information from multiple resolutions. The Avg pool and FC Blocks perform AF classification. In addition, one concern is that a non-deep network may have insufficient non-linearity, limiting its representational power. Thus, the model replaces the ReLU activation with SiLU. In this work, we trained our networks with the cross-entropy loss, a learning rate of 0.001, a batch size of 64, and the RP input images with a resolution of 299 × 299.
[image: Figure 2]FIGURE 2 | The architecture of the ParNet-adv for AF prediction. It consists of three parallel streams and four sub-networks, including ParNet-adv Block, Downsampling, Fusion, Avg pool + FC. The ParNet-adv model has only 12 depths of layers, the model inputs are RP images, and the outputs are the predictions of AF and NSR. AF, atrial fibrillation; NSR, normal sinus rhythm.
[image: Figure 3]FIGURE 3 | The sub-networks architecture of the ParNet-adv model, including ParNet-adv Block, Downsampling, and Fusion. Conv, convolutional layer; Batch Norm, batch normalization layers; Global Avg pool, global average pooling layer; Avg pool, intermediate pooling layer; SiLU, sigmoid linear unit activation. (A) An illustration of the Downsampling block. (B) An illustration of the ParNet-adv block with the key design of 1 × 7 and 7 × 1 asymmetric convolutions. (C) An illustration of the Fusion block.
2.4 Performance analysis of the proposed method
To assess the effectiveness of the proposed method, several parameters, including Precision, Recall, Specificity, Accuracy and F1 score are adopted, which are defined as follows.
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Where TP is the number of true positive data; FP is the number of false positive data; FN is the number of false negative data. Here, Precision is the fraction of all predicted data that are labelled data; Recall is the fraction of all labelled data that are successfully detected; Specificity is the probability of a negative test, conditioned on truly being negative; and Accuracy is the fraction of correct classifications. The F1 score among classes is computed to evaluate the model’s final performance.
3 EXPERIMENTS
3.1 Experimental design and computing environment
As illustrated in Figure 1, we designed several experiments, including the selection of sampling frequency and length of ECG data, minimal leads selection, and comparison between the proposed method and conventional 12-leads and other leads options-based solutions. All experiments were conducted on Wiener nodes of the University of Queensland computer cluster with 4 * Nvidia Volta V100 SXM2 connected GPUs per node. Each node contains 5120 CUDA cores, 640 TensorFlow hardware cores, and 32 GB of HBM2 class memory. This model was implemented using the TensorFlow 3.6 and Karas deep learning framework. The fivefold cross-validation was introduced in the training and validation processing.
3.2 Selection of the sampling frequency and length of data
In this section, we compared the performance of AF classification based on different sampling frequencies and data lengths. Each original data was sampled at 500 Hz with a mean duration of 10 s. For comparison, we downsampled the lead II and lead VI of ECG data into 200 Hz, and 300 Hz. In addition, the data were split into 5 s and 10 s in length at each sampling frequency, respectively. Regarding the sampling frequency 200 Hz/300 Hz/500 Hz, we picked up 5 s segment of the data from first to 1000th/1500th/2500th, and 10 s segment from 1st to 2000th/3000th/5000th. Each ECG segment was transformed into the corresponding RP image, with the z-score normalization of the input signals of the model. The average F1 score was chosen for performance evaluation.
The results of these experiments are summarized in Table 2. The results suggest that almost all the performance of AF detection on 10 s data length are better than 5 s in three sampling frequencies, except the Recall of 500 Hz. Further, the experiment with the 300 Hz sample frequency and 10 s data length achieved the optimal F1 score and Accuracy over others. Based on this investigation, we downsampled the ECG signal to 300 Hz and picked up 10 s data for each recording to carry out the following AF detection experiments.
TABLE 2 | Performance of AF classification based on different frequencies and data lengths.
[image: Table 2]3.3 Selection on minimal ECG-leads subset for AF detection
In this section, we determine which leads are necessary to keep and which carry redundant information that can be removed from the automated AF detection system. The ParNet-adv model was used to identify AF via analyzing recurrence features of RP images derived from the complete 12-leads ECG and minimal ECG-leads subset based on the PTB-XL dataset.
A forward, stepwise minimal subset selection method (James et al., 2013; Lai et al., 2021) was used to find an minimal ECG-lead subset for AF detection based on the same ParNet-adv model. In the first phase, we conduct an AF prediction based on each lead and find the one achieving the best performance. The selected lead will be set as the seed one in the minimal subset. In the second phase, the other 11 leads will individually combine the seed lead in phase one to undertake another round of AF prediction, from which we can identify the best two leads with the best performance. In the next phase, we repeat the search with the selected two leads from the first two phases. In each operation, we trained the model and tested the performance with the addition of each single-lead ECG into the minimal lead subset until finding that the incorporation of any single-lead ECG no longer improves the detection performance. We stop searching if we see further enhancement cannot be achieved. We use the fivefold cross-validation to train and test the classification performance each time. The matric F1 score was applied to measure AF prediction performance. And we conduct the two-sample t-test between every two groups’ F1 scores. Our null hypothesis is that the performance of the two groups is dependent. And our alternative hypothesis is that the performance of the two groups is independent. A p-value is used as a threshold to reject or accept the null hypothesis. In accordance with the acceptance of statistical significance at a p-value of 0.05 or 5%, CI is calculated at a confidence level of 95%. Among all steps, we choose the one that can achieve the optimal F1 score as the final minimal subset of 12-lead for AF prediction through the above multiphase searching procedure.
4 RESULTS
This section presents experimental results for AF and NSR classification. Two different scenarios were designed for the study. First, the classification experiment based on the complete 12-leads ECG was performed, and achieved the F1 score of 0.9692, the precision of 0.9721, and the recall of 0.9663, the Specificity of 0.9722 and the accuracy of 0.9693 for AF detection based on the fivefold cross-validation experiments. Second, the minimal subset of ECG was explored for AF discrimination, including three phases. As illustrated in Figure 4A, in the first phase, the F1 score for AF detection using single leads ranged from 0.9308 (lead V5) to 0.9729 (lead V1), and the lead V1 obtained the best overall results compared to other leads, which was statistically significant (p < 0.05). In the second phase, Figure 5A shows that lead V1 was taken as the base element, and other leads were considered candidates. As illustrated in Figure 4B, the subset composed of lead II and lead V1 achieved the best overall results (F1 score 0.9763) for AF detection over other combinations. In the third phase, Figure 5B shows that we repeated searching with selected leads V1 and II, individually combining every single lead from the other 10 leads. Among each step, the p-value is less than 0.05 and statistically significant. Therefore, we reject the null hypothesis and accept the alternative hypothesis that the performances of each two groups are independent. As illustrated in Figure 4C, incorporating more lead could not improve AF detection performance in this phase, and the F1 score of each experiment decreased. Thus, leads V1 and II were identified as the minimal subset of 12 leads ECG for AF detection.
[image: Figure 4]FIGURE 4 | F1 scores—ECG leads bar chart. Show the performance F1 score for our ParNet-adv model on each AF prediction experiment. (A) One-lead AF prediction and show the lead V1 achieved the optimal performance. (B) Two-leads AF prediction (addition of each single lead to the lead V1) shows the highest F1 score bar corresponding to the lead V1+ II subset. (C) Three-leads AF prediction (addition of each single-lead to the subset leads V1+II). (1,2,3,4,5,6,7,8,9,10,11,12 stands for lead I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6).
[image: Figure 5]FIGURE 5 | Optimal ECG lead subset selection for AF detection. (A) Lead V1 was taken as the base element, and other leads were considered as candidates. Each time, a single lead was added to the seed set for training, validation of the model, and testing. (B) Leads V1&II were selected as the base element, and the other 10 leads were considered as candidates for repeat searching.
5 VALIDATION OF THE PROPOSED METHOD
5.1 Comparison of performance between cases with the minimal subset, the 12-lead, and the single lead (lead I or lead II) ECG signals
The performance of the minimal subset (leads V1 and II) was compared with that of other options (complete 12-leads, lead I, and lead II). Table 3 reports the comparison in terms of Precision, recall, Specificity, Accuracy and F1 score. Note that the performance with the minimal subset (F1 score 0.9763) (p-value <0.05) outperformed the performance based on the complete 12-lead (F1 score 0.9692), single-lead I (F1 score 0.9593), single-lead II (F1 score 0.9669) and single-lead V1 (F1 score 0.9729). It is noted that lead I, which is used in the Apple Watch (Perez et al., 2019), Karadia Mobile (Goldenthal et al., 2019), and single time point testing (Duarte et al., 2020) for AF detection; and lead II, which is used as the input signal to predict AF in (Mathunjwa et al., 2021; Ma et al., 2022), achieved ordinary performance in our study.
TABLE 3 | Performance of AF classification based on different ECG leads.
[image: Table 3]5.2 Comparison with state-of-art models
In this section, we compared the proposed method with several state-of-art models based on the minimal subset as the input. For a fair comparison, we have trained the Inception-ResNet V2 (Szegedy et al., 2017), ParNet (Goyal et al., 2021), and the proposed ParNet-adv model with the same set of hyperparameters and input data. As illustrated in Table 4, the proposed method achieved the F1 score of 0.9763, higher than other reference models. In the study, we built the 1 × 7 and 7 × 1 layers based on the asymmetric design, increasing the receptive field of the ParNet-adv model, thus improving the performance than that of the ParNet performance with the same depth. In addition, note that the proposed model effectively reduces depth while can perform competitively with the deep model, the Inception-ResNet V2, in AF detection study (Table 4).
TABLE 4 | Comparison of AF detection based on different models.
[image: Table 4]5.3 Generalization of the proposed method
In this section, we evaluated the generalization of the proposed method via testing two different ECG datasets CPSC (Liu F. et al., 2018) and Georgia (Perez Alday et al., 2021). The detailed information of these datasets is illustrated in Table 1. For proper testing, all data were pre-processed and fed into the model training, validation, and testing in the same way. As shown in Table 5, the proposed method achieved the F1 score of 0.8660 on CPSC and 0.9693 on Georgia based on the minimal subset of ECG leads (leads II and V1). These testing results indicate that the new method has a good generalization ability for AF prediction.
TABLE 5 | Performance of AF classification based on the CPSC and Georgia ECG datasets.
[image: Table 5]6 DISCUSSION
In this study, we developed a neural network-based system for automatic AF prediction. The design incorporates several novel points: 1) it identifies which leads of 12-lead ECG are necessary for detecting AF features; 2) it uses RP images to train the neural network instead of 1D ECG data for better capturing the recurrence features of AF; 3) the neural network employs a light ParNet-adv structure, suitable for applications demanding a prompt response.
The results show that using the minimal ECG-lead subset outperformed the complete 12-lead ECG, supporting our hypothesis that eliminating the data redundancy can reduce the overfitting issue and thus improve the prediction performance. Note that the clinical diagnostic criteria of cardiac arrhythmia types are often lead-specific. So, the proposed algorithm explicitly seeks the minimal ECG-lead subset for AF prediction, and the selection is performed based on the most common short-time 12-lead ECG in the clinical setting. As demonstrated in Section 4, a minimal subset ECG lead (leads II & V1) can interpret AF rhythm with a significant increase of F1 score compared with the complete 12-leads ECG and other options.
The minimal lead subset obtained by this data-driven approach provides valuable insights for recurrence features in this automatic AF detection protocol. As a 2-lead subset, it consists of the limb lead II and the other unipolar lead V1, providing assessments in the horizontal plane from the vantage points of the septal surface. These two quasi-orthogonal leads (leads II & V1) play a vital role in AF prediction. This is consistent with clinical practice: Lead II, favored among the 12 leads by physicians for a quick exam of an ECG recording due to its clearest signal, has decent overall performance in predicting AF. Lead V1 is used in the clinic to detect fibrillatory waves, which can be either fine or coarse. Of the 12 ECG leads, the lead V1 electrode is considered closest to the right atrium. It was obvious that lead V1 electrode position is right in front of the right atrial free wall and that the right atrium almost entirely conceals the left atrium from a V1 point of view. The f-waves in all patients were most dominant in this lead (Holm et al., 1998; Hsu et al., 2008).
Figure 6 shows the ECG time series and corresponding RP images. (A) is a normal ECG, the temporal waveform contains normal P waves, regular rhythm, and R-R interval, and the RP pattern shows the regular image texture. (B) represents an AF case, having features of missing the P waves and irregular RR intervals. The RP features were considered good predictors of AF (Huang et al., 2020), as they reflect the non-linear and non-stationary nature of the ECG signals. It has shown high efficiency in arrhythmia classification from the ECG signals, as demonstrated in our previous work (Zhang et al., 2021). In this study, we only extract recurrence features of a subset of RPs for AF detection. Note that fibrillatory waves are observable and present either fine or coarse, corresponding to irregular and cluttered textures in the RP of lead V1, as shown in Figure 6B. This corresponds well to the variation of f-waves recorded in lead V1 (see Figure 6A).
[image: Figure 6]FIGURE 6 | ECG time-series (up) and corresponding RP (below) images of Normal and AF. (A) Normal (B) AF. R, the R peak of the ECG; P, the P peak of the ECG; f, the f wave of the ECG.
Regarding the feature extraction model, we introduced a novel shallow ParNet-adv network that integrated a non-deep ParNet with large and asymmetric filters of Inception-ResNet, to automatically extract high-quality recurrence structure features of RP images based on ECG leads. Therefore, our ParNet-adv model, integrated complementary advantages of these two networks (Table 4), is efficient for feature extraction and has achieved promising performance in AF detection. Thus, the ParNet-adv-like models have the potential to create an incredibly light recognition system for wearable applications. We also note that the study of ECG datasets of the PhysioNet/Computing in Cardiology Challenge 2020 has well demonstrated the generalization ability of the proposed method.
7 CONCLUSION
We have developed a novel neural network-based system for automatic AF prediction in this paper. The proposed method offers three main advantages. First, unlike most previous work, mainly based on single-lead ECG or standard 12-lead ECG data, this work performs AF detection with a minimal subset of leads (lead II &V1), thus more efficient and easier to implement than existing methods. Second, the proposed method achieved promising prediction performance using non-deep neural networks with only 12 depths. Third, the 1D ECG signals were transformed into 2DRPs for extracting structural topographies in images, beyond processing original time series. This solution is demonstrated useful for extracting signal dynamical features and better detecting AF. The benefits of the proposed method have been validated with extensive experiments; we hope this new method can be further improved for AF detection in clinical and wearable applications.
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Aim: This study sought to develop and validate diagnostic models to identify individuals with atrial fibrillation (AF) using amplified sinus-p-wave analysis.

Methods: A total of 1,492 patients (491 healthy controls, 499 with paroxysmal AF and 502 with persistent AF) underwent digital 12-lead-ECG recording during sinus rhythm. The patient cohort was divided into training and validation set in a 3:2 ratio. P-wave indices (PWI) including duration of standard p-wave (standard PWD; scale at 10 mm/mV, sweep speed at 25 mm/s) and amplified sinus-p-wave (APWD, scale at 60–120 mm/mV, sweep speed at 100 mm/s) and advanced inter-atrial block (aIAB) along with other clinical parameters were used to develop diagnostic models using logistic regression. Each model was developed from the training set and further tested in both training and validation sets for its diagnostic performance in identifying individuals with AF.

Results: Compared to standard PWD (Reference model), which achieved an AUC of 0.637 and 0.632, for training and validation set, respectively, APWD (Basic model) importantly improved the accuracy to identify individuals with AF (AUC = 0.86 and 0.866). The PWI-based model combining APWD, aIAB and body surface area (BSA) further improved the diagnostic performance for AF (AUC = 0.892 and 0.885). The integrated model, which further combined left atrial diameter (LAD) with parameters of the PWI-based model, achieved optimal diagnostic performance (AUC = 0.916 and 0.902).

Conclusion: Analysis of amplified p-wave during sinus rhythm allows identification of individuals with atrial fibrillation.

KEYWORDS
atrial fibrillation, p-wave duration, electrocardiogram (ECG), diagnostic accuracy, atrial cardiomyopathy
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GRAPHICAL ABSTRACT
Illustration of PWD measurement and diagnostic performance from external validation. Panel (A) depicts the PWD measurement from the same ECG of an individual at standard scaling (10 mm/mV, 25 mm/s) and amplified scaling (60 mm/mV, 100 mm/s) using digital calipers. Panel (B) illustrates the ROC curves from external validation of all four diagnostic models regarding identifying individuals with AF, the component of each model and their AUC values are listed on the right margin. Panel (C) further delineates the diagnostic performance in external validation of each model in their respective optimal thresholds regarding accuracy, AUC, sensitivity, specificity, PPV and NPV. PWD, p-wave duration; ECG, electrocardiography; ROC curve, receiver operating characteristic curve; AF, atrial fibrillation; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.




Introduction

Atrial fibrillation (AF) is associated with significant morbidity and mortality (1). The high health care burden of AF and AF-related complications such as stroke or heart failure have prompted various attempts for risk prediction in the past decades, using ECG-derived p-wave indices (PWI) and cardiac imaging (2–4). Although several studies reported the potential predictive value of p-wave duration (PWD) for AF, ischemic stroke or mortality (5–8), the reported results were variable and the predictive value of PWD was limited, when measured using a standard scaling of 10 mm/mV, 25mm/s, i.e., standard PWD. In this context, we recently reported a novel p-wave analysis method that uses the measurement of p-wave duration (PWD) in amplified digital 12-lead-ECG (APWD) during sinus rhythm (SR), with high correlation to both the invasive bi-atrial activation time during electrophysiological study (EPS) and the extent of atrial fibrotic remodeling as detected by endocardial voltage and activation mapping in patients with atrial cardiomyopathy (9, 10). In the current study, we aim to compare the diagnostic performance of standard PWD to APWD and establish APWD-based diagnostic models for AF in a large cohort of consecutive patients.



Materials and methods


Study design and population

As illustrated in the study flowchart (Figure 1), Consecutive patients referred to our center between 2017 and 2021 for electrophysiological study were screened for study inclusion. Inclusion criteria were availability of a high-quality digital 12-lead ECG in sinus rhythm. Exclusion criteria were prior right- or left-atrial ablations, prior cardiac surgery or pacemaker-implantation of any kind. Patients with confirmed diagnosis of paroxysmal or persistent atrial fibrillation were allocated to the AF-cohort. Patients who presented with AF in their admission ECG, first underwent electrical cardioversion to sinus rhythm and were scheduled for pulmonary vein isolation (PVI) 6–8 weeks thereafter. In these patients, the analysis of 12-lead-ECGs during sinus rhythm was based on ECG recordings from the rehopsitalisation (i.e., 6–8 weeks after electrical cardioversion to SR). For the purpose of the current study, patients diagnosed with atrio-ventricular nodal reentrant tachycardia in the absence of AF or other arrhythmia were considered as control cohort.
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FIGURE 1
Study flowchart. EPS, electrophysiology study; ECG, electrocardiography; Echo, echocardiography; Standard PWD, duration of standard (non-amplified) p-wave; APWD, duration of amplified p-wave.




Training and validation sets

All individuals were subsequently randomized into training and validation set with predefined ratio of 3:2. The former was used to develop diagnostic models for AF and internally validate model performance, the latter was used to validate model performance in an external way. Current study conforms to the principles outlined in the Declaration of Helsinki and was approved by the institutional ethics committee, all patients provided written informed consent prior to enrollment.



Digital 12-lead-ECG recording and p-wave analysis

Digital 12-lead-ECG was recorded during sinus rhythm in all study patients using LabsystemPro EP-system (Boston Scientific) prior to sedation at the beginning of electrophysiology study with the following filter settings: 0.05–100 Hz without additional 50 Hz filtering at a sampling rate of 1,000 Hz. The duration of the standard p-wave (standard PWD) was measured at 10 mm/mV and 25 mm/s scaling and the duration of amplified p-wave (APWD) was measured at amplified scaling (60–120 mm/mV and 100 mm/s) (Figure 2A and Supplementary Figure 1). The duration of p-wave was determined using digital calipers from the earliest p-wave onset until latest p-wave ending in any of the 12 leads. Standard PWD and APWD were calculated as the mean value of three consecutive beats measurements. Advanced inter-atrial block (aIAB) was defined as initially positive p-wave with negative terminal deflection in two of three inferior leads. The measurement of standard PWD, APWD and aIAB was performed independently by two cardiologists who were blind to patients’ clinical characteristics.


[image: image]

FIGURE 2
Illustration of PWD measurement in standard and amplified scaling. Panel (A) illustrates the results of p-wave duration from the same digital 12-lead ECG measured at standard scaling (10 mm/mV, 25 mm/s) and amplified scaling (60 mm/mV, 100 mm/s) using digital calipers. PWD was measured from the earliest p-wave onset until latest p-wave ending in any of the 12 leads at respective scaling. The noise level of annotated by the red dashed lines. Panel (B,C) illustrate the difference between control and AF cohorts in internal and external validation using standard PWD (reference model) and APWD (basic model), respectively. PWD, p-wave duration; standard PWD, duration of standard p-wave; APWD, duration of amplified p-wave; ****p < 0.001.





Statistical analysis

Continuous variables were expressed as mean ± SD or median ± interquartile range based upon distribution status. Given the sample size of our study, the normality test was performed using both Shapiro–Wilk’s test and visual estimation of the P–P plot. The homoscedasticity of the dataset was performed using Levene’s test. Based on the results of normality and homoscedasticity, comparisons between two cohorts was performed using t-test or Mann-Whitney U test. Categorical variables were expressed as frequency and percentage (%) and were compared by Chi-square test or Fisher’s exact test. Inter-and intra-observer variability was analyzed using intra-class correlation coefficient (ICC), Bland–Altman plot, and correlation curve were used to illustrate the consistency in PWD measurement within the same observer and between observers.


Optimal PWD parameter selection

As illustrated in Figures 2B, C, 3A, the current study provided both standard PWD and APWD as candidate PWD parameters for model development. By comparing their efficacy in identifying individuals with AF, the one with superior discriminatory performance (AUC or C-index) would be used as a basic model and undergo further steps for multivariable AF diagnostic model construction whereas the other would be used as a reference model.
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FIGURE 3
Development of diagnostic models from the training set. Panel (A) illustrates the data collection in the training set in the current study, different parameters from echocardiography, 12-lead ECG and other baseline characteristics are collected. Every ECG was measured at both standard setting (25 mm/s, 10 mm/mV) and amplified setting (100 mm/s, 60–120 mm/mV) to acquire the standard PWD and amplified PWD, respectively. Panel (B) depicts the steps in developing models. Amplified PWD and standard PWD were compared regarding their AUC in discriminative power to identify patients with AF. The one with higher AUC value is used as the basic model and proceed to further steps whereas the one with lower AUC value is used as the reference model. Basic model, along with other echo and baseline parameters are selected by univariate and subsequent multivariate parameters. The integrated model consists of all the significant parameters from the logistic analysis. Additionally, in order to create an alternative model with less variables and more oriented at ECG parameters, a PWI-based model is developed by excluding echo parameters (if any) from the integrated model. AUC, area under the curve; BSA, body surface area; ECG, electrocardiography; Echo, echocardiography; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; PWD, p-wave duration; PWI, p-wave index; Uni, univariate; Multi, multivariate.




Model development

Model development was performed in the training set (Figure 3B). The optimal PWD parameter, along with other variables describing baseline characteristics were used as candidate variables prior to univariable logistic regression analysis. Subsequently, significant variables (p < 0.05) in univariable regression would undergo further multivariable regression analysis. As a result, variables that maintained p < 0.05 after multivariable logistic regression would be selected to develop the multivariable AF diagnostic model (Integrated model). Additionally, alternative diagnostic models were also proposed using less variables in order to improve model practicability and test model stability with regard to diagnostic efficacy.



Model validation

Validation of models were performed both internally (in training set) and externally (in validation set) regarding their efficacy in discrimination, calibration, net benefit and diagnostic accuracy using optimal thresholds.

Discriminatory power of each model for identification of AF patients was quantified by area under the curve (AUC) of respective receiver operating characteristics (ROC) curve, ranging from 0.5 (random forecast) to 1.0 (perfect discrimination). Additional comparison regarding discriminatory power between models was performed using integrated discrimination improvement (IDI). Two-tailed p values were calculated for all tests and considered significant at p value < 0.05.

After the components of each model were determined, the individual probability for AF by each model was estimated. Calibration plot of each model was created to visualize the agreement between estimated probabilities for AF and the actual probabilities observed in each set. Moreover, Brier score, as a parameter that quantifies the accuracy of probability by diagnostic model (0 for total accuracy, 1 for wholly inaccurate) was calculated and noted in the calibration curves.

The net benefit in clinical usefulness of selected models across a range of probability threshold was illustrated by decision curve analysis (DCA). The ‘None’ and ‘All’ curve indicated the expected net benefit when intervention was performed to “none” and “all” of the patients.

Diagnostic performance evaluation of each model consisted of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy. Based on ROC curve coordinates of each model from training set, optimal probability threshold from every model for AF was determined by Youden Index (sensitivity + specificity − 1). Diagnostic performance of each model was subsequently evaluated using determined probability thresholds in both training and validation sets.

Statistical analysis was performed with SPSS version 27.0 for Macintosh (IBM-Corporation, Armonk, NY, USA), GraphPadPrism-V9.0 for Macintosh (GraphPad Software, LaJolla, CA, USA) and R software version 4.0.31 with rms, pROC, ggplot2, rmda, ggDCA, caret, and PredictABEL packages.




Results


Patient characteristics and randomization

A total of 1,492 individuals were included: 491 (32.9%) patients with AVNRT but no history of AF or other arrhythmias were in the control cohort, and 1,001 (67.1%) patients in the AF cohort (499 (33.5%) with paroxysmal AF and 502 (33.6%) with persistent AF). Baseline characteristics are presented in Table 1 and Supplementary Table 1. Patients with AF were predominantly male, had higher body mass index (BMI), larger body surface area (BSA), larger LA-diameters (LAD), lower LVEF, presented more often hypertension, stroke and coronary artery disease. Subsequently, 896 (60.1%) of the total patients were randomized into training set and 596 (39.9%) patients into validation set (Figure 1). No significant differences in baseline characteristics were observed between training and validation set (Supplementary Table 2).


TABLE 1    Baseline characteristics of total cohort.
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Differences between “standard PWD” and “APWD” in control cohort vs. AF cohort

As illustrated in Figures 2B, C, both standard PWD and APWD differed significantly in training set between control and AF cohort (standard PWD: 115 ± 11 ms in control cohort vs. 121 ± 12 ms in AF cohort, p < 0.001; APWD: 122 ± 14 ms in control cohort vs. 149 ± 22 ms in AF cohort, p < 0.001) while the difference was more pronounced in the latter. Consistent findings were observed in the validation set, in contrast to standard PWD (116 ± 11 ms in control cohort vs. 122 ± 13 ms in AF cohort, p < 0.001), APWD displayed larger differences between two cohorts (122 ± 14 ms in control cohort vs. 150 ± 23 ms in AF cohort, p < 0.001). Subgroup sex-specific analyses revealed consistency of these findings (Supplementary Figure 2 and Supplementary Table 3). Subsequently, sensitivity analyses were performed to exclude the potential bias mediated by use of antiarrhythmia pharmaceuticals and anticoagulants in the AF cohort. As listed in Table 1, 52.1% of patients in AF cohort had current or history use of antiarrhythmia drugs (Amiodarone/Dronedarone/Flecanid/Propafenon/Sotalol) within four weeks that might influence the atrial de- and repolarization. In those without use of aforementioned drugs, comparisons in APWD and standard PWD were performed between control and AF cohort. As a result, APWD was significantly longer in the AF cohort than in the control cohort (143.9 ± 22.4 ms vs. 122.9 ± 14.8 ms, p < 0.001). In standard PWD, on the other hand, although the difference between two cohorts reached statistical significance (p < 0.001), the absolute value was insufficient to provide clinical implication (119.4 ± 12.3 ms vs. 115.7 ± 11.1 ms). Moreover, oral anticoagulants (OAC) were used in over 90% of AF cohort, in the remaining 61 OAC-free patients in AF cohort and 491 patients in control cohort, a profound difference in APWD remained significant (144.1 ± 24.2 ms vs. 122.9 ± 14.8 ms, p < 0.001). Similar findings were also observed in standard PWD with marginal absolute difference (120.3 ± 12.9 ms vs. 115.7 ± 11.1 ms, p = 0.004).



Reproducibility in measurements using amplified p-wave analysis

Among 1,492 study patients, 25 (1.7%) presented sinus ECG recording with unsatisfying noise level (baseline noise above 0.08 mV). In those cases, the digitalized 12-lead-ECGs that were recorded within the 3-month preceding the EPS were taken for analysis. Each 12-lead digitalized ECG was measured by two independent cardiologists using digital calipers. The amplified scaling of each ECG was manually adjusted to obtain an optimal signal-to-ratio that allowed visualization of the entire p-wave (Supplementary Figure 1). As a result, among 1492 ECG in total cohort, 83.3% of them were measured at an amplified scaling of 60 mm/mV, 100 mm/s, and the remaining 16.7% of cases, due to low p-wave amplitudes, were measured at 120 mms/mV, 100 mm/s. An excellent agreement was observed both in intra-observer (ICC 0.951, 95%CI: 0.936–0.963) and inter-observer (ICC 0.915, 95%CI: 0.875–0.941) measurements. Both the intra- and inter-observer measurements were performed on the same p-waves, but after a three-month time interval between the first and second measurement. Bland-Altman plots and correlation curves illustrate the agreement in each measurement within and between observers (Supplementary Figure 3).



Discriminatory performance of standard PWD and APWD to identify individuals with AF

In order to determine the optimal candidate between standard PWD and APWD for further development of diagnostic models, C-index from training set was calculated to compare the discriminatory power between standard PWD and APWD. In contrast to standard PWD (C-index: 0.637, 95%CI: 0.599–0.675), APWD achieved significantly higher C-index value (0.86, 95%CI: 0.836–0.884, p < 0.001). Consistent results were observed in validation set (0.632, 95%CI: 0.586–0.679 in standard PWD vs. 0.866, 95%CI: 0.836–0.895 in APWD; p < 0.001).



Univariable and multivariable analysis for variable selection (training set)

Given the significant superiority in discriminatory power of APWD over standard PWD between control and AF cohort, APWD instead of standard PWD was used for the construction of further AF diagnostic models. As shown in Table 2, in univariable analysis, significant AF predictors (p < 0.05) were further included in multivariable logistic regression analysis. As a result, only APWD (p < 0.001), BSA (p = 0.034), and LAD (p = 0.008) remained significant, and were further incorporated for identification of individuals with AF.


TABLE 2    Univariable and multivariable analysis of AF predictors.
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Development of diagnostic models for AF (training set)

As described under supplemental statistical section, standard PWD was therefore used as a reference model. Given the above-mentioned results, APWD, BSA and LAD were considered for integrated model construction. In order to facilitate model practicability in clinical setting, we intended to provide two alternative models with less variables: (1) APWD alone was chosen as a basic model. (2) A PWI-based model was established as another alternative ECG model. In this context, advanced Inter-atrial block (aIAB), as a valuable predictor of left atrial arrhythmogenic/fibrotic substrate with high specificity (9), was incorporated to the models. As a result, we developed four diagnostic models for identification of individuals with AF: (1) Reference model (standard PWD), (2) Basic model (APWD), (3) PWI-based model (APWD + aIAB + BSA), and (4) Integrated model (APWD + aIAB + BSA + LAD).



Validation of diagnostic models for AF


Discrimination between control and AF cohort

As illustrated in Figures 4A, C, the integrated model achieved optimal discriminatory performance in both internal (AUC 0.916) and external validation (AUC 0.902) in comparison to the basic model and the PWI-based model, indicating its prominent potential for identification of AF patients. Although alternative models contained less variables, they still maintained an AUC value over 0.85 in both validations, suggesting that APWD was an essential component for identification of AF patients (Supplementary Table 4). In contrast, standard PWD achieved significantly lower discriminatory performance (AUC: 0.637 and 0.632). Additionally, we performed a subgroup analyses to evaluate the discriminative performance of APWD and standard PWD in differentiation between paroxysmal AF cohort from control cohort. In the training set, APWD achieved an AUC of 0.777 (95%CI: 0.740–0.813) whereas standard PWD achieved only mild discriminative power (AUC: 0.624, 95%CI: 0.579–0.668). Similar results were observed in the validation set regarding AUC between paroxysmal AF cohort and control cohort (APWD: 0.780, 95%CI: 0.734–0.826 vs. Standard PWD: 0.623, 95%CI: 0.568–0.678). Integrated discrimination improvement (IDI) is a statistical parameter to evaluate the ability of a model to improve the average sensitivity without reducing average specificity. As shown in Supplementary Table 5, both PWI-based model and integrated model showed significantly improved discriminatory performance compared to the basic model in internal and external validation. Based on AUC comparison between integrated- and PWI-based model (p < 0.001 and p = 0.005 in internal and external validation) and IDI value, the integrated model was associated with higher accuracy to correctly identify patients with AF than PWI-based model.
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FIGURE 4
ROC and DCA curves. In internal (upper panel) and external validation (lower panel), ROC curves of reference model (red), basic model (blue), PWI-based model (brown) and integrated model (yellow) are plotted (A,C) with model components and AUC value annotated at right side. DCA (B,D) illustrates the clinical impact (net benefit) of diagnostic model with reference curves of “Treat All” and “Treat None”. “Treat All” and “Treat None” described the impact of intervention for “All” and “None” of individuals for target outcome (AF) respectively, when diagnostic model is not applied. ROC, receiver operating characteristics; AUC, area under the curve; DCA, decision curve analysis; PWD, p-wave duration.




Calibration between estimated and observed AF probabilities

Brier score, which is defined as the mean squared difference between the observed and estimated outcome, allows estimation of model calibration performance (“0” for optimal calibration, “1” for entirely inaccurate). As illustrated in calibration curves (Supplementary Figure 4) integrated model displayed excellent agreement between estimated and observed AF probability with Brier score of 0.103 and 0.112 in internal and external validation, respectively. PWI-based Reference model and basic model, despite fewer variables, also demonstrated rather good agreement between estimated and observed AF probability. Reference model, in contrast to other APWD-based models, achieved insufficient performance with Brier score of 0.209 and 0.210 in respective validation.



Decision curve analysis for net benefit assessment

As illustrated in Figures 4B, D, the net benefit for clinical usefulness by each diagnostic model across a range of AF-risk thresholds was assessed using Decision curve analysis (DCA). Results from internal and external validations demonstrated comparable promising net benefit across potential thresholds by integrated and PWI-based models, indicating their robust efficacy in identification of AF patients. The basic model, on the other hand, presented slightly reduced net benefit in comparison to integrated model and PWI-based model when thresholds were above 0.50 in both internal and external validation. In contrast, the reference model (standard PWD) demonstrated only marginal benefit in both internal and external validation, making only marginal difference than treating all or none of individuals when no diagnostic model was used.




Diagnostic performance using optimal thresholds and development of nomograms for identification of AF patients

Based on the ROC curve of each model in training set, respective optimal thresholds were determined and subsequently applied in both training and validation sets to dichotomize the AF probability as high risk (above threshold) or low risk (below threshold). As a result, the optimal thresholds of the reference model and basic model were determined with a standard PWD of 121 ms and APWD of 136 ms, respectively. The optimal thresholds of PWI-based model and integrated model, however, due to their multi-variable feature, were determined by ROC curves based on their estimated AF probability. After calculating Youden index, we determined AF probability of 0.63 and 0.65 as optimal thresholds for the PWI-based model and the integrated model, respectively. Detailed diagnostic performance of each model in internal and external validation was illustrated in Supplementary Figure 5 and Table 3. In an additional effort to facilitate the application of PWI-based and integrated model for identification of patients with AF, we developed a nomogram for each of those two models and incorporated the optimal thresholds to assist further decision-making (Figure 5), each value in the listed parameters (APWD, aIAB, BSA, etc.) can be converted into a corresponding points at the ‘Points scale’ at the top, and the sum of all points from every parameter can be used to estimate the risk for AF. Based on the individual result of APWD, IAB, BSA (and LAD), the nomogram allowed estimation of the personalized risk for AF, and by comparing it with the ROC-defined optimal threshold, each individual would be assigned as either high or low risk for AF (illustrative example in Supplementary Figure 6 to guide the use of both nomograms).


TABLE 3    Optimal thresholds in models with diagnostic performance.
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FIGURE 5
Nomograms for identification of AF patients. Nomogram of PWI-based model (upper panel) and Integrated model (lower panel). Each value from respective scale corresponds to a specific value at the top points scale, and the total points correspond to the estimated risk (bottom scale) for AF by respective model. APWD, duration of amplified p-wave; aIAB, advanced inter-atrial block; BSA, body surface area; LAD, left atrial diameter.





Discussion

The present study provides three main findings: (1) Compared to standard PWD, the diagnostic models based on APWD significantly improve the accuracy for the identification of patients with AF. (2) Integration of APWD with IAB, and BSA allowed development of a multi-variable PWI-based model with optimal performance for identification of patients with AF. (3) Addition of echocardiographic left atrial diameter to the PWI-based model further improved the diagnostic power for AF.


Previously described diagnostic tools for atrial fibrillation

Pathological mechanisms responsible for AF development and progression are intertwined and triggered by multiple factors including stretch-induced fibrosis, fatty infiltration, myocardial inflammation, heterogeneous conduction, etc. (1, 11, 12). Previous studies proposed several predictive scores for new-onset AF based on various risk factors: The C2HEST score consists of comorbidities that predict 1-year risk for AF with C-index of 0.734 (13). Other models including CHARGE-AF score and FHS score reach C-index of 0.77 and 0.78 for 5- and 10-year AF risk, respectively (14, 15). Nevertheless, the C-index reported from those studies indicated moderate accuracies. In addition, the complexity and high number of risk factors that are mandatory in those scores also limit the practicability in clinical practice. Therefore, ECG-analysis has been favored with its advantages of being non-invasive and cost effective.

In the past decades, important efforts have been made in various studies to determine the ideal ECG-parameter for AF prediction. PWI including p-wave dispersion, p-wave axis, p-wave duration, P-terminal force in V1, p-wave morphological criteria and other parameters have been introduced and assessed for their diagnostic value for predicting AF or cardiovascular mortality (3, 5, 6, 16). Nevertheless, controversies still remain as the predictive accuracy was not always encouraging among studies. Nielsen et al. analyzed the standard PWD of more than 285,000 individuals from Copenhagen ECG study, and reported that individuals with very short PWD (<89 ms) and very long PWD (>130 ms) have a respective hazard ratio of 1.6 and 2.06 for incident AF in comparison to individuals with a PWD between 100 and 105 ms (7). They stated the hypothesis that a more rapid conduction time might provide a substrate for reentry in early stages of arrhythmias. However, in our current study, short APWD <90 ms was only observed in individuals without AF. Conte et al. reported a threshold of 121 ms to differentiate between paroxysmal AF patients from healthy individual with an AUC of 0.80, however, the reported sensitivity was only 63% and the total sample size was 76 individuals only (17). Our study confirmed their findings in a larger cohort, regarding the threshold of 121ms. However, the diagnostic value of standard PWD in our larger cohort is limited with an AUC of 0.63. In the current study, an APWD > 136 ms, was found to have a greater potential to identify patients with AF than PWD.



Relationship of APWD with atrial cardiomyopathy and risk of AF

We recently reported that the duration of the digitally recorded, highly amplified sinus-p-wave (APWD) accurately represents both the invasively measured bi-atrial activation time and the extent of atrial low voltage areas (as a electrophysiological marker of atrial cardiomyopathy), thus allowing identification of AF patients with advanced atrial cardiomyopathy, who are at risk for recurrent AF after catheter ablation therapy (10). In contrast to APWD, the standard p-wave duration (10 mm/mV and 25 mm/s) may underestimate the atrial conduction time (9). This is even more pronounced in individuals with advanced atrial fibrotic cardiomyopathy who present reduced p-wave voltages (due to the loss of synchronously depolarized atrial cardiomyocytes). Thereby, the standard PWD does not allow accurate measurement of the true atrial conduction time, leading to an insufficient diagnostic performance to identify individuals with AF.



Rationale for developing alternative diagnostic models using APWD

Previous studies focusing on development of prediction model predominantly aimed to propose one model with optimal performance by incorporation of multiple variables. FHS score required the information of eight variables and CHARGE-AF score demanded data of more than ten variables to predict new-onset AF (14, 15). Albeit they were developed from large data cohorts and enabled long-term risk estimation, the complexity of models inevitably limited their application in real-world practice. In the current study, in an aim to further improve its practicability, we proposed alternative models with even fewer variables while maintaining a rather comparable diagnostic efficacy. As APWD alone already displayed robust superiority in discriminatory performance (AUC over 0.85), it would be rational to be a basic model. Furthermore, among LAD, aIAB, and BSA, construction of another alternative model by different combinations with APWD should take into account both the strength and weakness of each variable. BSA, is easily available, as it is calculated from patient’s height and weight. AIAB was shown to be predictive for AF-associated atrial cardiomyopathy and AF development (9, 18). We therefore combined it to APWD in the PWI-based and integrated models, leading to an improved identification of AF patients. In the current study, LAD was routinely measured in echocardiography in all patients. Although it assesses the LA size in one direction only, it could slightly improve identification of AF patients in our AF models. However, we expect that integration of LA volume (as a 3D parameter of LA size) and/or LA strain would further improve the diagnostic models for AF. In this context, a diagnostic model (PWI-based model) without LAD but focused on APWD and AIAB can be considered as an alternative model with high diagnostic performance for detection of AF patients (AUC: 0.892).



Clinical potential in APWD-based models

The current study is the first to use amplified p-wave analysis during sinus rhythm and reveals that APWD alone or in combination with a few other predictors is of great potential in differentiating individuals with AF from those without. Thereby, the new models identify the current predisposition for AF and provide the option for targeted screening of individuals at risk for AF, instead of a non-selective population-wide screening. Individuals that are identified as high risk for AF using current models may benefit from a more frequent ECG monitoring for AF.



Artificial intelligence (AI) and ECG-analysis for AF detection

Recently, AI-empowered algorithms were reported to facilitate AF-screening using the newest generation of portable ECG-devices. These devices and algorithms allow direct detection of AF occurrence based on RR-interval analysis (19). Nevertheless, detection of short self-limited episodes of AF may lead to a test and treatment cascades affecting the individuals’ quality of lives and questioning whether the use of single-lead ECG devices is suited for AF screening at population level without prior risk stratification for underlying cardiovascular diseases (20). The combination of our current diagnostic models for AF (using APWD-based detection of left atrial electrical arrhythmogenic remodeling) with subsequent AF screening (using AI-enabled single-lead-ECG as in ECG-watches), would yield higher diagnostic efficiency and allow to identify individuals at risk for AF and cardiovascular complications.

A large sample-sized study using AI-algorithm for AF prediction reported an AUC of 0.87 with overall accuracy of 79.4%, when using 10-s 12-lead-ECGs recorded during sinus rhythm (21). Although this AI-algorithm reaches similar diagnostic accuracies as our APWD-based models, the route-to-diagnosis remains unclear. In contrast to the AI-algorithm, our current APWD-based diagnostic models for AF have the strength in providing a comprehensible result by measurement of bi-atrial conduction time to detect individuals with underlying atrial arrhythmogenic substrate (10). Measurement of the PWD after digital recording and amplification enables physicians to diagnose atrial fibrotic cardiomyopathy. Therefore, the current methodology (APWD) can be considered as complementary to AI-based ECG-analysis.




Limitations

The current cohort study demonstrates a high diagnostic potential for identification of individuals with current AF using the novel APWD models. Future large-scale longitudinal studies in population-based epidemiological cohorts are warranted to evaluate the diagnostic value of APWD-based models for prediction of future AF. Accurate measurement of p-wave duration necessitates digital 12-lead-ECGs that are recorded at a sampling rate 500–1,000 Hz, with acceptable signal-to-noise ratio (baseline noise should be below 0.08 mV) and amplified (60–120 mm/mV at 100 mm/s) with adequate visualization. Moreover, physicians need to be trained to correctly identify the onset and ending of the amplified p-waves, which should not be a major obstacle, as high expertise/training is also needed in many other diagnostic methods in medicine/medical imaging.



Conclusion

The proposed APWD-based analysis detects the underlying atrial electrical abnormalities/substrate that predispose to AF development. Patients identified as high risk for AF (based on the proposed APWD-models), should undergo intensified ECG-monitoring for AF and may benefit from further diagnostics in search for underlying cardiovascular conditions that cause prolonged atrial conduction times and atrial cardiomyopathy.
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Background: The advent of novel monitoring technologies has dramatically increased the use of ambulatory electrocardiography (AECG) devices. However, few studies have conducted detailed large-scale investigations on the incidence of arrhythmias over 24 h, especially ectopy, in healthy individuals over a wide age range.



Objectives: This study aimed to investigate the incidence of arrhythmias detected using AECG and associated factors, in healthy individuals, over a wide age range.



Methods: In this cross-sectional study, we performed AECG on 365 healthy volunteers (median [interquartile range]: 48 [36, 67], 20–89 years, 165 men) under free-running conditions for 24 h. Ultrasonic echocardiography and heart rate variability analysis were performed to explore the factors associated with the incidence of arrhythmias.



Results: The 97.5th percentile of single ventricular ectopy (VE) was 149/day, 254/day, and 1,682/day in the 20–39-, 40–59- and 60–89-year age groups, respectively; that of single supraventricular ectopy (SVE) was 131/day, 232/day, and 1,063/day, respectively. Multivariate analysis revealed that aging was the only independent significant factor influencing the frequency of VE (β = 0.207, P = 0.001). Age (β = 0.642, P < 0.001), body mass index (BMI) (β = −0.112, P = 0.009), and the root mean square of successive differences in RR intervals (β = 0.097, P = 0.035) were factors significantly associated with SVE frequency.



Conclusions: Age-specific reference intervals of VE and SVE in a large population of healthy participants over a wide age range were generated. VE and SVE increased with age; SVE was influenced by BMI and the aging-induced decrease in parasympathetic tone activity.



KEYWORDS
atrial fibrillation, amburatory ECG monitoring, premature ventricular complex (PVC), premature atrial complex (PAC), heart rate variability, Holter ECG monitoring





1. Introduction

The development of ambulatory electrocardiography (AECG) by Holter in 1957 enabled 24-h-ECG recording (1). Since then, AECG has been widely used for detecting arrhythmic events in clinical settings. Recently, the use of AECG devices has dramatically increased, especially with the advent of novel monitoring technologies, such as patch-type, implantable, and smartwatch-type ECG devices (2–4). Thus, it is necessary to establish reference intervals for AECG parameters to guide interpretation and clinical care. It is well-known that the prevalence of arrhythmic events depends on age. However, few studies have focused on the reference values for the prevalence of arrhythmias in each generation (younger, middle-aged, older populations) over a wide age range among healthy individuals. Previous studies on this subject included small sample sizes or were limited to fewer age groups, such as young (20–39 years) (5–9), middle-aged (40–59 years) (7, 10, 11), or older-aged cohorts (over 60 years) (7, 11–16). Moreover, most of these studies were conducted 20–40 years prior. Lifestyle and average longevity have changed over the 21st century, and few studies have investigated the incidence of arrhythmia in a wide age range using AECG.

Supraventricular ectopy (SVE) (incidence: 56%–87%) is reportedly the most common arrhythmia type in healthy individuals detected using AECG, followed by ventricular ectopy (VE) (incidence: 46%–69%) (17, 18). Previous studies have stated that SVE or VE should not be treated if they are infrequent or not severe in the absence of structural heart disease (19). However, recent studies have suggested that a higher frequency of ventricular extrasystole was associated with reversible cardiomyopathy (20), inducing a decreased left ventricular ejection fraction, increased chronic heart failure incidence, and a high mortality rate even in individuals without structural heart disease (21). Moreover, a recent study reported that frequent excessive supraventricular activity was associated with a risk of atrial fibrillation (AF), stroke, and total mortality in apparently healthy individuals (22). Therefore, establishing reference values of VE and SVE is of paramount importance. Furthermore, the factors influencing the incidence of VE and SVE are not fully understood.

This cross-sectional study entailed AECG examination of healthy volunteers whose ages varied widely, from 20 to 89 years. This study aimed to investigate the incidence of bradyarrhythmia and tachyarrhythmia and establish age-related reference values for AECG parameters. Moreover, we explored the factors associated with these AECG parameters, including ultrasonic echocardiography (UCG) and autonomic nervous system activity parameters expressed as heart rate variability (HRV), which can influence the prevalence of ectopy.



2. Materials and methods


2.1. Study population

We recruited healthy volunteers between April 2015 and March 2018 for this study. The inclusion criteria were as follows: individuals with no history of cardiovascular disease, respiratory disease, dyslipidemia, diabetes mellitus, chronic kidney disease, psychiatric disease, and autonomic nervous system disorders. Moreover, participants who underwent annual medical examinations within the past year without abnormal findings on chest radiographs and 12-lead ECG were also included. Night-shift workers and current smokers were excluded during the initial stage. A total of 400 participants, without structural heart disease, were initially included in this study. The study procedures included the following (in order): detailed medical history, general physical examination, systolic and diastolic blood pressure measurements, 12-lead standard ECG, ultrasonic echocardiology (UCG), and 24-h AECG. The recording time of AECG was stipulated to be more than 23 h/day. The exclusion criteria were as follows: participants with ST-T abnormalities on baseline 12-lead ECG, second- or third-degree atrio-ventricular (AV) block and left ventricular conduction block on standard 12-lead ECG, low ejection fraction (EF) (<50%) with wall motion abnormalities, significant left atrial dilatation and/or left ventricular dilatation detected with echocardiography, ST-T changes of an ischemic nature during daily activity and/or ambulatory ECG monitoring, long QT interval (>500 ms) on baseline 12-lead ECG, family history of sudden cardiac death, and body mass index (BMI) over 30 kg/m2.

Thirty-five participants [48 (36, 47)] were excluded from this study based on the above-mentioned exclusion criteria, while 365 participants were enrolled (Table 1). Most participants were healthy volunteers who were citizens of the Tokyo Metropolitan and Saitama Prefecture area, Japan. All volunteers provided written informed consent before participation. The study protocol conformed to the Declaration of Helsinki and was approved by the Medical Ethics Committee of the National Defense Medical College Hospital (approval no. 4645), Saitama, Japan, and Nihon University School of Medicine, Itabashi Hospital, Tokyo, Japan (approval no. MF 2208-0037).


TABLE 1 Demographics and Holter ECG and UCG results.
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2.2. Study protocol

Standard 12-lead ECG was performed, followed by UCG. Thereafter, an AECG recorder (FM180S, Fukuda Denshi Co., Ltd., Tokyo, Japan) was used to record the ECG for 24 h under free-running conditions, followed by analysis with the Holter ECG system (SCM8000, Fukuda Denshi Co., Ltd., Tokyo, Japan).



2.3. Routine AECG data analysis

Routine AECG data analysis was performed automatically with manual editing (Table 1). The parameters analyzed included the total number of beats, maximum, minimum, and mean heart rate (HR), and the frequency of VE and SVE per day. Ventricular arrhythmias were defined as follows: ventricular tachycardia (VT), ≥3 consecutive ventricular complexes at a rate >100 bpm; ventricular triplet (V3), more than three ventricular ectopic beats in a row at a rate <100 bpm; and ventricular couplet (V2), two ventricular ectopic beats in a row. Supraventricular arrhythmia was defined as follows: supraventricular tachycardia (SVT), ≥3 consecutive ventricular complexes at a rate >150 bpm; supraventricular triplet (S3), more than three supraventricular ectopic beats in a row at a rate <150 bpm; and supraventricular couplet (S2), two supraventricular ectopic beats in a row. The total number of beats, and the maximum and mean HR were significantly lower in the older generation (P < 0.001 for all, respectively) (Table 1). Thus, the prevalence of VE and SVE was significantly higher in the older-aged group (P < 0.001 and P < 0.0001, respectively) (Table 1).



2.4. Analysis of HRV

HRV analysis was also performed to evaluate autonomic nervous system activity using the SCM 8,000 system (Fukuda Denshi Co., Ltd., Tokyo, Japan) (Table 1). The RR interval was calculated for HRV analysis via the corrected maximum entropy method using Akaike's algorithm, as previously reported (23). The HRV data were subjected to time and frequency domain analyses at 60-min intervals. The definitions of all HRV parameters were based on previous studies (24). The parameters for time domain analysis, which were evaluated every 5 min over 24 h, included the following: standard deviation of the mean normal RR interval (SDNN), the square root of the mean of the sum of the squares of differences between adjacent normal to normal intervals (RMSSD), proportion of times between adjacent cycles that are different by >50 ms (pNN50), and standard deviation of the averages of NN intervals in all 5-min segments of the entire recording (SDANN). Frequency domain analysis entailed evaluation of the power in the very low-frequency area (VLF), power in low-frequency area (LF), power in the high-frequency area (HF), and power in the low-frequency/power in the high-frequency (LF/HF) ratio every 5 min. The power spectra of frequency domain analysis were defined as follows: total power (TP), approximately <0.4 Hz; power in the very low-frequency range (VLF), 0–0.04 Hz; power in the low-frequency range (LF), 0.04–0.15 Hz; and power in the high-frequency range (HF), 0.15–0.40 Hz. The normalized values (nu) were calculated using the following formula: LF/TP × 100 for LFnu, and HF/TP × 100 for HFnu. All HRV parameters, except for LF/HF, were significantly lower in the older generation (P < 0.001 for SDNN, RMSSD, pNN 50, SDANN, VLF; P < 0.0001 for LF, HF, and HFnu) (Table 1).



2.5. Echocardiography recordings

Echocardiography was performed using the Xalio (Toshiba Co., Ltd., Tokyo, Japan) system to evaluate left ventricular EF and left ventricular end-diastolic dimension (LVDd). Left ventricular EF was calculated during sinus beats using Simpson's method (25). LVDd and EF did not differ significantly among the three generations (P = 0.432 and P = 0.684). E/e′ (septal) and E/e′ (lateral) were significantly higher in the older generation (P < 0.001 for all, respectively) (Table 1).



2.6. Statistical analyses

Data are presented as the mean ± standard deviation for normally distributed continuous variables, and as medians (interquartile range: 25–75th percentile) for non-normally distributed variables. Patient characteristics including demographic features, and the AECG, HRV, and UCG parameters were compared using the χ2 test for categorical variables, analysis of variance for continuous and parametric data, and the Kruskal–Wallis test for nonparametric data. Comparisons of frequencies among each hour in bradyarrythmias (sinus pause and AV block) and VE/SVE were performed using the Kruskal–Wallis test. The parameters influencing the ectopy prevalence in each generation were also compared using the Kruskal–Wallis test; post hoc multiple comparisons were performed using the Bonferroni method.

Multivariate regression analysis was performed to determine the intensity of the incidence of premature atrial and ventricular complex and theoretical consideration of important factors such as the UCG and HRV indices. We also selected age, sex, and BMI as the explanatory variables for multivariate analysis. Before performing multiple regression for the incidence of VE and SVE, the HRV indices (SDNN, SDANN, RMSSD, PNN50, LFnu, HFnu, and LF/HF) were transformed to natural logarithms, as these parameters showed skewed distributions. Multivariate linear regression was performed after simultaneously controlling for potential confounders, followed by step-wise selection or backward selection. Log SDANN and log LFnu were excluded owing to multicollinearity (variance inflation factor >10) during multivariate regression analysis for both VE and SVE. We set the reference interval for the AECG parameters as the 2.5th–97.5th percentile according to the Clinical and Laboratory Standards Institute guidelines and meta-analysis (26, 27). Furthermore, the sample size of the reference interval of AECG parameters was set at 120 participants minimum in each generation (20–39, 40–59, and 60–89 years) according to the Clinical and Laboratory Standards Institute guidelines (26). Statistical analyses were conducted using SPSS version 28 (IBM Corp, Armonk, NY, USA). All tests were two-sided, and P-values <0.05 were considered statistically significant.




3. Results


3.1. Sinus pauses and conduction abnormalities

The incidence of sinus pause >2 s was 4.1%, 1.6%, and 0.8% in the 20–39-, 40–59-, and 60–89-year age groups, respectively (Table 2). The incidence was higher in the younger-aged group. The incidence of pause >2 s was under 5% in all generations, rendering these findings abnormal. Generation-dependent incidence was observed in the case of second-degree AV block, akin to sinus pause. Additionally, the incidence of second-degree AV block (i.e., abnormal findings) was under 5% for all generations, rendering these findings abnormal. The evaluation of the diurnal variations in the prevalence of sinus pause and second-degree AV block revealed that both were observed mainly at night-time: from 21:00 to 8:00 (Figures 1A,B).


[image: Figure 1]
FIGURE 1
Diurnal variation in the median number of bradyarrhythmias. Significant night-time dominance was observed in the diurnal variation of the median number of sinus pauses (P = 0.002) (A). Significant night-time dominance in the diurnal variation of the median number of atrio-ventricular blocks (P = 0.009) (B). Comparisons of frequencies among each hour in sinus pause and AV block were performed using the Kruskal–Wallis test. AV block: atrio-ventricular block.



TABLE 2 Complex premature beats on 24-h AECG (N = 365).
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3.2. Percentile of simple VE and SVE number (reference values of ectopy)

The principal results of this study are presented in Table 3 and summarized in the Figures 3A,B. The 97.5th percentile of simple VE frequency (reference values of ectopy) was 149, 254, and 1,682/day in the 20–39-, 40–59-, and 60–89-years age groups, respectively. The overall reference value for premature ventricular ectopy for all generations was 366/day. On the other hand, the 95th percentile of the frequency of simple SVE (reference values of extrasystole) was 131, 232, and 1,063/day for the 20–39-, 40–59-, and 60–89-year age groups, respectively. Overall, the reference value of SVE for all generations was 537/day.


TABLE 3 Percentile of the frequency of simple ectopy (reference value of ectopy) (N = 365).

[image: Table 3]

Significant diurnal variation was observed in the mean HR and mean frequency of VE and SVE. The mean frequency of VE was significantly higher during the waking hours (8:00–24:00) than during sleeping hours (23:00–7:00) (P < 0.001) (Figure 2A). In contrast, the mean frequency distribution of SVE had two peaks at 4:00 and 13:00–15:00 (P < 0.001) (Figure 2B).


[image: Figure 2]
FIGURE 2
Diurnal variation in the median frequency of ventricular and supraventricular ectopy. A significant diurnal variation was observed in the mean frequency of VE (P < 0.001). The daytime prevalence of VE was predominant, which was parallel to the diurnal variation in HR (A). Meanwhile, the mean frequency of SVE was significantly higher at 4:00 and during 13:00–15:00 (P < 0.001). However, the diurnal variation of SVE was not parallel to the diurnal variation of HR (B). Comparisons of frequencies among each hour in VE and SVE were performed using the Kruskal–Wallis test. HR: heart rate, SVE: supraventricular ectopy, VE: ventricular ectopy.




3.3. Complex VE and atrial SVE

The findings associated with complex ectopy and tachycardia are described in Table 4. VE Multiform was observed in 138/365 (37.8%) of the participants (Table 4). VT and V3 were observed in 6/365 (1.6%) and 4/365 (1%) of the participants, respectively, whereas R-on-T were not observed in any participant. All types of SVT, S3, and S2 were observed in 37/365 (10.1%), 86/365 (23.5%), and 151/365 (41.3%) participants, respectively. The incidence of complex SVE increased with age progression (Table 4).


TABLE 4 Complex ectopy and tachycardia on 24-h AECG (N = 365).

[image: Table 4]



3.4. Correlation between the incidence of ectopy and UCG and HRV indices

Multivariate regression analysis was performed to explore the intensity of factors affecting the incidence of VE and SVE. Log VE was higher in the older generation (P = 0.014) (Figure 3A). Age was an independent factor influencing the VE incidence (β = 0.293, P = 0.001), whose effect was retained in step-wise selection (β = 0.207, P = 0.001) (Table 5). In a sub-analysis, multivariate regression analysis with the backward selection method showed that age tended to be the most influential factor for log VE in all the generations (20–39, 40–59, and 60–89 years) (P = 0.054–0.079) (Supplementary Tables S1–S3). Log SVE was higher in the older generation (P < 0.001) (Figure 3B). However, BMI was significantly higher in the 40–59-year age group than in the 20–39- and 60–89-year age groups (P = 0.016) (Figure 3C). Hence, log SDNN, log RMSSD, and log HFnu were lower in the older generation (P < 0.001 for all) (Figure 3D,E,, F). Age, BMI, log SDNN, log RMSSD, and log HFnu were significant factors affecting the SVE incidence (age, β = 0.532, P < 0.001; BMI, β = −0.099, P = 0.029; log SDNN, β = −0.136, P = 0.02; RMSSD, β = 0.457, P < 0.001; log HFnu, β = −0.368, P = 0.001). Moreover, these indices were significant factors affecting the SVE incidence, even according to step-wise selection (age, β = 0.642, P < 0.001; BMI, β = v0.112, P = 0.009; log RMSSD, β = 0.097, P = 0.035) (Table 6). In contrast, a sub-analysis was performed on the most influential factors for log SVE in each generation (20–39, 40–59, and 60–89 years). Multivariate analysis revealed that age, BMI, and RMSSD were significant factors (Supplementary Tables S4–S6), with a similar trend as in the analysis of all generations (Table 6). However, in the 60–89-year age group, BMI was not a significant factor.


[image: Figure 3]
FIGURE 3
Changes in the ectopy prevalence and parameters influencing ectopy prevalence in each generation. The log VE/day and log SVE/day were significantly decreased in the older generation (P = 0.014 for log VE; P < 0.001 for log SVE), (A), (B). On the other hand, body mass index was significantly higher in the 40–59-year age group than in the 20–39- and 60–89-year age groups (P = 0.016) (C). HRV parameters (log SDNN, log RMSSD, and log HFnu), which influenced the prevalence of SVE, were significantly decreased in the older generation (P < 0.001 for all, respectively) (D–F). The parameters influencing the ectopy prevalence in each generation were compared using the Kruskal–Wallis test; post hoc multiple comparisons were performed using the Bonferroni method. HRV, heart rate variability; SVE, supraventricular ectopy; VE, ventricular ectopy.



TABLE 5 Multiple regression analysis for log ventricular ectopy (n = 365).
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TABLE 6 Multiple regression analysis for log supraventricular ectopy (N = 365).
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4. Discussion

In this study, we provided age-specific reference values for AECG parameters, including bradycardia detected using 24-h AECG, in each generation, spread over a wide age range (20–89 years) in a healthy population. Moreover, we provided evidence that the incidence of VE was only related to the increase in age; hence, SVE was influenced by the increase in age and BMI and decrement in RMSSD and HFnu, which are reflective of parasympathetic nervous system activity. This is the first study to demonstrate the relationship between autonomic tone activity, expressed as HRV, and the incidence of VE and SVE over a wide age range.


4.1. Reference intervals of AECG parameters

The differences between the “normal” and “abnormal” AECG findings in each generation (20–39, 40–59, and 60–89 years) (Table 7) were determined, based on the assumption that events occurring in less than 2.5% of a healthy population were “abnormal” and those occurring in more than 2.5% of the population were “normal.” The 2.5th–97.5th range is defined as the reference interval in the Clinical and Laboratory Standards Institute guidelines, as well as in many of the articles included in the meta-analysis and the meta-analysis itself (26, 27). Therefore, in the present study, the 95th percentile distribution was also defined as the reference interval or reference value. The strength of the reference values calculated in our study is the mild skew in age and sex, and the wide age range (20–89 years) of the participants (Table 1).


TABLE 7 Differentiation between the normal and abnormal AECG findings in each generation.

[image: Table 7]

Moreover, we set stringent criteria for healthy participants in this study, who were defined as individuals with no history of the following: cardiac abnormalities, abnormality on physical examination, 12-lead ECG, chest radiograph, blood investigations, and almost normal UCG findings; previous studies did not establish such strict criteria, especially with respect to blood work and UCG (25). Therefore, it is possible to designate this result as a precise reference interval. However, this reference interval is not normally distributed. There is a large discrepancy in the 90–97.5 percentile, especially in VE and SVE; therefore, this value should be treated with caution (Table 3). Since strict criteria of reference values, such as those in this study, have not existed in recent years, this information may be very useful not only for physicians but also for healthcare professionals in clinical settings in many situations, such as outpatient clinics and health checkup posts. Moreover, this reference interval could be versatile, because an AECG is performed in not only cardiology, but also various other medical departments and in general medicine.



4.2. Sinus pauses and conduction abnormality

We found that the incidence of sinus pause >3 s and second-degree AV block (Mobitz)was less than 2.5% in all generations (Table 2). Therefore, sinus pause >3 s and second-degree AV block (Mobitz) are abnormal findings in healthy individuals. Although the incidence of

second-degree AV block (Wenckebach) in 20–39 years was more than 2.5%, that in 40–59 and 60–89 years was less than 2.5% each. Therefore, second-degree AV block (Wenckebach) in an abnormal finding in 40–59 and 60–89 years. Moreover, the incidence of bradyarrhythmia was higher in the younger-age group. These findings are consistent with those of a previous meta-analysis (27). Hingorani et al. reported that the incidence of sinus pause >2 s in 1,273 healthy normal volunteers aged 18–45 and 46–65 years was 4.4% and 0%, respectively, whereas the incidence of second-degree AV block was 2.6% and 0.9%, respectively (17). The precise pathogenesis responsible for the higher incidence of bradyarrhythmia in the younger population is unknown. However, we speculated that autonomic nervous system activity, especially parasympathetic dominance, in younger individuals contributes to the susceptibility to bradyarrhythmia. The night-time predominance of sinus pause and diurnal variation in the AV block suggests the involvement of parasympathetic tone in these arrhythmias. Our findings provide valuable evidence, as no study has focused on diurnal variation in bradycardia detected on AECG (27).



4.3. Reference intervals of VE and SVE

We provided reference values for both VE and SVE in each generation (20–39, 40–59, and 60–89 years) over a wide age range in a population (Table 3 and central illustration). Several studies have reported on the frequency of VE and SVE/24 h using AECG in a few age groups in apparently healthy participants (Tables 8–10) (5–16). However, few studies have demonstrated reference values in each generation (20–39, 40–59, and 60–89 years) over a wide age range. Notably, the frequency of VE and SVE/24 h was higher in the older-aged group than in the younger-aged group in all percentile categories (from the 2.5th–97.5th percentiles) (Table 3). Recently, Williams et al. conducted a meta-analysis of 33 studies from 1950 to 2020 concerning reference intervals for AECG parameters and reported that the normal range of VE and SVE was 0–500/24 h, 0–1,000/24 h, and >1,000/24 h, for 20–39, 40–59, and 60–89 years, respectively (27). These findings are consistent with our data, except for the older generation (60–89 years). However, most studies (28 of 33) incorporated in that meta-analysis were published before 2000. The reference values for the young generation (18–36 years) were published in 1981 (Table 8). Moreover, reference values for the middle-age group are lacking (Table 9). Notably, the latest study to report reference values (age range: 64–80 years) of VE and SVE in a Japanese population was published in 2006, but data for establishing the reference values were collected in 1989 (Table 10) (15). Thus, the data used, and inferences derived from these studies are extremely old. Therefore, our study's findings significantly contribute to and expand the existing body of evidence. We also investigated complex ectopy and tachycardia using 24-h AECG (Table 4). The incidence of VT, R-on-T, and SVT >10 beats in 20–39 and 40–59 years generation were less than 2.5% in all generations; i.e., these findings are abnormal in healthy individuals. However, the prevalence of bigeminy and trigeminy in the 60–89 years age group was 8.2% and 9%, respectively. To the best of our knowledge, this study was the first to conduct such a detailed analysis, rendering these findings novel.


TABLE 8 Prior study of reference values of VE and SVE in healthy subjects (20–39 years).
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TABLE 9 Prior study of reference values of VE and SVE in healthy subjects (40–59 years).
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TABLE 10 Prior study of reference values of VE and SVE in healthy subjects (>60 years).
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4.4. Correlation between ventricular ectopy and UCG or HRV parameters

In the present study, VEs were only correlated with age, whereas SVEs were correlated with BMI, age, log RMSSD, and log HFnu. Aging has the greatest influence on the frequency of VE and SVE. Regarding VE, age was the independent factor that affected the number of VE through all the generations. VE had no relationship with the other factors in Figures 3D–F (log SDNN, log RMSSD, and log HFnu). In the sub-analysis, age tended to be the most influential factor affecting VE, although it was not statistically significant (Supplementary -Tables S1–S3). We speculate that this may have been the case because the sub-analysis was divided based on the generations and therefore did not reach significance. It has been widely reported that the prevalence of VE in the older population was higher than that in the younger population, which was also proven in a meta-analysis (27). Moreover, Tasaki et al. followed a cohort of healthy individuals for 15 years and found that the incidence of VE and SVE increased significantly after 15 years (15). Therefore, although the higher incidence of VE and SVE in older individuals is an unquestionable fact, few studies have investigated the mechanism of this phenomenon. The age-related changes in intracellular Ca2+ regulation which play an important role in the development of several types of arrhythmias may explain this phenomenon (28). Studies have suggested that age-related changes in intracellular Ca2+ regulation may prolong the action potential, especially during tachycardia, inducing electrical instability due to inadequate return of intracellular Ca2+ concentration. VE, which accounts for the high diurnal variation in VE when HR is elevated during the day, supports this hypothesis.



4.5. Correlation between supraventricular ectopy and UCG or HRV parameters

Several studies have reported that the frequency of SVEs increases with age, but few have examined the correlation between the frequency of ectopy (SVE) and UCG and HRV parameters simultaneously. SVE was inversely correlated with parasympathetic indices such as log RMSDD and log Hfnu (Figures 3B,E,F), thereby supporting the results of the multivariate analysis in Table 6. In contrast, age, obesity, and RMSSD, a parasympathetic index, were significant factors influencing SVE, as was the case for all age groups (Table 6 and Supplementary Tables S4, S5). However, BMI was not significant in the 60–89-year age group (Supplementary Table S6). The possible causes for this are as follows: BMI was lower in this generation than in the 40–59-year age group (Figure 3C) and the small variation in BMI made it less likely to be statistically significant.

The causes for the increase in frequency of SVE with age have not been clarified in humans; however, the following speculations are made regarding the basic experimental study. Age-related changes in ion channels in the atria and ventricles are key to the dynamics of Ca2+ channels. In the animal experimental study, the uptake of Ca2+ into the sarcoplasmic reticulum decreases with age and intracellular Ca2+ increases with age (29). Increased intracellular Ca2+ causes early posterior depolarization and induces APC and AF (30). Conversely, it has been reported that aging (degree of frailty) correlates with prolongation of the P wave and PR interval in ECGs of aged mice and that this is caused by elevated levels of interstitial fibrosis and collagen content (31). The above structural remodeling has been reported to increase the frequency of AF from APCs with aging.

It is generally recognized that RMSSD, pNN50, and HFnu are parameters related to parasympathetic nervous system activity (24). Therefore, there is a possibility that the increment in the frequency of SVE with aging partially results from decreased autonomic nervous system activity due to aging, particularly parasympathetic nervous system activity. Automaticity or triggered activity is thought to be the mechanism underlying SVE occurrence (32). It is speculated that a decrease in parasympathetic activity can lead to an increase in automaticity (32), which may be responsible for the decrease in parasympathetic activity in middle-aged and older individuals and may increase the frequency of SVEs with aging. It has been widely reported that the incidence of AF increases in middle-aged and older individuals (33). The incidence of SVE due to aging and the change in the equilibrium of sympathetic/parasympathetic activity may influence the increase in AF in older individuals. Incidentally, fluctuations in heart rate variability, expressed as SDNN, became significantly smaller with age. This result is consistent with that of previous reports and is an age-related change (34).

In this study, multiple regression analysis revealed that BMI was an independent factor influencing SVE prevalence. Naturally, the high prevalence of SVE can induce AF. Obesity is an independent risk factor for increasing the prevalence of AF (35). Although the pathophysiology of obesity implicating AF is not completely understood, the factors associated with it are as follows: genetic factors; clinical correlations such as hypertension, diabetes mellitus, and sleep apnea syndrome; coronary artery disease; ventricular adaptation; inflammation; oxidative stress; focal adrenergic pathways; and focal adiposity (36). Among these, epicardial focal adiposity has recently garnered much attention. Recent studies have reported that the increase in epicardial fat caused by obesity leads to the development of adipocyte infiltration into the myocardium, fibrosis, inflammation, oxidative stress, and impaired cardiac muscle activity in the myocardium (37). These factors can be triggers underlying the development of AF (37). Our findings show that a higher BMI contributes to the increased incidence of atrial premature complexes and may support recent findings on the role of obesity in AF.



4.6. Limitations

There are some limitations to this study. This study was performed for a brief duration of monitoring, i.e., a 24-hr period without any follow-up. We did not evaluate reproducibility between day-to-day values, which should be assessed using novel AECG devices, such as patch ECG, in the future (38). Moreover, the study population was restricted to individuals of Asian ethnicity; there is a possibility that the reference values of other ethnicities such as European, African, and Hispanic may be different. The minimum sample size required for the reference interval recommended by the Clinical and Laboratory Standards Institute guidelines (26) is met in this paper. However, a larger cohort and several follow-up recordings will be needed to investigate potential future directions of this work. In this study, the age range of 60–89 years was adopted as a single group. However, as shown in the meta-analysis by Williams et al. (27), the validity of the healthy value of 80 years of age and older is a controversial area and has not been clarified in previous reports. In order to verify the validity of using 60 years of age as a cutoff, we first compared the items listed as parameters in this study in the age group of 60–70 years and 70–89 years. There were no significant differences in all arrhythmia parameters (P = 0.204–0.916) except R-on-T, V3, and bradyarrhythmia. We then compared the parameters in the 60–75-year and 75–89-year age groups. There were no significant differences in any of the arrhythmia parameters except R-on-T, V3, and bradyarrhythmia (P = 0.349–0.972). These results support the fact that the age category of 60–89 years used in this study is valid. On the other hand, we could not validate R-on-T, V3, and bradyarrhythmia in the 60–89 years age group because the number of patients in all categories of R-on-T, V3, and bradyarrhythmia (Sinus pause and AV block) was less than 2, and statistics were difficult to obtain.



4.7. Conclusions

We presented age-specific reference values for AECG parameters derived from 24-h AECG in healthy individuals, over a wide age range (20–89 years). Notably, the reference values of VE and SVE were different in each generation. Moreover, we demonstrated that the incidence of VE was only related to the progression in age; hence, SVE was influenced by age and BMI increases, and RMSSD and HFnu decreases, which represent parasympathetic nervous system activity. This information will be useful for the diagnosis and prevention of diverse cardiac diseases in patients of various age groups in clinical settings. Future studies that account for the daily variance in healthy individuals are warranted to seek the reference interval of AECG.
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Fetal distress is a symptom of fetal intrauterine hypoxia, which is seriously harmful to both the fetus and the pregnant woman. The current primary clinical tool for the assessment of fetal distress is Cardiotocography (CTG). Due to subjective variability, physicians often interpret CTG results inconsistently, hence the need to develop an auxiliary diagnostic system for fetal distress. Although the deep learning-based fetal distress-assisted diagnosis model has a high classification accuracy, the model not only has a large number of parameters but also requires a large number of computational resources, which is difficult to deploy to practical end-use scenarios. Therefore, this paper proposes a lightweight fetal distress-assisted diagnosis network, LW-FHRNet, based on a cross-channel interactive attention mechanism. The wavelet packet decomposition technique is used to convert the one-dimensional fetal heart rate (FHR) signal into a two-dimensional wavelet packet coefficient matrix map as the network input layer to fully obtain the feature information of the FHR signal. With ShuffleNet-v2 as the core, a local cross-channel interactive attention mechanism is introduced to enhance the model’s ability to extract features and achieve effective fusion of multichannel features without dimensionality reduction. In this paper, the publicly available database CTU-UHB is used for the network performance evaluation. LW-FHRNet achieves 95.24% accuracy, which meets or exceeds the classification results of deep learning-based models. Additionally, the number of model parameters is reduced many times compared with the deep learning model, and the size of the model parameters is only 0.33 M. The results show that the lightweight model proposed in this paper can effectively aid in fetal distress diagnosis.
Keywords: fetal distress, fetal heart rate, lightweight model, attention mechanism, wavelet packet coefficient
1 INTRODUCTION
Fetal distress is a syndrome of respiratory and circulatory insufficiency caused by intrauterine fetal hypoxia during labor and is closely associated with changes in fetal heart rate signals (Blickstein and Green, 2007; Spairani et al., 2022). Fetal distress may cause hypoxic-ischemic encephalopathy and eventually leading to cerebral palsy or perinatal death (Bobrow and Soothill, 1999). Early detection and diagnosis of fetal distress can help prevent damage to the vital organs of the fetus prior to delivery. Therefore, it is important to enhance intrauterine fetal status monitoring during pregnancy to ensure the safety of the fetus and the pregnant woman. The most common method for monitoring fetal status in clinical practice is CTG monitoring (Grivell et al., 2015). The CTG signal consists of the FHR curve and uterine contraction (UC) curve. Through CTG monitoring, doctors can detect fetal distress in time so that they can take effective treatment measures to protect the health of the fetus. However, the diagnosis is too dependent on physician experience and interobserver disagreement when interpreted by the physician’s naked eye alone (Bernardes et al., 1997; Palomaki et al., 2006). Therefore, there is an increased incidence of unnecessary cesarean section due to subjective physician error (Abdulhay et al., 2014; Marques et al., 2019).
With the development of artificial intelligence technology, scholars worldwide are committed to developing fetal health-assisted diagnosis systems based on machine learning and deep learning to help healthcare professionals analyze CTG signals objectively and correctly. Barquero-Perez et al. (2017); Spilka et al. (2014); Georgoulas et al. (2017); Yilmaz. (2016) used normalized compression distance, random forest (RF), support vector machine (SVM), and artificial neural network (ANN) classification algorithms, respectively, to classify CTG signals for fetal distress problems and achieved good results. Zhao et al. (2018) extracted 47 features from different domains (morphological, time domain, frequency domain and non-linear domain) and selected Decision Tree, SVM and adaptive boosting, respectively, for fetal acidosis classification. Comert et al. (2018) used short-time Fourier transform (STFT) to obtain 2-D images and combined it with transfer learning and convolutional neural networks to predict fetal distress (Liu et al., 2021). proposed an attention-based CNN-BiLSTM hybrid neural network enhanced with features of discrete wavelet transformation, obtaining an average sensitivity, specificity and quality index of 75.23%, 70.82%, and 72.93%, respectively. Zhao et al. (2019) used recurrence plot to convert one-dimensional FHR to two-dimensional and fed into convolutional neural network to obtain 98.69% accuracy in fetal distress classification. Baghel et al. (2022) obtained 99.09% classification accuracy by performing direct 1-D convolutional operations on the FHR signal after Butterworth filtering. Although the abovementioned classification models based on machine learning and deep learning achieve better results, the complexity of the model and the large number of parameters take up large computational resources, which leads to the model being highly dependent on the performance of the device hardware and difficult to deploy to the terminal for generalized application.
Lightweight models and miniaturization have become a trend in many application scenarios, so an increasing number of academics are focusing on lightweight network models that can be deployed and run directly on mobile devices. The MobileNet series (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019) and ShuffleNet series (Ma et al., 2018; Zhang et al., 2018) of lightweight networks currently have good performance in the target detection and image classification field. MobileNet model is a lightweight deep neural network proposed by Google for embedded devices, using the core idea of depthwise separable convolution. ShuffleNet model is a neural network structure designed for devices with limited computational resources, mainly using pointwise group convolution and channel shuffle. Lightweight models are also beginning to make their mark in the medical signaling field. Cao et al. (2021) proposed a multichannel lightweight model with each channel integrating multiple heterogeneous convolutional layers to obtain multilevel features for classifying myocardial infarction with an accuracy rate of 96.65%. Zheng et al. (2021) trained MobileNetV1 and MobileNetV2 models by migration learning for pterygium diagnosis in the eye and compared them with the classical model and found that MobileNetV2 obtained better results with a model size of only 13.5 M. Chen et al. (2022) used the lightweight networks MobileNetV1, MobileNetV2, and Xception to classify cervical cancer cells and used knowledge distillation for accuracy improvement. Among them, Xception matched the accuracy of the large network Inception-ResNetV2, while the model size was only 40%. The lightweight network model effectively reduces the number of model parameters and opens up a method for promoting a low-cost operating model. However, the feature extraction ability and the network classification accuracy still need to be further improved.
Aiming at the complexity and considerable computation in existing deep learning-based fetal distress algorithm models, this paper introduces a lightweight network architecture to design a lightweight fetal distress-assisted diagnosis network based on FHR. Additionally, to further improve the feature extraction ability and classification effect of the network, the attention mechanism is incorporated into the lightweight network to build a lightweight network unit (ECA-Shuffle) based on the cross-channel interactive attention mechanism. The main contributions of this paper are as follows.
(1) The matrix feature map based on wavelet packet coefficients is constructed to refine the FHR signal in multiple frequency bands and used as input to the model. Different wavelet basis functions are selected to generate multiple feature maps to vote on the sample classification results.
(2) The cross-channel interactive attention module is embedded in the tail of the ShuffleNet-V2 base unit to generate an ECA-Shuffle unit to achieve effective multichannel feature fusion without dimensionality reduction.
(3) A lightweight fetal distress-assisted diagnosis network based on the FHR signal, LW-FHRNet, is proposed. Conventional convolution with ECA-Shuffle units ensures effective channel feature fusion while reducing model complexity and enhances the model’s ability to classify fetal distress.
The rest of the paper is presented below. Section 2 describes the overall scheme in detail. Section 3 describes the database, experimental setup and results in detail. Section 4 discusses and analyzes the performance of the proposed model. The final section contains conclusions and future work.
2 MATERIALS AND METHODS
The architecture of the lightweight fetal distress-assisted diagnosis model based on the cross-channel interactive attention mechanism designed in this paper is shown in Figure 1, including a preprocessing module, a feature map construction module, and a feature extraction and classification module. First, the missing values and spikes in the FHR signal are removed by signal preprocessing, and the signal is segmented into 20-min lengths. Second, the wavelet packet decomposition technique is used to construct wavelet coefficient matrix feature maps of FHR signals based on db1 to db5 wavelet basis functions. Finally, LW-FHRNet is constructed by using deep separable convolution, channel shuffle and other techniques and incorporating a local cross-channel interactive attention mechanism without dimensionality reduction, which effectively reduces the number of model parameters and improves the classification accuracy of the model.
[image: Figure 1]FIGURE 1 | Description of the architecture for the proposed lightweight network-based fetal distress assisted-diagnosis model.
2.1 Signal preprocessing
Clinically, the FHR signal is acquired mainly by an ultrasound Doppler probe placed in the abdomen of the pregnant woman. During the acquisition process, the signal is inevitably subject to a variety of noise interferences, such as the movement of the fetus and the pregnant woman, improper placement of the sensor and other external factors. The noise of the FHR is represented by spikes (FHR values greater than 200 or less than 50 bpm) and missing values (FHR values equal to 0) (Cesarelli et al., 2007). Accordingly, the purpose of preprocessing is to remove these two types of noise. In this study, the interpolation method is used to remove noise (Chudaek et al., 2009), and the specific process is as follows.
(1) If the FHR value is equal to 0 and the duration is greater than 15 s, the segment is removed directly; otherwise, it is linearly interpolated.
(2) If the FHR value is unstable, i.e., the absolute value of two adjacent points is greater than 25 bpm, and interpolation is performed between the starting sampling point and the first point of the next stabilization segment. A stable segment is defined as five consecutive FHR values where the difference is less than 10 bpm.
(3) If the FHR value is greater than 200 bpm or less than 50 bpm, it is filled in with Hermite spline interpolation.
Noise and missing value segments in the FHR signal can be effectively filtered out by the above interpolation method. In conjunction with the time requirement of clinical prenatal examination, this paper uses 20-min data segments for analysis. The preprocessed data are segmented into 20-min time segments to obtain multicomponent segment data. The waveform obtained using the above preprocessing method is shown in Figure 2, where (a) is the raw data of the FHR signal, (b) is the waveform after preprocessing using the above method, and (c) is the segment after splitting the data into multiple segments with a 20-min data length.
[image: Figure 2]FIGURE 2 | FHR signal preprocessing process. Remove spikes and missing values of the original signal, then divide into segments of 20-min length. (A) The original signal, (B) processed signal, (C) segmented signal.
2.2 Construction of feature maps based on wavelet packet coefficients
As a non-stationary and non-linear time series, FHR contains complex physiological and pathological information. Wavelet packet decomposition is a discrete analysis method of non-stationary signals that can select the appropriate spectral band according to the signal characteristics and improve the time-frequency analysis resolution (Behera and Jahan, 2012). In this paper, wavelet packet decomposition is introduced to construct the wavelet packet coefficient matrix using different subspace coefficients to convert the 1D FHR signal into a 2D wavelet packet coefficient feature map. The feature map is used as the input layer data for the deep network model.
Figure 3A shows the wavelet packet coefficient matrix construction process. The signal is decomposed into corresponding frequency bands through different layers, and each frequency band has a series of wavelet packet coefficients. For the nth layer decomposition, the wavelet packet transform provides 2n different subspaces, and each subspace corresponds to a frequency band.
[image: Figure 3]FIGURE 3 | Construction of feature maps based on wavelet packet coefficient matrix. (A) Construction of wavelet packet coefficient matrix; (B) Construction of db1∼db5 feature map.
Wavelet packet decomposition can be implemented using a series of convolutions with high-pass filters and low-pass filters. The high-pass filter [image: image] and low-pass filter [image: image] can be defined as Eqs 1, 2.
[image: image]
[image: image]
where [image: image] is the scale function, [image: image] is the wavelet function, [image: image] represents the inner product, and [image: image] and [image: image] are variables. [image: image] and [image: image] satisfy Eq. 3.
[image: image]
The wavelet coefficients at different frequency bands and decomposition layers can be calculated iteratively by the following equation.
[image: image]
[image: image]
where [image: image] is the original signal of length N, [image: image] are the wavelet coefficients in the jth subfrequency band at the ith layer decomposition, [image: image] and [image: image] are the wavelet coefficients in the (2j)-th and (2j+1)-th subfrequency bands at the (i+1)-th layer decomposition, and for the ith layer decomposition [image: image].
To increase the number of datasets to obtain better model effects, db1∼db5 wavelet basis functions are selected for wavelet packet coefficient decomposition in this paper. Therefore, five wavelet packet coefficient matrix maps can be obtained for each data segment to enhance the dataset. Meanwhile, each wavelet packet matrix coefficient map is resized to 224*224*3 pixels as the input layer of the neural network model. The feature map construction based on wavelet packet coefficients is shown in Figure 3B. Each FHR signal segment is converted into a total of 5 feature maps based on db1∼db5 wavelet bases.
2.3 LW-FHRNet network structure
To meet the application of deep neural networks on embedded and mobile terminals and maintain excellent performance, lightweight network models have emerged. In particular, the lightweight models of the MobileNet series and the ShuffleNet series are the most widely used. Depthwise separable convolution, pointwise convolution, group convolution, channel shuffle and channel separation are used to reduce the number of model parameters and speed up the model computation time.
Recently, the channel attention mechanism has been shown to have great potential in improving the performance of deep convolutional neural networks. By assigning different weights to each part of the input, more important information can be extracted to help the model make more accurate judgments without imposing greater overhead on the model’s computation and storage.
Inspired by the above work, a lightweight network based on a cross-channel attention mechanism, LW-FHRNet, is proposed in this work to assist in the diagnosis of fetal distress symptoms, as shown in Figure 4. The main structure of the network contains two stages and a total of four ECA-Shuffle units. First, the feature maps based on wavelet packet coefficients are used as the input layer of the model. Subsequently, the image is conventionally convolved and the size of the output feature matrix is reduced to 1/4 of the input image using the maximum pooling operation. Then, feature extraction is performed by 4 ECA-Shuffle units to fully learn the feature unit information. Finally, regular convolution and average pooling are performed, and the output features are sent to the fully connected layer for classification.
[image: Figure 4]FIGURE 4 | The structure of LW-FHRNet. Notes: Conv2D: Convolution2D; BN: Batch Normalization; Maxpool: Max pooling; Avgpool: Average pooling.
Based on the ShuffleNet-V2 units, this study constructs two types of ECA-Shuffle units by integrating the cross-channel attention module without dimensionality reduction, as shown in Figure 5. Figure 5A (Unit A) shows the first unit of each stage. The stride of the depthwise separable convolution in both the residual branch and the identity branch of the bottleneck structure is 2, and the two output feature matrices are concatenated to 2 times their depth. The ECA strategy is used at the tail of the structure. Figure 5B (Unit B) shows the second unit of each stage. The input feature matrix is divided equally into two groups. The main branch performs a depthwise separable convolution with a stride of 1, while the other branch is left unprocessed and connected to the main branch via concat, and the feature matrix depth is kept constant. The ECA strategy is also used at the end of the structure.
[image: Figure 5]FIGURE 5 | Detailed description of the ECA-Shuffle unit. (A) Unit A: the basic unit for spatial down sampling; (B) Unit B: the basic unit for channel split. Notes: DWConv: Depthwise separable convolution; Conv: convolution; BN: Batch Normalization; GAP: Global Average Pooling.
The lower half of the ECA-Shuffle unit is the cross-channel interactive attention module without dimensionality reduction. The detailed structure is shown in Figure 6. Given the aggregated feature [image: image] without dimensionality reduction, channel attention can be learned by Eq. 6.
[image: image]
If the weight of [image: image] is calculated by only considering the interaction between [image: image] and its [image: image] neighbors and all channels share the same learning parameters, Eq. 6 can be written as Eq. 7.
[image: image]
where [image: image] indicates the set of [image: image] adjacent channels of [image: image]. This strategy can be easily implemented by a fast 1D convolution with kernel size [image: image], i.e.,
[image: image]
where C1D denotes 1D convolution.
[image: Figure 6]FIGURE 6 | The cross-channel interactive attention module. Notes: GAP: Global Average Pooling; C: Channel dimension; H: Height; W: Width.
Considering each channel and its k nearest neighbors, computing local cross-channel interaction information instead of all channels effectively improves computational efficiency. This efficient channel attention calculation can be quickly implemented by 1D convolution. Thus, [image: image] is the key parameter and the size of the convolution kernel of the 1D convolution, which determines the range and convergence of the local cross-channel interaction.
To avoid resource-consuming cross-validation adjustment, an adaptive method is used to select the appropriate [image: image] value. According to the properties of group convolution, the high-dimensional (low-dimensional) channels are proportional to the long-distance (short-distance) convolution for a fixed number of groups. Similarly, the coverage of the interaction (i.e., the size [image: image] of the 1D convolution kernel) is proportional to the channel dimension [image: image]. The mapping relationship between [image: image] and [image: image] is shown in Eq. 9.
[image: image]
Since the channel dimension is generally an exponential multiple of 2, the non-linear mapping relationship is represented by an exponential function with a base of 2. Thus, Eq. 9 can be rewritten as Eq. 10.
[image: image]
Consequently, the size [image: image] of the convolution kernel can be calculated automatically based on the number of channels [image: image], which is given by Eq. 11.
[image: image]
where [image: image] represents the nearest odd number of [image: image]. To reduce the computational cost and training time, [image: image] and [image: image] are empirically set to 2 and 1, respectively.
The details of the lightweight network: LW-FHRNet structure designed in this work are shown in Table 1. The first operation of each stage is the ECA-Shuffle unit A, which realizes the doubling of feature dimensions, followed by the ECA-Shuffle unit B, which realizes the subsequent operations.
TABLE 1 | The structure parameter information of LW-FHRNet.
[image: Table 1]The process of the fetal distress classification algorithm based on a lightweight network is described in Table 2. After preprocessing and 20-min length segmentation, the dataset is randomly divided into a training set and a testing set in proportion. Each segment is subjected to wavelet packet decomposition based on db1 to db5 wavelet basis functions to obtain five feature maps. Iterative testing of model tuning is performed with the training set data to obtain the optimal model. The testing set is subjected to category prediction under the optimal model, and the final category attribution is decided by voting on the five feature maps of each data segment.
TABLE 2 | Details of LW-FHRNet classification algorithm.
[image: Table 2]3 RESULTS
3.1 Dataset
The database in this paper uses the publicly available dataset CTU-UHB, which comes from the Czech Technical University in Prague (CTU) and the University Hospital in Brno (UHB) (Chudacek et al., 2014). A total of 552 CTG records were collected in the database. These records were carefully selected from 9,164 records collected by UHB from 2010 to 2012. The sampling rate of CTG data is 4 Hz, and each CTG record contains FHR sequences and UC sequences. The records in the database were all singleton gestations, all gestational ages greater than 36 weeks and no known congenital developmental defects. The quality of the FHR signal was greater than 50% in every 30-min window. Available biochemical parameters of the umbilical artery blood sample (pH) were recorded for each sample.
The pH value is a marker of blood acid-base balance and can provide information on possible fetal acidosis caused by intrauterine hypoxia. A lower pH value represents a more severe degree of fetal acidosis (Vayssiere et al., 2007). showed moderate ability to detect mild acidosis at pH ≤ 7.15 and better ability to detect more severe acidosis at pH ≤ 7.05. Therefore, in this paper, pH = 7.05 was chosen as the criterion to classify the data into two categories. Data with a pH value greater than 7.05 are considered normal, and data with a pH value less than or equal to 7.05 are considered abnormal. Based on this discriminant, 44 abnormal samples and 508 normal samples are obtained (Ito et al., 2022). predicted fetal acidemia by calculating iPREFACE (10), iPREFACE (30) and iPREFACE (60) at 10, 30, and 60 min before delivery. The results showed that iPREFACE (30) was slightly better than iPREFACE (60) but significantly better than iPREFACE (10). To enhance the sample size, a 20-min segmentation is performed after preprocessing the 60-min data before delivery. After splitting the samples into 20-min data segments, 106 abnormal sample segments are obtained. To avoid the effect of overfitting or underfitting caused by category imbalance on the classification results, 106 samples from 512 normal samples are randomly selected. The second 20-min segment is selected to construct 106 normal sample segments for the experiment. Eighty percent of the dataset is randomly selected as the training set (85P and 85N), and the remaining 20% as the test set (21P and 21N). The wavelet packet decomposition from the db1 to db5 wavelet basis is performed separately for each FHR data segment, which constitutes 5 wavelet packet coefficient matrix feature maps. Therefore, there are 850 images in the training set and 210 images in the test set.
In this paper, each 20-min segment of FHR data is subjected to wavelet packet decomposition based on db1 to db5 wavelet basis functions to obtain five wavelet coefficient matrix feature maps. Category attribution is determined by voting on the 5 feature maps. The category voting process is shown in Figure 7. First, each feature map of the segment is classified. Subsequently, the frequency of each category label is calculated for the segment. Finally, the class with higher frequency is selected as the category of this FHR segment.
[image: Figure 7]FIGURE 7 | An example of the category voting process. Notes: P: Positive; N: Negative.
3.2 Experimental setup
3.2.1 Environment
The network structure proposed in this paper is trained and tested on the CTU-UHB dataset. The experimental platform is a computer equipped with an Intel Xeon(R) CPU E3-1535M v6 @ 3.10 GHz x 8, Quadro P5000 GPU and 32 G RAM. The system is Ubuntu 18.04.6LTS, the development environment is TensorFlow 2.6.2, and the language used is Python.
3.2.2 Metrics
To evaluate the classification performance of the model, accuracy, precision, recall and F1-Score metrics are used in this paper. Additionally, model parameters and model size are introduced to evaluate the complexity of lightweight models. Finally, sensitivity (Se) and specificity (Sp) are used to observe the discriminatory ability of the model between abnormal and normal samples.
3.2.3 Baselines
The commonly used lightweight networks MobileNetV3-Small, MobileNetV3-Large and ShuffleNet-V2 are introduced as the baselines of this research. MobileNetV3 introduces the channel attention module based on MobileNetV2 to enhance the adaptive capability of the model by assigning different weights to different channels. MobileNetV3 has two versions: small and large. ShuffleNet-V2 proposes the concept of channel separation to replace group convolution to further improve the inference speed.
3.3 Experiment 1: Selection of wavelet packet decomposition layers
Wavelet packet decomposition with different numbers of layers can obtain different detailed information. The sampling frequency of the raw data is 4 Hz. The ith layer is decomposed to obtain 2i frequency bands. The 2D image is constructed according to the frequency from the highest to the lowest. The frequency range of the jth frequency band is [image: image] Hz, [image: image]。 To select the best wavelet coefficient matrix feature map, this paper performs wavelet packet 1-layer to 5-layer decomposition to obtain the wavelet packet coefficient matrix maps of corresponding layers to test the classification performance. The experimental results are shown in Table 3. The accuracy of the 2-layer and 3-layer decomposition is higher, and the accuracy of the 4-layer and 5-layer decomposition gradually decreases. The 2-layer decomposition achieves optimal performance with 95.24% accuracy, 100% precision, 90.48% recall and a 95.00% F1-score. Therefore, the feature map based on 2-layer wavelet packet decomposition is chosen as the input of the model in this paper. That is, the signal is decomposed into four frequency bands:0–1 Hz, 1–2 Hz, 2–3 Hz and 3–4 Hz. And the wavelet packet coefficients in the corresponding frequency bands are used to jointly construct the feature maps.
TABLE 3 | Performance comparison of feature maps constructed by different layers of wavelet packet decomposition.
[image: Table 3]3.4 Experiment 2: The effective role of local cross-channel interactive attention mechanisms
The channel attention mechanism has great potential to improve the performance of deep convolutional neural networks. In this paper, we introduce a cross-channel local interaction attention strategy without dimensionality reduction to improve the performance of lightweight models. Experiments are conducted on the dataset of this paper using a lightweight network with and without an ECA module. The confusion matrix of whether the proposed lightweight model contains ECA modules is shown in Figure 8. Table 4 shows the model performance comparison with and without the ECA module. The lightweight model accuracy with the ECA module is as high as 95.24%, and the accuracy of the lightweight model without the ECA module is 92.86%. The experimental results show that the lightweight model with the ECA module improves performance in fetal distress classification.
[image: Figure 8]FIGURE 8 | Confusion matrix. (A) The proposed LW-FHRNet, (B) the proposed LW-FHRNet without the ECA module.
TABLE 4 | Lightweight model performance comparison with and without the ECA module.
[image: Table 4]3.5 Experiment 3: Lightweight model comparison experiment
To clarify the performance of the network, this paper performs a comparative test with different lightweight networks. The classification performance of fetal distress under different lightweight networks is measured using accuracy, precision, recall, F1-score and model size metrics. The test performance comparison of the LW-FHRNet network with other commonly used lightweight networks is shown in Table 5. MobileNetV3 improves MobileNetV2 by using a deep separable convolution +SE channel attention mechanism + residual structure connection to further reduce the computational effort. The overall structure of small and large is the same, and the difference is the number of bnecks and channels. MobileNetV3-Small achieves 85.71% accuracy, proving that the network has a strong feature learning capability. MobileNetV3-Large has better accuracy than MobileNetV3-Small, but the number of network parameters has increased significantly due to the increase in the number of bnecks and channels. The ShuffleNet-V2 network improves the ShuffleNet-V1 network architecture in terms of optimizing memory access cost (MAC), reducing network fragmentation, and decreasing element operations. Due to the small number of parameters in the ShuffleNet-V2 model, it performs poorly in terms of accuracy, with only 83.33%. Due to the low number of parameters in the ShuffleNet-V2 model, its performance is relatively poor, with an accuracy of 83.33%.
TABLE 5 | Performance comparison of different lightweight models for fetal distress classification.
[image: Table 5]LW-FHRNet incorporates an efficient cross-channel attention mechanism without downscaling on the base unit of ShuffleNet-V2. The channel interaction strategy effectively improves the performance of channel attention and enables LW-FHRNet to have a more accurate recognition performance. The ROC curves of LW-FHRNet and other commonly used lightweight network models are shown in Figure 9A. The proposed network in this paper has the best performance with 97.96% AUC. A comparison of the accuracy and model size of LW-FHRNet with other commonly used lightweight networks for fetal distress classification is shown in Figure 9B. LW-FHRNet achieves 95.24% accuracy for fetal distress classification, which is higher than other commonly used lightweight networks. Additionally, it has the lowest computational cost, and the number of network parameters is only 0.33 M, which is much lower than other commonly used lightweight networks.
[image: Figure 9]FIGURE 9 | Classification performance of different lightweight models. (A) ROC curves of different lightweight models; (B) Acc and parameters of different lightweight models, where green, blue, purple, and red refer to MobileNetV3-Small, MobileNetV3-Lagre, ShuffleNetV2, and LW-FHRNet (Ours).
4 DISCUSSION
In this paper, a lightweight network based on cross-channel interactive attention mechanism is proposed to effectively fuse channel features and reduce model complexity to help obstetricians to objectively assess fetal distress. In the experiments, the classification effects of wavelet packet decomposition with different layers as feature maps were first compared. And the optimal number of wavelet packet decomposition layers was chosen as 2-layer. Then two different network architectures (LW-FHRNet and LW-FHRNet-without-eca) were used. The results showed that the attention machine module effectively improves the classification performance of fetal distress. Finally, a comparison with other lightweight models was made to show that the lightweight network proposed in this paper outperforms other common lightweight networks.
To analyze the significance of the results, the algorithm in this paper is compared with recent related work in the diagnosis of fetal distress using the CTU-UHB database. The results are shown in Table 6, which measures the performance of this research work in terms of accuracy (Acc), sensitivity (Se) and specificity (Sp). Compared with (Zarmehri et al., 2019), the method of this paper has higher Se and Sp under the same fetal distress division criteria, which further highlights the advantages of our model. Compared with (Alsaggaf et al., 2020), they also have good classification accuracy, but they use the traditional machine learning classification method, which requires manual design to extract a large number of features. The feature extraction process is complex and computationally intensive. Compared with (Baghel et al., 2022), they have higher accuracy than the model in this paper, but they use regular CNN convolution for feature extraction. The parameter number and computational time still need to be improved and optimized for end-application deployment.
TABLE 6 | Comparison of recent studies on the prediction of fetal distress using the CTU-UHB database.
[image: Table 6]In conclusion, the lightweight network model based on the cross-channel interactive attention mechanism proposed in this paper achieves better classification results in fetal distress diagnosis. The ShuffleNet-V2 unit combined with the local cross-channel interactive attention mechanism is used to build a lightweight network, which ensures a low number of parameters and achieves effective network performance improvement.
However, one limitation of the study in this paper is the criteria for discriminating between normal and distressed samples. The current work generally endorses the use of umbilical artery blood pH as a criterion for classification, since pH is an objective response to the fetal oxygen cell supply (Zarmehri et al., 2019) and also to the severity of fetal acidosis (Vayssiere et al., 2007). However, as shown in Table 6, a variety of pH values were used in different research works. There is not yet a universally accepted pH value. In future research work, the study will focus on exploring the pH value of pathological samples. Meanwhile, the BDecf index can reflect the degree of fetal acidosis (Liu et al., 2021). Therefore, a more precise classification of fetal distress can be performed by combining pH and BDecf in subsequent studies.
5 CONCLUSION
In this work, a lightweight network (LW-FHRNet) based on ECA-Shuffle units is proposed for fetal distress classification of FHR signals. After preprocessing, the FHR signal is segmented into 20-min segments, and the wavelet packet decomposition operation based on db1 to db5 wavelet basis functions is performed on each segment. Each segment obtains five wavelet packet coefficient matrix feature maps, which are used as input to the model and vote on the classification result. The ECA-Shuffle unit performs feature extraction on the feature map to fully learn the feature information. We integrate an efficient local cross-channel interactive attention mechanism without dimensionality reduction to reduce model complexity and ensure performance improvement. In this paper, the CTU-UHB open source database is used to test the classification performance of the proposed network. A pH value of 7.05 was used as the gold standard for classification. The proposed algorithmic model achieves excellent results of 95.24%, 90.48%, and 100% for Acc, Se and Sp, respectively.
Although the proposed lightweight network achieved good results in classifying fetal distress, there is still a gap to reach the clinical diagnosis level of physicians. In order to achieve better auxiliary diagnosis, we will do further exploration in future work. On the one hand, the data from clinical fetal heart monitoring contain simultaneous UC signals and FHR signals, but only FHR signals are used to assess fetal distress because of the poor quality of UC signals in publicly available datasets. In the clinic, the UC signal is also an important basis for physicians to diagnose fetal distress. Therefore, the combination of FHR signals and UC signals needs to be considered in further studies. On the other hand, we are considering more time-frequency transform features to improve the classification performance for fetal distress, including Empirical Wavelet Transform, Hilbert-Huang Transform, Singular Spectrum Analysis, etc.
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Background: Atrial fibrillation (AF) is a prevalent arrhythmia, that causes thrombus formation, ordinarily in the left atrial appendage (LAA). The conventional metric of stroke risk stratification, CHA2DS2-VASc score, does not account for LAA morphology or hemodynamics. We showed in our previous study that residence time distribution (RTD) of blood-borne particles in the LAA and its associated calculated variables (i.e., mean residence time, tm, and asymptotic concentration, C∞) have the potential to improve CHA2DS2-VASc score. The purpose of this research was to investigate the effects of the following potential confounding factors on LAA tm and C∞: (1) pulmonary vein flow waveform pulsatility, (2) non-Newtonian blood rheology and hematocrit level, and (3) length of the simulation.



Methods: Subject-Specific data including left atrial (LA) and LAA cardiac computed tomography, cardiac output (CO), heart rate, and hematocrit level were gathered from 25 AF subjects. We calculated LAA tm and C∞ based on series of computational fluid dynamics (CFD) analyses.



Results: Both LAA tm and C∞ are significantly affected by the CO, but not by temporal pattern of the inlet flow. Both LAA tm and C∞ increase with increasing hematocrit level and both calculated indices are higher for non-Newtonian blood rheology for a given hematocrit level. Further, at least 20,000 s of CFD simulation is needed to calculate LAA tm and C∞ values reliably.



Conclusions: Subject-specific LA and LAA geometries, CO, and hematocrit level are essential to quantify the subject-specific proclivity of blood cell tarrying inside LAA in terms of the RTD function.



KEYWORDS
mean residence time, computational fluid dynamics, confounding variables, pulmonary vein flow, pulsatility, hematocrit, simulation length





1. Introduction

Atrial Fibrillation (AF), the most common type of arrythmia, was estimated to afflict 33.5 million people globally in 2010 (1). The prevalence of this arrythmia has been estimated to be increased to 15.9 million people in the United States alone by 2050 if the incidence trend continue to rise (2–4). AF patients are clearly at an elevated risk of morbidity and mortality. The most dangerous complication is thromboembolism (TE) for which AF is an independent risk factor. The loss of effective atrial contractile function and sinus rhythm contribute to reduction in cardiac output and leads to flow stasis and thrombus formation, and consecutively raises the risk of cardioembolic events and stroke. AF patients have a 3–5 fold higher risk of stroke and it is estimated that about 15% to 20% of strokes in the US each year can be related to AF (5, 6).

Many of these strokes are caused by thrombi originating in the left atrial appendage (LAA) due to its complex morphology that is conducive to blood stasis: 91% and 50% of thrombi in nonvalvular AF and valvular AF, respectively, are found in the LAA (7–9). Each patient is evaluated for TE risk. Currently, clinical data are the sole factors that are being used to predict stroke and TE risks in AF patients in a clinical setting, with CHA2DS2-VASc score being the most common metric (10). Efforts have been made to improve the risk stratification for thromboprophylaxis to find the higher risk patients more effectively (11). However, many inconsistencies have been reported among the risk stratification schemes (12).

Several studies have employed computational fluid dynamics (CFD) to analyze the blood flow fields in LA and LAA. In these studies, surrogates of blood flow fields have been studied to associate the dynamics of the blood flow inside the LA and LAA to risk of clot formation. There are several examples of these surrogates, including but not limited to: shear strain rate, wall shear stress (13, 14), oscillatory shear index, time-averaged wall shear stress (15, 16), time-averaged velocity (13, 17–21), particle resident time (22, 23), local relative residence time (16, 24–26), residual virtual contrast agent (13, 18, 19, 27), vortex structure (14, 17–20, 25), flow kinetic energy (25), age stasis (28), and endothelial cell activation potential (ECAP) (16, 29–31). The most accurate approach to simulate clot formation is to include the mechanics of the blood cell (i.e., red blood cells, platelets, etc.) transport into the model, and couple it to the models of thrombus formation and coagulation cascade processes. This approach is associated with substantial computational cost to perform multiscale simulations (32). Qureshi, et al. (21) were able to model thrombogenesis in LA and LAA in a small cohort using a simplified coagulation model. They showed that increased blood stasis in the LAA results in accumulation of thrombin which can lead to thrombus (21). A well-known method to characterize stasis and propensity of blood cells to reside inside the LAA is to calculate the residence time of discrete phase blood borne particles inside the LAA using the Lagrangian approach. However, this approach requires tracking of many individual particles as well as a very fine grid to resolve the flow field with sufficient resolution, making it computationally too expensive. Alternatively, the Eulerian approach can be used to characterize spatial and temporal distributions of blood-borne particle concentration, as opposed to tracking each individual particle. The Eulerian approach, which significantly reduces the computational cost, has been utilized for quantifying indices correlated with thrombus formation (33–36). We have recently reported that blood-borne particle residence time distribution (RTD) and its associated variables (i.e., mean residence time, tm, and asymptotic concentration, C∞), calculated using a CFD model of LA and LAA hemodynamics and the Eulerian approach, have the potential to enhance the ability of CHA2DS2-VASc score to stratify stroke risk in AF subjects (35). Subject-Specific LA and LAA geometries, cardiac output (CO), and heart rate (HR) were used. However, the same temporal pattern of LA inlet flow (i.e., pulmonary vein, PV, flow) was assigned for all AF subjects and simulations were performed for a fixed duration (150 s). In addition, we treated blood as a Newtonian fluid and used a fixed dynamic viscosity value for all AF subjects. It is reasonable to expect that these assumptions may have an impact on the calculated LAA RTD (i.e., values of LAA tm and C∞). Accordingly, the purpose of this study was to investigate the effects of the following potential confounding factors on calculated values of LAA tm and C∞: (1) PV flow waveform pulsatility (magnitude and temporal pattern), (2) non-Newtonian blood rheology and hematocrit level, and (3) length of the simulation.



2. Methods


2.1. Data acquisition

All study subjects included in this study were undergoing evaluation and treatment of AF, including medical management and procedural based treatments. Children were excluded from this study. Cardiac-computed tomography (CCT) images were obtained before AF catheter ablation procedure as a part of AF treatment at Heart and Vascular institute (University of Pittsburgh Medical Center; UPMC, Pittsburgh, PA, United States) and Heart Center (University of Leipzig, Leipzig, Germany). Multidetector Helical scanners with 64 and 256 rows were used (Brilliance 64, Philips, Netherlands and Revolution Apex, General Electric Medical System, LLC., Chicago, IL, United States). Electrocardiogram (ECG)-gated acquisition was employed to one beat in cranio-caudal orientation from the aortic arch onto the diaphragm. The acquisition parameters were: 0.6 mm beam collimation, 0.625–1.25 mm thickness, 70–120 kV, 850 mA s, and 20–30 cm field-of-view. Iodinated contrast agent (Ultravist 370, Bayer Vital, Cologne, Germany) was injected (90 ml) during 20 s of end-inspiratory breath holding challenge and a timing bolus-chase injection (20 ml at 5 ml s−1). Echocardiography-based measurements of left ventricle short-axis end diastolic and end-systolic diameters were used to calculate stroke volume using the Teichholz formula (37). Cardiac output was calculated as the product of heart rate and stroke volume. Subjects included in this study were part of another study focused on establishing a clinical database of subjects undergoing evaluation and treatment of AF, including medical management and procedural based treatments (i.e., ablation, device-based therapies with pacemakers/defibrillators, and LAA closure devices).



2.2. Imaging, segmentation, and computational fluid dynamics

Contrast-enhanced CCT DICOM images of 25 AF subjects with distinctive LAA morphologies were processed to obtain a 3D representation of the LA surface, including the LAA and four pulmonary venous inlets, until the mitral valve plane. The LA-LAA surface geometries were segmented manually. The images were cropped and smoothed using a median filter with a kernel of 5 × 5 × 5 in ParaView (version 5.9.0, Kitware, Inc., Albuquerque, NM, United States). The Marching Cubes method was used to generate an iso-surface representing the LA surface, which included the PV, LA and LAA walls, and the mitral valve plane (excluding the valves themselves). The extracted surface was smoothed out for computational fluid dynamics mesh using Geomagic Studio (version 10, Geomagic, Inc., Research Triangle Park, NC, United States) and ANSYS SpaceClaim (version 2020 R2, ANSYS Inc., Canonsburg, PA, United States) to remove spikes and reduce noise (i.e., simplifying polygons). A detailed flowchart of the LAA segmentation process is provided in Sanatkhani and Menon (38). In short, the size of mesh elements was adjusted based on surface curvature to accurately reflect the topology. As an example, the mesh at the end of the LAA is more detailed than at the center of the LA. The processed geometries were meshed in ANSYS Meshing (version 2020 R2, ANSYS Inc., Canonsburg, PA, United States). The methods and parameters used to mesh the geometries were based on Sanatkhani, et al. (35), with a smaller maximum tetrahedron edge length of 3 mm. Although the total number of mesh elements were typically ∼800,000 tetrahedrons, up to 2,000,000 tetrahedrons were used for subjects with large and complex LAAs.

Blood density was considered ρ = 1,060 kg m−3 and in case of Newtonian fluid assumption, the dynamic viscosity was considered μ = 0.00371 Pa s when studying the effects of pulmonary waveforms as a confounder (Section 3.2.1) and was adjusted according to the hematocrit level when studying the effects of hematocrit and non-Newtonian model as a confounder (Section 3.2.2). The related governing equations have been discretized using spatial and temporal discretization schemes in OpenFOAM (version 8, The OpenFOAM Foundation Ltd, Inc., UK.). Throughout this study walls were assumed to be impermeable, rigid, and with no-slip boundary conditions where pressure gradient is zero. Further, the mitral valve was supposed to be wide open for simplicity and reducing the computational costs. Neumann boundary condition was used at the mitral valve where both gauge pressure and velocity gradient set to zero. Furthermore, the outlet (i.e., mitral valve) was extended to prevent outlet backflow divergence while developing a uniform flow with zero velocity gradient and zero pressure gradient at the outlet. Inlets were set with a Dirichlet boundary condition where a blood velocity inlet profile was given at PV inlets based on PV flow waveform. The PV inlets were cropped to ensure that all subjects had four PV inlets. The flow rate was distributed among the PV inlets based on their cross-sectional area, resulting in uniform and equal velocity inlets for all PV inlets.

More detailed explanation regarding the imaging, segmentation, and CFD methods is presented in Sanatkhani, et al. (35, 38).



2.3. Quemada viscosity model

Due to the focus of this study around the stasis region (very low shear strain rate) inside the LAA, it is crucial to take into account the effects of the shear thinning behavior of whole blood. Further, it has been shown that blood viscosity is very sensitive to hematocrit (39).

Using conservation of momentum, the equation of motion (Cauchy's equation of motion) is:

[image: Inline Image]

where D/Dt is material derivative, t is time, x is coordinate direction, ρ is density, τ is stress tensor, and u is velocity. To include blood viscosity properties in our model we used generalized Newtonian fluid assumption where viscosity depends on the shear rate. Based on this assumption, the constitutive equation for an incompressible fluid using Stokes assumption can be written as follows (40):

[image: Inline Image]

where p is pressure, δ is Kronecker delta, µ is viscosity, and eij is the strain rate tensor1. Equation (2) can be substituted into Equation (1) to derive the general form of Navier-Stokes equation. The strain rate tensor in Equation (2) is given by:

[image: Inline Image]

Due to the small mesh size, especially inside the LAA, we assumed that a single value of shear strain rate will apply in all directions. With the assumption of generalized Newtonian fluid, we calculated the magnitude of strain rate, [image: Inline Image], as follows (39):

[image: Inline Image]

Based on the calculated strain rate, [image: Inline Image], at each time-step and each mesh cell the viscosity model was updated to calculate the appropriate apparent viscosity for each cell (32). The Quemada viscosity model (41, 42) has been chosen as a reliable approach to approximate the non-Newtonian properties of blood especially in the LAA where strain rate is low. We employed the Quemada viscosity model in the present study for several reasons: (1) It incorporates blood hematocrit as an explicit parameter, (2) It reproduces the blood non-Newtonian behavior well and matches the performance compared to other available models (43), and (3) It is relatively simple to implement this blood rheological characterization in the CFD code. Based on the Quemada model the blood apparent viscosity, μa, can be calculated as:

[image: Inline Image]

where μp = 0.00123 Pa s is plasma viscosity and Hct is hematocrit level. Coefficient k and its other related coefficients are calculated using the relations in Table 1.


TABLE 1 Quemada viscosity model coefficients.

[image: Table 1]



2.4. OpenFOAM solvers

Previous studies have concluded that laminar assumption is adequate in context of flow modelling in LA (16, 44). Therefore, we solved the governing equations using a laminar solver developed from nonNewtonianIcoFoam solver in OpenFOAM by implementing the Quemada viscosity model into the nonNewtonianIcoFoam solver. We modified the ScalarTransportFoam solver for implementing the tracer transport simulations and conducted the tracer transport-related simulations only after a steady state flow was reached (after 25 cycles).

We used the asymptotic tracer concentration inside LAA (35) as our convergence criteria to choose the time step for our simulations. A time-step study was carried out in which independence of solutions to time-step = 500 µs was established. The first-order implicit and second-order least-square methods were used for time and pressure (as well as velocity gradient) discretization, respectively. Divergence terms and convection terms were discretized using first-order and second order upwind schemes, respectively. Tolerances for velocity, pressure, velocity, and concentration were set to be 10−8 m/s, 10−7 Pa, and 10−8, respectively. For these simulations, 24 threads of dual 12 core Intel Xeon Gold 6126 CPU with 2.6 GHz clock speed and minimum of 8 GB of RAM were used at the University of Pittsburgh Computing Research Center. The average execution time for each case in a steady flow using non-Newtonian model was ∼7 days to simulate 20,000 s of tracer concentration advection through LA/LAA. The codes and instructions regarding the solvers developed for this study have been made available via the project repository (https://github.com/sorooshsanatkhani/LAA-AF-Stroke).



2.5. LAA residence time distribution of blood-borne particles and associated indices

Previous studies have demonstrated that majority of thrombi in AF originate from the LAA. As a result, the focus of this study was on the LAA, rather than other locations (7–9). LAA RTD of blood-borne particles and associated indices (LAA tm, and C∞) were calculated to quantify the propensity of blood-borne particles to reside inside the LAA. The details regarding these calculations, including the graphical representation for the CFD simulations, are presented in (35). In short: tracer transport-related simulations were performed using fluid dynamic analysis to simulate the advection of a tracer through the LAA. The tracer concentration inside the LAA was recorded as C(t) and fitted to a triple exponential model that included an asymptotic term, C∞. The residence time distribution (RTD) function was used to quantify the dynamics of tracer clearance from the LAA, with the unit per second representing the normalized outflow of tracer material from the LAA at time t. Two measures of the propensity of particles to remain within the LAA were calculated: mean residence time (tm), which is the first moment of the RTD function, and C∞ [C∞ = C(t → ∞)].



2.6. Statistical analysis

Data for continuous variables are presented as mean ± standard deviation. For parameters in linear regression, mean ± standard error of the estimates is reported. Rank correlations between variables were calculated by Spearman rank correlation. Statistical significance for all comparisons was taken to be P < 0.05. A multiple linear regression analysis was conducted to identify the effects of 3 independent variables (i.e., CO and 2 PV flow waveform pulsatility indices, Table 2) on LAA tm or LAA C∞:

[image: Inline Image]

where, α is the intercept and β's are the coefficients of the independent predictor variables in the regression model. The last term in Equation (6) is included to account for the inter-subject variability of the intercept, where a set of 24 dummy variables are defined using effects coding (45):

[image: Inline Image]


TABLE 2 Pulmonary vein blood flow waveform pulsatility indices.

[image: Table 2]

The design matrix for the dummy variables, Di, is given in Equation (7).

The effects of hematocrit (3 levels, 27.4%, 45.5%, and 60.4%), blood rheology model (2 levels, Newtonian and non-Newtonian), and their interaction on LAA tm or LAA C∞, was tested by a multiple linear regression model:

[image: Inline Image]

where, α is the intercept and β's are the coefficients of the independent predictor variables, DN is the dummy variable to account for blood rheology model (DN = 1, if non-Newtonian, DN = 0, if Newtonian) and Di's are the dummy variables to account for the inter-subject variability in the intercept value as before [Equation (7)]. A single CO value (4.4 L min−1) with steady PV flow (i.e., no pulsatility) was used in the simulations for this model.

Regression parameter estimates are presented as mean ± standard error. Statistical analyses in this study were carried out in the MATLAB® (version R2022b, MathWorks, Inc., Natick, MA, United States). Additional details about the statistical analysis can be found in the Supplement.



2.7. Confounding factors

As discussed above, there are several confounding factors that can affect regarding the CFD-based modeling of hemodynamics and particle transport and consequently, the calculation of LAA residence time. In this section we present the sets of simulation that we used to examine the following confounding factors: (1) PV flow waveform pulsatility (magnitude and temporal pattern), (2) non-Newtonian blood rheology and hematocrit level, and (3) length of the simulation.


2.7.1. Simulation set 1: pulmonary vein flow waveform

Subject-specific 3D geometry can be obtained readily, however, it is not easy to measure all PV inlet blood flow waveforms in vivo. A study to investigate the effects of inlet blood flow waveform pulsatility (magnitude and temporal pattern) on LAA residence time is needed to examine whether the nature of the inlet flow (steady vs. pulsatile) affects LAA residence time. Accordingly, various PV blood flow waveforms were generated by modifying the template waveforms (Normal Pulsatile: Figure 1A; AF Pulsatile: Figure 1B; No Pulsatility: Figure 1C).


[image: Figure 1]
FIGURE 1
Three pulmonary vein flow waveform types. (A) Normal pulsatile pulmonary vein (PV) flow waveform. Systolic, diastolic, and reversal areas in during one cardiac cycle are shown. Further, the peak of each period is pointed out. (B) Pulsatile PV flow waveform that is seen in a typical atrial fibrillation patient. Systolic, diastolic, and reversal durations are marked. (C) PV flow waveform with no pulsatility.


In our cohort of 25 subjects, each subject was simulated using 9 settings of PV inlet blood flow pulsatility (resulting in a total of 225 observations): 3 levels of mean PV blood flow (i.e., CO = 3.3, 4.4, and 5.5 L min−1) and 3 types of PV flow waveform [pulsatile waveform seen in a typical normal subject, pulsatile waveform seen in a typical AF subject, and no pulsatility (steady); Figures 1A–C] for each of the three levels of CO. The mean residence time of blood-borne particles in LAA, LAA tm, and asymptotic concentration inside LAA, LAA C∞, were quantified in each simulation.

To investigate the effects of pulsatility of PV blood flow waveforms, we characterized PV blood flow waveform pulsatility in terms of two indices (Table 2). Multiple linear regression analysis was used to identify the effects of CO and 2 PV flow waveform pulsatility indices on LAA tm or LAA C∞.



2.7.2. Simulation set 2: non-newtonian blood rheology and hematocrit level

We used our cohort of 25 subjects to investigate the effects of hematocrit level and non-Newtonian behavior of blood on the calculated indices (LAA tm and LAA C∞). The non-Newtonian behavior of blood was simulated for 3 different hematocrit levels (Hct = 27.4%, 45.5%, and 60.4%) using the Quemada viscosity model. Further, the equivalent Newtonian viscosity of each hematocrit level was calculated based on Figure 2 (μ = 2.5 × 10−3, 3.7 × 10−3, and 5.4 × 10−3 Pa s for Hct = 27.4%, 45.5%, and 60.4%, respectively). Six CFD-based simulations were conducted for each subject (resulting in a total of 150 observations): non-Newtonian and Newtonian behavior of blood for each of the 3 levels of hematocrit. A pulmonary vein flow waveform with no pulsatility with cardiac output of 4.4 L min−1 was used in these simulations. Multiple linear regression analysis was used to identify the effects of Hct, blood rheology model and their interactions on LAA tm or LAA C∞.


[image: Figure 2]
FIGURE 2
Blood viscosity as a function of shear strain rate and hematocrit using Quemada viscosity model and Newtonian fluid model. The equivalent Newtonian viscosity of each hematocrit level was calculated based on the corresponding viscosity calculated using Quemada model at [image: Inline Image]. Hct: hematocrit.




2.7.3. Simulation set 3: length of simulation

In theory, one needs to continue the CFD-based simulation of tracer transport to infinite time for calculating the mean residence time (46). Clearly, this is not possible. Therefore, simulations must be truncated at some point in time. LAA tm and LAA C∞ values are calculated based on these truncated data and an assumed decay function. Based on our study, the temporal pattern of the LAA tracer concentration decay following an impulse injection of tracer is complex—it is certainly not a single exponential decay. We chose a triple exponential decay function (capable of fitting to a period of fast tracer washout at the beginning of simulation, moderate washout rate in the middle, and slow washout rate at the end of the simulation) as a compromise between over fitting and accuracy. It is important to know what minimum length of simulation is necessary for a reliable calculation of the mean residence time. We calculated LAA tm and LAA C∞ for various simulation times over the range 625 s to 30,000 s.





3. Results


3.1. Study subject characteristics

A total of 25 subjects (15 males) with symptomatic AF (22 paroxysmal, 3 persistent) were studied. The average age, heart rate, cardiac output, and hematocrit level were 61 ± 11 years (range: 33–78 years), 64.1 bpm (range: 44–84 bpm), 3.8 L min−1 (1.9–6.8 L min−1), and 41.5% (35%–49%). The average CHA2DS2-VASc score was 1.9 ± 1.1 (range: 0 to 4).



3.2. Effects of confounding factors

In this section we present the results of our studies carried out to examine the effects of the following confounding factors: (1) PV flow waveform pulsatility (magnitude and temporal pattern), (2) non-Newtonian blood rheology and hematocrit level, and (3) length of the simulation.


3.2.1. Pulmonary vein flow waveform

Multiple linear regression analysis showed that only CO was a significant independent predictor variable (i.e., only βCO in Equation (6) was significantly different from zero, P < 0.0001); none of the coefficients associated with indices of PV waveform pulsatility (i.e., coefficients βSys and βRev) were significantly different from zero. This observation implies that both LAA tm and LAA C∞ decreased significantly as CO was increased, regardless of PV waveform type (Figure 3). Based on this study, an increase of 1 L min−1 in CO decreases the LAA tm by 2.43 s (±0.20 s; adj-R2 = 0.87; P < 0.0001) and C∞ by 2.09% (±0.19 s; adj-R2 = 0.89; P < 0.0001).


[image: Figure 3]
FIGURE 3
Three pulmonary vein flow waveform types and their relationship with the hemodynamic indices. Mean residence time and asymptotic concentration in left atrial appendage corresponding to different PV flow waveforms and cardiac outputs for a cohort of 25 patients. Data: Mean ± SD.




3.2.2. Non-Newtonian blood rheology and hematocrit level

The results of multiple linear regression analysis showed that both LAA tm and LAA C∞ are significantly affected by Hct, choice of blood rheology, and the interaction between the Hct and blood rheology model (P < 0.0001). Both LAA tm and LAA C∞ values for a given hematocrit level were significantly lower for the Newtonian model as compared the values for the non-Newtonian model (Figure 4). In both Newtonian and non-Newtonian models, both LAA tm and C∞ increased with increasing hematocrit level (Figure 4). The multiple linear regression model was used to relate LAA tm or LAA C∞ to hematocrit level using the non-Newtonian fluid characterization in simulations (Quemada viscosity model), respectively. Hematocrit level was found to be a significant independent variable as expected for both LAA tm (βHct = 0.65 ± 0.07; adj-R2 = 0.85; P < 0.0001) and LAA C∞ (βHct = 0.65 ± 0.05; adj-R2 = 0.83; P < 0.0001).


[image: Figure 4]
FIGURE 4
Mean residence time and asymptotic concentration inside left atrial appendage as a function of hematocrit using Newtonian and non-Newtonian models. Left atrial appendage mean residence time, LAA tm, LAA asymptotic concentration, C∞, increased as a function of cardiac output. Data: Mean ± SD.


To examine whether the fluid characterization (Newtonian vs. non-Newtonian) affects the rank ordering of subjects, we performed the Spearman rank correlation analysis of results obtained using the Newtonian model and the non-Newtonian model (i.e., Quemada model). Based on 150 simulations [75 Newtonian (25 subjects × 3 hematocrit levels) and 75 non-Newtonian], LAA tm and C∞ from the non-Newtonian model and the Newtonian model were highly correlated (ρ = 0.71, P < 0.0001 for LAA tm and ρ = 0.82, P < 0.0001 for LAA C∞).



3.2.3. Length of simulation

It was expected that the calculated LAA tm and C∞ values would reach an asymptotic steady state by the end of the 30,000 s simulation. The mean LAA tm increased and the mean LAA C∞ decreased as a function of the simulation time (Figure 5). Although some individual subjects reached steady-state after 30,000 s of simulation, it does not appear that the mean LAA tm and LAA C∞ for the cohort of 25 subjects reach steady-state values (Figure 5).


[image: Figure 5]
FIGURE 5
Left atrial appendage mean residence time, LAA tm, and asymptotic concentration, C∞ as a function of simulation length. LAA tm and C∞ did not reach a steady state even after 30,000 s of simulation. Data: Mean ± SD.


Although reaching a steady state is ideal, the consistency of the rank ordering of subjects is more important. Spearman rank order correlation analyses between LAA tm and LAA C∞ values calculated using 30,000 s simulation and results based on shorter simulation lengths were performed. Based on these results, 20,000 s found to be a sufficient length to calculate LAA tm (ρ = 0.9, P < 0.0001; Figure 6A) and LAA C∞ (ρ > 0.9, P < 0.0001; Figure 6B).


[image: Figure 6]
FIGURE 6
Left atrial appendage mean residence time, LAA tm, and asymptotic concentration, C∞ rank order correlation coefficient as a function of the length of simulation. The Spearman rank order correlation coefficient, ρ, between the LAA tm and C∞ for the reference group using 30,000 s of simulation (ρ = 1, by definition) and LAA tm and C∞ calculated using smaller simulation lengths.






4. Discussion

Tarrying of blood cells inside the LAA could lead in an increased risk of thrombus formation and, consequently, stroke. We have recently quantified the proclivity of blood cell staying within the LAA in terms of the RTD function, E(t), and related calculated variables: mean residence time of blood-borne particles in LAA, tm, and asymptotic concentration remaining inside LAA, C∞ (35). Even though it is important for these calculations to be subject-specific, only subject-specific LA and LAA morphologies were used in the previous study. The present study explored the effects of additional subject-specific variables [pulmonary vein (PV) flow waveform pulsatility, cardiac output, and hematocrit] and certain CFD model-related assumptions (Newtonian blood rheology, length of the CFD simulation) on the calculation of LAA RTD function and associated calculated variables (LAA tm and C∞). The key observations of the present study are as follows: (1) LAA tm and C∞ values are significantly affected by the mean value (cardiac output, but not the temporal pattern) of the PV inlet flow and hematocrit; (2) Although non-Newtonian blood rheology significantly increased both LAA tm and C∞, the rank ordering of LAA tm and C∞ were similar for Newtonian and non-Newtonian formulations; and (3) The length of CFD simulation should be at least 20,000 s for reliable calculations of LAA tm and C∞.

Several indices exist that relate blood flow patterns in LA and LAA to the probability of clot formation. These indices are directly calculated from flow the velocity field (e.g., wall shear stress, time-averaged wall shear stress, oscillatory shear index, time-averaged velocity, vortex structure, flow kinetic energy, and ECAP). In contrast, LAA RTD incorporates the transport of blood-borne particles, and it, by definition, quantifies the propensity of blood cell lingering within the LAA. Although the velocity field-based indices require only a short simulation time, we believe that LAA RTD has the capability to better simulate the transport and lingering of blood cells in LAA.

It has been suggested that the PV flow pattern seen in AF subjects, with diminished systolic flow and end-diastolic flow reversal (17), is associated with hemodynamic indices that predict higher chance of thrombus formation compared to that for the normal PV flow pattern (13). Several studies have shown that the flow pattern within in LA and LAA and LA-LAA wall contraction pattern in AF are the determinants of the thrombus formation (14, 17, 19). However, we showed in this study that PV flow waveform pulsatility does not affect the LAA RTD (i.e., representative of risk of thrombus formation in LAA), an observation that is consistent with the findings of Dueñas-Pamplona, et al. (44), suggesting that LA-LAA wall contraction pattern is more important than PV flow temporal pattern. The LAA blood stasis risk, as quantified by LAA tm and C∞, was significantly affected by the mean value of inlet flow (i.e., cardiac output), Therefore, the subject-specific LAA blood stasis risk can be reliably estimated using subject-specific LA and LAA 3D geometries and subject-specific cardiac output, without any need for subject-specific PV blood flow waveform.

The assumption that blood flow inside the left atrium (LA) can be modeled as a Newtonian fluid is considered reasonable due to the high strain rates present in the LA cavity, which cause blood to behave like a Newtonian fluid (13, 14, 16, 20). However, due to the existence of stasis regions inside the LAA and associated low shear strain rate, non-Newtonian blood rheology might be important in calculating LAA tm and C∞. We observed that both LAA tm and C∞ were affected significantly by hematocrit level and blood rheology (Newtonian vs. non-Newtonian): both LAA tm and C∞ values were higher for the non-Newtonian formulation.

Gonzalo, et al. (47) have investigated blood rheology effects on CFD estimations of LAA blood stasis, including LA-LAA residence time. They used the Carreau–Yasuda rheology model parameters to mimic Hct = 37% and 55%. In contrast, we chose the Quemada model because it allows us to explicitly adjust the Hct values. However, both models have been demonstrated to perform well (43). Further, they employed a modified rheology model wherein non-Newtonian effects are activated based on the local residence time. Gonzalo, et al. (47) calculated residence time by solving a scalar advection transport equation where the source term is 1, resulting in an increasing age of fluid over time (48). The mean residence time in a specific region can then be calculated by averaging the age of fluid at each grid point over a period of time. In contrast, the present study follows the concept of mean residence time as described in Fogler (49), which involves solving a scalar advection transport equation with a source term of zero and an initial condition where the region of interest has a scalar (i.e., tracer) concentration of 1. The mean residence time is then calculated based on the concentration of the tracer inside the region as a function of time, as described in more detail in Sanatkhani, et al. (35). Although the methods used to investigate blood rheology effects differ between the Gonzalo, et al. study (47) and the present study, both studies are aiming to identify thrombus-promoting flow patterns and the results of both studies are similar: higher Hct values are associated with higher residence time and there is a greater effect of Hct on residence time at higher Hct values. Researchers can choose between these two methods for modeling blood rheology and calculating mean residence time depending on their specific research goals and the availability of required input parameters.

The choice of blood rheology model did not affect LAA tm and C∞ rank ordering among the study subjects. Therefore, one might choose to quantify the LAA tm and C∞ in a study cohort using Newtonian fluid model with a fixed value of viscosity corresponding to the subject-specific hematocrit level. However, the incremental computational cost of using a non-Newtonian blood rheology model (i.e., Quemada model) was negligible. Therefore, we recommend that the non-Newtonian blood rheology model be used in all future CFD simulations.

It is important to note that tm will continue to rise if certain amount of tracer is stuck in the LAA (never gets washed out). This can be readily seen from the definition of tm (35, 47). On the practical level, estimated tm and C∞ will be used to rank order the thrombogenic risk. Our results indicate (Figure 6) that the rank ordering at 20,000 s is more than 90% similar to the rank ordering for 30,000 s. Therefore, it is reasonable to conclude that 20,000 s is a sufficient simulation time. Despite this, the CFD simulation for a single subject still requires a significant amount of computational time (∼7 days using 24 threads of dual 12 core Intel Xeon Gold 6126 CPU with 2.6 GHz clock speed and minimum of 8 GB of RAM). Additional enhancements of the CFD model, such as one-way and two-way fluid-wall interactions and multiscale analysis of biochemical coagulation cascade, will further increase the computational cost. A new method to reconstruct RTD, introduced by Sierra-Pallares, et al. (48), might be able to reduce the computational cost of LAA tm and C∞; however, its applicability and accuracy has not been tested using LA-LAA geometries. In recent studies, deep neural network has been implemented to predict CFD simulation results in LA-LAA geometries (29). Although this approach is expected to decrease the computational cost significantly, many CFD simulations are still needed to develop the ground truth for LAA tm and C∞ (and any other indices developed in the future) that is necessary for training the deep neural network.

Our data indicate that mean residence time, tm, and asymptotic concentration, C∞, are correlated and therefore, they may be used interchangeably. However, if the tracer washes out completely after a certain time, C∞ will be zero and therefore, tm is the only index that can be used to discriminate between subjects. We believe that both tm and C∞ should be reported to provide a comprehensive understanding of the residence time distribution.

Finally, we performed a preliminary analysis to explore whether quantifying mean residence time helps stratify stroke risk. The mean residence time was calculated as a function of subject-specific LA-LAA morphology, CO, and Hct. The plot of mean residence time against CHA2DS2-VASc score (Figure 7A) illustrates that both CHA2DS2-VASc score and mean residence time may be helpful in stratifying patients. The patient at the bottom right of the figure (Subject #4) has a high stroke risk according to the mean residence time, tm, but this risk may be overlooked if the focus is only on CHA2DS2-VASc score. In contrast, the patient in the top left of the figure (Subject #2) has a low residence time but a high CHA2DS2-VASc score, demonstrating that residence time alone is not sufficient. A discriminative line can be envisioned in the figure to suggest the possibility of using mean residence time along with CHA2DS2-VASc score to stratify stroke risk in future studies. Data from four subjects are shown to illustrate the variability of the tracer washout among these subjects (Figure 7B). The morphology of the LAA seems to have a direct impact on tm. As shown, Subject #3 had multiple dominant lobes and Subject #4 had a long LAA with a sharp bend. These complex LAA shapes contributed to the relatively high tracer concentration in the LAA of Subjects #3 and #4 even after 25,000 s. However, the visual complexity of the LAA does not always dictate its residence time. For example, Subject #1 appears to have a complex shape, but due to its high cardiac output, the calculated residence time was not high. In a future study, we will compare the simulation results with thrombogenic events (in the context of developing a prediction algorithm). However, that was not the goal of this study. Comparing thrombogenic events with simulation results for the purpose of risk assessment requires a larger cohort with a sufficient number of thrombogenic events to achieve statistical significance. This is our goal in our next study, where we will collect longitudinal data from a much larger patient cohort. The primary aim of this study was to investigate the effects of some subject-specific variables on the calculation of LAA RTD function and associated calculated variables (LAA tm and C∞), so that we can use the “optimized” approach for patient-specific CFD-based modeling in future studies.


[image: Figure 7]
FIGURE 7
Relationship between LAA tm and CHA2DS2-VASc score and visual representation of tracer washout in the LAA of four subjects. (A) The plot of CHA2DS2-VASc vs. tm reveals that a patient with a stroke (marked with diamond symbols) could potentially be overlooked if LA hemodynamics are not considered, as subject #4's tm values indicate a high risk of stroke. Subject #4 has a history of stroke, which is not reflected in their CHA2DS2-VASc score. However, tm values may be able to predict the risk of stroke. To evaluate the accuracy of CHA2DS2-VASc in predicting stroke, data points corresponding to previous strokes were excluded. Only 17 subjects are shown in this figure because complete physiological/clinical data were not available for the remaining 8 subjects. (B) Contours of tracer concentration at selected times show the tracer washout in each subject from most of the LAA, with the exception of the tip. Among these four subjects, Subject #2 had the simplest morphology, while Subjects #3 and #4 had more complex morphologies with multiple lobes, long LAA, and a sharp bend.




5. Limitations

Although we examined the effects of some subject-specific and other confounding variables on the calculation of LAA tm and C∞, there are additional considerations that merit evaluations. The contractility pattern of the LA-LAA wall during atrial fibrillation (AF) has been shown to increase the risk of thrombus formation as predicted by fluid dynamics indices. Rigid wall simulations are insufficient in modeling these effects (14, 16–18, 20, 21, 25, 27, 44). In this study, we accepted the rigid wall assumption as a limitation for two reasons: (1) A 4D data set (such as CT or MRI) is needed to impose LA-LAA wall motion as a boundary condition for more sophisticated fluid-structure interaction models that require LA-LAA passive and active wall mechanical properties (17, 20). These data were not available for this study. Additionally, using population average wall motion patterns from literature (which implies using the same temporal pattern of movement for all subjects) is unlikely to alter the ranking of subjects (more on this in point #2). (2) In our follow-up study, which aims to assess stroke risk, we value the ranking of calculated mean residence time among subjects. Studies have shown that rigid wall assumptions may overestimate thrombogenesis risk, as expected. However, there is no conclusion that this assumption would alter the ranking of calculated variables. While there are studies in the literature that have included wall motion in their simulations (14, 17, 19, 44), they have only included a small number of subjects, which is not suitable for risk assessment. We acknowledge these limitations in the present study and future parametric studies that examine the effects of LA-LAA wall properties and contraction patterns on LAA tm and C∞ in larger cohorts are needed.

For simplicity, we assumed the mitral valve to be wide open in the CFD simulations. Further, both gauge pressure and velocity gradient were set to zero. It is possible that a more realistic (physiologic) outlet boundary condition will affect the calculation of LAA tm and C∞. It is postulated that the presence of mitral regurgitation (MR) modifies the stroke risk in AF subjects; but this issue is still controversial (49). Incorporating the models of mitral valve and left ventricular diastolic behavior will enable us to study the effects of the outlet boundary conditions (17). Further, it has been shown that patient-specific mitral valve velocities acquired from echocardiography and pressure/velocity profiles at the pulmonary vein inlets would improve the simulations (50).



6. Conclusions

LAA blood stasis risk, as quantified by LAA tm and C∞, is significantly affected by the mean value of inlet flow (i.e., cardiac output), but not by temporal pattern of the inlet flow. In addition, subject-specific hematocrit is also an important factor and should be considered as one of the input variables for the CFD simulations. Therefore, the subject-specific LAA blood stasis risk can be reliably estimated using subject-specific LA and LAA 3D geometries, subject-specific hematocrit, and subject-specific cardiac output, without any need for subject-specific PV blood flow waveform. Further, at least 20,000 s of tracer concentration transport simulation is needed to calculate LAA tm reliably and consistently. These results will be used to adjust our CFD-based simulation methodology for calculating LAA tm and C∞ in future stroke risk stratification studies.
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The heart is a vital organ in the human body. Research and treatment for the heart have made remarkable progress, and the functional mechanisms of the heart have been simulated and rendered through the construction of relevant models. The current methods for rendering cardiac functional mechanisms only consider one type of modality, which means they cannot show how different types of modality, such as physical and physiological, work together. To realistically represent the three-dimensional synergetic biological modality of the heart, this paper proposes a WebGL-based cardiac synergetic modality rendering framework to visualize the cardiac physical volume data and present synergetic correspondence rendering of the cardiac electrophysiological modality. By constructing the biological detailed interactive histogram, users can implement local details rendering for the heart, which could reveal the cardiac biology details more clearly. We also present cardiac physical-physiological correlation visualization to explore cardiac biological association characteristics. Experimental results show that the proposed framework can provide favorable cardiac biological detailed synergetic modality rendering results in terms of both effectiveness and efficiency. Compared with existing methods, the framework can facilitate the study of the internal mechanism of the heart and subsequently deduce the process of initiation, development, and transformation from a healthy heart to an ill one, and thereby improve the diagnosis and treatment of cardiac disorders.


Keywords: cardiac synergetic configuration, biophysical detail, WebGL-based rendering, interactive configuration histogram, physical and electrophysiological correlation




1 INTRODUCTION


Globally, the number of people by heart disease is increasing. Heart disease has become a serious threat to human health, ranking among the three leading causes of death. To prevent and cure heart disease, it is necessary to understand the mechanisms underlying cardiac physiology and pathology in depth. Although clinical diagnosis and relevant data have provided significant support for the study of heart disease, it is still challenging to explore physiological mechanism and pathogenesis of the heart to assist in the treatment of heart disease. Due to the restricted experimental environment or condition, the study of the heart is significantly hindered. Therefore, it is crucial to create a virtual heart that can simulate the cardiac function (Zhang et al., 2000).

To help researchers understand the physiological mechanisms of the heart and the etiology of heart disease, computational cardiology models and simulate the heart by comprehensively leveraging cardiac physiology, mathematical modeling methods, and virtual reality (Funk et al., 2008). In 1960, Noble implemented the first computational model of cardiomyocytes for the first time, which opens up the modeling research of cardiac electrophysiological activity (Noble, 1960). So far, researchers have built hundreds of models of various species and types, from subcellular and cellular to tissue and organ levels. Computation and visualization of cardiac models compute and simulate features under physiological and varied pathological states, such as cardiac structure, biomechanics, biochemical, and electrophysiological activity and turn them into graphics and images that replicate the activity processes of the human heart in terms of morphology, structure, and function.

Researchers have built heart models based on geometry (Kerckhoffs et al., 2003; Sermesant et al., 2006), tissue slices (Vetter and McCulloch, 1998; Nielsen et al., 1991; Primoz et al., 2007; Zhang et al., 2016), and imaging data (Virag et al., 2002; Helm Patrick et al., 2005; Viatcheslav et al., 2011; Aslanidi Oleg et al., 2013) to performance the structure of tissues and organs of the heart for the non-invasive research of cardiac function mechanisms. Burton Rebecca et al. (2006). (Gernot et al., 2009) built a high-resolution dual-chamber model of the heart based on ultra-high resolution ex-vivo MRI data of the small mammalian heart. The model can show tissue-level details of the cardiac structure. To reveal detailed structures of the human heart, considerable studies have focused on visualizing the cardiac volume data by various algorithms based on direct volume rendering (Liu et al., 2014; Zhang et al., 2011; Wang et al., 2011; Gai et al., 2011; Zhang et al., 2016). In addition, ex-vivo MRI images (Vadakkumpadan et al., 2008; Bordas et al., 2011) and micro-CT scans (Stephenson Robert et al., 2012) have been used to reconstruct the entire cardiac conduction system (CSS) semi-automatically.

Because of the complicated cardiac anatomy, some heart tissues cannot be easily distinguished from adjacent tissues when viewed from a particular viewpoint. To improve visualization effects, Zhang et al. (2014a) proposed a method of light enhancement to emphasize specific cardiac tissues while weaken the display of other tissues. However, this method considers the visualization of myocardial fibers orientation and the electrochemical reaction to stimulation conduction. Chen et al. transformed the reconstructed fiber bundles into scalar field that represent their structures based on DTI (Diffusion Tensor Imaging), and then proposed texture synthesis method to synthesize the constructed guidance vector field and sample texture into volume texture. Finally, they established a line-based volume illumination formulation to solve the problem of visualizing myocardial fibers and implemented a GPU-based technique for biological tissue fibers visualizations (Chen et al., 2009a; Chen et al., 2009b; Ming-Yuen et al., 2009). Yuan and Wang, 2014 applied DTMRI (Diffusion Tensor Magnetic Resonance) to analyze myocardial fiber orientation (Yuan et al., 2011) and proposed a mixed filter of the 3D Gauss and directional distance filter that preserves vector directions of myocardial fibers while suppressing noises in vector fields (Yuan and Wang, 2014). On this basis, Yuan tracked the orientation of myocardial fibers and combined cardiac features of scalar and vector to visualize myocardial fiber orientation and the structure of cardiac biological tissues.

In the field of computational visualization of cardiac function, (Edward et al., 2009) built an image-based 3D ventricular model of an infarcted canine heart, which simulates the mechanism of epicardial re-entry morphology. Sato et al. (2009) and Dressler, (2015) simulated the electrical activity of cardiac tissues and organs. However, the model they proposed could not represent the functional and structural characteristics of a real human heart since it is an animal heart model. Burton Brett et al. (2013) of Utah University highlighted the simulated cardiac ischemic regions by non-deterministic visualization. Aslanidi et al. (2011) from the University of Manchester built a complete human atrial model to visualize the multi-scale dynamic behavior of the human atria during the normal rhythm and atrial fibrillation, thus revealing the conduction mechanisms of the electrophysiology of atrial tissue in the normal and arrhythmic conditions. Lu et al. (2015a) built a model of human ventricular ischemia and visually analyzed the effect of acute global ischemia on ventricular rhythm and subsequently on re-entrant arrhythmogenesis (Lu et al., 2015b). Trayanova et al. (2010) studied the mechanism of ventricular arrhythmias by building 3D computational simulation models. Xiong et al. (2017) visualized the cardiac anatomical structure and its physiological functions by CT and computer simulation. Zhang et al. (2012) developed the multi-modality visualization methods for both heart anatomical data and electrophysiological data (Zhang et al., 2012; Zhang et al., 2016; Zhang et al., 2014b). Vahid et al. (2014) applied the three-dimensional bionic technique to construct models to analyze the structure and function of the failing heart. These methods offer effective observation method representing the anatomical and biophysical information in particular regions of interest of the heart under both normal and pathological conditions.

Direct volume rendering generates two-dimensional images based on three-dimensional data fields. Using a user defined transfer function, it composes a result image by aggregating the colors and opacities of relevant voxels of the volumetric data sets (Kruger and Westermann, 2003). Among them, Volume Ray Casting (Ljung et al., 2016) is a common technique for volume visualization which displays the salient characteristics of the volume set. Although it is not photo realistic, it shows important characteristics of the dataset. Due to its capability of directly displaying obscured internal features and demonstrating more information about the volume data, direct volume rendering has drawn increasing attention in the research of cardiac computation and visualization. Current cardiac rendering methods focus on the single modality, so these methods cannot demonstrate the synergistic associations between physical and physiological modalities.

In this paper, we construct a web framework based on WebGL for the visualization of the heart, implement the visual computation of cardiac modality and its coordinated functions, and provide a realistic representation of the 3D information of organic functional modalities, such as cardiac structure, biochemical reactions, and electrobiological activities from a holistic perspective. Meanwhile this framework enables direct web low-level 3D graphics acceleration which significantly improves web rendering speed, and the space can be saved compared to traditional visualization systems. And owing to the advantage of cross-platform of WebGL, our framework is convenient for porting and thus has superb flexibility. The main contributions of the paper are as following.

1. First we innovatively propose a WebGL-based rendering framework for real-time network visualization of both the complete physical modality and real physiological functions.

2. We construct the interactive cardiac physical modality histogram and achieve the local details rendering. The physical structure and specific tissues of the heart are realistically and interactively demonstrated.

3. We further present a novel cardiac physical-physiological correlation visualization method by constructing the correlation module to help observe synergistic associations between physical-physiological modalities for deep understanding of the nature of cardiac physical-physiological functions.

The remainder of the paper is organized as follows. Section 2 introduces cardiac biophysical modality volume data and the implementation of the cardiac synergetic modality rendering, including the interactive cardiac modality histogram based local detail rendering. In Section 3, the cardiac biological correlation module is constructed and the visualization of cardiac physical-physiological correlation is presented. In the last part, the conclusion of this study is proposed.




2 CARDIAC SYNERGETIC MODALITY RENDERING


Visualization is the process of transmitting and expressing information through graphical representation. Scientific visualization, including surface rendering and volume rendering, can extract complex information from 3D volume data and represent 3D phenomena through graphics, thus transferring and expressing information effectively. Volume rendering displays three-dimensional data field as a two-dimensional image, thereby not only the shape, boundary and surface information are depicted, but also the internal hidden information can be revealed. This work achieves cardiac synergetic biophysical modality rendering based on the WebGL ray casting volume rendering model, offering the user different levels of the biological characteristics of the heart.



2.1 Cardiac biophysical modality volume data


In the field of volume rendering, the three-dimensional data field is a structured dataset consisting of three-dimensional grids, which is composed of a finite number of uniformly distributed voxels. Cardiac synergetic biophysical modality rendering in this paper works with 3D heart volume data which are the regular samples of scalar (f: R
3 → R) fields. The volume data includes the biological structure volume from the Visible Human Project and the resultant computational electrophysiology volume.




2.2 WebGL based rendering framework


In this paper we build a WebGL based framework of cardiac biological cooperative construction volume rendering. Due to the fact that 3D texture is not supported in WebGL, the volume data stored in the raw file is thus parsed, then layered into a large 2D texture, and finally the volume is rendered using 3D texture sampling.

When obtaining the dimension of volume data, we thus determine 2D mapping layout scheme as well as the range of 2D texture sizes which satisfies Eq. 1:


[image: image]


Here W1 is the width of volume data and H1 is the thickness of volume data. L1 demonstrates the length of volume data. W2 is the width of 2D mapping and H2 represents the length of the 2D mapping. We then allocate space four times the texture size for values of RGBA and initialize the texture data. R, G and B represent red, green and blue colors respectively, and A represents opacity. After the data is stored in the 2D texture, 3D texture sampling is performed for rendering.

Ray casting algorithm is the most straightforward volume rendering method that can generate high quality images. Given the viewpoint, we firstly calculate the direction of the rays as in Eq. 2 when the pixels on the screen are selected:


[image: image]


where [image: image] is the direction of the ray. Px and Py are the x coordinate and y coordinate of the pixel on the screen which the ray passes through. Vx, Vy and Vz are the x-axis, y-axis and z-axis respectively of View-coordinate.

The intersection sample voxels then arise along the ray direction while the ray passes through the volume data. Assume that previous sample voxel has been acquired, the location of current voxel on the ray can be determined according to the step size which is the distance to move within the volume data along the view ray. The opacity and color of current voxel can then be calculated as:
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where P

v
 is the scalar value of the voxel v in the volume, and C

v
 is the color obtained through the designed transfer function based on P

v
. P

s
 is the scalar value of the sampled voxel s on the ray. A

s
 is the opacity of s and C
s is the color of s. w
L
, w
O
 are the general weights for light and opacityrespectively. The final color [image: image] of pixels on the screen corresponding to the ray is subsequently accumulated as in Eqs 5, 6:
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Here [image: image] is the opacity of the pixel. Once all the sample voxels on the ray have been processed, or the accumulated result reaches the threshold value, the calculation of color and opacity for sample voxels on the ray intersecting with the volume is completed. And the resulting rendered image can be generated. Supplementary Algorithm S1.




2.3 Interactive modality histogram based cardiac detail rendering


Based on the ray casting, the entire cardiac biological structure can be rendered. However, in order to more effectively aid researchers in exploring the internal modality details of the heart, a more precise representation of the heart is necessary.



2.3.1 Transfer function


So far, researchers have conducted numerous studies aiming to improve the speed and quality of volume rendering. The critical factor affecting these two important indices can be traced back to the design of the transfer function. Transfer function transforms the values of sample voxels in the volume data into optical properties that are visible to human eyes, such as color, opacity, etc. This allows for the exploration of the internal structure of various objects in the resulting rendered image. The transfer function can be formally defined as:


[image: image]


In Eq. 7, [image: image] is usually a two-tuple consisting of color and opacity. [image: image] is the attribute value of the sample voxels in volume data. The dimension [image: image] of [image: image] is the number of attributes. The space defined by these attributes is referred to as the feature space. In this paper the transfer function is designed through the constructed interactive cardiac modality histogram, so as to achieve local detail rendering of cardiac volume data.




2.3.2 Interactive cardiac modality histogram


We first count the number of myocyte voxels of different tissue of the cardiac physical modality in the volume data, and then construct the interactive cardiac modality histogram based on the statistics result. In the histogram, the value of tissues in the volume data increases from left to right, and the number of relevant voxels is expressed in the form of a vertical bar. The higher the bar, the more myocytes of the tissue are present, indicating a larger volume of the tissue in the heart.

Although the cardiac modality histogram clearly shows the statistical characteristics of cardiac tissue, it lacks interactivity, making it inconvenient for users. By leveraging WebGL we add control points to the histogram according to the value of a certain cardiac tissue, as shown in Figure 1. Users can thus control local rendering by setting control points on the histogram, resulting in modality histogram based interactive cardiac detailed rendering.


[image: Figure 1]



FIGURE 1 | 
The interactive cardiac physical modality histogram.






2.3.3 The local detailed modality rendering


When the control point is added, the color and opacity values of the control point can then be set and be assigned to those corresponding myocyte voxels. The transfer function texture is subsequently recalculated on the basis of the new color and opacity value, and the texture of volume data is regenerated. Eventually the texture map of the transfer function is passed to the shader and applied during rendering. Through the constructed interactive cardiac modality histogram, the biological modality details of the heart can be clearly highlighted and revealed. According to the height of the column with the value of 62 in the histogram in Figure 1, we can conveniently determine the volume proportion of the outer wall of the artery which corresponds to this value in the cardiac volume data. Meanwhile when we add a control point for the column and set its color to green, along with a specified opacity value, the scalar value of the myocyte voxel is mapped to the opacity and color, indicating that the transfer function is implemented. As a result, the outer wall of the artery (green) is highlighted in the final rendering image. The local detail rendering of the arterial outer wall tissues from different viewpoints are shown in Figure 2.
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FIGURE 2 | 
Rendering result of the outer wall of arterial vessels from different viewpoints.







2.4 Synergetic electrophysiological rendering




2.4.1 Electrophysiological volume data


Electrophysiological volume data plays an important role in the study of cardiac organs. It reflects the electrical activity of the cardiac tissue at a certain moment. Throughout a complete cycle from depolarization to repolarization of the heart, the action potentials of various cardiac tissues in the electrophysiological volume data are ultimately integrated into the electrocardiogram (ECG). By analyzing the ECG, medical experts can thus diagnose cardiac electrophysiological function and extrapolate dynamic changes of the function over a certain time period.

Similar to cardiac biophysical volume data, the three-dimensional action potential matrix of electrophysiological volume data is also sliced into a group of two-dimensional matrices. Assume that the action potential value of a cardiac tissue cell at a specific moment is v, this value will satisfy the following condition:
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To facilitate rendering, the action potential value is subsequently linearly mapped to the range from 0 to 255.




2.4.2 Synergetic rendering of cardiac electrophysiological modality


Cardiac electrophysiological rendering demonstrates the three-dimensional action potential in the cardiac tissue at a certain time. Assigned color during electrophysiological rendering is related to the value of action potential. Since the range of action potential value is different from the color value range, conversion is required to obtain the color from the corresponding action potential value. The conversion formula is as follows:


[image: image]


Where c is the color value. The rendering chromatogram is shown in Figure 3. From Figure 3, we can see that the range of action potential value is from −86 mv to 45 mv, and the corresponding color changes gradually from blue to red.


[image: Figure 3]



FIGURE 3 | 
Chromatogram of action potential values.



Different from cardiac biophysical modality rendering, electrophysiological modality rendering requires a distinct rendering method for the shader. In this work, a static rendering scheme is chosen for the shader, based on the correspondence between the action potential value and the color spectrum. The scheme involves building a one-dimensional lookup table that stores the rendering colors for each tissue, as well as another table which stores opacity. Before activating the shader for rendering, our method acquires the corresponding color and opacity from the lookup table according to the action potential values. By modifying the opacity of the tissue voxels in the opacity lookup table, those focused tissues are highlighted in the rendering image owing to the reduction of occlusion by other contextual tissues which is assigned to lower opacity and therefore more transparent.






3 VISUALIZATION OF CARDIAC PHYSICAL-PHYSIOLOGICAL CORRELATION


In addition to cardiac synergetic rendering, visualization of physical-physiological correlations is also presented in our proposed framework. This allows researchers or medical experts to analyze both cardiac physical modal and physiological modal information, as well as the relationship between them more directly, providing them a better understanding of cardiac physical and physiological situations. This work builds three modules: tissue-myocyte module, tissue-electrophysiology module and electrophysiology-myocyte module, as shown in Figure 4. The tissue-myocyte module shows the relationship between each cardiac tissue and its constituent myocytes. The tissue-electrophysiology diagram shows the correlation between the cardiac tissue and the action potential at a certain time. And the electrophysiology-myocyte shows the relationship between action potential of the cardiac tissue and its myocytes voxels in the volume data.
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FIGURE 4 | 
Three modules for cardiac physical and physiological modals (A). Tissue-myocyte module (B). Tissue-electrophysiology module (C). Electrophysiology-myocyte module.





3.1 Cardiac physical-physiological correlation data


The original cardiac volume data used in this work are two individual volume data of the same heart. One volume data contains the cardiac tissue value of the myocytes, and another contains the action potential value of the same myocytes. In this section, the two-volume data are integrated to store the three-dimensional spatial position of the myocytes, as well as the corresponding tissue value and action potential value.




3.2 Construction of module




3.2.1 Tissue-myocyte module


The purpose of the tissue-myocyte module is to visualize physical statistical characteristics of the myocytes of cardiac tissues. The linear scale of this module is determined by the length of the container and the maximum number of myocytes among all the tissues. The number of myocytes in various tissues is then scaled proportionally to the length of the corresponding bar. The constructed tissue-myocyte module is shown in Figure 4A.




3.2.2 Tissue-electrophysiology module


In our framework, the tissue-electrophysiology module displays the two-dimensional elements of cardiac tissue and the associated action potential. The action potential values and tissue values are arranged in rows and columns, respectively, such that the intersection of the rows and columns represents the number of myocytes in a tissue with a specific action potential value. This allows for functional refinement of the tissue-myocyte module. In the system tissue values range from 20 to 25, representing the left ventricle endocardium, myocardium of the left ventricle, epicardium of the left ventricle, the right ventricle endocardium, myocardium of the right ventricle, and epicardium of the right ventricle. Action potential values in these tissues range from 0 to 255 and are divided into 26 segments in the tissue-electrophysiology module.

By utilizing the action potential value and the tissue value, the exact position of each small rectangle in the tissue-electrophysiology diagram can be calculated, and the color of the small rectangle is determined based on the value of the corresponding action potential segment. The color panel for electrophysiological values is then displayed below the tissue-electrophysiology module. The final tissue-electrophysiology module and its associated panel are depicted in the left of Figure 4B. In the right of Figure 4B, when the user selects a tissue value of 20 and the correlated action potential segment of 180 in the tissue-electrophysiology diagram, the number of myocytes with these two values appears on in tissue-electrophysiology module. This indicates that there are 20,634 cells with action potential values ranging from 180 to 189 in the left ventricle endocardium.




3.2.3 Electrophysiology-myocyte module


To further specify the function of the tissue-electrophysiology module, our work has constructed the electrophysiology-myocyte module to exhibit the number of myocytes with various action potentials for a certain cardiac tissue. The required data for this module contains the tissue value, action potential value, the number of myocytes and correspondence between each other among them.

The voxels in the cardiac electrophysiological volume data with and action potential value of −1 represent myocyte voxels without electrophysiological feature. To avoid confusion, these voxels are assigned a value of 256. The improved volume data contains values in the range of 0–256, which provides 257 action potential values for myocytes in various cardiac tissues. The constructed electrophysiology-myocyte module includes eight regular polygons with 257 edges, where each edge represents a specific action potential value. The circumcircles of the polygons have different concentric diameters which demonstrate the number of myocytes of 50,000, 100,000, 150,000, 200,000, 250,000, 300,000, 350,000, 400,000 from inside to outside. The 257 action potential values are displayed as points on the axis of the electrophysiology-myocyte diagram. To improve visual clarity, only points with values that are in multiples of 8 appear on the outermost polygon edges in the diagram. The constructed electrophysiology-myocyte module is shown on the left side of Figure 4C. On the right side of Figure 4C, when a tissue and electrophysiological value are selected, the corresponding number of myocyte voxels is exhibited in the electrophysiology-myocyte diagram. From the presented result, we can see that there are 95,724 myocyte voxels with the action potential value of 194 in the epicardium of the left ventricle which has the value of 22.

The coordinate of each point on the electrophysiology-myocyte diagram is determined through its action potential value and the number of relevant myocyte voxels. First the distance between each point and the center of the electrophysiology-myocyte diagram, which is the radius of the circumcircle where the point is located is calculated as in Eq. 10:


[image: image]


where rc is the radius of the circumcircle of the outermost regular polygon of the electrophysiology-myocyte diagram, and n is the number of myocytes. RangeMax is the maximum number of myocytes presented in the outermost polygon, while rangeMin is equal to 0.

The position of the corresponding point on the electrophysiology-myocyte diagram can then be obtained using the calculated radius r as in the following equation:


[image: image]
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where ap is the action potential value of the point, [image: image].





3.3 Physical-physiological correlation


In our framework, the tissue-myocyte module, tissue-electrophysiology module and electrophysiology-myocyte module are not isolated from each other. Cardiac tissues and their internal electrophysiological characteristics are presented and correlated to each other through the tissue-myocyte module and tissue-electrophysiology module. The further refined electrophysiology-myocyte module shows the distribution details of electrophysiological physical quantities of cardiac tissues. Meanwhile there are control relationships between the three modules. The tissue-myocyte module can control the display of the tissue-electrophysiology module and the electrophysiology-myocyte module, while the tissue-electrophysiology module has the capability of manipulating the demonstration of the electrophysiology-myocyte diagram and thus further refines the visualization, so that the electrophysiology-myocyte module can show the distribution of the myocytes within a specific action potential segment for a certain cardiac tissue. The coordinates of each point on the electrophysiology-myocyte diagram are computed as in Eq. 13, where vt is the action potential value and v are the value which the user set. When vt is equal to v or Eq. 13 is satisfied, the computation of the coordinates of the point is the same as Eqs 11, 12. Otherwise, both the x coordinate and y coordinate of the point are assigned 0.


[image: image]






4 RESULT


The WebGL-based rendering of the biological structure of the heart is shown in Figures 5A, B. In Figure 5A, original rendered cardiac biological structure is demonstrated, and aorta, pulmonary artery, pulmonary vein, superior and inferior vena cava, and cardiac atrium and ventricle are explored. Through WebGL-based interaction rendering, researchers can select the viewpoint by controlling the rendering canvas. Figure 5B shows these tissues from a different viewpoint.
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FIGURE 5 | 
Rendering of the biological structure of the heart (A). Rendering result from one viewpoint (B). Rendering result from a different viewpoint.




Figure 6 shows the interactive histogram-based rendering of the right atrium. In the histogram, the myocyte voxels with tissue value of 32 correspond to the right atrium, as shown in Figure 6A. By controlling the interactive histogram, the exact shape of the right atrium (red) and its position in the heart are presented, as shown in Figure 6B.
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FIGURE 6 | 
Rendering of the right atrium based on the interactive histogram (A). The interaction with cardiac modality histogram by adding control point and setting the color for the right atrium (B). Rendering result of the right atrium outer wall of arterial vessels from different viewpoints.



Through the interactive histogram, researchers can also interactively control cardiac multi-tissue rendering, as shown in Figure 7. It is obvious in the histogram in Figure 7A that there is a large difference in the number of voxels between the two tissues of right ventricle and left ventricle, with tissue values of 30 and 32 respectively, indicating that the left ventricle is significantly larger than the right ventricle. Researchers can add control points for the relevant voxels of the right ventricle and left ventricle in the interactive histogram, and then set the color and opacity for the two types of voxels through the two control points. Figure 7B highlights the right ventricle (red) and left ventricle (green) from different viewpoints. The shape and size of the two tissues are presented in the rendering result image. Meanwhile the three-dimensional position in the heart as well as the relative spatial position relationship between right ventricle and left ventricle are also distinctly uncovered.
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FIGURE 7 | 
Interactive cardiac multi tissues rendering (A). The interaction with cardiac modality histogram by adding control point and setting the color for the right ventricle and left ventricle (B). Rendering result of the right ventricle and left ventricle from different viewpoints.




Figure 8 shows the electrophysiological modality rendering results with different action potential values and opacities. In Figure 8Ia, since the threshold of maximum action potential value to be demonstrated is predetermined to 150, only myocardial cells of the biventricular tissues with the action potential value below the threshold are rendered, and those with values beyond the threshold are not rendered. In Figure 8Ib, raising the maximum value to 180 results in the rendering of most cells. Figure 8Ic shows the rendering for the regions of the biventricular tissues containing the myocardial cells with the highest action potential value of 255. The rendering result of the tissue regions having an action potential value of 200 is presented in Figure 8Id. Rendering of electrophysiological modality at different times are shown in Figure 8II.
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FIGURE 8 | 
The electrophysiological modality rendering results. Ⅰ. The electrophysiological modality rendering results with different action potential threshold values. 426 (a). Rendering result of action potential threshold value of 150 (b). Rendering result of action 427 potential threshold value of 180 (c). Rendering result of the region with the highest action potential 428 of 255 (d). Rendering result of the tissue regions having action potential value of 200. Ⅱ. Results of electrophysiological modality rendering at different time (a). Results at 160 ms. 432 (b) Results at 200 ms. (c) Results at 210 ms. (d) Results at 220 ms.



Cardiac physical-physiological correlation between physical and physiological modalities can be visualized based on the tissue-myocyte module, tissue-electrophysiology module and electrophysiology-myocyte module, as shown in Figure 9. In Figure 9A, when only the bar with the cardiac tissue value of 20 representing the left ventricular endocardium is selected, the colour of this bar changes from blue to grey. In the tissue-electrophysiology module, the opacity of rectangles with the tissue value of 20 in a row also changes to 1, while the opacity of the small rectangles in the remaining columns becomes 0.1. Simultaneously, the number of myocytes having the electrophysiological feature in the left ventricular endocardium is demonstrated in the electrophysiology-myocyte module. When selecting the bars representing the left ventricle endocardium, epicardium of the left ventricle, and myocardium of the right ventricle in the tissue-myocyte module, i.e., the bars with the cardiac tissue value of 20, 22, and 24 respectively, their electrophysiological values are all presented in the relevant rectangle columns of the tissue-electrophysiology diagram. In the meantime, the number of myocytes of these three tissues with the action potential highlighted in the tissue-electrophysiology diagram are updated and displayed in the electrophysiology-myocyte diagram, as shown in Figure 9B. In Figure 9C, the endocardium, myocardium, epicardium of the left ventricle and right ventricle are selected and action potential of the cells in them is simultaneously illuminated in the tissue-electrophysiology diagram. The distribution of action potential in the six cardiac tissues are also associatively demonstrated in the electrophysiology-myocyte module.
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FIGURE 9 | 
The correlation of the tissue-myocyte module, tissue-electrophysiology module and electrophysiology-myocyte module (A). The association between the three modules when the selected tissue value is 20 (B). The association between the three modules when the selected tissue value is 20, 22, and 24. (C) The association between the three modules when the selected tissue value is 20, 21, 22, 23, 24, and 25.




Figure 10A shows the number of myocytes with the action potential value within the selected segment of 210 in the left ventricle epicardium of value 22. Figure 10B shows the number of myocytes with the action potential value within the selected segment of 200 in the left ventricle endocardium of value 20. In Figure 10C, when the left ventricle endocardium, the left ventricle epicardium and epicardium of the right ventricle with value of 20, 22, and 25 respectively are simultaneously selected in the tissue-myocyte module, the number of myocytes in the three tissues with the action potential within the specific segment of 220 are displayed in the electrophysiology-myocyte module. While when the six tissues with values ranging from 20 to 25 are selected in the tissue-myocyte module and the specific action potential segment of 220 is selected in the tissue-electrophysiology module, the number of myocytes in these tissues are demonstrated in the electrophysiology-myocyte module, as shown in Figure 10D.
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FIGURE 10 | 
The correlation result displayed in the electrophysiology-myocyte module (A). The result of the tissue value selected as 22 in the tissue-myocyte module and the action potential segment of 210 chosen in the tissue-electrophysiology module (B). The result of the tissue value selected as 20 in the tissue-myocyte module and the action potential segment of 200 chosen in the tissue-electrophysiology module (C). The result of the tissue value selected as 20, 22, and 25 with the action potential segment of 220 in the tissue-electrophysiology module. (D) The result of the issue value selected as 20, 21, 22, 23, 24, and 25 with the action potential segment of 210 in the tissue-electrophysiology module.






5 CONCLUSION


In this study, we propose a rendering framework to present the three-dimensional cardiac synergetic biological modality. Visual computing of cardiac synergetic modality is investigated and implemented to realistically present the three-dimensional cardiac structure and electrobiological activities. We build the biological modality histogram and designed the transfer function by interacting with the histogram. The local details of the heart are thus highlighted in the rendering result. In addition, cardiac physical-physiological correlation visualization is presented, and associations between physical and physiological modality are revealed. Our rendering framework also have a great advantage in cross-platform and rendering speed. In summary, this work provides an effective method for exploring the cardiac synergetic modality feature.
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There are a variety of difficulties in evaluating clinical cardiac mapping systems, most notably the inability to record the transmembrane potential throughout the entire heart during patient procedures which prevents the comparison to a relevant “gold standard”. Cardiac mapping systems are comprised of hardware and software elements including sophisticated mathematical algorithms, both of which continue to undergo rapid innovation. The purpose of this study is to develop a computational modeling framework to evaluate the performance of cardiac mapping systems. The framework enables rigorous evaluation of a mapping system’s ability to localize and characterize (i.e., focal or reentrant) arrhythmogenic sources in the heart. The main component of our tool is a library of computer simulations of various dynamic patterns throughout the entire heart in which the type and location of the arrhythmogenic sources are known. Our framework allows for performance evaluation for various electrode configurations, heart geometries, arrhythmias, and electrogram noise levels and involves blind comparison of mapping systems against a “silver standard” comprised of computer simulations in which the precise transmembrane potential patterns throughout the heart are known. A feasibility study was performed using simulations of patterns in the human left atria and three hypothetical virtual catheter electrode arrays. Activation times (AcT) and patterns (AcP) were computed for three virtual electrode arrays: two basket arrays with good and poor contact and one high-resolution grid with uniform spacing. The average root mean squared difference of AcTs of electrograms and those of the nearest endocardial action potential was less than 1 ms and therefore appears to be a poor performance metric. In an effort to standardize performance evaluation of mapping systems a novel performance metric is introduced based on the number of AcPs identified correctly and those considered spurious as well as misclassifications of arrhythmia type; spatial and temporal localization accuracy of correctly identified patterns was also quantified. This approach provides a rigorous quantitative analysis of cardiac mapping system performance. Proof of concept of this computational evaluation framework suggests that it could help safeguard that mapping systems perform as expected as well as provide estimates of system accuracy.
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1 INTRODUCTION
Catheter ablation is a primary therapy for the treatment of cardiac arrhythmias. Life threatening ventricular tachycardia and fibrillation occur for a variety of reasons including heart failure and affect millions of individuals each year. The most common arrhythmia is atrial fibrillation (AF) with an estimated prevalence in the United States (U.S) alone of 3–5 million (Calkins et al., 2017), and the deadliest arrhythmia is ventricular fibrillation (VF) which is the leading cause of death in the U.S. There has been a substantial increase in the annual number of in-hospital catheter ablation procedures (Kneeland and Fang, 2009; Deshmukh et al., 2013; Hosseini et al., 2017; Breithardt and Borggrefe, 2021) and experimental data and ablation outcomes suggest that multi-electrode cardiac mapping systems, that provide simultaneous acquisition of tens or hundreds of recording sites, is responsible for this increase (Calkins et al., 2017; Rolf et al., 2019). Studies have shown that electroanatomical mapping systems significantly reduce procedure duration and radiation exposure compared to conventional fluoroscopy-guided atrial fibrillation (AF) ablation procedures (Rotter et al., 2005; Estner et al., 2006). Cardiac mapping is necessary to locate the sources of arrhythmias for ablation and multipolar catheters, such as those incorporated into electroanatomical mapping systems, allow rapid identification of complex spatial patterns of electrical activity and structural abnormalities (e.g., scar tissue) during fibrillation. Purported mechanisms of electrical impulse propagation during arrhythmias include (Schotten et al., 2021): 1) stable reentrant waves (either anatomical or functional) sometimes accompanied by fibrillatory conduction; 2) unstable reentry; 3) single or multiple foci with or without fibrillatory conduction; and 4) asynchronous activation of the endocardium and epicardium due to transmural electrical dissociation.
There is considerable debate regarding the underlying activation patterns of clinical AF and there are inconsistencies in ablation outcomes in different studies (Roney et al., 2020). A variety of factors are thought to underly these uncertainties including catheter electrode density (Barbhayia et al., 2015; Roney et al., 2017a; Aronis et al., 2019) and significant differences in mapping system catheters and algorithms, most notably phase mapping. For example, studies directly comparing two mapping algorithms using the same raw data from catheter electrodes in clinical studies indicate variability in concordance/discordance at both ablation sites and elsewhere (Alhusseini et al., 2017; Bellmann et al., 2018; Swerdlow et al., 2019). In another example, Martinez-Mateu et al. demonstrated in computational modeling studies that “far-field contributions to electrograms during AF reduce the accuracy of detecting and interpreting reentrant activity.” (Martinez-Mateu et al., 2019) The early success of phase mapping during clinical VF (Masse et al., 2007) has not been replicated for clinical AF, probably for a variety of interrelated reasons including: the differences in ventricular and atrial geometry; possible differences in underlying mechanisms; and differences in electrogram signal characteristics (Gray et al., 1998; Umapathy et al., 2010). Numerous authors have discussed further difficulties of implementing phase mapping during clinical AF (Roney et al., 2017b; Jacquemet, 2018; Podziemski et al., 2018; Li et al., 2020; Roney et al., 2020) and Child et al. conclude “Despite phase analysis being the preferred method in mapping AF, there are significant challenges in this approach because of the non-sinusoidal and fractionated nature of the recorded signal. Several complex signal transformations and analytical methods have been used in response to these difficulties reporting conflicting results, and there is urgent need to validate and standardize these techniques.” (Child et al., 2018).
The performance of cardiac mapping systems depends on numerous complex and inter-related factors including the patient’s condition, the mapping system hardware and software including numerous mathematical algorithms, and the interpretation of the mapping system output by the physician (see Figure 1). Typically, performance analysis of a new mapping system involves interpretation of system output by multiple electrophysiological physicians. The ability to quantitatively evaluate the performance of mapping systems in the intended population is challenging, if not impossible, however, a computational framework that can quantitatively integrate these multifactorial complexities has the potential to provide concrete performance metrics for cardiac mapping systems. Here we present a novel computational modeling framework that enables quantitative assessment of the accuracy of cardiac mapping systems and demonstrate a “proof-of-concept” using a hypothetical example. Our proposed framework allows for blinded system evaluation and is based on estimating mapping algorithm performance using simulated electrograms derived from computer simulations in which the precise transmembrane potential patterns are known.
[image: Figure 1]FIGURE 1 | Overview of cardiac mapping system use. Cardiac mapping systems include both hardware and software elements are used to record electrograms from the patient’s heart and display a variety of information to the cardiac electrophysiological physician.
2 METHODS
2.1 Overview of proposed Mapping System Evaluation Framework (MSEF)
Here we present a Mapping System Evaluation Framework (MSEF) to quantitatively evaluate clinical cardiac mapping systems using computational models. Our proposed framework includes the ability to evaluate mapping system performance under: 1) various electrode configurations; 2) various heart geometries; 3) various arrhythmias; and 4) the effect of noise on system performance. MSEF allows for blind testing of cardiac mapping system performance against a ‘silver standard’ in which the transmembrane potential is known throughout the entire heart. Our framework takes advantage of the fact that the methodology for quantifying the dynamic spatial patterns of transmembrane potential throughout the heart are well-established and robust, as exemplified in hundreds of experimental (e.g., optical mapping) and numerical (e.g., computational modeling) studies.
The framework includes a “library” of pre-computed simulations incorporating a range of activation patterns including paced beats, reentry, and “focal” beats replicated via pacing. For each simulation, activation times for each node in the computational mesh are computed using the maximum upstroke velocity of each action potential. The location of reentrant beats are computed via the computation of phase maps, identifying surface phase singularities, and then computing their “center of mass” from phase singularity density maps. Each entry in the library consists of: 1) transmembrane potential at every node sampled at 1 kHz; 2) activation times at every node; 3) the location of all paced beats (including simulated focal activity); and 4) the surface location and chirality of all reentrant waves.
Table 1 provides the chronological list of steps in the overall process of evaluating a generic cardiac mapping system (MS) using the MSEF. The process includes two participants: the “User” which is most likely the MS developer and; 2) the MSEF “Administrator”.
TABLE 1 | Steps for MSEF execution in chronological order.
[image: Table 1]2.2 Pilot study to demonstrate the feasibility of MSEF
To demonstrate the feasibility of this framework, we present a specific implementation of the approach described above in this manuscript. Due to the large number of variables identified in Step 1) above, a comprehensive assessment of MSEF is beyond the scope of this study. The implementation presented here is comprised of: 1) two simulations of electrical activity in a healthy isotropic human left atria (2 seconds duration) comprised of paced (P), reentrant (R), and focal (F) beats; 2) three virtual electrode catheters: two idealized 64 basket arrays and one high-resolution 6 × 6 array; 3) well established algorithms to compute activation times and localize reentry from high resolution transmembrane patterns; and 4) simple generic mapping system algorithms. Video movies of these two simulations are provided in the Supplementary Material.
2.3 Simulations
The monodomain equation governing electrical activation and propagation in excitable tissue was solved:
[image: image]
where Vm is the transmembrane voltage, χ = 1,400 cm−1 is the surface-area-to-volume ratio, and Cm = 1.0 μF cm−2 is the capacitance per unit area. Iion is the ionic current computed by coupling the monodomain equation with the Nygren cell model (Nygren et al., 1998) of an adult human atrial cell; Istim is the stimulus current imposed during S1 and S2 stimulation. The conductivity was chosen to be isotropic with a value of 0.466 mS cm−1 to match the conduction velocity of human atria of 55 cm/s (McDowell et al., 2015). The monodomain equation was solved using the finite element method using the Chaste software package (Mirams et al., 2013). Simulations were run on a high-resolution computational mesh of a human left atrium derived from a commercially available computer aided design (CAD) model by Zygote Cooperation. The CAD model was imported into Tetgen (Si, 2015) and an unstructured tetrahedral mesh consisting of 1.32 million nodes and 4.6 million elements with an average edge length of 252 µm was generated. The thickness was nonuniform and derived from patient specific imaging. The partial differential equations were solved using a backward Euler discretization with timesteps of 0.1 ms for both the partial differential equations and the cell model. The transmembrane voltage of each node was saved every 1 ms and simulations were run for a total of 2 s.
Two simulations were performed and videos of these are provided in the Supplementary Material. The first simulation is comprised of a single paced beat followed by 6 beats of figure-of-eight reentry, i.e., a pair of counter rotating reentrant waves (one clockwise denoted as “R+” and one counterclockwise denoted as “R-” when viewed from the endocardium), generated via an S1-S2 stimulus protocol. The paced beat was initiated at the junction of the posterior left atrium and the left inferior pulmonary vein and is referred to as “P” and the S2 was applied in the free wall of the septum of the left atria (LA). The second simulation is simulated focal activity and was constructed to allow a direct comparison with the reentrant beats. We simultaneously paced the locations corresponding to the center of mass of R+ and R-with inter beat intervals corresponding to the reentrant cycle lengths of each of the six reentrant beats; we refer to these patterns as “F+” and “F-”. Overall we simulated 13 activation patterns (AcPs) across the two simulations: one paced beat (P), six figure-of-eight patterns with clockwise (R+) and counterclockwise (R-) activation patterns and 6 pairs of focal beats (F+ and F-).
2.4 Electrode configurations and electrograms
We choose two idealized generic basket electrode geometries comprised of 64 unipolar electrodes (8 electrodes spaced 2 mm apart on 8 separate splines) with a diameter 38 mm and one idealized “grid” electrode geometry comprised of 36 electrodes aligned in a 6 × 6 grid 4 mm apart. Basket catheters expand within the heart chamber into which they are placed and the distance between each electrode and the heart surface varies depending on the electrode spacing and the endocardial geometry. We initially considered the “worst-case” as all 64 electrodes residing on a 38 mm sphere “centered” in the LA; however, this case provided meaningless results which are not presented here. We consider the “best case” by finding the 64 LA sites on the mesh that minimize the distance from the endocardial surface to each electrode (see Figure 2), and then placing the electrodes 0.5 mm from the heart surface; we refer to this case as “basket good contact” (BGC). We also consider an “intermediate” case by placing the 64 locations at the midpoint of the line connecting the point on the sphere to the nearest endocardial site (see colored lines in Figure 2A); we refer to this case as “basket poor contact” (BPC). Although a sphere was used to derive the locations for BGC and BPC, the resulting electrode locations do not lie on a sphere; as such the distance between electrodes on a spline are not constant. The 8 × 8 electrode arrays for BGC and BPC are represented in 2-D arrays labeled A1 to H8 (see Figure 2B). Finally, we studied an idealized localized electrode ‘uniform array’ (referred to as “UA”) in which a 2 cm × 2 cm square was manually placed close to the endocardial surface over R+ and then each of the 36 virtual electrodes were moved such that they were 0.5 mm from the nearest endocardial site. The 6 × 6 electrode array for UA is represented in a 2-D array labeled a1 to f6 and shown in Figure 2C. Examples of electrograms from BGC and BPC with noise added are shown in Figure 2D.
[image: Figure 2]FIGURE 2 | LA geometry and virtual electrode locations. (A) LA with the projection lines (colored according to spline #) from the sphere to the endocardial surface. (B) Location of BGC electrode locations (A1-H8). (C) Location of UA electrode locations (a1-f6). Endocardial site R+ is shown as a red sphere and R-as a green sphere. (D) Examples of electrograms from basket electrodes: Good Contact (BGC) and Poor Contact (BPC) with noise added; noise level was 1 mV/ms for BGC and 0.5 mV/ms for BPC.
Virtual electrograms (referred to as electrograms in this manuscript) were computed for all electrode locations for the three catheter configurations for the two simulations as:
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where
[image: image]
where [image: image] is the extracellular unipolar potential (i.e., electrogram), [image: image] is the spatial gradient of [image: image], [image: image] 7 m/cm is the extracellular conductivity, r is the distance from a “source” point [image: image] within the heart to the electrode location, [image: image], and the integral is over the myocardium. This computation ignores the size of the electrode assuming it is a point. The integral was computed by summing the volume integrals over each element in the finite element mesh, calculated using Gaussian quadrature and using the finite element solution for [image: image] (linear in each element).
2.5 Algorithms
The value of activation times (AcTs) for [image: image] were computed as the time of maximum derivative of [image: image] provided it was greater than a threshold value (α) with the constraint that two activations did not occur within a specific interval (β). The values of α and β were selected based on a sensitivity analysis performed on seven [image: image] sites from the first simulation at five locations within the reentrant isthmus and two sites outside the isthmus. Specifically, we computed AcTs for thresholds of α = 0.1, 0.2, 0.3, and 0.5 mV/ms and for β = of 25, 50, 100, 150, 200, 250, and 500 ms. For all seven sites, the number and values of AcTs were the same for thresholds of 0.1, 0.2, and 0.3 mV/ms and window sizes of 100 and 150 m. Therefore, we choose values of α = 0.2 mV/ms and β = 100 m for the computation of AcTs from [image: image] signals (Dube et al., 2009). Interpolation between samples was not employed so the resolution of AcTs was 1 ms.
The algorithm for identifying reentrant patterns for the simulations involved computing the 3-D filaments using state-space phase analysis using Eqn (Hosseini et al., 2017). as described previously (Pathmanathan and Gray, 2015; Galappaththige et al., 2019).
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where θ is a computed phase variable; endocardial phase singularities (PSs) were computed from the proper end of these filaments. PS density maps were computed using a custom Python script that calculated the number of times a PS occurred at each node within the simulation interval between 1 and 2 s. Since we identified a relatively stable figure-of-eight reentrant pattern via visual inspection, a k-means clustering algorithm was implemented to identify two clusters corresponding to clockwise (+) and counterclockwise (−) reentry on the endocardial surface. The center of mass of these two clusters were considered the locations of the two endocardial surface PS locations, R+, and R-.
The algorithm for computing AcTs from the electrograms was identical to that used for [image: image] with the exception that the sign of the ‘derivative threshold’ was opposite; the value of ß was 100 m and the value of a was −1 mV/ms for BGC and a = −0.5 mV/ms for BPC and UA. Due to the significant differences between the morphology of [image: image] and [image: image] signals, we did not employ phase analysis for the algorithms to identify activation patterns from the electrogram data. Instead we developed very simple algorithms to identify focal (F) and reentry (R) patterns using only AcTs. The algorithms include two parameters (a ‘difference threshold’, δ in ms; and an interval, γ in ms). We identified the presence of both F and R patterns at each electrode location using the value of AcT at that site and the AcTs of the eight surrounding electrode neighbors. A site was classified as F if all the AcT differences of the 8 neighbors and the central pixel were between -δ and γ+δ. A site was classified as R+ (R−) if there was a clockwise (counterclockwise) progression of AcT’s along the path of the 8 neighboring electrodes including a continuation of activation between beats; specifically, each of the differences along the path had to be between -δ and γ+δ. These pattern identification algorithms include the computation of eight differences and we chose δ = 2 and γ = 100.
2.6 Addition of noise
Noise was included by adding uniformly distributed random values to [image: image]. We choose the level of noise to be equal to the threshold value (a) which varied with electrode configuration (see above) which is a level at or above clinical values (Unger et al., 2019) although the effect of noise (as a factor of threshold) is included in the Supplement. Recall that in the actual use of our proposed framework the user will provide information on the actual level of noise for their MS to the MSEF.
2.7 Performance analysis
Evaluation of AcTs was performed for the electrograms for both BGC and BPC MSs by comparing to the corresponding values computed from [image: image]. The acceptable level of difference in AcTs between the MSs and simulation is unclear and may depend on the activation pattern, therefore we introduce a “tolerance” variable (Tol) and analyzed performance as a function of Tol. The ability of each MS to identify AcTs was computed by identifying: 1) correctly identified AcTs; and 2) spurious AcTs. In addition, the average RMS of all correctly identified ACTs was computed. An “AcT Performance Metric” (AcTPM) was computed to assess the ability of a MS to identify AcTs:
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where fC and fS are the fraction of correct and spurious AcTs, respectively. A value of 100 indicates perfect performance. Specifically, fC is computed as the number of AcTs for simulated electrogram that are within Tol of a corresponding AcT computed from [image: image] of the nearest endocardial site divided by the total number of [image: image] AcTs from that site; and fS is computed as the number of AcTs for a simulated electrogram that are not within Tol of a corresponding AcT computed from [image: image] of the nearest endocardial site divided by the total number of [image: image] AcTs from that site (if fS is >1, then fS is set equal to 1).
Activation patterns (AcPs) were computed at each site using the AcTs from the 3 × 3 array neighborhood and analyzed similarly and were considered correct if they were localized within 100 ms and if the distance to the true (x,y,z) location in the simulations was less than 1 cm. We define the temporal localization error (ET) as the difference between the electrogram AcT at the centralized site and the corresponding stimulation time (i.e., S1, S3, S4, S5) and the spatial localization error (EX) is the Euclidean distance between the centralized electrode location and the site identified as R+ or R-from the [image: image] simulations (as described above). An ‘AcP Performance Metric’ (AcPPM) was computed to assess the ability of a MS to identify AcPs:
[image: image]
where fC and fS are the fraction of correct and spurious AcPs and fM is the fraction of “misclassifications” defined as a wrong pattern type for a beat (matching the identification criteria for the above temporal and spatial distances of a different pattern). Specifically, a correct AcP from a virtual electrode array was defined as the identification of the identical pattern for the same beat for the “ground truth” (25 patterns: 1P, 6 R+, 6 R-, 6 F+, and 6 F-); and a spurious AcP from a virtual electrode array was defined as the identification of a pattern that did not correspond to the ground truth. AcTs and AcPs for BGC and BPC were compared to those computed for the simulation results for pacing, focal and reentrant patterns separately. In addition, the average temporal (ET) and spatial (EX) localization errors of the correctly identified and spurious AcPs were computed. Since the definition of the correct identification of a pattern depends on a 1 cm ‘tolerance’ the value of EX is constrained (EX ≤ 1).
3 RESULTS
3.1 High-resolution simulations
Figure 3 illustrates the initiation of the paced beat (Panel A) and the location of the S2 stimulus which was applied 390 m after the paced stimuli (Panel B). A snapshot of activity from 6 views is shown in Figure 4 illustrating the figure-of-eight reentrant pattern. A video of the simulation is provided as a Supplementary Material. The figure-of-eight reentrant patterns from this simulation and focal patterns from the second simulation on the endocardial surface are shown in Figure 5 with the computed centers of mass of R+ and R-displayed as grey spheres. The location of these patterns in relation to the LA can be ascertained by viewing Figure 2A and the isochrone maps constructed from the 8 × 8 grid of electrodes for BGC for paced, reentry and focal activity in Figure 6. Similarly, isochrone maps constructed from the 6 × 6 grid of electrodes for UA are shown in Figure 7.
[image: Figure 3]FIGURE 3 | (A) small S1 site (radius of 0.5 cm) (B) large S2 site (radius of 1.0 cm). Transmembrane potential is represented with a blue-red color map such that blue corresponds to −90 mV and red to +30 mV. The hole on the left in panel B is the fossa ovali (FO)s, the extensions represent pulmonary veins (PV) and the left atrial appendage (LAA) is in the bottom right.
[image: Figure 4]FIGURE 4 | A snap shot of the reentry simulation in multiple view angles at 1,679 ms into simulation. Transmembrane potential is represented with a blue-red color map such that blue corresponds to −90 mV and red to +30 mV.
[image: Figure 5]FIGURE 5 | Activation time isosurfaces with points of reentry (spheres) for (A) Reentry simulation (B) Focal simulation. Surface electrodes are marked by black dots with spline label in white. The color bar represents the activation times for beat 2, red 500 ms and blue 970 ms.
[image: Figure 6]FIGURE 6 | Isochrone maps of paced (A), reentrant (B) and focal (C) activation patterns computed from 8 × 8 grid of electrodes for BGC.
[image: Figure 7]FIGURE 7 | Isochrone maps of paced (A), reentrant (B) and focal (C) activation patterns computed from 6 × 6 grid of electrodes for UA.
3.2 Comparison of mapping system output and simulation results
The average RMS value of the difference of AcTs computed from [image: image] and [image: image] signals was less than 1 ms for all beats for all values of Tol ranging from 0 to 100 ms for both BGC and BPC. In fact, all values were below 0.24 ms except for the paced beat for BPC, for which the average RMS was between 0.38 and 0.58 ms. The fact that all values were less than 1 ms motivated the development of the novel performance metrics presented in the Methods Section. AcTPM and %S values are shown for BGC and BPC as a function of Tol for P, R, and F patterns in Figure 8. As expected AcTPM was always larger, and % S was always smaller, for BGC compared to BPC for all activation patterns. The trend was for AcTPM values to increase and % S values to decrease as Tol increased and reach plateau values with these values being less for BPC compared to BGC, and highest for P as compared to R and F for both BGC and BPC. The plateau for BGC was reached at Tol = 2 ms, where the corresponding value for BPC was Tol ≈ 10 ms. For BGC, the values for AcTPM for Tol = 2 ms were 100, 93.5 and 93.6 for P, R, and F respectively and the corresponding values for %S were 0.2, 2.5, and 1.8. For BPC, the values for AcTPM for Tol = 10 m were 84.9, 79.2 and 81.5 for P, R, and F respectively and the corresponding values for % S were 4.7, 2.0, and 3.9. Although the average RMS values were always less than 1 ms, the RMS SD was a function of Tol and was much greater for BPC compared to GC (Figure 8C).
[image: Figure 8]FIGURE 8 | Comparison of activation times between virtual mapping systems BGC and BPC and simulations. (A) Activation time performance metric (AcTPM) defined in Eq. 5 as a function of tolerance (Tol). (B) Percentage of spurious AcTs as a function of Tol. (C) RMS standard deviation (SD) as a function of Tol.
The ability of the MSs (BGC, BPC, and UA) to identify the one paced (P) beat, the twelve reentrant (6 R+; 6 R-) patterns, and the 12 focal patterns (6 F+; 6 F-) are presented in Table 2. This comparison was carried out for two values of δ (2 and 10 ms) which corresponds to the values for which Tol reached plateau values for BGC and BPC respectively. The P beat was not identified for any MS (hence AcPPM = 0) with one misclassification and one spurious patterns evident for BGC only. Only 1 of 6 R-beats were identified for BGC (with 0 and 5 spurious patterns for δ = 2 and 10 m, respectively). Four (δ = 2 ms) or five (δ = 10 ms) of 6 R+ beats were identified by BGC and 2 of 6 for BPC (δ = 10 ms) while 5/6 were identified for UA; UA resulted in no spurious patterns while there were 0 for both BGC and BPC (δ = 2 and 10 m); the only misclassifications of R+ occurred for BGC, δ = 10 ms. Focal beats were identified with temporal error less than 10 ms for BGC, BPC, and UA, although only F+ beats were identified for UA (which is consistent with its placement, see Figure 2C). Overall, F beats were easier to identify than R beats for our simplified algorithm.
TABLE 2 | Value of ACPPM of Paced (P), Reentrant (R), and Focal (F) patterns, with temporal (ET) and spatial (EX) errors as a function of δ; when ACPPM = 0, the number of spurious (S) and misclassifications (M) are presented.
[image: Table 2]Two factors that affect the ability of a MS to identify patterns on the heart surface are: 1) the distance of the electrodes from the heart surface; and 2) the density of the surface projection of the MS electrode sites. These two values for each electrode are shown in Table 3 for BPC; the first number is the distance of the electrode to the nearest endocardial mesh node, and the second number is the average distance to the eight nearest projected endocardial sites. The fact that the location for nearest electrode for R+, F+ (E2) was closer and had a higher surface density compared to the location of the nearest electrode for R-, F- (D4) is consistent with the trend of better identification of + patterns sites compared to—patterns. To demonstrate the effect of these factors, the pattern identification algorithm described above was applied to the AcTs computed from the noiseless [image: image] signals. These values of AcPPM for [image: image] data were: P: 0 (1S); R+: 69; R-:14; F+: 83; F-:100 for δ = 2 m. These values are similar to BGC (δ = 2 ms) suggesting that BGC performed nearly as well as could be expected (except for F- suggesting that the optimal electrode resolution might fall between E2 and D4, see Table 3). The actual x,y,z location of R+ and F+ beats was located 0.52 cm from the nearest surface site which corresponded to B7. The fact that electrode B7 corresponds to a high surface projection density and a small electrode to surface distance (0.18 cm) explains why F+ was the only activation pattern identified by BPC (δ = 2 ms).
TABLE 3 | Distance between electrodes for BPC and endocardial surface (in cm), average distance of 8 nearest neighbors of 64 projected endocardial sites (in cm). Electrodes near the poles of the sphere do not have 8 neighbors so the second value is undefined (NA).
[image: Table 3]4 DISCUSSION
The success of an electrophysiological procedure to localize and ablate arrhythmogenic sources in the heart depends on a variety of interrelated factors such as: the patient’s heart geometry, disease state, and arrhythmia; the number, type, and location of recording electrodes; mapping system hardware and software (algorithms); data display; and physician interpretation. These can be summarized into four distinct categories as shown in Figure 1: 1) the heart; 2) the mapping system; 3) the display; and 4) the physician.
In this manuscript we present a novel computational framework that enables a rigorous evaluation of a mapping systems ability to localize the arrhythmogenic sources and their type (i.e., focal or reentrant), which spans categories 1) and 2), via a blinded comparison with numerical simulations. As far as we are aware, the only other similar study focused on a computational framework for MS evaluation was by Bartolucci et al., 2021 in which the results from two virtual catheters were compared using simulations of a two-dimensional spiral wave (Bartolucci et al., 2021). Here, activation times and patterns for virtual [image: image] signals were computed for simulations incorporating three hypothetical MSs (BGC, BPC, and UA) and compared to the corresponding high resolution [image: image] data from two simulations containing paced (P), reentrant (R), and focal (F) patterns. We introduce two novel ‘quantitative performance metrics’ (QPMs); one for patterns (AcPPM) and one for activation times (AcTPM) because RMS error was not indicative of performance. These QPMs reflect the ability of the MS to identify AcTs and AcPs, respectively by combining the number of correctly identified, spurious, and misclassified AcTs and AcPs. Identifying “correct” AcTs and AcPss from electrogram data requires choosing “error tolerances” for continuous variables and these choices most likely will impact the QPMs. Therefore, we believe it is important to be transparent and clear regarding these error tolerance choices. The choices in this work are the threshold derivative for virtual [image: image] AcTs (a); AcT similarity tolerances (Tol and δ); an interval threshold for neighboring AcT to ensure they are part of the same wavefront (γ); as well as distance (1 cm) and time (100 ms) thresholds when comparing patterns to the simulations. Each of these “tolerance parameters” (TPs) will affect the performance evaluation (see Table 3); therefore we suggest identifying the sensitivity of the QPMs to these TP values. In addition, these TPs could be constrained based on important clinical factors (e.g., ablation lesion size). We believe that much further work is required to identify the best QPMs and TPs for a computational framework for clinical MS evaluation. Regardless of the choices, we believe that the ideal computation of QPMs should include an analyses of the sensitivity to TPs and relevant simulation parameters (e.g., noise) as well as the consideration of uncertainty (including measurement uncertainty).
It is well understood that the specific activation patterns in the heart are dependent on the underlying mechanism of the patient’s arrhythmia and that the corresponding sources can be either focal or reentrant, which can be difficult to distinguish with a limited number of electrogram recordings (Li et al., 2020). In addition, comparison studies involving retrospective analyses of clinical data have shown both similar (Alhusseini et al., 2017; Podziemski et al., 2018; Swerdlow et al., 2019) and disparate (Luther et al., 2017; Anter et al., 2018) results regarding mapping system algorithms. A computational approach to MS evaluation will aid in not only making these issues transparent but also in providing a framework to quantify these effects. The fact that BGC and simple algorithms performed poorly in identifying AcPs (see Table 2) was the result of inadequate sampling capture patterns as demonstrated by similar results when analyzing the nearest 64 transmembrane signals.
As expected, we found that the following two issues were the primary factors contributing to the ability of a mapping system to correctly identify activation patterns: 1) the distance from the electrodes to the heart surface; 2) the physical location of each activation pattern in relation to the density of the projection of the electrodes onto the heart surface. This finding is consistent with previous studies. For example, Alessandrini et al. computed extracellular electrograms during simulated AF in a patient-specific LA using models of grid catheters as well as realistically deformed basket catheters (Alessandrini et al., 2018). They found that computed maps of rotor tip trajectory density correctly identified and located the virtual rotors (deviation <10 mm) only for catheter recordings of sufficient resolution (inter-electrode distance ≤3 mm) and proximity to the wall (≤10 mm). In addition, Roney et al., performed simulations to estimate the minimum number of measurement points required to correctly identify the underlying AF mechanism and found that the spatial resolution required for correct identification of rotors and focal sources was a linear function of spatial wavelength (the distance between wave fronts) of the arrhythmia (Roney et al., 2017a). They also found that all clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core, although the low-resolution basket catheter was prone to spurious detections and may incorrectly identify rotors that are not present (Roney et al., 2017a). Martinez-Mateu et al. (Martinez-Mateu et al., 2019) also identified two different types of ‘phantom rotors’ associated with basket catheters due to the far-field sources and to the interpolation between the electrodes and found that the ability to detect rotors depended on the basket’s position and the distance between the electrodes and the heart surface.
The goal in this study was to develop a framework for evaluating MSs, therefore the choice of QPMs are most likely not be optimal, in part due to a variety of limitations. First, the specific comparison analyses presented here depend on: 1) the electrode configuration; 2) the simple MS algorithms we employed; 3) the noise level as well as its spatial uniformity and 4) the specific type and location of electrical patterns in the simulations as well as the choice of cell model (e.g., including “remodeling” may be appropriate for simulating AF (Heijman et al., 2021)). For this pilot study the RMS error of AcTs was less than 1 ms indicating that activation pattern reconstruction of electrograms will be similar to those computed from “down sampling” the transmembrane action potentials from the endocardial surface. AcTs may not correspond well to action potential depolarization during situations in which propagation is abnormal (e.g., at sites of fractionization during persistent AF). More sophisticated MS algorithms than those used here that include spatial and temporal interpolation might improve the identification of AcPs, although care must be taken to interpolate phase values correctly (Roney et al., 2017a; Jacquemet, 2018). Incidentally, our simple MS algorithms did not include any phase calculations; preliminary tests to identify patterns using phase showed decreased performance in identifying reentry compared to the algorithms presented here based on AcTs only. Second, the simulations presented here were carried out using an isotropic left atrium (only) derived from a healthy male. A computational study by Jacquemet et al. (Jacquemet et al., 2003) provides insight into the impact of atria structure on electrogram morphology: they concluded that regardless of anisotropy, wavefront collisions are not the basis of multiphasic electrograms during AF. Third, we implemented a specific “basket-like” geometry which does not capture certain aspects of the clinical situation (Laughner et al., 2016; Oesterlein et al., 2016; Honarbakhsh et al., 2017). Fourth, this study ignored electrogram morphology and only considered the time of activations (i.e., only AcTs were computed using a simple threshold of maximum derivative); in order to support the practical usefulness of this framework to incorporate electrogram morphology validation of virtual electrode signals with clinical signals would be required. Nevertheless, our study includes a quantitative comparison of three hypothetical electrode configurations with the same reference standard (i.e., simulation results) and the same MS algorithms.
A very important question is “How well do the Quantitative Performance Metrics (QPMs) of a MS, resulting from challenging the MS with simulated electrograms from computer simulations, predict real-world performance of the same MS in the intended use population?” Ideally, this would be addressed by performing validation of the MSEF Framework. This would involve comparing conclusions from MSEF MS evaluation with conclusions from clinical MS evaluation. However, we expect this approach to be very difficult and possibly unethical.
FDA is responsible for ensuring the reasonable assurance of safety and effectiveness of medical products in the United States using the following definition of effectiveness defined in Section 860.7(e) (1) of the Code of Federal Regulations: “There is reasonable assurance that a device is effective when it can be determined, based upon valid scientific evidence, that in a significant portion of the target population, the use of the device for its intended uses and conditions of use, when accompanied by adequate directions for use and warnings against unsafe use, will provide clinically significant results.” We believe that this study represents a major step in establishing appropriate performance criteria for MSs using a computational simulation framework. However, discussions with the MS and clinical community regarding appropriateness, justification, and validation will help further refine the framework and next steps in development of MSEF tools such as generating an appropriate library of computational simulations; identifying and standardizing appropriate performance metrics; validating the approach; and automating the steps identified in Table 1.
Our MSEF is based on well-established scientific methods and provides results in the form of two new performance metrics. We believe that our MSEF provides significant new information to aid in the performance evaluation of cardiac mapping systems which is necessary to assess effectiveness. The results can be used to identify the performance of a specific mapping system as a function of a variety of variables, and due to the use of computer simulations the framework is flexible to account for a multitude of inter-related factors that depend of the context of use of the system. Identifying the number and type of simulations to include in the library is extremely challenging; ideally they would represent the geometry, patterns, and electrogram morphology representative of the patient population of interest. Incidentally, the framework can incorporate simulation results from a combination of super computers, graphical processing units (Kaboudian et al., 2010), or desktop computers (Pathmanathan and Gray, 2015; Galappaththige et al., 2019), depending on the level of desired fidelity. Overall, our results demonstrate the feasibility of a computational framework as a method for quantitatively evaluating the performance of mapping system algorithms that compute activation time and/or analyze activation patterns.
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Background: Few studies have explored the use of machine learning models to predict the recurrence of atrial fibrillation (AF) in patients who have undergone cryoballoon ablation (CBA). We aimed to explore the risk factors for the recurrence of AF after CBA in order to construct a nomogram that could predict this risk.



Methods: Data of 498 patients who had undergone CBA at Ruijin Hospital, Shanghai Jiaotong University School of Medicine, were retrospectively collected. Factors such as clinical characteristics and biophysical parameters during the CBA procedure were collected for the selection of variables. Scores for all the biophysical factors—such as time to pulmonary vein isolation (TTI) and balloon temperature—were calculated to enable construction of the model, which was then calibrated and compared with the risk scores.



Results: A 36-month follow-up showed that 177 (35.5%) of the 489 patients experienced AF recurrence. The left atrial volume, TTI, nadir cryoballoon temperature, and number of unsuccessful freezes were related to the recurrence of AF (P < .05). The area under the curve (AUC) of the nomogram's time-dependent receiver operating characteristic curve was 77.6%, 71.6%, and 71.0%, respectively, for the 1-, 2-, and 3-year prediction of recurrence in the training cohort and 77.4%, 74.7%, and 68.7%, respectively, for the same characteristics in the validation cohort. Calibration and data on the nomogram's clinical effectiveness showed it to be accurate for the prediction of recurrence in both the training and validation cohorts as compared with established risk scores.



Conclusion: Biophysical parameters such as TTI and cryoballoon temperature have a great impact on AF recurrence. The predictive accuracy for recurrence of our nomogram was superior to that of conventional risk scores.
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atrial fibrillation, cryoballoon ablation, nomogram, prediction model, post-ablation recurrence





Introduction

Pulmonary vein isolation (PVI) is the cornerstone of efforts to ablate atrial fibrillation (AF). Cryoballoon ablation (CBA), designed especially for PVI, is now established as a standard treatment for symptomatic drug-resistant AF. However, there remain some 30% of patients for whom this procedure is ineffective (1). Many scores based on clinical characteristics have been created in efforts to assess the risk of AF recurrence, but their predictive accuracy is limited and variables in some scores are difficult to obtain (2, 3). Biophysical parameters during CBA—such as time to PVI (TTI), balloon temperature, and number of unsuccessful freezes—have been identified as associated with the durability of PVI (4). Accordingly, we speculated that those biophysical parameters were related to the recurrence of AF after CBA and that a predictive model based on them could be more useful than dependence on conventional risk scores.

We therefore aimed to (1) prove that biophysical parameters during CBA could be used as variables in the prediction of AF recurrence, and (2) develop and validate a nomogram for the prediction of recurrence after CBA.



Methods


Study population

We recruited 498 consecutive AF patients who had undergone CBA between January 2017 and July 2019 at Ruijin Hospital, Shanghai Jiaotong University School of Medicine. Preoperative cardiac ultrasound and computed tomography angiography (CTA) of left atrium (LA) were performed. The inclusion criteria specified that these patients had to be between the 18 and 80 years of age and experiencing symptoms of AF, in whom PVI by CBA was well indicated and successful PVI was considered as the main endpoint of the procedure, and that they had to have failed or refused a prescription of at least one antiarrhythmic drug (AAD). The exclusion criteria included the following: (1) prior LA ablation, (2) a LA diameter greater than 50 mm, (3) experience of a myocardial infarction with the prior 3 months, (4) a stroke or transient ischemic attack within the prior 6 months, (5) valvular AF, and (6) inability or refusal to accept postinterventional oral anticoagulation (OAC).



Ablation procedure

Before ablation, AADs with the exception of amiodarone were discontinued for at least 5 half-lives; amiodarone was discontinued for at least 14 days. OAC was continued. Transesophageal echocardiography was required within 3 days of the procedure to assess for a left atrial thrombus. During the procedure, patients were under conscious anesthesia and monitored for their vital signs. Heparin was administered intravenously with a bolus and the activated clotting time (ACT) was monitored and maintained for more than 300 s. A decapolar catheter was placed in the coronary sinus, with a duopolar catheter in the right ventricular apex for backup pacing. The LA was accessed with a steerable sheath (FlexCath Advance, Medtronic, Minneapolis, MN, USA), through which the CB (Arctic Front Advance, Medtronic) and circular catheter (Achieve 20 mm, Medtronic) were placed in the LA. Attempts were made to record the pulmonary venous potential (PVP) in each PV. We performed a TTI-based ablation protocol. The dosing of CBA was as follows:


	1.If the PVP was recorded and the TTI was less than 60 s, the duration of CBA was between TTI + 90 s and TTI + 120 s at the operator's discretion, and a bonus CBA of 120 s was applied.

	2.If the TTI was between 60 s and 90 s, the duration of CBA was 180 s and a bonus CBA of 120 s was applied.

	3.If PVI was not achieved within 90 s, CBA was abandoned and the balloon was repositioned for a subsequent CBA.

	4.If the PVP was not recorded during CBA, an empiric CBA was delivered for 120 s. If PVI was achieved after this CBA, a bonus of between 160 s and 180 s was applied; if not, the balloon was repositioned for a subsequent CBA.



During the bonus application (point 4), the operators were encouraged to change the balloon's position and orientation by placing the Achieve catheter in a different PV branch. If the nadir temperature of the balloon was equal to or less than −55°C and the duration of ablation was less than 120 s, the CBA was stopped in advance and the balloon repositioned for a subsequent CBA. If the nadir temperature was equal to or less than −55°C and the duration of ablation was already above 120 s, CBA was ceased in advance and no additional CBA was given. During the CBA of right-sided PVs, phrenic movement was monitored by continuous phrenic nerve stimulation with a catheter positioned in the superior vena cava. Complete PVI was considered a bidirectional conduction block between LA and PV. Cardioversion was applied when the heart rhythm was still AF following completion of CBA.



Data collection

The data were collected for analysis including: (1) Basic demographics; (2) Imaging result of LA diameter was derived from echocardiography by measuring the anteroposterior diameter of LA from the parasternal transverse axis. Left ventricular ejection fraction was measured by Simpson's biplane method. LA Volume (LAV) was derived from CTA. The original scanned images were processed by the in-built software of the CT for the construction of the three-dimension model of the LA and PVs. PVs were removed from the three-dimension model and the LAV was calculated automatically. (3) peri-procedural characteristics such as recording of PVP, TTI, balloon temperature during cryoablation.



Follow-up

All patients were hospitalized with rhythm monitored by telemetry for 3 continuous days after CBA. Patients were followed up with 24-h Holter electrocardiogram every 3 months over the first year and every 6 months thereafter. OAC was continued for at least 8 weeks and prescription of AADs was allowed during the blanking period at the discretion of the clinical cardiologist. AF recurrence was defined as atrial arrhythmia persisting more than 30 s—including AF, atrial flutter, or atrial tachycardia—beyond a 90-day blanking period (the period during which recurrence is considered clinically insignificant). In patients with symptoms suggestive of PV stenosis or in those undergoing a CBA procedure, CT of the LA and PV was performed to exclude PV stenosis.



Statistical analysis

Statistical analyses were performed using SPSS 24.0 (IBM Inc., Chicago, IL, USA), X-tile 3.6.1, and R (version 4.0.2; R Foundation for Statistical Computing, Vienna, Austria) software. Continuous data are presented as means with standard deviation, and categorical variables are given as numbers and percentages. Student's t-test and the chi-square test were used to compare clinical characteristics and variables as appropriate. Survival free from atrial arrhythmia was estimated by the Kaplan-Meier method and compared by log-rank tests. Cox proportional hazards models were used to derive hazard ratios and the corresponding confidence intervals.

All 498 patients were randomly divided into a training cohort and a validation cohort (7:3) based on complete data. The training cohort was used to develop the model, and the validation cohort was applied to validate the model. We used a forward + backward stepwise elimination approach to identify predictive variables for the model. Least absolute shrinkage and selection operator regression was also applied in the predictor's selection to examine the importance of predictive variables selected by stepwise regression analysis. Based on the selected predictive variables, the Cox regression model was developed and presented as the nomogram. We assessed the predictive accuracy of the nomogram after discrimination and calibration. To quantify the discrimination performance of the nomogram, Harrell's C-index was measured. Calibration curves, accompanied by the Hosmer-Lemeshow test, were plotted to assess the nomogram's calibration. To assess the nomogram's performance, the Cox regression formula developed in the training cohort was then applied in the validation cohort and predicted survival was calculated.

We analyzed the following risk scores specifically developed for the prediction of AF recurrence post-CBA: CHA2DS2-VASc, SCALE-CryoAF, MB-LATER, CAAP-AF, and BASE-AF2. DeLong's test was used to compare the C-index of the nomogram and the scores in the training and validation cohorts. Time-dependent receiver operating characteristic (ROC) curve was evaluated and the area under curve (AUC) was calculated for the discriminative power of the nomogram and the scores. In addition, we performed a decision curve analysis of the monogram and the two scores.

All P values were two-sided, with P < . 05 indicating statistical significance. C-index, calibration curve, nomogram, and bootstrapping validation were calculated or formulated using the rms and risk regression packages in R.




Results


Patients' baseline demographics

As shown in Table 1, the mean age of our 498 patients was 59.9 years; 63.9% were male, 36.1% were female, and 29.5% of the total had persistent AF. We analyzed the clinical baseline characteristics of patients with and without recurrence and found that there was no difference in terms of age, gender, AF diagnosis time, or AF-related comorbidities. Compared with patients without recurrence, patients with recurrence had a higher percentage of persistent AF, larger LA, and higher clinical score.


TABLE 1 Baseline clinical characteristics.

[image: Table 1]



Stratification of patients according to procedural and biophysical characteristics

Compared with patients without long-term recurrence, patients with long-term recurrence had longer procedural and LA dwell times as well as higher fluoroscopic doses. In patients without recurrence, PVP was more frequently recorded; average TTI was shorter, and there were fewer unsuccessful freezes. Regarding each PV, it was noticed that the balloon temperature at 30 s during successful CBA (Temp30), the balloon temperature at 60 s (Temp60), and the nadir balloon temperature (Tempnadir) were significantly lower and TTI was significantly shorter in patients without recurrence. Details of the biophysical characteristics are shown in Table 2.


TABLE 2 Procedure-related biophysical characteristics and data.

[image: Table 2]

Stratification of the balloon temperature and TTI of each PV was performed by X-tile and the optimal cutoff values were determined (Table 3). Scores corresponding to Temp30, Temp60, Tempnadir, and TTI were calculated by counting the number of PVs achieving the cutoff value; these ranged from 0 to 4. Number of PVs with real-time recording of PVP and number of unsuccessful freezes were counted and analyzed. The results are shown in Table 4.


TABLE 3 Cutoff value of balloon temperature and TTI of each PV.
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TABLE 4 Distribution of patients with number of PVs with real-time recording of PV potential, TTI score, balloon temperature scores and number of unsuccessful freezes.
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Long-term outcome after cryoballoon ablation and risk stratification by score

AF recurrence was seen in 177 of the total number of 498 patients. The Kaplan–Meier estimated AF-free survival was 77.4% at 1 year, 68.7% at 2 years, and 60.5% at 3 years. Kaplan–Meier AF-free survival curves with regard to the TTI score, the balloon temperature score (Temp30, Temp60, Tempnadir), the PV number with real-time recording of PVP, and the number of unsuccessful freezes are presented in Figure 1. These variables showed predictive ability for recurrence. Thus, our results support the idea that these factors can be useful for risk stratification and for the prediction of outcome after CBA for AF.


[image: Figure 1]
FIGURE 1
Kaplan-Meier AF-free survival according to different criteria. (A) Number of PVs with real-time recording of PVP; (B) TTI score; (C) Temp30 score; (D) Temp60 score; (E) Tempnadir score; (F) Number of unsuccessful freezes. PVP: pulmonary venous potential; TTI score: number of PVs achieving the cutoff value of TTI; Temp30 score: number of PVs achieving the cutoff value of balloon temperature at 30 s; Temp60 score: number of PVs achieving the cutoff value of balloon temperature at 60 s; Tempnadir score: number of PVs achieving the cutoff value of nadir balloon temperature.




Factor selection and nomogram construction

We randomly allocated 69% (342) of our patients to the training cohort and the remaining 31% (156) to the validation cohort. There were 123 (36.0%) patients in the training cohort and 52 (33.3%) in the validation cohort who experienced recurrence after CBA. There were no significant differences between the training and validation cohorts regarding preoperative baseline and ablation characteristics (Supplementary Table S1).

Stepwise regression analysis and multivariate Cox regression revealed that the LAV, TTI score, Tempnadir score, and number of unsuccessful freezes were identified as significant independent risk factors for AF recurrence (Supplementary Table S2 and Table 5). The nomogram based on these four factors from the training cohort was developed for the prediction of 1-, 2-, and 3-year AF-free survival. The total score, obtained by adding the scores for each of the four factors, was predictive of the 1-, 2-, and 3-year AF-free survival for each individual patient in the training cohort (Figure 2).


TABLE 5 Cox regression analysis results of recurrence risk factors of atrial fibrillation patients after CB ablation.
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FIGURE 2
Nomogram derived from the training cohort for the prediction of AF recurrence after cryoballoon ablation.




Validation and calibration of the nomogram

ROC curves were used to evaluate the nomogram's predictive ability for 1-, 2-, and 3-year AF-free survival in both the training and validation cohorts. Our nomogram demonstrated good discriminative ability in both the training cohort (1-year AUC, 82.1%; 2-year AUC, 79.3%; 3-year AUC, 76.2%) and the validation cohort (1-year AUC, 78.6%; 2-year AUC, 71.9%, 3-year AUC, 75.7%) for AF-free survival rates (Figure 3). In comparison with other prediction models based on clinical characteristics, our nomogram demonstrated better accuracy with significance in predicting recurrence in the validation cohort. Although statistical differences between the nomogram models and conventional risk scores were not significant, it was noticed that the AUCs were greater for our nomogram model (Table 6). In addition, the C-index of the nomogram model was greater than the C-index of the conventional risk scores in both the training and validation cohorts (Figure 4).


[image: Figure 3]
FIGURE 3
Receiver operating characteristic curves of the nomogram model and the conventional risk scores in the training cohort for (A) the prediction of 1-year recurrence; (B) prediction of 2-year recurrence; and (C) the prediction of 3-year recurrence. In the validation cohort, (D) the prediction of 1-year recurrence; (E) the prediction of 2-year recurrence; and (F) the prediction of 3-year recurrence.



TABLE 6 Results of AUCs of time dependent ROC curves in training and validation cohorts.
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FIGURE 4
C-index of the nomogram model and conventional risk scores in training cohort (A) and the validation cohort (B).


The nomogram had acceptable calibration in the training cohort (Hosmer-Lemeshow statistics: 1 year, χ2 = 10.278, P = . 246; 2 years, χ2 = 5.209, P = . 735; 3 years, χ2 = 3.924, P = . 864) and the validation cohort (Hosmer-Lemeshow statistic: 1 year, χ2 = 14.552, P = . 068; 2 years, χ2 = 6.378, P = . 605; 3 years, χ2 = 7.889, P = . 444). The calibration plots of our nomogram also showed optimal agreement between the actual observations and the predicted outcomes both in the training cohort and the validation cohort (Figure 5) for all time points. Thus these nomogram-based results display good accuracy for predicting 1-, 2-, and 3-year AF-free survival after CBA.


[image: Figure 5]
FIGURE 5
Calibration curves of the nomogram model in the training cohort (A) and in the validation cohort (B).


Compared with the other prediction models, the results of the decision curve analyses (DCAs) demonstrate that the nomogram model has good clinical effectiveness in both the training and validation cohorts (Figure 6). All the results indicate that the accuracy, discriminative ability, and clinical effectiveness of the nomogram model are superior to those of the other conventional risk scores.


[image: Figure 6]
FIGURE 6
The results of decision curves analysis (DCA) of the nomogram model and the conventional risk scores in the training cohort (A) and in the validation cohort (B).





Discussion

To our knowledge, this is the first nomogram developed for the prediction of AF recurrence using both clinical characteristics and procedural biophysical parameters during CBA. The nomogram performed well in both the training and validation cohorts. The model contains only four variables (LAV, TTI score, Tempnadir score, and number of unsuccessful freezes), all of which are available and easy to use in clinical practice. In comparison with other conventional risk scores, our nomogram showed better predictive ability and good potential implication in clinical practice.


Factors related to recurrence after cryoballoon ablation

We discovered that LAV, TTI, Tempnadir, and number of unsuccessful freezes were associated with AF recurrence. It is certain that LAV was highly associated with the success of CBA. Patients with an enlarged LA—which contains more extra-PV triggers and arrhythmogenic substrate than a normal LA (owing to electrical remodeling, structural remodeling, and interstitial fibrosis)—are at greater risk for the recurrence of atrial arrythmia after an initial CBA (5, 6). The type of AF was unexpectedly not included in the related factors, for which we speculate that LAV is quantitative and more representative of persistency of AF and severity of LA remodeling, which is greatly associated with the efficacy outcome of cryoballoon ablation. However, the number of unsuccessful freezes also reflects the development of AF from a different angle. The increased number of unsuccessful freezes may derive from anatomic variation, dilation of the PV ostium, and enlargement of the LA, which have already been proven to raise the risk of AF recurrence after CBA (7, 8).

It is well established that PVI is the cornerstone of AF ablation. Since CBA was designed for the convenience of PVI, the procedural biophysical parameter is considered an important indicator of sufficient ablation. Several studies have already reported that a longer TTI is associated with early reconnection of the PV and a higher risk of recurrence after CBA (4, 9, 10). Therefore, TTI has emerged as an important marker for the dosing of CBA. Several studies that have designed a CBA dosing protocol based on TTI achieved a noninferior efficacy outcome compared with conventional protocols or radiofrequency ablation (11–13). However, the cutoff value of TTI was the same for the four PVs in those studies despite the different anatomic characteristics of each PV. As shown in Table 2, the average values of TTI differed among the four PVs. In our study, therefore, we analyzed the four PVs separately and explored the best cutoff value for each. By calculating and aggregating the score of each PV, the TTI score better reflected the durability of PVI and is believed to be more accurate and reliable for the prediction of AF recurrence.

Balloon temperature during CBA affects the occlusion of the treated PV. Lower balloon temperature reflects better balloon-tissue contact. Thus, the balloon temperature is known to be an important indicator of CBA efficiency. Fürnkranz reported that the nadir temperature is predictive of the acute outcome of PVI and helpful in identifying early PV reconnection (14). In addition, several studies have identified the role of balloon temperature in predicting long-term durable PVI (15, 16). The optimal balloon temperature during CBA remains unclear, but there a prospective study using CBA guided by balloon temperature has already demonstrated that cryoapplication with a balloon temperature lower than −30°C within 40 s showed good acute outcomes of PVI and comparable clinical efficacy and safety profiles (17). Accordingly, it is well recognized that balloon temperature is an important indicator of durable PVI as well as procedural success. In addition, the optimal criteria for nadir temperature of each PV differed among the four PVs (18). Therefore we determined the optimal cutoff of TTI and balloon temperature for the four PVs. This is believed to represent the biophysical characteristics of CBA efficiency. In our nomogram model, we included the balloon temperature and calculated the Tempnadir score. The result of our study also emphasizes the importance of monitoring balloon temperature during CBA.



Advantages of the nomogram model

The monogram model was superior to the general score (CHA2DS2-VASc) and specific scores (SCALE-CryoAF, MB-LATER, CAAP-AF, and BASE-AF2) in predicting and discriminating recurrence. These scores were basically calculated using clinical factors such as age, type of AF, duration of AF in the past, history of coronary heart disease, left ventricular ejection fraction, LA diameter, and other factors. However, the biophysical parameters of CBA were not included in those scores, although it has been reported that these biophysical parameters are associated with acute outcome of PVI (4). Our study shows that the C-index of our nomogram model was larger in either the training cohort or the validation cohort than that of other prediction models. In addition, this supported the fact that high quality of PVI was equally crucial for the outcome as clinical factors. In recently published studies, radiofrequency ablation using AI technology yield higher PVI durability and better efficacy outcome (19, 20). Although those studies were performed in radiofrequency ablation, it is undoubtable that durable PVI after CBA was similarly associated with a favorable efficacy outcome.

Furthermore, our monogram model balanced the contribution of each factor to CBA outcome. In conventional risk scores, the coefficient of each risk factor usually comprised an integer. In our nomogram model, however, the coefficients were calculated based on the significance of the risk factor. Therefore, it is reasonable that the monogram model had an advantage over conventional risk scores. In addition, our model uses only four factors, which are available and easy to calculate during procedure. In specific patients with high scores, the electrophysiologist performing CBA should pay more attention to non-PV triggers or the arrhythmogenic substrate and acute PV reconnection. It may also be necessary to extend the ablation range and verify PVI durability. In summary, our nomogram model combines both clinical factors and biophysical parameters, which raises its predictive performance compared with conventional risk scores and implies its clinical significance for the guidance of CBA.




Limitations

Our study has several limitations. First, this was a retrospective analysis in which selection bias may have existed; therefore, a future prospective study is warranted. Second, the patients' data were obtained from our center only, and no external validation was applied. Although we have separated the total patients into two cohorts, external validation of our results was still required before our findings could be applied clinically. Finally, the variables included in our study were based on our routine clinical practice. Regarding biophysical parameters, we collected only real-time recordings of PVP, CB temperature during freezes, TTI, and number of unsuccessful freezes. Other parameters such CB warming time were not included. The inclusion of more parameters might further improve the accuracy of the model.



Conclusions

This study presents a nomogram that is easy to apply and can predict the long-term efficacy and outcome of CBA. Biophysical parameters such as TTI and cryoballoon temperature have a great impact on AF recurrence. The nomogram has been shown to be superior in its predictive accuracy as compared with assessments based on conventional risk scores.
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149 (29.9%) 120 (37.4%) 29 (16.4%)

of Tempgo
23 (4.6%) 4(12%) 19 (10.7%)
69 (13.9%) 30 (9.3%) 39 (22%)

111 (22.3%) 59 (18.4%) 52 (29.4%)
149 (29.9%) 110 (343%) 39 (22%)
146 (29.3%) 118 (36.8%) 28 (15.8%)

of Tempnadir
36 (72%) 9 (28%) 27 (15.3%)

59 (11.8%) 24 (7.5%) 35 (19.8%)
108 (21.7%) 72 (22.4%) 36 (203%)
176 (35.3%) 120 (37.4%) 56 (31.6%)
119 (23.9%) 96 (29.9%) 23 (13%)

Number of unsuccessful freezes
122 (24.5%) 89 (27.7%) 33 (18.6%)
105 (21.1%) 75 (23.4%) 30 (169%)
90 (18.1%) 61 (19%) 29 (16.4%)
181 (36.3%) 96 (29.9%) 85 (48%)
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F1  Precision Recall Specificity Accuracy

CPSC 09693 09518 09875 09454 09674

Georgia | 0.8660 0.8702 0.8619 09322 09079

PTB-XL | 09763 0.9654 09875 09646 09760
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Model Kernel size F1 Precisiol Recall Specificity Accuracy
Inception-ResNet v2 (Szegedy et al., 2017) 164 1x77x11x33x1 | 09752 09672 09833 09667 09750
ParNet (Goyal et al., 2021) 12 3x3 09700 09630 09771 09625 0.9698
ParNet-adv 12 1x77x1 0.9763 0.9654 0.9875 0.9646 0.9760






OPS/images/fphys-13-1008111/crossmark.jpg
©

|





OPS/images/fphys-13-1001415/math_9.gif
©






OPS/images/fphys-13-1001415/math_8.gif
2
= =T, Y b,

)&

aSPL





OPS/images/fphys-14-1070621/inline_5.gif





OPS/images/fphys-14-1070621/fphys-14-1070621-t001.jpg
sample Mean G leads Number of data Single-label data Experiment data
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PIBXL 00 0 2 NSR 18092 16801 1200
AR 1514 | 1396 | 1200
ansc 00 I 162 o I NSR o8 o1 918
I AR | 1221 | 1000 1000 I
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F1  Precision Recall Specificity ~Accuracy

1 09593 | 0.93655 09833 09333 0.9583

i 0.9669 09590 09750 0.9583 0.9667
Vi 0.9729 09749 09708 0.9750 0.9729
n+V1 | 09763 09654 09875 0.9646 0.9760
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Frequency (Hz) Data length (s) F1 Recall
200 10 09738 09810 0.9667 09813 09740
5 09625 09664 0.9583 0.9667 09625
300 10 09763 09654 0.9875 0.9646 0.9760
5 09565 09506 09625 09500 09367
500 10 09718 09748 0.9688 09750 09719
5 09598 09491 0.9708 09479 09594
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Feature
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Kappa (%)
Kappa (1) (%)
Kappa (2) (%)
Kappa (3) (%)
Kappa (4) (%)
Kappa (5) (%)
Time(s)

Lee, K. et al

RMSD and ShE

83.32 + 022
65.88 + 042
67.94 £ 0.61
60.65 + 1.83
68.81 £ 092
61.86 + 0.99
49.39 % 4.55
0.53 £ 0.0

Eerikdinen, L.M. et al

PNN40, PNN70, ShE,
RMSD, nRMSD, SampEn,
and CSampEn

9527 £ 0.16
90.72 £ 0.32
95.90  0.37
87.25 % 1.22
89.33 £ 0.63
86.00 + 0.69
68.24 £ 2.76
127 £ 012
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Classifier

Accuracy (%)
Kappa (%)

Kappa (1) (%)
Kappa (2) (%)
Kappa (3) (%)
Kappa (4) (%)
Kappa (5) (%)

Time(s)

BPNN

94.85 + 133
89.95 + 2.62
99.60 £ 0.22
93.02 270
80.43 +7.42
8222 + 326
7251 421
100.58 + 26.49

ELM

95.05 + 0.14
90.28 + 0.28
9843 £ 0.22
88.39 £ 1.18
9270 + 0.69
7807 £ 0.81
7508 + 245
8.63 + 022

98.76  0.08
97.59 £ 0.15
99.94 £ 0.05
98.70  0.37
96.87 + 0.49
95.46 + 0.40
77.87 £ 2.39
112 £ 0.09
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Feature Arrhythmia Magnitude

Accuracy  Gini index h

Mean (bpm) 77.656 + 26427 0.14803 9190.703 1
Std (bpm) 7491 + 8.342 0.04319 2875.464 1
RMSD (bpm) ~ 8.981 + 10.923 0.04695 2509.154 1
NRMSD 0.103 % 0.109 0.03050 1566.921 1
PNN40 0.330 + 0.261 0.01856 658.777 1
PNN70 0.178 + 0220 0.02003 650.410 1
Mid_PR 77.279 + 26823 0.12823 9310.805 1
IQR 1.103 £ 0.131 0.03286 1326.019 1
LE_HF 0570 + 0.581 0.00151 296.167 0
Sd1_Sd2 0755 + 0.411 0.03250 1834.461 1
Se 28286.557 + 268061.587 003482 1744.127 1
TPR_PR 0.353 £ 0.116 0.01240 557.654 0
ShE_PR 0.758 + 0.263 0.01369 623.074 1
SamE_PR 1.260 + 0.642 0.01170 350.191 0
CSampEn ~3.736 + 0.760 0.02585 2423171 1
PE_PR 4.804 + 0535 0.29766 10999.265 1
RMSD_APM  0.269 + 0.360 0.10571 6848.117 1
SamE_APM  1.288 + 0.59% 0.01161 676.207 0

TPR_APM 0.405 + 0.127 0.04555 2737.818 1
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Feature

Mean (bpm)
Std (bpm)
RMSD (bpm)
NRMSD
PNN40
PNN70

Mid (bpm)
IQR

LF_HF
Sd1_sd2

Se

TPR_PR
ShE_PR
SamE_PR

C_ SamE_PR
PE_PR
RMSD_APM
SamE_APM
TPR_APM

Healthy

64.416 + 9.927
4225 + 4135

4398 + 5280

0.070 + 0.089

0282 + 0232

0.116 + 0.177

63.982 + 10061

1.075 + 0.082

0.690 + 0.620

0.600 + 0285
17,957.633 + 48,104.424
0387 +0.102

0770 + 0263

1401 + 0541

~3.445 + 0.565

5.145 + 0223

0.088 + 0.062

1.380 + 0498

0461 + 0.090

68.415 £ 17.993
5468 + 5.469
6022 + 5.937
0.101 + 0.106
0272 +0.284
0.156 + 0.222
69.291 £ 17.707
1.105 + 0.167
0322 + 0.396
1.008 + 0.461
84,636.350 + 207,135.375
0298 +0.113
0733 +0.282
0924 + 0.659
-3.952 £ 0.721
4013 + 0.399
0245 +0.183
1.106 + 0.675
0381 +0.108

127.740 + 25.192
19.756 + 10522
25.304 % 12951
0201 +0.112
0509 + 0.262
0364 +0.218
128.012 + 24.466
1214 £ 0.181
0326 + 0.391
1.080 + 0.502
28,566.523 + 33,315.262
0.294 + 0.107
0798 +0.232
1097 +0.777
-4.426 £ 0777
4.158 + 0.158
0.837 + 0.397
1.124 + 0.816
0283 + 0.096

97.849 + 16.322
11709 + 8.557
15.603 + 10.819
0.155 + 0.101
0387 +0.274
0272 + 0230
96.873 + 16.795
1116 £ 0.135
0327 +0.391
1.075 + 0.383
48,468.728 + 653,737.846
0277 +0.117
0677 + 0.267
0.888 + 0.697
-4374 £ 0727
4.108 + 0.207
0610 +0.419
1071 + 0.661
0272 +0.115

106.964 + 40.108
25690 + 10.921
34.148 + 14.017
0327 +0.104
0.809 +0.133
0712 +0.169
106532 + 42.183
1.468 + 0.351
0358 + 0.466
1136 + 0.524
127,469.782 + 153,701.838
0283 + 0.099
0.833 +0.219
L1151 £ 0.752
-4.151 £ 0754
4.174 + 0.140
0584 +0.224
1.336 + 0.697
0286 + 0.126
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Types

EB

VT
VE

Definition

HRV <40 bpm for 5 consecutive beats
HRY >140 bpm for 17 beats
Five or more ventricular beats with HRV >100 bpm

Rapid flutter, oscillatory, or fibrillation lasting at least 4
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VE SVE

Author Subject Men 90 95 oz 90 95 Y4 Screening Year Race
No (%) percentile | percentile  percentile  percentile  percentile  percentile

Bjerregaard 44 (59%) | 200-1,000 >1,000 10-100 - PH, PE, 12-ECG, CXR Denmark
Ramusen 60-79 37 19 (51%) 300-400 500 - - : - PH, PE, 12-ECG, BW 1985 | Denmark 7
Kantelip 80-100 44 6(14%) | 1200-2,400 2,400 - 1,200-2,400 . 2,400 PH, PE, 12-ECG, BW 1986 | France 12
(96 percentile) (98 percentile)
Anderson 73, 82 32 16 (50%) <1,000 - - <1,000 - - PH, PE, 12.ECG 1988 | Sweden 13
Ribera 58-85 50 30 (60%) - 139 - - 298 - PH, PE 1989 Spain 14
Tasaki 64-80 15 5 (33%) - 69 - - 419 - PH, PE, 12-ECG, CXR, BW 1989 | Japanese 15
Hashimoto 60-89 121 53 (44%) 171 393 1682 453 558 1063 PH, PE, 12-ECG, CXR, UCG, BW | 2022 [ Japanese
(This study)
BW, blood work' C-XR, Chest x-ray; PE, Physical examination; PH, past history; 12-ECG, 12 leads UCG, ultrasonic

*The paper reported by Tasaki et, was published in 2000, but the data of AECG was detected in 1989.
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VE

Author Subject Men 90 oo 975 90 B

Screening Year
No (%) percentile  percentile percentile percentile percentile

Kostis 4810 51 (50%) PH, PE, 12-ECG, CXR, UCG, BW, | 1981
EST, CAG

Bjerregaard 40-59 184 126 (68%) | 100-200 - 200-1,000 - - 10-100 PH, PE, 12ECG, CXR 1982 | Denmark | 11

(978 percentile) (97.8 percentile)
Gomer 40-66 43 43 (100) 100-200 300 - - - - PH, 12-ECG, PE 1986 | Sweden 8
Ramusen 3049 38 19 (50%) 233 864 = 156 461 PH, PE, 12-ECG, BW 1985 | Denmark 7
Hashimoto 20-49 124 52 (42%) 37 144 254 55 125 232 PH, PE, 12-ECG, CXR, UCG, BW 2022 | Japanese
(This study)

BV Bl i TR Chest i BET. Tratenal] mrcss vy teit DG caronsty aamon sl PE Bluscal moninatices BEL pad biviars T-EE 45 lunk sectmsidommarc LGS iltasane adiosardiarmto
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Age

Subject
No

Men

%)

\%3

90 95
percentile percentile

975

90

SVE
95

Screening

percentile percentile percentile

Brodsky 50 (100%) 10 >50 10 >100 PH, PE, 12-ECG, CXR, UCG
(88 percentile) (98 percentile) | (92 percentile) (98 percentile)
Okajima 18-36 102 56 (55%) - 100 - - 100 - PH, PE, 12-ECG 1981 | Japanese 6
(96 percentile) (96 percentile)
Ramusen 20-39 36 19 (53%) - 35 - PH, PE, 12-ECG, BW 1985 | Denmark 7
Gomer 15-39 4 43 (100) 10 70 14 504 PH,12-ECG, PE 1986 | Sweden 8
Von Rotz 25-41 2,043 953 (47%) 193 PH, PE, BW 2017 | Liechten- 9
stein

Hashimoto 20-39 120 61 (52%) 9 59 149 24 52 131 PH, PE, 12-ECG, CXR, 2022 | Japanese
(This study) UCG, BW

BW, blood work: CXR, Chest x-ray: PE, Physical examinatior

H, past history: 12-ECG, 12 leads

: UCG, ultrasonic
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20-39 years (1= 120)

Normal

Abnormal

Bradycardia

Sinus pause <3 5

Sinus pause >3 5,
Second-degree atrio-ventricular
block (Mobitz),
‘Third-degree atrio-ventricular

Ectopy and tachycardia
(ventricular)

VE<149

VE >149, Multiform VE, VT,
V3, V2, R on T, Bigeminy,
Trigeminy

Ectopy and tachycardia
(supraventricular)

SVE <131, $3, 52

SVE >131, any SVT

40-59 years (n = 124)

Bradycardia

Sinus pause <25

Sinus pause >3 5,
All second-degree atrio-
ventricular block,
‘Third-degree atrio-ventricular

Ectopy and tachycardia

VE <232

VE >232, Multiform VE, VT,

(ventricular) V3, V2, R on T, Bigeminy,
Trigeminy
Ectopy and tachycardia | SVE <144, 53, 52 SVE >144
(supraventricular) SVT >10 beat
60-89 years (n = 121)
‘Bradycardia Sinus pause <2's Sinus pause >3 s,

All second-degree atrio-
ventricular block, Third-degree
atrio-ventricular block

Ectopies and

VE <1,682, V2, V3,

VE >1,682, Multiform VE, VT,

tachycardia Bigeminy, RonT
(ventricular) Trigeminy

Ectopy and tachycardia | SVE <1,063, $3, 52 SVE >1,063
(supraventricular) SVT 10 beat

AECG, ambulatory ~ electrocardiogram;  S2,
supraventricular triplet; SVE, supra ventricular ectopy; SVT, supraventricular
ventricular tachycardia; V2, ventricular couplet; V3, ventricular triplet; VE,
ventricular ectopy: VT, ventricular tachycardia.

supraventricular  couplet ~ S3,





OPS/images/fphys-13-1008111/math_24.gif
rpR_PR = 007

))- 5@ =S+ 1)>0)
(24)





OPS/images/fcvm-10-1099157/fcvm-10-1099157-t006.jpg
log SVE
Age

Sex
SBP

BMI
E/e’ (septal)

E/e’ (lateral)
E/A

EF
logSDNN
TogRMSSD
10gPNN50
logHFnu
logLE/HF

log SVE, log supra ventricular ectopy; the other abbreviations as in Table 5.
ayariables by multiple linear regression with stepwise selection.
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208

1.274
1338
1.161
E/e’ (septal) . . 2856
E/e’ (lateral) X 2 288

EIA X ¥ 1353
EF X : 1041
logSDNN ). . 1.92

logRMSSD 0.041 9.336
logPNN50 0.085 . 5.467
logHFnu 0081 7045
log LF/HF 0.108 0367 | 379

EF, left ventricular ejection fraction; HF, power in the high-frequency area; HFn
HF normalized unit; LF, low-frequency area; LF/HF, power in the low-frequency
power in the high-frequency ratio; LFnu, LF normalized unit; LVDd, lef
ventricular end-diastolic dimension; pNN50,percent of difference betweer
adjacent normal RR intervals greater than 50 ms; RMSSD, root mean square
successive difference; SBP, systolic blood pressure; SDNN, standard deviation of
the mean normal RR intervals for 5-min segments (ms); VIF, variance inflatior
factor; VLF, low frequency area. a Varibles by multiple linear regression with
stepwise selection.
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20-39 years (1= 120)

Incidence
68 (56.7%)

Multiform
27 (22.5%)

2 (1.7%)

2 (1.6%)

Bigeminy
4(3.3%)

Trigeminy
2 (1.7%)

24)

88 (71.0%)

46 (37.0%)

2 (1.6%)

6 (4.8%)

4(3.2%)

2 (1.6%)

102 (84.3%)

65 (53.7%)

2 (1.7%)

16 (13.2%)

10 (8.2%)

11 .(9%)

258 (70.7%)

Incidence
103 (85.8%)

138 (37.8%)

All types of SVT
1(08%)

6 (1.6%)

SVT >10 beats

6 (5%)

25 (6.6%)

19 (15.8%)

18 (49%)

15 (41%)

122 (984%)

4(3.2%)

22 (17.7%)

42 (33.9%)

121 (100%)

32 (26.4%)

73 (60.3%)

90 (74.3%)

346 (94.7%)

37 (10.1%)

86 (23.5%)

151 (41.3%)
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Percentile

VE

20-39 years

40-59 years

60-89 years

20-89 years

Percentile

SVE
2039years [ 0 [0 ] o | 2 6 | 13| 24|52 ] 13
40-59years | 1 [ 1] 2 | 6 | 13| 29 | 55 | 125 | 232
60-89years | 4 |9 | 14 | 27 | 67 | 189 | 453 | 558
20-89years [ 0 [ 0] 2 | 5 | 18| 50 | 18 | 311
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Sinus pauses >2 s

Sinus pauses >3 s

Second-degree AV

Second-degree

Third-degree

block (Wenckebach)

AV block (Mobitz)

AV block

20-39 years (n = 120) 5 (4.1%) 0 (0%) 4 (3.3%) 0 (0%) 0 (0%)
40-59 years (n=124) 2 (1.6%) 0 (0%) 2 (1.6%) 0 (0%) 0 (0%)
60-89 years (1 =121) 1(0:8%) 0 (0%) 1.(0.8%) 1(0.8%) 0 (0%)
20-89 years (n =365) 8 (2.1%) 0 (0%) 7 (1.9%) 1(0.2%) 0 (0%)

T o L SR UG MRSE S Sy Q- N S (0
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20-39 years 40-59 years 60-89 years P-value
(n=124) (n=121)

Demographics

Age 31 [25, 36] 47 [43, 53] 71 (6638, 75] <0.001 48 [36, 67]

Men 52 53 166

Height (cm) 1628 +8.7 158.7£92 <0.001 162093

Body weight (kg) 62.2£12.0 56.3 £9.9 <0.001 59.6+11.2
Body mass index (kg/m’) 23336 22:25 0016 226+35

Systolic blood pressure (mmHg) 115.5+11.4 1262+17.3 129.4 +142 <0.001 123.8+15.7

Diastolic blood pressure (mmHg) 71.1+104 794 +13.5 76.1 = 10.9 <0.001 756122
AECG

Total beat/day 1094629 12,3415 1105349 + 11,0452 103,693.1 % 11,0551 <0001 107,957.0 = 1,18459.

Maximum heart rate/day 144.0+ 18.0 1333+14.7 121.1 +£15.1 <0.001 131.0 [120.0, 143.0]

Minimum heart rate/day 50.6 6.9 <0.001 525+65

Mean heart rate/day 789+87 <0.001 772+86

Ventricular ectopy (single)/day 1.0 [0, 3.0] 20 [0, 6.0] 40 [0, 13] <0.001 20[0,7)

Supra ventricular ectopy (single)/day 6.0 [20, 14] 13.0 [6.0, 30] 67.0 [30.0, 189] <0.0001 180 [5.0, 51]
HRV.

SDNN (ms) 154.7 1294, 1863] 1362 [115.38, 158.1] 129.9 [109.7, 153.2] <0.001 139.5 [117.1, 165.6]

RMSSD (ms) 354 [27.1, 50.3] 25.0 [18.6, 32.5] 233 [17.1, 31.8] <0.001 272 [20.6, 36.7]

PNN50 (%) 112 (5.2, 20.7) 4.0 [13, 9.0] 2.8 (0.8, 7.0] <0.001 5.4 (1.9,112]

SDANN (ms) 144.7 (11338, 1732] 125.4 [104.6, 146.2] 123.0 [99.8, 142.5] <0.001 128.2 [107.4, 153.8]

VLE (ms’) 40265(2,7645, 6373.8] | 33746 24240, 43245] | 2,9960[2,1558, 3929.6] | <0001 | 3,387.8[2,500.2, 47417]
LE (ms?) 9723 [698.9, 1,513.4] 586.2 [395.3, 885.4] 3213 [214.5, 536.6] <0.0001 6166 (3392, 1,001.9]

LEnu 17.1 139, 200] 141 (108, 170] 9.4 (73, 125] <0.0001 132 (99, 17.5]

HF (ms?) 418.3 [256.7, 900.5] 2247 1183, 381.7] 152.8 [76.4, 259.6] <0.0001 251.5 [129.1, 456.4]

HFnu 7.6 [5.4, 11.2] 4.9 (3.1, 76] 4.3 [2.6, 64] <0.001 5.4 (3.4, 8.4]

LE/HF 22 (15, 28] 2.8 [19, 41] 22(1.3,32] <0.001 23 (16, 3.4]
UCG

LVDd (mm) 468+57 46062 45948 0432 46457

EF (%) 67.4%68 66663 67.1%7.1 0.684 66769

Ele’ (septal) 58+17 63+18 6622 <0001 6119

E/e’ (lateral) 49+13 57+1.6 59+18 <0.001 5415

E/A 1404 12:04 09:03 <0001 12:04

EF, Left ventricular ejection fraction; E/e’, early diastolic flow velocity/ velocity of early diastolic mitral annular motion; HF, the power in the high-frequency area; HFnu, HF
normalized unit; LF, low-frequency area; LF/HF, the power in the low-frequency/the power in the high-frequency ratio; LFnu, LF normalized unit; LVDd, left ventricular
end-diastolic dimension; pNN50, percent of difference between adjacent normal; RR intervals greater than 50 ms, RMSSD (The square root of the mean of the sum of
squares of differences between adjacent normal to normal intervals); SDANN, standard deviation of the 5-min average NN intervals; SDNN, standard deviation of the
sest et D Sl Ber B searpests v MLE . low heavwensy s LI0E b sdhomiliasrio:
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Randomization Model Reference Basic PWI-based Integrated

Component | Standard PWD APWD APWD, alAB, BSA APWD, alAB, BSA, LAD
Threshold 121 ms 136 ms AF probability 0.63 AF probability 0.65

Training set Accuracy 55.7% 76.6% 81.4% 81.7%
sensitivity 47.8% 71.5% 81.1% 81.1%

specificity 72.1% 86.9% 81.8% 82.8%

PPV 77.5% 91.0% 90.0% 90.5%

NPV 40.5% 60.3% 68.3% 68.5%

Validation set Accuracy 56.0% 76.8% 80.9% 80.7%
sensitivity 48.5% 73.4% 81.8% 80.9%

specificity 71.7% 84.0% 78.9% 80.4%

PPV 78.0% 90.5% 88.9% 89.5%

NPV 40.2% 60.4% 67.7% 67.0%

Standard PWD, duration of standard (non-amplified) p-wave; APWD, duration of amplified p-wave; aIAB, advanced inter-atrial block; BSA, body surface area; LAD, left atrial diameter; PPV,
positive predictive value; NPV, negative predictive value.
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Univariable P-value OR 95%Cl

alAB 0.996 9.87e + 08 0 =
Sex <0.001 0.535 0.404 0.709
Age 0.521 1.003 0.994 1.012
APWD <0.001 1.096 1.082 1.11
Hypertension <0.001 2.601 1.951 3.468
Diabetes 0.223 1.382 0.821 2.327
Stroke 0.018 11.286 1514 84.139
TIA 0.529 1.393 0.497 3.904
CHD <0.001 2.705 1.597 4.582
BMI <0.001 1.104 1.068 1.142
BSA <0.001 14.415 7.138 29.109
LAD <0.001 1.207 1.168 1.247
LVEF <0.001 0.964 0.949 0.979
Multivariable P-value OR 95%Cl

Sex 0.236 0.78 0.517 L1%7
APWD <0.001 1.087 1.071 1.103
Hypertension 0.715 0.927 0.616 1.394
Stroke 0.084 8.803 0.747 103.71
CHD 0.529 1.249 0.626 2.492
BMI 0.612 0.986 0.935 1.04
BSA 0.034 3.53 1.103 11.293
LAD 0.008 1.056 1.015 1.1
LVEF 0.841 1.002 0.981 1.024

alAB, advanced inter-atrial block; APWD, duration of amplified p-wave; TIA, transient
ischemic attack; CHD, coronary heart disease; BSA, body surface area; BMI, body mass index;
LAD, left atrial diameter; LVEE, left ventricular ejection fraction.
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Variables Overall (n = 1492) Control (n = 491) AF (n =1001)

Age, years 60.14 £+ 14.42 60.02 £+ 17.14 60.19 +12.88 0.828
Female, 1 (%) 631 (42.30%) 262 (53.40%) 369 (36.90%) <0.001
Paroxysmal AF, n (%) 499 (33.44%) 0 499 (49.85%) <0.001
BMI, kg/m2 27.09 £ 4.66 25.72 £ 4.39 27.75 + 4.64 <0.001
BSA, cm? 1.97 £ 0.23 1.87 £0.21 2.01 £0.22 <0.001
LAD, mm 40.19 +6.23 36.55 £ 4.95 41.90 +6.03 <0.001
LVEE% 59.81 £9.87 61.67 £+ 8.76 58.92 +10.25 <0.001
Hypertension, 1 (%) 778 (52.10%) 212 (43.20%) 566 (56.5%) <0.001
Diabetes, 1 (%) 127 (8.50%) 35 (7.10%) 92 (9.2%) 0.180
Stroke, 1 (%) 36 (2.40%) 4 (0.8%) 32 (3.2%) 0.004
TIA, n (%) 36 (2.40%) 10 (2.0%) 26 (2.6%) 0.593
CHD, n (%) 177 (11.90%) 35 (7.1%) 142 (14.20%) <0.001
CHA2DS2-VASc score 1.94 £ 145 1.74 £ 147 2.03 +£1.43 <0.001
GFR (ml/min/1.73 m?) 80.58 £ 19.79 84.24 £+ 19.71 78.79 + 19.59 <0.001
Creatinin clearance (mg/dl) 0.96 £ 0.33 0.89 £0.21 0.99 +£0.38 <0.001
Antiarrhythmia drugs, n (%) 522 (35.0%) 0 522 (52.1%) <0.001
Amiodarone, 1 (%) 247 (16.60%) 0 247 (24.7%) <0.001
Dronedarone, 1 (%) 14 (0.9%) 0 14 (1.4%) 0.019
Flecanid, n (%) 205 (13.7%) 0 205 (20.5%) <0.001
Propafenon, n (%) 11 (0.7%) 0 11 (1.1%) 0.044
Sotalol, n (%) 45 (3.0%) 0 45 (4.5%) <0.001
Anticoagulant, 1 (%) 940 (63.0%) 0 940 (93.9%) <0.001
VKA, n (%) 159 (10.7%) 0 159 (15.9%) <0.001
Apixaban, 1 (%) 200 (13.4%) 0 200 (20.0%) <0.001
Rivaroxaban, n (%) 429 (28.8%) 0 429 (42.9%) <0.001
Edoxaban, n (%) 63 (4.2%) 0 63 (6.3%) <0.001
Dabigatran, n (%) 89 (6.0%) 0 89 (8.9%) <0.001

AF, atrial fibrillation; BMI, body mass index; BSA, body surface area; LAD, left atrial diameter; LVEE, left ventricular ejection fraction; TIA, transient ischemic attack; CHD, coronary heart

disease; GFR, glomerular filtration rate; VKA, vitamin-K antagonist.
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Analysis of the Amplified Sinus-P-wave For Identification of Individuals with Atrial Fibrillation
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Method

picaSQl (Li et al., 2014)

tSQl (Liu et al., 20208)

kSQI (Clifford et al., 2012)
ELZ_compl_SQI Zhang et al., 2014)
SSQl (Cifford et al,, 2012)
bSQI_4 (Liu et al, 2018)
DisEn_SQl (Li et al., 2015)
pSQI (Li et al., 2008)

bsSQl (Li et al., 2014)

SQl (Lu et al., 2019b)

basSQl (Li et al., 2014)
ApEn_SQl (Pincus et al., 1991)
Proposed method

Mean time/ms

4.04
1.20
1.14
31.74
1.05
6.83
25.28
215
2,01
1.08
3.31
30.41
18.25

SD/ms

0.41
0.20
0.13
6.55
0.23
0.65
8.31
0.25
0.30
0.26
043
3.60
1.38

The bold values were the time cost and standard deviation of the proposed method.
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SQA method

27 SQls 10-fold cross-
+SVM validation
Cross database

vadation, BUTQDB
signais as raining
data, 2011 PhysioNet/
GinG signals as testing
data
Cross database
validation,
2011 PhysioNet/CinG
signals as training
data, BUTQDB signals.
as testing data
Wavelet 10-fold cross
scattering  validation
+LSTM Cross database
validation, BUTQDB
signals as training
data, 2011 PhysioNet/
GinG signals as testing
data
Cross database
valdation,
2011 PhysioNet/CinC
signals as training
data, BUTQDB signals
as testing data

Seal%

87.79 £ 097

61.06 £ 045

63.48 + 069

97.90 + 0.54

79.26 £ 1.50

7993+ 1.03

The bokd values wera the reeulls of the proposed method.

Sea/%

7275 + 147

74.26 + 061

65.75 + 094

98.16 + 058

8332+ 084

75.68 + 096

Sec/%

96.06 + 051

90.74 + 039

9803 026

99.60 + 039

9233+ 067

9159+ 084

+Pal%

77.9.£1.09

65.46 + 0.87

7522 + 0.47

98.52 + 0.81

80.38 £ 0.7

84444101

+Pe/%
83.17 £ 076

68.47 + 044

62.06 + 068

97.60 + 0.94

8217 £1.39

7243 + 099

+Pc/%

962 + 046

94.38 £ 056

90.62 + 067

99.54 + 016

9282 £ 092

90.11£073

Fin/%

82.52 + 069

63.18 + 1.02

68.85 + 0.81

98.20 + 085

79.81 £ 1.01

82.12 £ 088

Fia/%

77.6 £ 0.69

7125098

63.85+078

97.90 £ 084

8274 £139

7402 £1.27

Ficl%

9.1+ 053

9253 + 065

94.18 + 031

99.60 + 029

9258 + 087

90.85 + 065

mFy

854+

75.65 +

75.63 1

98.55 +

85.04 »

82.32 +
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Input: $7*" training sample sets; L*" training label sets,

testing sample sets; L'** (esung label sets
Output: Prediction label L' of the Stest

1 for dbi in [db1,db2, db3, dbd, db3) do
2: I = PWT gy (S7") # PWT a5 (-) is the wavelet packet decomposition based
on the dbi wavelet basis functions
3: Lt = L
4 F = PW T (5')
5. Ligh = Lt

6: end fm'

7: # training procedure
8: Initialize parameters and weights
9:foriin (1,23, 4,5] do
10: metrics = LW — FHRNet (Fig", Lizan)
‘rain the LW-FHRNet model by optimizing the loss function
12: end for
13: return model LW-FHRNet-best

14: # testing procedure
15: for i n [1,2,3, 4,5 do
Lt E% LW-FHRNet-best (Fig!

= vore(L:;:,.L;f,;,'. Lifihs Ligi Lis) #Vote () s a voting function
turn L
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ayer Output Kernel size Output channel

Input | 224 x 224 = 3
Conv 112 x 112 3x3

4
MaxPool 56 x 56 3x3
Stagel | 28 %28 s 116
Stage2 ‘ x4 232
Conv 4% 14 1x1

1024
AvgPool 1x1 14x 14
FC ‘ - - 1

The normalization and ReLU, layers that follow each convolutional layer are not shown above because they do not change the output feature shape. Conv: convolutional layer; MaxPool: max

pooling layer; AvgP

yvaragn pocling lyer: FC: filly connect bivor: stage: BOA-Shuille it A+ BCA-Shnfllo wine B,
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Quality class # Record Source Sampling frequency (Hz) Record length (second)

A 16,163 11,708 BUTQDB 1,000 10
4,455 2011 PhysioNet/CinC 500 10
B 16,346 7,860 BUTQDB 1,000 10
5,486 2011 PhysioNet/CinC 500 10
3,000 Class A signal set randomly + NSTDB - 10
c 17,576 657 BUTQDB 1,000 10
2,059 2011 PhysioNet/CinC 500 10
7,860 Class B signal form BUTQDB + NSTDB - 10
7,000 Class A signal set randomly + NSTDB = 10

Total 50,085 - 250 10
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0.75

0.5

0.25

Description for signal
quality scoring

ECGs have a clear QRS complex and T wave. Baseline wander does not influence the identification for QRS.

Transient high amplitude impuise exists, but not more than three episodes. The majority of GRS complexes can be visualy
clearly identified.

Both large baseline wander and transient high amplitude impulse exist. It is challenging to visually clearly identify the QRS
complexes in a 2-3  time window.

More serious lager noises exist, such as strong Gaussian noise and signal saturation and others. In these noise episodes, itis
impossible to identify the QRS complex. But at least 4-5 s continuous identifiable heart beats are visible.

Strong noises occupy in the more than 5 s episode. It is very hard to identify the heart beat for the most signal.
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Ik, activators KB130015 1CA-105574 NS1643% NS3623

Therapeutic dose (M) 5 025 30 85

*Noted that the maximum Iy, activation (152%) of NS1643 was still not able to restore the QT interval to its control level. However, 30 uM NS$1643 greatly shortened the QT interval to a
Sl T i Rt Y i B R Bl all





OPS/images/fphys-13-1018299/fphys-13-1018299-t005.jpg
Ion channels Ina InaL Inaca IcaL Txe

APD,, (ENDO) 0 9.4%]| 0 0 27.1%]
APDyy (MID) 0 7.0%| 0 0 24.1%]
APDyy (EP) 0 4.4%| 0 0 263%]

‘" and “['indicate that the effect of the change of this ion channel on APD90 is
lengthening or shortening.
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pITX2t/~risk  PITX2t/~risk  PITX2t/~risk ~ PITX2*/~risk  P-value Log rank P

score score score score
(0~6, 11 =25) (0~3,n=7) (4,n=8) (5~6, 11 = 10)

1 year recurrence  36.00% 14.30% 37.50% 50.00% 0.342 0.273
(9/25) w7 (3/8) (5110)

2 year recurrence  48.00% 42.90% 37.50% 60.00% 0.687 0.441
(12/25) 317) (3/8) (6/10)

tion; PITX2*/~

‘nucleotide polymorph

score: Paired-like homeodomain transcription factor 2 (PITX2) gen score, calculated by multiplying the number of AF

ism (SNP), and adding them (152595107, rs2200733, rs6843082, and rs10033464) together.

alleles by the beta
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AF defragmentation, %(n)  p-value AF termination, %(n)  p-value Mean DE, (Hz) p-value Mean Smax p-value

Wild type  PITX2+/~ Wildtype  PITX2t/~ Wild type ~ PITX2t/~ Wild type ~ PITX2t/~
Deficiency Deficiency Deficiency Deficiency

Baseline AF 0% 0% NA 0% 0% NA 7.025 6411 0.003 0.785 0.531 < 0.001
(n=25) (0/25) (0/25) (0/25) (0125) [6.085,7.478] (5.744, 6.693] [0.644,0.973] [0.411, 0.646]
CPVI(£DFA)  72.0% 58.0% 0.208 28.0% 22.0% 0.645 6.595 6.788 0.965 0.831 0.704 0.023
(n=50) (36/50) (29/50) (14/50) (11/50) [5.084,7.820] (5.202, 7.685] [0.566, 1.143] [0.403, 0.965]
Overall AADs 34.70% 49.30% 0.014 23.30% 19.30% 0.481 6.188 5.481 <0.001 0.799 0.668 0.001
(n=150) (52/150) (74/150) (35/150) (29/150) [5.584, 6.766] (4.920, 6.040] [0.582, 1.100] [0.474, 0.910]
p-value <0.001 0.329 NA 0.57 0.839 NA 0.143 <0.001 NA 0.729 0.729 NA
CPVI 68.0%" 48.0% 0.252 28.0% 20.0% (5/25) 0.742 6.804 7.192 0.897 0.956 0.739 0.067
(n=25) (17/25) (12/25) (7125) [4.969,7.965) (6.223,7.688] [0.582, 1.272] [0.465, 0.973]
CPVI4+DF 76.0% 68.0% 0.754 28.0% 24.0% 1 6.386 6.225 0.976 0.75 0.676 0.16
ablation
(n=25) (19/25) (17/25) (7125) (6/25) [4.969,7.476] (5.201,7.615] [0.560, 1.087] (0369, 0.927]
p-value 0.754 0.252 NA 1 1 NA 0.617 0.402 NA 0.362 0.449 NA
‘Amiodarone 38.0% 52.0% 0.228 22.0% 24.0% )2 6.188 5457 0.001 0.926 0.681 0.001
(n=50) (19/50) (26/50) (11/50) (12/50) [5.321,6.749]  [4.920,5.988] [0.682,1.208)  [0.477,0914]
Dronedarone 36.0% (18/50)  56.0% 0.07 28.0% 16.0% 0.227 6.358 5.445 0.003 0.724 0.626 0.138
(n=50) (28/50) (14/50) (8/50) [5.558,7.141] (5.100, 6.341] [0.534, 1.049] [0.474, 0.950]
Flecainide 30.0% 40.0% 0.402 20.0% 22.50% (9/50) 1 6.06 5.596 < 0.001 0.743 0.713 0.16
(n=150) (15/50) (20/50) (10/50) [5.634,6.627] (4758, 5.910] [0.574,0.993] [0.444, 0.846]
p-value 0.748 0.253 NA 0.694 0.658 NA 0.279 0.504 NA 0.037 0.781 NA

nax, the maximal slope of action potential dura tion curves; CPVI, complete pulmonary vei

lation; AAD, antiarrhythmia drug; PITX2, ps

d-like homeodomain transcription factor 2.
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AF defragmentation, %(n)

0% (0/50)
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42.0% (126/300)
<0.001
58.0% (29/50) *

72.0% (36/50)
0208
45.0% (45/100)
46.0% (46/100)
35.09 (35/100)
0239

AF termination, %(n)

0% (0/50)
25.0% (25/100)
21.3% (64/300)
0488
24.0% (12/50)

26.0% (13/50)
1
23.0% (23/100)
22.0% (22/100)
19.0% (19/100)
0822

Mean DF, (Hz)

6,625 [5.880,7.045]
6788 [5.200,7.688)
5.903 [5.109, 6.388]
<0.001
7.138
(5.349,7.716)
6343 [5.200,7.484]
0344
5.886 (5.089, 6.351]
6.062 [5.250,6.727)
5818 [5.187, 6.290]
0234

Mean Smax

0.644{0.491,0.831)
0.739[0.519, 1.030]
0.739[0.537, 0.996)
0958
0798
[0.523,1.073]
0.696[0.515,0.975)
0291
0.803(0.591, 1.053]
0.661(0.510,0.975]
0.738(0.524,0.939)
0075

Smax, the maximal slope of action potential duration restitution curves; CPVI, complete pulmonary
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Test set Il

CNN Sensitiity, %
Specificity, %

Reference Sensitivity. %
Specificity, %
Cohen’s kappa

Square brackets indicate 95% confidence interval.

Bradycardia Tachycardia

No SQA soA No SQA SQA
98.1[88.6, 100] 98.1(89.1, 100] 97.8(87.7, 100] 97.8(87.6, 100]
96.2 [95.4, 96.9] 97.7 [97.1,98.2] 97.8 (97.2, 98.3] 98.4 (97.9, 98.8]
96.1[89.0, 98.8] 94.7(87.3, 98.6] 745610, 85.3) 726 (588, 83.9)
99.7[99.4, 99.9] 99.7 (995, 99.9] 96.8(96.1, 97.4] 97.6 (970, 98.2)
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Test set 1

CNN Sensitiity, %
Specificity, %

Reference Sensitivity. %
Specificity, %
Cohen’s kappa

Square brackets indicate 95% confidence interval.

Bradycardia Tachycardia
No SQA SQA No SQA SQA
98.1(89.3, 100] 98.1[88.7, 100] 79.7 (682, 88.5) 76.6 (65.0, 86.1]
96.7 (960, 97.2) 97.9(97.4, 98.4) 956 (94.9, 96.3] 96.6 (96.0, 97.2]
96.189.0, 98.8] 94.7 (7.2, 98.6] 685 [57.1, 78.6] 67.1 (556, 77.2]
99.7[99.5, 99.9] 99.8 (996, 99.9] 93.0 (92.1, 93.9) 93.8 (929, 94.5]
042032, 051] 0.49 (0.39, 0.59] 039 (0.32, 0.46] 039 (031, 0.46]
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Set

Training, validation

Test set |

Test set Il

Characteristic

#RR interval series

Total duration (n)

#5-s segments

#5-s segments with arthythmia
Min, median, max length (beats)
Median heart rate (oprm)

#recordings
Total duration (mir)

#5-s segments

#5-s segments with arthythmia
Min, median, max length (beats)
Median heart rate (opm)

#irecordings

Total duration (min)

#5-5 segments

#5- segments with arrhythmia
Min, median, max length (beats)
Median heart rate (opm)

Bradycardia

147
10
7,200
1,002
8,23, 51
36

16
79
948
52
3,4, 21
38

15
7
948
52
3,4,21
38

Tachycardia

94
20
14,400
437
4,14,528
164

39
204
2,448

3,6,58
142

29
153
1836
45
3,7,58
142
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8 0.1, NA 018, NA 021, NA 017, NA 0.11, NA 005, NA 0.04, NA [ 0.5, NA

‘Surface electrode nearest to R+ and F+ location.
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T T S P 5 o






OPS/images/fphys-14-1074527/fphys-14-1074527-t002.jpg
AcPPM (%) (Ex cm; Er ms) (Ex cm; Er ms) (Ex cm; Er ms)

‘ BGC (5=2) 018, 1M 67 (0.52) ‘ 17 (0.63) ‘ 83 (0.52; 0.0) 50 (0.63; 5.7)
‘ BPC (8 =2) 008, OM 008, OM ‘ 008, OM | 83(05,00) 008, OM

‘ BGC (8 = 10) 015, 0M 69 (0.47) ‘ 23 (0.63) ‘ 69 (0.52; 0.0) 83 (0.68; 7.3)
‘ BPC (8 = 10) 008, 0M | 33 (041) ‘ 008, OM | 69057 17) 83 (0.83; 9.4)
‘ UA(3=2) NA 08, 0M 83 (034) ‘ NA 08, 0M ‘ 83 (0.37; 0.0) 0 (NA)

i UA (8 = 10) na 08, 0M s (037) ‘ NA 08, 0M | 69 (047 22) 0 (NA)






OPS/images/fphys-14-1074527/fphys-14-1074527-t001.jpg
1) The User identifies the following information relevant for their mapping system (MS)
a. The heart chamber(s)
b. Type of activity (e, sinus thythm, pacing, atrial tachycardia, etc)
. Recording electrode type(s) (eg, contact endocardial)

2) The Administrator selects a number of simulations from the library based on the information contained in 1)

3) The Administrator provides the User with the st of points representing the heart surface(s) corresponding to the simulations sclected in 2)

4) The User identifies the location(s) of the electrode(s) in their MS in the same three-dimensional space as the data in 3) so that the relative electrode location(s) and heart
chamber geometry are known. For example, the User could ‘align’ their MS electrodes to the 3-D heart geometry digitally using visualization software with a CAD
representation of their electrode catheter or physically using a 3-D printed version of the heart geometry and their actual catheters. The User provides these locations to the Tool
Administrator. In the case of ‘roving’ catheters this information will include locations as a function of time

5) The User characterizes the noise level for each of electrode locations, which may vary across locations, and also provides these noise levels to the Administrator

6) For EACH simulation selected in 2), and based on the information contained in 1) and 4), the Administrator computes the virtual electrograms corresponding to the location(s)
provided by the User in 4) and sends these electrogram(s) to the User such that the User is blind to the specifics of the underlying electrical activity in the simulation. ‘Virtual
noise’ is added to each electrogram based on the information provided by the User in 5)

7) The User processes the electrograms sent by the Administrator in 6) cither by using a digital to analog converter and inputting these signals into their physical MS or via
inputting them directly into their software. In cither case the User will bypass the physical electrode(s) in their system

8) The User sends the following system output to the Administrator

a. Predicted activation times at specific locations on the heart surface (i.e., a subset of points in 3) corresponding to their MS. For example, for non-contact electrodes these
locations will be different than the electrode locations provided in 4)

b. Predicted type(s) of electrical activation patterns and their location(s) as a function of time in relation to the surface points that were provided in 3)

9) The Administrator runs a set of ‘comparison” tools which include

a. Computing the root mean square error (RMSE) in activation times computed for all points provided in 8.a) as well as the average RMSE per electrode and number of ‘missed”
activations and spurious (i.¢., wrong) activations by comparing the activation times computed from the virtual transmembrane potential from the same sites

b. Comparing the type(s), location(s), and timing of electrical activation patterns provided by the User to those computed from the corresponding computer simulations, as well
as identifying missed and spurious patterns as well as those that were misclassified

<. Computing the spatial and temporal distances between the source(s) of activity patterns correctly predicted by the User
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Model

DENS_ECG

DRNET

FCN

Unet_LUDB

1D CNN Unet

EBTnet

Label

NOQRS
CQRsS
NQRS

NOQRS
CQRsS
NQRS

NOQRS
CQRS
NQRS

NOQRS
CQRs
NQRS

NOQRS
CQRs
NQRS

NOQRS
CQRsS
NQRS

Training from scratch

Multitask inheritance training

F1 (%)

95.41
60.99
0.00

99.21
89.64
42.35

99.33
90.04
42.08

99.41
93.79
2224

99.50
93.22
62.45

99.47
93.83
69.62

Precision (%)

96.46
53.23
0.00

99.44
87.00
45.61

99.29
88.53
51.68

99.33
91.74
70.33

99.56
93.13
60.36

99.53
94.50
64.07

Recall (%)

94.37
71.40
0.00

98.97
92.44
39.53

99.38
91.61
35.49

99.49
95.93
13.21

99.44
9331
64.70

99.40
93.17
76.24

F1(%)

99.30
91.65
45.38

99.36
94.06
24.59

99.51
94.48
64.16

99.62
94.51
71.85

Precision (%)

98.96
94.76
43.95

99.13
92.96
77.56

99.45
95.17
62.33

99.44
96.00
68.50

Recall (%)

99.65
88.55
46.91

99.68
95.19
14.61

99.56
93.80
66.11

99.61
93.06
75.64

The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the resuis of mult-task inheritance training are better than the
results of training from scratch.
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Model

DENS_ECG

DRNET

FCN

Unet_LUDB

1D CNN Unet

EBTnet

Label

NOQRS
CQRS
NQRS

NOQRS
CQRs
NQRS

NOQRS
CQRS
NQRS

NOQRS
CQRS
NQRS

NOQRS
CQRS
NQRS

NOQRS
CQRsS
NQRS

Training from scratch

Multitask inheritance training

F1 (%)

90.87
48.57
0.00

99.21
89.59
45.99

99.34
91.52
45.90

99.35
91.36
27.81

99.50
94.63
71.23

99.57
95.38
76.76

Precision (%)

97.39
34.78
0.00

98.93
91.58
47.65

99.18
89.83
68.50

99.47
86.93
49.94

99.54
94.31
74.43

99.52
95.43
79.75

Recall (%)

85.18
80.45
0.00

99.48
87.69
4445

99.50
93.29
34.52

99.23
96.27
19.27

94.63
94.96
68.31

99.63
95.34
73.99

F1(%)

99.29
93.56
49.98

99.25
93.23
30.07

99.54
95.21
73.59

99.61
95.86
78.75

Precision (%)

99.30
92.07
69.41

99.14
91.62
72.04

99.58
94.15
80.37

99.53
95.68
85.70

Recall (%)

99.29
95.11
39.05

99.35
95.00
19.00

99.51
96.29
67.87

99.70
96.04
72.84

The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the resuis of mult-task inheritance training are better than the
results of training from scratch.
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Datasets Type I, avL I, lll,aVF aVR V1i,V2 V3,V4 V5V6
R-ECG SO

2 100 1 6 19 a7
STE 0 4 3 3 4 1

E-ECG 8D 1 23 1 2 4 20
STE 0 1 0 1 2 0
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Characteristics

Number of subjects
Age, mean = SD

Male (%)

Female (%)

Heart rate, mean + SD

R-ECG

276
62.79 + 14.78
50.86%
49.14%
73.64 £ 11.74

E-ECG

155
63.43 + 14.06
43.87%
56.13%
7413 + 11.56
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Model

Inter-analysis DENS_ECG
FCN
Unet_LUDB
1D CNN Unet
1D CNN Unet + DRnet
EBTnet

Intra-analysis DENS_ECG
FCN
Unet_LUDB
1D CNN Unet
1D CNN Unet + DRnet
EBTnet

Training from scratch

Multitask inheritance training

RMSEg,

0.028
0.045
0.058
0.065
0.067
0.071

0.058
0.068
0.062
0.068
0.072
0.074

SNR,,

2.546
4.689
6.625
7.959
0.353
9.269

6.541
8.409
7.255
8.790
0.369
9.851

Inter-analysis: The training, validation, and testing set were divided based on subjects.
Intra-analysis: The training, validation, and testing set were divided based on samples.
The bold values not in parentheses are the results of our model (EBTnet). And the bold values in parentheses indicate that the resuits of mult-task inheritance training are better than the

results of training from scratch.

PRD

38.541
30.117
24.099
20.668
19.844
17.774

35.842
28908
22.322
18.363
17.599
16.550

RMSE,,

0.068(+0.022)
0.062(+0.004)
0.069(+0.004)

0.074(+0.003)
0.070(+0.002)
0.066(+0.004)
0.073(+0.005)

0.078(+0.004)

SNRimp

5.079(+0.390)
7.323(+0.698)
8.775(+0.816)

10.006(+0.737)

9.049(+0.640)
8072(+0817)
9.672(+0.882)

10.903(+1.052)

PRD

28.791(-1.326)
22.236(-1.863)
18.814(-1.854)

16.327(-1.447)

26.852(-2.056)
20.400(-1.922)
16.967(-1.396)

14.726(-1.824)
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Dataset Diameter error Volume error

Paired training data 44+52% 59+41%
Testit1 26+1.2% 5.2 +1.0%
Test#2 3.0+ 1.0% 33 +1.9%

CT. computed tomography: MRI, magnelic rasonance imaging.
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Test#2 44.4 £ 2.6%

CT. computed tomography: MRI, magnelic rasonance imaging.
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Encoder path layers Kernel size Stride Feature maps Number of parameters

Input 3D * — 1 -

Conv/8 5x5x5 1 8 5x5x5x1x8
Down Conv/16 2xaxi 2 16 5x5x5x8x8
Conv/16 5x5x5 1 16 5x5x5x16x 16
Conv/16 65x5x5 1 16 5x5x6x16x32
Down Conv/32 SREIND 4 32 65x5x6x32x32
Conv/32 5x5x5 1 32 5x5x5x32x32
Conv/32 5x6x6 1 32 65x5x6x32x32
Conv/32 5x5x5 1 32 2x2x2x32x64
Down Conv/64 2wdnd 2 64 5x5x56x64x64
Conv/64 5x5x5 1 64 5x5x5x64x64
Conv/64 5x5x5 1 64 5x5x5x64x64
Conv/64 5x5x5 1 64 2x2x2x64x128
Down Conv/128 2x2x2 2 128 5x5x5x128x 128
Conv/128 5x5x5 1 128 5x5x5x128x 128
Conv/128 5x5x5 1 128 5x5x5x128x 128
Conv/128 5x5x5 1 128 5x5x5x128x 128
Decoder path layers Kernel size Stride Feature maps Number of parameters
Up Conv/64 2x2x2 2 64 2x2x2x128x64
Conv/128 5x5x5 1 128 5x5x5x128x 128
Conv/128 5x65x5 1 128 5x5x5x128x 128
Conv/128 5x65x5 1 128 5x5x5x128x 128
Up Conv/32 2x2x2 2 32 2x2x2x128x32
Conv/64 5x65x5 1 64 5x5x5x64x64
Conv/64 5x5x5 1 64 5x5x5x64x64
Conv/64 5x5x5 1 64 5x5x5x64x64
Up Conv/16 Sxdx2 2 16 2x2x2x64x16
Conv/32 5x65x5 1 32 5x5x5x32x32
Conv/32 6x65x56 1 32 5x5x6x32x32
Up Conv/8 2x2u2 2 8 2x2x2x32x8
Conv/16 5x65x5 1 16 5x5x56x16x 16
Classifier Tx1x1 1 2 ITx1x1x16x2
Output 3D d e 2 #

Total Parameters ~32.5 Milion

Conv. convolution.
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No recurrences (n=321)

P value

All patients (n=498)

Recurrences (n=177)

Procedure duration (min) 8532332 8122292 9262384 0.001
LA dwell time (min) 610=297 5822268 66.12338 0005
Fluoroscopy time (min) 133260 123253 151267 <0001
Radiation dose (mGray) 286.4 = 192.1 2704 185.1 31532014 0014
Number of PV with real-time recording of PV electrogram 25:12 27:11 21212 <0001
Average TTI 384104 367296 417=111 <0001
“Total number of freezes 100227 99:25 102230 0283
“Total number of freezes 24224 21224 28225 0007
LSPV
“Total number of freczes 29=14 2713 32:16 <0.001
Number of unsuccessful freezes 09-13 07212 12515 <0001
“Total duration of freezes 399+ 1632 3792+ 1454 43531867 <0.001
Average duration of freczes 1427 2185 1449183 1388=182 0.001
Tempso (°C) 299+44 30342 29346 0010
Tempeo (°C) 40448 409+ 45 394251 0001
Tempaaa (C) —471250 —47.5%49 —464750 0020

Real-time recording of PV electrogram 78.7% 84.7% 67.8% <0001
TTI 425=16 417161 445=157 0773
LIPV
“Total number of freczes 2309 23209 21:08 0005
Number of freezes 04207 042038 03+06 0256
“Total duration of freezes 3391118 3514 1131 3166= 1236 0002
Average duration of freezes 15222181 1530173 1507195 0.180
Temp,y (°C) 28739 29337 —275%38 <0.001
Tempeo (°C) -377+42 -385+ 40 -362+42 <0.001
Tempoaa (C) —432147 —43.9+45 —al847 <0001
Real-time recording of PV electrogram 66.3% 723% 53.4% 0001
T 358=153 335146 413=156 <0.001
RSPV
“Total number of freezes 25=10 25:10 25=11 0963
Number of unsuccessful freezes 05=10 05+10 0609 0294
“Total duration of freczes 327 1241 327421215 3265=1292 0937
Average duration of freezes 13662198 1363189 13722214 0625
Temps, (°C) -318+46 -326+45 -302+45 <0.001
Tempeg (°C) —022152 —432749 —403153 <0001
Tempoua (°C) 495257 —507%50 472263 <0.001
Real-time recording of PV electrogram 61.7% 698% 469% <0001
T 338=15 320138 387168 <0001
RIPV
“Total number of freczes 2412 24=11 24+13 0925
Number of frezes 05=11 05210 0611 0246
“Total duration of freezes 3336= 144.1 3329+ 1316 3348= 1648 0891
Average duration of freezes 14302221 14302227 1429209 0977
Tempyo (°C) —302:49 31049 28946 <0001
Tempeo (°C) —398%52 —407%52 38349 <0001
Tempasae (°C) 463263 —473%62 —445261 <0001
Real-time recording of PV electrogram 528% 59.2% 412% <0.001
T 389=15.1 3772154 421=139 0032

LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; RSPV, right superior pulmonary vein; RIPV, right inferior pulmonary vein; TTI, time to pulmonary vein
isolation: Tempsn, Temperature of CB at 30 s: Tempeo, Temperature of CB at 60 s: Temp.w. nadir temperature of CB.
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Class weights (N:P)

022: 078
0.21: 0.79
0.20: 0.80
0.19: 0.81
0.18: 0.79
0.17: 0.83
0.16: 0.84

SE (%)

57.58 + 17.06
61.97 + 16.47
6197 + 16,47
65.61 £ 19.64

|+

67.42 + 16,62
7091 + 18.10

"

71.74 £ 17.30

"

SP(%)

76.32 £ 5.55
73.82 535
68.57 + 4.47
65.84 £ 505
62.19 £ 4.95
55.14 £ 3.63
49.89 + 4.33

QI (%)

65.54 £ 11.19
66.93 + 10.20
64.49 £ 9.69
64.75 £ 10.42
64.17 £ 8.14
61.95 + 8.46
59.33 £ 8.03

Note: N represents noemal samples, and P represents pathological samples.
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Abbreviations: VB, vaginal birth; CS, cesarean section.

Mean (Median)
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Abbreviations: VB, vaginal birth; CS, cesarean section; BE, base excess; BDecf, base deficit in extracellular fluid.

Mean (Median)
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Network Structure SE (%) SP (%) QI (%)

CNN 66.29 + 14.46 62.65 7.7 63.90 + 8.98
Multiscale CNN 65.45 + 1240 65.38 + 4.92 65.12 + 7.94
Multiscale CNN-BiLSTM 66.29 + 13.37 65.84 £ 590 65.74 + 8.65
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Features SE (%) SP (%) QI (%)

Linear Features 5265 +19.68 7495+ 346 61.72 + 12.28
Nonlinear Features 5848 £ 1361 6238+ 558 59.87 +7.26
Linear and Nonlinear Features ~ 56.97 + 1747 7335379  63.91  10.20
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Features SE (%) SP (%) QI (%)

Linear Features 4720 1584 80.87 £ 628  61.12 + 11.38
Nonlinear Features 5402 %1408 6328 + 861 57.70 + 7.84
Linear and Nonlinear Features ~ 55.08 + 1681 ~ 78.13 £ 5.19  64.90 + 10.66
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Convl

Conv2
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Conv3

Average pooling
Dropout

Conv4

Average pooling
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Conv5

Average pooling
Dropout
BILSTM

Add

Flatten

Fully connection
Dropout
Feature input
Concat

Dropout

Fully connection

Sigmoid

Size

32x1
64x1

32x1
4x1

32x1
8x1
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16 x 1

Input

Number

24

025
24

025
24

025

Stride

Padding

SAME
SAME

SAME
VALID
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VALID
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VALID

Output
Feature map
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Hypertension§ 449 (18.0) 274 (17.5) 175 (18.9) 0.358
Coronary artery disease® 234 (9.4) 36 (8.7) 98 (10.6) 0.110
Congestive heart failure® 559 (22.4) 364 (23.2) 195 (21.1) 0.223
Diabetes mellitus® 337 (13.5) 227 (14.5) 110 (11.9) 0.070
COPD* 186 (7.5) 30 (8.3) 56 (6.1) 0.041
Hyperlipidemia 556 (22.3) 345 (22.0) 211 (22.8) 0.630
Stroke® 183 (7.3) 24(7.9) 59 (6.4) 0.159
Hepatic insufficiency® 199 (8.0) 23(7.8) 76 (8.2) 0.735
Renal insuﬂiciency§ 273 (11.0) 158 (10.1) 15 (12.4) 0.067
Cancer® 70 (2.8) 47 (3.0) 23 (2.5) 0.458
Infection site, n (%)

Pulmol’lary§ 1318 (52.9) 837 (53.4) 481 (52.1) 0.523
Intra-abdominal® 541 (21.7) 322 (20.5) 219 (23.7) 0.064
Genitouril’lary§ 366 (14.7) 233 (14.9) 33 (14.4) 0.751
Skin and soft tissue® 108 (4.3) 80 (5.1) 28 (3.0) 0.014
Blood stream® 344 (13.8) 218 (13.9) 26 (13.6) 0.852
Type of pathogen, n (%)

Bacteria® 2319 (93.1) 1459 (93) 860 (93.1) 0.981
Ful’lgi§ 200 (8.0) 134 (8.5) 66 (7.1) 0.213
Severity on admission

SOFA score* 5.00 (3.00-7.00) 5.00 (3.00-7.00) 5.00 (2.00, 7.00) 0.093
APACHEII score* 5.00 (10.00-18.00) 5.00 (10.00-18.00) 14.00 (9.00-18.00) 0.204
SAPS II score* 42.00 (36.00-46.00) 42.00 (36.00-46.00) 42.00 (36.00-46.00) 0.424
Laboratory tests

White blood cell count (x 10°/L)* 3.40 (12.00-14.60) 3.40 (12.30-14.40) 13.30 (10.40-15.20) 0.204
Hemoglobin (g/L)* 114.00 (111.00-117.00) 114.00 (111.00-117.00) 114.00 (111.00-117.00) 0.299
Platelet count (x10%/L)* 156.0 (98.00-164.00) 155.0 (98.00-164.00) 156.0 (98.00-164.75) 0.29
Platelet distribution width (%)* 6.10 (15.40-16.80) 6.00 (15.40-16.70) 16.10 (15.40-16.80) 0.277
Serum creatinine (pmol/L)* 80.44 (73.23-86.67) 80.28 (72.94-86.63) 80.91 (73.58-86.70) 0.154
Blood urea nitrogen (mmol/L)* 7.20 (5.70-8.40) 7.10 (5.70-8.40) 7.20 (5.70-8.48) 0.989
ALT (U/L)* 35.00 (24.00-47.00) 35.00 (23.25-47.00) 35.00 (24.00-48.00) 0.633
Bilirubin (pmol/L)* 25.03 (21.80-28.49) 25.10 (21.88-28.70) 24.89 (21.76-28.26) 0.190
Albumin (g/L)* 39.84 (34.73-44.82) 40.12 (35.11-44.91) 39.36 (34.07-44.57) 0.021
Cardiac troponin I (ng/mL)* 0.05 (0.04-0.06) 0.05 (0.04-0.06) 0.05 (0.04-0.06) 0.529
BNP (pg/mL)* 94.42 (80.90-108.93) 94.50 (81.01-108.48) 94.38 (80.40-109.85) 0.562
APTT (s)* 35.20 (31.62-38.70) 35.20 (31.70-38.70) 35.30 (31.60-38.88) 0.771
PT (s)* 15.20 (13.70-17.40) 15.20 (13.70-17.40) 15.10 (13.60-17.30) 0.096
INR* 1.28 (1.10-1.72) 1.27 (1.10-1.70) 1.29 (1.10-1.74) 0.376
Fibrinogen (g/L)* 4.06 (3.69-4.44) 4.07 (3.70-4.44) 4.01 (3.66-4.43) 0.123
D-dimer (mg/L)* 2.92 (1.62-6.39) 2.98 (1.65-6.31) 2.81 (1.55-6.40) 0.642
Lactic acid (mmol/L)* 4.40 (3.69-5.11) 4.40 (3.71-5.12) 4.37 (3.67-5.09) 0411
Procalcitonin (pg/L)* 3.03 (2.70-3.40) 3.03 (2.69-3.39) 3.05 (2.70-3.40) 0.639
CRP (mg/L)* 46.00 (17.92-89.36) 45.30 (18.04-88.30) 47.40 (17.45-90.59) 0.790
Treatment measures, n (%)

Corticosteroid use’ 583 (23.4) 366 (23.3) 217 (23.5) 0.935
Epinephrine use® 136 (5.5) 96 (6.1) 40 (4.3) 0.057
Norepinephrine use’ 578 (23.2) 383 (24.4) 195 (21.1) 0.058
Dopamine use® 538 (21.6) 322 (20.5) 216 (23.4) 0.096
Outcome, n (%)

New-onset atrial fibrillation® 269 (10.8) 167 (10.7) 102 (11.0) 0.763

TNormally distributed continuous variables are presented as means with standard deviations and analyzed by Student’ s ¢-test.

*Non-normally distributed continuous variables are presented as medians with interquartile ranges and analyzed by non-parametric test.

SCategorical variables are presented as frequencies with percentages and analyzed by Chi-square test or Fisher’ s exact test.

MAP, mean arterial pressure; BMI, body mass index; COPD, chronic obstructive pulmonary disease; SOFA score, sequential organ failure assessment score; APACHE II score, acute
physiology and chronic health evaluation II score; SAPS II, simplified acute physiology score II; ALT, alanine aminotransferase; BNP, B-type natriuretic peptide; APTT, activeated partial
thromboplasting time; PT, prothrombin time; INR, international normalized ratio; CRP, C-reaction protein.
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Variable Purkinje fibers (n = P-value
Age (y, mean  SD) 38£11 /12 0855
Male (n, %) 9(43) 24(52) 0479
No structural heart disease (1, %) 25(100) 68(99) 1
Family history of cardiac disease or sudden death (1, %) 1(5) 7(15) 0413
Emotion and exercise (1, %) 1(4) 4(6) 0754
irst coupling interval (ms, mean = SD) 38070 274428 <0001
QRS duration of ventricular extrasystole (ms, mean = SD) 147+8 131£17 <0001
VE (n,%) 12 (48) 54(78) 0.005
Electrical storm (, %) 0(0) 6(9) 0295
RFCA Monotherapy/Combination therapy (1, %) 21(84) 36(52) 0.005
1CD Monotherapy/Combination therapy (1, %) 3(12) 55(80) <0.001
Only medicines treatment (1, %) 2(8) 12(17) 0422
Death (n, %) 1(4) 5(7) 0.888

RVOT, Right

ntricular outflow tract; SD, Standard deviati

tricular fibrillation; RI

Radiofrequency catheter

(CD, Implantable cardioverter defibrillator.





OPS/images/fphys-13-1004605/math_11.gif
an





OPS/images/fphys-13-1004605/math_10.gif
A7 Dsoorugearo = A7 Doocomral (10

APDw - APD o






OPS/images/fphys-13-1004605/math_1.gif
0





OPS/images/fcvm-09-922525/fcvm-09-922525-t002.jpg
E g
2 o b s
4 g S B s 3 & 3 <
| . T = « —~ D a = ]
S | 2 5 ¥ 8 © <& 2 H = = 9 2 & g § %
g = W - Z = ~ = - 3 e s} = @ f=3 = v 8 o T
- Gl El =) ° s = = = g < < < = ) - =y = — a3 —_ 1
S g £ = g BT B S =5 <9 5 £ = 4 v T F 5 5 F . 3§03
& s =z - g . 0= 8 £ 3 s = B = ¢ £ 3 g & £ g
& = = 5 ° - - 3 2 H < 4 = 3 . - - ° S
& =1 < g - < . g = o1 - ] = 1 s g -
3 E £ s » ¥ s % § % : 5 % oz 2 T 2 % gz &8 5 E E
Q = 2 s o -] ] o g‘ = = -
2 = 8, 2 2 s E s g kA < = s X < £ - E 3 z ]
£ § £ £ £ % % %2 E 8 2 : : 2 § E %I E E £ £ § %
o =] ~ ©» o=} | 2 z - ) o > ) o=} = M < = M £ @ @ | 2]
1. Were patient’s demographic Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

characteristics clearly described?
2 Wasthepatients history clearly No  Yes  Yes  No  Yes  Yes  Yes  Yes  Yes  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes  Yes
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Leenhardt (2) France Case 21 B3£I 1048 1(5) 00) 504 3(18) 2005 1) 96 128) NA Normal 20741 2(1) NA 4(19) 9(3) 8251 15(71)
report
Ruan and China Case 3 36£5 2(67) 0(0) 0(0) 0(0) 0(0) 3(100) 0(0) NA 2(67) NA Normal 377£25 NA NA 0(0) 1(33) 76 2(67)
Wang (9) report
Shiga etal. (11) Japan Case 1 41 0(0) 0(0) 0(0) 0(0) 0(0) 1(100) 0(0) NA 0(0) NA Normal 240 1(100) 156  1(100) 1(100) 60 1(100)
report

Haissaguerre  France, Japan, Case 27 4l%14 14(52) 0(0) 0(0) 6(2) 0(0) 17(63) 0(0) 27(100) 27(100) NA  Normal 29741 10(37) 129+1823(85) 3(11) 2428 27 (100)
etal. (10) Czech Republic, report

UK and Brazil
Takeuchi  Japan Case 1 51 00 00 0@ 00) 00 1(100) 00) NA  1(000 NA Normal 28  0(0) 120 1(100) 0©) 6 1(100)
etal. (14) report
Nodaetal. (8) Japan Case 16 39£10 9(56) 00) 00 1 00 11(69 0(0) 16(100) 16(100) NA Normal 403%21 3(19) 1488 1(6) 0(0) 5439 16(100)
control
study
Viskin Isracl Case 3 4811 3(100) 00) 0(©) 0©0) 00) 1(33) 00 3(100) 3(1000 NA Normal 350£20 0(0) 1497 2(67) 0(0) 4248 3(100)
etal. (19) report
Yamazaki  Japan Case 1 21 00 00 00 00 0(©) 00 00 10000 1(100) NA Normal 300 0(0) 120 0(0) 0(0) 36 1(100)
etal. (20) report
Bogaard Netherknds ~ Case 1 36 0@ 00 00 0(0) 0(0) 10100 00) NA  1(1000 NA Normal 240  0(0) 120 1(100) 0©) 6 1(100)
etal. (16) report
Chiladakis  Greece Case 1 50  1(100) 00) 0(0) 0(0) 0( 1000 00) NA 11000 NA Normal 290  0(0) 120 1(100) 0(0) 3  1(100)
etal. (3) report
Van den Netherlands ~ Case 1 51 0(0) 1100 0(0) 0(0) 0(0)  0(0) 1(100) 1(100)  NA NA  Normal 240 NA 160 1(100) 0(0) 12 1(100)
branden report
etal. (12)
Chokretal.  Brazil Case 4 32+16 4(100) 0(0) 0(0) 0(0) 3(75)  3(75)  0(0)  2(50) 2(50) NA  Normal 300+43 0(0) 155£13 3(75) 1(25) 7190 4(100)
© report
Hayama Japan Case 1 38 00 00 0© 00 0@ 10100 00) NA  1(100) () Normal 280  0(0) 142 1(100) 0(0) 15 1(100)
etal. (15) report
Jastrzebski  Krakéw Case 43£19 4(80) 1020 1Q0) 0(0) 0(0) 501000 0(0) 1(20)  Na NA  Normal 303£38 NA 13017 5(100) 3(60) 5129 5(100)
etal. (5) report
Kondo Japan Case 119 0@ 00 00 00 0(0) 10100 00) NA  1(1000 () Normal 300 0(0) 128 1(100) 0©) 8 1(100)
etal. (23) report
Godinho Portugal Case 1 49 1(100) 0(0) 0(0) 0(0) 0(0) 1(100) 0(0) NA 1(100) NA Normal 280 0(0) 160 1(100) 0(0) 6 1(100)
etal. (13) report
Fujii etal. (17) Japan Case 6 38%9 3(50) 00) 0(0) 00 0(0) 60100 00) 1(17)  3(50)  (+) Normal 42621 3(50) 13816 6(100) 3(50) 6225 6(100)
report
Kimura Japan Case 1 40 1(100) 0(0) 0(0) 1(100) 0() 1(100) 0(0) 0(0) 1(100) (+) Normal 280  0(0) 110 1(100) 0(0) NA 1(100)
etal. (18) report
Kajiyama  Japan Case 1 40 0@ 00 00 0(0) 0(0) 10100 00) NA  1(1000 (+) Normal 250  0(0) 130 1(100) 1(100) 24 1(100)
etal. (24) report
Sonoda Japan Case 1 38 0@ 00 00 00 00 10100 00) NA 11000 () Normal 280  0(0) 120 1(100) 0(0) NA 1(100)
etal. (22) report

Steinfurt Germany, USA Case 5 37£13  2(40) 0(0) 0(0) 1(20) 0(0) 1(0) 4(80) NA  5(100) NA Normal 26220 0(0) 12645 5(100) 0(0) 32237 5(100)
etal 21)  and Netherlandsreport
Touat-Hamici France Case 1 3 00 0() 0 1(100) 0(0) 1(100) 0(0) 1(100)  NA (+) Normal 280 NA 120 0(0) 1(100) 72  0(0)

etal. (7) report

‘otal - - 103 38+12 54(52) 3(3) 1() 15015 6(6) 78(76) 6(6) 62(78)  80(91) - Normal 30262 19(22) 135417 60 (58) 23 (22) 4041 95(92)

ICl

, Implantable cardioverter defibrillator;

Standard deviation; NA, Not applicable.
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number Heart weight (mg) Body weight(g) HW/BW(mg/g)
WT + Saline 128 £ 2.966 31167 £ 1.835 4118 0235

IKKe +Saline 125.167 + 4665 30 + 2.366 4186 + 0234

WT + Dox 143 + 4,648 23.667 + 1.366" 6055 + 04°
IKKe+Dox 130.167 £ 2317* 26333 £ 1.032* 494 £ 0223

*p < 0.05 vs. WT + Saline,*p < 0.05 vs. WT + Dox.
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Variables

Sex, male (%)
Age, Median (Q1, Q3)
Snoring, n (%)

BMI, Median, (Q1, Q3)

AF history, Median
(Q1,Q3)
Hypertension, n (%)
CHD, n (%)
Diabetes, n (%)
Heart failure, n (%)

Cardiomyopathy, n
(%)

Valvular heart disease,
n (%)

TIA/stroke, n (%)
Renal disease, n (%)

Vascular disease,
n (%)

Smoke, n (%)

Drink, n (%)

persistent AF, n (%)
LA, Median (Q1, Q3)
LVEE Median (Q1,
Q3)

CHA;,DS;-Vasc score*,
mean =+ SD

Total
(n=1,065)

674 (63)
61 (53,67)
475 (45)

26.34 (24.34,
28.65)

2(04,5)

479 (45)

211 (20)

144 (14)
70 (7)
23(2)

27 (3)

76 (7)
14 (1)
94 (9)

331 (31)
272 (26)
409 (38)
40 (37,43)
0.6 (0.6, 0.63)

1.67 £1.35

Total cohort

No recurrence
(n=749)

480 (64)
61 (53, 66)
271 (36)
25.88 (24,27.92)

1.5 (0.3,4)

320 (43)

132 (18)
89 (12)
32 (4)
12 (2)

12 2)

55 (7)
9(1)
62 (8)

244 (33)
201 (27)
250 (33)
39 (36,43)
0.6 (0.6, 0.64)

1.57 £1.31

Recurrence
(n=316)

194 (61)
63 (55, 69)
204 (65)

27.66 (25.34,
29.97)

3(1,6.1)

159 (50)
79 (25)
55(17)
38(12)
11(3)

15 (5)

21(7)
5(2)
32(10)

87 (28)
71 (22)
159 (50)
42 (39, 45)
0.6 (0.59, 0.63)

191 £1.41

Total
(n=710)

443 (62)
61 (53, 68)
310 (44)

26.24 (24.31,
28.54)

2(04,5)

319 (45)

154 (22)
96 (14)
55(8)
13(2)

19 (3)

52(7)
10(1)
63 (9)

214 (30)
177 (25)
270 (38)
40 (37,43)
0.6 (0.6, 0.64)

1.71 £1.38

Development cohort

No recurrence Recurrence
(n=490) (n=220)
311 (63) 132 (60)
60 (53, 66.75) 63.5 (57, 70)
168 (34) 142 (65)

25.79 (23.91,27.73) 27.54 (25.49,
29.61)
1.3(0.3, 4) 3(1,7)
207 (42) 112 (51)
91(19) 63 (29)
55 (11) 41(19)
24 (5) 31(14)
5(1) 8(4)
8(2) 11(5)
35(7) 17 (8)
6(1) 4(2)
41(8) 22(10)
158 (32) 56 (25)
131 (27) 46 (21)
166 (34) 104 (47)
39 (36, 42.75) 42 (39, 45)
0.6 (0.6, 0.64) 0.6 (0.59, 0.63)
1.56 +1.33 2.05 £ 1.45

p

0.42
<0.01
<0.01
<0.01

<0.01

0.04
<0.01
0.01
<0.01
0.03

0.02

0.90
0.54
0.57

0.08
0.12
<0.01
<0.01
0.50

Validation cohort

Total No recurrence
(n=355) (n=259)
231 (65) 169 (65)
61 (53, 66) 61 (53, 66)
165 (46) 103 (40)

26.45 (24.46, 26.17 (24.16,28.13)
29.00)
2(0.5,5) 2(0.4,4)
160 (45) 113 (44)
57 (16) 41 (16)
48 (14) 34 (13)
15 (4) 8(3)
10 (3) 7(3)
8(2) 4(2)
24(7) 20 (8)
4(1) 3(1)
31(9) 21(8)
117 (33) 86 (33)
95 (27) 70 (27)
139 (39) 84 (32)
40 (36, 43) 39 (36, 43)

0.6 (0.59, 0.63) 0.6 (0.6, 0.63)

1.60 +1.28 1.60 +1.29

SD, standard deviation; BMI, body mass index; CHD, coronary heart disease; TIA, transient ischemic attack; LA, left atrium; LVEEF, left ventricular ejection fraction; Q1, Q3: 25% and 75% quartile.

*CHA; DS, -Vasc score was the result of multiple risk factors, it was not included in the univariate and multivariate analysis.

Recurrence
(n=96)

62 (65)
61 (54, 66.25)
62 (65)

27.99 (24.89,
30.38)

3(0.8,5.3)

47 (49)
16 (17)
14 (15)
7(7)
3(3)

4(4)

4(4)
1(1)
10 (10)

31(32)

25 (26)

55 (57)
41.5 (38, 45)
0.6 (0.58,0.6)

1.60 £ 1.28
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ACTIVITY-HE 2021 PARALLAX, 2021 PARALLEL-HE 2021

Sac/Val Enalapril Sac/Val IMT Sac/Val Enalapril
(n=103) (n=98) (n=1280) (n=1284) (n=111) (n=112)
NCT 02768298 03066804 02468232
Follow-up 12 weeks 24 weeks 33.9 months
duration
Does of Sac/Val 100 mg bid for Target dose of Started with 50 mg
2 weeks followed by Sac/Val was 200 mg bid, then uptitrated
200 mg bid for bid toa target dose of
10 weeks. 200 mg bid.
Age (years) 66.1(10.8) 67.6(10.0) 729 (8.4) 724 (8.6) 69.0 (9.7) 66.7 (109)
Women 16.5% 21.4% 50.2% 51.2% 13.5% 14.3%
BMI (kg/m?) 29.2(4.6) 29.6(4.3) 306 (5.0) 305 (4.8) 23.8 (4.0) 25.1(4.2)
Serum creatinine NA NA NA NA NA NA
(mg/di)
eGER NA NA 62.5(20.2) 62.7 (19.6) 58.3 (17.6) 57.6 (14.7)
(ml/min/1.73 m?)
NYHA functional
class
1 0% 0% 0.1% 03% 3.6% 3.6%
i 0% 1% 67.0% 68.2% 91.0% 92.9%
m 100% 99.0% 325% 31.2% 5.4% 3.6%
v 0% 0% 0.4% 03% 0% 0%
Hypertension NA NA 96.9% 97.4% 64.0% 73.2%
Diabetes NA NA 44.2% 45.8% 46.8% 46.4%
AFor AFL NA NA 54.6% 53.9% 324% 357%
MI 56.3% 55.1% 23.0% 23.8% 46.0% 41.1%
Stroke NA NA NA NA 9.9% 8.9%
Medical therapy at
randomization
B-blocker 92.2% 96.9% 83.7% 83.0% 94.6% 96.4%
MRA 78.6% 75.5% 327% 30.5% 57.7% 61.6%
Diuretic 76.7% 76.5% 99.8% 99.8% 82.0% 84.8%

Data are mean (standard devi
myocardial i

n); AF, atrial fibrillation; AFL, atrial flutter; BMI, body mass index; ¢GFR, estimated glomerular filtration rate; IMT, individualized medical therapy; M1,
farction; MRA, mineralocorticoid receptor antagonist; NA, data not available; NYHA, New York Heart Association; Sac/Val, sacubitril/valsartan,
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Ner
Follow-up
duration

Does of Sac/Val

Age (years)
Women
BMI
Serum
creatinine
(mg/d)
GFR
NYHA
functional class
1
n
il
v
Hypertension
Diabetes
AFor AFL
M
Stroke
Medical therapy
a
randomization
B-blocker
MRA
Diuretic

PARAMOUNT, 2012

Sac/Val ~ Valsartan
(n=149)  (n=152)

00887588
36 weeks

Started with 50 mg bid
for 1-2 weeks, then
ted 0 100 mg

for 1-2 weeks, and
thereaier, uptitated to

upt

200mg
7099.4) 71.289)
7% s6%
301(55) 208(61)
NA NA
67019) 61
1% 1%
81% 78%
19% 2%
o o
95% 92%
% 5%
0% 3%
2% 20
NA NA
79% 80%
19% 2%
100% 100%

Sac/Val
(n=4203)

PARADIGM-HE 2014

01035255

27 months.

638(11.5) 638(11.3)
210% 26%
2155 22055
L1303) L1203)
NA NA
43% 50%
716% 69.3%
2% 20.9%
08% 06%
709% 705%
347% 34.6%

AF362
4% 3%
85% 88%

503%

Enalapril
(n=4229)

PARAGON-HE, 2019

Sac/Val  Valsartan
(n=2419)  (n=2,402)
01920711
35 months
Target dose of Sac/Val
during the double bind
period was 200 mg bid
727(63) 72865)
sLet s1s%
30249) 30.3(5.1)
Na NA
609 €209
ES
75%
190%
03%
95.7%
5%
2%
233%
1%
799% 795%
246% 271%
95.3% 955%

EVALUATE-HF, 2019

Sac/Val  Enalapril
(n=231)  (n=233)

02874794
12 weeks

Started with 50 mg

bidand titrated every
2 weeks to 200 mg bid
678(08) 667(85)
2% A%
300(57) 30168)
NA NA
7002 00
1% 12%
66% 9%
20% 19%
3 0%
NA NA
Na Na
NA NA
NA NA
Na NA
5% 8%
2% 25%
56% s5%

PIONEER-HE, 2019

Sac/Val  Enalapril
(n=439)  (n=436)

02554890
8 weeks

Target dose of Sac/Val
was 200 mg bid

61 median 6
57% 302%
305 med 300
128 127
84 89
09% 1%
27% 27.7%
613% 61.0%
s9% 8%
NA NA
NA NA
NA NA
NA NA
NA NA
s9.5% 9.6%
109% %1%
59.5% s4.4%

OUTSTEP-HE, 2019

Sac/Val  Enalapril
(n=309)  (n=310)

02900378
12 weeks

Started with 50 mg bid o
100 mg bid, then
uptitrated to: target
dose of 200 mg bid

672(1.0) 66.6(103)
2.0% 197%
203(47) 203(47)
NA NA
NA NA
0% 0%
521% 523%
473% a71%
0% 0%
689% 655%
NA NA
47.6% 30.4%
3% 168%
71% 81%
906% 926%
614% 69.4%

755%
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Sacubitrilvalsartan Control Risk Ratio Risk Ratio

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl_Year M-H, Random, 95% Cl
1.3.1 Sudden cardiac death

PARADIGM-HF, 2014 67 4203 69 4229 14.7% 0.98 [0.70,1.36) 2014

PARAGON-HF, 2019 15 2419 16 2402 3.3% 0.93[0.46,1.88] 2019

Subtotal (95% Cl) 6622 6631 18.0% 0.97 [0.72, 1.31]

Total events 82 85

Heterogeneity: Tau®*= 0.00; Chi*=0.01,df=1 (P=0.90); F=0%

Test for overall effect: Z=0.21 (P=0.83)

1.3.2 Sudden death

PARADIGM-HF, 2014 251 4203 311 4229 63.4% 0.81 [0.69, 0.95] 2014 -
PARAGON-HF, 2019 21 2419 22 2402 46% 0.95(0.52,1.72] 2019 . B
PIONEER, 2019 0 439 1 436 0.2% 0.33[0.01,8.10] 2019

PARALLAX, 2021 0 1280 1 1284 0.2% 0.33[0.01,8.20] 2021

Subtotal (95% Cl) 8341 8351 68.3% 0.82[0.70, 0.95] 9
Total events 272 335

Heterogeneity: Tau®*= 0.00; Chi*=0.85,df=3 (P=0.84), F=0%

Test for overall effect: Z= 2.56 (P =0.01)

1.3.3 Cardiac arrest

PARADIGM-HF, 2014 30 4203 56 4229 8.4% 0.54 [0.35,0.84] 2014 B
PIONEER, 2019 0 439 4 436 0.2% 0.11[0.01,2.04) 2019 ¢

EVALUATE-HF, 2019 0 231 0 233 Not estimable 2019

OUTSTEP-HF, 2019 0 309 2 310  0.2% 0.20[0.01,4.16) 2019

PARAGON-HF, 2019 17 2419 30 2402 4.7% 0.56 [0.31,1.02] 2019 oL
PARALLAX, 2021 1 1280 1 1284 0.2% 1.00 [0.06, 16.02] 2021

Subtotal (95% Cl) 8881 8894 13.7% 0.53[0.38, 0.75] \ 4
Total events 48 93

Heterogeneity: Tau*= 0.00; Chi*=1.77,df=4 (P=0.78), F= 0%

Test for overall effect: Z= 3.56 (P = 0.0004)

Total (95% Cl) 0.79[0.70, 0.90] L
Total events 402 513

Heterogeneity: Tau®= 0.00; Chi*= 9.52, df= 10 (P = 0.48); F= 0% 0 o 0'r1 1 -

Test for overall effect: Z= 3.52 (P = 0.0004) Sacubiiritvalsartan Control
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Sacubitrilvalsartan

Study or Subgroup Fvents
1.2.1 Ventricular fibrillation

Control

PARADIGM-HF, 2014 22 4203 28 4229
OUTSTEP-HF, 2018 2 309 0 310
PARAGON-HF, 2019 4 2419 5 2402
PIONEER, 2019 0 439 0 436
EVALUATE-HF, 2019 1 231 0 233
PARALLEL-HF, 2021 3 111 4 112
Subtotal (95% Cl) 7712 7722
Total events 32 37

Heterogeneity. Tau*= 0.00; Chi*f=2.04,df=4 (P=0.73); F=0%
Test for overall effect: Z= 0.68 (P = 0.50)

1.2.2 Ventricular flutter

PARADIGM-HF, 2014 0 4203 1 4229
Subtotal (95% Cl) 4203 4229
Total events 0 1
Heterogeneity: Not applicable

Test for overall effect: Z= 0.67 (P = 0.50)

1.2.3 Ventricular tachycardia

PARADIGM-HF, 2014 66 4203 85 4229
PARAGON-HF, 2019 9 2419 4 2402
PIONEER, 2019 5 439 7 436
EVALUATE-HF, 2018 1 231 0 233
OUTSTEP-HF, 2018 3 309 1 310
ACTIVITY-HF, 2021 2 103 0 98
PARALLEL-HF, 2021 4 111 4 112
Subtotal (95% Cl) 7815 7820

Total events 90 101
Heterogeneity: Tau*=0.00; Chi*=6.05,df=6 (P=0.42); F=1%
Test for overall effect: Z=0.80 (P=0.43)

Total (95% Cl)

Total events 122 139
Heterogeneity: Tau*= 0.00; Chi*=8.44,df =12 (P=0.75); F=0%
Test for overall effect. Z=1.17 (P = 0.24)

19.1%
0.6%
3.4%

0.6%
2.7%
26.5%

0.6%
0.6%

58.4%
4.3%
4.6%
0.6%
1.2%
0.6%
3.2%

72.9%

100.0%

Risk Ratio

Total Events Total Weight M-H, Random, 95% Cl__Year

Risk Ratio
M-H, Random, 95% ClI

0.79[0.45, 1.38]
5.02 [0.24, 104.06)
0.79(0.21, 2.99]
Not estimable
3.03[0.12, 73.90]
0.76 [0.17, 3.30]
0.85[0.53, 1.36]

0.34 [0.01, 8.23]
0.34 [0.01, 8.23]

0.78 [0.57,1.07)
2.23 [0.69, 7.29]
0.71 [0.23, 2.22]
3.03[0.12,73.90)
3.01 [0.31, 28.78)
4.76 [0.23, 97.91)
1.01 [0.26, 3.93]
0.89 [0.66, 1.19]

0.86 [0.68, 1.10]

2014
2019
2019
2019
2019
2021

2014

2014
2019
2019
2019
2019
2021
2021

—_—

v

1 l 1
L

0.01 0.1 1 10
Sacubitribvalsartan Control

100
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Sacubitrilialsartan Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl _ Year M-H, Random, 95% ClI
1.1.1 Atrial fibrillation
PARAMOUNT, 2012 3 149 9 152 0.5% 0.34 [0.09,1.23] 2012
PARADIGM-HF, 2014 267 4203 250 4229 31.2% 1.07 [0.91,1.27) 2014 . ol
PIONEER, 2019 4 439 3 436  0.4% 1.32[0.30,5.88] 2019
EVALUATE-HF, 2019 2 231 0 233 01% 5.04 [0.24,104.48) 2019 »
OUTSTEP-HF, 2019 8 309 4 310  06% 2.01[0.61,6.59] 2019
PARAGON-HF, 2019 410 2419 384 2402 53.8% 1.06 [0.93,1.20] 2019 =
ACTIVITY-HF, 2021 2 103 1 98 0.2% 1.90[0.18, 20.65] 2021 g
PARALLAX, 2021 57 1280 60 1284 6.9% 0.95[0.67,1.36] 2021 i)
PARALLEL-HF, 2021 4 111 4 112 0.5% 1.01 [0.26, 3.93] 2021
Subtotal (95% CI) 9244 9256 94.2% 1.06 [0.96, 1.16] ¢
Total events 107 715
Heterogeneity: Tau*= 0.00; Chi*=5.81,df=8 (P=0.67), F=0%
Test for overall effect. Z=1.14 (P = 0.25)
1.1.2 Atrial flutter
PARADIGM-HF, 2014 11 4203 18 4229 1.6% 0.61 [0.29,1.30] 2014
QUTSTEP-HF, 2019 0 309 2 310 01% 0.20 [0.01,4.16) 2019 ¢
PIONEER, 2019 2 439 1 436  0.2% 1.99[0.18, 21.83] 2019 >
PARAGON-HF, 2019 31 2419 23 2402 3.0% 1.34 [0.78, 2.29] 2019 53 TR
ACTIVITY-HF, 2021 0 103 1 98 0.1% 0.32(0.01,7.70) 2021 ¢
PARALLAX, 2021 4 1280 2 1284 0.3% 2.01[0.37,10.93] 2021
Subtotal (95% Cl) 8753 8759 5.2% 1.02 [0.65, 1.60] ‘
Total events 48 47
Heterogeneity: Tau*= 0.02; Chi*=5.27,df=5(P=0.38), F=5%
Test for overall effect: Z= 0.08 (P = 0.93)
1.1.3 Atrial tachycardia
PARADIGM-HF, 2014 7 4203 1 4229 0.2% 7.04 [0.87,57.22]) 2014 4
PARAGON-HF, 2019 F 2419 2 2402 04% 3.48[0.72,16.71] 2019
PARALLAX, 2021 0 1280 1 1284 0.1% 0.33(0.01,8.20) 2021 *
Subtotal (95% Cl) 7902 7915 0.6% 3.02[0.78, 11.63] e —
Total events 14 4
Heterogeneity: Tau*=0.29; Chi*=2.47,df=2(P=0.29); F=19%
Test for overall effect. Z=1.60{(P=0.11)
Total (95% Cl) 1.06 [0.97, 1.17]
Total events 819 766 " & ¢
Heterogeneity: Tau*= 0.00; Chi*=16.92, df=17 (P=0.46), F= 0% '0.05 0f2 1 20-

Test for overall effect. Z=1.30(P=0.19)

Sacubitrilivalsartan Control
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